
ibm.com/redbooks

An Introduction to IBM
WebSphere Everyplace
Suite Version 1.1
Accessing Web and Enterprise Applications

Juan R. Rodriguez
Richard Appleby

Bernt Bisgaard
Hao Wang

Adrienne McGrory
Abdulamir Mryhij

Amy Patton
Muhammed Omarjee

Build business solutions to reach
anyone, anywhere, anytime

Support wireless networks, WAP,
dial-up and Internet connections

Single sign-on to multiple
applications and services

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization SG24-5995-00

An Introduction to IBM
WebSphere Everyplace Suite Version 1.1
Accessing Web and Enterprise Applications

October 2000

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (October 2000)

This edition applies to Version 1.1 of IBM WebSphere Everyplace Suite for use with the AIX Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix B,
“Special notices” on page 225.

Take Note!

Contents

Preface . ix
The team that wrote this redbook . ix
Comments welcome . x

Part 1. Introduction .1

Chapter 1. Evolution of e-business .3
1.1 The Internet .3

1.1.1 Limited business integration .4
1.1.2 Business integration .4
1.1.3 Personalization .6
1.1.4 Aggregation. .7
1.1.5 Aggregation with personalization. .8

1.2 Pervasive computing .8
1.2.1 A brief history .9
1.2.2 The future .10

1.3 The challenge .12

Chapter 2. Product overview .15
2.1 Functions in Everyplace Suite .16
2.2 Products in Everyplace Suite .18

2.2.1 Connectivity .19
2.2.2 Content handling .19
2.2.3 Security. .20
2.2.4 Optimization .20
2.2.5 Subscriber and device management .20
2.2.6 Base services .21

Chapter 3. Architecture .23
3.1 Overview. .23
3.2 Core components .24

3.2.1 Network access. .24
3.2.2 Adaptive network access. .25
3.2.3 Adaptive (multi-modal) portal. .26

3.3 Unauthenticated access .28
3.3.1 Dual security zones. .28
3.3.2 Dual security zones with adaptation .29
3.3.3 Shared security zone with adaptation .29

3.4 Central repositories. .30
3.5 Performance - caches .31

3.5.1 In-stream cache .32
3.5.2 Component host .32
3.5.3 Application value-add .32

3.6 Availability - dispatchers and clusters .32

Chapter 4. Performance and scalability .37
4.1 Definitions. .37

4.1.1 Capacity .38
4.1.2 Performance .38
4.1.3 Scalability .38

4.2 Designing for performance and scalability .38
© Copyright IBM Corp. 2000 iii

4.2.1 End-to-end performance budget . 40
4.3 Scalability . 42

4.3.1 Scaling techniques. 44
4.3.2 What techniques to use where . 50
4.3.3 General recommendations . 50

Chapter 5. Security . 53
5.1 Background . 53

5.1.1 Tools and solutions to achieve security objectives 54
5.2 WES security . 54

5.2.1 Authentication . 54
5.2.2 Confidentiality . 55
5.2.3 Authorization . 55
5.2.4 Data integrity . 55
5.2.5 Non-repudiation . 55

5.3 Security implementation . 56
5.3.1 Single sign-on . 56
5.3.2 Authentication . 58
5.3.3 Secured Connections. 59
5.3.4 Administration security. 61
5.3.5 MQSeries Everyplace security . 61
5.3.6 MQe security categories . 62

5.4 Firewall considerations . 63

Part 2. Services . 67

Chapter 6. Authentication . 69
6.1 Background . 69
6.2 Everyplace Authentication Server . 70

6.2.1 Everyplace Authentication Server and single sign-on. 71
6.2.2 Coordination with the Wireless Gateway . 73
6.2.3 Interface with Web Traffic Express. 75

6.3 Authentication Process . 76
6.4 Active session management . 79

6.4.1 Authentication Server session headers . 80
6.5 Scalability and availability . 82
6.6 Deployment scenarios . 83

6.6.1 TP and AP deployed . 84
6.6.2 Only AP deployed . 86
6.6.3 Hybrid TP/AP deployed . 86
6.6.4 Configuration for transcoding . 87

Chapter 7. Supporting wireless devices . 89
7.1 Overview . 89
7.2 Everyplace Wireless Gateway in the WebSphere Everyplace Suite 91

7.2.1 Functions. 91
7.2.2 Integration . 94

7.3 The Everyplace Wireless Gateway . 96
7.3.1 Architecture of the Everyplace Wireless Gateway 96
7.3.2 Mobile network connections (MNC) . 97
7.3.3 Wireless Gateway Clustering . 98
7.3.4 Cluster Manager (CM) . 99
7.3.5 Access Manager and persistent data storage. 101
iv IBM WebSphere Everyplace Suite - Vol 2

7.4 The Clients .102
7.4.1 The Wireless Client .102
7.4.2 WAP Clients .103

7.5 Administration: the Wireless Gatekeeper .103
7.6 WAP gateway/proxy .104

7.6.1 WAP programming model .104
7.6.2 IBM WAP implementation .105
7.6.3 WAP basic functions .106
7.6.4 WAP data flow .108
7.6.5 WAP gateway advanced functions .108

7.7 Wireless gateway security .110
7.8 Deployment of the Everyplace Wireless Gateway111

7.8.1 Performance, scalability, availability, and security112
7.8.2 WAP solution deployment .113
7.8.3 Non-WAP solution deployment .116

Chapter 8. Transcoding Web application content119
8.1 Introduction to transcoding .119
8.2 Overview of WebSphere Transcoding Publisher120

8.2.1 In the IBM WebSphere Everyplace Suite .121
8.3 Building with transcoders .122

8.3.1 Infrastructure design .122
8.3.2 Application design .124

8.4 Installation and configuration .126
8.4.1 Installing WebSphere Transcoding Publisher126
8.4.2 Configuring a Caching Proxy .126

8.5 Preference profiles .126
8.6 Transcoders .128

8.6.1 Build-in transcoders .129
8.6.2 Extending the transcoder .129

8.7 Development tools .130
8.7.1 Transform tool .131
8.7.2 Request viewer .131
8.7.3 Snoop tool. .132
8.7.4 Other resources and tools .133

Chapter 9. Subscriber and device management .135
9.1 Tivoli Personalized Services Manager overview135

9.1.1 Logical overview .136
9.1.2 Functional overview .137
9.1.3 Architecture. .138
9.1.4 Deployment .139
9.1.5 TPSM in the Everyplace Suite .141

9.2 Business and data model .142
9.3 Subscriber and system management .145

9.3.1 Enrollment. .146
9.3.2 Self care .148
9.3.3 Customer care .149
9.3.4 Director .149
9.3.5 Reporting .150

9.4 Pervasive device management .150
9.4.1 Device manager overview .151
9.4.2 Pervasive devices supported. .152
v

9.4.3 Initial enrollment/setup. 153
9.4.4 Software distribution . 155
9.4.5 Deployment within the Everyplace Suite . 157

9.5 Authentication and access control . 158
9.5.1 Authentication . 158
9.5.2 Premium Content . 160
9.5.3 RADIUS server . 160
9.5.4 Active Session Table server. 161

9.6 Personalization services . 161
9.6.1 Personalization in the Everyplace Suite . 162
9.6.2 Overview of pTk. 163
9.6.3 Preference API . 163
9.6.4 JSP components of pTk . 165
9.6.5 AdServer integration . 167

9.7 Integration and provisioning. 168
9.7.1 iTk Core and Business Object interface . 169
9.7.2 iTk Provisioning . 169
9.7.3 iTk Billing . 169

Chapter 10. Pervasive messaging and queuing . 171
10.1 Introduction to messaging and queuing . 171

10.1.1 Messaging with IBM MQSeries . 172
10.1.2 Why messaging rather than browsing? . 173

10.2 The MQSeries family of products . 174
10.2.1 MQSeries. 174
10.2.2 MQSeries Integrator. 175
10.2.3 MQSeries Workflow . 176

10.3 MQSeries Everyplace . 176
10.3.1 Key considerations . 176
10.3.2 IBM MQSeries and IBM MQSeries Everyplace. 177
10.3.3 Architectures . 178
10.3.4 Bridging to MQSeries networks . 179
10.3.5 Everyplace Suite considerations . 179

Part 3. Optimization . 181

Chapter 11. Caching Proxy . 183
Changing names .183
11.1 Introduction to a Caching Proxy . 183
11.2 What is a Caching Proxy? . 184

11.2.1 Proxy server . 184
11.2.2 Cache . 184
11.2.3 Content filter . 185

11.3 Proxy server component . 185
11.3.1 How forward proxy works . 186
11.3.2 How transparent proxy works. 186
11.3.3 How reverse proxy works . 187
11.3.4 Protecting a proxy server . 188
11.3.5 Caching Proxy API interface . 190
11.3.6 HTTP Headers . 190
11.3.7 Secure proxy connections . 191

11.4 Caching component . 193
11.4.1 Caching rules. 193
vi IBM WebSphere Everyplace Suite - Vol 2

11.4.2 What to cache .194
11.4.3 Caching storage options .195
11.4.4 Caching agent .195

11.5 Content Filtering Component .196
11.5.1 What is content filtering? .196

11.6 High performance and scalability with the Caching Proxy196
11.6.1 Using Remote Cache Access .197
11.6.2 Using proxy chaining .198

11.7 Using the Caching Proxy in the Everyplace Suite199
11.7.1 The Caching Proxy as a prerequisite .199
11.7.2 Using the Caching Proxy for optimization200
11.7.3 Prerequisite and optimized Caching Proxy in Everyplace Suite . . .201

Chapter 12. Load Balancer .203
12.1 Changing names .203
12.2 Introduction to the Load Balancer .203

12.2.1 Load Balancer delivers performance .204
12.2.2 Load Balancer delivers availability. .204
12.2.3 Load Balancer delivers scalability .204

12.3 Component overview .204
12.3.1 The Dispatcher .205
12.3.2 Interactive Session Support. .207
12.3.3 Content Based Routing .209
12.3.4 Affinity .209
12.3.5 Overview of advisors .211

12.4 Providing high availability with the Load Balancer212
12.4.1 High availability using the Dispatcher .213

12.5 Load Balancer in WES .214
12.5.1 Using the Load Balancer with the Authentication Server216
12.5.2 Using the Load Balancer with WebSphere Transcoding Publisher .218
12.5.3 Using the Load Balancer with application servers219
12.5.4 Using the Load Balancer in the Everyplace Suite220

Appendix A. Devices/networks supported by the Everyplace Suite 221

Appendix B. Special notices. 225

Appendix C. Related publications . 227
C.1 IBM Redbooks. 227
C.2 IBM Redbooks collections. 227
C.3 Other resources . 227
C.4 Referenced Web sites. 228

How to get IBM Redbooks .229
IBM Redbooks fax order form. 230

Glossary .231

Index .235

IBM Redbooks review .239
vii

viii IBM WebSphere Everyplace Suite - Vol 2

Preface

This redbook is about building business solutions using the IBM WebSphere
Everyplace Suite Version 1.1 product to enable Web and enterprise application
access from pervasive computing devices. It helps you to understand this product
and focuses on implemented architectures and technologies included in this
release such as wireless communications, transcoding, security, caching proxy,
load balancing, messaging, and single sign-on, among others.

IBM WebSphere Everyplace Suite is an integrated end-to-end software solution
for mobile e-business. In this redbook, you will find information that will help you
plan to successfully implement solutions that businesses must address to be able
to access Web and enterprise applications from desktop browsers and the new
class of client devices such as WAP phones, Palm Pilots, WorkPads and others.

A basic knowledge of HTTP and WAP protocols as well as some understanding of
Web and Java technologies (XML, HTML, WML, servlets, and JSPs) and the
terminology used in Web and enterprise applications is assumed.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Juan R. Rodriguez is a Senior Software Engineer at the IBM ITSO Center,
Raleigh. He received his M.S. degree in Computer Science from Iowa State
University. He writes extensively and teaches IBM classes worldwide on such
topics as networking, Web technologies and data security. Before joining the IBM
ITSO, he worked at the IBM laboratory in Research Triangle Park (North Carolina,
USA) as a designer and developer of networking products.

Richard Appleby is a Solutions Architect working in IBM UK, based at Hursley
Park development laboratory near Winchester, England. He has 15 years of
experience in development and consulting on transactional systems, the last two
years of which have been in the e-business and pervasive computing arenas. He
has previously held test, development and design roles in both the CICS and
MQSeries development organizations, and provided end-to-end architectural
consultancy to some of the largest corporate customers of IBM. He has
previously written about both the MQSeries and Tivoli TME/10 products.

Bernt Bisgaard is an advisory IT specialist in Denmark. He has five years of
experience in architecting e-business solutions, and now works in the Pervasive
Computing division of IBM initiating projects for customers and advising on pervasive
solutions. He holds a Master’s degree in computer systems engineering from the
Technical University of Denmark. Bernt joined IBM in 1992.

Hao Wang is a senior executive of Deuk Company, a technology and
management consulting firm based in Cambridge, Massachusetts. He has a
Ph.D. degree in the area of optoelectronics from Massachusetts Institute of
Technology (MIT) and an MPA degree from Harvard University. Hao is the founder
of Deuk Company and Noah.Net, Inc., a wireless application service provider
(ASP) enabling business-to-business and business-to-consumer pervasive
computing. Hao has published many technical journal articles.
© Copyright IBM Corp. 2000 ix

Adrienne McGrory is an IT Specialist in the Finance Services Sector of IBM,
based in Edinburgh, UK. As a technical architect, she has experience working
with the WebSphere software products, implementing strategic e-business projects
in the UK and The Netherlands.

Abdulamir Mryhij is a senior IT consultant with more than 16 years of
experience in the IT industry. He has participated as a Software Engineer,
consultant, project manager, and chief architect in many projects around the
world and specializes in software engineering and application architecture. Amir
holds a Master’s degree in Information Technology from the University of Western
Sydney. He is also an IBM-certified e-Business Designer and is
Microsoft-certified for SQL server, Windows architecture, and Windows NT. Amir
is country consulting services manager at GBM-Qatar.

Amy Patton is a technical developer at Immersant in Cambridge, Massachusetts.
Amy specializes in Web applications development, from network and database
design to Java user interfaces. Amy graduated from Boston University with a
Bachelor of Arts in Computer Science.

Muhammed Omarjee is an IT Specialist with IBM Business Innovation Services
in Johannesburg, South Africa. He started with IBM as an applications software
developer in e-business and Web-oriented solutions. His current area of expertise
is centered around Web technologies such as Java, markup languages, and
related object-oriented technologies. He holds a National Diploma in Information
Technology from the Technikon Witwatersrand of South Africa.

Thanks to the following people for their invaluable contributions to this project:

Anthony Wrobel, CD Choi, Barbara Wetmore, George Hall, Henry Welborn
IBM Research Triangle Park, North Carolina, USA

Samuel Camut, Pinwu Xu, Ronnie Jones, Salim Zeitouni, David Chuang
IBM Research Triangle Park, North Carolina, USA

Thomas Seelbach
IBM Hawthorne, New York, USA

Gill Spencer
Extended e-Business Solution Centre, IBM Hursley, UK

Leonard Hand
IBM Global e-business Solutions Integration Center, Dallas, Texas, USA

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 239 to the
fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
x IBM WebSphere Everyplace Suite

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1. Introduction

In this part of the redbook we provide useful information for understanding the
evolution of e-business and pervasive computing. You will also find high-level
architecture information showing how the components in IBM WebSphere
Everyplace Suite are deployed to provide complete solutions in different
scenarios. Hints and tips are inserted to provide you with a better understanding
of the IBM WebSphere Everyplace Suite product.
© Copyright IBM Corp. 2000 1

2 IBM WebSphere Everyplace Suite

Chapter 1. Evolution of e-business

When the Internet was first created no one could have imagined the impact it
would eventually have on our personal and business lives. Over the years it has
grown, changing from a small network with limited abilities into a vast system that
spans the globe. And as it has grown it has evolved; its users are constantly
designing and implementing new features. Once it was a simple text-based
system with poor usability; now the Internet also offers a wide variety of rich
multimedia facilities that are ideally suited to novice computer users.

As a consequence, the users of the Internet have also changed. Once the
preserve of highly skilled academics and technicians, the Internet can
increasingly be used by anyone. This in turn has led to the Internet being adopted
by businesses, which were quick to realize its potential for both saving and
making money.

This redbook is about building business solutions that access the Internet from
what IBM terms pervasive computing devices1. To successfully implement these
types of solutions there are some specific challenges that businesses must
address. In this book we talk about these solutions, and in particular discuss the
challenges that are involved in creating the larger, more complex solutions that
are typically deployed by enterprises and service providers.

1.1 The Internet

Since this redbook concentrates on the business use of the Internet (often simply
referred to as e-business), let’s initially consider how and why businesses use the
Internet. Viewed as simplistically as possible, they use it for one of two main
reasons:

• To save money, typically by carrying out an existing function more efficiently,
and therefore more cheaply, or

• To make more money, by increasing their number of customers, retaining their
existing customers, or increasing the frequency with which their customers
use or purchase their products.

Over the years the degree to which companies can use the Internet has grown.
Initially there was little opportunity to use the Internet for a variety of reasons. The
major reasons were that the number of potential customers (both individuals and
other businesses) who were using the Internet was low, the Internet was
intrinsically unreliable, and there were few technologies that could be brought to
bear.

The turning point was the introduction of the standard for the HTTP protocol,
which brought into being the World Wide Web. This introduced a usable
technology to the Internet, and as a result attracted more users to the Internet. As
the number of individuals and businesses rapidly increased, the incentive for
businesses to make use of the Internet increased as well. In parallel, other
technologies (such as CGI, Java, Servlets, JSPs, etc.) that are now used to
create e-business solutions were being invented and refined. The result of this
has been that e-business capability has evolved through a series of phases.

1 Pervasive computing is the group of enabling technologies that will allow the Internet to become truly accessible to anyone, anywhere,
and at anytime. See 1.2, “Pervasive computing” on page 8, or http://www.ibm.com/pvc for more information.
© Copyright IBM Corp. 2000 3

Typically each phase is more complex than the last, but provides greater potential
benefits to the business.

As businesses tend to be conservative in nature, early business users of the
Internet moved from one phase to another over time as the capability became
available and trusted. This is still the case, and most adopters still typically pass
through one or more of these phases, though there is a class of business (the
so-called dot-coms) that start by making use of the most advanced technologies
available to gain a business advantage over their rivals.

1.1.1 Limited business integration
The simplest e-business solution is to use the Internet only to advertise a
business’s existence, usually providing a simple information service. This may
comprise product information (the equivalent of online brochures), contact
information, basic product pricing, etc. This type of offering is usually described
as static publishing (or simple Web presence). This is illustrated on the left of
Figure 1.

Figure 1. Simple e-business solutions

Slightly more advanced than this is where a business may actually provide some
limited dynamic information to its customers (or potential customers) through its
Web site. This will often be in the form of more detailed access to its product
information, perhaps generating the prices dynamically based on some formula
that takes into account the number of items to be ordered, taxation, and delivery
costs. This is illustrated on the right of Figure 1.

1.1.2 Business integration
The next level of complexity is when businesses start to integrate their core
business processes into their e-business solution. Usually we can divide this
phase into two main parts: allowing customers to view the data within the core
business processes, and allowing them to actually make updates via those core
processes.

A good example of this might be where a business allows its customers to see if
there are items in stock before he calls the sales desk. This can be simply
achieved by providing an interface to the corporate inventory system.

Browsers

Web Site Browsers

Product
Catalogue

Web Site
4 IBM WebSphere Everyplace Suite

Somewhat more complex again is where the business allows its customers to
update its core business processes via the e-business system. This is typically
the point at which a business begins to actually transact business over the
Internet, allowing its customers to place orders through its e-business system.
One example of this is integrated e-commerce, and a typical solution of this type
is shown in Figure 2. Interfaces to both the inventory and order processing
systems are required, as might be an interface to some type of billing system
(which for clarity is not shown).

Figure 2. e-business solution integrated with core business systems

The final level of complexity at this stage is where a business also starts to
integrate its e-business solution with other businesses’ systems, typically using
extranets. A good example of this is supply chain management (SCM). In the
previous example, if an order cannot be fulfilled because the business has
insufficient stock, there is a risk that the customer will buy from a competitor. To
reduce that risk, the business can provide a date when it will be able to fulfill the
order; it will still get the business if that date is acceptable to the customer. This
benefits both the customer, who can place his order without additional effort, and
the business, which receives the order even though it doesn’t actually have stock
at the time of the order.

To do this requires that the business integrate its core systems (particularly the
inventory systems) with its suppliers’ systems, and be able to calculate the time
to create stock, given the outstanding orders. This is illustrated in Figure 3.

Product
Catalog

Inventory
Systems

Customers

Order
Processing

Online
Store
Chapter 1. Evolution of e-business 5

Figure 3. Integrating e-business solutions over extranets

1.1.3 Personalization
A feature often added to many types of solutions is personalization. This is where
content or information is presented in a different way to one user of the solution
than it is to another. This personalized content may be delivered by either the
base solution or in the form of additional paths (such as e-mail, postal mail or
telephony), as is appropriate to the solution provider’s business.

The main advantages of personalization are that it allows a business to better
target its customers, builds a better individual relationship with each customer,
improves the customer’s loyalty, and so increases the business done with each
customer. Typical uses are up-selling and cross-selling strategies, provision of
specific pricing policies or discount schemes, etc. As can be seen, this is a key
technology for customer relationship management (CRM).

A sophisticated implementation normally requires a database of customer
interactions and some way to analyze those interactions, plus mechanisms to
interface to the customer more directly. This could be implemented as illustrated
in Figure 4 on page 7.

Product
Catalog

Inventory
Systems

Customers

Order
Processing

Suppliers

Online
Store

Extranets
6 IBM WebSphere Everyplace Suite

Figure 4. A fully integrated e-business system including CRM and targeted marketing

1.1.4 Aggregation
So far the types of e-business solutions have been particularly relevant to
businesses whose business models are based on selling products. In this context
the next development, known as aggregation, would be building a mall of
aggregated shops, rather than a single shop.

However, this technique is even more appropriate to non-retail businesses whose
business models are based on the provision of information. In this case
aggregation is where many sources of data and services are pulled together into
a form and location where they can be more readily accessed. This adds extra
value to a solution simply because it allows the business to provide more
information, hopefully in a more readily accessible form.

The originators of this idea were the original Internet search engine sites such as
Yahoo, Lycos, and the like. They were already providing a vitally important
service to users of the ever-growing PDAs, and as a consequence were
“well-known locations” on the Internet. Their business models were (and are)
largely driven by advertising revenue. To make money they needed to attract
increasing numbers of visitors to their sites, which in turn required that the
information and services that they offered were attractive to as broad a range of
people as possible.

To achieve this the search engine sites started to add new and aggregated
content to their sites, including news, weather, PDA-mail, travel services, and
company directories (Yellow Pages) etc. Refer to Figure 5 on page 8 for an
illustration of this type of solution.

The result of adding aggregation to their sites was that these businesses became
the first Internet Portals. They have since been joined by both Internet Service
Providers (ISPs) and Application Service Providers (ASPs) in aggregating
content into competing portals.

Browsers

Product
Catalog

Inventory
Systems

Customers

Order
Processing

Suppliers

e-mail
Support

Marketing

Online
Store

Data
Warehouse

Extranets
Chapter 1. Evolution of e-business 7

Figure 5. Aggregation in an e-business solution

1.1.5 Aggregation with personalization
As described in the previous section, aggregation allows a business to create a
portal. However, when used on its own it only allows the creation of a rather
simple portal. By combining the features of aggregation with significant levels of
personalization it is possible to provide dramatically improved usability to the end
users.

They can ensure that they are only presented with information that is of specific
interest and relevance to them. This means that a personalized portal solution
can add significantly more value to its data, and so its customers, than a
non-personalized portal that simply aggregates data. This in turn means that
more users will use the portal.

Additionally, by monitoring and understanding the personalization decisions that
the portal users are making, it becomes possible to gather more information
about the users, and further personalize the content, especially targeted dynamic
content such as advertisements.

It is also worth mentioning marketplaces at this point. Marketplaces are a specific
example of an e-business solution that makes use of both content aggregation
and personalization with the specific intention of bringing together customers and
businesses that wish to interact with one another. Although at this level there are
functional similarities between portals and marketplaces, the detailed
implementation will be radically different, and this is beyond the scope of this
redbook.

1.2 Pervasive computing

Pervasive computing is a series of technologies that enable people to accomplish
personal and professional tasks typically using a new class of portable, intelligent
device. It gives people convenient access to information that is relevant to them at
the time, whenever and wherever they are, with appropriate levels of security. The
key feature of these devices is that they provide usability that is comparable to
everyday devices such as telephones or domestic appliances, while still allowing

Browsers

Aggregator

Aggregator / Information
Supplier

Service
Supplier

Service /
Information
Suppliers
8 IBM WebSphere Everyplace Suite

users access to the information that they need, typically provided by today’s
e-business solutions over increasingly intelligent networks.

1.2.1 A brief history
Over the last decade, there has been a dramatic increase in the use of embedded
computers within apparently common-place devices. This has led to a change
from a world where computers are seen and used as distinct machines, to a world
of sophisticated, computerized devices that are often neither perceived nor used
as computers. By most estimates, the vast majority of computers are now of this
type. Computers of varying capabilities can be found in telephones, microwave
ovens, cash registers, cars, and a huge range of other devices and systems that
we all use on an everyday basis.

In parallel with this growth in embedded computing there has been a massive
trend towards the commonplace use of ubiquitous personal digital
communications. This has been centered in Europe where the early decision to
adopt a common digital cellular infrastructure based on Global System for Mobile
Communications (GSM) technology was taken in the early 1990s. This system
spread rapidly to most areas of the world apart from the USA and Japan, where
local (and sometimes fragmented) standards were adopted instead.

The almost universal nature of the GSM infrastructure, in combination with an
aggressive pricing model, ensured that the penetration of this technology was
both rapid and extremely deep in Europe. As of mid-2000, adoption approaches
90% of the total population in some regions, and exceeds 50% in many. Exactly
comparable figures for USA are not readily available, but while approximately
35% of the population use wireless communications, only about 15% have access
to personal digital wireless communications.

In the mid-1990s a new class of small, user-centric computing devices began to
be appear. Known as the Personal Digital Assistant (or PDA), these provided
functionality that would normally be provided by paper diaries, address books and
notebooks, and were initially popular only with highly computer-literate adopters
of new technology. Largely these were viewed as expensive toys.

However, consumer acceptance of these PDAs (such as the Palm Pilot, IBM
WorkPad, Psion 5, Sharp Zarus, etc.) has been very favorable, fueled to a
considerable degree by the ability of users to create their own applications, which
are often shared freely over the Internet. This has been a key strategy for the
Palm Pilot in particular, which now commands well over 70% of the US PDA
market2.

In the last few years the newer PDAs have been designed around open
architectures with embedded TCP/IP networking support and infrared
communications ports allowing simple connection to suitably data-enabled digital
cellular telephones. The combination of small devices, increased processing
power, readily available networking support (usually mobile networking based on
the use of the cellular network) resulted in the arrival of the first true pervasive
computing devices, capable of adding real value to their users, and quickly losing
the image of expensive executive toys.

Development now continues apace to continue to integrate networking support
into many of the new and existing devices that contain embedded computers,

2 Source: NPD Intelect, June 2000
Chapter 1. Evolution of e-business 9

using new technologies and open standards such as the Open Systems Gateway
initiative (OSGi), Bluetooth, fast IR, Wireless Ethernet and more. This is resulting
in new classes of devices such as the Internet appliance,- an Internet-capable
device that has all the usability features of a normal household appliance (such
as a television or washing machine) and yet communicates via open standards
with e-business solutions to provide added value to its users.

1.2.2 The future
The chart in Figure 6 illustrates the expected growth in the use of the Internet
from these new classes of device, along with the matching decrease in the use of
the Internet from existing classes of devices, especially the “standard” desktop
system. The key feature from this chart is that the largest growth is in the systems
that are the most mobile - handheld systems and smart telephones - and
convenient, such as the Internet appliances.

Figure 6. Changes in devices that are initiating Internet transactions

This increase in the popularity of mobile devices accessing the Internet is in tune
with the view that work is no longer a place, but rather a state of being. The
promise of pervasive computing is that it will simplify our lives by combining open
standards-based applications with our everyday activities, allowing us to
seamlessly mix our work and leisure activities in a way that traditional computing
systems cannot achieve. In short, computing will no longer be a discrete activity
bound to a desktop, but instead will be part of our everyday lives, wherever we
may be.

Interestingly, the next developments are already occurring in this area, with major
manufacturers integrating PDA functionality into cellular telephones. Indeed,
these new devices bear little resemblance to cellular telephones, as the following
picture (Figure 7 on page 11) illustrates. These new types of hybrid devices will
further blur the distinction between smart telephones, that is, that are equipped

1998 2000 2002
0

20

40

60

80

100

Percentage of Internet transactions

Other (sensors, etc)

Smartphones

Hand Held Devices
(PDA's)

Interactive Pagers

Internet Appliances
(Automotive, WebTV,
Sony Playstation II)

Notebooks

Desktops

(Sherwood Research - March 99)
10 IBM WebSphere Everyplace Suite

with a Wireless Application Protocol (WAP) browser, and PDAs over the next few
years.

Figure 7. New generations of PDA / telephones

Devices such as this provide obvious advantages in terms of usability and the
timeliness of access to information. Together these provide businesses with the
opportunity to provide services and information in a way that is more acceptable
to the customer. This alone can result in significant improvements in customer
satisfaction, and a commensurate improvement in brand loyalty and increased
business, which has tangible benefits to any organization.

As these devices are built around open Internet-based standards, providing
services and information over them will typically be implemented using self-care
techniques that will also result in significant cost savings when compared to
similar manual systems. The devices can also incorporate new features that will
also allow new business opportunities to be realized.

Perhaps the most obvious example is provided by location-based services.
Currently it is possible to understand which cellular telephony “cell” is providing
service to a device, and through the use of Geographic Information Systems
(GIS) it is possible to provide some coarse-grained location-based services, such
as basic directions to the nearest branch of a restaurant chain. However, there
are various technologies currently available for locating a device to an accuracy
of a few meters, Global Positioning System (GPS) and base station triangulation
being the most accurate. By using this information it will be possible to provide a
wide variety of value-added services to the user, such as personalized satellite
navigation, or calling a taxi to your location (even when you don’t know where you
are!).
Chapter 1. Evolution of e-business 11

1.3 The challenge

The challenge is to implement solutions that provide the types (particularly the
more complex types) of e-business solutions that are required by today’s
businesses, while providing access through the various types of pervasive
devices that we have been discussing.

Although most of these pervasive devices communicate using Internet-based
standard protocols, the extremely diverse nature of the devices means that there
are still significant differences in the capabilities of both the devices and their
network connectivity. For example, screen size, input mechanisms, information
processing capability, and storage capacity all vary greatly, as can the network
bandwidth.

As mobile communications in particular is still a relatively expensive, error-prone
and low-capacity medium, some devices will be equipped with non-browser
based communications facilities to support occasionally connected models of
operation. These devices typically rely on synchronization techniques to
exchange data with e-business solutions, and are based on either messaging or
database synchronization.

Merging more complex e-business solutions with these new (and emerging)
pervasive computing technologies to create new and innovative solutions
requires a significant integration effort.

As an example, consider the creation of a portal that can be accessed via a
variety of devices ranging from traditional Internet browsers, through interactive
digital TV systems and Internet appliances to WAP-based telephones. This type
of solution is sometimes referred to as a multi-modal portal. Functionally such a
system can be viewed as illustrated in Figure 8.

Figure 8. Multi-modal Portal infrastructure, from a functional perspective

Each of the major functional building blocks contains many smaller functional or
business requirements that will need to be addressed to create a workable
solution. Each of these may need to be implemented by one or more products or
applications all integrated together into a working whole, with assurance of
performance, availability and scalability.

In order to provide the infrastructure for creating portals, a variety of servers are
required that must be reliable, flexible, and scalable. These include some of the
following core services:

2
3

1
5

6

4
8

9

7
0

#

*

Connectivity Content
Handling

Security Optimization

Subscriber and Device
Management

Core Services

WebSphere Server Domino Server

InformationeCommerce

Business apps. PIM / Messaging

Service apps. Lifestyle / Fun

News, Sport, Stock
Prices, Weather,
Travel, ...

Banking, Stock Trading,
Retailing, ...

Order entry, Stock
recording, Stock query,
Delivery routing, etc

eMail, Instant
Messaging, SMS, FAX,
Calander, Alerts, ...

Travel Planner, Account
enquiry, Bill payment,
Service changes, ...

Games, Music
Download, ...

Enterprise
Data

Application
Data

Web Content

Clients Applications and ContentEdge-of-Network Services
12 IBM WebSphere Everyplace Suite

• Connectivity, consisting of the core functions of the solution, including
products such as HTTP servers, Web application servers, collaboration
servers, database services, messaging services, load balancing and caching
services and network connectivity services capable of supporting a wide
range of network access technologies.

• Portal Infrastructure, consisting of systems to assist with consistent style (look
and feel), branding initiatives, personalization, localization, and knowledge
management systems.

• Subscriber and Device Management, to allow the provision (or self-provision)
of portal users, access control, billing and self-care functions.

• Customer Data Warehouse, consisting of a repository of user information and
preferences that can be data-mined. This allows information to be extracted,
providing one-on-one marketing or the automated supply of appropriately
targeted content to users.

• Business Services, which supply the underlying information and services to
attract the users to the portal infrastructure.
Chapter 1. Evolution of e-business 13

14 IBM WebSphere Everyplace Suite

Chapter 2. Product overview

As we mentioned in the first chapter, the major challenge that faces us is to
implement the complex e-business solutions that are required by today’s
businesses, to enable access from the various types of new or emerging
pervasive devices that are becoming increasingly common. At the same time we
have to ensure that our solutions have high performance, high levels of
availability and excellent scalability.

IBM WebSphere Everyplace Suite is the IBM solution for addressing the issues
raised in Chapter 1, “Evolution of e-business” on page 3. As the name suggests,
this is not a single product, but is rather an integrated suite of existing products,
combined with additional software to provide close integration of all the product
administration and configuration, and to implement a coherent security model for
the entire e-business solution.

Everyplace Suite is ideal for organizations that wish to build solutions that are
built around:

• Network access
• Adaptive network access
• Adaptive (multi-modal) portal

IBM WebSphere Everyplace Suite provides the functionality necessary to enable
both network access, and application and content serving to multiple device
types. It also provides the functionality to extend e-business applications to the
new classes of pervasive computing devices discussed previously, including WAP
phones, PDAs, Internet appliances and screenphones in addition to the large
installed base of Internet browsers.

Everyplace Suite logically fits between your clients and the business applications
and data that those clients wish to access. Because it is located on the edge of
the network where your solution is implemented, we say that Everyplace Suite
provides “edge-of-network” functionality to the solution.

Everyplace Suite is not part of the infrastructure that comprises those business
applications and data, but rather it provides the infrastructure to enable many
different devices to access those applications and data via networks. This is
illustrated in Figure 9, which shows how Everyplace Suite logically fits into a
deployment of a multi-channel, end-to-end e-business solution.
© Copyright IBM Corp. 2000 15

Figure 9. WebSphere everyplace suite, end-to-end solution

2.1 Functions in Everyplace Suite

If you refer back to Figure 9 on page 16, you can see that we broke the
Everyplace Suite system into six functional areas; connectivity, content handling,
security, optimization, subscriber and device management, and finally, core
services.

If we examine these abstract functional areas in more detail, we can see more
detailed functionality contained within each of them. Refer to Figure 10 for a
description of the technologies that are contained within each major functional
area.

Figure 10. IBM WebSphere Everyplace Suite functions

2
3

1
5

6

4
8

9

7
0

#

*

Connectivity
Content
Handling

Security Optimization

Subscriber and Device
Management

Core Services
WebSphere Server Domino Server

InformationeCommerce

Business apps. PIM / Messaging

Service apps. Lifestyle / Fun

Enterprise
Data

Application
Data

Web Content

Clients Applications and ContentWebSphere Everyplace Suite

Connectivity

Protocol Conversion

Wireless Gateway

Content Handling

Asynchronous Messaging

Transcoding

Data Synchronization

Security

Encryption

Authentication

VPN Tunneling

Optimization

Caching

Load Balancing

Wireless Optimization

Subscriber and Device Management

Provisioning

Device ManagementSubscriber Management

Self CareBilling

Customer ServiceUser EnablementAccounting

Core Services

Directory / Repository

AdministrationInstallation / Configuration
16 IBM WebSphere Everyplace Suite

Connectivity
Connectivity is the function that allows various types of device to connect to
Everyplace Suite, and from Everyplace Suite into your business applications and
data. Functionally there are two aspects to this; one is the provision of gateways
to physically connect various types of networks to our end-to-end solution, the
other is convert the networking protocols to forms that can be directly used to
access our business applications and data.

So, the gateways provide the method of connecting such things as X.25, SNA, or
WAP to our solution. The protocol conversion allows us to provide (say) a TCP/IP
programming interface on a remote system, and then to flow the resulting TCP/IP
packets over (say) the physical X.25 network that that remote device is connected
to, and then out into our business applications.

Content handling
Content handling is the issue of moving the content from your e-business
solutions (either applications or data) to the point where it is required. This
typically has two main aspects; the moving and then ensuring that when the data
is at the point where it is needed, it is in a form that can be used.

To that end, this can be broken down into three main areas:

• Transcoding

Since pervasive computing devices come in all sizes and have widely varying
display capabilities, transmitted content must be customized to fit the
capabilities of the requesting device.

• Asynchronous Messaging

Asynchronous messaging is a complementary technology to Internet browsing
that is designed for applications where a “fatter” client is acceptable, and
where disconnected modes of operation are required. To support these it
provides assured, asynchronous, once-only delivery of data across a broad
range of hardware and software platforms.

• Data Synchronization

IBM WebSphere Everyplace Suite has the capability to manage the automatic
exchange and updating of e-mail, schedules, transactions, and database
exchanges between popular pervasive devices and database servers. This
allows users to perform work offline, and connect to the network whenever it's
convenient.

Security
IBM WebSphere Everyplace Suite provides an integrated security model that
provides the user with a significantly enhanced end-user experience. The key
feature is the ability to provide single sign-on across all the components of an
end-to-end e-business solution, which fully integrates with standard security
techniques such as virtual private network (VPN) technology, firewall protection,
etc.

Optimization
As with all e-business solutions, performance is a critical issue. If the
performance is poor it is easy for a customer to go elsewhere. Customer
expectations are constantly increasing, and as the popularity of your solution
increases it must be capable of scaling to cope with the increased demand. This
Chapter 2. Product overview 17

is provided through the inclusion of caching and load balancing support to ensure
high performance and scalability.

Subscriber and device management
In the world of pervasive computing, a single device may have multiple users, and
a single user may access the network using multiple devices. IBM WebSphere
Everyplace Suite includes Tivoli technology to manage subscribers and their
devices, easing the burden of administration and system maintenance.

Base services
The base services provide the underlying framework on which the rest of
Everyplace Suite is built. This includes the directory and repository services
where all the data is stored, the installation, configuration and administration,
plus all the other services that underpin them, including the HTTP servers,
databases, etc.

2.2 Products in Everyplace Suite

In this section we briefly highlight how each of the previously discussed functional
areas has been implemented in Everyplace Suite, showing which products
implement which function. Clearly at the level that we are discussing the products
and functions, this is not going to be exact; there will be some grey areas where
products provide more than one function, or more than one function is
implemented by the same product. None the less, this will provide you with a
useful feel for how the products fit together.

The products that form the components of Everyplace Suite are:

• Everyplace Wireless Gateway 1.1

• Everyplace Authentication Server

• WebSphere Transcoding Publisher 1.1.2

• Tivoli Personalized Services Manager 1.1

• MQSeries Everyplace for Multiplatforms 1.0

• Mobile Data Synchronization Server

• WebSphere Edge Server - Caching Proxy (Web Traffic Express) 1.0

• WebSphere Edge Server - Load Balancer (Network Dispatcher) 1.0

• IBM SecureWay Directory 3.2

• IBM WebSphere Application Server 3.5

• IBM HTTP Server 1.3.12

• IBM DB2 Universal Database 7.1

• IBM WebSphere Everyplace Suite Install

• IBM WebSphere Everyplace Suite Administration Console

Refer to Figure 11 on page 19 for a graphical representation of how the various
products have been used to implement the functionality that we discussed in
“Functions in Everyplace Suite” on page 16.
18 IBM WebSphere Everyplace Suite

Figure 11. IBM WebSphere Everyplace Suite products

2.2.1 Connectivity
IBM Everyplace Wireless Gateway provides secure wired and wireless
connectivity between your enterprise network and the whatever external
communications networks that you need to support, for example, GSM, CDMA,
TDMA, X.25, etc. It also implements protocol translation, and provides support for
interfacing to short messaging centers via a series of APIs.

Refer to Chapter 7, “Supporting wireless devices” on page 89 for more
information.

2.2.2 Content handling
IBM WebSphere Transcoding Publisher transforms one form of content into
another so that it can be presented on a device that is different from the originally
intended target. IBM WebSphere Transcoding Publisher performs this
transformation automatically and on-the-fly, reducing or eliminating the need to
maintain multiple versions of content. A good example of this is changing HTML
content that is intended for desktop PCs into WML content that is suitable for
displaying on a WAP-enabled mobile phone.

Refer to Chapter 8, “Transcoding Web application content” on page 119 for more
information.

IBM MQSeries Everyplace enables pervasive devices to participate in
commercial messaging, sending messages between applications, and assuring
their delivery (once and only once), in a secure and highly efficient manner,
operating in both connected and disconnected scenarios.

Connectivity

Everyplace
Wireless Gateway

Content Handling

MQSeries Everyplace

WebSphere Transcoding
Publisher

Everyplace Synchronization
Manger

Security

Everyplace
Authentication Server

Everyplace
Wireless Gateway

Optimization

Edge Server - Caching Proxy

Edge Server - Load Balancer

Everyplace Wireless Gateway

Subscriber and Device Management

Tivoli Personalized Services Manager

Core Services

SecureWay Directory

Everyplace Administration
ConsoleEveryplace Installation
Chapter 2. Product overview 19

Refer to Chapter 10, “Pervasive messaging and queuing” on page 171 for more
information.

IBM Everyplace Synchronization Manager is another complementary technology
to allow pervasive devices to work in semi-connected modes. It enables
pervasive devices to operate applications “offline”, and synchronize the results of
their activities with a server database when connectivity is re-established.

IBM Everyplace Synchronization Manager is not covered in detail in this redbook,
because at the time we were writing it, this component was not available to us.

2.2.3 Security
IBM Everyplace Authentication Server forms the core of the Everyplace Suite
security functionality. It provides user and device authentication capabilities that
together enable a single, device-independent user sign-on. It also provides the
pass-through of authentication information to business application and data
servers.

Refer to Chapter 6, “Authentication” on page 69 for more information.

IBM Everyplace Wireless Gateway provides Virtual Private Network support,
which enables an enterprise to extend its private intranet across a public network,
such as the Internet, creating a secure private connection by way of a private IP
tunnel.

Refer to Chapter 7, “Supporting wireless devices” on page 89 for more
information.

2.2.4 Optimization
Edge Server - Load Balancer and Caching Proxy together provide:

• Highly scalable caching functions that reduce network bandwidth costs and
dramatically improve response times when fetching data from application and
data servers.

• Dynamic monitoring and balancing of load across components of the
end-to-end solution.

Refer to Chapter 11, “Caching Proxy” on page 183, and Chapter 12, “Load
Balancer” on page 203 for more information.

IBM Everyplace Wireless Gatewaycontributes to the optimization of the solution
by compressing and optimizing the data flows across the networks that it
manages, reducing the network bandwidth requirements, and speeding the
response times.

Refer to Chapter 7, “Supporting wireless devices” on page 89 for more
information.

2.2.5 Subscriber and device management
Tivoli Personalized Services Manager (TPSM) provides a comprehensive set of
management services to the solution, including content personalization,
subscriber enrollment, customer care and customer self-care, report generation,
and interfaces to external billing systems. It also includes the ability to distribute
20 IBM WebSphere Everyplace Suite

and update software and data to devices, and provide status on the system
availability.

Refer to Chapter 9, “Subscriber and device management” on page 135 for more
information.

2.2.6 Base services
IBM SecureWay Directory is the central LDAP directory that contains information
related to users, devices, and networks, in addition to the system configuration
information. This directory makes it easy for the various components of
WebSphere Everyplace Suite (and indeed, any other server that is added to the
configuration) to access the information, without having to replicate the data in
other repositories.

Everyplace Administration Console provides a single console for system
administrators to perform installation and diagnostic procedures, administrative
procedures, and system maintenance procedures.

Everyplace Suite Installation and Everyplace Suite Configuration provide a single
graphical interface through which coordinated install and configuration of all the
various Everyplace Suite components can be managed. It maintains common
configuration information within an LDAP directory, allowing installation and
configuration of subsequent components to automatically take into account the
installation options chosen for earlier components.

Everyplace Suite Installation and Everyplace Suite Configuration are not covered
in this redbook, which is aimed primarily at architects and solutions designers.
Chapter 2. Product overview 21

22 IBM WebSphere Everyplace Suite

Chapter 3. Architecture

This chapter introduces a high-level architecture, showing how the components of
IBM WebSphere Everyplace Suite can be combined to create complete solutions.
Clearly the architecture for any specific solution will vary according to the
requirements, and so may have significant differences from what we suggest
here. Indeed, your solution may not appear to need all of the components that are
included in the suite. However, you should be aware that there are
interdependencies among some of the components, and you may also need
some prerequisite components.

As the complete architecture template is quite complex, we have divided it into
four “layers”:

• Core components
• Central repositories
• Performance - caches
• Availability - dispatchers and clusters

We discuss these in more detail in the following sections. Scalability issues in
particular are addressed Chapter 4, “Performance and scalability” on page 37.

3.1 Overview

Figure 12. IBM WebSphere Everyplace Suite(WES) architecture - input and output paths

Clients can connect to an IBM WebSphere Everyplace Suite solution in two ways:

• Via HTTP / IP

This is typically used by traffic from the Internet, intranet, and third-party
gateways. Physically the connection can be a directly attached LAN or it can
be a network attached through a router.

All figures in this chapter illustrate suggested logical architectures. A physical
implementation is likely to deploy multiple components on one machine and to
duplicate components on multiple machines.

Note

Wireless
Gateway
Clients

HTTP/IP
traffic

Dial-up

WAP / Wireless

WebSphere
Everyplace Suite

Application
Servers

External
Networks
© Copyright IBM Corp. 2000 23

• Via other protocols

This includes several types of wireless and wireline networks, including
Wireless Application Protocol (WAP), dial-up connections and PCs or other
devices using IBM Everyplace Wireless Gateway client.

Application servers and content can either reside locally inside the Everyplace
Suite domain, or be located on an external network. Everyplace Suite can be
used to provide access to both:

• Application servers inside Everyplace Suite domain

A solution built around application servers and services that reside within the
same domain, supporting single sign-on. These can serve content residing
locally (such as your own product catalog) or externally (such as external data
feeds that are invisible to the user).

• External networks

This is directing traffic to other sites, and is similar to the operation of an
Internet Service Provider. However, it could also be used in other business
models (for example an enterprise offering intranet access to employees using
a variety of different devices).

3.2 Core components

IBM WebSphere Everyplace Suite is an “edge of network” product. By this, we
mean that it forms an interface between network(s) and core business
applications. Clients can be connected to it in several ways, and can connect
either to specific application servers or provide access to some types of
networks, for example, an intranet. These different requirements make every
Everyplace Suite deployment more or less unique, yet based on the common set
of components, made to fit together as pieces of a puzzle with no single answer.

Based on our experience of building e-business solutions for IBM customers, we
foresee that Everyplace Suite will principally be used in three main deployment
models:

• Network access
• Adaptive network access
• Adaptive portal

Each of the following sections describe a model in more detail, showing how an
appropriate solution architecture can be built using the Everyplace Suite core
components. We also touch on the likely business cases that will exist for each.

Please note that we provide these models only as examples of how the
components interact at a high level; to create an architecture for a specific
deployment, a solution architect will need to understand both the individual
components and how they interact.

3.2.1 Network access
Providing large-scale network access is a common business requirement,
typically implemented by Internet Service Providers. An ISP typically provides
dial-up access to the Internet by setting up a large number of connectivity devices
24 IBM WebSphere Everyplace Suite

(such as modems). Today they are expanding these services to support wireless
and wireline connectivity for new classes of devices.

An enterprise may want to deploy this model to provide wireless or wireline
access to its intranet by its employees. In contrast to a public ISP, an enterprise
may require the access to be more secure, and so it may use specialized clients
such as the IBM Everyplace Wireless Gateway clients.

Figure 13. WES core architecture - Network access

The core components of an Everyplace Suite architecture for this model are
shown in Figure 13. The central component is the IBM Everyplace Wireless
Gateway, which provides access to the network. If the network is the Internet, a
firewall should be deployed to form a Demilitarized Zone (DMZ), which protects
the Everyplace Suite servers as illustrated. Alternatively, if the network is a
secure intranet, this level of protection may not be required.

In addition to the access itself, the enrollment component of Tivoli Personalized
Services Manager offers a service allowing users to self-enroll for the first time.
Access to this component must be available to anonymous users, as by definition,
self-enrollment is meaningful only when carried out by a user who is unknown to
the system.

Other user services offered would be handled by the TPSM self-care component.
Examples are updates of personal data, changing the terms of the user
agreement, and viewing account and billing status. These services will require
that the user has been authenticated by the IBM Everyplace Authentication
Server.

3.2.2 Adaptive network access
Either Internet Service Providers or enterprises may wish to extend their services
from simply providing network access to providing adaptation of the content that
is retrieved using their network access.

Adaptation is necessary to allow a device to use applications and content that
were designed in a format not normally usable by that device. Examples of this
are the conversion between different markup languages (such as HTML, WML
and HDML) and conversion between different image formats (such as GIF, JPG,
WBMP and black/white versions).

Connectivity Content
Adaption

Security Management
Services

Internet /
intranet

Wireless
Gateway
Clients

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

TPSM
Self Care

TPSM
Enrollment
Chapter 3. Architecture 25

Optimization is another use of adaptation. Content can be changed in several
ways to improve response times for users that have low bandwidth connections,
such as wireless or dial-up connections. Examples are reductions in the size
and/or color depth of images, substituting images with hyperlinks to the images,
and the removal of unnecessary information, such as comments or spaces in the
markup language.

Figure 14. WES core architecture - adaptive network access

As with the basic network access model, the access to the network itself is still
provided by the IBM Everyplace Wireless Gateway, and the services for
enrollment and self-care are carried out by components of Tivoli Personalized
Services Manager.

The component that enables adaptation is IBM WebSphere Transcoding
Publisher. WebSphere Transcoding Publisher can be configured to perform the
adaptations mentioned in the previous examples.

The main use of the IBM Everyplace Authentication Server is to provide security
service to the solution. However, the Authentication Server also assists in the
recognition of the device and type of network that each connection is using. This
information is then used to carry out the most appropriate adaptation. Further
information about adaptation can be found in Chapter 8, “Transcoding Web
application content” on page 119.

3.2.3 Adaptive (multi-modal) portal
The previous two models are mostly concerned with providing network access.
This model is more concerned with providing content and applications to multiple
devices.

Everyplace Suite is not a platform for building core business applications; it is a
framework for building secure, integrated, adaptive access to a portal, while also
allowing the adaptation of the content that is to be aggregated into that portal.
See Chapter 1, “Evolution of e-business” on page 3 for a discussion of the
definition of and requirements for portals.

We believe that this model is most applicable to enterprises that need to
implement a multi-modal portal as the front-end to their existing or new
applications. Everyplace Suite is also equally suitable in the case where content
and/or services are being provided by external business partners.

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

TPSM
Self Care

TPSM
Enrollment

WebSphere
Transcoding

Publisher

Internet /
intranet

Wireless
Gateway
Clients

Connectivity Content
Adaption

Security Management
Services
26 IBM WebSphere Everyplace Suite

This model is also equally applicable either to an ISP that wishes to extend its
business into the portal market, or to an Application Service Provider (ASP) that
needs to provide a portal as the cornerstone of its business.

Figure 15. WES core architecture - Adaptive (multi-modal) portal

Here the Everyplace Suite components form an infrastructure that is the front-end
to one or more application servers, as illustrated in Figure 15. The main point of
entry will typically be either the Internet or an intranet, in both cases using HTTP
running over IP. Optionally, both wireless and wireline access can be added to the
solution by incorporating the IBM Everyplace Wireless Gateway.

Users entering from either the Internet or an intranet need to be authenticated
before they can access services in the WebSphere Everyplace Suite (WES)
domain. The IBM Everyplace Authentication Server performs this authentication
and provides single sign-on for those applications and services located inside the
Everyplace Suite domain.

There are, however, two notable exceptions:

• TPSM enrollment

As with the earlier models, the enrollment component of TPSM must be
accessible to non-authenticated users.

• IBM MQSeries Everyplace

This component is built around a sophisticated security mechanism that is not
based on HTTP authentication. As a consequence, at this time there is no
advantage to passing its network traffic through the Authentication Server.

If a variety of devices are to be supported then content adaptation will be
required, and consequently the WebSphere Transcoding Publisher will generally
be the next component in the network. However, as always, there are exceptions;
services such as MQSeries Everyplace and Tivoli Device Manager Server are not
appropriate for transcoding. Consequently these services will be placed ahead of
the transcoder. In general we would expect this to be the case for any
non-browsing services.

