
WebSphere V3
Performance Tuning Guide

Ken Ueno, Tom Alcott, Jeff Carlson, Andrew Dunshea, Hajo Kitzhöfer,
Yuko Hayakawa, Frank Mogus, Colin D. Wordsworth

International Technical Support Organization

SG24-5657-00

www.redbooks.ibm.com

http://www.redbooks.ibm.com

International Technical Support Organization SG24-5657-00

WebSphere V3
Performance Tuning Guide

March 2000

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 2000)

This edition applies to:

• IBM WebSphere Application Server Version 3.02
• IBM HTTP Server Version 1.3.6.2
• IBM Java Development Kit Version 1.1.6.9

for use with the AIX V4.3.2 operating system.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix B,
“Special notices” on page 185.

Take Note!

Contents

Preface . vii
The team that wrote this redbook . vii
Comments welcome . ix

Chapter 1. Overview of WebSphere Application Server V31
1.1 WebSphere Application Server V3 .1
1.2 Standard Edition .3
1.3 Advanced Edition .3

Chapter 2. Performance tuning approach .7
2.1 WebSphere Application Server V3 topologies .8

2.1.1 Topology 1: single machine. .8
2.1.2 Topology 2: separating the database server from WAS9
2.1.3 Topology 3: multiple application servers .10
2.1.4 Topology 4: advanced topology. .10
2.1.5 Our test application .11

2.2 Network and hardware configuration .13

Chapter 3. AIX TCP/IP tuning .15
3.1 Network tuning with no command .15
3.2 Tuning parameter summary .19

Chapter 4. Web Server: IBM HTTP Server 1.3.6 .21
4.1 Process handling .21
4.2 Connection .22
4.3 Resource usage .23
4.4 Name resolution .24
4.5 Fast Response Cache Accelerator .24
4.6 APAR for Web server performance .27

Chapter 5. WebSphere Engine .29
5.1 JVM .30

5.1.1 Selecting a JVM .30
5.1.2 Tuning the JVM .30
5.1.3 JVM heap size .31
5.1.4 JIT. .33
5.1.5 Garbage collection .34
5.1.6 Java stack and native thread stack size .34

5.2 Transport queue .36
5.2.1 Queue type: OSE .36
5.2.2 Transport type. .37
5.2.3 Maximum connections. .38
5.2.4 Queue type for servlet redirector .38

5.3 Servlets Auto Reload .40
5.4 EJB Container. .41

5.4.1 Cache size .42
5.4.2 Cache preferred limit .42
5.4.3 Cache absolute limit .43
5.4.4 Cache cleanup interval .43
5.4.5 Option A and option C caching performance considerations44
5.4.6 Number of containers .45
© Copyright IBM Corp. 2000 iii

5.5 ORB . 45

Chapter 6. Security . 49
6.1 WebSphere security overview . 49
6.2 Configuring security . 51

6.2.1 Enabling security . 51
6.2.2 Security cache timeout. 52
6.2.3 SSL V3 timeout . 53

6.3 The invoker servlet . 54

Chapter 7. Database tuning . 57
7.1 The WebSphere administrative repository . 57

7.1.1 Serious event reporting . 59
7.2 DataSource object settings . 61

7.2.1 Connection pooling . 61
7.3 Prepared statements . 64

7.3.1 Prepared statement cache . 64
7.3.2 Prepared statement key cache. 65

7.4 UDB configuration . 66
7.4.1 Buffpage . 67
7.4.2 Applheapsz . 70
7.4.3 Pckcachesz . 71
7.4.4 Maxappls . 71
7.4.5 Dft_degree. 71
7.4.6 Locklist . 72
7.4.7 Maxlocks . 72
7.4.8 Locktimeout . 73
7.4.9 Maxagents . 73

Chapter 8. Session management . 75
8.1 Session information . 75
8.2 Keeping session information in memory . 75
8.3 Persistent sessions . 76

8.3.1 Database/Datasource configuration . 76
8.3.2 Session Manager configuration . 76

8.4 Tuning the Session Manager . 77
8.4.1 The Invalidate Time setting . 77
8.4.2 Monitor and estimate Invalidate Time. 78
8.4.3 Tuning parameters on the Tuning tab . 79
8.4.4 Multirow sessions . 80
8.4.5 Using cache. 81
8.4.6 Using manual update . 82
8.4.7 Using native access . 82
8.4.8 Allow overflow . 82
8.4.9 Base memory size . 83

Chapter 9. Performance test tools . 85
9.1 WebStone . 85
9.2 AKtools . 85
9.3 Apache Bench . 86
9.4 Rational Suite Performance Studio . 87
9.5 JMeter . 87
9.6 WebLoad . 88
9.7 LoadRunner. 88
iv WebSphere V3 Performance Tuning Guide

Chapter 10. Monitoring tools .89
10.1 WebSphere Application Server Resource Analyzer89

10.1.1 Enterprise beans .91
10.1.2 Servlets .96
10.1.3 Sessions .99
10.1.4 System Resources .101
10.1.5 DB pools .103

10.2 AIX performance tools. .107
10.3 Managing memory resources .107

10.3.1 Monitoring memory with vmstat .107
10.3.2 Monitoring memory with sar .109
10.3.3 Monitoring memory with lsps .109
10.3.4 Monitoring memory with ps .110
10.3.5 Monitoring memory with svmon .110

10.4 Managing CPU resources .112
10.4.1 Monitoring the CPU with vmstat .113
10.4.2 Monitoring the CPU with sar .114
10.4.3 Monitoring the CPU with time .115
10.4.4 Checking active CPUs using cpu_state .115

10.5 Managing network resources .116
10.5.1 Monitoring the network with netstat .116

10.6 Tuning methodology example with changing JVM parameters119
10.6.1 Case 1: -mx64m .119
10.6.2 Case 2: -ms32m, -mx64m .124
10.6.3 Case 3: -ms64m, -mx64m .129

Chapter 11. WebSphere Application Server Site Analyzer133
11.1 What is WebSphere Application Server Site Analyzer?133
11.2 Why do I need WebSphere Application Server Site Analyzer?134

11.2.1 Features of WebSphere Application Server Site Analyzer135
11.2.2 Content analysis .135
11.2.3 Usage analysis .136
11.2.4 Visualization and reports .137
11.2.5 Usability .138
11.2.6 Technology .139
11.2.7 Client/server configuration. .140

Chapter 12. AFS performance tuning guide .141
12.1 Overview. .141
12.2 Communications with the fileserver process .142
12.3 Commonly used parameters .144
12.4 Overview of AFS 3.5 File Server changes .146
12.5 AFS 3.5 File Server performance improvements146

12.5.1 POSIX threads .147
12.5.2 RX slow start .147
12.5.3 File descriptor caching .147
12.5.4 Reduced lock contention .148
12.5.5 Overload processing .148
12.5.6 Buffer management .150

12.6 AFS 3.5 File Server parameter changes .151
12.7 Scenarios .152

12.7.1 Scenario #1. .152
12.7.2 Scenario #2. .154
v

12.7.3 Scenario #3 . 157
12.7.4 Scenario #4 . 158

12.8 Debugging tools and example output . 160
12.8.1 RXDEBUG incorporated in the meltdown script 160
12.8.2 tcpdump. 162
12.8.3 netstat . 164

12.9 Summary . 165

Appendix A. TCP/IP overview and tuning .167
A.1 TCP/IP overview .167
A.2 Maximum Transmission Unit (MTU). .169
A.3 Adapter queue size .169

A.3.1 Transmit and receive queues. .170
A.3.2 Adapter queue settings .171
A.3.3 Adapter tuning recommendations .172

A.4 TCP maximum segment size (MSS) .172
A.4.1 Subnetting and the subnetsarelocal. .172
A.4.2 TCP data flow .174

A.5 TCP sliding window .175
A.6 Socket layer .177
A.7 Communication subsystem memory management .178
A.8 Interface specific network options for AIX 4.3.3 .181

A.8.1 Implementation overview .182
A.8.2 How to use the new options. .182
A.8.3 References for the ISNO .183

Appendix B. Special notices .185

Appendix C. Related publications .187
C.1 IBM Redbooks .187
C.2 IBM Redbooks collections .187
C.3 Other resources .187
C.4 Referenced Web sites .188

How to get IBM Redbooks . 189
IBM Redbooks fax order form .190

Index . 191

IBM Redbooks review . 197
vi WebSphere V3 Performance Tuning Guide

Preface

This redbook will help you to design and configure WebSphere Application Server
V3.02 for AIX, Solaris, and Windows NT for better performance. The main tuning
objectives for WebSphere are to improve performance, response time, and
resource utilization.

This redbook gives some general recommendations and describes specific tuning
methodologies. It provides hints and tips on the various factors and variables that
can enhance the performance of WebSphere including AIX networks and IBM
HTTP Server performance tuning. We introduce performance test tools and
monitoring tools. WebSphere tuning methodology examples are included. This
redbook also contains an overview of WebSphere Site Analyzer. We also provide
a performance tuning guide for AFS, which is a part of WebSphere Performance
Pack.

Some knowledge of WebSphere Application Server V3.02, DB2 UDB, and AIX
are assumed. Note that in this redbook we will not discuss the basic
configurations of WebSphere, DB2 UDB, or AIX.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Ken Ueno is an advisory International Technical Support Representative at the
International Technical Support Organization, Raleigh Center. He manages
residencies and produces redbooks. Before joining the ITSO, he worked in
Internet Systems, IBM Japan Systems Engineering Co., Ltd in Japan as an I/T
Specialist. He can be reached at kenueno@us.ibm.com.

Tom Alcott is an advisory I/T specialist in the United States. He has been a
member of the World Wide WebSphere Technical Sales Support team since its
inception. Before he started working with WebSphere, he was a systems
engineer for IBM’s Transarc Lab supporting TXSeries. His background includes
over 18 years of application design and development on both mainframe-based
and distributed systems. He has written and presented extensively on a number
of WebSphere runtime and security issues.

Jeff Carlson is a Staff Software Engineer on the AFS/WSPP team at the IBM
Transarc Lab in the United States. He has over 10 years of experience in the
support of various mainframe, PC/LAN, and UNIX workstation products. Jeff
graduated Magna Cum Laude from Robert Morris College with a Bachelor's
degree in Business Administration. At the IBM Transarc Lab, he has written
extensively on AFS performance tuning.

Andrew Dunshea is a Performance Analyst from IBM New Zealand. He has 10
years of experience in application development. His areas of expertise include
object-oriented software development and analysis, systems programming, and
performance analysis.

Dr. Hajo Kitzhöfer is an Advisory International Technical Support Organization
(ITSO) Specialist for RS/6000 SP at the Poughkeepsie Center. His areas of
© Copyright IBM Corp. 2000 vii

expertise include RS/6000 SP, SMP, and Benchmarks. He now specializes in SP
System Management, SP Performance Tuning, and SP hardware.

Yuko Hayakawa is an I/T Specialist in Japan. she has four years of experience in
the e-commerce field. She has worked at IBM for 4 years. Yuko has written
extensively on database tuning and session management.

Frank Mogus is a Systems Consultant in Canada. He has several years of UNIX
experience and has worked with The Braegen Group for four years.

Colin D. Wordsworth is a software engineer in Australia. He has 16 years of
experience in applications development. He has been with IBM for the last five
years, and is currently involved in setting up the e-business centre for excellence
in Western Australia.

Thanks to the following people from the International Technical Support
Organization, Raleigh Center:

Carla Sadtler
Gail Christensen
Shawn Walsh
John Ganci
Barry Nusbaum
Margaret Ticknor
Mike Haley

Thanks to the following IBM employees:

Ruth Willenborg, Manager, WebSphere Performance, Raleigh
Chris Forte, WebSphere Performance, Raleigh
Ron Bostick, WebSphere Performance, Raleigh
Charlie Bradley, WebSphere Performance, Raleigh
Jerry Cuomo, Manager, WebSphere Performance and Security, Raleigh
Graeme N. Dixon, STSM, WebSphere Development, IBM Transarc Lab
Jason R McGee, WebSphere Development, Raleigh
Songquan Liu, WebSphere Development, IBM Transarc Lab
Tianyu Jiang, WebSphere Development, IBM Transarc Lab
Cindy Tipper, WebSphere Development, IBM Transarc Lab
Chris Newbold, WebSphere Development, IBM Transarc Lab
Chriss Stephens, WebSphere Development, IBM Transarc Lab
Gabe Montero, WebSphere Development, Raleigh
Allan Dickson, WebSphere Development, Raleigh
Linh Nguyen, Project Manager, IBM HTTP Server Development, Raleigh
David Allen, IBM HTTP Server Development, Raleigh
Tom Hartrick, Manager, Site Analyzer Development, Raleigh
Gopi Attaluri, DB2 Performance Team, Toronto
Steve Schormann, DB2 Performance Team, Toronto
Richard Nesbitt, Special Events Development, Raleigh
Steve King, System Administration, Raleigh
Marco Pistoia, T.J. Watson Research
Tetsuya Shirai, ITSO San Jose Center
Joanne Luedtke, Manager, ITSO Austin Center
viii WebSphere V3 Performance Tuning Guide

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 197 to the
fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an internet note to redbook@us.ibm.com
ix

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

x WebSphere V3 Performance Tuning Guide

Chapter 1. Overview of WebSphere Application Server V3

This chapter gives an overview of the WebSphere Application Server V3, which
comes in three editions:

• WebSphere Application Server, Standard Edition
• WebSphere Application Server, Advanced Edition
• WebSphere Application Server, Enterprise Edition

The Enterprise Edition builds on the Advanced Edition. It combines the TXSeries
and Component Broker with the Advanced Edition. The Enterprise Edition is not
covered in this redbook.

1.1 WebSphere Application Server V3

Our discussion will cover two editions of WebSphere: Standard and Advanced.
Both products are based on and support key open-industry standards such as
HyperText Transfer Protocol (HTTP), HyperText Markup Language (HTML),
Extensible Markup Language (XML), Secure Sockets Layer (SSL), Java,
JavaBeans, Common Object Request Broker Architecture (CORBA), Lightweight
Directory Access Protocol (LDAP), and most importantly the following Enterprise
Java APIs:

• Enterprise JavaBeans (EJB) technology is a reusable Java component for
connectivity and transactions (EJB support is provided only in the Advanced
Edition).

• Java Server Pages (JSP) represent inline Java code scripted within Web
pages.

• Java Servlets are used in building and deploying server-side Java
applications.

• Java Interface Definition Language (JIDL), is used to connect to CORBA
objects and applications.

• Java DataBase Connectivity (JDBC) is for connections to relational
databases. WebSphere supports JDBC within its Connection Manager and
within EJBs, for distributed database interactions and transactions.

• Java Messaging Service (JMS) is to be supported via MQSeries for
asynchronous messaging and queuing and for providing an interface.

• Java Transaction Service (JTS) and Java Transaction API (JTA) are low-level
APIs for interacting with transaction processing systems and relational
databases, respectively. WebSphere uses these within EJBs for supporting
distributed transactions.

• Java Naming and Directory Interface (JNDI) is for communicating with
directories and naming systems and is used in WebSphere Application Server
to look up existing EJBs and interact with directories.

• Java Remote Method Invocation over Internet Inter-ORB Protocol (RMI/IIOP)
is for communicating with other ORBs (Object Request Brokers) and
CORBA-compliant applications.
© Copyright IBM Corp. 2000 1

Version 3 of WebSphere introduces a new runtime architecture for the
WebSphere Application Server. This runtime architecture is divided into the
following components:

• Administration Server (“adminserver”) - The adminserver is the Systems
Management runtime component of WebSphere. The adminserver is
responsible for runtime management, security, transaction coordination,
and workload management. In most cases (exceptions will be outlined
later) the adminserver runs on all nodes in a WebSphere Administrative
domain and controls the interaction between each node and application
server process in the domain.

• Administrative Console (“adminclient”) - The adminclient is the graphical
user interface used for administration of a WebSphere Administrative
domain. The adminclient can run on one of the nodes that the adminserver
is running on, or it can be a remote node that attaches to a running
adminserver.

• System Configuration Repository - WebSphere stores all runtime
configuration information in a persistent repository. In Standard Edition this
repository can be either UDB V5.2, UDB V6.1, Oracle 8.05, or InstantDB
(which ships with the Standard Edition). Advanced Edition supports UDB
and Oracle as noted for Standard Edition. This repository can either exist
on the same physical server as WebSphere or can be configured on a
remote server.

• Application Server - WebSphere V3 introduces the notion of an application
server process that is separate from the runtime server (adminserver). In
either WebSphere Standard or Advanced Edition, you can define multiple
application servers, each of which has its own JVM. These application
servers in turn can have either a servlet engine, EJB container, or both
defined to them depending on application requirements.

The components of WebSphere V3 are depicted below.

Figure 1. WebSphere components

Administration
Server

Administration
Client

DB

Application
Server(s)

Application
Server(s)
2 WebSphere V3 Performance Tuning Guide

1.2 Standard Edition

WebSphere Standard Edition is a single system, extremely easy-to-use Web
application server. Programmers developing applications think that they are
implementing extended HTML content. The content/page styles include:

• Static HTML (HTML, .gif, .wav, etc.)

• HTML with imbedded client-side scripts, for example JavaScript

• Java Server Pages (JSP)

WebSphere Standard Edition’s objective is to be a simple, easy-to-use but
complete solution for building an active Web site and basic Web applications that
integrate with databases.

WebSphere Standard Edition does not provide the Work Load Management
(WLM) functionality that is available in WebSphere Advanced Edition, but does
allow for multiple JVMs on a single physical server. WebSphere Standard Edition
is also limited to a single node/machine unlike WebSphere Advanced Edition.
These JVMs can be mapped to multiple virtual hosts on a single HTTP server to
provide support for hosting multiple Web sites on a single application server. This
is useful for Internet service providers (ISPs) or for a company wishing to host the
Internet and Intranet Web site on a single server, since WebSphere Standard
Edition has single system application server scalability, achieved through the use
of a product such as Network Dispatcher, which is a part of WebSphere
Performance Pack. An example configuration is shown in Figure 2.

Figure 2. WebSphere Application Server with Network Dispatcher

1.3 Advanced Edition

WebSphere Advanced Edition extends the WebSphere Standard Edition’s
functions across multiple machines to provide complete support for developing
new high-performance, scalable and available, transactional Web-driven
applications. WebSphere Advanced Edition focuses on new applications (JSPs
and EJBs) that access relational databases for persistent state data.

Web Browser

Enterprise Data

DB
CICS

Network
Dispatcher

HTTP
Server

WebSphere
Application Server

Application Server Node

WebSphere
Application Server

WebSphere
Application Server

HTTP
Server

HTTP
Server
Chapter 1. Overview of WebSphere Application Server V3 3

WebSphere Advanced Edition also supports distributed system management for
networks and clusters of WebSphere Advanced Edition systems, and supports a
shared name and security between networks and clusters of WebSphere
Advanced Edition systems.

In an object-oriented distributed computing environment, clients must have a
mechanism to locate and identify the objects as if the clients and objects were all
on the same machine. A naming service provides this mechanism. In the EJB
server environment, the Java Naming and Directory Interface (JNDI) is used to
provide a common front-end to the naming service.

JNDI provides naming and directory functionality to Java applications, but the API
is independent of any specific implementation of a naming and directory service.
This independence ensures that different naming and directory services can be
used by accessing them through the JNDI API. Therefore, Java applications can
use many existing naming and directory services, for example, the Lightweight
Directory Access Protocol (LDAP) or the Domain Name System (DNS).
WebSphere V3 supports JNDI via CosNaming only.

In the Advanced Edition environment, the main component of the security service
is an EJB server that runs as a component of the adminserver that contains the
security beans. When system administrators administer the security service, they
manipulate the security beans.

After an EJB client is authenticated, it can attempt to invoke methods on the
enterprise beans that it manipulates. A method is successfully invoked if the
principal associated with the method invocation has the required permissions to
invoke the method. These permissions can be set by application (an
administrator-defined set of Web and object resources) and by method group (an
administrator-defined set of Java interface-method pairs). An application can
contain multiple method groups.

In general, the principal under which a method is invoked is associated with that
invocation across multiple Web servers and EJB servers (this association is
known as delegation). Delegating the method invocations in this way ensures that
the user of an EJB client needs to authenticate only once. HTTP cookies are
used to propagate a user's authentication information across multiple Web
servers. These cookies have a lifetime equal to the life of the browser session.

A transaction is a set of operations that transforms data from one consistent state
to another. The EJB server manages transactions for EJB applications by using
the mechanism defined in the Java Transaction API (JTA).

For most purposes, enterprise bean developers can delegate the tasks involved
in managing a transaction to the EJB server. The developer performs this
delegation by setting the deployment descriptor attributes for transactions. The
enterprise bean code itself does not need to contain transactional logic.

The Work Load Management (WLM) functionality in WebSphere Advanced
Edition introduces the notion of modelling of application server processes.
Clones, which are instances of a model, can be created either on a single
machine or across multiple machines in a cluster. In either case the WebSphere
Advanced Edition WLM provides workload distribution and failover. A sample
configuration is shown in Figure 3 on page 5.
4 WebSphere V3 Performance Tuning Guide

Figure 3. WebSphere Application Server WLM with Network Dispatcher

While the WLM in WebSphere Advanced Edition can work in conjunction with the
Network Dispatcher (ND) component of WebSphere Performance Pack as
depicted above, WLM can also be used independently of ND. The WebSphere
product family provides support for scalability in two dimensions:

• The number of concurrent connected users (horizontal scaling)
• The number of concurrent requests (vertical scaling)

Horizontal scaling is used to add support for additional concurrent users. For
example, if a machine is serving 100 transactions per second to 100 users with the
desired response time, and you want to be able to serve more concurrently accessed
users, then horizontal scaling techniques of adding additional hardware with the
HTTP server and WebSphere Application Server can be used. This allows you to
serve nearly twice the client load, at the same response time.

Vertical scaling is used to increase the concurrent requests. For example, if a
machine is serving 100 transactions per second to 100 users, and you want to be
able to serve high transaction rates (that is 200 tps), then vertical scaling techniques
of adding additional Application Servers to the machine can be used. This assumes
that the machine is not already running at capacity (if it is, then you would also have
to add more processors).

WebSphere Performance Pack helps with the number of connected users. The
WLM in WebSphere Advanced Edition uses multithreading, and connection pool
management helps to increase the number of concurrent requests.

Since the focus of this redbook is the WebSphere Application Server, we will not
be testing system topologies using WebSphere Performance Pack. However, it
should be mentioned that lab-based performance testing has demonstrated near
linear scalability (greater than 96%) across nodes when using WebSphere
Performance Pack. WebSphere Performance Pack also has been used in an
impressive list of production sites, including the Atlanta and Nagano Olympic
games.

W e b B ro wse r

E n te rp ris e D a ta

D B
C IC S

N etw ork
D ispa tc her

H T T P
S e rve r W e b Sp h ere

A p p lic a tion S e rve r
M od e l (clo n e)

W e bS p h ere
A p plic a tio n S erve r

M o d e l (clo ne)

H T T P
S erver W e b S ph e re

Ap p lic atio n Se rv e r
M o d el (c lo n e)

W e b Sp h e re
Ap p lica tio n Se rv er

M o d el (c lo n e)

W LM

W LM
Chapter 1. Overview of WebSphere Application Server V3 5

6 WebSphere V3 Performance Tuning Guide

Chapter 2. Performance tuning approach

This redbook is a performance tuning guide for Web application servers. We
outline various performance tuning points along with suggestions and
recommendations for initial starting values. Web application server performance
tuning is an ongoing learning experience especially with WebSphere Application
Server V3. Since the largest factor in Web application server performance is the
specific application, specifics of performance tuning for your application might
vary from those presented here. Accordingly, we will not present the results of
performance benchmark tests that we performed for this publication.

There are three main areas that affect Web application server performance:

• The hardware capacity and settings
• The operating system settings
• The Web application server settings

In this redbook, we do not discuss hardware capacity or settings. Though it might
sound trite, the simplest and best way to improve performance is to increase
memory and processor speed as long as you are not I/O or network bound. If you
have the latter problem, then reconfiguring clients and servers into the same
server will help (assuming free cycles on the app server machine).

Your network topology and network adapter card settings can also affect overall
performance. You might want to consider that outgoing response packets from
Web application server are much larger than incoming request packets from
browsers to Web application server.

We discuss the operating system settings in Chapter 3, “AIX TCP/IP tuning” on
page 15.

The Web application server settings are the main topics of this redbook. In this
book, we focus on WebSphere Application Server V3 for AIX. The WebSphere
Application Server V3 architecture provides several decision points that affect the
overall performance of your Web applications. Each decision point, in turn, offers
trade-offs that you might view favorably or negatively depending on your
circumstances. There is no one-size-fits-all solution.

There are four fundamental decision points that have their own tuning options:

1. The Web server (HTTP server)

2. The WebSphere Application Server Engine

3. The Java Virtual Machine (JVM)

4. The database server

We discuss all of them in this redbook. Chapter 4, “Web Server: IBM HTTP
Server 1.3.6” on page 21 discusses the Web server settings. Chapter 5,
“WebSphere Engine” on page 29 and Chapter 6, “Security” on page 49 discuss
the WebSphere Application Server Engine and JVM. The database server
settings are covered in Chapter 7, “Database tuning” on page 57 and Chapter 8,
“Session management” on page 75.
© Copyright IBM Corp. 2000 7

Figure 4. Fundamental tuning points of WebSphere Application Server settings

2.1 WebSphere Application Server V3 topologies

The performance testing done for this redbook was based on four distinct
topologies.

2.1.1 Topology 1: single machine
In order to establish a baseline for our performance testing we configured a
single machine with the topology depicted in Figure 5. In our single machine
topology (topology 1) the database server with the business application data and
the configuration repository reside on the same machine as the WebSphere
Application Server (WAS).

Figure 5. Topology 1

While this configuration may be suitable for a development environment, it should
be avoided for production environments where performance is a concern.

Web
Server

Database
ServerRouter

Plug-
in

Servlet
Engine

EJB
Container

JVM

WebSphere Application
Server Engine

(1)

(2)

(3)

(4)

Administration
Server

Application
Server(s)

Administration
Client

WAS
Configuration

Repository

HTTP Server Business
Application

Data

Machine A

HTTP(s)

Topology 1
8 WebSphere V3 Performance Tuning Guide

Installation of a database on a UNIX system involves changes to the UNIX OS
kernel. Depending on the database and operating system the changes are either
made explicitly by the systems administrator or by the installation program for the
database. For example, kernel changes are made automatically on AIX when
installing DB2, while installation of DB2 on Solaris or HP-UX require explicit
modification of the kernel. Oracle also requires modification of the kernel
parameters. The result is that a server running both a database server and
WebSphere Application Server is optimized for database performance and not
the application server.

The other issue and perhaps more significant factor with running both processes
on the same physical server is that under load you have both WebSphere and the
database competing for system resources.

When we moved the database processes to a second remote server (shown later
in topology 2), we observed a significant performance improvement over running
the application server processes and database server processes on the same
node as WAS.

2.1.2 Topology 2: separating the database server from WAS
While it is possible to host both WAS and its configuration/administrative
repository on the same physical server as shown in topology 1 in Figure 5 on
page 8, in practice most organizations choose to maintain a single database
server that hosts all databases, most likely residing on a separate machine from
WAS. This means putting the WAS configuration/administrative repository on the
same database server as the business application data, facilitating a more
streamlined system of backups, system maintenance and performance tuning.

Topology 2, shown in Figure 6 on page 10, would be typical for a small Web site
where all the application server and HTTP server processes are hosted on a
single machine. In this topology, we used the same database server for the WAS
configuration repository, business application data, and session persistence
manager.

Though Windows NT uses a thread-based architecture as opposed to the
process-based architecture of UNIX, performance on Windows NT suffers to a
similar degree when hosting both the database and application server on the
same machine.

Note for Windows NT

Performance Tip

Run the WebSphere Application Server and the database server on separate
servers.
Chapter 2. Performance tuning approach 9

Figure 6. Topology 2

2.1.3 Topology 3: multiple application servers
Topology 3, shown in Figure 7, expands on topology 2 by adding a clone of the
application server process on the same server that the other application server
and the HTTP server processes are running on. This topology demonstrates the
application process scalability and WLM capability for a single server.

Figure 7. Topology 3

2.1.4 Topology 4: advanced topology
In topology 4, shown in Figure 8 on page 11, we have separated the HTTP server
from the application server using the servlet redirector that comes with
WebSphere Application Server. This topology is typical of many customer

Administration
Server

Administration

Client
WAS
Configuration
Repository

HTTP Server Business
Application
Data

MachineA Machine B

Topology 2

Application
Server

HTTP(s)

Administration
Server

Application
Server(s)

Administration

Client
WAS
Configuration
Repository

HTTP Server Business
Application
Data

Machine A Machine B

Topology 3
Application
Server(s)HTTP(s)
10 WebSphere V3 Performance Tuning Guide

environments where the HTTP server is physically separated from the application
server and runs on one side of a firewall, either outside the firewall or between
two firewalls inside a Demilitarized Zone (DMZ). For our testing we did not
actually configure a firewall.

In this topology, the HTTP server communicates locally with the servlet redirector
using Open Servlet Engine (OSE). The servlet redirector in turn, forwards or
“redirects” the servlet requests to the application server running on another
physical server via Internet Inter-ORB Protocol (IIOP).

Figure 8. Topology 4

2.1.5 Our test application
The application used for our performance tests is known as the Trade application.
This sample application program is an internal tool. It was designed to test the
WebSphere Application Server for aspects of scalability, performance and
competitiveness. The Trade application is a collection of Java classes, Java
servlets, Java Server Pages and Enterprise JavaBeans. The application is
designed to be portable between the WebSphere 3.x Standard, Advanced and
Enterprise Editions.

The Trade application simulates an online stock trading Web site. The application
allows a user to perform the following actions using a Web browser:

• Registration
• Site login
• Inquiry of the current price for a stock ticker symbol
• Purchase of shares
• Sale of shares
• Portfolio review
• Logout from site

2.1.5.1 Trade application components
The Trade application contains six major objects:

W AS
C onf iguration
R eposito ry

HTT P Serve r

Busines s
App lic ation
D ata

Machine A Machine B

Topology 4

Machine C

Servle t
R ed irector

Adminis tration
Serve r

Adm inis tration
Client

(C onso le)

Application
Server(s)

Adminis tration
Serve r

DB2
C lient

DB2
C lient

O SE

HTTP(s)

JDBCIIO P
Chapter 2. Performance tuning approach 11

• Trade
• Account
• Registry
• Profile
• Holding
• Quote

These objects and their primary data fields and methods are depicted in Figure 9.

Figure 9. Trade application components

The Trade object is a stateless object that encapsulates the primary operations of
the Trade application. When the Trade application is configured to use EJBs, the
Trade object takes the form of a Stateless Session EJB. Otherwise the Trade
object takes the form of a standard Java class.

The five remaining objects: Account, Registry, Quote, Profile and Holding are
data objects. When the Trade application is configured to use EJBs, these objects
are Container Managed Entity EJBs. Otherwise, these objects are encapsulated
in a Java data bean. The data bean is a standard Java class that uses JDBC
prepared SQL statements to manipulate data within a database table.

