
  

ibm.com/redbooks

AIX 5L Workload
Manager (WLM)

Sofia Castro
Nurcan Tezulas

BooSeon Yu
Jørgen Berg

HoHyeon Kim
Diana Gfroerer

Effectively manage your system 
resources

Learn how to deploy the new 
functionality

Control the resource 
consumption of 
individual applications

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




AIX 5L Workload Manager (WLM)

June 2001

SG24-5977-01

International Technical Support Organization



© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject
to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (June 2001)

This edition applies to AIX Workload Manager for use with the AIX 5L for Power Version 5.1 Operating 
System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B  Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the 
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in 
Appendix G, “Special notices” on page 315.

Take Note!



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ix
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1.  The need for workload management . . . . . . . . . . . . . . . . . . . 1
1.1  Architectural differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1  Mainframe partitioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2  UNIX partitioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3  Workload management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2  The purpose of AIX WLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2.  AIX Workload Manager functionality . . . . . . . . . . . . . . . . . . . 9
2.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2  Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1  Hierarchy of classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2  Superclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3  Subclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4  Backward compatibility considerations . . . . . . . . . . . . . . . . . . . . 15

2.3  Tiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4  Class attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5  Classification process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1  Automatic assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2  Manual assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3  Class assignment rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3.1 Process classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6  WLM class accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1  Process accounting using WLM class. . . . . . . . . . . . . . . . . . . . . 27
2.6.1.1 Displaying WLM class accounting information. . . . . . . . . . . . . . 28

2.7  Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.1  Resources managed by WLM . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.2  Class resource shares  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.3  Class resource limits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.4  Backward compatibility considerations . . . . . . . . . . . . . . . . . . . . 35

2.8  WLM interaction with the kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.1  Resource usage statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.1.2 Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.1.3 Disk I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.2  Uniform Resource Access Priority (URAP) . . . . . . . . . . . . . . . . . 37
2.8.2.1 Tier regulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.3  Interaction with the scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
© Copyright IBM Corp. 2001 iii



2.8.4  Interaction with VMM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.5  Interaction with disk device drivers . . . . . . . . . . . . . . . . . . . . . . . 39

2.9  WLM Application Programming Interface  . . . . . . . . . . . . . . . . . . . . . . 40
2.10  Additional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3.  AIX Workload Manager administration . . . . . . . . . . . . . . . . 43
3.1  Property files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2  WLM configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1  Steps for a WLM configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2  Working with WLM configurations . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.3  Working with classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3.1 Using the command line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.3.2 Using SMIT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3.3 Using WSM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.4  AIX Version 4.3.3 maintenance level 8 wlmset command . . . . . . 81
3.2.5  Working with rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.5.1 Editing the rules files on the command line . . . . . . . . . . . . . . . . 82
3.2.5.2 Using SMIT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.5.3 Using WSM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.6  Checking the configuration - wlmcheck . . . . . . . . . . . . . . . . . . . . 90
3.2.7  Working with resource sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.7.1 Rset registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.7.2 Using the command line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.7.3 Using SMIT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.7.4 Using WSM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3  WLM operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.1  Modes of operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.2  Start/Stop/Update WLM - wlmcntrl  . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.2.1 Using the command line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.2.2 Using SMIT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.2.3 Using WSM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4  Hints and tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.1  Things to do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.2  Things to be aware of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4.3  LoadLeveler and WLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4.3.1 How does LoadLeveler work . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.3.2 LoadLeveler functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.4.3.3 LoadLeveler and WLM interaction . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 4.  WLM performance tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1  wlmstat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2  ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3  topas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4  svmon  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
iv AIX 5L Workload Manager (WLM)



4.4.1  Workload manager class report  . . . . . . . . . . . . . . . . . . . . . . . . 137
4.4.2  Workload manager tier report . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.5  Web-based System Manager (WSM) . . . . . . . . . . . . . . . . . . . . . . . . 150
4.6  Monitoring Workload Manager with PTX . . . . . . . . . . . . . . . . . . . . . . 152

4.6.1  xmperf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.6.2  xmservd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.6.3  Jazizo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.6.4  wlmmon / wlmperf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Chapter 5.  Manual assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.1  Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.1.1  First assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.1.2  Reassignment and cancellation  . . . . . . . . . . . . . . . . . . . . . . . . 179
5.1.3  Interaction with inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2  Manual assignment methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.2.1  AIX Version 4.3.3 maintenance level 8 manual assignment  . . . 188

5.3  Oracle database example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.4  DB2 UDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.4.1  DB2 process model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.4.2  Using AIX WLM with DB2 UDB. . . . . . . . . . . . . . . . . . . . . . . . . 192

5.5  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Chapter 6.  WLM Application Programming Interface (API)  . . . . . . . . 195
6.1  Application tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.1.1  Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.1.2  An application tag situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.1.3  Example of an application tag program. . . . . . . . . . . . . . . . . . . 197

6.2  Class management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.3  WLM management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.4  WLM statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5  WLM classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.6  WLM accounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.7  Binary compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.8  Integration with Tivoli products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.8.1  TAPM overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.8.1.1 Application instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.8.1.2 Transaction simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.8.2  TAPM and WLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.8.3  Monitoring an application in a WLM and Tivoli environment  . . . 203

6.9  Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Chapter 7.  Sizing recommendations for Workload Manager . . . . . . . 205
7.1  Typical UNIX system capacity sizing  . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2  Server consolidation considerations . . . . . . . . . . . . . . . . . . . . . . . . . 206
  v



7.3  System capacity sizing for Workload Management . . . . . . . . . . . . . . 208
7.3.1  System capacity sizing steps for server consolidation. . . . . . . . 209

7.3.1.1 Step 1 - Monitor resource usage . . . . . . . . . . . . . . . . . . . . . . . 209
7.3.1.2 Step 2 - Estimate the requirements for each application . . . . . 210
7.3.1.3 Estimate the capacity for integrated applications. . . . . . . . . . . 214

7.3.2  Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.3.2.1 Base line - Applications running on separate systems  . . . . . . 214
7.3.2.2 Approach 1 - All applications are mission-critical. . . . . . . . . . . 216
7.3.2.3 Approach 2 - Only some applications are mission-critical . . . . 217
7.3.2.4 Comparison of the cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.3.3  Considerations for memory and disk I/O bandwidth  . . . . . . . . . 221
7.4  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Chapter 8.  Practical experience  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.1  ISV case studies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.1.1  PeopleSoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.1.1.1 Case study description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
8.1.1.2 Case study method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.1.1.3 WLM configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.1.1.4 One batch - Two OLTP benchmarks: PAYROLL-FI-HR  . . . . . 232
8.1.1.5 One batch - Two OLTP benchmarks: GL-FI-HR . . . . . . . . . . . 234
8.1.1.6 Two batch benchmarks: GL-PAYROLL . . . . . . . . . . . . . . . . . . 235
8.1.1.7 Two batch - Two OLTP benchmarks: PAYROLL-GL-FI-HR  . . 235
8.1.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.1.2  SAP R/3 Case Study  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.1.2.1 SAP standard benchmark tool . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.1.2.2 WLM classes versus OS processes  . . . . . . . . . . . . . . . . . . . . 239
8.1.2.3 Multiple SAP R/3 systems consolidation objectives. . . . . . . . . 242
8.1.2.4 Multiple systems of equal size and equal priority. . . . . . . . . . . 243
8.1.2.5 Multiple systems of unequal priority . . . . . . . . . . . . . . . . . . . . . 245
8.1.2.6 Systems of unequal size but equal priority  . . . . . . . . . . . . . . . 247
8.1.2.7 One priority system with several additional systems . . . . . . . . 248
8.1.2.8 Process distribution recommendation . . . . . . . . . . . . . . . . . . . 249

8.2  Customer experience - WLM and a compute server for research . . . 252
8.2.1  The installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
8.2.2  Central AIX system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.2.3  Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.2.4  A pre-WLM solution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.2.5  The WLM solution with AIX Version 4.3.3-02  . . . . . . . . . . . . . . 255

8.2.5.1 Major advantages of this solution  . . . . . . . . . . . . . . . . . . . . . . 257
8.2.5.2 Disadvantage of this solution . . . . . . . . . . . . . . . . . . . . . . . . . . 257

8.2.6  The second WLM solution with AIX 5L . . . . . . . . . . . . . . . . . . . 257
8.2.7  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
vi AIX 5L Workload Manager (WLM)



Appendix A.  AIX Workload Manager API routines  . . . . . . . . . . . . . . . . 261
A.1  The Include file - sys/wlm.h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A.1.1  wlm_args  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
A.1.2  wlm_assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
A.1.3  wlm_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
A.1.4  wlm_bio_class_info_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
A.1.5  wlm_bio_div_info_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

A.2  WLM API functions error codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
A.3  Initialization routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

A.3.1  wlm_init_class_definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
A.3.2  wlm_initialize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

A.4  Application tag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
A.4.1  wlm_set_tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

A.5  Class management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
A.5.1  wlm_read_classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
A.5.2  wlm_create_class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
A.5.3  wlm_change_class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
A.5.4  wlm_delete_class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

A.6  WLM management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
A.6.1  wlm_set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
A.6.2  wlm_load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
A.6.3  wlm_assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.7  WLM statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
A.7.1  wlm_get_info. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
A.7.2  wlm_get_bio_stats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A.8  WLM classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
A.8.1  wlm_check  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
A.8.2  wlm_classify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A.9  WLM accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
A.9.1  wlm_initkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
A.9.2  wlm_class2key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
A.9.3  wlm_key2class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
A.9.4  wlm_endkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Appendix B.  Sample workload program . . . . . . . . . . . . . . . . . . . . . . . . . 297

Appendix C.  Sample Korn shell scripts for manual assignment  . . . . 307
C.1  Oracle example script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Appendix D.  Sample program for application tag. . . . . . . . . . . . . . . . . 309
D.1  settag.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
  vii



Appendix E.  Sample for CPU resource usage calculation  . . . . . . . . . 311

Appendix F.  Using the additional material . . . . . . . . . . . . . . . . . . . . . . . 313
F.1  Using the diskette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

F.1.1  System requirements for using the diskette  . . . . . . . . . . . . . . . . . . 313
F.1.2  How to use the diskette. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

F.2  Locating the additional material on the Internet  . . . . . . . . . . . . . . . . . . . 313

Appendix G.  Special notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Appendix H.  Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
H.1  IBM Redbooks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
H.2  IBM Redbooks collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
H.3  Other resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
H.4  Referenced Web site  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

How to get IBM Redbooks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
IBM Redbooks fax order form  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

IBM Redbooks review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
viii AIX 5L Workload Manager (WLM)



Preface

This redbook will help you work with AIX Workload Manager (WLM) and 
exploit the whole spectrum of functionality provided by WLM. It covers the 
WLM features, including the WLM performance tools, introduced in the Fall of 
2000, and is intended to be a workbook and reference to help system 
administrators and technical support and service professionals gain a deeper 
understanding of AIX WLM.

This redbook contains a detailed description of how to configure WLM; 
explains the use of new features such as manual assignment, the WLM API, 
and the WLM performance tools; and provides hints and tips gained from 
practical experience. Guidance on system sizing with WLM, primarily in 
Server Consolidation environments, has been included.

The appendices describe the test programs that were used during the 
creation of this redbook, and contain sample scripts for manual assignment 
that can help you use the new features in your environment. They also 
contain an exhaustive explanation of the WLM API routines as well as a 
sample program for application tagging to be used with the WLM API.

The shell scripts and sample program are included on a floppy disk at the 
back of this book.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world 
working at the International Technical Support Organization, Austin Center.

Gfroerer Diana is an International Technical Support Specialist for RS/6000 
and AIX Performance at the International Technical Support Organization, 
Austin Center. She writes extensively and teaches IBM classes worldwide on 
all areas of AIX, with a focus on performance and tuning. Before joining the 
ITSO in 1999, Diana Gfroerer worked in AIX pre-sales Technical Support in 
Munich, Germany, and led the Region Central, EMEA, and World Wide 
Technical Skill Communities for AIX and PC Interoperability.

Sofia Castro is an IT Specialist who has worked for IBM Global Services in 
Portugal since December 1995. She has four and half years of experience in 
AIX and communication applications in the area of post-sales support and 
services. She holds a degree in Computer Science from the Universidade 
Nova de Lisboa, Portugal, and the University of Leeds, England.
© Copyright IBM Corp. 2001 ix



Nurcan Tezulas is an IT Specialist who has worked for IBM Germany since 
March 1996. She began working at IBM Global Services and moved to the 
Web Server Sales - Enterprise Systems Groups Central Region division in 
August 1998. Her areas of expertise include HACMP, SAP R/3, and RS/6000 
high-end and midrange servers. Currently Nurcan Tezulas leads the High End 
Technology Focus Group. She holds a degree in Mathematics from the 
Fachhochschule, Stuttgart, Germany.

BooSeon Yu is an IT Specialist who has worked for IBM Korea since April 
1996. He spent six months on the S/390 marketing team and has worked for 
the pre-sales technical support team for RS/6000 since then. His mission 
includes various benchmark tests, performance tuning, troubleshooting, and 
solution implementation. BooSeon Yu holds a degree in Materials 
Engineering.

Jørgen Berg is a Senior IT Specialist working in a technical pre-sale support 
function for ESG Nordic technical support based in Denmark. His areas of 
expertise include AIX, HACMP, and SP-systems. His mission includes 
customer presentations, benchmarks, troubleshooting, solution 
implementation, and giving selected HACMP and SP-system workshops on 
behalf of IBM learning services.

HoHyeon Kim is a System Service Representative who has worked for IBM 
Global Services in Korea since December 1995. He began at S/390 System 
during his first year, and has four years of experience in RS/6000 in the area 
of post-sales and services. He holds a degree in Avionics.

Special thanks to the following people for their invaluable contributions to this 
project:

IBM Atlanta
Tommy Todd

IBM Austin
George Accapadi, André Albot, Jack Alford, Jim Beesley, Lee Cheng, 
Mark Greenberg, Mike Harrell, Ernest A. Keenan, Stephen Nasypany, 
Anthony Ramirez, Ken Rozendal

IBM Belgium
Anke Hollanders

IBM Dallas
Tim Leo
x AIX 5L Workload Manager (WLM)



IBM Germany
Angel González

IBM Germany, ISICC Walldorf
Carol Davis, Bardin Nelson

IBM Netherlands
Michael A.M. Felt

Tivoli Systems
Fergus Stewart

Zentralinstitut für Angewandte Mathematik, Forschungszentrum Jülich, 
Germany
Klaus Wolkersdorfer

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your 
comments about this or other Redbooks in one of the following ways:

  • Fax the evaluation form found in “IBM Redbooks review” on page 335 to 
the fax number shown on the form.

  • Use the online evaluation form found at ibm.com/redbooks

  • Send your comments in an Internet note to redbook@us.ibm.com
  xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


xii AIX 5L Workload Manager (WLM)



Chapter 1.  The need for workload management

This chapter describes the differences between physical partitioning, logical 
partitioning, and workload management based on the AIX Workload Manager.

Workload management is vital because the conflicting pressures of costs, a 
lack of skilled support people, fast-growing server farms, and the need for 
competitive advantage are forcing customers to look for proactive solution 
designs. Solutions that are not scalable or flexible enough to handle or that 
cannot avoid increased architectural complexity lead directly to administrator 
overhead and solution downtime. The consequences are much larger and 
longer-term problems:

  • Increased Total Cost of Ownership (TCO), such as increased hardware, 
software, and maintenance costs, and costs of excess administrators

  • Increasing fragmentation of data and applications across the enterprise

  • Reduced ability to exercise financial oversight

  • Increased business costs due to outages

Server consolidation is one solution. It helps customers deliver higher IT 
service levels in a more cost-effective fashion by optimizing both the quantity 
and distribution of servers supporting mission-critical IT functions.

However, server consolidation does not only mean physical consolidation of 
many small servers into fewer, more powerful servers. Administrators must 
go beyond simply moving department applications onto a single system. They 
must:

  • Understand how applications behave under loads and be able to realize 
what expected loads will be

  • Guarantee service levels, such as faster response times, continuous 
availability, and increased access to data

  • Gather detailed information on usage and capacity

  • Maximize their ability to make system changes flexibly

  • React to changes in workload

Workloads from many different server systems are combined into a single, 
large system. The most frequent different server systems to be combined are 
OLTP, batch, print, and general user processing systems. These workloads 
often interfere with each other and have different goals and service 
agreements.
© Copyright IBM Corp. 2001 1



The ability to change resource allocation very rapidly with minimal operator 
intervention but maximum precision utilizing scripts, traditional system 
management tools, and other components of their IT infrastructure becomes 
very necessary. 

1.1  Architectural differences

The demand for advanced management functionality has caused some 
confusion about the differences between partitioning and workload 
management.

These two functions are successfully integrated in mainframe environments. 
Current UNIX offerings for partitioning and workload management have clear 
architectural differences. Partitioning creates isolation between multiple 
applications running on a single server, hosting multiple instances of the 
operating system. Workload management supplies effective management of 
multiple, diverse workloads to efficiently share a single copy of the operating 
system and a common pool of resources.

1.1.1  Mainframe partitioning
Mainframes first addressed the need to isolate application environments from 
each other through physical partitioning. A certain degree of operator 
intervention was involved when resizing the physical partitions, and 
applications had to be quiesced before boundaries could be shifted. This 
explicit management burden limited the use of physical partitions as a tool to 
respond to fluctuating workload needs.

About 15 to 20 years ago, mainframe developers replaced physical partitions 
with logical partitions (LPARs). They also created an additional layer of 
resource management across partitions by specifying time-slicing 
parameters. With these functions, logical partitions provided a much finer 
degree of granularity than physical partitions.

At the same time, mainframe developers produced workload management 
tools. Systems were now able to respond dynamically to fluctuating loads. 
These tools were implemented as a kernel function within each of the 
mainframe’s SMP partitions.

1.1.2  UNIX partitioning 
In current UNIX environments, partitioning means splitting a hardware system 
into specific hardware boundaries (partitions), and then running a separate 
copy of the operating system on each partition. The copy of the operating 
2 AIX 5L Workload Manager (WLM)



system may execute on a different level on each partition. This can be done 
on SMP or NUMA systems.

Generally each partition must include a basic set of resources to boot and 
execute a copy of the operating system, including:

  • At least one processor

  • A minimum amount of memory (hardware/operating system dependent)

  • I/O devices for boot and application dependent functions

  • HW interrupt controller functions

Different hardware vendors have implemented partitioning in various ways, 
for example:

  • Real LPAR (individual processors, I/O boards, memory, and so forth can 
be independently assigned to a partition)

  • Hardware based partitioning solutions based on hardware building blocks 
(for example four processors, associated memory, and dedicated PCI 
buses), which is referred to as physical partitioning (PPAR)

  • Virtual LPAR (shared processors, non-shared PCI buses, and non-shared 
memory)

A diagram of partitioning is shown in Figure 1 on page 4.
Chapter 1. The need for workload management 3



Figure 1.  Partitioning

Partitioning can be used to solve several problems, such as running 
production and test versions of an operating system or application on 
different partitions for verification or certification purposes. Partitioning can 
also be used for operating system or application fault isolation, as a software 
fault condition on a partition does not affect the other partitions. However, 
global hardware problems such as system down will affect all partitions.

Extra resources are needed because each partition requires its own copy of 
the operating system, each of which must has to be managed as an individual 
system.

memory

Operating
System

P P P P

memory

I/O subsystem

P P P P

memory

16-waySMP
not

partitioned

SameH/W,
three

systems
to manage

Partitioning
P P P P

memory

P P P P

memory

P P P P

memory

P P P P

memory

OperatingSystem

I/O subsystem

P P P P

PartitioningSteps:
1. Reconfiguresystem
2. Reinstall operatingsystemsandapplications
3. Reboot

P P P P

memory

Operating
System

I/O subsystem I/O subsystem

OperatingSystem
4 AIX 5L Workload Manager (WLM)



Because resources - in the current partitioning implementations - have 
constraints that restricts flexibility, they cannot easily be switched from one 
partition to another. Free resources on one partition will be wasted.

A more flexible solution to this problem is provided by workload management 
products such as the AIX Workload Manager (WLM).

1.1.3  Workload management
Workload management allows the system administrator to divide resources 
between jobs without having to partition the system as shown in Figure 2.

Figure 2.  WLM is workload isolation

WLMis workload isolation

16-waySMP

Workload Management Steps
1. SystemAdministrator setup
2. AIXautomaticallygives resources

accordingto entitlements

SameH/W,
onesystem

Resource
Allocation
Boundary

P P P P

memory

P P P P

memory

P P P P

memory

P P P P

memory

I/O subsystem

OperatingSystem

OperatingSystem

I/Osubsystem ------------------------ UtilizationI/Osubsystem ------------------------ Utilization

CPU --------------------------------- UtilizationCPU --------------------------------- Utilization

Memory ------------------------- UtilizationMemory ------------------------- Utilization
Chapter 1. The need for workload management 5



WLM provides isolation between user communities with very different system 
behaviors. This can prevent effective starvation of workloads with certain 
characteristics, such as interactive or low CPU usage jobs, by workloads with 
other characteristics such as batch or high memory usage jobs.

The setup of WLM is much simpler than partitioning, where reinstallation and 
reconfiguration are required. With WLM, a single operating system manages 
the entire system and all jobs, so only one system has to be administered.

WLM manages percentages of CPU time rather than CPUs. This allows 
control over CPU resources at a finer granularity.

CPU time, memory, and I/O bandwidth are managed separately. Therefore, 
different styles of applications can be managed.

AIX Workload Manager (WLM) is an operating system feature introduced in 
AIX Version 4.3.3 and enhanced in AIX 5L. It is part of the operating system 
kernel at no additional charge.

AIX WLM delivers the basic ability to give system administrators more control 
over how scheduler, Virtual Memory Manager (VMM), and device driver calls 
allocate CPU, physical memory, and I/O bandwidth to classes-based users, 
groups, application paths, process types, or application tags. It allows a 
hierarchy of classes to be specified, processes to be automatically assigned 
to classes by their characteristics, and manual assignment of processes to 
classes.

Classes can be superclasses or subclasses.

AIX WLM self-adjusts when there are no jobs in a class or when a class does 
not use all the resources that are allocated for it. The resources will 
automatically be distributed to other classes to match the policies of the 
system administrator.

Because scheduling is done within a single AIX operating system, system 
management is far less complex.

Unlike LPAR, workload management does not allow multiple operating 
systems.

1.2  The purpose of AIX WLM

Customers, system administrators, performance consultants, and managers 
should be aware that Workload Manager is not a tuning tool. AIX WLM is a 
6 AIX 5L Workload Manager (WLM)



resource management tool that specifies the relative importance of each 
workload by classes, tiers, limits, shares, and rules.

WLM is ideally suited to balance the demands or requests of competing 
workloads when one or more resources are constrained. It prevents a 
relatively uncontrolled way of resource scheduling for different applications 
on the system. Administrators are spared from writing complex scripts. 

Before sizing a consolidated system (see Chapter 7, “Sizing 
recommendations for Workload Manager” on page 199) by putting two or 
more systems on a single, more powerful server, one thing is vital; know your 
workload. It is very important that you understand the requirements of the 
workloads on each individual server that you are planning to incorporate onto 
the consolidated server.

Your application vendor might provide you with recommendations for system 
sizing. It is more important is, however, that you create application 
documentation based on your actual workloads in addition to that, which 
means gathering detailed information on usage and capacity for your 
individual systems. This can be done by performance monitoring. Document 
the workload behavior in a standalone situation, that is, on each traditional 
single workload server. After migrating from the standalone servers to the 
consolidated server, which might have improvements in CPU performance or 
internal and external bus bandwidth, the workload behavior should again be 
documented so that you can compare future changes to this relative load. 
After this, you can start implementing different WLM configurations and 
testing what works best for you. 

The same applies if WLM is used on a server that already has several 
different workloads running. Get a baseline first by monitoring the system 
performance without WLM, then implement different WLM configurations, and 
monitor each of them in order to decide which one works best in your 
environment. Chapter 8, “Practical experience” on page 223, provides helpful 
examples on how this can be done. 
Chapter 1. The need for workload management 7



8 AIX 5L Workload Manager (WLM)



Chapter 2.  AIX Workload Manager functionality

AIX Workload Manager (WLM) is an operating system feature released with 
AIX Version 4.3.3. This chapter focuses on WLM’s functionality, which is 
available with AIX 5L Version 5.1 and AIX Version 4.3.3 maintenance level 8. 
The following outlines the enhancements AIX WLM offers over earlier 
releases:

With AIX Version 4.3.3 maintenance level 2 (APAR IY06844), additional 
features were added to the first release of WLM. These were:

  • Classification of existing processes to avoid stopping and starting 
applications when stopping and starting WLM.

  • Passive mode to allow “before” and “after” WLM comparisons.

  • Management of application file names, which allowed WLM to start even if 
some applications listed in the rules file could not be accessed.

AIX 5L Version 5.0 introduced the following enhancements:

  • Management of disk I/O bandwidth in addition to the already-existing CPU 
cycles and real memory.

  • Graphical display of resource utilization.

  • Performance Toolbox integration with WLM classes enabling the toolbox 
to display WLM performance statistics.

  • Fully-dynamic configuration including setup of new classes without 
restarting WLM.

  • Application Programming Interface (API) to enable external applications to 
modify the system’s behavior.

  • Manual reclassification of processes, which provides the ability to have 
multiple instances of the same application in different classes.

  • More application isolation and control:

  - New subclasses add ten times the granularity of control (from 27 to 270 
controllable classes).

  - Administrators can delegate subclass management to other users and 
groups rather than root or system.

  - Inheritance of classification from parent to child processes.

  • Application path name wildcard flexibility extended to user name and 
group name.
© Copyright IBM Corp. 2001 9



  • Resource sets can be defined to limit the set of resources to which a given 
class has access in terms of CPUs (processor set).

  • Tier separation enforced for all resources, enabling a deeper prioritization 
of applications.

Additions to WLM with AIX 5L Version 5.1:

  • A new class attribute was added, localshm, that indicates whether 
memory segments accessed by processes in different classes remain 
local to the class they were initially assigned to or if they go to the Shared 
class. 

  • Class accounting allows to collection and reporting of the use of various 
system resources by WLM class.

  • New graphical performance tools, wlmmon and wlmperf, support long 
term recordings and analysis.

The following additions were introduced in AIX Version 4.3.3 maintenance 
level 8:

  • Manual assignment to a specific superclass or subclass, which is useful to 
manage different instances of the same application.

  • Class inheritance that indicates whether or not a child process should 
inherit its parent class or be classified according to the automatic 
assignment rules upon exec().

  • Ability to have CPU maximum limits be hard limits.

  • Ability to prevent shared memory segments to go into the shared class 
when accessed by processes in different classes.

  • Tier separation has been enhanced.

2.1  Overview

WLM gives the system administrator the ability to create different classes of 
service for jobs and to specify attributes for those classes. These attributes 
specify minimum and maximum amounts of CPU, physical memory, and disk 
I/O throughput to be allocated to a class. WLM then classifies jobs 
automatically to classes using class assignment rules provided by a system 
administrator. These assignment rules are based on the values of a set of 
attributes of a process. The system administrator or a privileged user can 
also manually assign jobs to classes, thereby overriding the automatic 
assignment. The basic WLM elements are depicted in Figure 3 on page 11.
10 AIX 5L Workload Manager (WLM)



Figure 3.  Basic WLM elements

This way, WLM monitors and regulates the CPU utilization of threads, 
physical memory consumption, and disk I/O bandwidth use of processes 
active on the system. The manner in which the resources are regulated is 
dependent on the WLM configuration defined by the system administrator.

There are a number of controlling variables in WLM that facilitate managing 
classes of jobs to achieve the automatic application of resource entitlement 
policy you define (Figure 3). The primary concept to remember is that classes 
are what you manage in WLM, and there are five job attributes available for 
process identification; users, groups, application path names, process types, 
and application tags (application tags are set by the WLM API). Class 
resource shares and class resource limits allow you to define resource 
entitlements for each class. Tiers allow you to prioritize groups of classes.

WLM configuration can be performed through direct editing of the 
configuration files and AIX commands, or through the AIX administration 
tools, SMIT, or Web-based System Manager (WSM) graphical user interface.
Chapter 2. AIX Workload Manager functionality 11



2.2  Classes

The central concept of WLM is the class. A class is a collection of processes 
(jobs) that has a single set of resource limits applied to it. WLM assigns 
processes to the various classes and controls the allocation of system 
resources among the different classes. For this purpose, WLM uses class 
assignment rules and per-class resource shares and limits set by the system 
administrator. The resource entitlements and limits are enforced at the class 
level. This is a way of defining classes of service and regulating the resource 
utilization of each class of applications to prevent applications with very 
different resource utilization patterns from interfering with each other when 
they are sharing a single server. 

2.2.1  Hierarchy of classes
WLM allows system administrators to set up a hierarchy of classes with two 
levels by defining superclasses and subclasses. In other words, a class can 
either be a superclass or a subclass. The main difference between 
superclasses and subclasses is the resource control (shares and limits):

  • At the superclass level, the determination of resource entitlement based 
on the resource shares and limits is based on the total amount of each 
resource managed by WLM available on the machine.

  • At the subclass level, the resource shares and limits are based on the 
amount of each resource allocated to the parent superclass.

The system administrator (the root user) can delegate the administration of 
the subclasses of each superclass to a superclass administrator (a non-root 
user), thus allocating a portion of the system resources to each superclass 
and then letting superclass administrators distribute the allocated resources 
among the users and/or applications they manage.

WLM supports 32 superclasses (27 user defined plus five predefined). In 
turn, each superclass can have 12 subclasses (10 user-defined and two 
predefined). Depending on the needs of the organization, a system 
administrator can decide to use only superclasses or both superclasses and 
subclasses. He or she can also use subclasses for only some of the 
superclasses.

Each class is given a name by the WLM administrator who creates it. A class 
name is up to 16 characters long and can contain only uppercase and 
lowercase letters, numbers, and underscores (_). For a given WLM 
configuration, the names of all the superclasses must be different from one 
another, and the names of the subclasses of a given superclass must be 
12 AIX 5L Workload Manager (WLM)



different from one another. Subclasses of different superclasses can have the 
same name. The fully-qualified name of a subclass is 
superclass_name.subclass_name.

In the remainder of this chapter, whenever the term class is used, it is 
applicable to both subclasses and superclasses. The following sections 
describe both super- and subclasses in greater detail as well as the backward 
compatibility WLM provides to configurations of its first release.

2.2.2  Superclasses
A superclass is a class with subclasses associated with it. No processes can 
belong to the superclass without also belonging to a subclass, either 
predefined or user-defined. A superclass has a set of class assignment rules 
that determines which processes will be assigned to it. A superclass also has 
a set of resource limitation values and resource target shares that determine 
the amount of resources that can be used by processes belonging to it. 
These resources will be divided among the subclasses based on the 
resources limitation values and resource target shares of the subclasses.

Up to 27 superclasses can be defined by the system administrator. In 
addition, five superclasses are automatically created to deal with processes, 
memory, and CPU allocation as follows:

  • Default superclass: The default superclass is named Default and is always 
defined. All non-root processes that are not automatically assigned to a 
specific superclass will be assigned to the Default superclass. Other 
processes can also be assigned to the Default superclass by providing 
specific assignment rules.

  • System superclass: This superclass has all privileged (root) processes 
assigned to it if they are not assigned by rules to a specific class, as well 
as the pages belonging to all system memory segments, kernel 
processes, and kernel threads. Other processes can also be assigned to 
the System superclass. The default is for this superclass to have a 
memory minimum limit of one percent.

  • Shared superclass: This superclass receives all the memory pages that 
are shared by processes in more than one superclass. This includes 
pages in shared memory regions and pages in files that are used by 
processes in more than one superclass (or in subclasses of different 
superclasses). Shared memory and files that are used by multiple 
processes that all belong to a single superclass (or subclasses of the 
same superclass) are associated with that superclass. Only when a 
process from a different superclass accesses the shared memory region 
or file are the pages are placed in the Shared superclass. This superclass 
Chapter 2. AIX Workload Manager functionality 13



can have only physical memory shares and limits applied to it. It cannot 
have shares or limits for the other resource types, subclasses, or 
assignment rules. Whether a memory segment shared by processes in 
different superclasses, is classified into the Shared superclass, or remains 
in the superclass it was initially classified into depends on the value of the 
localshm attribute of the superclass the segment was initially classified 
into. For further information on localshm, refer to Section “Localshm” on 
page 21.

  • Unclassified superclass: The processes in existence at the time WLM is 
started are classified according to the assignment rules of the WLM 
configuration being loaded. During this initial classification, all the memory 
pages attached to each process are charged either to the superclass to 
which the process belongs (when not shared or shared by processes in 
the same superclass) or to the Shared superclass when shared by 
processes in different superclasses. However, there are a few pages that 
cannot be directly tied to any processes (and, thus, to any class) at the 
time of this classification, and this memory is charged to the Unclassified 
superclass. An example for that would be pages from a file that has been 
closed. The file pages will remain in memory, but no process really owns 
these pages; therefore, they cannot be charged to any specific class. Most 
of this memory will end up being correctly reclassified over time, when it is 
either accessed by a process or freed and reallocated to a process after 
WLM is started. Thereafter only a few kernel processes, such as wait or 
lrud, will appear in the Unclassified superclass. This superclass cannot 
have physical memory shares and limits applied to it, nor can subclasses 
or assignment rules be specified on this superclass.

  • Unmanaged superclass: A special superclass, named Unmanaged, will 
always be defined. No processes will be assigned to this class. This class 
will be used to accumulate the memory usage for all pinned pages in the 
system that are not managed by WLM. The CPU utilization for the 
waitprocs is not accumulated in any class. This is done deliberately; 
otherwise, the system would always seem to be at 100 percent CPU 
utilization, and it could be misleading for users when looking at the WLM 
or system statistics. This superclass cannot have shares or limits for any 
resource types, subclasses, or assignment rules specified.

2.2.3  Subclasses
A subclass is a class associated with exactly one superclass. Every process 
in the subclass is also a member of the superclass. Subclasses only have 
access to resources that are available to the superclass. A subclass has a set 
of class assignment rules that determine which of the processes assigned to 
the superclass will belong to it. A subclass also has a set of resource 
14 AIX 5L Workload Manager (WLM)



limitation values and resource target shares that determine the resources that 
can be used by processes in the subclass. These resource limitation values 
and resource target shares indicate how much of the superclass’ target (the 
resources available to the superclass) can be used by processes in the 
subclass.

Up to 10 out of total 12 subclasses can be defined by the system 
administrator or by the superclass administrator for each superclass. The two 
special subclasses, Default and Shared, are always defined in each 
superclass as follows:

  • Default subclass: The Default subclass is always defined. All processes 
that are not automatically assigned to a specific subclass of the 
superclass will be assigned to the Default subclass. You can also assign 
other processes to the Default subclass by providing specific assignment 
rules.

  • Shared subclass: This subclass receives all the memory pages that are 
used by processes in more than one subclass of the superclass. This 
includes pages in shared memory regions and pages in files that are used 
by processes in more than one subclass of the same superclass. Shared 
memory and files that are used by multiple processes that all belong to a 
single subclass are associated with that subclass. It is only when a 
process from a different subclass of the same superclass accesses the 
shared memory region or file that the pages are placed in the Shared 
subclass of the superclass. There are no processes in the Shared 
subclass. This subclass can only have physical memory shares and limits 
applied to it. It cannot have shares or limits for the other resource types or 
assignment rules specified. Whether a memory segment shared by 
processes in different subclasses of the same superclass is classified into 
the Shared subclass or remains in the subclass it was initially classified 
into depends on the value of the localshm attribute of the subclass the 
segment was initially classified into. For further information on localshm 
refer to Section “Localshm” on page 21.

2.2.4  Backward compatibility considerations
System administrators have the option of using only superclasses or both 
superclasses and subclasses in their WLM configurations. The system 
administrator can also choose to create subclasses only for some 
superclasses. So, when starting AIX 5L’s WLM with configurations created in 
AIX Version 4.3.3, only superclasses will be used. The default output of the 
wlmstat command, in this case, will show just the superclasses and will be 
similar to the one users of the first release are familiar with as shown in the 
the following example.
Chapter 2. AIX Workload Manager functionality 15



If some of the superclasses have subclasses defined by a WLM 
administrator, the subclasses will be shown in wlmstat output as follows:

The same thing happens with the output of the ps command. For processes in 
a superclass without any subclasses, ps will show the superclass name as 
the process' class name:

2.3  Tiers

Tier configuration is based on the importance of a class relative to other 
classes in WLM. In other words, tiers define the relative priority of groups of 
classes to each other. There are 10 available tiers from 0 through to 9. Tier 

# wlmstat
CLASS CPU MEM DKIO
Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 2 0
System 2 12 0
db1 0 0 0
db2 0 0 0
devlt 0 4 2

# wlmstat
CLASS CPU MEM DKIO
Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 2 0
System 3 11 7
db1 46 0 0
db2 48 0 0
devlt 50 0 0
devlt.Shared 0 0 0
devlt.editors 18 0 0

# ps -ae -o pid,user,class,args
PID USER CLASS COMMAND
1 root System /etc/init
5614 dbadmin db1 /etc/ora_db_writer
5750 dbadmin db2 /etc/ora_db_writer
5980 jim devlt.editors /bin/vi
6714 sue devlt.build /bin/cc
16 AIX 5L Workload Manager (WLM)



value 0 is the most important and 9 is the least important. As a result, classes 
belonging to tier 0 will get resource allocation priority over classes in tier 1; 
classes in tier 1 will have priority over classes in tier 2, and so on. The default 
tier number, if the attribute is not specified, is 0.

The tier applies at both the superclass and subclass levels. Superclass tiers 
are used to specify resource allocation priority between superclasses, and 
subclass tiers are used to specify resource allocation priority between 
subclasses of the same superclass. There is no relationship between tier 
numbers of subclasses of different superclasses.

Tier separation in terms of prioritization is much more enforced in AIX 5L than 
what was observed in the previous release. A process in tier 1 will never have 
more priority than a process in tier 0 because there is no overlapping of 
priorities in tiers. It is highly unlikely that classes in tier 1 will get hold of any 
resources if processes in tier 0 are using up all of them. This occurs because 
the control of leftover resources is much more restricted than what was 
happening in WLM’s first AIX Version 4.3.3 release.

2.4  Class attributes

The attributes of a class are as follows:

  • Class name: Up to 16 characters long. Can contain only uppercase and 
lowercase letters, numbers, and underscores (_).

  • Tier: Number between 0 and 9 for class priority ranking.

  • Inheritance: Specifies whether or not a child process inherits the class 
assignment from its parent.

  • Adminuser, admingroup (superclass only): Used to delegate the 
administration of a superclass.

  • Authuser, authgroup: Used to delegate the right to manually assign a 
process to a class.

  • Resource Set: Used to limit the set of resources to which a given class 
has access in terms of CPUs (processor set).

  • Localshm: Specifies whether memory segments that are accessed by 
processes in different classes remain local to the class they were initially 
assigned to, or if they go to the Shared class.
Chapter 2. AIX Workload Manager functionality 17



Tier
This attribute holds the tier number to which the class belongs. It is used to 
prioritize resource allocation between classes. Refer to Section 2.3 on page 
16 for further details.

Inheritance
The inheritance attribute indicates whether or not a child process should 
inherit its parent’s class or be classified according to the automatic 
assignment rules upon exec. The possible values are yes or no, and the 
default is no. This attribute can be specified at both the superclass and 
subclass level. See Table 1 for details.

Table 1.  Inheritance attribute at superclass and subclass level meaning

The inheritance attribute has a different reading when manual assignment is 
being used. This feature is fully-described in Section 5.1.3, “Interaction with 
inheritance” on page 179. Additionally, tag inheritance from parent to child 

Superclass 
level 
inheritance
value

Subclass 
level 
inheritance 
value

Meaning

yes yes A child of a process in the subclass will 
remain in the same subclass upon exec.

yes no or 
unspecified

A child of a process in the subclass will 
remain in the same superclass and will be 
classified in one of its subclasses 
according to the assignment rules for the 
superclass upon exec.

no or 
unspecified

yes A child of a process in the subclass will be 
submitted to the automatic assignment 
rules for the superclasses upon exec. If the 
process is classified by the rules in the 
same superclass, it will remain in the 
subclass (it will not be submitted to the 
subclasses assignment rules). If the 
process is classified by the superclass 
rules in a different superclass, the subclass 
assignment rules of the new superclass are 
applied to determine the subclass of the 
new superclass to which the process will be 
assigned.

no or 
unspecified

no or 
unspecified

A child of a process in the subclass will be 
submitted to the standard automatic 
assignment upon exec.
18 AIX 5L Workload Manager (WLM)



processes is available when application tagging is being used. This subject is 
covered in Section 6.1, “Application tag” on page 195.

Inheritance with AIX Version 4.3.3 maintenance level 8
AIX Version 4.3.3 maintenance level 8 now supports a new class attribute 
called inheritance. This attribute can be added to the classes file in the same 
way the tier attribute is. The default value is no, meaning that new processes 
will be automatically classified upon calling exec. If the inheritance attribute is 
set to yes, a new process created in a specific class will remain in that class 
regardless of which application it executes. The syntax in the classes file is 
similar to the syntax for the other attributes.

Below an excerpt from a configuration in the classes file:

student:

tier = 1

inheritance = yes

Inheritance can be used together with manual assignment to assign an 
application to a class when the application starts and make sure that all the 
processes spawned by the application remain in the class the application was 
manually assigned to. It is also possible to use inheritance independently of 
manual assignment.

Adminuser, admingroup
These attributes are valid only for superclasses. They are used to delegate 
the superclass administration to a user and/or group of users:

  • Adminuser specifies the name of the user (as listed in /etc/passwd) 
authorized to perform administration tasks on the superclass. This can 
also be an NIS user.

  • Admingroup specifies the name of the group of users (as listed in 
/etc/group) authorized to perform administration tasks on the superclass. 
This can also be an NIS group.

Only one value (user/group name) is allowed for each attribute. Any one of 
them, none, or both can be specified. The user and/or group has authority to 
create/delete subclasses; change the attributes, resource shares, and limits 
for the subclasses; define, remove, or modify subclass assignment rules; and 

Inheritance on AIX Version 4.3.3 maintenance level 8 can be set/reset only 
from the command line (mkclass/chclass), and is not supported in SMIT and 
WSM.

Note
Chapter 2. AIX Workload Manager functionality 19



refresh (update) the active WLM configuration for the superclass. In addition, 
root always has authority on any superclass.

Authuser, authgroup
These attributes are valid for all the classes. They are used to specify the 
user name and/or the group name of the user and/or group authorized to 
manually assign processes to the class. When manually assigning a process 
(or a group of processes) to a superclass, the assignment rules for the 
superclass are used to determine which subclass of the superclass each 
process will be assigned to.

  • Authuser specifies the name of the user (as listed in /etc/passwd) 
authorized to manually assign processes to the class.

  • Authgroup specifies the name of the group of users (as listed in 
/etc/group) authorized to manually assign processes to the class.

Only one value (user/group name) is allowed for each attribute. Any one of 
them, none, or both can be specified. In addition, root and the administrators 
of a superclass specified by adminuser/admingroup can always manually 
assign processes to a superclass or to a subclass of the superclass.

Resource set (rset)
This attribute is valid for all the classes. Resource sets are an operating 
system feature introduced in AIX 5L. This feature allows the system 
administrator to define subsets of system resources through SMIT or WSM 
and give them a name using a new registry service.

WLM uses the concept of resource sets (or rsets) to restrict the processes in 
a given class to a subset of the system's physical memory and processors. A 
valid resource set is composed of memory (currently only one domain shared 
by all resource sets) and at least one processor.

Using SMIT or Web-based System Manager, a system administrator has the 
ability to define and name resource sets containing a subset of the resources 
available on the system. Then, using the WLM administration interfaces, root 
or a designated superclass administrator can use the name of the resource 
set as the rset attribute of a WLM class. From then on, every thread assigned 
to this WLM class is only dispatched on one of the processors in the resource 
set. This is a very effective way of further separating workloads for the CPU 
resource. Refer to Section 3.2.7, “Working with resource sets” on page 92 for 
further information on resource sets.
20 AIX 5L Workload Manager (WLM)



Because all of the current systems have only one memory domain shared by 
all the resource sets, this method does not allow the physical separation of 
workloads in memory. 

Localshm
This attribute can be specified at the superclass and the subclass level. It is 
used to prevent memory segments belonging to a class to migrate to the 
Shared superclass or the Shared subclass when they are accessed by 
processes in different classes. The possible values for the attribute are yes or 
no. Yes means that shared memory segments in this class should remain 
local to the class and not migrate to the appropriate Shared class. No allows 
migration, and is the default.

Memory segments are classified on page faults. When a segment is created, 
it is marked as belonging to the Unclassified superclass. On the first page 
fault on the segment, this segment is classified into the same class as the 
faulting process. If, later on, a process belonging to a different class than the 
segment page faults on this segment, WLM determines whether the segment 
needs to be reclassified into the appropriate Shared class (superclass or 
subclass).

If the faulting process and the segment belong to different superclasses:

  • If the segment's superclass has the localshm attribute set to yes, the 
segment remains in the superclass. If the segment's subclass has the 
localshm attribute set to yes, the segment remains in the subclass. 
Otherwise, it goes into the Shared subclass of the superclass.

  • If the segment's superclass has the localshm attribute set to no, the 
segment goes to Shared.Default.

If the faulting process and the segment belong to different subclasses of the 
same superclass:

  • If the segment's subclass has the localshm attribute set to yes, the 
segment remains in the same class (superclass and subclass). Otherwise, 
the segment goes to the Shared subclass of the superclass.

Of course, if the faulting process and the segment belong to the same class 
(same superclass and same subclass) there is no need to reclassify 
regardless of the values of the localshm attribute.

In AIX Version 4.3.3 maintenance level 8 a flag can be set with the wlmset 
command to provide the localshm functionality on a system wide basis (for all 
the classes). Please refer to Section “AIX Version 4.3.3 maintenance level 8 
wlmset command” on page 81 for further information.
Chapter 2. AIX Workload Manager functionality 21



2.5  Classification process

There are two ways to classify processes in WLM:

  • Automatic assignment when a process calls the system call, exec, using 
assignment rules specified by a WLM administrator. This automatic 
assignment is always in effect (cannot be turned off) when WLM is active. 
This is the most common method of assigning processes to the different 
classes.

  • Manual assignment of a selected process or group of processes to a class 
by a user with the required authority on both the process and target class. 
This manual assignment can be done either by a WLM command, which 
can be invoked directly, through SMIT or WSM, or by an application using 
a function of the WLM Application Programming Interface. Manual 
assignment overrides automatic assignment.

2.5.1  Automatic assignment
The automatic assignment of processes to classes uses a set of class 
assignment rules (see also Section 2.5.3, “Class assignment rules” on page 
23) specified by a WLM administrator. There are two levels of assignment 
rules:

  • A set of assignment rules at the WLM configuration level used to 
determine which superclass a given process should be assigned to

  • A set of assignment rules at the superclass level used to determine which 
subclass of the superclass the process should be assigned to

The assignment rules at both levels have exactly the same format.

When a process is created (fork), it remains in the same class as its parent 
(for more information on inheritance, see Section 5.1.3, “Interaction with 
inheritance” on page 179). By the time the new process calls exec, WLM 
checks the assignment rules to decide if the process should be assigned to 
another class and, if necessary, initiates the reclassification. In order to 
classify the process, WLM starts by examining the top level rules list for the 
active configuration to find out which superclass the process should belong 
to. For this purpose, WLM applies the rules one at a time in the order in which 
they appear in the file and checks the current values for the process 
attributes against the values and lists of values specified in the rule. When a 
match is found, the process will be assigned to the superclass named in the 
first field of the rule. The rules list for the superclass is examined in the same 
way to determine which subclass of the superclass the process should be 
assigned to. For a process to match one of the rules, each of its attributes 
22 AIX 5L Workload Manager (WLM)



must match the corresponding field in the rule. The rules to determine 
whether the value of a process attribute matches the values in the field of the 
rules list are as follows:

  • If the field in the rule has a value of hyphen (-), any value of the 
corresponding process attribute is a match.

  • If the value of the process attribute (for all the attributes except type) 
matches one of the values in the list in a rule and it is not excluded 
(prefaced by a (!)), it is considered a match.

  • When one of the values for type attribute in the rule is comprised of two or 
more values separated by a plus (+) sign, a process will be a match for 
this value only if its characteristics match all the values mentioned above.

As stated before, at both the superclass and subclass levels WLM goes 
through the rules in the order in which they appear in the rules list and 
classifies the process in the class corresponding to the first rule for which the 
process is a match. This means that the order of the rules in the rules list is 
extremely important, and caution must be used when modifying it in any way.

2.5.2  Manual assignment
In addition to automatic class assignment, a user with the proper authority 
can manually assign processes or groups of processes to a specific 
superclass or subclass. This feature is described in greater detail in Chapter 
5, “Manual assignment” on page 167.

2.5.3  Class assignment rules
After the definition of a class, it is time to set up the class assignment rules so 
that WLM can perform its automatic assignment. The assignment rules are 
used by WLM to assign a process to a class based on the user, group, 
application pathname, type of process, and application tag, or a combination 
of these five attributes. These class assignment rules are stored in a WLM 
configuration file in this explicit order (for more information see Section “rules 
file” on page 50). 

The next sections describe all attributes that constitute a class assignment 
rule. All these attributes can contain a hyphen (-), which indicates that they 
are not specified.

Class name
This field must contain the name of a class that is defined in the class file 
corresponding to the level of the rules file we are configuring (either 
superclass or subclass). Class names can contain only uppercase and 
Chapter 2. AIX Workload Manager functionality 23



lowercase letters, numbers, and underscores (_), and can be up to 16 
characters in length. No assignment rule can be specified for the system 
defined classes Unclassified, Unmanaged, and Shared.

Reserved
Reserved for future use. Its value must be a hyphen (-), and it must be 
present in the rule.

Users
The user name (as specified in the /etc/passwd file or in NIS) of the user 
owning a process can be used to determine the class to which the process 
belongs. This attribute is a list of one or more user names separated by a 
comma (,). Users can be excluded by using an exclamation point (!) prefix. 
Patterns can be specified to match a set of user names using full Korn shell 
pattern matching syntax.

Applications that use the setuid permission to change the effective user (UID) 
under which they run are still classified according to the user that invoked 
them. The processes are only reclassified if the change is done to the real 
UID. 

Groups
The group name (as specified in the /etc/group file or in NIS) of a process can 
be used to determine the class to which the process belongs. This attribute is 
a list composed of one or more groups separated by a comma (,). Groups can 
be excluded by using an exclamation point (!) prefix. Patterns can be 
specified to match a set of group names using full Korn shell pattern matching 
syntax.

Applications that use the setgid permission to change the effective group ID 
(GID) under which they run are still classified according to the group that 
invoked them. The processes are only reclassified if the change is done to 
the real GID. 

Application pathnames
The full pathname of the application for a process can be used to determine 
the class to which a process belongs. This attribute is a list composed of one 
or more applications and separated by a comma (,). The application 
pathnames will be either full pathnames or Korn shell patterns that match 
pathnames. Application pathnames can be excluded by using an exclamation 
point (!) prefix.
24 AIX 5L Workload Manager (WLM)



Process types
In AIX 5L, the process type attribute was introduced as one of the ways to 
determine the class to which a process belongs. This attribute is a comma (,) 
separated list of single values or combinations of two or more single values 
joined with plus signs (+). A plus sign (+) means AND, and a comma (,) 
means OR. For example:

  • 64bit,plock+fixed

  • plock+fixed+64bit,32bit

  • plock,fixed,64bit

The list of values that can figure on this attribute is shown in the following 
section. 32 bit and 64 bit are mutually exclusive:

Attribute value Process type

32bit The process is a 32 bit process.

64bit The process is a 64 bit process.

plock The process called plock() to pin memory.

fixed The process is a fixed priority process

(SHED_FIFO or SCHED_RR).

Application tags
In AIX 5L, the application tag attribute was introduced as one of the forms of 
determining the class to which a process belongs. This is an attribute meant 
to be set by WLM’s API as a way of further extending the process 
classification possibilities. This was created with the primary purpose of 
allowing differentiated classification for different instances of the same 
application. This attribute can have one or more application tags separated 
by commas (,). An application tag is a string of up to 30 alphanumeric 
characters.

2.5.3.1  Process classification
The classification is done by comparing the value of the attributes of the 
process at exec time against the lists of class assignment rules to determine 
which rule is a match for the current value of the process attributes. The class 
assignment is done by WLM:

  • When WLM is started for all the processes existing at that time.

  • Every time a process calls the system calls exec, setuid (and related 
calls), setgid (and related calls), setpri, and plock once WLM is started.
Chapter 2. AIX Workload Manager functionality 25



This behavior can be altered using the inheritance attribute as explained in 
Section “Inheritance” on page 18.

There are two default rules that are always defined (that is, hardwired in 
WLM). These are the default rules to assign all processes started by the user 
root to the System class, and all other processes to the Default class. If WLM 
does not find a match in the assignment rules list for a process, these two 
rules will be applied (the rule for System first), and the process will go to 
either System (uid root) or Default. These default rules are the only 
assignment rules in the standard configuration installed with AIX. In the 
example of Table 2, the rule for Default class is omitted from display, although 
this class’ rule is always present in the configuration. 

Table 2.  Examples of class assignment rules

The rule for System is explicit and has been put first in the file. This is done 
deliberately so that all processes started by root will be assigned to the 
System superclass. By moving the rule for the System superclass further 
down in the rules file, the system administrator could have chosen to assign 
to System only the root processes that would not be assigned to another 
class (because of the application executed, for instance). In the example 
shown in Table 2, with the rule for System on top, if root executes a program 
in /usr/oracle/bin/db* set, the process will be classified as System. If the rule 
for the System class were after the rule for the db2 class, the same process 
would be classified as db1 or db2 depending on the tag.

These examples show that the order of the rules in the assignment rules file 
is very important. The more specific assignment rules should appear first in 
the rules file, and the more general rules should appear last. An extreme 
example would be putting the default assignment rule for the Default class, 
for which every process is a match, first in the rules file. That would cause 
every process to be assigned to the Default class. The other rules would, in 
effect, be ignored.

Class Reserved User Group Application Type Tag

System - root - - - -

db1 - - - /usr/oracle/bin/db* - _db1

db2 - - - /usr/oracle/bin/db* - _db2

devlt - - dev - 32bit -

VPs - bob, sally - - - -

acctg - !ted acct* - - -
26 AIX 5L Workload Manager (WLM)



You can define multiple assignment rules for any given class. You can also 
define your own specific assignment rules for the System and/or Default 
classes. The default rules mentioned above for these classes would still be 
applied to processes that would not be classified using any of the explicit 
rules.

2.6  WLM class accounting 

The AIX accounting system utility allows you to collect and report on 
individual and group use of various system resources. This accounting 
information can be used to bill users for the system resources they utilize and 
to monitor selected aspects of the system's operation. To assist with billing, 
the accounting system provides the resource-usage totals defined by 
members of the adm group, and, if the chargefee command is included, 
factors in the billing fee. The accounting system also provides data to assess 
the adequacy of current resource assignments, set resource limits and 
quotas, forecast future needs, and order supplies for printers and other 
devices. The accounting system has been enhanced with AIX 5L Version 5.1 
to allow accounting for WLM classes.