OPTIONAL

HTTP/IP
traffic

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

TPSM
Self Care

TPSM
Enrollment

WebSphere
Transcoding

Publisher

MQSeries
Everyplace

TPSM
Device Manager

Application
Servers

Wireless
Gateway
Clients

Connectivity Content
Adaption

Security Management
Services

a

b

Chapter 3. Architecture 27

Next we find the core business applications, information services, and the TPSM
self-care component. These will all rely on Authentication Server authentication
and, if needed, content adaptation performed by IBM WebSphere Transcoding
Publisher.

Finally, a portal implementation as we have described it, can be readily extended
to include network access. As with the first two models, the connection to the
network (either Internet or intranet) could be attached at either of the points
marked a and b in Figure 15. Clearly, the choice of attachment points determines
if content adaptation is available or not. Firewalls may also be added as
appropriate.

3.3 Unauthenticated access

Sometimes it is necessary to provide unauthenticated users with access to public
resources, either application servers or Everyplace Suite components such as
TPSM Enrollment.

There are three obvious solutions:

1. Dual security zones

2. Dual security zones with adaptation

3. Shared security zone with adaptation

The following sections describe each of these in more detail.

3.3.1 Dual security zones
The simplest way to resolve this is to duplicate the infrastructure components as
necessary. If you consider that TPSM enrollment is a public service, then you can
see that all of our previous models took this approach. We placed the TPSM
Enrollment server on a separate leg of the network, making it visible to all
incoming connections. Public application servers could also be placed there, as
illustrated in Figure 16.

Figure 16. Unauthenticated access - dual security zones

This represents a very simple solution to the issue, with an extremely
easy-to-understand security model, and no requirement for any additional
security configuration.

Inbound
connections

Everyplace
Authentication

Server

TPSM
Self Care

TPSM
Enrollment

WebSphere
Transcoding

Publisher

Authenticated access
Application Servers

Public accessible
Application Servers
28 IBM WebSphere Everyplace Suite

The drawback to this approach is inherent in its simplicity - it duplicates
infrastructure, resulting in additional cost and more maintenance issues.

3.3.2 Dual security zones with adaptation
The dual security zone approach works well, but without enhancement it cannot
easily support multiple device types, as there is no facility for content adaptation.
This can be simply resolved by taking the approach one step further and
duplicating the IBM WebSphere Transcoding Publisher.

Figure 17. Unauthenticated access - Dual security zones with adaptation

Unsurprisingly, the advantages are exactly as for the previous approach, but with
the addition of content adaptation. Similarly the disadvantages are also as before,
but requiring even more duplication of infrastructure.

3.3.3 Shared security zone with adaptation
An alternative to the previous options is to loosen the EAS security so that users
who are unauthenticated by Everyplace Suite may access the same infrastructure
as authenticated users. This requires changes to the default configuration for
Authentication Server.

Figure 18. Unauthenticated access - shared security zone

Inbound
connections

Everyplace
Authentication

Server

TPSM
Self Care

TPSM
Enrollment

WebSphere
Transcoding

Publisher

WebSphere
Transcoding

Publisher

Authenticated access
Application Servers

Public accessible
Application Servers

Common
Application Servers

Inbound
connections

Everyplace
Authentication

Server

TPSM
Self Care

TPSM
Enrollment

WebSphere
Transcoding

Publisher
Chapter 3. Architecture 29

The advantage to this is that there is better exploitation of the infrastructure, since
there is no need for any duplication. Appropriate security is maintained by
configuration of the Authentication Server and setting access control lists (ACLs)
in the application servers.

The downside to this approach is that security configuration must be maintained
in two places: the ACLs as usual, but now also in the Authentication Server.

For details on how to achieve this, refer to Chapter 6, “Authentication” on page
69.

3.4 Central repositories

Figure 19. WES architecture - Central repositories

The Lightweight Directory Access Protocol (LDAP) services provided by IBM
SecureWay Directory is the central repository for data, around which all of
Everyplace Suite is built. Information describing the infrastructure and component
configuration, in addition to operational data, is kept there.

User profiles are stored in LDAP and are accessible both to Everyplace Suite
components and to other applications. However, the TPSM Subscriber Database
is the master copy of all the user profiling and configuration data, and replicates
changes to the LDAP repository as they occur. This approach allows all the
components access to the sophisticated data model that has already been
implemented in TPSM.

Access and authentication are achieved using the user name and password from
the TPSM Subscriber Database, accessed via the RADIUS protocol. The Active
Session Table (AST), maintains the affinity between an authenticated session,
the logged-in user and his client device. Specialized access to the AST has been

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

LDAP
RADIUS
Native

Core Services

TPSM
Active Session

Database

SecureWay
Directory

WebSphere
Transcoding

Publisher

TPSM
Self Care

TPSM
Enrollment

TPSM
Device Manager

TPSM
Subscriber
Database
30 IBM WebSphere Everyplace Suite

implemented and optimized using native database protocols. Together these
databases provide a single sign-on facility.

IBM DB2 Universal Database is recommended as the underlying database for
both the TPSM databases and IBM SecureWay Directory. Some components in
Everyplace Suite either require or recommend that they be provided with direct
access to a DB2 system. In a typical solution we would expect to implement
multiple database instances on multiple machines.

Refer to the individual component chapters for further information on their use of
the Everyplace Suite databases.

3.5 Performance - caches

Figure 20. WES architecture - performance

Although performance is affected by all the components of an implementation,
this section will provide a high-level overview of using the Edge Server - Caching
Proxy within a Everyplace Suite context.

Figure 20 shows where the caching function can most beneficially be used. You
will rarely configure Edge Server - Caching Proxy at all the points shown, even
though a single instance can in some circumstances be shared. Notice three
fundamentally different uses of Web Traffic Express in the figure:

In-stream cache Caching Proxy is a part of the main traffic route doing
caching of content passing by.

Component host Caching Proxy is used as an application server doing
rule-based launching of other components.

Application value-add A component uses Caching Proxy as a plug-in for
specialized caching.

The different uses of Edge Server - Caching Proxy all conform to sophisticated
rule-based configuration, letting an administrator tune and adjust the function of
Caching Proxy at several levels to achieve the best performance.

CP
Cache

CP
Cache

CP
Cache

Native
cache

CP
Cache

Performance Optimization

HTTP/IP
traffic

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

TPSM
Self Care

TPSM
Enrollment

WebSphere
Transcoding

Publisher

MQSeries
Everyplace

TPSM
Device Manager

Application
Servers

CP
Cache

Internet /
intranet

Everyplace
Authentication

Server

Wireless
Gateway
Clients

1

2

3

4

5

86 7
Chapter 3. Architecture 31

3.5.1 In-stream cache
A cache provides benefits where the same content is repeatedly retrieved from a
relatively slow source. The cache can be positioned in front of that slow source
(perhaps a Web server inside the domain), or the cache can be used in front of a
whole network (such as the Internet) to generally optimize access to any site. As
illustrated in Figure 20 this could be the case in front of:

1 Content to be transcoded1:

• Application servers inside the Everyplace Suite domain
• TPSM Self Care component
• Internet / intranet content with adaptation

2 Internet / intranet accessed with no content adaptation

3 Back-end data source providing content for hosted services or applications
(not shown in the figure - refer to 8.3, “Building with transcoders” on page 122)

4 Possibly in front of TPSM enrollment, if this component is placed as shown

3.5.2 Component host
Currently only one component in the Suite is written to be hosted and launched
by Web Traffic Express:

5 IBM Everyplace Authentication Server

This component will be deployed centrally in the main HTTP traffic route.

3.5.3 Application value-add
Three WES components are able to use caching in a more controlled, tailored
manner. Specific requests and replies are generated by the exploiting application:

6 IBM Everyplace Wireless Gateway uses Caching Proxy for caching encoded
WAP content.

7 IBM Everyplace Authentication Server uses a built-in cache for caching active
sessions.

8 IBM WebSphere Transcoding Publisher uses Caching Proxy for caching
transcoded content.

See the individual chapters on these three components for details.

3.6 Availability - dispatchers and clusters

The following states our subjective conclusion and provide a general
recommendation for the individual Everyplace Suite as illustrated in Figure 21.
Availability should be seen as an end-to-end issue, and this section is to be seen
only as a guideline, not a definite answer. Most WES components support both
clustering with the Edge Server - Load Balancer and hardware failover using
HACMP on IBM RS/6000; some even provide a built-in solution to increase
availability. We will not discuss in detail the alternatives for each component.

1 If transcoding is not utilized, this content caching function could be set up on the same instance providing hosting for Authentication
Server (WTE 5 in the figure).
32 IBM WebSphere Everyplace Suite

Figure 21. WES architecture - Availability

IBM WebSphere Everyplace Suite includes the Edge Server - Load Balancer as
the key component to improve availability and scalability. Implementing a solution
on IBM RS/6000 hardware opens up another choice for availability: High
Availability Cluster Multi-Processing (HACMP).

Availability, when seen in the context of the entire architecture, requires more
than simply introducing dispatchers in front of every component. Sometimes
hardware clustering may provide a better result, and sometimes failover support
is built into the software, eliminating the extra cost and network latency
introduced by a dispatcher.

Load Balancer
In general, components that are facing incoming HTTP traffic over TCP/IP are
well suited for use with the Load Balancer. This is true for:

1 IBM Everyplace Authentication Server

2 IBM WebSphere Transcoding Publisher

3 Tivoli Personalized Services Manager, Enrollment

4 Tivoli Personalized Services Manager, Self Care

5 Tivoli Device Manager Server

6 Other application servers inside the Everyplace Suite domain

7 Edge Server - Caching Proxy (depending on its use and configuration)

Often these Web servers and intermediaries use significant processing
resources, which could raise scalability issues. Using Load Balancer also gives
the benefit of providing “horizontal” scalability, that is the ability to balance the
load between a number of servers.

Availability

Dial-up

WAP / Wireless

Application
Servers

WTE
Cache

LB

LB

LB

Load
Balancer
clustering

LB
RS/6000
HACMP
clustering

HACMP

SecureWay
Directory

TPSM
Subscriber
Database

TPSM
Active Session

Database

LB

HACMPHACMPHACMP

Wireless
Gateway
Clients

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

WebSphere
Transcoding

Publisher

CP
Cache

TPSM
Self Care

TPSM
Enrollment

TPSM
Device Manager

LB

LB
MQSeries

Everyplace
HACMP

HTTP/IP
traffic

LB

1

2

3

4

5

8

6

7

9 10

11

12
Chapter 3. Architecture 33

The Load Balancer product and the use of it will be discussed in Chapter 12,
“Load Balancer” on page 203.

HACMP for databases
For other components a Load Balancer cluster is not applicable nor
recommended. This can be the case where one or more of these statements are
true:

• Horizontal scalability is not required

• The component can’t be deployed in a cluster (or where this will be too
complicated or expensive)

• The network latency introduced by a dispatcher is too significant

A good example is database servers. If scalability requirements allow it, then a
deployment of a single database instance on a single (potentially big) machine is
a much simpler and less expensive solution. Availability can then be addressed
by hardware failover, where the master and slave machines share a single
fault-tolerant external disk system such as IBM SSA or Shark.

For these reasons using HACMP is our general recommendation for:

8 IBM SecureWay Directory

9 TPSM Subscriber database

10 TPSM Active Session Table database

Alternatives for specialized servers
IBM Everyplace Wireless Gateway and IBM Everyplace Authentication Server
both connect to the two TPSM databases using a RADIUS server and an AST
server, both of which are a part of TPSM (not shown in Figure 21). For these
servers there are three availability options (this list is not prioritized):

• Let the RADIUS and AST servers use HACMP as their underlying TPSM
databases.

• Use the failover configuration option built into both the Wireless Gateway and
the Authentication Server. This allows you to define both a primary and a
secondary RADIUS and AST server. The secondary server will be used if the
primary is not responding.

• Pair together every Authentication Server with a specific instance of both a
RADIUS and an AST server. The Load Balancer in front of Authentication
Server should then make its dispatching based on the status of all three
components. For example, if an AST server becomes unavailable, no requests
should be dispatched to the Authentication Server using it. To achieve this,
you will have to develop and engage a Customized Advisor providing Load
Balancer with the required information.

HACMP for IBM MQSeries Everyplace
For one component in the Everyplace Suite, the recommendation is less obvious:

11 IBM MQSeries Everyplace

The MQSeries Everyplace protocol runs over TCP/IP. It can be wrapped using
HTTP tunneling, which enables it for use with Load Balancer. However, the
connection is extremely stateful, so it is nearly impossible to maintain the session
if a failover occurs. You will have to set up Load Balancer for strict affinity and by
34 IBM WebSphere Everyplace Suite

this introduce considerations on performance penalty and fair load balancing. If
you are not depending on horizontal scalability, we generally recommend HACMP
failover for availability.

Built-in clustering for IBM Everyplace Wireless Gateway
12 The IBM Everyplace Wireless Gateway has built-in clustering and fai-over
functions supporting all protocols. This specialized support is preferable to Load
Balancer, since that supports IP only.

HACMP could be used as a supplement or alternative to the built-in clustering,
but is less specialized and does not improve scalability. Consequently the general
recommendation is to use the built-in clustering alone. This is discussed further in
Chapter 7, “Supporting wireless devices” on page 89.
Chapter 3. Architecture 35

36 IBM WebSphere Everyplace Suite

Chapter 4. Performance and scalability

In this chapter we discuss architecture, design, development and deployment
issues that affect the performance and scalability of large-scale e-business
solutions. Consequently, everything that we discuss in this chapter is directly
applicable to a WES-based solution, even though nothing is specific to WES.
However, since WES is likely to be utilized in some of the world’s largest
e-business opportunities, we feel it is important to repeat some general advice on
architecting, designing and deploying solutions that will both perform and scale
well.

For decades, IBM has been building solutions, including the hardware, software,
and networks needed to run them, with performance in mind. Value-add networks
and the Web have been around for decades and years respectively, but the
explosive growth in the areas of e-business and e-commerce is a very recent
trend. These e-business solutions represent a new dimension simply because the
computing model in this environment is based on many new technologies.

The technology and tools may be too new for reliable performance and scaling
estimates and projections to be made. How do you predict performance of
Web-based applications? How do you understand the potential performance and
scalability issues of building your solution in an environment where everything
associated with a project is measured in “Web years1”? And finally, how do you
measure end-to-end performance anyway? New metrics, new bottlenecks, and
new demands for performance abound in this arena.

Many of us have encountered e-business solutions that were architected without
well-understood requirements for performance. Without clear performance
objectives during the initial architecture definition and the high-level design, the
performance of the solution becomes an afterthought.

We now have enough experience to know that these projects often fail when they
are deployed,- not because they cannot deliver the required business function,
but because they cannot service the demand generated by their customer
community in a satisfactory way. Subsequent attempts to solve the resulting
performance problems are then made after hardware and software products have
been selected and the application code developed. Room for maneuvering at this
stage of a project is extremely limited, and resolving the issues can be an
unpleasant experience.

A key message is that to create successful solutions we must include
performance considerations at the architecture and design phases, and use
appropriate methodologies throughout the entire development process to ensure
the overall success of our solutions.

4.1 Definitions

In e-business systems, as with any other type of system, performance and
scalability are closely linked with and vitally related to capacity. Talking about one
without reference to the others makes little or no sense. However, be aware that

1 Currently Web-based solutions are being architected, deployed, and maintained on an accelerated schedule when compared to
“normal” solutions. The accepted wisdom is that schedules for Web-based solutions are typically four times more aggressive than normal.
Hence a “Web-year” is actually comparable to 3 months of “normal product” time.
© Copyright IBM Corp. 2000 37

scalability, performance, and capacity are terms that are frequently used
synonymously.

It is vital to understand that although they are related to one another, they each
provide a different perspective, or view, of the overall picture. So, before we go
too much further, here are some definitions.

4.1.1 Capacity
Capacity is the maximum output of a given system or component. In an
e-business context capacity describes how many “operations” (transactions,
“hits”, etc.) can be completed in a given unit of time by a given system or
component while maintaining its business objectives.

4.1.2 Performance
At its simplest level, performance is a measure of how quickly work is completed.
In an e-business context, performance is typically defined as the response time
for the end user, simply because that is the measurement that has the most effect
on the end users’ experiences and hence their satisfaction with the solution.

4.1.3 Scalability
scalability is the capability of a system (or component) to readily adapt to a
greater or lesser intensity of use, volume, or demand while still meeting business
objectives. Typically the major business objective in this context will be providing
an acceptable level of performance, but other requirements such as maintaining
appropriate levels of availability, manageability, and security are also likely to be
necessary.

4.2 Designing for performance and scalability

As a direct consequence of performance being measured as the systems end to
end response time, a “performance problem” is usually perceived as a “slow”
response time when a user takes one or more actions using the system. These
actions may be to request a page of simple static information or carry out a
complex series of interlocking processes that store or analyze information on the
user’s behalf.

The user, quite rightly, has no concept of how much work or how many systems
are actually involved in processing his request; simply that the response time is
inadequate. An apparently “simple” transaction from the user’s perspective may

A major advantage of measuring the overall response time is that it is a simple
measurement to make. However, in e-business solutions that use the Internet,
a medium over which you have no control, it is important that:

1. Performance measurements should be taken at the point where the
e-business solution is attached to the Internet, and,

2. Additional allowances should be made for some average level of network
delay and latency that will be introduced by the Internet connections
between the measuring point and the end user.

Important
38 IBM WebSphere Everyplace Suite

turn out to be a very complex series of data flows involving multiple systems in
multiple locations. It may cause processing to cascade through many systems
before a summarized result is presented to the user.

Unfortunately sometimes not even the application developers and systems
support teams understand exactly what work and systems are involved in each of
these transactions. Today’s highly integrated e-business solutions are
increasingly complex, and we need to adopt an approach that helps us to
understand the performance and scalability issues that surround them.

A key concept present in almost any formal methodology is that of breaking a
complex problem down into smaller, simpler, more readily understandable pieces.
We can apply this approach to our e-business solutions, breaking them down into
a series of components or “building blocks”. For simplicity we can break almost
any e-business solution down into the following high-level components:

• Client
• Internet / network
• Web servers
• Application and integration servers
• Connectors
• Core business systems (Enterprise systems)

Refer to Figure 22 for a view of these components.

Figure 22. Components in a typical e-business solution

Adopting this approach allows us to move away from the “long response time”
description of performance to a meaningful decomposition and analysis of each
component and its performance and scalability requirements. Clearly there are
still some system-wide considerations such as security, systems management
and load balancing that span components, but this approach often simplifies
consideration of some of these issues, too.

Consider the diagram in Figure 23 on page 40, which shows a single flow of data
through the components of a (relatively) simple e-business solution with only two
back-end servers.

Each line on the diagram represents something that will require time, and so will
affect the performance of the solution.

Security

Systems Management

Internet
Network

C
onnectors

Client
Web

Server

Application
Server

Integration
Server

Core Business
Systems
Chapter 4. Performance and scalability 39

Figure 23. Latency in an e-business solution

Clearly this could be a solution that is to be deployed using the Internet. In that
case the Internet portion of the solution is essentially out of your control from the
perspective of affecting the performance and scalability of the solution.
Alternatively, if this were an intranet solution then you will typically expect to
either have control over the whole network infrastructure, or be able to make
more precise predictions of its performance.

We represented this in our diagram by shading the portion that may or may not be
under your control. This shaded portion of the solution is referred to in point 2, in
the box labelled “Important” on page 38, and is the section of the network that
you must make an allowance for, but typically will not be able to measure in an
Internet solution.

So, how does this help you to improve the performance and scalability of your
solution? The answer lies in the use of an end-to-end performance budget.

4.2.1 End-to-end performance budget
The end-to-end performance budget is a metric that you should establish before
you start your design. It is derived from the business requirements for the
end-to-end performance of the overall solution, and knowledge of the specific
scenario and products that exist within the solution.

Simplistically, you take your end-to-end response time, and if appropriate remove
any allowance for using the Internet. You then divide your solution into its main
components and carry out some “educated guesswork”.

Assign a nominal percentage of the total time to each component, based on your
knowledge of the work to be done in each component, your network
characteristics etc. For an example, refer to Figure 24 on page 41.

C lie n t
F ir e w a l l
R o u te r

W e b
S e rv e r

A p p
S e rv e r

B E
S e rv e r

D a ta b a s e

B E
S e rv e r

D a ta b a s e
N e tw o r k

F o r m a t
R e q u e s ts

F o r m a t
R e q u e s t

Late
ncy

Late
ncy

P r o c e s s
R e q u e s t

R e s u lts
G a th e r in g

Late
ncy

L a te n c y
F ir e w a ll

O v e r h e a d s

A s s e m b le
R e s p o n s e s

P r o c e s s
R e s p o n s e

L a te n c y
Latency

Latency

F ir e w a ll
O v e r h e a d s

P ro c e s s
R e s p o n s e

Latency

R e s u lts
G a th e r in g

P r o c e s s in g
40 IBM WebSphere Everyplace Suite

Figure 24. End-to-end performance budget.

If your goal is to achieve a 2-second interactive response time (after possibly
making some allowance if you intend to use the Internet), then this example will
provide you with the following performance targets for each component:

• Client request processing - 5% of the budget, or 100 msec
• Total request network latency - 10% of the budget, or 200 msec
• Total server time - 55% of the budget, or 1100 msec
• Total response network latency - 15% of the budget, or 300 msec
• Client response processing - 15% of the budget, or 300 msec

You can then apply the target number for each component (for example,1100
msec total for the servers) to the detailed data flows you defined during your
initial design phase. Based on the total work that has to be done by each server,
the network latency of your enterprise network, and the total number of trips
between server systems, you can begin to evaluate how close to your target you
are, or even if a given component is unlikely to meet the target.

For very complex solutions it may be appropriate to carry out some simple
prototyping and benchmarking at this point to help improve the accuracy of your
predictions.

However, in general you will find that you need to iteratively revisit your estimates,
balancing them as best you can. Where a component does not meet its
performance target, you may find that you have “spare” budgets within the other
components that you can reallocate. If not, then you need to find ways to improve

Client Request Processing

5%

Total Request Network Latency

10%

Total Server Time

55%

Total Response Network Latency

15%

Client Response Processing

15%

Client response processing (typically the rendering of HTML) can be
surprisingly time consuming. Solutions that are using between 20% and 40% of
their entire performance budget in this way are common. Most development
teams are unaware that the “look and feel” of their solution can have such a
major effect on performance.

Note
Chapter 4. Performance and scalability 41

the performance of both the individual components and the solution as a whole,
to allow you to meet your targets. We describe some classic techniques that you
can use to achieve this later in this chapter.

The key feature of a performance budget is not to spend a lot of time getting all
the numbers exactly right the first time, but rather to start thinking about the flows
of data in the system, and where work is being done. This should help you to
identify bottlenecks in your solution, allowing you to take the appropriate actions
to remove or reduce them as early as possible.

4.3 Scalability

We have defined what capacity, performance, and scalability are, and stated that
they are related to one another, but not how. Figure 25 helps to illustrate the
relationships between performance, capacity, and scalability.

Figure 25. Scaling a system

Response time is plotted on the Y-axis, and is a direct indicator of performance.
Operations/time is plotted on the X-axis, and is often referred to as the system
load. The acceptable level of response time is one of our business objectives, and
this is shown as a horizontal line across the chart.

The performance curves of two e-business systems are also shown on the chart.
Determining these curves in a complex system can currently only be achieved by
real performance testing and measurement. Mathematical calculations can,
however, be invaluable in determining and managing the risk of selecting one
component rather than another.

As you would expect, if we increase the load on the systems, the response times
increase (that is, the performance decreases). The maximum capacity of each

R
e

sp
o

n
se

T
im

e

Operations / time

Performance Curve A

Performance Curve B

Acceptable
response time

Cur
re

nt
Lo

ad

Sca
lin

g
Tar

ge
t

Cap
ac

ity
(B

)

Cap
ac

ity
(A

)

42 IBM WebSphere Everyplace Suite

system can then be easily derived by examining the point at which the
performance curve intersects with the line representing acceptable response
time: Capacity (A) and Capacity (B) respectively.

Now, let’s assume that we have a solution that is supporting our business,
operating at Current Load, but that our marketing department (which is very
creative) is about to launch an advertising campaign that will generate a lot more
business. To support the customers generated by that campaign, our solution will
need to process a new load, labeled Scaling Target.

If the current system that we have supporting this solution follows Performance
Curve A, then we can see that we have a problem. System A will not support the
increased load while maintaining our business objectives (the acceptable
response time). System A cannot scale to support the required load.

If instead we have System B supporting our solution, then we have no problem;
by examining Performance Curve B we can see that we can support the load that
the campaign will generate. The response time for each transaction will rise (that
is, performance will suffer), but it is within a level that is acceptable to our
business.

And this is the key to why performance and scalability are so interrelated. To
enable System A to scale to support the required load we need to make its
performance curve look more like that of System B. Essentially this means that
for any given load we have to improve its performance. So, as we change the
performance of a solution (or component), we are altering its scalability, too. With
this in mind there are only four things that we can do to scale a system or
component:

1. Increase the speed or capacity of the component (add more “power”)
2. Improve the efficiency of the component (do more with the same “power”)
3. Decrease the load on the component (move work elsewhere)
4. Reduce the response time expectations of the component’s users

The first two items directly affect either the capacity and/or performance of a
component, and given the relationships between capacity, performance, and
scalability, their effect is self-evident.

The third item is a little more complex. In an end-to-end system built from many
components, some of those components are more scalable than others. By
“protecting” the components that are not as scalable with components that are,
the scalability of the overall system can be maximized. For example, data can be
accessed much faster if it is held in cache than if the same data has to be
retrieved from a database. The cache is intrinsically more scalable than the
database. If we can ensure that a large number of requests for data are handled
by the cache rather than the database, we reduce the load on the database (by
transferring it to the cache) and make the overall system more scalable as a
result.

Finally, it’s fair to say that for practical purposes only the first three items are
credible alternatives; changing end-user expectations is not usually considered a
viable approach to scaling!
Chapter 4. Performance and scalability 43

4.3.1 Scaling techniques
Scaling an end-to-end solution is a matter of adjusting the capacity and
performance of all its components in a balanced, coordinated fashion. Typically
as you increase the scalability of one component to remove a bottleneck, it will
usually change the dynamics of the system, often moving the bottleneck, albeit at
a higher load, to another component of the solution. To maximally scale an entire
solution, many or perhaps even all of its components must scale both individually
and in concert to be able to cope with the increasing demand.

In this section we talk very briefly about the main techniques that can be applied
to components of an e-business solution to increase their scalability. As you will
see, each falls into one of the categories that we outined in points 1 to 4 on page
43, and each is more or less applicable to particular situations.

However, as you read them, and consider how they can be applied to your
environment, remember this truism, attributed to one of IBM’s e-business
scalability experts:

“All the scaling techniques in the world can easily be rendered useless by the
skills of an unwitting programmer or administrator.”, Leonard Hand, IBM.

To make your solution perform and scale well, it is essential for you, and all the
people who are involved with your solution, to understand the effect that even
small, apparently isolated decisions can have on the overall solution.

4.3.1.1 Faster machines (Vertical Scaling)
This is where we upgrade components of a solution to run on faster machines,
meaning that they can process tasks more rapidly, allowing them to do more work
in a given amount of time. The faster machines achieve this by providing more
resources (CPU cycles, I/O bandwidth, etc.) in a single physical unit.

A faster machine scales because it can do more work in the same time. Making a
machine faster can be achieved in many ways; the simplest is upgrading the
hardware. Faster CPUs, more CPUs, more memory, or more disks may all help.
Upgrading system software may also make an existing machine faster.

The key requirement in being able to use a faster machine is that the components
that run on it must be capable of migration as appropriate. Particular care must be
taken to ensure an application can make use of the enhanced facilities that are
being supplied; for example, migrating from a single processor to multiple
processors will only help if the component can make use of the additional
processors.

It is also possible to replace an existing server with a different, faster, physical
machine. Examples would be replacing a uniprocessor Intel machine running
Windows NT with a four-way RS/6000 running AIX, or replacing such an AIX
machine with a S/390 sysplex. In these cases the software components must be
capable of migration to the new platform; designing your components around
open standards is key to enabling this.

4.3.1.2 Replicated machines (horizontal scaling)
Using replicated machines is another way of applying more resources to a given
workload, typically improving the performance of the affected components. The
parallel nature of replicated machines also tends to lead to improved response
44 IBM WebSphere Everyplace Suite

times. In addition, replicated machines improve availability, since load can be
shifted to other machines if one or more replicas become unavailable due to
failures or scheduled maintenance.

In general an implementation with multiple machines requires that there be both a
workload-balancing mechanism to distribute the work among the replicated
machines, and a number of replicated components running on those replicated
machines, capable of processing the workload.

There are many schemes for balancing workload. These vary from simple
“round-robin” approaches, where the workload distribution mechanism simply
gives the next item of work to the next system, looping around them forever, to
more sophisticated systems that take into account availability or even load on the
replicas, including CPU, I/O and disk usage, before apportioning work to the
system best able to deal with it.

The key feature of replicas is that they each provide an identical service. Typically
each replica is exactly the same as all the others, in terms of both hardware and
software, and the number of replicas is varied according to the workload that is to
be supported. As replicated machines generally scale very nearly linearly (at
least until the capacity of the load-balancing mechanism is reached), this can be
a very effective technique.

There are, however, drawbacks to this approach too. If the service running in a
replica has a state to preserve across client requests, then that state must be
shared between all the replicas, as it is (ideally) not possible to determine which
replica will process the next request from that client. The sharing of such state
information can significantly complicate the deployment by requiring the
introduction of technologies such as shared file systems (like NFS, AFS, DFS
etc.), shared databases or even new technologies such as Storage Area
Networks (SANs). Each has its advantages and disadvantages, but in general,
introducing any of these into the solution alters the scaling characteristics of the
overall solution yet again.

Approaches that can be adopted to avoid these issues include:

• Removing the need to store any state. Often this is impractical since the
application may not be suitable for conversion to a stateless design.

• Reducing the state information to a size that can be passed on every request,
either in the form of a cookie or within a URL. Again, the application’s state
requirements may preclude this option.

• Various techniques that have evolved to cope with a short-term state (usually
a session-based state) where the solution ensures that as long as a session is
in existence the requests from a given client will always be directed to the
same replica. However, the use of such session affinity tends to counteract the
benefits of the replicated machine’s technique to some degree.

4.3.1.3 Specialized machines
Specialized machines improve the efficiency of a specific component, allowing
that component to perform more of the required function in a given amount of
time. They tend to be very fast and efficient, but sacrifice function and flexibility to
achieve this. Typically they also tend to be more expensive than an equivalent
general-purpose solution.
Chapter 4. Performance and scalability 45

A good example is the use of cryptographic coprocessors, which are extremely
effective at carrying out bulk encryption and decryption, often being orders of
magnitude faster than software solutions.

However, there are general issues associated with the introduction of
special-purpose machines. Since the system is by its very nature, specialized,
does it perform all the functions that you require of it, or is it too specialized for
the uses that you are considering? As a result of this, does the benefit that it
provides warrant the additional cost and complexity of deploying it? Does it fit into
your systems management infrastructure? Will the technology be quickly
superseded, rendering the expensive specialized machine useless?

4.3.1.4 Segmenting Workload
Segmenting the workload is a technique where the workload is split into smaller,
more manageable pieces. The intention is to provide a more consistent (and so
predictable) response time, while also making it easier to manage which server(s)
process the workload.

If we wished to segment a Web server we could decide that a Web server carries
out the following work:

• Serving HTML pages, images (GIFs, JPEGs)
• Executing CGI programs
• Executing Servlets
• Handling redirection

We could then decide to provide specialized Web servers to carry out each of
those functions in an optimal fashion. Segmenting the workload in this way
usually requires that the application be changed to redirect the requests to
various servers, although techniques such as Content Based Routing can
mitigate this, at the price of introducing other potential scalability and
performance issues.

4.3.1.5 Request batching
Splitting your system into multiple layers has many advantages (reuse of existing
systems, separation of function, physical partitioning etc.) but it also places an
additional processing load on both the client and server components, and
introduces network latency into the solution.

Measurements of distributed applications frequently show that the largest factor
affecting response time and system load is the number of messages that flow
between the distributed elements of the application. In extreme cases the costs of
processing the work are swamped by the communications overhead. The primary
reason for this overhead is the desire to build robust, reusable interfaces between
all the components of an application. This drive for reuse tends to create
fine-grained, detailed interfaces that require several interactions to accomplish
any given task.

Since the overheads associated with issuing a request from one component to
another are virtually identical no matter what the request is, it makes much better
sense to make fewer but larger and more complex requests, reducing the total
amount of overhead. This reduces the load on both components by eliminating
the overhead costs associated with multiple requests, reduces the latency, and
possibly improving end-user response times by reducing time spent by the client
carrying processing of overhead tasks.
46 IBM WebSphere Everyplace Suite

The drawback is that although the ideal communications interface between two
elements would be a single flow of data, this would create highly specialized
interfaces, with little opportunity for reuse. It would also provide little flexibility for
future enhancement of the function provided by the application elements.

In short, there is never a perfect answer to the compromise between good
interface design principles and reduced communications overhead. However, an
excellent balance can be obtained by combining some of the best principles of
each. The client element should define and implement the cross-process
protocols, but use the fine-grained, well-defined facilities provided by the server
to implement them. In practice this may mean that the client defines a single
message-based flow, and provides code that resides on the server platform to
decode the message before locally calling the server-defined (fine-grained)
interfaces.

4.3.1.6 Data aggregation
If your solution has to make frequent access to data that is spread across many
systems and applications, it may overload those applications and will probably
involve far too much latency to allow your solution to provide acceptable response
times to your users.

This is particularly true when your solution is attempting to support high levels of
personalization based on customer-specific data where there are very large
numbers of customers - a classic situation for many large enterprise solutions.

The idea of user data aggregation is (as the name implies) to aggregate user data
into a more readily accessible form. It is designed to provide rapid access to the
user data for a very large number of concurrent users, and will be implemented
around appropriate technologies (often replicated relational database systems) to
achieve those aims. The key feature that enables this technique to work is that,
provided the information is readily available in the aggregation, it can typically be
supplied to large numbers of users with high performance. If the information has
to be generated or accessed each time using an application, then it will not be
possible to provide access to many users with high performance.

Reworking all the applications involved in a solution to move all their data to the
aggregation is generally impractical due to budgetary and schedule constraints.
However, if the legacy applications can be modified to publish updates to the
aggregated data store, then significant benefits can still be obtained. Once
enough information is being published, new e-business applications can refer to
the aggregated data to get high-speed access to the user data, supporting
personalization, cross-selling, etc. Over time the legacy applications can be
modified to also use the customer information service as a source of user data.

In short, the aggregation can be seen as a cache for the user data. Initially
updates are “trickled” into the aggregation as they happen to the master copies of
the data, but over time the master copies of the data will migrate to the
aggregated data store.

4.3.1.7 Connection pooling
When an application is distributed, a connection between the distributed layers
must exist. For example, to use a database, you establish a connection to the
database so that queries can be performed.
Chapter 4. Performance and scalability 47

So why is connection pooling important? Each client system needs a connection
to allow it to perform its work. As we increase the scale of a solution, we notice
there is the potential for lots and lots of connections. It transpires that there is a
certain amount of overhead required to establish and terminate a connection.
This requires resources and consumes part of the end-to-end performance
budget.

Connection pooling is designed to minimize the total number of connections
needed for an end-to-end system, while eliminating the overhead of connection
setup and termination. It is typically controlled by a connection management
system.

Connection management is all about pre-establishing connections to a resource,
managing pools of those connections, and sharing those connections among the
systems that need to use them. By doing this effectively we eliminate the need for
each system to establish and terminate individual connections. We also reduce
the total number of connections required by the whole system. This allows the
systems to run more efficiently and reduces the load of supporting large numbers
of client systems. This in turn increases the scalability of the overall solution
significantly.

Unfortunately to achieve this, we must also introduce another layer (the
connection manager) into our solution, which will affect the end-to-end
performance budget. However, the good news for us is that the overhead
associated with a connection manager is almost always less than the cost of
establishing connections for each client.

4.3.1.8 Caching
Caching is a technique to improve the performance and scalability of a solution by
reducing the path length a request/response has to travel, and so reducing the
resource consumption of components in the solution. Ideally the data should be
cached at or very close to the site of the reference, but can be spread along the
path between the server and the client, depending on the actual need. Once built,
pages stored in and served from a cache are served to clients significantly faster,
and consume fewer resources than those pages that are built synchronously by
Web servers.

Caches may take many forms, including browser caches, proxy caches, file
caches, Web server caches, application server caches, database caches, and
device-based caches. In addition to these specific forms of caches, there are two
main categories of caches available, typically referred to as static cache and
active (or sometimes predictive) cache. Each type of cache has particular
advantages, but in all cases, an effectively managed cache can significantly
increase the scalability of a Web site.

Web servers provide two types of data: static data from files stored at a server,
and dynamic data that is constructed by programs that execute at the time a
request is made. Dynamically generated pages generally require significantly
more resources to generate, thereby reducing Web server performance.
High-performance Web servers can typically deliver several hundred static files
per second. By contrast, the rate at which dynamic pages are delivered is often
significantly slower. It is not uncommon for a program to consume over a second
of CPU time in order to generate a single dynamic page. For Web sites with a
48 IBM WebSphere Everyplace Suite

high proportion of dynamic pages, the performance bottleneck is often the CPU
overhead associated with generating dynamic pages.

Static caches are currently the most common type of cache, and are particularly
appropriate to static content. Simplistically, when the cache is asked for content it
will retrieve it from the source server, and then save a local copy that can be
served very rapidly when future requests for the same content are received.

It is also possible to use static caches for dynamic content, but gaining significant
advantage can be difficult. Advantage is only gained where multiple copies of the
dynamic content can be served from the cache before the content becomes
outdated (or “stale”). Given the trend for the Internet to make more use of
dynamic content, improving the caching of dynamic content is becoming a very
important issue.

Active caches have been designed specifically to help with this problem of
caching dynamic content, and so improve the performance and scalability of
solutions that use dynamic content. They essentially allow us to serve “dynamic
content” with an apparent performance that is similar to that of static content.
Active caches achieve this by pre-forming and retrieving the content of dynamic
pages before a user request arrives, and storing the resulting pages (or partial
pages) in cache in readiness for any requests. Various techniques are used to
achieve this, but since there are no established standards in this area, all are
more or less proprietary. Examples include:

• Statistical analysis of previous-use patterns by the cache.

For example, if the cache knows that there are many accesses to the CNN
Web site around 8:00 am (perhaps when people arrive at work) then it can
load those pages into cache at (say) 7:30 am.

• Linking the cache to the underlying data that the dynamic content is built from.

In this case, if the cache knows the relationship between objects (or pages)
that may be cached, and the underlying data that periodically changes and
affects the values of those objects, then as the data changes the cache can
request new copies of the objects to load into its cache. Ideally the method
couples the pages to discrete elements of data within the database, as this
prevents objects whose values have not changed from being mistakenly
invalidated after a database change.

• Sophisticated subscription-based systems.

These provide centralized, trend analysis of network usage to determine
one-use “hot” pages that are then cached automatically by all those caches
that subscribe to the system. A good example where this can work well is a
piece of news (such as the Starr Report probing into the Clinton
administration), which generated huge network traffic when it was released,
and could not have been easily predicted by other means.

Typically with any type of caching the key issue is determining when a cached
page has become obsolete (or “stale”). Caches use a variety of methods to
achieve this. The simplest is to check the expiration interval that is in the
information itself, and to keep a copy in the cache until the expiration period ends.
The next request for the object causes the cache to be reloaded with a new copy.
More sophisticated mechanisms are typically used, but discussing them is
beyond the scope of this book.
Chapter 4. Performance and scalability 49

For more information on caching techniques in general, and the caching product
supplied with WES in particular, please refer to Chapter 11, “Caching Proxy” on
page 183.

4.3.2 What techniques to use where
Determining which of the techniques outlined in 4.3.1, “Scaling techniques” on
page 44 will provide you with the best improvements in scalability and
performance is not simple; it will depend to a very large extent on the exact
details of your solution. However, the diagram in Figure 26 provides an excellent
summary of where you may derive benefit from each of the techniques.

Figure 26. Scalability techniques

4.3.3 General recommendations
In this final section we pass on some of the experiences that we have gained - in
some cases, the hard way:

• An e-business solution will have good performance only when attention is paid
to each component of the solution: the client, the network, the servers, and so
forth.

• It is key to plan for future growth in your initial design. Growth rates in the
e-business arena are notoriously high. We strongly suggest that the best
approach is to adopt open standards and to design a solution that is both
modular and as platform-independent as possible. This will generally leave
you with a solution that can be scaled either vertically (onto more powerful
platforms) or horizontally (using multiple systems in parallel) as required.
Using proprietary interfaces, system utilities, tools, or extensions will increase
the chance that your solution will end up “stuck” on a platform that cannot be
scaled.

Browser

Desktop
Application

Directory &
Security Services

Enterprise

Information

Systems

Business Partners
and External

Services

C
on

n e
ct

o r
s

H
T

T
P

S
er

ve
r

Network

Other
Device

Business
Data

UI
Data

Web App
Server

H
T

T
P

S
er

ve
r

Web
Server

In
te

rn
et

F
ire

w
al

l
In

te
rn

et
F

ire
w

al
l

In
te

rn
et

F
ire

w
al

l
In

te
rn

et
F

ire
w

al
l

H
T

T
P

S
er

ve
r

H
T

T
P

S
er

ve
r

C
o n

n e
ct

o r
s

C
o n

ne
c t

o r
s

1 3 21

3 4

1 2

3 5

Techniques

Faster Machine

Replicate Machines

Specialized Machines

Segmented Workload

Request Batching

User Data Aggregation

Connection Management

Caching

1

2 8

3

4

5

6

7

1 3 4

6 8

8
1 2 4

5 6 7

8

1 2 3

4 5 6

7 8

1 5

8

50 IBM WebSphere Everyplace Suite

Since developers often choose proprietary implementations in the belief that
closed systems perform better than open systems, planning for future growth
requires a good understanding of the longer term performance and scalability
requirements of the solution, and also of the short-term performance gains
that can be derived from proprietary technology.

• You must understand the detailed data flows within your proposed system at
the time you are building your initial design. When you combine this analysis
with an end-to-end performance budget and an iterative approach to
development you should be able to set performance expectations correctly
and structure your applications and systems to meet them.

• Wherever possible, use the latest release of infrastructure and system
software. In general, because e-business uses technologies that are still
evolving rapidly, each release of software provides better performance than
the previous one; in some cases, dramatically better. Using the latest release
of software is a key consideration for achieving good performance. However,
you should pay careful attention to software prerequisites and corequisites,
especially if your solution (as most do) is integrating with existing systems.

• Where possible, place your data as close to the client as possible; this will
enable the solution to respond “faster”. If the data is published, this is covered
by caching techniques. In the case of other types of data, replication
techniques can be used to achieve the same ends.

• Consider the use of SSL connections carefully. There is a significant overhead
in establishing such connections, and you will be able to reduce the load on
your servers significantly by selectively securing objects. Sending all objects
on a Web page using SSL allows the client browser to show the security “lock”
icon. However, you should balance this advantage against your real security
needs and the probable performance costs.

• You should instrument your applications to allow you to capture important
performance information, but you must enable different levels of logging for
test and production systems.

• Caching is a key technology to help you obtain performance and scalability.
Cache information anywhere and everywhere possible. When in doubt, cache,
cache, cache!

• Finally, before deployment you should test, test, and test again to ensure that
your solution meets your business requirements, and especially your peak
workloads. In truth, you will always test your solution; the question is whether
you test your solution in private, or you let your customers test it in public. We
strongly recommend you adopt the former approach; it is significantly less
stressful, and often less expensive in the long run.
Chapter 4. Performance and scalability 51

52 IBM WebSphere Everyplace Suite

Chapter 5. Security

We increasingly rely on the electronic creation, transmission, and storage of
personal, financial, and other confidential information. In order to give people
convenient access to such information and allow them to easily take action
anywhere anytime, the IBM WebSphere Everyplace Suite is designed to enable
increasing number of mobile personal and professional transactions using a new
class of intelligent and portable devices. By the nature of the pervasive
computing, accessing and transferring sensitive information usually involves
transmission over the Internet and other public networks. Therefore, creating a
safe computing environment and providing the highest security for the
confidential transactions become important issues.

This chapter addresses the security implementation within the WebSphere
Everyplace Suite. First we will discuss the general security objectives for data
communication. Secondly, the security design of the WebSphere Everyplace
Suite will be presented. Thirdly, we will outline the three types of security
implementations within the WebSphere Everyplace Suite, namely TCP/IP
security, wireless security, and MQSeries Everyplace security. Finally, we will
discuss firewall considerations within the WebSphere Everyplace Suite.

5.1 Background

Security for data communications has been well documented in the industry ever
since the Internet became popular. Therefore we will not attempt to review every
aspects of the security for computing but will only focus on the most common and
relevant security objectives for data communications in our discussion.

Security objectives
The most common and relevant security objectives for data communications are:

Authentication: to verify the identity of the sender or the receiver of the data in
communications. This is to make sure the clients or servers are really who they
claim to be.

Confidentiality: as a synonym of secrecy or privacy, confidentiality means to
prevent eavesdropping on data communications.

Integrity: to verify that data has not been altered in transit by a third party. This is
to prevent forgery, tampering, and unauthorized alteration.

Authorization: to limit the improper use of the data and services by limiting user
privileges to access information in order to minimize the chance of exposing
sensitive information to malicious attack or unauthorized alteration.

Non-repudiation: to prevent the parties in a data transaction from denying their
actions after the transactions are done. This is to enforce the accountability for
electronic transactions.

These are the five objectives normally desired by online content and application
services which involves data communication.

Another important objective for secure computing is to create the secure
boundary for the service domain. This is to reduce the chance of being actively
© Copyright IBM Corp. 2000 53

attacked by hackers from the public networks. Such attacks include denial of
service, packet spoofing, and impersonation, etc.

5.1.1 Tools and solutions to achieve security objectives
There are many tools to achieve the most common security objectives, including
data encryption, message digest, digital certificate, packet filtering, and address
concealing.

Many implementations of these tools have led to the popular security solutions or
technologies such as the IEFT standard Transport Layer Security (TLS), formerly
called Secure Socket Layer (SSL), which uses data encryption, message digest,
digital certificate, etc. to achieve multiple security objectives, such as
confidentiality, authentication, and data integrity. TLS is primarily used for TCP/IP
networks.

For data communications over wireless networks using the WAP protocol, there is
a solution similar to TLS called wireless transport layer security (WTLS). Other
solutions include proxy and firewall, bothof which are used to achieve a secure
boundary for the service domains. They use packet filtering and address
concealing and many other security tools to protect the service domain on the
edge from deliberate attacks over the public networks.

5.2 WES security

The IBM WebSphere Everyplace Suite is designed to create a safe environment
to support pervasive computing. It is implemented to have centralized user
authentication from limited points of entry to the Suite. It exploits the single
sign-on for user-friendly implementation of credential sharing across the services
hosted by the Suite. The Edge Server relies on a set of industry standard security
solutions, such as TLS/SSL and WTLS, to achieve the security objectives for the
service domain. The Suite uses the proxy technology in conjunction with firewall
to define the secure boundary for the service domain.

5.2.1 Authentication
The user authentication function within the WebSphere Everyplace Suite is
performed by the Everyplace Wireless Gateway and the Everyplace
Authentication Server. On the other hand, the administrator authentication within
the WebSphere Everyplace Suite is component dependent.

The WebSphere Everyplace Suite employs several industry standard
technologies to perform authentication. The Everyplace Authentication Server
uses the HTTP basic authentication process to authenticate the users coming
from the Internet and third-party gateways. For this reason, the clients and/or the
gateway proxy for the clients must support HTTP.

SSL does not provide non-repudiation automatically but if required it helps you
to implement it at the application level.

Note
54 IBM WebSphere Everyplace Suite

The Everyplace Wireless Gateway authenticates users from three types of
different connections. Each type of user connection uses different a
authentication process. For example, the Wireless Gateway uses the 2PKDP
protocol with mutual authentication to authenticate wireless clients (non-WAP) at
the WLP link layer. On the other hand, WAP clients are authenticated by the
Authentication Server with a user ID and password using HTTP basic
authorization in the Wireless Gateway. Also, WAP clients authenticate the server
using WTLS at the transport layer.

Note: Currently, WTLS does not provide for client authentication.

The authentication process by the Wireless Gateway, and the coordination
between the Wireless Gateway and the Everyplace Authentication Server on
authentication, is discussed in this chapter, whereas the authentication process
using the Everyplace Authentication Server is covered in Chapter 6,
“Authentication” on page 69.

5.2.2 Confidentiality
The WebSphere Everyplace Suite utilizes a set of industry-standard security
technologies to achieve the goal of confidentiality. Such technologies include the
Secure Socket Layer (SSL) and wireless transport layer security (WTLS) for WAP
clients. In addition,the Everyplace Wireless Gateway uses a modified version of
the Point-to-Point Protocol (PPP) called the Wireless Optimized Link Protocol
(WLP), formerly called the ArTour Link Protocol (ALP), to create secure tunnels to
achieve confidentiality for wireless clients (non-WAP) with Wireless Client
software applications installed.

5.2.3 Authorization
The access control in the WebSphere Everyplace Suite is achieved using HTTP
proxy technology. To implement finer levels of access control, it may be done at
individual WES components and application servers. One way to do it is
integrating SecureWay Policy Director with the WES services.

5.2.4 Data integrity
The WebSphere Everyplace Suite achieves data integrity using features such as
message digests and certificates included in the security technologies SSL and
WTLS.

5.2.5 Non-repudiation
Since the WebSphere Everyplace Suite utilizes SSL and WTLS with certificates,
the objectives of non-repudiation can be also achieved at the transaction level.

The WebSphere Everyplace Suite has implemented a set of industry-standard
security technologies such as TLS/SSL and WTLS to achieve various security
objectives. This section will discuss such implementation in detail. As shown in

In order to access the Edge Server, the clients or the third-party gateway that
acts as the proxy for the client must support HTTP in order for the Everyplace
Authentication Server to carry out the authentication process.

Third-party gateway needs to support HTTP
Chapter 5. Security 55

Table 1, the WebSphere Everyplace Suite includes SSL, WTLS, WLP, and Proxy
technologies in its components to enable many security measures. In addition,
the WebSphere Everyplace Suite relies on properly configured firewalls, which is
not shipped as a component of the Edge Server, to achieve the highest security.

This section discusses the confidentiality implementation by the WebSphere
Everyplace Suite. We will also explain the authentication process by the
Everyplace Wireless Gateway. In the next section we discuss the firewall
considerations for the Edge Server. Authorization is mainly achieved by the
Everyplace Authentication Server, which is covered in Chapter 6, “Authentication”
on page 69.

Table 1. IBM WebSphere Everyplace Suite security implementation

5.3 Security implementation

This section goes into more detail about how the WebSphere Everyplace Suite
implements the security measures introduced in the previous section.

5.3.1 Single sign-on
The WebSphere Everyplace Suite allows users to connect to the Suite through
either the Everyplace Wireless Gateway or the Everyplace Authentication Server.
See Figure 27 on page 57.

Users from the Internet or third-party gateways are allowed to connect to the
Edge Server only through the Everyplace Authentication Server.

Users may also access the WebSphere Everyplace Suite using three types of
links through the Everyplace Wireless Gateway:

• Dial-up connection based on the Point-to-Point Protocol (PPP)

• Wireless Client connections over wireless or IP networks

• Wireless connection based on the Wireless Application Protocol (WAP)

The user authentication is conducted at both points of entries by the Everyplace
Wireless Gateway and the Everyplace Authentication Server.

Technology
used in WES

SSL WTLS PPP/WLP Proxy Firewall

Components
using the
technology

EAS/WTE
EWG

EWG EWG EAS/WTE not
bundled

Authentication Yes Yes Yes Yes No

Confidentiality Yes Yes Yes No No

Authorization No No No Yes No

Integrity Yes Yes Yes No No

Non-repudiation Possible Possible No No No

Secure
Boundary

No No No Yes Yes
56 IBM WebSphere Everyplace Suite

Figure 27. Points of entry to the IBM WebSphere Everyplace Suite.

The WebSphere Everyplace Suite is designed to achieve single sign-on, namely
to authenticate the users only once for their access to the services hosted by the
Edge Server. This authentication design is achieved by sharing user credentials
through a centralized repository. This centralized repository consists of a TPSM
user or subscriber database,an Active Session Table (AST) database, and a
SecureWay Directory database (LDAP). As shown in Figure 28 on page 58, both
the Everyplace Wireless Gateway and the Everyplace Authentication Server use
centralized RADIUS to authenticate users. They both deposit user active session
entries into the AST database to share the user credential and profiles with the
Edge Server services. Information sharing among the Edge Server services is
achieved by their access to the AST and LDAP.

In addition to credential sharing across the WebSphere Everyplace Suite
components, the single sign-on also requires the coordination between the two
authentication agents, namely the Everyplace Wireless Gateway and the
Everyplace Authentication Server.