The topology for the Trade application is shown in Figure 10 on page 13.

Trade

getPortfolio
getBalance
getQuote

register, login
buy, sell

Account

getBalance

userid, balance

Registry

authenticate

userid, password

Holding

findByUid
getHolding

userid, idx, symbol, quantity,
price, details

Quote

getSymbol
getPrice

symbol, price

Profile
userid, address, e-mail,
credit-card

Trade Application -
Performance and Scalability

Test application

Trade JDBC (SE)
JSP, Servlet, HTTP Session,
DataBeans, JDBC

Trade EJB (AE)
JSP, Servlet, HTTP Session,
SessionBean, EntityBean
12 WebSphere V3 Performance Tuning Guide

Figure 10. Trade application runtime

The Trade servlet is the controller for the application with calls from servlet
instances to the DataBeans and JDBC as required. As the controller for the
application, the Trade servlet coordinates:

• Registering or logging in
• Buy scenarios (which includes getting quotes and buying stocks)
• Sell scenarios (which includes browsing your portfolio and sales of holdings)
• Logging out

2.2 Network and hardware configuration

All tests, unless otherwise stated, were run on a nine-node SP frame. Eight of the SP
nodes were 2x332 MHz CPUs with 512 MB of RAM, while the ninth node was a
4x332 MHz CPU with 1 GB of RAM. Each node has a 9 GB disk assigned to it.

This allowed us to simulate multiple physical servers while minimizing the
network latency. While in the real world there would be some network latency, the
purpose of this publication is to determine the optimal settings for the WebSphere
Application Server runtime, and this is best done by eliminating external
influences such as network latency. The hardware and corresponding software
configuration for our performance testing is shown in Figure 11 on page 14.

Trade Application Runtime Topology

Web
Browser

HTTPHTTP
ServerServer

WebSphere ApplicationWebSphere Application
ServerServer

Enterprise
Data

Business
Data

Access

request

response

http/https

EJB
JDBC

Trade

ServletsServletsServlets

ServletsJSPs
Chapter 2. Performance tuning approach 13

Figure 11. Testing hardware and software configuration

The software used was:

• AIX 4.3.2 + PTF
• WebSphere Application Server Advanced Edition V3.02 for AIX
• UDB V5.2 + FP11
• UDB V6.1 + FP1c
• Oracle 8.05
• IBM HTTP Server V1.3.6
• JDK 1.1.6.9 (PTF9)

2x332 MHz
512 MB

2x332 MHz
512 MB

2x332 MHz
512 MB

2x332 MHz
512 MB

2x332 MHz
512 MB

2x332 MHz
512 MB

2x332 MHz
512 MB

2x332 MHz
512 MB

4x332 MHz
1024 MB

WAS Adv
3.02 + IHS

WAS Std
3.02 + IHS

AKStress

UDB 6.1 UBD 5.2
Oracle 8.05

WAS Advanced
3.02

WAS Adv
3.02 + IHS

WAS
Adminclient
14 WebSphere V3 Performance Tuning Guide

Chapter 3. AIX TCP/IP tuning

Before you start WebSphere tuning, we recommend reviewing and modifying the
system settings of your Web site, especially the TCP/IP network settings because
when Web browsers access WebSphere, they have to establish TCP/IP network
connections. In this chapter, we show you several TCP/IP network tunable
parameters that should be modified. We provide an AIX TCP/IP overview as an
appendix. For more in-depth knowledge of AIX performance tuning, we
recommend the AIX Performance Tuning Guide, SR28-5930 and RS/6000 SP
System Performance Tuning, SG24-5340.

3.1 Network tuning with no command

The tunable parameters should be set to customized values during the AIX
installation process.

Use the no command to display the current settings and change it as shown
below.

no -o <parameter>
no -o <parameter>=<newvalue>

Figure 12. Usage of no command

In the output of the no -a command taken from AIX 4.3.2 in Figure 13 on page 16,
the appropriate tunables are highlighted.

The following are specific details for setting the network tunables for AIX
systems:

thewall

Specifies the maximum amount of memory, in KB, that is allocated to the
memory pool. In AIX Version 4.3.2 and later, the default value is 1/2 of real
memory or 1048576 (1 GB), whichever is smaller. thewall is a runtime
attribute. Changes take effect immediately and remain in effect until the next
reboot. For tuning, increase size, preferably in multiples of 4 KB.

sb_max

Provides an absolute upper bound on the size of TCP and UDP socket buffers
per socket. Limits udp_sendspace, udp_recvspace, tcp_sendspace and
tcp_recvspace. The units are in bytes. For tuning, increase size, preferably in
multiples of 4096. This value should be at least twice the size of the largest
value for tcp_sendspace, tcp_recvspace, or udp_recvspace. This ensures that
if the buffer utilization is better than 50% efficient, then the entire size of the

no -o thewall
thewall = 262124
#
no -o thewall=300000
#
no -o thewall
thewall = 300000
#

© Copyright IBM Corp. 1999 15

tcp and udp byte limits can be utilized. Changes take effect immediately for
new connections and remain in effect until the next reboot.

Figure 13. Displaying Network Options

somaxconn

Specifies the maximum listen backlog. The default is 1024 bytes. somaxconn
is a runtime attribute.

tcp_sendspace

Provides the default value for the size of the TCP socket send buffer, in bytes.
This is never higher than the major network adapter transmit queue limit. To
calculate this limit, use:

(major adapter queue size) * (major network adapter MTU)

For tuning increase size, preferably to a multiple of 4096. Changes take effect
immediately for new connections and remain in effect until the next reboot.

tcp_recvspace

Provides the default value for the size of the TCP socket receive buffer. The
value is in bytes. This is never higher than the major network adapter transmit
queue limit.

(major adapter queue size) * (major network adapter MTU)

thewall = 262124

= 85

sb_max = 1048576

somaxconn = 1024

clean_partial_conns = 0

net_malloc_police = 0

rto_low = 1

rto_high = 64

rto_limit = 7

rto_length = 13

inet_stack_size = 16

arptab_bsiz = 7

arptab_nb = 25

tcp_ndebug =

ifsize = 8

arpqsize 1

ndpqsize = 50

route_expire 0

strmsgsz = 0

strctlsz = 1024

nstrpush = 8

strthresh = 85

psetimers = 20

extendednetstats = 0

sockthresh

=

100

=

fasttimo

send_file_duation

routerevalidate

nbc_limit

nbc_max_cache

nbc_pseg_limit

nbc_min_cache

nbc_pseg

=

=

=

=

=

=

=

=

200

300

0

0

131072

262124

1

0

tcp_pmtu_discover = 0

ipqmaxlen = 100

directed_broadcast = 1

ipignoreredirects = 0

ipsrcroutesend = 1

ipsrcrouterecv = 0

ipsrcrouteforward = 1

ip6srcrouteforward = 1

ip6_defttl = 64

ndpt_keep = 120

ndpt_reachable = 30

ndpt_retrans = 1

ndpt_probe = 5

ndpt_down = 3

ndp_umaxtries = 3

ndp_mmaxtries = 3

ip6_prune = 2

tcp_timewait = 1

tcp_ephemeral_low = 32768

tcp_ephemeral_high = 65535

udp_ephemeral_low = 32768

udp_ephemeral_high = 65535

tcp_timewait

ip6forwarding

multi_homed

main_if6

site6_index

maxnip6q

llsleep_timeout

main_site6

=

=

=

=

=

=

=

=

1

0

1

0

0

20

3

0

udp_pmtu_discover = 0psebufcalls = 20

strturncnt = 15

lowthresh = 90

medthresh = 95

psecache = 1

subnetsarelocal = 1

maxttl = 255

ipfragttl = 60

ipsendredirects = 1

ipforwarding = 0

udp_ttl = 30

tcp_ttl = 60

arpt_killc = 20

tcp_sendspace = 16384

tcp_recvspace = 16384

udp_sendspace = 9216

udp_recvspace = 41920

rfc1122addrchk = 0

nonlocsrcroute = 0

tcp_keepintvl = 150

tcp_keepidle = 14400

bcastping = 1

udpcksum = 0

tcp_mssdflt = 512

icmpaddressmask = 0

tcp_keepinit = 150

ie5_old_multicast_mapping = 0

rfc1323 = 0

pmtu_default_age = 10

pmtu_rediscover_interval = 30

pseintrstack = 12288
16 WebSphere V3 Performance Tuning Guide

For tuning, increase size, preferably to a multiple of 4096. Changes take effect
immediately for new connections and remain in effect until the next reboot.

tcp_sendspace and tcp_recvspace

These tunables establish the size of the TCP window on a per datagram
socket connection. The effective size used is the least common denominator
between the sending side tcp_sendspace and the receiving side
tcp_recvspace. The size depends on the network you are sending over.

udp_sendspace

Provides the default value for the size of the UDP socket send buffer, in bytes.
Set to 65536, because anything beyond 65536 is essentially ineffective. Since
UDP transmits a packet as soon as it gets any data, and since IP has an upper
limit of 65536 bytes per packet, anything beyond 65536 runs the small risk of
getting thrown away by IP. For tuning, increase size, preferably to a multiple of
4096. Should always be less than udp_recvspace, but never greater than
65536. Changes take effect immediately for new connections and remain in
effect until the next reboot.

udp_recvspace

Provides the default value for the size of the UDP socket receive buffer. A
suggestion for the starting value of udp_recvspace is 10 times the value of
udp_sendspace, because UDP may not be able to pass a packet to the
application before another one arrives. For tuning, increase size, preferably to
a multiple of 4096. Should always be greater than udp_sendspace and sized
to handle as many simultaneous UDP packets as can be expected per UDP
socket. Changes take effect immediately for new connections and remain in
effect until the next reboot.

rfc1323

Value of 1 indicates that tcp_sendspace and tcp_recvspace sizes can exceed
64 KB. If the value is 0, the effective tcp_sendspace and tcp_recvspace sizes
are limited to a maximum of 65535. If you are setting tcp_recvspace and
tcp_sendspace greater than 65536, you need to set rfc1323=1 on each side of
the connection. Without having rfc1323 set on both sides, the effective values
for tcp_recvspace and tcp_sendspace will be 65536. For better performance,
we recommend that this always be set to 1. Changes take effect immediately
for new connections and remain in effect until the next reboot.

tcp_timewait

The tcp_timewait option is used to configure how long connections are kept in
the timewait state. It is given in 15 second intervals, and the default is 1.

nbc_max_cache

Specifies the maximum size of the cache object allowed in the Network Buffer
Cache (NBC). This attribute is in bytes; the default is 131072 (128 KB). A data
object bigger than this size is not put in the NBC.

nbc_pseg_limit

Specifies the maximum amount of cached data allowed in private segments in
the Network Buffer Cache. This value is expressed in KB. The default value is
half of the total real memory size on the running system. Since data cached in
private segments is pinned by the Network Buffer Cache, nbc_pseg_limit
Chapter 3. AIX TCP/IP tuning 17

controls the amount of pinned memory used for the Network Buffer Cache in
addition to the network buffers in global segments. When the amount of
cached data reaches this limit, cache data in private segments may be flushed
for new cache data so that the total pinned memory size doesn't exceed the
limit. When nbc_pseg_limit is set to 0, all caches in private segments are
flushed.

nbc_pseg

Specifies the maximum number of private segments that can be created for
the Network Buffer Cache. The default value is 0. When this option is set at
non-0, a data object between the size specified in nbc_max_cache and the
segment size (256 MB) is cached in a private segment. A data object bigger
than the segment size is not cached at all. When the maximum number of
private segments exist, cache data in private segments may be flushed for
new cache data so that the number of private segments do not exceed the
limit. When nbc_pseg is set to 0, all caches in private segments are flushed.

nbc_limit

Specifies the total maximum amount of memory that can be used for the
Network Buffer Cache. This attribute is in KB. The default value is derived
from thewall. When the cache grows to this limit, the least-used cache objects
are flushed out of cache to make room for the new ones.

tcp_mssdflt

Default maximum segment size used to communicate with remote networks.
This tunable is used to set the maximum packet size for communication with
remote networks; however, only one value can be set even if there are several
adapters with different MTU sizes. It is the same as the MTU for
communication across a local network except for one small difference: the
tcp_mssdflt size is for the size of the data only, in a packet. You need to
reduce the tcp_mssdflt for the size of any headers so that you send full
packets instead of a full packet and a fragment. The way to calculate this is as
follows:

MTU of interface - TCP header size - IP header size - rfc1323 header size

which is:

MTU - 20 - 20 - 12 , or MTU - 52

Limiting data to MTU - 52 bytes ensures that, where possible, only full packets
will be sent.

If set higher than the MTU of the adapter, IP or an intermediate router may
fragment packets. Changes take effect immediately for new connections and
remain in effect until the next reboot.
18 WebSphere V3 Performance Tuning Guide

subnetsarelocal

Specifies that all subnets that match the subnet mask are to be considered
local for purposes of using MTU instead of the maximum segment size (MSS).
This is a configuration decision with performance consequences. If the
subnets do have the same MTU, and subnetsarelocal is 0, TCP sessions may
use an unnecessarily small MSS. Changes take effect immediately for new
connections and remain in effect until the next reboot.

MTU

Limits the size of packets that are transmitted on the network, in bytes. Default
value is adapter dependent. The range of values is 512 bytes to 65536 bytes.

To obtain the current setting, use the lsattr command. For example,

lsattr -E -l interface tr0

To change the value, use the chdev command. For instance,

chdev -l interface -a mtu=<newvalue>

Because all the systems on the LAN must have the same MTU, they must
change simultaneously. Change is effective across boots.

3.2 Tuning parameter summary

Table 1 shows you a summary of tunable parameters for the no command. In
Table 2 on page 20, we show you the parameter settings for Web site tuning. IBM
has tested Web server performance with SPECweb96. We’ve summarized the
information, which you can get from the following Web site:

http://www.spec.org.

Table 1. The tunable parameters of the no command

Parameter Default Value Range

thewall 1/2 of RAM or 1048576
(1 GB)

sb_max 65536

subnetsarelocal 1 (yes) 0 or 1

somaxconn 1024

tcp_sendspace 16384 0 to 64 KB (if rfc1323=0)
0 to 4 GB (if rfc1323=1)

tcp_recvspace 16384 0 to 64 KB (if rfc1323=0)
0 to 4 GB (if rfc1323=1)

udp_sendspace 9216 0 to 65536

udp_recvspace 41600

rfc1323 0 0 or 1

tcp_timewait 1

nbc_max_cache 131072

nbc_seg_limit 0

nbc_pseg 0
Chapter 3. AIX TCP/IP tuning 19

Table 2. The results of SPECweb96 and tunable parameters

nbc_limit 786432

tcp_mssdflt 512 512 to unlimited

S7A
IHS 1.3.4

7026 - H70
IHS 1.3.4

S80
IHS 1.3.6

43P-260
IHS 1.3.6

SPECweb96 20200 11774 40161 4597

Processor 262 MHz
RS64-2

PowerPC
RS64-II
340MHz

450 MHz
RS64-III

200 MHz
POWER3

of Processors 12 8 12 2

Memory 8 GB 4 GB 16 GB 4 GB

OS AIX 4.3.2 +
APAR IX86737

AIX 4.3.2 +
APAR IX86737

AIX 4.3.3 AIX 4.3.3

MTU ATM
MTU=9180

ATM
MTU=9180 &
Jumbo Frame
Gigabit
MTU=9000

Gigabit Jumbo
Frame
MTU=9000

Jumbo Frame
Gigabit
MTU=9000

no

sb_max 262144 262144 262144 262144

somaxconn 8192 8192 16384 16384

nbc_max_cache 100000 100000 60000 100000

nbc_seg_limit 10000 10000

tcp_sendspace 28000 28000 28000 28000

tcp_recvspace 28000 28000 28000 28000

tcp_timewait 5 5 5 5

nbc_pseg 80000 20000

nbc_limit 393216

Parameter Default Value Range
20 WebSphere V3 Performance Tuning Guide

Chapter 4. Web Server: IBM HTTP Server 1.3.6

As of January 2000, IBM HTTP Server for AIX on an RS/6000 S80 holds the
world record for the performance benchmark result by SPECweb96. For detailed
information, see http://www.spec.org/

This chapter focuses on Web Server performance tuning. We concentrate on the
Web server produced by IBM, the IBM HTTP Server V1.3.6 (IHS), which is based
on the popular open standards-based Apache Web server.

While the settings will be different for each Web server and application the
methodology used to performance tune IHS still holds true for your Web server
application combination.

Most of these settings will need to be tested with the individual applications that
will be run on the server. This tuning guide provides information which you can
use as a starting point for your performance tuning tests. You probably save your
time with this publication.

In the following sections we cover some of the performance tuning directives
found in the httpd.conf file. You can use a text editor to modify the parameters in
the httpd.conf file in the directory /usr/HTTPServer/conf on AIX.

There are several directives that we can specify in the httpd.conf file. We have
categorized them in five different areas:

• Process handling

• Connection

• Resource usage

• Name resolution

• Fast Response Cache Accelerator (FRCA)

You may also refer to
/usr/HTTPServer/htdocs/<LANG>/manual/misc/perf-tuning.html by Dean Gaudet.
This is a very good reference for the Web site that mainly serves HTML contents.
In other words, some information in these performance notes is not appropriate
for WebSphere.

4.1 Process handling

This category is primarily related to the httpd processes.

MaxClients - Limit on the total number of simultaneous HTTP requests that IHS
can serve. Since IHS uses one child server process for each HTTP request, this
is the limit of the number of child server processes that are able to run
simultaneously. The default value is 150 and maximum value is 2048.

The value of this directive can significantly impact your application performance,
particularly if it is too high. The optimum value depends on your application. In
general:

• Use a lower MaxClients value for a simple, CPU intensive application.
© Copyright IBM Corp. 2000 21

• Use a higher MaxClients value for a more complex, database intensive
application with longer wait times.

For example, exceptional performance on simple servlets such as “HelloWorld”
and “Snoop” have been achieved using values as low as 25.

A good approach to tuning this parameter is to start with a setting of 50 and
capture the performance under normal load. Repeat your test with settings of 40
and 60. Use this data to refine your tuning. Use small increments and decrements
rather than large ones.

During these tests, be sure to watch the server CPU utilization. Do not increase
the MaxClient setting if the CPU utilization reaches 100% busy and doing so
causes server response time to exceed your response time criteria.

StartServers - The number of child server processes that are created when IHS
is started. Default value is 5.

MaxSpareServers - Specifies the upper number of idle httpd child processes
which are not handling any requests.

MinSpareServers - Specifies the lower number of idle httpd child processes
which are not handling any requests.

If there are fewer than MinSpareServers, then the parent process creates new
child processes at a maximum rate of 1 per second. If there are more than
MaxSpareServers, then the parent process kills off the excess child processes.
Default value of MaxSpareServers is 10 and MinSpareServers is 5.

The above three directives can also impact your application performance. For
optimum performance runs, keep the MaxClients, the StartServers and the
MaxSpareServers directives equal so that CPU is not expended creating and
destroying httpd child server processes.

MaxRequestsPerChild - restricts the number of requests handled by each child
httpd process. Once this value is reached, the child process terminates. One of
the intentions of this parameter is to limit the lifetime of an httpd client process in
order to prevent it from using too much memory resource in case of memory
leaks. The number specified can be fairly high if stable operation is expected.
Default value is 10000.

ListenBacklog - The maximum length of the queue of pending connections from
the clients. Generally no tuning is needed or desired, however on some systems
it is desirable to increase this when under a TCP SYN flood attack. See the
backlog parameter to the listen(2) system call. Default value is 511.

4.2 Connection

These directives deal with the persistent connection feature of the HTTP/1.1
specification. With HTTP/1.0, each HTTP session establishes a new TCP
connection. If your home page has a lot of images, you will need to establish TCP
connections many times to send all data for one page. The persistent connection
feature is designed to avoid this behavior. After one session is finished, the
connection still remains and the next request can re-use the connection. If IHS
22 WebSphere V3 Performance Tuning Guide

gets an HTTP/1.1 request, IHS can re-use the connection until it receives the
connection close request.

KeepAlive - Whether or not to allow persistent connections (more than one
request per connection). Set to "off" to deactivate. Default is on.

KeepAliveTimeout - Number of seconds to wait for the next request. Default
value is 15. To avoid waiting too long for the next request, you can specify the
number of seconds to wait. Once the request has been received, the Timeout
directive will apply.

MaxKeepAliveRequests - The maximum number of requests to allow during a
persistent connection. Set to 0 to allow an unlimited number.

Timeout - Sets the number of seconds the IHS waits for these three events:

• Time taken to receive a GET request

• Time taken between receipt of TCP packets on a POST or PUT request

• Time taken between acknowledgments on transmissions of TCP packets in
responses

Default value is 300.

4.3 Resource usage

These directives restrict the amount of system resource usage by the httpd child
process.

RLimitCPU - Controls the number of seconds per process. This directive takes
one or two parameters. The first parameter sets the soft resource limit for all
processes and can be specified as a number or “max.” The second parameter
can be specified only as “max.” The “max” means the maximum resource limit
allowed by the operating system.

RLimitMEM - Sets the number of bytes per process. This directive also takes one
or two parameters. The first parameter sets the soft resource limit for all
processes and can be set to a number or “max”. The “max” indicates to the server

If your Web site is busy, you should set a very small KeepAliveTimeout such as
2 or 3 because if a browser does not send a connection close request, IHS
keeps the connection until the period of time specified in the KeepAliveTimeout
directive. If you specify a large number, it blocks the system resources if no
requests are submitted.

Note

The directives explained in this section are not included in the default
configuration file since they are normally not used, because they can be
specified at the operation system level, if required. These directives should
only be used when the values need to be set lower than what the operating
system permits.

Note
Chapter 4. Web Server: IBM HTTP Server 1.3.6 23

that the limit should be set to the maximum resource limit allowed by the
operating system.

RLimitNPROC - Controls the maximum number of simultaneous processes per
use. This directive takes one or two parameters as well. The first parameter sets
the soft resource limit for all processes and the second parameter sets the
maximum resource limit the same as the above two directives. For the case of
CGI processes running under the same UID as the Web server, which is the
normal case, the limitation set with this directive restricts the number of
processes the server itself can create by forking. Thus, it might limit a server’s
ability to create new httpd processes.

Figure 14. RLimit directives in the httpd.conf

SendBufferSize - Specifies the TCP buffer size to a specific number of bytes.

4.4 Name resolution

This category includes the directives that affect the httpd processes specifically in
the client-parsing phase in the runtime environment.

HostnameLookups - Enables or disables DNS lookups to be performed such
that host names (rather than IP addresses) can be logged. To increase
performance in any case, you should set the HostnameLookups directive to off.
The default is off.

4.5 Fast Response Cache Accelerator

Fast Response Cache Accelerator (FRCA) provides a kernel level cache to store
server static HTML documents and images. There are several limitations when
using FRCA. FRCA can cache only static contents. In other words, dynamic
contents which are generated by servlets, JSPs and EJBs are not cached by
FRCA. FRCA does not support protected pages, POST method, or any pages
over SSL connections. But many Web sites still use static pages. Therefore,
FRCA can provide performance improvements for these sites.

The following are the basic steps for setting up FRCA for AIX.

#
RLimitCPU 5 max

RLimitMEM max

RLimitNPROC max max

When using allow from domain or deny from domain directives there is a
double, reverse DNS lookup. For best performance avoid using these
directives.

Note
24 WebSphere V3 Performance Tuning Guide

FRCA is new function of IBM HTTP Server 1.3.6 for AIX. IHS 1.3.3 for AIX does
not support it. For AIX 4.3.2, you have to apply APAR IX86737. If you are using
AIX 4.3.3, no APAR is required. For FRCA support you install the http_server.frca
fileset. Then, configure AIX for FRCA. During the AIX FRCA configuration, the
Network Buffer Cache options will be requested, which can be obtained by the no

command.

Network Buffer Cache options:

• nbc_limit: sets the maximum size of the network buffer cache in KB. This value
should not be set higher than 1/2 the value of thewall which you can get with
no -a command.

• nb_max_cache: sets the maximum size of a cache object that will be allowed
in the Network Buffer Cache.

• nbc_min_cache: sets the minimum size of a cache object that will be allowed
in the Network Buffer Cache.

After you set the Network Buffer Cache options, you can load the Fast Response
Cache Accelerator into the AIX kernel. The command frcactrl load will activate
the FRCA kernel. You have to load it before IHS is started. By default, IHS is
started automatically when AIX is booted. If you do not want to start IHS
automatically, you can comment out the line that starts with ihshttpd in the
/etc/inittab.

To activate the FRCA module, the following lines should be added to the IHS
configuration file (/usr/HTTPServer/conf/httpd.conf by default):

•LoadModule ibm_afpa_module libexec/mod_ibm_afpa.so

•AddModule mod_ibm_afpa.c

There are several directives that are related to FRCA:

• AfpaBindLogger [-1, 0, 1, ..., n]: allows you to bind the FRCA logging thread to
a specific CPU on a multiple processor machine.

• AfpaCache on | off: allows you to turn FRCA on or off for a particular scope
such as a directory.

• AfpaEnable: enables the FRCA to listen on the TCP port specified by the Port
directive or the default port 80.

• AfpaLogFile file_path_and _name log_format: sets the FRCA log file name,
location and format

• Log formats:
• CLF: Command Log Format
• ECLF: Extended Common Log Format
• V-CLF: Common Log Format with virtual host information
• V-ECLF: Extended Common Log Format with virtual host information
• BINARY: Binary Log Format with virtual host information

The LoadModule and AddModule directives should be the first dynamic
modules listed in the configuration.

Note
Chapter 4. Web Server: IBM HTTP Server 1.3.6 25

• AfpaSendServerHeader true | false: specifies whether or not FRCA will send
the HTTP Server header in the response.

• AfpaLogging on | off: turns FRCA logging on or off.

• AfpaMaxCache [size]: specifies the maximum file size in bytes which can be
added to the FRCA cache.

• AfpaMiCache [size]: specifies the minimum file size in bytes which can be
added to the FRCA cache.

• AfpaRevalidationTimeout [seconds]: sets the time interval for files cached to
be revalidated.

In our test environment, we specified the AFPA configuration directives in the
/usr/HTTPServer/conf/httpd.conf file. See below in Figure 15.

Figure 15. AFPA configuration in the httpd.conf file

Then, start IHS with the /usr/HTTPServer/bin/apachectl start command.

There are three ways to monitor FRCA:

• Fast Response Cache Accelerator Log: the FRCA log can be used to observe
files being served out of the cache.

• Using netstat to monitor the Network Buffer Cache: using the command
netstat -c you can observe the current status of the Network Buffer Cache.

• Using frcactrl to monitor the FRCA kernel: using the command frcactrl

stats you can observe statistics from the FRCA kernel such as the total
number of requests handled and the total number of successful cache hits.

Now, you can set up FRCA successfully.

We tested FRCA with two scenarios. One is for HTML static documents and the
other is for a dynamic document that is created by a servlet.

For the HTML static document test case, we accessed the welcome page, which
includes several gif files. We saw significant performance improvements with
FRCA. In our environment, using FRCA allowed twice as many HTTP requests
than without FRCA. In addition the CPU utilization of the Web server machine
was lower than the non-FRCA case. With the frcactrl stats command, we
noticed that our HTTP requests hit cached data.

#
LoadModule ibm_afpa_module

AddModule mod_ibm_afpa.c

AfpaEnable
AfpaCache on
AfpaLogFile /usr/HTTPServer/logs/afpa-log V-ECLF
AfpaMinCache 0
AfpaMaxCache 100000
AfpaLogging on
AfpaBindLogger -1
AfpaSendServerHeader true
26 WebSphere V3 Performance Tuning Guide

The other test case for dynamic content showed that using FRCA did not improve
performance. FRCA is designed for static content only as we described before.
From this test result, we can tell that using FRCA does not affect for dynamic
contents. In other words, FRCA does not cause any performance decreases for
dynamic content. Of course, there is no cache hit with FRCA for dynamic content.

4.6 APAR for Web server performance

There are several APARs that are related to Web server performance. The
following AIX APARs are related to all AIX Web servers, so they should always be
installed:

• IX88664:

Abstract: server performance is suboptimal

• xIX86737:

Abstract: Web server performance improvements

• xIY02324:

Abstract: wrong http response on if-unmodified-since header

• xIY00957:

Abstract: get engine can crash the system

The instfix -ik command tells you if you’ve applied the APAR. See Figure 16.

Figure 16. instfix -ik command

The above output tells us that we have not installed all filesets for IX86737.

Now, we show you how we can find the filesets which we need to install for
IX86737.

We also used the instfix -icvk command to determine the status of IX86737 on
our system. See Figure 17 on page 28.

instfix -ik IX88664
All filesets for IX88664 were found.

instfix -ik IX86737
Not all filesets for IX86737 were found.

instfix -ik IY00957
All filesets for IY00957 were found.
Chapter 4. Web Server: IBM HTTP Server 1.3.6 27

Figure 17. instfix -icvk command

There are 18 filesets for IX86737. The Status field tells us if we’ve installed the
fileset or not. If it says “+”, it means that we’ve already applied the correct level of
fileset. If it shows “-”, it indicates that we need to apply the correct level of fileset
which the ReqLevel field shows you.

For example, we’ve installed bos.net.nfs.client.4.3.2.0, but IX86737 also requires
that we apply 4.3.2.6 level of bos.net.nfs.client.

instfix -icvk IX86737
#Keyword:Fileset:ReqLevel:InstLevel:Status:Abstract
IX86737:bos.64bit:4.3.2.6:0.0.0.0:!:web server performance improvements
IX86737:bos.adt.include:4.3.2.6:0.0.0.0:!:web server performance improvements
IX86737:bos.adt.prof:4.3.2.6:0.0.0.0:!:web server performance improvements
IX86737:bos.adt.syscalls:4.3.2.2:0.0.0.0:!:web server performance improvements
IX86737:bos.atm.atmle:4.3.2.6:0.0.0.0:!:web server performance improvements
IX86737:bos.mp:4.3.2.7:0.0.0.0:!:web server performance improvements
IX86737:bos.net.ipsec.rte:4.3.2.3:4.3.2.0:-:web server performance improvements
IX86737:bos.net.nfs.client:4.3.2.6:4.3.2.0:-:web server performance
improvements
IX86737:bos.net.tcp.client:4.3.2.6:4.3.2.10:+:web server performance
improvements
IX86737:bos.net.tcp.server:4.3.2.6:4.3.2.9:+:web server performance
improvements
IX86737:bos.rte.libc:4.3.2.6:4.3.2.11:+:web server performance improvements
IX86737:bos.rte.tty:4.3.2.6:4.3.2.8:+:web server performance improvements
IX86737:bos.sysmgt.serv_aid:4.3.2.4:4.3.2.6:+:web server performance
improvements
IX86737:bos.up:4.3.2.7:4.3.2.11:+:web server performance improvements
IX86737:devices.common.IBM.atm.rte:4.3.2.3:0.0.0.0:!:web server performance
improvements
IX86737:devices.common.IBM.ethernet.rte:4.3.2.2:4.3.2.3:+:web server
performance improvements
IX86737:devices.pci.14100401.rte:4.3.2.3:0.0.0.0:!:web server performance
improvements
IX86737:devices.pci.14107c00.com:4.3.2.5:0.0.0.0:!:web server performance
improvements
28 WebSphere V3 Performance Tuning Guide

Chapter 5. WebSphere Engine

Version 3.0 of the WebSphere Application Server introduced a new runtime and
systems management infrastructure. The new Systems Management
infrastructure introduced a new “look and feel” that is significantly different from
the administration tools in prior versions of WebSphere. Primary among these
changes is the storing of the Application Server configuration in 34 entity EJBs in
a UDB or Oracle database (InstantDB is also available for Standard Edition). This
means that changes to the system configuration need to be made through the
Administrative Console (“adminclient”) pictured below, not by changing settings in
properties files as was the case in previous versions. While there are still a
number of properties files in the WebSphere directory structure, these are
intended primarily for debugging and should not be used for making the
configuration changes described below.