2.6.1  Process accounting using WLM class
The accounting system collects the resources used by the users’ processes. 
To gather these resources, the accounting system needs the assistance of 
the kernel. The kernel, whenever a process exits, appends a record with the 
process’ accounting information to the process accounting file, normally 
/var/adm/pacct. The system collects data on resource usage for each process 
as it runs. These data include:

  • User and group numbers under which the process runs

  • First eight characters of the name of the command

  • A 64 bit numeric key representing the Workload Manager class the 
process belongs to

  • Elapsed time and processor time used by the process

  • Memory usage

  • Number of characters transferred

  • Number of disk blocks read or written on behalf of the process
Chapter 2. AIX Workload Manager functionality 27



2.6.1.1  Displaying WLM class accounting information
The AIX accounting command acctcom allows displaying process resource 
usage statistics per user, group, or WLM class from the /var/adm/pacct file. 
The default output of the acctcom command is shown in the following display:

Two new options have been added to the acctcom command to collect 
accounting information for WLM classes. To select processes belonging to a 
specific class, you can use the /usr/sbin/acct/acctcom -c classname as seen 
in the display below:

You can also use the /usr/sbin/acct/acctcom -w option to display the class 
names to which the processes belong as seen in the next display:

# acctcom | head -10

COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
#accton root pts/9 15:25:55 15:25:55 0.00 0.00 364.00
#bsh root pts/9 15:25:55 15:25:55 0.03 0.00 0.00
#rm root pts/9 15:25:56 15:25:56 0.02 0.00 0.00
#rm root pts/9 15:25:56 15:25:56 0.02 0.00 332.00
#rm root pts/9 15:25:56 15:25:56 0.02 0.00 0.00
#bsh root pts/9 15:25:55 15:25:55 0.11 0.02 225.00
#bsh root pts/9 15:25:55 15:25:55 0.23 0.02 0.00

## acctcom -c System

COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
#accton root pts/9 15:25:55 15:25:55 0.00 0.00 364.00
#bsh root pts/9 15:25:55 15:25:55 0.03 0.00 0.00
#rm root pts/9 15:25:56 15:25:56 0.02 0.00 0.00
#rm root pts/9 15:25:56 15:25:56 0.02 0.00 332.00
#rm root pts/9 15:25:56 15:25:56 0.02 0.00 0.00
#bsh root pts/9 15:25:55 15:25:55 0.11 0.02 225.00
#bsh root pts/9 15:25:55 15:25:55 0.23 0.02 0.00
28 AIX 5L Workload Manager (WLM)



For users who wish to write their own reporting and billing applications, the 
format of the accounting record is published (header file acct.h) and the WLM 
Application Programming Interface provides the subroutines wlm_key2class  
and wlm_class2key to convert the key to a class name or vice versa. These 
subroutines are explained in detail in Appendix A.9 "WLM accounting" on 
page 293. The accounting subsystem uses a 64 bit key instead of the full 34 
character class name in order to save space (as that would practically double 
the size of the accounting record). When the accounting command to extract 
the per process data is run, the key is translated back into a class name using 
the above mentioned routine. This translation uses the class names that are 
currently in the WLM configuration files. Therefore, if a class has been 
deleted between the time the accounting record was written and the time the 
accounting report is run, the class name corresponding to the key will not be 
found, and the class will appear as Unknown. There are two possibilities for 
system administrators who wish to keep accurate records of the resource 
usage of classes deleted during an accounting period:

  • Instead of just deleting the class, you can keep the class name in the 
classes file and remove the class from the rules file so that no process 
gets assigned to it any more. You can thus delete the class after the 
accounting report has been generated at the end of the accounting period.

  • You can also delete the class from the configuration it belongs to, and 
keep the class name in the classes file in a dummy configuration (which is 
never activated) until after the accounting records for the period have 
been generated.

2.7  Resources

WLM monitors and regulates the resource utilization of the threads and 
processes active on the system. The monitoring and regulation is done per 
class. You can set minimum or maximum limits per class for each resource 

# acctcom -w | head -10

COMMAND START END REAL CPU MEAN
NAME USER CLASS TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
#accton root System.Default pts/9 15:25:55 15:25:55 0.00 0.00 364.00
#bsh root System.Default pts/9 15:25:55 15:25:55 0.03 0.00 0.00
#rm root System.Default pts/9 15:25:56 15:25:56 0.02 0.00 0.00
#rm root System.Default pts/9 15:25:56 15:25:56 0.02 0.00 332.00
#rm root System.Default pts/9 15:25:56 15:25:56 0.02 0.00 0.00
#bsh root System.Default pts/9 15:25:55 15:25:55 0.11 0.02 225.00
#bsh root System.Default pts/9 15:25:55 15:25:55 0.23 0.02 0.00
Chapter 2. AIX Workload Manager functionality 29



type managed by WLM. In addition, a target value for each resource per class 
may be given. This target, named share, is representative of the amount of 
the resource that would be optimal for the jobs in the class.

The shares and limits at the superclass level refer to the total amount of each 
resource available on the system. At the subclass level, they refer to the 
amount of each resource made available to the superclass the subclass is in 
(superclass’ target). The hierarchy of classes is a way for a system 
administrator to divide up the system resources between groups of users 
(superclasses) and delegate the administration of this share of the resources 
to superclass administrators. Each superclass administrator can then 
redistribute this amount of resources between the users in the group by 
creating subclasses and defining resource entitlements.

2.7.1  Resources managed by WLM
WLM manages three types of resources:

  • The CPU utilization of the threads in a class. This is the sum of all the 
CPU cycles consumed by every thread in the class.

  • The physical memory utilization of the processes in a class. This is the 
sum of all the memory pages that belong to the processes in the class.

  • The disk I/O bandwidth of the class. This is the bandwidth (in 512 byte 
blocks per second) of all the I/Os started by threads of the class on the 
disk devices accessed.

Once per second WLM calculates the per-class utilization for each resource 
during the last second as a percentage of the total resource available.

CPU
The total amount of CPU time available every second is equal to one second 
times the number of CPUs on the system. For instance, on an eight-way 
SMP, if all the threads of a class combined consumed two seconds of CPU 
time during the last second, this represents a percentage of 2/8 = 25 percent. 
The percentage used by WLM for regulation is a decayed average over a few 
seconds of this instantaneous per-second resource utilization.

Physical memory
The total amount of physical memory available for processes at any given 
time is the total number of memory pages physically present on the system 
minus the number of pinned pages. The pinned pages are not managed by 
WLM because these pages cannot be reassigned to another class in order to 
regulate memory utilization. The memory utilization of a class is simply the 
ratio of the number of (non-pinned) memory pages being used by all the 
30 AIX 5L Workload Manager (WLM)



processes in the class to the number of pages available on the system, as 
defined above, expressed as a percentage.

Disk I/O
For the disk I/O, the main difficulty is to determine a meaningful available 
bandwidth for a device. When a disk is 100 percent busy, its throughput (in 
blocks per second) will be very different if one application is doing sequential 
I/Os than if several applications are doing random I/Os. If the maximum 
throughput measured for the sequential I/O case was used as a value of the 
I/O bandwidth available for the device to compute the percentage of 
utilization under random I/Os, statistical errors would be created. It might lead 
one to think that the device is, for instance, 20 percent busy, while it is, in 
fact, at 100 percent utilization.

In order to get more accurate and reliable percentages of per-class disk 
utilization, WLM uses the data provided by the disk drivers (which are 
displayed with the AIX iostat command) giving, for each disk device, the 
percentage of the time the device has been busy during the last second. 
WLM knows how many blocks in total have been read/written on a device 
during the last seconds by all the classes accessing the device, how many 
blocks have been read/written by each class, and what the percentage of 
utilization of the device was. This allows WLM to easily calculate what 
percentage of the disk throughput was consumed by each class. For 
instance, if the total number of blocks read or written during the last second 
was 1000 and the device had been 70 percent busy, it means that a class 
reading/writing 100 blocks used seven percent of the disk bandwidth.Like 
CPU time (another renewable resource), the values used by WLM for its disk 
I/O regulation are also a decayed average of per-second percentages.

For the disk I/O resource, the shares and limits apply to each disk device 
accessed by the class individually, and regulation is done independently for 
each device. 

2.7.2  Class resource shares
The number of shares of a resource for a class determine the proportion of 
the resource that is allocated to the processes assigned to the class. In 
simple terms, the resource shares are specified as relative amounts of usage 
between different classes in the same tier. One way of thinking about shares 
is as a self-adapting percentage.

For example, a system has three classes defined, A, B, and C, whose targets 
are 50, 30, and 20 respectively.
Chapter 2. AIX Workload Manager functionality 31



  • If all three classes are active, the total number of shares for the active 
classes is 100. Their targets, expressed as percentages, are 50 percent, 
30 percent, and 20 percent.

  • If A is not active, the total number of shares is 50 (so, each share 
represents two percent). The target percentages for B and C are 60 
percent and 40 percent.

  • If only one class is active, its target is 100 percent.

A class is considered active (regardless of its resource consumption) when it 
has at least one process assigned to it.

In this example, the sum of the shares for the three classes was 100 simply to 
make the sample calculation easier. A target can be any number between 1 
and 65535.

The preceding example implicitly supposes that:

  • A, B, and C are either all superclasses or all subclasses of the same 
superclass.

  • A, B, and C are in the same tier.

The relative share numbers of a subclass and a superclass, of two 
subclasses of different superclasses, or of classes in different tiers do not 
give any indication of their relative resource entitlements. As explained 
earlier, the shares are used by WLM to calculate for each class a percentage 
goal of resource utilization for each resource type. This goal represents a 
percentage of resources that can vary widely depending on how many 
classes are active at any given time. However, WLM makes sure that the 
dynamic value of this percentage goal remains compatible with the minimum 
and maximum limits for the class. If the calculated percentage is below the 
minimum, WLM uses the minimum as the target. If the percentage is above 
the maximum limit, WLM uses the maximum as the target. If the percentage 
is between the minimum and the maximum limit, WLM uses the calculated 
value.

The share number can be specified as a hyphen (-) for any resource type to 
indicate that the class' resource utilization for this resource type is not 
regulated by WLM. This is the default when no share value has been 
specified for a resource type. Note that this default is different from the 
default value of one share in the first version of WLM.

What exactly does it mean to have a resource type that is not regulated by 
WLM on a certain class? It means that the resource target for that class will 
always be 100 percent. WLM will never penalize this class for being above its 
32 AIX 5L Workload Manager (WLM)



target, for there is no such thing as the notion of WLM target for this specific 
resource for this specific class. The consequence is (as expected) that a 
class with a non-regulated resource in tier 0 is capable of starving all the 
other classes for this resource. It is, therefore, recommended to reserve this 
non-regulated value for consistently well-behaved classes, such as System, 
for instance.

The example shown in Figure 4 displays resource allocation before and after 
a new class is activated. Initially, there are three active classes that have 
been allocated five, seven, and two resource shares respectively. These 
resource shares in combination are allocated 100 percent of the resource in 
accordance with their relative share values. When the new class, which has 
three resource shares, is activated, there are four active classes with 
resource shares of five, seven, two, and three with the total active resource 
shares equal to 17. As a result, when all four classes are active, the class 
with five resource shares will be allocated five of the total of 17 shares or 29 
percent of the system resource (29.4 percent will be rounded down to 29 
percent).

Figure 4.  Example of share distribution automatically adjusting resources

2.7.3  Class resource limits
The class resource limits define the minimum and maximum amount of a 
resource that may be allocated to a class as a percentage of the total system 
resources. The different resources can be limited by the following values:

  • The minimum percentage of the resource that must be made available 
when requested. The possible values are integers from 0 to 100. If 
unspecified, the default value is 0.

  • The maximum percentage of a resource that can be made available when 
there is contention for the resource. If the contention no longer exists, this 
maximum limit can be surpassed. This is called a soft maximum because 
it is possible for a class to get more resource than this soft maximum value 

Before:
0 10 20 30 40 50 60 70 80 90 100

5 shares 7 shares 2 shares

After:
0 10 20 30 40 50 60 70 80 90 100

5 shares 7 shares 2 shares 3 shares
Chapter 2. AIX Workload Manager functionality 33



if there is no contention. The possible values are integers from 1 to 100. If 
unspecified, the default value is 100.

  • The maximum percentage of a resource that can be made available even 
if there is no contention for the resource. This is called a hard maximum. A 
class will never get more resource than its hard maximum limit, even if it is 
the only one active on the system. The possible values are integers from 1 
to 100. If unspecified, the default value is 100.

WLM does not impose hard constraints on the values of the resource limits. 
The following are the only constraints:

  • The minimum limit must be less than or equal to the soft maximum limit.

  • The soft maximum limit must be less than or equal to the hard maximum 
limit.

  • The sum of the minimum of all the superclasses within a tier cannot 
exceed 100.

  • The sum of the minimum of all the subclasses of a given superclass within 
a tier cannot exceed 100.

  • WLM will not let users set a hard memory limit on the System class 
because of potential deadlock situations.

For instance, consider the case in which performing file system I/Os 
involves a system daemon (a good example is NFS). If there is a hard 
maximum limit on the System class and the class reaches its maximum 
limit, the VMM page replacement algorithm (LRU) will be started and will 
initiate page-outs. No page will be given to processes in the System class 
until those page-outs complete, thus bringing the System class below its 
maximum limit. Because there is intensive stealing of the pages belonging 
to the processes in the System class due to the maximum limit, it is 
entirely possible that the file system daemon needs a page to start 
processing the I/Os. So, VMM will not give it a page until the I/Os are 
complete, and the daemon will not process any I/O until it gets its page(s). 
From then on, no System process will ever be given a memory page, and 
the system will halt in a matter of seconds.

When a class (other than System) has reached its hard memory limit and 
requires more pages, the VMM page replacement algorithm (LRU) is initiated 
to steal pages from the class at limit, lowering its number of pages below the 
hard maximum before handing out new pages (the class pages against itself). 
This is, of course, the desired behavior, but this extra paging activity, which 
can take place even where there are plenty of free memory pages available, 
will impact the general performance of the system. Memory minimums for 
34 AIX 5L Workload Manager (WLM)



other classes should be used before imposing a memory hard maximum for 
any class.

This constraint about the sum of the minimum limits within a tier being less 
than or equal to 100 means that a class in the highest priority tier is always 
allowed to get resources up to its minimum limit. However, WLM cannot 
guarantee that the class will actually reach its minimum limit. This depends 
on how the processes in the class use their resources and on other limits that 
may be in effect. For example, a class may not be able to reach its minimum 
CPU entitlement because it cannot get enough memory.

For physical memory, setting a minimum limit gives some protection to the 
pages of the processes in the class (again, at least for the highest priority 
tier). Pages should not be stolen from a class below its minimum limit unless 
all the active classes are below their minimum limit and one of them requests 
more pages.

With this constraint, it means that pages should never be stolen from a class 
in the highest tier below its minimum limit. Therefore, setting a memory 
minimum limit for a class of interactive jobs helps ensure that their pages will 
not all have been stolen between consecutive activations (even in cases 
where the memory is tight) and improves response time.

In WLM with AIX Version 4.3.3, the maximum limit for the CPU resource is a 
soft maximum, and the maximum for the memory resource is a hard 
maximum. With AIX Version 4.3.3 maintenance level 8, it is possible to set 
hard maximum limits for the CPU resource as a global option with the wlmset 
command. The wlmset command is described in more detail in Section “AIX 
Version 4.3.3 maintenance level 8 wlmset command” on page 81.

2.7.4  Backward compatibility considerations
As mentioned earlier, in the first release of WLM the system default for the 
resource shares was one share. In AIX 5L it is (-), which means that the 
resource consumption of the class for this particular resource is not regulated 
by WLM. This changes the semantics quite a bit, and it is advised that system 
administrators review their existing configurations and consider if the new 
default is good for their classes or if they would be better off either setting up 
a default of one share to go back to the previous behavior or setting explicit 
values for some of the classes.

Resource limits take precedence over class resource share values.

Note
Chapter 2. AIX Workload Manager functionality 35



For the limits, the first release of WLM only had one maximum, not two. This 
maximum limit was, in fact, a soft limit for CPU and a hard limit for memory. 
Limits specified with the old format, min percent-max percent, will have, in 
AIX 5L, the max interpreted as a softmax for CPU, and a max that was set for 
memory will become both hardmax and softmax for memory in AIX 5L (which 
will give hardmax and softmax an equal value in this case). All interfaces 
(SMIT, AIX commands, and WSM) will convert all existing data from its old 
format to the new one.

The disk I/O resource is new for the current version, so, when activating 
AIX 5L’s WLM with configuration files of the first WLM release, the values for 
the shares and the limits will be the default ones for this resource. The 
system defaults are as follows:

  • shares = -

  • min = 0 percent, softmax = 100 percent, hardmax = 100 percent.

Therefore, for existing WLM configurations the disk I/O resource will not be 
regulated by WLM, which should lead to the same behavior for the class as 
with the first version.

2.8  WLM interaction with the kernel

WLM’s management of system resources interacts with the AIX kernel control 
mechanisms. These mechanisms are the scheduler for the CPU, the Virtual 
Memory Manager for memory, and device driver calls for the disk I/O 
bandwidth. They all use the allocation priority value calculated by WLM for 
each resource in each WLM class. This value is called Uniform Resource 
Access Priority (URAP).

2.8.1  Resource usage statistics
Once per second WLM gathers resource usage statistics per class for each 
resource type.

2.8.1.1  CPU
When WLM is active, the dispatcher keeps track of the actual execution time 
of each thread using microsecond timing. WLM monitors the sum of the CPU 
time consumed by all the threads in the class, adds all the per class CPU 
counters, and then calculates the percentage of the total CPU time used by 
the threads in the class within the last second. This gives a time-decayed 
average of this per class CPU utilization, which is used for regulation.
36 AIX 5L Workload Manager (WLM)



2.8.1.2  Memory
WLM keeps track of the number of memory pages used by each class. The 
WLM accounting is done by segment. If a segment is accessed by only one 
process or by processes in the same class, the segment’s pages are added 
to the counter for the process or processes the class belongs to. If the 
segment is accessed by processes belonging to different classes, the 
segment’s pages are added to the counter of one of the Shared classes 
(Shared superclass or Shared subclass of a superclass), unless the localshm 
attribute is set. WLM calculates the percentage of real memory used by each 
class.

2.8.1.3  Disk I/O
WLM keeps track of the number of 512 blocks of data read/written by each 
class on each disk device accessed by that class. WLM collects the statistics 
given by the device drivers (through iostat and dkstat), which contain the 
percentage of time the device was busy, and uses this information together 
with the number of blocks read/written on each device by each class to 
calculate the percentage of the total bandwidth of each device. WLM then 
calculates a time-decayed average which is used for regulation.

2.8.2  Uniform Resource Access Priority (URAP)
Once a second, after calculating the percent usage of each resource per 
class, WLM compares these values to the class’ target and limits, and 
calculates for each resource a Universal Resource Access Priority (URAP). 
The URAP is then used to favor the classes that do not use all the resources 
they are entitled to, and restrict those that tend to use too much compared to 
their entitlements.

  • The URAP is a resource access priority. It is a positive number. Like AIX 
priorities, lower value means higher priority. The scheduling priority of the 
threads managed by WLM is between P_NICE_DEFAULT (60) and 
P_IDLE (255). Priority 255 is only used to "freeze" the threads in classes 
above their hard CPU maximum limit.

  • It is calculated for each class, taking into account the superclass and 
subclass tiers, and the class resource usage.

  • WLM reserves a priority range for each superclass tier and then a 
sub-range for each subclass tier. The subclasses in a tier are then given 
priorities within their range according to their resource usage, (Figure 5 on 
page 38).

  • WLM fixes a maximum range for the URAP for each resource type.
Chapter 2. AIX Workload Manager functionality 37



2.8.2.1  Tier regulation
The total priority range for the URAP value of a given resource is limited. With 
10 possible superclass tiers and 10 subclass tiers, the priority range for a tier 
could be very limited (total range/100). In most cases only a very limited 
number of tiers will be used in order to maximize the priority range per tier 
and get a better regulation, so WLM calculates effective tier numbers for each 
superclass and subclass, and keeps track of the number of superclass tiers in 
the system and the number of subclass tiers for each superclass (updated 
every time a class is added or deleted). See Figure 5.

Figure 5.  URAP

2.8.3  Interaction with the scheduler
AIX scheduler calls a WLM routine to inquire about the scheduling priority of 
each thread. This priority is determined by WLM using the URAP algorithm, 
which calculates the CPU allocation priority for the class of the thread in 
question.

In a WLM environment, the nice command will cause a process to have its 
CPU usage selectively favored or penalized with respect to other processes 
in the same class. The nice command will not affect the CPU utilization of 

0

MAX_URAP

URAP range

Superclass

tier 0

range

Below min

Below target

Above softmax

Above target

Above hardmax
(all tiers)

sub tier 0

sub tier 1

sub tier 2

subclass tier URAP

range
38 AIX 5L Workload Manager (WLM)



processes in other classes because WLM will work to have the class' 
resources meet the requested number of resource shares and resource 
limits.

The schedtune command can be used to modify the behavior of the scheduler. 
All options to schedtune continue to work in a WLM environment. The use of 
schedtune options will not significantly impact the ability of WLM to manage 
CPU usage.

2.8.4  Interaction with VMM
WLM controls the memory used by each class according to the tier where the 
class resides and the minimum, share, and maximum thresholds defined for 
the class. Regulation is based on memory URAPs computed from class 
consumption rates each second by wlmsched. This value is then used by VMM 
to control memory allocation to threads.

The vmtune command can be used to modify the behavior of VMM. All vmtune 
options work in a WLM environment. Some of the options to vmtune, 
particularly minperm, maxperm, minfree, and maxfree, can hamper WLM's 
ability to achieve the specified physical memory usage goals.

2.8.5  Interaction with disk device drivers
WLM intercepts the call to devstrat and executes its own algorithm for the 
regulation of disk I/O bandwidth. If the class needs to be restricted (over 
target, for example), WLM delays the I/O. The delay is adjusted to regulate 
the I/O throughput utilization of the class (on a per-device basis). The 
algorithm is based on the allocation priority value calculated for disk I/O 
bandwidth for the class of the thread being controlled.

It is recommended that any tuning with schedtune be done prior to using 
WLM.

Note

It is recommended that any tuning with vmtune be done prior to using WLM.

Note
Chapter 2. AIX Workload Manager functionality 39



2.9  WLM Application Programming Interface

The WLM Application Programming Interface (API) supplies applications with 
the ability to perform every task a system administrator does through WLM 
commands. The API is described in Chapter 6, “WLM Application 
Programming Interface (API)” on page 195.

2.10  Additional characteristics

The following points depict some additional characteristics of WLM:

Overhead
The activation of WLM on a system executing AIX 5L does not necessarily 
represent an increased system load. Nevertheless, one could expect some 
overhead on heavy loaded systems, which may increase based on the 
number and complexity of the rules configured in WLM.

Passive mode
When configuring WLM, know your users and applications. It is important to 
understand the user base and their computing needs. It is also important to 
have an understanding of the resources required by all applications in the 
system. This is where the WLM passive mode can help. 

The passive mode provides a way to monitor the impact WLM brings to the 
system. By comparing system behavior between active and passive modes, 
the system administrator can easily redefine WLM configuration strategies.

Monitoring
AIX and WLM have different approaches for gathering CPU usage statistics 
and performance reports generated with common AIX tools, such as sar, 
vmstat, and ps, that might produce slightly different results from statistics 
gathered with wlmstat. 

The common AIX performance monitoring tools use a sampling approach. 
Every clock tick (10 ms), AIX charges one CPU tick to the current process. It 
also determines the mode of execution (user/system) and increments the 
user or system time accordingly. 

WLM, on the other hand, uses microsecond timing and records precisely how 
long a thread has been active. However, it does record user/system 
breakouts and accumulates the times on a per class basis only (it does not 
save individual thread CPU usage information). 
40 AIX 5L Workload Manager (WLM)



In some situations, this can create differences between the statistics shown 
by wlmstat and sar, for example. 

Another difference is that tools such as sar report “raw” values, while wlmstat 
reports a decayed average. For example, on a system running a CPU bound 
load (all processes in one class) wlmstat 1 and sar 1 will both show 100 (99) 
percent busy. If the load suddenly terminates, sar shows almost 
instantaneously a 0 percent busy, while wlmstat shows the CPU usage slowly 
going down to 0 (over 5 - 10 seconds). It is therefore recommended to run the 
performance monitoring tools at time intervals of 5 seconds or more when 
monitoring WLM workloads. 

Dynamic update
Tiers, resource soft and hard limits, resource shares, rules, and every sort of 
WLM configuration can be modified while WLM is running and take 
immediate effect without the need to stop and restart WLM.

Dump analysis
The snap command is used to collect system information and dump files for 
problem determination. In AIX 5L, this command has a -w option, which is 
used to gather WLM information and join it to the already-existing database 
(basically, assembles the contents of the /etc/wlm directory). This feature can 
be very useful when analyzing an unknown technical problem that might or 
might not be WLM-related.

The substitute for the kernel-debugging crash command in AIX 5L, the kdb 
command incorporates options to analyze the behavior of WLM configuration 
at the kernel level when, for instance, a dump occurs.
Chapter 2. AIX Workload Manager functionality 41



42 AIX 5L Workload Manager (WLM)



Chapter 3.  AIX Workload Manager administration

WLM can be administered using three different methods:

  • Web-based System Manager (WSM) graphical user interface, initiated 
with the AIX command wsm (Figure 6)

  • System Management Interface Tool (SMIT), initiated with the AIX 
command smit wlm or smitty wlm

  • Command line and file editing

Throughout this chapter, you will find descriptive examples of each of these 
methods’ functionality.

Figure 6.  WLM screen in WSM 

WLM commands can also be initiated through crontab entries to take 
advantage of WLM’s various configuration capabilities. This way, job rankings 
can be changed at specific times of day and/or days of the week.
© Copyright IBM Corp. 2001 43



3.1  Property files

The WSM and SMIT interfaces record the configuration information in the 
same flat text files. These files are called the WLM property files, and reflect 
WLM’s two-layered class configuration.The various WLM configurations are 
placed in subdirectories of /etc/wlm. A symbolic link, /etc/wlm/current, points 
to the directory containing the current configuration files. For example, the 
current running rules file is stored in a file, /etc/wlm/current/rules. This link is 
updated by the wlmcntrl command when WLM starts with a specified set of 
configuration files. The sample configuration files shipped with AIX are in the 
/etc/wlm/standard directory.

The example in Figure 7 shows a configuration, called Config, which is, 
therefore, placed in /etc/wlm/Config.

Figure 7.  WLM’s property files

The various files are explained below:

  • description contains the description of the configuration.

  • classes contains the class definitions of the configuration.

  • shares contains the resource entitlements of the configuration.

  • limits contains the resource limits of the configuration.

  • rules contains the assignment rules of the configuration.

/etc/wlm/Config

classes

shares

limits

rules
devlt

description

shares

limitsclasses

rules
44 AIX 5L Workload Manager (WLM)



The configuration, Config, has a superclass, named devlt. Each superclass is 
represented by a subdirectory in the configuration directory named after the 
superclass. For each superclass, this subdirectory contains the classes, 
shares, limits, and rules files corresponding to the superclass’s subclasses, 
resource entitlements, limits, and assignment rules.

The WLM property files for a WLM configuration must have write permission 
only for root. The WLM property files for superclasses must have write 
permission for the adminuser and admingroup for the superclass. If there is 
no adminuser for the superclass, the files should be owned by root. If there is 
no admingroup for a superclass, the WLM property files for the superclass 
should be the group system, and have no write permission for the group. 

classes file
This file contains the definition of WLM superclasses or subclasses for a 
given configuration. This file is organized into stanza names, which are WLM 
class names, and contents, which are attribute-value pairs specifying 
characteristics of the class. Each stanza names a WLM class. The only 
names that have a special meaning to the system are Default, Shared, 
Unclassified, Unmanaged, and System. Unclassified and Unmanaged cannot 
appear as class names in this file. The superclasses, Default, Shared, and 
System, are always defined. The subclasses Default and Shared are always 
defined. The class attributes that can be defined in the classes file are tier, 
inheritance, adminuser, admingroup, authuser, authgroup, resource set 
(rset), and localshm. Refer to Section 2.4, “Class attributes” on page 17, for 
further details about these attributes. The attributes that have not been 
explicitly set by the system administrator are omitted from this file. The 
default values for these attributes can be changed using a special default 
stanza at the very top of this file. Be extra careful when using this default 
stanza because it can lead to starvation of your System superclass.

The following is part of a typical /etc/wlm/Config/classes file for the example 
in Table 2 on page 26. In this example, the tier for db2 would have to be set to 
1 because the default value, specified for the tier attribute in the special 
default stanza at the top of this file, has been set to tier 0: 
Chapter 3. AIX Workload Manager administration 45



shares file
This file contains the definition of the number of shares of all the resources 
allocated to superclasses or subclasses for a given configuration. This file is 
organized into stanza names, which are WLM class names, and contents, 

* This is the default special stanza, valid for all classes
* if not specified otherwise:
*

default:
tier=0

* System defined classes
* All attributes to default value
* Attribute values can be specified

System:

Default:

Shared:

* User defined classes

db1:
inheritance = "yes"
localshm = "yes"
authgroup = "devlt"
adminuser = "bob"

db2:
tier = 1
authuser = "sally"
admingroup = "sales"

devlt:
authgroup = "dev"
rset = ""

The asterisk (*) is the comment character used in the classes file. 
The example shows comments in the classes file for clarity only. 
Comments can be added by directly editing the file. However, users should 
be aware that all other interfaces to create/modify/delete classes 
(command line, SMIT, WSM) will remove the comments when updating the 
file.

Note
46 AIX 5L Workload Manager (WLM)



which are attribute-value pairs specifying the number of shares allocated to 
the class for the various resources. The attribute names identify the resource. 
The shares value is either an integer between 1 and 65535 or a hyphen (-) to 
indicate that WLM does no regulation for the class for the given resource. 
This is the system default. Each stanza names a WLM class, which must 
exist in the classes file at the corresponding level (superclass or subclass). 
The class attributes defined in the shares file are CPU, memory, and disk I/O. 
Refer to Section 2.7.1, “Resources managed by WLM” on page 30 for further 
detail on these attributes. The values just mentioned as being the system 
default can be modified using a special stanza, called default, at the very top 
of the shares file. Be extra careful when using this default stanza because it 
can lead to starvation of your System superclass.

The following is part of a typical /etc/wlm/Config/shares file for the example in 
Table 2 on page 26. In this example, System, Shared, and db2 would get four 
shares of CPU as specified by the default special stanza:
Chapter 3. AIX Workload Manager administration 47



* This is the default special stanza, valid for all classes
* if not specified otherwise
*

default:
CPU = 4

* System Defined Classes
* In this example, the system administrator uses
* only default values for the System and Shared
* superclasses, which are omitted in the file.
* The system administrator gives non default values
* only for the Default class:

Default:
CPU = 2
memory = 10

*
* User defined classes
*

db1:
CPU = 2
memory = 1
diskIO = 6

db2:
CPU = -
memory = 12
diskIO = 6

devlt:
CPU = 30
memory = 1
diskIO = 1

VPs:

 The asterisk (*) is the comment character used in the shares file.

The example shows comments in the shares file for clarity only. Comments 
can be added by directly editing the file. However, users should be aware 
that all other interfaces to create/modify/delete shares (command line, 
SMIT, WSM) will remove the comments when updating the file.

Note
48 AIX 5L Workload Manager (WLM)



limits file
Contains the specification of the minimum and maximum limits for the 
resources allocated to superclasses or subclasses of a given configuration. 
Although the limits at the superclass level represent a percentage of the total 
amount of resource available on the system, and the limits at the subclass 
level represent a percentage of the target usage configured for the 
superclass, the description of resource limits for the superclasses and 
subclasses have the same format. This file is organized into stanza names, 
which are WLM class names, and contents, which are attribute-value pairs 
specifying the minimum and maximum resource allocated to the class for the 
various resources. The attribute names identify the resource. For each 
resource, three values must be provided: The minimum limit (m), a soft 
maximum limit (SM), and a hard maximum limit (HM). Refer to Section 2.7.3, 
“Class resource limits” on page 33, for further details about these values. The 
limits are expressed as percentages. The minimum limit is a number between 
0 and 100, and the maximum limits are numbers between 1 and 100. The 
hard maximum must be greater than or equal to the soft maximum, which 
must be greater than or equal to the minimum. The system default values, 
when the limits are not specified for a class or a resource type, are 0 for the 
minimum and 100 for both the soft and hard maximum.

The syntax is: 

attribute = m%-SM%;HM%

Each stanza names a WLM class, which must exist in the classes file at the 
corresponding level (superclass or subclass). The class attributes defined in 
the limits file are CPU, memory, and disk I/O. Refer to Section 2.7.1, 
“Resources managed by WLM” on page 30, for further details about these 
attributes. The values mentioned above as being the system default can be 
modified using a special stanza, called default, at the very top of the limits 
file. Be extra careful when using this default stanza because it can lead to 
starvation of your System superclass.

The following is part of a typical /etc/wlm/Config/limits file for the example in 
Table 2 on page 26. In this example, db2 and Default would be assigned a 
minimum of zero percent, a soft maximum of 50 percent, and a hard 
maximum of 70 percent for CPU resource because of the special default 
stanza: 
Chapter 3. AIX Workload Manager administration 49



rules file
This file defines the automatic class assignment rules for the superclasses or 
subclasses of a given configuration. Each line of this file represents an 
assignment rule for a given class. There can be several assignment rules for 
the same class. Each rule lists the name of a class and a list of values for 
some attributes of a process that are used as classification criteria. The 
various fields of a rule are separated by blank spaces. Attributes whose 
values are not specified will be represented by a hyphen (-). The fields of an 
assignment rule, listed in the order in which they must appear in the rules file, 
are class name, reserved, user, group, application, type, and application tag. 

* This is the default special stanza, valid for all classes
* if not specified otherwise:
default:

CPU = 0%-50%;70%
* System Defined Classes
* In this example, the system administrator uses
* default values for the Shared
* superclass (memory only).
* The system administrator gives non default values
* for the Default and System classes. The System class
* has a memory minimum of 1% by default. This value
* can be increased by system administrator:
System:

memory = 1%-100%;100%
Default:

memory = 0%-50%;100%
devlt:

memory = 10%-70%;80%
diskIO = 10%-80%;100%

 The asterisk (*) is the comment character used in the limits file. 

The example shows comments in the limits file for clarity only. Comments 
can be added by directly editing the file. However, users should be aware 
that all other interfaces to create/modify/delete limits (command line, SMIT, 
WSM) will remove the comments when updating the file.

Note

If the maximum limit configured for a class exceeds the system wide limit in 
/etc/secure/limits, processes in the class will be killed if they reach the 
system wide limit regardless of the WLM configured limit.

Note
50 AIX 5L Workload Manager (WLM)



Refer to Section 2.5.3, “Class assignment rules” on page 23 for further detail 
on these attributes. The class name and the first two attribute fields (reserved 
and user) are mandatory. The other fields, if not present, will default to (-). 
Remember, however, that WLM recognizes the fields by their position on the 
line. It is, therefore, not possible to omit one field in the middle of the line. For 
example, if you skip a group name and enter an application name, WLM will 
take the application name as a group name and give error messages about 
invalid groups. 

WLM will scan this file from top to bottom, looking for the first rule that is a 
match for the set of process attributes (user, group, application, type, and 
tag) for each application:

  • If the value in the rule is a hyphen (-), any value of the corresponding 
process attribute is a match.

  • If the value of a process attribute other than type appears in the list of 
values specified in the corresponding field in the rule and is not preceded 
by the exclusion character (!), this is a match for the specified attribute.

  • If the values of the process type attribute (32bit/64bit, plock, fixed) match 
all the values (separated by (+) signs) provided in the list of one or more 
comma-separated values for the type field in the rule, this is a match for 
the process type. For example, for 32bit,plock+fixed, it must match either 
32bit or plock and fixed.

  • The process will be classified in the class specified in the class field of the 
rule if all the values of the process attributes in the table above match the 
values in the corresponding field of the rule.

When classifying a process, WLM will first scan the rules file for the 
superclasses of the current configuration to determine which superclass the 
process will be assigned to, and then WLM scans the rules file for this 
specific superclass to determine which subclass of the superclass the 
process will be assigned to.

There are implicit rules for the Default superclass and the Default subclass of 
all superclasses (whether or not they are present in the rules files), which will 
classify all processes that did not match any of the other rules. 

The following is an example of a /etc/wlm/Config/rules file for the 
configuration given in the example in Table 2 on page 26: 
Chapter 3. AIX Workload Manager administration 51



The following is an example of the rules file for the devlt superclass in 
/etc/wlm/Config/devlt/rules of the previous example:

In the /etc/wlm/.running directory, the system administrator can find an image 
of the currently-running configuration in the kernel. 

The class definitions, shares, and limits in effect at a given time (that is, 
known to the kernel at this time) may be different from the class definitions, 
shares, and limits in the current configuration (the set of files in the directory 
pointed to by /etc/wlm/current) for several reasons:

1. The configuration files could have been modified, but WLM has not been 
refreshed yet.

2. Classes have been created and/or shares and limits were changed 
directly into the kernel (without updating the configuration files) either by 

* This file contains the rules used by WLM to
* assign a process to a superclass
*
* classresvdusergroupapplicationtypetag

System-root- - - -
db1- - - /usr/oracle/bin/db*-_db1
db2- - - /usr/oracle/bin/db*-_db2
devlt-- dev- 32bit-
VPs- bob,sally--- -

* This file contains the rules used by WLM to
* assign a process to a subclass of the
* superclass devlt
*
* classresvdusergroupapplicationtypetag

hackers-jim,liz--- -
hogs- - - - 32bit+plock-
editors-!sue-/bin/vi,/bin/emacs--
build-- - /bin/make,/bin/cc--
Default--- - - -

The asterisk (*) is the comment character used in the rules file.

The example shows comments in the rules file for clarity only. Comments 
can be added by directly editing the file. However, users should be aware 
that all other interfaces to create/modify/delete rules (command line, SMIT, 
WSM) will remove the comments when updating the file.

Note
52 AIX 5L Workload Manager (WLM)



an application using the API, or the command line interface (by specifying 
an empty string as the configuration name (-d "").

This is why WLM keeps a set of configuration files in a special directory, 
/etc/wlm/.running, which at any given time reflects the class definitions, 
shares, limits, and rules exactly as they are known to the kernel.

3.2  WLM configuration

This section discusses some of the steps a system administrator needs to 
take to configure WLM on a system. First, it points out the method to follow to 
configure WLM in a manner that is easy to maintain and update. Afterwards, 
it shows how the configuration can be done in practice, using any of the three 
methods provided to configure WLM; command line, SMIT, and WSM.

3.2.1  Steps for a WLM configuration
In order to successfully configure WLM on a system, it is recommended that 
the system administrator follow a set of steps described in the following 
sections.

Step 1 - Design your classification
The first step is to define your classes (superclasses first). In order to define 
which classes you need, you must know your users and their computing 
needs, the applications on your system and their resource needs, and the 
requirements of your business (that is, which tasks are critical and which can 
be given a lower priority). This depends a lot on what you'll be using WLM for. 
If this is a case of server consolidation, you probably already know the 
applications, their users, and their resource requirements, and you may be 
able to skip or shorten some of the steps.

WLM is very flexible, and allows you to classify processes by user/group, 
application (besides type and application tag), or any possible combination. 
Because WLM regulates the resource utilization among the classes, you 
should group in the same classes applications and/or users with the same 
resource utilization patterns. For instance, you generally want to separate the 
interactive jobs that typically consume very little CPU time but require quick 
response time when activated from batch type jobs that, typically, are very 
CPU- and memory-intensive. It is the same in a database environment where 
you probably need to separate the online transaction processing (OLTP) type 
traffic from the heavy queries of data mining, for example.

WLM cannot help much in this initial design phase. You will probably have to 
go through a few iterations to refine your classification and optimize your 
Chapter 3. AIX Workload Manager administration 53



class definitions. At the end of this step, you should be able to set up your 
class definitions and the corresponding assignment rules.

Step 2 - Create the superclasses and assignment rules 
This step is done using the WLM administration interfaces, WSM, SMIT, or 
command line interface. In the next sections, the process of configuring WLM 
using these tools will be covered. The first few times, it is probably a good 
idea to use WSM or SMIT. They will take you through the steps of creating 
your first WLM configuration including defining the superclasses and setting 
their attributes. For the first pass, you can set up only some of the attributes 
and leave the others at their default value. The same thing is applicable for 
the resource shares and limits. All these characteristics of the classes can be 
dynamically modified later on. The goal is to have a basic set of superclasses 
and the associated assignment rules defined. When that is done, you can 
start WLM in passive mode, check your classification, and start looking at the 
resource utilization patterns of your applications.

Step 3 - Use WLM to refine your class definitions
When Step 2 above is complete, you can check your configuration using the 
wlmcheck command or the corresponding SMIT or WSM menus, and start 
WLM in passive mode on the newly-defined configuration. This means that 
WLM will classify all the existing processes (and all processes created from 
then on) and start getting statistics on the CPU, memory, and disk I/O 
utilization of the various classes, but will not try to regulate this resource 
usage. This is, basically, what needs to be accomplished at that point; check 
that the various processes are classified in the right class as expected by the 
system administrator (using the -o class option of the ps command). If some 
of the processes are not classified as you expect, you can modify your 
assignment rules and/or set the inheritance bit for some of the classes (if you 
want the new processes to remain in the same class as their parent) and 
update WLM. You can repeat the process until you are satisfied with this first 
level of classification (superclasses).

Running WLM in passive mode and refreshing WLM (always in passive 
mode) is a very low-risk, low-overhead operation, and can be done safely on 
a production system without disturbing normal system operation. 

Step 4 - Gather resource utilization data 
For this purpose, WLM should be run in passive mode (using the class 
definitions resulting from Step 3) and gather statistics using the wlmstat 
command. This command can be started to display the per class resource 
utilization (as a percentage of the total resource available for superclasses) 
repeatedly and at regular time intervals. You can thus monitor your system for 
54 AIX 5L Workload Manager (WLM)



extended periods of time to look at the resource utilization of your main 
applications over time.

With this data and your business goals defined in Step 1 (which applications 
and/or system users are critical for your business and which are less 
important), you can start deciding (or refining) which tier number will be given 
to every superclass and what share of each resource should be given to the 
various classes.

Step 5 - Turn WLM on
You are now ready to start WLM in active mode and monitor the system again 
with the wlmstat command to check if the regulation done by WLM is in line 
with your goals and if applications are not unduly deprived of resources while 
others get more than they should. If this is the case, adjust the shares and 
refresh WLM. 

For some specific cases, you may have to use minimum and/or maximum 
limits. If possible, try to adjust the shares (and potentially tier numbers) to get 
closer to your resource allocation goals first and reserve limits for cases that 
cannot be solved with shares only. Use minimum limits for applications that 
typically have low resource usage but need a quick response time when 
activated by an external event. One of the problems faced by interactive jobs 
in situations where memory becomes tight is that their pages get stolen 
during the periods of inactivity (waiting for user input, for instance). A memory 
minimum limit can be used to protect some of the pages of interactive jobs 
(up to the minimum limit) if the class is in tier 0. Use maximum limits to 
contain some resource-hungry, low-priority jobs. Again, unless you want to 
partition your system resources for other reasons, a hard maximum will make 
sense mostly for a non-renewable resource, such as memory, because of the 
time it would take to write data out to the paging space if a higher priority 
class would suddenly need pages that this other class would have used. For 
CPU, you can use tiers or soft maximum to make sure that if a higher priority 
class needs the CPU, it gets it right away. Again, monitor and adjust the 
shares, limits, and tier numbers until you are satisfied with the system's 
behavior.

Step 6 - Fine tune your configurations 
In this step, you can decide whether you need to use subclasses and, if you 
do, whether you want to delegate the subclasses administration for some or 
all of the superclasses. When creating and adjusting the parameters of 
subclasses, you can refresh WLM only for the subclasses of a given 
superclass without affecting users and applications in the other superclasses. 
The administrator of each superclass can repeat the same process described 
above (Steps 1 through 5) for the subclasses of the superclass. The only 
Chapter 3. AIX Workload Manager administration 55



difference is that it is not possible to run WLM in passive mode at the 
subclass level only. The subclass configuration and tuning might have to be 
done with WLM in active mode. In this case, one way of not impacting users 
and applications in the superclass is to start with the tier number, the shares 
and limits for the subclasses at their default value ((-) for shares, 0 percent 
for min, and 100 percent for soft and hard max) so that WLM will not regulate 
the resource allocation between the subclasses. The administrator can then 
monitor and set up the subclasses shares, limits, and tier number as 
explained in the steps above.

Step 7 - Create other configurations as needed 
When you are done with your initial configuration, you can repeat the process 
to define other configurations with different parameters for nights and 
weekends, for instance, according to the needs of the business. When doing 
so, you can probably take shortcuts for some steps because you will be 
modifying existing configurations.

3.2.2  Working with WLM configurations
WLM allows the setup of various configurations. They can be used 
interchangeably, for instance, manually or by configuring cron to change WLM 
into a particular configuration at a specific point of time (night time or 
weekends, for example).

Let us consider an example; a system runs an interactive job that is heavily 
used during daytime, a batch calculation job that must not interfere with the 
previous one, and a backup that must not interrupt or steal resources from 
any of the jobs mentioned previously. Nevertheless, all these jobs are to 
perform their tasks eventually. So, the system administrator might want to 
make sure the calculation job runs every night from midnight to 3:00 a.m., 
and the backup is done from 4:00 to 6:00 a.m. One way to set up all this is:

  • Create a configuration, daytime, with classes for these jobs; interactive in 
tier 0, batch in tier 1, and backup in tier 2.

  • Create a second configuration, nightime1, with batch in tier 0, interactive 
in tier 1, and backup in tier 2.

  • Create a third configuration nightime2 with backup in tier 0, batch in tier 1, 
and interactive in tier 2.

  • Set up cron to change WLM from daytime to nightime1 at midnight and 
from nightime1 to nightime2 at 4:00 a.m.

This is only one of the ways this setup can be implemented. The idea here is 
to illustrate the use of WLM’s various configurations capability.
56 AIX 5L Workload Manager (WLM)



Command line
Using the command line, the way to create configurations in WLM is simply to 
create new directories under /etc/wlm, to copy the contents from one 
configuration to the new one (if this is the first configuration, use 
/etc/wlm/templates) and edit the files manually. The name of the 
configurations will be the subdirectory names under /etc/wlm.

So, if in our example if you already had the configuration, daytime, which 
could have been created by setting up the subdirectory, /etc/wlm/daytime, 
and creating the classes in it, you could now copy this configuration into 
newly-created /etc/wlm/nightime1 and /etc/wlm/nightime2 subdirectories and 
edit the files manually to alter the tier attribute of the classes. The mkclass 
command could be used to set up new classes (see also “Adding a class - 
mkclass” on page 62), and the lsclass command could be used to list the 
contents of our new configurations (see also “Listing the classes - lsclass” on 
page 64).

SMIT
To set up our example in SMIT, you could access the Work on alternate 
configurations screen, shown in Figure 8, or you could use the following 
fastpath:

# smitty wlmconfig

Figure 8.  smitty wlmconfig

From this screen, the system administrator can:
Chapter 3. AIX Workload Manager administration 57



  • See all the existing configurations (Show all configurations). 

  • Copy an existing configuration into a new one (Copy a configuration).

  • Create a brand new configuration (Create a configuration). 

  • Select a configuration to work with (Select a configuration). Also see 
Figure 9. The output of this option is the listing of the superclasses and 
subclasses of the selected configuration. All changes made from this 
option on (create, change, delete classes, or rules) will apply to the 
selected configuration, leaving the currently-running configuration 
unchanged. The scope is returned to the currently-running configuration if 
SMIT is exited and restarted.

  • Enter a description for the configuration (Enter configuration description).

  • Remove a configuration (Remove a configuration).

Figure 9.  Select a configuration screen in SMIT

WSM
Configurations can be managed in WSM from the Configurations/Classes 
screen. As you enter this screen and all existing configurations are listed, you 
can right-click on the configuration to be updated, and all the configuration 
options will be listed in a pop-up window (Figure 10 on page 59). Some of 
these options, namely, the ones related to WLM management, are described 
in Section 3.3.2, “Start/Stop/Update WLM - wlmcntrl” on page 99. Only the 
options regarding WLM configurations are described in this section. 
58 AIX 5L Workload Manager (WLM)



Figure 10.  Configuration options

  • The Properties option allows the system administrator to visualize general 
characteristics of the configuration (name, description, and whether it is 
the currently-running configuration or not) and change the description. 
Alternatively, the properties icon in the upper part of the WSM window can 
be clicked:

  • The Copy option allows the system administrator to create a new 
configuration out of an already-existing one. Alternatively, the copy icon at 
the top of the WSM window can be clicked:

  • Show Configuration Details shows general characteristics of the 
configuration, such as its classes and their shares and limits. In Figure 11 
on page 60, you can see a possible output for the example in Table 2 on 
page 26.

Properties

Copy 
Chapter 3. AIX Workload Manager administration 59



Figure 11.  Show Configuration Details screen in WSM

  • New Configuration allows the system administrator to set up a new 
configuration to work with.

  • Refresh Running Configuration updates the configuration with the 
changes made. This screen is shown in Figure 12 on page 61.
60 AIX 5L Workload Manager (WLM)



Figure 12.  Refresh Current Configuration screen in WSM

Alternatively, one of the icons at the top of the WSM window can be used 
to perform this task:

To remove a configuration, click on the configuration to be deleted and then 
press the delete icon at the top of the window:

Refresh Current Configuration

Delete
Chapter 3. AIX Workload Manager administration 61



3.2.3  Working with classes
After defining the configuration name, superclasses must be added to it, and 
then subclasses can be configured. This section will show how the system 
administrator can deal with both superclasses and subclasses.

3.2.3.1  Using the command line
This section explains the execution on the command line.

Adding a class - mkclass
The command to create classes in WLM is mkclass. The syntax of this 
command is as follows:

mkclass [ -a Attribute=Value ... ] [ -c | -m | -b KeyWord=Value ] [ -d
Config_Dir ] [ -S SuperClass ] Name

The mkclass command creates a superclass or a subclass identified by the 
Name parameter. The class must not already exist. The name parameter can 
contain only uppercase and lowercase letters, numbers, and underscores (_). 
The name is in the format, supername or subname (with the -S supername 
option) or supername.subname. Supername and subname are each limited to 
16 characters in length. The names Default, System, and Shared are 
reserved. They refer to predefined classes. Any Attribute=Value or 
KeyWord=Value argument will initialize the specified attribute or resource 
limit.

The options for this command are:

-a Attribute=Value To set up an attribute value. The valid names for 
attributes are tier, inheritance, authuser, authgroup, rset, 
adminuser, admingroup, and localshm.

-b KeyWord=Value Changes a limit or share value for disk I/O throughput. 
Possible KeyWords are min, softmax, hardmax, and 
shares.

-c KeyWord=Value Changes a limit or share value for a CPU. Possible 
KeyWords are min, softmax, hardmax, and shares.

-d Config_dir To use /etc/wlm/Config_dir as an alternate directory for 
the properties files. When this option is not used,
mkclass uses the configuration files in the directory 
pointed to by /etc/wlm/current.

-m KeyWord=Value Changes a limit or share value for memory. Possible 
KeyWords are min, softmax, hardmax, and shares.
62 AIX 5L Workload Manager (WLM)



-S Superclass To specify the name of the superclass when creating a 
subclass. There are two ways of creating the subclass, 
sub, of the superclass, Super:

  • Specify the full name of the subclass as Super.Sub for 
Name, and do not use -S.

  • Use the -S option to give the superclass name, and 
use the short name for the subclass: mkclass
<options> -S Super Sub

So, to set up the devlt superclass and the subclass, hackers, from the 
example in Table 2 on page 26, the following commands could be run:

# mkclass -a inheritance=yes -a tier=0 -a adminuser=bob devlt

# mkclass -a inheritance=no -a tier=0 -S devlt hackers

or

# mkclass -a inheritance=no -a tier=0 devlt.hackers

Updating a class - chclass
The command to update a class is chclass. The syntax of this command is:

chclass -a Attribute=Value [[-a Attribute=Value]...] [-c|-m |-b
Keyword=Value] [-d Config_dir] [-S Superclass] Name

The chclass command changes attributes for the class identified by the Name 
parameter. The class must already exist. To change a class attribute (tier, 
inheritance, adminuser, admingroup, rset, authuser, authgroup, and 
localshm), specify the attribute name and the new value with the -a 
Attribute=Value option. To change/set a limit or shares value, use option -c for 
cpu, -m for memory, and -b for disk I/O (stands for block I/O), with the 
Keyword value in min, softmax, hardmax, or shares.

The options for this command are:

-a Attribute=Value To change a class attribute (attribute in tier, inheritance, 
adminuser, admingroup, rset, authuser, authgroup, and 
localshm).

-c Keyword=Value To change CPU resource limits or shares (keyword in 
min, softmax, hardmax, or shares).

-m Keyword=Value To change memory resource limits or shares (keyword) 
in min, softmax, hardmax, or shares).
Chapter 3. AIX Workload Manager administration 63



-b Keyword=Value To change Disk I/O resource limits or shares (keywordin 
min, softmax, hardmax, or shares).

-d Config_dir To use /etc/wlm/Config_dir as an alternate directory for 
the properties files. If this option is not present, the 
current configuration files in the directory pointed to by 
/etc/wlm/current are used.

-S Superclass To specify the name of the superclass when changing 
the attributes of a subclass. There are two ways of 
specifying that the change is to be applied to the 
subclass, Sub, of the superclass, Super: 

  • Specify the full name of the subclass as Super.Sub 
and not use -S.

  • Use the -S option to give the superclass name and use 
the short name for the subclass:
chclass <options> -S Super Sub

So, to change the devlt class from the example in Table 2 on page 26, you 
could run the following command to give it 20 CPU shares, change the 
administration user to bob, and set 10 percent as the memory minimum limit:

# chclass -a adminuser=bob -c shares=20 -m min=10 devlt

Listing the classes - lsclass
The command to list classes is lsclass. The syntax of this command is:

lsclass [ -C |-D |-f ] [ -r ] [ -d Config_dir ] [ -S Superclass ] [ Class ]

With no arguments, lsclass simply lists all superclasses in the current 
configuration. This command is accessible to all users in the system.

The options for this command are:

-C To display the class attributes, shares, and limits in
colon-separated records:

-D To display the default values for the class attributes, shares,
and limits in colon-separated records:

#lsclass -C devlt
#name:description:tier:inheritance:authuser:authgroup:adminuser:
admingroup:rset:CPUshares:CPUmin:CPUsoftmax:CPUhardmax:
memoryshares:memorymin:memorysoftmax:memoryhardmax:diskIOshares:
diskIOmin:diskIOsoftmax:diskIOhardmax:localshm
devlt::0:no::dev::::30:0:100:100:1:10:70:80:1:10:80:100:no
64 AIX 5L Workload Manager (WLM)



-f To display the output in stanzas, with each stanza identified
by a class name. Each Attribute=Value pair is listed on a
separate line:

-r To recursively display the superclasses with all their 
subclasses. When specifying -r:

  - If no class name is given, lsclass will show all the 
superclasses with all their subclasses.

  - If the name of a superclass is given, lsclass displays the 
superclass with all its subclasses. 

  - If the name of a subclass is given, -r is ineffective 
(displays only the subclass).

-d Config_dir To use /etc/wlm/Config_dir as alternate directory for the 
definition files. If this option is not present, the current 
configuration files in the directory pointed to by 
/etc/wlm/current are used.

-S Superclass To restrict the scope of the command to the subclasses of 
the specified superclass. When -S is used, only subclasses 
are shown.