To enable single sign-on access to the WebSphere Everyplace Suite services,
the WebSphere Everyplace Suite uses the Everyplace Authentication Server as
the central point of the authentication process. The Everyplace Authentication
Server is positioned as the first entry point for all HTTP traffic from the Internet
and third-party gateways. The Everyplace Wireless Gateway also routes all HTTP
requests to the Everyplace Authentication Server which is the next non-firewall
hop after the Wireless Gateway. Users authenticated by the Wireless Gateway
will not be re-authenticated by the Everyplace Authentication Server.

The TPSM subscriber database and active session database are covered in
Chapter 9, “Subscriber and device management” on page 135. See also Chapter
6, “Authentication” on page 69 for additional information on the authentication
process. Using LDAP as a centralized repository for information sharing and
single sign-on is discussed in Chapter 3, “Architecture” on page 23.

WebSphere
Everyplace Suite

Secure
Application

Servers

Intranet/
Internet

HTTP/IP
traffic

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

Wireless
Gateway
Clients
Chapter 5. Security 57

.

Figure 28. Single Sign-on implementation in the WebSphere Everyplace Suite.

5.3.2 Authentication
As we explained in 5.3.1, “Single sign-on” on page 56, three types of links can be
used to access the Everyplace Wireless Gateway. Users from each link are
authenticated using the appropriate protocols. After authentication, each
connection is made secure using the proper encryptions provided by those
protocols.

Devices with Wireless Client application software installed can access the
WebSphere Everyplace Suite via the Everyplace Wireless Gateway. The client
and server authentications are simultaneously done using a two-party key
exchange protocol included in the Wireless Optimized Link Protocol (WLP).

The WAP clients can access the Wireless Gateway using the Wireless
Application Protocol (WAP). Client authentication is done using the handshake
protocol of Wireless Transport Layer Security (WTLS). During the handshake
process, in addition to negotiating security algorithms and exchanging cipher
secrets, the user also enters a proper user ID and password. Server
authentication can be done using mini-certificates supported by WTLS. In
addition, client authentication can also be done using HTTP basic authentication.

The Everyplace Wireless Gateway supports cookies on behalf of its WAP clients.
It can open SSL connection to destined Web and application servers on behalf of
WAP clients if WAP clients requests an HTTPS connection.

WAP client connections authenticated by the Everyplace Wireless Gateway are
assigned with the trusted Wireless Gateway IP address. Once the user is
authenticated, the Wireless Gateway inserts the trusted Wireless Gateway IP

TPSM Databases

User Database
Active Session

Database

LDAP

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

SecureWay Directory

LDAP
RADIUS

Currently WAP client authentication is not implemented using WTLS
mini-certificates.

Note
58 IBM WebSphere Everyplace Suite

address into the user’s HTTP request header and passes it on to the Everyplace
Authentication Server.

When the Everyplace Authentication Server receives the HTTP request from the
Wireless Gateway, it inspects the request header and acknowledges the trusted
IP address. The Everyplace Authentication Server skips the authentication
process since the user request is considered to be trusted. It looks up the session
information in AST entered by the Wireless Gateway and creates a session ID
and inserts device and network information in the header and passes the HTTP
request on to the target Web and application server.

5.3.3 Secured Connections
Confidentiality is achieved by providing secured connections between clients and
the Everyplace Authentication Server, as well as between Suite components. As
illustrated in Figure 29, the most common deployment of the WebSphere
Everyplace Suite has been highlighted to show segments of connections (labels 1
to 11 in the figure). Each segment can be configured to achieve confidentiality by
enabling appropriate technology.

Figure 29. Confidentiality in the WES environment

1 Connection from the Internet to the Everyplace Authentication Server: for the
HTTP clients from the Internet, SSL can be enabled between browsers and the
Everyplace Authentication Server running on the Web Traffic Express server.

2 Connection between WAP clients and the Everyplace Wireless Gateway: the
Wireless Gateway provides Wireless Transport Layer Security (WTLS) support for
WAP devices. The WTLS secure connection is between the WAP device and the
Wireless Gateway. The Wireless Gateway also provides the capability to enable
SSL between the Wireless Gateway and the back-end servers. Since the secure
connection is always broken in the Wireless Gateway, it is highly recommended
that you enable the Wireless Gateway back-end SSL for these client devices.

HTTP/IP
traffic

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

TPSM
Enrollment

TPSM
Device Manager

Secure
Application

Servers

Wireless
Gateway
Clients

12

3

4

5

8

6

7Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

Internet /
intranet

HTTP/IP
traffic

9

10

11

TPSM
Self Care

WebSphere
Transcoding

Publisher
Chapter 5. Security 59

3 Connection between dial-up clients and the Everyplace Wireless Gateway: the
Wireless Gateway can use an SSL connection and create a secure tunnel for the
clients.

4 Connection between wireless clients and the Everyplace Wireless Gateway: the
Wireless Gateway allows for end-to-end SSL (HTTPS) for the wireless clients as
well as for dial-up and LAN-connected clients. The feature is optional and when
enabled, the HTTP-S traffic is encapsulated in the WLP protocol with the wireless
client. The Wireless Gateway provides end-to-end SSL for these clients. The
secure connection will not be broken in the Wireless Gateway in this case. For
more details about wireless clients see Chapter 7, “Supporting wireless devices”
on page 89.

You should also be aware that if SSL is enabled for the wireless clients using the
WLP protocol, double encryption will take place. WLP encryption provides for
symmetric encryption only using DES, RC5 or 3-DES algorithms, although SSL is
a more robust implementation using PKI infrastructure (public key, digital
signatures and certificates).

5 Connection between HTTP clients and the TPSM enrollment server: the TPSM
enrollment server runs above the IBM HTTP server, which can be SSL-enabled.
Since the subscriber enrollment involves transmitting sensitive private information
across the public network, it is recommended that this connection be
SSL-enabled.

6 Connection between the Everyplace Authentication Server and TPSM device
manager: this connection is within the WebSphere Everyplace Suite domain and
hence be considered secure.

7 Connection between the Everyplace Authentication Server and the TPSM Self
Care Server: the Self Care would involve transmitting sensitive personal
information. However, this connection is considered to be secure since it is within
the WebSphere Everyplace Suite domain.

8 Connection between the Everyplace Authentication Server and secure
application servers within the Intranet: even though it is considered to be secure,
users have the option to enable SSL connections between the Everyplace
Authentication Server and application servers.

9 Connection between the Everyplace Authentication Server and IBM WebSphere
Transcoding Publisher: if the client requests require proper transcoding, the
connection between the Everyplace Authentication Server and WebSphere
Transcoding Publisher cannot be encrypted. Otherwise, WebSphere Transcoding
Publisher would not be able to transcode.

10 Connection between the Everyplace Authentication Server and the
Internet/intranet: this connection generally is considered prone to security
compromise. It is recommended that SSL is enabled if possible.

The Everyplace Authentication Server in AP mode requires the HTTPS
connection to be broken at the Authentication server box.

Note
60 IBM WebSphere Everyplace Suite

11 Connection between the Everyplace Wireless Gateway and the
Internet/intranet: the Wireless Gateway provides the capability to enable SSL
between the Wireless Gateway and the Internet/intranet Web servers. Since the
secure connection is always broken in the Wireless Gateway, it is highly
recommended that wireless back-end SSL be enabled for these client devices.

5.3.4 Administration security
The administrators for the Everyplace Wireless Gateway can log in remotely
using the Wireless Gatekeeper. The connection between the gatekeeper and the
Everyplace Wireless Gateway can be SSL-enabled to ensure the highest security.
In addition, the Everyplace Wireless Gateway can specify only one IP address
from which a gatekeeper administrator can log in the gateway. This way, by
locking the administrator to a trusted IP, the Wireless Gateway can minimize the
security compromise.

WTE administration console. For security reasons, SSL can also be enabled for
the connection between the WTE administration console and WTE.

Note also that most components in the WebSphere Everyplace Suite have access
to the LDAP directory, where much sensitive information is stored for sharing by
the Suite services. The connection between the components and the LDAP
needs to be secure as well. Currently, access to LDAP uses 40-bit encryption via
SSL. However, the connection between the Wireless Gateway and LDAP is not
secure and SSL is not used for this connection.

5.3.5 MQSeries Everyplace security
The primary goal for IBM MQSeries Everyplace security is to provide privacy,
data integrity, data compression, and authentication services for applications
running on devices that are low in performance and memory. Generally, we
expect to pass messages over unsecured external networks and to hold data on
unsecured handheld devices. These expectations created the need to provide
complete asynchronous and synchronous application-to-application security with
guaranteed message delivery. Message security can be guaranteed regardless of
security levels adopted by fixed networks, mobile service providers and gateways

MQe provides lightweight security for:

• Equipment that is limited in processing power and memory
• Low-bandwidth networks

MQe security is an optimized lightweight security that secures connections
between device applications and back-end applications.

There are two different security levels provided by IBM MQSeries Everyplace.
IBM MQSeries Everyplace standard edition includes 56-bit DES encryption while
the IBM MQSeries Everyplace high-security version supports 128-bit encryption.

Our discussion assumes you are using the MQ Everyplace high-security version
of MQ Everyplace. For additional information about differences between MQ
Everyplace editions please refer to the MQ Everyplace online programmer’s
guide.
Chapter 5. Security 61

5.3.6 MQe security categories
To secure a message we have to secure it while it is waiting in the queue or
transferred over the network. In MQe we can use three different categories of
security: local, Q-based, and message levels. The scopes of these three levels
are illustrated in Figure 30.

Figure 30. MQe security categories

5.3.6.1 Local security
In this category, to protect local data using a cryptor (secret key), we can:

1. Authenticate, encrypt/decrypt, compress/decompress data, and write/read it
to/from a file.

2. Authenticate, encrypt/decrypt, compress/decompress data and write/read it
to/from message data (or any MQeFields data). This can protect data and
save it to a back-end such as a DB2 or LDAP server.

Figure 31. Local security options

5.3.6.2 Queue-based security
Queue-based security is appropriate for solutions designed to use synchronous
queues. Queue-based security protects the message data being transferred
between an initiating queue manager and a target queue manager queue. Using

Protection steps:
create MQeAttribute (with chosen Authenticator, Cryptor and Compressor)
create MQeKey
provide key 'seed' to set MQeKey's local Enc/Decryption key
attach MQeKey to MQeAttribute
activate MQeAttribute
attach MQeAttribute to MQeMsgObject
use MsgObject.dump() to encode (protect)
use MsgObject.restore() to decode (unprotect)

Protect message data (or any MQeFields data)
e.g. a message on a queue
Protect data on a hand held device

Protect data and save it to a file
Using MQeLocalSecure class

Protectrion steps :
create MQeAttribute (with chosen Authenticator, Cryptor and Compressor)
create MQeLocalSecure
use MQeLocalSecureobject.open to define target file
use MQeLocalSecureobjet.write to encode and save to the target file
use MQeLocalSecureobject.read to read from the target file and encode
62 IBM WebSphere Everyplace Suite

this category we automatically protect message data starting the moment we
initiate queue manager and until it reaches the target queue. This protection is
independent of whether the target queue is owned by a local or a remote queue
manager.

As an example, we define a target queue with attributes to enable authentication,
Triple-DES Cryptor (for encryption) and a compression method. When this target
queue is accessed to put, get, or browse a message (using putMessages,
getMessages, or browseMessages either locally or remotely), the queue attribute
is automatically applied.

In this example, the application initiating the access has to satisfy access
authentication before the operation is permitted. If access is permitted, the
message data is automatically encrypted/decrypted using Triple DES and
compressed/decompressed using the compression method selected. This means
that when a secured target queue is remotely accessed (with put or get
messages) security automatically ensures that the message data is protected as
defined by the queue attribute, both during transfer between the initiating and
remote queue manager and in the target queue backing storage.

5.3.6.3 Message-level security
Message-level security provides protection for message data between an
initiating and a receiving MQe application.

Figure 32. MQe message security offers end-to-end security

To use these security mechanisms we use secret keys, public/private keys to be
communicated, and a certificate to identify the other party entity.

5.4 Firewall considerations

A number of general objectives for firewalls are:

• Allow only traffic flow that is determined to be in our interests.
• Give away a minimum of information about our private network.
• Keep track of firewall activity and be notified of suspicious behavior.

MQe
Application MQe encrypted Message

MQe
Application

Decrypted
message

Decrypted
message

Java
- EPOC
- WinCE
- Win xx
Csubset
- PalmOS

Windows NT/2000
AIX
Chapter 5. Security 63

In the context of the deployment of Wireless Everyplace Suite (WES), the most
generic deployment model, that suits the needs of most content providers,
network operators, service providers, and enterprises can be depicted in Figure
33. The WES domain can be protected by two to three firewalls. For the purposes
of the discussion, we label the firewalls a, b, c, and d, in the figure. Firewall a
controls all access to the WES domain from third-party gateways or the Internet.
FIrewall b is placed between the Everyplace Wireless Gateway and the devices
connecting from the IP networks. Firewall c is optional and can be the same as
firewall a. Additionally, the Everyplace Authentication Server (d) can use the
underlying Edge Server - Caching Proxy server with multiple network adapters to
achieve certain firewall functions as well.

Figure 33. Firewall protection to the IBM WebSphere Everyplace Suite domain

Firewall a is configured to:

1. Allow HTTP requests destined for the WES services from IP addresses that
are not owned by the Everyplace Wireless Gateway and route such requests
to the authentication proxy.

2. Allow HTTP requests destined for the public Web servers and/or the
enrollment server from IP addresses that are not owned by the Everyplace
Wireless Gateway and route such requests to the Internet and/or enrollment
server.

3. Filter the Wireless Gateway IP address range to eliminate possible conflicts.

4. Reject all other packets.

Firewall b is configured as follows:

1. Allow IP requests destined for the predefined Wireless Gateway IP ports from
any IP address.

2. Allow HTTP requests for WES services.

3. Reject all other packets.

Firewall c is configured to:

1. Allow outbound HTTP requests destined for the public Web servers.

HTTP/IP
traffic

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

TPSM
Self Care

TPSM
Enrollment

WebSphere
Transcoding

Publisher

MQSeries
Everyplace

TPSM
Device Manager

Secure
Application

Servers

Wireless
Gateway
Clients

a

b

c

d

Intranet/
Internet
64 IBM WebSphere Everyplace Suite

2. Allow inbound HTTP response for the active user session from the public Web
servers.

3. Reject all other packets.

Firewall d (the Everyplace Authentication Server) is configured as follows:

1. Allow HTTP requests destined for the Edge Server services.

2. Use a separate network interface for the internal network.

3. Reject all other packets.
Chapter 5. Security 65

66 IBM WebSphere Everyplace Suite

Part 2. Services

The chapters in this part of the redbook provide an overview of the IBM
WebSphere Everyplace Suite core components and services, such as:

• Authentication Server, which supports single sign-on and a single point of
entry to the Everyplace Suite domain.

• Wireless Gateway, which supports wireless clients, PPP, LAN, and WAP
connections.

• WebSphere Transcoding Publisher, which provides transcoding capabilities
running as a proxy server to adapt client markup language (for example,
HTML and WML).

• Tivoli Personalized Services Manager, which supports functions such as user
enrollment, self care, customer care, director, reporting, provisioning, billing
and device management to maintain applications and data residing in
pervasive devices.

• MQ Everyplace, which supports messaging applications in pervasive devices.
© Copyright IBM Corp. 2000 67

68 IBM WebSphere Everyplace Suite

Chapter 6. Authentication

This chapter completes the discussion of how the IBM WebSphere Everyplace
Suite authenticates its users. We will introduce the Everyplace Authentication
Server as a product, and explain how it is used to perform user authentication for
the WebSphere Everyplace Suite. The WebSphere Everyplace Suite adopts
single sign-on for its users for all its functionality. Finally we will explain how it
facilitates the single sign-on of the WebSphere Everyplace Suite.

6.1 Background

As we have discussed in Chapter 5, “Security” on page 53, the WebSphere
Everyplace Suite allows users to connect to the Suite through either the
Everyplace Wireless Gateway or the Everyplace Authentication Server (Figure
34).

Figure 34. Points of entry to the IBM WebSphere Everyplace Suite

Users from the Internet or third-party gateways may connect to the Edge Server
through the Everyplace Authentication Server.

Users may also access the Everyplace Wireless Gateway using three types of
links:

• Dial-up connection based on the Point-to-Point Protocol (PPP)

• Wireless Client connections over wireless or IP networks

• Wireless connections based on the Wireless Application Protocol (WAP)

In either case, user connections must be authenticated before users can access
the Edge Server. Authentication by the Wireless Gateway has been discussed in
Chapter 5, “Security” on page 53. Here we will focus our discussion on the
authentication done by the Everyplace Authentication Server for users from the
Internet or third-party gateways.

WebSphere
Everyplace Suite

Application
Servers

External
Networks

HTTP/IP
traffic

Dial-up

WAP / Wireless

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

Wireless
Gateway
Clients
© Copyright IBM Corp. 2000 69

The Everyplace Authentication Server is the point of entry to the Edge Server
domain foe devices/users that do not connect through the Everyplace Wireless
Gateway. It is the next, non-firewall hop for connections through the Everyplace
Wireless Gateway. At least one Authentication Server is required in the Edge
Server to enable integration of most Edge Server components.

Since no data link level authentication can be performed by the WebSphere
Everyplace Suite for the connections from the Internet and third-party gateways,
all authentication for these connections must take place at the HTTP level by the
Everyplace Authentication Server. The client or the third-party gateway acting as
the proxy for the client must support HTTP basic authentication, allowing the
Everyplace Authentication Server to challenge the client for a user name and
password for a particular domain.

The Everyplace Authentication Server runs on the Edge Server - Caching Proxy
and is invoked as a caching proxy plug-in. Web Traffic Express is a prerequisite
for the Everyplace Authentication Server on any machine where it is to be
installed.

6.2 Everyplace Authentication Server

The Everyplace Authentication Server is a Web Traffic Express server with
authentication plug-in enabled. It can be configured in one of the two flavors:
Authentication Proxy or Transparent Authentication Proxy. For the Authentication
Proxy, a Caching Proxy is configured as a protected reverse proxy server to
enable the Authentication Proxy to act as the destined origin server. For a
transparent proxy, WTE is configured as a protected proxy server. For more
information about WTE as either a reverse proxy or protected proxy, please refer
to Chapter 11, “Caching Proxy” on page 183.

The Authentication Proxy performs user authentication based on HTTP
authentication headers and strictly enforces Edge Server single sign-on. That is,
no other Suite component may do its own user authentication. In the meantime,
users authenticated through the Authentication Proxy may not access content
outside of the Edge Server.

The Authentication Proxy intercepts all HTTP requests destined for Edge Server
services. It ensures all the requests have been authenticated and tagged with the
active session key. If the requests are from a trusted IP address that is owned by
the Everyplace Wireless Gateway, then the Authentication Proxy simply locates
the associated active session from the Active Session Table, inserting the session
key, network and devices types of the session into the HTTP request, and
forwards the request to the destination server. If the request does not arrive from
a trusted IP address, then it must have an authentication credential included
within its WWW-auth header. This is done by the Authentication Proxy to
challenge the user ID and password.

A Transparent Authentication Proxy also performs user authentication based on
HTTP authentication headers. However, the Transparent Authentication Proxy
allows other Suite components such as content and application servers to do
their own user authentication. A Transparent Authentication Proxy also allows
users to access material outside the Edge Server.
70 IBM WebSphere Everyplace Suite

When an Edge Server is deployed using the Authentication Proxy, users do not
know the existence of the proxy server for the services within the domain hosted
by the WebSphere Everyplace Suite, such as domain xyz1.com in Figure 35. On
the other hand, when an Edge Server is deployed using a transparent proxy,
users have to explicitly use an HTTP proxy, such as tp.xyz1.com in Figure 35, to
access the services within the domain hosted by the WebSphere Everyplace
Suite. Users trying to access services outside the Edge Server, such as service
hosted by abc.com, can do so through the transparent proxy.

Figure 35. Two flavors of the Everyplace Authentication Server

6.2.1 Everyplace Authentication Server and single sign-on
The WebSphere Everyplace Suite is designed to achieve single sign-on, namely
to authenticate the users only once for their access to the services hosted by the
Edge Server. This authentication design is achieved by sharing user credentials
through a centralized repository. This centralized repository consists of a RADIUS
database, Active Session Table (AST) database, and a Lightweight Directory
Access Protocol (LDAP) database. As shown in Figure 36 on page 72, both the
Everyplace Wireless Gateway and the Everyplace Authentication Server use
centralized RADIUS to authenticate users. They both deposit user active session
entries into an AST database to share the user credentials and profiles with the
Edge Server services. The information sharing among the Edge Server services
is achieved by their access to the AST and LDAP.
Chapter 6. Authentication 71

Figure 36. Single sign-on implementation in the WebSphere Everyplace Suite

To achieve the single sign-on for users to access the Edge Server services, the
WebSphere Everyplace Suite uses the Everyplace Authentication Server as the
central point of the authentication process. The Everyplace Authentication Server
is positioned as the first entry point for all HTTP traffic from the Internet and
third-party gateways. In the meantime, the Everyplace Wireless Gateway also
routes all HTTP requests to the Everyplace Authentication Server, which is the
next non-firewall hop after the Wireless Gateway. Users authenticated by the
Wireless Gateway will not be authenticated by the Everyplace Authentication
Server.

Since the Everyplace Authentication Server can be configured as a reverse proxy
(Authentication Proxy), in addition to presenting a single domain name for the set
of servers in the enterprise protection space, it provides security protection to the
WebSphere Everyplace Suite domain by concealing the IP addresses for Web
and application servers and allows the internal structure of an enterprise to be
hidden from the attackers from the Internet.

The Everyplace Authentication Server is the central point for integration by the
Edge Server. Figure 36 describes its interaction with LDAP, RADIUS server, and
AST server. In addition, the Everyplace Authentication Server coordinates with
the Everyplace Wireless Gateway in the authentication process and active
session management.

As evident in Figure 36, the Everyplace Authentication Server receives the user
HTTP requests from the Internet and third-party gateways. It inspects the HTTP
header and looks for the user’s credentials. If the user is not yet authenticated,
the Everyplace Authentication Server would challenge the user to enter a user ID
in the appropriate realm with a password using HTTP basic authentication. Then
it queries a RADIUS server for authentication. If the RADIUS server accepts the
credentials, the Everyplace Authentication Server would generate a session ID
and insert an active session entry in the Active Session.

TPSM Databases

User Database
Active Session

Database

LDAP

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

SecureWay Directory

LDAP
RADIUS
72 IBM WebSphere Everyplace Suite

Figure 37. Everyplace Authentication Server enables the information sharing

For the user HTTP request, the Everyplace Authentication Server modifies its
header and inserts the session ID, user, device, and network information in the
header. In addition, it creates the user entries in the AST. The content and
applications server downstream would use these pointers to retrieve information
from the AST server and LDAP directory, which is necessary to complete the user
requests.

The Everyplace Authentication Server also funnels tracking and logging
information to applications included in TPSM for accounting and billing.

6.2.2 Coordination with the Wireless Gateway
As explained in Chapter 5, “Security” on page 53, both the Everyplace
Authentication Server and the Everyplace Wireless Gateway authenticate user
access. To provide user single sign-on, these two authentication agents need to
coordinate the authentication process.

For clients entering the Edge Server via the Wireless Gateway, the Wireless
Gateway performs the authentication by querying the RADIUS server. For those
HTTP requests, the Wireless Gateway would route the user requests to the
Everyplace Authentication Server for more information to be added to facilitate
other Edge Server services rendering results for the user requests. In the
process, for WAP clients, the Wireless Gateway inserts the trusted IP address in
the HTTP header and creates an entry in the Active Session Table.

If the HTTP requests are routed to the Everyplace Authentication Server from the
Wireless Gateway, the Everyplace Authentication Server inspects the HTTP
header and looks for user’s credentials. It would recognize the request is from a
trusted IP address owned by the Wireless Gateway and consider the request is
already authenticated. The Everyplace Authentication Server will not do the
HTTP basic authentication again. It will insert more information on the device and

AS
Back-end
content
server

HTTP request + session ID + user + device + network

WES domain Enterprise domain

WES
service

Active Session entry user, device, network

LDAPAST
Chapter 6. Authentication 73

network in the HTTP header and generate a new session ID for the user request
and will insert it into the AST.

Figure 38. Handshake between the Wireless Gateway and Authentication Server (1)

Figure 38 shows the handling of requests from WAP clients connected through
the Wireless Gateway as a special case for the coordination between the
Everyplace Authentication Server and the Wireless Gateway. In this case, the
WAP request will be translated by the Wireless Gateway into an HTTP request.
The Wireless Gateway writes network and user information into the HTTP header
along with a trusted IP address (not shown in the figure) and passes it on to the
Everyplace Authentication Server. The Everyplace Authentication Server in turn
will write a new session ID, user information, and device information into the
HTTP header for the downstream services.

Figure 39. Handshake between the Wireless Gateway and Authentication Server (2)

For wireless access through PPP and wireless clients (Figure 39), the Wireless
Gateway will not modify the data stream and insert the user and network
information into the HTTP request. Instead, it forwards the HTTP request along to
the Authentication Server while writing the user and network information into the

AP

WAP request/session
destined for WES

HTTP req + User-Agent: +
Network: + Authorization: +
SessionID: + User: + Device:

RADIUS ASTServer

WG

Insert: [sessionID, user,
device, network]

LDAP

HTTP req +User-Agent: +
Network: + User:

MNI(s)

MNI(s)

AP

Wireless request/session
destined for WES

HTTP req + User-Agent: +
Network: + Authorization: +
SessionID: + User: + Device:

RADIUS ASTServer

WG

Lookup, then
Insert: [sessionID, user,
device, network]

LDAP

HTTP req +User-Agent:

MNI(s)

MNI(s)

Insert: [user, network]
74 IBM WebSphere Everyplace Suite

AST server. When the Authentication Server receives the HTTP request, it looks
up the AST server for the user and network information, then it adds a device
profile and creates a new session ID in the AST server.

6.2.3 Interface with Web Traffic Express
The Authentication Server operates as a set of plug-ins to Web Traffic Express
(WTE). To enable the Authentication Server to run as a server hosted by the
Caching Proxy, configurations specific to the Authentication Server reside as
directives in the Caching Proxy’s configuration file, ibmproxy.conf. These
directives define the plug-in hooks, the proxy directives, and protection required
for the Authentication Server.

Plug-in hooks
When Web Traffic Express is started, it will load its main configuration file,
ibmproxy.conf which includes the defined plug-in exits for the Authentication
Server, which will in turn start the Authentication Server. These exits are:

• ServerInit performs Authentication Server initialization

• Authorization performs the authentication and header insertion

• ServerTerm performs Authentication Server termination

The ServerInit and ServerTerm directives specify the Authentication Server
initialization and termination code to be run when the Caching Proxy server is
started. The Authorization exit enables the Authentication Server to take over the
authorization process from the Caching Proxy. The Caching Proxy allows both
authorization and authentication exits. The Caching Proxy defines only the
Authorization directive in its configuration file to allow the Authentication Server to
overtaken all authorization functions.

Proxy
The Proxy directive of the Caching Proxy is used when configuring the
Authentication Server and serves to provide the next hop routing from the
Authentication Server to the next component in the Everyplace Suite domain. For
example, if we look at the sample Authentication Server configuration in the
ibmproxy.conf file, then any requests for http://wesA that are received by the
Caching Proxy proxy server will be proxied to http://A.wes.com. The proxy
directive is not specified for the Transparent Authentication Proxy, since the next
hop for the Transparent Authentication Proxy is an external Internet address,
implicit in the URL of the request.

Protect
The Authentication Server, acting in either mode, is configured as a protected
proxy. The protection setup is defined, using the Caching Proxy Protect directive
which is needed to cause the Caching Proxy to generate authorization requests.
If requests are directed to the Authentication Proxy, then a return code of 401, or
a www-authentication request is generated and returned by the authorization exit
of the Authentication Server. If requests are directed to the Transparent
Authentication Server, then a return code of 407or a proxy authentication request
is generated and returned by the authorization exit of the Authentication Server.
Chapter 6. Authentication 75

Figure 40. Authentication Proxy and Transparent Authentication Proxy

The Authentication Server automatically generates the challenge, prompting
clients to return a user ID and password.

Both challenges will prompt the client to enter a user ID and password for
whatever realm the ServerID specifies. In the example configuration, the browser
would prompt for a user authentication for the WES realm or domain.
Authentication is specified as basic since this is the only form of authentication
that the Caching Proxy currently supports. The Mask directive states that all
clients can access all resources within the Authentication Server.

If this is the first user request for resources within the Everyplace Suite domain,
then the client will send a request for resources to the Load Balancer or to the
Everyplace Authentication Server and the Load Balancer will intercept it. The
Load Balancer will then dispatch it to the optimal Authentication Server. Detecting
that the user is not authenticated, the Authentication Server will return a request
for authentication details directly to the client. The Authentication Server will then
authenticate the user, creating an Everyplace Suite session, and will pass this
session information in the header to subsequent requests for resources in the
Everyplace Suite.

You would ideally implement affinity with the Load Balancer if you want to take
advantage of any local caching that the Authentication Server may do. If you are
using local cache on EAS then you will want to maintain affinity to client and EAS.
This allows the Authentication Server to take advantage of local caching of
session information. The Authentication Server can cache the session ID and
session creation timestamp locally, so that for subsequent requests the
Authentication Server does not have to validation the session from AST. The local
caching is recommended.

6.3 Authentication Process

To illustrate the authentication process done by the Everyplace Authentication
Server, we will walk through a series of user requests in this section.

Figure 41 on page 78 details the authentication process conducted by the
Everyplace Authentication Server for an enrolled user from the Internet or
third-party gateways. Even though it only depicts the first two consecutive

A P

T P

W E S d o m a in : x y z 1 . c o m

i n : x y z 1 . c o m / s e r v i c e n

w w w - a u t h e n t i c a t e (4 0 1)

x y z 1 . c o m

t p . x y z 1 . c o m

c l i e n t

c l i e n t

i n : x y z 1 . c o m / s e r v i c e n ,
a b c . c o m / i s e r v i c e

h t t p p r o x y : t p . x y z 1 . c o m
p r o x y - a u t h e n t i c a t e (4 0 7)
76 IBM WebSphere Everyplace Suite

requests, it does illustrate the process of authentication and active session
management done by the Everyplace Authentication Server. The following six
steps describe the process:

1. Request credentials for first request

Assuming a user who is already enrolled in the WebSphere Everyplace Suite
domain is trying to access the services hosted by the WebSphere Everyplace
Suite, the user sends the first request to the Everyplace Authentication Server
using an HTTP browser from the Internet.

The Everyplace Authentication Server received the request. It inspects the
HTTP request header and cannot find any credentials. Then it checks the user
IP address against the IP addresses managed by the Everyplace Wireless
Gateway, which means this user request has not been authenticated by the
Everyplace Wireless Gateway.

The Everyplace Authentication Server determines that the user has not been
authenticated by the WebSphere Everyplace Suite yet. It returns a code 401 to
the client HTTP browser, indicating failed authentication. The HTTP browser
hence will start the HTTP basic authentication process using the
WWW-Authenticate header. It will prompt the user to enter a user ID and
password and puts them in the authorization header and sends it to the
Everyplace Authentication Server.

2. Look up session

When the user request with the authorization header is returned to the
Everyplace Authentication Server, the Everyplace Authentication Server
notices the authorization header with a user ID and password. It will first check
with the active session database to see whether the user already has an
active session. Since this is the first request from the user, no active session
exists. The Everyplace Authentication Server thus moves on to step 3.

3. Authenticate the credentials

Since the user has already supplied the user ID and password while there is
no active session for the user request, the Everyplace Authentication Server
has to start the authentication and create an active session for the user if the
authentication is successful.

In this release of the WebSphere Everyplace Suite, only HTTP basic
authentication is supported by the Everyplace Authentication Server. The
HTTP digest authentication method is not supported.

Note
Chapter 6. Authentication 77

Figure 41. Authentication process for an enrolled user from the Internet

WTE Server w.

Caching
WES Web

Applications

Everyplace

Authentication

Server

TPSM

RadiusServer/

AST Session DB

401 -- Failed Auth,
WWW-Authenticate

Request with no
credential

Request w/ Authorization
Basic + uid/pw

Authenticate
user + active
session record

Request

Response

Request

Response

Response

Confirm existence
of session

Session does
not exist

Session
DB

Session
DB

Confirm existence
of session

Session does
not exist

Authentication
Request

Authentication
Approved

Session
DB

IP

IP, Basic Auth

IPaddr not managed by GW

Request with
Credential

Request

Response

Request

Response

Response

Session
DB

Confirm existence
of session

Basic Auth Session
exists no match on IP
(Must be within time
window)

IP, Basic Auth

Authentication
Approved

Session
DB

Confirm existence
of session

Basic Auth Session
exists no match on IP
(Must be within time
window)

IP, Basic Auth

Session
DB

Update last used
time (Optimize
based on time
delta)

Clients from

Internet or

third party

gateway

1

2

3

4

5

6

7

78 IBM WebSphere Everyplace Suite

The Everyplace Authentication Server sends the authentication requests to
the RADIUS server. The RADIUS server will check the user ID and password
against the subscriber database. If the user ID and password match those in
the subscriber database, the RADIUS server will return authentication as
approved. It will also create an active session for the user.

4. Forward request and response

Once the Everyplace Authentication Server receives a message from the
RADIUS server indicating the authentication is approved, it will go ahead and
direct the user request to the backend servers for fulfillment. It usually
retrieves responses from the Caching Proxy and Web server and send the
response back to the user.

5. Second request and look up session

With the active session established for the user, the subsequent user requests
will be handled repeatedly by step 5, 6, and 7, until the active session is
expired or the user logs out.

The second request would have the credentials in the HTTP header. The
Everyplace Authentication Server will check against the active session
database to see whether the user has an active session or not. Since the user
already has a session established in step 3, the Everyplace Authentication
Server will consider the user to be pre-authenticated and would not send an
authentication request to RADIUS.

6. Update session information

Instead, the Everyplace Authentication Server will update the record in the
active session database for the time of the last visit.

7. Forward request and response

After the update of the active session for the user, the Everyplace
Authentication Server again will direct the request to the appropriate back-end
server. The request can be handled by either the caching proxy or the Web
application servers. The Everyplace Authentication Server would return the
response to the user.

The subsequent user requests will be handled repeatedly using step 5, 6, and 7,
until either the user chooses to log out or the active session expires after a
predefined period of time.

6.4 Active session management

The TPSM AST server must be used for managing the Active Session Table and
its entries. For more information about the AST server, please refer to Chapter 9,
“Subscriber and device management” on page 135.

The Everyplace Authentication Server creates an active session and provides
active session tracking. It also maintains a list of active sessions and provides
information about sessions using headers, as shown in Figure 42.
Chapter 6. Authentication 79

Figure 42. Everyplace Authentication Server manages an Active Session Table

6.4.1 Authentication Server session headers
The Everyplace Authentication Server session headers include the following.

6.4.1.1 Querying headers
The Authentication Server utilizes the Caching Proxy’s variable access interface
to query the HTTP headers that it receives with client requests. The Caching
Proxy variables that EAS queries include:

• REMOTE_USER to get the user name of the requesting authenticated user.

• PASSWORD to get the decoded password basic authentication details.

• HTTP_USER_AGENT to get the user agent header for determining the device
type and network type.

• AUTH_STRING to get the encoded authorization string.

6.4.1.2 Adding headers
The Authentication Server places session headers in each HTTP request that is
bound for a hosted service within the Everyplace Suite domain. These headers
are used to:

• Correlate individual HTTP requests with a given Authentication Server
session.

• Look up the session record for the given session.

• Identify the user, device type, and network type associated with the session.

All requests passing through the Authentication Server are tagged with an
Authentication Server HTTP header containing the following information:

• Session ID

The session ID uniquely identifies an active session. The session ID is passed
by the Authentication Server session header. By using the session ID,
components do not have to know what individual active session entry fields
uniquely define a session.

It is included in the AST entry created by the call to the RADIUS server. It can
also be used by other Everyplace Suite components as a convenience to look

AP

Access-Request(Userid, pw)

Access-Accept

HTTP req + User-Agent: +
Authorization:

HTTP req + SessionID: + User: + Device: +
Network: + User-Agent: + Authorization:

RADIUS ASTServer

Insert: [sessionID, user, device, network]
80 IBM WebSphere Everyplace Suite

up an entry in the AST or as a correlator value for requests associated with a
given session.

The format of the session will be:

X-IBM-PVC-Session = “X-IBM-PVC-Session”: “session ID”

• Session location

The session location is a pointer to where the AST entry associated with a
particular session is located. It consists of the host name of the AST server to
which the AST entry was written plus the remote port number.

The format of the session will be:

X-IBM-PVC-Session-Location = “X-IBM-PVC-Session-Location”:
“<hostname of AST Server>”

To do a normal lookup of an AST entry, a TCP connection must first be created
to the AST server pointed to by session location, and an AST lookup
specifying a key of session is passed.

• User ID

The user ID is the user identification, passed by the client device to the
Authentication Server when prompted for basic authentication. It is queried by
the Authentication Server from the HTTP header. It is also the same ID as
known to TPSM through its enrollment process.

The format normally consists of userid@realm, but realm is not required. If not
specified, then TPSM assumes a default realm value.

• Device type

This is the device type as mapped from the user-agent request header.

The device type is queried from the HTTP header and used as a key to look up
a device profile in LDAP.

The device profiles are extracted from LDAP at initiation time along with the
rules required to map to them from request headers.

• Network type

This is based on the originating network of the request.

The network type is queried from the HTTP header and is used as a key to
look up a network profile in LDAP. The network profiles are extracted from
LDAP at initialization time.

If other application servers than WAS are used, they will need to recognize the
HTTP header inserted by the Authentication Server and will pass it in raw form
to the servlets.

6.4.1.3 Removing headers
The Authentication Server will remove headers from the request only if the
request is destined for the Internet or a third-party service. The Transparent
Authentication Proxy will remove the proxy-authorization headers from requests
prior to forwarding a request.

The exception to this is when HTTPS requests are made for Internet access. The
secure request will be proxied to the Transparent Authentication Proxy which will
use SSL tunneling to forward the request to the destination content server. With
SSL tunneling, a feature of the Caching Proxy, the requests are passed through
Chapter 6. Authentication 81

the Transparent Authentication Proxy encrypted; therefore, the Authentication
Server cannot process the header information and the header information is
passed on.

Session ID
The session ID is a string generated when an AST entry is written, either directly
by the Authentication Server or by the Wireless Gateway. The session ID is used
to uniquely identify and differentiate an active session. The session ID is
generated from several unique identifiers to ensure that a session is unique for a
given user, device, and network.

6.4.1.4 Active session table maintenance
Format: AST Entry = [id, user, ip, create-time, device, network]

The AST clean-up daemon handles AST cleanup and cache maintenance. The
daemon is responsible for periodically deleting old entries in the local cache and
the AST. When the daemon starts, it will run against a list of known AST servers
and issue a relational delete command for all AST entries that are older than the
specified maximum sessions age. An AST entry is deleted when its age exceeds
a time-out value. The Wireless Gateway manages deletion of sessions it
originates and creates.

6.4.1.5 Active Session Cache
The Authentication Server enables you to locally cache session and
authentication information. This serves to achieve performance objectives you
may have by minimizing the number of RADIUS authentication requests and AST
Server access requests. Both the session ID and create time of the sessions can
be cached. The create time data is cached to enable the Authentication Server to
know when the cache entry is stale, and when the AST entry needs to be
re-inserted into the AST server.

If a request comes in that already has a matching session ID in the cache, then
there already exists an AST entry for the session and the user is already
authenticated, therefore permitting a bypass of the associated RADIUS/AST
flows.

AST entries associated with a trusted IP address are not cached since there is no
time out associated with this AST entry.

6.5 Scalability and availability

For large user-base applications, multiple Everyplace Authentication Servers,
RADIUS servers, and AST servers will be needed. This can be achieved jointly by
using techniques such as the Everyplace Authentication Server clustering,
RADIUS backups, and AST partitioning, as shown in Figure 43.
82 IBM WebSphere Everyplace Suite

Figure 43. Scalability and availability for Authentication Servers

Multiple Everyplace Authentication Servers can be clustered using the Edge
Server - Load Balancer to provide for upward scalability as the number of
concurrent users increases. Local AST caching can help reduce the AST
database access via the RADIUS server as the workload increases.

In the meantime, multiple RADIUS servers can be used, each as a backup server
for others. Each Everyplace Authentication Server can be configured with a
primary RADIUS server and one or more backup RADIUS servers. This helps
prevent one “over-worked” central RADIUS for a large number of authentication
requests. It also helps periodical maintenance as well. However, RADIUS servers
cannot be clustered using the Edge Server - Load Balancer.

The AST is stored in a database. With the increasing number of users, scaling
also becomes an issue for a single database. The AST database can be
partitioned into physically separated and independent databases. The session
location header is used by components to know which AST server contains the
request’s associated session information.

6.6 Deployment scenarios

The deployment and configuration of the Everyplace Authentication Server for the
WebSphere Everyplace Suite depends on the specific needs of the organization.
This section discusses four kinds of deployment scenarios.

Before we proceed, let us review the configuration files. The configuration
information for the Everyplace Authentication Server is maintained in three
distinct repositories:

R A D IU S

N D

A S T

R A D IU S

R A D IU S

A S T

A S T

A S D B

A S D B

A S D B

L e g e n d :

= p r im a ry s e rv e r

= s e c o n d a ry s e rv e r

= A S T S e rv e r to A S D B c o n n e c tio n

A P

A P

A P

u s e r a ff in ity
(s t ic k y t im e /ru le s)

RADIUS servers and AST servers cannot use the Edge Server - Load Balancer
to form clusters.

Note
Chapter 6. Authentication 83

1. On the local file system in the WTE’s configuration file (ibmproxy.conf).

2. On the local file system in the Everyplace Authentication Server configuration
file (ibmwesap.conf).

3. In the LDAP directory.

The three repositories serve different purposes. The WTE configuration specific
to the Everyplace Authentication Server resides as directives in ibmproxy.conf. As
explained earlier, these items include the plug-in hooks, the proxy directives, and
protection requirements.

Repository 2 contains information needed to access the LDAP server such as the
base distinguished name for the WebSphere Everyplace Suite, the LDAP login
distinguished name and password, and the LDAP server name and port. In
addition, it contains the default setting for the Everyplace Authentication Server.

Repository 3 contains all other configuration parameters. For example, it contains
entries common to all Everyplace Authentication Servers:

• RADIUS shared secret

• Maximum RADIUS retries

• Maximum RADIUS retry time-out (milliseconds)

• Maximum session age (minutes)

• Default retry-after delay (seconds)

In addition, it also contains entries unique to each Everyplace Authentication
Server such as:

• Everyplace Authentication Server role (Transparent Authentication Proxy or
Authentication Proxy)

• RADIUS Authentication Server hostname(s)

• AST server hostname(s) and port(s)

• Maximum session cache sizes

• AST daemon clean-up interval

6.6.1 TP and AP deployed
In order for clients to access both Internet services and services hosted by the
WebSphere Everyplace Suite, the Everyplace Authentication Server can be
configured in the way illustrated in Figure 45 on page 86. For this case, a client
can send one of three requests: wesA for service A hosted by the WebSphere
Everyplace Suite, wesB for service B hosted by the WebSphere Everyplace
Suite, and an Internet requests.

Since Internet requests must be supported, an Everyplace Authentication Server
acting as a Transparent Authentication Proxy is used, denoted as tp.wes.com in
the figure. For the services hosted by the WebSphere Everyplace Suite domain,
another Everyplace Authentication Server acting as an Authentication Proxy is
used as the next hop after the Transparent Authentication Proxy.
84 IBM WebSphere Everyplace Suite

Figure 44. Everyplace Authentication Server scenario 1

The configuration information is shown for both Everyplace Authentication
Servers as the following:

• EAS1: Transparent Authentication Proxy

• ibmproxy.conf:

Authorization * /usr/bin.sdpauth.so:authRequest
ServerInit /usr/bin/spdauth.so.initAS /usr/lpp/wes/ibmwesap.conf
ServerTerm /usr/bin/sdpauth.so:termAS
Protect /* {

ServerID WES
AuthType Basic
MASK Anybody@*

}

• ibmwesap.conf:

ServerRole TransProxy

• EAS2: Authentication Proxy

• ibmproxy.conf:

Authorization * /usr/bin.sdpauth.so:authRequest
ServerInit /usr/bin/spdauth.so.initAS /usr/lpp/wes/ibmwesap.conf
ServerTerm /usr/bin/sdpauth.so:termAS
Proxy /wesA http:/A.wes.com/*
Proxy /wesB http:/B.wes.com/*
Protect /* {

ServerID WES
AuthType Basic
MASK Anybody@*

}

• ibmwesap.conf:

ServerRole AuthProxy

Please note that only the Authentication Proxy uses the Proxy directive, which
defines the next hop routing from the Authentication Proxy. The Transparent
Authentication Proxy does not use the Proxy directive.

Trans Proxy

proxy.wes.com

Auth Proxy

wes.com

http proxy=proxy.wes.com

WES client

http://wes.com/wesB/X

http://wes.com/wesA/X

http://www.internet.com/X

http://wes.com/wesA/X

http://wes.com/wesB/X

http://www.internet.com/X

http://A.wes.com/X

http://B.wes.com/X

EAS1 EAS2
Chapter 6. Authentication 85

6.6.2 Only AP deployed
If the organization does not allow users to access the Internet from within the
WebSphere Everyplace Suite, the deployment in Figure 45 can be used. The
enterprise disallows traffic destined for outside the WebSphere Everyplace Suite
domain by not using the Transparent Authentication Proxy.

Figure 45. Everyplace Authentication Server scenario 2

In this case, the configuration of the Everyplace Authentication Server is the
following:

• EAS: Authentication Proxy

• ibmproxy.conf:

Authorization * /usr/bin.sdpauth.so:authRequest
ServerInit /usr/bin/spdauth.so.initAS /usr/lpp/wes/ibmwesap.conf
ServerTerm /usr/bin/sdpauth.so:termAS
Proxy /wesA http:/A.wes.com/*
Proxy /wesB http:/B.wes.com/*
Protect /* {

ServerID WES
AuthType Basic
MASK Anybody@*

}

• ibmwesap.conf:

ServerRole AuthProxy

6.6.3 Hybrid TP/AP deployed
We can also combine both Authentication Proxy and the Transparent
Authentication Proxy into a single WTE-based Everyplace Authentication Server.
This requires that you configure the HTTP proxy with the same name as the
enterprise domain name. Figure 46 on page 87 shows this case, where the
enterprise domain name is wes.com. The Everyplace Authentication Server is
configured as a Transparent Authentication Proxy, and the WTE is configured to
proxy all in-domain requests to the proper services while all external requests are
forwarded to the Internet.

The configuration of this hybrid Everyplace Authentication Server is given as the
following:

A.wes.com

AuthProxy

wes.com http://A.wes.com/X

http://B.wes.com/X

B.wes.com

WESclient

http://wes.com/wesB/X

http://wes.com/wesA/X

EAS

httpproxy=null
86 IBM WebSphere Everyplace Suite

Figure 46. Everyplace Authentication Server scenario 3

• EAS: Hybrid Authentication Proxy and Transparent Authentication Proxy

• ibmproxy.conf:

Authorization * /usr/bin.sdpauth.so:authRequest
ServerInit /usr/bin/spdauth.so.initAS /usr/lpp/wes/ibmwesap.conf
ServerTerm /usr/bin/sdpauth.so:termAS
Proxy /wesA http:/A.wes.com/*
Proxy /wesB http:/B.wes.com/*
Protect /* {

ServerID WES
AuthType Basic
MASK Anybody@*

}

• ibmwesap.conf:

ServerRole TransProxy

The major differences here are two-fold:

1. Unlike the first scenario where the Transparent Authentication Proxy is
configured with proxy name tp.wes.com, the Transparent Authentication Proxy
here is configured with the domain name wes.com.

2. Unlike the second scenario where the client HTTP proxy is null, here the
Everyplace Authentication Server allows the clients to use HTTP proxy
wes.com.

6.6.4 Configuration for transcoding
Another case is to configure the Everyplace Authentication Server in front of IBM
WebSphere Transcoding Publisher to support client devices that require certain
transcoding. As displayed in Figure 47, the IBM WebSphere Transcoding
Publisher server is denoted as A.wes.com and services X and Y require
transcoding before they can be presented to client devices.

A.wes.com

AuthProxy/
Trans Proxy

wes.com http://A.wes.com/X

http://B.wes.com/X

B.wes.com

httpproxy=proxy.wes.com

WESclient

http://wes.com/wesB/X

http://wes.com/wesA/X

http://www.internet.com/X

http://www.internet.com/X

EAS
Chapter 6. Authentication 87

Figure 47. Everyplace Authentication Server scenario 4

The configuration for this case is very similar to the second scenario since the
Everyplace Authentication Server configuration is at the URL level.

• EAS: Authentication Proxy for transcoding services

• ibmproxy.conf:

Authorization * /usr/bin.sdpauth.so:authRequest
ServerInit /usr/bin/spdauth.so.initAS /usr/lpp/wes/ibmwesap.conf
ServerTerm /usr/bin/sdpauth.so:termAS
Proxy /wesA http:/A.wes.com/*
Proxy /wesB http:/B.wes.com/*
Protect /* {

ServerID WES
AuthType Basic
MASK Anybody@*

}

• ibmwesap.conf:

ServerRole AuthProxy

A.wes.com

WTP
Auth Proxy

wes.com

http proxy=NULL

WES client

http://wes.com/wes1/X

http://wes.com/wes1/Y

http://wes.com/wes2/Z

http://B.wes.com/Y

http:/C.wes.com/X

http://D.wes.com/Z

http:/C.wes.com/X

http://B.wes.com/Y

B.wes.com

Y

C.wes.com

X

D.wes.com

Z

EAS
88 IBM WebSphere Everyplace Suite

Chapter 7. Supporting wireless devices

As one of the core components of the IBM WebSphere Everyplace Suite, the IBM
Everyplace Wireless Gateway (hereafter referred to as the Wireless Gateway) is
a distributed, highly scalable connectivity platform that enables secure, optimized
access by mobile client devices such as notebook with wireless modems,
personal digital appliances (PDAs), and many WAP-enabled smart phones and
communicators over a wide range of wireless networks as well as wireline
networks such as local area networks (LANs) and wide area networks (WANs). In
particular, the Wireless Gateway supports both IP and non-IP wireless bearer
networks.

The Everyplace Wireless Gateway is an open-system communication platform
that enables IP applications to run in wireless environments. It gives mobile
workers access to host and network resources through radio and dial-up
networks. Everyplace Wireless Gateway greatly reduces the cost, complexity, and
time required to deploy mobile solutions, so that enterprise data and applications
can be distributed to workers wherever and whenever they need them. The
Everyplace Wireless Gateway extends the corporate network for e-business
solutions and protects existing investment in software and information technology
infrastructures.

This chapter helps you to understand the functionality included in the Wireless
Gateway. We will focus on the architectures and technologies implemented in the
Wireless Gateway. Issues about security, deployment considerations, and sample
scenarios will be discussed in order to help you plan and configure the new
Wireless Gateway functions in different environments.

7.1 Overview

With increasing numbers of business activities being conducted outside
traditional office buildings, tools and services that allow mobile professionals to
access and interact with information (and services) relevant to their enterprises
are in great demand. On the other hand, Internet transactions are becoming
increasingly mobile as well. It is forecasted that in the next few years, about
two-thirds of all Internet transactions are expected to be generated by new
wireless and mobile devices. In the emerging mobile business climate, wireless
and mobile devices must work together seamlessly with both the Internet and
enterprise intranet. Moreover, given the sensitive nature of business information,
transactions must be conducted with the highest levels of security. The IBM
Everyplace Wireless Gateway is designed and implemented to provide secure
and seamless access for such mobile devices to both enterprise networks and
internet applications.

The Wireless Gateway enables TCP/IP, the Point-to-Point Protocol (PPP) and
WAP communications in a secure and optimized fashion (see Figure 48 on page
90).

Over wireless and wireline networks, Web and enterprise application programs
using a standard TCP/IP interface can be accessed via the Wireless Gateway.
The Wireless Gateway provides connections over a wide range of wireless,
dial-up, and wireline networks and does so by shielding any network specific
operations from the user application. In addition, the Wireless Gateway provides
© Copyright IBM Corp. 2000 89

wireless network-specific enhancements to TCP/IP communications. Such
enhancements as data compression, encryption, authentication, optimization,
and retransmission are particularly beneficial to the wireless clients due to the
limited bandwidth, high latency, low reliability, and security risks inherent in
today’s wireless networking technologies.

Figure 48. IBM Everyplace Wireless Gateway provides connectivity

In order to meet the increasing market demand for pervasive wireless devices
such as phones or PDAs to access the Internet, the Wireless Gateway supports
wireless communications. In particular, using an array of innovative
implementations, the Wireless Gateway facilitates the lightweight, low-processing
power, and low-bandwidth WAP clients to access the Web. It acts as a
translator/encoder between the WAP clients that use the Wireless Session
Protocol (WSP), and the Internet, which uses the HyperText Transport Protocol
(HTTP). It also acts as an agent for WAP clients such as phones and PDAs by
storing cookies and maintaining secure HTTPS connections on their behalf. In the
course of providing the WAP communications, the Wireless Gateway implements
high-strength security and high-performance caching.