Figure 18. Administrative Console

For an application server in WebSphere V3 there are a number of settings that
have an impact on performance. In addition to the settings for the application
server itself there are also a number of settings for the various components of an
application server: Servlet Engine, Web Application, and the EJB Container that
can affect performance.

The WebSphere Engine has several parameters that will influence the overall
performance of your Web site. The following parameters are set using the
WebSphere Application Server Administrative Console:

• JVM

• Transport Queue

• Servlets Auto Reload
© Copyright IBM Corp. 1999 29

• EJB Container

• ORB

The parameters listed above will be discussed in detail in the following sections.

5.1 JVM

WebSphere requires a JVM to run. Though WebSphere ships with a default JVM,
on some platforms alternate JVMs can be used. In general, upgrading to the
latest 1.1.n level will provide better performance as JVM technology is continually
improving.

5.1.1 Selecting a JVM
On AIX, two JDKs are currently supported: JDK 1.1.6 PTF 9 and JDK 1.1.8 PTF
4. All tests for this redbook were run using JDK 1.1.6 PTF 9.

5.1.2 Tuning the JVM
The JVM offers several tuning parameters that will impact the performance of
WebSphere (which is primarily a Java application), as well as your own
applications. In WebSphere V3, JVM parameters are set via the command line
arguments of the Application Server on the Administrative Console. The
Command Line Arguments are located on the General tab for each application
server (Trade Server in Figure 19 on page 31). Highlight the application server for
your node in the WebSphere Administrative Domain to get to this tab.

Click Topology tab -> <node> -> <application server> as shown in Figure 19 on
page 31.

There are five topics for JVM performance tuning:

• Heap Size

• JIT

• Garbage Collection

As of late December 1999, the only supported JVM for Windows NT is the IBM
Developer Kit and Runtime Environment for Windows, Java Technology
Edition, Version 1.1.7p that ships with WebSphere V3. It has incorporated via
"backporting" some of the features from JDK 1.2 such as JDBC as well as the
Java ORB from JDK 1.3.

JDK for Windows NT

On Solaris, a Solaris-tuned JVM (currently Solaris JDK 1.1.7_08) available
from SunSoft will typically outperform the base Solaris reference
implementation from JavaSoft. WebSphere V3 ships the JavaSoft reference
implementation. WebSphere for Solaris ships with the JavaSoft JDK from
JavaSoft. You can also go to the Sun Web site and download the SunSoft JDK
for Solaris. The SunSoft JDK typically performs better than the JavaSoft JDK.

JDK for Solaris
30 WebSphere V3 Performance Tuning Guide

• Java Stack Size

• Native Thread Stack Size

Figure 19. JVM Parameters settings

5.1.3 JVM heap size
Java mx and ms are used to set:

• The maximum heap for the JVM

• The starting (minimum) heap for the JVM

When running performance tests, the best performance will typically be realized
when ms and mx heap values are equal. Setting mx and ms heap values equal
during performance runs provides highly repeatable results by eliminating any heap
growth. This may not necessarily be appropriate in a production environment where
other system resources may need to utilize the physical memory that would be
allocated by setting these two values equal.

As a starting point on AIX (also Windows NT and Solaris with the JavaSoft JDK)
consider setting the maximum heap size to 1/4 the total physical memory on the
server and setting the minimum to 1/2 of the maximum.

For example, for a server with 512 MB of memory:

-ms64m -mx128m (mx = 1/4 physical memory, ms = 1/2 mx)
Chapter 5. WebSphere Engine 31

Bigger is not always better for heap size. In general increasing the size of the
Java heap improves throughput to the point where the heap no longer resides in
physical memory. Once the heap begins swapping to disk, Java performance
drastically suffers. Therefore, the mx heap setting should be set small enough to
contain the heap within physical memory. This will depend on your particular
configuration since physical memory usage must be shared between the JVM
and other applications.

The other issue to consider when increasing the heap size is that while
throughput will be improved, pause times will increase. Large heaps can take
several seconds to fill up, but garbage collection occurs less frequently. In
general, it is probably good practice not to set the maximum heap size larger than
256 MB without extensive testing and monitoring (with -verbosegc) of your
application under load.

The sizing guidelines mentioned above should prove adequate for most
applications. You can refine your heap size settings even further by running tests
utilizing the -verbosegc command line argument. This additional output is logged
by stderr for the application server.

Some sample output from -verbosegc is shown below. This first entry occurred
during server startup without a load applied. The first thing to consider will be
increasing the minimum heap size (-ms).

Of course you’ll need to further examine the output in order to make an estimate
of how much to increase the minimum heap size. By looking for at the last
occasion where the JVM heap size was increased you’ll have a good starting
point. In the example below we can see on the last line that the heap size was
increased to just over 29 MB by the JVM. As a result we chose to increase the
minimum heap size to 32 MB.

Sun recommends that ms be set to somewhere between 1/10 and 1/4 of the mx
setting. They do not recommend ever setting ms and mx to be the same. This
has to do with their garbage collection algorithms and the need for Sun to track
the memory as it is allocated. An example JVM setting is as follows:

-ms32m -mx128m (mx = 1/4 physical memory, ms = 1/4 mx)

Solaris with the SunSoft JDK

<AF[1]: managing allocation failure. need 1040 bytes, action=1
(80688/16777208)>
<GC: not GC'ing classes: 0 verifier running>
<GC(1): freed 258785 objects, 14314168 bytes in 323 ms, 85% free
(14394256/16777208)>
<GC(1): mark: 102 ms, sweep: 105 ms, compact: 116 ms>
<GC(1): moved 37493 objects, 2124448 bytes in 116 ms>

<FIN: async finalizer thread waking>
32 WebSphere V3 Performance Tuning Guide

In this example it turned out that increasing the minimum heap size to 32 MB was
still not sufficient to prevent garbage collection from occurring during startup, but
it did prevent the JVM from growing the heap during testing. We then increased
the minimum heap size to 48 MB. This setting did prevent garbage collection from
occurring during system startup and also resulted in our best throughput.

In our testing we found the best performance came with settings of -ms192m and
-mx192m. Recall that this was on a two-way AIX server with 512 MB of RAM.

5.1.4 JIT
By default on JDK 1.1.6 for AIX and JDK 1.1.7 for Windows NT the Just In Time
(JIT) compiler is turned on. This results in significantly better performance and we
validated this in our tests. It's unlikely that you would ever want to turn the JIT
compiler off for performance reasons, but in some cases it might be necessary to
do so for debugging purposes.

As with the other JVM arguments, this is specified on the Application Server
command line arguments. The specific arguments vary with each JDK. For AIX
and Windows NT the arguments to turn JIT off are:

-Djava.compiler=off (AIX)

-nojit (Windows NT)

Again, these arguments turn JIT off, so you would normally not specify these
except for debugging purposes.

<AF[22]: managing allocation failure. need 1552 bytes, action=2
(18071624/27222008)>
<FIN: async finalizer thread waking>
<AF[22]: synchronously running 399 finalizers>
<GC: not GC'ing classes: 0 verifier running>
<GC(29): freed 6368 objects, 488752 bytes in 499 ms, 67% free
(18255704/27222008)>
<GC(29): mark: 450 ms, sweep: 49 ms, compact: 0 ms>

<AF[22]: managing allocation failure. need 1552 bytes, action=3
(18255704/27222008)>
<AF[22]: zeroed 6 of 6 soft refs>
<GC: not GC'ing classes: 0 verifier running>
<GC(30): freed 102 objects, 9568 bytes in 316 ms, 67% free
(18265272/27222008)>
<GC(30): mark: 272 ms, sweep: 44 ms, compact: 0 ms>

<AF[22]: managing allocation failure. need 1552 bytes, action=3
(18265272/27222008)>
<AF[22]: managing allocation failure. need 1552 bytes, action=4
(18265272/27222008)>
<AF[22]: Heap Expansion due to GC ratio: 0.171187.>
<AF: expanded heap by 2637824 to 29859832 bytes, 70% free>

With JDK 1.1.8 for AIX you will need to turn JIT off, in which case it would be
appropriate to specify this argument.

Note
Chapter 5. WebSphere Engine 33

5.1.5 Garbage collection
The WebSphere performance lab in Raleigh has seen cases on Solaris using
EJBs where turning off asynchronous garbage collection ("-noasyncgc") actually
improved performance significantly. You can also turn off class garbage collection
to enable more class reuse. The parameter is set on the server command line:

-noasyncgc (using -noasyncgc on Solaris may occasionally improve
performance)

-noclassgc ("no" will enable more class reuse; default is for classgc to be
on)

Specifying -noasyncgchad no significant impact on performance nor did specifying
-noclassgc.

5.1.6 Java stack and native thread stack size
Java stack size and the native thread stack size are set with the -oss and -ss

command line arguments. Specifying a size of 819200 for both resulted in a slight
performance improvement (less than 1%).

Setting these values to 409600 did result in performance degradation of
approximately 16% from our baseline (819200). Conversely we encountered
problems in starting the application server when they were set to too large a
value. When we set these to 1638400 we received a java.lang.OutOfMemoryError:

cannot create anymore threads message. If you wish to specify a value on the
command line of your application server, recommended starting points would be:

-oss=819200: Java Stack Size

-ss=819200: Native Thread Stack Size
34 WebSphere V3 Performance Tuning Guide

When making changes to some of the settings described above such as JVM
heap size (-ms and -mx) take care when typing. If you make a mistake you’ll
likely encounter the error depicted below: Server start failed (in Figure 20 the
name of the server is “Default Server”). In addition to the messages in red in
the console messages section, you’ll notice the yellow icons with “?” in them.
You’ll need to highlight the server you were trying to start (as depicted below),
and stop the server (right mouse button --> stop or depress the red button at
the top of the console). In some cases it might be necessary to affect a “force
stop” of the server (highlight the server --> right mouse button - force stop)
which marks the processes as stopped in the repository. Once you’ve stopped
the server review, and correct your command line arguments before starting
the server again (don’t forget to click the Apply button after you make your
changes or corrections).

An additional word of caution: for some arguments the order matters. If you
change the -oss, -ss, classgc, or Djava.compiler arguments, these need to
come immediately after the -ms, -mx arguments and immediately preceding
any other command line arguments.

Figure 20. Command line arguments

Command Line Arguments - Making Changes
Chapter 5. WebSphere Engine 35

5.2 Transport queue

Remember that each application server in your WebSphere Application Sever
product is comprised of an enterprise bean container and servlet engine. To route
servlet requests from the Web server to the servlet engines, the product
establishes a transport queue between the Web server plug-in and each servlet
engine.

You can adjust the transport queue to improve performance. There are three
parameters that you need to consider:

1. Queue type
2. Transport type
3. Maximum connections

as shown in Figure 21.

Figure 21. Transport queue tuning

The queue type is of central importance. If distributing servlet requests from the
Web server to servlets on remote machines known as “redirecting servlets”, you
should use an IIOP-based queue. We will discuss this setting in 5.2.4, “Queue
type for servlet redirector” on page 38. If not constrained to use IIOP, you should
use Open Servlet Engine (OSE). The second tuning point is the transport type.
And the last one is the number of maximum connections.

5.2.1 Queue type: OSE
The OSE will provide the best performance for the transport queue between the Web
server plug-in and WebSphere servlet engine. The queue type is configured from
the Advanced tab for the Servlet Engine (Topology tab -> WebSphere
Administrative Domain -> node -> Application Server -> Servlet Engine ->
Advanced) as shown in Figure 22 on page 37.

HTTP
Server

Servlet
Engine

1. Queue Type?
OSE
HTTP

NONE

2. Transport Type?
Local Pipes
(AIX, NT)
INET Sockets
(Solaris)
Java TCP/IP

(OLT/OLD)

3. Maximum
Connections?
(default: 100)
36 WebSphere V3 Performance Tuning Guide

Figure 22. Servlet Engine: Advanced

5.2.2 Transport type
The Servlet Engine Transport Type is edited by selecting Settings from the
Advanced tab for the servlet engine after choosing OSE. You have three choices
as shown in Figure 23.

Figure 23. Transport Type

Local Pipes is the default on Windows NT and AIX and typically performs fastest
on those platforms.

INET Sockets is the default on Solaris and typically performs better under load
than Local Pipes.
Chapter 5. WebSphere Engine 37

JAVA TCP/IP is only provided for debugging in special cases. For the most part you
should never specify Java TCP/IP since OLT/OLD support for this transport is lacking
in the runtime.

For those readers familiar with WebSphere V2.0 the Servlet Engine Transport
Type replaces ose.outofproc.transport.type.

5.2.3 Maximum connections
The Max Connections parameter on the Servlet Engine Advanced tab, as shown
in Figure 25 on page 40, specifies the number of connections to use for the
communication channel between the Web server and the WebSphere engine.
Each connection represents a request for a servlet.

Typically, optimum performance and stability will be achieved by setting the
MaxConnections slightly less than or equal to the number of threads or processes
that are running within the Web server.

For example, if the IHS AIX MaxClients parameter is set at 50, the
MaxConnections parameter should be set to 50 or slightly lower.

More is not necessarily better for this. In our testing with MaxClients set to 50 on
IHS, we found that performance did not vary significantly as we varied Max
Connections from 30 to 55. Once we increased Max Connections to 60 however
we noticed a significant performance decrease.

In testing for your application and hardware infrastructure you’ll want to make
small changes (5 or less) in this parameter until you determine what’s optimal for
your environment.

For those familiar with WebSphere V2, the Max Connections property replaces
the ose.outofproc.link.cache.size property.

5.2.4 Queue type for servlet redirector
When configuring WebSphere in a cluster that includes use of a servlet redirector
it is possible to change the Queue Type for the Servlet Engine from “OSE” to
“NONE”. You can continue to use the OSE (default) or HTTP queue type but it's
counterproductive. When using the servlet redirector there is no longer a local
queue or transport (INET Sockets or Local Pipes). All incoming servlet requests
flow over RMI/IIOP from the servlet redirector to the application server(s) where
the servlet engine(s) are running.

By specifying "NONE" you eliminate the cost of starting and running a process
that is never used. This prevents the application server from unnecessarily loading
the transport layer and all of its associated threads, which saves resources on the
server machine(s). The result is that you have more resources available to
perform "real work" (responding to servlet requests) and performance is better.

Recall that in the configuration where the application server is located on a separate
server from the HTTP server and the servlet redirector is used, all communication
between machines is via IIOP. Hence there is no need for a queue on the machine
that is running the application server. This is illustrated in the diagram in Figure 24 on
page 39, which shows one possible means of configuring the servlet redirector.
38 WebSphere V3 Performance Tuning Guide

Figure 24. Servlet redirector and queue type

To change the queue type, navigate to the Servlet Engine for the application server
via the Topology tab. Highlight the Servlet Engine, then click the Advanced tab and
change the queue type from OSE to NONE, and then click the Apply button as
depicted in Figure 25 on page 40.

In our testing we saw performance improvements of up to 14% by changing the
queue type from OSE to NONE for the configuration depicted in Figure 24 on
page 39.

WAS
Configuration
Repository

HTTPServer

Business
Application
Data

Machine A MachineB
Machine C

Servlet
Redirector

Administration
Server

Administration
Client

(Console)

Application
Server(s)

Administration
Server

DB2
Client

DB2
Client

OSE

HTTP(s)

JDBCIIOP

You cannot specify "none" as the queue type in conjunction with INET Sockets
on Solaris; you must specify OSE as the queue type on Solaris.

Note
Chapter 5. WebSphere Engine 39

Figure 25. Queue type

5.3 Servlets Auto Reload

With WebSphere V3, you can set parameters specific for each Web application
that is deployed. WebSphere has an auto reload capability that specifies whether
to automatically reload servlets in the Web application when their class files
change. This capability may simplify testing and management of your Web site by
enabling you to quickly modify your site without restarting the server; however,
this dynamic ability to reload servlets and associated polling will have a negative
impact on performance. Once you are in production mode, you should turn off
Auto Reload.

This property is accessed by navigating to the web application: Topology ->
WebSphere Administrative Domain -> Node -> Application Server -> servlet
Engine -> web application -> Advanced tab (the values for Node, Application
Server, Servlet Engine and web application in the picture are: alcott,Trade Server,
serveltEngine and trade_app) and then scrolling down to the bottom of the tab to
Auto Reload. Using the pull-down, change the value from True (the default) to
False and select Apply and Changing (alcott in the picture) (trade_app in the
picture). See Figure 26 on page 41.

There is also a Reload Interval property, as shown in Figure 26 on page 41, that
can be used to control the number of seconds between class reloading. An
alternative to changing Auto Reload to False would be to change the value for
Reload Interval to a very high interval for reload.
40 WebSphere V3 Performance Tuning Guide

Figure 26. Web Application: Auto Reload

5.4 EJB Container

With the EJB Container in WebSphere V3, you can specify several settings for
the container cache that can impact performance. These settings are
accessible from the Advanced tab on the EJB container (Topology tab ->
node -> Application Server -> EJB Container). This is depicted for the
Default Container in Figure 27 on page 42. The defaults are shown in the
same figure.
Chapter 5. WebSphere Engine 41

Figure 27. EJB Container: Advanced tab

5.4.1 Cache size
This parameter actually controls the number of buckets in the cache’s hash table
not the size of the container cache.

Though exposed for modification it is strongly recommended that this not be
changed, unless directed to by product support for debugging purposes.

5.4.2 Cache preferred limit
This is a “soft” limit that the cache manager will use as a trigger to start throwing
unused entries out of cache. The idea behind this is that the cache manager tries
to maintain some unallocated entries that may be quickly allocated as needed.
Determining which elements may be freed from the cache is not without cost and
there is a background thread that runs which attempts to free enough elements to
ensure that some unallocated entries are maintained. If this thread runs while the
application server is idle, then when the application server needs to allocate new
cache entries it does not pay the performance cost of removing elements from the
cache.

Sizing the cache involves estimating the working set size for the concurrent load
you expect the application server to be subjected to. In this case, we can define
the working set to be the total number of stateful session beans that are
concurrently active (involved in a transaction) plus the total number of entity
beans that are active. If you have 100 transactions each accessing 20 entity
beans then you'll have 2000 entity beans active.

In our testing we never generated a load that required more active beans than
were available with the default cache (recall from 2.1.5, “Our test application” on
page 11 that the Trade application consists of a stateless session bean and 5
entity beans). To do so would have required more than 400 concurrent clients.
42 WebSphere V3 Performance Tuning Guide

We did, however, decrease the size of the cache several times under load before
we noticed a change in performance. In fact performance did not change
significantly until we decreased the Cache preferred limit to 20, and Cache
absolute limit to 27.

Our recommendation would be to estimate the number of active beans in the
manner described earlier (the number of beans * the number of concurrent clients
that are accessing beans) to use this as a starting point for your testing. You'll
then need to monitor the total number of active beans (you can see the number in
the Active Beans column) under load using the WebSphere Resource Analyzer
depicted in Figure 28 and adjust the number of beans upward as necessary. Note
that increasing the number of beans in cache can increase the JVM in use, so
you may need to modify the JVM maximum heap size as a result.

5.4.3 Cache absolute limit
This is the absolute limit for entries that will be maintained in cache by the
container cache manager. The container will fail to allocate new bean instances
when the total number of active beans reaches this limit.

5.4.4 Cache cleanup interval
This is the interval in milliseconds for the background thread discussed above
that attempts to ensure that there are always free elements in the cache (the
difference between the cache absolute limit and the cache preferred limit). In
general this parameter should be increased as the cache size increases but in
our testing we never generated a load sufficient to require increasing the cache
and thus were not able to determine a specific recommendation for changing this.

Figure 28. Monitor the total number of active beans
Chapter 5. WebSphere Engine 43

5.4.5 Option A and option C caching performance considerations
WebSphere V3.02 allows you to choose between Option A (“exclusive”) caching
and Option C (“shared”) caching as defined by the EJB specification. The default
for this property is “shared” and is specified by from the Database access
property on each enterprise bean. This property is accessed by navigating to
Topology tab -> node -> Application Server -> EJB Container ->
EnterpriseBean as shown in Figure 29.

Figure 29. Option A and Option C caching

With option C caching (“shared”), the cache size will typically have very little
effect on performance since beans are cached for the duration of the transaction
they are involved in. To understand this, consider two sequential transactions that
touch bean A. The first transaction loads the bean into the cache, does its work,
commits, and removes the bean. The second transaction then has to reload the
bean and repeat. As long as there is room in the cache, the performance of this
scenario will be the same regardless of whether there are 100 or 10,000 other
beans in the cache. The primary reason to change the cache size when using
option C caching is to ensure that it can hold the entire working set required by
highly concurrent loads.

With option A caching (“exclusive”) there is a potential performance benefit from
a larger cache. Namely, that loading the persistent state of the bean from the
database will be amortized over multiple transactions. If the cache can hold more
beans and the workload has reasonable locality then the chances for a cache hit
go up with cache size.
44 WebSphere V3 Performance Tuning Guide

There is no guarantee that a larger cache will increase application performance.
If the application has poor locality then the overhead of the larger cache
(increased garbage collection in the JVM, increased process size, cost of cache
management) may outweigh any benefits.

5.4.6 Number of containers
You'll typically realize your best performance by deploying all your EJBs in a
single container per application server. This minimizes the cost (in JVM heap
size) associated with creating a container inside the application server and allows
the container to optimize the cache. The net effect is that when you create
multiple containers, you've increased the process overhead in the JVM, without
any gain in performance.

5.5 ORB

There are several settings controlling internal ORB processing that can be used
to improve application performance when EJBs are used.

EJB programming is a remote programming style. Like other remote
programming styles such as DCE and CORBA, when you invoke a remote object
a local representation (proxy) is created. This local proxy is the local
representation of the remote object. All client interaction is through this proxy, the
client does not "talk" directly with the remote object.

Normally, Remote Method Invocation (RMI) is Pass By Value (a copy of the
calling functions arguments used by the object being called), regardless of in- or
out-process.

When both the client and the remote object are in the same JVM, for in-process
calls (that is one EJB to another), local copies can be disabled allowing the object
being called to get a reference to the calling arguments. In other words, we can
get a reference to the calling arguments instead of using “pass by value" and
creating a copy/proxy.

This eliminates the process cost of creating the "proxy object". This seems to
improve performance by better than 10%.

In order to disable local copies, you need to add the following two arguments to
the Command line arguments for your application server as shown in Figure 30:

-Djavax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.Util

-Dcom.ibm.CORBA.iiop.noLocalCopies=true

There is a significant restriction for using option A caching: the application
server must be the only updater of the data in the persistent store. This means
you cannot use option A caching with WLM'ed servers or with a database that
is shared among multiple applications that are trying to modify the data.

Note
Chapter 5. WebSphere Engine 45

Figure 30. ORB Tuning

While the use of "noLocalCopies" can improve performance, there can also be
unintended side effects. A possible unintended side effect is illustrated with the
following example:

void execute() {
MyObject myObject = new MyObject();
myObject.setString("hello");
remoteObject.foo(myObject);
System.out.println(myObject.toString());
}

RemoteObject...
void foo(MyObject obj) {
obj.setString("hello world");
}

Without "noLocalCopies", the method call to foo passes a copy of MyObject.
When the foo method modifies the value of the String field (via setString), it
has no bearing on the original object. This results in the output of "hello".

With "noLocalCopies", the method call to foo passes an object reference of
MyObject. When the foo method modifies the value of the String field (via
setString), it has an effect on the original object. This results in the output of
"hello world".

Use caution when using "noLocalCopies"
46 WebSphere V3 Performance Tuning Guide

We made the following modifications to the
com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs line in the
/<was_dir>/bin/admin.config file. We added three entries in addition to
-mx128m, which is the default:

-mx128m -ms64m -Djavax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.Util

-Dcom.ibm.CORBA.iiop.noLocalCopies=true

As we discussed before, the first argument increases the minimum heap
size for the JVM that the WebSphere adminserver process uses. And also
we've discussed what the second one does as well. Since WebSphere is
built on an RMI/IIOP and EJB architecture (just like applications), the
adminserver starts faster (~25%) and seems to perform better, as does the
adminclient. This seems most pronounced on UNIX. There doesn't seem to
be as much improvement on Windows NT.

Tuning for the adminserver
Chapter 5. WebSphere Engine 47

48 WebSphere V3 Performance Tuning Guide

Chapter 6. Security

In V3 of WebSphere Application Server the security infrastructure is designed to
support a single integrated policy to govern the security of Web pages, servlets,
and enterprise beans. The infrastructure provides for management of the security
policies and services provided by both WebSphere Standard and Advanced
Editions in a distributed manner utilizing the WebSphere systems console
(adminclient).

Among the improvements in security implementation in V3 of WebSphere from V2
are the integration of HTML, JSP file, servlet, and enterprise bean security. V3 of
WebSphere also provides for an HTTP Single Sign-On solution, as well as
support for modes of delegation between WebSphere servers and secure Java
clients. Finally V3 improves on Lightweight Directory Access Protocol (LDAP)
support for use as a security registry when compared to V2.

6.1 WebSphere security overview

The WebSphere Application Server runtime relies on Remote Method Invocation/
Internet Inter-ORB Protocol (RMI/IIOP) for all interprocess communication. When
WebSphere security is enabled all interprocess communication is encrypted with
Secure Sockets Layer (SSL), thus all communications use RMI/IIOP/SSL. As is
the case when encrypting HTTP with SSL for HTTPS, there are performance
impacts. Once the security is enabled additional processes are invoked for the
application.

As an example consider the process flow for the Inc Bean sample that ships with
WebSphere depicted in Figure 31 on page 49.

Figure 31. The process flow for the Inc Bean sample

servlet engine

Application Server

EJB container

IncServlet

IncBean

W eb server
plug-in

servlet request

servlet invocation

Web server
© Copyright IBM Corp. 1999 49

The process flow is:

1. A request comes into the Web server.

2. The WebSphere plug-in to the Web server intercepts the request and
determines that the URI is to be serviced by WebSphere.

3. The IncServlet is invoked.

4. The IncBean EJB is invoked.

5. The result is returned to the browser.

Now consider what occurs when security is enabled. This is depicted in Figure 32
on page 50.

Figure 32. The process flow for the Inc Bean sample with WebSphere security

With security enabled the process flow becomes:

1. A request comes into the Web server.

2. The WebSphere plug-in to the Web server intercepts the request and
determines that the URI is to be serviced by WebSphere and is protected.

3. A 401 challenge is issued back to the Web browser requiring the user to enter
an ID and password.

4. The plug-in to the Web server contacts the security server with the user ID and
password and the security server authenticates the user with this information.

5. Once authenticated, the plug-in to the Web server then determines if the user
has the appropriate authorization (permissions) to access the protected
resource (the IncServlet). A security context is then created and the request is
passed on to the servlet engine to service the request.

servlet engine

security
collaborator

authorization

Application Server

EJB container

IncServlet

IncBean

web server
plug-in

Security Application

servlet request

authentication challenge
(401)

userid, password

authentication and authorization

authentication and
authorization: success

servlet invocation

web server

security checks
50 WebSphere V3 Performance Tuning Guide

6. Before allowing the request to be processed, the security context is checked
to ensure that the user is authorized to invoke the method on the servlet.

7. When the IncServlet invokes a method on the IncBean, once again the
security context is checked to ensure that the caller has the appropriate
permissions to invoke the increment() method in the IncBean.

8. The method is then invoked and the result is returned to the browser from the
servlet engine.

As can be seen, the number of steps have nearly doubled when security is
enabled, plus the overhead of SSL is added to the additional steps. When
security is enabled, performance is degraded by about 50%.

Now that we’ve explained why there’s an impact, the obvious question is what
can be done to minimize the performance impact.

6.2 Configuring security

Security in WebSphere V3 is a global setting enabled from the Tasks tab of the
WebSphere Administration Console Tasks -> Security ->Specify Global
Settings as shown in Figure 33.

Figure 33. Security global settings

6.2.1 Enabling security
Selecting Enable Security as depicted in Figure 34 on page 52 will result in SSL
encryption of all interprocess communication in WebSphere. Also, all subsequent
invocations of the WebSphere Administrative Console will result in a
challenge/authentication dialog prompt once the adminserver has been restarted.
Chapter 6. Security 51

Figure 34. Enable Security

6.2.2 Security cache timeout
On the same tab on which you enable WebSphere security as depicted in Figure
34, there is setting for the Security Cache Timeout that can influence
performance. This timeout specifies how often the security-related caches need
to be refreshed. The information on beans, permissions, and credentials are all
cached. Every time the cache is refreshed the values become invalid.
Subsequent requests for those values potentially result in a database lookup or
even an LDAP-bind or native authentication.

In a simple 20-minute test case, we raised the cache timeout from the
600-second default to 6000 seconds so that it did not time out during the run, and
achieved a 40% performance improvement. You can experiment here to find the
best trade-off (performance versus how long you want the security cache to
remain valid) for your application based on your site usage and your business
rules.

Once security is enabled you’ll still need to create an enterprise application to
specify security for each object and its methods.

Customer will need to create an enterprise app to specify security for each
object and its methods.

Note
52 WebSphere V3 Performance Tuning Guide

6.2.3 SSL V3 timeout
There is one property for the SAS (Secure Association Server) that is
performance related. This is the com.ibm.CORBA.SSLV3SessionTimeout
property value, which is set by default to 9600 secs. This is the time interval after
which SSL sessions are renegotiated. This is a high setting, and probably won't
realize any significant impact from modification. The SAS parameters are
modified by editing the "sas.server.props" and "sas.client.props" files found in the
<wasroot>/properties directory as depicted in Figure 35 and Figure 36 on page
54.

Also note that SAS establishes an SSL connection only if it goes out of the ORB
(to another ORB), so if all the beans are CO-located within an ORB, then SAS's
SSL performance should not be hindered.