Removing a class - rmclass
The command to remove classes is rmclass. The syntax of this command is:

rmclass [-d Config_dir] [-S Superclass] Name

The rmclass command removes the superclass or the subclass identified by 
the Name parameter from the class definition file, the class limits file, and the 
class shares file. The class must already exist. The predefined Default, 
System, Shared, Unmanaged, and Unclassified classes cannot be removed. 
In addition, when removing a superclass, Super, the directory, 
/etc/wlm/Config_dir/Super, and all the WLM property files it contains (if they 

#lsclass -D devlt
#name:description:tier:inheritance:authuser:authgroup:adminuser:
admingroup:rset:CPUshares:CPUmin:CPUsoftmax:CPUhardmax:
memoryshares:memorymin:memorysoftmax:memoryhardmax:diskIOshares:
diskIOmin:diskIOsoftmax:diskIOhardmax:localshm
::0:no::::::-:0:100:100:-:0:100:100:-:0:100:100:no

Class:
attribute1=value
attribute2=value
attribute3=value
Chapter 3. AIX Workload Manager administration 65



exist) are removed. Removing a superclass will fail if any user created 
subclass still exists (subclass other than Default and Shared).

Only root can remove a superclass. Only authorized users whose user ID or 
group ID matches the user name or group name specified in the attributes 
adminuser and admingroup of a superclass can remove a subclass of this 
superclass. 

The options for this command are:

-d Config_dir To use /etc/wlm/Config_dir as alternate directory for the
properties files. If this flag is not used, the configuration
files in the directory pointed to by /etc/wlm/current are
used.

-S Superclass To specify the name of the superclass when removing a
subclass. There are two ways of specifying the subclass
Sub of superclass Super:
  •Specify the full name of the subclass as Super.Sub and 

not use -S.
  •Use the -S option to give the superclass name and use the 

short name for the subclass:
rmclass <options> -S Super Sub

3.2.3.2  Using SMIT
This section explains the execution on the SMIT interface.

Working with sets of subclasses
This method of working with sets of subclasses is only applicable to SMIT. 
WSM uses a different approach to work with classes. It consists of changing 
the context you are currently working in into the superclass environment. This 
is the best way for a superclass administrator to work because he or she does 
not have any privileges to work in any other environment besides the scope 
of his or her own superclass. Once inside the context of a superclass A, every 
class that is listed, created, changed, or removed (even specifying only its 
short name) will always be treated as a subclass of superclass A.

The context to a specified superclass in SMIT can be changed through the 
Work on a set of Subclasses screen. After selecting the superclass to be 
worked on, the list of its subclasses is displayed. From this point on, any work 
in other SMIT screens in this same SMIT session is done inside this 
superclass environment.

To know in which context the current work is, the Show current focus 
(Configuration, Class Set) screen can be accessed in the SMIT session 
66 AIX 5L Workload Manager (WLM)



where the context was changed. The configuration shown in the output of this 
command is, by default, the currently-running one. However, you can work on 
other configurations (leaving the currently-running one untouched) if you 
select a configuration to work with inside the Work on alternate configurations 
screen (see Section 3.2.2, “Working with WLM configurations” on page 56 for 
further details on how to work with alternate configurations).

So, if the context is changed into the devlt superclass in configuration Config, 
from the example in Table 2 on page 26, the focus is the output shown in 
Figure 13. Note that because the configuration focus has not been changed, 
the working configuration is presented as being the currently-running one.

Figure 13.  Show current focus screen in SMIT

If the configuration focus had been changed into, for instance, a configuration 
named Config_2, and the class focus had been changed into the set of 
subclasses of superclass OLTP, then the: 

  • Configuration focus in Figure 13 was Config_2 
  • Class set was Subclasses of OLTP
  • Currently-running configuration was Config

After exiting SMIT and reentering it, the context is drawn back to the root of 
the currently-running WLM configuration.

Note
Chapter 3. AIX Workload Manager administration 67



Adding a class
To create a class through SMIT, simply access the Add a class screen, or use 
the following fastpath:

# smitty wlmaddclass

The screen shown in Figure 14 will appear.

Figure 14.  smitty wlmaddclass

In this screen, the system administrator can create a superclass by entering 
its name or a subclass by entering its full name (superclass.subclass). The 
superclass must already exist for this to work. Every other attribute works 
exactly the same for both superclasses and subclasses.

If the screen, Work on a set of subclasses, has been accessed to change into 
a superclass’ context (see “Working with sets of subclasses” on page 66, for 
further information about how to change the focus), the Add a class screen 
will operate on the environment of the chosen superclass. While operating 
under a superclass’ scope, the short name can be specified when creating a 
subclass for that superclass.
68 AIX 5L Workload Manager (WLM)



Updating a class
In SMIT, the characteristics of a class can be changed in the Change/Show 
Characteristics of a class screen, shown in Figure 15, or with the following 
fastpath:

# smitty wlmchclass

Figure 15.  smitty wlmchclass

In the General characteristics of a class screen, shown in Figure 16 on page 
70, the class attributes (tier, inheritance, adminuser, admingroup, rset, 
authuser, authgroup, and localshm) can be changed or set.

Remember that the scope will be returned to the root of the 
currently-running configuration if the SMIT session is exited and restarted.

Note
Chapter 3. AIX Workload Manager administration 69



Figure 16.  General characteristics of a class screen in SMIT

Any of the resources’ relative attributes (shares and minimum and maximum 
limits) can be changed under the option referring to the required resource 
(CPU, memory, or disk I/O).

This way, to change CPU’s shares to 20 in devlt class from the example in 
Table 2 on page 26, you need to access the CPU resource management 
screen, shown in Figure 17 on page 71.
70 AIX 5L Workload Manager (WLM)



Figure 17.  CPU resource management screen in SMIT

To change the memory minimum limit to 10 percent, you need to access the 
Memory resource management screen shown in Figure 18.

Figure 18.  Memory resource management screen in SMIT

If the Work on a set of subclasses screen has been accessed to change into 
a superclass’ context (see Section “Working with sets of subclasses” on 
page 66, for further information on how to change the focus), the 
Change/Show Characteristics of a class screen will operate on the 
Chapter 3. AIX Workload Manager administration 71



subclasses of the chosen superclass. While operating under a superclass’ 
scope, the short name can be specified when changing a subclass of that 
superclass.

Listing the classes
In SMIT, the classes can be listed through the List all classes screen or the 
following fastpath:

# smitty wlmlsclass

When under the scope of the general configuration, the screen will show all 
superclasses configured as shown in Figure 19.

Figure 19.  smitty wlmlsclass

If the Work on a set of subclasses screen has been accessed to change into 
a superclass’ context (see Section “Working with sets of subclasses” on 
page 66, for further information on how to change the focus), the List all 
classes screen will print out the subclasses of the chosen superclass.

Remember that the scope will be returned to the root of the 
currently-running configuration if the SMIT session is exited and restarted.

Note
72 AIX 5L Workload Manager (WLM)



Removing a class
In SMIT, a class can be removed by accessing the Remove a class screen or 
using the following fastpath

# smitty wlmrmclass

A superclass is removed by specifying its name, and a subclass is removed 
by specifying its full name. 

If the Work on a set of subclasses screen has been accessed to change into 
a superclass’ context (see Section “Working with sets of subclasses” on 
page 66 for further information about changing the configuration’s focus), the 
Remove a class screen will operate on the subclasses of the chosen 
superclass. While operating under a superclass’ scope, the short name can 
be specified when removing a subclass of that superclass.

3.2.3.3  Using WSM
This section explains the execution on the WSM interface.

Adding a class
To add a class in WSM, several paths can be taken.The first way is to create 
a new class in the currently running configuration inside the Overview and 
Tasks screen (see Figure 42 on page 104). In this screen, click on the Create 
a new class in the default configuration link. This will guide you through the 
New Class wizard (Figure 20 on page 74), which sets up a new class and its 
attributes (tier, inheritance, adminuser, admingroup, resource set, authuser, 
authgroup, and localshm). The class can be a superclass with the name, 
supername, or a subclass of an already-existing superclass with the name, 
supername.subname:

Remember that the scope will be returned to the root of the 
currently-running configuration if the SMIT session is exited and restarted.

Note
Chapter 3. AIX Workload Manager administration 73



Figure 20.  New Class wizard in WSM

Another way to create a class is to right-click on the configuration to be 
altered (see Figure 21 on page 75) inside the Configurations/Classes screen, 
and choose the New Class option.
74 AIX 5L Workload Manager (WLM)



Figure 21.  Create a class in Configurations/Classes screen in WSM

From here, you can choose to use the wizard mentioned earlier (see Figure 
20 on page 74) or the Advanced configuration tool, which, in addition, allows 
other class attributes to set up shares and limits for the class being created. 
The class can be a superclass with the name, supername, or a subclass of an 
already-existing superclass with the name, supername.subname. Create the 
class shown in Figure 22 on page 76.
Chapter 3. AIX Workload Manager administration 75



Figure 22.  New Class advanced in WSM - Setting up limits and shares

The third way to create a class is to click the expand icon, found at the right 
hand side of the configuration selected, to expand the view to all the 
configured classes in that configuration.

All the superclasses with subclasses will also be shown with an expand icon 
that can be selected to extend the view into the subclass level. Right clicking 
the name of a class displays the class options screen as shown in Figure 23 
on page 77.

Expand
76 AIX 5L Workload Manager (WLM)



Figure 23.  Class options screen in WSM 

The bottom part of the class options screen is the same as the bottom part of 
the configuration options screen, so what has been (and will be) said about 
the latter also applies to the former. In this section, only the options of this 
screen that apply to creating classes are mentioned. All others are described 
in later sections.

From this screen, the system administrator can create a new class as follows:

  • Copy the selected class attributes into a new class, making any necessary 
changes (Copy). Alternatively, the copy icon at the top of the WSM window 
can be pressed.

  • Create a subclass for the selected superclass (New Subclass) using either 
the Wizard or the Advanced tool as shown in Figure 24 on page 78.

Copy
Chapter 3. AIX Workload Manager administration 77



Figure 24.  New Subclass Advanced in WSM

  • Copy the selected class into another configuration (Add to Another 
Configuration as shown in Figure 25):

Figure 25.  Add to another configuration screen in WSM
78 AIX 5L Workload Manager (WLM)



Updating a class
In WSM, the classes attributes can be changed in the Configurations/Classes 
screen in the classes view (or the subclasses view for a specific superclass) 
by right-clicking the name of the class to update and selecting Properties. 
This can also be done by simply double-clicking the name of the class. 

An example of changes that can be made to shares and limits in this screen 
is shown in Figure 26.

Figure 26.  Changing class properties in WSM 

Alternatively, the properties icon at the top of the WSM window can be clicked 
for the same purpose:

Properties
Chapter 3. AIX Workload Manager administration 79



Listing the classes 
There are two views in WSM where the classes and their attributes for the 
chosen configuration can be seen: 

  • In the Configurations/Classes screen, select the configuration option, 
Show Configuration Details (see also Figure 11 on page 60).

  • In the Configurations/Classes screen, two icons can be seen at the top of 
the WSM window. They are Tree and Tree-Details:

The first icon sets up a view that only shows the tree of configurations, 
superclasses, and subclasses. The second one creates a view in which 
some of the class attributes can be seen as shown in Figure 27.

Figure 27.  Tree-Details view in WSM

Tree

Tree-Details
80 AIX 5L Workload Manager (WLM)



Removing a class
To remove a class in WSM, the system administrator can highlight the class 
to be deleted and press the Delete key, right-click on the class name and 
chose the Delete option, or click on the delete icon at the top of the WSM’ 
window:

3.2.4  AIX Version 4.3.3 maintenance level 8 wlmset command
A new command wlmset is used to customize WLM by setting global option 
flags that alter the standard behavior.

The syntax is:

wlmset [-a hardcpumax=[yes|no]] [-a shared=[yes|no]]

Flags:

-a hardcpumax=[yes|no] Possible values are yes or no. Yes means that the 
CPU maximum limits should be treated as 
absolute limits and should never be exceeded. No 
means that the CPU maximum limits should be 
treated as soft limits and can be exceeded if there 
is no contention for the CPU resource. No is the 
default when wlmset is not used or is used without 
specifying the hardcpumax keyword. 

-a shared=[yes|no] Possible values are yes or no. Yes means that 
shared memory segments should migrate to the 
Shared class when accessed (page fault) by a 
process belonging to a different class as that of 
the segment. This is the default when wlmset is not 
used or is used without specifying the shared 
keyword. No means that the segment should 
remain in the class it was first classified into, 
regardless of the class of the processes accessing 
it.

The fact that these options are global WLM flags means that they apply to all 
the classes when set. The wlmset command can be used whether or not WLM 
is active. For consistent results, it is recommended that wlmset be used to 
customize Workload Manager prior to starting it. Otherwise, in the case of the 
shared memory for instance, shared memory segments accessed by 

Delete
Chapter 3. AIX Workload Manager administration 81



processes in different classes will go into the Shared class (and remain there) 
prior to the shared flag being set, and the shared memory segments 
accessed by processes in different classes after the flag has been set will 
remain in their class of origin. The customization of WLM is done by setting 
global flags in memory, and thus has to be done every time a system is 
rebooted. The best way to do it, when using the same set of flags for each 
reboot, is to run wlmset from the inittab prior to starting WLM. The wlmset 
command is restricted to the root user. This command is provided in AIX 
Version 4.3.3 maintenance level 8 to give 4.3.3 users early access to some of 
the features available in Workload Manager with AIX 5L. 

3.2.5  Working with rules
After configuring the needed classes, the process assignment criteria must 
be set up to have the applications classified according to the configuration 
design. This is done by creating the class assignment rules.

3.2.5.1  Editing the rules files on the command line
As shown in Section 2.5.3, “Class assignment rules” on page 23, an 
assignment rule is a set of attributes with which the characteristics of a given 
process can be matched (or not). The rules file has the same format for both 
superclasses and subclasses, the only difference being the non-existence of 
a System class rule in the subclasses’ rules files due to the non-existence of 
System subclasses. 

The rules file for the example shown in Table 2 on page 26 would be:

The wlmset command is not supported by AIX 5L. AIX 5L supports both 
hard and soft maximum limits that can be set independently for all resource 
types managed by WLM, including CPU. AIX 5L also provides a per class 
attribute (localshm) to prevent shared memory segments to go into the 
Shared class on a per class basis. It is expected that users of wlmset will 
modify their WLM configuration files to take full advantage of the 
corresponding AIX 5L features when they upgrade from AIX Version 4.3.3 
to AIX 5L. 

Note
82 AIX 5L Workload Manager (WLM)



The resvd attribute (reserved for future use) must always exist and must 
always be set to hyphen (-).

Any hyphens (-) at the end of a rule can be omitted, as long as no subsequent 
attribute is set. For instance, the rule for the acctg superclass could be

acctg - - acct*

but the rule for the db1 superclass could not be

db1 - - - /usr/oracle/bin/db* _db1

because _db1 would be interpreted by WLM as the type attribute, returning 
an invalid type attribute error.

For the type attribute position, one or more values can be specified either 
divided with commas (,) for ‘or’, or with plus signs (+) for ‘and’. For instance, 
the rule for the devlt class in the previous example could be:

devlt - - dev - 32bit,plock+fixed -

specifying that the processes classified under this class needed to be either 
32 bit processes or have called plock and be fixed priority at the same time.

3.2.5.2  Using SMIT
This section explains the execution on the SMIT interface.

Adding a rule
In SMIT, a rule can be created by accessing the Class assignment rules and 
Create a new rule screens, or by using the following fastpath:

* IBM_PROLOG_BEGIN_TAG
* This is an automatically generated prolog.
* bos43N src/bos/etc/wlm/rules 1.1
* Licensed Materials - Property of IBM
* (C) COPYRIGHT International Business Machines Corp. 1999
* All Rights Reserved
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
* IBM_PROLOG_END_TAG
* class resvd user group application type tag
db1 - - - /usr/oracle/bin/db* - _db1
db2 - - - /usr/oracle/bin/db* - _db2
devlt - - dev - 32bit -
VPs - bob - - - -
acctg - !ted - acct* - - -
Chapter 3. AIX Workload Manager administration 83



# smitty crewlmrs

If the Work on a set of subclasses screen has been accessed to change into 
a superclass’ context (see Section “Working with sets of subclasses” on 
page 66 for more information about changing the configuration’s focus), the 
Create a new rule screen will work under the scope of the chosen superclass. 
It will, therefore, create the rules for the superclass’ subclasses. While 
operating under a superclass’ scope, the short name can be specified when 
creating rules for a subclass of that superclass.

In Figure 28, you can see an example of the creation of a rule for the hogs 
subclass of the devlt superclass (from the example in Table 2 on page 26), 
after changing into devlt superclass’ scope.

Figure 28.  Create a new Rule screen in SMIT

The type for the hogs subclass in Figure 28 could be configured as 
32bit,plock+fixed to specify that a process classified under this subclass must 
be either 32 bit or have called plock and have fixed priority at the same time. 

Remember that the scope will be returned to the root of the 
currently-running configuration if the SMIT session is exited and restarted.

Note
84 AIX 5L Workload Manager (WLM)



If the F4 function key is pressed on the type attribute and more than one 
value chosen, they get comma-separated (or ORed). If the AND option is 
required, the plus sign must be entered manually in this attribute.

Changing a rule
A rule can be changed in SMIT through the Class assignment rules screen 
and Change/Show Characteristics of a Rule, or through the following 
fastpath:

# smitty chgwlmrs

Figure 29 shows the Select a Rule screen.

Figure 29.  Selecting a rule in SMIT

After selecting the rule to be changed, any of its attributes can then be edited, 
such as changing the group to dev in db1 superclass’ rule as shown in Figure 
30 on page 86.
Chapter 3. AIX Workload Manager administration 85



Figure 30.  Change/Show Characteristics of a Rule screen in SMIT

If the Work on a set of subclasses screen has been accessed to change into 
a superclass’ context (see Section “Working with sets of subclasses” on 
page 66 for more information about changing the configuration’s focus), the 
Change/Show Characteristics of a Rule screen will operate on the rules of the 
subclasses of the chosen superclass.

If the F4 function key is pressed on the type attribute and more than one 
value chosen, they get comma-separated (or ORed). If the AND option is 
required, the plus sign must be manually entered in this attribute.

Listing the rules
The rules in SMIT can be listed by accessing the Class assignment rules 
screen, followed by the List all Rules screen shown in Figure 31 on page 87.

Remember that the scope will be returned to the root of the 
currently-running configuration if the SMIT session is exited and restarted.

Note
86 AIX 5L Workload Manager (WLM)



Figure 31.  List all Rules screen in SMIT

If the Work on a set of subclasses screen has been accessed to change into 
a superclass’ context (see Section “Working with sets of subclasses” on 
page 66 for more information about changing the configuration’s focus), the 
List all Rules screen will print out the rules of the subclasses of the chosen 
superclass.

Removing a rule
In SMIT, a rule can be deleted by accessing the Class assignment rules 
screen and choosing Delete a Rule. See Figure 29 on page 85 for details 
about selecting a rule.

3.2.5.3  Using WSM
This section explains the execution on the WSM interface.

Remember that the scope will be returned to the root of the 
currently-running configuration if the SMIT session is exited and restarted.

Note
Chapter 3. AIX Workload Manager administration 87



Adding a rule
Working with rules in WSM (at general configuration or superclass levels) can 
be done in the Configurations/Classes screen by right clicking on the 
configuration to be changed and choosing the Class Assignment Rules 
option. The Class Assignment Rules screen is shown in Figure 32.

Figure 32.  Class Assignment Rules screen in WSM

To add a rule, click on Insert Rule. The attributes of a rule can now be set 
(user, group, application, process type, and tag) as shown in Figure 33 on 
page 89.
88 AIX 5L Workload Manager (WLM)



Figure 33.  Adding a rule in WSM - setting process type attribute

After a rule has been created, it can be moved up or down the rules list by 
clicking on the options Move Up or Move Down in the Class Assignment 
Rules screen.

Changing a rule
To change a rule in WSM, click Edit Rule in the Class Assignment Rules 
screen (Figure 32 on page 88) at either the superclass or subclass level. A 
screen similar to the one in Figure 33 will be shown, allowing the system 
administrator to alter the rule’s attributes.

Listing the rules
Listing the rules in WSM is done by simply accessing the Class Assignment 
Rules screen (see Figure 32 on page 88) either at the superclass or subclass 
level.

Removing a rule
In WSM, a rule can be deleted by accessing the Class Assignment Rules 
screen, highlighting the rule to be removed, and clicking Delete Rule.
Chapter 3. AIX Workload Manager administration 89



3.2.6  Checking the configuration - wlmcheck
The configuration is set and running. Now is probably a good time to use the 
WLM checking command, wlmcheck. This command checks automatic 
assignment rules and/or determines the class in which a process with a 
specified set of attributes will be classified.

Using the command line
The syntax for the wlmcheck command is as follows:

wlmcheck [ -d config_dir ] [ -a <process attributes> ] [ -q ]

The following are the options for this command:

-d config Uses the WLM property files in /etc/wlm/config instead of the 
values currently loaded into the kernel (active configuration).

-a attributes Used to pass a set of values for the classification attributes of 
the process in order to determine which class the process will 
be put into. This is a way to check that the assignment rules 
are correct and classify processes as expected.

-q Suppresses the output of the status of the latest 
activation/update of WLM (stands for quiet).

The wlmcheck command with no arguments returns the status of WLM and 
makes some coherency checks:

  • Displays the current status of WLM (running/non running, active/passive, 
rsets bindings active/non active).

  • Displays the status files that report the last loading errors, if any.

  • Checks the coherency of the assignment rules files (syntax, existence of 
the classes, validity of user and group names, application path names, 
and so on).

If the -d config_dir option is not specified, the checks are performed on the 
configuration that is loaded into the kernel at this time. If WLM is not active, 
an error message is displayed. Specifying a configuration with -d config_dir 
allows you to perform the checks on configuration files, including the ones in 
/etc/wlm/current. 

Used with the -a option, the wlmcheck command displays the class the 
process would be assigned to according to the set of assignment rules of the 
specified configuration.

The attributes are given as a string similar to the format used in the 
assignment rules file (single string with several space-separated fields) and 
90 AIX 5L Workload Manager (WLM)



should be enclosed in quotes. The fields are the same as in the rules file and 
appear in the same order; reserved, user name, group name, application path 
name, process type, and application tag (see Section 3.1, “Property files” on 
page 44, for more information about the rules property file). 

The difference is that, unlike in the assignment rules: 

  • The class field is omitted (it is actually an output of the wlmcheck
command).

  • Each field can have, at most, one value. Exclusions (!), comma-separated 
lists, and wild cards are not allowed. 

  • At least one field must be specified (have a value different from a hyphen 
(-)). 

In addition, the first two fields are mandatory. The other fields, if not present, 
will default to a hyphen (-), which means that any value in the corresponding 
field of an assignment rule is a match. When one or more of the fields in the 
attribute string are either not present or specified as a hyphen (-), the string is 
likely to match more than one rule. In this case, the wlmcheck command will 
display all the classes corresponding to all the possible matches.

Example of valid attribute strings:

# wlmcheck -a "- root system /usr/bin/vi - -"

# wlmcheck -a "- - staff - 32bit"

# wlmcheck -a "- bob"

By default, the wlmcheck command outputs the contents of the status files for 
the last activation or update of WLM.

Using WSM
In WSM, wlmcheck can be invoked to check on the assignment rules 
coherency and to evaluate to which class a specific process would be 
assigned. This can be done in the Configurations/Classes screen by right 
clicking the configuration to be checked and choosing Check Assignment for 
the process classification evaluation and Check Rules for the coherency test. 
The Check Assignment screen, shown in Figure 34 on page 92, appears.

There is no dedicated SMIT interface for wlmcheck.

Note
Chapter 3. AIX Workload Manager administration 91



Figure 34.  Check Assignment in WSM

3.2.7  Working with resource sets
WLM uses the concept of resource sets (or rsets) to restrict the processes in 
a given class to a subset of the system's physical resources. In AIX 5L, the 
physical resources managed are the memory and the processors. A valid 
resource set is composed of memory and at least one processor. By default, 
the system creates one resource set for all physical memory, one for all 
CPU’s, and one separate set for each individual CPU in the system. 

3.2.7.1  Rset registry
As mentioned earlier, some resource sets are created for memory and CPU 
by default. It is possible to create different resource sets by grouping two or 
more resource sets and storing the definition in the rset registry.

The rset registry services enable system administrators to define and name 
resource sets so that they can then be used by other users or applications. In 
order to alleviate the risks of name collisions, the registry supports a two-level 
naming scheme. The name of a resource set is in the form, 
name_space/rset_name. Both the namespace and rset_name may each be 
255 characters in size, are case-sensitive, and may contain only upper and 
lowercase letters, numbers, underscores, and periods (.). The namespace of 
sys is reserved by the operating system and used for rset definitions that 
represent the resources of the system.
92 AIX 5L Workload Manager (WLM)



The smitty rset command has options to list, remove, and show a specific 
resource set used by a process, and contains the management tools as 
shown in Figure 35.

Figure 35.  SMIT main panel for Resource Set Management

To create, delete, or change a resource set in the rset registry, you must 
select Manage Resource Set Database in the SMIT panel. In this panel, it is 
also possible to reload the rset registry definitions to make all changes 
available to the system. Figure 36 on page 94 shows the SMIT panel for rset 
registry management.
Chapter 3. AIX Workload Manager administration 93



Figure 36.  SMIT panel for rset registry management

To add a new resource set, you must specify a name space, a resource set 
name, and the list of resources. It is also possible to change permissions for 
the owner and group of this rset. In addition, the permissions for the owner, 
groups, and others can be specified. Figure 37 on page 95 shows the SMIT 
panel for this task.
94 AIX 5L Workload Manager (WLM)



Figure 37.  SMIT panel to add a new resource set

Whenever a new rset is created, deleted, or modified, a reload in the rset 
database is needed to make the changes effective.

3.2.7.2  Using the command line
The lsrset command lists all resource sets defined. The following is a sample 
output for the lsrset command:

To change a resource set for a specific class, you could use the following 
steps.

To list the current rset of a class enter:

# lsrset -av
T Name Owner Group Mode CPU Memory Resources
r sys/sys0 root system r----- 4 511 sys/sys0
sys/node.00000 sys/mem.00000 sys/cpu.00003 sys/cpu.00002 sys/cpu.00001
sys/cpu.00000
r sys/node.00000 root system r----- 4 511 sys/sys0
sys/node.00000 sys/mem.00000 sys/cpu.00003 sys/cpu.00002 sys/cpu.00001
sys/cpu.00000
r sys/mem.00000 root system r----- 0 511 sys/mem.00000
r sys/cpu.00003 root system r----- 1 0 sys/cpu.00003
r sys/cpu.00002 root system r----- 1 0 sys/cpu.00002
r sys/cpu.00001 root system r----- 1 0 sys/cpu.00001
Chapter 3. AIX Workload Manager administration 95



# lsclass -C db2

#name:description:tier:inheritance:authuser:authgroup:adminuser:admingroup
:rset:CPUshares:CPUmin:CPUsoftmax:CPUhardmax:memoryshares:memorymin:memory
softmax:memoryhardmax:diskIOshares:diskIOmin:diskIOsoftmax:diskIOhardmax:
localshm

db2::0:yes:::::sys/cpu.00003:-:0:50:70:12:0:100:100:6:0:100:100:no

To change the rset of the class enter:

# chclass -a rset=sys/cpu.00002 db2

After changing the rset, run the wlmcheck command to check if this change is 
correct:

If wlmcheck completes without any errors as shown in the example above, you 
can list the result of the rset change with the following command:

# lsclass -C db2

#name:description:tier:inheritance:authuser:authgroup:adminuser:admingroup
:rset:CPUshares:CPUmin:CPUsoftmax:CPUhardmax:memoryshares:memorymin:memory
softmax:memoryhardmax:diskIOshares:diskIOmin:diskIOsoftmax:diskIOhardmax:
localshm

db2::0:yes:::::sys/cpu.00002:-:0:50:70:12:0:100:100:6:0:100:100:no

If you use a resource name that does not exist in the resource set database, 
wlmcheck will return an error message as shown below:

# wlmcheck -d Config
WLM is not running.
Checking classes and rules for 'Config' configuration...
System
Default
Shared
db1
db2
devlt
VPs
acctg
testacct

# wlmcheck -d Config
WLM is not running.
Checking classes and rules for 'Config' configuration...
1495-586 Bad Rset attribute for class db2
96 AIX 5L Workload Manager (WLM)



3.2.7.3  Using SMIT
Figure 38 shows the SMIT panel where a resource set can be specified for a 
specific class, which is opened with the following command:

#smitty wlmclass_gal

Figure 38.  Resource Set definition to a specific class in SMIT

3.2.7.4  Using WSM
In WSM, the resource set can be changed in the Configurations/Classes 
screen in the classes view (or the subclasses view for a specific superclass) 
by right-clicking the name of the class to update and selecting Properties. 
This can also be done by simply double-clicking the name of the class. 

Figure 39 on page 98 shows the WSM window where a resource set can be 
specified for a specific class.
Chapter 3. AIX Workload Manager administration 97



Figure 39.  Resource Set definition to a specific class in WSM

3.3  WLM operation

Operating WLM consists, basically, of turning it on and off, and refreshing its 
running configuration for any changes made. The main issue when operating 
WLM is the three different modes in which it can be started. The following 
sections focus on all these points.

3.3.1  Modes of operation
WLM can be turned on in one of three modes:

  • In the active mode, WLM classifies new and existing processes and 
regulates their resource usage for CPU, Memory, and Disk I/O according 
to the class shares and resource limits defined in the active WLM 
configuration. This is the normal mode of operation.

  • In active mode with CPU regulation only. In this mode WLM does not 
regulate Memory and Disk I/O.

  • A passive mode is provided to help system administrators understand 
what the resource requirements of their applications on a system are, 
helping them better tune their WLM configurations.
98 AIX 5L Workload Manager (WLM)



In this mode, WLM classifies new and existing processes and gathers 
statistics about their resource usage, but does not regulate this usage. In 
this mode, the processes compete for resources exactly as they would if 
WLM was off. The wlmstat command can then be used to get snapshots of 
the resource usage for the different classes.

The wlmcntrl command lets you switch the mode of operation at any time. In 
addition, rset binding can be turned on or off, so that all classes have access 
to the whole resource set of the system use (use wlmctrl -g to turn it off). 
Possible combinations are:

  • active mode + rset on

  • active mode + rset off

  • active mode (CPU only) + rset on

  • active mode (CPU only) + rset off

  • passive mode + rset on

  • passive mode + rset off

The passive mode can be used for various purposes. Here are a few 
examples:

  • Before fully enabling WLM on a production system, the system 
administrator could use the passive mode to check the assignment rules.

With WLM started in the passive mode, all the processes would be 
classified according to the assignment rules, and the system administrator 
could use ps to check that the various applications are classified in the 
correct class. Because there is no regulation in this mode, this has 
virtually no impact on the users of the system.

  • When the system administrator is satisfied with the classification, the 
system can be allowed to run for some time in passive mode to gather 
base line resource usage statistics with the wlmstat command. These 
statistics provide a reference that can be used to determine how to apply 
the shares and, if necessary, resource limits to favor critical applications 
and/or restrain less important work to match the business goals.

3.3.2  Start/Stop/Update WLM - wlmcntrl
WLM is not enabled at system installation and must be activated by the 
system administrator. This may be performed from the command line with the 
wlmcntrl command or from the administration tools SMIT or WSM. Either 
way, the wlmcntrl command does some very important processing of the 
Chapter 3. AIX Workload Manager administration 99



WLM property files before passing the configuration information to the 
operating system. In particular:

  • It converts all the user and group names into numerical user IDs and 
group IDs.

  • It expands the wild cards (if applicable) in the users, groups, or application 
pathnames in the rules files and accesses all the target application files to 
transform the pathnames into information usable by the kernel, such as 
device identifiers and inode numbers.

The wlmcntrl command will issue an error message and will not start WLM if it 
cannot translate a user or group name in a rule. If one or more of the 
application file names cannot be accessed, the wlmcntrl command will issue 
warning messages identifying the files causing a problem, but will still start 
WLM. The problem files’ names will just be ignored. Even though this 
condition is not fatal, you should try to understand why some of the 
application files cannot be accessed and take corrective actions. The 
problem could be due to a file system that was not mounted or an NFS server 
being down, for example. If none of the application files listed in an 
assignment rule can be accessed, the entire rule is ignored.

The following describes the functionality of each of the aforementioned WLM 
operating methods.

3.3.2.1  Using the command line
From the command line, WLM can be started, updated, stopped, and queried 
by running the wlmcntrl command with the appropriate option.

The syntax for this command can take two forms:

wlmcntrl [[ -a | -p ] [ -c ] [ -g ] [ -d Config_dir ]] [ -o | -q ]

or

wlmcntrl -u [ -S Superclass | -d Config_dir ]

The options of the wlmcntrl command are:

-a To start WLM in active mode or to switch from passive to 
active mode. This is the default when no option other than 
-d is specified.

-c To start WLM in active mode for CPU and passive mode 
for memory and disk I/O.

-p To start WLM in passive mode, or to switch from active to 
passive mode.
100 AIX 5L Workload Manager (WLM)



-d Config_dir To set /etc/wlm/Config_dir as the directory to use for the 
classes, resource limits, resource shares, rules files, and 
superclasses directories.

-g To disable the enforcement of resource set bindings at 
WLM startup.

-o To stop WLM.
-u To send an update request to change the attributes of the 

running classes, or to change the current configuration in 
use. Can be used alone or in conjunction with -S and -d 
options.

-S Superclass To specify the running superclass whose attributes are to 
be updated. Can only be used in conjunction with the -u 
option.

-q To query the WLM state. Returns 0 if WLM is running in 
active mode, 1 if WLM is not started, and 2 if WLM is 
running in passive mode. A message indicating the 
current state of WLM is the output.

A system administrator has the option of modifying the current configuration 
files and making the changes active without stopping WLM by using: 

# wlmcntrl -u

Any attributes of classes in the current configuration can be changed, and are 
then used to reclassify the processes to which they apply.

Administrators also have the option of creating a new configuration with 
different classes, shares, limits, and/or tier numbers and making this new 
configuration active without stopping WLM by using:

# wlmcntrl -u -d <new_config>

This second option is particularly useful because it allows administrators to 
create different configurations, such as a day_config and a night_config, and 
flip from one to the other at given times using the AIX cron facility.

Starting WLM by a direct invocation of the wlmcntrl command, however, only 
causes WLM to be initialized at that moment, not on every system boot. To 
configure WLM to start automatically at system boot, manually edit 
/etc/inittab. Make sure the WLM entry is placed directly after the mounting of 
filesystems so that the maximum number of processes are classified.

The -c option of wlmcntrl is not accessible through SMIT or WSM.

Note
Chapter 3. AIX Workload Manager administration 101



The line to add to /etc/inittab is:

wlm:2:once:/usr/sbin/wlmcntrl > /dev/console 2>&1 #Start WLM

3.3.2.2  Using SMIT
WLM can be started, stopped, updated, or queried by accessing the SMIT 
Start/Stop/Update WLM screen, shown in Figure 40, or by using the following 
fastpath:

# smitty wlmmanage

Figure 40.  smitty wlmmanage

Under Start Workload Management, you will be able to specify the 
Management Mode (active or passive) if you want WLM to enforce resource 
set bindings and if WLM is supposed to start now, at the next boot, or both. 

Under Update Workload Management, you will be asked to specify a 
superclass name (you can leave this blank if you wish to do a general update) 
not bound to a specific superclass only. You cannot use the SMIT interface to 
change the currently-running configuration.

Under Stop Workload Management, you are able to stop WLM now, at the 
next boot, or both.

Always perform tests in non-production environments.

Note
102 AIX 5L Workload Manager (WLM)



Show WLM Status will give you information about WLM’s mode of operation 
(active, passive, or inactive), as well as whether WLM was started with 
resource set bindings enforced. It will also display the currently-configured 
superclasses. Figure 41 shows the WLM status screen in SMIT.

Figure 41.  Show WLM status screen in SMIT

3.3.2.3  Using WSM
WLM can be controlled from inside the Overview and Tasks screen of WSM 
shown in Figure 42 on page 104.
Chapter 3. AIX Workload Manager administration 103



Figure 42.  Overview and Tasks screen in WSM 

The WLM status and currently-running configuration are shown as you enter 
the screen. In Figure 42, you can observe that WLM status is Started and 
Active, and the current configuration is Config. From this screen:

  • WLM can be started in active or passive mode, now, at system boot, or 
both with or without resource set bindings (specifying the chosen 
configuration) by clicking on Start Workload Manager. Figure 43 on page 
105 shows the Start Workload Manager screen in WSM.
104 AIX 5L Workload Manager (WLM)



Figure 43.  Start Workload Manager screen in WSM

  • WLM can be stopped by clicking Stop Workload Manager (confirmation is 
requested). Figure 44 shows the Stop Workload Manager screen in WSM.

Figure 44.  Stop Workload Manager screen in WSM

  • A new class for this configuration can be created by clicking Create a new 
class in the default configuration (the class management subject is 
discussed later).

  • The currently running configuration can be modified by clicking Change 
Configuration. The Change Configuration screen appears as shown in 
Figure 45 on page 106.
Chapter 3. AIX Workload Manager administration 105



Figure 45.  Change Configuration screen in WSM

Alternatively, inside the Configurations/Classes screen, some of the icons 
displayed at the top of the WSM window can be used for WLM management:

As a third option, WLM can be managed in the Configurations/Classes screen 
by right clicking in a selected configuration and choosing any of the 
management options, shown in Figure 46 on page 107. In this section, only 
the options related to WLM management are mentioned. All others are 
described in later sections.

Start Workload Manager (opens screen in Figure 43 on page 105)

Stop Workload Manager (opens screen in Figure 44 on page 105)
106 AIX 5L Workload Manager (WLM)



Figure 46.  Configuration options in WSM

The WLM management options in the configuration options screen are:

  • Start Workload Manager

  • Stop Workload Manager

3.4  Hints and tips

Practical use of WLM provided a collection of configuration and utilization 
hints and tips that will help you take better advantage of the feature and avoid 
some identified problems. Some additional characteristics of WLM will also 
be pointed out in this section.

3.4.1  Things to do
The following points are some hints that can help you configure and use 
WLM.
Chapter 3. AIX Workload Manager administration 107



Before you start
Always study and anticipate the behaviors of your applications before 
beginning to use WLM. Know your applications’ needs for disk, memory, and 
CPU use. Otherwise, you could end up giving unnecessary CPU cycles to a 
memory-bound application, instead of giving it the memory space it really 
needs.

A starting point
Keep it very simple at first, then build. A good starting point for a 
configuration of WLM would be to create a batch jobs class, an On-line 
Analytical Processing (OLAP) class, an On-line Transaction Processing 
(OLTP) class, a backup tasks class, and a Transaction Program class. 
Depending on the set of applications that are to be run on the system, the 
OLAP class could take DB2 UDB, or ORACLE; the OLTP class could contain 
SAP or Baan, and the Transaction Program class could hold MQSeries or 
Encina, for example. Classifying the processes per function gives the system 
administrator the ability to more easily decide where to change the 
configuration and progressively make it meet its original performance 
objective. This can be done by either gradually partitioning it into additional 
super or subclasses, or by changing the rules or values of shares and limits. 
Additionally, it also helps to better determine where the source of a problem 
might reside. An unclear configuration gets too complex to manage as the 
number of classes or rules goes up.

Configuration steps
When configuring WLM on a server, perform the following steps:

1. Balance the load using only shares at first. Monitor WLM and the system 
for a reasonable period of time to assess application performance, and 
tune these values if necessary.

2. Set minimum limits for the applications that do not appear to be given their 
share of resources.

3. Prioritize workloads using tiers, if necessary, to promote a ranking among 
jobs. For greater impact, increase the separation of tiers. For example, the 
impact of a tier 1 and tier 7 separation will be greater than the impact of a 
tier 1 and tier 4 separation.

4. Set soft or hard maximum limits only if absolutely necessary to control 
poorly-behaved applications. Remember, a class at its memory maximum 
limit will cause paging activity even if there are plenty of free memory 
pages available.
108 AIX 5L Workload Manager (WLM)



Tiers
Tiers are used when a high-level of separation of processes’ priorities is 
needed. This happens when there is a defined priority ranking among the 
applications. Configuration in tiers must be done bearing in mind that the 
processes assigned to higher numbered tiers will not compete for resources 
with the processes assigned to lower tiers. If process A from tier 0 has a high 
number of shares for resources and uses them all (running, for instance, a 
tight loop), process B from tier 1 might never get any CPU time during the 
execution of process A. This may be desirable; the system administrator 
should not allow a backup to stall a heavily-loaded e-business application 
during regular work hours, for instance. To make sure that the backup 
eventually happens, the system administrator can take advantage of the 
ability to have several WLM setups ready to run. He or she can configure cron 
to change WLM, at a chosen time, into a configuration where the backup 
process is assigned to tier 0. This way, it will run at a non-disruptive time.

System and Default superclasses
For a given program, WLM chooses the first in the list of rules that matches 
the process’ configuration, either by USERID, GROUPID, the name of the 
executable itself, the type, tag, or any possible combination of these 
attributes. Because every process is considered to belong to, at least, the 
Default superclass, and because system jobs should not be classified 
differently than they are in the System superclass, you should have the 
System class’ rule placed as close to the top of the rules list as possible, and 
Default class’ rule should be placed at the very bottom. The only 
circumstance in which the list of rules may and must have other classes 
before the System class’ rule is when the root user is supposed to launch a 
program that you want placed in a specific, user-created class. There are no 
reasons why any rule should come after Default’s rule; it would never be 
used.

The System superclass should not be anywhere other than in tier 0. Placing it 
on a different tier would ruin the normal functioning of the system. You must 
not forget that, besides the user applications, kernel processes are being 
controlled by WLM as well, and if they do not get their share of resources and 
therefore are not allowed to do their work, nothing else will run properly. Keep 
this in mind when configuring the values for shares and limits for the System 
superclass. These values should never be so low as to impair the system’s 

WLM configuration should be tested in a non-production environment to 
avoid possible disruption to users and applications.

Note
Chapter 3. AIX Workload Manager administration 109



work or so high that they substantially subtract performance from the 
applications.

Shares versus hard and soft limits
It is recommended to use resource shares rather than limits to start with. 
WLM sees resource shares as goals to be achieved, which allows greater 
system flexibility than imposed limits. If the resource shares set up by a 
system administrator are not optimal, the system should still be able to 
balance the load reasonably well. With hard limits set, WLM can do little to 
prevent applications from being starved of resources. For example, if the 
maximum memory limit is set smaller than the average working set of the 
application, significant performance degradation will occur. In summary, it is 
better to wait to assign limits until after experience has been gained with the 
results from setting resource shares, and when setting resource limits, start 
by setting only the minimums. It is also suggested that memory minimums for 
all classes be used before imposing a memory maximum for any class. This 
is for performance reasons, basically. A class that reaches its maximum 
memory limit starts paging against itself, which causes the paging algorithm 
(LRU) to run even when there are plenty of memory pages available. This, by 
itself, causes some performance impact. The recommended minimum limit 
for other classes is to make sure that LRU will not steal pages from these 
classes below those limits, which would cause an even greater performance 
impact. This would happen if, by some chance, some last and most probable 
next accessed pages were stolen from a non-minimum limited class.

Rules
The more specific assignment rules should appear first in the rules file, and 
the more general rules should appear last.

High-availability clustering multiprocessing program (HACMP)
It is recommended to make the HACMP startup entry in WLM systems as 
close to the end of the /etc/inittab file as possible in order to make sure WLM 
is fully initialized before the cluster manager starts. Otherwise, the deadman 
switch might trigger a false failover while something, such as WLM, initializes.

WLM on the SP systems
WLM cannot be used to provide distributed workload management over 
multiple nodes on the SP systems. Nevertheless, if some nodes are similar in 
applications structure and configurations, having WLM working in all of them 
is as easy as performing the following steps: 

1. Configure WLM in one node.

2. Use the tar command to gather all text files which make up the 
configuration.
110 AIX 5L Workload Manager (WLM)



3. Use dsh to distribute them to every node applicable.

4. Use the tar command to unpack the files.

5. Start up WLM, specifying the configuration files directory.

3.4.2  Things to be aware of
The following points are descriptions of some difficulties found:

WLM memory regulation
WLM's memory regulation may have a negative impact on page replacement 
performance. The memory regulation is done by stealing pages, preferably 
from classes above their memory target. Whenever the page replacement 
(LRU) is activated, it asks WLM which pages it should steal. All the pages in 
memory belong to a segment and thus to a class. According to how the actual 
memory usage of the class compares to its target and limits, each class is 
given a priority for memory allocation. Classes below their minimum memory 
limit have the highest priority. Classes between minimum and target have a 
lower priority, classes above their target and below their maximum limits an 
even lower priority and classes above their hard maximum memory limit, the 
lowest possible priority. WLM will thus instruct the LRU that it should steal 
only pages at or below a given priority.

This means that in order to find the number of pages it needs to free, the LRU 
will inevitably go through more memory pages than it would if the WLM 
memory regulation is off (because it will skip all the pages with a higher 
priority than the one it is looking for).

However, WLM tries to minimize the extra overhead by not sending the LRU 
looking for a given priority if there is not a sufficient number of pages at or 
below this priority level. 

For customers who wish to use WLM only for CPU regulation, it could be 
advantageous to use the CPU only mode of WLM to not incur any unwanted 
page replacement overhead.

The other impact is due to classes above a memory hard limits. When such a 
class page faults, WLM has no choice than starting the LRU to steal pages 
from this class, bringing it back below its maximum, before it can give it the 
new page. This is a performance overhead in two ways:

  • First, this may start the LRU in situations where it would normally not run 
(because there may be plenty of free pages)

  • Second, this can be a costly operation, especially if the hard maximum is 
small, because there are less pages in memory eligible for stealing.
Chapter 3. AIX Workload Manager administration 111



This is the reason why hard memory maximums should be used wisely; that 
is, do not set a hard maximum limit so low that the class is sure to constantly 
be hitting this maximum limit.

For further information, please refer to Section 2.8, “WLM interaction with the 
kernel” on page 36.

svmon
A problem with the svmon command is observed while submitting a heavy 
memory workload on an 64 bit machine with more than 2 GB memory running 
AIX Version 4.3.3 system at maintenance level 2 and perfagent.tools at the 
2.2.33.15 level. svmon needs to allocate real memory to work, and being 
unable to do so, it halts the system. Though this is not a problem directly 
connected to WLM, it is bound to be observed in WLM environments, so the 
use of the svmon tool is only recommended in WLM systems with the 
perfagent.tools fileset at the 2.2.33.16 level or later.

wlmstat
On WLM’s first release, when using tee and wlmstat commands together to 
monitor performance on the screen and gather the information on a file at the 
same time, the output of wlmstat was not immediate. It only displayed 
information on the screen or wrote something on the file every 4 KB of data 
gathered. This problem is solved in AIX 5L.

vmtune
Unless done with extreme caution, changing some vmtune options, such as 
minperm, maxperm, minfree, and maxfree to anything other than default values 
might impair WLM and degrade system performance. Any potential tuning of 
these values should be done before using WLM.

Non-configured WLM startup
WLM is not started on AIX by default. Its startup must be issued manually or 
placed in /etc/inittab to be launched upon reboot. The system administrator 
must make sure, however, that this does not happen before WLM is fully 
configured and ready to run. A non-configured WLM startup degrades system 
performance significantly.

If a problem is experienced with WLM after changing any vmtune values, 
these settings should be moved back to default options.

Note
112 AIX 5L Workload Manager (WLM)



Setuid inside applications
If an application runs a setuid while launched to change its effective UID, its 
classification stays related to the UID of the user that originally started it, 
because no reclassification occurs. A dynamic reclassification only occurs in 
those cases when the change is made to the process’ real UID.

The same situation is observed for groups and setgid. 

3.4.3  LoadLeveler and WLM
LoadLeveler for AIX is a workload management system for serial and parallel 
batch jobs running on the RS/6000 SP Systems and IBM ^ pSeries. 
The participating servers in a LoadLeveler environment are also known as 
nodes, and are grouped in one or more clusters. LoadLeveler manages the 
jobs across multiple nodes, whereas WLM, which is a part of the AIX 
operating system, manages the execution of jobs within the node. 
LoadLeveler for AIX is a Licensed Program Products (LPP). This section 
discusses the distribution of the workload using LoadLeveler Version 2.2 and 
AIX WLM.

3.4.3.1  How does LoadLeveler work
Figure 47 on page 114 is a schematic description of LoadLeveler job 
handling.

If any undesirable behavior occurs when WLM is running, it can be stopped 
using the wlmcntrl -o command. Stopping WLM will turn off all WLM 
management of resources, and the system behavior will quickly return to 
the normal state.

Note
Chapter 3. AIX Workload Manager administration 113



Figure 47.  How LoadLeveler works

1. The user submits a job to the LoadLeveler cluster.

2. The job is received by the scheduling machine.

3. The scheduler contacts the negotiator on the central manager to report 
that a new job is in the queue.

4. The scheduler sends a description of the job to the negotiator.

5. The negotiator decides which nodes the job should execute on, based on 
the job description defined by the user.

6. The negotiator contacts the scheduler to begin taking steps to run the job.

7. The scheduler contacts the startd daemon on the executing node to run 
the job.

8. The startd daemon invokes the job on the node.

9. The startd daemon informs the negotiator and the scheduler.

Executing Machine

negotiatornegotiator

startdstartd

starterstarterscheddschedd

User submits a job to
LoadLeveler cluster

11

Central Manager Machine

Scheduling Machine

33 66

44

22
77

99

99

88

55
114 AIX 5L Workload Manager (WLM)



3.4.3.2  LoadLeveler functionality
The main characteristics of LoadLeveler functionality are:

  • Distributed network-wide job management for job scheduling

  • Helps users build, submit, and manage batch jobs

  • Used for workload balancing of both serial and parallel jobs

The LoadLeveler administrator can specify:

  • The consumable resources to be considered by LoadLeveler's scheduling 
algorithms

  • The quantity of resources available on specific machines

  • The quantity of floating resources available on machines in the cluster

  • The consumable resources to be considered in determining the priority of 
executing machines

  • The default amount of resources consumed by a job step of a specified job 
class

The user submitting jobs can specify:

  • The resources consumed by each task of a job step

Consumable resources are resources available on machines in your 
LoadLeveler cluster. They are called resources because they model 
quantities of commodities or services available on machines (that is CPUs, 
real memory, virtual memory, software licenses, disks, and so forth). They are 
considered consumable because job steps use some specified amount of 
these commodities when they are running. Once the step is completed, the 
resource becomes available for reuse by another job step. Consumable 
resources that model the characteristics of a specific machine (that is its 
number of CPUs, or the number of specific software licenses available only 
on that machine) are called machine resources. Consumable resources 
which model resources that are available across the LoadLeveler cluster 
(such as software licenses) are called floating resources. For example, 
consider a configuration with 10 licenses for a given program (which can be 
used on any machine in the cluster). If these licenses are defined as floating 
resources, all 10 can be used on one machine, or they can be spread across 
as many as 10 different machines.

3.4.3.3  LoadLeveler and WLM interaction
Using LoadLeveler functionality with WLM does not require changes to the 
existing configuration of LoadLeveler or WLM. LoadLeveler is classified 
within WLM like any other application, as shown in Section 8.2, “Customer 
Chapter 3. AIX Workload Manager administration 115



experience - WLM and a compute server for research” on page 252. From the 
status of the cluster, LoadLeveler will determine what physical resources are 
available on each node in the cluster, and submits the jobs accordingly to the 
nodes. The class keyword in the local LoadLeveler configuration file on the 
node describes which class of jobs can be run on that node and how many 
jobs can be run at a time. Once the job has been submitted to a node for 
execution, LoadLeveler has no control over the CPU, memory, and I/O 
subsystem resources in that node, but continues to monitor the execution. 
The resources used by the jobs in each node may vary depending on the 
number of jobs running on the node. When multiple jobs are executing on the 
node, the priority at which a specific job will execute is to be decided by the 
AIX scheduler. WLM provides the system administrator with greater control 
over how the scheduler, virtual memory manager, and I/O subsystem allocate 
resources to process. This is specific to each node.

The installed version of LoadLeveler and WLM must match the same level 
across the cluster.

Note
116 AIX 5L Workload Manager (WLM)



Chapter 4.  WLM performance tools

This chapter presents tools to monitor and analyze WLM activity. The real 
time performance tools, such as wlmstat, ps, topas, and svmon, are 
components of the AIX base operating system. System administrators who 
need a long-term analysis tool and a method to collect trend values should 
use wlmperf, xmtrend, and jazizo. They are delivered with the Performance 
Trend Toolbox feature.

4.1  wlmstat

To monitor the statistical resouce utilization by each superclass and subclass 
and to display the status of WLM, use the wlmstat command. This command 
shows the contents of WLM data structures that are retrieved from the kernel.

The syntax is:

wlmstat [-l class | -t tier] [-S | -s] [-c | -m | -b] [-B device] [-q]
[-T] [-a] [-w][-v] [interval] [count]

Where:

-l class Indicates the resource utilization for a specific class. If not 
specified, all classes are displayed.

-t tier Displays statistics only for the given tier.

-S Displays statistics for superclasses only.

-s Displays statistics for subclasses only. If neither -S nor -s 
are specified, the statistics for both superclasses and 
subclasses are displayed. In this case, the statistics for 
each superclass are listed followed by the statistics for the 
subclasses belonging to that superclass.

-c Shows only CPU statistics.

-m Shows only physical memory statistics.

-b Shows only disk I/O statistics.

-B device Displays statistics for the given disk I/O device. Statistics 
for all the disks accessed by the class are displayed by 
passing an empty string (-B ““).

-q Represses output of status files of last action (quiet).

-T Returns the total numbers for resource utilization since 
each class was created (or WLM started). The units are:
© Copyright IBM Corp. 2001 117



  • Number of CPU ticks per CPU (seconds) used by 
each class

  • Number of memory pages multiplied by the number of 
seconds used by each class

  • Number of 512 byte blocks sent/received by a class 
for all the disk devices accessed

-a Delivers absolute figures (relative to the total amount of 
the resource available to the whole system) for 
subclasses, with a 0.01 percent resolution. By default, the 
figures shown for subclasses are a percentage of the 
amount of the resource used by the superclass, with a 
one percent resolution. For instance, if a superclass has a 
CPU target of seven percent and the CPU percentage 
shown by wlmstat without -a for a subclass is five percent, 
wlmstat with -a will show the CPU percentage for the 
subclass as 0.35 percent. 

-w Displays the memory high water mark; that is, the 
maximum number of pages that a class had in memory 
since the class was created (or WLM started).

-v Shows most of the attributes concerning the class. The 
output includes internal parameter values intended for AIX 
support persons. Table 3 shows a list of some attributes 
that may be of interest to users.

Table 3.  wlmstat - selection of internal parameters

Column header Description

CLASS Class name

tr Tier number from 0...9

i Value of the inheritance attribute; 0 = no, 1 = yes

#pr Number of processes in the class. If no process is assigned to
a class, the following values may not be significant.

CPU CPU utilization of the class in percent

MEM Physical memory utilization of the class in percent

DKIO Disk I/O bandwidth utilization for the class in percent

sha Number of shares. If no ( “-” ) shares are defined, then sha = -1

min Resource minimum limit in percent

smx Resource soft maximum limit in percent
118 AIX 5L Workload Manager (WLM)



interval Specifies an interval in seconds (default to 1).

count Specifies how many times wlmstat will print a report 
(default to 1).

The results of wlmstat in the normal (non verbose) case are tabulated with the 
following fields:

CLASS Class name

CPUtotal CPU time used by the class in percent

MEM Physical memory used by the class in percent

DKIO Disk I/O bandwidth used by the class in percent

hmx Resource hard maximum limit in percent

des Desired percentage target calculated by WLM using the 
numbers of the shares in percent

npg Number of memory pages owned by the class

Column header Description

DKIO is the average of the disk bandwidth on all the disk devices accessed 
by the class. It is not very significant. For instance, A class uses 80 percent 
of the bandwidth of one disk and 5 percent of the bandwidth of two other 
disks. Then the value of DKIO for this class is 30 percent:

To achieve a detailed output of the utilization per disk, use the -B device 
option.