The Wireless Gateway bridges devices over a variety of wireless and wired
networks to the Web server/proxy and application server. Such networks can be:

• Public packet-radio networks such as CDPD and GPRS
• Cellular networks such as CDMA, GSM, and PCS 1900
• Dial networks such as PSTN, ISDN, and PPP
• Satellite networks such as Norcom
• Wired networks such as Ethernet and token-ring LANs

The Wireless Gateway accomplishes the protocol transformation from different
bearer networks to the TCP/IP interface by using pluggable mobile network
connections. It enables three categories of access to the Internet or enterprise
applications: WAP-enabled wireless devices, dial-up devices, and wireless clients
over either wireline or wireless networks. For a list of networks supported please
refer to Appendix A, “Devices/networks supported by the Everyplace Suite” on
page 221.

In this chapter, we will briefly describe the Wireless Application Protocol (WAP),
the architecture of the Wireless Gateway, and the Wireless Gateway as a core

Everyplace Wireless
Gateway

Secure
Application

Servers

Intranet/
Internet

Dial-up

WAP / Wireless

Wireless
Gateway
Clients

M
obile

N
etw

ork
C

onnections
90 IBM WebSphere Everyplace Suite

component in the WebSphere Everyplace Suite (WES) environment. Then we
discuss in more detail the Wireless Gateway, the client, and the Wireless
Gateway administration console, called the Wireless Gatekeeper, as three
components of the Everyplace Wireless Gateway. Subsequently, we will discuss
the Wireless Gateway security and possible deployment. Finally, a sample
scenario will be displayed.

7.2 Everyplace Wireless Gateway in the WebSphere Everyplace Suite

The implementation of WAP support within the IBM WebSphere Everyplace Suite
requires some functionalities not traditionally provided by the IBM Everyplace
Wireless Gateway. Moreover, most of the functionalities provided by the IBM
Everyplace Wireless Gateway are implemented to support wireless devices such
as notebooks with wireless modems that are not based on WAP. This section
explains how IBM supports the Wireless Application Protocol (WAP) within the
WebSphere Everyplace Suite as well as how the Wireless Gateway fits in the
suite of WAP support.

7.2.1 Functions
As one of the core components of the IBM WebSphere Everyplace Suite, the IBM
Everyplace Wireless Gateway adds connectivity, security,and optimization to the
Suite. The Everyplace Wireless Gateway supports numerous world-wide network
technologies including the Wireless Application Protocol (WAP). It provides the
core WES functionalities by tightly integrating with many other components within
the suite.

The Wireless Gateway provides a communication platform that enables Internet
Protocol applications to run in wireless environments. The Wireless Gateway
provides mobile devices containing wireless clients with wireless access to host
and network resources through radio and dialup networks. The Wireless Gateway
encrypts, compresses, and minimizes the data that passes through the wireless
link, thereby increasing the speed of messaging.

Connectivity
It is the goal of the IBM WebSphere Everyplace Suite to provide information and
services to clients over both wireline and wireless networks. The connectivity to
the WES domain is provided by the IBM Everyplace Authentication Server (EAS)
and the IBM Everyplace Wireless Gateway, as illustrated in Figure 27 on page 57.

While the wireline connection directly from the Internet as well as the wireless
connections from third party gateways can be connected to the WES domain
through the IBM Everyplace Authentication Server, the IBM Everyplace Wireless
Gateway provides non-WAP wireless, WAP wireless, and other wireline
connections such as dial-up connections to and from the IBM WebSphere
Everyplace Suite. It establishes the communication connection to and from
pervasive devices and translates those connections to IP and other standard
protocols.

For non-WAP wireless clients, the Everyplace Wireless Gateway includes
wireless client application software that extends TCP/IP communications to
mobile devices running over a variety of network connections. Like its
predecessor, the IBM SecureWay Wireless Gateway, the Wireless Gateway is
designed to enable TCP/IP applications to run without modification efficiently,
Chapter 7. Supporting wireless devices 91

securely, and reliably over packet-radio networks that do not support TCP/IP. In
order to preserve the operation of customers’ existing TCP/IP applications, the
Everyplace Wireless Gateway converts wireless protocols to TCP/IP requests
then forwards the TCP/IP requests to the customers’ existing TCP/IP networks
and the TCP/IP applications. The Wireless Gateway server then converts the
TCP/IP response from these applications to the wireless protocols supporting the
devices making the request and sends the response over the protocol to the
device.

With the increasing popularity of mobile access to the Internet using
WAP-enabled phones, supporting WAP devices become the natural progression
of the Wireless Gateway. For WAP-enabled mobile devices, the Everyplace
Wireless Gateway supports WAP 1.2. The Wireless Gateway server accepts WAP
requests over numerous network connections to preserve the operation of
existing Web applications. The gateway server converts the request in WAP to an
HTTP request and forward that request to the existing Web infrastructure, and in
turn translates the HTTP response from the existing Web applications to a WAP
response and sends this response to the WAP device.

The Everyplace Wireless Gateway also supports dial-up connections to the
WebSphere Everyplace Suite. Such dial-up connections can be from a wireline
network or a wireless network using supported wireless modems. The Wireless
Gateway utilizes the Point-to-Point Protocol to authenticate the dial-up clients and
provides secured tunneling to the TCP/IP applications hosted by the WES
domain. However, in order for the clients to access the Everyplace Wireless
Gateway, the Everyplace Wireless Client software application must be installed
on the client devices (except for PPP connections).

Security
The Everyplace Wireless Gateway server and client application software work
together to establish secure wireless and wireline communications between
devices and the Wireless Gateway by providing two-way authentication, and data
encryption for confidentiality.

The IBM Everyplace Wireless Gateway bridges pervasive devices to IP networks.
When possible, it also maintains a VPN link between the pervasive devices and
the WES services. Links to WES through the Wireless Gateway are considered to
be trusted by the WebSphere Everyplace Suite domain, because the Wireless
Gateway terminates and authenticates the data link layer of the network stack.

For example, HTTP requests generated by devices connected via the IBM
Everyplace Wireless Gateway are considered to be “pre-authenticated” because
they are associated with a trusted IP address that is controlled by the Wireless
Gateway.

The Everyplace Wireless Gateway authenticates:

1. Dial-in connections from devices using the Point-to-Point Protocol (PPP) to
make the connection.

2. Wireless connections from devices that support WAP.

3. Secure connection from devices using the Everyplace Wireless Client to make
the connections. For devices that use Wireless Clients, customers must install
the client software on the devices.
92 IBM WebSphere Everyplace Suite

For the Everyplace Wireless Gateway client-to-server connections, the Wireless
Gateway supports the Data Encryption Standard (DES), RC5, and 3-DES
encryption world-wide. This results in a secure tunnel between client and server
using the WLP protocol.

For WAP connections, the Everyplace Wireless Gateway utilizes the Wireless
Transport Layer Security (WTLS) to perform gateway authentication and data
encryption. WTLS is a WAP security implementation similar to the traditional
Transport Layer Security (TLS) over TCP/IP networks. However, WTLS does not
interoperate with TLS. More details about the Wireless Gateway security are
provided in 7.7, “Wireless gateway security” on page 110.

An additional security measure prevents unwanted packet data from being
transmitted. The Everyplace Wireless Gateway provides packet filtering for
wireless clients and PPP connections as well as a mapping mechanism to filter
out unsolicited or unwanted data. This not only reduces the chance of malicious
attacks but also reduces the traffic on the wireless link.

Optimization
The Everyplace Wireless Gateway server and client application software work
together to optimize the wireless communications between devices and the
server. The client and server software compresses data to reduce unnecessary
protocol headers and optimizes TCP communication to increase the effective
data rate and lower the network cost.

The first optimization technique provided by the Everyplace Wireless Gateway is
compression. Prior to the transmission of the IP packets, the size of each IP
packet is reduced without any impact on the content of the packet. This
compression increases the effective data rate of the wireless network and it also
decreases the amount of data transmitted and therefore decreases the
transmission cost in most cases.

The second optimization technique provided by the Everyplace Wireless Gateway
also works for TCP traffic only. It is called TCP header reduction. This technique
reduces the 40-byte TCP headers to an average size of 3-5 bytes, which
decreases the amount of data to be transmitted over the wireless network.

The third technique is called TCP retransmission optimization. It’s been observed
that TCP communication over wireless links often results in packet retransmission
because of the high latency and small bandwidth available. The IBM Everyplace
Wireless Gateway provides unique solutions to address such problems.

Finally there is a technique that reduces the air time on connection-oriented
wireless network and PSTN. This technique is called short hold mode. With short
hold mode enabled, there can be no established physical connection over the
mobile network, but the client and server are virtually connected. If the client or
gateway requests to transmit an IP packet, the client or gateway will re-establish
the connection and start the transmission immediately. As a result, this technique
may lower connection fees.

Packet filtering is not available for WAP connections.

Note
Chapter 7. Supporting wireless devices 93

7.2.2 Integration
While contributing its unique functionalities, the IBM Everyplace Wireless
Gateway is tightly integrated into the WebSphere Everyplace Suite, sharing a
common WES environment and jointly achieving more pervasive computing
objectives. As shown in Figure 49, the Wireless Gateway integrates with TPSM to
update the user database, connects to the LDAP sharing user profiles,
communicates with the RADIUS server for authentication, collaborates with the
Everyplace Authentication Server for Active Session Table (AST) and user
session information sharing, and works with the Edge Server - Caching Proxy to
provide WAP push proxy and binary WML caching.

Figure 49. Integration of Everyplace Wireless Gateway

Within the WebSphere Everyplace Suite, the Tivoli Personalized Service
Manager (TPSM) handles user enrollment and user database management.
Typically, users are enrolled in the WebSphere Everyplace Suite through TPSM
for subscribed Internet and/or wireless access to the WES services. It is desirable
to have a centralized user database to simplify database management and
enforce the consistency. Logically, only TPSM is responsible for creating and
updating entries in the user database. For users from the wireline Internet, user
profile management can be easily achieved by TPSM in a centralized fashion.
However, clients over the wireless network should also be able to update their
user profiles even they do not have direct access to TPSM services. This is
achieved through the Everyplace Wireless Gateway by using a servlet that
connects to TPSM and updates the user profiles. Moreover, for those service
providers who have not implemented TPSM in the past, they can migrate the
users already registered with the Wireless Gateway to TPSM through this servlet.

As displayed in Figure 49, the user profiles is stored in the WES directory service
provided by the LDAP server. Only TPSM can directly write the user entries to
94 IBM WebSphere Everyplace Suite

LDAP. The Wireless Gateway can modify the user entries through TPSM. Such
user entries can be read by other components such as the WebSphere
Application Server.

Configuration information about the Wireless Gateways and associated resources
is stored in a database that conforms to the Lightweight Directory Access
Protocol (LDAP). An LDAP database can reside on any attached host and can
store information about more than one Wireless Gateway. Using LDAP, resources
can be shared among Wireless Gateways.

Unlike the earlier versions of the IBM Secureway Wireless Gateway, which
authenticates clients locally, the Everyplace Wireless Gateway within the
WebSphere Everyplace Suite authenticates client access using the shared
RADIUS server, shipped with the WebSphere Everyplace Suite as a standard
component. As explained in earlier chapters, both the Everyplace Wireless
Gateway and the Everyplace Authentication Server can carry out the
authentication process for the WES domain utilizing the RADIUS server. For
those clients authenticated by the Everyplace Wireless Gateway, the Wireless
Gateway assigns a trusted IP address which is owned by the Wireless Gateway
and known to the Everyplace Authentication Server. When HTTP requests are
routed to the Everyplace Authentication Server from the Wireless Gateway, the
trusted Wireless Gateway IP address is embedded in the header and
acknowledged by the Everyplace Authentication Server; thus the Everyplace
Authentication Server will not authenticate the client again.

The synergy between the Everyplace Wireless Gateway and the Everyplace
Authentication Server also provides the Active Session Table (AST) and user
session information sharing.

For wireless clients entering a WES domain through the Wireless Gateway,
because the duration of the user sessions is defined by their connection to the
Wireless Gateway, the Wireless Gateway is responsible for setting up and
maintaining these user records within the Active Session Table. For WAP clients,
the Authentication Server performs this function. In addition, since the users
might request access to the services hosted by the WES domain, the Everyplace
Authentication Server has to be able to modify the active session information and
provides appropriate logging and tracing as well. Hence, there is collaboration
between the Everyplace Wireless Gateway and the Everyplace Authentication
Server over AST management. More details are provided in Chapter 6,
“Authentication” on page 69.

To enhance the performance of the WAP services provided by the WebSphere
Everyplace Suite, the Everyplace Wireless Gateway has been integrated with the
Edge Server - Caching Proxy (WTE) as well. The Wireless Gateway shipped with
the WebSphere Everyplace Suite now has a WTE plug-in to enable the caching of
WAP data (WML) by the proxy server to improve performance, which traditionally
can not be done by the WTE.

Wireless Gateway WML caching is only possible with WebSphere Traffic
Express (WTE).

Note
Chapter 7. Supporting wireless devices 95

7.3 The Everyplace Wireless Gateway

This section and the following two sections discuss the software application
components included in the Everyplace Wireless Gateway: the Wireless
Gateway, Wireless Client, and the administration console, called the Wireless
Gatekeeper. Much of the pertinent information about the Wireless Gateway and
Wireless Client has been covered in Mobile Computing: The eNetwork Wireless
Solution, SG24-5299. We will primarily present the new and extended
functionality of the gateway and client implemented after this earlier redbook.

7.3.1 Architecture of the Everyplace Wireless Gateway
The Everyplace Wireless Gateway provides a TCP/IP interface with data
optimization and security to a variety of wireless and dial-up networks. The
Wireless Gateway has been implemented for both AIX and SUN Solaris systems.
As illustrated in Figure 50, the Wireless Gateway is comprised of a layered
structure for the protocol transformation from bearer networks to TCP/IP, WAP,
and WEB stacks. It also consists of many horizontal modules to interface with the
Gatekeeper and to communicate with cross-functional components within the
WebSphere Everyplace Suite for management, data storage, and authentication.

Figure 50. Everyplace Wireless Gateway architecture

Let us look at the layered implementation of the gateway first. At the very bottom
is the mobile network device layer, which provides for access to the mobile
networks such as wireless radio networks. Just above this layer is a set of
pluggable modules called Mobile Network Connections (MNCs) that transforms
different bearer network protocols into suitable data for further processing into IP,
WDP, or UDP/IP protocols. The MNC modules contain network-specific functions
and can be selectively installed for only those networks that the Wireless
Gateway would support.

X .2 5

J A VA
G a te w a y

A d m in is t ra tio n
G U I

C e n tr a l
In te r fa c e fo r
D is t r ib u t e d

G W s

M o b ile
N e tw o rk M g t

S N M P
A g e n t

. . .

T C P I S D N T T Y

L o g , T ra c e ,
A c c o u n t in g

F i le s

M O B IL E N E T W O R K C O N N E C T IO N S
M u lt ip le , P lu g g a b le N e tw o rk s

P ro to c o l T ra n s fo rm s
W ire le s s & W ire d

S e ria l

I /F to IP

R S /6 0 0 0 A IX + S U N S o la r is

N e tw o rk s

A c c e s s &

A c c o u n t

W A P S ta c k

A IX T C P /IP S ta c k(U D P /IP)

W E B S ta c k

W D P

W A P
B e a r e r
A d a p t 'n

S e c u re W a y W ire le s s
S e c u r it y & O p tim iz a tio n s

O th e r
A p p lic a t io n s

W A P to W E B
P ro x y / S e rv e r

L ic e n s e
U s e M g t

C r yp to L ib
(R S A)

C r yp to L ib
(R S A)

P e rs is ta n t
S to re

G a te K e e p e r

L D A P S e rv e r

S c h e m a

L D A P D B

A
cc

es
s

M
an

ag
er
96 IBM WebSphere Everyplace Suite

The layer above the Mobile Network Connections is the layer that distinguishes
the Everyplace Wireless Gateway from other network access routers. This layer
contains the IBM implementation of security such as data encryption and user
authentication; optimization such as hear reduction, compression, and TCP
optimization; and wireless client link, such as IP configuration and other client
options. This layer also contains the IBM implementation of WAP bearer network
adaptation, which allows the gateway to transform the WAP bearer protocols into
WDP.

The next layer contains IP and WDP related functions. This layer supports
application and presentation layers above itself to form WAP and Web stacks as
well as other TCP/IP based applications.

Now let us examine other utility modules in the Everyplace Wireless Gateway.
First, the Wireless Gateway contains modules and daemons to communicate with
the Wireless Gatekeeper and LDAP. Such modules and daemons include the
Access Manager and Cluster Manager. Secondly, the Gateway includes a set of
modules that can connect to external RADIUS servers, Tivoli management
software applications, and license user management software applications.

Access Manager facilitates the communication between the Gatekeeper and the
persistent data storage, including both LDAP and other relational databases.

The Wireless Gatekeeper is an XML and Java-based graphic user interface tool
to administer wireless IT resources. The Cluster Manager enables the clustering
among multiple Everyplace Wireless Gateway servers to provide scalability and
availability. Both Access Manager and Cluster Manager will be discussed later in
more detail.

The Everyplace Wireless Gateway stores its configuration information in the
LDAP service provided within the WebSphere Everyplace Suite. The LDAP
database can reside on any WES domain host and can store information about
more than one Wireless Gateway. Using LDAP, resources can be easily shared
among Wireless Gateways.

For scalability and the provision of virtual private networks (VPN) and interfacing
to existing corporate or subscriber access control, a RADIUS server is used by
the gateway to authenticate the users to the WebSphere Everyplace Suite. A
RADIUS server is shipped with TPSM of the WebSphere Everyplace Suite. The
Wireless Gateway can communicate with Tivoli management tools in order to
send SNMP traps (alerts).

7.3.2 Mobile network connections (MNC)
The Everyplace Wireless Gateway provides the solution to extend Internet
Protocol (IP) connectivity across a diverse set of wireless and wireline networks,
to enable TCP/IP applications to seamlessly access enterprise networks.

Each Mobile Network Connection (MNC) is the Wireless Gateway’s interface to a
specific type of network. Typically, an MNC consists of the communication line

In the Wireless Gateway, persistent storage implements a DB2 database while
log, trace, and accounting information can be kept in either DB2 or flat files.

Note
Chapter 7. Supporting wireless devices 97

driver, the network protocol interpreter, and one or more ports. For each
supported network provider, the customer has to install and configure an MNC.
Administrator’s Guide for Wireless Gateway contains a table that lists 15 types of
MNCs supporting networks such as ARDIS, Dataradio, DataTAC, and Mobitex.
Many of those networks are also supported by the earlier IBM SecureWay
Wireless Gateway. The Everyplace Wireless Gateway adds support for more
networks, such as the Norcom satellite network and many WAP bearer networks.

7.3.3 Wireless Gateway Clustering
In order to handle high traffic networks, clustering has been incorporated into the
design of the Wireless Gateway. Clustering, in the context of the Everyplace
Wireless Gateway, is the grouping of several machines (each running one
instance of the Gateway), as illustrated in Figure 51 on page 99. Workload from
one or more network connections is distributed across them. Each node, in
addition to taking advantage of UNIX multiprocessor capabilities, runs its own
WAP protocol stack. Multiple clusters may exist on the same physical set of
boxes.

Wireless Gateways share three major resources that make clustering possible:

1. A relational database (such as DB2 or Oracle) that contains persistent session
data.

2. An LDAP directory server that contains gateway configuration and user data.

3. A single point of administration: the Wireless Gatekeeper. Wireless
Gatekeepers are managed by the Gateway’s Access Manager (AM). An AM
supports the many-to-many relationship between Gatekeepers and Gateways.
The AM insures that one Gatekeeper locks administration of the Gateway
topology, in effect preventing overwriting of other configuration modifications
by forcing the other Gatekeepers into read-only mode. The AM communicates
between the Gateway to Gatekeeper using XML messages.
98 IBM WebSphere Everyplace Suite

Figure 51. Distributed IBM Everyplace Wireless Gateway servers

Figure 51 shows all the components of a Gateway cluster. Tivoli, the application
servers and the Web servers are all accessed through the WebSphere
Everyplace Suite. The Gateway itself communicates with the Gatekeeper, a
relational database, LDAP, and with outside networks via MNCs.

7.3.4 Cluster Manager (CM)
The Cluster Manager is a function of the Wireless Gateway that allows for
Gateway-to-Gateway communication in order to share workload and balance
CPU usage in a cluster.

The Cluster Manager allows nodes to be dynamically added and removed from a
cluster. To introduce a node to a cluster, the Gatekeeper must be configured with
the node’s IP address and port number. The Cluster Manager will then begin to
distribute requests to the new node. To remove a node, delete it from the
Gatekeeper. Traffic will then be distributed over the rest of the cluster.

The Wireless Gateway Cluster Manager can be configured in one of three ways:

1. As a principal node:

• Receives network traffic from an MNC and distributes load to itself and
subordinate nodes

• Maintains two-way communication to subordinate nodes

• Initiates communication and may send a shutdown notification

Networks

WAP Clients

Web Servers

MNCsMNCs

MNCs

Gateway N

Gateway 2Gateway 3

MNCs

Gateway 1

A
B

C

Config,
& Admin.

Data

LDAP
Gatekeeper

JAVA
Admin GUI

Gatekeeper
to Gateway
Access Mgr

[AM]
XML

WAP Data
STORE

&
Accounting
Database

RDB

TIVOLI

Subscriber,
Device &
Network
Management

RDB

User
Authentication

RADIUS

Relational
DBMS access

ODBC

LDAP

Web Server
Access

HTTP & HTTPS

Application
Servers

C/S Application
Access
TCP/IP

PPP and
Wireless Clients
Chapter 7. Supporting wireless devices 99

• Receives CPU performance load information from subordinate nodes

• Controls performance-based load balancing

2. As a subordinate node:

• Starts accepting or stops accepting data flow

• Sends performance load information to principal node(s)

3. As both principal and subordinate:

• There can be more than one principal node, each with a defined cluster
group of subordinate nodes

• Subordinate nodes can belong to more than one cluster group

• A Gateway node may participate as a principal node for a cluster group
while also being a subordinate node in one or more cluster groups.

The principal node in a cluster group has the potential for being a single point of
failure between a network and its associated cluster. If a subordinate node fails,
its workload is redistributed among the rest of the cluster, simply increasing the
load on the other nodes. If the principal node fails then the communication
between principal and subordinate nodes ceases as well as the connection to any
networks that interface to that machine. The subordinate nodes, as a result, will
discard current stack processes.

The scenario in Figure 52 shows three networks: A, B, and C, and four Wireless
Gateways (GW): 1, 2, 3, 4 respectively. WG1 has an MNC to network A while
WG2 has MNCs to networks A and B. In Figure 52, WG1 is the principal node
with WG3 and WG4 being its slaves. WG1 receives network traffic from A and
distributes it over WG3, 4 and itself. WG2 does not participate in this cluster.

The scenario in Figure 53 presents the second case. This time WG2 is the
principal node. It receives traffic from both B and C and distributes it over WG1, 2,
3 and itself. WG1 is a subordinate node in this cluster scenario.

In order to prevent possible prolonged downtime, the principal node should be
backed up frequently.

Note
100 IBM WebSphere Everyplace Suite

Figure 52. A Wireless Gateway clustering scenario 1

Figure 53. A Wireless Gateway clustering scenario 2

7.3.5 Access Manager and persistent data storage
The Access Manager is a daemon that manages communications among the
gateway, the Wireless Gatekeeper, and the persistent data store. There is a
secure Access Manager that can be optionally installed to use SSL to secure the
communications between the Wireless Gatekeeper and the gateway.

The Everyplace Wireless Gateway does not use the local AIX ODM to be the
persistent data storage, as did the former IBM SecureWay Wireless Gateway.
Instead, the Everyplace Wireless Gateway uses LDAP directory service and
relational database such as DB2 within the WebSphere Everyplace Suite to store
the persistent data.

N e t w o r k s

P r in c ip a l

W G 1
(M N C t o A)

P r i n c ip a l

W G 2
(M N C t o B a n d C)

S u b o r d i n a t e

W G 3

S u b o r d i n a t e

W G 4

A B C

N e t w o r k s

S u b o r d in a te

W G 1
(M N C to A)

P r in c ip a l

W G 2
(M N C t o B a n d C)

S u b o r d in a te

W G 3

S u b o r d in a te

W G 4

A B C
Chapter 7. Supporting wireless devices 101

The configuration information is stored in a database that conforms to the
Lightweight Directory Access Protocol (LDAP). IBM SecureWay Directory is
shipped with the WebSphere Everyplace Suite. The LDAP service can reside on
any host protected in the WES domain and can store information about more than
one gateway. Using LDAP, resources can be easily shared among multiple
Wireless Gateways.

The session data is stored in a relational database such as DB2. Session
information is about the user activities during establishment, maintenance, and
release of any connection to the Wireless Gateway. Such relational database can
reside on any host within the WES domain and can store session information for
multiple Wireless Gateway servers.

In addition, the Everyplace Wireless Gateway also stores the accounting and
billing information in an attached relational database such as DB2. Accounting
and billing information is about the flow of packets and can be used by other
software applications to construct billing information for the subscribers.

The Access Manager or the secure Access Manager is invoked when the
Wireless Gatekeeper connects to the Wireless Gateway. It acts as both the query
translator and the command launchpad. The communication between the
Wireless Gatekeeper and the Wireless Gateway is coded in XML format.
Typically, the Wireless Gatekeeper sends the query to the gateway and receives
definitions from the gateway. The communication starts when the Wireless
Gatekeeper logs on to the gateway. It sends an XML query to the Access
Manager. The Access Manager converts the query into AIX commands and
issues these commands to the Wireless Gateway or the persistent data store.
Once the Access Manager receives the results of those commands from the
Wireless Gateway or persistent data store, it converts them into XML and returns
them to the Wireless Gatekeeper.

7.4 The Clients

7.4.1 The Wireless Client
Devices that are not WAP-enabled or PPP connected generally are not able to
connect to the Wireless Gateway directly. For these devices, the Wireless Client
is provided. The Wireless Client is an interface that allows non-WAP mobile
devices to run TCP/IP applications over wireless networks. The Wireless Client
runs below TCP/IP and handles all network-specific details inside a common
interface layer. To the end user, the wireless network becomes just like any other
network.

Figure 54 on page 103 depicts the Wireless Client below TCP/IP and before the
wireless radio network. To the mobile device, the network connection is
seamless; accessing the company intranet or manipulating an Internet
application is the same as if you were on a wired connection.
102 IBM WebSphere Everyplace Suite

Figure 54. The Wireless Client in the context of the Wireless Gateway

A list of devices that are currently supported by the Everyplace Wireless Client
software application is given in Appendix A, “Devices/networks supported by the
Everyplace Suite” on page 221. For further information on the Wireless Client and
details about installation refer to Chapter 4 in Mobile Computing: The eNetwork
Wireless Solution, SG24-5299, and also to Chapter 3 in the Everyplace Wireless
Gateway Administrator’s Guide.

7.4.2 WAP Clients
A WAP client is any mobile device that is WAP-enabled. Such devices connect to
the Wireless Gateway using a microbrowser. Extra wireless client software is not
needed in order to access the Wireless Gateway, although the Gateway needs to
be configured as a WAP server in order to provide WAP services. The Gateway
connects to WAP clients through the WAP-enabled MNC. WAP clients can be
configured as users to the Wireless Gatekeeper or to a network/remote access
server.

The Wireless Gateway supports any device that is WAP V1.1 compliant. Some
examples of these devices are the Nokia 7110 and the Ericsson R380 and R390.

HDML phones from Phone.com are currently not supported. Support for these
devices is planned for a future release of the WebSphere Everyplace Suite.

The Wireless Gateway is compatible with some WAP V1.0 phones as in the case
of some European models. Extra transcoding from V1.0 to V1.1 is necessary for
proper viewing in the microbrowser.

For additional information about connecting a specific device to a chosen wireless
network, refer to manuals accompanying the device and to documentation
provided by your wireless network provider.

7.5 Administration: the Wireless Gatekeeper

The Wireless Gatekeeper is a platform-independent graphical user interface that
remotely administers one or more Wireless Gateways. With the Gatekeeper you
can easily define and configure Gateway resources as well as register users or
mobile devices, specify tracing, and perform other administrative tasks. The

Wireless Network

Wireline Network

Wireless
Client

T
C

P
/IP

S
O

C
K

E
T

S

TCP/IP
Applications

TN3270/5250
Emulator

Web Browser

Wireless
Gateway

TCP/IP
Applications

3270/5250 Server
and Apps

Internet
Chapter 7. Supporting wireless devices 103

Gatekeeper is a Java-based application that communicates with a Gateway using
XML.

The Gatekeeper was designed to give customers an easy-to-use interface to
administer their Wireless Gateways. The Gatekeeper was designed with the three
following parameters:

1. No AIX skills are needed to configure the Wireless Gateway. This edition of the
WebSphere Everyplace Suite runs only on the AIX platform. For the ease of
use of customers, the Gatekeeper is a Java-based GUI that is multi-platform.
No AIX skills are necessary to use the GUI.

2. The Gateway can be configured remotely. The Gatekeeper communicates with
the Gateway using a SOCKS connection over TCP/IP. Customers can
configure their Gateway from their desktop inside a LAN, or even from a
remote laptop. TCP/IP communication between the Wireless Gateway and the
Gatekeeper is required.

3. The Gatekeeper will provide an easy-to-use GUI. For
non-DOS/UNIX/AIX/Linux users, a GUI interface is a godsend compared to
using an AIX command line. The GUI for the Gatekeeper is designed to be
intuitive and easy to learn. Of course the Gateway can be administered using
an AIX command line for those who prefer it.

Certain security considerations are necessary when administering your Gateway
outside a trusted network. Gatekeepers administrators can be locked to a given
IP address. This may not be very secure if the Gatekeeper is coming through a
proxy server or other such network configuration. In addition, for extra security,
SSL can be configured between the Wireless Gatekeeper and the Wireless
Gateway.

7.6 WAP gateway/proxy

The major functional expansion of the Everyplace Wireless Gateway is its support
for the Wireless Application Protocol (WAP). With the emphasis on supporting
pervasive devices, which often are WAP-enabled devices, the WebSphere
Everyplace Suite focuses on utilizing the Wireless Gateway as a WAP
gateway/proxy. Therefore, this section describes the Everyplace Wireless
Gateway as a WAP gateway/proxy even though the Everyplace Wireless Gateway
can function much more than just as a WAP gateway/proxy. Details on how to
utilize the Everyplace Wireless Gateway for access to enterprise hosts and
TCP/IP applications can be found Mobile Computing: The eNetwork Wireless
Solution, SG24-5299.

7.6.1 WAP programming model
By adopting the WAP programming model similar to the traditional WWW
programming model, the WAP community is able to leverage existing tools such
as Web servers and XML tools, and to work on a proven architecture. As
illustrated in Figure 55 on page 105, a generic WAP gateway bridges between the
mass-market handheld mobile devices, which run with small mobile terminals
such as phone.com’s micro-browser, and the content servers, which are based on
the traditional Web server technology. A basic WAP gateway serves at least the
following two functions:
104 IBM WebSphere Everyplace Suite

• Protocol translation: the Wireless Gateway translates requests from WAP
protocol stacks (which will be explained later in Figure 63 on page 116) to the
WWW protocol stacks such as HTTP and TCP/IP.

• Content encoding and decoding: the Wireless Gateway translates WAP
content into a compact format for transport over the network.

Figure 55. The generic WAP programming model proposed by the WAP Forum

The IBM WebSphere Everyplace Suite has implemented support for WAP clients
with extensive considerations for performance, security, and optimization. The
IBM Everyplace Wireless Gateway serves the bridging point between the WAP
clients and the WES domain. It decodes the WAP requests into HTTP requests to
the content servers and encodes the responses to the clients. To enhance
performance, the IBM Everyplace Wireless Gateway has also implemented a
binary WML plug-in to the traditional HTTP caching server. This feature requires
and only works with the WebSphere Traffic Express (WTE) caching proxy.

Additional functionalities are included in the IBM Everyplace Wireless Gateway.
The Wireless Gateway can store cookies on behalf of WAP clients. The Wireless
Gateway can also open SSL links on behalf of WAP clients when the WAP clients
request an HTTPS connection. With the increasing complexity of the Internet
applications, the IBM implementation of the WAP gateway needs to be more than
a simple WAP proxy.

7.6.2 IBM WAP implementation
Given the above discussion about the WAP programming model and the WAP
architecture, we present the IBM implementation of the WAP support within IBM
WebSphere Everyplace Suite in Figure 56.

IBM adopts multiple layers of intermediaries such as IBM WebSphere
Transcoding Publisher and the Edge Server - Caching Proxy to channel the Web
and/or enterprise content to WAP clients. Within the IBM WebSphere Everyplace
Suite, the IBM Everyplace Wireless Gateway acts as the entry point for WAP
devices. It provides the protocol translation from the IP or non-IP bearer networks
to TCP/IP and translates the WAP request into HTTP requests. However, the
WAP content caching and content transcoding from HTML/XML to WML are
accomplished separately via the Edge Server - Caching Proxy and IBM
WebSphere Transcoding Publisher, two major components in the IBM
WebSphere Everyplace Suite. Such distributed implementation is beneficial to
performance, security, and scalability.

Client Gateway Origin
Server

encodedrequest

encoded response

request

response (content)

Wireline Network
Chapter 7. Supporting wireless devices 105

Figure 56. IBM implementation of WAP support

With the caching and content transcoding separated, the Wireless Gateway can
focus on user/device authentication, network translation, and network
optimization. Even a single Wireless Gateway can support hundreds of
thousands of active WAP clients. On the other hand, the Web content caching is a
well-known art, which has been satisfactorily delivered by the Edge Server -
Caching Proxy. By simply providing a WTE plug-in, the Wireless Gateway can
use WTE to cache binary WML data to avoid repetitive conversion and improve
response time.

IBM WebSphere Transcoding Publisher is designed to support the content
publishing model of write once and present many. It can translate the XML-based
documentation into many different markup languages, including WML. Therefore,
it is ideal to group the transcoding functionality into a new layer of content
intermediary, which not only enhances performance but also helps better
deployment of content publishing. Transcoding from HTML/XML to WML usually
requires intensive computation power. Therefore, having an array of Transcoding
Publisher servers in the back end suits large-scale deployment and better
performance.

7.6.3 WAP basic functions
The IBM Everyplace WAP gateway is a scalable UNIX WAP gateway. It contains
all the functional blocks for the basic WAP gateway functions, as shown in Figure
57 on page 107. It consists of the WAP network access, TCP/IP and HTTP
stacks, WAP stack, WAP gateway bridging functions, and WAP gateway
management functions.

The WAP network access provides a link to the network operators for data
connectivity. Such access is defined as a mobile network connection (MNC), a
resource of the Everyplace Wireless Gateway. WAP network access includes
support to interface with both IP bearer networks and non-IP wireless datagram
protocol (WDP) based bearer networks such as short message service (SMS)
and unstructured supplementary services data (USSD). The IP circuit-switched
access is achieved using IP via a Remote Access Server (RAS), which can be
either integral or external to the WAP gateway. Standard LAN, ATM, and X.25
connections can be used to connect the RAS servers and WAP gateways.

request

response (content)

encoded request

encoded response

request

response (content)

Wireline
Network

Wireline
Network

WSP

WTP

WTLS

WDP

HTTP

SSL

TCP

IP

HTTP

SSL

TCP

IP

HTTP

SSL

TCP

IP

Proxy (WTE)
/Transcoder (WTP)

HTTP

SSL

TCP

IP

WSP

WTP

WTLS

WDP

Everyplace
Wireless Gateway

WAP
clients

Origin
Servers
106 IBM WebSphere Everyplace Suite

The TCP/IP/HTTP stack includes the well-established TCP/IP, Secure Socket
Layer (SSL) or transport layer security (TLS), and HTTP protocols.

The WAP stack is the WAP Forum-specified layered protocol implementation.
Even though the WTLS is optional in the WAP Forum specification, the
Everyplace Wireless Gateway uses it to provide server authentication and data
encryption.

Figure 57. Basic WAP gateway functions

WAP gateway bridging functions include WML encoder, WMLscript compiler, and
HTTP encoder. The WAP gateway bridging functions also include the ability to
tokenize and cache the content so that users can re-use the content within a
certain period of time defined by some valid lifetime criteria. This is a
performance enhancement over the simple case where data is not cached and all
WAP data being sourced is scrapped once it is delivered.

WAP gateway management functions comprise several managerial entities. The
WAP gateway provides administration such as setting up accounts and system
configuration. It also includes call management, which is the ability to recover the
call seamlessly from a broken link. Call management is achieved through the use
of link break detection, deadtime (no traffic), and timer-driven expiration of
addresses. Finally, WAP gateway management functions also include the quality
of service (QoS) management and logging tools.

WTLS support is required in WAP Version 1.1 or later.

Note

T
C

P
/I

P
/H

T
T

P
S

ta
ck

profiles

WAP Gateway

QoS
Management

Call
Management

Access
Control

LoggingM
an

ag
em

en
tF

un
ct

io
ns

WML Encoder WMLScript Compiler
WAP Gateway

Bridging
Function

W
A

P
S

ta
ck Wireless Session Protocol

Wireless Transaction Protocol

Wireless Transport Layer Security

Bearer
I/F

Bearer
I/F

Bearer
I/F

Bearer
I/F

Bearer
I/F

Bearer
I/F

TCP/UDP/IP WDP
TCP/UDP/IP

SSL/TSL

HTTP

IP Access for Packet
and Circuit switched

access

Access to SMS,
USSD, etc. via X.24,
ISDN, PSTN, IP, etc.

IP Access to Services
wiv LAN, ATM, X.25,

etc.
Chapter 7. Supporting wireless devices 107

7.6.4 WAP data flow
The WAP gateway converts the WSP session from the WAP client to HTTP for the
Internet or intranet Web servers via the proxy. The gateway also performs the
binary encoding and decoding of the content, and converts the HTTP response to
WSP for delivery to the WAP clients.

The data flow for a typical WAP communication via the Everyplace Wireless
Gateway is depicted in Figure 58. The process is as follows:

• Data is received from the WAP protocol stack.

• Request is validated and converted from binary WAP language to standard
Web protocols. Additional HTTP request headers are added (such as cookies,
WES integration headers, etc.)

• Request is forwarded to caching proxy which is a Caching Proxy with a
Wireless Gateway plug-in.

• Response is received, cookies are processed, WML documents are converted
to binary WML.

• HTTP headers are binary encoded.

• Response data is sent back to the WAP client.

Figure 58. The data flow for the WAP requests.

7.6.5 WAP gateway advanced functions
In addition to the basic WAP functions, the Everyplace Wireless Gateway also
supports advanced functions such as WAP push, WML caching, and short
message service (SMS).

7.6.5.1 WAP push
The Everyplace Wireless Gateway supports the WAP 1.2 specified Push Access
Protocol to allow external applications the ability to push various content down to
WAP devices. With WAP push support, the service providers are able to transmit
information to a device without a prior user-initiated action. Like the World Wide
Web, the conventional WAP service is a user “pull” technology, meaning the client
always initiates the transaction and pulls the information from the server. In
contrast to the pull technology, WAP push has no explicit request from the client
before the server transmits its content. In other words, “push” transactions are

W AP
STACK

W apB row seService
Conn ection-less
Not secure
Port 9200

W apBrow seService
C onnection-oriented
N ot Secure
P ort 9201

W apBrow seService
C onnection-less
S ecure
P ort 9202

W apBrow seService
C onnection-less
S ecure
P ort 9203

HTTPR eceiver

HTTPConnector

H TTP Proxy
Server / W eb

Servers

R equest Flo w
R esponse Flow

1

6

5

4

3

2

W AP
Clients
108 IBM WebSphere Everyplace Suite

server-initiated. WAP push is very useful for providing better personalization and
timely services.

The Push Access Protocol is used by a push initiator residing on an Internet
server to access the Everyplace Wireless Gateway as a push proxy gateway. The
push initiator originates the push content and submits it to the push proxy
gateway for delivery to a user agent on a client. Figure 59 shows a WAP push
configuration. The push initiator is able to submit a push, cancel a push, query for
the status of a push, and query for wireless device capabilities. The push proxy
gateway is able to notify the push initiator about the result of the push. For more
detailed information about the Push Access Protocol, please refer to WAP Forum
specifications.

Currently the Push Access Protocol is transported using HTTP. In the future,
more transport such as SMTP will be supported as well. For the current
HTTP-based push access, the HTTP POST method and response are used.
Using HTTP, operation begins with an HTTP POST method containing the
information for delivery to the push proxy or the push initiator. Upon receipt of the
POST method, the receiving server replies with an HTTP response containing the
response for the operation. For added security, the HTTP may be used with SSL.

Figure 59. Everyplace Wireless Gateway supports the Push Access Protocol

7.6.5.2 Support for cookies
The Everyplace Wireless Gateway also supports user cookies. Existing WAP
phones do not store HTTP cookies; the Gateway will store these cookies on
behalf of the WAP client and deliver them to Web servers when they are
requested.

Cookies are stored in a shared database so that information persists across
gateways and gateway start/stop.

7.6.5.3 Binary WML caching
Web servers can be accessed by the IBM Everyplace WAP gateway via the HTTP
proxy. The Edge Server - Caching Proxy is shipped with the WebSphere
Everyplace Suite as the HTTP caching proxy. The WAP gateway sends HTTP 1.1
style requests over TCP/IP and expects HTTP-encoded WML or WMLScript in
return. Logically, a WAP gateway opens a TCP/IP socket to the WTE proxy for the

Push Access Protocol (PAP)

Push Access Protocol (PAP)

Everyplace
Wireless
Gatew ay

Push application
Server using

Push Java APIs

XML
Applications

SMS

IP
Chapter 7. Supporting wireless devices 109

client request and the WTE in turn opens a socket to the Web server or upstream
proxy server.

It is desirable that the binary WML data can be cached for subsequent user
requests. However, WTE is a HTTP proxy that does not support the WML caching
by its own. In order to enable the WTE caching of the WML data and improve
performance, the IBM WAP Gateway installs a special plug-in module on WTE to
enable its caching of WAP data (binary WML).

SMS Support
The Everyplace Wireless Gateway now also supports WAP and non-WAP devices
over short message service (SMS) networks. SMS is very popular in Europe and
other countries outside the United States. Due to its popularity, even though SMS
has not become an industry standard yet, the Everyplace Wireless Gateway has
added additional SMS bearer network support.

7.7 Wireless gateway security

The Everyplace Wireless Gateway is one of the two points of entry for the IBM
WebSphere Everyplace Suite. Safe and secure connections between the
Wireless Gateway clients, the gateway(s), and the WES domain is of utmost
importance. Wireless Gateway has implemented thorough security measures to
achieve the goal of providing authentication and confidentiality for the WES
domain, as displayed in Figure 60 on page 111.

The Wireless Gateway uses a modified Point-to-Point Protocol (PPP) called
Wireless Optimized Link Protocol (WLP) to authenticate the connection between
itself and Wireless Clients over either wireline or wireless networks. WLP uses a
two-party key distribution protocol in which the Wireless Gateway and the
Wireless Clients authenticate each other without sending a password over the air.
Using WLP, the Wireless Gateway can provides an encrypted tunnel for the
wireless clients to access the WES domain in a secure fashion. Authentication,
confidentiality, and access control can be implemented. However, the
non-repudiation can only be achieved by the client/server SSL connection since
the Wireless Gateway cannot examine the data flow.

In addition and in order to integrate with TPSM, you can configure a Wireless
Gateway to use Remote Authentication Dial-In User Service (RADIUS) third-party
authentication. Acting as a proxy on behalf of Wireless Clients connected to it,
the Wireless Gateway routes authentication requests to a RADIUS server. Just as
another link in a chain makes the chain longer, request and response times to
authenticate users are longer when you configure the Wireless Gateway to use a
RADIUS server.

For scalability considerations, and the considerations for the provision of virtual
private network (VPN) as well as the considerations of interfacing to existing
corporate or subscriber access control, the HTTP authentication for WAP clients
should be interfaced to external authentication processes such as RADIUS, as
well as having a self-contained method for stand-alone use.

The connection between WAP devices and the Wireless Gateway(s) is secured
using the Wireless Transport Layer Protocol (WTLS). WTLS supports
mini-certificates for the public key exchange. WTLS support is required in the
WAP Version 1.1 (or later) Forum specification and the Everyplace Wireless
110 IBM WebSphere Everyplace Suite

Gateway uses it to provide server authentication and data encryption. It supports
1024-, 768-, and 512-bit RSA public key exchange, as well as RC5 symmetric key
data encryption (40 or 56 bit) and the MAC algorithm SHA-1.

Figure 60. Security implementation in IBM Everyplace Wireless Gateway

WTLS offers authentication using certificates. It also provides confidentiality
using data encryption. However, it cannot implement access control since it is
based on stateless WDP and will be terminated at the Wireless Gateway.

Secure Sockets Layer (SSL) can be used to establish a secure connection
between the Gateway and back-end Web servers, between the Gateway and the
Gatekeeper, and between multiple Gateways within a cluster.

7.8 Deployment of the Everyplace Wireless Gateway

The IBM WebSphere Everyplace Suite is targeted for network operators, content
providers, service providers such as ISP and ASP, and enterprises. Different
customers may deploy the Everyplace Wireless Gateway differently based on
their functionality needs. However, a general set of considerations exist for the
deployment of the Everyplace Wireless Gateway. First we will summarize the
considerations for performance, scalability, availability, and security. Such
considerations and customers’ individual functionality needs will dictate the exact
configuration of the Everyplace Wireless Gateway. Secondly, we will discuss the
WAP solution deployment models for network operators and content providers.
The enterprise usage of the Wireless Gateway has been covered in detail in
Mobile Computing: The eNetwork Wireless Solution, SG24-5299. Therefore we

WLP
Chapter 7. Supporting wireless devices 111

will only briefly discuss the deployment of the Everyplace Wireless Gateway for
enterprises when we discuss the deployment for service providers.

7.8.1 Performance, scalability, availability, and security
As evident in the flexible design of the Everyplace Wireless Gateway architecture
(see 7.3.1, “Architecture of the Everyplace Wireless Gateway” on page 96), the
Wireless Gateway is built with the considerations of performance, scalability,
availability, and security in mind. The overall system functions can be flexibly
distributed. The design exploits standard architectures and many existing server
products, for flexible and scalable configurations.

For example, in order to achieve scalability and the provision of virtual private
networks (VPN) and interfacing to existing corporate or subscriber access
control, RADIUS server is used by the gateway to authentication the users to the
WebSphere Everyplace Suite. The RADIUS server is shipped with TPSM of the
WebSphere Everyplace Suite.

The Everyplace Wireless Gateway can be installed on a single server along with
other products, or it can be installed separately on a dedicated server in a
distributed format. IBM recommends that the distributed form be used separating
security services, content adaptation, management services, base services, and
connection services.

In order to achieve high performance in providing WAP and wireless services to
clients, it is recommended that you use the Everyplace Wireless Gateway in
conjunction with the Edge Server - Caching Proxy. The WTE HTTP proxy can
enable both Web and WAP content caching for faster services.

Better performance and high availability can also be achieved by using the
Everyplace Wireless Gateway cluster support. Having multiple Wireless
Gateways in one cluster can improve the service response time and minimize the
service downtime.

Similarly the Edge Server - Load Balancer can be used to support multiple HTTP
proxy servers behind Wireless Gateways. However, the Edge Server - Load
Balancer is not recommended to be used in front of the Wireless Gateways.This
is due to the fact that the Network Dispatcher is based on TCP/IP while the
Wireless Gateway supports many non-IP networks, such as WAP bearer
networks. When there are non-IP connections, the network dispatcher’s load
balancing feature is no longer applicable. In addition, WAP connection-oriented
sessions and WTLS secure transactions may not be efficiently dispatched by the
Network Dispatcher. Moreover, for WAP gateways that do not share WAP
persistent data among multiple gateways or WAP stacks, there would be further
restrictions for using the Network Dispatcher. The WAP session suspend and
resume function is not reliably supported because the client will likely resume
with a different IP address.

In a distributed environment, customers can put most WebSphere Everyplace
Suite components on their own physical machines to provide scalability, higher
reliability and performance. Single function machine can be tuned more easily
with fewer interruptions due to cross-product problems.

IBM recommends distributed configuration
112 IBM WebSphere Everyplace Suite

For scalability considerations, and the considerations for the provision of virtual
private network (VPN) as well as the considerations of interfacing with existing
corporate or subscriber access control, it is recommended that the Everyplace
Wireless Gateway be configured to use external authentication processes such
as RADIUS even though it has a self-contained authentication method for
stand-alone use.

For security considerations, the connection between the Wireless Gateway and
the Wireless Gatekeeper must be SSL-enabled. Further more, the connections
among multiple Gateways in a cluster environment should be SSL-enabled as
well.

7.8.2 WAP solution deployment
As explained in 7.6.2, “IBM WAP implementation” on page 105, IBM implements
WAP support via the pattern of “client - gateway - transcoding and caching proxy
- Web server”. This pattern is made scalable with high performance.

The parties
In the most general sense, the parties involved in any WAP solution deployment
includes the following:

• User with WAP client phone/device

• Network Operator providing wireless network connections

• Content Provider providing information and applications. This can be the case
for enterprises providing internal information and applications to their mobile
workers.

• “Third Party” acting in conjunction with or on behalf of the network operator
and/or content provider. The “third party” can be a service provider such as an
Internet Service Provider (ISP) or Application Service Provider (ASP).

Deployment models for network operator
Case #1:Wireless network operator becomes value-added provider of WAP
service and content.

In this case, the wireless network operator host the total solutions based on the
WebSphere Everyplace Suite. The Everyplace Wireless Gateway,
transcoding/proxy servers, as well as back-end Web servers are hosted by the
wireless network operators.

Case #2: Network operator hosts WAP service with external content providers.

In this case, the network operator provides WAP gateway and transcoding/proxy
hosting itself while it offers its subscribers WAP services and content that are

In the general WAP case, it is not technically possible for the Edge Server -
Load Balancer to run in front of WAP gateways. Edge Server - Load Balancer is
based on TCP/IP while non-ip protocols such as X.25 and WAP protocol
include support for non-IP wireless networks, which is not supported by the
Edge Server - Load Balancer. When there are no TCP connections, the Edge
Server - Load Balancer’s load-balancing feature is lost.

Note
Chapter 7. Supporting wireless devices 113

provided by third-party content providers. The network operator acts as
aggregater and content transcoder.

Case #3: Third-party host WAP gateway and transcoding/proxy for the network
operator, which also provides content and applications.

In this case, the wireless network operator offers its subscribers WAP services
and content hosted by a third party. However, the network operator still hosts
application services and content itself.

Deployment model for content provider as well as enterprises
Case #4: Network operator hosts WAP gateway only with external content
intermediary and applications.

In this case, the network operator only provides the Everyplace Wireless Gateway
as the WAP gateway for the protocol transformation and connectivity. The
content, application, transcoding, and even WAP proxy is provided by external
providers. The WAP proxy and content are not necessarily provided by the same
party.

This case also applies to those enterprises that use the network providers for
both network connectivity and the WAP gateway while providing their own content
and content adaptation.

Case #5: Content provider hosts full WAP solutions.

The content provider can host a full line of WAP support from the WAP gateway,
and WAP proxy and transcoding, to content and applications. The content
provider uses the network provider only for wireless connectivity services.

This can also be the enterprise deployment model for users of WAP device to
access its intranet.

For example, the content provider or enterprise can use a network provider’s
connection services over the IP network. In the dial-up example, the IP
circuit-switched access is achieved using IP via the Remote Access Server (RAS)
which can be either integral or external to the WAP gateway. Standard LAN, ATM,
and X.25 connections can be used to connect the RAS servers from the network
provider to WAP gateways.
114 IBM WebSphere Everyplace Suite

Figure 61. Typical scenarios of WAP deployment for network operators

Deployment model for service providers
Case #6: Service providers (third party) host WAP gateway/proxy with access to
external content providers.

In this case, the service provider, either an Internet Service Provider (ISP) or
Application Service Provider (ASP), hosts the WAP gateway, transcoding, and
proxy servers while the contents are from external providers. The network
connectivity is provided by network operators.

Gateway

Proxy

ServerUser

Network Operator

"3rd Party"
Content Provider

Gateway

Proxy

Server

User

Network Operator

"3rd Party"
Content Provider

Gateway

Proxy

Server

Network Operator

User

"3rd Party"
Content Provider
Chapter 7. Supporting wireless devices 115

Figure 62. WAP deployment for content providers and enterprises

Figure 63. WAP deployment for typical service providers

7.8.3 Non-WAP solution deployment
Even though WAP support is the focal point of the WebSphere Everyplace Suite
today, the Everyplace Wireless Gateway can support non-WAP clients for an
array of enterprise applications and host services. The deployment of the
Everyplace Wireless Gateway is in conjunction with the host intermediary such as
IBM Emulator Express and IBM Web Express. Such deployment extends TCP/IP

Gateway

Proxy

Server

User

Network Operator

Content Provider
"3rd Party"

Gateway

Proxy

Server

User

Network Operator

"3rd Party"
Content Provider

Gateway

Proxy

Server

User

Network Operator

"3rd Party"
Content Provider
116 IBM WebSphere Everyplace Suite

applications as well as legacy applications,such as 5250 (AS/400) and 3270
(CICS, IMS), to mobile and/or wireless users via mobile networks.

The scenarios similar to the six cases presented in 7.8.2, “WAP solution
deployment” on page 113 can be derived for the non-WAP deployment of the
Everyplace Wireless Gateway. The scenarios will again be drawn across network
operators, content provider/enterprises, and service providers. We will not
discuss them in detail here.