Figure 35. sas.server.props

#SAS Properties - Editable
#Wed Jun 16 17:27:51 EDT 1999
com.ibm.CORBA.loginUserid=demouser
com.ibm.CORBA.loginPassword=demopasswd
com.ibm.CORBA.securityEnabled=false
com.ibm.CORBA.authenticationTarget=LOCALOS
com.ibm.CORBA.delegateCredentials=methodDefined
com.ibm.CORBA.principalName=my.domain.name/demouser
#SAS Properties - DO NOT EDIT
#Wed Jun 16 17:27:51 EDT 1999
com.ibm.CORBA.SSLKeyRing=com.ibm.websphere.DummyKeyring
com.ibm.CORBA.SSLKeyRingPassword=WebAS
com.ibm.CORBA.SSLClientKeyRing=com.ibm.websphere.DummyKeyring
com.ibm.CORBA.SSLClientKeyRingPassword=WebAS
com.ibm.CORBA.SSLTypeIServerAssociationEnabled=true
com.ibm.CORBA.SSLTypeIClientAssociationEnabled=true
com.ibm.CORBA.SSLV3SessionTimeout=9600
com.ibm.CORBA.standardClaimQOPModels=integrity
com.ibm.CORBA.standardPerformQOPModels=confidentiality
com.ibm.CORBA.loginTimeout=30
com.ibm.CORBA.loginSource=properties
com.ibm.CORBA.LTPAServerAssociationEnabled=true
com.ibm.CORBA.LTPAClientAssociationEnabled=false
com.ibm.CORBA.keytabFileName=c:/websphere/etc/keytab5
com.ibm.CORBA.securityDebug=no
com.ibm.CORBA.securityTraceLevel=none
com.ibm.CORBA.bootstrapRepositoryLocation=c:/websphere/etc/secbootrep
com.ibm.CORBA.disableSecurityDuringBootstrap=false
LOCALOS.server.id=demouser
LOCALOS.server.pwd=demopasswd
Chapter 6. Security 53

Figure 36. sas.client.props

6.3 The invoker servlet

The invoker servlet is a special servlet that is created as part of the sample
default configuration. While useful for a development environment, this servlet
exacts a very slight performance penalty. More important is the security risk that
this servlet represents.

For those of you not familiar with “invoker”, this is a servlet that has a service
method only. This service method searches the classpath for other servlets and
then invokes (or executes) them. This allows you to place servlet class files in the
default directory and execute them without defining them. The easiest way to see
this is to use the servlet snoop. You’ll notice that snoop is defined in the
default_app and can be called in a browser as http://localhost/servlet/snoop.
When this happens you’ve called the servlet directly, and invoker is not required.
However if you choose to call snoop by its class name,
http://localhost/servlet/SnoopServlet, then invoker is used to service this
request. If you look closely at the Request Information section on the page
returned to the browser you’ll see different URIs and paths returned for each of
these even though they are the same servlet. You can also go to the WebSphere
Resource Analyzer and monitor the number of executions of each servlet as you
press Enter on your browser.

While the performance cost of using the invoker servlet to execute your servlets
is negligible, of significant importance is the fact that this exposes your Web site
to unauthorized execution of servlets. In WebSphere V3 the permissions are
defined by URL, so if you alias a servlet /servlet/something, then the permissions
aren’t applied to /servlet/com.someone.something. This can we worked around
by securing both URLs for each servlet. The other possible issue is that a
provider of a support class library could sneak a servlet into their JAR file and use
it as a back door into Web sites.

com.ibm.CORBA.securityEnabled=true
com.ibm.CORBA.loginSource=prompt
com.ibm.CORBA.loginTimeout=30
com.ibm.CORBA.loginUserid=
com.ibm.CORBA.loginPassword=
com.ibm.CORBA.keytabFileName=/usr/WebSphere/AppServer//etc/keytab5
com.ibm.CORBA.SSLTypeIClientAssociationEnabled=true
com.ibm.CORBA.SSLTypeIServerAssociationEnabled=true
com.ibm.CORBA.LTPAClientAssociationEnabled=false
com.ibm.CORBA.LTPAServerAssociationEnabled=true
com.ibm.CORBA.authenticationTarget=LocalOS
com.ibm.CORBA.SSLKeyRing=com.ibm.websphere.DummyKeyring
com.ibm.CORBA.SSLKeyRingPassword=WebAS
com.ibm.CORBA.SSLServerKeyRing=com.ibm.websphere.DummyKeyring
com.ibm.CORBA.SSLServerKeyRingPassword=WebAS
com.ibm.CORBA.SSLV3SessionTimeout=9600
com.ibm.CORBA.standardPerformQOPModels=confidentiality
com.ibm.CORBA.standardClaimQOPModels=integrity
com.ibm.CORBA.bootstrapRepositoryLocation=none
54 WebSphere V3 Performance Tuning Guide

Figure 37. The invoker servlet

You remove the invoker servlet from the Web application to turn it off.

To enable the invoker servlet you either specify "Serve Servlets By Classname"
when creating a Web Application (Tasks tab) or create a servlet in an existing
application with the servlet class name:
com.ibm.servlet.engine.webapp.InvokerServlet.
Chapter 6. Security 55

56 WebSphere V3 Performance Tuning Guide

Chapter 7. Database tuning

WebSphere V3 uses a relational database, called the administrative repository, to
store configuration information. The WebSphere product includes relational
database software in the shipment; WebSphere Standard Edition ships with
InstantDB and WebSphere Advanced Edition ships with UDB V5.2. Both editions
support the administrative repository on UDB V5.2, UDB V6.1, and Oracle.

In addition to the administrative repository, many applications use a database as
their back-end system. In this case, database tuning can have the largest impact
on your application performance.

WebSphere also can use a database for persistent sessions, which we will
discuss in Chapter 8, “Session management” on page 75.

Figure 38. WebSphere and databases

Basically, there are two areas where tuning can affect database performance.
The first area is in the WebSphere parameters relating to the database. The
second is the database configuration. We will not go into detail on database
configuration but we will take a look at some of the most effective tuning
parameters.

In this chapter, we will discuss:

• Administrative repository implementation

• DataSource object settings

• Prepared statement cache sizing

• Database configuration

7.1 The WebSphere administrative repository

WebSphere Application Server uses a database to store configuration data.
Parameters like servlet name, application server name, session timeout value,
and others, are stored in this administrative repository. Generally, WebSphere

Plug-in

Admin
Server

HTTP
Server AppServ 1

Machine A
ND

Machine C

Plug-in
Admin
Server

HTTP
Server AppServ 1

Machine B

Persistent
Session

DB

Machine D

Plug-in

Admin
Server

HTTP
Server AppServ 1

Machine A

Administrative
Repository

Machine B

DB
Plug-in

Admin
Server

HTTP
Server AppServ 1

Machine A

Application
DB

Machine B

DB

(1) (2)

(3)
© Copyright IBM Corp. 1999 57

Admin Server keeps up to four database connections open to the administrative
repository. And when you start an AdminClient the total number of connections
can be up to seven.

The administrative repository needs to be created before bringing up WebSphere
for the first time. For example, if you are building the database with UDB the
following statements are used:

db2 create database was
db2 update database configuration for was using applheapsz 256

The database name “was” is the default repository name. You will specify this
name later in the installation wizard when you start WebSphere for the first time.

It is recommended that you increase the applheapsz to 256. The applheapsz is
discussed later in 7.4.2, “Applheapsz” on page 70.

The tables in the administrative repository will be created when you start an
Admin Server (on AIX, startupServer.sh is executed) for the first time. Starting the
Admin Server the first time will take a few minutes due to the tables being built.

WebSphere determines that the tables need to be built by looking at a setting in
the /usr/WebSphere/AppServer/bin/admin.config file.

Figure 39. admin.config (selection)

If install.initial.config is set to true, the tables will be created. If the initialization of
tables has already been done, this setting will be false (see Figure 39).

If, at some time, you want to create and use a new administrative repository the
steps are easy. Simply create the new database, change the install.initial.config
to true (so the tables will be created) and change the URL of the database in the
admin.config file to point to the new database (see Figure 40). This is especially
useful in test environments where you can try different configurations by
switching the administrative repository.

Figure 40. admin.config (selection)

In this example, the administrative repository name is was52rem. The user ID
and password for the database are also stored in the admin.config file with the
following settings:

com.ibm.ejs.sm.adminServer.nameServiceJar=/usr/WebSphere/AppServer/lib/ns.jar
install.initial.config=false
com.ibm.ejs.sm.adminServer.initializer=com.ibm.ejs.security.Initializer,com.ibm
.servlet.engine.ejs.ServletEngineAdminInitializer,com.ibm.servlet.config.Initia
lSetupInitializer

com.ibm.ejs.sm.adminServer.traceFile=/usr/WebSphere/AppServer/logs/tracefile
com.ibm.ejs.sm.adminServer.dbUrl=jdbc:db2:was52rem
server.root=/usr/WebSphere/AppServer
com.ibm.ejs.sm.util.process.Nanny.traceFile=/usr/WebSphere/AppServer/logs/nanny
.trace
com.ibm.ws.jdk.path=/usr/jdk_base/
com.ibm.ejs.sm.adminServer.dbPassword=db2inst1
58 WebSphere V3 Performance Tuning Guide

com.ibm.ejs.sm.adminServer.dbUser
com.ibm.ejs.sm.adminServer.dbPassword

Note that you can save WebSphere’s configuration by backing up the database.

The relationship between WebSphere Application Server and its administrative
repository is determined by the com.ibm.ejs.sm.adminServer.dbUrl setting in the
admin.config file. If the database is on a remote machine, this is transparent to
WebSphere. It only looks for the database name, user ID and password specified
in the database catalog. Just make sure the database connection is configured
correctly and working before you start the Admin Server.

Detailed information on setting up the administrative repository is found in
WebSphere Application Server Advanced Edition: Getting Started (shipped with
the product).

7.1.1 Serious event reporting
The administrative repository stores event logs as well as configurations. Event
information will appear in the bottom pane of the Administrative Console. Event
information is also stored in standard output files such as
default_server_stdout.log and default_server_stderr.log under the
<was_root>/logs directory.

7.1.1.1 Serious event pool interval
The Serious Event listener is a lightweight background thread that runs every 10
seconds by default, polling the administrative repository for changes in the
configuration or runtime state. The listener executes select statements and stores
them in the administrative repository. By default, a database select is issued to
the administrative repository for each type of event (fatal, warning audit). Any
events returned as a result are reported in the Console Messages section of the
Administration Client. While not a significant use of resources, the Serious Event
listener thread can be tuned to execute at a desired time interval.
Chapter 7. Database tuning 59

You can change the polling interval and the types of messages reported by selecting
the node in the Administration Client then selecting Console-> Trace-> Serious
Events. See Figure 41.

Figure 41. Serious Events

You get the new Serious Events window and under the Preferences tab shown in
Figure 42, you can then adjust the Serious Event Pool Interval from the default 10
seconds.

Figure 42. Serious Events Preferences
60 WebSphere V3 Performance Tuning Guide

A value of 0 turns this off and is not recommended. Once you go into production you
can set this interval period to be longer. The check boxes allow you to choose the
event categories to be selected.

7.1.1.2 Log limit
A more important setting for performance is the Log Limit for the Serious Events
table in the WebSphere configuration repository.

The default setting for the Log Limit is 0 (zero) as depicted in Figure 42 on page
60. This setting is misleading since this actually maps to no limit being set for the
entries in the Serious Events table. Over time this will degrade database
performance as the table grows and could result in a database error if sufficient
space on the file is not allocated.

Setting this to a value of between 1000 and 5000 should provide adequate
logging while not adversely impacting system performance.

7.2 DataSource object settings

In WebSphere Version 3 administration, databases are defined as DataSource
objects. A DataSource object represents an application database which will be
used for user applications. The WebSphere administrative repository is not
considered a user application and therefore is not a DataSource object.

DataSource objects are used by servlets through the connection pool, by the
Session Manager for persistent sessions, and by EJB containers.

7.2.1 Connection pooling
One of the most time-consuming procedures of a database application is
establishing a connection to the database. In WebSphere Version 2 the
Connection Manager API was used to reduce this overhead. WebSphere Version
3 provides a new API called connection pooling. Connection pooling is defined as
a part of the JDBC 2.0 Standard Extension API.

Connection pooling establishes a pool of connections that user servlets can use.
Once a connection is established, it is reused repeatedly so subsequent user
requests incur only a fraction of the cost of a connect/disconnect. Connection
pooling also lets you control the number of concurrent connections to a database
server. This is useful if you have to manage the number of database users to
comply with a database server license agreement.

Connection pooling is the recommended method to use when developing new
servlets. The old Connection Manager API is supported by WebSphere Version 3,
but only as a migration path. The differences between the Connection Manager
API and connection pooling are discussed in the “What Is -> Connection Pooling”
topic of the online documentation provided with WebSphere.

Servlets use a connection pool as follows:

• When a user makes a request over the Web to a servlet, the servlet uses an
existing connection from the pool.

• When the request is satisfied, the servlet returns the connection to the
connection pool for use by other servlets.
Chapter 7. Database tuning 61

• The servlet uses a DataSource object to get a connection, and the connection
pooling services are automatically provided through the DataSource object.

Note that the servlet does not access the connection pool directly. The servlet
requests a connection through a DataSource object and the connection pooling is
provided automatically.

You can modify the configuration of a connection pool using the adminclient.
Select Topology -> Datasource -> Advanced. The defaults are shown in the
figure below.

Figure 43. Datasource - Advanced

Minimum connection pool size
This is the number of connections which will be prepared at server
startup.

Maximum connection pool size
This is the maximum number of connections. It includes in-use, idle,
and orphaned connections. If a client request reaches minimum
connection pool size, WebSphere creates a new connection. Then, if a
request reaches Maximum connection pool size and all connections
are in-use, the next request will have to wait for a connection to be
released by other servlets.

Connection timeout
If a connection is not made available during this specified period, a
com.ibm.ejs.dbm.jdbcext.ConnectionTimeoutException (a subclass of
SQLException) will be returned to your application. In a production
environment the default of 300 seconds is probably too long for
acceptable performance. You'll want to test various settings for this
parameter under load for your environment and response time criteria.
A suggested start point for your testing would be in the range of 1-10
(seconds), again depending on your requirements.
62 WebSphere V3 Performance Tuning Guide

Idle timeout
This parameter determines how long an idle connection can remain in
the pool before being removed to free resources.

Orphan timeout
This parameter determines how long a connection can be owned by a
servlet before being considered orphaned. WebSphere will consider a
connection as orphaned, when the servlet uses the connection
multiple times over an extended period and the connection becomes
unresponsive. This might be caused by an unexpected problem.

7.2.1.1 Sample case 1
To see the effects of the connection pooling parameters we performed a primitive
test of management connections. We used the ConnPoolTest.class, included in
the WebSphere Samples Gallery, to access a database using the connection
pooling API. The servlet accesses the SAMPLE database and executes a simple
select statement.

The test configuration looked like topology 2, shown in Figure 6 on page 10, with
the WebSphere Application Server residing on a different machine than the
database server.

In our test environment, setting the maximum connection pool size to 3-5 gave
the best performance. We set the max connections to higher than 5 and it
resulted in high CPU activity with the vmstat command. Of course, the
WebSphere node gets heavier stress than the database node in this simple SQL
statement. We used the same spec machines for each node.

7.2.1.2 Sample case 2
Next, we used the sample Trade application with connection pooling to see the
effect of changing the maximum and minimum connection pool size. We used five
cases, setting the maximum connection pool size to 1, 3, 5, 7 and 10 respectively.

In our test environment, we saw the best performance when the maximum
connection pool size was 5. Setting this parameter to 1 significantly reduced the
performance (by as much as 50% of the performance with the setting at 5).
Setting the maximum connection pool size to 5 or more, ensured there was less
CPU idle time.

7.2.1.3 Rules of thumb
• If your application uses more than one database, you have to consider the

total number of connections. If you create a clone environment or if you
implement the session persistence feature, connections to the session
database are also necessary. The total number of connections will be as
follows:

Maximum total number of database connections =

Application DataSource Maximum connection pool size * Number of clone
Servers +

Session DataSource Maximum connection pool size * Number of clone
Servers+

WebSphere administrative repository connections+
Chapter 7. Database tuning 63

(Connections from any other applications or temporary connections from
command line)

• Each connection uses about 700 KB - 1800 KB of memory on each node.
Increasing the maximum connection pool size seems to have a positive effect
on performance until you reach the point where CPU processing becomes a
bottleneck. Increasing the CPU power of the WebSphere node could allow you
to increase the maximum connection pool size.

• Specifying too small a number of connections will cause the application to get
a connection timeout.

7.3 Prepared statements

Each time your application submits a query to a database, the database manager
creates a query plan. The query is then executed with this plan. If your
application is coded to use the PreparedStatement class instead of the Statement
class an object is created that precompiles and stores the SQL (Structured Query
Language) associated with the query plan. This approach is more efficient than
running the same statement multiple times with a Statement object, which
compiles the statement each time it runs.

In the example below the database builds the query plan only once when the first
statement is executed.

Figure 44. Example of the prepared statements

7.3.1 Prepared statement cache
WebSphere V3.x provides an additional performance improvement to that already
provided by using the PreparedStatement class, with a Prepared Statement
cache. By caching prepared statements, the initial overhead of the database
manager creating an SQL query plan (as described above) for a
PreparedStatement class is avoided. When possible, WebSphere will provide the
database manager with an existing execution plan for the prepared statement.

The size of the prepared statement cache is specified by adding a command line
argument to your application server, select Topology-> Default Server->
General. As shown in Figure 45, in the Command line arguments field specify:

It is important that a DataSource object for persistent sessions have its own
connections aside from the connections to an application DataSource. By
default, the maximum connection pool size of a DataSource is 30.

DataSource Object for Persistent Sessions

PreparedStatement pstmt = con.prepareStatement(select exchange_rate from
rates where currency = ?");

//Initialize first parameter with currency
pstmt.setString(1, Flan);
ResultSet results = ps.executeQuery();

Subsequent invocations of the query are performed by substitution of the
appropriate variables

pstmt.setString(1, Lira);
64 WebSphere V3 Performance Tuning Guide

-Dcom.ibm.ejs.dbm.PrepStmtCacheSize.

This cache is shared among all DataSources. In our testing on AIX we found the
following formula most appropriate for determining the appropriate setting:

Cache = (# unique prepared statements) * (number of concurrent clients)

For the application that we tested there were only two prepared statements. So
for our tests with 100 concurrent clients, we set the prepared statement cache to
200 and noticed a significant performance improvement from tests with cache
settings of 50, 100, 150, and did not notice any significant improvement in tests
where the setting was higher than this.

For example, for 20 concurrent user threads, you would set the maximum
connection pool size to 20. Assuming each client is doing just an entity read and
there are two different PrepStmts (load and save), the prepared statement cache
size should be at least 2*20 = 40.

Figure 45. Prepared statement cache

7.3.2 Prepared statement key cache
This parameter controls the size of the intermediate cache used to map between
SQL statements and entries in the prepared statement cache. Unlike the

The WebSphere Performance team has found that the following formula works
best on Windows NT:

PrepStmtCache > #PrepStmt * min (concurrent user threads, connection Pool
Size)

For Windows NT
Chapter 7. Database tuning 65

prepared statement cache which is shared among all Data Sources, this
parameter specifies the number of entries in cache for each Data Source. A
reasonable value would be the expected number of unique prepared statements
which you expect to have in the application. As in Figure 46, we can specify in the
Command line arguments field:

-Dcom.ibm.ejs.dbm.PrepStmtKeyCacheSize

Figure 46. Prepared statement key cache

7.4 UDB configuration

In this topic we will discuss only general parameters to consider. All parameters
which we describe can apply to your application database, the WebSphere
administrative repository and the persistent session database. Table 3 shows the
parameters we used in testing the performance of our test application, Trade
servlet.

Table 3. Database configuration parameters

Parameter Default Value

BUFFPAGE 1000 (4 KB page)

APPLHEAPSZ 128 (4 KB)

PCKCACHESZ 8 * maxappls, if it is smaller than
32, 32 will be the default value

MAXAPPLS 40

DFT_DEGREE 1

LOCKLIST 100 (4 KB)

MAXLOCKS 10 (%)
66 WebSphere V3 Performance Tuning Guide

7.4.1 Buffpage
The buffer pool is allocated when the first application connects to the database or
when the database is explicitly activated. As an application requests data out of
the database, pages containing that data are transferred to one of the buffer
pools. Pages are not written back until the page is changed and one of the
following occurs:

• All applications disconnect from the database.
• The database is explicitly deactivated.
• The database quiesces.
• Its space is required for another page that needs to be read into the buffer

pool.
• A page cleaner is available and is activated by the database manager.

If the buffer pools are large enough to keep the required data in memory, less
disk activity will occur. If the buffer pools are not large enough, the overall
performance of the database can be adversely affected.

7.4.1.1 Update buffpage size
The default value for buffpage, 1000 (4 MB), is often not large enough. You can
update a buffpage parameter with the following command:

db2 update db cfg for <database_name> using BUFFPAGE 2000

In our test case, we changed the buffsize value from 1000 (4 MB) to 2000 (8 MB).
This change gave us a 2.11% performance increase in our sample trade
application. Keep in mind that the buffpage parameter will hold a specific amount
of memory, so you need to balance increased buffer pool sizes with the need for
enough memory for the rest of the processes active on the machine.

7.4.1.2 Monitor buffpage size
Before updating the buffpage size, we recommend that you check the current
usage of buffer pages. We used a DB2 snapshot of the data collected by the DB2
system monitor to do this.

DB2 has a system monitor that collects information about performance. The type
of information collected can be determined by setting monitor switches. By

LOCKTIMEOUT -1 (sec)

MAXAGENTS 200

Parameter Default Value

To determine whether the buffpage parameter is active for a buffer pool, you
can use the following command:

SELECT * from SYSCAT.BUFFERPOOLS

Each buffer pool that has an NPAGES value of -1 uses buffpage.

To change the value NPAGES of an existing buffer pool to -1, you can use
the db2 alter command as follows:

db2 alter bufferpool ibmdefaultbp size -1

Note
Chapter 7. Database tuning 67

default, buffer related information is not collected so you will need to set up the
monitoring switches. There are two ways to do this:

1. Set the DFT_MON_BUFPOOL parameter “on” with the following command:

db2 update dbm cfg using DFT_MON_BUFPOOL ON

2. Use the update monitor switches command:

db2 update monitor switches using BUFFERPOOL on

The first option, the update dbm cfg command, will be effective until you re-issue
the command and specify Off. It doesn’t affect applications which were connected
to the database before the command was executed.

The second option, the update monitor switches command, affects only the
application that executes this command. This value will be reset when the
application terminates.

To confirm the current setting of monitor switches, use the following command:

db2 get monitor switches

To reset the statistics, use the following command:

db2 reset monitor all

To get a snapshot of the information, use the following command:

db2 connect to <database_name>

db2 get snapshot for database on <database_name>

The following command collects only buffer pool related information:

db2 get snapshot for bufferpools on <database_name>
68 WebSphere V3 Performance Tuning Guide

Figure 47 shows the output of the snapshot command. As you can see there is a
line that tells the number of buffer pool data physical reads. The higher this
number is, the more impact you will see on performance because physical reads
and writes are time consuming.

Figure 47. Output of snapshot #1 (before update buffpage size)

Database Snapshot

Database name = TRADES
Database path =
/home/db2inst1/db2inst1/NODE0000/SQL00003/
Input database alias = TRADES
Database status = Active
Catalog node number = 0
Catalog network node name =
Operating system running at database server= AIX
Location of the database = Local
First database connect timestamp = 12-03-1999 12:08:47.403708
Last reset timestamp =
Last backup timestamp = 12-02-1999 13:49:50.499393
Snapshot timestamp = 12-03-1999 12:15:58.821643

// omitting..

High water mark for database heap = 340573

Buffer pool data logical reads = 64580
Buffer pool data physical reads = 116
Asynchronous pool data page reads = 63
Buffer pool data writes = 72
Asynchronous pool data page writes = 71
Buffer pool index logical reads = 95101
Buffer pool index physical reads = 104
Asynchronous pool index page reads = 0
Buffer pool index writes = 43
Asynchronous pool index page writes = 40
Total buffer pool read time (ms) = 586
Total buffer pool write time (ms) = 1041
Total elapsed asynchronous read time = 41
Total elapsed asynchronous write time = 949
Chapter 7. Database tuning 69

Figure 48 shows a snapshot taken after the parameter was changed from 1000 to
2000. The number of reads has dropped to 0. This means that all read requests
hit the buffer pool cache in the memory.

Figure 48. Output of snapshot #2 (after update buffpage size)

7.4.2 Applheapsz
Application heap contains memory blocks used by UDB to process application
requests. To update the applheapsz parameter:

db2 update db cfg for <database_name> using applheapsz <block_number>

When we set this value to 512 (versus the default of 128) for our test database
application, we saw a performance improvement of 5.44%.

Database Snapshot

Database name = TRADES
Database path =
/home/db2inst1/db2inst1/NODE0000/SQL00003/
Input database alias = TRADES
Database status = Active
Catalog node number = 0
Catalog network node name =
Operating system running at database server= AIX
Location of the database = Local
First database connect timestamp = 12-03-1999 13:13:26.866103
Last reset timestamp = 12-03-1999 13:28:08.993190
Last backup timestamp = 12-02-1999 13:49:50.499393
Snapshot timestamp = 12-03-1999 13:32:00.568447

High water mark for connections = 10

//

Buffer pool data logical reads = 11318
Buffer pool data physical reads = 0
Asynchronous pool data page reads = 0
Buffer pool data writes = 1
Asynchronous pool data page writes = 0
Buffer pool index logical reads = 18692
Buffer pool index physical reads = 0
Asynchronous pool index page reads = 0
Buffer pool index writes = 5
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 0
Total buffer pool write time (ms) = 150
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
70 WebSphere V3 Performance Tuning Guide

7.4.3 Pckcachesz
The package cache size (pckcachesz) is allocated from the application heap size
(applheapsz). Access plans are stored in the package cache. You will need to
consider resizing the applheapsz parameter if you increase the package cache
size. When an application uses a specific section often the package cache will be
efficiently used. You can use the following command to update the size of
pckcachesz:

db2 update db cfg for <database_name> using pckcachesz <number>

7.4.4 Maxappls
This parameter specifies the maximum number of concurrent applications that
can be connected (both local and remote) to a database. You can update this
value with the following command:

db2 update db cfg for <database_name> using maxappls <number>

To estimate the total number of connections to an application database use the
following formula:

Application DataSource Maximum connection pool size * Number of Clone
Servers + (Connections from any other applications or temporary connection
from command line)

You also need to consider this value for the session database. If you increase
DataSource Maximum connection pool size without increasing this value, you will
get SQL Error SQL1040N and your application will fail.

See also 7.4.6, “Locklist” on page 72 and 7.4.9, “Maxagents” on page 73.

7.4.5 Dft_degree
The dft_degree parameter specifies whether to enable SMP parallel procedures.
The default value is 1, meaning not to use SMP parallel. SMP parallel is suitable
for applications which use only a select statement and utilities which collect
information from the database. If your application is an OLTP type, enabling this
SMP parallel procedure might cause a decrease in performance.

In our test case using Trade (an OLTP application), performance decreased by
approximately 36% when we set dft_degree to -1 (use SMP parallel) with the
following command:

db2 update db cfg for <database_name> using dft_degree -1

If you used the <was_dir>/bin/createdb2.sh shell script when you installed
WebSphere, it updated the applheapsz parameter to 256 for the WebSphere
administrative repository.

Note
Chapter 7. Database tuning 71

7.4.6 Locklist
Locklist indicates the amount of storage that is allocated to the lock list. Locking
is the mechanism that the database manager uses to control concurrent access
to data in the database by multiple applications. Both rows and tables can be
locked. There is one lock list per database and it contains the locks held by all
applications concurrently connected to the database. Lock escalation is the
process of replacing row locks with table locks, reducing the number of locks in
the list. You can update this value with the following command:

db2 update db cfg for <database_name> using locklist <number>

We tested with two locklist values, 100 and 200. When we set this value to 200,
we saw performance improvements with database lock snapshot. The value of
lock waits went down 19%, lock list memory in use went down 20%, Time
database waited on locks (ms) went down 38%. And also we noticed that the
HTTP performance (request per second) went up 5%.

7.4.7 Maxlocks
The maxlocks parameter defines a percentage of the lock list held by an
application. When the number of locks held by any one application reaches this
percentage of the total lock list size, lock escalation will occur for the locks held
by that application. Lock escalation also occurs if the lock list runs out of space.
Therefore, when you increase maxappls, you should keep it lower than maxlocks
or increase locklist to prevent lock escalation.

If you don’t want to use SMP parallel at all, you should specify no for the
INTRA_PARALLEL parameter in the Database Manager configuration.

db2 update dbm cfg using INTRA_PARALLEL no

Note

Use the snapshot command to see if lock escalation has occurred. By
default, locking related information is not monitored. There are two ways to
turn on monitoring for locking information.

Set the DFT_MON_LOCK parameter to ON with the following command:

db2 update dbm cfg using DFT_MON_LOCK ON

Use the update monitor switches command:

db2 update monitor switches using LOCK on

To reset snapshot data, use the following command:

db2 reset monitor all

Use the following commands to connect to the database and take a
snapshot of the lock related information:

db2 connect to <database_name>
db2 get snapshot for locks on <database_name>

Monitoring Lock Escalation
72 WebSphere V3 Performance Tuning Guide

7.4.8 Locktimeout
If your application response time appears to be too long, review the locktimeout
setting. The default setting is -1, which means no connection timeout. If you do
not want the transaction to keep trying to get a connection, set the locktimeout
value to a positive number measured in seconds. The application programmer
will need to determine what locktimeout value is appropriate for the user
community.

For example, user A connects to the database and is updating table T1. When the
locktimeout value is set to the default (-1), user B will not be able to update table
T1. There is no recommended number to use for the locktimeout value. The
application programmer will need to experiment with different locktimeout values
until the application response time is appropriate for the application users.

You can change the locktimeout value with the following command:

db2 update db cfg for <database_name> using locktimeout <number>

7.4.9 Maxagents
The maxagents parameter indicates the maximum number of database manager
agents. The value of maxagents should be at least the sum of the values for
maxappls in each database allowed to be accessed concurrently.

For Websphere applications the maximum number of connections can be
calculated with the following formula:

Maximum total number of database connections =

Application DataSource Maximum connection pool size * Number of Clone
Servers +

Session DataSource Maximum connection pool size * Number of Clone
Servers +

WebSphere administrative repository connections +

(Connections from any other applications or temporary connections from a
command line)

You can change the value of maxagents with the following command:

db2 update dbm cfg using maxagents <number>
Chapter 7. Database tuning 73

74 WebSphere V3 Performance Tuning Guide

Chapter 8. Session management

When establishing a Web application site, it is desirable to be able to track client
status. In many cases, a client’s desired procedure will consist of several Web
pages and several methods of a servlet. A series of requests from the same client
to the same browser is called a session. If your application requires sessions to
be maintained across requests, WebSphere supports the Servlet API
HttpSession Interfaces (javax.servlet.http.HttpSession). With this interface, an
application can track client status and keep client information temporarily.
WebSphere provides a Session Manager to handle these session objects.

8.1 Session information

WebSphere provides two ways to store session information on the application
server. One way is to store the session in memory. The second way is to store the
session in a database. Sessions stored in a database are called persistent
sessions.

8.2 Keeping session information in memory

By default, the Session Manager uses the in-memory mode.