80 percent (disk1) 5 percent (disk2) 5 percent (disk3)+ +( )
3 number of disks( )

----------------------------------------------------------------------------------------------------------------------------------------------- 30 percent=

Disk I/O
Chapter 4. WLM performance tools 119



Examples:
To get a printout of current WLM activity, enter: 

To get a report for the superclass oltp, enter: 

To get a report for the subclass spray of the superclass oltp, updated every 
10 seconds for one minute, enter: 

 

To get a detailed CPU report for all classes, enter the information shown in 
the next screen. 

(0)itsosrv1:/# wlmstat -a
CLASS CPU MEM DKIO

Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 0 0
System 0 6 0
oltp 75 18 0

oltp.Default 68 17 0
oltp.Shared 0 0 0
oltp.spray 7 1 0

dss 10 27 0
backup 13 28 0

(0)itsosrv1:/#

(0)itsosrv1:/# wlmstat -a -l oltp
CLASS CPU MEM DKIO
oltp 74 17 0

oltp.Default 67 16 0
oltp.Shared 0 0 0
oltp.spray 7 2 0

(0)itsosrv1:/#

(127)itsosrv1:/# wlmstat -l oltp.spray 10 6
CLASS CPU MEM DKIO

oltp.spray 5 1 0
oltp.spray 5 2 0
oltp.spray 7 1 0
oltp.spray 6 2 0
oltp.spray 6 1 0
oltp.spray 5 1 0
(0)itsosrv1:/#
120 AIX 5L Workload Manager (WLM)



4.2  ps

The ps command writes the current status of active processes and 
associated kernel threads to standard output.

Syntax (X/Open Standards):

ps [-A] [-N] [-a] [-d] [-e] [-f] [-k] [-l] [-F format] [-o Format]
[-c Clist] [-G Glist] [-g Glist][-m] [-n NameList] [-p Plist]
[-t Tlist] [-U Ulist] [-u Ulist]

In this book, we focus on using ps command to view the current status of 
processes in a single class or set of classes (either subclass or superclass).

Flags:

-a Writes information about all processes to standard output, 
except the session leaders and processes not associated 
with a terminal.

-e Writes information about all processes except kernel 
processes to standard output.

-c Clist Only displays information about processes assigned to the 
workload management classes listed in the Clist variable. 

(0)itsosrv1:/# wlmstat -c -v
CLASS tr i #pr CPU sha min smx hmx des rap urap pri

Unclassified 0 0 1 0 -1 0 100 100 100 0 97 10
Unmanaged 0 0 0 0 -1 0 100 100 0 0 97 10
Default 0 0 1 0 -1 0 100 100 0 0 97 97

Default.Default 0 0 1 0 1 0 100 100 100 100 48 48
Default.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

Shared 0 0 0 0 -1 0 100 100 0 0 97 97
Shared.Default 0 0 0 0 1 0 100 100 100 100 48 48
Shared.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

System 0 0 43 0 10 10 100 100 10 100 0 0
System.Default 0 0 43 0 1 0 100 100 100 100 0 0
System.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

oltp 0 0 101 77 35 0 100 100 38 -100 194 194
oltp.Default 0 0 -5 71 -1 0 100 100 100 0 144 144
oltp.Shared 0 0 0 0 -1 0 100 100 0 0 144 144
oltp.spray 0 0 107 6 30 0 100 100 6 -90 187 187

dss 0 0 3 10 20 0 100 100 22 100 0 0
dss.Default 0 0 2 10 1 0 100 100 100 100 0 0
dss.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

backup 0 0 2 11 35 0 100 100 38 100 0 0
backup.Default 0 0 3 11 1 0 100 100 100 100 0 0
backup.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

(0)itsosrv1:/#
Chapter 4. WLM performance tools 121



The Clist variable is either a comma-separated list of 
class names or a list of class names enclosed in double 
quotation marks (" ") and separated from one another by 
a comma, one or more spaces, or both.

-o Format Displays information in the format specified by the Format 
variable. Multiple field specifiers can be specified for the 
Format variable. It is either a comma-separated list of field 
specifiers or a list of field specifiers enclosed within a set 
of " " (double-quotation marks) and separated from one 
another by a comma, one or more spaces, or both.
Each field specifier has a default header. The default 
header can be overridden by appending an = (equal sign) 
followed by the user-defined text for the header. The fields 
are written in the order specified on the command line in 
column format. The field widths are specified by the 
system to be at least as wide as the default or 
user-defined header text. If the header text is null (for 
example, if -o user= is specified) the field width is at least 
as wide as the default header text. If all header fields are 
null, no header line is written.
The following field specifiers are recognized by the system 
and are relevant for use with WLM: 

pid Indicates the decimal value of the process ID. The 
default header for this field is PID. 

user Indicates the effective user ID of the process. The 
textual user ID is displayed. If the textual user ID 
cannot be obtained, a decimal representation is 
used. The default header for this field is USER. 

class Indicates the workload management class 
assigned to the process. The default header for 
this field is CLASS. 

pcpu Indicates the ratio of CPU time used to CPU time 
available, expressed as a percentage. The default 
header for this field is %CPU. 

tag Indicates the Workload Manager application tag. 
The default header for this field is TAG. The tag is 
a character string up to 30 characters long and 
may be truncated when displayed by ps. For 
processes that do not set their tag, this field 
displays as a hyphen (-).
122 AIX 5L Workload Manager (WLM)



thcount Indicates the number of kernel threads owned by 
the process. The default header for this field is 
THCNT. 

vsz Indicates, as a decimal integer, the size in 
kilobytes of the process in virtual memory. The 
default header for this field is VSZ.

wchan The event for which the process or kernel thread 
is waiting or sleeping. For a kernel thread, this 
field is blank if the kernel thread is running. For a 
process, the wait channel is defined as the wait 
channel of the sleeping kernel thread if only one 
kernel thread is sleeping; otherwise, a star is 
displayed. The default header for this field is 
WCHAN.

args Indicates the full command name being executed. 
All command-line arguments are included, though 
truncation may occur. The default header for this 
field is COMMAND.

To get a detailed report of all classes, enter:

ps -ae -o pid,user,class,pcpu,tag,thcount,vsz,wchan,args

Examples:
To get a simple ps output for the superclass backup and the subclass spray of 
the superclass oltp (oltp.spray), enter the information in the following screen:
Chapter 4. WLM performance tools 123



4.3  topas

The topas command reports selected statistics about activity on the local 
system. It uses the curses library to display its output in a format suitable for 
viewing on an 80x24 character-based display or in a window of at least the 
same size in a graphical display.

The topas command requires the perfagent.tools fileset to be installed on the 
system.

Syntax:

topas [-d number_of_hot_disks] [-h show help information]
[-i monitoring_interval_in_seconds] [-n number_of_hot_network_interfaces]
[-p number_of_hot_processes] [-w number_of_hot_WLM classes]
[-c number_of_hot_CPUs]

(0)itsosrv1:/# ps -c backup,oltp.spray
PID TTY TIME CMD

14086 pts/6 0:00 sh
16490 pts/6 0:00 spray
17234 pts/6 0:00 spray
17698 pts/6 0:00 spray
18928 pts/6 0:00 spray
19868 pts/6 0:00 spray
20878 pts/6 0:00 spray
21108 pts/6 0:00 spray
21718 pts/1 0:00 ksh
24124 pts/6 0:00 spray
25102 pts/6 0:00 spray
25696 pts/6 0:00 spray
26286 pts/6 0:00 spray
26836 pts/6 0:00 spray
27964 pts/1 0:01 backupserver
28988 pts/6 0:00 spray
31850 pts/6 0:00 spray
32718 pts/6 0:00 spray
33778 pts/1 110:09 backupserver
36112 pts/6 0:00 spray
36414 pts/6 0:00 spray
38842 pts/6 0:00 spray
40650 - 0:00
41310 pts/6 0:00 spray
41524 pts/6 0:00 spray
42904 pts/6 0:00 spray
43854 pts/6 0:00 spray
45848 pts/6 0:00 spray
46180 pts/6 0:00 sh
(0)itsosrv1:/#
124 AIX 5L Workload Manager (WLM)



If the topas command is invoked without flags, it runs with its following 
default flags:

topas -d5 -i2 -n2 -p12 -w2 -c1

topas extracts statistics from the system with an interval specified by the 
monitoring_interval_in_seconds argument. 

The following flags can be used when starting topas.

-d Specifies the maximum number of disks shown. If this 
number exceeds the number of disks installed, the latter is 
used. If this argument is omitted, a default of five is 
assumed. If a value of zero is specified, no disk 
information is displayed. 

-h Displays help information.

-i Sets the monitoring interval in seconds. The default is two 
seconds.

-n Specifies the maximum number of network interfaces 
shown. If this number exceeds the number of network 
interfaces installed, the latter is used. If this argument is 
omitted, a default of two is assumed. If a value of zero is 
specified, no network information is displayed. 

-p Specifies the maximum number of processes shown. If 
this argument is omitted, a default of 12 is assumed. If a 
value of zero is specified, no process information is 
displayed. Retrieval of process information constitutes the 
majority of the topas overhead. If process information is 
not required, you should always use this option to specify 
that you don't want process information. 

-w Specifies the maximum number of WLM classes to 
display. If this number exceeds the number of WLM 
classes installed, the latter is used. If this argument is 
omitted, a default of two is assumed. If a value of zero is 
specified, no WLM class information is displayed.

-c Specifies the maximum number of CPUs to display. If this 
number exceeds the number of CPUs available, the latter 
is used. If this argument is omitted, a default of one is 
assumed. If a value of zero is specified, no CPU 
information is displayed.
Chapter 4. WLM performance tools 125



While topas is running, it accepts one-character subcommands. Each time the 
monitoring interval elapses, the program checks for one of the following 
subcommands and responds to the action requested.

a Show all of the variable sections (network, disk, and 
process) if screen space allows. 

c Show CPU data. Pressing the c key the first time will list 
the CPUs. Pressing it again will show the totals, and 
pressing it a third time will turn off this section.

d Show disk information. If the requested number of disks 
and the requested number of network interfaces will fit on 
a 24-line display, both are shown. If there is space left on 
a 24-line display to list at least three processes, as many 
processes as will fit are also displayed. Pressing the d key 
the first time will list the disks. Pressing it again will show 
the totals, and pressing it a third time will turn off this 
section.

h Show the same help screen as displayed by the -h
command line argument.

n Show network interface information. If the requested 
number of disks and the requested number of network 
interfaces will fit on a 24-line display, both are shown. If 
there is space left on a 24-line display to list at least three 
processes, as many processes as will fit are also 
displayed. Pressing the n key the first time will list the 
network adapters. Pressing it again will show the totals, 
and pressing it a third time will turn off this section.

w Display WLM classes. Pressing the w key will toggle this 
section on and off.

W Replace the default display with a WLM classes only 
display. This display gives more detailed information 
about WLM classes running on the system than the WLM 
section of the main display. When the W key is pressed 
again, it toggles back to the default main display.

p Show process information. If the requested number of 
processes leaves enough space on a 24-line display to 
also display the requested number of network interfaces, 
those are shown. If there is also space to show the 
requested number of disks, those are shown as well. 
126 AIX 5L Workload Manager (WLM)



P Replace the default display with a process only display. 
This display provides more detailed information about 
processes running on the system than the process section 
of the main display. When the P key is pressed again, it 
toggles back to the default main display.

f Move the cursor over the WLM class and press Focus to 
show the top processes in the group. 

q Quit the program. 

The output consists of two fixed parts and a variable section. The top two 
lines at the left of the display show the name of the system on which topas 
runs, the date and time of the last observation, and the monitoring interval.

The second fixed part fills the rightmost 25 positions of the display. It contains 
five subsections of statistics, as follows: 

EVENTS/QUEUES

Displays the per-second frequency of selected system-global events and the 
average size of the thread run- and wait queues over the monitoring interval: 

Cswitch The number of context switches

Syscalls The total number of system calls

Reads The number of read system calls 

Writes The number of write system calls 

Forks The number of fork system calls 

Execs The number of exec system calls 

Runqueue The average number of threads that were ready to run but 
were waiting for a processor to become available

Waitqueue The average number of threads that were waiting for 
paging to complete

FILE/TTY

Displays the per-second frequency of selected file and tty statistics over the 
monitoring interval.

Readch The number of bytes read through the read system call 

Writech The number of bytes written through the write system call 

Rawin The number of raw bytes read from TTYs 

Ttyout The number of bytes written to TTYs   
Chapter 4. WLM performance tools 127



Igets The number of calls to the inode lookup routines 

Namei The number of calls to the pathname lookup routines 

Dirblk The number of directory blocks scanned by the directory 
search routine 

PAGING

Displays the per-second frequency of paging statistics over the monitoring 
interval. 

Faults Total number of page faults taken. This includes page 
faults that do not cause paging activity.

Steals Physical memory 4K frames stolen by the virtual memory 
manager.

PgspIn Number of 4K pages read from paging space.

PgspOut Number of 4K pages written to paging space.

PageIn Number of 4K pages read. This includes paging activity 
associated with reading from file systems. By subtracting 
PgspIn from this value, you get the number of 4K pages 
read from file systems.

PageOut Number of 4K pages written. This includes paging activity 
associated with writing to file systems. By subtracting 
PgspOut from this value, you get the number of 4K pages 
written to file systems.

Sios The number of I/O requests issued by the virtual memory 
manager.

MEMORY

Displays the real memory size and the distribution of memory in use. 

Real,MB The size of real memory in megabytes.

% Comp The percentage of real memory currently allocated to 
computational page frames. Computational page frames 
are generally those that are backed by paging space.

% Noncomp The percentage of real memory currently allocated to 
non-computational frames. Non-computational page 
frames are generally those that are backed by file space, 
either data files, executable files, or shared library files.

% Client The percentage of real memory currently allocated to 
cache remotely mounted files.
128 AIX 5L Workload Manager (WLM)



PAGING SPACE

Displays size and utilization of paging space.

Size,MB The sum of all paging spaces on the system, in 
megabytes

% Used The percentage of total paging space currently in use

% Free The percentage of total paging space currently free

NFS

Displays NFS status in calls/second:

  • Server V2

  • Client V2

  • Server V3

  • Client V3

The variable part of the topas display can have up to five subsections. If more 
than one appears, they are always shown in the following order: 

  • CPU

  • Network Interfaces

  • Physical Disks

  • WorkLoad Management Classes

  • Processes

CPU utilization

By default, this display shows a bar chart with cumulative CPU usage. If more 
than one CPU is displayed, a list of CPUs are displayed followed by the 
cumulative totals across all CPUs on the system, not just what is displayed. 

User This shows the percent of CPU used by programs 
executing in user mode. (Default sorted by User%)

Kern This shows the percent of CPU used by programs 
executing in kernel mode.

Wait This shows the percent of time spent waiting for I/O.

Idle This shows the percent of time the CPU(s) is idle.

Network Interfaces
Chapter 4. WLM performance tools 129



Lists the selected number of network interfaces. The interfaces are ordered 
after the activity over the monitoring interval. The interface that transferred 
most bytes (sum of bytes read and written) over the interval is listed first. 
Sorting is only valid for up to 16 network adapters. For each network 
interface, the following fields are displayed: 

Network The name of the network interface.

KBPS The total throughput in megabytes per second over the 
monitoring interval. This field is the sum of kilobytes 
received and kilobytes sent per second.

I-Pack The number of data packets received per second over the 
monitoring interval.

O-Pack The number of data packets sent per second over the 
monitoring interval.

KB-In The number of kilobytes received per second over the 
monitoring interval.

KB-Out The number of kilobytes sent per second over the 
monitoring interval.

Physical disks

Lists the selected number of physical disks. The disks are ordered after the 
activity over the monitoring interval. The interface that was most busy over 
the interval is listed first. Sorting is only valid for up to 128 disks. For each 
disk, the following fields are displayed: 

Disk The name of the physical disk.

Busy% Indicates the percentage of time the physical disk was 
active (bandwidth utilization for the drive).

KBPS The number of kilobytes read and written per second over 
the monitoring interval. This field is the sum of KB-Read 
and KB-Read.

TPS The number of transfers per second that were issued to 
the physical disk. A transfer is an I/O request to the 
physical disk. Multiple logical requests can be combined 
into a single I/O request to the disk. A transfer is of 
indeterminate size.

KB-Read The number of kilobytes read per second from the 
physical disk.

KB-Writ The number of kilobytes written per second to the physical 
disk.
130 AIX 5L Workload Manager (WLM)



WLM Classes

Workload Management Classes displays the top [number] WLM Classes by 
default sorted by CPU%.

WLM-Class The name of the class. The mode in which WLM is running 
(active or passive) is shown

CPU% The average CPU utilization of the WLM class over the 
monitoring interval

Mem% The average memory utilization of the WLM class over the 
monitoring interval

Disk-I/O% The average percent of disk I/O of the WLM class over the 
monitoring interval

Processes

Lists the selected number of processes or as many as will fit on the display. 
The processes are ordered after their CPU usage over the monitoring 
interval. The process that consumed the most CPU over the interval is listed 
first. For each process, the following fields are displayed:

Name The name of the executable program executing in the 
process. The name is stripped of any pathname and 
argument information and truncated to nine characters in 
length.

PID The process ID of the process.

CPU% The average CPU utilization of the process over the 
monitoring interval. The first time a process is shown, this 
value is the average CPU utilization over the lifetime of 
the process.

PgSp The size of the paging space allocated to this process. 
This can be considered an expression of the footprint of 
the process but does not include the memory used to keep 
the executable program and any shared libraries on which 
it may depend.

Owner The name of the user that owns the process (only when 
WLM section is off).

Class The WLM class to which the process belongs (only when 
WLM section is on).
Chapter 4. WLM performance tools 131



Examples
To run the program with default options, type: 

topas

The result is shown in Figure 48.

Figure 48.  topas - example 1

To display five hot disks every five seconds and omit network interface and 
process information, type: 

topas -i5 -d5 -n0 -p0

The result is shown in Figure 49 on page 133.
132 AIX 5L Workload Manager (WLM)



Figure 49.  topas - example 2

To display the five most active processes and neither network nor disk 
information, type: 

topas -p5 -n0 -d0

The result is shown in Figure 50 on page 134.
Chapter 4. WLM performance tools 133



Figure 50.  topas - example 3

To see detailed information about the defined WLM classes running on the 
system, use the subcommand, W, when topas is running as shown in Figure 
51 on page 135.
134 AIX 5L Workload Manager (WLM)



Figure 51.  topas - example 4

4.4  svmon

This tool generates snapshots of a system’s virtual memory. It has been 
enhanced with usability, scalability, and speed improvements on the largest 
enterprise server systems. In addition, the svmon tool was enhanced to 
generate reports on users, commands, and WLM classes to support WLM 
functions.

The svmon command requires the perfagent.tools fileset to be installed on the 
system.

The svmon command displays information about the current state of memory. 
The displayed information does not constitute a true snapshot of memory 
because the svmon command runs at the user level with interrupts enabled. 
The segment is the basic object used to report memory consumption. A 
segment is a set of pages, so the statistics reported by svmon are expressed in 
Chapter 4. WLM performance tools 135



terms of pages. A page is a 4K block of virtual memory while a frame is a 4K 
block of real memory. Unless otherwise noted, all statistics are in units of 
4096-bytes of memory pages. 

The memory consumption is reported using the inuse, free, pin, virtual and 
paging space counters. 

  • The inuse counter represents the number of used frames. 
  • The free counter represents the number of free frames from all memory 

pools. 
  • The pin counter represents the number of pinned frames, that is frames 

that cannot be swapped. 
  • The virtual counter represents the number of pages allocated in the 

system virtual space. 
  • The paging space counter represents the number of pages reserved or 

used on paging spaces. 

A segment can be used by multiple processes. Each page from such a 
segment is accounted for in the inuse, pin, virtual, or pgspace fields for each 
process that uses the segment. Therefore, the total of the inuse, pin, virtual, 
and pgspace fields over all active processes may exceed the total number of 
pages in memory or on paging space. 

VMM manages virtual page counters for statistical purpose only, which 
means they are not always up-to-date, and their values may be less than the 
corresponding inuse counters. 

A segment belongs to one of the following types; persistent, working, client, 
mapping, and real memory mapping. 

  • Persistent segments are used to manipulate files and directories. 
  • Working segments are used to implement the data areas of processes 

and shared memory segments. 
  • Client segments are used to implement some virtual file systems, such as 

the Network File System (NFS) and the CD-ROM file system. 
  • Mapping segments are used to implement the mapping of files in memory. 
  • Real memory mapping segments are used to access the I/O space from 

the virtual address space. 

The svmon command can create nine types of reports: 

  • Global

  • User

  • Command

  • Class
136 AIX 5L Workload Manager (WLM)



  • Tier

  • Process

  • Segment

  • Detailed segment

  • Frame

This book focus on describing only the workload management reports, class 
and tier. These reports are available when the workload manager is running. 
Otherwise, the message "WLM must be started" is displayed, and no 
statistics are reported. When the workload manager is running in passive 
mode, svmon will display the message, "WLM is running in passive mode", 
before displaying the statistics.

4.4.1  Workload manager class report
There are two types of classes; superclasses and subclasses. Superclass 
names are up to 16 characters long and cannot contain a period. Subclass 
names start with their superclass name followed by a period and subclass 
part, which can be up to 16 characters long and cannot contain a period. The 
total number of superclasses that can be defined is limited to 27. The total 
number of subclasses that can be defined for a superclass is 10.

Superclasses and subclasses will be treated identically. When a superclass is 
passed as an argument, svmon reports all the segments belonging to all the 
subclasses of the superclass without giving subclass statistics.

The class report is printed when -W is specified. 

WLM provides dynamic reclassification of processes and their segments. 
At each iteration, svmon uses a snapshot of the class configuration by using 
the wlm_get_info system call and accesses the related processes and 
segments. The segstat_tbl, process_tbl, and wlm_tbl are freed at the end 
of each iteration. Consequently, svmon is able to see the changes. Also, if a 
class disappears, svmon reports a message without any error.

Problems may appear when a segment or process is loaded in the svmon 
private data base with a given class ID associated to a given classname 
and the class ID, or the classname changes before the real analysis of the 
segment or process. Then svmon can report inaccurate statistics. 

Note
Chapter 4. WLM performance tools 137



Syntax:

svmon -W [clnm1...clnmN] [-e] [-k] [-r] [-n | -s] [-w | -f | -c][-tCount]
[-u | -p | -g | -v] [-iInterval [NumIntervals]] [-l] [-d] [-z] [-m]

The following flags can be specified:

-e Shows the statistics of the subclasses of the class and 
reports the segments statistics per subclass. In this case, 
the class parameter must be a superclass name. 

-k When -k is specified, svmon reports statistics using a 
process point of view. There will be no change to this 
option except when -e is specified. Then the segments of 
each subclass will be split into three categories; system, 
exclusive, and shared.

-r If the -r flag is specified, each segment is followed by the 
range(s), within the segment, where pages have been 
allocated. 

-n Indicates that only non-system segments are to be 
included in the statistics. By default, all segments are 
analyzed. 

-s Indicates that only system segments are to be included in 
the statistics. By default, all segments are analyzed. 

-w Indicates that only working segments are to be included in 
the statistics. By default, all segments are analyzed. 

-f Indicates that only persistent segments (files) are to be 
included in the statistics. By default, all segments are 
analyzed. 

-c Indicates that only client segments are to be included in 
the statistics. By default, all segments are analyzed. 

-tCount Displays memory usage statistics for the top Count object 
to be printed.

-u Indicates that the objects to be printed are sorted in 
decreasing order by the total number of pages in real 
memory. It is the default sorting criteria if none of the 
following flags are present; -p, -g, or -v. 

-p Indicates that the objects to be printed are sorted in 
decreasing order by the total number of pages pinned. 

-g Indicates that the objects to be printed are sorted in 
decreasing order by the total number of pages reserved or 
138 AIX 5L Workload Manager (WLM)



used on paging space. This flag, in conjunction with the 
segment, reports non-working segments at the end of the 
sorted list. 

-v Indicates that the objects to be printed are sorted in 
decreasing order by the total number of pages in virtual 
space. This flag, in conjunction with the segment report, 
shifts the non-working segments to the end of the sorted 
list. 

-iInterval Instructs the svmon command to print statistics out 
[NumInterval] repeatedly. Statistics are collected and printed every

[Interval] seconds. NumIntervals is the number of
repetitions; if not specified, svmon runs until user
interruption (Ctrl-C).

-l Shows, for each displayed segment, the list of process 
identifiers that use the segment and, according to the type 
of report, the entity name (login, command, or class) to 
which the process belongs. For special segments, a label 
is displayed instead of the list of process identifiers.
System segment:
This label is displayed for segments that are flagged 
system.
Unused segment:
This label is displayed for segments that are not used by 
any existing processes.
Shared library text:
This label is displayed for segments that contain text in a 
shared library and that can be used by most of the 
processes (libc.a). This is to prevent the display of a long 
list of processes.

-d Displays, for a given entity, the memory statistics of the 
processes belonging to the entity. 

-z Displays the maximum memory size dynamically allocated 
(malloc) by svmon during its execution. 

-m Displays information about source segment rather than a 
mapping segment when a segment is mapping a source 
segment. 

The column headings in a class report are: 

Class or Indicates the class or superclass name
Superclass
Chapter 4. WLM performance tools 139



Inuse Indicates the total number of pages in real memory from 
segments belonging to the class

Pin Indicates the total number of pages pinned from segments 
belonging to the class

Pgsp Indicates the total number of pages reserved or used on 
paging space by segments belonging to the class

Virtual Indicates the total number of pages allocated in the virtual 
space of the class

After these statistics are displayed, svmon displays information about the 
segments belonging to the class. 

Examples:
To print out the memory usage statistics for the superclass, backup, enter the 
information shown in the following screen:
140 AIX 5L Workload Manager (WLM)



To print out the memory usage statistics for the subclass spray, enter the 
information shown in the following screen.

((0)itsosrv1:/# svmon -W backup

===============================================================================
Superclass Inuse Pin Pgsp Virtual
backup 52833 10 0 50329

Vsid Esid Type Description Inuse Pin Pgsp Virtual
6784 - work 27989 0 0 28017
1aa18 - work 21887 0 0 21887
14356 - pers /dev/lv_wlm1:17 1250 0 - -
173f5 - pers /dev/lv_wlm2:17 1250 0 - -
5347 - work 103 2 0 101
c34e - work 77 0 0 77
1891a - work 77 0 0 77
14636 - work 46 0 0 37
5327 - work 28 0 0 20
1d83f - work 16 0 0 18
1e33c - work 16 0 0 13
10772 - work 15 0 0 13
6a84 - work 15 0 0 13
15457 - work 14 0 0 14
38a1 - work 8 0 0 8
126f0 - work 8 0 0 8
11313 - pers /dev/hd1:26 6 0 - -
e50c - work 5 2 0 5
b549 - work 5 2 0 5
12e3 - work 3 2 0 3
13351 - work 3 0 0 3
14a16 - work 3 0 0 0
12970 - work 3 0 0 5
6904 - work 2 2 0 2
a9c8 - work 1 0 0 3
2320 - pers /dev/hd1:32 1 0 - -
1d39f - pers /dev/hd2:16870 1 0 - -
834a - pers /dev/hd1:23 1 0 - -
Chapter 4. WLM performance tools 141



To print out the memory usage for the superclass oltp with its subclasses, 
enter the information shown in the following screen.

(0)itsosrv1:/# svmon -W oltp.spray

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.spray 852 20 0 944

Vsid Esid Type Description Inuse Pin Pgsp Virtual
d96f - work 77 2 0 77
c6ae - work 76 2 0 76
da0f - work 76 2 0 76
98eb - work 75 2 0 75
d5cf - work 75 2 0 75
12350 - work 75 2 0 75
1da1f - work 75 2 0 75
e9ac - work 34 0 0 22
1f9bd - work 34 0 0 22
4786 - work 34 0 0 22
147d6 - work 33 0 0 22
23c0 - work 33 0 0 22
13771 - work 33 0 0 22
5e2 - work 33 0 0 22
44c6 - work 29 0 0 21
862a - work 20 2 0 80
e9cc - work 20 2 0 80
d8af - work 20 2 0 80=
142 AIX 5L Workload Manager (WLM)



To print out statistics using a process of view for each subclass of the 
superclass oltp, enter:

(0)itsosrv1:/# svmon -W oltp -e

===============================================================================
Superclass Inuse Pin Pgsp Virtual
oltp 35941 26 0 35934

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Default 35895 24 0 35899

Vsid Esid Type Description Inuse Pin Pgsp Virtual
a4c8 - work 33198 0 0 33206
17995 - work 1493 0 0 1533
33e1 - work 194 0 0 195
782 - work 189 0 0 189
92eb - work 103 2 0 101
1d81f - work 88 0 0 88
1e99c - work 84 0 0 84
e6ec - work 74 0 0 74
10712 - work 57 0 0 48
c2ee - work 53 0 0 53
e2ec - work 28 0 0 20
98ab - work 22 0 0 22
3541 - work 18 0 0 20
126b0 - work 17 0 0 17
152f7 - work 13 0 0 11
c38e - work 8 0 0 8
72e5 - pers /dev/hd1:25 6 0 - -
e58c - work 4 2 0 4
1971b - work 3 0 0 0
b8a9 - work 2 2 0 2
b2e9 - pers /dev/hd1:19 1 0 - -
f2ed - pers /dev/hd1:28 1 0 - -
1e4bc - work 1 0 0 3

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.spray 46 2 0 35

Vsid Esid Type Description Inuse Pin Pgsp Virtual
848a - work 76 2 0 76
1d8bf - work 58 2 0 58
1d75f - work 33 0 0 22
1d85f - work 29 0 0 21
17535 - work 20 2 0 80
d7ef - work 20 2 0 80
157b7 - work 16 0 0 11

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Shared 0 0 0 0
Chapter 4. WLM performance tools 143



(0)itsosrv1:/# svmon -W oltp -e -k

===============================================================================
Superclass Inuse Pin Pgsp Virtual
oltp 21432 3670 1584 23238

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Default 16340 1929 792 17146
...............................................................................
SYSTEM segments Inuse Pin Pgsp Virtual

4209 1759 792 3151

Vsid Esid Type Description Inuse Pin Pgsp Virtual
0 0 work kernel seg 3939 1735 792 2881

62e4 - work 270 24 0 270
...............................................................................
EXCLUSIVE segments Inuse Pin Pgsp Virtual

11108 170 0 10914

Vsid Esid Type Description Inuse Pin Pgsp Virtual
135f1 3 work shmat/mmap 9 0 0 9
902 2 work process private 4 2 0 4
eaec f work shared library data 1 0 0 1

...............................................................................
SHARED segments Inuse Pin Pgsp Virtual

1010 0 0 3070

Vsid Esid Type Description Inuse Pin Pgsp Virtual
16834 f work shared library data 29 0 0 21
14094 - pers /dev/hd2:16981 2 0 - -

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.spray 5092 1741 792 6092
...............................................................................
SYSTEM segments Inuse Pin Pgsp Virtual

3939 1735 792 2881

Vsid Esid Type Description Inuse Pin Pgsp Virtual
0 0 work kernel seg 3939 1735 792 2881

...............................................................................
EXCLUSIVE segments Inuse Pin Pgsp Virtual

167 4 0 156

Vsid Esid Type Description Inuse Pin Pgsp Virtual
6724 2 work process private 58 2 0 58
6904 f work shared library data 33 0 0 22

...............................................................................
SHARED segments Inuse Pin Pgsp Virtual

947 0 0 3027

Vsid Esid Type Description Inuse Pin Pgsp Virtual
c02c d work shared library text 869 0 0 3027
e0ae 1 pers code,/dev/hd2:4205 57 0 - -

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Shared 0 0 0 0
144 AIX 5L Workload Manager (WLM)



4.4.2  Workload manager tier report
The tier value for a superclass is the position of the class in the hierarchy of 
resource limitation desirability. The tier value for a subclass is the position of 
the subclass in the hierarchy of resource limitation desirability. 

The tier report is printed when -T is specified.

Syntax:

svmon -T [tier1...tierN] [-a supclnm] [-x] [-e] [-r] [-u | -p | -g | -v]
[-n | -s] [-w | -f |-c] [-t Count] [-iInterval[NumIntervals]][-l] [-z] [-m]

The following flags can be specified:

-a Applies a tier to a superclass.

-x Displays information about the segments belonging to 
each class.

-e Reports the statistics of the subclasses of each 
superclass belonging to the tier.

-r If the -r flag is specified, each segment is followed by the 
range(s), within the segment, where pages have been 
allocated. 

-l If the -l flag is specified, each segment is followed by the 
list of process identifiers that are using it. Besides the 
process identifier, the tier number and class that the 
process belongs to are also displayed.

The column headings in a tier report are: 

Tier Indicates the tier number.

Superclass Optional column heading. Indicates the superclass name 
when tier applies to a superclass (when the -a flag is 
used). 

Inuse Indicates the total number of pages in real memory from 
segments belonging to the tier.

-e is only allowed with -T and -W
-x is only allowed with -T
-r or -l is only allowed with -T if -x is specified

Note
Chapter 4. WLM performance tools 145



Pin Indicates the total number of pages pinned from segments 
belonging to the tier.

Pgsp Indicates the total number of pages reserved or used on 
paging space by segments belonging to the tier.

Virtual Indicates the total number of pages allocated in the virtual 
space of the tier.

After these statistics are displayed, svmon displays information about the 
classes belonging to the tier. 

Examples:
To print out the memory usage for all defined tiers, enter the information 
shown in the following screen:

To print out the memory usage for the tier 0, enter the information shown in 
the following screen.

(0)itsosrv1:/# svmon -T

===============================================================================
Tier Inuse Pin Pgsp Virtual

0 234012 10687 1498 195497

===============================================================================
Superclass Inuse Pin Pgsp Virtual
backup 67746 10 0 65721
dss 64771 8 0 64799
oltp 42123 182 0 41726
Unclassified 31181 26 0 126
System 26744 10459 1498 19158
Shared 1207 0 0 3760
Default 240 2 0 207
Unmanaged 0 0 0 0
146 AIX 5L Workload Manager (WLM)



To print out the memory usage for all tier subclasses of the superclass oltp, 
enter the following:

To print out the memory usage for the tier 0, including the subclass statistics, 
enter the information shown in the following screen.

(0)itsosrv1:/# svmon -T

===============================================================================
Tier Inuse Pin Pgsp Virtual

0 234012 10687 1498 195497

===============================================================================
Superclass Inuse Pin Pgsp Virtual
backup 67746 10 0 65721
dss 64771 8 0 64799
oltp 42123 182 0 41726
Unclassified 31181 26 0 126
System 26744 10459 1498 19158
Shared 1207 0 0 3760
Default 240 2 0 207
Unmanaged 0 0 0 0

(0)itsosrv1:/# svmon -T -a oltp

===============================================================================
Tier Inuse Pin Pgsp Virtual

0 oltp 35677 18 0 35651

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Default 35677 18 0 35651
oltp.Shared 0 0 0 0

===============================================================================
Tier Inuse Pin Pgsp Virtual

1 oltp 524 22 0 656

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.spray 524 22 0 656
Chapter 4. WLM performance tools 147



To print out the memory usage for the subclasses in tier 0 of the superclass 
oltp, including the segment statistics and the list of process identifiers, enter 
the information shown in the following screen.

(0)itsosrv1:/# svmon -T 0 -e

===============================================================================
Tier Inuse Pin Pgsp Virtual

0 228018 10511 1372 189497

===============================================================================
Superclass Inuse Pin Pgsp Virtual
backup 68169 8 0 65673
dss 65995 6 0 66025

===============================================================================
Superclass Inuse Pin Pgsp Virtual
oltp 34587 20 0 34540

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Default 34587 20 0 34540
oltp.Shared 0 0 0 0
oltp.spray 0 0 0 0
Unclassified 31181 26 0 116
System 26639 10449 1372 19176
Shared 1207 0 0 3760
Default 240 2 0 207
Unmanaged 0 0 0 0
148 AIX 5L Workload Manager (WLM)



(0)itsosrv1:/# svmon -T 0 -a oltp -x -l

===============================================================================
Tier Inuse Pin Pgsp Virtual

0 oltp 36063 28 0 36010

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Default 36063 28 0 36010

Vsid Esid Type Description Inuse Pin Pgsp Virtual
44c6 f work shared library data 13 0 0 11

pid:23798 tier: 1 class:oltp.spray
f4ad - work 13 0 0 11

Unused segment
e32c f work shared library data 13 0 0 11

pid:36314 tier: 0 class:oltp.Default
7e2 - work 13 0 0 11

Unused segment
402 f work shared library data 13 0 0 11

pid:31514 tier: 0 class:oltp.Default
1f4bd - work 13 0 0 11

Unused segment
13a31 f work shared library data 13 0 0 11

pid:29392 tier: 1 class:oltp.spray
168f4 - work 12 0 0 12

Unused segment
152f7 f work shared library data 12 0 0 10

pid:18794 tier: 0 class:oltp.Default
1993b 2 work process private 11 2 0 11

pid:33954 tier: 1 class:oltp.spray
72e5 1 pers code,/dev/hd1:25 6 0 - -

pid:37556 tier: 0 class:oltp.Default
pid:31514 tier: 0 class:oltp.Default
pid:29392 tier: 1 class:oltp.spray
pid:23156 tier: 0 class:oltp.Default
pid:22092 tier: 1 class:oltp.spray
pid:18794 tier: 0 class:oltp.Default
pid:18496 tier: 1 class:oltp.spray

c2ee 3 work shmat/mmap 6 0 0 6
D2ef 2 work process private 5 2 0 5

pid:18794 tier: 0 class:oltp.Default
15837 2 work process private 4 2 0 4

pid:31514 tier: 0 class:oltp.Default
ea8c - work 4 0 0 4

Unused segment
16754 - work 4 0 0 4

Unused segment
178d5 2 work process private 4 2 0 4

pid:29392 tier: 1 class:oltp.spray
9aeb 2 work process private 4 2 0 4

pid:37556 tier: 0 class:oltp.Default

===============================================================================
Class Inuse Pin Pgsp Virtual
oltp.Shared 0 0 0 0
Chapter 4. WLM performance tools 149



4.5  Web-based System Manager (WSM)

Apart from being a graphical user interface to configure WLM, Web-based 
System Manager (WSM) provides some monitoring tools to analyze and 
manipulate resource usage on a per-resource and per-class basis, and view 
the allocation of processes to classes. WSM filesets are shipped with the 
Base Operating System, and the tool is launched with the AIX command wsm.

The resource-based monitoring screens are accessible under the Resources 
view. When WLM is started, this option displays a view of the managed 
resources in the current configuration, and their current resource usage as 
shown in Figure 52.

Figure 52.  Resources screen in WSM

By double clicking any of the resources, its utilization on a per class basis is 
displayed. For instance, a sample output of memory usage by class could be 
the one shown in Figure 53 on page 151.
150 AIX 5L Workload Manager (WLM)



Figure 53.  Memory usage by class

This screen also allows the system administrator to directly edit and modify 
the values in the different fields by clicking on the field whose value should be 
changed. After changing one or more of the values, the administrator clicks 
on Apply, waits a few minutes for the new settings to take effect, then clicks 
on Refresh Actual to see the updated actual usage. If the new usage 
numbers are not satisfactory, the administrator can repeat the process.

From this screen, the system administrator can also choose to monitor and 
manipulate resource utilization at the subclass level. For that purpose, the 
superclass whose subclasses are to be analyzed must be highlighted, and 
the Show Subclasses option must be chosen. The output is similar to that 
shown in Figure 53.

It is also possible in WSM to observe the processes classification on a 
per-class basis. In the Configurations/Classes view, by right-clicking the 
name of a class in a configuration tree, you get access to the classes options. 
One of them is Show Processes, which launches a view of the allocated 
Chapter 4. WLM performance tools 151



processes to the specified class. An example of the output of this option for a 
class with the /usr/bin/vi process in it can be seen in Figure 54.

Figure 54.  Show processes in WSM

4.6  Monitoring Workload Manager with PTX 

Performance Toolbox (PTX) for AIX provides a high-level graphical user 
interface for monitoring a wide variety of system resources. It can be used to 
view and analyze AIX WLM information. These interfaces allow the user to 
monitor the behavior of a WLM configuration, analyze trends, and record 
activities.

A new parent context name, WLM, is added to the System Performance 
Measurement Interface (SPMI). In PTX, the SPMI is an application 
programming interface (API) that provides standardized access to local 
system resource statistics. By developing SPMI application programs, a user 
can retrieve information about system performance with minimum system 
overhead. For each WLM class, it includes metrics and associated properties 
(min, soft max, hard max, target, and actual usage). Any metric available via 
the SPMI can be processed by the PTX agents, recorded, filtered, and viewed 
152 AIX 5L Workload Manager (WLM)



by local or remote PTX clients. There are no design limitations on the SPMI 
for two reasons:

  • WLM already collects most of the data needed to provide performance 
monitoring support.

  • An API exists to retrieve data.

4.6.1  xmperf
xmperf is one of primary Performance Toolbox Manager user interfaces. This 
tool is used to monitor any metric on local or remote systems. The interface is 
composed of a set of instruments, with each instrument containing one or 
more metrics. Instruments can be displayed in a variety of styles (including 
lines, bars, pie charts, and speedometers). Each set of metrics can be 
displayed at sampling periods measuring from under one second to 30 
minutes. The xmperf tool can also record and play back metric values for 
long-term analysis. Using xmperf has little impact on system performance 
because the SPMI utilizes existing system calls to access the WLM 
information.

The standard xmperf menus allow users to select the metrics to be displayed. 
Figure 55 on page 154, Figure 56 on page 155, and Figure 57 on page 156 
show the hierarchy of WLM-related metrics.

Superclass configurations are defined as percentages of total system 
resources. Subclass attributes, such as shares, min, and max, are defined 
as percentages of the parent superclass allocations. However, PTX reports 
all class resource usage as a percentage of the total system resource.

Note
Chapter 4. WLM performance tools 153



Figure 55.  xmperf selection list for available classes

Selecting Statistics for WLM class System takes you to a selection of the 
resources that are available to the selected class, System, as shown in Figure 
56 on page 155.
154 AIX 5L Workload Manager (WLM)



Figure 56.  xmperf selection list for the previously selected classes resources

Selecting Statistics for WLM class CPU resource takes you to a panel where 
you can select the resource attributes for the resource CPU for the class 
System as shown in Figure 57 on page 156.
Chapter 4. WLM performance tools 155



Figure 57.  xmperf selection list for the classes resource attributes 

These xmperf selections built PTX monitoring consoles.

The following are some examples of typical PTX monitoring consoles. The 
PTX console shown in Figure 58 on page 157 displays two instrument 
windows.
156 AIX 5L Workload Manager (WLM)



Figure 58.  PTX console displaying CPU and class CPU metrics

The top instrument displays the CPU user, kernel, and wait metric values in a 
stacked area format. Stacked metrics are added together and displayed in 
separate colors. Here, user and kernel mode are each using about 50 percent 
of the system. 

The lower instrument displays the load of four WLM superclasses on system 
CPU resource. The classes are stacked on top of each other in bar format. 
This format shows their relative sizes to each other. For display purposes, the 
upper scale is adjusted to 25 percent.

Both instruments are recording the data. In the PTX console, displayed in 
Figure 59 on page 158, the colors are used to associate the real time bars 
with the associated metric.
Chapter 4. WLM performance tools 157



Figure 59.  PTX console displaying WLM class metrics in bar format

Here again, the upper scale for the lower instrument is adjusted to 25 
percent. The lower instrument of the PTX console, shown in Figure 60 on 
page 159, shows the WLM class metrics in a pie format.
158 AIX 5L Workload Manager (WLM)



Figure 60.  PTX console displaying WLM class metrics in pie format

4.6.2  xmservd
The PTX Performance Aide consists of a set of agents and utilities for 
collecting, filtering, recording, and reporting performance metrics. The 
Performance Aide is required for the PTX Manager to view metrics remotely 
over the network.

The Performance Aide’s primary agent is known as xmservd. This agent can 
also record metrics specified in a configuration file. The configuration file 
specifies the Metric name, start time, stop time, days to record, recording 
frequency, and other items. Refer to the AIX Performance Toolbox User’s 
Guide V1.2 and V2.1, SC23-2625, for more details on using the Performance 
Aide to monitor a system. The HTML version of this guide ships with the base 
AIX media, along with other standard documentation. Performance Aide 
Chapter 4. WLM performance tools 159



recordings can be post-processed by the PTX Azizo and ptxtab tools. The 
ptxtab tool allows users to convert the recording into a comma- or 
tab-delimited spreadsheet format that can be imported into third-party 
spreadsheet applications.

4.6.3  Jazizo
Jazizo is a new tool for analyzing the long term performance characteristics 
of a system on PTX V3.0. It analyses recordings created by the xmtrend
daemon, and provides customizable displays of the recorded data. Jazizo 
can be configured to show only the data of interest, in clear and concise 
graphical or tabular formats. Users can create, edit and save custom 
configurations. In addition, reports can be generated covering specific time 
periods, and data reduction options are provided to assist analysis.

The Performance Toolbox agents can collect hundreds of performance 
metrics available from the pool of resources available on a system. Jazizo 
was created to provide a simple user interface for analyzing recorded 
performance data over extended periods of time, primarily focused on aiding 
trend analysis. Specifically, jazizo can be used to graphically view resource 
usages over hours, days, weeks, or months to help determine if resources 
are, or will be, constrained. Recurring peak usage periods can also be 
identified and reviewed.

The syntax is:

jazizo [ -r RecordingFile [ -c ConfigurationFile ]]

Where -r RecordingFile is a file created by xmtrend or a directory that 
contains xmtrend recording files, and -c ConfigurationFile is a file describing 
both metric and graph options. 

4.6.4  wlmmon / wlmperf
The new wlmmon tool in AIX 5L Version 5.1 and wlmperf tool, available with 
PTX V3.0 for AIX 5L and AIX Version 4.3.3, provide graphical views of 
Workload Manager (WLM) resource activities by class. While the wlmstat 
command provides a per-second fidelity view of WLM activity, it is not suited 
for long-term analysis. The wlmmon and wlmperf tools were created to 
supplement wlmstat. These tools provide reports of WLM activity over much 
longer time periods. The wlmmon tool is a disabled version of the wlmperf 
tool. The primary difference between the two tools is the period of WLM 
activity that can be analyzed. The records of wlmperf are limited to one year, 
while wlmmon is limited to generating reports for the last 24 hour period. The 
records are generated by associated daemons that have minimal impact on 
160 AIX 5L Workload Manager (WLM)



overall system performance. In wlmmon, this daemon is called xmwlm, and 
ships with the base AIX. For wlmperf, the xmtrend daemon is used to collect 
and record WLM. These daemons sample WLM and system statistics at a 
very high rate (measured in seconds), but only record supersampled values 
at a low rate (measured in minutes). These values represent the minimum, 
maximum, mean, and standard deviation values for each collected statistic 
over the recording period. To execute wlmmon and wlmperf, you can enter 
wlmmon or wlmperf without any options. This section explains the execution 
with wlmperf; any differences with wlmmon are pointed out in the according 
sections.

Daemon recording and configuration
Both daemons mentioned above create recordings in the /etc/perf/wlm 
directory. 

For wlmperf, the xmtrend daemon is used, and will utilize a configuration file 
for recording preferences. A sample of this configuration file for WLM related 
recordings is located at /usr/lpp/perfagent/xmtrend_wlm.cf. Recording 
customization, startup, and operation are briefly described in the section 
below. For more information, please refer to the AIX Performance Toolbox 
User’s Guide V1.2 and V2.1, SC23-2625, which is available on the 
Performance Aide V3 media. 

For wlmmon, the xmwlm daemon is used, and cannot be customized. For 
recordings to be created, adequate disk allocations must be made for the 
/etc/perf/wlm directory, allowing at least 10 MB of disk space. Additionally, the 
daemon should be started from an /etc/inittab entry so that recordings will 
automatically restart after system reboots. The daemon will operate whether 
the WLM subsystem is in active, passive, or disabled (off) mode. However, 
recording activity is limited when WLM is off.

xmtrend
The xmtrend agent can be started from the command line or near the end of 
the /etc/inittab file. The general format of the command line is as follows:

xmtrend [-f infile] [-d recording_dir] [-n recording_name] [-t trace_level]

-f Allows the user to specify a configuration file to use 
instead of the default. If -f is not used, xmtrend looks for 
and uses /etc/perf/xmtrend.cf as the configuration file. A 
configuration file must be available so xmtrend knows 
what to monitor.
Chapter 4. WLM performance tools 161



-d Specifies the output directory for the recording files. The 
default is to place the recording files in the /etc/perf 
directory.

-n Specifies a name for the recording file. By default, xmtrend 
creates recording files named xmtrend.some date. If -n
myrecording is specified, the recording files will be named 
myrecording.some date.

-t Specifies a trace level. xmtrend prints various information 
to a log file in /etc/perf. The trace level can be set from 1 
to 9. The higher the trace level, the more trace data is 
generated. This trace data is useful to determine xmtrend 
recording status and for debugging purposes. The log file 
name is either xmtrend.log1 or xmtrend.log2. xmtrend will 
cycle between these two files after a file reaches the 
maximum size.

In order to start the recording, the daemons have to be active. To start the 
graphic monitoring tool, run the wlmmon command (base AIX) or the wlmperf 
command (PTX).

Upon startup, a default Report Display is shown. To view recordings, use the 
WLM_Console Menu as described in the next section.

The WLM_Console Menu

The tab down menu WLM_Console, shown in Figure 61 on page 163, 
displays the following selections:

Open log Allows you to browse to and view recordings

Reports Allows you to open, copy, and delete reports (for wlmperf 
only)

Print Allows you to print the current report

Exit Exits the wlmmon tool
162 AIX 5L Workload Manager (WLM)



Figure 61.  Tab down menu WLM_Console

WLM Report Browser 
When selecting the Open Log menu, the Report Browser is displayed as 
shown in Figure 62. The browser allows you to browse through the different 
directories and displays a list of reports.

Figure 62.  Report browser

Report Displays
There are three types of report displays; snapshot display, bar display, and 
tabulation display. The bar display is opened by default.

These three displays have the following common elements:
Chapter 4. WLM performance tools 163



WLM Console Tab down menu that allows you to open 
recordings (log file), open reports (wlmperf only), 
print reports, and exit the tool.

Selected Tab down menu that allows you to select the 
Report Properties.

Tier Column Displays the tier number associated with a class. 

Class Column Displays the class name.

Resource Columns Displays the resource information (CPU, memory, 
disk I/O) based on the type of graphical report 
selection chosen.

Status area Displays a set of global system performance 
metrics that are also recorded to aid in analysis. 
The set displayed may vary between AIX 
releases, but will include metrics such as run, 
queue, swap queue, and CPU busy.

Host Displays the hostname of the system on which the 
recording was made.

WLM State Displays the state of WLM. This can be Active or 
Passive.

Time Period Displays the time period defined in the Times 
menu of the Report Properties Panel. For trend 
reports comparing two time periods, two time 
displays are shown.

  • Bar Display

As shown in Figure 63 on page 165, the resource columns are displayed in 
bar-graph style, along with the percentage of measured resource activity 
over the time period specified. The percentage is calculated based on the 
total system resources defined by the WLM subsystem. If the Bar display 
is trended, the later (second) measurement is shown above the earlier 
(first) measurement interval. Refer to Section “Times Menu” on page 168 
for more trend information.
164 AIX 5L Workload Manager (WLM)



Figure 63.  Bar view

  • Snapshot Display

Figure 64 on page 166 shows the snapshot display showing class 
resource relationships based on user-specified variation from the defined 
target shares. To select or adjust the variation parameters for this display, 
utilize the Report Properties Panel Advanced menu, as shown in Figure 72 
on page 173. If the snapshot display is trended, the earlier (first) analysis 
period is shown by an arrow pointing from the earlier measurement to the 
later (second) measurement. If there has been no change between the 
periods, no arrow is shown. Refer to Section “Times Menu” on page 168.
Chapter 4. WLM performance tools 165



Figure 64.  Snapshot view

  • Tabulation Display

The third type of display report is shown in Figure 65 on page 167. In this 
report, the following fields are provided:

Shares Defined shares in WLM configuration.

Target Computed share value target by WLM in percent. 
If the share is undefined, the target displays 100.

Min Class minimum defined in WLM limits.

SMax Class soft maximum defined in WLM limits.

HMax Class hard maximum defined in WLM limits.

Actual Calculated average over the sample period.

Low Actual observed min across time period.

High Actual observed max across time period.

Standard Deviation Computed standard deviation of Actual, High, and 
Low. Indicates the variability of the Actual values 
during the recording period. Higher standard 
deviation means more variability, lower standard 
deviation means less variability.
166 AIX 5L Workload Manager (WLM)



Samples Number of recorded samples for this period.

Figure 65.  Table view

If the Tabulation Display is trended, the earlier (first) analysis is shown by the 
first number between the brackets, and the later (second) analysis is shown 
by the second number between the brackets. Refer to Section “Times Menu” 
on page 168 for more information about the trend display.

Report Properties 

The Report Properties Panel allows the user to define the attributes that 
control the actual graphical representation of the WLM data. The Report 
Properties are displayed by selecting Selected at the top of the Report 
Display, as shown in Figure 66.

Figure 66.  Report Properties
Chapter 4. WLM performance tools 167



  • Times Menu

The first tabbed panel is displayed in Figure 67 on page 169. It allows the 
user to edit the time properties of a display.

Trend Box Indicates that a trend report of the selected type 
will be generated. Trend reports allow the 
comparison of two different time periods on the 
same display. Selecting this box enables the End 
of first Period field for editing.

Width of Interval Represents the period of time covered by any 
display type, measuring from user-input time 
selections. Interval widths are selected from this 
pull down menu. The selections available vary 
depending on the tool being used. While wlmmon 
only has selections for minutes and hours, 
wlmperf has selections for minutes, hours, days, 
weeks, and months.

End of First Period Represents the end time of a period of interest for 
generating a trend report. The first period always 
represents a time frame ending earlier than the 
last period. This field can only be edited if the 
Trend Box is selected. 

End of Last Period Represents the end time of a period of interest for 
trend and non-trend reports. 

wlmmon does not allow selection of days, weeks, and months.

Note
168 AIX 5L Workload Manager (WLM)



Figure 67.  Times menu

Figure 68 is an example of a trend selection. The display shows different 
usage of resources between the two time periods. The time periods are 
displayed in the fields called Period 1 and Period 2. The bars on top mark the 
later recording period and the bars on the bottom mark the earlier recording 
period.

Figure 68.  Example of trend display, bar view
Chapter 4. WLM performance tools 169



Figure 69 also shows an example of a snapshot display using the trend 
option. The locations of the arrows mark the status during the earlier 
recording (Period 1) and the direction in which the resource usage of the 
class was moving. The colored dots mark the status during the later recording 
(Period 2). 

Figure 69.  Example of trend display, snapshot view

Figure 70 on page 171 shows an example of a tabulation display using the 
trend option. The first number marks the later recording (Period 2) and the 
second number marks the earlier recording (Period 1).
170 AIX 5L Workload Manager (WLM)



Figure 70.  Example of trend display, table view

  • Tier/Class Menu

The second tabbed pane is displayed in Figure 71 on page 172. It allows 
users to define the set of WLM tiers or classes to be included in a report. 
The pull down menu at the top allows the user to select whether 
superclasses or Tiers are to be included or excluded in the Report Display. 
The list on the bottom then allows the user to select specific tiers or 
superclasses.
Chapter 4. WLM performance tools 171



Figure 71.  Tier / Class menu

  • Advanced Menu (Snapshot Option Panel)

The third tabbed pane of the Report Properties panel is displayed as 
shown in Figure 72 on page 173. It provides advanced options for the 
snapshot display. For snapshots, exclusive methods for coloring the 
display are provided for user selection. Option 1 ignores the minimum and 
maximum settings defined in the configuration of the WLM environment 
while Option 2 utilizes the minimum and maximum settings.
172 AIX 5L Workload Manager (WLM)



Figure 72.  Advanced menu

Example of the Advanced Menu

Figure 73 on page 174 shows an example that describes the functions of 
the Advanced Menu. 
Chapter 4. WLM performance tools 173



Figure 73.  Example of the Advanced Menu

Figure 73 shows a class definition with its soft and hard minimum and 
maximum. The class has as a target (share value) 50 percent, a minimum 
limit (MIN) of 20 percent and maximum limit (MAX) of 90 percent. The 
following describes the functions of the two advanced options.