For guidelines on the deployment of the Everyplace Wireless Gateway for
non-WAP wireless services, please refer to Mobile Computing: The eNetwork
Wireless Solution, SG24-5299.
Chapter 7. Supporting wireless devices 117

118 IBM WebSphere Everyplace Suite

Chapter 8. Transcoding Web application content

This chapter provides a brief overview of the transcoding concept focusing on
architecture and system design with IBM WebSphere Transcoding Publisher.

Information on the product and examples are limited to the context of this book.
For further fundamentals and in-depth details on technologies and IBM
WebSphere Transcoding Publisher see:

• The online product documentation
• Extending Web Applications to the Pervasive World with IBM WebSphere

Transcoding Publisher, SG24-5965
• http://www.ibm.com/software/webservers/transcoding/library.html

8.1 Introduction to transcoding

Transcoding is the concept of transforming content. It’s a general concept not
bound to any specific markup languages, formats, or products. In today’s
pervasive world, transcoding is found useful - if not invaluable - in automated
adaptation and conversion to:

• Adapt client markup languages (such as WML, HTML and all their variants).

• Enable system-to-system data exchange (such as XML feeds, B2B
transactions).

• Preserve bandwidth where limited (such as dial-up and wireless connections).

Figure 64. Use of transcoding in general

Some formats transcoded will be binary, such as images, while probably most
transcoding will be applied to text streams. Parts will be different XML variants,
parts will be non-XML formats for markup and data.

Transcoding is powerful and relieves the workload of designing a page version for
each client type or writing interface code for heterogeneous systems. Magic can
happen - for example, a very hot topic at the time of writing is automated
conversion of HTML to WML. However, issues exist and some considerations
should be done.

Transcoder

Transcoder
Format X Format Y

2
3

1
5

6

4
8

9

7

0

#

*

© Copyright IBM Corp. 2000 119

8.2 Overview of WebSphere Transcoding Publisher

The IBM transcoder implementation is named IBM WebSphere Transcoding
Publisher (WTP). Currently the product is available for AIX, Linux, Solaris,
Windows 2000, and Windows NT.

IBM WebSphere Transcoding Publisher can be used in three models:

• As a HTTP proxy in a network
• As a MIME type filter plug-in to the IBM WebSphere Application Server
• As JavaBeans enriching the functions of your own code

Note: WebSphere Transcoding Publisher is intended to be deployed as a proxy in
the Everyplace Suite domain. It is not intended to be used as a servlet
(WebSphere Application Server filters) or as JavaBeans within the Everyplace
Suite domain.

The overall architecture of WebSphere Transcoding Publisher is shown below.

Figure 65. IBM WebSphere Transcoding Publisher architecture

A number of preference profiles are responsible for recognition of device, network
and content types and to apply the right set of transcoders. More on this topic
may be found in 8.5, “Preference profiles” on page 126.

WTP is hosting a number of transcoder plug-in units that can modify any type of
content in practically any possible way. The default set of transcoders is
extendible by custom-written transcoders implemented in Java. See 8.6,
“Transcoders” on page 128.

XML content can be matched to a specific XSL by the XML Stylesheet Selectors.
If the selection criteria is a match, the stylesheet will be applied to the XML
content.

Included is an administration console and a toolkit for development and problem
determination. Both will be described only as needed in this book. For more
information refer to Appendix C, “Related publications” on page 227.

Preference Profiles

XML Stylesheet Selectors

Text
Transcoder

Image
Transcoder

XML
Fragmentation

Transcoder

Other
Transcoders

Administration Developer Toolkit
120 IBM WebSphere Everyplace Suite

8.2.1 In the IBM WebSphere Everyplace Suite
This section describes WebSphere Transcoding Publisher used in the context of
the Everyplace Suite:

• New features specific to the Everyplace Suite and general
• Proxy model only is supported
• Network and device recognition done by the IBM Everyplace Authentication

Server

8.2.1.1 New features
The IBM WebSphere Everyplace Suite V1.1 includes IBM WebSphere
Transcoding Publisher Version 1.1.3. Most significant changes since Version
1.1.1 are:

• Infrastructure improvements

• Uses LDAP directory for settings (previously stored in *.properties files).
The administration console is used exactly the same way.

• Settings are shared between all instances of WTP using common LDAP
schema.

• Everyplace Suite Active Session support - to bypass device/network
recognition if the IBM Everyplace Authentication Server already has done
that.

• NO-OP HTTP header support - the first transcoder will signal “job already
done” to following ones, which then bypass transcoding.

• Transcoding improvements

• Text transcoder includes HTML to I-Mode conversion.

• Fragmentation engine now supports I-Mode in addition to WML.

• Image transcoding includes GIF to WBMP and JPG to WBMP conversion.

• New device profiles for WAP and I-Mode phones.

8.2.1.2 Proxy model
Using WebSphere Transcoding Publisher in the context of the IBM WebSphere
Everyplace Suite supports the HTTP proxy model only.

Using the proxy model allows the freedom to use any Web application server to
serve pages and other content types. From an architectural point of view the
proxy model allows installation on separate machines for greater flexibility and
scalability. However, performance and network load will be affected by adding an
extra hop, and it will not be possible to transcode encrypted content.

8.2.1.3 Network and device recognition
In the Everyplace Suite the IBM Everyplace Authentication Server will perform
network and device detection and store the result in a HTTP header for use by
WTP and other subsequent servers.

Network differentiation is normally done by setting up multiple HTTP ports for
distinguishing network types. In the Everyplace Suite, the IBM Everyplace
Authentication Server will perform network detection and put the result in an
HTTP header for WTP and other subsequent servers. Three types are used:

Default network All IP traffic from network or third-party gateways
Chapter 8. Transcoding Web application content 121

Wireless network Wireless traffic from the Wireless Gateway

Dial-up network Dial-up traffic from the Wireless Gateway

Devices are recognized using the HTTP User-Agent header. This recognition will
be performed by the IBM Everyplace Authentication Server using the shared
WTP configuration stored in LDAP. That means an administrator will not notice
the difference.

8.3 Building with transcoders

A transcoder is a powerful building block. Used properly it can expand the reach
of your services and applications with minimal effort. This section provides an
overview of how the use of transcoding can (or should) affect both infrastructure
and application design considerations.

8.3.1 Infrastructure design
It is most likely that you want to install more than one instance of the product to
let a heavy workload be spread across several physical units.

Transcoding can also be utilized both at the “front” and at the “back” of your
application server as illustrated in Figure 66 below.

Figure 66. Transcoding in the front and back of an application server

In the front, transcoding is used to adapt content to diverse clients and systems
using your applications and services. This is the most obvious use of WebSphere
Transcoding Publisher running as a proxy in the context of IBM WebSphere
Everyplace Suite.

The back-end transcoder helps adapting content from different sources to a
format easier handled by the application server. Several other options exist
depending on application architecture, data formats, database types and other
factors. Examples are IBM Enterprise Information Portal, IBM Host Publisher,
WebSphere Transcoding Publisher used as Java beans (not supported by the
Everyplace Suite), IBM MQSeries Integrator, or IBM MQSeries Workflow.

The sample scenarios used throughout this book demonstrate use of both
front-end and back-end transcoding. Examples in this chapter concentrate on
parts of the transcoding required in such a setup.

Transcoder,
"front end"

User
devices

Customer
or partner

systems

Application
servers

Transcoder,
"back end"

Databases

Back end
servers

Ext. content
providers

2

3

1

5

6

4

8

9

7

0

#

*

122 IBM WebSphere Everyplace Suite

8.3.1.1 Optimization with a Caching Proxy
Every single transcoding done will take some time and consume some hardware
resources, so in general it can be very beneficial to keep transcoded versions of
content for reuse.

Figure 67. Caching with WebSphere Transcoding Publisher

WebSphere Transcoding Publisher can be configured to use an external cache
directly (b in Figure 67 above). This allows caching of different transcoded
representations of the same content element. Be careful when setting up a
caching proxy along the HTTP stream in front of WTP a, as it will see the same
URL for all appearances of an element; an image reduced in size or a page with
adapted content will have the same URL. For example the Palm version of
index.html, the Netscape version of index.html and the phone version of
index.html share the same URL but different content. So a cache set up in front
should be set up to cache non-transcoded content only.

Setting up caching for content served to clients can improve client response time
and reduce the workload of both transcoder and application server. This is even
more significant for client types with no cache.

Caching applied to a back-end transcoder either controlled by WTP (marked b in
Figure 67) and/or at the source c can provide a major benefit, in particular if
dynamic content such as XML is provided from an external or other latent source:

Cache control
A cache serving transcoded content and controlled by WTP will obey the same
HTTP directives as usual, such as Expires, Last-Modified and No-Cache. That
also means also transcoded content should be handled properly, considering
both timeliness and optimal reuse.

Cache considerations
A cache should never be considered just as a black box doing traffic optimization.
Parameters such as what domains to cache, cache size, housekeeping settings,
caching policies, and even filtering need to be tuned to fit your unique deployment
and use.

WebSphere
Transcoding

Publisher
Cache

Cache

Cache

a c

b

Efficient and intelligent caching of external content can be set up with minimal
effort using the caching server provided in the IBM WebSphere Everyplace
Suite.

Note
Chapter 8. Transcoding Web application content 123

General and product-specific documentation describing these considerations are
also very useful and valid in the context of WTP. However, the quality measure is
slightly different: Content adaptation with transcoding could for example result in
four different versions of every page that should be cached individually. In
advance, you should do calculations on cache efficiency by dividing the total
number of hits by four groups and consider the number of pages multiplied by
four. So the benefit of caching can be limited to the number of users accessing
the same pages from the same device.

8.3.2 Application design
Setting up transcoders in every possible network path will not do it. Delivering
high-quality and well-performing services with a reasonable effort requires careful
considerations on application design.

Considerations of automated conversion of HTML (or similar client markup
language) are divided into two major groups:

1. Supported features
2. Usability

Supported features
HTML served to devices with limited capabilities can be made usable by
WebSphere Transcoding Publisher. Examples are reducing or removing colors,
converting tables to plain text, removing frames, performing image translations, or
replacing images with links, and more.

But how should a clickable image map be converted and used on a WAP phone?
How would a transcoder handle applications based on Java Script, ActiveX
objects, Java applets, etc., if the target device does not support this code?

Most advanced features are not suitable for transcoding. In general an application
suitable for transcoding is built with more simple techniques. Sure, bells and
whistles can be added for traditional browsers, but keep the core code running on
the server with a thin HTML-only client.

Sometimes you don’t want to write transcoder-friendly applications; you want
pixel-level control on every device. Or your want to utilize features supported on
some specific devices only. The solution involves hard work building separate
sets of ,for example, JSPs tailored for different device types.

A compromise can be to build only a few selected pages optimized for specific
devices. This could be the home page and pages using “incompatible” stuff like
Java applets, phone API, Palm software, and so on.

Usability
Designing applications for multiple devices requires considerations about input
and output capabilities. Today’s common PC Web browser is at the high end with
1024x768 true-color screen, a mouse and some 102-keys available. The most
minimalistic device used today is the first generation of WAP phones with two to
four lines of monochrome text, 10 numeric keys and a few function buttons. (Who
said a 3270 terminal was inadequate?) In between you will find Web TV, Palm
Pilot, WorkPad, WinCE, and lots of other devices with various input and output
capabilities.
124 IBM WebSphere Everyplace Suite

Navigation and application flow clearly needs reconsideration. Some people have
counted an average of 52 links for a public Web page. This is not recommended
for applications to be used from a phone!

As an example take a page containing clickable news headlines. The PC Web
browser could show 20-30 properly arranged headlines and still be usable. On
the Palm Pilot, probably 10 headlines will do. From a phone, users may prefer five
or so. Basically the number of selectable items can be reduced in two ways:

• Categorization - introducing one or more category selections in a flow

• Personalization - as a filter for passing the subset of relevant items only

The cost and benefit of each approach depend heavily on the application type,
content, and users. No final answer can be provided.

Input forms introduce even more considerations in multi-device design. How
many fields per page are acceptable? Does the device support more intelligent
forms by allowing client-side scripting? Is text easily entered from the device, or
should you rely more on selections? Using existing knowledge of the user can be
most valuable, like letting the application suggest the customer’s known home
address for the goods delivery address.

Trade-off
Developing multiple versions of an application could be for example two versions;
one for “large-screen” users and one for “small-screen” users. Usability can be
improved significantly by implementing two different navigation schemes
optimized for the two device groups. Device-specific adaptation is done
generically by a transcoder. This is illustrated in Figure 68.

Figure 68. Application design for a compromise

Some devices with a “medium” user interface, such as the WorkPad or Palm Pilot
could potentially use both versions. The choice can be left up to the user or
determined by the application.

Transcoder,
"front end"

Application
server

"Small screen"
version

"Large screen"
version

Common
parts

Back end:
servers, databases,
content providers
and transcoding

2
3

1

5
6

4
8

9

7

0

#

*

Chapter 8. Transcoding Web application content 125

As an example of categorization, the application could present a complete menu
to a “large-screen” user, while more levels of selection are introduced to the
“small-screen” user, allowing each page to be simple. Techniques such as
personalization could be applied to both versions. The general user interface of
both versions should, of course, be carefully considered and designed; but by
having two specialized versions fewer compromises have to be taken.

Technically the application could be implemented as two sets of JSPs, of which
the large-screen version will generate standard HTML and the small-screen
version will generate XML. Why not use XML for both versions? Or HMTL and
WML? The decision has to be made as a trade-off keeping in mind the devices to
be supported, format of the source data, the skills of the developers, capabilities
of the application server used, solution flexibility, and last, but not least,
performance considerations.

8.4 Installation and configuration

When the environment infrastructure and network topology is planned and sized,
it’s time to install and configure products. WebSphere Transcoding Publisher is
easily installed and configured by the Everyplace Suite installation program and
needs no further configuration to run. However, you might want to adjust the
configuration parameters or maybe to build and configure new transcoders as
described in 8.6, “Transcoders” on page 128.

8.4.1 Installing WebSphere Transcoding Publisher
The IBM WebSphere Everyplace Suite installation program will silently install
WebSphere Transcoding Publisher and configure it as follows:

• HTTP proxy model
• Caching proxy support not enabled
• Default transcoders for devices and networks

WebSphere Transcoding Publisher is now ready to work!

8.4.2 Configuring a Caching Proxy
IBM WebSphere Transcoding Publisher can be configured to use an external
cache directly. In the IBM WebSphere Everyplace Suite the caching function
should be delivered by the Edge Server - Caching Proxy. WTP is also tested with
Squid, although any other standard HTTP caching proxy should work.

The Suite installation program will not configure the use of cache by default. The
cache may need further configuration to be tuned to fit your unique deployment
and use. Refer to the product documentation and Extending Web Applications to
the Pervasive World with IBM WebSphere Transcoding Publisher, SG24-5965.

8.5 Preference profiles

The determination of which transcoders to invoke for a specific request and its
corresponding reply will be done by preference profiles stored and shared in
LDAP. The collection of profiles is organized in three groups with a number of
profiles initially defined:
126 IBM WebSphere Everyplace Suite

Devices profiles: Windows CE, Palm Pilot, WAP phones, Netscape Navigator
(desktop), Microsoft Internet Explorer 4 (desktop),
XML-capable desktop browsers, and a default.

Network profiles: Wireless network, dial-in network, and network default.

User profiles: (Not used - individual user setting could be set up using the
portal toolkit pTk in TISM).

Selection of device is based on the HTTP User-Agent field. Selection of the
network is based on the selected incoming IP port number.

The existing preference profiles can be inspected and modified using the
administration console shown in Figure 69.

Figure 69. Preference profiles in WebSphere Transcoding Publisher

8.5.0.1 Modifying existing profiles
For most profiles a number of parameters can be configured to enable or adjust
the transcoders it will invoke. The selection of configurable parameters is set up
when creating a new preference profile and cannot be changed later. Refer to the
WTP online Developer’s Guide for information on how to re-create and register
the profile again.

8.5.0.2 Creating new profiles
To create a new preference profile start the toolkit wizard Create Profile from the
WebSphere Transcoding Publisher program folder or Start menu. You will be
guided to supply:

1. A *.prop-filename for saving the profile.
Chapter 8. Transcoding Web application content 127

2. Name and comment for the profile.
3. HTTP User-Agent string selection criteria (for device profiles only).
4. Preference selection and values for the transcoders to be invoked. Network

profiles offer a subset of the preferences available to device profiles.

Figure 70. Preferences for a new device profile

The new profile now resides in a file system. It needs to be registered for WTP to
know about it:

1. From the WTP Administration Console select Register -> Preference Profile.
2. Point out the *.prop-file.
3. Select to use it as a Device or Network profile.
4. Fill in values for parameters as required.

8.6 Transcoders

To get an impression of the capabilities of WTP and to understand how it can be
extended, we first take a look at the two basic types of transcoders it uses: MEGs
and XSL transforms.

• MEGs

A MEG is a content Monitor, Editor or Generator. It is the most flexible and
powerful building block making up a transcoder. It can handle almost any type
of content and do any operation to it. In the WTP implementation it takes the
shape of a Java Servlet, and is then called a MEGlet.

See http://www.almaden.ibm.com/cs/wbi for more information on the MEG
concept in general.
128 IBM WebSphere Everyplace Suite

• XSL transforms

More and more content is conforming to some XML variant. A specialized way
of handling XML input is XSL. An XSL stylesheet can do almost any transform
of any XML document, but it is best suited for working at field and structural
level (in contrast to text character level). The output can be another XML or
any non-XML text format, while binary formats in general are not suitable for
XSL transforms.

The XML Stylesheet Selector will choose the proper XSL based on the DTD or
schema for the incoming XML.

This section briefly describes the built-in transcoding capabilities of WebSphere
Transcoding Publisher followed by general guidelines and a few examples of
extending the functionality.

8.6.1 Build-in transcoders
The set of transcoders supplied with WebSphere Transcoding Publisher consists
of three powerful transcoders:

Image transcoders Can convert between different image formats, reduce
color depth and size and more.

Text transcoders Can simplify HTML documents (for example replacing
images with links and removing Java Script), apply XSL
stylesheets to XML documents, and perform generic
HTML-to-WML and HTML-to-I-Mode conversion.

XML fragmentation Can split up WML decks into valid chunks small enough to
be handled by a WML device. It is particularly useful
when WML is generated automatically.

Configuration of the IBM-supplied transcoders is done in the preference profile as
described in the previous section. For details on the three transcoders refer to the
online Developer’s Guide.

8.6.2 Extending the transcoder
You may want to supply your own transcoders or stylesheets to:

• Provide a generic support for additional device types
• Do tailored conversion for a specific application to archive optimal results
• Transform specific XML variants

The first thing to consider is whether to use Java-based MEGlets or XSL.
Technically both techniques can help you do almost any transcoding, but one is
normally easier to work with. Which one depends heavily on the input type:

Table 2. Preferred transcoding techniques

Input content type Preferred technique Comments

Any well-formed XML XSL For both XML and non-XML output,
XSL is designed to do exactly this
conversion.

HTML or other non-XML Primarily MEGlet Quite complex using XSL, so Java
using WTP helpers is the choice for
text clippers or other transforms.
Chapter 8. Transcoding Web application content 129

Examples of some transcoding tasks are:

• WML 1.1 to WML 1.0

As WML is a well-formed XML, converting WML to earlier versions could be
done using an XSL stylesheet. The WML language has undergone significant
changes, but most will require replacing tags suitable for XSL.

• WML to HDML

The input is XML while the output is not, so the conversion could be done from
scratch using XSL. However, WTP includes a generic WML-to-HTML
transcoder, which could be used for doing most of the job. Any final
adjustment of the HTML needed to conform with HTML can be done by a
MEGlet doing search and replace.

• Support for Web TV, including text size enlargement

Typically a device with a large screen, such as a TV, will support standard
HTML. Assuming you already are providing HTML content suited for PC Web
browsers, a good solution could be to adjust this HTML. The built-in text
clippers can do the job of removing unsupported features like applets and
JavaScript. The only transcoding left to do is text size enlargements, which will
require search and replace in non-XML content, so the choice is a MEGlet.

• Back-end conversion between XML variants

XSL is specialized for this type of conversions. There is no obvious advantage
in doing the job yourself with a Java toolkit for handling XML (such as the IBM
XML4J parser). However, if the HTTP proxy model is not appropriate because
the communication is non-HTTP, you could look for alternatives to WTP. As an
example the second generation of IBM MQSeries Integrator can do XML
conversion of MQ messages.

• Image conversion for color blind users

To support users with red/green color blindness, you could wish to apply a
general conversion of image colors. The transcoding will be done on binary
data types, so a MEGlet is the right choice. This also enables use of all the
existing image toolkits written for Java.

8.7 Development tools

A number of tools exist to help you develop applications and to work with
WebSphere Transcoding Publisher. This section provides a brief overview of the
Toolkit supplied with the product and selected tools available for download. For
details about the Toolkit see Extending Web Applications to the Pervasive World
with IBM WebSphere Transcoding Publisher, SG24-5965.

The Toolkit consists of:

• Transform Tool
• Request Viewer
• Preference Profile creator (see 8.5.0.2, “Creating new profiles” on page 127)
• Snoop tool

Binary (such as images) MEGlet Java is very suitable, due to availability
of existing helper libraries.

Input content type Preferred technique Comments
130 IBM WebSphere Everyplace Suite

8.7.1 Transform tool
To easily see the effect of transcoding, the Transform Tool provides a split-screen
view showing original content and transcoded content side by side. This partly
eliminates the need for acquiring a lot of different devices or device emulators.
The tool can also be used as a working example of how to use the transcoding
JavaBeans in an application.

Using the current settings of WTP, the tool will show transcoding of both text and
images.

Figure 71. Transform Tool example with text

Figure 72. Transform Tool example with an image

8.7.2 Request viewer
When creating and registering MEGs, the Request Viewer can give you a
visualization of the operation of the transcoding server. You can view registration
and configuration information of the MEGs. Request Viewer also enables you to
Chapter 8. Transcoding Web application content 131

monitor the flow of requests through the server and observe which plug-ins are
triggered and when they are triggered. For each transaction, the Request Viewer
also displays the header and content information as they are manipulated by the
plug-ins.

Notice that WTP and the Request Viewer cannot be running at the same time, as
the tool will run a complete debug version of WTP using the same ports.

Figure 73. Request Viewer trace

8.7.3 Snoop tool
The Snoop tool is a MEGlet generator similar to the SnoopServlet known from the
IBM WebSphere Application Server. It will display all HTTP headers in both
request and reply. This is a very easy way of spotting the User-Agent for any
device or browser (the Request Viewer could also be used for that).

To enable Snoop you must register the MEGlet first:

1. From the WTP Administration Console select Register -> Transcoder
2. Point out /IBMTrans/toolkit/meglets/Snoop/Snoop.jar
3. Supply a name and comment
4. Activate the MEGlet
5. Refresh or restart the server

Now invoke Snoop by accessing any site via the Web or WAP asking for
/servlets/Snoop ,which is defined as the trigger in Snoop.prof.
132 IBM WebSphere Everyplace Suite

Figure 74. Example of Snoop called from WebTV

8.7.4 Other resources and tools
The processing of XML/XSL in WebSphere Transcoding Publisher is based on the
IBM XML Parser for Java (XML4J). Documentation and code for this can be found
at the IBM Alphaworks site http://www.alphaworks.ibm.com/. Here you will find lots
of other useful tools, including:

• XSL Trace

Step through XSL scripts and see the transformation rules as they are created
and the XML or HTML as it is generated.

• Visual XML Transformation Tool

Will take Document Type Definitions (DTDs) describing the source XML
documents as input. The user visually constructs the new XML document. The
tool will generate an XSL script for transforming the source documents to the
target document and also the DTD for the target document. Optionally you can
also unit test the XSL script from within the tool.

• Visual-DTD

A visual editor for editing and viewing DTDs. It will generate DTDs, and W3C
XML schemas as the standard evolves.
Chapter 8. Transcoding Web application content 133

134 IBM WebSphere Everyplace Suite

Chapter 9. Subscriber and device management

Network access and/or portal service providers have to face two types of
management challenges. These are the usual systems management to monitor
and maintain physical machines, networks and software, and also management
of subscribers and, if necessary, their various wireless and wireline devices.

Requirements go beyond simple storage and management of profiles for
subscribers and devices; business needs require both subscribers and Customer
Service Representatives to perform enrollment, profile updates and maintenance.
Accounting information needs to be created, maintained and finally provisioned1

to a billing system. Other types of information, such as subscriber data, need to
be exchanged with other systems in various ways, so openness for both API
access and provisioning is required.

Application hosting is becoming increasingly popular. Technically this raises a
requirement to maintain separately branded offerings simultaneously, and provide
each brand with a unique marketplace identity, while sharing the same underlying
infrastructure. Also a given implementation must be easily extended to new
business models, new service offerings, and a dramatically increased number of
subscribers.

Most e-businesses require a complete platform for subscriber and device
management that can be implemented quickly. At the same time it must be
flexible and scalable to support innovative business models and exponential
growth.

9.1 Tivoli Personalized Services Manager overview

Tivoli Personalized Services Manager (TPSM), is an integrated framework of
software components that satisfies the needs described above. It is based on
open industry standards - the Java language and the Java programming model.
The framework is very flexible ,allowing you to choose, tailor, or substitute any
TPSM component. The product supports different business models and allows
unique, separately branded offerings sharing the same infrastructure. The
components are flexible and scalable, allowing for extreme change and growth.

To understand Tivoli Personalized Services Manager, you have to look at several
levels of the comprehensive framework. The following sections provide four
different overviews: logical, functional, architecture, and deployment. Following
these product overviews, we look at TPSM in the context of the Everyplace Suite.
Finally, the remainder of this chapter provides more details on the functions and
components of TPSM, focusing on architecture and use within the Everyplace
Suite. For more general information and development guides, refer to the TPSM
product documentation.

1 In this chapter the term provisioning is used with the same meaning as in the Tivoli Personalized Services Manager product;
“notification to an external application, triggered by an event”. This can be seen as a “reverse API” actively invoking code outside the
product boundaries.
© Copyright IBM Corp. 2000 135

9.1.1 Logical overview

Figure 75. TPSM logical overview

TPSM can be divided into four logical areas, as illustrated in Figure 75:

Front-end The front-end is a framework of flexible components for
building and running end-user applications that interact either
directly or indirectly with subscriber and device profiles.

Administration Besides tools for traditional system administration performed
by administrators, TPSM offers applications to allow
Customer Service Representatives to manage subscribers.

Even though Tivoli Personalized Services Manager 1.1 has a low version number, it is a
mature and proven platform for subscriber and device management. Requirements and
experiences from field deployments have led to numerous improvements and extensions
of the product. The product dates from 1998, and has had various names and version
numbers:

• IBM Intelligent Subscriber Management System (ISMS) 1.0, 1.1 and 1.2
• Tivoli Subscription Manager (TSM) 2.0 and 2.1
• Tivoli Personalized Services Manager (TPSM) 1.0 and now 1.1

A product named Tivoli Internet Services Manager (TISM) is also available sharing the
same version numbers. TISM is a subset of TPSM without the Tivoli Device Manager
Server. All other functions and components are identical.

The vendor name has changed from IBM to Tivoli as a consequence of the merger of
the two companies.

Product names

Subscribers

Customer Service Reps. Administrators

TPSM
Database

Device Manager

Authentication &
Access Control

Personalization

Customer Care

Director

Integration
Toolkits

Provisioning &
Billing

Authentication
servers

Enrollment &
Self Care

External systems:
LDAP Directory
Billing
Invoicing
e-commerce
Pre-enrollment
...

FRONT-END ADMINISTRATION INTEGRATION

CORE

Reporting

2
3

1
5

6

4
8

9

7
0

#

*

136 IBM WebSphere Everyplace Suite

Integration TPSM offers a number of integration toolkits that operate on
different levels, letting other systems access TPSM and for
letting TSPM provision data to other systems.

Core The core of TPSM is its database containing subscribers,
device profiles, and associated data.

9.1.2 Functional overview
A complete solution for subscriber and device management provides so many
diverse functions that the method of describing them becomes non-trivial. Instead
of basing the structure on the logical or architectural overview, we have chosen to
divide the TPSM functionality into six functional areas that are more related to
actual tasks or areas of interest. The six areas are introduced and will hereafter
form the structure of the remaining parts of this chapter.

Business and data model
To architect and develop solutions using TPSM, you need a thorough
understanding of the central repository and its structure. The TPSM database
contains relatively static data on subscribers and devices, but also very dynamic
data describing current sessions and billing information. An overview is found in
9.2, “Business and data model” on page 142.

Subscriber and System management
The TPSM management tasks and tools cover a wide spectrum of functions
ranging from traditional system configuration, through business model definition,
service representative work, and subscriber self service.

Tasks are performed by people in different roles, so TPSM provides a number of
management components to meet their needs:

• Director and Reporting for administrators
• Customer Care and Reporting for Customer Service Representatives
• Enrollment and Self Care components for letting subscribers serve

themselves

More details on these components may be found in 9.3, “Subscriber and system
management” on page 145.

Pervasive device management
To enable disconnected or specialized use of pervasive devices, you may wish to
let applications and/or data reside on a device. Tivoli Device Manager Server is a
solution for distributing, tracking and maintaining such software on pervasive
devices in or outside your enterprise. See 9.4, “Pervasive device management”
on page 150.

Authentication and Access Control
TPSM includes a sophisticated and flexible security model providing
authentication based on subscriber information in the central repository for use by
not only TPSM, but other applications and the Network Access Devices as well.

Access control to individual or groups of pages for subscribers can be built in to
your application using the TPSM toolkits, or TPSM Premium Content using
URL-based protection.

See 9.5, “Authentication and access control” on page 158.
Chapter 9. Subscriber and device management 137

Personalization Services
Application and content delivery can be personalized to match the profile of
individual subscribers. The TPSM Portal Toolkit (pTk) is a framework for serving
individual portal pages, targeting subscribers with special information and banner
ads.

Another tool to build up portal pages is the pTk JSP Components Framework.
This is an extendible collection of Java applications including calendar, address
book and more, allowing rapid development of personalized services. Refer to
9.6, “Personalization services” on page 161 for details.

Integration and Provisioning
For integration with external databases and systems, such as an existing
customer database, a billing system, LDAP directory or an e-mail system, TPSM
has an Integration Toolkit (iTk) consisting of the following:

• iTk Core - provides database access with validation and utilities.
• iTk Business Objects - represents subscribers, deals, accounts, etc.
• iTk Provisioning - offers event notification to external applications.
• iTk Billing - provides an interface for use by an external billing system.

More on these toolkits is found in 9.7, “Integration and provisioning” on page 168.

9.1.3 Architecture
It is important to understand that TPSM is a framework consisting of front-end
components for building custom applications, administrative tools for configuring
the system, and a set of integration components and specialized servers.

The front-end consists of end-user Web applications, so you probably will do
most of the customization and development around these. As shown in Figure 76
on page 139, there are basically four sets of application pages: Enrollment, Self
Care, Premium Content (access controlled pages) and a personalized portal. For
each, TPSM provides a set of Java servlets and template JSPs. To get the
desired functionality and look-and-feel of an application you can both:

• Develop your own JSPs, or modify the samples provided.

• Change setting in the property files of the front-end components.

The TPSM components, such as authorization and personalization, can also be
used for your own business applications.

The front-end component framework consist of servlets and JSPs, while the
administrative tools are primarily applets. The only non-Java components in
TPSM are the RADIUS server, the enrollment configuration of Windows dial-up,
and the database installation scripts.

Most of the TPSM components are optional, so you have to include only the
components that are useful in your implementation. If you don’t need a specific
function, leave it out. If you prefer a non-TPSM implementation, you may
substitute the corresponding component.

Note
138 IBM WebSphere Everyplace Suite

Figure 76. TPSM architecture

As illustrated in Figure 76, the TPSM front-end and administrative components
run on IBM WebSphere Application Server using HTTP servers for
communication. In the Everyplace Suite, that is the IBM HTTP Server. Each
component uses its own instance of the HTTP server as a virtual host assigned to
different IP addresses or port numbers. The actual configuration can be hidden
from end users by proxy mappings typically done in the Edge Server - Caching
Proxy, which hosts the IBM Everyplace Authentication Server.

9.1.4 Deployment
This section provides an overview of considerations when deploying TPSM to
give you a few guidelines for the physical implementation. Requirements and
policies for security, availability, scalability and personal preferences will dictate
the exact deployment that is right for you.

WAS

H
T

T
P

H
T

T
P

m
ix

ed

m
ix

ed

U
D

P

A
u

th
en

ti
ca

ti
o

n

S
ys

te
m

M
an

ag
em

en
t

(D
ire

ct
or

,R
ep

or
tin

g)

C
u

st
o

m
er

C
ar

e

iT
k

B
ill

in
g

In
te

rf
ac

e

E
n

ro
llm

en
t

S
el

f
C

ar
e

P
er

so
n

al
iz

at
io

n

A
cc

es
s

C
on

tr
o

l

A
ut

h
en

ti
ca

ti
on

se
rv

er
s

(R
A

D
IU

S
&

A
ct

iv
e

S
es

si
on

Ta
bl

e)

iT
k

P
ro

vi
si

o
ni

ng
In

te
rf

ac
e

(L
D

A
P

,e
-m

ai
l,

...
)

iTk Business Objects and toolkits

D
ev

ic
e

M
an

ag
er

DB2 or Oracle Database

Front-end IntegrationAdministration

HTTP server(s) HTTP server(s)

P
re

m
iu

m
C

o
nt

en
t

P
o

rt
al

p
ag

es

S
el

f
C

ar
e

p
ag

es

E
n

ro
llm

en
t

pa
g

es

WAS, WebSphere Application Server

Custom pages

iTk Core Interface

JD
B

C

W
eb

C
o

n
te

nt
H

os
ti

ng
Chapter 9. Subscriber and device management 139

Figure 77. TPSM deployment in two groups

All TPSM components can be deployed on a single machine. However, in most
implementations the components are split into two groups to divide the workload,
and to allow separation by a firewall, if better protection of the back-end servers is
needed. This is illustrated in Figure 77. All functions accessible by subscribers
are located on the front-end machines, while the databases and administrative
functions are deployed on the back-end machines. Note that the RADIUS server
is typically running on the front-end for improved performance and enhanced
security, even though its database resides on the back-end.

All components can be deployed on dedicated machines that are optimized to
that specific use. For example a separate RADIUS server or a separate database
server may be optimized for frequent, but small transactions. However, in most
projects, the best solution is to deploy identical sets of software on the front-end
and back-end machines.

Figure 78. Deployment for scalability and availability

Scalability and availability can be addressed with an implementation as illustrated
in Figure 78. Two or more duplicated front-end machines are set up in an Edge

Subscribers

Customer Service Reps.

Administrators

Back-end machines:
Customer Care
Director
System Management
Database Integration
TPSM Base
DB2 or Oracle

Front-end machines:
Enrollment
Self Care
Personalization
Access Control
Device Manager
RADIUS server
TSPM Base

External systems

2
3

1

5

6

4

8
9

7

0

#

*

Back-end machinesFront-end machines

Load
Balancer
clustering

LB

RS/6000
HACMP
clustering

HACMP

Inbound
connections

Disk system

LB
HACMP

Used for
fail-over

Primarily
used
140 IBM WebSphere Everyplace Suite

Server - Load Balancer cluster. The back-end has been equipped with a set of
two properly sized RS/6000 machines with HACMP hardware failover and a
shared high availability and high performance disk system. Considerations and
choice of techniques are discussed in Chapter 4, “Performance and scalability”
on page 37 and 3.6, “Availability - dispatchers and clusters” on page 32.

9.1.5 TPSM in the Everyplace Suite
The IBM WebSphere Everyplace Suite makes use of TPSM to provide core
subscriber authentication and management functions. The following components
are required:

• TPSM database
• Integration Toolkit
• Customer Care
• System Management
• Authentication servers (RADIUS and Active Session Table)
• iTk Provisioning

The remaining components of TPSM are optional and can be used in building and
running a specific solution.

Figure 79. TPSM components highlighted are required by the Everyplace Suite

It is most likely that you will build applications that will access or update
information in the TPSM database. This could be for personalization of pages,

WAS

H
T

T
P

H
T

T
P

m
ix

ed

m
ix

ed

U
D

P

A
ut

h
en

ti
ca

ti
o

n

S
ys

te
m

M
an

ag
em

en
t

(D
ir

ec
to

r,
R

ep
or

tin
g

)

C
us

to
m

er
C

ar
e

iT
k

B
ill

in
g

In
te

rf
ac

e

E
n

ro
llm

en
t

S
el

f
C

ar
e

P
er

so
n

al
iz

at
io

n

A
cc

es
s

C
o

nt
ro

l

A
u

th
en

ti
ca

ti
o

n
se

rv
er

s
(R

A
D

IU
S

&
A

ct
iv

e
S

es
si

on
Ta

bl
e)

iT
k

P
ro

vi
si

on
in

g
In

te
rf

ac
e

(L
D

A
P

,e
-m

ai
l,

...
)

D
ev

ic
e

M
an

ag
er

Front-end IntegrationAdministration

HTTP server(s) HTTP server(s)

P
re

m
iu

m
C

on
te

n
t

P
o

rt
al

pa
ge

s

S
el

f
C

ar
e

p
ag

es

E
n

ro
llm

en
t

pa
ge

s

WAS, WebSphere Application Server

Custom pages

iTk Business Objects and toolkits

DB2 or Oracle Database

iTk Core Interface

JD
B

C

W
eb

C
o

n
te

n
t

H
o

st
in

g

Chapter 9. Subscriber and device management 141

implementing security at the application level, enabling data synchronization with
other systems or enabling profile management for subscribers.

TPSM provides integration at three different “levels”:

Component level TPSM provides frameworks and samples for enrollment, self
care, personalization etc. With these components basic
functions are taken care of, and you can concentrate on the
business application.

Toolkit level The four flavors of the Integration Toolkits (iTk) are the most
flexible way of working with nearly the full set of TPSM data in
any way. In addition, the Provisioning iTk allows provisioning
outbound from TPSM to LDAP, e-mail, or other systems.

Data level A full range of DBMS product options exists to take advantage
of the rich TPSM data model, for example, database
replication, data warehousing options, reporting tools, etc.

In the Everyplace Suite, provisioning is set up to mirror all subscribers into the
IBM SecureWay Directory (LDAP). This allows any system to look up subscriber
information using either LDAP or one of the TPSM interfaces. However, note that
the TPSM database is the master of the mirroring, so any update of subscriber
information must be done in TPSM - not using LDAP2.

9.2 Business and data model

Describing all the business models supported by TPSM will require thousands of
words and just as many examples. Instead we start by introducing the rich data
model forming the core of TPSM. From this the business models can be intuitively
derived. A solution architect should find this selective overview of the data model
useful as background for discussing the capabilities of TPSM from a business
perspective. For a straight business-value proposition, refer to the sales and
marketing material available on the IBM and Tivoli Internet and intranet sites.

Figure 80. TPSM data model overview

2 The IBM Everyplace Wireless Gateway uses LDAP as its subscriber database. To allow a Wireless Gateway administrator “Gatekeeper”
to perform updates in the Everyplace Suite, it has been equipped with a servlet that performs the update in TPSM.

Subscriber
Profile

Enrollment
Service

Definition

Billing

Data
Collection

Device
Management

Personalization

RADIUS

Provisioning
142 IBM WebSphere Everyplace Suite

Figure 80 is a high-level overview of the TPSM data model. The Subscriber
profile metadata is the core of the model, on which this book will focus. Some of
the other groups are covered very briefly in other sections of this chapter, while
any further information must be found in the product documentation.

Figure 81. TPSM core data model

Core data divides into the data types Realm, Subscriber and Account. Around
these three types a few other types are used, as illustrated in Figure 81 and
explained in the following. The figure illustrates relations between the data types,
where the numbers indicate if the relationships are 1-to-1, 1-to-many, or optional
1-to-many (indicated with a zero).

Realm
The top level administrative domain is the Realm. The scope of a Realm is dual -
it serves as both the administrative domain as well as the domain used for server
and subscriber name spaces (for example ibm.com with subscriber lou@ibm.com).

There must be at least one Realm defined in a TPSM implementation. By defining
multiple Realms, an ISP or similar can enable virtual hosting with multiple domain
names (such as a.com, b.com, c.com, etc.) on a single installation, and also allow
delegated administration. For example, a group of Customer Service
Representatives can be allowed to work on a.com and b.com, but not c.com.
Applications and services such as Enrollment and Self Care can be shared
across Realms, or made specific to a Realm with the option of individual
branding.

Regname
High-level access control and policy are defined in a Regname or Registration
Name. A Registration Name must have one or more Access Codes (see next
section). The Registration Name can be defined to be either “Generic” or
“Multiple Access”:

Generic Only one Access Code is permitted for the Registration Name
and this is created automatically when the Registration Name
is created. It is called the “DEFAULT” Access Code.

1

N

N

N

N

N

N

N

1

1

1

0

1

1

1 N

N
1

N

REALM

REGNAME

ACCESSCODE

DEAL

SUBSCRIBER

USAGE RECORD

PROPERTIES

ACCOUNT

CHILD

SUB-ACCOUNT 1
Chapter 9. Subscriber and device management 143

Multiple Access Multiple Access Codes may be defined. An Access Code is
linked to a Sales Channel for tracking how a subscriber was
targeted. A Deal is associated with an Access Code.

Access Code
An Access Code defines a set of available services (Deals, see next section) and
accounting policies at a high level. It normally maps to the sales channel to which
the subscriber has enrolled. This could be using a CD-ROM, using the Internet,
through a Customer Service Representative, or by bulk mass import from an
existing system.

Deal
A Deal represents a set of services and corresponding accounting policies. For
example a Deal could be “$5 per month for unlimited access, first month free” or
“1¢ per hour connected, with no access to Premium Content” or “One time
charge, must be paid with VISA or MasterCard”. If more than one Deal is
assigned to an Access Code, the user must select a deal during the enrollment
process.

The definition is very flexible and allows the administrator to associate a Deal with
a set of custom properties. Deals can also provide linkage to external billing
systems.

Properties
The most common use of Properties is to store measurable parts of a Deal. That
could be the number of SubAccounts allowed, amount of disk space assigned or
for mail storage, or any other measure specific to the service provider.

Subscriber
This is the metadata for storing the subscriber profile containing the user name,
password, full name, address, personalization preferences and other unique
information.

A number of Children can be created and associated with the Subscriber and his
Account. These could be family members having their own set of user name,
password and personalization settings.

Account
A residential user (referred to as a consumer) will have a single subscriber profile
associated with a single Account containing billing information. For a corporate
account with a number of employees, there will be a single Account and several
Subscribers, as each enrolled employee will have one. See the illustration in
Figure 82.

For a business account, a Sub-Account can be created to represent subsidiaries
or other units within the company.
144 IBM WebSphere Everyplace Suite

Figure 82. Relation between Account and Subscriber

Usage Record
The Network Access Device (NAS), as the Wireless Gateway in the Everyplace
Suite, will send a message every time a connection is initiated or has ended. This
is done using the RADIUS protocol. The information lets TPSM create Usage
Records for the subscriber, which together with the Deal policy and Account
information will form the basis for billing.

9.3 Subscriber and system management

Probably the most central components of TPSM are the ones directly related to
subscriber management. The term covers a number of functions including
subscriber enrollment, profile/preference updating and status reporting, which are
necessary to maintain service delivery.

TPSM provides several subscriber management components that are optimally
suited for each of the following three groups of users:

1. Subscribers, who will do self service:

• Enrollment
• Self Care

2. Customer Service Representatives performing customer care by phone or
mail:

• Customer Care
• Reporting

3. Administrators who will manage system configuration, rule administration,
mass import/export, reporting and similar tasks:

• Director
• Reporting

1 N
SUBSCRIBERACCOUNT

1 SUBSCRIBERACCOUNT 1

Consumer:

Business:
Chapter 9. Subscriber and device management 145

Figure 83. Subscriber management components

Even though similar tasks can be performed by all three user groups, the
components are technically diverse; the subscriber services are a part of the
front-end framework helping you build up Web applications, Customer Care is an
out-of-the-box GUI application optimized for frequent use, while the administrator
tools are GUI based with some functions to be done from a command line.

9.3.1 Enrollment
The flexible TPSM enrollment process consists of a servlet, a configuration file, a
set of JSPs and graphics. The JSPs and images can be modified to display
whatever logo, enticement text, deals offered and payment methods that you
devise. Panels may be added, removed, or rearranged as desired.

Like all of the TPSM front-end services, the Enrollment can be adopted and
served to any device; thus is not restricted to use from a PC Web browser.

If the service you provide includes network access from a PC running Windows,
the enrollment component can output a Microsoft InterNet Signup file (INS),
which is downloaded to the subscriber's PC. This file contains necessary
connection settings such as dial-in number, DNS addresses, and account-specific
parameters. Other mechanisms must be used for non-Windows or specialized
purposes.

Administrators

Subscribers
Customer Service Reps.

Customer Care ReportingEnrollment &
Self Care Director

TPSM
Subscriber
Database

2
3

1
5

6

4
8

9

7

0

#

*

If network access itself is a part of the service offered, how do you connect for
the first time? Some devices, such as screen phones or cable TV devices, are
usually preconfigured to connect to a service provider’s Web site to retrieve
further configuration settings, applications, or data. Other devices need initial
configuration setting or software to connect as desired. Examples are
Over-The-Air (OTA) provisioning of a WAP phone, or PDA software downloaded
from a PC. TPSM provides tools for that, as described in 9.4, “Pervasive device
management” on page 150.

Enrolling from any device
146 IBM WebSphere Everyplace Suite

9.3.1.1 Ways of enrolling
This section lists the different options of enrollment:

Web Enrollment
For users already connected to the network (Internet or intranet), the provided set
of templates can be used to build screens prompting for desired information,
which finally will be validated and saved into the TPSM subscriber database.

Banner Ad
Potential subscribers can click through a banner ad that leads them to the TPSM
enrollment screens. Technically this is very similar to Web enrollment, but it
allows for an Access Code to be passed along to the enrollment server when the
banner ad is clicked. This provides a tracking mechanism for marketers and
triggers the display of Deals and billing plans that are specific to the banner ad's
sponsor.

Microsoft Referral Service
Desktop PC users running Microsoft Windows can use the Internet Connection
Wizard. This wizard provides a temporary connection to the Internet and the
Microsoft Referral Server, where the user is presented with a choice of ISPs.
When an ISP running TPSM is selected, a series of enrollment screens prompt
the user for signup information.

Branded CD
A more flexible alternative with the option of branding is to create a CD containing
startup files, a browser, and an installation wizard. This software provides a
temporary connection and can point to or include the desired signup screens. The
CD package is printed with an access code that the subscriber enters during
registration, or the software could connect for signup using a common set of
credentials.

Customer Service Representative
Enrollment can be done by calling a Customer Service Representative, who will
prompt the new subscriber for information and enter it using the online screens of
the TPSM Customer Care application.

If network access is provided, the representative must guide the user through
setting up his PC or other device by supplying a username and a temporary
password. Alternatively a CD and/or instruction letter can be mailed to the new
subscriber.

Bulk enrollment
The TPSM Integration offers a set of flexible APIs to allow enrollment from other
sources. This can be used for mass import of existing subscribers at the time of
TPSM deployment or for building an interface allowing other systems to register
subscribers into the TPSM database.

9.3.1.2 Business account options
Not only can enrollment be done by individual subscribers (as illustrated in Figure
82 on page 145), but entire businesses can be allowed to enroll, creating a new
Realm automatically. This way a company can create a branded site and let
subscribers enroll into its own private Realm!
Chapter 9. Subscriber and device management 147

The delegation allows a company to let all or only selected people enroll as
subscribers. How many options are given free for delegated Realm administration
can be configured.

9.3.1.3 Virtual / branded enrollment
Each of the enrollment option conforms to the data model of TPSM, which means
a user will be enrolled into a specified Realm, which can be uniquely branded, not
being aware of other Realms hosted on the same installation.

Figure 84. Sharing definitions between branded enrollments

Infrastructure and data definitions can be shared in several ways. Figure 84 is
one example where Deals and their description text are shared across Access
Codes in different Regnames and potentially different Realms.

9.3.1.4 Information verification
TPSM provides utilities for form and data validations. Everything from the
validation of dates and values required to be within a given interval, to more
complex functions, such as validating a credit card number, can be done. The
built-in database integrity checks, for example, two subscribers from trying to sign
up in the same Realm with the identical user names.

9.3.1.5 Fulfillment
Maybe an enrollment is fulfilled just by having registered all the information in the
subscriber database and displaying a screen saying “Welcome Joe”. But you
might also want to send e-mail, print a letter, or provision the enrollment to
another system, such as billing. This can all be done using the TPSM
Provisioning Toolkit described 9.7, “Integration and provisioning” on page 168.

9.3.2 Self care
A user registered in the TPSM subscriber database can be offered the ability to
modify his own profile; this is called self care. When building the end-user
applications, the self care component offers a set of tools to easily enable various

REALM "abc.com"

REALM "xyz.com"

ACCESS CODE

REGNAME

"Default"

"Xmas CD"

"Public"

ACCESS CODE

ACCESS CODE

REGNAME

"Default"

"Call Center"

DEAL

"Xmas special
offer"

DEAL

"Unlimited
Access"

DEAL

"Cust. Care
special deal"

DEAL TEXT

"Great offer with
free services
and ..."

DEAL TEXT

"Even better
right now
offering ..."
148 IBM WebSphere Everyplace Suite

self service tasks. As a front-end component, self care consists of set of Java
servlets and template JSPs.

Basically any operation can be enabled for self care using the Integration Toolkit,
iTk, but typically you will base them on the Self Care templates. Using these
templates, subscribers are enabled to perform the following operations:

• Change password

• Change secret data item (used for identification when calling a service
representative)

• View account status (how much is owed, how much time is spent online)

• Change billing plan and payment choices

• Add, modify, or cancel Premium Content subscriptions

• Add, modify, or delete a Child

Screens presented to the user can be modified and personalized as desired. This
will be done primarily by modifying the JSP templates.

9.3.3 Customer care
A Customer Service Representative (CSR) will use the Customer Care
component of TPSM to manage subscribers and their accounts.

After launching the Customer Care applet, a CSR will provide his or her personal
login credentials. This identifies the CSR and grants the proper administrative
privilege. For example this could be full rights to manage Realms a.com and b.com,
but not c.com.

The tasks implemented in the Customer Care default template are slightly
different for consumer and business accounts. The following are some examples
of tasks that can be performed by Customer Care:

• Enroll a new subscriber
• Search for existing subscribers
• View and update subscriber profile/account information
• Create and delete Child subscribers
• Disconnect and reconnect a subscriber and/or children
• View subscriber billing summary
• Apply credits or payments to an account
• View a subscriber’s devices (if Device Manager is installed)
• Create various reports

Other TPSM and external applications can be linked into Customer Care to
provide a common launch pad by a URL link or to do a tighter integration of both
data and user interfaces.

9.3.4 Director
The Director tool is launched as an applet through a Web browser. Director is the
administrator’s tool for configuring and managing the following:

• Premium Content

All definition and configuration of Premium Content - see 9.5, “Authentication
and access control” on page 158.
Chapter 9. Subscriber and device management 149

• Self Care options

The Deal assigns a number of “options” to a subscriber. The Director tool
allows an administrator to maintain a list of options that are subject to
de-selection by a subscriber using the Self Care application.

• RADIUS server

Configuration of RADIUS clients, RADIUS vendors, and RADIUS attributes.

• Registration definitions

Director is the tool to build and maintain the tree of Realms, Regnames,
Access Codes, Deals, Metrics, and Method of Payments.

• Access control and delegation

Setting up login credentials, privileges, and delegation for administrators and
Customer Care Representatives.

• Create various reports

As described in the 9.3.5, “Reporting” on page 150.

9.3.5 Reporting
Administrators and Customer Care Representatives can query various types of
reports to track the size of a subscriber base, subscriber activity, system liability
and the volume of enrollments through the different enrollment channels. The
Reporting component offers a number of reports of which some are run
automatically, while others are started through the Reporting applet user
interface.

Custom reports can be built in addition to the set of predefined reports. The
predefined reports are as follows:

1. Daily Reports

• Enrollment Activity
• Session Activity
• Hourly Activity

2. Weekly Reports

• Member Level Activity
• Subscriber Level Activity

3. Monthly Reports

• Monthly Usage Summary
• Cohort By Hours
• Enrollments By Access Code
• Monthly Enrollment Report
• Disconnect Analysis Report

9.4 Pervasive device management

Delivering services to new classes of devices introduces new requirements for
both “thin” and “fat” clients:
150 IBM WebSphere Everyplace Suite

• Thin client requirements

Pervasive devices with no software installed are “thin” clients. Examples are
WAP devices, screen phones and of course the Web browser. An application
service provider normally considers the thin client to be conveniently free of
any maintenance. However, you still may need to distribute configuration
parameters and other information, such as a “rest page” displayed on a screen
phone when idle. This is particularly valuable if the service offered includes
network connectivity.

• Fat client requirements

When a device contains business application software, it’s referred to as “fat”.
A fat client can be desired and/or required, if the users are supposed to work
disconnected from any network, or if communication must be secured and
optimized beyond the capabilities of the “browser” in a thin client. Offering
applications and services for a fat client raises the need for regular software
distribution and maintenance.