From the Topology-> WebSphereAdminDomain-> hostname->
DefaultServer-> servletEngine-> Session Manager-> Enabled tab as shown in
Figure 49 on page 75, you can see that Enable Persistent Sessions is set to the
default setting of No.

Figure 49. Session Manager - Enable
© Copyright IBM Corp. 1999 75

8.3 Persistent sessions

Using persistent sessions is of significant value to a Web application. By storing
sessions in a database the session state is maintained even if you reboot the
application server, or if an unexpected system error occurs. It also allows access
from more than one instance of an application server, which allows for application
server clustering. If you are considering cloning applications on a single node, or
using more than one application server on separate machines, or using a
combination of the two, sessions must be persisted to a database.

Figure 50. Persistent sessions

In a scenario with one application server, a persistent session is generally slower
than a session in memory and may cause degradation in performance.

8.3.1 Database/Datasource configuration
To use persistent sessions, you have to create a database on your database
server and then define it as a Datasource object in WebSphere. As we discussed
in the previous chapter, you should modify your database settings. And also we
recommend that you modify the number of connections in the Datasource setting
for session persistence.

8.3.2 Session Manager configuration
To modify the Session Manager setting to allow persistent sessions:

1. On the Topology-> WebSphere Administrative Domain-> hostname->
Default Server-> servletEngine-> Session Manager-> Enable tab, set
Enable Persistent Sessions to Yes and click Apply.

2. On the Session Manager -> Persistence tab as shown in Figure 51, click the
Datasource Change button and select the Datasource you defined before.

Plug-in

Admin
Server

AppServ 1
Clone 4

AppServ 1
Clone 3

AppServ 1
Clone 2

AppServ 1
Clone 1

Machine A

Persistent
Session

DB

Machine B

HTTP
Server

Plug-in

Admin
Server

HTTP
Server AppServ 1

Machine A
ND

Machine C

Plug-in

Admin
Server

HTTP
Server AppServ 1

Machine B

Persistent
Session

DB

Machine D

Plug-in

Admin
Server

HTTP
Server

AppServ 1
Clone 2

AppServ 1
Clone 1

Machine A

Plug-in

Admin
Server

HTTP
Server

AppServ 1
Clone 2

AppServ 1
Clone 1

Machine B

ND

Machine C Persistent
Session

DB

Machine D
76 WebSphere V3 Performance Tuning Guide

Keep the Persistence Type set to directodb, meaning that WebSphere will store
the session information to a database using the JDBC connection. Persistence
Type ejb will be supported in a future version of WebSphere. For the time being,
do not select this option.

Figure 51. Session Manager - Persistence

8.4 Tuning the Session Manager

There are two tabs related to performance tuning on the Session Manager panel,
the Intervals tab and the Tuning tab. We will discuss the tuning parameters in the
following sections.

8.4.1 The Invalidate Time setting
Under the Intervals tab, you can specify the period a session is allowed to go
unused until it is no longer considered valid in the Invalidate Time field. Integers
representing seconds are allowed. A “-1” means the session will not be
invalidated.
Chapter 8. Session management 77

Figure 52. Session Manager - Intervals

If you are using in-memory mode sessions, a session that passes the Invalidate
Time setting will disappear from memory.

If the session is persistent and the Invalidate Time has been reached, the rows
that contain the session information will be deleted from the Sessions table in the
database.

8.4.2 Monitor and estimate Invalidate Time
The correct Invalidate Time value for a particular application varies with machine
capacity. To estimate it, you can use vmstat to monitor memory usage and the
Resource Analyzer to confirm session numbers and usage. The default value
(1800 seconds) may be desirable to lower it, so you might start testing around
600 seconds. On the Sessions tab with Resource Analyzer as shown in Figure 53
on page 79, you can see the number of sessions that have been created and
invalidated within the monitoring refresh interval.

If you are using in-memory mode, the Invalidate Time should be set to an
appropriate value that doesn’t stress the actual memory size of the machine. If
the value is too high and too many sessions are kept in memory, paging will go up
and performance will suffer.

It depends on your application, but if possible, sessions should be closed with the
invalidate method. If your application is not the type which can release sessions
or if the clients tend to leave the site before the end of the procedure, the number
of sessions can become large. Since the Invalidate Time parameter affects the
amount of memory used for sessions, the setting of this parameter is extremely
important and can affect application server response time. We will also discuss
other options for managing the number of in memory sessions, such as Allow
Overflow, and Base Memory Size later.
78 WebSphere V3 Performance Tuning Guide

Figure 53. Resource Analyzer - Sessions

8.4.3 Tuning parameters on the Tuning tab
With WebSphere 3.0 Session Management, several new features have been
added that allow advanced customers to tune the performance and operating
characteristics of the Session Manager. You can also specify these features with
the Tuning tab as shown in Figure 54 on page 80.
Chapter 8. Session management 79

Figure 54. Session Manager - Tuning

8.4.4 Multirow sessions
By default (or select No), a single session maps to a single row in the database
table used to hold sessions. With this setup, there are hard limits on the amount
of user-defined, application-specific data that WebSphere Application Server can
access. Specifically, with UDB, the maximum space available is 32,700 bytes
(using the long varchar for bit data UDB type vs. BLOBs as a compromise
between space and performance). With Oracle, the maximum amount is 2 MB
(where the only choices are "raw" for a maximum of 2 KB, or the "long raw" data
type of 2 MB).

WebSphere Application Server V3.0 Session Manager, however, allows for the
use of a multirow schema option where each piece of application-specific data is
stored in a separate row of the database. With this mode, the total amount that
can be placed in a session is now bound only by the capacities of the database.
We will relax the restriction and add a BLOB column for UDB. The only practical
limit remaining is the size of the data object itself, where the above limits (32 KB
for UDB or 2 MB for Oracle) should be more than enough for any single Java
object.

This parameter is applicable only when using persistent sessions.

Another reason to use this setting is that you can store the session information
separately by property ID. With this parameter, the session table is used as
shown in Table 4 on page 81.
80 WebSphere V3 Performance Tuning Guide

Table 4. Model of session table with setting using multirow

The property name which you specified in the Session.putValue() method will be
stored in the PROPID column.

When the application needs to refer to only one property, the Session Manager
doesn’t have to seek the whole object. The Session Manager selects the
appropriate object more efficiently by using the Propid key.

The multirow schema potentially has performance benefits in certain usage
scenarios, such as when larger amounts of data are stored in the session but only
small amounts are specifically accessed during a given servlet's processing of an
HTTP request. In such a scenario, avoiding unneeded Java object serialization is
beneficial to performance.

To determine if this parameter is good for your application, create two session
databases: one using the default setting (which uses a single row for each
session), the other using multirow. Create two Datasource objects (one for each
session database) and switch between the two using Session
Manager->Persistence -> Datasource. When you choose the session database
that specifies Using Multirow Sessions as Yes, the Session Manager will create a
row for each session object. And then, you can compare the performance results
of both settings.

8.4.5 Using cache
WebSphere will maintain a list of the most recently used sessions in memory and
avoid using the database to read in or access the session when it determines that
the cache entry is still the most recently updated copy. The default is No.

In our test cases, a 21% performance improvement was seen when this setting
was Yes.

This value applies only when persistent sessions are enabled and the
Persistence Type is "direct to database."

See 8.4.9, “Base memory size” on page 83 about controlling the size of the
cache.

To efficiently use the cache, WebSphere Application Server Version 3.0 needs an
"affinity" mechanism to help ensure cache hits. As an example, if Fred is visiting a
Web site serviced by a WebSphere cluster consisting of 3 machines (A, B, and
C), and his client hits machine A on a given request, then there is a performance

ID PROPID MEDIUM

<Cookie id A> <Cookie id A> -

<Cookie id A> <Property name 1> <Value of property 1>

<Cookie id A> <Property name 2> <Value of property 2>

<Cookie id B> <Cookie id B> -

<Cookie id B> <Property name 1> <Value of property 1>

<Cookie id B> <Property name 2> <Value of property 2>
Chapter 8. Session management 81

benefit to the WebSphere clustering mechanism by ensuring his client will use
machine A on subsequent requests.

For WebSphere 3.0, the affinity features are provided by our sister product, the
WebSphere Performance Pack (which includes among other things the Network
Dispatcher and the Web Traffic Express Proxy Server facilities). In particular, two
affinity features exist. The first and older feature is the "sticky port", where
Network Dispatcher (ND) uses, on top of its load balancing functionality, the
client's IP address to maintain the affinity. The second and newer feature is
content-based or cookie-based affinity, where ND and the Web Traffic Express
(WTE) Proxy Server work in conjunction to load balance, using cookies to identify
clients and maintain affinity.

8.4.6 Using manual update
WebSphere Application Server Version 3.0 by default always updates the
database with any changes made to the session during the servlet's processing
of an HTTP request (that is the execution of the service() method). These
updates minimally include the last access time of the session, and typically also
include changes made by the servlet (that is updating or removing application
data).

When manual update is turned on (select Yes), WebSphere will no longer
automatically update the database at the end of a servlet's service() method. The
last update times are cached and updated asynchronously prior to checks for
session invalidation. For any permanent changes to the session as part of the
servlet processing, the servlet must manually call the sync() method provided as
part of the WebSphere extension to HttpSession, the
com.ibm.websphere.servlet.session.IBMSession interface when running in
manual update mode.

This value applies only when persistent sessions are enabled and the
Persistence Type is "direct to database."

Depending on your application, performance can be improved by allowing the
servlet to determine when a write to the database should be made. This is
because the number of times an HTTP request's processing leads to changing a
session (typically its application data) may actually be less than the number of
times the session is accessed or read in. If one is able to combine manual
updating (for minimizing database writes) along with caching (to minimize
database reads), performance can greatly improve.

8.4.7 Using native access
Specifies whether to perform session persistence database updates using
optimized JNI-based SQL access, written in the C programming language. The
default is No. This parameter will be supported in a future version of WebSphere.
For the time being, it is not used.

8.4.8 Allow overflow
By default, the number of sessions maintained in memory is specified by Base
Memory Size. If you do not wish to place a limit on the number of sessions
maintained in memory and allow overflow, set this value to Yes as default.
Allowing for an unlimited number of sessions, however, can potentially exhaust
82 WebSphere V3 Performance Tuning Guide

system memory and even allow for system sabotage (where somebody could
write a malicious program that continually hits your site and creates sessions, but
ignores any cookies or encoded URLs and never utilizes the same session from
one HTTP request to the next).

When overflow is disallowed, the Session Manager will still return a session with
the HttpServletRequest's getSession(true) method if the memory limit has
currently been reached, but it will be an invalid session which is not saved. With
the WebSphere extension to HttpSession,
com.ibm.websphere.servlet.session.IBMSession, there is an isOverflow() method
which will return "true" if the session is invalid. Your application could then check
this and react accordingly.

8.4.9 Base memory size
The base memory size setting specifies the number of sessions in memory. The
default is 1000. This value holds when you are using in-memory sessions,
persistent sessions with caching, or persistent sessions with manual updates.
(The manual update cache keeps the last n time stamps representing "last
access" times, with n being the base memory size value.)

This number has several meanings:

• For the in-memory mode sessions:

This value specifies the number of sessions in the base session table. Use the
Allow Overflow property to specify whether to limit sessions to this number for
the entire Session Manager, or allow additional sessions to be stored in
secondary tables.

• For the persistent sessions:

It also specifies the size of the cache, as well as the number of last access
time updates that are saved in manual update mode. In either case, once this
number is surpassed, these functions are bypassed (that is any sessions after
this number are simply not cached, and any session updates past this number
are automatically sent back to the database).

In other words, if the cache property is enabled, the base memory size specifies
how many session updates will be cached before the Session Manager reverts to
reading session updates from the database automatically.

This parameter can be used to tune performance when memory is used at a high
rate. With the Resource Analyzer, check the usage of memory for sessions and
tune this parameter. How you customize this setting will depend on your
hardware system, the usage characteristics of your site, and your willingness to
increase the stack sizes of the Java processes for your application servers to
accommodate a larger value. The size of the session objects and number of
sessions (base memory size) will need to be determined by the application
Chapter 8. Session management 83

programmer. These values should be recorded and given to the systems
administrator to make these changes.

Table 5. .Base Memory Size

Enable
Persistence

Using
Cache

Manual
Update

Allow
Over
Flow

Base Memory Size

No
(in-memory)

Yes / No N / A No The number of sessions in the
base session hash table.

No
(in-memory)

Yes / No N / A Yes The total number of sessions.
Secondary hash table allowed to
be created.

Yes
(in-database)

No Not regarded.

Yes
(in-database)

Yes The number of session updates
will be cached in memory before
the Session Manager saves
changes into the database.

Yes
(in-database)

No Not regarded.

Yes
(in-database)

Yes The manual update cache keeps
data related to invalidated time,
and corresponding number of
sessions at base memory size.
84 WebSphere V3 Performance Tuning Guide

Chapter 9. Performance test tools

In order to test the throughput and scalability of a particular application or
hardware architecture you will need to simulate a load. The WebSphere
Application Server does not include any tools for the purpose of load generation
or client side performance monitoring. There are a number of tools available for
this purpose. Some are available for free and some are at cost. Any of the tools
mentioned below can be used alone or in conjunction with the WebSphere
Resource Analyzer for performance testing. Some of the tools, in no particular
order one discussed in the following sections.

9.1 WebStone

WebStone is an open source benchmark tool that is freely available from
Mindcraft. WebStone was originally developed by Silicon Graphics to measure
the performance of Web server software and hardware products. Mindcraft Inc.
acquired the rights to WebStone from Silicon Graphics and is currently providing
support for WebStone 2.5.

WebStone simulates the activity of multiple Web clients thus creating a load on a
Web server. The load can be generated from either one client computer or by
multiple client computers. According to Mindcraft it is possible to run in excess of
100 simulated Web clients on a single computer.

As freeware though WebStone does not offer many of the features that are
available from other products at cost. Among the features not supported as of
this writing are:

SSL, POST, HTTP 1.1, cookies, dynamic workloads with database access,
authentication, HTTP 1.0 keep-alive support, and multiple headers/URLs.

Further information and downloads of the source code and executables are
available from Mindcraft at http://www.mindcraft.com.

9.2 AKtools

AKtools are a set of internal IBM applications which allow a user to test Web
application performance and was the tool used in writing this redbook.

The two current applications are AKstress and AKrecord. AKstress is a high
performance, simple threaded HTTP engine which is capable of simulating
hundreds or even thousands of HTTP clients, using a highly configurable set of
directives from a plain text configuration file. AKrecord is a simple eaves dropping
proxy which will record a user’s session against a Web server for later playback
in AKstress.

AKtools provides a variety of functions:

• Fully configurable HTTP headers

• SSL support

• Support for HTTP/1.1

• Built-in cookie caching
© Copyright IBM Corp. 2000 85

• Result verification

• Full logging

• Overall and request-level statistics

• Simple protocol for sending statistics to third-party tools

• Proxy request capability

• AKstress process statistics

Figure 55. Sample output of AKstress

9.3 Apache Bench

The IBM HTTP Server (IHS) which is included with WebSphere Application
Server does include the Apache Bench (AB) tool on UNIX platforms (Apache
Bench is Perl script-based). This tool allows for HTTP client load simulation. You
can specify the URL, number of total requests and the number of concurrent
requests with this tool. A sample of the output from AB is provided below.

Further information and the source code for Apache Bench are available from the
Apache Software Foundation at http://www.apache.org.

Uptime: 0 hours 1 minutes 6 seconds
Number of Threads: 5
Pages Completed: 1000
Pages To Be Completed: 1000
Pages per second: 15.15
Requests completed: 1000
Requests per second: 15.15
Failed Connections: 0
Incorrect response codes: 0
Content verification failed: 0
Request write failures: 0
Number of early closes: 0
Number of early server closes: 0
Number of request write failures: 0
SSL handshake failures: 0

Request statistics for request /servlet/trade (Rec_Request_dHe8Ea)
Successes: 1000
Return Code Failures: 0
Early Server Closes: 0
Content Verification Failures: 0
Min time (milliseconds): 0
Max time (milliseconds): 1953
Mean time (milliseconds): 323

akstress - execution complete
86 WebSphere V3 Performance Tuning Guide

Figure 56. Sample output of Apache Bench

9.4 Rational Suite Performance Studio

Performance Studio offers support for a variety of clients, both Web and non-Web
based. Among the clients supported are HTML, DHTML, Document Object
Model, Visual Basic, Visual C++, Java, ActiveX and PowerBuilder. Performance
Studio records user inputs for playback as scripts that are used in performance
testing.

More information on Rational Suite Performance Studio, including an evaluation
copy is available from http://www.rational.com.

9.5 JMeter

JMeter is another freely available tool from the Apache Software Foundation.
JMeter is a Java desktop application designed to test URL behavior and measure
performance. Apache JMeter may be used to test server performance both on
static and dynamic resources (files or CGI, servlets, Perl scripts). Simple to use,
JMeter is limited to 20 concurrent requests per JMeter client, but can be used for
initial performance testing.

JMeter is available from the Apache Software Foundation at:
http://www.apache.org.

ab -n 100 -c 10 http://ken/servlet/snoop
This is ApacheBench, Version 1.3
Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd,
http://www.zeustech.net/
Copyright (c) 1998-1999 The Apache Group, http://www.apache.org/

Server Software: IBM_HTTP_Server/1.3.6.2
Server Hostname: ken
Server Port: 80

Document Path: /servlet/snoop
Document Length: 2740 bytes

Concurrency Level: 10
Time taken for tests: 1.222 seconds
Complete requests: 100
Failed requests: 0
Total transferred: 315773 bytes
HTML transferred: 298660 bytes
Requests per second: 81.83
Transfer rate: 258.41 kb/s received

Connnection Times (ms)
min avg max

Connect: 0 0 15
Processing: 11 113 1088
Total: 11 113 1103
Chapter 9. Performance test tools 87

Figure 57. Sample output of JMeter

9.6 WebLoad

WebLoad from Radview provides support for the HTTP 1.0 and 1.1 protocols
including cookies, proxies, SSL, keep-alive, and client certificates. Support is
also provided for a variety of authentication mechanisms such as basic
authentication, proxy, form, NT challenge response, client certificate, and user
agent.

Additional information on WebLoad is available from Radview at
http://www.radview.com.

9.7 LoadRunner

LoadRunner from Mercury Interactive Corporation supports a variety of different
clients, including Web, ERP, database (DB), Java or remote terminal emulator
(RTE).

Additional information on LoadRunner is available at http://www.merc-int.com.
88 WebSphere V3 Performance Tuning Guide

Chapter 10. Monitoring tools

In Version 3 of WebSphere Application Server the Resource Analyzer provides a
tool that can be used in conjunction with operating system tools such as vmstat to
monitor a number of performance measures. For more in depth knowledge on
AIX performance tuning, we recommend you to read the AIX Performance Tuning
Guide, SR28-5930 and RS/6000 SP System Performance Tuning, SG24-5340.
The Resource Analyzer will be described below in more detail. Another
WebSphere Product: Site Analyzer, also comes with WebSphere Application
Server and can be used to analyze your HTTP site usage patterns. Site Analyzer
will be discussed in Chapter 11, “WebSphere Application Server Site Analyzer”
on page 133.

10.1 WebSphere Application Server Resource Analyzer

WebSphere Application Server V3 expands on the summary server execution
analysis that is available in V2 of the application server and provides a number of
summary and discrete monitoring functions for a variety of resources.

If you intend to monitor performance using the Resource Analyzer in WebSphere
you will need to explicitly define your servlets and JSPs as part of your Web
application definition. Thus only the items shown below under the trade_app Web
application can be monitored by WebSphere.

Figure 58. Web Application: trade_app

The WebSphere Resource Analyzer can be accessed from the Tasks tab of the
WebSphere Administrative Console: Task Tab -> Performance -> Resource
Analyzer and can be started once the Resource Analyzer is highlighted either by
© Copyright IBM Corp. 2000 89

clicking the green start button on the top of the pane or by double-clicking the
Resource Analyzer as shown in Figure 59.

Figure 59. Resource Analyzer

Once started you can choose to either view the window inside the Administration
Console or you can detach the task window so that it operates independently.
This allows one to perform routine system administration tasks from the Topology
tab and monitor performance at the same time. This is shown in Figure 60 on
page 91.
90 WebSphere V3 Performance Tuning Guide

Figure 60. Detach Task Window

10.1.1 Enterprise beans
The first tab on the resource analyzer allows you to monitor execution of your
EJBs. Upon clicking the Select button in the middle of the page, you’ll be
prompted with the dialog box shown below that allows you to specify monitoring
at:

1. The server level

2. The container level

3. The individual EJB level

Figure 61. EJBs Selection Dialog
Chapter 10. Monitoring tools 91

Once you specify the monitoring level, the information below will be displayed for
the appropriate enterprise beans. Data specific to each enterprise bean will be
displayed as well as aggregate summary data for all enterprise beans as noted
below.

Figure 62. Resource Analyzer: Enterprise Beans

Name

Indicates the enterprise bean being monitored. The table might list two or
more enterprise beans with the same name. To distinguish the beans from one
another, drag your cursor over a bean to see the container with which the
bean is associated. Each bean will be associated with a unique container.

Instantiates

Indicates the number of times the create() method was invoked against the
enterprise bean, as measured during the most recently completed polling
interval.

Destroys

Indicates the number of times an enterprise bean destroyed one of its
enterprise bean instances, as measured during the most recently completed
polling interval. The enterprise bean instance might have been destroyed by
the remove() method, or by other means.

Requests

Indicates the total number of requests handled by instances of the enterprise
bean, as measured during the most recently completed polling interval.
92 WebSphere V3 Performance Tuning Guide

Because an active method can handle one or more requests concurrently, this
value will be greater than or equal to the Requests/Sec. value.

Requests/Sec.

Indicates the average number for all instances of all the listed enterprise
beans, as measured during the most recently completed polling interval.

Execution Time

Indicates the average number of seconds the enterprise bean has required to
process requests from start to finish. The average is taken from the time the
administrative server was started to the end of the most recently completed
polling interval.

Live Beans

Indicates the number of enterprise bean instances at the server (pooled and
active) at this point in time. This value applies to stateless and stateful session
beans and entity beans.

Active Beans

Indicates the number of live beans that are active at this point in time. This
value applies to stateful session beans and entity beans.

Creates

Indicates the number of times the create() method was invoked against the
enterprise bean, as measured during the most recently completed polling
interval. This value applies to stateful session beans and entity beans.

Removes

Indicates the number of times an enterprise bean instance was removed, as
measured during the most recently completed polling interval. The enterprise
bean instance might have been removed by the remove() method, or by other
means invoked by the client. This value applies to stateful session beans and
entity beans.

Activations

Indicates the number of times the enterprise bean's container activated
(retrieved from secondary storage) the enterprise bean, as measured during
the most recently completed polling interval. Note, because stateless session
beans are never activated, this data point is not applicable to them.

Passivations

Indicates the number of times the enterprise bean's container passivated
(transferred to secondary storage) the bean, as measured during the most
recently completed polling interval. Note, because stateless session beans
are never passivated, they are not included in the total.

Loads

Indicates the number of times a BMP or CMP entity bean loaded information
from the database into itself during the polling interval.
Chapter 10. Monitoring tools 93

Stores

Indicates the number of times an entity bean persisted its state in the
database during the polling interval.

10.1.1.1 Aggregated Data Point
Stateless Session Instantiates

Indicates the total number of times the create() method was invoked against
the listed stateless session beans, as measured during the most recently
completed polling interval.

Stateful Session Instantiates

Indicates the total number of times the create() method was invoked against
the listed stateful session beans, as measured during the most recently
completed polling interval.

Entity Instantiates

Indicates the number of entity bean objects created by the server during the
polling interval.

Stateless Session Destroys

Indicates the total number of times the listed enterprise beans destroyed a
stateless session bean instance, as measured during the most recently
completed polling interval.

Stateful Session Destroys

Indicates the total number of times the listed enterprise beans destroyed a
stateful session bean instance, as measured during the most recently
completed polling interval.

Entity Destroys

Indicates the total number of times the listed enterprise beans destroyed an
entity bean instance, as measured during the most recently completed polling
interval.

Requests

Indicates the total number of requests handled by the enterprise beans, as
measured during the most recently completed polling interval.

Requests/Sec.

Indicates the average number of requests per second handled by the
enterprise beans, as measured during the most recently completed polling
interval.

Live Stateless Session Beans

Indicates the number of stateless session beans at the server (pooled and
active).

Live Stateful Session Beans

Indicates the number of stateful session beans at the server (pooled and
active).
94 WebSphere V3 Performance Tuning Guide

Live Entity Beans

Indicates the number of entity beans at the server (pooled and active).

Active Stateful Session Beans

Indicates the total number of live stateful session beans that are active. This
value will be less than or equal to the number of live stateful session beans.

Active Entity Beans

Indicates the total number of live entity beans that are active.

Stateful Session Creates

Indicates the total number of times the create() method was invoked against
the listed stateful session beans, as measured during the most recently
completed polling interval.

Entity Creates

Indicates the total number of times the create() method was invoked against
the listed entity beans, as measured during the most recently completed
polling interval.

Stateful Session Removes

Indicates the number of times stateful session bean instances were removed
during the most recently completed polling interval. The enterprise bean
instances might have been removed by the remove() method, or by other
means invoked by the client.

Entity Removes

Indicates the number of times entity bean instances were removed during the
most recently completed polling interval. The enterprise bean instance might
have been removed by the remove() method, or by other means invoked by
the client.

Stateful Activations

Indicates the number of times the stateful session bean containers activated
(retrieved from secondary storage) the enterprise beans, as measured during
the most recently completed polling interval.

Entity Activations

Indicates the number of times the enterprise bean containers activated
(retrieved from secondary storage) the enterprise beans, as measured during
the most recently completed polling interval.
Chapter 10. Monitoring tools 95

Stateful Passivations

Indicates the number of times the enterprise bean containers passivated
(transferred to secondary storage) the enterprise beans, as measured during
the most recently completed polling interval.

Entity Passivations

Indicates the number of times the enterprise bean containers passivated
(transferred to secondary storage) the enterprise beans, as measured during
the most recently completed polling interval.

Entity Loads

Indicates the number of times entity beans loaded information from the
database into themselves.

Entity Stores

Indicates the number of times entity beans stored information in the database.

10.1.1.2 How enterprise bean statistics apply to the bean types
Table 6 indicates which enterprise bean statistics apply to each type of enterprise
bean.

Table 6. Enterprise bean statistics

10.1.2 Servlets
The second tab on the Resource Analyzer allows you to specify which servlet
resources you wish to monitor. As with Enterprise Beans you can specify a
filtering level, by clicking the Select button. You will be prompted with a Servlet
Selection Dialog box that allows you to select servlet monitoring at:

Statistic Stateless session
beans

Stateful session
beans

Entity beans

Instantiates YES YES YES

Destroys YES YES YES

Requests YES YES YES

Requests per
second

YES YES YES

Execution time YES YES YES

Live beans (pooled
and active)

YES YES YES

Active beans YES YES

Creates YES YES

Removes YES YES

Activations YES YES

Passivations YES YES

Loads YES

Stores YES
96 WebSphere V3 Performance Tuning Guide

1. Server level

2. Servlet Engine level

3. Web Application level

4. By individual servlet

Figure 63. Servlets Selection Dialog

Again there are a number of statistics for each servlet resource as well as
aggregate data for all servlet resources as described in Figure 64 on page 97.

Figure 64. Resource Analyzer: Servlets
Chapter 10. Monitoring tools 97

Name

Indicates the servlet instance being monitored. If the table lists more than one
instance with the same name and you need to tell the instances apart, drag
the cursor over an instance to see the servlet group with which the instance is
associated.

Group

Indicates the servlet group (Web application) to which this servlet belongs. If
you are monitoring servlets from multiple Web applications, this value helps
you distinguish the servlets from one another.

Requests

Indicates the number of requests this instance of the servlet handled during
the most recently completed polling interval.

Requests/Sec.

Indicates the average number of requests per second for the servlet instance,
as measured during the most recent polling interval.

Execution Time

Indicates the average time the servlet instance spent performing services
such as service(), doGet(), or doPost(), measured from the time the
administrative server was started, to the end of the most recently completed
polling interval.

Errors

Indicates the number of errors associated with this servlet instance, measured
from the time the administrative server was started, to the end of the most
recently completed polling interval.

Idle

Indicates the number of seconds the servlet instance has been idle, if the
servlet is currently idle. If the servlet instance is active, this value will be 0.

Loaded

Indicates the time at which the class file for the servlet instance was most
recently loaded. The value is 0 if the servlet class is not currently loaded.

10.1.2.1 The Aggregated Data Point
Requests

Indicates the total number of requests all servlets handled during the most
recently completed polling interval.

Requests/Second

Indicates the average number of requests per second for all servlets during
the most recently completed polling interval.
98 WebSphere V3 Performance Tuning Guide

Execution Time

Indicates the average time the servlet spent during individual executions. It is
the total time spent executing, divided by the number of executions of the
servlet.

The average is measured from the time the administrative server was started,
to the end of the most recently completed polling interval.

10.1.3 Sessions
The third tab on the Resource Analyzer is for monitoring of session resources.
Clicking the Select button results in a selection dialog, which allows you to select
the application server for which you wish to monitor session resources. This is
shown in Figure 65 on page 99.

Figure 65. Sessions Selection Dialog

Unlike other resources such as EJBs and servlets, there are no statistics
available for individual sessions, only aggregate data at the server level.
Chapter 10. Monitoring tools 99

Figure 66. Resource Analyzer: Sessions

Creates

Indicates the number of sessions created during the most recently completed
polling interval. This includes sessions that were available, active, or
invalidated.

Creates/Second

Indicates the average number of sessions created per second during the most
recently completed polling interval.

Invalidates

Indicates the number of sessions invalidated (removed from available or
active state) during the most recently completed polling interval. This value is
valid only in terms of in-memory sessions, not persistent sessions.

Invalidates/Second

Indicates the average number of sessions invalidated (removed from available
or active state) per second during the most recently completed polling interval.
This value is valid only in terms of in-memory sessions, not persistent
sessions.

Average Lifetime

Indicates the average number of seconds sessions have remained alive in
memory. The average is measured from the time the administrative server was
started, ending with the most recently completed polling interval. The value is
100 WebSphere V3 Performance Tuning Guide

valid only in terms of in-memory sessions, not persistent sessions. Currently
valid sessions are not included in the calculation because their life spans are
not yet known.

10.1.4 System Resources
The System Resources tab allows you to monitor Java Virtual Machine (JVM)
resource use for each JVM in use. Recall that in WebSphere V3 each application
server process is a separate JVM. Clicking the Select button results in a dialog
that prompts you to select the application server (JVM) that you wish to monitor.
This is shown in Figure 67.

Figure 67. Server Resources Filter Dialog
Chapter 10. Monitoring tools 101

Figure 68. Resource Analyzer: System Resources

Total JVM Memory (K)

Indicates the total memory, in kilobytes, available to the Java Virtual Machine
during the most recently completed polling interval. This value is the JVM
heap size. This value will not necessarily match values reported on the
Performance tab of the Windows Task Manager because this does not include
the native component of the process.