Option 1 ignores the user-defined min and max settings. In this example, 
we selected option 1 with 50 percent as the green range percentage 
(green%) and 80 percent as the red range percentage (red%), as shown in 
Figure 72 on page 173. 

To define the green range, the following formula is used:

Low green range = Target - (Target x green%) = 50 - (50 x 50%) = 25

High green range = Target + (Target x green%) = 50 + (50 x 50%) = 75

Figure 73 shows the green range from 25 percent to 75 percent on the 
scale of 0 to 100 percent.

The red range is calculated with the same formula but with the red range 
percentage.
174 AIX 5L Workload Manager (WLM)



Low red range = Target - (Target x red%) = 50 - (50 x 80%) = 10

High red range = Target + (Target x red%) = 50 + (50 x 80%) = 90

The red range is shown in Figure 73, option 1, 0 to 10 percent and from 90 
to 100 percent. The area between the red and green range is yellow.

Option 2 takes in account the predefined minimum limit and maximum 
limit settings. If we use the same advanced options as in Figure 72 on 
page 173, the red and green range are interpreted between the target and 
the hard minimum and hard maximum definitions (here 20 and 90 
percent).

Low green range = Target - ((Target - MIN) x green%) 
= 50 - ((50 - 20) x 50%) = 35 percent on the scale from 0 to 100 percent.

High green range = Target + ((MAX - Target) x green%) 
= 50 + ((90 - 50) x 50%) = 70 percent on the scale from 0 to 100 percent.

Low red range = Target - ((Target - MIN) x red%) 
= 50 - ((50 - 20) x 80%) = 26 percent on the scale from 0 to 100 percent.

High red range = Target + ((MAX - Target) x red%)
= 50 + ((90 - 50) x 80%) = 82 percent on the scale from 0 to 100 percent.

Files

/usr/bin/wlmmon Base AIX, located in perfagent.tools.

/usr/bin/xmwlm Base AIX, located in perfagent.tools.

/usr/bin/wlmperf Performance Toolbox, located in 
perfmgr.analysis

/usr/lpp/perfagent/xmtrend_wlm.cf Performance Aide, located in 
perfagent.server

Prerequisite filesets
The following filesets are prerequisites for wlmmon:

  • Java130.rte.bin

  • Java130.rte.lib

  • perfagent.tools (at least level 2.2.33.50 for AIX Version 4.3.3)

  • perfagent.tools (at least level 5.1.0.0 for AIX 5L)

The following filesets are prerequisites for wlmperf:

  • perfagent.server

  • perfagent.common
Chapter 4. WLM performance tools 175



  • perfmgr.network

  • perfmgr.analysis

All of the above filesets are part of the AIX Performance Toolbox Version 3 
level 3.0.0.0. 
176 AIX 5L Workload Manager (WLM)



Chapter 5. Manual assignment

The automatic assignment, used by WLM throughout its whole execution, is
based on five attributes. These attributes are the process’ characteristics
used as classification criteria; user name, group name, application pathname,
process type, and application tag. Refer to Section 2.5.1, “Automatic
assignment” on page 22 for more information on how automatic assignment
works. With these attributes as classification criteria, it is practically
impossible for WLM to automatically classify two instances of the same
application differently. Unless the application itself uses WLM’s API routine,
wlm_set_tag, to tag all its occurrences differently, all these attributes will,
most of the time, be equal throughout all instances of a process. For
example, different Oracle database instances in a system are normally
launched by the same user (therefore, having the same group), have the
same executable, and, of course, are of the same type. If application tagging
is not being used, WLM cannot place the database instances in different
classes, but, depending on the importance to the business that these
instances might have, the system administrator might want to assign the
resources throughout these processes differently. That is when manual
assignment joins the party.

Manual assignment is a feature introduced in AIX 5L. It allows system
administrators and applications to, at any time, override the traditional WLM
automatic assignment (processes’ automatic classification based on class
assignment rules) and force a process to be classified in a specific class. The
following sections focus on the description of manual assignment and on
some sample scripts that can be used to manually assign different instances
of some database products.

5.1 Description

The manual assignment can be made or canceled separately at the
superclass level, the subclass level, or both. In order to manually assign
processes to a class or cancel an existing manual assignment, a user must
have the proper level of privilege (that is, they must be the root user,
adminuser/admingroup for the superclass, or authuser/authgroup for the
superclass or subclass). A process can be manually assigned to a superclass
only, a subclass only, or to a superclass and a subclass of the superclass. In
the latter case, the dual assignment can be done simultaneously (with a
single command or API call) or at different times, possibly by different users.
© Copyright IBM Corp. 2001 177



A manual assignment will remain in effect (and a process will remain in its
manually-assigned class) until:

• The process terminates.

• WLM is stopped. When WLM is restarted, the manual assignments in
effect when WLM was stopped are lost.

• The class the process has been assigned to is deleted.

• A new manual assignment overrides a prior one.

• The manual assignment for the process is canceled.

In order to assign a process to a class or cancel a prior manual assignment,
the user must have authority both on the process and on the target class.
These constraints translate into the following:

• The root user can assign any process to any class.

• A user with administration privileges on the subclasses of a given
superclass (that is, the user or group name matches the attributes,
adminuser or admingroup, of the superclass) can manually reassign any
process from one of the subclasses of this superclass to another subclass
of the superclass.

• An user can manually assign his/her own processes (same real or
effective user ID) to a superclass and/or a subclass for which he or she
has manual assignment privileges (that is, the user or group name
matches the attributes, authuser, or authgroup of the superclass or
subclass).

This defines three levels of privilege among the persons who can manually
assign processes to classes, root, of course, being the highest. In order for a
user to modify or cancel a manual assignment, he or she must be at the same
level of privilege as the person who issued the last manual assignment or
higher.

5.1.1 First assignment
In this section, the first time assignment is described with a few examples.

The system administrator manually assigns process P1 from the superclass
superA to the superclass superB. The automatic assignment rules for the
subclasses of the superclass, superB, will be used by WLM to determine
which subclass of the superB superclass the process is ultimately assigned
to. P1 will end up, for instance, in the subclass superB.subA, and is flagged
as having a superclass only assignment.
178 AIX 5L Workload Manager (WLM)



A user with the right privileges assigns a process, P2, from its current class,
superA.subA, to a new subclass of the same superclass, superA.subB. P2 is
assigned to its new subclass and flagged as having a subclass only
assignment.

The WLM administrator of the subclasses of the superclass superB, can
decide to manually reassign the process P1 to another subclass of superB,
for instance, subC. P1 will be reclassified into superB.subC and will be now
flagged as having both superclass and subclass level assignment.

5.1.2 Reassignment and cancellation
In this section, the reassignment and assignment cancellation are explained
with a few examples.

Suppose that the system administrator thinks that P2 should really be in a
superclass with more resources, and decides to manually assign P2 to the
superclass, superC. Previously, P2 was manually assigned to the subclass,
subB, of the superclass, superA, with a subclass only assignment. Because
P2 is assigned to a different superclass, the previous manual assignment
becomes meaningless and is canceled. P2 now has a superclass only
manual assignment to the superclass, superC, and is assigned to a subclass
of superC using the automatic assignment rules.

Now the system administrator decides to terminate the manual assignment
from P1 to the superclass, superB, set up earlier. P1's superclass level
manual assignment is canceled, and P1 is assigned a superclass using the
top level automatic assignment rules:

• If the rules have not changed, P1 will be assigned to the superclass,
superA (its original class), and its subclass level manual assignment to
superB.subC above becomes meaningless and is canceled.

• If for some reason the top level rules assign P1 in superclass superB, then
the subclass level assignment to superB.subC is still valid and remains in
effect. P1 now has a subclass only manual assignment.

The reassignment/cancellation of a manual assignment at the subclass level
is simpler and just affects the subclass level assignment.

5.1.3 Interaction with inheritance
When a process is manually assigned to a superclass and/or subclass with
the inheritance attribute set to yes, if the process is a process group leader,
WLM will attempt to reclassify all the processes in the process group.
Chapter 5. Manual assignment 179



So, the class inheritance attribute has two interpretations depending on if we
are dealing with automatic or manual assignment. See Figure 74.

Figure 74. Inheritance in automatic and manual assignments

Let us describe how all this works together with a few examples.

Refer to Figure 75 on page 181 for an illustration of the first example:

1. Process A, classified into class1, which has inheritance set to yes,
launches the child processes A1 and A2.

2. A1 and A2 get classified into class1 as well.

3. The system administrator manually assigns process A into class2, which
also has inheritance set to yes. A1 and A2 stay in class1.

4. Process A launches a new child process, A3, which gets classified in
class2.

5. The manual assignment of process A is cancelled. A goes back to class1,
and A3 stays in class2.
180 AIX 5L Workload Manager (WLM)



Figure 75. First example of manual assignment and inheritance interaction

Refer to Figure 76 on page 182 for an illustration of the second example:

1. Process B is the leader of a process group (PGID1) of which processes C
and D are members. Processes B, C, and D are automatically classified in
class1.

2. The system administrator manually assigns process B to class2, which, as
we know, has inheritance set to yes.

3. Processes C and D follow the process group leader B into class2.

Process A
(class1)

Process A
(class2)

Process A
(class1)

Child A1 Child A2
(class1)

Child A1 Child A2
(class1)

Child A1 Child A2
(class1)

Child A3
(class2)

Child A3
(class2)

launches

manual
assignment

launches

manual
assignment cancelled

3

1

2

4

5

Chapter 5. Manual assignment 181



Figure 76. Second example of manual assignment and inheritance interaction

There are cases where some of the processes in the process group will not
be reclassified to the new class of the group leader. For instance, if some of
the processes themselves have been manually assigned to their current
class, they will remain in their class.

5.2 Manual assignment methods

A process or a group of processes can be manually assigned to a superclass
and/or subclass using the WLM administration interfaces Web-based System
Manager (WSM) and SMIT, the command wlmassign, or an application using
the WLM API function wlm_assign.

The wlmassign command and inheritance attribute are provided in AIX Version
4.3.3 maintenance level 8 to give AIX 4.3.3 users early access to some of the
features available in Workload Manager with AIX 5L. See Section 5.2.1, “AIX
Version 4.3.3 maintenance level 8 manual assignment” on page 188.

Process B
(class1)

Process C
(class1)

Process D
(class1)

Process B
(class2)

Process C
(class2)

Process D
(class2)

manual
assignment

follow the
process group leader

3

1

22

2

PGIDI

PGIDI
182 AIX 5L Workload Manager (WLM)



Command line - wlmassign
The command used in WLM to perform manual assignments and
unassignments is wlmassign. The syntax of the command is:

wlmassign [ -s | -S ] [ -u | class ] [ pid_list ] [ -g pgid_list ]

The options to this command are:

-u Cancel any manual assignment in effect for the processes in
the pid_list or the pgid_list. If none of the -s or -S flags are
used, this cancels the manual assignments for both the
superclass and the subclass level.

-S To specify a superclass-only level assignment or
unassignment when used with a subclass name of the form,
supername.subclass.

-s To specify a subclass-only level assignment or
unassignment, when used with a subclass name of the form,
supername.subname.

-g pgid_list To indicate that the following is a list of pgids (and not pids,
which would be what the command would interpret by
default).

The wlmassign command is used to:

• Assign a set of processes specified by a list of process identifiers (pids)
and/or process group identifiers (pgids) to a specified superclass or
subclass, thus overriding the automatic class assignment or a prior
manual assignment

• Cancel a previous manual assignment for the processes specified in
pid_list and/or pgid_list, allowing the processes to be subjected to the
automatic assignment rules again.

The wlmassign command allows you to specify processes using a list of pids, a
list of pgids, or both. The format of these lists is pid[,pid[,pid[...]]] or
pgid[,pgid[,pgid[...]]], that is comma (,) separated lists of pids and pgids.

The name of a valid superclass or subclass must be specified to manually
assign the target processes to a class. The assignment can be done or
canceled at the superclass level, the subclass level, or both. The processes
can be assigned to the superclass only by specifying the -S option or the
subclass only by specifying the -s option. For a manual assignment, if the
class name is the name of a superclass, the processes in the list will be
assigned to the superclass. The subclass will then be determined using the
assignment rules for the subclasses of the superclass. If the class name is a
subclass name, supername.subname, the processes will, by default, be
Chapter 5. Manual assignment 183



assigned to both the superclass and the subclass. The following are
examples from Table 2 on page 26:

1. To assign a process with pid 9846 to superclass VPs, enter:

# wlmassign -S VPs 9846

or:

# wlmassign VPs 9846

This is a superclass-only assignment. The assignment rules for superclass
VPs select a subclass for the process (for instance, Default).

2. To assign at the subclass level the process with pid 9846 from VPs.Default
to VPs.editors, enter:

# wlmassign -s VPs.editors 9846

or:

# wlmassign VPs.editors 9846

This would become a superclass and subclass assignment.

3. To cancel the subclass level assignment of a process with pid 9846 (the
process still has the superclass level assignment staying; thus, in superclass
VPs and being submitted to the superclass assignment rules), enter:

# wlmassign -u -s 9846

4. Finally, to cancel the superclass level assignment of a process with pid
9846 (making it be submitted to the general configuration assignment rules):

# wlmassign -u -S 9846

SMIT
A process can be manually assigned in SMIT by accessing the
Assign/Unassign processes to a class/subclass screen or using the following
fastpath

# smitty wlmassign

For instance, to manually assign a process with pid 9846 to superclass VPs,
(from the example in Table 2 on page 26) and subclass editors, see Figure 77
on page 185.
184 AIX 5L Workload Manager (WLM)



Figure 77. Manual assignment in SMIT

To manually unassign the same process from the subclass editors of VPs
superclass, the administrator can assign it to another class or cancel its
subclass level assignment as shown in Figure 78.

Figure 78. Subclass level unassignment in SMIT
Chapter 5. Manual assignment 185



Finally, to unassign the same process from the superclass VPs altogether,
the system administrator can assign it to another class or cancel its
superclass level assignment, as shown in Figure 79.

Figure 79. Superclass level manual unassignment in SMIT

The PGID’s could have been used as well to perform the assignments and
unassignments.

WSM
In WSM, manual assignment and unassignment is done by right clicking the
configuration name to work with in the Configurations/Classes screen and by
choosing the Add or Remove Processes option as shown in Figure 80 on
page 187.
186 AIX 5L Workload Manager (WLM)



Figure 80. Manual Assignment in WSM

Applications - wlm_assign
An application can perform its own manual assignments and unassignments,
using, for that purpose, one of the WLM API routines; wlm_assign. For more
information about manual assignment in the API, see also Chapter 6, “WLM
Application Programming Interface (API)” on page 195, and Section A.6,
“WLM management” on page 280.
Chapter 5. Manual assignment 187



5.2.1 AIX Version 4.3.3 maintenance level 8 manual assignment
AIX Version 4.3.3 maintenance level 8 has been enhanced to support manual
assignment on a per process ID basis. The command used to perform
manual assignments is wlmassign. The wlmassign command assigns the
process designated by its process ID (pid) to the class named classname.
This overrides the automatic assignment. The syntax of the command is:

wlmassign classname pid

The options to this command are:

classname The name of the class the process is to be assigned to.

pid The process ID of the process to be assigned to the new
class.

The wlmassign command is restricted to the root user.

5.3 Oracle database example

The examples described in this section focus on the Oracle database, which
is one of the most commonly-known databases capable of running more than
one instance at the same time in the same system. Some databases,
including an Oracle instance, change their instances to show the instance
name in them (for example ora_dbwr_wlmdb). Using this knowledge, we can
differentiate Oracle’s instances by the name of their processes in the process
table. The scripts supplied are general enough (or easily modifiable) to meet

Sometimes processes are manually assigned to a class that has the
localshm attribute set to yes in order to prevent commonly accessed
memory segments from being accounted to the Shared super- or subclass.

That means that up until these processes are manually assigned to this
particular class, their memory segments may be accounted to the Shared
class if they are accessed by a process in another class, and will remain
there as long as they are being used by both processes, even after the
processes get manually assigned to the correct class.

For this reason it is recommended to manually assign processes right after
their creation or to re-assign them when the application is not actively
executing. It is also recommended to set the inheritance attribute of the
class the processes get manually assigned to, to yes.

Note
188 AIX 5L Workload Manager (WLM)



any application whose behavior is similar to the examples. For example, if we
have an Oracle instance named wlmdb and another named acct running on
the same machine, the output of ps -ef | grep ora for their processes would
be something like the following:

From this knowledge, it is possible to create a Korn shell script set to run at
every WLM start to classify these instances differently using manual
assignment. This script should verify that all the instances’ processes are up
and running before executing the manual assignment. If the Korn shell script
is set as an entry in the /etc/inittab, a position close to the end is
recommended.

A sample script for this situation is provided in Section C.1, “Oracle example
script” on page 307. Its functionality is described here.

Configuration file
The script uses a configuration file, which, for the sake of the example, is
/etc/wlm/ma.conf. The format of this configuration file is one line per required
manual assignment. These lines have the following format:

<Instance name> <Class> <Inheritance>

where:

• Instance name is the Oracle (or other application in a similar situation)
instance name.

• Class is the name of the classes to manually assign the processes to. This
name is supername for the superclasses and supername.subname for the
subclasses.

# ps -ef | grep ora
oracle 35614 1 0 23:20:49 - 0:00 ora_dbwr_wlmdb
oracle 35872 1 0 23:20:49 - 0:00 ora_reco_wlmdb
oracle 36130 1 0 23:20:49 - 0:00 ora_pmon_wlmdb
oracle 36388 1 0 23:20:49 - 0:00 ora_smon_wlmdb
oracle 36654 1 0 23:20:49 - 0:00 ora_lgwr_wlmdb
oracle 63186 1 0 23:20:50 - 0:00 ora_d000_wlmdb
oracle 94736 1 0 23:20:49 - 0:00 ora_s000_wlmdb
oracle 75614 1 0 23:20:49 - 0:00 ora_dbwr_acct
oracle 75872 1 0 23:20:49 - 0:00 ora_reco_acct
oracle 76130 1 0 23:20:49 - 0:00 ora_pmon_acct
oracle 76388 1 0 23:20:49 - 0:00 ora_smon_acct
oracle 76654 1 0 23:20:49 - 0:00 ora_lgwr_acct
oracle 73186 1 0 23:20:50 - 0:00 ora_d000_acct
oracle 94737 1 0 23:20:49 - 0:00 ora_s000_acct
root 64040 85492 7 23:56:12 pts/21 0:00 grep ora
Chapter 5. Manual assignment 189



• Inheritance is a flag that is set to yes if the processes belonging to a
process group (whose leader is a process being manually assigned)
should be manually assigned as well. If the group members should stay in
the original class, this flag must be set to no.

Data structure
The script uses as data structure an array of three positions, named
MANUAL, where:

• Position 0 takes the instance name.

• Position 1 takes the class name.

• Position 2 takes the inheritance flag value.

Function
The script has one single function, named getpids(), which receives, as a
parameter, the instance name whose processes are to be manually assigned.
The function gets the processes’ IDs related to that instance (the ones that
have the instance’s name as part of their own name in the process table) and
returns them in the format of a comma (,) separated list.

Script process
For each line read from the configuration file, the script does the following:

• Sets the MANUAL array with the values read from the configuration file
(instance name, class name, and inheritance flag) and works with this data
structure.

• Saves the inheritance attribute value of the target class and sets it to its
new value.

• Invokes getpids() to get a comma (,) separated list of the PIDs to be
manually assigned, that is, the ones related to the instance in question.

• Manually assigns the list of processes to the target class.

• Reverts the inheritance attribute value of the target class to the saved one.

5.4 DB2 UDB

Spawned DB2 processes always belong to the AIX user-ID that created the DB2
instance, such as the user-ID db2inst1. Thus, each DB2 instance created on the
server is owned by a unique AIX user-ID. If WLM is to be configured to control
more than one DB2 instance, the applied configuration of WLM must simply have
automatic assignment rules that match the user-ID of each DB2 instance so no
special scripts have to be developed to differentiate DB2’s several instances.
190 AIX 5L Workload Manager (WLM)



However, there is a more sophisticated use of WLM in combination with DB2 that
requires some basic understanding about the way DB2 works.

5.4.1 DB2 process model
DB2 has several groups of processes that perform different, specialized
tasks. Two very important kinds are the agents and the io servers (or
prefetchers). Briefly, the agents carry out the logic of the queries and the
prefetchers are in charge of reading data from disk and copying it to the
bufferpools, which are shared memory segments where the agents go to find
the data they want to work with (filter, sort, compare, transform, etc.). In some
cases, agents are also allowed to read the data files directly from disk, but we
will assume that the tuning of the database parameters will prevent this from
being relevant.

Agents “live” in a pool if they are idle. The database administrator configures
what the pool must look like (for instance, how many idle agents are allowed
to be prepared to serve a query or how many of them must be present when
the engine starts). When a query enters the system, the DB2 optimizer can
decide to start more than one agent to fulfill the query; that is, the engine
picks some idle agents from the pool (if they are available) or spawns as
many processes as are needed to match the query degree (how many agents
work for a particular query). As soon as the query finishes, the agents go
back to the pool and are ready to serve another query. Obviously, we do not
want an infinite number of processes doing nothing. So if the pool becomes
too big (there are too many idle agents according to the database
parameters), some processes will be terminated. There is a possibility of
having no pool of agents at all; simply set a database parameter to zero. In
that case, no idle agent is allowed and the processes are removed when the
query finishes.

In contrast, there is no pool of prefetchers. The database administrator fixes a
number of them and they are permanently started. If they have no work, they
simply stay there waiting for requests. If all prefetchers are busy and an agent
needs to read some data, it can read the data by itself. Although we do not
ever expect prefetchers to hog the CPU, it might happen (in case of very
aggressive read-ahead parametrization) that the prefetchers consume a
noticeable amount of CPU resources. In fact, reading a lot and reading fast
requires considerable CPU resources.

Another essential difference between prefetchers and agents has to do with
the way in which DB2 allocates processes to queries. It is possible to know
exactly which agents are working for a given running query. On the other
hand, there is no way to know which query a prefetcher is working on; they
Chapter 5. Manual assignment 191



see only a queue of requests to read data blocks rather than a list of queries.
Prefetchers are intended to serve all queries and all agents.

5.4.2 Using AIX WLM with DB2 UDB
In a complex query environment, keeping in mind the concepts introduced in
Section 5.4.1, “DB2 process model” on page 191, the following concerns
arise:

• Could we control the resource consumption of individual queries?

• Could we dynamically determine that some queries should be favoured
and some others penalized in terms of CPU resources in order to
guarantee a certain execution time for important queries?

• How can WLM help us to achieve it?

DB2 has a feature called “snapshot monitoring” that allows us to take a photo
of the engine status at any time. We can know how many queries are running
on the system, which users started which queries, which tables a query
accesses, how much memory a query needs for sorting data, if a query is
doing a hash-join or not, how the prefetching mechanism is working, and so
on. We can also obtain performance data, both aggregated and particularized
for a certain query, that we can use to know up to the finest detail what the
running queries are really doing.

If we take such a database snapshot, look for some decision criteria, get the
process ids of the agents, and, by using the manual assignment feature of
WLM, send them to different classes configured according to our needs, we
can develop a very sophisticated strategy of workload balancing. The
different classes can be configured to prevent some queries from hogging the
CPU or, on the other hand, allow a heavy query to complete within certain
time margins.

A simple, but complete test scenario was developed to illustrate this
procedure. Due to its length and specialization, we decided not to include it in
this chapter, but it is available with the additional material delivered with this
redbook. See Appendix F, "Using the additional material" on page 313 for
details.

5.5 Conclusion

Manual assignment is a very useful enhancement to WLM’s automatic
assignment functionality. In WLM’s first release, all the instances of a
database were classified in the same manner, disregarding the importance
192 AIX 5L Workload Manager (WLM)



each one of them could have to the business. Manual assignment allows
additional classification options (providing more flexibility of control over
some important applications) essential to successful server consolidation.

Keep in mind that all manual assignments are cancelled if WLM or the
applications are stopped. If, for any reason, root or the privileged system
administrator needs to stop and restart WLM or any of the
manually-assigned applications, the manual assignments need to be
redone.

Note
Chapter 5. Manual assignment 193



194 AIX 5L Workload Manager (WLM)



Chapter 6.  WLM Application Programming Interface (API)

The AIX Workload Manager Application Programming Interface (API) is 
comprised of a set of routines in the /usr/lib/libwlm.a library. These routines 
provide applications with the capability to perform all the tasks a WLM 
administrator can carry out using the WLM commands; that is, create, 
change, and remove classes; manually assign processes to specific classes; 
and get WLM statistics. In addition, a routine, wlm_set_tag, allows an 
application to set up a process tag and specify whether this tag should be 
inherited by child processes at fork and/or exec times. With AIX 5L Version 
5.1 the WLM API has also been enhanced to support per class accounting 
using the routines wlm_initkey, wlm_class2key, wlm_key2class, and wlm_endkey. 
The library provides support for multi-threaded 32 or 64 bit applications. 
Refer to Appendix A.1, "The Include file - sys/wlm.h" on page 261 for a 
technical description of the sys/wlm.h header file.

The API routines have the additional ability (over WLM commands’ regular 
functionality) to make changes only to the currently-running configuration 
(in-core) data in the kernel, not saving them into the property files (thus, not 
making them available after restarting WLM). These changes can only be 
seen in the directory that holds the image of the running configuration, 
/etc/wlm/.running.

The application programmer must be aware that there are some initialization 
routines in the API that must be run before any others. Refer to Appendix A.3, 
"Initialization routines" on page 271 for the technical description of the 
initialization routines.

6.1  Application tag

The application tag interface, wlm_set_tag, is a technique provided to the 
applications that want to have some level of control over how their various 
instances are classified, such as databases. The tag is a string of characters 
that is used as one of the classification criteria for the automatic classification 
of processes (using the rules file). This, basically, provides a process with an 
additional classification condition to add to the already defined ones, such as 
user, group, application pathname, and process type. Refer to Appendix A.4, 
"Application tag" on page 273 for a technical description of the wlm_set_tag 
routine.
© Copyright IBM Corp. 2001 195



6.1.1  Description
When an application process sets its tag, it is immediately reclassified using 
the superclass and subclass rules in effect for the currently-active WLM 
configuration. WLM goes through the assignment rules looking for a match 
using all the process attributes, including the new tag. In order to be effective, 
this tag must appear in one or more of the assignment rules. This means that 
the format and the use of the various tags each application might create must 
be clearly specified in the application's administration documentation. This 
way, WLM administrators get to know all the choices of values a specific 
application tag might take and can use them in their assignment rules to 
distinguish between different instances of the same application.

Different system administrators might have different requirements depending 
on what set of application process characteristics they want to use to classify 
them. It is recommended that the application provide a set of configuration or 
runtime attributes that could be used to build the tag. This would provide the 
application administrator with the ability to specify the format of this tag to the 
application. The attributes that can be used for the tag and the syntax to be 
used to specify the format of the WLM tag are application dependent, and are 
the responsibility of the application provider.

6.1.2  An application tag situation
Let us suppose that an instance of a database server is able to determine 
which database is working on db_name and through which TCP port, 
port_num, a given user is connected. Some WLM administrators may want to 
create different classes for processes accessing different databases and give 
each class different resource entitlements. Others might want to separate the 
processes serving remote requests by different origins by using the port 
number as a classification attribute. Others might want both and create one 
superclass for each database and subclasses per port numbers in each 
superclass. A way of accommodating these different needs would be to 
specify the content and format of the tag. We can imagine, for the sake of the 
example, that this could be passed to the application in a configuration file or 
runtime parameter, such as:

WLM_TAG=<$db_name> or WLM_TAG=<$port_num>

or

WLM_TAG=<$db_name>_<$port_num>

When setting its tag, an application can specify whether or not it will be 
inherited by its children so that all the processes spawned by a specific 
196 AIX 5L Workload Manager (WLM)



instance of an application can be classified in the same class. Setting the tag 
inheritance is probably how the application tag will be used most of the time.

Taking the example of a database, here is how application tags can be used:

Consider Table 2 on page 26, where the provider of a database server 
application could have specified that the tag would be the database name. In 
that case two instances of the server working on two different databases 
would set up two different tags, for instance, _db1 and _db2. A system 
administrator could create two different classes, db1 and db2 and classify the 
two database servers (and all their children if tag inheritance is used) in these 
classes using the tags. It would then be possible to give each class a different 
resource entitlement according to specific business goals.

The corresponding assignment rules could look like:

6.1.3  Example of an application tag program
A simple program to launch an application with a specified tag in provided in 
Appendix D, "Sample program for application tag" on page 309. Let us say 
the program is called settag, and its syntax is:

# settag tag_name program_name

where:

tag_name is the string we want to tag the application with.

program_name is the application to be tagged.

Basically, the program procedure is: 

  • Run wlm_initialize, which is required before using any other API routine 
(refer to Appendix A.3, "Initialization routines" on page 271 for a technical 
description of the initialization routines).

  • Run wlm_set_tag to set the application tag. The flags argument of this 
routine is set in such a way that child processes of settag inherit the tag at 
exec and fork times.

  • Launch the application, which inherits the tag from its parent, settag.

* class resvdusergroupapplicationtypetag
*
db1- - - /usr/oracle/bin/db*-_db1
db2- - - /usr/oracle/bin/db*-_db2
Chapter 6. WLM Application Programming Interface (API) 197



With this program, a system administrator can launch any application 
explicitly tagged and let WLM automatically classify it using, for that purpose, 
the rules that should have been previously created to handle the application 
tags.

As a usage example of this program, let us consider a Korn shell script, test, 
that simply issues a sleep command. The following rule was created to 
classify this process in the class myclass when issued with the _mytag tag:

myclass - root - test - _mytag

The next screen exhibits the test performed and the output obtained: 

  • First, the settag program was run to launch and tag the test process with 
_mytag.

  • The ps command was used to check the classification and tagging 
process.

  • Second, the settag program was run again to launch and tag the test 
process with _notag. 

  • The ps command was used to check the classification and tagging 
process.

Note that, in the first settag run, the process, test, and the child process, 
sleep, were classified correctly in the myclass superclass. The second time 
settag was run, both processes were classified in the System class because 
there is no rule for tag _notag, and root was being used in the tests. This 
demonstrates how an application can provide differentiation between its 
various instances using application tagging:

# settag _mytag test &
# ps -ae -o class,pid,ppid,tag,args |grep tag |grep -v grep |grep -v ps
myclass.Default 2270 7324 _mytag sleep 100
myclass.Default 7324 12192 _mytag sh -- test
# settag _notag test &
# ps -ae -o class,pid,ppid,tag,args |grep tag |grep -v grep |grep -v ps
myclass.Default 2270 7324 _mytag sleep 100
myclass.Default 7324 12192 _mytag sh -- test
System 9214 17192 _notag sleep 100
System 17192 12192 _notag sh -- test
198 AIX 5L Workload Manager (WLM)



6.2  Class management

The WLM API provides applications with the ability to:

  • Query the names and characteristics of the existing classes of a given 
WLM configuration (wlm_read_classes)

  • Create a new class for a given WLM configuration and define the values of 
the various attributes of the class (tier, inheritance, adminuser, 
admingroup, rset, authuser, and authgroup) and the shares and limits for 
the resources managed by WLM, such as CPU, physical memory, and disk 
I/O (wlm_create_class)

  • Change the characteristics of an existing class of a given WLM 
configuration, including the class attributes and resource shares and limits 
(wlm_change_class)

  • Delete an existing class of a given configuration (wlm_delete_class).

The changes will be applied only to the property files of the specified WLM 
configuration. Optionally, by specifying an empty string as the configuration 
name, it is possible to apply the change only to the currently-running classes, 
resulting in an immediate update of the state of the active configuration.

The API calls require the same level of privilege from the caller that would be 
required for the command line, SMIT, or WSM interfaces: 

  • Any user can read the class names and characteristics.

  • Only root can create/modify/delete superclasses.

  • Only root or designated superclass administrators (superclass attributes, 
adminuser, and admingroup) can create/modify/delete subclasses of a 
given superclass.

In cases where WLM administration is done both through the command line 
and administration tools by WLM administrators, and by applications through 
the API, some caution must be applied. Both interfaces share the same name 
space for the superclass/subclass names and the total number of 
superclasses and subclasses. In addition, when the API directly modifies the 
currently-running (in-core) WLM data (create new classes, for instance), the 
WLM administrators are not aware of this until they see classes they did not 
create appear on the output of commands, such as wlmstat. In order to avoid 
conflicts that would confuse the applications using this API, the classes 
created through the API that are not defined in the WLM property files are not 
automatically removed from the in-core data if the system administrator 
updates WLM. They remain in effect until explicitly removed through the 
Chapter 6. WLM Application Programming Interface (API) 199



wlm_delete_class routine or through an invocation of the rmclass command 
(invoked directly or through SMIT or WSM by the system administrator).

Refer to Appendix A.5, "Class management" on page 274 for technical 
descriptions of the class management routines.

6.3  WLM management

The WLM API also provides applications with the ability to: 

  • Query/change the mode of operation of WLM using the wlm_set function.

  - Query the current status of WLM.

  - Stop WLM.

  - Switch from active to passive mode, and vice-versa.

  - Turn the rset binding on and off.

  • Start/update WLM, using the current (or an alternate) configuration, with 
the wlm_load routine.

  • Assign a process or a group of processes to a class using the wlm_assign 
routine.

Here again, the API requires the same levels of privilege as the 
corresponding command line interfaces, wlmcntrl and wlmassign: 

  • Any user can query the state of WLM.

  • Only root can change the mode of operation of WLM.

  • Only root can update/refresh a whole configuration.

  • Only root or an authorized superclass administrator 
(adminuser/admingroup) can update WLM for the subclasses of a given 
superclass.

  • Only root, an authorized user (specified by authuser/authgroup), or an 
authorized superclass administrator (adminuser/admingroup) can assign 
processes to a superclass and/or subclass.

Refer to Appendix A.6, "WLM management" on page 280 for technical 
descriptions of WLM management routines.
200 AIX 5L Workload Manager (WLM)



6.4  WLM statistics

The WLM API routines wlm_get_info and wlm_get_bio_stat provide 
applications with access to the WLM statistics displayed by the wlmstat 
command. 

Refer to Appendix A.7, "WLM statistics" on page 285 for technical 
descriptions of WLM statistics routines.

6.5  WLM classification

The API routine wlm_check allows you to check the class definitions and the 
assignment rules for a given WLM configuration.

The API routine wlm_classify allows an application to find out which class a 
process with a specified set of attributes would be classified to. 

Refer to Appendix A.8, "WLM classification" on page 290 for technical 
descriptions of WLM classification routines.

6.6  WLM accounting

  • The API routine wlm_initkey allocates and initializes the classes to keys 
translation table.

  • The API routine wlm_class2key performs class name to key translation.

  • The API routine wlm_key2class retrieves a class name from a key.

  • The API routine wlm_endkey frees the classes to keys translation table.

Refer to Appendix A.9, “WLM accounting” on page 293 for technical 
descriptions of WLM accounting routines.

6.7  Binary compatibility

In order to provide binary compatibility in the future if there are any changes 
in the data structures, each API call receives a version number as one of the 
parameters. This will allow the library to determine which version of the data 
structures the application has been built with, and read and/or write the 
correct data.
Chapter 6. WLM Application Programming Interface (API) 201



6.8  Integration with Tivoli products

By itself, WLM does not allow a system administrator to monitor the 
performance of an application. It can only work with system resources’ usage 
and monitor if that usage is above or below the defined targets. However, an 
integration of the WLM API with Tivoli Application Performance Management 
(TAPM) can bring the best of the two worlds together; monitoring an 
application’s availability and response time and its behavior at the system 
level (resource usage).

6.8.1  TAPM overview
TAPM focuses on two different approaches to measure applications 
availability and response time; application instrumentation and transaction 
simulation. Both methods consist of using the TAPM Application Response 
Measurement (ARM) API routines.

6.8.1.1  Application instrumentation
The application instrumentation approach focuses on changing the 
application code to include ARM API function calls. This method has the 
advantage of giving the application control over what is monitored and when, 
but has the obvious drawback of the unavailability of the application’s source 
code to many customers. An example of application instrumentation would be 
to measure the end-user’s response time, which could be defined as the time 
between the user submitting the transaction and the screen refreshing with 
the result. In order to measure the end-user’s response time, the ARM API 
calls that start and stop the TAPM agent timer have to be placed in the 
application code around the user transaction. In other words, an arm_start 
call must be made when the user clicks on the submit button, and an arm_stop 
call must be made when the screen refreshes.

The time the server component of the transaction takes could be measured in 
the same way.

6.8.1.2  Transaction simulation
In the second approach, meant for when the application’s source code is not 
available, typical end-user transactions are collected in a script for simulation 
purposes. This script is edited to include the ARM API function calls, just like 
the application instrumentation approach. The script is then set to run 
periodically from a dedicated client, simulating the chosen transactions. The 
measurements it provides are good approximations of real end-user 
experience.
202 AIX 5L Workload Manager (WLM)



6.8.2  TAPM and WLM
In both approaches described in the previous section, the WLM API can work 
together with the ARM API to gather statistics of both system resource usage 
and response times on an AIX application environment. This can help to 
determine if an application performance bottleneck resides in the application 
itself or in a less appropriate configuration of resource targets for the 
application class. The WLM API calls to gather these statistics are 
wlm_get_info and wlm_get_bio_stat. Refer to Appendix A.1, "The Include file - 
sys/wlm.h" on page 261 for a description of the routines’ data structures, and 
to Appendix A.7, "WLM statistics" on page 285 for a technical description of 
the routines.

6.8.3  Monitoring an application in a WLM and Tivoli environment
In this section, the steps of the process of monitoring an application and 
using WLM and Tivoli products together are described.

The first step is to determine what to monitor and when:

  • Which transactions within the application are to be studied?

  • Which approach is to be used?

  • At what time of day should the monitoring process run?

  • What sort of system resource statistics are to be collected?

After the planning is done, the chosen method is applied. Applications are 
instrumented or scripts are written using the WLM and ARM API calls to 
collect the chosen statistics and performance measurements.

At this time, the instrumented applications or scripts need to be registered 
within the Tivoli environment and added to TAPM profiles before distributing 
them to any specific endpoints. The subsequent profile distribution will make 
the scripts or instrumented applications generate data. This data is stored in 
an external database, and, with the use of Tivoli Decision Support (TDS), 
reports can be generated from it.

The Distributed Monitoring agent provided with TAPM also enables you to 
detect and act upon any exceptions that might occur. These events can be 
forwarded to the Tivoli Enterprise Console (TEC). Examples of events 
needing immediate action would be a critical application getting resources 
way below its target (thus, presenting really low performance) or another 
process starving all other applications of a particular resource.

This process is briefly represented in Figure 81 on page 204.
Chapter 6. WLM Application Programming Interface (API) 203



Figure 81.  WLM and Tivoli interaction

6.9  Summary

The WLM API provides applications with the ability to:

  • Perform regular WLM and class administration tasks

  • Tag processes to extend the range of classification criteria

  • Gather resource usage statistics

  • Initialize per class accounting

With Tivoli product interaction, WLM’s monitoring functionality can be 
extended to an application performance oriented one.

0
10
20
30
40
50
60
70

Pie 1

Total: 132
Slice 1

Slice 2

Slice 3

Slice 4

Reporting (TDS)

Data collection

Event alert (TEC)

Data monitoring
(Distributed Monitoring)

Profile creation/distribution

Registration

WLM and ARM API's
Application instrumentation
Transaction simulation

Tools installation
Planing

xxxxxxx

xxxxx

rr rr rr22222

222222ggggggg

axxxxs
204 AIX 5L Workload Manager (WLM)



Chapter 7.  Sizing recommendations for Workload Manager

The introduction of WorkLoad Manager (WLM) has greatly enhanced the 
functionality of AIX, and helps to more efficiently use the capacity of IBM 
^ pSeries servers and RS/6000 SP systems. WLM provides the 
means to use otherwise wasted “overcapacity” without impairing the 
performance requirements of the primary workload(s). However, only after 
proper sizing and control of the nature and behavior of the workload mix will 
the expected improvement in overall system usage be achieved.

This chapter suggests some recommendations for system capacity sizing of 
stand-alone systems and server consolidation systems using AIX WLM. It 
does not deal with sizing theories for individual applications.

7.1  Typical UNIX system capacity sizing

Few production UNIX systems have an average utilization of more than 70 
percent (often more than 80 percent is considered resource constrained). 
Moreover, it is not surprising to find that the average utilization of most UNIX 
systems is below 40 percent. This is chiefly due to the following reasons:

  • System sizing should be based on the highest expected peak load, not on 
the average workload.

  • Generally, system sizing is conservative and the sizing often results in a 
generous amount of buffering capacity, more than 20 percent, in addition 
to the top peak load.

  • The duration of peak load time is, usually, not long.

  • In most cases, a UNIX server is dedicated to only one application service, 
thus producing a single pattern of peak loads.

The typical UNIX system resource utilization, therefore, is similar to that 
shown in Figure 82 on page 206. Actually, a substantial percentage of the 
total system resource is wasted in most UNIX systems in preparation for peak 
loads that do not last long.
© Copyright IBM Corp. 2001 205



Figure 82.  Typical CPU usage when running single application service

These peak loads cannot simply be ignored. When there is an unexpected 
peak of heavy workload whose resource consumption exceeds the system 
capacity, users often experience a duration of system hang-up until the load 
is over. This is one of the system administrator’s nightmares. So, even if 
system resource utilization is quite low, a system large enough to survive 
such peak workloads without a hang-up has to be prepared.

7.2  Server consolidation considerations

The key to correctly sizing a UNIX system is to eliminate that wasted 
capacity. It would not be practical to try to change the behavior of the 
application itself. Nor would it be acceptable to force the service users not to 
produce those peak loads.

One of the more reasonable solutions to this problem is to combine multiple 
application services with different system resource utilization patterns into a 
single server, also known as server consolidation. By doing that, multiple 
patterns of peak loads can be combined to produce a greater average system 
usage.

Time

0

10

20

30

40

50

60

70

80

C
P

U
us

ag
e

%

Appl. A
206 AIX 5L Workload Manager (WLM)



Figure 83.  A typical CPU usage in a server consolidation environment

Integrating multiple applications that run on separate, single systems into one 
system of larger capacity is part of a server consolidation solution. Running 
multiple applications on one server of larger capacity has many pros and 
cons.

The pros are:

  • Only one instance of the OS is required, thus saving the resources needed 
for multiple OS instances, such as memory and disk space.

  • More flexible utilization of system resources.

  • The total cost of ownership is decreased (that is, less maintenance cost 
and less manpower).

  • Even though there is more complexity in the system being administered, 
there are fewer systems to be maintained (for operating system updates, 
for instance).

  • Simpler architecture than that of distributed server systems.

The cons are:

  • Running more than one application service in one system can lead to 
resource contention among the applications, thus degrading the 
performance of critical services or workloads.

  • It is not always possible to limit the resource usage of some applications 
that are not mission-critical or tend to take up all the available system 
resources.

Time

0

20

40

60

80

100

C
P

U
us

ag
e

% App. D

App. C

App. B

App. A
Chapter 7. Sizing recommendations for Workload Manager 207



  • If the system fails due to OS or other application errors, all other services 
are lost.

  • If one application crashes or goes out of control, the other applications 
may be brought down as well.

Many of these problems can be overcome with the modern UNIX 
technologies. The availability problems can be addressed by UNIX clustering 
technologies, such as HACMP for AIX. The resource contention problems 
can be solved by using a workload management solution.

The main reason for performance degradation when running multiple 
applications in a single system is the resource contention between 
applications. AIX WLM can effectively isolate applications by controlling the 
resource allocation algorithm of the UNIX scheduler, virtual memory manager 
(VMM), and the I/O-bandwidth of disk devices so that applications of more 
importance can be configured to receive preferential allocation of resources 
compared to less important ones.

WLM provides for integrating multiple applications on single systems. Refer 
to Chapter 2, “AIX Workload Manager functionality” on page 9 for details.

7.3  System capacity sizing for Workload Management

Workload Management can be very useful in terms of system capacity usage 
in two ways:

  • WLM can help, by integrating multiple applications on a single server, to 
utilize the unused portion of system resource that would be wasted in 
preparation for the peak loads if the applications ran on separate 
individual systems. 

  • WLM automates the process of (re-)scheduling system resources 
allocated to lower priority workloads back to high priority (critical) 
workloads whenever these enter their peak load period. This reallocation 
process can be so extreme that low priority jobs seem to be stopped. 
Therefore, the system should be sized sufficiently to handle the combined 
peak loads of critical workloads. Although some buffering (that is, extra 
resources) may still be desired to meet increasing resource requirements 
by critical applications, the amount of consolidated buffer space can be 
less than the combined buffers of individual systems.
208 AIX 5L Workload Manager (WLM)



7.3.1  System capacity sizing steps for server consolidation
One method of estimating the required system capacity for server 
consolidation is explained here. It should be noticed that this is just one of 
many methods of system sizing, and that the method explained here may not 
be applicable to all cases. Basically, this method is based on the highest peak 
load of the monitored application. It is assumed that each existing application 
is running on its dedicated system, and WLM is not active.

7.3.1.1  Step 1 - Monitor resource usage
First, monitor for a sufficiently long period, using standard AIX performance 
monitoring tools such as vmstat, to get a distribution of workload load levels. 
The maximum load is an important statistic. A second important statistic is 
the average load exclusive of peak loads (for instance, 0-5 percent or 20 
percent versus 80 percent peak load). Each of these levels has to be 
described according to their period and distribution over the day, week, and 
month. 

Wherever possible, identify patterns related to the business cycle (Monday, 
Friday, weekend, end of month, end of quarter, end of business year). For 
example, in the banking business there can be some days in a month on 
which the systems are used much more than on others. 

The existing systems may be underutilized or overutilized. If the system is 
overutilized (the application requires more resource than is available in the 
current system), you cannot obtain the exact value of the highest peak load 
for that application. In that case, a test system with a larger capacity may be 
used, or the theoretical peak load has to be extrapolated using the monitored 
data.

As a result, a resource usage data table, such as the one in Appendix E, 
"Sample for CPU resource usage calculation" on page 311, can be obtained.

It is recommended that you draw a graph, such as the one shown in Figure 84 
on page 210, for each application using the resource usage data.
Chapter 7. Sizing recommendations for Workload Manager 209



Figure 84.  Peak load single application

7.3.1.2  Step 2 - Estimate the requirements for each application
The calculations to be done for such an estimation are: 

  • Minimum required system capacity (AR)

  • Resource Utilization Percentage (RUP)

  • Average resource utilization percentage (ARUP)

Minimum required system capacity
For a consolidated system, first build a table without regard to buffering. 

The system sizing buffer is an estimate of the additional resources needed to 
handle: 

1. Concurrent critical applications growth

2. Concurrent (though lower priority) resources for other workloads during 
critical application peak load requirements.

The minimum required system capacity for each application is calculated by 
adding the estimated buffer to the highest peak load observed.

The minimum required system capacity, which is used in this example as the 
total available system resource, is calculated with the following formula:

Time

0

20

40

60

80

100

C
P

U
us

ag
e

%

App. A

AR HPx 100 BF+( )
100

----------------------------------------=
210 AIX 5L Workload Manager (WLM)



AR = Minimum Required System Capacity; is used as the Total Available 
System Resource.

HP = The highest peak load.

BF = The buffering factor as a percentage of the total capacity need.

Using the data from the table in Appendix E, "Sample for CPU resource 
usage calculation" on page 311, Application A produces the following peak 
load: 

Calculating the highest peak loads of all applications:

  • Application A: 5,600
  • Application B: 3,400
  • Application C: 5,700
  • Application D: 1,900

Assume the capacity of the system on which these individual applications are 
running is 10,000 tpm (transactions per minute). Because the system 
capacity is 10,000 tpm, each percentage value in the graphs is easily 
converted, by multiplying the actual tpm value that was consumed by each 
application at the moment of measurement by 100.

The minimum required system capacity for each of the applications, based on 
the highest peak loads with a moderate buffering factor of 20 percent, would 
be:

  • Application A: 5600 X 1.2 = 6,700 tpm

  • Application B: 3400 X 1.2 = 4,100 tpm

  • Application C: 5700 X 1.2 = 6,800 tpm

  • Application D: 1900 X 1.2 = 2,300 tpm

The values below one hundred are rounded.

If these four applications are run on four individual servers dedicated to each 
application, the total CPU power needed for these four applications will add 
up to 19,900 tpm (Figure 85 on page 212).

Total TPM consumption = the sum of TPM consumption of individual systems

= 6,700 + 4,100 + 6,800 + 2,300 = 19,900

AR 5600x 100 20+( )
100

----------------------------------------- 6720= =
Chapter 7. Sizing recommendations for Workload Manager 211



Figure 85.  Total TPM consumption

Resource Utilization Percentage
The Resource Utilization Percentage (RUP) can be calculated using the 
following formula:

UR = Actually used resource during the period (colored area under the 
usage curve of the example graph). UR can be calculated by adding 
the values of the resource usage measured at each measuring point.

AR = Total Available System Resource calculated earlier as the Minimum 
Required System Capacity (total area of the example graph).

TU = Number of time units during the monitoring period.

LTU = Length of Time Unit in seconds. If the monitoring interval is, for 
instance, set to ten seconds, the Length of Time Unit (LTU) is 10.

Using the resource usage graph displayed in Figure 84 on page 210 the 
Resource Utilization Percentage (RUP) can be calculated as follows:

6700 4100 6800 2300
0

1

2

3

4

5

6

7

8

9

10

T
ho

us
an

ds
C

P
U

P
ow

er
(T

P
M

)

RUP URxLTU( )
ARxTUxLTU( )

-----------------------------------------
·

x100=

RUP 86800x10( )
6700x500x10( )

---------------------------------------
·

x100 26= =
212 AIX 5L Workload Manager (WLM)



The overall CPU utilization percentages of each application that runs on its 
dedicated individual system has the minimum required system capacity 
calculated above are calculated as follows:

Resource utilization percentage = (UR / (AR X TU)) X 100

  • Application A: (86800/(6700X50)) X 100 = 26 percent

  • Application B: (111600/(4100X50)) X 100 = 54 percent

  • Application C: (73600/(6800X50)) X 100 = 22 percent

  • Application D: (74500/(2300X50)) X 100 = 65 percent

Notice that the less variance the CPU resource utilization pattern shows 
along with time, the higher overall resource utilization percentage we get.

Average resource utilization percentage
The overall average of the resource utilization percentage of the multiple 
systems can be calculated using the following formula:

SUR = Sum of actually-used resources per system during the measuring 
period accommodating all the applications on one system. 
This value is obtained by adding up the values of each system’s Total 
Actually Used Resource (UR), and is the sum of the colored areas 
under the usage curves of the graphs in the example (Figure 84 on 
page 210).

SAR = Sum of total available resources of all the systems, or the sum of the 
total required system capacity for accommodating all the applications 
on one system. This value is obtained by adding up the values of each 
system’s Minimum Required System Capacity (AR), and is the sum of 
total areas of the graph boxes in the example (Figure 85 on page 212).

TU = The number of time units during the monitoring period.

The average resource utilization percentages of the four systems are 
calculated as follows:

ARUP
SUR

SARxTU( )
-----------------------------x100=

ARUP 86800 111600 73600 74500+ + +
6700 4100 6800 2300+ + +( )x50

----------------------------------------------------------------------------------x100 35= =
Chapter 7. Sizing recommendations for Workload Manager 213



7.3.1.3  Estimate the capacity for integrated applications
In this step, the minimum required capacity of a single system required for 
integrated applications is estimated.

Taking the sum of individual resource usage values of all the applications at 
one of the measurement points gives the expected resource usage value of 
the applications integrated into one system at the same measurement point. 
Repeating this at all measurement points produces a table of the expected 
resource usage data when the applications are integrated into one system, 
such as the one that is obtained for each separate application by actual 
monitoring in Section 7.3.1.1, “Step 1 - Monitor resource usage” on page 209.

An expected resource usage graph, such as the one shown in Figure 92 on 
page 219, can be obtained from this.

The minimum required capacity and the resource utilization percentage for 
integrated applications are calculated as described in Section 7.3.1.1, “Step 1 
- Monitor resource usage” on page 209.

7.3.2  Examples
The following examples give a good illustration of the capacity usage benefit 
using the WLM solution. 

The resource usage data table used in these examples is available in 
Appendix E, "Sample for CPU resource usage calculation" on page 311. The 
time unit used in the table is 10 minutes, and the number of this time unit 
monitored here is 50. Thus, the total monitoring duration is 500 minutes. It 
should be noticed that the minimum monitoring period has to be at least 24 
hours in actual cases. The length of 500 minutes is used here just for 
simplicity of the example.

The examples here are CPU resource only. Considerations for memory and 
disk I/O bandwidth are discussed in Section 7.3.3, “Considerations for 
memory and disk I/O bandwidth” on page 221.

7.3.2.1  Base line - Applications running on separate systems
For example, assume that there are four different applications that have the 
CPU usage patterns shown in the following four figures. 

Application A, shown in Figure 86 on page 215, exhibits short, pronounced 
peak loads.
214 AIX 5L Workload Manager (WLM)



Figure 86.  CPU peak load of Application A

Application B, shown in Figure 87, shows workload increasing and 
decreasing gradually over time.

Figure 87.  CPU usage pattern of Application B

Application C, shown in Figure 88 on page 216, is a good example of a nightly 
batch job.

Time

0

20

40

60

80

100

C
P

U
us

ag
e

%

App. A

Time

0

20

40

60

80

100

C
P

U
us

ag
e

%

App. B
Chapter 7. Sizing recommendations for Workload Manager 215



Figure 88.  CPU usage pattern of Application C

Application D, shown in Figure 89, has a comparatively flat, constant resource 
usage pattern.

Figure 89.  CPU usage pattern of Application D

7.3.2.2  Approach 1 - All applications are mission-critical
Now, consider using WLM to integrate the four applications on a single 
server. It is assumed that WLM can address all the obstacles against the 
application integration on a single system. Then, the usage pattern shown in 
Figure 90 on page 217 is obtained.

Time

0

20

40

60

80

100

C
P

U
us

ag
e

%

App. C

Time
0

20

40

60

80

100

C
P

U
us

ag
e

%

App. D
216 AIX 5L Workload Manager (WLM)



In this case, the minimum required system capacity for the integrated 
applications based on the highest peak load, with the same buffering factor of 
20 percent as before, is estimated as follows:

  • The highest peak load in Figure 90 is 9700.

  • The minimum required capacity = 9700 X 1.2 = 11,600 tpm

The overall CPU usage percentage on the server of this capacity during the 
given time span would be:

Resource utilization percentage = (UR / (AR X TU)) X 100

See Section 7.3.1.2, “Step 2 - Estimate the requirements for each application” 
on page 210 for detailed information about this calculation.

Resource utilization percentage 

= (86800+111600+73600+74500)/(11600X50) X 100 = 60 percent

Figure 90.  CPU usage pattern of applications integrated on a single serve

7.3.2.3  Approach 2 - Only some applications are mission-critical
The capacity usage benefit of WLM becomes manifest when some of the 
integrated applications are not mission-critical. If WLM is not used, the 
system does not offer any practical method to give the higher priority to the 
more important applications. As a consequence, if system resources are 
running short, all applications will contend for them, thus hurting the 
performance of all applications (Figure 91 on page 218). To guarantee the 
performance of some mission-critical applications, the required system 
capacity has to be estimated based on the top peak load, usually with some 

Time

0

20

40

60

80

100

C
P

U
us

ag
e

% App. D

App. C

App. B

App. A
Chapter 7. Sizing recommendations for Workload Manager 217



percentage of buffer capacity in case of unexpected heavy workloads, even if 
their duration is short.