Most enterprises using PCs are facing these problems, and have probably
implemented powerful tools to efficiently address them. However, two
requirements introduced by the pervasive world may render most existing
solutions unsuitable:

1. It works with PCs only, but support for pervasive devices is required.

2. It’s suitable for internal users only, but needs to reach users outside the
enterprise.

Fat client example
An example of a fat client application is a travel package that’s downloaded to a
PDA before travel departure. Using a browser from a PC or the PDA itself, the
subscriber will visit the service provider’s self care page, sign up and pay a fee for
this premium service. “Travel Package - Paris” contains:

• Restaurant guide of Paris composed according to personal preferences, and
possibly enabled for GPS positioning

• Currency converter application loaded with current rates of French francs
• Dictionary with useful French words and phrases
• Directions, maps, useful URLs, phone numbers, Metro plans, etc.

The application modifies the time zone and default currency setting of the PDA
according to the destination, and adds a new sheet to the PDA’s expense
application for reporting during the trip.

9.4.1 Device manager overview
Issues raised are addressed by the TPSM Device Manager, a component
extending the TPSM framework to distribute, keep track and maintain applications
or data residing on pervasive devices. Device Manager is loosely coupled with
the rest of TPSM to allow it to be used with third-party systems. As illustrated in
Figure 76 on page 139, the Device Manager uses the iTk, but is accessing the
database directly via JDBC.
Chapter 9. Subscriber and device management 151

Figure 85. Device Manager overview

As illustrated in Figure 85, the Device Management component consists of a
number of parts:

• Device Manager server

This is the runtime component of Device Manager, which is implemented as
Java servlets. The tasks it performs are split in two, which also reflect the
architecture of the server: initial enrollment versus ongoing management of
devices. A set of plug-ins are used both to interface with special protocols and
to understand device specific characteristics. The set of plug-ins is extendible
with new functions and with new device types. In addition to the plug-in
architecture a number of APIs exist for integration with subscriber
management and other systems.

• Device agent software

The agent allows distribution of applications or data to “fat client” devices. One
or more agents may be needed to support devices using different operating
systems or if required by other technical or business needs.

• Device databases

The central repository is implemented in relational database storing devices
and device-related data resources including jobs scheduled for execution. The
database can be shared with the subscriber management components of
TPSM.

• Device Manager console

The management console must be installed on a Windows workstation and is
run as a Java applet from a Web browser. It allows an authorized administrator
or Customer Care Representative to configure single devices, device types,
jobs for distribution or configuration, and the actual software to be distributed.

9.4.2 Pervasive devices supported
The current release of Tivoli Device Manager is delivered with plug-ins supporting
four device types:

Device Manager databasesDevice Manager servers

Device
Management

Device agent
software

Device
Enrollment

Devices

Jobs

Device Manager
console

Device
plug-ins
152 IBM WebSphere Everyplace Suite

• Palm Computing PDAs

The PalmPilot family on the PDA market running PalmOS.

• Compaq Aero 8000 H/PC Pro

Handheld PC using Microsoft Windows CE.

• IBM Internet Access Phone Model 500

An ISDN screen phone with a built-in Web browser using point-to-point
dial-up. Currently it is sold in Japan only.

• PvC Client Stack (Pervasive Computing Client Stack)

Devices adhering to the PvC client stack architecture can range from
in-vehicle information systems to home service gateways.

The pieces delivered to support each of these devices are summarized in Table 3
below. For details on supported features refer to the product documentation.

Table 3. Default Device Manager support for devices

9.4.3 Initial enrollment/setup
This section describes the interactions that will occur between Device Manager
and a device during the first contact. To illustrate the process, we use an example
of a PalmPilot PDA enrollment. This example is more interesting than a simpler
case with a device, such as a screen phone, which natively is connected to a
network.

Plug-in class PalmPilot Compaq
Aero

IAP500 PvC Client
Stack

Base device class Yes Yes Yes Yes

Software distributiona

a. Includes both a server-based plug-in class and a device agent software.

Yes Yes Yes Yes

Device configuration Yes Yes Yes Yes

Restpage managementb

b. A restpage is a page displayed when the device is idle.

Yes
Chapter 9. Subscriber and device management 153

Figure 86. Initial device enrollment - Getting the device agent

The first step is to get the device agent and install it on the device. That process
is shown in Figure 86 and does not involve the Device Manager server:

1 The subscriber contacts the service provider to initiate the process. That can
be done using the Enrollment / Self Care applications, or by calling a
Customer Service Representative.

2 If desired, the request can be registered in the subscriber profile. This could
be used for tracking and/or to charge a Premium Content fee.

3 The Self Care or Customer Care application provides a link to download the
agent, or creates e-mail with it.

4 The software containing the agent is sent or downloaded.

5 Finally, the agent is downloaded to the PDA using infrared or cable connection.

The subscriber now invokes the device agent that will connect to the server.

Device
Management

Device agent
software

Device
Enrollment

Devices

Jobs

Subscriber
database

Enrollment,
Self Care, or

Customer Care

1 2

34

5

154 IBM WebSphere Everyplace Suite

Figure 87. Initial device enrollment - Registering the device

The process of enrolling the device itself is as follows:

1 The device agent connects to Device Management.

2 Device is not known, so the request is redirected to Device Enrollment.

3 Device is registered in the Device Manager database, and is being associated
with a subscriber record.

4 A device configuration job is scheduled for the device.

5 Device is redirected back to Device Management.

6 Now, the newly registered device is recognized, and because it has jobs
scheduled, these jobs will be processed.

7 The actual configuration and/or software is downloaded to the device.

The subscriber now invokes the device agent, which is configured with the
parameters necessary to connect to the server.

9.4.4 Software distribution
The day-to-day operation of software distribution is illustrated in the following
example. Again we use a PDA as the example. However, it should be noted that
the process is the same for any device using the Device Management agent.

Device
Management

Device
Enrollment

Devices

Jobs

Subscriber
database

Device agent
software

Enrollment,
Self Care, or

Customer Care

2

3a

4

5

6

3b

1

7

Chapter 9. Subscriber and device management 155

Figure 88. Software distribution - Submitting a job

An administrator or Customer Service Representative will use the graphical
Device Manager console as shown in Figure 88:

1 The job is defined by specifying the task to be carried out and the criteria, for
example device type, an individual subscriber and expiration date. It is now
submitted to the job database.

Figure 89. Software distribution - Device gets the software

Next time a device agent connects to the Device Manager server the following will
happen:

1 The device agent contacts the Device Management server.

2 Device Manager makes sure the device is enrolled.

3 Device Manager searches for the job scheduled for the device and its type.

Jobs

Device
Management

Device Manager
console

Device
Enrollment

Device agent
software

1a

1b

Devices

Devices

Jobs

Device
Management

Device Manager
console

Device
Enrollment

Device agent
software

1

2

3

5

7

4

6

156 IBM WebSphere Everyplace Suite

4 The jobs is processed by sending the software down to the device, where the
agent will install it as required.

5 The agent signals that the install is completed successfully.

6 The job database is updated to reflect that this job has run for that device.

7 The device database is updated to reflect that this software is installed on that
device.

9.4.5 Deployment within the Everyplace Suite

Figure 90. Device Manager redirections

For load balancing and high availability, you may want to deploy multiple Device
Manager servers in a Load Balancer cluster as illustrated in Figure 90. This is
what will happen:

1 The Load Balancer will receive the initial request directed to the cluster
address http://dms.com. The client sees that as its destination server.

2 The least busy server will be forwarded the request. In this example that is
dms1.

3 To maintain the stateful session, dms1 will redirect the client to its own URL.
This will make the client ask for http://dms1.com directly, bypassing the
dispatcher. All subsequent communication will be between the client and
dms1.

So, not only does this process maintain the necessary state, but it also avoids the
extra network latency by dispatching every request, which otherwise will be sent
directly to the same server. However, in an Everyplace Suite implementation you
will set up the IBM Everyplace Authentication Server as a reverse proxy in front of
all application servers. To work properly, both Authentication Server and TPSM
need a little extra configuration, because the actual server addresses are hidden
to users.

LB
1

2

3

dms.com

dms1.com

dms2.com
Chapter 9. Subscriber and device management 157

Figure 91. Device Manager in the Everyplace Suite

As illustrated in Figure 91, two things have to be configured to make this
mechanism work in the Everyplace Suite environment:

1 The IBM Everyplace Authentication Server must be aware of the actual server
addresses and their URL defined to users outside.

2 The Device Manager must be “Everyplace Suite aware” by letting it redirect to
a specified URL, instead of using its host name.

The same consideration applies to any application server using client side HTTP
redirections. To make it work in an environment with a central reverse proxy such
as the Authentication Server in the Everyplace Suite, it must be configured to
direct those to the URL that is used externally. See Chapter 6, “Authentication” on
page 69.

9.5 Authentication and access control

TPSM offers four components related to security:

• Authentication component
• Premium Content
• RADIUS server
• Active Session Table server

All of these are built on the shared TPSM subscriber database, and can be used
independently of each other.

9.5.1 Authentication

9.5.1.1 Identification
The single sign-on architecture in the Everyplace Suite authenticates all
sessions. The IBM Everyplace Authentication Server will validate every request
and, if valid, put in an HTTP header with the authenticated identity of the user,
device and network:

Everyplace
Authentication

Server
LB

1

dms.com

dms1.com

dms2.com

corp.com

Request Send to

corp.com/dms dms.com

corp.com/dms1 dms1.com

corp.com/dms2 dms2.com

Reverse proxy configuration

}

Redirect to

corp.com/dms1

Redirect to

corp.com/dms2

2

158 IBM WebSphere Everyplace Suite

Table 4. HTTP headers used for identification

The identification of the user is directly given by the header information. However,
for the identification to be reliable, the infrastructure must be set up to prevent
bypassing the Authentication Server. All of the three HTTP header values can be
used for personalizing the content served.

A new feature in TPSM 1.1 enables logon to a WAP device. It can work with the
IBM Everyplace Wireless Gateway, the Nokia WAP Server, and other WAP
gateways depending on the customer engagement agreement. The
authentication process is achieved by MS-ISDN or IP address during auto-logon.
It is then completed by the WML form. This feature is described in the TPSM
System Administration guide.

9.5.1.2 TPSM authentication and delegation
TPSM provides a flexible single sign-on mechanism. It can be used with RADIUS
authentication for dial-up/wireless connections, with HTTP basic authentication,
or with HTML form authentication. In the context of the Everyplace Suite,
authentication and single sign-on are delegated to the IBM Everyplace
Authentication Server. This section describes how the TPSM authentication will
work within the Everyplace Suite. Refer to the TPSM product documentation for a
general discussion on the topic.

A DefaultAuthenticator class is provided which is extended by the
PremiumAuthenticator and WapAuthenticator classes to provide specialized
authentication. The DefaultAuthenticator class has been extended in TPSM 1.1 to
provide integration with the Everyplace Suite.

The DefaultAuthenticator implements two authentication stages:

• Stage 1

First it tries to identify the user with information extracted from the HTTP
request headers. It supports:

• Authentication by source IP address
• Authentication by source IP address forwarded in any HTTP header
• Authentication by user name forwarded in any HTTP header
• Authentication by user ID forwarded in any HTTP header
• None

• Stage 2

Then, if stage 1 fails, it prompts the user for a login password:

• Basic HTTP authentication
• Authentication form using either HTTP or HTTPS. The form is device

dependent. It can be HTML, WML, … It is also possible to brand it for
virtual ISPs.

Header Content

X-IBM-PVC-User User name in the form “user@realm”

X-IBM-PVC-Device Device type as mapped from the definition in the LDAP database

X-IBM-PVC-Network LAN, GENERIC_DIAL, or GENERIC_WIRELESS based on the entry point
Chapter 9. Subscriber and device management 159

The IBM Everyplace Authentication Server will supply a username in the HTTP
header as described in 9.5.1.1, “Identification” on page 158, so the
DefaultAuthenticator will never have to reach Stage 2.

It implements two authentication modes:

• Multi-domain mode - the authentication process is distributed

Each content server (portal, self care, premium) is protected by the
authentication checker. There is one (or several) central authentication
servers that receive authentication requests from checkers through HTTP
redirects. When the user is authenticated, he is automatically redirected back
to the content server.

• Single-domain mode - the authentication process is entirely done in the
checker

It does not use redirects. This mode is good for limited devices (such as some
WAP mobiles not correctly supporting HTTP redirects), or when the
authentication process is delegated to an external component such as the
WES Authentication Proxy.

The single-domain mode can be faster but has limitations:

• Single sign-on is not supported

• Form authentication stage 2 is not supported.

9.5.2 Premium Content
Application-based access control is offered by TPSM Premium Content. The
three key terms used are:

Tier Represents a single collection of protected content; an “offering”.

Pattern Represents a location of content described by its URL with wildcard
allowed. At least one Pattern is required for each Tier.

Deal The offering to be sold including a number of Tiers. Deal is defined in
9.2, “Business and data model” on page 142.

Basically this allows you to group and offer content based on its URL. The
protection relies on the TPSM Authentication component to be invoked from every
protected JSP. Setup and configuration of Tiers, Patterns, and Deals is done
using TPSM Director.

9.5.3 RADIUS server
The RADIUS server component of TPSM serves two major purposes;
authentication and accounting. The RADIUS protocol was originally developed for
use by Network Access Devices (NAS), which is reflected in its name Remote
Access Dial In User Service. It’s a widespread protocol for modems to
authenticate user names and passwords of dial-in users when they attempt to
connect. If the user credentials are valid, and the account is open, the RADIUS
server will allow the session to begin.

Another important use of the RADIUS protocol and server is accounting. The
NAS will inform its RADIUS server of both the start and end of a connection.
Having this information, the server is able to track NAS usage for individual users.
Today tracking and accounting by time connected makes sense, because the
160 IBM WebSphere Everyplace Suite

“line” is a limited and relatively expensive resource. But note that RADIUS is not
made for traffic or package-based accounting that could have been used for a
permanent network connection.

In the Everyplace Suite the IBM Everyplace Wireless Gateway has the role of a
network access device, and uses the TPSM RADIUS server for authentication
and accounting. Also the IBM Everyplace Authentication Server is having its
users authenticated by this. However, accounting cannot be done in here, as
there is no way for the Authentication Server to determine when an HTTP
connection has come to its end. The Authentication Server does signal
end-of-connection, but it is based on a time-out function and is not appropriate for
billing.

9.5.4 Active Session Table server
To provide single sign-on within the Everyplace Suite, TPSM has been equipped
with a highly dynamic database table, and a corresponding server for tracking
active user sessions. Its purpose is to recognize a session already authenticated,
and to share that credibility between all Everyplace Suite components.

When a new session is authenticated by either IBM Everyplace Wireless Gateway
or IBM Everyplace Authentication Server, a unique record is created in the Active
Session Table (AST). For subsequent requests, the record will provide all
necessary information about credibility, the user, the device and network used:

• Sessions originating from the Wireless Gateway is authenticated and
allocated a trusted IP address and/or an HTTP header identification. When the
request passes the Authentication Server, it will use that as the key for AST
lookups and provide the full set of Everyplace Suite headers.

• Session originating from an HTTP/IP connection via Authentication Server will
be assigned a unique session ID placed in an HTTP cookie. The ID is the key
used in AST.

The Active Session Table server is highly specialized and optimized to have
minimal impact on system performance.

9.6 Personalization services

The first chapter of this book described the evolution of e-business and the
increase of requirements in modern solutions. One of the central requirements is
personalization. The vast majority of service applications and Web sites by using
personalization will increase their value to both their users and owners. Examples
could be a personal look and feel, targeted advertisement, or personalized
applications. Any content can be personalized in any way, but in order to focus
the discussion, we here provide a list of suggested criteria for personalization and
examples of use.

Applications and services can be personalized based on the users:

• Explicit preferences, such as news categories selected by manually entered
interests, or a shopping catalog displaying toys appropriate for the user’s age
entered.

• Implicit preferences, such as targeted banner ads based on a user’s behavior
by navigation on the site and purchases done.
Chapter 9. Subscriber and device management 161

• Business engagement, such as utilizing a customer’s track record from
existing Customer Relationship Management systems to show relevant
up-sales or service information.

• Geographical location, such as switching site language based on nationality of
the user’s IP-name, or location known from the origin GSM cell3 when using a
WAP cell phone.

• Access device used, such as adapting the markup language and page layout
to small screen devices.

Implementing personalization involves four areas:

User Identification This can be done by explicit login, or transparently by a
cookie, or by characteristics of a personal device (cell
phone number, PDA serial number, or similar).

User Profile A repository must exist for storage of implicit and/or explicit
user information.

Content Selection The discipline of matching the user with content. It ranges
from a few simple lines of code to recommendation engines
based on artificial intelligence.

Content Assembly The process of putting together the personalized “page”.

9.6.1 Personalization in the Everyplace Suite

9.6.1.1 Identification
The Everyplace Suite provides different types of user identification through the
authentication done by the IBM Everyplace Wireless Gateway and the IBM
Everyplace Authentication Server. Although TPSM also offers built-in
authentication, its responsibilities are partly delegated to the single sign-on
features of the Everyplace Suite.

9.6.1.2 User Profiles
The user profiles are stored and maintained by TPSM. The database schema
defined for profiles is extendible to fit most specific needs.

9.6.1.3 Content Selection and Content Assembly
Everyplace Suite provides content selection and content assembly in a
combination supplied by the TPSM Portal Toolkit (pTk). In addition to a
programmable framework for personalization, the pTk also offers a set of JSP
application components that can be used to provide additional services in a portal
solution or any other solution. Finally, TPSM pTk includes an interface to the Ad
Server produced and run by Double Click offering complete advertising campaign
development and deployment.

The TPSM framework and its template applications use explicit user preferences
for personalization. The framework is open and easy to extend for use of implicit
preferences, business engagement, and geographical location information. For
example, engines for rules and recommendations can be interfaced to the TPSM
database and components, results of behavior tracking can be stored in the
TPSM profiles, CRM systems can be interfaced, and so on.

3 Knowing just which GSM cell is used will determine the location within 25-50km, but in cooperation with an operator the location inside
the cell can be determined giving impressive accuracies, for example 100m. Refer to the relevant operators and the proposed WAP 1.2+
standard.
162 IBM WebSphere Everyplace Suite

Everyplace Suite offers device-based adaptation by the IBM WebSphere
Transcoding Publisher. Supplemental to this4, device adaptation at application
level can be developed using pTk. Information of the device type used is supplied
in the HTTP request header by the IBM Everyplace Authentication Server.

9.6.2 Overview of pTk
The portal toolkit consists of a number of Java APIs and services, which will help
development of personalized applications serving any markup language (HTML,
WML, XML, etc.) using JSPs or Java servlets.

Figure 92. pTk overview

As illustrated in Figure 92, pTk offers services that are linked to or included in the
JSPs of a business application. Alternatively, a servlet can use the pTk by calling
the services and APIs.

9.6.3 Preference API
The key element of TPSM pTk is the persistent preference class hierarchy.
Subscriber data is kept in the TPSM Subscriber database, and is accessed using
the Access Beans. A number of data types are used, each mapped to a Java
class.

4 Refer to the discussion on automated versus programmed adaptation in 8.3.2, “Application design” on page 124.

2
3

1
5

6

4
8

9

7
0

#

*

pTk services

Application JSPs

<XML>
... ...
... ...
... ...
</XML>

<HTML>
... ...
... ...
... ...
</HTML>

Preference APIs
(access Beans)

Subscriber
database

Authentication /
Identification
Chapter 9. Subscriber and device management 163

Figure 93. pTk preference data types/class

As the structure in Figure 93 shows, the preferences are tied to the three core
data types; Account, Subscriber (or its Child), and Device (if Device Manager is
installed). Properties are implemented as a number of name/value pairs for
general use, while the specialized type “Favorites” consists of number of URL
links organized in groups. Both Accounts and Subscribers can be assigned a set
of Properties and a set of Favorites.

For the Subscriber (or its Child) a set of Personal Information Management (PIM)
objects exists. These are used for storing data for the pTk components such as a
personal address book or calendar. See 9.6.4, “JSP components of pTk” on page
165.

Devices are associated with a set of properties, which are also accessible using
the pTk APIs. Device Manager must be installed before you can use the device
class.

Using the Preference API
We include two pieces of JSP code to give a feeling of how the Access Beans are
used to get and update preferences. Any JSP using the preference API should:

1. Include an import statement to make the classes available
2. Instantiate and populate beans using the getBean(request) method (not the

BEAN tag)
3. Use access beans get/set methods

Figure 94. Preference API example: getting a user preference

N

1

N

N

1

1

1

1

1

1

1

1

1

1 1

1

ACCOUNT
FAVORITES

ACCOUNT
PROPERTIES

1

1

USER
FAVORITES

USER
PROPTERTIES

1

PIM OBJECTS

DEVICE
PROPERTIES

N
NAME/VALUE PAIR

N
URL LINK

N
NAME/VALUE PAIR

N
URL LINK

ACCOUNT

DEVICE

SUBSCRIBER

1

<%
User user = User.getBean(request);
NameValuePairs pairs = NameValuePairs.getBean(request);
FavoriteLinks favLinks = FavoriteLinks.getBean(request);
%>

<H1>Welcome <%= user.getFirstName() %></H1>
164 IBM WebSphere Everyplace Suite

Figure 95. Adding a URL link, and forcing a database write

9.6.4 JSP components of pTk
The JSP Components are introduced in TPSM Version 1.1. It’s a set of building
blocks that will allow rapid development. It also enforces a simple hierarchical
JSP structure.

A component consists of a servlet and a number of JSPs for different “rendering”
of output, for example to HTML and WML. It’s intended to be included in the JSPs
of an application as illustrated in Figure 96.

Figure 96. JSP components architecture

The JSP components are stateful, and some are persistent using the Preference
API to store persistent information in the TPSM database. To effectively share
common functions and characteristics, the components inherit from abstract
classes. Their full object hierarchy is shown below.

<%
User user = User.getBean(request);
NameValuePairs pairs = NameValuePairs.getBean(request);
FavoriteLinks favLinks = FavoriteLinks.getBean(request);

favLinks.add(new Link("Business", "IBM Corp.", "http://www.ibm.com/));
favLinks.update(request);
%>

Application JSPs

Subscriber
database

Preference APIs
(access Beans)

Multi-rendering Components

<HTML>
... ...
</HTML>

<WML>

<HTML>
... ...
include(...)
... ...
... ...
</HTML>

<WML>

<HTML>
... ...
</HTML>

Component
Servlet

Component JSPs
Chapter 9. Subscriber and device management 165

Figure 97. JSP Components hierarchy

Two types of components are delivered and deployable: Layout Components and
Service Components. Let’s have a brief look at their functions:

Layout Components
• LayoutSelector: Helps find the right JSP for the requesting device type. It is

invoked directly, and hence not included in a JSP page.

• ComponentSelector: A container for applications of the user’s interest (such
as a “desktop”).

• Aggregator: Will fetch and aggregate static content into a page.

Service Components
Service Components are “turn-key” applications or services within portal pages.
You can develop your own service components, or use the default ones:

• Calendar: For display and navigation in weekly or monthly calendars.
Multi-rendering enabled: HTML, WML, XML.

• Agenda: Display and manipulate user appointments, for one day or one week.

• AddressBook: Application to save and retrieve e-mail addresses.

• LinkSelector: Displays and manages URL links.

• Customizor: Lets the user specify any parameters for any set of forms.

Using the JSP components
To use a component from a JSP or a servlet, only a single line of code is required
in the simplest example:

LayoutSelector

Calendar

Agenda

AddressBook

LinkSelector

YourComponent

ComponentSelector

Aggregator

Customizor

LayoutComponent

Component
Abstract Components

Layout Components

Service Components

Custom Components
166 IBM WebSphere Everyplace Suite

Figure 98. Generic statement for including a component

9.6.5 AdServer integration
TPSM enables you to target subscriber's pages for banner ads and
special-interest notices, based on the information in the subscriber database. The
ad services from Double Click are used to manage the campaign and supply
banner graphics with a link.

Figure 99. Integration with AdServer

The interaction is illustrated in Figure 99:

1 Advertising campaign is defined and then deployed with AdManager from
Double Click.

2 Insert “Ad Tags” in the customized JSP pages.

3 The banner is displayed, having its graphics source at a Double Click Web
server.

4 When the banner is selected by clicking it, the link leads the user to the
advertising site.

Examples of the code fragments used are shown below.

<%
Component.include (componentURL, instanceName, this, request, response);
%>

AdManager
Database

<AD TAG>

AdServerAdClient

TPSM
pTk

TPSM site

Application JSP

DoubleClick

Advertising site

1a

1b

2

3b
3a

4b

4a
Chapter 9. Subscriber and device management 167

Figure 100. Get user data with pTk Access Beans and make banner

9.7 Integration and provisioning

Today’s key measures are openness and standards. No system in any business is
expected to work in isolation; it must be easily extendible and easy to integrate.

The TPSM framework is based on widely accepted standards such as Java, and
it provides a rich set of “APIs” for integration. The TPSM Integration Toolkit (iTk)
consists of:

iTk Core Provides database access with validation and utilities.

iTk Business Objects Represent a subscriber, a deal, an account, etc.

iTk Provisioning Event notification to external application.

iTk Billing Interface for use by external billing systems.

Figure 101. iTk parts in TPSM

The parts of iTk have different roles and dependencies. As illustrated in Figure
101 interaction can be done with each iTk part providing different levels of
abstraction.

Together the iTk Core and Business Object interfaces form the foundation for all
other TPSM components. Using JDBC, the Core interface provides abstraction of
the underlying database implementation and infrastructure. This relieves a lot of
potential pain for iTk users; what they see is just a clean Java-based interface.

If desired, the iTk can communicate using Java RMI. This allows the “client” and
the “server” part of iTk to run in separate JVMs, which could be different

<BEAN name="user" type="User" create="yes"></BEAN>
<%
user.read(request);
%>
<a href="http://ads.ibm.com:9000/click.ng/site=isp30&
gender=user.getGender()&age=user.getAge()">
<img src="http://ads.ibm.com:9000/image.ng/site=isp30?
gender=user.getGender()&age=user.getAge()">

iTk Business Objects and toolkits

DB2 or Oracle Database

iTk Core Interface

iTk ProvisioningiTk Billing
168 IBM WebSphere Everyplace Suite

machines. The performance penalty introduced by RMI is in the range of 10-30%
depending on the number and types of transactions done.

The following sections will give a brief overview of the iTk parts.

9.7.1 iTk Core and Business Object interface
Basically, the iTk Core interface provides an interface for database transactions at
a general low level. Two important functions are:

• To hide the underlying database (and any vendor-specific stuff)
• To provides database connection pooling for optimal response time

The iTk business objects are often the preferred level for interaction. There are
objects to represent practically all the data types residing in the TPSM database;
Realm, Access Code, Account, Subscriber, Child, Deal, Method of Payment,
Properties, and so on.

Methods are provided to create, read, update and delete the objects. Of course
both data integrity and user authorization checks are carried out before any
operation is done. Validations available range from simple “stand-alone” checks,
such as a number to be within a specified range, to complex validations involving
a third party, such as a credit card account check.

The iTk Core interface and business objects can be invoked from TPSM
applications such as Self Care, from any application JSP or servlet or from other
systems.

9.7.2 iTk Provisioning
Provisioning allows external applications to register to TPSM in order to be
notified of TPSM events such as subscriber enrollments, subscriber updates,
account creation, account updates, etc. That allows the external applications to
get TPSM updates for each event and keep the transaction status in the TPSM
database.

This is very useful for maintaining subscriber or device data outside TPSM, such
as in a customer database, or an LDAP Directory. Provisioning can also be used
for more transactional events, such as sessions triggering external events.

In particular if there are large amounts of data in the TPSM database,
provisioning is a much more effective than database level replication, if you need
to do mirroring of one or more data sets.

9.7.3 iTk Billing
There are several options for billing with TPSM:

• The Billing iTk provides linkage from external billing systems to TPSM.

• The Provisioning iTk provides linkage from TPSM to external billing systems.

• The other iTks provide access to TPSM information that may be used by
external billing systems.

• eBill is a lightweight billing engine that is integrated with the TPSM database.
It can be used to provide simple billing functions.
Chapter 9. Subscriber and device management 169

170 IBM WebSphere Everyplace Suite

Chapter 10. Pervasive messaging and queuing

This chapter discusses messaging and queuing. It introduces the IBM MQSeries
products and the programming style, messaging and queuing, that underlies
them, and describes the latest addition to the IBM MQSeries family of products,
IBM MQSeries Everyplace, and how it integrates with Everyplace Suite.

If you are already familiar with messaging and queuing concepts and the IBM
MQSeries family of products then you may wish to go straight to “MQSeries
Everyplace” on page 176.

Briefly, messaging products enable programs to talk to each other across a
network of unlike components - processors, operating systems, subsystems, and
communication protocols - using a simple programming style called messaging
and queuing: messaging, because programs communicate by sending each other
data in messages rather than by calling each other directly, and queuing, because
the messages are placed on queues in storage, so that programs can run
independently of each other, at different speeds and times, in different locations,
without needing a logical connection between them.

10.1 Introduction to messaging and queuing

There are three general styles of communication available for
application-to-application communication; conversational, remote procedure call
(RPC) and the messaging and queuing styles.

Conversational communication is where one application sends some data over a
network to another application that is monitoring that network, and then waits for
a response from its partner application via the network. Since the partners
processing may take some time, the application may have a lengthy wait.

RPC is where an application calls a procedure on another system, and waits for
the response to be returned. The application is typically isolated from the location
of the procedure, and will probably be unaware that the procedure is not part of
its own local application.

This two styles are generally considered to be synchronous styles of
communication. They require all the components of the environment to be
available before data exchange (and hence processing) can occur. Messaging
and queuing on the other hand is an asynchronous style of communication, which
does not depend on the availability of all its distributed components for
processing to continue on any one system.

Typically, synchronously communicating applications are network-aware; they
contain network-specific code, and must take into account the network, making
and monitoring connections, and managing network or partner application
failures. This generally means an application becomes very network dependent,
making it difficult to accommodate changes. In addition, to form long-running
conversations usually requires complex programming, increasing the difficulty of
program development, and detracting from the real business logic.

On the other hand, asynchronously communicating applications tend to be
decoupled both from each other and the network. There is no longer a direct
© Copyright IBM Corp. 2000 171

connection between the communicating applications, and they are typically not
network-aware. This means that the application does not need to be aware of
setting up or using connections, handling network or partner failures, etc. The
application can concentrate solely on business logic, which simplifies and speeds
application development. As an additional benefit, if the underlying network
changes (for example, from SNA to TCP/IP), then no change will be required in
the application.

10.1.1 Messaging with IBM MQSeries
IBM MQSeries is centered around the idea of time-independent and
connectionless communication of messages between distributed application
components. A message is merely a collection of data - a string of bits and bytes
that have meaning to a particular application - that is formatted by that application
to convey that meaning in a recognizable fashion. Messages are exchanged
between parts of a distributed application by placing the message on a queue.
The application can be designed to use any number of queues, and will generally
use each queue for a distinct purpose, or to convey a distinct type of message.

Generally, each queue is used to flow information from one part of the application
to another part of the application in only one direction - one part of the application
will put messages on a queue, and another part of the application will get
messages off the queue. Two queues will usually be used to provide two-way
communication between two parts of an application.

Figure 102. Two-way communication under a messaging and queuing paradigm

Queues are defined within, and controlled by, a queue manager. They can be
created either administratively or programmatically by the applications that will
use them. To access a queue, it is necessary to first connect to the queue
manager that the queue is defined within. Typically it is possible for more than
one queue manager to be created on the same host machine - in fact, different
applications may use different queue managers to create, define, and control
their queues if they wish. However, in general, a program can connect to only a
single queue manager at any given time.

Queue managers on the same or different host machines can be interconnected
(an administrative process) to allow messages to be transferred between queues
on the different queue managers. This is a process known as distributed queuing,
and requires that the queues be defined differently, causing the queue manager
to send their messages over these connections. However, the applications that
use these queues are able to remain unaware of these differences, and hence
that they are even participating in distributed queuing.

Target
Queue

Reply-to
QueueProgram

A
Program

B

172 IBM WebSphere Everyplace Suite

Consequently, when operating within a distributed queuing environment the
different parts of an application continue to see the same interface as in a local
environment: their in-bound and out-bound queues. They are unaware that these
queues now redirect their messages around the network in a time-independent
fashion, and indeed are unable to even determine the final destination of their
messages with any certainty.

A fundamental characteristic of message-queue based communication is that it
places the focus on the flow of information rather than the flow of control. Unlike
call-based communication models, the “requesting” program is not blocked while
work is being performed. Rather, the requesting program merely puts information
to a queue and then resumes with its own work. It has sent on the information
that it has produced, but otherwise is ignorant of where, when, or how that
information will be actually sent and processed.

In this way, the program that sends the information is completely independent of
the program that receives and processes it. The receiving program can be busy at
the time a message is put on the appropriate queue. The fact that a message has
arrived doesn’t affect the receiving program’s current processing. In fact, the
receiving program doesn’t even have to be running at the time the message is put
on the queue. The receiving program can start running three hours or three
weeks later, if that suits the business need. It could then even reformat the
information and send it to several other applications via other queues.

The simple fact is that the sending program doesn’t have to know what the
receiving program is, where it resides, or even what it does with the data that it is
being passed.

10.1.2 Why messaging rather than browsing?
Browsing technologies (such as HTTP and typical deployments of WAP) and
commercial messaging systems (such as MQSeries) each have their own
advantages and disadvantages. Fortunately they tend to be very complementary
technologies, and so IBM has provided both technologies in the Everyplace Suite,
providing the solutions architect the maximum flexibility when deciding how to
tackle any given problem.

When examining any given problem one of the two technologies will tend to be
more appropriate, and the other less appropriate. Generally, it will always be
possible to use either technology for any problem, but one will always tend to be a
more natural choice,

So, how do you decide where to use MQSeries rather than a browser-based
approach? The business problem, combined with the functional and
non-functional requirements must be the ultimate arbitrator, but there are
indicators that may tend to indicate that you should consider messaging rather
than a browser approach.

Typically the advantages of MQSeries Everyplace are greatest in an environment
where connectivity is either unavailable or intermittent - messages are stored until
the connection is restored, the user is assured that the messages will be
delivered, and delivered once only. In contrast, browsing technologies do not
work well in this situation - when the connection is not available, they cannot
operate. Also, if the connection fails during a transaction, resources and data can
Chapter 10. Pervasive messaging and queuing 173

be left locked, and the end user can be left in doubt as to whether the request has
been dealt with.

10.2 The MQSeries family of products

MQSeries is actually a family of products that implement and build on commercial
messaging. Originally there was only MQSeries messaging, which provided
heterogeneous connectivity, then as the product evolved, bridges to various other
operating environments were added. Since then the product set has evolved
further through the addition of message brokering and business integration
technologies such as workflow support.

These products are often represented as a three-leveled pyramid (see Figure
103), to represent the increasing value that each can add to a business.

We will briefly introduce each product in turn in the following sections. However, if
you require more detailed information on any of the MQSeries family of products,
please visit the MQSeries Web site on the Internet,
http://www.software.ibm.com/ts/MQSeries.html where product manuals,
whitepapers, marketing materials and code samples are all freely available.

Figure 103. The MQSeries family of products

Finally, please note that the pyramid shape should not be taken to imply any
specific relationship between the products; while both MQSeries Integrator and
MQSeries Workflow are built on MQSeries messaging, and specify it as a
prerequisite, they do not place corequisites on each other. It is perfectly
acceptable to build a solution around MQSeries Workflow, without including
MQSeries Integrator in that solution.

10.2.1 MQSeries
MQSeries is a commercial messaging system that provides assured,
asynchronous, once-only delivery of data across a broad range of hardware and
software platforms. It supports all the important communications protocols, and

Process AutomationProcess Automation
Link Systems, PeopleLink Systems, People
Tracking & AuditTracking & Audit
"end-to-end""end-to-end"

Business InformationBusiness Information
ManipulationManipulation
Content pub/subContent pub/sub
XML and moreXML and more

Messaging ServicesMessaging Services
Standard APIStandard API
Assured DeliveryAssured Delivery
AdaptersAdapters

MQSeriesMQSeries

MQSeriesMQSeries
IntegratorIntegrator

MQSeriesMQSeries
WorkflowWorkflow

Modular offeringsModular offerings
MQSeries foundationMQSeries foundation
Common look andCommon look and
feelfeel
Good ManagementGood Management
and Monitoringand Monitoring
Messaging ToolsMessaging Tools

Family TraitsFamily Traits
174 IBM WebSphere Everyplace Suite

provides a means to route data across networks that use different, incompatible
protocols. The assured nature of the messaging means that MQSeries can form
the basis of critical communications infrastructures, and be safely entrusted with
the delivery of high-value data.

Through the provision of various bridging and gateway products, MQSeries
allows simple access to many standard systems and application environments,
including Lotus Notes, Web browsers, Java applets, CICS, IMS, and SAP.

MQSeries can be deployed in a variety of ways to create many different solutions.
It is possible to build a simple communications infrastructure, taking advantage of
the ability to operate across multiple platforms and networks, or to connect many
existing systems together into an integrated whole, allowing new applications to
access those applications (perhaps via an Internet browser).

MQSeries is the world’s leading commercial messaging system, currently holding
two-thirds of the market. It is the defacto standard for messaging on more than 35
platforms, and has been deployed by more than 5000 customers world-wide.

It is the basis for the remainder of the IBM MQSeries family.

10.2.2 MQSeries Integrator
MQSeries has helped to popularize heterogeneous asynchronous messaging,
and today MQSeries applications can communicate with other applications
located anywhere in a customer’s enterprise. Indeed, it is even possible for
applications to exchange data with applications from other companies. As
customers continually integrate different applications, data sources, and
sometimes even entire systems to gain competitive advantage, they raise
massive challenges for their IT departments.

As the number of data sources and sinks increases, the number of interfaces that
have to be managed, maintained, and enhanced becomes exponentially larger.
Strategies that rely on making all the application systems compatible with each
other are doomed to failure by simple mathematics.

So, as customers increase the complexity of the tasks that they undertake,
putting their data to more productive use, they discover a need to process and
transform the message data as it passes through the MQSeries network, before it
reaches the next MQSeries application. The purpose of a message broker is to
carry out this transformation and processing of messages that are en-route to
their destinations.

MQSeries Integrator is powerful message-brokering software that automatically
distributes information to those applications that need it, dramatically simplifying
the connections between different applications. Using MQSeries for transporting
between different computing platforms, MQSeries Integrator routes information
according to enterprise-defined rules, transforming and reformatting it to suit the
receiving application.

This protects a customer’s investment in their existing applications, and allows
them to remain focussed on using MQSeries family messaging technologies to
transform their business processes, without constantly enhancing and updating
their existing applications.
Chapter 10. Pervasive messaging and queuing 175

10.2.3 MQSeries Workflow
Business processes are among a company’s most valuable assets. They
encapsulate all the business experience of the enterprise, and their definition is
key to the company’s success. However, as companies grow, their processes
become more complex, and planning and managing activities, resources and
applications become more challenging.

IBM MQSeries Workflow is a workflow management system that helps an
organization to optimize its business processes. The organization uses MQSeries
Workflow to completely define, refine, manage, and execute its business
processes.

While the organization focuses on its key business objectives, MQSeries
Workflow manages the processes through the execution of software whose order
of execution is driven entirely by a computer representation of the workflow logic.
MQSeries Workflow makes it easier for the organization’s staff to work effectively
within its processes. They receive the information they need, when they need it,
and they can work with user-friendly front-end applications that connect
seamlessly to core business applications. This automation of processes results in
a better level of service, higher productivity, and simpler interaction between
people and applications, and between distributed applications across multiple
platforms.

10.3 MQSeries Everyplace

IBM MQSeries Everyplace is the latest member of the MQSeries family of
products, joining the set of base commercial messaging products.

It is designed to satisfy the messaging needs of lightweight devices, such as
sensors, phones, PDAs and laptop computers, as well as supporting mobility and
the requirements that arise from the use of fragile communication networks. It
provides the standard MQSeries quality of service (that is, once-only assured
delivery) and can exchange messages with other MQSeries family members.
Since it is expected to be deployed outside the corporate intranet, it also provides
sophisticated security capabilities.

Lightweight devices require the messaging subsystem to be frugal in its use of
system resources, and consequently MQSeries Everyplace offers tailored
function and interfaces appropriate to its customer set; it does not aim to provide
all the capabilities offered by other members of the family. On the other hand, it
does include a number of unique capabilities in order to support its particular
classes of user, such as comprehensive security provision and object messaging
together with a rich set of messaging functions.

10.3.1 Key considerations
MQSeries Everyplace is not like standard MQSeries. The skills that are gained
from working with standard MQSeries (beyond high-level architectural knowledge
of messaging and queuing) are not directly transferable.

MQSeries Everyplace is a Java toolkit. To do anything serious with this product
requires a significant amount of Java programming. Samples are supplied with
the product, but in real terms it is necessary to write Java applications before you
can even create a queue manager, let alone move messages.
176 IBM WebSphere Everyplace Suite

The manuals supplied with the product are excellent. You are strongly advised to
read them thoroughly to bridge any skills gaps before you commence designing
or implementing solutions using this technology. We believe that the amount of
flexibility and number of configuration options that are provided by the product
make this an essential step.

Tracing and error handling are entirely under the application programmer’s
control. If you choose not to implement any, then you will not get any. This is a
double-edged sword - it can improve the performance and minimize the size of
your applications, which is good for deployment on pervasive devices, but it can
(and will) make debugging any problems extremely difficult after deployment.

You may have multiple queue managers on a system, but you may only have a
single queue manager within any given Java Virtual Machine (JVM).

10.3.2 IBM MQSeries and IBM MQSeries Everyplace
In many ways MQSeries Everyplace is very similar to standard MQSeries.
Messaging is carried out using queues, which are maintained within queue
managers. Applications communicate with each other by connecting to a queue
manager, and get or put messages to a queue. Messages that are put to a queue
on a remote queue manager are sent over the network using channels, and may
travel through one or more intermediate queue managers, just as in standard
MQSeries.

The essentials of messaging and queuing are all present and fully supported.
MQSeries Everyplace extends the scope of the messaging members of the
MQSeries family:

• It expands messaging capabilities to the set of low-end devices, such as
PDAs, telephones, and sensors, allowing them to participate in an MQSeries
messaging network. MQSeries Everyplace offers the same once-only assured
delivery and permits the two-way exchange of messages with other members
of the family.

• It is designed to operate efficiently in hostile communications environments
where networks are unstable, or where bandwidth is tightly constrained. Thus
it has an efficient wire protocol and automated recovery from communication
link failures.

• It supports the mobile user, allowing network connectivity points to change as
devices roam. It also allows control of behavior in conditions where battery
resources and networks are failing or constrained.

• It minimizes administration tasks for the user, such that the presence of
MQSeries Everyplace on a device can be largely hidden - making MQSeries
Everyplace a suitable base on which to build utility-style applications.

• It includes extensive authentication and encryption facilities, making it suitable
for applications outside firewalls.

However, in other ways MQSeries Everyplace is very different. Whereas standard
MQSeries is typically shipped as a full product, which is then installed and
configured, MQSeries Everyplace is supplied in a form more akin to a Java
toolkit1. As a consequence, it is a completely object-oriented implementation,
rather than being object-oriented wrappers over a procedural base, as is the case
with the existing MQSeries products.

1 Apart from the Palm version, which is shipped as a Palm application, written in native C code.
Chapter 10. Pervasive messaging and queuing 177

However, as a toolkit you have to program to even create a queue manager.
Samples are supplied, but these are just that - samples - they are not part of the
main product, and should not be relied on.

10.3.3 Architectures
The most important feature of MQSeries Everyplace is that it may be configured
in many different ways. Much flexibility is provided, allowing you to create queue
managers with or without queues, listeners or channel managers. The primary
configurations we will consider are where the queue manager either has a
listener or channel manager, or not. If it does not have either, then it is classed as
a device configuration. If it has, then it is classed as a gateway configuration.

Device configurations combine many of the attributes of MQSeries clients and
MQSeries servers. For example, they can access queues held remotely, a feature
normally only present in MQSeries clients, but if local queuing has been enabled
then this configuration will also be able to store messages locally. If local queuing
is not enabled then this is known as an MQSeries Everyplace stub queue
manager, and is directly analogous to an MQSeries Client. Clearly, given the
name, we expect device configurations to be particularly popular for deployment
on pervasive devices.

Device configurations can communicate directly with each other, offering a
peer-to-peer messaging capability, or through dynamic channels, which are
different from MQSeries client and messaging channels. Dynamic channels are
bi-directional and support the full range of functions provided by MQSeries
Everyplace, including both synchronous and asynchronous messaging. However,
device configurations can only accept at most a single incoming connection.

They are typically deployed as either clients talking to a server, or as peers in a
peer-to-peer configuration. See (b), (c) and (d) in Figure 104 on page 178 for
examples of these deployment configurations.

Figure 104. Possible MQSeries Everyplace deployment configurations

Device

Device

Device

Device

Device

Device

Device

Gateway

Device

Device

Gateway

Device

Device

Gateway

(a) Standalone device

Client

Client

Server

(c) Peer - peer devices

(b) Device cluster

(c) Complex device cluster

(d) Devices integrated an MQ client - server n/w

Device
178 IBM WebSphere Everyplace Suite

Gateway configurations on the other hand, will probably always have local
queuing enabled, and can accept multiple incoming dynamic channels to enable
them to support device configurations, and may be configured as either a server
or a servlet. Gateways are used to attach MQSeries Everyplace device
configurations. Gateways are also the mechanism through which MQSeries
Everyplace devices are attached to an MQSeries network, as they can optionally
support an MQSeries client channel, allowing them to communicate with an
MQSeries server. See (e) in Figure 104 on page 178 for an example of a bridged
configuration.

The key difference between the server and servlet implementations is that a
servlet needs the features of an HTTP server to provide its channel connection
features, whereas the server does not.

In summary:

Client: Can initiate connection requests

Peer: Can initiate connection requests
Can accept a single connection request

Server: Can accept multiple connection requests
May provide a bridging facility to standard MQSeries

Servlet: Can accept multiple connection requests
The Listener function is provided by an HTTP server
May provide a bridging facility to standard MQSeries

10.3.4 Bridging to MQSeries networks
MQSeries Everyplace provides seamless connectivity to MQSeries networks
through gateway configurations. Messages flowing through these interfaces will
be automatically translated from the highly optimized form used by MQSeries
Everyplace to the normal MQSeries message formats, and vice versa.

When combined with the comprehensive security provided by MQSeries
Everyplace, this allows existing MQSeries enterprise systems to extend their
reach out of the enterprise network to highly mobile, pervasive systems.

This in turn provides the ability to integrate new classes of pervasive computing
devices into the core enterprise applications, participating in the Enterprise
Application Integration (EAI) solutions that are currently being enabled by the use
of MQSeries, MQSeries Integrator and MQSeries Workflow.

10.3.5 Everyplace Suite considerations
At the current time, MQSeries Everyplace and Everyplace Suite are not tightly
integrated in a physical, product sense. This is largely because most of
Everyplace Suite is directly targeted at browser-based technologies, an arena
where MQSeries Everyplace does not directly play.

They are, however, integrated in the sense that they are provided as part of the
same product suite. This is because many pervasive solutions are not ideal
candidates for browser-based technologies, and due to the complementary
natures of Web browsing and messaging and queuing, it provides the additional
architectural alternatives that are often required.
Chapter 10. Pervasive messaging and queuing 179

Key areas where you will need to pay particular attention to when integrating
pervasive messaging into an Everyplace Suite solution are centered around the
differing security models, the mechanisms used for providing scalability and
availability, and the entry points for MQSeries Everyplace traffic into your chosen
architecture:

• The Everyplace Suite security model is very distinct from the model employed
by MQSeries Everyplace, and the two are not directly compatible. We expect
there to be a series of initiatives to better integrate MQSeries Everyplace
security with WES over time. However, both are sufficiently strong to stand on
their own.

• The Everyplace Suite depends on extensive use of the Caching Proxy and
Load Balancer to provide scalability and availability. However, MQSeries
Everyplace is not ideally suited to either of these products because of its
inherent difference from an Internet browsing technology. We recommend
instead that you investigate using technologies such as HACMP to provide
appropriate levels of availability.

• MQSeries can be introduced into your environment through the Wireless
Gateway, using either TCP/IP or HTTP as a bearer, or via some other network
entry point using either TCP/IP or HTTP as the bearer.
Although using TCP/IP provides better performance, using HTTP as your
bearer will automatically provide your MQSeries Everyplace traffic with a
degree of authentication that will allow it to integrate with the Authentication
Server.
Using this scenario you can position your MQSeries Everyplace gateway
servers behind the Authentication Server, providing them with an additional
degree of WES security, and positioning yourself for future integration of
MQSeries Everyplace and Everyplace Suite security models.
180 IBM WebSphere Everyplace Suite

Part 3. Optimization

The IBM WebSphere Everyplace Suite includes the WebSphere Edge Server for
traffic optimization. In this part of the redbook we provide an overview of the
architecture and system design features provided in the two components included
in the WebSphere Edge Server:

• IBM WebSphere Traffic Express (WTE), the caching proxy. It provides
functionality of a proxy server and a caching proxy and can also act as a filter.

• The IBM Load Balancer. Formerly called the eNetwork Dispatcher, it provides
dynamic load balancing for performance, availability and scalability.
© Copyright IBM Corp. 2000 181

182 IBM WebSphere Everyplace Suite

Chapter 11. Caching Proxy

This chapter provides an overview of the architecture and system design features
of the Caching Proxy component of IBM WebSphere Edge Server, that can be
used within WES.

A discussion of the functionality of the Caching Proxy is limited to the context of
this book. Details on the full functionality and configuration settings, provided in
the Caching Proxy, can be found in the following resources:

• The online product documentation

• WebSphere Edge Server for Multiplatforms Getting Started Guide Version 1.0,
SC09-4566

• WebSphere Edge Server for Multiplatforms Web Traffic Express User’s Guide
Version 1.0 , GC09-4567

• WebSphere Edge Server for Multiplatforms Web Traffic Express Programming
Guide Version 1.0, GC09-4568

• http://www.ibm.com/software/webservers/edgeserver/library.html

Changing names

The Caching Proxy component of the IBM WebSphere Edge Server for
Multiplatforms V 1.0 is the new offering from IBM to deliver performance and
scalability.

The Edge Server includes enhanced versions of both the caching proxy and load
balancing components of IBM WebSphere Performance Pack V3.0.

IBM WebSphere Performance Pack V3.0 includes:

• IBM Web Traffic Express V3.0

• IBM Network Dispatcher V3.0

• IBM AFS Enterprise File Systems V3.5

The first two components have been enhanced and re-branded to produce the
IBM WebSphere Edge Server which includes:

• Edge Server - Caching Proxy (IBM Web Traffic Express V3.5)

• Edge Server - Load Balancer (Edge Server - Load Balancer V3.0)

Despite this rebranding the basic concepts in each remain the same.

11.1 Introduction to a Caching Proxy

Traffic flowing between a client and content server can sometimes become
corrupt. A proxy server can be used as an intermediary between a client and a
content server to ensure such traffic flow corruption does not occur. If
implemented, the proxy server will assume responsibility for retrieving and
returning data from a content server, and returning it to a client. As part of this
responsibility, it can also check the format of the traffic and reformat any corrupt
© Copyright IBM Corp. 2000 183

data that is proxied through it, before delivering it to either the client or the
content server.

Internet bandwidth availability is limited and expensive. Yet demand for
information on the Internet doubles every three months, causing data congestion
and delays in the Internet backbone, ISP networks, and corporate intranet
networks. Many people continually retrieve the same Web content. This repetition
wastes precious Internet and network bandwidth if identical content traverses the
Internet each time a user requests a file.

Bandwidth limitation is also aggravated by the actual size of the Web traffic that is
flowing through it. In many cases the volume of outbound server-to-client traffic is
substantially greater than that of inbound traffic. For example, HTML and
imbedded images sent from a server are typically at least 10 times the size of the
client URLs that request them.

Caching can be implemented to alleviate these problems. If 100 people request
the daily news then this will result in 100 separate inbound and outbound
requests. If you store, or cache, the first retrieved copy of the news page, the
subsequent 99 client requests could retrieve the page from the cache instead of
going directly to the content server. Caching the most requested Web content can
greatly reduce the load on the Internet and network bandwidth, and ultimately
deliver the page faster to the client.

See 4.3.1.8, “Caching” on page 48 for a discussion on the role that caching
provides in delivering performance for e-business applications.

11.2 What is a Caching Proxy?

The Caching Proxy provides a way to address the needs and demands of
e-business applications and consumer expectations for performance and
scalability. The Caching Proxy enables e-businesses to deploy scalable and
high-performing Web sites. It helps deliver consistently rapid response rates,
reduce the load on the Internet and network bandwidths, and increase server
content availability.

The Caching Proxy consists of three main components; it is a proxy server, it is a
cache, and it also does content filtering. This next section will provide an
overview of these three components.

11.2.1 Proxy server
The Caching Proxy provides the functionality of a proxy server for various
different protocols: HTTP, File Transfer Protocol (FTP), Gopher and Real-Time
Streaming Protocol (RTSP). The proxy server accepts the client request,
regenerates the client request, and sends the request to the content server on
behalf of the client. It then retrieves the data from the destination content server
and forwards the request back to the client.