JVM Memory in Use (K)

Indicates the memory in use by the Java Virtual Machine during the most
recently completed polling interval. The value is in kilobytes.

Available JVM Memory (K)

Indicates the memory available (in kilobytes) to the Java Virtual Machine
during the most recently completed polling interval. This is the difference
between the total JVM memory and the memory in use. Because the Java
virtual machine can increase the virtual memory in the storage heap as
needed, this value can fluctuate.

10.1.4.1 Thread pool properties
The remaining properties on the Server Resources tabbed page of the Resource
Analyzer correspond to the thread pools maintained by application servers. Each
application server has its own thread pool or cache from which it uses threads to
process remote method invocations.
102 WebSphere V3 Performance Tuning Guide

The size of a server's thread pool varies throughout the server's lifetime. Threads
are created when needed and destroyed when there are too many idle threads.

Thread creates

Indicates the number of threads created during the interval.

Thread destroys

Indicates the number of threads destroyed during the interval.

Total threads (active and idle)

Indicates the total number of threads that are currently either idle or active.

Active threads

Indicates how many threads are currently active.

Configured maximum pool size

Indicates the maximum size of the thread pool.

Percent of time pool maxed

Indicates how often the pool was "maxed out" during the most recently
completed polling interval. The thread pool is considered "maxed out" when all
of its threads are in use.

If this number is high, consider increasing the number of threads allocated to
the server.

10.1.5 DB pools
The final tab on the Resource Analyzer allows you to monitor use of database
pools. The Select button allows you to specify the application server for which
you wish to monitor database pool resources. The selection dialog is shown in
Figure 69.

Figure 69. Database Pools Selection Dialog

Each table row on the DB Pools tabbed page represents one pool. Each row lists
the data source and the user for which the pool maintains connections.
Chapter 10. Monitoring tools 103

Figure 70. Resource Analyzer: DB Pools

User

Indicates the ID used to log into the database to which this pool maintains
connections.

Datasource

Indicates the datasource object associated with the pool. A datasource object
keeps a connection pool from which database connections can be borrowed.

Size

Indicates the average pool size, as measured from the time the administrative
server was started, ending with the most recently completed polling interval.

Percent in Use

Indicates the percentage of the connections that are currently unavailable for
servicing requests. The connections might be orphaned, or already servicing
requests.

Creates

Indicates the number of connections created during the most recently
completed polling interval.

Destroys

Indicates the number of connections destroyed by this pool during the most
recently completed polling interval. For example, an orphaned connection
104 WebSphere V3 Performance Tuning Guide

might be destroyed because its owning client has died or is otherwise
unresponsive.

Waiting

Indicates the number of threads currently waiting for connections from this
pool.

Wait Time

Indicates the average number of seconds threads must wait to gain
connections from the pool, and whether or not the pool has available
connections when requests are made. The average is taken from the time the
administrative server was started, to the end of the most recently completed
polling interval.

Preempted

Indicates the number of times a connection was returned to the pool before a
request was finished using it. This might happen as a result of time outs on the
client side, or for other reasons. A high value indicates a possible problem.

Time Held

Indicates the average number of seconds requests hold connections from
this pool, measured from the time the administrative server was started, to
the end of the most recently completed polling interval.

Time Available

Indicates the number of seconds the pool had one or more available
connections, measured from the time the administrative server was started, to
the end of the most recently completed polling interval.

10.1.5.1 The Aggregated Data Point
Size

Indicates the average pool size, as measured from the time the administrative
server was started, and ending with the most recently completed polling
interval.

Percent in Use

Indicates the percentage of the connections (in all the pools) that are currently
unavailable for servicing requests. The connections might be orphaned, or
already servicing requests.

Creates

Indicates the total number of connections (for all pools) created during the
most recently completed polling interval.

Destroys

Indicates the number of connections destroyed by pools during the most
recently completed polling interval. For example, an orphaned connection
might be destroyed because its owning client has died or is otherwise
unresponsive.
Chapter 10. Monitoring tools 105

Waiting

Indicates the number of threads currently waiting for connections from the
pools.

Wait Time

Indicates the average number of seconds threads must wait to gain
connections from the pools, and whether or not the pools have available
connections when requests are made. The average is taken from the time the
administrative server was started, to the end of the most recently completed
polling interval.

Preempted

Indicates the number of times connections were returned to the pool before
requests were finished using them. This might happen as a result of timeouts
on the client side, or for other reasons. A high value indicates a possible
problem.

Time Held

Indicates the average number of seconds requests hold connections from the
pools, measured from the time the administrative server was started, to the
end of the most recently completed polling interval.

Time Available

Indicates the number of seconds the pools had one or more available
connections, measured from the time the administrative server was started, to
the end of the most recently completed polling interval.
106 WebSphere V3 Performance Tuning Guide

10.2 AIX performance tools

In AIX a wide variety of tools are available to first identify and understand the
work load, and then to help set up the system environment so that it is as close
as possible to the ideal execution environment for the work.

Refer to Figure 43 on page 154 for an overview of the tuning commands and how
they affect the various subsystems.

Figure 71. System tuning overview

10.3 Managing memory resources

Memory is a valuable and critical resource. Insufficient memory, or poor use of
memory, results in serious performance problems.

The tools in this section are used to identify memory related performance
problems, and to correct or minimize these.

10.3.1 Monitoring memory with vmstat
The vmstat command provides statistical information collected by AIX for the
Virtual Memory Manager (VMM), Central Processing Unit (CPU), and process
scheduler.

In this section we review aspects of this command that are associated with the
VMM.

Use this command during periods when the system workload is representative of
the system’s expected workload. In some cases a system has several workload

Memory

CPU

Disk

Network

sar
iostat
lsps
lslv
cpu_state

svmon
rmss

lockstat
filemon
fileplace

vmstat
ps

vmtune
schedtune

AIX Tools
Perfagent Tools
Sample Tools
Adapter Tools
Switch Tools

no
netstat
nfsstat

netpmon

vdidl2
vdidl3

lsattr
entstat
tokstat
fddistat
atmstat
estat
Chapter 10. Monitoring tools 107

patterns. It is important to gain an understanding of memory utilization during
these periods.

The output shown in Figure 72 was captured using vmstat 5 10. Using this
command we monitored the changing memory usage every five seconds for a
total of 50 seconds. The first line is statistical information, collected by AIX when
the system was last booted.

Figure 72. vmstat output

If the fre column (number of pages in the free list) is low (below 2 * MB of real
memory - 8), and the pi column (page in rate/s) exceeds 5 per second, memory is
overcommitted.

A high page scan (sr) to page steal (fr) ratio indicates that the memory subsystem
is overactive. The higher this ratio, the more time the VMM is spending searching
for available memory to allocate. Further investigation of this should be
undertaken.

Other column headings are as follows:

• r - the number of runnable processes during the interval
• b- the number of processes blocked waiting for high-speed I/O
• avm - active virtual memory in units of 4 KB pages
• fre - size of the list of free RAM pages
• pi - the number of pages per second that have been paged
• po - the number of pages per second that have been paged out since the last

report
• fr - page steal rate
• cs- average context switches per second (an idle system will average 20 to 60

per second)
• us - user mode cpu average
• sy -system mode cpu average
• id - idle time average
• wa - disk I/O wait average

In AIX Version 4 and onward, the page reclaim column (re) is always 0. Page
reclaims (a page that is released by the VMM and then reclaimed by the same
process before allocation to another process) are no longer recorded.

vmstat 5 10
kthr memory page faults cpu
----- ------------ ----------------------- ------------- -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 219963 201 0 0 0 14 50 0 138 457 65 13 10 59 18
2 2 217167 3002 0 0 0 25 34 0 992 1638 238 30 8 49 13
3 2 221754 228 0 0 1 402 1736 0 959 1198 217 31 8 56 5
3 2 216648 5034 0 0 0 65 84 0 943 1383 194 31 7 60 1
3 2 221020 536 0 0 0 0 0 0 948 2697 181 31 17 52 0
3 2 222456 437 0 0 0 311 406 0 953 1730 187 35 12 52 0
3 2 214221 8633 0 0 0 13 19 0 960 2955 224 25 14 58 3
4 2 216900 5887 0 3 0 0 0 0 969 19824 381 31 17 48 4
3 2 216366 5902 0 0 0 0 0 0 949 29553 193 30 9 59 2
3 2 216054 4472 0 0 0 0 0 0 973 2570 274 26 11 46 17
108 WebSphere V3 Performance Tuning Guide

10.3.2 Monitoring memory with sar
This command reports the values of the operating system activity counters, which
are a quick and easy way to check on the system work.

Information for the VMM is shown by the paging activity counters.

Figure 73 on page 109 shows a system that is lightly loaded. The VMM has no
difficulty fulfilling page requests. On average, 203 page faults per second were
generated. The VMM maintained a large number of free memory slots throughout
the time monitored. It was not necessary for the VMM to cycle through memory
searching for free pages, and very little paging I/O was required.

If this system’s performance were considered, we would conclude that memory is
not a contributing factor to any problems.

In Figure 73 there is a 3-second peek in paging. This indicates an uneven
workload distribution. In a heavily loaded system these peeks need to be
investigated. A multiuser environment needs a balanced workload to maintain a
consistent response time for users. In our experience users do not remember 999
subsecond responses. They remember the one that took 5 seconds.

Figure 73. Monitoring paging with sar

10.3.3 Monitoring memory with lsps
This command provides information about the paging space. Use it to check how
much virtual memory is used. It is useful to know how much real memory is
extended when considering a memory upgrade. If there is heavy paging, and
memory is only extended by a small amount, additional memory is a very
cost-effective upgrade.

Figure 74 shows an example of the paging area for our system. We see that real
memory is currently extended by 110 MB.

The system paging area is spread across two drives. Paging to disk is occurring
evenly across the two disks.

sar -r 1 10

AIX sp3en0 2 4 004008966700 09/29/98

00:25:01 slots cycle/s fault/s odio/s
00:25:02 63326 0.00 248.18 1.82
00:25:03 63326 0.00 0.88 0.00
00:25:04 63325 0.00 0.91 0.00
00:25:05 63325 0.00 0.00 0.00
00:25:07 63529 0.00 212.73 3.64
00:25:08 63446 0.00 941.46 8.13
00:25:09 63333 0.00 526.32 4.39
00:25:10 63333 0.00 0.00 0.00
00:25:11 63333 0.00 0.00 0.00
00:25:12 63333 0.00 0.00 0.00

Average 63361 0 203 2
Chapter 10. Monitoring tools 109

Figure 74. Viewing paging space

10.3.4 Monitoring memory with ps
This command lists the current processes and their status. By examining the
processes, we obtain an overview of how much memory each process uses. We
also obtain information of the VMM overhead for each process.

This command takes a snapshot of the system showing a set of statistics for each
process.

Figure 75 is the output of ps gvc on our system. This example has been reduced
to 10 lines.

Figure 75. ps gvc output

When using this command to review memory usage, examine:

• PGIN: Number of memory frames paged in

• %MEM: Percentage of system memory used

10.3.5 Monitoring memory with svmon
This command shows the current state and usage of memory.

With svmon memory page use can be viewed from the:

• System level

• Process level

• Segment level

10.3.5.1 Total memory usage
Always obtain an overview of memory usage from the system level. A
performance problem caused by memory contention is unlikely when the system
has sufficient memory available.

Figure 76 is the output of svmon -G on our system.

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
paging01 hdisk2 rootvg 144MB 38 yes yes lv
paging00 hdisk1 rootvg 128MB 38 yes yes lv

paging00 hdisk2 rootvg 16MB 38 yes yes lv

ps gvc
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
31124 - A 0:01 1058 1332 96 32768 35 84 0.0 0.0 db2sysc
31474 pts/13 A 0:05 704 516 52 32768 295 40 0.0 0.0 tcsh
33146 - A 0:00 0 112 232 32768 49 80 0.0 0.0 xlC_r
267064 ? A 0:00 185 384 12 32768 261 0 0.0 0.0 aixterm
268156 - A 0:10 0 15116 17572 32768 2862 2408 4.0 2.0 xlCentry
273814 - A 0:10 92 1036 148 32768 274 104 0.0 0.0 db2bp_s
274866 pts/3 A 0:00 0 112 232 32768 49 80 0.0 0.0 xlC_r
306432 - A 0:21 1507 1268 224 32768 485 16 0.0 0.0 dtwm
306722 pts/19 A 0:00 3 176 232 32768 195 220 0.0 0.0 ksh

307380 pts/3 A 0:10 0 12928 15384 32768 2862 2408 9.6 2.0 xlCentry
110 WebSphere V3 Performance Tuning Guide

Figure 76. Global memory view

Note: The values are displayed as memory pages. A memory page is 4069 bytes.

Interpretation of the svmon report:

• memory: System memory usage

size: Total size of real memory

inuse: Amount of memory in use

free: Amount of free memory

pin: Pinned memory (memory pages that cannot be swapped out)

• inuse: Expands the column memory in use

work: The system working set (data and stack regions)

pers: Pages that are persistent on file

clnt: Client allocated memory (network clients)

• pin: Expands the column pin

(Refer to preceding description of in use columns.)

• pg space: Size of the paging space

size: Size of paging area

inuse: Amount of page space in use (size of real memory extension)

10.3.5.2 Process memory usage
When memory has been identified as a performance issue, isolating the cause
requires details on how memory is used by the processes.

Using ps gvc | grep app (refer to 10.3.4, “Monitoring memory with ps” on page
110 for more detail on the use of this command), we identified a process running
app (we are using app to represent an application). The process ID was 51994.

Figure 77 is an example of using svmon to view a process’s memory usage.

svmon -G
m e m o r y i n u s e p i n p g s p a c e

size inuse free pin work pers clnt work pers clnt size inuse

65536 62724 2812 3508 41482 21242 0 3347 161 0 131072 25555
Chapter 10. Monitoring tools 111

Figure 77. Process memory view

The app process has 4450 pages of memory allocated. A shared library which this
process uses accounts for 3260 of these memory pages. Every additional copy of
app therefore requires an additional 1190 pages of memory:

Number of memory pages used minus the number of memory pages shared.

Further investigations of other processes executing on this system would
determine whether the shared library is used by other applications. Using this
information we could determine whether the memory overhead for the shared
libraries should be considered a system overhead or an application overhead.

Using svmon, memory usage can be classified as:

• System

• Application shared

• Application

• Application instance

This information is important for:

• Assessing a system’s memory requirements

• Evaluating application mixes for nodes

• Identifying candidate applications to be shifted

The Address Range column shows where in the allocated memory segment the
process is referenced (the process’s memory footprint). This allows determination
of how much free physical memory is required for the application to prevent
paging.

10.4 Managing CPU resources

It is difficult to draw a line when reviewing CPU utilization. “If the percentage of
CPU utilization exceeds x we have a system constrained by CPU” is often a wild
stab in the dark to provide a definition.

svmon -P 51994
Pid Command Inuse Pin Pgspace

51994 find 4450 479 968

Pid: 51994
Command: app

Segid Type Description Inuse Pin Pgspace Address Range
380e work sreg[5] 1069 478 959 0..65535
48d0 work lib data 15 0 0 0..358
4411 work shared library text 3260 0 9 0..65535
6b7e work private 98 1 0 0..43 : 65304..65535
62d8 pers code,/dev/hd2:49266 8 0 0 0..7
112 WebSphere V3 Performance Tuning Guide

10.4.1 Monitoring the CPU with vmstat
We have already reviewed this command in 10.3.1, “Monitoring memory with
vmstat” on page 107.

vmstat is used to monitor CPU usage. It provides a single line report, which shows
a quick status of CPU utilization.

Figure 78 on page 113 is an example of using vmstat 5 on a system with free CPU
resources. While monitoring this system, a peak in the workload occurs.

Figure 78. CPU monitoring with vmstat output

Interpreting system activity from this vmstat report:

1. The CPU is lightly utilized:

Idle average 40% (id)
Users average 40% (us)
System average 20% (sy)
Low I/O wait (wa)

Conclusion: CPU utilization of 40% is not due to an I/O bound system.

2. The system workload peaks:

Idle average 0%
User average 75%
System average 25%
Low I/O wait
Free list low (fre)
High number of page scans (sr)
High number of page steals (fr)

vmstat 5
kthr memory page faults cpu
----- ------------ ----------------------- ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 25565 5251 0 0 0 0 1 0 131 365 64 1 2 96 1
6 0 41263 124 0 0 0 56 56 0 724 2564 450 41 24 34 0
3 0 40600 1374 0 0 0 97 114 0 746 2097 393 40 21 38 0
3 0 40769 1212 0 0 0 0 0 0 698 2142 389 40 24 36 1
6 0 41019 871 0 0 0 0 0 0 719 2707 493 48 22 27 3
0 0 41301 529 0 0 0 0 0 0 610 1439 304 25 10 64 0
2 0 41517 479 0 0 0 64 71 0 628 2588 421 47 23 23 7
6 0 43293 147 0 0 0 360 368 0 691 3429 407 74 26 0 0
8 1 43636 190 0 0 0 86 114 0 724 3899 508 67 33 0 0
6 0 44093 175 0 0 0 108 109 0 689 2807 378 71 29 0 0
7 0 44416 415 0 0 0 120 120 0 721 3676 448 67 33 0 0
7 0 44169 853 0 0 0 25 25 0 693 2927 403 74 26 0 0
6 0 43075 2363 0 0 0 0 0 0 653 2907 436 85 14 0 0
2 0 42395 3087 0 0 0 0 0 0 732 3413 432 80 17 2 1
3 0 42635 2764 0 0 0 0 0 0 718 3020 415 59 19 19 3
2 0 42748 2647 0 0 0 0 0 0 752 2704 432 55 16 29 0
1 0 41626 4092 0 0 0 0 0 0 748 2506 452 52 17 21 10
0 0 41228 4610 0 0 0 0 0 0 730 2806 450 54 17 26 3
3 0 40773 5216 0 0 0 0 0 0 673 2782 445 67 21 12 0
Chapter 10. Monitoring tools 113

Conclusion: VMM is searching for memory to replenish the free list. This
overhead is constraining the user application CPU requirement.

3. Workload constrained by CPU:

Idle average 0%
User average 85%
System average 15%
No I/O wait
Free memory available
No paging

Conclusion: The system is CPU bound. Users’ CPU utilization increased as
system CPU utilization decreased. This confirms the above conclusion that
VMM constrained the user CPU utilization.

4. The system workload drops:

Idle average 20%
User average 50%
System average 20%
I/O wait 10%

Conclusion: The workload peak is over and a backlog of work is being cleared
in the I/O subsystem.

The peak in workload was a few lines on this report, each line representing 5
real-time seconds. The peak in workload therefore lasted 40 seconds. Once
completed, the system response was still degraded while a backlog of work was
cleared.

Further investigation of this will be required. Identify the program/application and
determine its loading pattern (when and how often is this application executed).

10.4.2 Monitoring the CPU with sar
In 10.3.2, “Monitoring memory with sar” on page 109 we discussed using this
command to check paging statistics.

This command provides a simple method to review CPU utilization.

10.4.2.1 CPU utilization report
To obtain an overview of CPU utilization, that is, how much time is spent doing
actual work versus the time spent being idle or waiting on I/O, use the default sar
options.

Figure 79 on page 115 is an example of using sar to report CPU utilization. The
report is for a system where the CPU is a limiting factor and is 100% utilized.
114 WebSphere V3 Performance Tuning Guide

Figure 79. CPU Utilization report using sar

10.4.3 Monitoring the CPU with time
The time command gives CPU and real-time execution figures for commands and
applications.

Use this command to determine an application’s CPU utilization. A good example
of when it should be used is given in 10.4.1, “Monitoring the CPU with vmstat” on
page 113. An application was executed which used substantial CPU resources.
time can be used to quantify the CPU requirement.

Figure 80 shows the result of using time to measure the CPU resource
requirement to execute our application apprep. This is an unobtrusive method of
collecting CPU utilization for applications.

Figure 80. Checking CPU utilization with time

10.4.4 Checking active CPUs using cpu_state
This command sets and displays which processors will be active when the
system is restarted. It is only available for SMP RS/6000 models.

With cpu_state, processors are selectively enabled or disabled. The changes take
effect when the node is rebooted.

Generally, disabling processors reduces performance. We do not recommend
disabling CPUs on production systems.

sar 1 10

AIX sp3en0 3 4 000081007000 09/28/98

07:48:32 %usr %sys %wio %idle
07:48:33 77 23 0 0
07:48:34 82 18 0 0
07:48:35 81 19 0 0
07:48:36 79 21 0 0
07:48:37 81 19 0 0
07:48:38 80 20 0 0
07:48:39 79 21 0 0
07:48:40 81 19 0 0
07:48:41 77 23 0 0
07:48:42 67 33 0 0

Average 78 22 0 0

time apprep

real 3m12.76s
user 2m38.72s
sys 0m26.54s
Chapter 10. Monitoring tools 115

When assessing performance of applications, there are situations when
comparisons between an SMP and a uniprocessor are required, for example to
determine the performance benefits of an SMP node.

We used this feature to perform low-level application tracing. With multiple CPUs
it was difficult to paste execution streams into a sequenced execution flow.

Figure 81 is a report from an 8-way SMP machine after 7 of the 8 processors
were disabled.

Figure 81. Active CPU report

10.5 Managing network resources

Network communication is a combination of hardware and complex software. It is
important that network parameters are set appropriately.

10.5.1 Monitoring the network with netstat
This command is used to assess the network load and the reliability of the
network. It is traditionally used for problem determination. We have found this
command to be useful for determining the network load, and whether the network
is congested.

10.5.1.1 Determine the proportion of network traffic for an adapter
Use netstat -I to compare the network traffic on a selected adapter with the total
volume of network traffic.

Figure 82 is an example of a netstat -I report. This report was produced while a
large file was transferred using ftp (a file transfer application) between two nodes.
The high-speed switch css0 was chosen to do this transfer.

cpu_state -l
Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 disabled 00-0P-00-01
proc2 2 disabled 00-0Q-00-00
proc3 3 disabled 00-0Q-00-01
proc4 4 disabled 00-0R-00-00
proc5 5 disabled 00-0R-00-01
proc6 6 disabled 00-0S-00-00
proc7 7 disabled 00-0S-00-01
116 WebSphere V3 Performance Tuning Guide

Figure 82. Viewing the network load using netstat

The report is divided into 5 columns for the adapter, and 5 columns for the total
network utilization:

1. Incoming packets.

2. Number of error packets received. An error causes a retransmission of the
packet.

3. Number of packets sent.

4. Number of error packets sent (the number of packets which were re-requested
because of a transmission error).

5. Number of collisions (colls). When information is sent using a network adapter,
a component of Transmission Control Protocol (TCP) is a collision detection
algorithm. The algorithm works as follows:

1. Before sending, check that the network connection is not in use.

2. When the network connection is free, begin writing the packet onto the
network.

3. Check that in the very short amount of time between determining that
the network connection was free and beginning to write the packet, no
other network adapter also started to write a packet. When this
happens, it is called a network collision.

4. The adapters abort the write operation.

5. The adapters wait for a random period of time before trying again.

Collisions affect network throughput; the adapters involved are forced to spend
time waiting, and network bandwidth is wasted when the collision occurs.

A few collisions will happen in a network from time to time, and are acceptable. If
a lot of collisions are detected, it indicates the network is overloaded.

Notes:

1. Adapters involved in a network collision can be in the same host or in different
hosts.

2. Packet numbers do not directly translate into network utilization, because
packet sizes vary. Packet numbers are only a guide to network load.

netstat -I css0 1
input (css0) output input (Total) output

packets errs packets errs colls packets errs packets errs colls
125696 0 110803 0 0 356878 0 287880 0 0

119 0 216 0 0 123 0 221 0 0
117 0 222 0 0 120 0 224 0 0
115 0 225 0 0 117 0 227 0 0
115 0 202 0 0 117 0 204 0 0
115 0 207 0 0 117 0 209 0 0
116 0 201 0 0 118 0 203 0 0
115 0 211 0 0 118 0 213 0 0
Chapter 10. Monitoring tools 117

10.5.1.2 Network memory buffer allocation statistics
If memory buffer allocation requests fail, the request is lost and more memory
needs to be allocated to the network memory pool.

Figure 83 is an example of using netstat -m to check the network memory buffer
allocation statistics. Check the column failed to ensure that the communication
subsystem has sufficient memory allocated.

Figure 83. Network memory buffer allocation statistics

netstat -m

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 232 442 0 24 640 0
64 168 227 0 24 320 0
128 113 214 0 15 160 0
256 153 109491 0 327 384 2
512 240 4406 0 8 40 0
1024 54 2200 0 2 100 0
2048 1 400 0 99 100 143
4096 66 154 0 107 120 9
8192 4 7 0 0 10 0
16384 1 15 0 19 24 7
32768 1 1 0 0 2047 0

By type inuse calls failed memuse memmax mapb

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
#

118 WebSphere V3 Performance Tuning Guide

10.6 Tuning methodology example with changing JVM parameters

The parameters listed in previous chapters provide a starting point for your
application and application server testing. Since your application and operating
environment will differ from those used for our tests the recommended approach
is to run application-specific performance tests.

The following example depicts the iterative approach required to determine the
the appropriate Java heap size settings (-ms and -mx) for the Trade application
run on an AIX Model 43P workstation with a 200 MHz processor and 256 MB of
RAM.

10.6.1 Case 1: -mx64m
As a starting point we set the maximum heap size for the application server to 64
MB (-mx64m) on the command line arguments. We did not set the minimum heap
size.

Figure 84 shows the output of vmstat at 5-second intervals (vmstat 5). Looking at
the statistics for Page and CPU we can see that the test was started at the
seventh row below. This is indicated by the increase in CPU use and a drop in
free memory with an attendant increase in system paging.

Figure 84. Output of vmstat (1/2) of case1 (-mx64m)

Within 20 seconds (4 records) though paging decreases for the most part, there
continues to be some paging. At the bottom of the diagram, there is an increase
in paging.

This example is for illustration of the performance tuning process and should
not be used for capacity planning purposes.

Note
Chapter 10. Monitoring tools 119

At the same time we can monitor the JVM heap size by using the WebSphere
Resource Analyzer which we can access via Tasks -> Performance -> Start ->
Server Resources tab.

From there you specify the node, and server and the information, shown in Figure
85, as displayed. To graph a particular resource such as JVM Memory in use,
highlight the item of interest, then specify Chart -> Add Selection to Chart. You
can also detach the Resource Analyzer task window by selecting Window ->
Detach Task Window.

As can be seen, the JVM heap size has grown rapidly from 7550 KB (7.55 MB) to
15,976 KB (15.97 MB) before decreasing, then cycling up and down as garbage
collection controls the size of the heap.

Figure 85. Resource Analyzer with case1 (-mx64m)
120 WebSphere V3 Performance Tuning Guide

Examining vmstat again as the run progresses and we can see that CPU use has
remained fairly constant, and that the memory use (paging) has settled down as
shown in Figure 86.

Figure 86. Output of vmstat (2/2) of case1 (-mx64m)
Chapter 10. Monitoring tools 121

Turning our attention back to the WebSphere Resource Analyzer, we can see a
continuation of the same oscillation pattern in JVM heap size as garbage
collection occurs.

Note the values plotted are at the end of the Resource Analyzer polling cycle so
the JVM most likely did increase to the max of 16 MB. Use of more finite polling
would depict a more accurate picture of JVM use, as shown in Figure 87.

Figure 87. Resource Analyzer with case1 (-mx64m)
122 WebSphere V3 Performance Tuning Guide

Of course we’re all interested in the end result and for that we turn to AKstress,
which we used for generating high load, at the end of our run.

Figure 88. Output of AKstress of case1 (-mx6m)

Upon examination of the results it can be seen that we processed 12.05 requests
per second with these particular JVM settings.

AKstress Process Statistics

Uptime: 0 hours 13 minutes 50 seconds
Number of Threads: 10
Pages Completed: 10000
Pages To Be Completed: 10000
Pages per second: 12.05
Requests completed: 10000
Requests per second: 12.05
Failed Connections: 0
Incorrect response codes: 0
Content verification failed: 0
Request write failures: 0
Number of early closes: 0
Number of early server closes: 0
Number of request write failures: 0
SSL handshake failures: 0

Request statistics for request /servlet/TradeServlet (Rec_Request_dHe8Ea)
Successes: 10000
Return Code Failures: 0
Early Server Closes: 0
Content Verification Failures: 0
Min time (milliseconds): 0
Max time (milliseconds): 13660
Mean time (milliseconds): 786

akstress - execution complete
Chapter 10. Monitoring tools 123

10.6.2 Case 2: -ms32m, -mx64m
For the second run a minimum heap size of 32 MB was specified. As before the
maximum heap size remained set at 64 MB. (-ms32m -mx64m). The start of the
run is shown in Figure 89 with vmstat. We can see that the run started at the
eighth line from the top by looking at the change in CPU use which transitions
from 93% idle to 35% idle to 0% idle as the test run was started. Also note that as
we increased JVM size the amount of system paging increased when compared
to the first test.

Figure 89. Output of vmstat (1/2) of case2 (-ms32m -mx64m)
124 WebSphere V3 Performance Tuning Guide

The corresponding data from the WebSphere Resource Analyzer is shown below.
Since a larger JVM minimum heap size was specified, we observe a longer
interval between garbage collection cycles.

Figure 90. Resource Analyzer with case2 (-ms32m -mx64m)
Chapter 10. Monitoring tools 125

The vmstat data during the middle of the run is shown in Figure 91. CPU use
remains high and some memory paging is still occurring, though not as much as
in the beginning of the run, but more than occurred during the first run as shown
in Figure 86 on page 121.

Figure 91. Output of vmstat (2/2) of case2 (-ms32m -mx64m)
126 WebSphere V3 Performance Tuning Guide

The corresponding WebSphere Resource Analyzer data is shown in Figure 92.

Figure 92. Resource Analyzer with case2 (-ms32m -mx64m)
Chapter 10. Monitoring tools 127

Finally at the end of the run we see the results from AKstress as shown in Figure
93.

Figure 93. Output of AKstress of case2 (-ms32m -mx64m)

Increasing the JVM minimum heap size has resulted in a significant performance
improvement from 12.05 requests per second to 15.38 requests per second. This
represents a 27% improvement in throughput. This result is no doubt due to the
decreased amount of times that garbage collection had to run, despite the
increased memory paging we observed.

AKstress Process Statistics

Uptime: 0 hours 10 minutes 50 seconds
Number of Threads: 10
Pages Completed: 10000
Pages To Be Completed: 10000
Pages per second: 15.38
Requests completed: 10000
Requests per second: 15.38
Failed Connections: 0
Incorrect response codes: 0
Content verification failed: 0
Request write failures: 0
Number of early closes: 0
Number of early server closes: 0
Number of request write failures: 0
SSL handshake failures: 0

Request statistics for request /servlet/TradeServlet (Rec_Request_dHe8Ea)
Successes: 10000
Return Code Failures: 0
Early Server Closes: 0
Content Verification Failures: 0
Min time (milliseconds): 0
Max time (milliseconds): 17084
Mean time (milliseconds): 621

akstress - execution complete
128 WebSphere V3 Performance Tuning Guide

10.6.3 Case 3: -ms64m, -mx64m
For our third test we again increase the minimum heap size, this time to 64 MB
(-ms64m) so that it equals the maximum.