Figure 91.  Server consolidation - system resources running short

The required system capacity can be reduced using WLM if the performance 
of some of the integrated applications is not important. WLM can effectively 
control the resource allocation to each application, with its shares, limits, and 
tiers, to guarantee the performance of mission-critical applications. Of 
course, this makes sense only if the performance degradation of the other 
applications is acceptable to the business.

For example, assume that Application B and Application D (Figure 92 on page 
219) do not require prompt response or output and that only the response 
time of Application A and the processing time of Application C are important 
(Figure 93 on page 219). Then the required capacity is estimated (with a 
generous buffering factor of 20 percent) as follows:

The required capacity

= (the top peak of (Application A + Application C)) X 1.2

= 5,600 X 1.2 = 6,700

Time

0

70

C
P

U
U

sa
ge

%

App. D
App. C
App. B
App. A

100
218 AIX 5L Workload Manager (WLM)



Figure 92.  Consolidation of Application A and Application C

The required capacity

= (the top peak of (Application B + Application D)) X 1.2

= 5,700 X 1.2 = 6,800 tpm

Figure 93.  Consolidation of Application B and Application D

Because there are several points at which the total required CPU resource 
exceeds this value without WLM, all the applications will be slowed down. 
However, by using WLM and placing Application A and Application C in a 
higher tier than the others, we can isolate the important applications from the 

Time

0

20

40

60

80

100

C
P

U
U

til
iz

at
io

n
%

App C
App A

Time

0

20

40

60

80

100

C
P

U
U

til
iz

at
io

n

App D
App B
Chapter 7. Sizing recommendations for Workload Manager 219



others. At those points where resource is running short, only Application B 
and Application D are slowed down, which is acceptable to the overall 
business operation.

In this case, the overall resource utilization percentage is calculated as 
follows:

Resource utilization percentage = (UR / (AR X TU)) X 100

See Section 7.3.1.2, “Step 2 - Estimate the requirements for each application” 
on page 210 for detailed information about this calculation.

Resource utilization percentage = 
((86800+111600+73600+74500)/(9100X50)) X 100 = 76 percent

7.3.2.4  Comparison of the cases
You can clearly see the capacity usage benefit of server consolidation using 
WLM in Table 4 on page 220.

If you use four individual systems for your applications, you have to pay for 
four systems with the total capacity of 19,900 tpm, and you will be using only 
35 percent of the total available resource. However, if you decide to integrate 
the applications into one system using WLM, you will need a system of 
11,600 tpm, and the overall utilization will be up to 60 percent. Granted that 
only the performance of Application A and Application C is important, you can 
cut the estimate down to 9,100 tpm, even with a generous buffering factor of 
40 percent. The overall utilization will be as high as 76 percent.

Table 4.  Comparison of individual application systems and one integrated system

Required 
capacity
(tpm)

Overall 
utilization 
(percent)

Remarks

Application A 6,700 26 Pronounced, short 
peaks in resource 
usage pattern

Application B 4,100 54 Moderate peaks

Application C 6,800 22 Nightly batch

Application D 2,300 65 The most even resource 
usage pattern

Sum of A,B,C, 
and D

19,900 35 Total, and average of 
the four systems
220 AIX 5L Workload Manager (WLM)



There are several points that you have to consider before estimating the 
required system capacity when using AIX WLM:

1. AIX WLM can help improve the overall resource utilization percentage, 
thus reducing the required system capacity.

2. AIX WLM can be helpful in improving system capacity usage, especially 
when the resource usage patterns of the applications are quite different 
from one another.

3. It is recommended that you integrate mission-critical applications with 
non-critical ones on one system to get the maximum benefit from using 
WLM.

4. If the overall resource utilization percentages of the individual application 
servers are already good, for example, more than 70 percent, and you 
want to guarantee the performance of all the applications to be integrated 
into one system, there would be only a little gained in system capacity by 
using AIX WLM.

Thus, it is very important to have a well-designed plan on the grouping and 
deployment of different applications to get the expected improvement. For 
example, it would be a better idea to integrate Application A and Application 
C (Figure 92 on page 219), which have different peak time and behavior on 
one system than to integrate Application B with Application D (Figure 93 on 
page 219), both of which have rather constant, even resource utilization 
patterns. Often, it is more important to make a right selection of applications 
to be integrated than to make good property files for WLM configurations.

7.3.3  Considerations for memory and disk I/O bandwidth
Basically, the same methodology can be used to estimate the capacity of 
memory and disk I/O bandwidth resources as that used to estimate CPU 

Integrated 
applications

11,600 60 All four applications 
integrated on one 
server, allowing enough 
space for each 
application. 

Applications B 
and D are 
considered 
non-critical

9,100 76 There are some points 
where Applications B 
and D are slowed down

Required 
capacity
(tpm)

Overall 
utilization 
(percent)

Remarks
Chapter 7. Sizing recommendations for Workload Manager 221



resource. However, special care should be taken when estimating the 
required capacity of memory because this is, by nature, not a renewable 
resource, as opposed to CPU, meaning that AIX might first have to take 
actions in order to provide the application with memory (for instance, freeing 
up memory pages by paging out the pages that another application is using).

The performance of mission-critical classes can be protected from memory 
swapping to or from paging spaces by setting generous minimum limits for 
them and/or placing those classes in a higher tier than the others. The 
system-defined classes, such as Shared and System, should be given 
enough minimum limits to ensure overall constant performance. However, the 
overall system performance might be degraded when some processes in one 
class begin to swap to or from paging spaces. It is recommended that you 
use a more conservative estimation for memory capacity sizing than for CPU 
capacity sizing.

It certainly helps to guarantee the performance of mission-critical applications 
by entitling more disk I/O bandwidth to them than to non-critical ones. 
However, in most situations, it is difficult to trace which process is using which 
disk for which logical volume. Thus, it is not easy to estimate the capacity 
usage benefit by using WLM.

7.4  Conclusion

AIX WLM can reduce the required minimum system capacity for applications 
by enhancing the overall system resource utilization. However, there is no 
committed capacity gain from using AIX WLM. Only by selecting the right set 
of applications to be integrated on a single system and by correct planning of 
the WLM configuration can you benefit from WLM in terms of system capacity 
usage. It is recommended that you set up the consolidation plan after 
monitoring the resource utilization pattern of each application.

CPU time and disk I/O bandwidth are considered renewable system 
resources.

NoteNote
222 AIX 5L Workload Manager (WLM)



Chapter 8.  Practical experience

This chapter reflects some practical experiences with WLM. The ISV case 
studies were based on AIX Version 4.3.3 Maintenance levels 2 and 6; 
therefore, the latest features of WLM with AIX 5L could not be tested. 
Readers should be aware of this fact and conduct their own experiments after 
studying the results of this chapter.

Section 8.2, “Customer experience - WLM and a compute server for 
research” on page 252 reflects some experiences with WLM in a production 
environment at the Forschungszentrum Jülich GmbH (Research Center 
Jülich) in Germany, from the perspective of a system administrator. 

8.1  ISV case studies

The case studies have been set up in the PeopleSoft ISV Lab in Austin, 
Texas USA, and in the IBM SAP International Competence Center (ISICC) in 
Walldorf, Germany. 

The goal of the case studies was to see the effect of various WLM 
configurations on the different scenarios described in the following sections.

Be aware that the case studies did not focus on tuning the results to optimal 
performance.

8.1.1  PeopleSoft
The idea of this case study was to run four concurrent PeopleSoft benchmark 
kits in different combinations and different WLM configurations: 

  • PeopleSoft General Ledger (GL)

  • PeopleSoft Payroll (PAYROLL)

  • PeopleSoft Financial (FI)

  • PeopleSoft Human Resources (HR)

GL and PAYROLL are batch benchmarks.

FI and HR are online transaction processing (OLTP) benchmarks.

The primary concern was to demonstrate that one class, such as batch, with 
high CPU requirements, does not dominate response time for 
interactive/OLTP workloads. 
© Copyright IBM Corp. 2001 223



Because 32bit Oracle was run, it was decided to create four independent 
databases with four Oracle listener processes to improve performance. By 
doing this, the total System Global Area (SGA) size for all four benchmarks 
was about 10 GB, whereas, with a single database, the limit is about 2.5 GB.

8.1.1.1  Case study description
The OLTP benchmarks were run in a logical three tier configuration. With this 
setup, the number of users in the load was reduced. This means that the 
database server and application server were installed on the same host.

In the OLTP benchmarks, average retrieve and update response times were 
measured for an individual client with 1250 FI and 6000 HR concurrent users. 

Mercury Interactive’s LoadRunner was used to simulate concurrent users. 
For the FI benchmark, it submitted a business transaction at an average rate 
of five transactions per second. For the HR benchmark, it submitted a 
business transaction at an average rate of 13 transactions per second. 

SQA Robot was used to automatically submit transactions and record the 
benchmark measurements on the client PCs. Measurements were recorded 
when the user load was attained and the environment reached the steady 
state. 

Batch processes are background processes requiring no operator 
intervention or interactivity. Results of these processes are automatically 
logged in the database. The runtimes are posted to the Process Request 
database table. Both batch benchmark processes were initiated at the client 
workstations. For these benchmarks, all jobs were started from MicroFocus 
COBOL 4.1 script files executed on the RS/6000 S80 server (see Table 5 on 
page 227).

In PeopleSoft General Ledger (GL), the batch performance of 40 Journal Edit 
processes were measured. The eight Journal Post processes were not 
measured.

The Journal Edit process validates journal entries including items, such as 
ChartField values, control totals, and debit/credit balancing. 

The Journal Post process summarizes detail line activity and either inserts a 
new row or updates an existing row in the ledger. There is one ledger row for 
each unique combination of ChartField values, accounting period, and fiscal 
year. In this benchmark, the Post step updated only existing ledger rows. This 
is typical for companies that perform the edit and post functions on a frequent 
224 AIX 5L Workload Manager (WLM)



basis. The database model represented an extra large organization that 
processes 3,000,000 journal transactions per run.

The PeopleSoft Payroll benchmark commits 32 jobs. Each of the jobs has 
three phases; creation, calculation, and confirmation.

The Paysheet Creation process generates payroll data worksheets for 
employees consisting of standard payroll information for each employee for 
the given pay cycle. This process ran separately from the other two tasks and 
was not measured.

The Payroll Calculation process looks at paysheets and calculates checks for 
those employees. Payroll Calculation can be run any number of times 
throughout the pay period. The first run does most of the processing while 
each successive run updates only the calculated totals of changed items. 
This interactive design minimizes the time required to calculate a payroll as 
well as the processing resources required. In this benchmark, Payroll 
Calculation was run only once as though it was the end of a pay period. 

The Payroll Confirmation takes the information generated by Payroll 
Calculation and updates the employees’ balances with the calculated 
amounts. The system assigns check numbers at this time and creates direct 
deposit records. Confirm can only be run once and, therefore, must be run at 
the end of the pay period. Only the last two phases were measured. The 
database model represented a large organization with 72,000 employees. 

8.1.1.2  Case study method
First, each of the benchmarks was run individually on a six-way and 24-way 
RS/6000 S80 to establish the baseline. In this step, WLM was inactive.

Then six WLM control files were set up to get a baseline running WLM in 
passive mode (see Section 8.1.1.3, “WLM configuration” on page 228). 
Running WLM in passive mode allows you to observe class resource 
allocations without actually incurring any WLM adjustment. The observed 
results were used as guidelines for setting up shares and limits in the WLM 
control files.

After getting a baseline running WLM in passive mode, the benchmarks were 
started with WLM in active mode. The goal of these runs was to make the two 

The results of the six-way baseline are not listed for all the tests described 
in this chapter.

Note
Chapter 8. Practical experience 225



OLTP benchmarks work better in the consolidated server without much 
regard for the two batch benchmarks.

Both OLTP benchmarks ran with the GL batch and also with the PAYROLL 
batch (see Section 8.1.1.4, “One batch - Two OLTP benchmarks: 
PAYROLL-FI-HR” on page 232, and Section 8.1.1.5, “One batch - Two OLTP 
benchmarks: GL-FI-HR” on page 234). 

Both batch benchmarks ran with two different WLM configuration files with no 
OLTP benchmark (see Section 8.1.1.6, “Two batch benchmarks: 
GL-PAYROLL” on page 235). 

Finally, all four benchmarks ran with four different WLM configurations (see 
Section 8.1.1.7, “Two batch - Two OLTP benchmarks: PAYROLL-GL-FI-HR” 
on page 235). Figure 94 shows the HR OLTP benchmark environment.

Figure 94.  HR OLTP benchmark

The HR OLTP Mercury scripts were started on an RS/6000 F80. Three 
application server domains, each with 2000 users, ran on the RS/6000 S80. 
Figure 95 on page 227 shows the FI OLTP benchmark environment.
226 AIX 5L Workload Manager (WLM)



Figure 95.  FI OLTP benchmark

The FI OLTP Mercury scripts were started on an RS/6000 S7A. One 
application server domain with 1250 users ran on the RS/6000 S80.

Table 5 gives a list of the hardware configuration used for this case study.

Table 5.  PeopleSoft case study HW configuration

Function Model CPU Memory

DB and AP Server
(logical 3-tier)

RS/6000 S80 24 Way 32 GB

HR Load Driver RS/6000 F80 6 Way 16 GB

FI Load Driver RS/6000 S7A 12 Way 16 GB

2 x Display Server RS/6000 B50 1 Way 1 GB
Chapter 8. Practical experience 227



Additionally, four PC clients were used as shown in Table 6.

Table 6.  PeopleSoft case study PC HW configuration

The following is a list of the software used for this case study:

  • AIX 4.3.3 Maintenance level 2

  • PeopleSoft Financials 7.52

  • PeopleSoft Payroll 7.50

  • PeopleSoft General Ledger 7.50

  • PeopleSoft HRMS 7

  • PeopleTools 7.55

  • Oracle 8.0.5.1

  • BEA TUXEDO 6.4 and 6.5

  • Micro Focus COBOL 4.1

  • SQR 4.3.2

  • Mercury Interactive’s LoadRunner 5.02

  • Microsoft Windows NT 4.0 

  • SQA Suite Robot 6.1.0.42

  • PAY Client: PT 7.58

  • GL Client: PT 7.54.1

  • FI Client: PT 7.55

  • HR Client: PT 7.54.1

8.1.1.3  WLM configuration
Several WLM configurations were tested with various share and limit 
combinations.

Function Clock speed CPU Memory

FS Client 400 MHz 1 Way 64 MB

HR Client 166 MHz 1 Way 64 MB

PAY Client 180 MHz 1 Way 112 MB

GL Client 180 MHz 1 Way 80 MB
228 AIX 5L Workload Manager (WLM)



Eight classes were active. Four classes were supplied by WLM (Unclassified, 
Shared, System, and Default). Four classes were configured by the 
benchmark team (pay, gl, fs, and hr).

For the two pseudo-classes (Unclassified and Shared) no classification rules, 
resource limits, or resource shares can be specified. These classes are 
outside WLM control and, therefore, fall under default AIX resource allocation 
control.

A unique user ID was created for each of the four databases. Each user 
belongs to the DBA group.

The WLM configuration is described in the following tables.

The WLM configuration, p_conf_1 (Table 7):

Table 7.  p_conf_1

Tier Class User CPU Memory

1 pay pay750 min=0
max=100
share=1

min=0
max=100
share=1

1 gl gl75 min=0
max=100
share=1

min=0
max=100
share=1

0 fs fs75 min=0
max=100
share=1

min=0
max=100
share=1

0 hr hr75 min=0
max=100
share=1

min=0
max=100
share=1

0 System root min=0
max=100
share=1

min=0
max=100
share=1

0 Default - min=0
max=100
share=1

min=0
max=100
share=1
Chapter 8. Practical experience 229



WLM configuration, p_conf_2 (Table 8):

Table 8.  p_conf_2

WLM configuration p_conf_3 (Table 9):

Table 9.  p_conf_3

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 25
share = 25

min = 0
max = 100
share = 1

1 gl gl75 min = 0
max = 25
share = 25

min = 0
max = 100
share = 1

1
fs fs75 min = 0

max = 100
share = 25

min = 0
max = 100
share = 1

1 hr hr75 min = 0
max = 100
share = 25

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 1
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory

7 pay pay750 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

7 gl gl75 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

1 fs fs75 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

1 hr hr75 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1
230 AIX 5L Workload Manager (WLM)



WLM configuration, p_conf_4 (Table 10):

Table 10.  p_conf_4

WLM configuration p_conf_5 (Table 11):

Table 11.  p_conf_5

0 System root min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 100
share = 50

min = 0
max = 100
share = 1

1 gl gl75 min = 0
max = 100
share = 50

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 100
share = 32

min = 0
max = 100
share = 1

1 gl gl75 min = 0
max = 100
share = 40

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory
Chapter 8. Practical experience 231



WLM configuration p_conf_6 (see Table 12):

Table 12.  p_conf_6

8.1.1.4  One batch - Two OLTP benchmarks: PAYROLL-FI-HR
Table 13 presents the process results of the two OLTP and one batch 
benchmark.

Table 13.  PAYROLL-FI-HR

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 100
share = 10

min = 0
max = 100
share = 1

1 gl gl75 min = 0
max = 100
share = 10

min = 0
max = 100
share = 1

1 fs fs75 min = 0
max = 100
share = 40

min = 0
max = 100
share = 1

1 hr hr75 min = 0
max = 100
share = 40

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 1
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Application Measured 
data

24-way 
baseline

WLM 
passive 

WLM 
active 
with 
p_conf_3

PAYROLL
(batch)

Calc+Cnfrm/Hr 407,932 227,488 241,530

Percent CPU 74 41 42

Tier Class User CPU Memory
232 AIX 5L Workload Manager (WLM)



For the batch benchmark, it shows the number of employees processed per 
hour for the Calculation and Confirmation phases, and the CPU utilization in 
percent.

For the OLTP benchmarks, it displays the average retrieval time in seconds, 
the average update time in seconds, the overall average time in seconds, the 
CPU utilization in percent, and the number of transactions per minute (TPM).

Observations:

  • The performance of FI and HR OLTP benchmarks improves when 
activating WLM.

  • The performance of PAYROLL batch benchmark also improves when 
activating WLM.

FI
(OLTP)

Average Ret 0.530 0.593 0.586

Average Updte 0.755 1.002 0.868

Overall Avrge 0.579 0.682 0.647

Percent CPU 31 27 26

TPM 257 262 264

HR
(OLTP)

Average Ret 0.870 1.254 0.949

Average Updte 0.672 0.779 0.736

Overall Avrge 0.791 0.917 0.864

Percent CPU 26 26 24

TPM 922 911 897

Application Measured 
data

24-way 
baseline

WLM 
passive 

WLM 
active 
with 
p_conf_3
Chapter 8. Practical experience 233



8.1.1.5  One batch - Two OLTP benchmarks: GL-FI-HR
Table 14 presents the process results of the two OLTP and one batch 
benchmark.

Table 14.  GL-FI-HR

For the batch benchmark, it shows the number of journal lines processed per 
hour in the Edit phase and the CPU utilization in percent.

For the OLTP benchmarks, it displays the average retrieval time in seconds, 
average update time in seconds, overall average time in seconds, CPU 
utilization in percent, and the transactions per minute (TPM).

Observations:

  • The performance of FI and HR OLTP benchmarks improves when 
activating WLM.

  • The performance of GL batch benchmark also improves when activating 
WLM.

Application Measured 
data

24-way 
baseline

WLM 
passive 

WLM 
active 
with 
p_conf_3

GL
(batch)

Edit 13,088,434 7,680,491 8,125,457

Percent CPU 82 48 50

FI
(OLTP)

Average Ret 0.530 0.703 0.618

Average Updte 0.755 1.285 0.994

Overall Avrge 0.579 0.829 0.700

Percent CPU 31 25 24

TPM 257 261 261

HR
(OLTP)

Average Ret 0.870 1.085 0.972

Average Updte 0.672 0.867 0.740

Overall Avrge 0.791 0.998 0.879

Percent CPU 26 25 24

TPM 922 911 909
234 AIX 5L Workload Manager (WLM)



8.1.1.6  Two batch benchmarks: GL-PAYROLL
Table 15 presents the process results of the two batch benchmarks with 
different WLM configurations.

Table 15.  GL-PAYROLL

For the GL benchmark, it presents the number of journal lines processed per 
hour in the Edit phase and the CPU utilization in percent.

For the PAYROLL benchmark, it presents the number of employees 
processed per hour for the Calculation and Confirmation phases, and the 
CPU utilization in percent.

Observations:

The performance of GL batch benchmark with 40-32 shares (p_conf_5) has a 
worse result than the passive or equal shares (p_conf_4) run.

8.1.1.7  Two batch - Two OLTP benchmarks: PAYROLL-GL-FI-HR
Table 16 shows the two batch and two OLTP process results with different 
WLM configurations.

Table 16.  PAYROLL-GL-FI-HR

Application Measured 
data

24-way 
baseline

WLM 
passive

WLM 
active 
with 
p_conf_4

WLM 
active 
with 
p_conf_5

GL
(batch)

Edit 13,088,434 9,237,306 9,285,051 9,021,199

Percent CPU 82 58 58 58

PAYROLL
(batch)

Calc+Cnfrm/Hr 407,932 237,938 263,833 245,399

Percent CPU 74 39 42 39

Application Measured 
data

24-way baseline WLM passive WLM active with 
p_conf_3

WLM active with 
p_conf_6

PAYROLL
(batch)

Calc+Cnfrm/Hr 407,932 155,072 145,425 148,423

Percent CPU 74 24 22 23

GL
(batch)

Edit 13,088,434 5,244,846 5,027,567 5,285,877

Percent CPU 82 29 30 30
Chapter 8. Practical experience 235



For the GL benchmark, it shows the number of journal lines processed per 
hour in the Edit phase and the CPU utilization in percent.

For the PAYROLL benchmark, it displays the number of employees 
processed per hour for the Calculation and Confirmation phases, and the 
CPU utilization in percent.

For the OLTP benchmarks, it displays the average retrieval time in seconds, 
the average update time in seconds, the overall average time in seconds, the 
CPU utilization in percent, and the transactions per minute (TPM).

Observations: 

  • FI OLTP benchmark performance is best with p_conf_3.

  • HR OLTP benchmark performance is best with p_conf_6.

  • GL batch benchmark performance is best with p_conf_6.

  • Payroll batch benchmark performance is best when running WLM in 
passive mode.

The following tables display the best results in the top row and the worst 
results in the bottom row.

p_conf_3
Default and System classes were in tier 0; HR and FI classes were in tier 1 to 

FI
(OLTP)

Average Ret 0.530 0.821 0.625 (not measured)

Average 
Updte

0.755 1.933 1.075 (not measured)

Overall Avrge 0.579 1.062 0.723 0.738

Percent CPU 31 24 24 24

TPM 257 261 262 262

HR
(OLTP)

Average Ret 0.870 1.249 1.080 (not measured)

Average 
Updte

0.672 1.013 0.821 (not measured)

Overall Avrge 0.791 1.154 0.976 0.973

Percent CPU 26 23 23 23

TPM 922 901 905 904

Application Measured 
data

24-way baseline WLM passive WLM active with 
p_conf_3

WLM active with 
p_conf_6
236 AIX 5L Workload Manager (WLM)



provide better fulfillment of their resource requirements, and payroll and GL 
classes were in tier 7 (see Table 9 on page 230). Table 17 contains an 
overview of the results for p_conf_3.

Table 17.  Overview of the results for p_conf_3

p_conf_6
Default and System classes were in tier 0, all four benchmark classes were in 
tier 1, and the shares were adjusted in the shares file (see Table 12 on page 
232). Table 18 contains an overview of the results for p_conf_6.

Table 18.  Overview of the results for p_conf_6

8.1.1.8  Summary
Without the involvement of WLM, three out of the four workloads suffered 
from server consolidation, that is, running WLM in passive mode.

The CPU-intensive batch jobs dominated the usage of the CPU resource.

  • Both OLTP benchmarks suffered from the server consolidation. 

  • The Payroll benchmark suffered from the server consolidation. 

  • The General Ledger benchmark benefited from the server consolidation.

Payroll GL HR FI

24-way baseline
407,932 emp/hr

24-way baseline
13,088,434 lines/hr

24-way baseline
0.791 sec

24-way baseline
0.579 sec

6-way baseline
158,486 emp/hr

WLM passive
5,244,846 lines/hr

WLM active 
0.976 sec

WLM active
0.723 sec

WLM passive
155,072 emp/hr

WLM active
5,027,567 lines/hr

6-way baseline
0.990 sec

6-way baseline
0.756 sec

WLM active
145,425 emp/hr

6-way baseline
3,794,586 lines/hr

WLM passive
1.154 sec

WLM passive
1.062 sec

Payroll (batch) GL (batch) HR (OLTP) FI (OLTP)

24-way baseline
407,932 emp/hr

24-way baseline
13,088,434 lines/hr

24-way baseline
0.791 sec

24-way baseline
0.579 sec

6-way baseline
158,486 emp/hr

WLM active
5,285,877 lines/hr

WLM active 
0.973 sec

WLM active
0.738 sec

WLM passive
155,072 emp/hr

WLM passive
5,244,846 lines/hr

6-way baseline
0.990 sec

6-way baseline
0.756 sec

WLM active
148,423 emp/hr

6-way baseline
3,794,586 lines/hr

WLM passive
1.154 sec

WLM passive
1.062 sec
Chapter 8. Practical experience 237



Setting WLM active improves all three benchmarks that suffered before: 

  • The two OLTP benchmarks no longer suffer from the server consolidation. 
In fact, some performance gains were observed.

  • The performance of the General Ledger benchmark improved.

  • The Payroll benchmark's performance decreased even more.

Because the WLM configuration was only targeted to bring up the 
performance of online benchmarks, these results were expected.

The goals were accomplished with appropriate resource share allocation. 
Finer control can be further accomplished by observing the resource 
allocation of each class and making more adjustments.

Another attempt with OLTP benchmarks in tier 0 and batch benchmarks in tier 
1 (p_conf_1, see Table 7 on page 229) did not accomplish the goals.

8.1.2  SAP R/3 Case Study
This section is a modified excerpt from a document related to a joint project 
between IBM, BULL, and SAP that tested the potential of WLM based on AIX 
Version 4.3.3 Maintenance Level 6 in an SAP R/3 server consolidation 
environment.

The project was carried out by the IBM SAP International Competence Center 
(ISICC) in Walldorf, Germany.

This project identified a number of solution patterns that could be useful in 
controlling the behavior of multiple SAP R/3 systems consolidated on one 
server. WLM for AIX can control the CPU, memory resources, and the I/O 
subsystem. This study was concerned with CPU resource allocation only. In a 
server consolidation environment, it is crucial that a proper sizing for memory 
and CPU capacity has been done for each SAP R/3 system that will be 
housed on the machine, and that the total resources are adequate.

This chapter describes a number of successful solution patterns and 
describes how they were achieved. It also attempts to analyze various 
architectural aspects of both the SAP R/3 kernel and AIX that affect the 
control potential and scalability of these patterns.

Within the scope of this project, the following products were tested together 
with WLM:

  • DB2 UDB 6.1

  • Oracle 8.1.6 64bit
238 AIX 5L Workload Manager (WLM)



  • SAP R/3 version 46B

  • SAP R/3 version 46C

8.1.2.1  SAP standard benchmark tool
A generic standardized benchmark tool for Sales and Distribution (SD), 
provided by SAP, used by all SAP platform providers for platform positioning 
and competitive benchmarking within the SAP world.

The tool is highly OLTP, simulating many online users with quick transaction 
scenarios and much user context switching.

It was selected as the best tool in this scenario, as the granularity for 
adjustment is very fine (add or subtract a number of users), it is well known in 
the SAP world, and it produces a system load that is as near as possible to 
“exactly reproducible.” This being the case, it is easy to calibrate the 
expectations of a given load on a dedicated system, and then monitor the 
change of behavior as the system becomes more loaded with competing 
work.

Most of the data used in the tests to compare performance behavior comes 
from the SD test suite. 

8.1.2.2  WLM classes versus OS processes
Under the AIX scheduler, every process is an independent schedulable entity 
unrelated and in competition with every other process for CPU resources. 
WLM introduces a means of grouping processes into resource classes. 
These classes or different SAP R/3 systems can be classified according to 
priority for resource consumption or for consumption monitoring purposes. 
The ability to monitor and control the total resource consumption for groups of 
processes makes WLM an interesting tool in a SAP R/3 server consolidation 
environment.

AIX CPU allocation
The AIX kernel maintains a scheduling priority value for each thread. The 
priority value is a positive integer within the range from 0-127, and varies 
inversely with the importance of the associated thread. That is, a smaller 
priority value indicates a more important thread. When the scheduler is 
looking for a thread to dispatch, it chooses the dispatchable thread with the 
smallest priority value. 

The CPU penalty is an integer that is calculated from the recent CPU usage 
of a thread. The recent CPU usage increases by one each time the thread is 
in control of the CPU at the end of a 10 ms clock tick, up to a maximum value 
Chapter 8. Practical experience 239



of 120. Once per second, the recent CPU usage values for all threads are 
reduced. The priority of a nonfixed-priority thread decreases as its recent 
CPU usage increases and vice versa. This implies that, on average, the more 
time slices a thread has been allocated recently, the less likely it is that the 
thread will be allocated the next time slice.

WLM CPU allocation
WLM performs CPU allocation by manipulating the priorities of the competing 
processes on the basis of class resource consumption rather than individual 
process consumption. When a class exceeds its resource allocation, the 
processes comprising the class are degraded in priority by a value 
determined by WLM according to the class’ relative resource allocation. That 
is, if there is no concurrent competing classes need of resources, it is not 
degraded. If another class is active, then WLM will degrade a class in relation 
to its resource allocation and that of the other class(es). WLM modifies the 
penalty incurred by the threads (or processes) according to their resource 
allocation. The highest priority is achieved by the lowest penalty (which is 0), 
and the lowest priority is achieved by the highest penalty, (which is 66 in AIX 
Version 4.3.3). The largest unequal differentiation using WLM is achieved 
with one class having a penalty of 0 and another class having a penalty of 66.

SAP R/3 is a complex multi-process application with medium to very large 
memory requirements operated in client-server environments. Each SAP R/3 
system consists of at least one SAP R/3 application server central instance, 
0 - n additional application server instances, and an RDBMS database 
system. Each of these components comprises many processes. Figure 96 on 
page 241 depicts the basic SAP R/3 components. The first application server 
instance, referred to as the CI or central instance, contains several global 
components required by all others. Additional application servers can be 
added as needed. All these different components can be located on one host 
machine (referred to as a central system) or each on a separate host. All of 
these components together make up an SAP R/3 system.
240 AIX 5L Workload Manager (WLM)



Figure 96.  SAP R/3

A SAP R/3 central system (Database and Application server CI) commonly 
consists of more than 50 processes (Figure 97 on page 242).

R/3 Application
Server Instance

RDBMS

R/3 Central
Instance

R/3 Application
Server Instance
Chapter 8. Practical experience 241



Figure 97.  SAP R/3 central system

8.1.2.3  Multiple SAP R/3 systems consolidation objectives 
In the series of tests which were run, the overall objective was to allow 
multiple SAP R/3 systems to run concurrently on a single server with 
predictable and controllable results, in a similar manner as if the SAP R/3 
systems would separately run on a machine with the same CPU resources 
available as their given WLM entitlement. The expected results were defined 
to be response time and throughput for a specified CPU consumption. Given 
a predefined CPU resource allocation, a specific load level can be achieved 
by the SAP R/3 system with a consistent response time. If the workload 
increases, the response times will also increase (in a predictable manner). 
The objective is to make this true for multiple SAP R/3 systems running 

R/3 Application
Server Instance

R/3 Msg-Svr

App-Svr Disp

ENQ WP

WP

WP

WP

WP

WP

send

collect

Spool

GW

R/3

isnr

mon

.........

client

client

client

client

client

client

.........

db-wtr

db-wtr

db-wtr

db-wtr

.........

log-wtr

log-wtr

.........

ckpt-wtr RDBMS
242 AIX 5L Workload Manager (WLM)



concurrently on a single large machine. It should be possible to protect one 
SAP R/3 system from being penalized from the resource usage of a 
concurrent SAP R/3 system. In the case of contention, each SAP R/3 system 
must be confineable within its own allocation boundaries. A server 
consolidation environment has the additional benefit of allowing applications 
to have access to much more resources than is actually their due, if the 
resources are free.

WLM allows implementation of a priority chain, which will determine the 
behavior of resource allocation when various priority applications increase 
their requirements. In an SAP R/3 server consolidation environment, this 
would allow lower priority applications to take advantage of any remaining 
system resources without infringing on the priority application. It must be 
possible to define predictable response times and load throughput for the 
priority application, regardless of what the lower priority neighbors are doing.

In a server consolidation environment, it is not entirely possible to mask the 
presence of additional load on the machine caused by other applications. For 
multiple SAP R/3 systems, there will and must be some level of degradation 
due to the large number of processes being scheduled. However, the 
behavior of the individual applications must remain predictable in accordance 
with their allocation of machine resources.

On the plus side, when the competition is not using its full resource allocation, 
an SAP R/3 system can exceed its allotment and achieve much better 
response times as a result.

Without WLM, an increasing load on one SAP R/3 system will directly affect 
the behavior of all others as there is no way to limit one from consuming 
resources required by the others. SAP R/3 server consolidation without WLM 
cannot provide predictable results for any given SAP R/3 system when taking 
advantage of the total CPU resources.

8.1.2.4  Multiple systems of equal size and equal priority
This pattern is used to define the concept of logically dividing the machine 
into equal portions and allocating these portions to the individual SAP R/3 
systems.
Chapter 8. Practical experience 243



Figure 98.  Three system consolidation of SAP R/3

For example, a three-system consolidation would give 33 percent of the 
system resources to each of the three SAP R/3 systems (Figure 98). This is 
the easiest to manage of all the scenarios as it is the easiest to define, and all 
of the processes regardless of class will have a similar scheduling behavior. 
In the test scenarios presented here, it was proven that the individual 
systems could be protected from starving. The processes of the system 
exceeding their allocations are the ones to pay the throughput and response 
time penalty, not all processes. This is a major benefit of WLM. In the tests 
done for this pattern, three separate SAP R/3 systems were run 
simultaneously, as depicted above, and were successfully contained within 
their entitlements.

In an attempt to test the scalability of this pattern beyond three SAP R/3 
system (when only three systems were available), a multi-threaded test tool 
was used to simulate a forth application. Although the scheduling of threads 
in this case differed from that of the SAP R/3 processes, its behavior was 
competitive enough to verify the pattern. In this case then, the machine 
resources were divided equally between the three SAP R/3 systems, and one 
multi-threaded non-SAP R/3 application of a similar competitive nature. For 
these tests the pattern could be repeated and load increased on any given 
system contained to that system. Due to the fact that all process classes have 
the same penalty behavior, it seems likely that this pattern could be extended 
244 AIX 5L Workload Manager (WLM)



beyond the four applications tested. At four SAP R/3 systems, the pattern 
showed no indication of losing effectiveness (Table 19).

Table 19.  WLM configuration for each system

Tips for configuring systems of equal size
Dividing the system into equal shares is relatively easy. Table 19 on page 245 
shows an example of the configuration used for the three SAP R/3 system 
tests. The division of the machine resources must consider the requirements 
of the largest system. If the systems are very different in size, or if one 
system must be allotted more than 50 percent of the CPU resources, then 
this pattern cannot work. In this case the unequal pattern is the only 
possibility. It is recommended not to use maximums to try to contain the 
systems, as they are not necessary for equal share distribution and can lead 
to worse response time performance overall. The best results were achieved 
by setting the maximum to 100 percent.

8.1.2.5  Multiple systems of unequal priority
Unequal distribution (see Figure 99 on page 245) is the far more difficult 
pattern to achieve for many reasons. In real life it will also be the most difficult 
to correctly maintain and monitor, but it is the most likely pattern to be 
expected as SAP R/3 systems will have a large range of capacity 
requirements.

Figure 99.  Resource usage hierarchy for unequal priority systems

It must be able to protect a large system from resource encroachment by 
multiple smaller systems as well as vice versa. It must also allow the 
definition of a hierarchy of priorities.

# Systems Min % Max % Shares Tier

3 33 100 33 1

4 25 100 25 1

System
PRI 1

System
PRI 3

System
PRI 2
Chapter 8. Practical experience 245



Multiple systems of varying priority (priority chain)
This pattern would be applicable when the SAP R/3 systems are being 
consolidated and the exact characteristics of the SAP R/3 systems’ load are 
not known, but their relative importance is. From the scheduling point of view, 
such a pattern represents multiple classes of processes with different 
degradation behaviors. This pattern must allow for any system to be defined 
as the highest priority system, regardless of its size, and allow dynamic 
shifting of allocation boundaries according to activity and relative priority.

From the monitoring point of view, this pattern intensifies the uncertainty as to 
whether a system did not use its full allotment because it did not need it, or 
because it could not get it. In the case of equal priorities, the system can take 
the resources it needs up to its allotment. In the case of unequal priorities, 
lower priority systems can only take resources if they are not being used by 
higher priority systems.

In SAP R/3 server consolidation terms, this pattern allows us to define a 
hierarchy of systems in which the priority system maintains predictable 
response times and throughput with increasing load at the cost of those lower 
in the chain. This system has absolute priority.

In the tests done for this pattern, it was possible to construct an effective 
priority hierarchy of three SAP R/3 systems. As the distribution pattern 
implemented by the penalty priorities (see Table 20) generated in this test 
already showed some indications of stain at extreme over-commitment, it is 
doubtful that this pattern can be expanded beyond three SAP R/3 systems 
with the same quality.

The WLM Configuration for this pattern was as follows:

Table 20.  WLM configuration - penalty priorities

Sys priority Tier Min % Max % Shares Penalty

1 1 100 100 80 0

2 9 0 100 20 10

The expression “size” in the paragraph above is equivalent to CPU 
utilization. Normally the CPU capacity requirements will be a direct result of 
the number of users. The number and type of users will have a direct 
influence on the amount of memory required for user contexts, table, 
program buffers, and so forth.

Note
246 AIX 5L Workload Manager (WLM)



Please refer to the tips for configuring unequal distribution for important 
information on number of instances and processes.

8.1.2.6  Systems of unequal size but equal priority
From the logical view, this is similar to equal share distribution using 
unequally sized containers. The behavior should be that a SAP R/3 system 
can use all the resources within its allotment, degrade when it exceeds its 
allotment, and leave its neighbors undisturbed. This is an ideal server 
consolidation pattern for SAP R/3 systems of equal priority, but unequal size. 
A system used to consolidate multiple production SAP R/3 systems may find 
this pattern the most useful.

In this WLM configuration, the minimums and maximums are used with the 
objective of allowing the SAP R/3 system to run without constraints within the 
boundaries of its allocation, and try to degrade the processes as soon as it 
exceeds its allocation. The tests showed that WLM reacts very quickly to a 
“boundary dispute” under these conditions, immediately jumping the penalty 
to the maximum and just as quickly removing the penalty as soon as the 
application is back within its boundaries. This pattern showed very good 
resource control during high contention. This aim was achieved by setting the 
minimum to equal the maximum CPU limit, and both of these at the level of 
resource allocation.

Again, these limitations do not restrict a system from taking more resources if 
the resources are free. The priority penalty will be increased for the 
processes of the class that exceeds its entitlement, but they will still get the 
resources until another class requires them. A process class that has 
remained within its resource allotment will automatically have a higher 
priority, as it will have a zero penalty.

This pattern was tested for three systems; one large and two equal sized (see 
Table 21). The larger system was protected against both the smaller systems 
even when the load was increased on both of these systems simultaneously. 
Both smaller systems were in turn protected from the larger system and each 
other.

3 9 0 1 1 66

Sys priority Tier Min % Max % Shares Penalty
Chapter 8. Practical experience 247



Table 21.  WLM configuration unequal size but equal priority

8.1.2.7  One priority system with several additional systems
One final pattern was tested that combines aspects of unequal priorities with 
equal resource distribution. In this case the aim was to define a pattern in 
which there was one primary system of absolute priority, and several systems 
(see Figure 100) equal amongst themselves but all of lower priority than the 
primary system. In this pattern, whatever resources not begin consumed by 
the primary system will be equally shared between the remaining systems 
(see Table 22).

Figure 100.  One priority system with several additional systems

Table 22.  WLM configuration one priority system

Tips for configuring systems of unequal size
These patterns are far more complex to configure. They require care in both 
the WLM and the SAP R/3 configurations. At the beginning of this document, 
the behavior of WLM’s interaction with the AIX scheduler was discussed, and 
the idea of multiple AIX runqueues, a runqueue per CPU. These topics are 
important in obtaining effective WLM for unequal distribution.

System Tiers Min % Max % Shares

1 1 50 50 2

2 1 25 25 1

3 1 25 25 1

System Tier Min % Max % Shares Instances Work procs.

A 1 100 100 100 3 60

B 9 33 100 33 1 20

C 9 33 100 33 1 20

D 9 33 100 33 1 20

System A
PRI 1

System C
PRI 2

System B
PRI 2

System D
PRI 2
248 AIX 5L Workload Manager (WLM)



In patterns used to create a priority chain, there are a number of high priority 
processes belonging to the preferred system, and possibly many lower 
priority processes belonging to all the subsequent systems. Due to process 
affinity (also mentioned earlier) for a specific CPU, the situation can easily 
arise where a runqueue is dominated by low priority processes. In this case, 
there is no way for this CPU to be preempted by a process of the high priority 
system.

Figure 101.  Runqueues

Figure 101 shows three separate runqueues for three CPUs. CPU-2 has only 
lower priority processes in its runqueue. Although AIX does some level of 
process redistribution, this affinity still makes itself noticeable under these 
conditions. In this example each system has an equal number of processes 
and is still keeping the ratio of lower priority to high priority processes at 2:1.

8.1.2.8  Process distribution recommendation
For a priority chain, the higher priority SAP R/3 system should have a number 
of dispatch and work processes at least equal to the total of all the lower 

CPU2CPU0 CPU1

Pri-1
Pri-2
Pri-3

Pri-1
Pri-1
Pri-2

Pri-2
Pri-3
Pri-3

Runqueues
Chapter 8. Practical experience 249



priority systems to successfully compete. In the tests, the number of 
processes for the priority chain were defined as in Table 23.

Table 23.  Priority chain

In the pattern for supporting systems of unequal size but equal priority, each 
SAP R/3 system should have a percentage of work processes representing 
its share of system resources.

In the test scenarios, we used the following work processes ratio (Table 24).

Table 24.  Work processes

A further consideration about work processes pertains to a temporary 
limitation in the SAP R/3 kernel at the time of the tests. During the whole of 
the test series, the SAP R/3 kernel was not able to handle more than 20 
dispatch and work processes per application server instance. Due to this 
restriction, multiple instances were used when the tests needed to exceed 
this number for a given SAP R/3 system. An SAP R/3 instance can normally 
support up to 99 processes and, therefore, under normal circumstances a 
single instance would have been used and the number of processes 
increased. The fact that multiple SAP R/3 instances were used in this test 
scenario may have had other positive effects on the test results is 
documented here. This approach may be beneficial in real environments.

Priority Instances Work processes

1 3 60

2 2 40

3 1 20

Ratio % Instances Work processes

50 2 40

25 1 20

25 1 20
250 AIX 5L Workload Manager (WLM)



Figure 102.  CPU utilization per process

Figure 102 depicts the typical workload behavior of the dispatcher and work 
processes in a SAP R/3 system. Work is distributed by the dispatcher to the 
first work process in the chain that is not busy. Normally the processes near 
the top of the chain do the majority of the work. Please note that the positions 
in this chain are static.

During the tests, there were up to three SAP R/3 system instances active in 
order to achieve the optimal balance of work process processes according to 
SAP R/3 system priority shown in Figure 103 on page 252. This would have 
enhanced load distribution across a larger number of work processes even in 
low load tests, as well as providing multiple workload dispatcher processes 
per SAP R/3 system.

DispatcherDispatcher

W0

W1

W2

W3

D
is

p+
w

or
k

D
is

p+
w

or
k

P
ro

ce
ss

es
P

ro
ce

ss
es

O
-n

O
-n
Chapter 8. Practical experience 251



Figure 103.  CPU utilization per process

8.2  Customer experience - WLM and a compute server for research

The following section describes how WLM is used on a central AIX server in a 
research environment where interactive and batch work is done on the same 
machine.

When WLM was presented by IBM at the SHARE conference (IBM user 
organization) in Anaheim, CA in March 2000, it was obvious that WLM was 
the long awaited tool to overcome some problems in managing AIX, 
especially distributing resources according to installation-specified policies. 
In April, WLM was installed and ran successfully in passive mode. In May 
2000, it was decided to use WLM on the production system in active mode.

8.2.1  The installation
The Forschungszentrum Jülich GmbH (Research Center Jülich), one of 16 
Helmholtz research centers in Germany, links all its work to the common 
denominator, “The future is our mission.” A staff of 4300 are devoted to 
investigating current issues in the areas of energy, environment, life, 
information, and matter in one of the largest research institutes in Europe. In 
Jülich, scientists from many different disciplines including physics, chemistry, 

CPU Utililization per
process

DispatcherDispatcher

W0

W1

W2

W3
D

is
p+

w
or

k
D

is
p+

w
or

k
P

ro
ce

ss
es

P
ro

ce
ss

es
O

-n
O

-n

CPU Utililization per
process

DispatcherDispatcher

W0

W1

W2

W3

D
is

p+
w

or
k

D
is

p+
w

or
k

P
ro

ce
ss

es
P

ro
ce

ss
es

O
-n

O
-n

CPU Utililization per
process

DispatcherDispatcher

W0

W1

W2

W3

SAP system 1 SAP system 2 SAP system 3

D
is

p+
w

or
k

D
is

p+
w

or
k

P
ro

ce
ss

es
P

ro
ce

ss
es

O
-n

O
-n
252 AIX 5L Workload Manager (WLM)



biology, medicine, and engineering work closely together. This work results in 
contributions to basic research and long-term programs, applied research, 
and key technologies. For more information about the Jülich Research 
Center, visit the following Web site:

http://www.fz-juelich.de 

The Central Institute for Applied Mathematics (ZAM) within 
Forschungszentrum Jülich is responsible for the planning, installation, and 
operation of the supercomputers and central server systems, and of the 
campus-wide computer networks and communication systems. The services 
comprise all functions of a computer center including user support. 

As part of the John von Neumann Institute for Computing (NIC), ZAM 
provides supercomputer resources for the scientific community in Germany. 
For more information about the Central Institute for Applied Mathematics, visit 
the following Web site:

http://www.fz-juelich.de/zam

ZAM runs one of the most powerful scientific computer centers in Europe with 
six supercomputers, an IBM server, and a series of systems for special 
purposes, such as visualization and communications. 

For a detailed configuration, see the following Web site: 
http://www.fz-juelich.de/zam/CompServ/services/config.html

8.2.2  Central AIX system
The central computing system offers a wide spectrum of application software. 
It is used interactively and offers batch services for long running jobs. The 
hardware and software configuration of the system is as follows:

  • RS/6000 44P-270, 4 Way, 8GB RAM

  • Operating System AIX 4.3.3-03

  • Batch-System LoadLeveler V1.3

  • Overall peak performance 4.8 Gigaflops 

  • Concurrent users (peak) approximately 150

  • Joined users approximately 1650

  • Disk capacity for user data 360 GB

This system allows users without local computing resources to access Unix 
applications via X-terminals or PCs with an appropriate X emulation. It is an 
Chapter 8. Practical experience 253



application server for software. It is available as a computing resource for 
scalar, interactive, and batch work. In particular, applications with demands 
for large virtual memory run extremely well on this machine.

8.2.3  Problems
When the same server is used for interactive and batch work, the distribution 
of resources between these two different workloads is a difficult task. On one 
side, interactive work should experience the optimum performance to give 
scientists the best response time for their current work. On the other side, 
batch jobs using several hours of CPU time should have reasonable 
turn-around times. 

Batch jobs in this environment are typically CPU-bound.

When we tried to maximize system utilization by allowing as many batch jobs 
to run as there were processors, interactive users complained about 
excessive response times.

When the number of simultaneous batch jobs was reduced, batch users 
complained about idle system time and long queues for their batch jobs.

Another problem showed up during the production period; interactive 
X-terminal users often started Netscape processes on the central machine 
because they had no other workstation or PC to browse the Internet. 
Depending on the Web site visited, these Netscape processes sometimes 
went into a tight CPU loop without the user getting anything useful. What is 
worse, these tight CPU loops were not automatically ended through the 
cpu_hard parameter in /etc/security/limits.

8.2.4  A pre-WLM solution
To overcome the problems in AIX releases without WLM, the following rules 
were adopted and put in place:

  • Half of the CPUs are reserved for interactive work only at prime times 
(workdays from 8:00 a.m. to 6:00 p.m.).

  • At least one CPU is reserved for interactive work all the time.

  • Interactive work is limited to 30 CPU minutes per process.

  • Batch jobs (submitted through LoadLeveler) can use up to 10 hours of 
CPU time.

  • Batch jobs (submitted through LoadLeveler) run at a lower priority (higher 
nice values).
254 AIX 5L Workload Manager (WLM)



  • Netscape processes are killed without warning if they have used 30 
minutes of CPU time.

8.2.5  The WLM solution with AIX Version 4.3.3-02
The WLM files listed in Table 25 were defined for peak times (Monday through 
Friday, 8:00 a.m. to 6:00 p.m.).

Table 25.  WLM configuration for peak time

Tier Class User Application CPU Memory

9 slow /usr/local/
netscape/
netscape_aix4

min=0
max=10
share=1

min=0
max=10
share=1

2 batch batuser1 min=0
max=100
share=100

min=0
max=100
share=100

2 batch batuser2 min=0
max=100
share=100

min=0
max=100
share=100

2 batch batuser3 min=0
max=100
share=100

min=0
max=100
share=100

2 batch batuser. min=0
max=100
share=100

min=0
max=100
share=100

2 batch batuser99 min=0
max=100
share=100

min=0
max=100
share=100

0 System root min=10
max=100
share=200

min=13
max=100
share=200

0 System loadl min=10
max=100
share=200

min=13
max=100
share=200

0 System admusr min=10
max=100
share=200

min=13
max=100
share=200

0 System dispatch min=10
max=100
share=200

min=13
max=100
share=200
Chapter 8. Practical experience 255



Two adjustments were made for offpeak time:

  • tier value batch class = tier value Default class

  • shares batch class = 1/2 shares Default class

Table 26.  WLM configuration for offpeak time

1 Default min=20
max=100
share=100

min=20
max=100
share=100

Tier Class User Application CPU Memory

9 slow /usr/local/
netscape/
netscape_aix4

min=0
max=10
share=1

min=0
max=10
share=1

1 batch batuser1 min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser2 min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser3 min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser. min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser99 min=0
max=100
share=50

min=0
max=100
share=50

0 System root min=10
max=100
share=200

min=13
max=100
share=200

0 System loadl min=10
max=100
share=200

min=13
max=100
share=200

0 System admusr min=10
max=100
share=200

min=13
max=100
share=200

Tier Class User Application CPU Memory
256 AIX 5L Workload Manager (WLM)



With these definitions, WLM was started in passive mode, and the wlmstat 
output was analyzed. After some minor adjustments, WLM was run in active 
mode:

Peak time (Monday till Friday, 8 am to 6 pm): wlmcntrl -d peak

Other: wlmctrnl -d offpeak

The 30 minutes CPU time limit for interactive processes was still in effect in 
/etc/security/limits.

8.2.5.1  Major advantages of this solution
More batch jobs could be started without disturbing interactive users 
because, in peak times, the batch jobs with their lower tier value could absorb 
the CPU cycles of the machine that would go idle otherwise. In this way, a 
higher batch load could take advantage of the overlaps of I/O and CPU 
demands.

The priority of Netscape processes can now never be higher than any other 
processes.

8.2.5.2  Disadvantage of this solution
Sometimes, batch users wanted to do some interactive work at the same 
time. Because their user ID was defined in the rules file belonging to the 
batch class they had to use different user IDs to prevent the system from 
running their interactive work with the batch tier.

This is, of course, not practical and creates an administrative nightmare. So, 
the inheritance feature of WLM allowing the class inheritance of processes 
started by LoadLeveler was really needed badly.

8.2.6  The second WLM solution with AIX 5L
Among many additional features, the new functions of WLM released in AIX 
5L allow the class inheritance of processes started by a batch system (that is 

0 System dispatch min=10
max=100
share=200

min=13
max=100
share=200

1 Default min=20
max=100
share=100

min=20
max=100
share=100

Tier Class User Application CPU Memory
Chapter 8. Practical experience 257



LoadLeveler). With this enhancement, the definition of the WLM files is now 
very easy. Table 27 shows the WLM configuration with AIX 5L.

Table 27.  WLM configuration with AIX 5L

These changes allow batch processes to inherit the class characteristics of 
the LoadLeveler starter process. They combine the advantages of the 
previous WLM release and get rid of its disadvantages.

8.2.7  Conclusion
WLM allows an installation to administer the system in a much more flexible 
way compared to previous AIX releases. There is no additional effort to install 
WLM because it is included in the AIX kernel. Configuring WLM is very easy:

1. Start up with a simple classification model.

2. Run WLM in passive mode.

3. Collect statistics with wlmstat to determine how the shares and limits 
should be set. 

Tier Class Inheritance User Application CPU Memory

9 slow no /usr/local/
netscape/
netscape_aix4

min=0
max=10
share=1

min=0
max=10
share=1

2 batch yes ~loadl/bin/
LoadL_starter

min=0
max=100
share=100

min=0
max=100
share=100

0 System no root min=10
max=100
share=200

min=13
max=100
share=200

0 System no loadl min=10
max=100
share=200

min=13
max=100
share=200

0 System no admusr min=10
max=100
share=200

min=13
max=100
share=200

0 System no dispatch min=10
max=100
share=200

min=13
max=100
share=200

1 Default no min=20
max=100
share=100

min=20
max=100
share=100
258 AIX 5L Workload Manager (WLM)



4. Set shares and limits.

5. Run WLM in active mode. 

6. Collect statistics with wlmstat to see if the defined goals are achieved.

7. Modify shares, limits, rules, and tiers.

8. Repeat the last two steps a few times.

9. Perform step 1 through 8 with various alterations and save them into 
different WLM configurations.

10.Decide which is your best WLM configuration.

This process could be done over a few days. It is a powerful tool to allow 
resources to be distributed to users in an installation-defined policy. For the 
first time, service level agreements can be negotiated and enforced in a 
production environment.
Chapter 8. Practical experience 259



260 AIX 5L Workload Manager (WLM)



Appendix A.  AIX Workload Manager API routines

The WLM API routines are described in this appendix from a technical 
viewpoint for practical utilization purposes.

A.1  The Include file - sys/wlm.h

Purpose
Defines the constants, data structures, and function prototypes used by the 
Workload Manager Application Programming Interface (API) routines.

Description
The wlm.h file defines the wlm_args, wlm_assign, wlm_info, 
wlm_bio_class_info_t, and wlm_bio_dev_info_t structures. These structures 
are used by the WLM API functions in the libwlm.a library.

Data structures
The wlm_args structure is used to pass class information to WLM when using 
the API functions to create, modify, or delete a class.