11.2.2 Cache
The Caching Proxy is also a cache. Information retrieved from the destination
content server can be cached by the Caching Proxy. When it retrieves a file from
184 IBM WebSphere Everyplace Suite

the content server, it can store a copy so that if it receives another request for the
same file, the Caching Proxy does not have to go back to the content server.

11.2.3 Content filter
The Caching Proxy provides more than proxying and caching, it also acts as a
filter. Using the Platform for Internet Content Selection (PICS) rules, it can restrict
clients using the proxy server to accessing only certain types of data. The filter
function of the Caching Proxy can be used to filter out the content of Web sites, to
exclude violence, language or nudity, etc.The filter can also be used to block any
viruses that may potentially be returned with content server responses. The
advantage of the filter component of Caching Proxy is that content filters are set
at the proxy level rather than at the browser level. Filtering at the browser requires
configuration for each browser and can therefore be easily overridden. For a large
organization with thousands of browsers to administer, this is both extremely
cumbersome and limits the control an organization has to monitor Web content
being accessed from their internal organization.

This next section provides a detailed outline of the functions of each Caching
Proxy component that can be used in WES.

See WebSphere Edge Server for Multiplatforms Getting Started Guide and Web
Traffic Express User’s Guide for a complete description of all the features that the
Caching Proxy provides.

11.3 Proxy server component

A proxy server can be used for several different deployment scenarios:

• Forward proxy

Clients can configure their browsers to direct all their Web traffic through a
Caching Proxy. In this scenario, the Caching Proxy is configured as a forward
proxy.

• Transparent proxy

The client re-direction to access the Internet can take place at the network
level by configuring routers to direct client requests transparently through the
Caching Proxy. In this scenario, the Caching Proxy is configured as a
transparent proxy.

• Reverse proxy

Clients can connect directly to the Caching Proxy, which they believe to be the
destination content server. For this scenario, the Caching Proxy is configured
as a reverse proxy.

The Caching Proxy also provides other features that can be used to extend any of
these deployment methods:

• Protection

Using the protection capabilities that the Caching Proxy provides, all three
scenarios can be configured to protect the proxy server itself and its
resources.
Chapter 11. Caching Proxy 185

• Extending Caching Proxy functionality

The Caching Proxy also provides application programming interfaces (APIs) to
extend and customize its functionality. It also provides an interface to process
and format information contained in the HTTP headers that flow with client
requests and server responses.

The next section provides a detailed description of these Caching Proxy
functions.

11.3.1 How forward proxy works

Figure 105. Caching Proxy acting as a forward proxy

For a forward proxy, client requests are sent to the content server through a proxy
positioned before the Internet. This is the traditional use of a proxy server. A
client’s browser is configured to direct requests to the proxy server, which is
configured to accept them. When a client requests a file, the request is direct to
the forward proxy server using the proxy settings configured in the client’s
browser, as Figure 105 shows. Having received the request, the Caching Proxy
obtains the requested hostname from the HTTP header. It will then regenerate
the request with its own IP address, and forwards the client request to the
destination content server. Once the proxy receives the response back from the
content server, it will direct the returned request to the originating client.

In the forward proxy scenario, the proxy is acting on behalf of the originating
client.

11.3.2 How transparent proxy works
For some clients, such WAP browsers, you cannot or may not want to configure
proxy settings at the browser level. To take advantage of the functions that a
forward proxy provides, the proxy settings must be configured at the network
level, by using routers to re-direct client requests to the proxy server. The
Caching Proxy can support this functionality by configuring the proxy server as a
transparent proxy.

www.wes.com

Content Server

URL: www.wes.com/main.html
Proxy setting: wes.proxy

wes.proxy

2
3

1
5

6

4
8

9

7
0

#

*

Forward Proxy

main.html

internet

When the Caching Proxy is configured as a forward proxy server it can only be
accessed by those clients and devices where proxy settings can be configured.

Note
186 IBM WebSphere Everyplace Suite

Figure 106. Caching Proxy acting as a transparent proxy

A transparent proxy will transparently redirect Web traffic to the proxy server
through a router or switch. A transparent proxy server builds upon the principles
of a forward proxy server. The main difference is that the client is unaware that
the requests for a destination content server are intercepted by a proxy; the client
points directly to the destination content server and does not configure any proxy
browser settings.

To use a transparent proxy, a router is programmed to listen and redirect all
requests from clients to the transparent proxy instead of sending the traffic
directly to the destination content server. The Caching Proxy will monitor the
network for connection requests to any ports configured to listen for HTTP traffic.
When a connection request arrives, it is sent to the Caching Proxy to process.

The transparent proxy server is supported only on AIX and Linix, and applies only
to HTTP requests that do not require authentication.

11.3.3 How reverse proxy works
Instead of configuring proxy redirection when accessing a content server either at
the browser or at the network level, the client can point directly to the Caching
Proxy. In this case, clients access the content server via a reverse proxy server.

Figure 107. Caching Proxy acting as a reserve proxy

router

wes.proxy

URL: www.wes.com/main.html
Proxy setting: null

2
3

1

5

6

4
8

9

7

0

#

*

www.wes.com

Content Server

main.html

internet
Transparent

Proxy

www.wes.com

URL: www.wes.com/main.html
Proxy setting: null

Reverse Proxy

www.xyz.com

Content Server

main.html

internet

2
3

1

5
6

4
8

9

7
0

#

*

Chapter 11. Caching Proxy 187

When a proxy server is configured as a reverse proxy server, it appears to the
client to be the destination content server. To the content server, the reverse
proxy server acts as the originator of client requests. If a client wants to access a
file, for example main.html as shown in Figure 107, the client points its browser
the reverse proxy, www.wes.com believing this to be the Internet address of the
content server. The reverse proxy server will accept the client request for
main.html, retrieve the requested page from the content server, residing on
www.xyz.com, and return it to the client.

A reverse proxy server hides your content servers from the public Internet
because only the reverse proxy server can directly communicate with the content
server from outside the firewall.

11.3.4 Protecting a proxy server
As part of the proxy functionality, the Caching Proxy can be configured to protect
access to the proxy server and its resources. It can be configured to enable basic
authentication to all users that try to access the proxy function, by prompting for a
use name and password. When protection is enabled, only authorized users can
access the Caching Proxy.

As part of the protection configuration, you define a list of protection rules, or a
protection setup, for your proxy server and its resources. The setup directives are
very flexible and allow you to customize protection to suit your architecture and
security requirements. Generally you define the protection directives for the
whole proxy server, individual directories or requests, or any combination of
these. Protection of the proxy and its resources is then implemented based on the
request that the proxy server receives.

There are three directives that define the file access protection to the Caching
Proxy server:

• Protection - defines a protection setup

• Protect - sets protection by linking a request template to a protection
setup

• DefProt - sets a default protection setup for a particular template
request.

The most common implementations of protection use either the Protection
directive with the Protect directive, or the Protect directive on its own. These two
protection scenarios are named protection setup and inline protection setup.

For Inline protection, this would represent a simple configuration for a proxy
server www.wes.com:.

A request is the part of the full URL that follows the host name. For example if
the full URL is http://www.wes.com/main.html then www.wes.com is the host name
and main.html is the request.

A request template specifies files that are subject to protection. Protection is
activated based on request templates.

Note
188 IBM WebSphere Everyplace Suite

:

Figure 108. Sample protection setup for a proxy server - www.wes.com

Only the Protect directive is specified when configuring inline protection, and it is
specified per request template. For every client request received by the proxy
server, the Caching Proxy will first check the protection setup directives in the
ibmproxy.conf.

The protection setup defined in Figure 108 indicates that every request received
by the proxy server from any client has to be authenticated using basic
authentication. Using this configuration, if the Caching Proxy receives a client
request for http://www.wes.com/main.html, the proxy server would send an
authentication request for the realm specified by the ServerID directive,
ProxyServer. The AuthType subdirective specifies the type of authentication,
which in the sample configuration is basic authentication. The Mask directive
specifies that the protection setup is to be applied to all clients. The client will
receive a browser authentication prompt to enter a user name and password for
the realm. The client then returns the requested information back to the proxy
server, for validation of authentication details. If the information is valid, the client
is granted access to all resources in the ProxyServer realm.

Figure 109. Authentication flows for different deployments of Caching Proxy

The protection directives, both inline and named, have the goal of limiting access
to the proxy server and its resources to only authorized clients. Depending on
your deployment of the proxy server, the protection process will generate different
HTTP responses. As Figure 109 on page 189 illustrates, if protection setup
directives are specified for the Caching Proxy when it is deployed as either a

Protect * {
ServerID ProxyServr
AuthType Basic
Mask All@(*)

}

Basic authentication user names and passwords are encoded with base-64
format but are not encrypted. Therefore they flow in the clear to the proxy
server, representing a possible security exposure.

Note

Client

Client

http://www.wes.com
www-authenticate (401)

http://www.wes.com
proxy-authenticate (407)

http proxy: wes.proxy

www.wes.com

wes.proxy

Reverse
Proxy

Forward or
Transparent

Proxy

www.wes.com
ibmproxy.conf

wes.proxy
ibmproxy.conf

Protect * {
ServerID ProxyServer
AuthType Basic
Mask All@(*)
}

Protect * {
ServerID ProxyServer
AuthType Basic
Mask All@(*)
}http proxy: null
Chapter 11. Caching Proxy 189

forward or transparent proxy server, then the Caching Proxy will generate and
return a Proxy-Authenticate request to the client. When the Caching Proxy is
configured as a reverse proxy server, and protection setup directives are defined,
then the Caching Proxy will generate and return a WWW-Authentication request
to the client, prompting the client to enter a valid user name and password.

For full details of named and inline protection refer to the WebSphere Edge
Server for Multiplatforms Web Traffic Express User’s Guide.

For details on protection configuration for the Authentication Server refer to
Everyplace Suite Getting Started Guide.

11.3.5 Caching Proxy API interface
The Caching Proxy provides an API interface to extend the Caching Proxy’s
functionality. You may write extensions to perform customized processes such as
enhancing authentication or authorization, add error handling routines to track
problems, or to detect and track information that comes in from client requests.

When each client request is received by the Caching Proxy, the server performs a
series of base steps. You can customize these steps by using the APIs within the
Caching Proxy to define your own application plug-in module. This enables you to
instruct the server to call your application functions at appropriate processing
steps using API directives configured in the ibmproxy.conf.

The Caching Proxy provides a set of API directives, or exits, that can be used
when extending Caching Proxy function within your own application.

The most relevant directives to the Everyplace Suite are those utilized by the
Authentication Server.

Server Initialization Performs initialization before any requests are accepted

Server Termination Performs cleanup and shutdown of resources allocated
during server initialization

Authentication Enables verification of user’s privileges to access
resources

Authorization Performs authentication and generates the
WWW-Authenticate headers

See Web Traffic Express User’s Guide and Web Traffic Express Programming
Guide for details of the exits provided in the Caching Proxy.

If your Caching Proxy API application provides its own authorization process, it
will override the default server authorization and authentication. If you have the
Authorization directive in the configuration file then the application functions
associated with them must also handle any necessary authentication.

If an application does not provide its own authorization, you can still perform
authentication by writing your own authentication application function. To enable
this the Authentication directive must be specified in the configuration file.

11.3.6 HTTP Headers
When a client sends a request to a content server, an HTTP header is
automatically generated and sent with the request. This HTTP header will contain
190 IBM WebSphere Everyplace Suite

information about the client requester. It is passed with each HTTP request and
response between and client and content server. Its function is to provide
additional information to the content server about the client and request. For
example, the browser type and the content type parameters specify to the content
server how to interpret the request.

An HTTP header would typically contain the following information:

• User-agent consisting of the browser type and operating system type, for
example Netscape Navigator V4.7

• Client IP address of the client requester

• A Referrer that provides the destination server with the URL of the referrer
link

• HTTP response code and reason, for example 200 OK

• Authentication details regarding the type of authentication and the
credentials used

• Cookies and session information

The Caching Proxy provides an extended list of variables that provide information
about the client and server, which can be inserted to or removed from the HTTP
header. This functionality can be used by the Caching Proxy API to insert more
information into the header of HTTP requests to a content server. For example,
an API performing client authentication could prompt the client for a user name
and password. The API would then valid the client credentials against LDAP.
Having authenticated the client, the Caching Proxy will then insert the
authentication credentials and any another authentication information into the
HTTP header. The content server receiving the request, with the extended HTTP
header could then read this information directly from the HTTP header rather than
retrieving the source again.

See Web Traffic Express Programming Guide for more full details of the Caching
Proxy’s API interface.

11.3.7 Secure proxy connections
In a Web environment, the SSL protocol enables secure connections. An SSL
connection is established directly between a browser and a content server and
used to encrypt the data flow through the connection.

The Caching Proxy provides SSL support in two ways:

• SSL tunneling

• Reverse proxy SSL support

11.3.7.1 SSL tunneling
When the Caching Proxy acts as either a forward or reverse proxy server, secure
connections are tunneled through the proxy server. With SSL tunneling, the client
sends a secure request to a content server. The Caching Proxy receives the
client request and establishes a connection to the destination server to pass the
encrypted client request to the content server.

SSL requests are not tunneled through a transparent proxy. The router that
redirects requests to the proxy server only directs requests destined for port 80.
Chapter 11. Caching Proxy 191

The router does not redirect requests going to port 443 for port listening for SSL
connections; instead it goes directly to the destination server and is not proxied.
Therefore the transparent proxy server does not see any SSL traffic.

11.3.7.2 Reverse proxy SSL support
The Caching Proxy has the functionality to control, and enable, secure
connections between a browser and the reverse proxy server, between the
reverse proxy server and content server, or both.

Figure 110. SSL reverse proxy support - secure connections starting at the client

The Caching Proxy allows secure connections to be established between itself
and a client browser. All secure requests sent to the reverse proxy server can
then be decrypted by the Caching Proxy, and either be allowed to flow in the clear
to the content server, as line 1 in Figure 110 illustrates, or re-encrypted by
establishing a secure connection between the Caching Proxy and the content
server, as line 2 in Figure 110 illustrates.

Figure 111. SSL reverse proxy support - secure connections starting at Caching Proxy

The Caching Proxy can also be used as a starting point for secure connections
between the proxy and a content server. If the proxy server receives a request for
a URL on a content server in the clear, the proxy server can then initiate a secure
connection so that all traffic flowing between the two is encrypted. This is
illustrated by Figure 111. The Caching Proxy will then decrypt all responses sent
back to the client.

www.wes.com

URL: https://www.wes.com/main.html
Proxy setting: null

HTTPS

www.xyz.com

Content Server

2
3

1

5
6

4
8

9

7

0

#

*

Reverse Proxyinternet

HTTP

HTTPS

1

2 main.html

Cache
main.html

www.wes.com

URL: http://www.wes.com/main.html
Proxy setting: null

HTTP
HTTPS

www.xyz.com

Content Server

2
3

1
5

6

4
8

9

7

0

#

*

Reverse Proxyinternet

HTTP main.html

3

4

192 IBM WebSphere Everyplace Suite

When an encrypted request is received by the reverse proxy server, the Caching
Proxy can decrypt the request, and send the request to the content server. It may
then cache the response content before encrypting and sending the secure
response back to the client.

Using the Caching Proxy as an endpoint for any breaking secure connections can
reduce the load on the content servers. It also prevents encrypted traffic flowing
end-to-end between the client and content server, thereby reducing the demands
for bandwidth and improving response rates. It is ideally used if the content
server that the proxy server it is accessing is not behind a firewall.

5.2, “WES security” on page 54 provides further details on the SSL reverse proxy
support that can be used with the Authentication Server.

11.4 Caching component

The average size of a typical URL (inbound) request is 400 bytes. The average
size of an outbound response from a Web server (HTML page, GIF or JPEG
image, etc) is 10 KB. If every client requests the same URL then the outbound
response will use a large amount of Internet bandwidth, causing poor response
rates on congested links. The Caching Proxy provides a cache function that can
be used to store Web content. With a Caching Proxy, the requesting client gets
the information faster and the network bandwidth is reduced.

The Caching Proxy can save or cache the Web content. It can then serve
subsequent requests for the cached content from its local cache, thus eliminating
repetitive traffic. This functionality makes the Caching Proxy a powerful tool to
help deliver consistently fast response times.

Functionality of the Caching Proxy
The cache component of the Caching Proxy allows you to customize the caching
of Web content. By using caching rules, you can define what Web content can
actually be cached. Physical storage of cache content can also be customized.
The Caching Proxy allows you to control the content contained in the cache by
ensuring that the cached content is current and allows you to administer garbage
collection to clean up the content. A caching agent can also be used to pre-load
into cache specified files before they are requested by a client.

The Caching Proxy is highly scalable allowing multiple Caching Proxy servers to
exist in the same cluster. With clustering, the cache component of each Caching
Proxy can be shared through the use of Remote Cache Access (RCA), producing
a larger logical cache.

This remainder of this section provides an overview of these caching features.

11.4.1 Caching rules
When a proxy server, configured either as forward, transparent or reverse proxy,
retrieves a file from a content server, before it returns the requested file to the
client, it checks a list of caching rules, both within the proxy server and in the
retrieved file, determining what can be cached. Caching rules enable the
administrators to determine what should be cached, how long it should remain in
the cache, and what should not be cached. Figure 112 on page 194 demonstrates
this process for a reverse proxy server.
Chapter 11. Caching Proxy 193

Figure 112. Caching Web content with the Caching Proxy

One of the more important functions that the cache provides is to ensure that the
cached content remains current and consistent with the original data on the
content server. The Caching Proxy achieves this using passive caching. For each
file that is cached, the Caching Proxy computes an expiration time. If a client
request is received for a file, and the file has expired, the Caching Proxy will issue
a request to the content server to check if the expired file has changed. If the file
remains consistent with the copy in cache, the Caching Proxy will serve the file
from cache. If the content server replies that the file has changed, the Caching
Proxy will retrieve the up-to-date file from the content server, cache it, and return
the new file to the client.

The cache component of the Caching Proxy also provides a garbage collection
feature. The garbage collection maximizes a Caching Proxy’s use of the cache by
deleting expired, old, or irrelevant data to make space available for new cached
content.

Refer to the Web Traffic Express User’s Guide for full details of the caching and
caching rules, and how they can be used and configured.

11.4.2 What to cache
Technically all Web content retrieved from a content server can be cached.
However, caching Web content is ideally suited to static Web content. Static Web
content generally does not change that frequently. The Caching Proxy provides
the capabilities to allow you to determine what should be cached using the
caching rules outlined in 11.4.1, “Caching rules” on page 193.

It is difficult to efficiently cache dynamic content since it is constructed by
programs that execute at the time a request is made. For example, a search of
IBM ThinkPad products will return a list of products based on your individual
search criteria. Dynamic data tends to be specific and personalized to the
individual client request. Therefore, unless you have an extremely popular search
engine with millions of hits per minute, it is unlikely that the same search request
will be submitted the same day. It is inefficient to cache such dynamic content.

Here are some general guidelines for dynamic content that should not be cached:

Cache
main.html

www.wes.com

URL: www.wes.com/main.html
Proxy setting: null

Reverse Proxy

www.xyz.com

Content Server

main.html

internet

2
3

1
5

6

4
8

9

7
0

#

*

194 IBM WebSphere Everyplace Suite

• The dynamic output of CGI scripts that is unique each time it is
generated

• Any file passed on an encrypted connection

• Any file with a URL containing a ‘?’ unless query caching is specifically
allowed

• Files returned from requests using HTTP methods other than GET, such
as POST and PUT

• Any documents requiring authentication unless specifically allowed by
the content server

The Caching Proxy allows you determine what dynamic content is cached,
however specifying the dynamic cache rules should be carefully considered.

11.4.3 Caching storage options
The speed of the cache storage devices is critical to performance on the Caching
Proxy. The speed at which files are returned from the cache is generally
determined by the method of storage. The Caching Proxy can now use three
types of cache storage:

• Memory: cached files can be stored in the underlying file system. Caching
to memory gives the fastest processing, but the size of the cache is limited
to the amount of memory (RAM) on the proxy server.

• Disk: cached files can be stored on disk. A disk cache can be made up of
one or more disks partitions, and is slower than a memory cache but allows
larger cache sizes.

• Files: cached files can be stored in files. A cache made up of one or more
files can be slowest because it requires the proxy server to use the
operating system’s file system to cache the file.

11.4.4 Caching agent
With time and increased use, a Web server’s performance and response rates will
improve when the cache is efficiently used. However, the first client request for a
file on a content server will not benefit from previous caching.

The Caching Proxy provides the functionality to pre-load certain files. The
Caching Proxy has a cache agent that provides this service. The cache agent can
automatically retrieve specified URLs, or the most popular URLs, and place them
in the cache before they are requested.

There are two ways to specify the files to the cache agent. Both options also
specify a limit on the number of URLs that are retrieved.

• Specific URLs - allows the administrator to control what files will be delivered
faster to the client.

• Cache Access Log - used for logging hits on the proxy server. The cache
agent loads this file, sorts the URLs by frequency of requests and then
retrieves the most frequent requests.

The administrator may determine when the cache agent should be run such as
daily and at specific times.
Chapter 11. Caching Proxy 195

11.5 Content Filtering Component

This section provides a brief overview of the filtering component of the Caching
Proxy. The Caching Proxy provides filtering at the proxy level of Web content. The
Caching Proxy implements this with the use of Platform for Internet Content
Selection (PICS). When combined, the Caching Proxy and the Load Balancer
components of the Edge Server, can use Content Based Routing to load balance
traffic based on URLs. See 12.3.3, “Content Based Routing” on page 209 for
more details.

11.5.1 What is content filtering?
The Caching Proxy supports content filtering to filter and block any Web content
deemed inappropriate, such as language, nudity and violence, or viruses within
requested objects.

Filtering in the Caching Proxy is based on PICS labels. PICS is a rating and
labeling standard that users can use to determine what content they would like to
see or exclude. When a client requests a file, the proxy server will retrieve the file
from the content server. Prior to returning the file back to the client, the filter
component of the Caching Proxy will send a request to a labels bureau to obtain
labels for the requested file. The PICS label is associated to a document and
provides a summary and rating of the content of the document. The PICS label
will be defined and issued by a third-party service who will store them in a label
bureau. The filter will then use the values contained in the PICS labels, to
determine whether the content of the file will be passed to the client or blocked. If
the file can be passed, then the cache component will determine whether the
passed file can be cached.

The Caching Proxy provides the ability to apply filters in a variety of ways; by
defining a list of URLs to be blocked, using PICS labels, and APIs for creating
filtering applications.

Content filtering is typically implemented for Internet access to restrict what
content users within an organization can request and receive from content
servers across the Internet.

See Web Traffic Express User’s Guide for more details on the content filtering
function of the Caching Proxy.

11.6 High performance and scalability with the Caching Proxy

In large networks, one caching proxy might not be enough to meet the
performance and availability requirements. If your Web site is heavily accessed,
there can be greater demand for its contents than a single Caching Proxy can
handle. This can degrade the Caching Proxy’s performance, and therefore your
Web site’s performance.

Another potential problem with a single Caching Proxy is that it represents a
single point of failure - if it fails or becomes inaccessible because of a network
failure, users cannot access the Internet or any hosted Web sites until the
Caching Proxy is reinstated.
196 IBM WebSphere Everyplace Suite

A cache cluster addresses these issues by delivering scalability and high
availability. The use of multiple Caching Proxies to form a caching cluster can
serve more users with reliable response time and provide load balancing with
fault tolerance. The Caching Proxy does this by evenly distributing cached
content among servers in the cluster. If one server in the cluster fails, other
servers in the cluster will continue to provide Web content caching. To enable
high availability, the Caching Proxy must be used in conjunction with the Load
Balancer component of the Edge Server.

Figure 113. Providing high performance with the Caching Proxy and the Load Balancer

Figure 113 depicts a configuration in which the Load Balancer load balances a
cluster of two Caching Proxy machines. The Load Balancer is configured with the
cluster’s dedicated hostname and IP address. Client browsers are configured to
direct their requests to the cluster host name. When, for example, a client
requests a file main.html that resides on Content Server1, the client directs its
request to the cluster host name or address of the Load Balancer, which in turn
directs it to the appropriate Caching Proxy. The Caching Proxy will then
regenerate the request, pass it to the content server as either explicitly stated in
the URL or based on the proxy configuration directives. The Caching Proxy will
retrieve the response from the content server and cache it, then return the
response directly to the client.

The Load Balancer may be used to provide high availability to the Caching Proxy.
The Load Balancer will detect when one of the Caching Proxies becomes
unavailable, whether it has failed or if the Caching Proxy is engaged in garbage
collection or cache refresh, and automatically reroute requests to another proxy.

In a cluster scenario, individual Caching Proxies may be dynamically added or
removed. This makes performing maintenance easy.

11.6.1 Using Remote Cache Access
Using multiple Caching Proxies introduces a potential inefficiency, in that more
than one Caching Proxy can end up caching the same file if different end users
request the file via different Caching Proxies. Each proxy within the proxy cluster
will have its own cache. Over time the cache on each node will accumulate the
same cache content. Since the cached data cannot be shared, this results in a
waste of cache storage as multiple copies of the cached data are stored. This can
negate the effectiveness of the Caching Proxy when deploying multiple instances
of the Caching Proxy.

www.wes.com

www.wes.com2

Caching Proxy

Caching Proxy

www.wes.com1

URL: www.wes.com/main.html
Proxy setting: null

Content Server1

2
3

1
5

6

4
8

9

7

0

#

*

Load Balancer
main.html

Content Server2
Chapter 11. Caching Proxy 197

Remote Cache Access (RCA) addresses this issue by allowing multiple Caching
Proxies to share the content of their caches. Using each individual Caching
Proxy, RCA allows multiple proxy servers to co-operate to form cache arrays, to
create a larger combined logical cache. With RCA cache arrays, each Caching
Proxy server knows what files each proxy server has in its cache, and therefore
which server in the array is best suited to process the incoming request.

When a client request is received by a Caching Proxy in the cluster, RCA uses
the Cache Array Routing Protocol (CARP) to query all the servers’ caches in the
array determining which server in the array has the requested file in its cache.
Using RCA, a proxy server can immediately route the client’s request to the proxy
server in the array that contains the cached data. If the receiving proxy server
does not have the cached data in its cache, it will route the request to the next
proxy server in the array. If RCA determines that the file is not contained in the
combined, logical cache, the proxy server processing the request will retrieve the
file from the content server directly, caching it locally before returning it to the
requesting client.

Due to the sorting of requests through these proxy servers that RCA provides,
duplication of cache contents is eliminated, and cache space is saved, cache hit
rates are improved, and network bandwidth is used more efficiently.

11.6.2 Using proxy chaining
For large-scale implementations, Caching Proxy clusters can be chained together
to improve availability and throughput. In a large implementation, enterprise and
ISP, there may be multiple points of access to the network. Each point is a place
where a Caching Proxy can be placed and configured to point to one parent
Caching Proxy.

If a proxy server in the lowest level of a hierarchy, or chain, cannot serve a
requested URL from its cache, it forwards the request to the proxy server that has
been configured as the next in the chain. The proxy server at the highest level of
the chain then determines if it has the requested files stored in its cache. If not, it
will retrieve the requested files from the content server. This high-level proxy
server will pass the response back down the proxy chain to the client. Each proxy
in the chain can then store the response in their local caches.

Proxy Chaining offers the following advantages:

• Proxies at a lower levels, closer to the client that originated the request,
benefit from the caches of the higher-level proxies.

• Proxy chaining reduces the load on the highest level proxy and
ultimately on the content Web server, since lower-level proxies may
already have the document cached.

• The larger the number of users, the higher the probability that the proxy
server already has the document in its cache.

For more information on proxy chaining refer to IBM WebSphere Performance
Pack: Caching and Filtering with IBM Web Traffic Express, SG24-5859.
198 IBM WebSphere Everyplace Suite

11.7 Using the Caching Proxy in the Everyplace Suite

As the number of users entering the Everyplace Suite increases, your Everyplace
Suite architecture must both perform and scale. To design a performing
Everyplace Suite architecture, response rates must be high and path lengths
must be minimized. See Chapter 4, “Performance and scalability” on page 37 for
more details on these considerations.

The Caching Proxy functions and features that have been outlined can all be
used in the Everyplace Suite to deploy a high-performing and scalable solution.
Implemented effectively, the Caching Proxy can work with other Everyplace Suite
components to help deliver consistently rapid response rates, reduce network
traffic congestion, and reduce Internet and network bandwidths.

The Caching Proxy is implemented in the Everyplace Suite in two distinct
methods;

• The Caching Proxy is a prerequisite component for Everyplace Suite
components.

• The Caching Proxy can be used to optimize some Everyplace Suite
component and to optimize the solution as a whole.

Figure 114. Everyplace Suite architecture - performance components

11.7.1 The Caching Proxy as a prerequisite
The Caching Proxy is a prerequisite component for the Authentication Server.
The Authentication Server, is a Caching Proxy plug-in. Refer to 11.3.5, “Caching
Proxy API interface” on page 190 for more details on Caching Proxy plug-ins.

The Authentication Server component of the Suite is written to be hosted and
launched by the Caching Proxy. The Authentication Server makes use of several
Caching Proxy functions. The Caching Proxy and the Authentication Server
plug-in are configured as either a protected reverse proxy server or as a

WTE
Cache

WTE
Cache

WTE
Cache

Everyplace
Authentication

Server

Application
Servers

Dial-Up

WAP/Wireless

Wireless
Gateway
Clients

HTTP/IP
traffic

WTE
Cache

Internet/
Intranet

WTE
Cache

WTE
Cache

Native
cache

Caching Proxy plug-in

In-Stream cache

Application enhancing
Optimized

Prerequisite

Performance Optimization

Everyplace
Wireless Gateway

WebSphere
Transcoding

Publisher

MQSeries
Everyplace

TPSM
Enrollment

TPSM
Device

Manager

TPSM
Self Care

1

2

2 2

2

33

3

1

2

Chapter 11. Caching Proxy 199

protected forward proxy server. To authenticate a client, the Authentication Server
uses the HTTP header manipulation functions of the Caching Proxy. As an entry
point into the Everyplace Suite domain, it can also act as the end point for secure
connections using the new SSL reverse proxy support.

See Chapter 6, “Authentication” on page 69 for more details on how the Caching
Proxy is used with the Authentication Server.

11.7.2 Using the Caching Proxy for optimization
The Caching Proxy also provides features and components that can be used to
optimize certain Everyplace Suite components, and a WES implementation.

The functions and features that the Caching Proxy provides, such as caching and
filtering, can be implemented independently of the Everyplace Suite components
to optimize each individual component’s performance and functionality. Figure
113 on page 197 shows where Caching Proxy can be used for optimization in the
Everyplace Suite. It can be used for both in-stream caching and to enhance other
Everyplace Suite components.

11.7.2.1 In-stream caching
The cache component of the Caching Proxy is beneficial where the same content
is repeatedly retrieved from a slow source. The Caching Proxy can be positioned
in front of a slow source (perhaps a Web server inside the domain), or in front of a
whole network (like the Internet) to generally optimize access to any site.

If you plan to implement in-stream caching in the Everyplace Suite, the Caching
Proxy can be used at several points to cache content. Figure 113 on page 197
outlines where the Caching Proxy can be used for in-stream caching of HTTP
traffic flowing within an Everyplace Suite domain. The figure outlines the potential
uses of the Caching Proxy when the Everyplace Suite is architected for an
adaptive portal. Refer to 3.2.3, “Adaptive (multi-modal) portal” on page 26 for
more details on this architecture.

11.7.2.2 Application enhancing
When the Caching Proxy is used to enhance other components in the Everyplace
Suite, it is used as a plug-in for specialized application caching.

The caching component of the Caching Proxy can be used to enhance:

• IBM Everyplace Wireless Gateway
• IBM WebSphere Transcoding Publisher

The IBM WAP Gateway installs a special plug-in module on the Caching Proxy to
gain improved performance with caching binary WML. See Chapter 7,
“Supporting wireless devices” on page 89 for more details on this Wireless
Gateway feature.

WebSphere Transcoding Publisher also integrates with the Caching Proxy, and
installs a special plug-in on WebSphere Transcoding Publisher to gain improved
performance by caching transcoded data. See Chapter 8, “Transcoding Web
application content” on page 119 for more details.

By using the Caching Proxy for both in-stream caching and application
enhancing, the Caching Proxy can be used to optimize your solution as a whole.
200 IBM WebSphere Everyplace Suite

11.7.3 Prerequisite and optimized Caching Proxy in Everyplace Suite
Using the three Everyplace Suite implementation types, this matrix outlines what
Caching Proxy functions and features can be used by both the pre-requisite and
optimized functions in the Everyplace Suite.

Table 5. Caching Proxy functions that can be used in the Everyplace Suite

X - prerequisite use

@ - optimization use

Table 5 outlines which Caching Proxy functions are best placed to be
implemented in the Everyplace Suite.

As this section has highlighted, your individual Everyplace Suite architecture and
configuration will determine which of the many Caching Proxy functions you will
need to deliver high performance and scalability for your Everyplace Suite
solution.

Caching
Proxy
functions

Component
host

In -stream
cache

Application
value-add

Proxy functions

Forward proxy @

Transparent
proxy

@

Reverse proxy X @

Secure
connections

@ @

Proxy
Protection

X @

APIs X @

Header
configuration

X @

Proxy chaining @

Caching functions

EnableCaching @ @ @

Cache
pre-loading

@ @ @

RCA @

Filter functions

Content filtering

Content-based
rules

@ @
Chapter 11. Caching Proxy 201

202 IBM WebSphere Everyplace Suite

Chapter 12. Load Balancer

This chapter provides an overview of the architecture and system design features
of the Load Balancer component of IBM WebSphere Edge Server, which can be
used within WES.

A discussion of the functionality of the Load Balancer is limited to the context of
this book. Details on the full functionality and configuration settings, provided in
the Load Balancer, can be found:

• The online product documentation

• WebSphere Edge Server for Multiplatforms Getting Started Guide Version 1.0,
SC09-4566

• IBM Load Balancer User’s Guide Version 3.0 for Multiplatforms, GC31-8496

•http://www.ibm.com/software/webservers/edgeserver/library.html

12.1 Changing names

The Edge Server - Load Balancer is the new offering from IBM to deliver
availability and scalability.

The IBM WebSphere Edge Server includes enhanced versions of both the
Caching Proxy and load balancing components of IBM WebSphere Performance
Pack V3.0.

IBM WebSphere Performance Pack V3.0 includes:

• IBM Web Traffic Express V3.0

• IBM Network Dispatcher V3.0

• IBM AFS Enterprise File Systems V3.5

The first two components have been enhanced and re-branded to produce the
Edge Server which includes:

• Edge Server - Caching Proxy (IBM Web Traffic Express V3.5)

• Edge Server - Load Balancer (Edge Server - Load Balancer V3.0)

Despite this rebranding the basic concepts in each remain the same.

12.2 Introduction to the Load Balancer

Load is the retrieval and processing of back-end Web content, generated from
client browser requests for Web content stored on a content server. As the
number of client requests for Web content increases, so the load that the content
server has to process increases. As this acceleration continues, the content
server can become unable to handle the load and client requests are either
rejected or delayed. In such a case, the ability of your content server to receive
client requests and process them effectively becomes a problem.

A solution to this problem is to introduce horizontal scaling. By adding another, or
replica, content server to your organization the load can be spread over the
multiple content servers. Scaling in such a way can directly improve the
© Copyright IBM Corp. 2000 203

performance of high-demand content servers. Refer to 4.3.1.2, “Replicated
machines (horizontal scaling)” on page 44 for a discussion of horizontal scaling.
However increasing the number of machines that your organization has to deliver
Web content is not enough to achieve availability and performance expectations.
The client requests must be intelligently managed and balanced, over these
replica machines to deliver availability expectations.

The Load Balancer can be implemented in front of a cluster of content servers to
efficiently and effectively balance the load of client requests.

The Load Balancer provides dynamic load balancing to deliver the following goals
for servers:

• Performance
• Availability
• Scalability

12.2.1 Load Balancer delivers performance
The Load Balancer boosts the overall performance of a server by automatically
finding the optimal server within a group of servers to handle each incoming
request. The Load Balancer delivers performance because requests are not
routed to overloaded servers, and no packet modifications are required to
perform the balancing.

12.2.2 Load Balancer delivers availability
The Load Balancer delivers availability since requests are not routed to failed
servers but only active servers. The goal of the Load Balancer is to prevent loss
of service of a Web site content server by minimizing any single points of failure.
Should any content server in the cluster require maintenance in the event of
failure, then any servers within the load balancing cluster can be easily removed
without losing of Web site service.

12.2.3 Load Balancer delivers scalability
Scaling can easily be introduced by using replicated machines to apply more
resources to a heavily accessed Internet site. The Load Balancer delivers
scalability by allowing the transparent addition of servers and the Load Balancer
to load balance them, without affecting availability or performance.

12.3 Component overview

This section provides an overview of the main functions and features that the
Load Balancer provides. For a more detailed discussion and configuration options
refer to IBM Load Balancer User’s Guide Version 3.0 for Multiplatforms.

The Load Balancer consist of three components that can deployed independently
or combined to produce a powerful tool for ensuring that your Web application
and Web content server is available and scalable:

• The Dispatcher
• Interactive Session Support
• Content Based Routing
204 IBM WebSphere Everyplace Suite

12.3.1 The Dispatcher
Dispatcher is an IP packet-level load balancer to balance requests from TCP or
UDP protocols. Using any of these protocols Dispatcher provides server and
application load balancing. It provides high-performance, low-latency load
balancing using weights and measurements that are dynamically set or
predefined to ensure that requests are routed to the optimal server.

The Dispatcher will accept requests among HTTP, FTP, SSL Telnet, NNTP, POP3,
SMTP or other TCP-based servers or stateless UDP-based servers.

The Dispatcher balances incoming requests and distributes them to the content
server that it services. When the Dispatcher receives a request for content on the
content servers it is balancing, it does not process the request but rather, it
forwards the request to the content server that is currently best able to fulfill the
request. As Figure 115 shows, having forwarded the client request to the optimal
server, the content server will respond directly to the client without passing back
through the Dispatcher.

Figure 115. How the Dispatcher works

To enable load balancing for your cluster with the Dispatcher you first install the
Dispatcher then you must configure the content servers that it is balancing.

In order to set up the Network Dispatcher itself you need at least two valid IP
addresses. One address for the dispatcher itself (the nonforwarding address) and
another for each cluster. In Figure 115, only one cluster is used. With this
configuration the Dispatcher then becomes the site IP address to which your
clients send all requests. This externally advertised address is referred to as the
cluster address. The cluster address is associated with your host name and is the
address that is load balanced by the Load Balancer. For the load balancing to
work you also set the loopback address of the clustered content server to the
cluster address so that these servers can accept requests addressed to the
cluster address.

D

loadbalancer.com

contentserver1.com

contentserver2.com

internet

http://loadbalancer.com
Chapter 12. Load Balancer 205

Figure 116. A simple Dispatcher deployment

With the configuration specified in Figure 116, the following will occur when a
client request is received by the Dispatcher:

• The client sends its request to loadbalancer.com, the cluster address and the
host name of the Dispatcher.

• The Dispatcher will receive the request directed to http://loadbalancer.com.

• The Dispatcher keeps a table of all the content servers that it is load balancing
and selects one based on certain rules and weights. Having selected the
optimal server, it will then forward the client request to that server. In this
example it is directed to contentserver1.com.

• The contentserver1.com receives the request and takes a look at the
destination IP address in the HTTP header of the request, 9.69.69.104.
Contentserver1.com accepts the request because 9.69.69.104 is an alias on
its loopback interface.

• The content server fulfills the requested URL and replies directly to the client
IP address, extracting it from the HTTP header. It will also add the cluster host
name, loadbalancer.com, to the response header as the request’s source
address. This means that all other client requests will still go through the
Dispatcher.

The non-forwarding address, which in the example in Figure 116 is 9.69.69.101,
is used to connect to the Dispatcher for management purposes, for example
telnet or FTP. The content servers can also be accessed in this way. If you want
you can conceal the real IP addresses of the servers in your cluster. This can be
achieved by filtering all requests at the gateway router, generally positioned
before the Load Balancer.

12.3.1.1 How does Load Balancer determine the optimal server?
Dispatcher utilizes three subcomponents to determine the optimal server in a
cluster:

• The Executor
• The Manager
• The Advisor

loadbalancer.com
9.69.69.104

contentserver1.com
9.69.69.102

contentserver2.com
9.69.69.103

non-forwarding address
9.69.69.101

Dinternet
206 IBM WebSphere Everyplace Suite

Figure 117. How the Dispatcher determines the optimal server in a cluster

The Executor
The core function of the dispatcher is the Executor. The Executor will examine the
header information of each request to decide whether the request belongs to an
existing connection or whether it represents a new connection request. If the
connections already exists, then the request is forwarded to the same server
chosen on the initial connection request. If the packet is a new connection
request, the Executor will look at the stored weights for each server in the cluster
to determine the best server to forward the connection request to.

The Manager
The Dispatcher has a Manager function, which periodically sets the weights that
the Executor obeys. The manager sets weights based on internal counters in the
executor and feedback provided by the advisors. The internal counters will, for
example, provide information on the number of active and new connections on
each server. Alternatively you can define your own weights. The executor will
then use these weights to perform load balancing.

Advisors
Advisors can be used to collect and analyze feedback from individual servers
regarding the health of the servers and any application running on the servers
being load balanced. The Advisor will provide this information to the manager
component.

For more information on the functionality and configuration of Dispatcher refer to
the IBM Load Balancer User’s Guide Version 3.0 for Multiplatforms.

12.3.2 Interactive Session Support
Interactive Session Support (ISS) is a DNS load-balancing mechanism. It can be
used to monitor and load traffic across a cluster of servers performing the same
service, for example HTTP or FTP.

You can use the ISS component of the Load Balancer with or without a DNS
name server.

12.3.2.1 ISS as a load balancer
If ISS is used with a domain name server, then ISS can be used as a DNS
load-balancing mechanism. A load-monitoring daemon is installed on each server

Executor

Manager

Advisor

Weights

Dispatcher
contentserver1.com

contentserver2.com

List of
machine to

balance
Chapter 12. Load Balancer 207

in a cluster. One of these servers will be elected as the main monitor. The
load-monitor will periodically monitor the activity of the other servers, or agents,
in the group to detect which agent is the least heavily loaded and communicate
this information with other agents in the cluster. The load-monitor and agents in
the cluster work closely together to reliably monitor and communicate with each
other. ISS then balances the load on servers using this agent information. If it
detects a failed server or overloaded server, then the load-monitor simply
forwards traffic around it.

Figure 118. Load balancing using ISS

When a client submits a request for resolution of the DNS name of an ISS server,
ISS resolves the name to the IP address of the server in the cluster and forwards
this IP address to the client. The client will then resubmit the original request, and
the load-monitor, based on the current health information of the agents, will
forward the request to the healthiest server. During the next periodic monitor of
the agents, the load-monitor will receive the updated health of the agent chosen
to handle the request.

12.3.2.2 ISS as an information provider
Alternatively, you can use ISS without DNS. When this deployment is used, ISS
will collect server load information and pass this to a load balancer, who will use
the information about the status of each server to perform load balancing. ISS
can provide this information to the Dispatcher or its own internal observers. ISS
ensures that the information used by the Dispatcher or its own observers
accurately reflects the load on the servers.

ISS and the Dispatcher can be used together to maximize load balancing for your
cluster. ISS supplies the Dispatcher with server load information and the
Dispatcher uses the information to load balance requests. Using ISS and the
Dispatcher together in such a manner provides a two-tier load-balancing
architecture.

Whether deployed with or without DNS, with ISS all servers in the cluster work
together to eliminate any single point of failure on the cluster. For more
information on ISS refer to the IBM Load Balancer User’s Guide Version 3.0 for
Multiplatforms.

ISS server 1

ISS server 2

DNS
ISS

Load
Monitor

agent

agent
208 IBM WebSphere Everyplace Suite

12.3.3 Content Based Routing
Content Based Routing (CBR) performs application load balancing by distributing
a Web site’s load among servers according to the content of browsers requests.

CBR combines the load balancing, manager and advisor functions of Dispatcher
with the Caching Proxy content filtering functions to permit load balancing based
on the content of HTTP, POP3 and IMAP requests. Caching Proxy rules can be
written to load-balance client requests over different sets of servers in a cluster
based on:

• Client IP address
• Entire URL
• Protocol portion of the URL
• Host portion of the URL
• Path portion of the URL
• Referrer HTTP header
• User-Agent HTTP header

For HTTP requests, CBR provides the ability to proxy requests to specific servers
based on the content requested. Using the rules above, CBR can direct and
balance requests for different content to content-specific servers. For example, if
the Load Balancer receives a request for a URL for a page that is made of WML
and JSPs, CBR can determine that the content of the request contains WML and
JSP files. The Load Balancer will then direct the WML request to a server
dedicated to handling WML, and redirect the request for the JSP to a dedicated
application server.

This differentiation based on any criteria provides you with the ability to classify a
request, for example as a frequent buyer, and direct it to a high-capacity server or
give access to specialized Web content.

Rules-based CBR can be used with HTTP protocol on port 80 and 443.

For POP3 and IMAP requests, CBR is a proxy that chooses an appropriate server
based on user name and password provided by the client.

For more information on the functionality and configuration of CBR, refer to the
IBM Load Balancer User’s Guide Version 3.0 for Multiplatforms.

12.3.4 Affinity
When requests are received by the dispatcher, it will select the optimal server at
that time to handle the request. When subsequent requests come from the same
client, the Load Balancer treats them as unrelated TCP/IP connections and again
selects the optimal server. The overhead in creating the TCP/IP connection is
high, and the resources in doing so could be more efficiently used to handle new
connection requests.

This server connection independence can be a problem for some client
connections that need to hold their client session information on the server, or
keep state information in memory or on local disk. A client’s initial connection to a
server will create a session, stored on the server, which contains session
information required by both the client and server. Subsequent connections from
the same client may go to another server in the cluster and the client cannot
access the session information.
Chapter 12. Load Balancer 209

The Load Balancer provides functions that can be used to maintain such a
relationship or affinity. Affinity can also be used to ensure that the client continues
to be load balanced to the same server for some period of time. Using affinity you
can configure a “sticky bit” between client and server. Affinity can be implemented
for different Load Balancer components. Affinity can be applied to the Dispatcher,
or CBR components.

12.3.4.1 Client IP affinity
The Dispatcher and CBR can use this to maintain affinity between a client and
one of the server in the cluster based on the IP address of the client. Client IP
affinity is useful in an intranet environment but less so in an Internet where client
IP addresses can be masked by the IP address of a proxy server or firewall.
Using Client IP affinity, the Load Balancer assumes that all connections from the
same IP source are potentially the same client. Another drawback with its use is
that you can end up with server overload because of client IP address
concentration.

12.3.4.2 Dispatcher affinity
Affinity can be used implemented with the Dispatcher component based on the
port to which clients connect on.

• Server affinity

When a client originally contacts the site, specifying a host name and port
number, the request is load balanced to the chosen server by the Dispatcher
in the normal way. With the affinity configured, any subsequent connections
sent by the client on the same port will be dispatched to the same server until
a configurable affinity time-out value expires. The Dispatcher allows you to
configure this sticky option on a per-port basis. For example if you initially
connect to http://wes.com on port 80, then all subsequent requests from your
IP address to wes.com on 80 will be directed to the same server.

• Cross-port affinity

Cross-port affinity covers requests coming in from multiple ports. If a client
request is first received by one port, and the next request comes in on another
port, cross-port affinity allows the dispatcher to send all client requests on
different ports to the same initial server. For example if a clients initial request
is http://wes.com:80, and the subsequent request is https://wes.com:443, then
with cross-port affinity enabled the Dispatcher will recognize this request as
coming from the same IP address, and will route the request to the original
server where the client session information is held.

• Rule-based affinity

Rule affinity override allows the stickiness of a particular port to be overridden
for a particular server, even though the port is defined as sticky. You can use
rules to define when and why requests are sent to servers in your cluster. For
example, your cluster may have a a load-balancing rule defined to direct a
particular client IP address to a content server on port 80. If that server is
overloaded and rule-based affinity is defined, then the rule will be temporarily
overridden and the request will be sent to a less busy server.

• Server affinity API

Server-directed affinity API provides affinity under the control of the
application rather than the Dispatcher’s load-balancing algorithm. Using this
feature your application can decide where users need to be directed and tell
210 IBM WebSphere Everyplace Suite

the Load Balancer to set up an affinity relationship before they ever contact
the site.

12.3.4.3 CBR affinity
Affinity can be used implemented with the CBR component based on the content
of client requests.

• Cookie affinity

Cookie affinity can be used to ensure that session state information is
maintained between a client and the content server it connects to initially.
Making a rule sticky would normally be used for those applications that store
client state at the server, for example servlets and CGI. Using CBR, the
Caching Proxy will determine the content of the client request, and the Load
Balancer will then use this information to forward the request to the
appropriate server. The chosen server is stored as a cookie, and placed by the
Caching Proxy into the HTTP header of the server response to the client. If the
HTTP header of a client’s subsequent request to the Load Balancer contains
the cookie and the cookie is still valid, then the client will maintain affinity with
the initial server.

12.3.5 Overview of advisors
The Load Balancer will perform a TCP/IP level check on the health of the content
servers that it is load balancing. This check is generally a very basic ping. If the
check is unanswered, the Load Balancer will assume that the server is inactive
and not route traffic to that server.

More often, the content server itself may be active but the applications running on
it are either inactive or not delivering full functionality. If the basic TPC/IP check is
answered, the Load Balancer will still route traffic to these content servers, even
though the user will not be able to use the application running on them. This
impairs the effectiveness of the Load Balancer for providing an available Web
site.

This can be easily solved through the use of advisors. The Load Balancer
provides standard and customized advisors to perform checks on the applications
that run on the servers it load balances. Using these advisors, if an error or
unexpected response is received from the applications, the advisor will provide
this information to the Manager component of Dispatcher. The Dispatcher can
then use this information to route requests for that particular application to an
active application.
Chapter 12. Load Balancer 211

Figure 119. Using advisors to monitor the health of your applications

12.3.5.1 Standard advisors
The Load Balancer provides standard advisors to provide an application-level
check that each server is up and running. The advisor is a lightweight client that
runs as part of the Dispatcher to pass real commands to each application server
to simulate application functionality. The Load Balancer provides standard
advisors for HTTP, FTP, SSL, SMTP, NNTP, POP3, Telnet, WTE, ping, and WLM
services.

12.3.5.2 Customized advisors
Custom advisors are potentially more powerful in resolving the problem of
dispatching to dead applications. Custom advisors can be used to provide more
specific and tailored load metrics directly from the application. A custom advisor
can be created to check other protocols or implement specific extensions to the
Advisor. Written in Java, it works with counterpart code on the application server
to provide a high degree of synergy between the Dispatcher and the application is
it balancing. For example, a servlet running on the application server can be
coded to extract in-depth performance data from the server, or verify valid
connectivity to a back-end server or database and returns the results to the
Dispatcher.

The Load Balancer provides a sample custom advisor for use with IBM
WebSphere Application Server to check the connectivity of both the WebSphere
Application Server and from the WebSphere Application Server to a back-end
DB2 database.

12.4 Providing high availability with the Load Balancer

One of the basic functions of the Load Balancer is to provide availability to a
group of servers by not directing client requests to a failed server. This same
principlel can be applied to the Load Balancer; Since the Load Balancer is the
address to which clients connect, if it fails or is inactive then clients cannot
access both the Dispatcher and more importantly the content servers that the
Dispatcher is load balancing. The Load Balancer itself should also provide high
availability. Both the Dispatcher and ISS components can provide high availability.

• Dispatcher

To eliminate the Dispatcher itself as a single point of failure, another
Dispatcher can be implemented. A standby Dispatcher machine could remain

Dinternet

contentserver1.com

contentserver2.com

Advisor

Advisor

Advisor
212 IBM WebSphere Everyplace Suite

ready at all times to take over load balancing should the primary Dispatcher
machine fail.

• ISS

ISS is intrinsically highly available. All nodes in a cluster work together to
eliminate any single point of failure. Should the monitor machine fail, the survivors
elect a new monitor to take over automatically.

12.4.1 High availability using the Dispatcher
Two options are available to the Dispatcher to increase the availability of your
cluster:

• Heartbeat high availability

• Mutual high availability

12.4.1.1 High availability using heartbeats
To implement high availability using heartbeats, the Dispatcher can be configured
with a standby machine on the same cluster that listens for heartbeats from the
active machine. These heartbeats are the communication sessions between the
two machines. If the standby Dispatcher receives a response then it synchronizes
its state with the active machine. If the standby machine detects that the
heartbeat from the active machine is no longer being received, it becomes active,
and will take over the cluster IP addresses and takes the role of balancing and
forwarding requests.

Figure 120. Providing high availability to the Dispatcher using heartbeats

Typically failover occurs in five seconds or less, minimizing the number of
connections attempts that might fail while the failover is in progress. The newly
activated machine still knows where to send all requests that it receives and TCP
automatically resends any individual packets that were lost during the actual
failover. The synchronized nature of the two machines also means that in the
event of failover all existing connections are also failed over to the standby
Dispatcher.