The starting vmstat output is shown in Figure 94. As can be seen by examining
CPU use and paging, the test started at the seventh line from the top. While the
second run incurred some CPU wait (far right column) as a result of the CPU
waiting for resources due to paging, the wait for this the third run is far more
pronounced in both the severity and duration then was observed in the previous
runs. The same can be said of paging which is far more pronounced is the third
run than in the second run.

.

Figure 94. Output of vmstat (1/2) of case3 (-ms64m -mx64m)
Chapter 10. Monitoring tools 129

The corresponding data from the WebSphere Resource Analyzer is illustrated in
Figure 95. As can be seen, increasing the heap size results in a slow grow in the
heap size without the oscillating pattern seen in the previous runs due to garbage
collection.

Figure 95. Resource Analyzer with case3 (-ms64m -mx64m)
130 WebSphere V3 Performance Tuning Guide

As the run continues we examine the output from vmstat and see that we continue
to experience a great deal of CPU wait state and memory paging as shown in
Figure 96, neither of which is beneficial for performance.

Figure 96. Output of vmstat (2/2) of case3 (-ms64m -mx64m)
Chapter 10. Monitoring tools 131

In fact we saw that AKstress was running so slowly, as compared to the other
runs, that we halt the run.

Figure 97. Output of AKstress of case3 (-ms64m -mx64m)

We can see that throughput has fallen off to 3.05 requests per second, so
whatever benefit we realized from garbage collection running was more than
offset by the amount of time the system spent paging memory with the
corresponding CPU wait.

Thus we’ve determined that the optimal heap size settings for this application in
conjunction with this hardware environment are a maximum heap size of 64 MB
(-mx64m) and a minimum of 32 MB (-ms32m). We can use this as a starting point
for testing the effect of other JVM settings such as -noclassgc. A similar approach
is then used for other settings such as connection poolsize.

AKstress Process Statistics

Uptime: 0 hours 22 minutes 11 seconds
Number of Threads: 10
Pages Completed: 4063
Pages To Be Completed: 10000
Pages per second: 3.05
Requests completed: 4063
Requests per second: 3.05
Failed Connections: 0
Incorrect response codes: 0
Content verification failed: 0
Request write failures: 0
Number of early closes: 0
Number of early server closes: 0
Number of request write failures: 0
SSL handshake failures: 0

Request statistics for request /servlet/TradeServlet (Rec_Request_dHe8Ea)
Successes: 4053
Return Code Failures: 0
Early Server Closes: 0
Content Verification Failures: 0
Min time (milliseconds): 0
Max time (milliseconds): 47904
Mean time (milliseconds): 1511
132 WebSphere V3 Performance Tuning Guide

Chapter 11. WebSphere Application Server Site Analyzer

The WebSphere Application Server Site Analyzer, part of the WebSphere family
of products, provides basic Web site traffic measurements. Site Analyzer, at a
high level, provides detailed analysis of Web content integrity, site performance,
usage statistics, and a report writing feature to build reports from the content
integrity and usage statistics.

You can get more information from the WebSphere site at
http://www.ibm.com/software/webservers/appserv/siteanalysis.html.

11.1 What is WebSphere Application Server Site Analyzer?

Site Analyzer provides a set of tools to measure Web site traffic by analyzing
content, measuring usage, and reporting. It assists the user in understanding
traffic volume (hits and visits), identifying traffic sources (domains, subdomains,
and referrers), and managing site integrity (link verification and site
conformance). Site Analyzer may be installed on a single machine or over
multiple machines in a client/server model.

Both administrator and non-administrator or client users need to define
preferences prior to getting started. First, each user must go through the Startup
wizard, also known as General Preferences. Second, each user must create a
project to organize work. Project files are stored locally on the client machine, but
link to elements on both the local client machine and on the server machine.
When you have several Web sites to analyze, you should consider creating a
separate project for each of the sites to keep your information separate. This will
allow you to easily access information from different Web sites.

Certain roles and responsibilities are defined for the Site Analyzer administrator
and client user as follows:

• Creating analysis (Administrator only)

• Editing an existing analysis (Administrator only)

• Deleting an analysis from the database (Administrator only)

• Running an analysis (Administrator only)

• Scheduling an analysis to run later (Administrator only)

• Creating report elements

• Creating reports

• Generating reports

WebSphere Site Analyzer comes with a set of wizards for defining report
elements and reports. Report elements are a method to operate on an analysis.
Report elements consist of types (for example a browser), measures (such as
hits per visit), and operations (such as sum or average). After a report element is
created, then you can build and generate a report. Wizards provide a very user
friendly interface for understanding how your Web site is used.

In general, Site Analyzer performs the following:
© Copyright IBM Corp. 2000 133

• Analyzes Web content integrity and site performance, and provides usage
statistics.

• Supports the team environment, with its flexible client/server architecture.

• Supports teams that may be divided into administrators and
non-administrators with different levels of authority.

• Uses database technology to provide scalability and historical data for trend
analysis.

• Supports customization and configuration to suit the user environment.

• Supports remote administration and reporting via the client interface.

11.2 Why do I need WebSphere Application Server Site Analyzer?

The WebSphere Application Server Site Analyzer provides the Web site owner
which a rich set of tools to analyze usage and content of Web pages. Site
Analyzer allows you to develop specific reports to provide feedback to different
groups within your company. For example, an executive might ask the question
How is the money that I am spending on a Web site affecting my bottom line? Or,
Am I reaching my customers? Someone in sales or marketing might ask the
question Who are my customers? Are my marketing programs effective? Or, How
effective is the Web site content?

Site Analyzer provides the tools necessary to assist in the development,
deployment, and management of a Web site. Data collected may provide different
people within an organization with such information as measuring and optimizing
usage, or tracking the effectiveness of marketing campaigns.

Figure 98. Site Analyzer feedback loop

Analyst
Uses Site Analysis to track
Usage Profiling and behavior
analysis to ensure effective
customized, personalized,
content delivery

DevelopDevelop

ManageManage

DeployDeploy

Web Master
Uses Site Analysis to
measure and optimize
usage rate
Uses Site Analysis for error
tracking

Creative Director
Uses Site Analysis to
improve site flow after
initial deployment
Uses Site Analysis to find
structural problems

Sales/Marketing
Track effectiveness of
online programs
Prospect tracking

Page Designer
Uses Site Analysis to
build the most effective
designs for personalized
content

Artist or Writer
Uses Site Analysis to
understand effectiveness of
certain link icons
134 WebSphere V3 Performance Tuning Guide

11.2.1 Features of WebSphere Application Server Site Analyzer
Features of the site analysis component include:

• Content and structural analysis

• Usage analysis

• Modular reporting

• Scalability and trending

• Categorical analysis

• Dynamic content analysis

• Visitor analysis

• Additional technical features

• Flexible client/server configuration

11.2.2 Content analysis
Content analysis is a function of Site Analyzer, and provides information about
the structure of your Web site, including information about duplicate pages,
unavailable resources, broken links, and content with excessive load time.
Content analysis provides the following functions:

• Explores secured servers with a fast Internet friendly crawler. A crawler is a
program that, given an anchor URL, searches the Web site collecting
information about links, and detailed information about resources within your
Web site. The crawler obeys the Web server robot rule specified in the
robot.txt file. If the robot.txt file indicates URLs not to explore, then the content
analysis will honor that request and explore only the areas that are not
excluded. If the Web page is password protected, then the crawler uses
predefined user IDs and passwords to gain access.

• Provides domain or URL inclusion and exclusion from the detailed analysis.
Users may include additional domains or URLs other than the root domain to
the analysis. Likewise, they may exclude domains or URLs.

• Collects page attributes and site structure for mapping with the Site Surveyor
visual tool. Site Surveyor maps out the results of a content analysis. With Site
Surveyor, you can view the following:

• A visual representation of your site based on links it contains

• Information about the site including the structure of the Web site

• Detailed information about resources within the Web site

• Information about the links in the Web site

• Identifies duplicate and inactive files on the Web server.

• Detects unavailable resources such as broken links and missing files.

• Identifies content with excessive load sizes or too many objects on a page
allowing the user to fine-tune the site performance.

• Identifies pages that do not conform to user-defined site policies, such as
meta tags.

• Allows users to view sites as a whole or divided into small partitions for more
detailed analysis.
Chapter 11. WebSphere Application Server Site Analyzer 135

Figure 99. Content Analysis: measuring the integrity of Web sites

11.2.3 Usage analysis
Usage analysis reveals how your site is being used, including who is using it,
where they enter it, and how they navigate within the site. You can view this
information in reports. The usage analysis gathers site information by processing
your Web server's log files. Usage analysis provides the following functions:

• Full heuristic (registration, cookie, IP, or referral-based) sessionization
provides critical data about visits, entries, exits, etc. For example, you might
be interested in hits per visit for different browsers.

• Supports National Center for Supercomputing Applications (NCSA)
Combined, NCSA Common, and World Wide Web Consortium (W3C)
Extended log file formats. The following is a list of Web servers and their
supported log file formats:

Table 7. Site Analyzer supported log file formats

• Automatically retrieves log files witha wildcard specification from servers. For
example, filters include eliminating internal hits, and entering part of an
address, such as 9.19.*, to exclude anything that begins with 9.19.

• Supports multi-threaded DNS resolution with customizable expiration rate,
allowing reporting by readable names rather than by IP addresses. When the

Apache Server Version 1.3.6 W3C Extended

Lotus Domino Go NCSA Common or Combined

IBM HTTP Server Version 1.3.6 W3C Extended

Microsoft Internet Information Server (IIS) Version 4.x W3C Extended

Netscape Enterprise Server Version 3.x NCSA Common or Combined

In/out links
images
applets
conformance
forms
e-mail
meta tags
size

Content
Analysis

DATAMART

http

Quality: identify broken links, pages with
excessive load sizes, pages with too
many objects

Consistency: images without text, pages
without titles

Site Conformance: ensure pages contain
required elements
136 WebSphere V3 Performance Tuning Guide

usage analysis encounters an unrecognized IP address, it performs a DNS
look up to resolve the host name so that reports will contain the host name.

• Supports customizable analysis process using categories, allowing users to
include new items or categories of items by patterns.

This feature is crucial for extensibility. For example, users may specify a file name
pattern to indicate a new category of advertisements. Usage analysis matches
the pattern with the hit records during analysis and treats the matches as
advertisements. This is useful, if for example the marketing group was creating a
new marketing campaign associated with a Web page, and they want to capture
how effective it is by counting the visits to that page.

Figure 100. Usage Analysis: discover usage patterns

11.2.4 Visualization and reports
The Site Analyzer provides custom reports from the results of either the content
analysis or usage analysis.

The Site Analyzer comes with predefined custom reports. Key features and
customization are as follows:

• Provides visualizers that allow a user to view the site structure and quickly
locate pages with problems via color schemes and icons.

• Provides on-demand searching for certain page attributes such as site policy
conformance, author, expiration date, etc.

• Provides many predefined reports that are fully customizable including style,
such as color and fonts to generate the report, and reporting range, such as
beginning and ending dates and time.

• Allows the users to specify the beginning and ending day of the week. The
default is Sunday to Saturday.

• Enables graphical 3-D charts for plotting data in a professional fashion.

• Allows users to request information in minute range (for example, last 15
minutes).

Usage
Analysis

DATAMART

hits
pages
bytes
visits
time

visitor
referrer
resource
entry/exit
agent
[sub]domain
IP address

ftp
file

server

NCSA
Combined Log Format

Common Log Format

IIS 4.x
Chapter 11. WebSphere Application Server Site Analyzer 137

• Generates static or dynamic reports. Static reports use the currently available
data; dynamic reports delay fetching data until requested via the browser. Site
Analyzer contains a set of servlets that dynamically compose the report on the
fly using most up-to-date data. Servlets run on the Web Server machine.

• Provides leading-edge tools for a user to create additional reports with no SQL
knowledge required.

11.2.5 Usability
Site Analyzer provides key usability enhancements to assist the user in
performing Site Analyzer tasks, such as:

• InstallShield to simplify the installation process

• Wizards to guide a user through various tasks

• Features Start-Up Wizard that quickly helps users to set up and get started

• Interfaces consistent with other WebSphere user interfaces, such as IBM
WebSphere Studio

Figure 101. Usage analysis
138 WebSphere V3 Performance Tuning Guide

Figure 102. Content analysis

11.2.6 Technology
Site Analyzer covers a wide range of technologies and standards. It supports:

• Site Analyzer server support on AIX, Solaris and Windows NT and client
support on all Windows platforms. In addition, it supports the use of HTTP log
files from S/390 and AS/400 servers.

• Collection and storage of data in a DB2 Universal Database (UDB) included
with the site analysis component.

• The site analysis component provides centralized task scheduling, allowing for
scheduling of log file FTP, multiple analyses, and generation.

• Centralized task scheduling on the server also allowing the client to shut down
without affecting scheduled tasks.

• Multiple sites and multiple servers.

• Administrators and clients with differing levels of authority.
Chapter 11. WebSphere Application Server Site Analyzer 139

11.2.7 Client/server configuration
Site Analyzer may be installed in a stand alone client/server configuration or in a
multi-machine client/server configuration. See Figure 103. The server contains
the analyzers whose responsibility is to transform the raw data into valuable
information and store it in the database. The client interface provides
administrative, visualizing, and report-generating functions. From the client, you
can schedule analysis tasks to run at a specific time and/or time interval.

The progress status is broadcast to the interested clients and displayed as
appropriate and necessary. Once the analysis is completed, you may generate
reports or visualize the data. The system comes with about 30 predefined
ready-to-use report elements.

The user may also install the entire system on one machine. In this case, the
communications between the client and the server take place locally. The reports
may be made available to other users by publishing them to a Web server using
the provided publishing tool.

Figure 103. Site Analyzer architecture

Web
Server

Log File

WAS
Site

Analyzer
Client

1. Reporting
2. Scheduling
3. Setup/Configuration
4. Java Client runs on
all Win 32 platforms

1. Sessionizer
2. DNS
3. Crawler
4. Importer
5. Runs natively on
AIX, Solaris and NT
6. Tested as midtier
server for S/390 and
AS/400

Usage Analysis
1. Web Server writes log file
2. Log file(s) transferred via scheduled FTP to
SA server
3. Site Analyzer Server reads contents of log file
4. Log file is sessionized
5. DNS names are resolved
6. Contents are imported into DB2 data store
7. Reports can be created and scheduled on
client to access usage data
Content Analysis
1. Content analysis created and scheduled on
client
2. Crawler launched from SA server
3. Results of analysis inserted into DB2 data store
4. Results can be immediately viewed on client using
site surveyor or reports can be created from the DB2
database

DB2
Data
Store

Site Analyzer
Server
140 WebSphere V3 Performance Tuning Guide

Chapter 12. AFS performance tuning guide

AFS has provided scalable file administration and file sharing for large
enterprises for many years and now it is a part of WebSphere Performance Pack.
AFS is based upon its use of a virtual namespace to make naming and logical
directory structures of files independent of their physical location. AFS clients and
AFS servers are used to establish this virtual namespace capability. In a Web
site, the AFS clients can be installed on HTTP servers to reduce the
administrative effort associated with maintaining URL-to-file I/O mapping
relationships. In addition, HTTP servers that are simultaneously AFS clients can
significantly increase the connectivity capacity to Web server content and can
provide local and geographically distributed access efficiency. Figure 104 shows
the typical configuration of AFS with WebSphere.

Figure 104. WebSphere clustering with AFS and ND

12.1 Overview

For documentary purposes, it should be noted that "File Server" refers to the
machine serving files while "fileserver" refers to the individual process assigned
with accomplishing this task in concert with other AFS processes.

This chapter is intended as an augmentation to the distributed AFS
documentation, for use by persons who are knowledgeable with respect to the
size of their cell in terms of approximate users and load conditions and wish to
monitor and possibly fine tune their File Server. The concepts covered in this
chapter will provide such a user with information regarding File Server
parameters that can be used to help improve the performance of their File Server
machines as well as discussions of debugging tools that can aid in the diagnosis
and treatment of less than optimal File Server performance. We will not discuss
these options in absolute terms as the needs and usage of File Servers, not to
mention their performance capacity, varies greatly from cell to cell and prohibits

AFS
Server

ND

HTMLs, GIFs

HTTP
Server

WebSphere
App Server

AFS Client

browser

browser

browser

HTTP
Server

WebSphere
App Server

AFS Client

HTTP
Server

WebSphere
App Server

AFS Client

Machine A

Machine B

Machine C

Machine D

Machine E
© Copyright IBM Corp. 2000 141

such a discussion. Other server processes are mentioned, but only in so far as
their action affects the action of the File Server.

File Server tuning can usually be accomplished by the addition of selected
parameters to aid the File Server in processing a user’s requests in a timely
manner. The impact of this tuning will obviously vary greatly depending on the
dynamics of the cell and the situation encountered.

Scenarios are introduced in this chapter to educate the administrator in the
recognition of situations where tuning of the File Server may improve
performance. These scenarios are culled from real-life customer situations, but
may not describe all aspects of the problems encountered, only those that relate
to this subject. The AFS administrator should use these scenarios as an
education tool on the road to better awareness of the general health of the File
Servers in their cell and potential warning signs that intervention is needed.
These scenarios are discussed in no particular order and are intended to provide
AFS Administrators with a practical experience knowledge base in problems they
may encounter and the methods to employ in determining the causes and
solutions. As with any real-life scenario, your individual experiences, causes, and
solutions may differ from these. The usage of the tools that are employed in this
section are covered in the next section. Typically, the first sign that there is a File
Server tuning or overload problem comes from the users who notice poor
response times when their clients are requesting or storing a file. We will
investigate a few of these situations and illuminate the steps needed to identify
and correct the cause.

AFS is distributed with a host of debugging and monitoring tools that can greatly
aid the AFS administrator in File Server tuning. These tools are often used by
AFS Technical Support to diagnose reported problems by customers, but can
also be effectively used by AFS administrators in an on-going basis to monitor
these systems. Familiarity with the tools and their related output should help AFS
administrators take a more proactive role in monitoring their systems.

This guide also contains information about performance improvements and
parameter enhancements which have been added to the AFS 3.5 File Server.
These changes are discussed in the 12.4, “Overview of AFS 3.5 File Server
changes” on page 146, 12.5, “AFS 3.5 File Server performance improvements”
on page 146, and 12.6, “AFS 3.5 File Server parameter changes” on page 151.
However, only the changes from the AFS 3.4 File Server are discussed.
Therefore, this entire document should be reviewed in order to gain a complete
picture of the AFS 3.5 File Server.

This document is meant as a guide and will likely not touch upon all possible
scenarios that could cause problems. As such, we recommend contacting AFS
Technical Support in the event you experience problems or questions that are
outside the scope of this document and are unable to resolve on your own.

12.2 Communications with the fileserver process

Before we discuss some of the more commonly used fileserver process
parameters, a discussion of the steps taken during a “conversation” between a
client and the fileserver process will help to highlight the importance of these
parameters.
142 WebSphere V3 Performance Tuning Guide

In this example, a user on a client machine makes an initial request to view the
root directory of a volume from a File Server that it hasn’t spoken to before. We
will begin by assuming the client has already performed pathname lookups and is
aware of the location, volume, vnode, and uniquifier of the directory. The client
makes a fetchstatus RPC request to the fileserver process to gain information on
the directory itself (length, last modified, creation date, etc.). The fileserver
process has a listener thread listening on UDP port 7000 for any traffic from the
clients. This thread receives the fetchstatus request from the client and
establishes a connection with that client.

A server pool thread then looks at the request being made and makes the
appropriate function calls to satisfy the request. In this example, the thread
completes the request (by checking ACLs, obtaining the information from disk,
etc.) and sends the reply back to the client. If there are no server pool threads
available, the listener thread will create the call structure for the request and
place it on a queue for the server pool threads to pick off when they are available.
Otherwise the call is created and passed to a waiting server pool thread.

Since this is the first time this client machine has talked to this File Server, the
fileserver also makes a call to the ptserver to check for any host-based ACL
information based on the client machine’s IP address. It then makes a second call
to the ptserver to check for any ACL information based on the user ID making the
fetchstatus request. The ptserver responds with the groups to which the IP
address and/or user is a member. The fileserver stores this information in an
internal structure for future comparison. The next time the fileserver hears from a
different user on this same client, it will perform only the user ID call to the
ptserver since it already has the host-based ACL information stored and needs
only ACL information specific to this user. The user ID call to the ptserver is done
once per connection with the client. This is why you need to klog to the cell again
when your user ID ACL information changes; the klog command breaks this
connection and establishes a new one with the fileserver process.

When a client is ready to actually fetch data for a file, it makes a fetchdata RPC to
the fileserver’s UDP port 7000 to request a copy of the file (or as much of the file
that will fit into one “chunk” as defined in the client afsd parameters). With the
default chunksize on the client set to 64 KB, the size of the response from the
fileserver to this request will be up to 64 KB depending on the size of the file. The
listener thread receives this fetchdata request from the client and creates a call
structure for the request. It then passes this off to the next available server pool
thread which compares the ACLs on the directory with those of the user stored in
the internal structure and, assuming they allow access, will send up to the
defined chunksize of data to the client.

When the fileserver sends either a file status or data back to the client, on the
return there is an item called a callback. A callback is essentially a statement of
how long the fileserver will remember that this user has some sort of access to
this file. The fileserver also adds to its own list the fact that this client requested
this file and how long the fileserver has told the client the callback is good for. If
another user updates this file, the fileserver will look through its list of callbacks
for this FID (fileid) for the clients (other than the update user) who have callbacks
to this file and will send an RPC to these clients telling them to break the callback.

As alluded to previously, there are several different “kinds” of threads in the
fileserver process. The bulk of these are server pool threads that actually handle
Chapter 12. AFS performance tuning guide 143

the RPCs and perform most of the operations relating to the file or directory
manipulation. In addition to these threads, each fileserver process has 5
additional threads that perform the housekeeping tasks for that process:

Listener thread: This thread reads from UDP port 7000 listening for something to
happen. When it receives a packet, it determines if there is already a running call
that it is for and if so, passes it to that receive queue or if not, it creates the call
structures for the request.

FiveMinute thread: This thread closes and reopens the log file every five minutes
so that you can move it aside if desired, cleans up expired callbacks from the
fileserver’s list, resets disk usage stats, along with some additional cleanup tasks.

HostCheck thread: If the fileserver has not heard from a particular client for a
while, this thread will send a check to see if the client is still alive. If it is not, this
thread will remove the data structures associated with that client.

IOMGR thread: This thread runs when the fileserver process has handled all the
RPCs and is waiting for a new RPC. The listener thread has registered its interest
in reading from the socket for port 7000. The IOMGR thread waits in select() for
data to read from this socket or for a signal to occur.

Signal thread: This transient thread is created by the IOMGR thread to do the
work of a received signal.

12.3 Commonly used parameters

[-p (number of processes)]

This parameter sets the number of lightweight processes, or threads, that the
File Server will use to service requests. The original default values are 6
threads for “small”, 9 threads for “medium”, and 12 threads for “large” (based
upon the File Server size designation). Use this option in addition to the size
option (it sets other parameters) if you want to increase the threadcount on a
fileserver process. The fileserver process will automatically default to the
“medium” setting of 9 threads if no size is specified.

Prior to AFS 3.4a build 5.53, the maximum “safe” number of threads you could
use was 24. Anything beyond that level would eventually panic the machine.
Build 5.53 introduced Delta 10083 to increase the maximum thread value to
59. The total max number of threads on the File Server is actually 64, but 5
are used for housekeeping tasks.

It should be noted that changes in this parameter will have varying results
depending on such things as the machine’s speed, size, and memory and
therefore ability to make the best use of additional File Server threads. Adding
many threads to a very small machine will obviously have a negligible effect.

It should also be noted that the File Server not only services users’ store and
fetch requests, but also in the course of these actions, consults with other
server processes. Increasing the “size” of the File Server with this parameter
without monitoring and adjusting the effect on other server processes may not
result in the desired performance gain expected.

[-spare (number of spare blocks)]
144 WebSphere V3 Performance Tuning Guide

Used to set the amount of space (in K blocks) by which users are allowed to
exceed their quotas when storing in a volume. 0 indicates no grace amount.

While this parameter is not specifically a tuning parameter per se, it is useful in
controlling the overall operation of the File Server machine as full File Server
partitions could result from incorrect settings in your environment.

[-pctspare (percentage spare)]

This parameter is similar to “-spare” in that it allows the administrator to set
the amount of space that the users of this File Server are allowed to exceed
their quotas by when storing a volume. In this case, the “grace” amount is
expressed as a percentage of the user’s quota and is therefore variable
depending upon the individual quotas. 0 indicates no grace amount.

Again, it should be noted that while this parameter is not specifically a tuning
parameter per se, it is useful in controlling the overall operation of the File
Server machine.

[-busyat (redirect clients when queue > n)]

Under extremely heavy loads, it is possible for a large number of RX File
Server calls to be queued while the data associated with those calls has been
discarded. When these calls come to the front of the pending call queue and
are scheduled, the thread waits for the rest of the data until the client
retransmits. If this occurred to a large number of server threads, a situation
referred to as “meltdown” occurs -- servers handling as few as five to ten calls
per second, instead of, for example, five hundred.

With this flag, the fileserver will return VBUSY to the requesting client if the
number of pending calls is higher than the value set by the flag.

In cells that may experience brief bursts of high activity on a semi-regular
basis, this parameter can be used to help control these situations without
affecting the overall function of the File Server.

[-rxpck (number of RX extra packets)]

"-rxpck N" increases the size of the File Server by about 1650 * N bytes.

This parameter controls the size of the RX packet pool. This pool is used for
storing data for calls currently being handled, pending calls, and previous
replies that are not yet complete. Using this option can increase the amount of
data the File Server can store while processing requests, which will reduce the
amount of retransmissions by the client. However, use of this parameter must
be initiated in metered steps until the desired result is achieved. The more RX
packets, the longer the list the File Server has to process and the more pings
to clients it needs to make etc.

The current default is 200 packets. We recommend starting with a value of 400
and if an AFS administrator perceives a need to increase this amount, we
recommend doing so in 200 packet increments until the optimal result is
achieved.

[-udpsize (size of socket buffer in bytes)]

This parameter sets the UDP buffer size. The default size is 64 KB.

Since the File Server is a single-threaded (OS-speaking) process, all packets
go through a single UDP port (7000), whose input buffer is 64 KB (set by the
Chapter 12. AFS performance tuning guide 145

RX layer). This parameter is useful if clients are hitting the File Server with
many requests and UDP packets are subsequently being dropped. To
determine this, the AFS administrator monitors netstat output on the File
Server machine (to be discussed later in the Tools section). This option
became available in the 5.24 build for the fileserver instance and the 5.26 build
for the volserver instance.

[-nojumbo]

This option, when added to the File Server instance, turns off the File Server’s
ability to send “jumbograms” to the client.

Jumbograms are RX packets which are from 2 to 4 MTUs long. The MTU is the
smallest MTU of either the server or client. So, if both client and server have
the same MTU size, the RX packet will be that size. For example, if both are on
FDDI then the packets will be FDDI-sized (4352), not Ethernet-sized (1500). If
however, the client is on Ethernet (1500) and the server is on FDDI (4352), the
RX packet will be 1500 (the smaller MTU of the two).

Jumbograms were introduced in AFS 3.4. AFS 3.3a functioned in the manner
which is referred to above. In other words, we would use the MTU size of
whichever is smaller (the client or server) and not increase beyond this point
(by employing jumbograms). In AFS 3.4 we start with this initial idea of setting
the MTU size based upon the smaller MTU between the two, but then we
“ramp up” to RX packets that have 2 - 4 MTUs amount of data in them. With
the “-nojumbo” option, you will revert to the 3.3a method wherein we pick the
smaller MTU of the two and stick with it for that transaction.

12.4 Overview of AFS 3.5 File Server changes

Many aspects of the 3.5 File Server have remained the same as they were in 3.4.
For example, the communications process between the client and File Server, the
type and number of File Server housekeeping threads used, and the optional
parameters and switches have, for the most part, remained the same as in 3.4
and are described in other sections of this document.

This addendum to the original AFS 3.4 File Server Operations Tuning and
Troubleshooting Guide seeks to describe only those changes that have been
made in the File Server functioning and available options in AFS 3.5. Please read
this entire document to fully understand the File Server options and available
tuning parameters.

The changes to the AFS 3.5 File Server can be grouped into two general
categories: Performance Improvements and Parameter Changes, which are
discussed in the sections that follow.

12.5 AFS 3.5 File Server performance improvements

The 3.5 release of AFS includes enhancements that significantly improve the
throughput of AFS File Servers. Performance benchmarks run at IBM Transarc to
compare AFS 3.4 with AFS 3.5 indicate AFS 3.5 File Servers can process three
to four times more requests per second than AFS 3.4 File Servers. These
changes, made to improve the AFS 3.5 File Server performance, are described
below.
146 WebSphere V3 Performance Tuning Guide

12.5.1 POSIX threads
The AFS 3.4 File Server runs with a light weight process (LWP) package that
implements something resembling threads using setjmp and longjmp context
switching library routines. In AFS 3.4, any thread that makes a blocking system
call causes the other File Server threads to “sleep” while that thread waits for the
kernel to complete the call. Disk I/O is a good example of a blocking system call
in the File Server. So, for example, a 3.4 File Server thread that wants to write to
or read from the disk is going to make a blocking system call to the kernel which
will in turn cause the other File Server threads to sleep while waiting for this
operation to complete. This has the negative effect of not only creating a
bottleneck for disk I/O, but also reducing the potential operating performance of
the other File Server threads by causing them to “sleep” when one is blocked in a
system call.

In AFS 3.5, POSIX threads have been implemented in place of LWP. POSIX
threads are scheduled independently, so the other File Server threads keep
running even when one of the threads is blocked in a system call. In reference to
the example cited in the preceding paragraph, we no longer have the single disk
access I/O bottleneck seen in AFS 3.4 File Servers nor do the other threads
“sleep” during this process, thus increasing the performance of the File Server. It
should be noted, however, that any thread which is blocked while waiting for its
system call to complete will still need to wait for a response from the kernel before
continuing. For example, when a thread makes a disk I/O system call, that thread
must wait for the kernel to complete the call, the speed of which will vary
depending upon the speed of the disks and processor among other things.

12.5.2 RX slow start
AFS 3.4 File Servers used an aggressive retransmission policy that in practice
performs poorly on congested networks. AFS 3.5 implements slow start, fast
retransmit, congestion detection, and congestion avoidance as described in RFC
2001. If you would like to learn more about RFC 2001, you may obtain a copy
from the following location:

ftp://ftp.isi.edu/in-notes/rfc2001.txt

12.5.3 File descriptor caching
The AFS 3.4 File Server did not make use of file descriptor caching. The AFS 3.5
File Server keeps a Least Recently Used (LRU) cache of file descriptors to
reduce the overhead of opening and closing files between fetchdata or storedata
RPCs sent by the client. This cache is hard-coded with a static size of
approximately 2000 file descriptors.