A.1.1  wlm_args

The wlm_args structure has the following fields:

Field Description

versflags The four high order bits contain a version number used by 
the API to maintain binary compatibility in the event of 
future modifications of the data structures. The rest of the 
integer will be used to pass flags to the API functions when 
needed. This field should be initialized with a logical OR 
between the version number, WLM_VERSION, and 
whatever flags are needed by the target function. One flag 
common to all the API call is WLM_MUTE, which is used to 
suppress the output of error messages from the WLM 
library on stderr.

confdir Null-terminated string. This field must be initialized with the 
name of the WLM configuration the target API function 
applies to (when applicable - see individual API routines). 
Alternatively, this field can be set to a null string (\0) to 
indicate that the class addition/modification is to be applied 
only to the WLM kernel data and not to the class description 
files.
© Copyright IBM Corp. 2001 261



The main structure in class_definition is the class description, struct 
class_descr with the following fields: 

class This field is a structure of type struct, class_definition, 
which contains all the information pertaining to the 
superclass or subclass needed by the target API function. 
The fields in this structure can be initialized by a call to 
wlm_init_class_definition so that programmers will only 
have to initialize the fields they wish to modify.

Field Description

res An array of type struct wlm_bounds containing for each 
resource type:

min: Minimum limit: value between 0 (default) and 100.

shares: Shares number: value between 1 and 65535. The 
value -1 (default) indicates that the given resource is not 
managed by WLM for this class.

softmax: Soft maximum limit: value between 0 and 100 
(default). Must be greater than or equal to min.

hardmax: Hard maximum limit: value between 0 and 100 
(default). Must be greater than or equal to min and softmax.

The resource types are defined as WLM_RES_CPU, 
WLM_RES_MEM, and WLM_RES_BIO. Each value 
represents the index in the array of the element 
corresponding to the type of resource.

tier Tier number for the class: value between 0 (default) and 9.

inheritance Flag to indicate whether a new process should be 
automatically classified on exec using the assignment rules 
(value 0, which is the default), or inherit the class from its 
parent process (value 1).

localshm This attribute indicates whether memory segments in this 
class remain local to the class (value 1) or if they go to the 
Shared class (value 0, the default), when accessed by a 
process belonging to another class.

Field Description
262 AIX 5L Workload Manager (WLM)



In addition to the class description, class_definition adds two fields: 

assign_uid User ID of the user allowed to manually assign processes 
to this class. When specified, it must be a valid user ID. The 
default when this attribute is not specified is that no user is 
authorized (WLM_NOGUID).

assign_gid Group ID of the group of users allowed to manually assign 
processes to this class. When specified, it must be a valid 
group ID. The default when this attribute is not specified is 
that no group is authorized (WLM_NOGUID).

If both assign_uid and assign_gid are left to their default 
value (WLM_NOGUID), only root can assign processes to 
the class.

admin_uid The user ID of the user allowed to administrate the 
subclasses of the superclass (superclass only).

admin_gid Group ID of the users allowed to administrate the 
subclasses of the superclass (superclass only).

If both admin_uid and admin_gid are left to their default 
value (-1), only root can administrate the subclasses of this 
superclass.

name The null-terminated full name of the class in the form 
supername for a superclass, and supername.subname for 
a subclass. The superclass and subclass names are both 
limited to 16 characters. There is no default value for this 
field.

Field Description

rset_name A null-terminated character string containing the name of 
the resource set (partition) the class is restricted to (when 
applicable). The default is that the class can access all the 
resources on the system.

descr_field A null-terminated character string containing the 
description text of the class. This is an optional field; there 
is no default.

Field Description
Appendix A. AIX Workload Manager API routines 263



A.1.2  wlm_assign

The wlm_assign structure is used to manually assign processes or groups of 
processes to a specified superclass or subclass using the wlm_assign routine. 
The wlm_assign structure has the following fields: 

A.1.3  wlm_info

The wlm_info structure is used to extract information about the current 
configuration parameters and current resource utilization of the active 
classes using the function wlm_get_info. 

The wlm_info structure has the following fields: 

Field Description

wa_versflags The four high order bits contain a version number used by 
the API to maintain binary compatibility in the event of 
future modifications of the data structures. The rest of the 
integer will be used to pass flags to the API functions 
when needed. This field should be initialized with the 
version number, WLM_VERSION. The flag, WLM_MUTE, 
can be used to suppress the output of error messages 
from the WLM library on stderr.

wa_pids The address of an array containing the process identifiers 
(pid's) of the processes to be manually assigned.

wa_pid_count The number of pid's in the array above.

wa_pgids The address of an array containing the process group IDs 
(pgid's) of the process groups to be manually assigned.

wa_pgid_count The number of pgid's in the array above.

wa_classname The full name of the superclass (supername) or the 
subclass (supername.subname) of the class to which you 
want to manually assign processes.

Fields Description

i_descr The class description of type struct, class_descr, 
described above.
264 AIX 5L Workload Manager (WLM)



There are two structures used to get the I/O statistics using wlm_get_bio_stats 
depending on whether the application wants per-class or per-device 
statistics. 

i_regul A per-resource type array of structures of type struct 
wlm_regul containing the following fields:

consum: The resource consumption of the class 
expressed as a percentage of the total resource 
available.

total: This 64 bit number represents the total amount 
of the resource consumed by the class since its 
creation (or since WLM started). The unit is CPU ticks 
for CPU, a number of pages * seconds for memory and 
the total number of 512 byte blocks for disk I/O.

The indexes into the array of the various resources are 
defined as above by WLM_RES_CPU, 
WLM_RES_MEM, and WLM_RES_BIO.

i_class_id Class identifier (index of internal kernel class related 
to classes, class_control_block (ccb[]) table).

i_cl_pri Priority delta applied to the threads in the class (CPU 
regulation).

i_cl_inuse The current number of processes in the class.

i_cl_npages The number of memory pages currently allocated to 
the class.

i_cl_mem_hwm The maximum number of (resident) memory pages 
this class has had since its creation (memory high 
water mark).

i_cl_change_level Incremented every time there is a change in the 
current WLM configuration. For use by the WLM 
monitoring tools.

Fields Description
Appendix A. AIX Workload Manager API routines 265



A.1.4  wlm_bio_class_info_t

The wlm_bio_class_info_t structure is used to gather I/O statistics per class 
and per device. This structure contains the following fields:

A.1.5  wlm_bio_div_info_t

The wlm_bio_dev_info_t structure is used to gather the global statistics for a 
given device. It takes into account all I/Os to and from the device by all the 
classes accessing the device. This structure contains the following fields: 

Field Description

wbc_dev Device identifier (dev_t).

wbc_cid Class identifier (index of the internal kernel class related to 
classes class_control_block (ccb[]) table). The connection 
between the class ID and the class name can be done 
using wlm_get_info, which returns both the class name (in 
field i_descr) and the class ID (in i_class_id) in the 
wlm_info structure.

wbc_regul A structure of type struct, wlm_regul, already described, 
containing the disk I/O statistics for the given class and 
device: Resource utilization expressed as a percentage of 
the total available throughput of the device (consum) and 
the total number of 512 byte blocks read/written from and 
to the device by processes in the class since the creation 
of the class or since WLM started (whichever happened 
last).

wbc_delay Delay (in milliseconds) imposed to the I/Os of the 
processes in the class to the device in order to limit the 
utilization of this device by the processes in this class when 
it is consuming more than its entitlement.

Field Description

wbd_dev Device identifier (dev_t).

wbd_active_cntrl Number of classes actively accessing the device.

wbd_in_queue Number of requests in the device queue.
266 AIX 5L Workload Manager (WLM)



wbd_last Device statistics for the last second. This field is an 
array of integer values. Symbolic values defined in the 
header file describe each index in the array: 

WBS_OUT_RTHRPUT: Number of blocks actually 
read from the device (I/O completed).

WBS_OUT_WTHRPUT: Number of blocks actually 
written to the device (I/O completed).

WBS_IN_RTHRPUT: Requested number of blocks to 
read from the device.

WBS_IN_WTHRPUT: Requested number of blocks to 
write to the device.

WBS_REQUESTS: Number of requests (read/write).

WBS_QUEUED: Number of requests queued.

WBS_STARVED: Number of requests starved (not 
serviced during the time interval).

For the wbd_last field, these numbers represent 
activity during the last second (for instance, the 
number of requests queued during the last second).

wbd_max This field contains the maximum values observed 
since the device was first used (after WLM started) for 
all the entries of the array described above (for 
instance, the maximum number of blocks actually read 
from the device in one second since the device was 
first accessed).

wbd_av This field contains the average values for all the 
entries in the array (for instance, the average number 
of requests in the device queue).

wbd_total This field is an array of 64 bit integers parallel to the 
arrays above that contains, for all the entries, the total 
of all the values measured every second since the 
device was first accessed (for instance the total 
number of blocks written to the device since the device 
was first accessed).

Field Description
Appendix A. AIX Workload Manager API routines 267



A.2  WLM API functions error codes

The various API functions may return one or several of the following error 
codes: 

WLM_BADVERS Bad Version number passed in versflags.
WLM_NOTINITED No prior call to wlm_initialize.
WLM_ALREADYINIT There already has been a prior call to

wlm_initialize.

WLM_UNSUPP Operation or flags value not supported.
WLM_OPENERR A file could not be opened.
WLM_CREATERR A file could not be created.
WLM_MKDIRERR A directory could not be created.
WLM_WRITERR An attempt to write in a file did not succeed.
WLM_REMERR An attempt to remove a file did not succeed.
WLM_RENAMERR An attempt to rename a file did not succeed.
WLM_SYMLERR An attempt to create a symbolic link did not 

succeed.
WLM_NOMEM Not enough memory.
WLM_NOCLASS The specified class does not exist.
WLM_RNOCLASS A class specified in the rules file does not exist.
WLM_EXISTS The specified class already exists.
WLM_MAXCLASSES The maximum number of classes has been reached.
WLM_RMPREDEF Predefined classes, such as Default and System,

cannot be removed.
WLM_NOSUBS The target superclass has no subclasses.
WLM_HASSUBS The target superclass has subclasses.
WLM_SHAREDSUB Shared superclass cannot have subclasses.
WLM_SHAREDLIM Shared class can have shares and limits set only for

memory.
WLM_BADDEFSHR Default shares value specified in the shares file

is invalid.
WLM_BADDEFLIM Default limits value specified in the limits file is 

invalid.
WLM_BADLIMFMT Value specified for minimum or maximum resource

limit invalid.
WLM_BADSHRFMT Value specified for resource shares is invalid.
WLM_BADTIER Tier values must be between 0 and 9.
WLM_BADSHARES Shares values must be between 1 and 65535.
WLM_BADMIN Minimum resource limits values must be between 0

and 100.
WLM_BADSMAX The soft maximum limit values must be between 1

and 100.
WLM_BADHMAX The hard maximum limit values must be between 1
268 AIX 5L Workload Manager (WLM)



and 100.
WLM_BADCNAME Class names must be alphanumeric.
WLM_TOOLONG The specified class name is too long.
WLM_MINSMAX The minimum limit cannot be greater than the soft

maximum limit.
WLM_SMAXHMAX The soft maximum limit cannot be greater than the

hard maximum limit.
WLM_SUMMINS The sum of the minimum limits for a given resource

and a given tier cannot exceed 100 percent.
WLM_BADINHER The value specified for the class inheritance

attribute is invalid.
WLM_LOADERR A class cannot be loaded into the kernel.
WLM_RULESERR The assignment rules table cannot be loaded into

the kernel.
WLM_SETERR The WLM state transition requested is illegal.
WLM_QUERYERR Cannot query wlm state.
WLM_MANYRULES Too many assignment rules.
WLM_MANYITEMS Too many items in an assignment rule.
WLM_RULERR An assignment rule has an invalid format.
WLM_BADLIST The process attribute list of an assignment rules is

invalid.
WLM_BADUSR The specified user ID is not valid on the system.
WLM_BADRUSR A user name specified in the rules file is invalid on

the system.
WLM_BADUID The specified user ID is not valid on the system.
WLM_BADGRP The specified group ID is not valid on the system.
WLM_BADRGRP A group name specified in the rules file is invalid on

the system.
WLM_BADGID The specified group ID is not valid on the system.
WLM_BADTAG An invalid tag is specified in a rule.
WLM_BADTYP An invalid type is specified in a rule.
WLM_NOSHRRULE Cannot specify the rule for a Shared class.
WLM_NOWILDCRD Wildcards are not allowed in this field.
WLM_STATERR One (or more) file names specified in the

application field of an assignment rule could not be
accessed. The corresponding names are ignored
(warning).

WLM_EMPTYRULE None of the file names specified in the application
field of an assignment rule could be accessed. The
rule is ignored (warning).

WLM_RUNERR The WLM library was not able to execute a
command needed for the specific function. This is
not an application error but, most likely, a system
Appendix A. AIX Workload Manager API routines 269



administration problem. The commands used by the
library are basic AIX commands such as lsuser,
lsgroup, echo, and grep.

WLM_BADCONFIG Invalid configuration name.
WLM_CLASSMIS No class definition found.
WLM_EMPTYATTR No valid attributes found in attributes string for

wlm_classify.

WLM_MULTATTR Multiple specifications not allowed in attributes
string for wlm_classify.

WLM_EXCLATTR Exclusions not allowed in attributes string for
wlm_classify.

WLM_ATTERR Attribute format error in attributes string for
wlm_classify.

WLM_BADATTUSR Unknown user in attributes string for wlm_classify.
WLM_BADATTGRP Unknown group in attributes string for wlm_classify.
WLM_BADATTAPP Application file in attributes string for wlm_classify

could not be accessed.
WLM_BADATTTAG Invalid tag in attributes string for wlm_classify.
WLM_BADATTTYP Invalid type in attributes string for wlm_classify.
WLM_TOOMANYATT Too many items in attributes string for wlm_classify.
WLM_WILDCRDATT Wildcards not allowed in attribute field.
WLM_RUNERRATT Cannot expand attribute.
WLM_BADLISATT Invalid list in attributes string for wlm_classify.
WLM_TOOLONGATT Attribute list for wlm_classify too long.
WLM_EFAULT Bad parameter address.
WLM_NOTCOMPLETE Warning: could not assign all processes

(wlm_assign was partially successful).
WLM_NOTRUNNING WLM is not running.
WLM_ESRCH No such processes.
WLM_TOOMANYPID Process ID list too long.
WLM_EPERM Permission denied.
WLM_CANTASSIGN Internal error: Could not make assignment.
WLM_TAGTOOLONG Tag is too long.
WLM_BADFLAGS Invalid flags value.
WLM_CANTSETTAG Internal error: Could not set tag.
WLM_CANTCHECK Unable to check the configuration.
WLM_TOOSMALL Output buffer too small.
WLM_BADRSET Bad Rset attribute for a class.
WLM_CHOWNERR Cannot change file owner.
WLM_LOCKERR Cannot take file lock.
WLM_ERRNO A system call returned an error.
WLM_BADCLNAME Class name invalid: Some class names cannot be

used for internal reasons. For instance, Default.
270 AIX 5L Workload Manager (WLM)



WLM_BADSUPER Bad superclass for subclass assignment.
WLM_NOTASSGND Process has not been manually assigned to a class.
WLM_RULTOOLNG Rule exceeds 4096 characters in length

(WLM_RULE_LEN).
WLM_NOADMINSUB adminuser/admingroup attributes not applicable to

subclasses.

A.3  Initialization routines

There are two initialization routines in the API; wlm_init_class_definition and 
wlm_initialize.

A.3.1  wlm_init_class_definition

Purpose: Initializes a variable of type struct class_definition, defined in 
<sys/wlm.h> for use as an argument to WLM API function calls. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_init_class_definition (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_init_class_definition routine initializes (or 
reinitializes) the data structure of the type struct, class_definition, which is 
part of the argument of type struct wlm_args pointed to by wlmargs (field 
class) so that this data structure can be used as an argument for the class 
management routines of the WLM API library. The purpose of this call is to 
allow applications to initialize only the fields that are relevant for the operation 
they execute. For example, to change a CPU limit or share for an existing 
class, after a call to wlm_init_class_definition, the application will just have 
to initialize the fields corresponding to the values it wishes to modify. This 
routine initializes all values to specific invalid values so that the WLM library 
routines can find out which fields have been explicitly initialized by the user. 
This way, they can set or modify only the corresponding attributes.

When creating a class, for instance, it is different to leave a class attribute at 
its invalid value set by wlm_initialize than to set its value to the current 
default value for the attribute. In the former case, the attribute will not appear 
in the property file. In the latter, it will appear and be set with the value 

The wlm.h header file provides a complete list of error codes. 

Note
Appendix A. AIX Workload Manager API routines 271



passed. This makes a difference if a WLM administrator decides to change 
the default value for an attribute using the special stanza, default, in a 
property file. For instance, the system default for the inheritance attribute is 
no. If, at some point in time, a WLM administrator wants the inheritance to be 
yes by default, using this special stanza, all the classes in the classes 
property file, for which the inheritance attribute has not been specified will 
now use the default of yes. Those for which the inheritance attribute has been 
specified with its old default of no will not have inheritance.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure to be initialized. Only the
versflags field of the wlm_args structure passed needs to be
initialized with WLM_VERSION. 

Return Values: Upon successful completion, a value of 0 is returned. If the 
wlm_init_class_definition routine is unsuccessful, a non 0 value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.3.2  wlm_initialize

Purpose: Prepares WLM for use by an application. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_initialize (flags)
int flags;

Description: The wlm_initialize routine initializes the WLM API for use with 
an application program. It is mandatory to call wlm_initialize prior to using 
the WLM API. Otherwise, all other WLM API function calls will return an error. 
If wlm_initialize is used in a multi-threaded application, the routine should be 
called by the main thread before additional threads are started.

Parameter: 

flags The format is the same as the versflags field of the wlm_args
structure. The value for the argument must have the version
number in the upper 4 bits (WLM_VERSION) possibly ORed
with a flag in the lower 28 bits.

Return Values: Upon successful completion, a value of 0 is returned. If the 
wlm_initialize routine is unsuccessful, a non 0 value is returned.
272 AIX 5L Workload Manager (WLM)



Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.4  Application tag

The routine described in this section is the one used to tag a process; 
wlm_set_tag.

A.4.1  wlm_set_tag

Purpose: Sets the current process' tag and related flags 

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

#include <sys/user.h>
int wlm_set_tag (tag, flags)
char *tag;
int *flags;

Description: The tag is a new attribute of a process that can be set using the 
WLM function wlm_set_tag. This tag is a character string with a maximum 
length of WLM_TAG_LENGTH (not including the null terminator). Process 
tags can be displayed using the ps command. The tag is also one of the 
process attributes used in the assignment rules to automatically assign a 
process to a given class. The main utilization of the tag attribute is to allow 
WLM administrators to discriminate between several instances of the same 
application, which, typically, have the same user and group IDs, execute the 
same binary, and, therefore, would end up in the same class using the 
standard classification criteria. When an application sets its tag using 
wlm_set_tag, it is automatically reclassified according to the current 
assignment rules, and the new tag is taken into account when doing this 
reclassification. In addition to the tag itself, the application can also specify 
flags indicating to WLM whether a child process should inherit the tag from its 
parent after a fork and/or an exec system call. A process does not require any 
special privileges to set its tag.

Parameters:

tag The address of a character string. An error will be returned if 
this tag is too long.

flags The address of an integer interpreted in a manner similar to the 
versflags field of the wlm_args structure passed to other API 
routines. The integer pointed to by flags should be initialized 
with WLM_VERSION. In addition, one or more of the following 
Appendix A. AIX Workload Manager API routines 273



values can be ORed to WLM_VERSION:

SWLMTAGINHERITFORK The children of this process will inherit
the parent's tag on fork. 

SWLMTAGINHERITEXEC The process will retain its tag after a
call to exec. Both flags can be set to
specify that the children of a tagged
process will inherit the tag on fork and
then retain it on exec.

Return Values: Upon successful completion, a value of 0 is returned. In case 
of error, a non zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.5  Class management

The class management routines are wlm_read_classes, wlm_create_class, 
wlm_change_class, and wlm_delete_class.

A.5.1  wlm_read_classes

Purpose: Read the characteristics of superclasses or subclasses. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_read_classes (wlmargs, class_tbl, nclass)
struct wlm_args *wlmargs;
struct class_definition *class_tbl
int *nclass

Description:The wlm_read_classes routine is used to get the characteristics of 
the superclasses or of the subclasses of a given superclass of a WLM 
configuration. If the name of a configuration is passed in the confdir field, the 
routine wlm_read_classes will read the property files of the classes of the 
specified configuration. If confdir is set to a null string (\0), wlm_read_classes 
will read the property files of the in-core classes if WLM is on. If WLM is off, 
wlm_read_classes, with a null string as the configuration name, will fail. Note 
that if WLM is on and a null string was passed in the confdir field, 
wlm_read_classes will return the characteristics of the classes as they are 
known by WLM at the time of the call. These values may be different from the 
values in the property files of the configuration pointed to by /etc/wlm/current. 
For instance, if a WLM administrator has modified the property files for the 
274 AIX 5L Workload Manager (WLM)



configuration pointed to by /etc/wlm/current but has not refreshed WLM yet. 
Another example would be if applications dynamically created or modified 
classes through the API without saving the changes in the current 
configuration property files. If your application specifically needs to access 
the properties of the classes as described in the /etc/wlm/current 
configuration, you must specify current as the configuration name in confdir. If 
the name of a valid superclass of the given configuration is passed in the 
name field of the class_descr substructure of wlm_args, wlm_read_classes will 
read the property files for the subclasses of this superclass. If a null string (\0) 
is passed in the name field, wlm_read_classes will read the property files for 
the superclasses of the WLM configuration described above. When 
wlm_read_classes is successful, the characteristics of the superclasses or 
subclasses are copied into the array of class_definition structures pointed to 
by class_tbl. The integer value pointed to by nclass indicates the maximum 
number of class definitions to be copied. Upon successful return from the 
function, this value reflects the actual number of classes read. If the number 
of elements copied by wlm_read_classes is smaller than the number of 
elements passed as an argument, this means that all the classes have been 
read. If it is equal, it may mean that some classes were not copied into the 
class_tbl array because its size is too small. The maximum number of classes 
read by wlm_read_classes is 32 when reading superclasses and 10 when 
reading subclasses characteristics. Upon successful return from 
wlm_read_classes, the substructure class of type struct class_definition of the 
structure pointed to by wlmargs contains the default values of the various 
class attributes for the returned set of classes. This operation does not 
require any special privileges and is accessible to all users. 

Parameters:

wlmargs The address of a struct wlm_args data structure. The following
fields of the wlm_args structure and the embedded
substructures need to be provided:

versflagsNeeds to be initialized with WLM_VERSION. 
confdir The name of a WLM configuration. It must be either

the name of a valid subdirectory of /etc/wlm or a null
string (starting with \0).

name The name of a superclass existing in the specified
configuration, or a null string.

All the other fields can be left uninitialized.

class_tbl The address of an array of structures of type
struct class_definition. Upon successful return from
Appendix A. AIX Workload Manager API routines 275



wlm_read_classes, this array will contain the characteristics of
the classes read.

nclass The address of an integer containing the maximum number of
elements (class definitions) for wlm_read_classes to copy into
the array above. If the call to wlm_read_classes is successful,
this integer will contain the number of elements actually
copied.

Return Values: Upon successful completion, a value of 0 is returned. If the 
wlm_read_classes routine is unsuccessful, a non 0 value is returned. 

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.5.2  wlm_create_class

Purpose: Creates a new WLM class. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_create_class (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_create_class routine creates a new class for a given 
WLM configuration using the values passed in the data structure of type 
struct wlm_args pointed to by wlmargs. If the name of a configuration is 
passed in the confdir field, the routine updates the WLM properties files for 
the target configuration. When creating the first subclass of a superclass, the 
routine will create the WLM property files in a subdirectory of 
/etc/wlm/<confdir> with the name of the superclass. The newly-created 
property files will have entries for the Default and Shared subclasses 
automatically created in addition to entries for the new subclass. If a null 
string (\0) is passed in the confdir field, the new superclass or subclass will be 
created only in the in-core WLM data. No WLM property file will be updated. 
The structure of type struct class_definition, which is part of struct wlm_args, 
has normally been initialized with a call to wlm_init_class_definition. Once 
this has been done, programmers just need to initialize the fields of this 
structure that have no default value (for example, the name of the new class) 
or for which the desired value is different from the default value. For a 
description of the possible values for all the class attributes and their default 
values, refer to the description of wlm.h in Appendix A.1 on page 261.
276 AIX 5L Workload Manager (WLM)



The caller must have root authority to create a superclass and must have 
administrator authority on a superclass to create a subclass of the 
superclass.

Parameter: 

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure for the new class to be created.
The following fields of the wlm_args structure and the
embedded sub-structures need to be provided: 

versflagsNeeds to be initialized with WLM_VERSION.
confdir The name of the WLM configuration the new class is

to be added to. It must be either the name of a valid
subdirectory of /etc/wlm or an empty string (starting
with \0). If the name is a valid subdirectory, the new
class data will be added to the given WLM
configuration's class description files. If the name is 
a null string, no description files will be updated. The
new class will be created and the data passed to the
kernel immediately.

name The name of the superclass or of the subclass to be
created. If this is a subclass name, it must be of the
form, supername.subname. There is no default for
this field.

All the other fields can be left at their default value if the user
does not wish to use specific values.

Return Values: Upon successful completion, a value of 0 is returned. If the 
wlm_create_class routine is unsuccessful, a non 0 value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.5.3  wlm_change_class

Purpose: Changes some of the attributes of a class. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_change_class (wlmargs)
struct wlm_args *wlmargs;
Appendix A. AIX Workload Manager API routines 277



Description: The wlm_change_class routine changes attributes of an existing 
superclass or subclass. The attributes of the class that can be dynamically 
modified by a call to wlm_change_class are the tier number, class inheritance, 
class description string, resource shares and limits, and the resource set 
name (all attributes, except, of course, the name of the class). If the name of 
a valid configuration is passed in the confdir field, the routine updates the 
WLM property files for the target configuration. If a null string (\0) is passed in 
the confdir field, the changes are applied only to the in-core WLM data. No 
WLM property files will be updated. The structure of type struct 
class_definition, which is part of struct wlm_args, should be initialized with a 
call to wlm_init_class_definition. Once this has been done, programmers just 
need to initialize the fields of this structure that are required (for example, the 
name of the class to be modified) and the fields corresponding to the class 
attributes one wants to modify. For a description of the possible values for the 
various class attributes and their default values, refer to the description of 
wlm.h in Appendix A.1 on page 261.

The caller must have root authority to change the attributes of a superclass 
and must have administrator authority on a superclass to change the 
attributes of a subclass of that superclass.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure for the new class to be created.
The following fields of the wlm_args structure and the
embedded substructures need to be provided: 

versflagsNeeds to be initialized with WLM_VERSION.
confdir The name of the WLM configuration the target class

belongs to. It must be either the name of a valid
subdirectory of /etc/wlm or an empty string (starting
with \0). If the name is a valid subdirectory, the
relevant class description files in the given
configuration will be modified. If the name is a null
string, no description files will be updated. The
modified class attributes will be passed immediately
to the kernel.

name The name of the superclass or of the subclass to be
modified. If this is a subclass name, it must be of the
form supername.subname. There is no default for
this field. All the other fields can be left at their initial
value as set by wlm_init_class_definition, if the 
user does not wish to change their current values.
278 AIX 5L Workload Manager (WLM)



Return Values: Upon successful completion, a value of 0 is returned. If the 
wlm_change_class routine is unsuccessful, a non-zero value is returned. 

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.5.4  wlm_delete_class

Purpose: Deletes a class. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_delete_class (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_delete_class routine deletes an existing superclass or 
subclass. A superclass cannot be deleted if it still has subclasses other than 
Default and Shared defined. If the name of a valid configuration is passed in 
the confdir field, the routine updates the WLM property files for the target 
configuration, removing all references to the class to be deleted. If a null 
string (\0) is passed in the confdir field, the changes are applied only to the 
in-core WLM data. No WLM property file will be updated. 

The caller must have root authority to delete a superclass and must have 
administrator authority on a superclass to delete a subclass of the 
superclass.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the information about the class to be deleted. The following
fields of the wlm_args structure and the embedded
sub-structures need to be provided: 

versflags Needs to be initialized with WLM_VERSION.
confdir The name of the WLM configuration the target 

class belongs to. It must be either the name of 
a valid subdirectory of /etc/wlm or an empty 
string (starting with \0). If the name is a valid 
subdirectory, the relevant class description 
files in the given configuration will be modified. 
If the name is a null string, no description files 
will be updated. The class will be removed 
immediately from the kernel WLM data 
structures.
Appendix A. AIX Workload Manager API routines 279



name The name of the superclass or of the subclass 
to be deleted. If this is a subclass name, it 
must be of the form supername.subname. 
There is no default for this field.

All the other fields can be left uninitialized for this call. 

Return Values: Upon successful completion, a value of zero is returned. If 
the wlm_delete_class routine is unsuccessful, a non-zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.6  WLM management

The WLM management routines are wlm_set, wlm_load, and wlm_assign.

A.6.1  wlm_set

Purpose: Changes or queries the state of WLM. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_set (flags)
int *flags;

Description: The wlm_set routine is used to set, change, or query the mode of 
operations of WLM. The state of WLM can be:

  • OFF: WLM does not classify processes, monitor, or regulate 
resource utilization. 

  • ON in passive mode: WLM classifies the processes and monitors 
their resource usage, but does no regulation. 

  • ON in active mode: This is the normal operating mode where WLM 
classifies processes, and monitors and regulates their resource 
usage.

Parameter:

flags The address of an integer interpreted in a manner similar to
the versflags field of the wlm_args structure passed to the
other API routines. The integer pointed to by flags should be
initialized with WLM_VERSION. In addition, one or more of
the following values can be ORed to WLM_VERSION: 
280 AIX 5L Workload Manager (WLM)



  • WLM_TEST_ON to just query the state of WLM without 
altering it.

  • WLM_OFF to turn WLM off. 

  • WLM_ACTIVE to turn WLM on in active mode, or transition 
from passive to active mode. 

  • WLM_PASSIVE to turn WLM on in passive mode or 
transition from active to passive mode. 

  • WLM_BIND_RSETS to request that WLM take the resource 
set bindings into account. 

Not all combinations of the aforementioned flags are valid:

  • WLM_OFF, WLM_ACTIVE, and WLM_PASSIVE are 
mutually exclusive. 

  • WLM_BIND_RSETS is ineffective when used together with 
WLM_OFF. 

  • Only WLM_TEST_ON is allowed to non root users. 

Return Values: Upon successful completion, a value of 0 is returned and the 
current state of WLM is returned in the integer pointed to by flags. The return 
value will be WLM_OFF, WLM_ACTIVE or WLM_PASSIVE. When WLM was 
on in either active or passive mode, the WLM_BIND_RSETS flag is added 
when WLM uses resource sets bindings.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.6.2  wlm_load

Purpose: Loads a WLM configuration into the kernel. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_load (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_load routine loads into the kernel the property files for 
the WLM configuration passed in the confdir field of the wlm_args structure. If 
no superclass name is given in the name field of the class_definition 
substructure, the routine loads the class properties for all the superclasses of 
the target configuration. If a superclass name is given, only the subclasses of 
the given superclass are refreshed. Flags passed in the flags portion of the 
Appendix A. AIX Workload Manager API routines 281



versflags field can be used to modify the mode of operation of WLM. The 
values are identical to the flag values passed to the wlm_set API routine. Not 
all combinations of parameters are allowed, and different combinations may 
require different levels of privilege as explained below: 

  • The name of a configuration must be passed in the confdir field in 
order to start or update WLM. wlm_load updates or starts WLM using 
the properties files from the given configuration. Only root can 
specify the name of a configuration different from the currently 
active configuration (specified as current in confdir). 

  • When WLM is on (the operation is an update), if the name of the 
configuration passed in the confdir field of the wlm_args structure is 
the name of the currently-active configuration, the name of a 
superclass can be given in the name field in order to update only the 
subclasses of the given superclass. This functionality is accessible 
to root and to users with administration privileges on the subclasses 
of the superclass. wlm_load cannot be used in this context to alter 
the state of WLM (start, stop, or switch between active and passive 
modes).

  • If the caller of wlm_load has root privileges and does not specify a 
superclass, the flags passed in versflags can be used to alter 
WLM's mode of operation; start WLM in active or passive mode; 
switch between active and passive modes, and/or enable/disable 
the rset bindings.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure. The following fields of the
wlm_args structure and the embedded sub-structures can be
provided: 

versflagsNeeds to be initialized with WLM_VERSION.
Optionally, some of the flags used when calling
wlm_set in order to change the mode of operation of
WLM can be given by the root user. The valid values
are WLM_ACTIVE, WLM_PASSIVE, and
WLM_BIND_RSETS. Of course, WLM_ACTIVE and
WLM_PASSIVE are mutually exclusive. The flag,
WLM_SAME_STATE, should be used if the
application does not wish to change the current
mode of operation of WLM.

confdir The name of the WLM configuration to be loaded
into the kernel. It must be either the name of a valid
282 AIX 5L Workload Manager (WLM)



subdirectory of /etc/wlm or the string current to refer
to the active configuration.

name The name of a superclass. This is used to refresh
only the subclasses of a given superclass.

Return Values: Upon successful completion, a value of 0 is returned. If the 
wlm_load routine is unsuccessful, a non 0 value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.6.3  wlm_assign

Purpose: Manually assigns processes to a class or cancels prior manual 
assignments for processes.

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_assign (args)
struct wlm_assign *args;

Description: The wlm_assign function is used to: 

  • Assign a set of processes specified by their process identifiers 
(pids) or process group identifiers (pgids) to a specified superclass 
or subclass, thus overriding the automatic class assignment or a 
prior manual assignment.

  • Cancel a previous manual assignment, allowing the processes to be 
subjected to the automatic assignment rules again. 

The target processes are identified by their process ID (pid) or by their 
process group ID (pgid). The wlm_assign routine allows you to specify 
processes using a list of pids, a list of pgids, or both. 

A manual assignment will remain in effect (and a process will remain in its 
manually assigned class) until: 

  • The process terminates.

  • WLM is stopped. When WLM is restarted, the manual assignments 
in effect when WLM was stopped are lost. 

  • The class the process has been assigned to is deleted.

  • The manual assignment for the process is canceled.

  • A new manual assignment overrides a prior one.
Appendix A. AIX Workload Manager API routines 283



The name of a valid superclass or subclass must be specified to manually 
assign the target processes to a class. The assignment can be done or 
canceled at the superclass level, the subclass level, or both. Flags in the 
wa_versflags field described below are used to specify whether the requested 
operation is an assignment or cancellation, and at which level. 

In order to assign a process to a class or cancel a prior manual assignment, 
the caller must have authority both on the process and on the target class. 
These constraints translate into the following: 

  • The user root can assign any process to any class. 

  • A user with administration privileges on a given superclass (that is, 
the user or group name matches the user or group names specified 
in the attributes, adminuser and admingroup, of the superclass) can 
manually reassign any process from one of the subclasses of this 
superclass to another subclass of the superclass.

  • A user can manually assign his/her own processes (same real or 
effective user ID) to a superclass or a subclass for which he/she has 
manual assignment privileges (that is, the user or group name 
matches the user or group names specified in the attributes, 
authuser, and authgroup of the superclass or the subclass). 

This defines three levels of privilege among the persons who can manually 
assign processes to classes, root being, of course, the highest. In order for a 
user to modify or terminate a manual assignment, he/she must be at the 
same level of privilege or higher than the person who issued the last manual 
assignment. 

Parameter:

args The address of the struct wlm_assign data structure
containing the parameters for the desired class assignment.
The following fields of the wlm_assign structure and the
embedded sub-structures can be provided: 

wa_versflags Needs to be initialized with WLM_VERSION.
The flags values available, defined in the header
file <sys/wlm.h>, are the following:
WLM_ASSIGN_SUPER, WLM_ASSIGN_SUB,
WLM_ASSIGN_BOTH, 
WLM_UNASSIGN_SUPER,
WLM_UNASSIGN_SUB, and
WLM_UNASSIGN_BOTH.

wa_pids The address of the array containing the process
284 AIX 5L Workload Manager (WLM)



identifiers (pid’s) of processes to be manually
assigned. When this list is empty, a NULL
pointer can be passed together with a count of
zero (0).

wa_pid_count The number of elements (pids) in the above
array. Could be zero (0) if using only pgid's to
identify the processes.

wa_pgids The address of the array containing the process
group identifiers (pid's) of processes to be
manually assigned. When this list is empty, a
NULL pointer can be passed together with a
count of zero (0).

wa_pgid_countThe number of elements (pgids) in the above 
array. Could be zero (0) if using only pid's to 
identify the processes. If both pid's and pgid's 
counts are zero, no process will be assigned, 
but the operation will be considered successful.

wa_classname The full name of the superclass, supername, or
the subclass, supername.subname, of the class
you want to manually assign processes to. The
class name field is ignored when canceling an
existing manual assignment.

Return Values: Upon successful completion, a value of zero (0) is returned. 
If the wlm_assign routine is unsuccessful, a non-zero (0) value is returned. A 
partial success return code will be returned if some of the target processes 
are not found (to account for process terminations). If none of the processes 
in the lists can be found, this will be considered an error.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.7  WLM statistics

The WLM statistics routines are wlm_get_info and wlm_get_bio_stats.

A.7.1  wlm_get_info

Purpose: Read the characteristics of superclasses or subclasses. 

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/wlm.h>

int wlm_get_info (wlmargs, info, count)
Appendix A. AIX Workload Manager API routines 285



struct wlm_args *wlmargs;
struct wlm_info *info
int *count

Description: The wlm_get_info routine is used to get the characteristics of the 
classes defined in the active WLM configuration together with their current 
resource usage statistics. For a detailed description of the fields of the 
structure, wlm_info, refer to the description of the header file, <sys/wlm.h>, in 
the Files Reference documentation. By default, the scope of the wlm_get_info 
routine is all the superclasses and all the subclasses. This scope can be 
limited to a subset of the classes using flags in the versflags field of wlm_args 
and/or a superclass or subclass name in the name field of the substructure, 
class_definition of wlm_args. The information related to the superclasses and 
subclasses within the scope of wlm_get_info will be copied to the array of 
wlm_info structures pointed to by info. The total number of classes for which 
information is copied to the array at info is limited to the value of the integer 
pointed to by count. If the routine is successful, the value of the integer 
pointed to by count is set to the actual number of classes copied. If the value 
passed to the routine for the count is equal to zero (0), wlm_get_info does not 
copy any class statistics but sets this count to the number of classes in scope 
for the specific set of parameters. This is a way of finding out how big an 
array is needed to get all the information for a given set of classes 
(superclasses and/or subclasses).

wlm_get_info does not require any special privileges and is accessible to all 
users. wlm_get_info will fail if WLM is off. 

Parameters:

wlmargs The address of a struct wlm_args data structure. The following 
fields of the wlm_args structure and the embedded 
sub-structures need to be provided:

versflagsNeeds to be initialized with WLM_VERSION. 
Optionally, the following flag values can be ORed to 
WLM_VERSION:

  • WLM_SUPER_ONLY: Limits the scope to 
superclasses only.

  • WLM_SUB_ONLY: Limits the scope to subclasses 
only. 

  • WLM_VERBOSE_MODE: Shows the system 
defined subclasses, Default and Shared, even if 
286 AIX 5L Workload Manager (WLM)



they have not been modified by a WLM 
administrator.

WLM_SUPER_ONLY and WLM_SUB_ONLY are 
mutually exclusive.

name This field must contain either a null string, or the
name of a valid superclass or subclass (in the form
Super.Sub). This field can be used in conjunction
with the flags to further narrow the scope of
wlm_get_info:

  • If the name of a subclass is provided, 
wlm_get_info will return the statistics only for the 
specified subclass. 

  • If the name of a superclass is provided and none 
of the WLM_SUPER_ONLY and 
WLM_SUB_ONLY flags are provided, 
wlm_get_info will return the statistics for the 
specified superclass and all its subclasses.

  • If the name of a superclass is provided together 
with WLM_SUPER_ONLY, wlm_get_info will 
return only the statistics for the specified 
superclass.

  • If the name of a superclass is provided together 
with WLM_SUB_ONLY, wlm_get_info will return 
the statistics for all the subclasses of the 
specified superclass.

All the other fields of the wlm_args structure can be 
left uninitialized.

info The address of an array of structures of type struct
wlm_info. Upon successful return from wlm_get_info,
this array will contain the WLM statistics for the
classes selected.

count The address of an integer containing the maximum
number of elements (of type wlm_info) for
wlm_get_info to copy into the aforementioned array. If the call 
to wlm_get_info is successful, this integer will contain the 
number of elements actually copied. If the initial value is equal 
to zero (0), wlm_get_info will set this value to the number
of classes selected by the specified combination of
versflags and name above.
Appendix A. AIX Workload Manager API routines 287



Return Values: Upon successful completion, a value of zero is returned. If 
the wlm_get_info routine is unsuccessful, a non-zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.7.2  wlm_get_bio_stats

Purpose: Read the WLM disk I/O statistics per class or per device.

Library: Workload Manager Library (libwlm.a) 

Syntax: #include <sys/types.h>

#include <sys/wlm.h>
int wlm_get_bio_stats (dev, array, count, class, flags)
dev_t dev;
void *array;
int *count;
char *class;
int flags;

Description: The wlm_get_bio_stats routine is used to get the WLM disk I/O 
statistics. There are two types of statistics available: 

  • The statistics about disk I/O utilization per class and per devices, 
returned by wlm_get_bio_stats in wlm_bio_class_info_t structures.

  • The statistics about the disk I/O utilization per device, all classes 
combined, returned by wlm_get_bio_stats in wlm_bio_dev_info_t 
structures.

The type of statistics returned by the function are related to the value of the 
flags argument. The flags argument, together with the dev and class 
arguments, is used to restrict the scope of the function to a class or a set of 
classes and/or a device or a set of devices. It is also used to restrict the 
statistics to superclasses only, subclasses only, and to a set of devices. 

wlm_get_bio_stats does not require any special privileges and is accessible to 
all users. wlm_get_bio_stats will fail if WLM is off. 

Parameters:

flags Needs to be initialized with WLM_VERSION. Optionally, the
following flag values can be ORed to WLM_VERSION:

  • WLM_SUPER_ONLY: Limits the scope to superclasses 
only.

  • WLM_SUB_ONLY: Limits the scope to subclasses only.
288 AIX 5L Workload Manager (WLM)



  • WLM_BIO_CLASS_INFO: Per class statistics requested.

  • WLM_BIO_DEV_INFO: Per device statistics requested.

  • WLM_BIO_ALL_DEV: Requests statistics for all devices. 
When this flag is set, the value passed in the dev argument 
is ignored.

  • WLM_BIO_ALL_MINOR: Requests statistics for all devices 
associated with a given major number. When this flag is set, 
only the major number part of the value passed in the dev 
argument is used.

  • WLM_VERBOSE_MODE: Shows the system-defined 
subclasses, Default and Shared, even if they have not been 
modified by a WLM administrator. 

One of the flags, WLM_BIO_CLASS_INFO or
WLM_BIO_DEV_INFO (and only one), must be specified.
WLM_SUPER_ONLY and WLM_SUB_ONLY are mutually-
exclusive. 

dev Device identification (major, minor) of a disk device. 

  • If dev is equal to 0, the statistics for all devices are returned 
(even if WLM_BIO_ALL_DEV is not specified in the flags 
argument). 

  • If dev is not equal to 0 and WLM_BIO_ALL_MINOR is 
specified in the flags argument, the statistics for all disk 
devices with the same major number specified in dev are 
returned. 

  • If dev is not equal to 0 and WLM_BIO_ALL_MINOR is not 
specified in the flags argument, only the statistics for the 
disk device with the major and minor numbers specified in 
dev are returned. 

array Pointer to an array of wlm_bio_class_info_t structures (when
WLM_BIO_CLASS_INFO is specified in the flags argument)
or an array of wlm_bio_dev_info_t structures (when
WLM_BIO_DEV_INFO is specified in the flags argument).

count The address of an integer containing the maximum number of
elements to be copied into the array above. If the call to
wlm_get_bio_stats is successful, this integer will contain the
number of elements actually copied. 

class A pointer to a character string containing the name of a
superclass or subclass. If class is a pointer to an empty string
(""), the information for all classes is returned. The class
Appendix A. AIX Workload Manager API routines 289



parameter is taken into account only when the flag, 
WLM_BIO_CLASS_INFO, is set.

Return Values: Upon successful completion, a value of 0 is returned and the 
value pointed to by count is set to the number of elements copied into the 
array of structures pointed to by array. If the wlm_get_bio_stats routine is 
unsuccessful, a non-zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.8  WLM classification

The WLM classification routines are wlm_check and wlm_classify.

A.8.1  wlm_check

Purpose: Checks automatic assignment rules and/or determines the class a 
process with a specified set of attributes will be classified in. 

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_assign (config)
char *config;

Description: The wlm_check function checks the coherency of the assignment 
rules files (syntax, existence of the classes, validity of user and group names, 
application path names, and other consistency checks) for the configuration 
whose name is passed as an argument. If config is a null pointer or points to 
an empty string, wlm_check performs the checks on the configuration files in 
the configuration pointed to by /etc/wlm/current. 

Parameter: 

config A pointer to a character string. This pointer should be:

  • The address of a character string representing the name of 
a valid configuration (a subdirectory of /etc/wlm)

  • A null pointer

  • A pointer to a null string ("")

If config is a null pointer or a pointer to a null string, the
configuration files in the directory pointed to by
/etc/wlm/current (active configuration) will be checked for
errors. Otherwise, the configuration files in the directory,
290 AIX 5L Workload Manager (WLM)



/etc/wlm/<config_name>, will be checked.

Return Values: Upon successful completion, a value of 0 is returned. If the 
wlm_check routine is unsuccessful, a non-zero value is returned. 

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.8.2  wlm_classify

Purpose: Given a list of process attributes, wlm_classify determines which 
class or classes this process will be assigned to.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_classify (config, attributes, class, len)
char *config;
char *attributes;
char *class;
int *len;

Description: This routine must receive the name of a valid configuration and 
a set of process attributes in a format identical to the one of the rules files 
(assignment rules). On output, the names of the classes are copied into the 
area pointed to by class. The integer pointed to by len contains the size of the 
class names area on input, and the number of matches on output. If the area 
pointed to by class is not big enough to contain the names of all the potential 
matches, an error is returned. 

The normal use of this routine is to explicitly provide all the process 
classification attributes; user name, group name, application path name, and 
tag (when applicable). This should give a match to a single class, but, in order 
to implement what-if scenarios, the interface allows some of the attributes to 
be unspecified by entering a hyphen (-) instead. This may lead to the process 
being assigned to multiple classes, depending on the values of the 
unspecified attributes. If all the attributes are left unspecified, an error is 
returned. 

The attributes string is provided in a format identical to the one of the 
attributes in the rules file; a list of attribute values separated by spaces. The 
order of the attributes in the assignment rules is: 

1. Reserved: must be a hyphen (-) 
2. User name
3. Group name
Appendix A. AIX Workload Manager API routines 291



4. Application pathname
5. Process type
6. Tag

A valid specification for the attributes string could be: 

- bob staff /usr/bin/emacs -

or: 

- - devlt /usr/bin/cc -

The class names returned by the function in the class buffer will be 
fully-qualified, null-terminated class names of the form, supername.subname. 

This function does not require any special privileges and can be called by all 
users. 

Parameters:

config A pointer to a string containing the name of a valid WLM
configuration (the name of a subdirectory of /etc/wlm). If a null
string (\0) is given, wlm_classify will use the in-core class
and rules definitions. 

attributes The address of a string, with the format described above,
containing a list of values for the process attributes used for
automatic classification of processes.

class A pointer to a buffer where the name of the class or classes
the process could be assigned to are returned as consecutive,
null-terminated character strings.

len A pointer to an integer containing the length, in bytes, of the
buffer pointed to by class when calling wlm_classify, and the
actual number of class names copied into the class buffer
upon successful return.

Return Values: Upon successful completion, a value of zero is returned. In 
case of error, a non zero value is returned. When a non-zero value is 
returned, the content of the class buffer and the value of the integer pointed 
to by len are unspecified.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.
292 AIX 5L Workload Manager (WLM)



A.9  WLM accounting

The WLM accounting initialization routines per class are wlm_initkey, 
wlm_class2key, wlm_key2class, and wlm_endkey.

A.9.1  wlm_initkey

Purpose: Allocates and initializes the classes to keys translation table.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_initkey(struct wlm_args *args,void **ctx)

Description: The wlm_initkey routine allocates a block of memory, builds the 
keys to class names translation table and returns its address into the ctx 
argument.

Parameters:

args The address of the struct wlm_args data structure containing the 
structure to be initialized. Only two fields need to be initialized in 
the wlm_args structure pointed to by args:

confdir Specifies the null-terminated name of the WLM 
configuration to be searched (the name can be 
"current" to specify the current configuration). If the 
configuration name passed is an empty string (starts 
with '\0'), then all the configurations in /etc/wlm are 
searched.

versflags Initialized with WLM_VERSION and optionally 
WLM_MUTE.

Return Values: If the wlm_initkey routine is successful, a value of 0 is 
returned. If the wlm_initkey routine is unsuccessful, an error code is returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.9.2  wlm_class2key 

Purpose: Class name to key translation.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_class2key(struct wlm_args *args, wlm_key_t *key)
Appendix A. AIX Workload Manager API routines 293



Description: The wlm_class2key routine generates a 64 bit numeric key from 
a WLM class name. This routine is provided for applications gathering high 
volumes of per class usage statistics or accounting data. This routine allows 
those applications to save storage space by compressing the class name (up 
to 34 characters long) into a 64 bit integer. The wlm_key2class routine can then 
be used to get the key to class name conversion for data reporting purposes.

The wlm_class2key routine does not check that the specified class exists. It 
just checks that the name has a valid format for a class name. When 
successful, the routine returns the corresponding key (sometimes also called 
signature) in the area pointed to by the return values.

Parameters:

args The address of the struct wlm_args data structure containing the 
structure to be initialized. Only two fields need to be initialized in 
the wlm_args structure pointed to by args:

cl_def.data.descr.name Specifies the null terminated full name of 
the class <super_name>.<subname> for 
a subclass).

versflags Initialized with WLM_VERSION and 
optionally WLM_MUTE.

Return Values: If the wlm_class2key routine is successful, a value of 0 is 
returned. If the wlm_class2key routine is unsuccessful, an error code is 
returned.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.9.3  wlm_key2class

Purpose: Retrieves a class name from a key.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_key2class(struct wlm_args *args, wlm_key_t key, void

*ctx)

Description: The wlm_key2class routine retrieves a class name from a 64 bit 
key calculated using the wlm_class2key routine. The key to class translation is 
made by going through the WLM configuration files for the configuration 
named in the wlm_args structure pointed to by wlmargs (or all the WLM 
294 AIX 5L Workload Manager (WLM)



configuration files, if no configuration name is given), and translating all the 
class names to a 64 bit key until the matching key is found.

This process is time consuming. For applications which need to translate 
several 64 bit keys back to class names, WLM offers the routines wlm_initkey 
and wlm_endkey that can be used in conjunction with wlm_key2class to speed up 
the searches. The wlm_initkey routine allocates a block of memory, calculates 
the keys corresponding to the class names in the configuration(s) in scope, 
stores the names with the corresponding keys in the memory buffer, and 
returns its address. This address can then be passed to wlm_key2class in the 
ctx argument, so that wlm_key2class only needs to search through the memory 
buffer. When all the keys have been translated into class names, the 
application calls wlm_endkey, which will free the memory buffer. Alternatively, 
for an application translating only one key, it is possible to directly call 
wlm_key2class with a null pointer in the ctx argument. This will cause 
wlm_key2class to internally call wlm_initkey and wlm_endkey.

The way the class names are retrieved by going through the WLM 
configuration files implies that if a class has been deleted between the time 
the class name was converted into a key and the call to wlm_key2class, the 
name corresponding to the key is not found, and wlm_key2class returns an 
error.

Parameters:

args The address of the struct wlm_args data structure containing the 
structure to be initialized. Four fields need to be initialized in the 
wlm_args structure pointed to by args:

confdir This field needs to be initialized as described in 
wlm_initkey if wlm_initkey has not been previously 
invoked (ctx == NULL). Otherwise, the confdir field is 
ignored.

versflags This field needs to be initialized with 
WLM_VERSION, or optionally WLM_MUTE.

ctx The context handler returned by wlm_initkey (if 
wlm_initkey has been called previously), or a NULL 
pointer otherwise. If a null pointer is passed, 
wlm_key2class will automatically invoke wlm_initkey
(passing it the wlmargs argument), retrieve the class 
name corresponding to the key, and free the 
allocated context area using wlm_endkey.

key The search key.
Appendix A. AIX Workload Manager API routines 295



Return Values: When the wlm_key2class operation is successful, the first 
class name matching the value of the key is returned in the name sub-field of 
the wlm_args structure pointed to by wlmargs.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.

A.9.4  wlm_endkey

Purpose: Frees the classes to keys translation table.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_endkey(struct wlm_args *args, void *ctx)

Description: The wlm_endkey routine frees the classes to the keys translation 
table. The memory area pointed to by ctx is freed.

Parameters: 

args The address of the struct wlm_args data structure containing the 
structure to be initialized:

versflag This field is the only field in the structure that needs to 
be initialized with WLM_VERSION, or optionally 
WLM_MUTE.

ctx Points to the memory area to be freed.

Return Values: When the wlm_endkey operation is successful, it returns a 
value of 0, and, if unsuccessful, returns an error code.

Error Codes: For a list of the possible error codes returned by the WLM API 
functions, see Section A.2, “WLM API functions error codes” on page 268.
296 AIX 5L Workload Manager (WLM)



Appendix B.  Sample workload program

This appendix describes the sample program that was used to generate 
workload during the development of this redbook. It launches a number of 
CPU bound threads, creates network traffic, allocates memory, and 
generates disk I/O.