12.4.1.2 Mutual high availability
High availability for the Dispatcher can be achieved through the use of mutual
high availability. Mutual high availability allows two Dispatcher machines, an
active and standby Dispatcher, to both actively load balance client traffic, while
also acting as backups for each other. For mutual high availability, you still have
the concept of active and standby dispatchers, but they are linked to the server

Active Dispatcher
loadbalancer.com

D

D

Standby Dispatcher

contentserver1.com

contentserver2.com

internet
Chapter 12. Load Balancer 213

cluster. Each cluster will be assigned a primary and secondary dispatcher. Each
dispatcher is both the primary dispatcher to its own cluster and the secondary
dispatcher to the other dispatcher, thereby providing mutual availability. In the
event of failure, the other machine performs load balancing for both its own
cluster and the failed Dispatcher’s cluster.

Figure 121. Providing high availability to the Dispatcher using mutual high availability

Colocating
The high availability options described in 12.4.1, “High availability using the
Dispatcher” on page 213 generally involve purchasing extra machines in order to
implement the benefits of high availability and fault tolerance that the Load
Balancer provides. When a site’s load increases to the point where you need
more than one server to handle the traffic, you can add a Dispatcher to your
existing network infrastructure with a minimum of hardware investment by using
colocating. Colocating enables you to install the Dispatcher on one of your
existing machines, which may well be one of the content servers that you wish to
load balance.

Alternatively, if you wish to provide high availability to your existing Load
Balancer, you can choose to collocate your standby Dispatcher with one of the
content servers.

12.4.1.3 ISS high availability
ISS is intrinsically highly available. All the servers in an ISS cluster work together
to eliminate any single point of failure. You can configure one or more servers in a
cluster to back up the monitor server. You do this by defining the priority number
for each one. For the backup servers, or agents, if the load-monitor fails, the first
backup server, based on priority, will then become the load-monitor.

12.5 Load Balancer in WES

The Load Balancer is used in the Everyplace Suite to balance requests in real
time among Everyplace Suite components and application servers to increase
availability and scalability of heavily accessed components.

Dispatcher 1
Active Cluster 1

Standby Cluster 2
cluster 1

cluster 2

Dispatcher 2
Active Cluster 2

Standby Cluster 1

D

D

internet
214 IBM WebSphere Everyplace Suite

Figure 122. Everyplace Suite architecture - Availability components

As 4.1.3, “Scalability” on page 38, has discussed, using replicated machines is a
way of applying resources to a given workload, improving the performance of the
affected components. If you want to scale your Everyplace Suite solution, the
Load Balancer can effectively and efficiently manage several replica Everyplace
Suite components. It can also be used to balance the load between a number of
replica or non-replica servers.

Using the Load Balancer in an Everyplace Suite solution will help to ensure that
your solution can scale for a large number of clients and that availability is
consistently delivered. The Load Balancer can be placed in front of several
components in the Suite to balance high volumes of client requests to the
individual Everyplace Suite component. See Figure 122.

In the Everyplace Suite, the Load Balancer can also be used to achieve
availability by minimizing any Everyplace Suite component as a point of failure in
your solution. As Figure 122 outlines, there may be multiple points in your
solution architecture where the flow of traffic can fail. To distribute your solution’s
load without interrupting its performance, you can implement a Load Balancer in
front of several Everyplace Suite components to ensure that your solution works
seamlessly if one Everyplace Suite component fails.

To ensure high availability of both the Everyplace Suite components and the Load
Balancer itself, you could also implement the high availability features outlined in
12.4, “Providing high availability with the Load Balancer” on page 212. Using
these, will help to ensure that no one Load Balancer nor Everyplace Suite
component can fail and prevent the next hop in the user request to take place.

Figure 122 recommends where Everyplace Suite components are best placed to
use the Load Balancer:

1 IBM Everyplace Authentication Server

Availability

Dial-up

WAP / Wireless

Application
Servers

WTE
Cache

LB

LB

LB

Load
Balancer
clustering

LB
RS/6000
HACMP
clustering

HACMP

SecureWay
Directory

TPSM
Subscriber
Database

TPSM
Active Session

Database

LB

HACMPHACMPHACMP

Wireless
Gateway
Clients

Everyplace
Wireless
Gateway

Everyplace
Authentication

Server

WebSphere
Transcoding

Publisher

CP
Cache

TPSM
Self Care

TPSM
Enrollment

TPSM
Device Manager

LB

LB
MQSeries

Everyplace
HACMP

HTTP/IP
traffic

LB

1

2

3

4

5

8

6

7

9 10

11

12
Chapter 12. Load Balancer 215

2 IBM WebSphere Transcoding Publisher

3 Tivoli Personalized Services Manager, Enrollment

4 Tivoli Personalized Services Manager, Self Care

5 Tivoli Device Manager Server

6 Other application servers inside the Everyplace Suite domain

7 Edge Server - Caching Proxy (depending on its use and configuration)

For other Everyplace Suite components it is either not suitable to use the Load
Balancer or the individual component may provided its own specialized load
balancing. It is recommended that you use the specialized product load balancing
or HACMP failover for the following components in the Everyplace Suite:

8 IBM SecureWay Directory

9 TPSM Subscriber database

10 TPSM Active Session Table database

11IBM MQSeries Everyplace

12IBM Everyplace Wireless Gateway

For a discussion on the availability options for these components refer to 3.6,
“Availability - dispatchers and clusters” on page 32.

This next section outlines how the Load Balancer can be effectively utilized with
each of the WES components that are suited for the Load Balancer.

12.5.1 Using the Load Balancer with the Authentication Server
The projected number of concurrent Everyplace Suite users will grow dramatically
over time. In order to accommodate this growth, the Authentication Server can be
clustered using the Load Balancer to provide for upward scalability as the number
of concurrent users increases.

The Authentication Server acts as the entry point for all client requests to the
Everyplace Suite. It is also the base URL of the Everyplace Suite domain. In
other words, when clients connect to the Everyplace Suite, they connect using
the Authentication Server’s host name. If a Load Balancer is positioned in front of
a cluster of Authentication Servers, the Load Balancer then becomes the site IP
address to which your clients send all requests. See 12.3, “Component overview”
on page 204 for details on how the Load Balancer actually load balances.
216 IBM WebSphere Everyplace Suite

Figure 123. Using the Load Balancer with the Authentication Server

Figure 123 illustrates the architecture when a Load Balancer is deployed to
balance requests for an Authentication Server cluster. If a client wishes to access
an Everyplace Suite service, then the client will connect to http://wes.com. Client
requests are received by the Load Balancer, which will determine which EAS in
the cluster is best placed to handle the client authentication request. Refer to
Chapter 6, “Authentication” on page 69, for more details on the authentication
process used by the Authentication Server.

Affinity can also be used with the Authentication Server. Once authenticated, all
subsequent user requests can be directed through the same Authentication
Server through the use of the affinity feature that the Load Balancer provides.
With the sticky option configured, subsequent connection requests from a client
will be dispatched to the original Authentication Server until a configurable
time-out value expires.

If you do not configure the affinity then each subsequent client request will have
to go directly to AST to be validated. See Chapter 6, “Authentication” on page 69
for more details on where and why affinity could be used by the Authentication
Server.

Figure 124. Affinity between the Load Balancer and the Authentication Server

Using advisors to monitor Authentication Server RADIUS and AST
Full availability will not be achieved when using the Load Balancer with the
Authentication Server if either the RADIUS or AST servers are inactive. In this
case a Customized Advisor could be used to monitor the health of the RADIUS

Everyplace
Authentication

Server

Everyplace
Wireless
Gateway

HTTP/IP
traffic

wes.com

wes2.com

http:// wes.com

wes1.com

Everyplace
Authentication

Server

http:// wes.com D

Everyplace
Authentication

Server

Everyplace
Wireless
Gateway

HTTP/IP
traffic

wes.com

wes2.com

http:// wes.com

wes1.com

Everyplace
Authentication

Server

http:// wes.com D
Chapter 12. Load Balancer 217

and AST servers, and feed back this information to the main Load Balancer in
front of the Authentication Server. When determining which the Authentication
Server to dispatch a client request to, the Dispatcher could use the information
returned from the customized advisors, residing on both the RADIUS and AST
server, to find the optimal Authentication Server. Refer to 6.5, “Scalability and
availability” on page 82 for more details.

Figure 125. Using customized advisors with the Authentication Server

12.5.2 Using the Load Balancer with WebSphere Transcoding Publisher
As the number of users accessing the Everyplace Suite domain from different
client devices grows, the demands for transcoding of application content to suit
the different devices will increase. Also, the actual process of transcoding Web
content is a high-intensive activity, and as the number of requests for transcoding
increases WebSphere Transcoding Publisher’s time spent performing the
transcoding, rather than accepting requests for Web content on an application
server. This delay is most problematic for Web content requests that do not
require any form of transcoding.

The Load Balancer can be positioned in front of a cluster of WTP servers to
resolve this potential bottleneck. It will accept requests from authenticated clients
and dispatcher the request to the optimal server. Figure 126 on page 219
illustrates the hops from the Authentication Server to WebSphere Transcoding
Publisher with the Load Balancer positioned in front to balance. The
Authentication Server will direct all authenticate user requests to the Load
Balancer; this configuration is done in the Caching Proxy’s ibmproxy.conf. The
Load Balancer will then dispatch the request to WebSphere Transcoding
Publisher, which in turn will retrieve the requested content, transcode the content
if necessary and delivery the transcoded content directly to the Authentication
Server, which will in turn forward the response back to the client.

RADIUS

AST

Everyplace
Authentication

Server

Everyplace
Wireless
Gateway

HTTP/IP
traffic

wes.com

wes2.com

http:// wes.com

wes1.com

Everyplace
Authentication

Server

http:// wes.com D

RADIUS

AST

A

A

A

A

A

218 IBM WebSphere Everyplace Suite

Figure 126. Using the Load Balancer with WebSphere Transcoding Publisher

No session state is maintained between client and WebSphere Transcoding
Publisher,. Therefore, it makes little sense to implement an affinity between the
Load Balancer and WebSphere Transcoding Publisher. CBR could be used to
forward client requests for transcoded content to particular WebSphere
Transcoding Publisher. For example you could forward all requests for WML to a
WebSphere Transcoding Publisher server dedicated to transcoding these WML
requests. Advisors, whether standard or customized, could be utilized to provide
advanced monitoring of the health of the WebSphere Transcoding Publisher
servers in the cluster.

12.5.3 Using the Load Balancer with application servers
TPSM has several components that are all part of the Everyplace Suite: TPSM
Enrollment Server, TPSM Device Manager, and TPSM Self Care Server. For all
application servers, as the number of Everyplace Suite users increase so the
demand to access content on these application servers increases.

Figure 127. Using the Load Balancer with Everyplace Suite application servers

The Load Balancer can be positioned in front of any of these components to
delivery both scalability and availability. As Figure 127 illustrates, the Load
Balancer can be placed in front of TPSM Enrollment, Self Care Servers, and
Device Manager, and any Everyplace Suite applications within your domain.

Everyplace
Authentication

Server

ibmproxy.conf
Proxy /* wes.com

WebSphere
Transcoding

Publisher

wes.com

wes2.com

wes1.com

WebSphere
Transcoding

Publisher

D

Everyplace
Authentication

Server

WebSphere
Transcoding

Publisher

TPSM
Enrollment

TPSM
Self Care

TPSM
Device Manager

wes.com

D

HTTP/IP
traffic

wes cluster 1

wes cluster 2

wes cluster 3

wes cluster 4
Chapter 12. Load Balancer 219

When the Load Balancer is deployed in this configuration, client requests are
received by the Load Balancer, which in turn dispatches the request to the
optimal server to handle the request, The application server will respond directly
to the requesting component without going back through the Load Balancer.

With a Device Manager Server only the initial request is sent to the Load
Balancer; the Load Balancer with the Caching Proxy is configured using proxy
directives to redirect the subsequent requests directly to a Device Manager
Server. See 9.4.5, “Deployment within the Everyplace Suite” on page 157 for
more details.

If any of the application servers require stateful connections, then affinity can be
used to maintain the connection. Advisors can also be utilized to determine not
only the health of the application servers, but to monitor the application that
resides there.

12.5.4 Using the Load Balancer in the Everyplace Suite
Availability requires more than simply introducing Load Balancers in front of every
component. This next section will provide a discussion of over-balancing in the
Everyplace Suite using the Load Balancer.

12.5.4.1 Over-balancing in the Everyplace Suite
As the previous sections have outlined, the Load Balancer can be effectively used
with many of the Everyplace Suite components to provide availability and
scalability by load balancing requests over horizontal servers. But availability, in
the context of the Everyplace Suite, requires more than simply introducing
dispatchers in front of every Everyplace Suite recommended component.

Replicating content server and introducing a Load Balancer in front of the cluster
to balance the request for some deployments can create problems.
Over-balancing is a problem that must be avoided.

Scalability and performance are the key objectives of the Load Balancer.
Unnecessary latency is to be prevented at all costs by ensuring that the shortest
possible path lengths are used. Careful consideration must be made regarding
the extra latency that introducing multiple Load Balancers will create in the overall
path. Each extra Load Balancer you introduce to your architecture will introduce a
further hop that a request must travel through before reaching its final destination.
The worst-case scenario of this over-balancing is that performance can be
negatively impacted. Each Load Balancer introduces a further hop in the other
path; with each hop the client is still waiting for a response and the response rate
can be increased. This is contrary to exactly what the Edge Server is designed to
solve. The number of Load Balancers that you deploy in your solution must be
weighted against your goals for increasing performance.
220 IBM WebSphere Everyplace Suite

Appendix A. Devices/networks supported by the Everyplace Suite

The Everyplace Suite runs on AIX Version 4.3.3 and Solaris Version 7 platforms
only. The Everyplace Suite also requires that the Java Development Toolkit (JDK
Version 1.8.8) be installed on servers installing any Everyplace Suite component.
The following table displays the system requirements and prerequisites for each
component.

Table 6. Prerequisites for WebSphere Everyplace Suite components

Everyplace Suite Component Requirements and Prerequisites

Everyplace Authentication Server Edge Server - Caching Proxy

Wireless GatewayWireless Gateway • DB2 Enterprise Edition 7.1 or Oracle
DB 8.1.5 (8i)

• IBM X.25 co-processor card if you are
connecting to any of the following
packet radio networks:

– ARDIS-X.25

– DataTAC-5000

– Mobitex

– Modacom-SCR

– MCA-bus RS/6000 machines: IBM
X.25 Interface co-processor/2 card

– ISA-bus RS/6000 machines: IBM
X.25 Interface co-processor/1 card

Note: If you connect to ARDIS,
DataTAC-SCR, or Mobitex by IP
instead of X.25, you do not need
an X.25 Interface co-processor
card.

• Asynchronous adapter and modem if
you connect to a circuit-switched
cellular network using RS232
communication (for example, PSTN,
GSM, or AMPS).

• LAN adapter for connection to the IP
network and to the RNG of a
DataTAC-TCP, Mobitex-TCP, or
RNC3000 radio network

• AIXLinkX.25 1.1.5 (if using X.25
connectivity)

Wireless Gatekeeper JRE 1.2.2

Everyplace Suite Administration Console Netscape Navigator 4.08, or
Netscape Communicator 4.5 or higher

Edge Server - Load Balancer • GSKit (IKEYMAN)

• Edge Server - Caching Proxy
© Copyright IBM Corp. 2000 221

Tivoli Personalized Services Manager • WebSphere Application Server,
Standard Edition, 3.0.2

• DB2 UBB 7.1 or Oracle 8.1.5 RDMS

• JDBC connector (Oracle JDBC) if
Using Oracle

• DBI/DB Perl module to Perl 5

• IBM HTTP Server

• IGB RAM, 2GB hard disk space

Edge Server - Caching Proxy • Network Dispatcher Admin package
and Device driver

• 4GB Ultra SCSI disk or 16GB SSA
disk

Transcoding Publisher SecureWay Directory 3.2

Everyplace Suite Component Requirements and Prerequisites
222 IBM WebSphere Everyplace Suite

Supported Pervasive Devices and Network Types
The Everyplace Suite components support the following devices and platforms:

Table 7. Devices supported by WebSphere Everyplace Suite components

Everyplace Suite
Component

Supported Devices Supported Platforms and Network
Types

Wireless Gateway • IBM Workpad Z50

• HP 660LX

• HP Jornada 820

• Compaq 2010C

• Phillips Velo 500

• Sharp Mobilon Pro

• Sharp Mobilon Pro

• LG Phenom
Express

• NEC 770 Mobile
Pro

• IBM ThinkPad

• Non-IBM Laptops

• Palm VII

• Palm V

• WorkPad C3

• Windows CE 2.11

• Windows 95

• Windows 98

• Windows NT

• Windows 2000

• Palm OS 3.x

Transcoding Publisher • IE4

• IE5

• Netscape

• PocketIE

• Handweb 1.1

• Windows 3.2

• WindowsCE

• Palm OS

Tivoli Personalized
Services Manager

• Palm V

• Palm III

• Compaq Aero 800

• Compaq Stinger

• ESBU Screen
phone

• PvC Client Stack

• Palm OS 3.0 or higher

• Windows CE 3.0

• IAP500

• BelA OS

MQSeries Everyplace • Palm V

• Psion 5MX (Pro)

• Psion NetBook

• HP Jornada 820
(CE)

• Palm OS 3.0

• Windows CE

• Windows 95

• Windows 98

• Windows 2000
Appendix A. Devices/networks supported by the Everyplace Suite 223

Table 8. Networks supported by Everyplace Wireless Gateway

MNC type Description Install this network
support

ardis-tcp ARDIS standard context routing using a
TCP connection

Ardis

ardis-x25 ARDIS standard context routing using
an X.25 connection

Ardis

dataradio-bdlc Dataradio BDLC connection Dataradio

dataradio-msc Dataradio multi-site controller
connection

Dataradio

datatac-5000 DataTAC 5000 using an X.25
connection

DataTAC

datatac-6000 DataTAC 5000 using a TCP/IP
connection

DataTAC

dial-isdn Integrated switched digital network
connection

Dial

dial-pstn Primary switched telephone network
connection

Dial

dial-tcp Dial connection through a IP-attached
modem server

Dial

ip-lan IP-based network, such as CDPD,
frame relay, cable modem, or LAN

IP LAN

ip-wdp IP-based network using wireless
datagram protocol

Installed automatically
with Wireless Gateway

mobitex Mobitex international standard
connection, such as Norcom Satellite

Mobitex

mobitex-tcp Mobitex using a TCP connection Mobitex

modacom-scr Modacom standard context routing Modacom

rnc-3000 Radio network controller Motorola PMR
224 IBM WebSphere Everyplace Suite

Appendix B. Special notices

This publication is intended to help IT Architects and IT Specialists to plan and
design e-business solutions supporting pervasive computing. The information in
this publication is not intended as the specification of any programming interfaces
that are provided by IBM WebSphere Everyplace Suite Version 1.1. See the
PUBLICATIONS section of the IBM Programming Announcement for IBM
WebSphere Everyplace Suite Version 1.1 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX AS/400
CICS DB2
DB2 Universal Database IBM
MQSeries Netfinity
© Copyright IBM Corp. 2000 225

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In Denmark,
Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned
by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

RS/6000 S/390
Redbooks Redbooks Logo
SecureWay SP
System/390 WebSphere
Wizard WorkPad
226 IBM WebSphere Everyplace Suite

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks

For information on ordering these publications see “How to get IBM Redbooks” on
page 229.

• IBM WebSphere Transcoding Publisher V1.1: Extending Web Applications to
the Pervasive World, SG24-5965

• Mobile Computing: The eNetwork Wireless Solution, SG24-5299

• IBM WebSphere Performance Pack: Caching and Filtering with IBM Web
Traffic Express, SG24-5859

• IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay
Network Dispatcher, SG24-5858

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

C.3 Other resources

These publications are also relevant as further information sources:

• IBM WebSphere Everyplace Suite Getting Started (product online publication)

• WebSphere Edge Server for Multiplatforms Getting Started Guide Version 1.0,
SC09-4566

• WebSphere Edge Server for Multiplatforms Web Traffic Express User’s Guide
Version 1.0, GC09-4567

• WebSphere Edge Server for Multiplatforms Web Traffic Express Programming
Guide Version 1.0, GC09-4568

• Wireless Gateway for AIX Administrators Guide (product online publication)

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 227

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

C.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www-4.ibm.com/software/network/mobile/library/

• http://www-4.ibm.com/software/ts/mqseries/everyplace/

• http://www-4.ibm.com/software/webservers/edgeserver/library.html

• http://www-4.ibm.com/software/webservers/transcoding/library.html/

• http://www-4.ibm.com/software/data/db2/library/

• http://www-4.ibm.com/software/webservers/appserv/library.html

• http://www-4.ibm.com/software/webservers/httpservers/library.html

• http://www-4.ibm.com/software/network/directory/library/

• http://www.ibm.com/pvc

• http://www.alphaworks.ibm.com

• http://www.almaden.ibm.com/cs/wbi

• http://www.ibm.com/software/webservers/transcoding/library.html

• http://www.software.ibm.com/ts/MQSeries.html

• http://www.wes.com/main.html

• http://www.ibm.com/software/webservers/edgeserver/library.html

• http://loadbalancer.com

• http://w3.itso.ibm.com

• http://w3.ibm.com

• http://www.elink.ibmlink.ibm.com/pbl/pbl

• http://www.software.ibm.com/ad/cb

• http://www.software.ibm.com/ebusiness/connector

• http://www.omg.org

• http://java.sun.com/products/ejb

• http://www.whatis.com/iiop.htm

• http://www.javasoft.com/beans/docs

• http://www.software.ibm.com/ebusiness/pm.html#J

• http://java.sun.com/products/jndi/index.html

• http://java.sun.com/products/jdk/rmi/index.html

• http://www.software.ibm.com/ebusiness/pm.html#S

• http://www.software.ibm.com/ebusiness/appsrvsw

• http://www.software.ibm.com/xml

• http://www.w3.org/TR/WD-xs
228 IBM WebSphere Everyplace Suite

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 229

http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto: pubscan@us.ibm.com
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
230 IBM WebSphere Everyplace Suite

Glossary

ALP. ArTour Link Protocol. See WLP.

Applet. A Java applet is a small application program
that is downloaded to and executed on a Web browser
or network computer. A Java applet typically performs
the type of operations that client code would perform in
a client/server architecture. It edits input, controls the
screen, and communicates transactions to a server,
which in turn performs the data or database
operations.

API. Application Program Interface.

Bean Managed Persistence. Bean Managed
Persistence (BMP) is a term used to describe a type of
entity EJB where the bean developer specifies how the
bean is to be persisted to a database by writing Java
code in the appropriate methods to perform the tasks
required.

Cache Server. Some networks use a cache server to
store Web pages and other data, so that if the same
pages are requested frequently, they can be served
from the cache rather than repeatedly retrieved from
external Web servers. The external cache is an HTTP
proxy such as IBM Web Traffic Express. IBM
WebSphere Transcoding Publisher can use it to store
and retrieve transcoded Web pages and intermediate
results to avoid repeating the transcoding of frequently
accessed pages and giving thus better performance.

CICS. Customer Information Control System is an IBM
application enabler system very popular in
mainframes.

Component Broker. Component Broker is an IBM
CORBA management server product that provides an
object request broker (ORB) to facilitate the
deployment of CORBA objects. The EJB deployment
engine in WebSphere is based largely on similar
services in Component Broker. See
http://www.software.ibm.com/ad/cb for more
information.

Connectors. The term connectors, or e-business
connectors, is used to describe gateway products from
IBM that allow access to enterprise data on back-end
systems over the Internet. They include direct browser
access to back-end systems such as DB2 through
Net.data and also Java access through products such
as the CICS gateway for Java. See
http://www.software.ibm.com/ebusiness/connector
s.html for more information.

Container Managed Persistence. Container
Managed Persistence (CMP) is a term used to
describe a type of entity EJB where the code to persist
the bean to a database is generated at deployment
time by the EJB container.

Clustering. Clustering is a technique used to provide
scalability through the use of multiple copies of an
© Copyright IBM Corp. 2000
application on the same or separate machines. Careful
management of the different applications is necessary
to ensure that they work together effectively.
WebSphere has limited clustering support in Version
2.x and more support in Version 3.0.

CORBA. Common Object Request Broker Architecture
(CORBA) is a cross-platform, industry-standard
distributed object protocol. CORBA is used to locate
and use objects on a variety of platforms, written in a
variety of languages across a network. See
http://www.omg.org for more information on CORBA.

e-business. e-business is a term used by IBM to
describe the use of Internet technologies to transform
business processes. What this means in practice is
using Internet clients such as Web browsers as front
ends for applications that access back-end legacy
systems to allow greater access. See
http://www.software.ibm.com/ebusiness for more
information.

Enterprise Java Beans. Despite the name, Enterprise
Java Beans or EJBs are not Java Beans. Enterprise
Java Beans are server-side Java components that are
designed for distributed environments. They do not
exist in isolation but are rather deployed in containers
that provide services such as security, naming and
directory services and persistent storage. WebSphere
Application Server is just such a container. See
http://java.sun.com/products/ejb/ for more
information.

IBM WebSphere Transcoding Publisher. IBM
WebSphere Transcoding Publisher is a network
software that modifies content presented to users
based on the information associated with the request,
such as device constraints, network constraints, user
preferences, and organizational policies. Transforming
content can reduce or eliminate the need to maintain
multiple versions of data or applications for different
device types and network service levels.

Image Transcoder. Image Transcoder is the
transcoder that can scale, modify quality, and modify
color levels in JPEG and GIF images. Additionally, the
Image Transcoder can convert JPEGs to GIFs for
devices that do not render JPEGs.

Intermediary. In a typical Web environment,
information is simply sent from a server to a browser
for display and interaction. However, there are many
ways that adding an intermediary between the browser
and the server can improve the system. For example,
an intermediary can keep track of the information the
user has viewed in order to make it easier to find
information again. Or, an intermediary may enhance
the information that the user sees by adding
annotations and personalization beyond what the
server was designed to do. Intermediaries turn the
231

network into a “smart pipe” with applications that can
enhance the information on the Web.

IIOP. Internet Inter ORB Protocol (IIOP) is an internet
protocol used for CORBA object communication. For
more information see
http://www.whatis.com/iiop.htm.

Java Application. A Java application is a program
written in Java that executes locally on a computer. It
allows programming operations in addition to those
used in applets which can make the code platform
dependent. It can access local files, create and accept
general network connections, and call native C or C++
functions in machine-specific libraries.

JavaBeans. JavaBeans are Java components
designed to be used on client systems. They are Java
classes that conform to certain coding standards. They
can be described in terms of their properties, methods
and events. JavaBeans may be packaged with a
special descriptor class called a BeanInfo class and
special property editor classes in a JAR file. Java
Beans may or may not be visual components. See
http://www.javasoft.com/beans/docs for more
information.

JavaServer Pages. JavaServer Pages are HTML
source files that include Java extensions to provide
dynamic content and increased functionality.
JavaServer Pages are compiled into Servlets before
deployment. See
http://www.software.ibm.com/ebusiness/pm.html#J
avaServer Pages.

JDBC. JDBC is a Java API that allows Java programs
to communicate with different database management
systems in a platform-independent manner. Database
vendors provide JDBC drivers for their platforms that
implement the API for their database, allowing the Java
developer to write applications to a consistent API no
matter which database is used.

JNDI. Java Naming and Directory Interface (JNDI) is
an API that allows Java programs to interface and
query naming and directory services in order to find
information about network resources. JNDI is used in
WebSphere to provide a directory of Enterprise Java
Beans. See
http://java.sun.com/products/jndi/index.html for more
information.

JSP. See JavaServer Pages.

MEG. A plug-in encapsulates a correlated set of
transcoding components (MEGs). A MEG is one of
Monitor, Editor (Request or Document) or Generator.
More information on MEGs and WBI (Web
Intermediaries) can be found from
http://www.almaden.ibm.com/cs/wbi.

Mini-certificates. A simplified digital certificate
specification used by WTLS.

MQe. See MQ Everyplace.

MQ Everyplace. The latest member of the MQSeries
family of products. It is designed to satisfy the
messaging needs of lightweight devices and the
requirements that arise from the use of fragile
communication networks.

PDA. Personal Digital Assistant.

Persistence. Persistence is a term used to describe
the storage of objects in a database to allow them to
persist over time rather than being destroyed when the
application containing them terminates. Enterprise
Java Bean containers such as WebSphere provide
persistence services for EJBs deployed within them.

Preference Aggregator. Preference Aggregator is the
process where the client’s device, network type, and
any other information that might cause the transcoders
to produce a different variant (or permutation) of the
resource, are determined.

Preference Aggregation. Preference aggregation is
the process where the client's device, network type,
and any other information that might cause the
transcoders to produce a different variant (or
permutation) of the resource, are determined.

Preference profiles. IBM WebSphere Transcoding
Publisher uses preference profiles to represent the
characteristics of devices and networks, and a default
user profile to represent organizational policies. Each
profile defines IBM WebSphere Transcoding Publisher
how to treat documents that will be delivered to that
device or over that network.

A preference profile can represent a particular type of
device, such as a WorkPad, or a particular network
type, such as a wireless network.

Proxy. Transcoding Publisher connects through a
proxy server that is configured with a firewall to
manage network traffic and to protect your network
from outside intrusion.

RMI. Remote Method Invocation (RMI) is a lightweight
distributed object protocol that allows Java objects to
call each other across a network. RMI is part of the
core Java specification. See
http://java.sun.com/products/jdk/rmi/index.html
for more information.

Scalability. Scalability is an abstract attribute of
software that refers to its ability to handle increased
data throughput without modification. WebSphere
handles scalability by allowing execution on a variety
of hardware platforms that allow increased
performance and clustering.

Servlets. Servlets are Java classes that run on Web
servers to provide dynamic HTML content to clients.
They take as input the HTTP request from the client
and output dynamically generated HTML. For more
information on servlets see
http://www.software.ibm.com/ebusiness/pm.html#S
ervlets.
232 IBM WebSphere Everyplace Suite

SOCKS. A SOCKS server is a proxy server that uses a
special protocol, sockets, to forward requests.
Transcoding Publisher connects through a SOCKS
server that is configured with a firewall to manage
network traffic and to protect your network from
outside intrusion (it supports Versions 4 and 5 SOCKS
servers).

SSL. Secure Sockets Layer. A secure protocol used for
authentication and encryption. SSL can be used over
HTTP, RMI, Telnet and other protocols.

Stand-alone Network Proxy. User uses the IBM
WebSphere Transcoding Publisher as a normal proxy
in his browser and the data that flows from the original
source will be transcoded in the proxy according to the
device and network profile needed.

Stylesheet Transcoder. Stylesheet Transcoder is the
transcoder that selects the stylesheet and applies it to
an input Extensible Markup Language (XML)
document to produce a version that is appropriate for
the target device.

Text Transcoder. Text Transcoder is the transcoder
that can modify elements of a text document based on
device, network, and potentially user preference
information. The primary use of this Text Transcoder is
to modify Hypertext Markup Language (HTML)
documents to remove unsupported elements, reduce
space usage, replace features such as images or
frames with links, and otherwise tailor documents to
make them render more gracefully on constrained
devices.

TLS. Transport Layer Security. The standard (IEFT)
security protocol on the Internet. It is expected to
eventually supersede SSL.

Transcoder. Transcoder is a program that modifies the
content of a document.

Transcoding. Transcoding is a new technology that
gives you the ability to make Web based information
available on handheld and other new type devices
economically and efficiently or on the slow network
connections like a dial up modem connection. With
transcoding, users receive information (text and
images) tailored to the capabilities of the devices they
are using and also tailored according to the capacity of
the network being used.

It is also the process where the MEGs related to
modifying the request, generating the original resource
and all of the document (or resource) editing (or
transcoding) occurs.

WAP. Wireless Application Protocol.

WAS. IBM WebSphere Application Server.

Web Application Servers. A Web application server
is a software program designed to manage
applications at the second-tier of three-tier computing,
that is, the business logic components. A Web
application server manages applications that use data

from back-end systems, such as databases and
transaction systems, and provides output to a Web
browser on a client. For more information see
http://www.software.ibm.com/ebusiness/appsrvsw.
html

WLP. A modified version of the Point-to-Point Protocol
(PPP) used by the IBM Wireless Gateway to support
wireless (non-WAP) client devices.

WTE. Web Traffic Express. An IBM caching proxy.

WTLS. Wireless Transport Layer Security. A simplified
version of TLS designed specifically for WAP devices.
It uses mini-certificates.

WTP. WebSphere Transcoding Publisher.

X.509. A digital certificate specification used by SSL
and TLS.

XML. XML, or eXtensible Markup Language, is a
platform-independent and application-independent
way of describing data using tags. XML (a subset of
SGML) is similar to HTML in that it uses tags to
describe document elements but different in that the
tags describe the structure of the data rather than how
the data is to be presented to a client. XML has the
facility to allow data providers to define new tags as
needed to better describe the data domain being
represented. For more information see
http://www.software.ibm.com/xml.

XSL Stylesheets. XSL stylesheets are documents that
describe a mapping between XML documents and
visual data that can be presented to a client in a
browser. XSL was a draft standard when this book was
being written. The draft can be found at
http://www.w3.org/TR/WD-xs.
233

234 IBM WebSphere Everyplace Suite

Index

A
Access Control 137
Access Manager 98, 101
Account 144
account options 147
Accounting 135
Active Session Table 57, 71, 94, 95, 141, 161
adaptive (multi-modal) portal 15, 26
Adaptive Network Access 15, 24
Adaptive portal 24
address concealing 54
Administration 136
Administration Console 18
Advisors 207, 211
Affinity 209
Aggregation 7
Aggregation with personalization 8
AIX 96, 101, 104
ALP 56, 110
application content 119
application servers 13, 24, 219
Application Service Providers 7
Application value-add 31
Architecture 23, 96
ArTour Link Protocol 55
AST 57, 71, 95, 217
Asynchronous Messaging 17
ATM 106
Authenticate 62
Authentication 53, 54, 56, 137, 158, 190
Authentication Proxy 70, 84, 86, 87, 88
Authentication Server 76, 141
Authorization 53, 55, 56, 190
availability 23, 32, 140

B
back-end machines 140
bandwidth 90
Banner Ad 147
Base services 18, 21
binary WML 110
Bluetooth 10
Branded CD 147
branded enrollment 148
building solutions 37
Bulk enrollment 147
business integration 4
Business Services 13

C
Cache 31, 48, 184
Cache considerations 123
Cache control 123
Caching Agent 195
Caching Proxy 18, 123, 126, 183, 190
Caching Rules 193
© Copyright IBM Corp. 2000
caching services 13
Caching storage 195
capacity 38, 42
CBR affinity 211
CDMA 90
CDPD 90
Central repositories 23
change billing plan 149
change password 149
change secret data 149
Client IP affinity 210
Clients 23
Cluster Manager 99
clustering 35
clusters 32
collaboration servers 13
Colocating 214
Component host 31
components 24
compression 93
Confidentiality 53, 55, 56
configuration 21, 126
Connection pooling 47
Connectivity 13, 17, 19, 91
Content Assembly 162
Content Based Routing 209
content filtering 185, 196
Content handling 17, 19
content personalization 20
content provider 114
Content Selection 162
Cookie affinity 211
cookies 109
Core 137
core business applications 28
Core components 23
Cross-port affinity 210
CSR 149
Customer Care 20, 141, 145, 149
Customer Data Warehouse 13
customer relationship management (CRM) 6
customer self-care 20
Customer Service Representative 147, 149
customized advisors 212

D
Data aggregation 47
data encryption 54
data model 137, 142
Data Synchronization 17
database services 13
DB2 Universal Database 18
Deal 144
decrypt 62
Default network 121
Default transcoders 126
deploying solutions 37
235

device 121, 128
device management 135, 150
Device manager 151
Devices profiles 127
Dial-up network 122
digital certificate 54
Director 145, 149
Dispatcher 205, 212
Dispatcher affinity 210
dispatchers 32
Dual security zones 28
Dual security zones with adaptation 28

E
e-business 4
e-business solution 4, 15, 17
e-business systems 37
Edge Server 71, 183, 203
Edge Server - Caching Proxy 94, 112
Edge Server - Load Balancer 112
Editor 128
e-mail 6
encrypt 62
end-to-end performance 40
Enrollment 138, 145, 146
Everyplace Administration Console 21
evolution of e-business 3
Executor 207
Extending Caching Proxy 186
external billing systems 20
External networks 24

F
fast IR 10
filter 120
Filtering 196
Firewall 56, 63
forward proxy 185, 186
Front-end 136
functional areas 16

G
Gatekeeper 98, 99, 104
Geographic Information Systems 11
GIF 121
GIS 11
GPRS 90
GSM 9, 90

H
HACMP 34, 141
HACMP for databases 34
heartbeats 213
Horizontal Scaling 44
hosting 135
HTML 119
HTTP 105
HTTP Headers 190

HTTP protocol 3
HTTP proxy 120
HTTP servers 13, 18, 139

I
IBM DB2 Universal Database 31
IBM Everyplace Authentication Server 18, 20, 54, 76, 84,
86, 88
IBM Everyplace Synchronization Manager 20
IBM Everyplace Wireless Gateway 18, 19, 20, 54, 89,
91, 105, 117
IBM MQSeries Everyplace 19, 27, 61, 171, 176
IBM Network Dispatcher 112, 203
IBM SecureWay Directory 31
IBM WebSphere Everyplace Suite 15, 18, 91, 94, 96,
105

Installation 21
Identification 162
Image transcoders 129
I-Mode phones 121
Initial enrollment 153
Installation 126
In-stream cache 31, 200
Integration 137, 138, 168
Integration Toolkit 141
Integrity 53, 56
Internet 3
Internet Portals 7
Internet Service Providers 7
ISDN 90
iTk Provisioning 141

J
Java 97, 104
JavaBeans 120

L
LAN 23
latency 90
LDAP 30, 57, 71, 94, 97, 98, 102
LDAP directory 121
LDAP services 30
Load Balancer 18, 33, 76, 203, 204
load balancing 13
Local security 62

M
MAC 111
management services 20
Manager 207
marketplaces 8
master 100
MEGlets 129
MEGs 128
message digest 54
Message-level security 63
Messaging 171
messaging services 13
236 IBM WebSphere Everyplace Suite

micro-browser 104
MNC 97
mobile 89
mobile communications 12
Mobile Data Synchronization Server 18
Mobile Network Connections 96
Monitor 128
Monitor Authentication Server 217
MQSeries 174
MQSeries Everyplace for Mulitplatforms 18
MQSeries family 174
MQSeries Integrator 175
multi-channel 15
multi-modal portal 12
Mutual High Availability 213

N
network 121
network access 15, 24, 135
network operator 113
Network profile 127, 128
new profiles 127
Non-repudiation 53, 55, 56
NO-OP HTTP header 121
Norcom 90

O
Open Systems Gateway 10
Optimization 17, 20, 93, 97, 123, 200
Over-balancing 220

P
packet filtering 54
packets 64
Palm Pilot 9, 124
payment choices 149
PCS 90
PDA 9, 10, 90
performance 17, 23, 31, 37
performance budget 40
Personal Digital Assistant 9
personalization 6, 8, 162
Personalization Services 138, 161
personalized portal 138
pervasive 92
Pervasive computing 8
Pervasive computing devices 152
pervasive computing devices 3
Pervasive device management 137
Point-to-Point Protocol 55, 89, 92, 110
portal 8
portal implementation 28
Portal Infrastructure 13
portal toolkit 163
postal mail 6
PPP 56, 90, 110
Preference Profile creator 130
preference profiles 120, 126

Premium Content 138
Properties 144
Protection 185
protocols 24
provisioning 138, 168
Proxy 56
Proxy Chaining 198
Proxy model 121
Proxy Server 184
PSTN 90
pTk 163
push 108
Push Access Protocol 109
push proxy 94

Q
QoS 107
Queue-based security 62
queuing 171

R
RADIUS 72, 79, 95, 97, 110, 138, 160, 217
RADIUS server 140, 150, 160
RAS 106
RC5 111
Realm 143
Referral Service 147
Regname 143
reliability 90
Remote Access Server 106
Remote Cache Access 197
report generation 20
Reporting 145, 150
repositories 30
Request batching 46
Request Viewer 130
reverse proxy 185, 187
Rule-based affinity 210

S
scalability 37, 38, 42, 140
Scaling techniques 44
secure boundary 53, 56
Secure Proxy 191
Secure Socket Layer 54, 107
SecureWay Directory 18
security 17, 20, 53, 97
Self Care 138, 145, 148
Server affinity 210
Server affinity API 210
service providers 115
session ID 80
session location 81
SHA-1 111
Shared security zone with adaptation 28
short hold mode 93
Short Message Service 108
single sign-on 24, 56
237

slave 100
smart telephones 10
SMS 108, 110
Snoop tool 132
Software distribution 155
Solaris 96
solution providers 6
specialized servers 34
SSL 54, 56, 59, 105, 107, 111
SSL Support 192
SSL tunneling 191
Standard Advisors 212
Stylesheet Selector 129
stylesheets 129
Subscriber 135, 144, 145
Subscriber and device management 13, 18, 20
subscriber enrollment 20
subscribers 135
subscriptions 149
Supply Chain Management (SCM) 5
System Management 141, 145

T
TCP header reduction 93
TCP/IP 9, 89, 92, 96, 105, 112
telephony 6
Text transcoders 129
Thin client 151
Tivoli Personalized Services Manager 18, 135
TLS 54, 93, 107
Token Ring 90
TPSM 138, 139, 140, 141, 145, 146, 147, 161
TPSM Authentication 159
TPSM database 141
TPSM Enrollment 27
TPSM Subscriber Database 30
transcoders 122, 128, 129
Transcoding 17, 88, 119
transcoding capabilities 129
Transform Tool 130
Transparent Authentication Proxy 70, 84, 87, 185, 186
transport layer security 54, 107
Triple-DES 63

U
UDP/IP 96
Unauthenticated access 28
Usage Record 145
User profiles 30, 127, 162
User-Agent 127
USSD 106

V
virtual private network 17, 97, 110, 112
Visual XML Transformation Tool 133
Visual-DTD 133
VPN 97, 110

W
WA 113
WAP 89, 90, 91, 92, 96, 102, 103, 104, 105, 106, 107,
113, 121
WAP browser 11
WAP programming model 104
WDP 96, 106, 111
Web Enrollment 147
Web Traffic Express 183
Web TV 124
WebSphere Application Server 18
WebSphere Edge Server 18
WebSphere Performance Pack 183
WebSphere Transcoding Publisher 18, 19, 87, 124, 126,
218
WinCE 124
Wireless Application Protocol (WAP) 90
Wireless Client 56
wireless communications 9
Wireless Ethernet 10
Wireless network 122
Wireless Optimized Link Protocol 110
Wireless Transport Layer Protocol 110
wireless transport layer security 54, 55
WML 94, 105, 106, 107, 108, 119
WML caching 109
WML plug-in 105
WMLscript 107
Workload 46
WorkPad 9, 124
World Wide Web 3
WTE plug-in 106
WTLS 56, 59, 93, 110
WTP 121
WWW-Authenticate 77

X
X.25 106, 113
XML 97, 98, 102, 104, 105, 106
XML Fragmentation 129
XSL 120
XSL stylesheet 129
XSL Trace 133
XSL transforms 129

Y
Yellow Pages 7
238 IBM WebSphere Everyplace Suite

© Copyright IBM Corp. 2000 239

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook
"made the difference" in a task or problem you encountered. Using one of the following methods, please review the
Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5995-00
An Introduction to IBM WebSphere Everyplace Suite Version 1.1 Accessing Web
and Enterprise Applications

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the following
groups:

O Customer
O Business Partner
O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may be
used to provide you with information
from IBM or our business partners
about our products, services or
activities.

O Please do not use the information collected here for future marketing or
promotional contacts or other communications beyond the scope of this
transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

(0.5”
spine)

0.475”<->0.873”
250

<->
459

pages

An Introduction to IBM
 W

ebSphere Everyplace Suite Version 1.1 Accessing W
eb and Enterprise Applications

®

SG24-5995-00 ISBN 0738419346

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

An Introduction to IBM
WebSphere Everyplace Suite
Version 1.1
Accessing Web and Enterprise Applications

Build business
solutions to reach
anyone, anywhere,
anytime

Support wireless
networks, WAP,
dial-up and Internet
connections

Single sign-on to
multiple applications
and services

This redbook is about building business solutions using the
IBM WebSphere Everyplace Suite Version 1.1 product to
enable Web and enterprise application access from
pervasive computing devices. It helps you to understand
this product and focuses on implemented architectures and
technologies included in this release such as wireless
communications, transcoding, security, caching proxy, load
balancing, messaging, and single sign-on, among others.

IBM WebSphere Everyplace Suite is an integrated
end-to-end software solution for mobile e-business. In this
redbook, you will find information that will help you plan to
successfully implement solutions that businesses must
address to be able to access Web and enterprise
applications from desktop browsers and the new class of
client devices such as WAP phones, Palm Pilots, WorkPads,
and others.

A basic knowledge of HTTP and WAP protocols as well as
some understanding of Web and Java technologies
(XML, HTML, WML, servlets, and JSPs) and the
terminology used in Web and enterprise applications is
assumed.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. Introduction
	Chapter 1. Evolution of e-business
	1.1 The Internet
	1.1.1 Limited business integration
	1.1.2 Business integration
	1.1.3 Personalization
	1.1.4 Aggregation
	1.1.5 Aggregation with personalization

	1.2 Pervasive computing
	1.2.1 A brief history
	1.2.2 The future

	1.3 The challenge

	Chapter 2. Product overview
	2.1 Functions in Everyplace Suite
	2.2 Products in Everyplace Suite
	2.2.1 Connectivity
	2.2.2 Content handling
	2.2.3 Security
	2.2.4 Optimization
	2.2.5 Subscriber and device management
	2.2.6 Base services

	Chapter 3. Architecture
	3.1 Overview
	3.2 Core components
	3.2.1 Network access
	3.2.2 Adaptive network access
	3.2.3 Adaptive (multi-modal) portal

	3.3 Unauthenticated access
	3.3.1 Dual security zones
	3.3.2 Dual security zones with adaptation
	3.3.3 Shared security zone with adaptation

	3.4 Central repositories
	3.5 Performance - caches
	3.5.1 In-stream cache
	3.5.2 Component host
	3.5.3 Application value-add

	3.6 Availability - dispatchers and clusters

	Chapter 4. Performance and scalability
	4.1 Definitions
	4.1.1 Capacity
	4.1.2 Performance
	4.1.3 Scalability

	4.2 Designing for performance and scalability
	4.2.1 End-to-end performance budget

	4.3 Scalability
	4.3.1 Scaling techniques
	4.3.2 What techniques to use where
	4.3.3 General recommendations

	Chapter 5. Security
	5.1 Background
	5.1.1 Tools and solutions to achieve security objectives

	5.2 WES security
	5.2.1 Authentication
	5.2.2 Confidentiality
	5.2.3 Authorization
	5.2.4 Data integrity
	5.2.5 Non-repudiation

	5.3 Security implementation
	5.3.1 Single sign-on
	5.3.2 Authentication
	5.3.3 Secured Connections
	5.3.4 Administration security
	5.3.5 MQSeries Everyplace security
	5.3.6 MQe security categories

	5.4 Firewall considerations

	Part 2. Services
	Chapter 6. Authentication
	6.1 Background
	6.2 Everyplace Authentication Server
	6.2.1 Everyplace Authentication Server and single sign-on
	6.2.2 Coordination with the Wireless Gateway
	6.2.3 Interface with Web Traffic Express

	6.3 Authentication Process
	6.4 Active session management
	6.4.1 Authentication Server session headers

	6.5 Scalability and availability
	6.6 Deployment scenarios
	6.6.1 TP and AP deployed
	6.6.2 Only AP deployed
	6.6.3 Hybrid TP/AP deployed
	6.6.4 Configuration for transcoding

	Chapter 7. Supporting wireless devices
	7.1 Overview
	7.2 Everyplace Wireless Gateway in the WebSphere Everyplace Suite
	7.2.1 Functions
	7.2.2 Integration

	7.3 The Everyplace Wireless Gateway
	7.3.1 Architecture of the Everyplace Wireless Gateway
	7.3.2 Mobile network connections (MNC)
	7.3.3 Wireless Gateway Clustering
	7.3.4 Cluster Manager (CM)
	7.3.5 Access Manager and persistent data storage

	7.4 The Clients
	7.4.1 The Wireless Client
	7.4.2 WAP Clients

	7.5 Administration: the Wireless Gatekeeper
	7.6 WAP gateway/proxy
	7.6.1 WAP programming model
	7.6.2 IBM WAP implementation
	7.6.3 WAP basic functions
	7.6.4 WAP data flow
	7.6.5 WAP gateway advanced functions

	7.7 Wireless gateway security
	7.8 Deployment of the Everyplace Wireless Gateway
	7.8.1 Performance, scalability, availability, and security
	7.8.2 WAP solution deployment
	7.8.3 Non-WAP solution deployment

	Chapter 8. Transcoding Web application content
	8.1 Introduction to transcoding
	8.2 Overview of WebSphere Transcoding Publisher
	8.2.1 In the IBM WebSphere Everyplace Suite

	8.3 Building with transcoders
	8.3.1 Infrastructure design
	8.3.2 Application design

	8.4 Installation and configuration
	8.4.1 Installing WebSphere Transcoding Publisher
	8.4.2 Configuring a Caching Proxy

	8.5 Preference profiles
	8.6 Transcoders
	8.6.1 Build-in transcoders
	8.6.2 Extending the transcoder

	8.7 Development tools
	8.7.1 Transform tool
	8.7.2 Request viewer
	8.7.3 Snoop tool
	8.7.4 Other resources and tools

	Chapter 9. Subscriber and device management
	9.1 Tivoli Personalized Services Manager overview
	9.1.1 Logical overview
	9.1.2 Functional overview
	9.1.3 Architecture
	9.1.4 Deployment
	9.1.5 TPSM in the Everyplace Suite

	9.2 Business and data model
	9.3 Subscriber and system management
	9.3.1 Enrollment
	9.3.2 Self care
	9.3.3 Customer care
	9.3.4 Director
	9.3.5 Reporting

	9.4 Pervasive device management
	9.4.1 Device manager overview
	9.4.2 Pervasive devices supported
	9.4.3 Initial enrollment/setup
	9.4.4 Software distribution
	9.4.5 Deployment within the Everyplace Suite

	9.5 Authentication and access control
	9.5.1 Authentication
	9.5.2 Premium Content
	9.5.3 RADIUS server
	9.5.4 Active Session Table server

	9.6 Personalization services
	9.6.1 Personalization in the Everyplace Suite
	9.6.2 Overview of pTk
	9.6.3 Preference API
	9.6.4 JSP components of pTk
	9.6.5 AdServer integration

	9.7 Integration and provisioning
	9.7.1 iTk Core and Business Object interface
	9.7.2 iTk Provisioning
	9.7.3 iTk Billing

	Chapter 10. Pervasive messaging and queuing
	10.1 Introduction to messaging and queuing
	10.1.1 Messaging with IBM MQSeries
	10.1.2 Why messaging rather than browsing?

	10.2 The MQSeries family of products
	10.2.1 MQSeries
	10.2.2 MQSeries Integrator
	10.2.3 MQSeries Workflow

	10.3 MQSeries Everyplace
	10.3.1 Key considerations
	10.3.2 IBM MQSeries and IBM MQSeries Everyplace
	10.3.3 Architectures
	10.3.4 Bridging to MQSeries networks
	10.3.5 Everyplace Suite considerations

	Part 3. Optimization
	Chapter 11. Caching Proxy
	Changing names
	11.1 Introduction to a Caching Proxy
	11.2 What is a Caching Proxy?
	11.2.1 Proxy server
	11.2.2 Cache
	11.2.3 Content filter

	11.3 Proxy server component
	11.3.1 How forward proxy works
	11.3.2 How transparent proxy works
	11.3.3 How reverse proxy works
	11.3.4 Protecting a proxy server
	11.3.5 Caching Proxy API interface
	11.3.6 HTTP Headers
	11.3.7 Secure proxy connections

	11.4 Caching component
	11.4.1 Caching rules
	11.4.2 What to cache
	11.4.3 Caching storage options
	11.4.4 Caching agent

	11.5 Content Filtering Component
	11.5.1 What is content filtering?

	11.6 High performance and scalability with the Caching Proxy
	11.6.1 Using Remote Cache Access
	11.6.2 Using proxy chaining

	11.7 Using the Caching Proxy in the Everyplace Suite
	11.7.1 The Caching Proxy as a prerequisite
	11.7.2 Using the Caching Proxy for optimization
	11.7.3 Prerequisite and optimized Caching Proxy in Everyplace Suite

	Chapter 12. Load Balancer
	12.1 Changing names
	12.2 Introduction to the Load Balancer
	12.2.1 Load Balancer delivers performance
	12.2.2 Load Balancer delivers availability
	12.2.3 Load Balancer delivers scalability

	12.3 Component overview
	12.3.1 The Dispatcher
	12.3.2 Interactive Session Support
	12.3.3 Content Based Routing
	12.3.4 Affinity
	12.3.5 Overview of advisors

	12.4 Providing high availability with the Load Balancer
	12.4.1 High availability using the Dispatcher

	12.5 Load Balancer in WES
	12.5.1 Using the Load Balancer with the �Authentication Server
	12.5.2 Using the Load Balancer with �WebSphere Transcoding Publisher
	12.5.3 Using the Load Balancer with application servers
	12.5.4 Using the Load Balancer in the Everyplace Suite

	Appendix A. Devices/networks supported by the Everyplace Suite
	Appendix B. Special notices
	Appendix C. Related publications
	C.1 IBM Redbooks
	C.2 IBM Redbooks collections
	C.3 Other resources
	C.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