The sample program hog.c:

static char sccsid[] = "@(#)93 1.0 hog.c 8/30/99 11:30";
/*
* COMPONENT_NAME: hog
*
* WRITTEN BY: Tim Leo
*
* FUNCTIONS: Exercises SMP CPU Load (utilization), Disk I/O and Memory Usage

* To be used for testing AIX WLM (Workload Manager)
*
* OBJECT CODE ONLY SOURCE MATERIALS
* (C) COPYRIGHT International Business Machines Corp. 1989, 1991
* All Rights Reserved
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*/
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <strings.h>
#include <errno.h>
#include <stdlib.h>
#include <locale.h>
#include <sys/limits.h>
#include <nl_types.h>
#include <sys/param.h>

/* Start of Global Vars ************************************************/
char *cp; /* Current Program name */
int login; /* true if invoked as login shell */
char firstchar; /* first char of name of prog invoked as */

extern int optind;
extern char *optarg;

usage() /* Prints help info for hog Program */
© Copyright IBM Corp. 2001 297



{
printf("%s: usage is %s [-t thread_count [-n iptarget]] [-m memory_valu

e] [-d] [-?] \n",cp,cp);
printf("\n\nARGUMENTS: \n");
printf("-t thread_count : Launch a number of CPU Bound Threads \n");
printf(" where thread_count is an integer specifying\n

");
printf(" the number of threads to launch.\n\n");
printf("-m memory_value : Determines the amount of working memory to be

allocated and\n");
printf(" utilized by the main program to be touched co

ntinuously,\n");
printf(" where memory_value is an integer specifying t

he number \n");
printf(" of MB (MegaBytes) to allocate.\n\n");
printf("-d : Generates Disk I/O.\n\n");
printf("-n iptarget : Threads should generate network I/O.\n");
printf(" where iptarget is either an IP address or hos

tname\n");
printf(" (the default iptarget is loopback) \n");

printf("-? : Obtains this screen of help info and exit. \n
");
}

/* More Global Vars ************/

int loop_stat;
pthread_mutex_t m;
char *waste_of_space=NULL;
size_t megs=0;

struct arg {
char *string;
int net;

};
typedef struct arg arg_t;

/* Sample Memory Grabber Thread Routine *****************/
void *Memory_Thread(void *x)
{
printf("Starting memory scan...\n");
while(1)
{

if ((waste_of_space =(char *)calloc(megs,1))==NULL)
printf("%s: Could not allocate memory...errno was %d\n",cp,errno);

else {
system("date");
printf("%s has allocated a %d byte array of storage...\n",cp,(int)megs);
sleep(10);

free(waste_of_space);
}

}
}

298 AIX 5L Workload Manager (WLM)



/* Sample Disk I/O Generator Thread Routine ************/

void *Gen_File_IO(void *x)
{
while (1)
{
system ("dd if=/unix of=/wlm_fs1/test1 count=10000 2>/dev/null" );
system ("dd if=/wlm_fs1/test1 of=/wlm_fs2/test2 count=10000 2>/dev/null");
/* system ("run_disks 4"); */
system ("date");
printf("%s: Finished a Disk Cycle...\n",cp);
}
pthread_exit( (void *)1);

}
/* Sample CPU Bound Thread Routine ************/

void *Thread(void *x)
{

int l;
while (1)

{
/* l=0; while (l < 1000) l++; Delay loop */
usleep(5);
pthread_mutex_lock(&m);

loop_stat++;
pthread_mutex_unlock(&m);

if ((loop_stat%1000)== 0){
system ("date");
printf("%d transactions so far...\n",loop_stat);

}
/* Turn on network traffic */
if (((arg_t*)x)->net==1) system( ((arg_t *)x)->string);

}
pthread_exit( (void *)1);

}

/* hog main program ****************************************************/
main(argc, argv)

char **argv;
int argc;

{

/* Start of Local Vars for Main *************/
#ifdef PATH_MAX
#undef PATH_MAX
#endif
#define PATH_MAX 257 /* Maximum path +\0 */
Appendix B. Sample workload program 299



register int i, j;
int tp, thread_max;
int mflag=0;

int dflag=0;
int tflag=0;
pthread_t h_th[32000];
pthread_t d_th;
pthread_t m_th;
arg_t arg_th;
char *iptarget="`hostname "̀;
char temp[PATH_MAX];

arg_th.net=0;
system("date");
(void) setlocale (LC_ALL,"");

login = (argv[0][0] == '-');
cp = rindex(argv[0], '/');
firstchar = login ? argv[0][1] : (cp==NULL) ? argv[0][0] : cp[1];
cp = argv[0]; /* for Usage */

printf("\n");
printf("%s Beta test version.\n",cp);
printf(" (C) COPYRIGHT International Business Machines Corp. 1999\n");
printf(" All Rights Reserved\n");
if (argc==0) {usage(); exit(1);}
while ((tp = getopt(argc, argv,"t:n:m:d?" )) != EOF)

switch(tp) {
case 't':

if (tflag==1) { printf("%s: Multiple -t switch
ignored \n",cp); break; }

if (*optarg==0) {
printf(

"%s: The number of threads to launch was not
specified with the '-t' option \n", cp);

printf("%s: By default 1 thread will be laun
ched.\n",cp);

thread_max=1;
}
else thread_max=atoi(optarg);
/* check for errors here */
if ((thread_max < 1)||( thread_max > 32000)) {

printf(
"%s: invalid number of threads requested (mu

st be between 1 and 32000)\n",cp);
usage();
exit(1);

}
tflag=1;
break;

case 'n':
if (tflag==0) {printf("%s: -t switch must be sp

ecified first to use -n option\n",cp);
usage(); exit(2);
}

300 AIX 5L Workload Manager (WLM)



if (arg_th.net==1) { printf("%s: Multiple -n sw
itch ignored \n",cp); break; }

if (*optarg != 0) iptarget = optarg;
if(sprintf(temp,"spray %s -l 1024 -c 50 2> /dev

/null > /dev/null",iptarget)) printf("%s: sprintf errno was %d\n %s\n",cp,errno
,temp);

arg_th.string=temp;
arg_th.net=1;

break;

case 'm':
if (mflag==1) { printf("%s: Multiple -m switch

ignored \n",cp); break; }

if (*optarg==NULL) {
printf(
"%s: Memory value must be specified with 'm'

option \n", cp);
usage();
exit(1);

}
else megs=atoi(optarg);
/* check for errors here */
if ((megs < 0)||(megs >= 64000)) {

printf(
"%s: invalid memory value requested (must be

between 0 and 64000) MB\n",cp);
usage();
exit(1);

}
megs *= (size_t)(1024*1024);
mflag=1;
break;

case 'd':
if (dflag==1) { printf("%s: Multiple -d switch

ignored \n",cp); break; }
dflag=1;

break;

case '?':
usage();
exit(1);
break;

default:
printf("%s: Bad flag '%s' option ignored\n",cp,

tp);
}

/* End of argument finder */
/* Debug routine */
#ifdef DEBUG
printf("\n%s: debug active : thread_max=%d, tflag=%d, mflag=%d, dflag=%d \n meg
s=%d, arg_th.string=%s, arg_th.net=%d \n Normal debug exit \n",cp,thread_max,tf
lag,mflag, dflag, megs, arg_th.string, arg_th.net);
exit(0);
#endif

if (arg_th.net==1) { printf("%s: Multiple -n sw
itch ignored \n",cp); break; }

if (*optarg != 0) iptarget = optarg;
if(sprintf(temp,"spray %s -l 1024 -c 50 2> /dev

/null > /dev/null",iptarget)) printf("%s: sprintf errno was %d\n %s\n",cp,errno
,temp);

arg_th.string=temp;
arg_th.net=1;

break;

case 'm':
if (mflag==1) { printf("%s: Multiple -m switch

ignored \n",cp); break; }

if (*optarg==NULL) {
printf(
"%s: Memory value must be specified with 'm'

option \n", cp);
usage();
exit(1);

}
else megs=atoi(optarg);
/* check for errors here */
if ((megs < 0)||(megs >= 64000)) {

printf(
"%s: invalid memory value requested (must be

between 0 and 64000) MB\n",cp);
usage();
exit(1);

}
megs *= (size_t)(1024*1024);
mflag=1;
break;

case 'd':
if (dflag==1) { printf("%s: Multiple -d switch

ignored \n",cp); break; }
dflag=1;

break;

case '?':
usage();
exit(1);
break;

default:
printf("%s: Bad flag '%s' option ignored\n",cp,

tp);
}

/* End of argument finder */
/* Debug routine */
#ifdef DEBUG
printf("\n%s: debug active : thread_max=%d, tflag=%d, mflag=%d, dflag=%d \n meg
s=%d, arg_th.string=%s, arg_th.net=%d \n Normal debug exit \n",cp,thread_max,tf
lag,mflag, dflag, megs, arg_th.string, arg_th.net);
exit(0);
#endif
Appendix B. Sample workload program 301



This script was compiled with the following make file:

printf("\n%s: Configuration Summary \n",cp);
/* CPU Bound Thread Launch Stuff */
if (tflag==1) {

pthread_mutex_init(&m, NULL);
for (i=0,j=1;i<thread_max;i++) {

if (pthread_create(&h_th[i], NULL, Thread, &arg_th))
{
j=0;
printf("Launched %d threads so far...Error Launching more, errn

o was %d\n",i,errno);
break;

}
}
if (j==1) printf("Launched %d thread(s) \n",--i);

} else printf("No CPU Bound Threads Launched...\n");

/* Disk I/O Stuff */
if (dflag==1)

if (pthread_create(&d_th, NULL, Gen_File_IO, &arg_th))
printf("%s: Couldn't create Disk I/O Thread...errno was %d\n",

cp,errno);
else printf("Launched I/O Generator Thread \n");

/* End of Thread Launching */

/* Memory Use Stuff */
if (mflag==1) {

if (pthread_create(&m_th, NULL, Memory_Thread, &arg_th))
printf("%s: Couldn't create Memory Thread...errno was %d\n",cp

,errno);
else printf("Launched Memory Allocator Thread \n");

}
pthread_exit(0);
printf("%s:Normal Exit",cp);
system("date");
exit(0);

}

#Make file for loadgen benchmarks.

clean:
rm dssserver oltpserver backupserver loadgen

all: hog.c
cc_r -g -o loadgen hog.c -bD:0x80000000 -lm
cp loadgen /home/dssadm/dssserver
cp loadgen /home/oracle/oltpserver
cp loadgen /home/adsm/backupserver

(0)itsosrv1:/wlm/scripts#
302 AIX 5L Workload Manager (WLM)



  • Three users were created to run this test: oracle, dssadm, and adsm.

  • Two groups were created: dba and admin.

  • Two filesystems were created on different disks: /wlm_fs1 and /wlm_fs2.

  • Due to the test system being a 12-way SMP with 1 GB Memory, the 
arguments displayed in the next screenshot were chosen to start the 
different workloads; OLTP, DSS, and backup.

The goal was that the OLTP workload always has enough resources. This 
workload mainly consumes CPU and memory resources and is, therefore, 
competing with the backup and the DSS workload for these resources.

The backup workload consumes mainly disk I/O resources next to CPU and 
memory. 

The DSS workload consumes CPU, memory, and disk I/O resources.

Parameters used to start the different workloads: 

-t thread_count Launch a number of CPU Bound threads where 
thread_count is an integer specifying the number of 
threads to launch.

-n iptarget Threads should generate network I/O where iptarget is 
either an IP address or hostname.

-m memory_value Determines the amount of working memory to be allocated 
and utilized by the main program. Memory will be touched 
continuously, where memory_value is an integer specifying 
the number of MB (Megabytes) to allocate.

-d Generates disk I/O.

After defining the parameters, the three scripts, oltp.sh, dss.sh, and back.sh, 
were started by executing the start.sh script:

(0)itsosrv1:/# cat /home/oracle/oltp.sh
oltpserver -t 100 -n 9.3.240.10 -m 128 >> ~oracle/oracle.log
(0)itsosrv1:/# cat /home/dssadm/dss.sh
dssserver -t 50 -m 256 -d >> ~dssadm/dss.log
(0)itsosrv1:/# cat /home/adsm/back.sh
backupserver -t 25 -m 256 -d >> ~adsm/back.log
(0)itsosrv1:/#
Appendix B. Sample workload program 303



Important:
In /etc/security/limits the data file entry was set to -1 (for unlimited).

Suggestions:
It proved to be helpful to first take the actual WLM configuration and run WLM 
in passive mode. Get a performance report for all classes every 10 seconds 
and this for five minutes as shown in the following screenshots:

(0)itsosrv1:/wlm/scripts# pg start.sh
/usr/samples/kernel/vmtune -P 30
su - oracle -c "~oracle/oltp.sh & "
su - dssadm -c "~dssadm/dss.sh & "
su - adsm -c "~adsm/back.sh & "
(0)itsosrv1:/wlm/scripts#

Ĉ(130)itsosrv1:/# wlmstat 10 30
CLASS CPU MEM BIO

Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 1 0
System 0 8 0
oltp 0 0 0

oltp.Default 0 0 0
oltp.Shared 0 0 0
oltp.spray 0 0 0

dss 0 0 0
backup 0 0 0

.....

.....
304 AIX 5L Workload Manager (WLM)



To collect more detailed information, the following statistics can be run:

After the first run, the shares and tiers were changed, and further 
observations with wlmstat were made before WLM was turned into active 
mode.

(0)itsosrv1:/# wlmstat -c -v
CLASS tr i #pr CPU sha min smx hmx des rap urap pri

Unclassified 0 0 1 0 -1 0 100 100 100 0 97 10
Unmanaged 0 0 0 0 -1 0 100 100 0 0 97 10
Default 0 0 1 0 -1 0 100 100 0 0 97 97

Default.Default 0 0 1 0 1 0 100 100 100 100 48 48
Default.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

Shared 0 0 0 0 -1 0 100 100 0 0 97 97
Shared.Default 0 0 0 0 1 0 100 100 100 100 48 48
Shared.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

System 0 0 44 0 10 10 100 100 100 100 0 0
System.Default 0 0 44 0 1 0 100 100 100 100 0 0
System.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

oltp 0 0 0 0 50 0 100 100 47 100 0 0
oltp.Default 0 0 0 0 -1 0 100 100 100 0 23 23
oltp.Shared 0 0 0 0 -1 0 100 100 0 0 23 23
oltp.spray 1 0 0 0 30 0 100 100 61 100 97 97

dss 0 0 1 0 20 0 100 100 100 100 0 0
dss.Default 0 0 1 0 1 0 100 100 100 100 0 0
dss.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

backup 0 0 0 0 35 0 100 100 63 100 0 0
backup.Default 0 0 0 0 1 0 100 100 100 100 0 0
backup.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

(0)itsosrv1:/#

(130)itsosrv1:/# wlmstat -m -v
CLASS tr i #pr MEM sha min smx hmx des rap urap npg

Unclassified 0 0 1 0 -1 0 100 100 100 0 511 0
Unmanaged 0 0 0 0 -1 1 100 100 0 100 0 2
Default 0 0 1 0 -1 0 100 100 0 0 511 240

Default.Default 0 0 1 0 1 0 100 100 100 100 255 240
Default.Shared 0 0 0 0 -1 0 100 100 0 0 510 0

Shared 0 0 0 1 -1 0 100 100 100 0 511 3230
Shared.Default 0 0 0 1 1 0 100 100 100 98 260 3230
Shared.Shared 0 0 0 0 -1 0 100 100 0 0 510 0

System 0 0 44 8 10 10 100 100 99 100 0 30720
System.Default 0 0 44 8 1 0 100 100 100 85 38 30753
System.Shared 0 0 0 0 -1 0 100 100 0 0 255 0

oltp 0 0 0 0 50 0 100 100 44 100 0 0
oltp.Default 0 0 0 0 -1 0 100 100 100 0 127 0
oltp.Shared 0 0 0 0 -1 0 100 100 0 0 127 0
oltp.spray 1 0 0 0 30 0 100 100 86 100 512 0

dss 0 0 1 0 20 0 100 100 30 100 0 0
dss.Default 0 0 1 0 1 0 100 100 100 100 0 0
dss.Shared 0 0 0 0 -1 0 100 100 0 0 255 0

backup 0 0 0 0 35 0 100 100 77 100 0 0
backup.Default 0 0 0 0 1 0 100 100 100 100 0 0
backup.Shared 0 0 0 0 -1 0 100 100 0 0 255 0

(0)itsosrv1:/#
Appendix B. Sample workload program 305



General recommendations
An easy way to analyze a system running WLM is:

1. Start with a simple model.

2. Run WLM in passive mode.

3. Do some refinements. 

4. Repeat the last two steps a few times. 

5. Run WLM in active mode. 

6. Collect statistics, via wlmstat, to see if the defined goals are achieved. 

7. Modify shares, rules, and tiers.

8. Go to step 6.

9. Decide which is your best WLM configuration.
306 AIX 5L Workload Manager (WLM)



Appendix C.  Sample Korn shell scripts for manual assignment

In this appendix, the scripts used for the manual assignment examples of 
Chapter 5, “Manual assignment” on page 177 are listed. They are also 
available for practical use on the floppy disk provided with the redbook.

C.1  Oracle example script

This is the script used in the Oracle example described in Section 5.3, 
“Oracle database example” on page 188:

#/bin/ksh
# Sample script to perform manual assignment of processes whose different
# instances can be differentiated by their output in ps -ef.
# Examples of this kind of processes are ORACLE database instances.
#
# Create a configuration file /etc/wlm/ma.conf with the following format:
# One line for each combination of:
# <Instance name> <Class> <Inheritance>
# where:
# o Instance Name is the ORACLE instance.
# o Class is the name of the class to assign the processes to;
# Either ‘supername’ for superclasses or ‘supername.subname’
# for subclasses.
# o Inheritance is a flag, which should be set to yes if you
# want all processes belonging to a process group, whose
# leader is the process being manually assigned, to be
# manually assigned too, or no, otherwise.
# MANUAL is an array of three positions, which one of them being:
# o Position 0: Instance name.
# o Position 1: Class name.
# o Position 2: Inheritance flag.

##
# DIRECTORIES
##
WLMDIR=/etc/wlm

##
# VARIABLES
##
CONFFILE=$WLMDIR/ma.conf
PATH=/usr/bin:/usr/sbin:$PATH

##
# FUNCTIONS
##
© Copyright IBM Corp. 2001 307



getpids()
{

echo ‘ps -ef | grep $1 | grep -v grep | awk ‘{ print $2 }’‘ | sed \
‘s/ /,/g’

}

##
# MAIN
##
(while read LINE
do

set -A MANUAL $LINE

echo "Changing the inheritance attribute on class ${MANUAL[1]}..."
OLDINH=‘lsclass -f ${MANUAL[1]} | grep inheritance | awk ‘{ print \

$3 }’ | sed "s/\"//g"‘
[ ! "$OLDINH" ] && OLDINH="no"
chclass -a inheritance=${MANUAL[2]} ${MANUAL[1]}

echo “Refreshing WLM...”

wlmcntrl -u

echo "Getting PIDS' list for instance ${MANUAL[0]}..."
PIDLIST=$(getpids ${MANUAL[0]})

if [ -z "$PIDLIST" ]
then

echo "No processes found for class ${MANUAL[1]}, skipping \
assignment ..."

else
echo "Manually assigning the processes to class ${MANUAL[1]}..."
wlmassign ${MANUAL[1]} $PIDLIST

fi

echo "Resetting old inheritance value on class ${MANUAL[1]}..."
chclass -a inheritance="$OLDINH" ${MANUAL[1]}
echo “Refreshing WLM...”

wlmcntrl -u
done
) < $CONFFILE
308 AIX 5L Workload Manager (WLM)



Appendix D.  Sample program for application tag

In this appendix, the program, settag.c, used for the application tag example 
of Section 6.1.3 on page 197 is listed. It is also available for practical use on 
the floppy disk provided with the redbook.

D.1  settag.c

#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <sys/wlm.h>

/* Program for launching and tagging an application */
main (argc,argv)

char **argv;
int argc;

{
int rc,flags;
if (argc != 3) {

usage(argv[0]);
exit(1);

}
flags= WLM_VERSION|SWLMTAGINHERITFORK|SWLMTAGINHERITEXEC;
if(wlm_initialize(WLM_VERSION)){

perror("wlm_initialize");
exit(1);

}
if(wlm_set_tag(argv[1],&flags)){

perror("wlm_set_tag");
exit(2);

}
if (execlp(argv[2],argv[2],0)){

perror("execlp"); printf("Problem launching app...\n");
exit(3);

}
exit(0);

}

usage(char *cp)
{

printf("\n %s takes 2 arguments:\n",cp);
printf("Usage: %s tag_name program_name \n",cp);
printf("where: tag_name is the rule tag that program_name will inherit \

\n");
}

© Copyright IBM Corp. 2001 309



310 AIX 5L Workload Manager (WLM)



Appendix E.  Sample for CPU resource usage calculation

A sample spread sheet that contains the CPU resource usage data of 
Applications A, B, C, and D from Section 7.3.2, “Examples” on page 214 is 
listed below. This was obtained by monitoring Applications A, B, C, and D 
respectively, which ran on a system that has a capacity of 10,000 tpm 
(transaction per minute), separately. The resource usage was measured for 
each application at 10 minute intervals, for 500 minutes. The unit of the 
measurement is percentage. 

Because the system capacity is 10,000 tpm, each percentage value in the 
spread sheet is easily converted, by multiplying by 100, to the actual tpm 
value that was consumed by each application at the moment of 
measurement.

This data is not from monitoring a real system, but was simulated as a 
general example.
© Copyright IBM Corp. 2001 311



Tim e un it A p p lic a t io n A A p p l ic a t io n B A p p lic a t io n C A p p lic a t io n D S u m o f A , B , C , D
------------------------------------------------------------------------------------------------------------------------------------

1 1 1 3 4 2 1 8 6 5
2 1 4 3 2 3 1 9 6 8
3 1 2 3 3 5 1 5 6 5
4 1 6 3 2 3 1 3 6 4
5 2 5 2 5 4 1 6 7 0
6 3 9 2 2 2 1 2 7 5
7 5 6 1 8 1 1 5 9 0
8 2 1 2 2 3 1 9 6 5
9 1 2 2 3 4 1 4 5 3

1 0 9 2 6 2 1 3 5 0
1 1 1 5 2 4 1 1 6 5 6
1 2 1 8 2 3 2 1 7 6 0
1 3 1 1 1 7 3 1 6 4 7
1 4 2 1 1 9 2 1 8 6 0
1 5 4 6 1 8 1 1 6 8 1
1 6 5 1 1 5 2 1 4 8 2
1 7 1 6 1 6 3 1 6 5 1
1 8 1 2 1 8 2 1 5 4 7
1 9 1 7 1 9 3 1 7 5 6
2 0 1 8 2 0 4 1 6 5 8
2 1 1 6 1 8 5 1 6 5 5
2 2 1 5 2 1 3 1 8 5 7
2 3 4 2 2 2 2 1 9 8 5
2 4 5 4 2 1 4 1 8 9 7
2 5 3 5 2 5 2 1 9 8 1
2 6 2 2 2 4 1 1 7 6 4
2 7 2 1 2 7 2 1 8 6 8
2 8 1 8 2 8 2 1 7 6 5
2 9 1 5 3 4 3 1 8 7 0
3 0 2 3 3 2 1 1 6 7 2
3 1 2 1 3 3 3 1 5 7 2
3 2 1 5 3 3 2 1 6 6 6
3 3 1 2 3 1 3 1 2 5 8
3 4 8 2 6 3 1 7 5 4
3 5 6 2 5 2 1 4 4 7
3 6 7 2 3 1 1 3 4 4
3 7 8 2 2 2 1 4 4 6
3 8 6 2 4 5 1 3 4 8
3 9 6 1 9 3 5 1 2 7 2
4 0 7 1 8 5 4 1 2 9 1
4 1 8 1 5 5 7 1 3 9 3
4 2 6 1 7 5 5 1 1 8 9
4 3 5 1 7 5 6 1 2 9 0
4 4 8 1 6 5 7 1 1 9 2
4 5 9 1 5 5 4 1 1 8 9
4 6 8 1 5 5 3 1 2 8 8
4 7 7 1 6 5 5 1 1 8 9
4 8 7 1 6 5 5 1 1 8 9
4 9 7 1 4 5 6 1 3 9 0
5 0 6 1 3 5 1 1 1 8 1

------------------------------------------------------------------------------------------------------------------------------------
To t a l 8 6 8 1 1 1 6 7 3 6 7 4 5 3 4 6 5
312 AIX 5L Workload Manager (WLM)



Appendix F.  Using the additional material

This redbook contains additional material in diskette format. See the 
appropriate section below for instructions on using or downloading each type 
of material.

F.1  Using the diskette

The diskette that accompanies this redbook contains the following:

File name Description
wlm_db2.pdf PDF file that describes the DB2 tests that were 

run during the redbook project as described in 
Section 5.4, “DB2 UDB” on page 190.

ma_oracle.sh Sample script for manual assignment with Oracle
settag.c Sample source code for Application Tag setting 
settag Sample binary for Application Tag setting

F.1.1  System requirements for using the diskette

The following system configuration is recommended for optimal use of the 
diskette.

Operating System: AIX 5L for Power Version 5.1 or higher 
Processor: IBM RS/6000 or IBM ^ pSeries

F.1.2  How to use the diskette

You can access the contents of the diskette by extracting the files on the 
diskette with tar -xvf /dev/fd0 into your current directory. 

F.2  Locating the additional material on the Internet

The diskette material associated with this redbook is also available in 
softcopy on the Internet from the IBM Redbooks Web server. Point your Web 
browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245977

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with 
the redbook form number.
© Copyright IBM Corp. 2001 313

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/


314 AIX 5L Workload Manager (WLM)



Appendix G.  Special notices

This publication is intended to help system administrators and technical 
support specialists implement and use AIX Workload Manager efficiently. The 
information in this publication is not intended as the specification of any 
programming interfaces that are provided by AIX 5L. See the PUBLICATIONS 
section of the IBM Programming Announcement for AIX 5L for more 
information about what publications are considered to be product 
documentation.

References in this publication to IBM products, programs or services do not 
imply that IBM intends to make these available in all countries in which IBM 
operates. Any reference to an IBM product, program, or service is not 
intended to state or imply that only IBM's product, program, or service may be 
used. Any functionally equivalent program that does not infringe any of IBM's 
intellectual property rights may be used instead of the IBM product, program 
or service.

Information in this book was developed in conjunction with use of the 
equipment specified, and is limited in application to those specific hardware 
and software products and levels.

IBM may have patents or pending patent applications covering subject matter 
in this document. The furnishing of this document does not give you any 
license to these patents. You can send license inquiries, in writing, to the IBM 
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 
10504-1785.

Licensees of this program who wish to have information about it for the 
purpose of enabling: (i) the exchange of information between independently 
created programs and other programs (including this one) and (ii) the mutual 
use of the information which has been exchanged, should contact IBM 
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and 
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any 
formal IBM test and is distributed AS IS. The use of this information or the 
implementation of any of these techniques is a customer responsibility and 
depends on the customer's ability to evaluate and integrate them into the 
customer's operational environment. While each item may have been 
reviewed by IBM for accuracy in a specific situation, there is no guarantee 
that the same or similar results will be obtained elsewhere. Customers 
© Copyright IBM Corp. 2001 315



attempting to adapt these techniques to their own environments do so at their 
own risk.

Any pointers in this publication to external Web sites are provided for 
convenience only and do not, in any manner, serve as an endorsement of 
these Web sites.

The following terms are trademarks of the International Business Machines 
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything. 
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet 
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli 
Systems Inc., an IBM company,  in the United States, other countries, or both.  
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli 
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other 
countries.

Java and all Java-based trademarks and logos are trademarks or registered 
trademarks of Sun Microsystems, Inc. in the United States and/or other 
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of 
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United 
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel 
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries 
licensed exclusively through The Open Group.

e (logo) IBM
LoadLeveler MQSeries
Netfinity Redbooks
Redbooks Logo RS/6000
S/390 SP
System/390 Wizard
316 AIX 5L Workload Manager (WLM)



SET, SET Secure Electronic Transaction, and the SET Logo are trademarks 
owned by SET Secure Electronic Transaction LLC.

Lotus Notes is a registered trademark of Lotus Development Corporation.

Other company, product, and service names may be trademarks or service 
marks of others.
Appendix G. Special notices 317



318 AIX 5L Workload Manager (WLM)



Appendix H.  Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

H.1  IBM Redbooks

For information on ordering these publications see “How to get IBM 
Redbooks” on page 321.

  • Introducing Tivoli Application Performance Management, SG24-5508

  • Server Consolidation on RS/6000, SG24-5507

  • AIX 5L Differences Guide Version 5.1 Edition, SG24-5765 

H.2  IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs 
button at ibm.com/redbooks for information about all the CD-ROMs offered, 
updates, and formats. 

H.3  Other resources

These publications are also relevant as further information sources:

  • Workload Management Surges to Prominence in UNIX Servers, D. H. 
Brown Associates, Inc.

  • AIX Performance Toolbox User’s Guide V1.2 and V2.1, SC23-2625

CD-ROM Title Collection Kit 
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2001 319

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


H.4  Referenced Web site

The following Web sites are also relevant as a further information source:

  • http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

AIX online documentation
  • www.fz_juelich.de

  • www.fz_juelich.de/zam

  • www.fz_juelich.de/zam/compserv/services/config.html
320 AIX 5L Workload Manager (WLM)



How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, 
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

  • Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. 
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images) 
from this Redbooks site. 

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few 
chapters will be published this way. The intent is to get the information out much quicker than the 
formal publishing process allows.

  • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

  • Telephone Orders

  • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest 
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” 
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing 
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. 
Look in the Materials repository for workshops, presentations, papers, and Web pages developed 
and written by the ITSO technical professionals; click the Additional Materials button. Employees 
may  access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 321

mailto: pubscan@us.ibm.com 
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/


IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries.  Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
322 AIX 5L Workload Manager (WLM)



Abbreviations and acronyms

AIX Advanced Interactive 
Executive

APAR Authorized Program 
Analysis Report

API Application 
Programming Interface

ARM Application Response 
Measurement

CCMS Computing Center 
Management System

CPU Central Processing Unit

DB Database

DB2 Database 2

DBA Database Administrator

DKIO Disk I/O

GB Gigabyte

GID Group Identification

GL Peoplesoft General 
Ledger

HACMP High Availability Cluster 
Multi-Processing

HM Hard Maximum limit

HTML Hypertext Markup 
Language

IBM International Business 
Machines Corporation

ID Identification

I/O Input/Output

IPL Initial Program Load

ISICC IBM SAP International 
Competence Center

IT Information Technology

ITSO International Technical 
Support Organization

KB Kilo Byte
© Copyright IBM Corp. 2001
LPAR Logical Partitioning

LRU Least Recently Used

m Minimum limit

MB Mega Byte

NFS Network File System

NIC John von Neumann 
Institute for Computing

NIS Network Information 
Service

NUMA Non-Uniform Memory 
Access

OLAP On-line Analytical 
Processing

OLTP On-line Transaction 
Processing

OS Operating System

PGID Process Group 
Identifier

PID Process Identifier

PTX Performance Toolbox

rset Resource set

SAP Systems, Applications, 
and Products in Data 
Processing

SD Sales and Distribution

SGA System Global Area

SHED_FIFO First-In, First-Out 
Scheduling

SHED_RR Round-Robin 
Scheduling

SM Soft Maximum limit

SMIT System Management 
Interface Tool

SMP Symmetric 
Multi-Processing
323



SPMI System Performance 
Measurement Interface

SSA Serial Storage 
Architecture

TAPM Tivoli Application 
Performance 
Management

TCC SAP Technical 
Competence Center

TCP Transmission Control 
Protocol

TEC Tivoli Enterprise 
Console

TDS Tivoli Decision Support

TOC Total Cost of 
Ownership

TPM Transactions per 
minute

TTY Teletype Terminal

UID User Identification

URAP Uniform Resource 
Access Priority

VMM Virtual Memory 
Manager

WLM Workload Manager

WSM Web-based System 
Manager

ZAM Central Institute for 
Applied Mathematics
324 AIX 5L Workload Manager (WLM)



Index

Symbols
/etc/group   19, 20, 24
/etc/inittab   110, 112, 189
/etc/passwd   19, 20, 24
/etc/security/limits   304
/etc/wlm   41, 44, 57
/etc/wlm/.running   52, 195
/etc/wlm/current   52, 274
/etc/wlm/current/rules   44
/etc/wlm/standard   44
/etc/wlm/templates   57
/usr/include/sys/wlm.h   261
/usr/lib/libwlm.a   195
/usr/sbin/acct/acctcom   28
/var/adm/pacct   27

Numerics
32bit   25
64bit   25

A
Accounting   27

Displaying WLM class information   28
acctcom   28
Active mode   98
Add a class   68
Add a class to another configuration   78
Add or remove processes   186
Adding a class   62, 68, 73
Adding a rule   83, 87
Admingroup   19, 177
Administration   43
Adminuser   19, 177
Advanced Menu   172

Example   173
AIX

AIX 5L   9
V4.3.3   9, 15

AIX 5L Version 5.0   9
AIX 5L Version 5.1   10
AIX CPU allocation   239
AIX Version 4.3.3 ML 2   9
AIX Version 4.3.3 ML 8   10
AIX Workload Manager

See also WLM
© Copyright IBM Corp. 2001
Alternate configurations   67
Analysis

Long-term   160
API   25, 195
API routines   261
Application pathname   24
Application Programming Interface (API)   195
Application tag   25, 195, 273

Example   196
Example program   197
Sample program   309

ARM API   203
arm_start   202
arm_stop   202
Authgroup   20, 177
Authuser   20, 177
Automatic assignment   22

B
Backward compatibility   15, 35
Bar Display   164
Base line   214
Binary compatibility   201
Bufferpools   191

C
Case Study

PeopleSoft   223
SAP R/3   238

Change Configuration   105
Change/Show Characteristics of a class   71
Change/Show Characteristics of a rule   86
Changing a rule   85, 89
chclass   63

Syntax   63
Check assignment   91
Class

Change/Show Characteristics   71
Class Accounting   27
Class assignment rules   23, 50

Application pathname   24
Application tag   25
Default class   26
Examples   26
Group   24
Process type   25
325



System class   26
User   24

Class attributes   17, 45, 69
Admingroup   19
Adminuser   19
Authgroup   20
Authuser   20
Inheritance   18, 188
Localshm   21
localshm   188
Resource set (rset)   20
Tiers   18

Class definitions
Refinement   54

Class management   199
Class name   12, 23
Class report   137
Class resource limits   33
Class resource shares   31
Class Set   66
class_definition   262, 263
class_descr   262
class_tbl   275
Classes   12

Adding a class   62, 68, 73
Class attributes   69
Default   26, 109
General characteristics of a class   69
Listing classes   64
Listing the classes   72, 80
Removing a class   65, 73, 81
Subclasses   14
Superclasses   13
System   26, 109
Update a class   63
Updating a class   69, 79
Working with classes   62

Command line   62
SMIT   66
WSM   73

Working with sets of subclasses   66
Classes file   45
Classification process   22
Command line   43
Commands

acctcom   28
chclass   63
crash   41
cron   56, 109

dkstat   37
iostat   31, 37
kdb   41
lsclass   64
lsrset   95
mkclass   62
nice   38
ps   16, 121, 160
rmclass   65, 200
schedtune   39
smit wlm   43
smitty wlm   43
snap   41
svmon   112, 135
tee   112
topas   124
vmtune   39, 112
wlmassign   182
wlmcheck   54, 90
wlmcntrl   44, 99, 113
wlmset   21, 35, 81
wlmstat   15, 99, 112, 117, 201
wsm   43, 150

Compatibility   15, 35
Configuration steps   108
Configurations

Checking the configuration
Command line   90
SMIT   91
WSM   91

Command line   57
SMIT   57
WSM   58

Configuring WLM   258
Copy a configuration   58, 59
Copy class attributes   77
CPU   30
CPU maximum limit

AIX Version 4.3.3   35
CPU maximum limits

AIX Version 4.3.3   81
crash   41
Create a configuration   58
Create a new class   73, 105
Create a new configuration   60
Create a new rule   84
Create a subclass   77
Create assignment rules   54
Create other configurations   56
326 AIX 5L Workload Manager (WLM)



Create superclasses   54
cron   56, 109
Crontab   43
Customer experience

Pre-WLM solution   254
WLM solution with AIX 5L   257
WLM solution with AIX Version 4.3.3-03   255

D
Data mining   53
DB2 UDB   190

Agents   191
Bufferpools   191
Prefetchers   191
Process model   191
Snapshot monitoring   192

DB2 UDB and WLM   192
default stanza   45, 47, 49
Delete Rule   89
Design phase   53
Design your classification   53
devstrat   39
Disk device driver interaction   39
Disk I/O   31, 39, 119
Displaying WLM class accounting information   28
DKIO   119
dkstat   37
Dump analysis   41
Dynamic update   41

E
Edit a rule   89
Enter configuration description   58
Error codes WLM API   268
exec   22, 25, 195, 197, 273

F
Fine tune your configurations   55
fixed   25
Flags

Global option flags   81
fork   22, 195, 197, 273
Functionality   9

G
Gather resource utilization data   54
General characteristics of a class   69

getpids   190
Global option flags   81
Group   24

H
HACMP   110
Hard maximum limit (HM)   49
Hints and Tips   107

I
Inheritance   18, 22, 179, 188

AIX Version 4.3.3 ML8   19
Automatic assignment   180
Child processes   180
Group members   181
Manual assignment   180
Subclass level   18
Superclass level   18

Insert a rule   88
iostat   31, 37
ISV Case Studies   223

J
Jazizo   160
Job attributes   11
John von Neumann Institute for Computing   253

K
kdb   41
Kernel interaction   36

L
Limits   29, 33, 76

Constraints   34
Hard maximum   34
Hard maximum limit (HM)   49
Maximum   32
Minimum   32, 33
Minimum limit (m)   49
Soft maximum   33
Soft maximum limit (SM)   49

Limits file   49
Limits versus shares   35, 110
List all classes   72
Listing the classes   64, 72, 80
Listing the rules   86, 89
LoadLeveler and WLM   113
  327



LoadLeveler and WLM interaction   115
localshm   21, 188
LPAR   2

Virtual LPAR   3
LRU   34, 111
lsclass   64

Syntax   64
lsrset   95

M
Mainframe partitioning   2
Manual assignment   22, 23, 177

AIX Version 4.3.3   188
DB2 UDB   190
First assignment   178
Methods   182

Applications   187
Command line   183
SMIT   184
WSM   186

Oracle example   188
Oracle example script   307
Sample Korn shell scripts   307

maxfree   112
maxperm   112
Memory   30
Memory regulation   111
Memory resource management   71
Memory segment classification   21
minfree   112
Minimum limit (m)   49
minperm   112
mkclass   62

Syntax   62
Modes of operation   98
Monitoring   40, 152
Monitoring applications

WLM and Tivoli   203

N
New Class Wizard   73
nice   38
NIS   19, 24
Non configured WLM startup   112
NUMA   3

O
OLAP   108
OLTP   53, 108, 224
Oracle

Database instances   177
Example script   307
Instances example   188
Script

Configuration file   189
Data structure   190
Function   190
Process   190

P
Partitioning

Mainframe partitioning   2
NUMA   3
Physical partitioning   3
UNIX partitioning   2

Passive mode   9, 40, 54, 98
Peformance tools

topas
CPU Utilization   129

PeopleSoft
Case study   223
Case study method   225
OLTP benchmarks   224, 226
One batch - two OLTP benchmarks   232, 234
Two batch - two OLTP benchmarks   235
Two batch benchmarks   235
WLM configuration   228

Performance Toolbox (PTX)   152
Console   156
Jazizo   160
Monitoring console   156
xmtrend   160, 161

Performance tools   117
Daemon recording and configuration   161
ps   121

Examples   123
svmon   135

Class report   137
Examples   140, 146
Syntax   138, 145
Tier report   145

topas   124
EVENTS/QUEUES   127
Examples   132
328 AIX 5L Workload Manager (WLM)



FILE/TTY   127
MEMORY   128
Network Interfaces   129
NFS   129
PAGING   128
PAGING SPACE   129
Physical Disks   130
Processes   131
WLM Classes   131

Web-based System Manager (WSM)   150
wlmmon   160
wlmperf   160
wlmstat   117

Examples   120
xmperf   153
xmtrend   161

PGID   186
Physical memory   30
Physical partitioning   3
plock   25
PPAR   3
Practical experience   223
Prefetchers   191
Process accounting   27
Process type   25
Process type attribute   51
Properties   59, 79, 97
Property files   44
ps   16, 121, 160

Examples   123
Syntax   121, 160

R
Reassignment   179
Refresh Current Configuration   60
Remove a class   65, 73
Remove a configuration   58
Removing a class   65, 73, 81
Removing a rule   87, 89
Report Displays   163

Bar Display   164
Snapshot Display   165
Tabulation Display   166

Report Properties   167
Advanced Menu   172
Tier/Class Menu   171
Times Menu   168

Resource limits   33

Resource management   30
Resource manipulation   150
Resource set (rset)   20
Resource sets

Add a new resource set   94
Command line   95
SMIT   97
Working with resource sets   92

SMIT   93
WSM   97

Resource shares   31
Resource target   32
Resource usage monitoring   209
Resource usage statistics   36
Resources   29, 150

CPU   30, 38
Disk I/O   31, 39
Physical memory   30, 39

resvd attribute   83
rmclass   65, 200

Syntax   65
rset   92
rset registry   92
Rules   82, 110

Adding a rule   83, 87
Change/Show characteristics   86
Changing a rule   85, 89
Edit a rule   89
Insert a rule   88
Listing the rules   86, 89
Removing a rule   87, 89
Working with rules   82

Command line   82
SMIT   83
WSM   87

Rules file   50, 82

S
Sample workload program   297
SAP R/3

Case Study   238
Configuring systems of equal size   245
Configuring systems of unequal size   248
Priority system with several additional sys-
tems   248
Process distribution recommendation   249
Products tested   238
Systems consolidation objectives   242
  329



Systems of equal size and equal priority   
243
Systems of unequal size   245
Systems of unequal size but equal priority   
247
WLM classes versus OS processes   239

Central system   242
Standard benchmark tool   239

SAP R/3 Case Study   238
schedtune   39
Scheduler interaction   38
Select a configuration   58
Server consolidation   1, 7, 206

Capacity sizing steps   209
Contras   207
Pros   207

setgid   24, 25, 113
setpri   25
settag.c   197, 309
Setting up WLM

A starting point   108
Before you start   108
Configuration steps   108

setuid   24, 25, 113
Shared memory segments   21

AIX Version 4.3.3   81
AIX Version 4.3.3 ML 8   21

Shares   30, 31, 76
Shares file   46
Shares versus limits   35, 110
Show all configurations   58
Show Configuration Details   59, 80
Show current focus   66
Show Processes   151
Show Subclasses   151
Sizing   205, 208

All applications are mission-critical   216
Comparison of approaches   220
CPU   214
CPU resource usage calculation sample   311
Estimate for each application   210
Estimate for integrated applications   214
Examples   214
Memory and disk I/O bandwidth   221
Some applications are mission critical   217

SMIT   43
smitty

chgwlmrs   85
crewlmrs   84

rset   93
wlmaddclass   68
wlmassign   184
wlmchclass   69
wlmclass_gal   97
wlmconfig   57
wlmlsclass   72
wlmmanage   102
wlmrmclass   73

snap   41
Snapshot Display   165
Snapshot Option Panel   172
Soft maximimum limit (SM)   49
SP systems   110
SPMI   152
Start WLM   99
Start Workload Management   102
Start Workload Manager   104, 107
Start/Stop/Update WLM   99

Command line   100
SMIT   102
WSM   103

Statistics for WLM   154
Stop WLM   99
Stop Workload Management   102
Stop Workload Manager   105, 107
Subclasses   12, 14

Default   15
Shared   15
Work on a set of   68, 71, 72, 73, 84, 86, 87
Working with sets of   66

Superclass administrator   12
Superclasses   12, 13

Default   13
Shared   13
System   13
Unclassified   14
Unmanaged   14

svmon   112, 135
Class report   137

Examples   140
Syntax   138

Reports   136
Tier report   145

Examples   146
Syntax   145

SWLMTAGINHERITEXEC   274
SWLMTAGINHERITFORK   274
System Performance Measurement Interface   152
330 AIX 5L Workload Manager (WLM)



T
Tabulation Display   166
TAPM

Application instrumentation   202
Overview   202
Transaction simulation   202

TAPM and WLM   203
Target   32
tee   112
Things to do   107
Tier regulation   38
Tier report   145
Tier/Class Menu   171
Tiers   16, 109

AIX 5L versus AIX V4.3.3   17
Times Menu   168
Tivoli

Integration with WLM   202
Tivoli and WLM

Monitoring applications   203
Tivoli Application Performance Management 
(TAPM)   202
Tivoli Decision Support (TDS)   203
Tivoli Enterprise Console (TEC)   203
topas   124

CPU Utilization   129
EVENTS/QUEUES   127
Examples   132
FILE/TTY   127
MEMORY   128
Network Interfaces   129
NFS   129
PAGING   128
PAGING SPACE   129
Physical Disks   130
Processes   131
subcommands   126
Syntax   124
WLM Classes   131

Tree-Details   80

U
Uniform Resource Access Priority (URAP)   37
UNIX partitioning   2
UNIX system capacity sizing   205
Update a class   63
Update WLM   99
Update Workload Management   102

Updating a class   63, 69, 79
URAP   37
User   24

V
Virtual LPAR   3
VMM   34
VMM interaction   39
vmtune   39, 112

W
Web-based System Manager (WSM)   43, 150
WLM

Accounting   27, 201, 293
Displaying WLM class information   28

Active mode   98
Administration   43
Alternative configurations   56
API routines   261
Application Programming Interface (API)   195
Basic elements   10
Before you start   108
Class accounting   27
Classes   12
Classification   201
Commands   43
Configuration   53
Configuration steps   53, 108
Configurations

Command line   57
SMIT   57
WSM   58

CPU allocation   240
Customer experience   252
Functionality   9
General recommendations   306
Global option flags   81
Integration with Tivoli products   202
Library   269
Management   200
Memory regulation   111
Modes of operation   98
Monitoring   40, 152
Operation   98
Overhead   40
Overview   10
Passive mode   98
Performance Tools   117
  331



Purpose of   6
Resource management   30
Resource Usage Statistics   36
Resources   29
Sizing recommendations   205
Start/Stop/Update   99
Statistics   201
Status   104
Things to do   107
Tier regulation   38
Turn on   55

WLM accounting   293
WLM and DB2 UDB   192
WLM and LoadLeveler   113
WLM and LoadLeveler interaction   115
WLM and TAPM   203
WLM and Tivoli

Monitoring applications   203
WLM API

Accounting   201, 293
Application tag   273
Class management   274
Classification   290
Constants   261
Data structures   261
Function prototypes   261
Functions error codes   268
Management   280
Statistics   285

WLM in a research environment   252
WLM Report Browser   163
wlm_args   261
wlm_assign   187, 264, 283

Parameter   284
args   284

wlm_bio_class_info_t   266
wlm_bio_dev_info_t   266
wlm_change_class   199, 277

Parameter   278
wlmargs   278

wlm_check   201, 290
Parameter   290

config   290
wlm_class2key   29, 195, 201, 293

Parameter
args   294

wlm_classify   201, 291
Parameters   292

attributes   292

class   292
config   292
len   292

WLM_Console Menu   162
wlm_create_class   199, 276

Parameter   277
wlmargs   277

wlm_delete_class   199, 200, 279
Parameter   279

wlmargs   279
wlm_endkey   195, 201, 296

Parameter
args   296

wlm_get_bio_stat   201, 203
wlm_get_bio_stats   288

Parameters   288
array   289
class   289
count   289
dev   289
flags   288

wlm_get_info   201, 203, 285
Parameters   286

count   287
info   287
wlmargs   286

wlm_info   264
wlm_init_class_definition   276, 278

Parameter   272
wlmargs   272

wlm_initialize   197, 268
Parameter   272

flags   272
wlm_initkey   195, 201, 293

Parameter   293
args   293

wlm_key2class   29, 195, 201, 294
Parameter

args   295
wlm_load   200, 281

Parameter   282
wlmargs   282

WLM_MUTE   261
wlm_read_classes   199, 274

Parameters   275
class_tbl   275
nclass   276
wlmargs   275

wlm_set   200, 280
332 AIX 5L Workload Manager (WLM)



Parameter   280
flags   280

wlm_set_tag   177, 195, 197, 273
Parameters   273

flags   273
tag   273

WLM_VERSION   261, 273
wlmassign   182

Syntax   182
wlmcheck   54, 90

Syntax   90
wlmcntrl   44, 99, 113

Syntax   100
wlmmon   160

Differences to wlmperf   160
Prerequisite filesets   175
Report Displays   163

Bar Display   164
Snapshot Display   165
Tabulation Display   166

Report Properties   167
Advanced Menu   172
Tier/Class Menu   171
Times Menu   168

Snapshot Option Panel   172
WLM Report Browser   163
WLM_Console Menu   162

<$.nopageSee also wlmmon   163
wlmperf   160

Differences to wlmmon   160
Prerequisite filesets   175

wlmsched   39
wlmset   21, 35, 81

Syntax   81
wlmstat   15, 99, 112, 117, 201

Examples   120
Internal parameters   118
Syntax   117

Work on alternate configurations   67
Working with WLM configurations   56
Workload management   5

Need for   1
Workloads   7
WSM   43

Advanced configuration tool   75
Class Assignment Rules   88, 89
Configurations/Classes   58, 74, 79, 80, 88, 91, 
97, 106, 151, 186
Overview and Tasks   73, 103

Resources   150
wsm   150

X
xmperf   153
xmservd   159
xmtrend   160, 161

Daemon recording and configuration   161
Syntax   161
  333



334 AIX 5L Workload Manager (WLM)



© Copyright IBM Corp. 2001 335

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a 
Redbook "made the difference" in a task or problem you encountered. Using one of the following 
methods, please review the Redbook, addressing value, subject matter, structure, depth and 
quality as appropriate.

  • Use the online Contact us review redbook form found at ibm.com/redbooks
  • Fax this form to: USA International Access Code + 1 845 432 8264
  • Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5977-01
AIX 5L Workload Manager (WLM)

Review

What other subjects would you 
like to see IBM Redbooks 
address?

Please rate your overall 
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as 
belonging to one of the 
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may 
be used to provide you with 
information from IBM or our 
business partners about our 
products, services or activities.

O Please do not use the information collected here for future 
marketing or promotional contacts or other communications beyond 
the scope of this transaction.

Questions about IBM’s privacy 
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/




AIX 5L W
orkload M

anager (W
LM

)  







®

SG24-5977-01 ISBN 0738422436

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

DISKETTE
INCLUDED

AIX 5L Workload
Manager (WLM)

Effectively manage 
your system 
resources

Learn how to deploy 
the new functionality

Control the resource 
consumption of 
individual 
applications

Effectively managing system resources in growing UNIX 
server environments has become a critical task. Each 
workload on the server must be assured the appropriate 
amount of system resources without penalizing 
mission-critical applications. AIX 5L Workload Manager 
provides a great set of tools and functionalities to efficiently 
accomplish this. 

This IBM redbook exploits the entire functionality of AIX 5L 
Workload Manager, which has been enhanced in many ways 
since its introduction with AIX V 4.3.3. The new manual 
assignment feature allows you to separate, for example, 
multiple instances of a database. An API allows you to perform 
all the WLM administration and configuration tasks from a 
program. A step-by-step guide is provided for planning and 
configuring AIX WLM through file editing, AIX commands, the 
System Management Interface Tool (SMIT), or Web-based 
System Manager (WSM). Real-life examples have been added 
to demonstrate the impact and benefits of using AIX Workload 
Manager.

This IBM redbook is the ultimate guide for system architects, 
technical support specialists, and system administrators to 
planning, implementing, and administering a Workload 
Manager solution in a consolidated server environment.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. The need for workload management
	1.1 Architectural differences
	1.1.1 Mainframe partitioning
	1.1.2 UNIX partitioning
	1.1.3 Workload management

	1.2 The purpose of AIX WLM

	Chapter 2. AIX Workload Manager functionality
	2.1 Overview
	2.2 Classes
	2.2.1 Hierarchy of classes
	2.2.2 Superclasses
	2.2.3 Subclasses
	2.2.4 Backward compatibility considerations

	2.3 Tiers
	2.4 Class attributes
	2.5 Classification process
	2.5.1 Automatic assignment
	2.5.2 Manual assignment
	2.5.3 Class assignment rules

	2.6 WLM class accounting
	2.6.1 Process accounting using WLM class

	2.7 Resources
	2.7.1 Resources managed by WLM
	2.7.2 Class resource shares
	2.7.3 Class resource limits
	2.7.4 Backward compatibility considerations

	2.8 WLM interaction with the kernel
	2.8.1 Resource usage statistics
	2.8.2 Uniform Resource Access Priority (URAP)
	2.8.3 Interaction with the scheduler
	2.8.4 Interaction with VMM
	2.8.5 Interaction with disk device drivers

	2.9 WLM Application Programming Interface
	2.10 Additional characteristics

	Chapter 3. AIX Workload Manager administration
	3.1 Property files
	3.2 WLM configuration
	3.2.1 Steps for a WLM configuration
	3.2.2 Working with WLM configurations
	3.2.3 Working with classes
	3.2.4 AIX Version 4.3.3 maintenance level 8 wlmset command
	3.2.5 Working with rules
	3.2.6 Checking the configuration - wlmcheck
	3.2.7 Working with resource sets

	3.3 WLM operation
	3.3.1 Modes of operation
	3.3.2 Start/Stop/Update WLM - wlmcntrl

	3.4 Hints and tips
	3.4.1 Things to do
	3.4.2 Things to be aware of
	3.4.3 LoadLeveler and WLM


	Chapter 4. WLM performance tools
	4.1 wlmstat
	4.2 ps
	4.3 topas
	4.4 svmon
	4.4.1 Workload manager class report
	4.4.2 Workload manager tier report

	4.5 Web-based System Manager (WSM)
	4.6 Monitoring Workload Manager with PTX
	4.6.1 xmperf
	4.6.2 xmservd
	4.6.3 Jazizo
	4.6.4 wlmmon / wlmperf


	Chapter 5. Manual assignment
	5.1 Description
	5.1.1 First assignment
	5.1.2 Reassignment and cancellation
	5.1.3 Interaction with inheritance

	5.2 Manual assignment methods
	5.2.1 AIX Version 4.3.3 maintenance level 8 manual assignment

	5.3 Oracle database example
	5.4 DB2 UDB
	5.4.1 DB2 process model
	5.4.2 Using AIX WLM with DB2 UDB

	5.5 Conclusion

	Chapter 6. WLM Application Programming Interface (API)
	6.1 Application tag
	6.1.1 Description
	6.1.2 An application tag situation
	6.1.3 Example of an application tag program

	6.2 Class management
	6.3 WLM management
	6.4 WLM statistics
	6.5 WLM classification
	6.6 WLM accounting
	6.7 Binary compatibility
	6.8 Integration with Tivoli products
	6.8.1 TAPM overview
	6.8.2 TAPM and WLM
	6.8.3 Monitoring an application in a WLM and Tivoli environment

	6.9 Summary

	Chapter 7. Sizing recommendations for Workload Manager
	7.1 Typical UNIX system capacity sizing
	7.2 Server consolidation considerations
	7.3 System capacity sizing for Workload Management
	7.3.1 System capacity sizing steps for server consolidation
	7.3.2 Examples
	7.3.3 Considerations for memory and disk I/O bandwidth

	7.4 Conclusion

	Chapter 8. Practical experience
	8.1 ISV case studies
	8.1.1 PeopleSoft
	8.1.2 SAP R/3 Case Study

	8.2 Customer experience - WLM and a compute server for research
	8.2.1 The installation
	8.2.2 Central AIX system
	8.2.3 Problems
	8.2.4 A pre-WLM solution
	8.2.5 The WLM solution with AIX Version 4.3.3-02
	8.2.6 The second WLM solution with AIX 5L
	8.2.7 Conclusion


	Appendix A. AIX Workload Manager API routines
	A.1 The Include file - sys/wlm.h
	A.1.1 wlm_args
	A.1.2 wlm_assign
	A.1.3 wlm_info
	A.1.4 wlm_bio_class_info_t
	A.1.5 wlm_bio_div_info_t

	A.2 WLM API functions error codes
	A.3 Initialization routines
	A.3.1 wlm_init_class_definition
	A.3.2 wlm_initialize

	A.4 Application tag
	A.4.1 wlm_set_tag

	A.5 Class management
	A.5.1 wlm_read_classes
	A.5.2 wlm_create_class
	A.5.3 wlm_change_class
	A.5.4 wlm_delete_class

	A.6 WLM management
	A.6.1 wlm_set
	A.6.2 wlm_load
	A.6.3 wlm_assign

	A.7 WLM statistics
	A.7.1 wlm_get_info
	A.7.2 wlm_get_bio_stats

	A.8 WLM classification
	A.8.1 wlm_check
	A.8.2 wlm_classify

	A.9 WLM accounting
	A.9.1 wlm_initkey
	A.9.2 wlm_class2key
	A.9.3 wlm_key2class
	A.9.4 wlm_endkey


	Appendix B. Sample workload program
	Appendix C. Sample Korn shell scripts for manual assignment
	C.1 Oracle example script

	Appendix D. Sample program for application tag
	D.1 settag.c

	Appendix E. Sample for CPU resource usage calculation
	Appendix F. Using the additional material
	F.1 Using the diskette
	F.1.1 System requirements for using the diskette
	F.1.2 How to use the diskette

	F.2 Locating the additional material on the Internet

	Appendix G. Special notices
	Appendix H. Related publications
	H.1 IBM Redbooks
	H.2 IBM Redbooks collections
	H.3 Other resources
	H.4 Referenced Web site

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Abbreviations and acronyms
	Index
	IBM Redbooks review