As an example, suppose you are reading a 40 MB file. The client is going to be
fetching chunks of that file one at a time by sending fetchdata RPCs to the File
Server for each chunk.

When the AFS 3.4 File Server receives one of these fetchdata RPCs for, say,
chunk 0, it will open the file, lseek to chunk 0, read in the data, close the file, and
then send the data to the client. It would then get the next fetchdata RPC for (in
this example), chunk 1, and again open the file, lseek to chunk 1, read in the
data, close the file, and then send the data to the client.
Chapter 12. AFS performance tuning guide 147

When the AFS 3.5 File Server receives one of these fetchdata RPCs for, say,
chunk 1 of a file, it will first search an internal hash table of handles to see if it has
this file open already. If so, it then looks at the handle to obtain the list of file
descriptor(s) open for this file. So, by saving the least recently used file
descriptors, we can avoid opening and closing frequently used files as often
between these RPCs.

12.5.4 Reduced lock contention
Using a profiling software package against the File Server binary we found and
fixed several places where locks were being held longer than necessary, thus
increasing the optimization of the File Server. For example, the CreateFile routine
was holding a write lock on the parent directory while breaking callbacks, and the
StoreData routine was holding a read lock on the parent directory while
transferring data.

Further analysis of the 3.4 code also indicated that the RX code was one of the
biggest sources of lock contention. This code was reworked with RX fine grain
locking to add locks to protect individual data structures instead of one global lock
for all of RX.

12.5.5 Overload processing
AFS File Servers have a busyat threshold that sets an upper limit on the number
of calls that can be queued waiting for a thread. The default is three times the
number of RX packets, divided by two. So, for example, if you have 400 RX
packets, then the busyat threshold defaults to 600. If the number of calls waiting
for a thread exceeds the busyat threshold, then the File Server starts rejecting
calls with a VBUSY error. This error tells the client to sleep for 15 seconds and try
the call again or, if a ReadOnly exists for that volume on another File Server, the
client will instead contact the other File Server. If no ReadOnly exists on another
File Server, the user will see a "Waiting for busy volume" message or, if it is an
application making the request, the application will not fail unless the VBUSY
condition exists for approximately 30 minutes.

AFS 3.4 does this check only after a call has been assigned to a server thread,
not when the first packet for a new call is received. Assume for example that you
currently have 600 calls waiting for a thread and you have the default threshold of
600 for the busyat parameter. When the next call comes in, it is the 601st call
waiting for a thread. That 601st call goes through the queue of 600 calls, gets
assigned to a thread, then when the thread picks it up and starts working on it, it
realizes that there are already more than the busyat threshold of calls waiting for
a thread, and sends the client a VBUSY error response. In the meantime, more
calls are coming in and stacking up waiting for an available thread, thus
increasing the overall count of waiting calls. If this condition persists and more
calls are coming in than the File Server can process, the File Server can enter a
state known as “meltdown”. File Server meltdown occurs when the File Server
cannot keep up with the incoming call queue, and all calls get rejected with
VBUSY.

AFS 3.5 fixes this by checking the number of queued calls when the first packet
for a new call is received. Only calls that would cause the call queue to overflow
are rejected so the File Server can continue to process the calls it currently has
queued and can accept new calls as it services and removes calls from this
queue.
148 WebSphere V3 Performance Tuning Guide

The following is a graphical representation of the change made in how the File
Server handles calls that are above its busyat threshold. Assume that the “|”
indicates clock time incrementing as you move down the chart and arrows
indicate the direction of data with the client on the left and the File Server on the
right.

Figure 105. How 3.4 File Server handles calls

3.4 File Server
listener thread listening for requests

Request

request (call) queued to pool for server threads

10 seconds to 3 minutes elapse
(depending upon the number of calls waiting in the queue)

request assigned to server thread

rxkad auth cycle (challenge, response)Challenge

Response
request data unmarshalled
(to determine what type of RPC it is, etc).
VBUSYreturned here if above busyat threshold
and the connection is dropped.

Response
Chapter 12. AFS performance tuning guide 149

Figure 106. How 3.5 File Server handles calls

12.5.6 Buffer management
AFS 3.4 File Servers will delete packets from the receive queues of calls waiting
for a server thread when the File Server runs out of RX packet buffers (as
indicated by the NOBUFS field in rxdebug output – see 12.8, “Debugging tools
and example output” on page 160 for more information). If, for example, a thread
is processing a call and needs more packets but the File Server is out of packets,
it will find a call that has packets and is waiting for a thread and usurp some of
those packets. Once packets have been deleted from a call's receive queue, new
packets for that call are not accepted until the call is assigned to a thread.

3.5 File Server
listener thread listening for requests

Request
request (call) queued to pool for server threads
if below busyat threshold, otherwise VBUSY returned here and
the connection is dropped.

Assuming we are below the busyat threshold, 10 seconds to
3 minutes elapse (depending upon the number of calls waiting
in the queue)

request assigned to server thread

rxkad auth cycle (challenge, response)Challenge

Response
request data unmarshalled
(to determine what type of RPC it is, etc).

Response

The 3-minute upper boundary indicated above in both graphs assumes you
have 600 new calls (and a busyat threshold of 600). If these are all new
connections, they would all have to be authenticated, which means the File
Server would have to check with the ptserver for each one of these calls. This
is obviously a “worst case” scenario, but the potential delay is worth noting. If
the 3.4 File Server is in this situation, then the 601st call coming in could
potentially wait this long until the File Server performs the authentication check
with the ptserver and since this is the 601st call, only then is it rejected with the
VBUSY error. The connection is then dropped due to the VBUSY error, but the
File Server and ptserver processing on this call up to this point has been
wasted.

Note
150 WebSphere V3 Performance Tuning Guide

This scenario created two problems. First, the client would now need to
retransmit the packets taken when the call, now without some of its packets,
eventually was processed by a thread. This results in additional network traffic.
Second, instead of having the full data for the thread to start working on, some or
all of the packets would be missing and the thread would have to wait for them to
be retransmitted before it could start processing the call. These delays negatively
impact the performance of the File Server and, in extreme cases, can result in a
File Server meltdown because once the File Server starts reclaiming packets
from receive queues, the throughput of the File Server drops significantly. The
service time on a cleared call is longer because the File Server has to wait for the
client to resend the packets that were discarded. The File Server also has
additional overhead because the clients do not stop retransmitting when the
server clears the receive queue.

The AFS 3.5 File Server relies on the busyat threshold to indirectly limit the
number of packet buffers used and can also allocate packet buffers as needed so
threads no longer need to usurp packets from waiting calls when they need more.
In this way, we can avoid the condition described above.

12.6 AFS 3.5 File Server parameter changes

[-p (number of processes)]

Similar to the 3.4 File Server, this parameter sets the number of threads that
the File Server will use to service requests. However, the 3.5 File Server uses
POSIX threads in place of the lightweight process threads that were
implemented in 3.4. The original default values are 6 threads for “small”, 9
threads for “medium”, and 12 threads for “large” (based upon the File Server
size designation) and have remained unchanged at this time. Use this option
in addition to the size option (it sets other parameters) if you want to increase
the threadcount on a File Server process. The fileserver process will
automatically default to the “medium” setting of 9 threads if no size is
specified.

The maximum number of threads available in the 3.5 File Server has been
increased from 59 (3.4a build 5.53 and later) to 123. Similar to the 3.4 File
Server, the total maximum number of threads is actually 128, but 5 are
reserved for housekeeping tasks.

As in 3.4, it should be noted that changes in this parameter will have varying
results depending on such things as the machine’s speed, size, and memory
and therefore ability to make the best use of additional File Server threads.
Adding many threads to a very small machine will obviously have a negligible
effect.

It should also be noted that the File Server not only services users’ store and
fetch requests, but also in the course of these actions, consults with other
server processes. Increasing the “size” of the fileserver process with this
parameter without monitoring and adjusting the effect on other server
processes may not result in the desired performance gain expected.

[-busyat (redirect clients when queue > n)]

With this flag, the fileserver will return VBUSY to the requesting client if the
number of pending calls is higher than the value set by the flag. This flag
existed in the AFS 3.4 File Server and is unchanged in terms of syntax;
Chapter 12. AFS performance tuning guide 151

however, the point at which it is implemented has changed in AFS 3.5. Instead
of performing this check only after a call has been assigned to a thread (as is
done in AFS 3.4), the AFS 3.5 File Server checks the number of queued calls
when the first packet for a new call is received. Please review to 12.5.5,
“Overload processing” on page 148 for more details on the new
implementation of this parameter.

12.7 Scenarios

12.7.1 Scenario #1
Problem:

Users are complaining about poor response times or timeouts when they request
information from a certain File Server. Other File Servers in the cell seem to be
functioning normally with no delays in responding to users’ requests. In extreme
cases, the troubled File Server can move to a “meltdown” situation if diagnosis
and corrective action are not taken.

Possible cause:

There may be some I/O-intensive volserver operations taking place that are not
allowing the File Server to service its own requests. We refer to this situation as
the volserver being I/O bound.

What to look for:

• Several clients attempting to access files from the same File Server are
experiencing poor response times.

• The disk I/O on this File Server will be high.

• A vos status command on this File Server machine shows one (1) or more vos
operations in progress. The following vos operations can cause heavy disk I/O
activity and potentially trigger this problem:

• vos remove

• vos backup (essentially a clone operation)

• vos release

• vos move

If the above symptoms are present, also check rxdebug output on the File Server
to see if there are RX packets backing up:

Methods of determining this vary by operating system. The AFS
administrator needs to be familiar with the steps to determine this value
on the operating systems they employ.

Note
152 WebSphere V3 Performance Tuning Guide

Figure 107. Sample output of rxdebug

If RX packets are backing up, the above-noted section of rxdebug output will
indicate the amount.

What to try:

Since it appears that the volserver has forgotten how to share the disk with his
neighbors, we can tell the volserver to "sleep" for a couple seconds and let the
fileserver have a chance at the disk too.

To do this, you add the hidden option -sleep x/y to the volserver process and
restart the fs instance. The x value refers to the length of time the volserver
should sleep and the y value refers to the length of time it should run between
these sleep intervals, for example:

volserver -sleep 2/15

This means the volserver should sleep for two (2) seconds after fifteen (15)
seconds of work.

./rxdebug -servers zeus -port 7000 -rxstats
Trying 158.98.19.134 (port 7000):
Free packets: 328, packet reclaims: 91, calls: 323297, used FDs: 7
not waiting for packets.

• Do not make the sleep (x) number greater than ten (10).

• Two to three (2 - 3) is usually optimal for the x value.

• The runtime (y value) should equal two or three (2 or 3) times a minute.

• If “vos status” shows a LOT of activity, you can use three or four (3 or 4) in
the x value.

• This option will NOT cause the volserver to sleep every y seconds all of the
time. It will only come into effect when one of the operations that is listed
above is taking place.

• The presence or absence of RAID has no bearing on whether you will see
this problem.

• You will need to restart the fs instance in order to pick up the sleep option.

• The use of this flag could be a potential performance hit - use it only if
needed.

• Use this flag on a machine by machine basis - not as a cell-wide immediate
solution to one machine's problems.

Note
Chapter 12. AFS performance tuning guide 153

12.7.2 Scenario #2
Problem:

Users are complaining about clients hanging when storing or fetching a fairly
large file. The command doesn't complete, and the user gets a "communication
timeout failure". This problem should occur on a fairly repeated basis -- not a
one-time occurrence.

Possible cause:

The File Server may be attempting to send the data in jumbogram form to the
client and something between the client and the server is inhibiting this action.

What are jumbograms?

As mentioned previously, when sending data to or from a client, if the size of the
data is sufficient, we begin to "ramp up" the size of the RX packets and eventually
send essentially very large RX packets across the wire. We are trusting that the
machines and routers on the wire between this server and client will properly
break the packets into IP fragments and reassemble them.

When this becomes a problem:

Some of these packets can be dropped if the routers are filling to capacity, or if
some of the networks simply cannot handle fragments or are set to disallow them
(“DF” flag). Aside from the explicit network restriction, what typically happens is a
router or client is collecting all of the IP fragments waiting to get them all so that it
can reassemble them and pass them to the next layer above. If it is missing one
of the pieces, this device will just continue to collect all of the other fragments and
will eventually fill up its input buffer before it can reassemble the packet.

What to look for:

Collect tcpdump data on the source and destination machines (the server and
client), however do not run tcpdump on these machines themselves -- rather, on
another machine with each of their subnets. tcpdump should be run on the piece of
wire that the host is sitting on as well as on each piece of wire between the server
and client (including the subnet the client is on). This will allow us to see if
packets are being dropped somewhere along the way between the server and the
client.

If you are unable to obtain a tcpdump of the problem, an alternate (although less
revealing) method would be to perform a KDUMP on the client while it has a
failing call in progress. In the KDUMP output, you can get the call MTU size and
this will at least point to (or refute) the possibility of a jumbograms issue.

In the tcpdump output, look for the word “frag” and then check to see if the same
frag pieces are being retransmitted over and over again. Also, check to see if the
“DF” (or equivalent) flag is set which would prevent fragmentation of these
multiple-MTU RX packets.

An example of this problem in tcpdump output:

The following is an example of what to look for in the tcpdump output to see if
jumbograms are the problem. In this example, the File Server was attempting to
154 WebSphere V3 Performance Tuning Guide

send jumbograms. The identifier in the tcpdump output is where we see the File
Server sending 1444-byte packets and then attempting to send 1448-byte
packets which never get through. Remember that 1472 + 8 (UDP header) + 20 (IP
header) = 1500 bytes. In this example, most of the line to the left of the area of
interest has been truncated and only the rightmost portion is included to highlight
what we are looking for:

Figure 108. Sample output of tcpdump

From the above, there are several items to note:

• fileserver1.transarc.com.fs is the fileserver process.

• In the column that has numbers like:

1.0006

2.0007

3.0008

4.0009

5.000a

The number to the left of the decimal is the packet number. The number to the
right is the packet number from the beginning of the transmission -- but it is
unimportant -- focus on the one to the left of the decimal.

• In the column that has "data" or "ack", this tells you whether it is a data packet
being sent or an acknowledgment (other values are possible and mentioned in
the Tools section of this document).

• The next column over (with "....") is a sort of “message” area. The possible
“messages” are:

< fileserver1.transarc.com.fs: 1.0006 data 1444 (DF)
< fileserver1.transarc.com.fs: 2.0007 data .A.. 1444 (DF)
< fileserver1.transarc.com.fs: 3.0008 data 1444 (DF)
< fileserver1.transarc.com.fs: 4.0009 data .A.. 1444 (DF)
< fileserver1.transarc.com.fs: 5.000a data 1444 (DF)
> fileserver1.transarc.com.fs: 2.0000 ack 2 (DF)
< fileserver1.transarc.com.fs: 6.000b data .A.. 1444 (DF)
< fileserver1.transarc.com.fs: 7.000c data 1444 (DF)
< fileserver1.transarc.com.fs: 8.000d data .A.. 1444 (DF)
< fileserver1.transarc.com.fs: 9.000e data 1448 (DF)
> fileserver1.transarc.com.fs: 4.0000 ack 4 (DF)
< fileserver1.transarc.com.fs: a.000f data .A.. 1448 (DF)
< fileserver1.transarc.com.fs: b.0010 data 1448 (DF)
> fileserver1.transarc.com.fs: 6.0000 ack 6 (DF)
< fileserver1.transarc.com.fs: c.0011 data .A.. 1448 (DF)
< fileserver1.transarc.com.fs: d.0012 data 1448 (DF)
> fileserver1.transarc.com.fs: 8.0000 ack 8 (DF)
< fileserver1.transarc.com.fs: e.0013 data .A.. 1448 (DF)
< fileserver1.transarc.com.fs: f.0014 data ..L. 244 (DF)
< fileserver1.transarc.com.fs: 9.0015 data .A.. 1448 (DF)
< fileserver1.transarc.com.fs: a.0016 data .A.M 1448 (DF)
< fileserver1.transarc.com.fs: b.0017 data .A.. 1448 (DF)
< fileserver1.transarc.com.fs: c.0018 data .A.M 1448 (DF)
Chapter 12. AFS performance tuning guide 155

A = Acknowledgement requested

M = More data packets to follow

L = Last data packet in this series

• The next column tells you the size of the data. In this case, it starts out at
1444, which is normal for Ethernet, and then the fileserver process tries to
increase it to 1448 (the start of jumbograms).

• The final column may or may not exist in your tcpdump trace. The “DF” means
“Don't Fragment” and is set by MTU discovery.

So, with our new knowledge in hand, we see that the fileserver process first
sends packets 1 and 2 with an ACK requested on packet 2. It then sends packets
3 and 4 with another ACK requested on packet 4. It then sends packet 5 and then
receives its first ACK back from the client for packet 2 (essentially what the client
tells him is “I'm done with packet 1 and have received packet 2”). The fileserver
process then sends packet 6 with an ACK requested, then packet 7, then packet 8
is sent with an ACK requested also. The fileserver then sends packet 9, but
notice, it is being sent with 1448 bytes of data! When you add the 56 bytes for IP
information added to the packet, this totals 1504, which is 4 bytes more than this
network will accept (remember the DF flag). As you look down the rows, you'll see
that the fileserver process attempts to proceed with this larger size and continues
to attempt to send these packets to the client. In particular, notice that packets 9,
a, b, c, d, etc. are being retransmitted over and over. This is also a good sign that
the packets are being lost and RX is continuing to try to send them (RX ignores
the error it gets from the router saying that it won't accept the packet). Thus, we
have identified that jumbograms are likely the cause of the user’s complaints.

What to try:

Add the "-nojumbo" option to the fileserver process and restart the fs instance.

Where this option exists:

• fileserver – added to the 5.00 build.

• volserver – added to the 5.00 build.

• vlserver (for vos listvldb jumbograms problems) – added in the 5.28 build.

We have already turned them off by default on the bosserver, kaserver, buserver
and ptserver (added to the 5.55 build).

This command is "hidden" on the volserver and fileserver; it is visible on the
vlserver.
156 WebSphere V3 Performance Tuning Guide

12.7.3 Scenario #3
Problem:

Users are complaining about sluggish response times from the File Server and
the clients are showing a lot of resends (from RXDEBUG output).

Possible cause:

The UDP buffer on the File Server may be overflowing, causing dropped packets
which have to be resent by the client.

What to look for:

Look at the output from a netstat -s command run on the File Server. This
command will give you statistics for all socket connections from that machine.
Look at the "udpInOverflows" (or "buffer overflows" or equivalent) value. If this
value is high or increasing over multiple iterations of the netstat -s command
(one run before and one run after the test), then this buffer is overflowing.

What is happening:

All AFS packets are UDP packets which are sent over socket connections. When
a File Server makes a socket to send packets over, it allocates a queue (buffer)
for that socket in the kernel. This queue has a default size of 64 KB (set by the
kernel). When the clients send packets, they go into the queue for the socket on
the receiving end and the fileserver process picks them up from there. When a lot
of clients are sending packets across to one File Server, and that process is
reading packets off this queue, if the process is not able to keep up with the level
of packets coming in, this queue will eventually fill and overflow (drop packets)
causing the packets to have to be resent by the clients.

What to try:

If you see the udpInOverflows (or equivalent) buffer overflows value increasing
over multiple iterations of the netstat -s command, you can instruct the fileserver
(or volserver) to request a larger queue (buffer) at the time of creation. This is
done with the UDPSIZE option added to either the fileserver or volserver

• RXTUNE (a.k.a. "Twiddle"), which is available from AFS technical support,
is sometimes used to test for the presence of a jumbograms problem by
causing the client to inform the servers it cannot accept jumbograms
(thereby effectively turning them “off” for this client). Keep in mind that this
program should only be run on the AFS client and will only affect the kernel.
It has no effect on user-space commands such as bos, vos, kas, backup,
etc.

• There is performance degradation (from optimal) when the jumbograms are
turned off.

• Even if you see a lot of packets resent in the tcpdump output, that does not
necessarily mean that it is a jumbograms problem. You can use RXTUNE to
help isolate the problem.

Note
Chapter 12. AFS performance tuning guide 157

instance. To decide what value to set this option to, first determine the maximum
value that the particular operating system supports, and then set a larger (> 64
KB) size within that boundary. You may need to adjust this several times to find
the optimal value for your machine.

What this does:

With this option set, the File Server then reads this value when it opens a socket,
and it sets the queue size to this value. Currently, you can have a buffer size of up
to 2 GB on Solaris 2.5. Solaris 2.6 and HP10.20 currently set the default queue
size to 1 MB. As mentioned previously, consult your operating system
documentation or vendor for specifics.

12.7.4 Scenario #4
Problem:

Users are complaining about extremely slow response times from a particular File
Server.

Possible cause:

If the File Server is under heavy load during this time, it may be "melting down".
Use the “meltdown” script shown in Figure 109 on page 161 to help make this
determination.

What to look for:

In the RXDEBUG output, look at the "wproc" column and the "nobufs" column. If
the "wproc" column is increasing in value (or spiking) and the "nobufs" value is
increasing over several iterations of the RXDEBUG, then the server may be
overloading or melting down. You will also see a high resend rate on the clients
during this time (due to packets dropped by the fileserver).

• The UDPSIZE option is available in AFS on every platform we support.
Each of these sockets has a different size value depending on the operating
system.

• As an example, to determine the system-wide maximum allowable socket
buffer size for Solaris or AIX:

Solaris: ndd -get /dev/udp udp_max_buf

AIX: no -o sb_max

• To set the system-wide maximum allowable socket buffer size to 1 MB:

Solaris: ndd -set /dev/udp udp_max_buf 1048576

AIX: no -o sb_max=1048576

Note
158 WebSphere V3 Performance Tuning Guide

Look at the size option on this File Server:

Table 8. The size option

There is a ratio between the number of extra RX packets that are set up and the
size selected. This ratio is 16 2/3 RX packets per thread. This number is based on
having 16 packets available to a thread (there is an 8-packet transmit window for
each call the thread receives) which allows the thread to work on another call
while waiting on the first call to finish with the first 8 packets.

Why it is happening:

This can happen if the File Server is having a hard time sending packets to the
clients (packets being dropped somewhere along the network), unable to keep up
with the demand given its current “size” settings, or if it is generally slow for some
other reason (slow disk, other non-fileserver CPU-intensive processes on the
same box, overloaded machine, etc.).

What to try:

• Make sure the File Server (via the fileserver instance) is set to at least the size
option of "L".

• Add the File Server option "-rxpck" (via the fileserver instance) and set it to
400 as a start.

• Make sure the number of threads is sufficient for the rxpck value.

• You may alternatively want to set the thread value to something larger than 12
(if it is not sufficient) and then make sure the rxpck value is large enough
(multiply the number of threads by 17).

• If the File Server has a high resend rate during this period, you should look for
any network problems that would cause the File Server to need to resend
packets as this would cause it to hold onto these packets while resending and
can fill the rxpck pool.

Size Default
Threads

Default
Packets

small 6 100

medium 9 150

large 12 200
Chapter 12. AFS performance tuning guide 159

12.8 Debugging tools and example output

12.8.1 RXDEBUG incorporated in the meltdown script
The following is commonly (albeit somewhat incorrectly) referred to as the
“meltdown script”. It utilizes the RXDEBUG diagnostic tool and formats the output
in an easy-to-read table. It is suggested that you use this script as a monitoring
tool when you:

• Perceive less than optimal performance on a File Server machine

• Experience rapid cell growth in terms of users and/or activity

• Are interested whether the File Server is reaching load capacity under its
current configuration

The output from this script can help you determine if tuning changes are needed
for a particular File Server machine due to usage and load variants (for example,
large builds), or if the machine is in the process of melting down and unable to
recover.

• "-rxpck N" increases the size of the fileserver process by about 1650 * N
bytes.

• Q. When adding the "-rxpck" switch to the fileserver process, does this
indicate the absolute number of RX packets for the fileserver process, or is
it added on to an existing amount determined by the fileserver size switch?
In other words, does adding "-rxpck 400" to a “large” fileserver process
mean that it now has space for 400 RX packets, or is it 400 + ?? RX packets
(the ?? is a number initially allocated to the fileserver process by the size
switch).

• A. The fileserver code adds 16 2/3 packets per thread. RX itself adds 18
packets for each server thread started. So, there are two things to be aware
of:

1. If more threads are explicitly started in the fileserver process using
the “-p” option, make sure that “-rxpck” is used and is at least 16 2/3
times the number of threads.

2. -rxpck governs how big the RX packet pool is. Aside from the calls
currently being handled, packets are used to hold data for pending
calls and for finishing up previous replies. Increasing this value
allows the fileserver process to hold onto data for calls not yet
processed. This can help in meltdown or overload situations if the
currently running threads do not have all the data they need to finish
the call. Or if there is a slow or busy network where re-sending the
packets to a busy File Server only tends to slow things down even
further. In any of these cases, if the “nobufs” values from RXDEBUG
are non-zero and increasing, and the File Server is not slow as a
result of disk contention, increasing the number of RX packets is
likely useful.

Note
160 WebSphere V3 Performance Tuning Guide

Figure 109. The meltdown script

The following is sample output during a File Server meltdown, which is a
worst-case scenario wherein the File Server is unable to keep up with incoming
requests to such a point that it eventually is unable to recover at all. Notice that
the nobufs number (a cumulative count) is increasing, the number of calls is
staying the same, data is staying the same or not growing, and wproc (waiting for
process) is growing.

The following is sample output from a File Server that had a load spike at some
point, but was able to recover and is now operating normally. Notice that the
nobufs number is non-zero but not changing and the number of calls is
increasing, however the wproc value is 0.

#!/bin/ksh
#

servername=$1

echo ""
echo Server $servername
echo "wproc nobufs wpack free pack calls data
resends"
while [1] ; do
/usr/afsws/etc/rxdebug $servername 7000 -rxstats | \

awk ' BEGIN { wproc = 0; wpack = 0; fpack = 0; calls =0; data =
0; resends = 0; nobufs = 0} \

/waiting_for_process/ {wproc++} \
/wait_packet/ {wpack++} \
/Free packets/ {fpack = $3; calls = $8} \
/other send counters/ {data = $7; resends = $11} \
/noBuffers/ {nobufs = $12} \
END {printf "%5d %8d %6d %11d %7d %10d %13d\n", wproc,

nobufs, wpack, fpack, \ calls, data, resends } '
sleep 3
done

END { print " ", wproc, " ", nobufs, " ", wpack, " ",
fpack, " ", calls, " ", data, " ", \ resends }

wproc nobufs wpack fpack calls data resends
272 5742, 0 74, 814081, 1134776 25810,
272 5920, 0 74, 814081, 1134776 25810,
278 7297, 0 74, 814081, 1134776 25810,
278 7578, 0 74, 814081, 1134776 25810,
281 8933, 0 74, 814081, 1134776 25810,
284 9242, 0 74, 814081, 1134776 25810,

wproc nobufs wpack fpack calls data resends
0 5265, 0 182, 1501650, 1661183 53199,
0 5265, 0 182, 1501657, 1661192 53200,
0 5265, 0 184, 1501659, 1661193 53201,
Chapter 12. AFS performance tuning guide 161

12.8.2 tcpdump
tcpdump is a useful tool for monitoring networks and decoding protocols when you
suspect communications-related problems between client and server. Some
possible command lines could be:

./tcpdump -w <outfile> -s 150 host <hostname> and port 7000

./tcpdump -w <outfile> -s 150 host <hostname> and host <hostname2>

./tcpdump -w <outfile> -s 150 host <hostname>

We show you the tool syntax and usage as follows:

• The <outfile> should be located in local disk space rather than AFS. This is
especially true when you are trying to isolate a communications problem
between client and server.

• The -s refers to the snap length. This allows us to pick up the first 150 bytes of
the UDP packet.

• The port is optional, but if used will most likely be 7000 (fileserver) or 7001
(client).

• tcpdump should not be run on the source or destination machines.

• tcpdump should be run on the piece of wire that the host is sitting on.

• If there are two wires between the fileserver and client, then run tcpdump on
both wires to allow us to see if packets are being dropped in between the two.

• tcpdump usually doesn't work well on a switched hub - you don't get the packets
that are going between other machines. In those instances, you may want to
try running it on the machine that you're trying to sniff. Or try "snoop" if you are
working with Solaris.

• If it's not Solaris and you're unable to obtain a tcpdump, you can alternatively
perform a kdump on the client while you have a call that's failing in progress.
While this is limited information, it can sometimes point to the problem.

• If you suspect an issue involving jumbograms (for example, Scenario #2), it’s
best to not filter on the port number at all as this will filter out the fragments of
the jumbograms.

To read the raw tcpdump output file that is created, use the same tcpdump

command with the -r switch on the outfile. You can also add filters to this
command to narrow the scope of the output you are studying:

./tcpdump -r <outfile>

./tcpdump -r <outfile> host <hostname> and port 7000

./tcpdump -r <outfile> host <hostname> and host <hostname2>

./tcpdump -r <outfile> host <hostname>
162 WebSphere V3 Performance Tuning Guide

Figure 110. tcpdump output

Table 9. tcpdump output descriptions

Field No. Description

1 Timestamp

2 Host name and process (in this example, .cm means cache
manager), connection ID and call number.

3 The “<” or “>” indicates the direction in which the packet is
traveling.

4 Host name and port designator (in this example, fs means
fileserver), the connection ID and call number are identical
at both ends of a connection.

5 Packet sequence number on the call, and serial number.
Retransmitted packets will have the same sequence
number, but different serial numbers.

6 Holds values of “data”, “ack”, “busy”, or “abort” and
indicates what this packet is.

7 Flags indicating:

C = Packet originated at the RPC’s client.

A = Acknowledgement requested.

M = More data packets to follow.

L = Last data packet in this series.

8 The size of the data in bytes.

9 This field may or may not exist in your tcpdump trace. In this
example, the “DF” means “Don’t Fragment” and is set by
MTU discovery.

11:24:12.044201 client1.transarc.com.cm.7b5de95c.0001 > fileserver1.transarc.com.fs: 1.0006 data 1444 (DF)
11:24:12.047017 client1.transarc.com.cm.7b5de95c.0000 < fileserver1.transarc.com.fs: 2.0007 data .A.. 1444 (DF)
11:24:12.047881 client1.transarc.com.cm.7b5de95c.0000 < fileserver1.transarc.com.fs: 3.0008 data 1444 (DF)
11:24:15.045200 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: 4.0009 data .A.. 1444 (DF)
11:24:18.305831 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: 5.000a data 1444 (DF)
11:24:20.422469 client1.transarc.com.cm.7b5de95c.0001 > fileserver1.transarc.com.fs: 2.0000 ack 2 (DF)
11:24:20.424691 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: 6.000b data .A.. 1444 (DF)
11:24:20.426924 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: 7.000c data 1444 (DF)
11:24:20.428027 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: 8.000d data .A.. 1444 (DF)
11:24:20.429147 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: 9.000e data 1448 (DF)
11:24:20.430624 client1.transarc.com.cm.7b5de95c.0001 > fileserver1.transarc.com.fs: 4.0000 ack 4 (DF)
11:24:20.431472 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: a.000f data .A.. 1448 (DF)
11:24:20.431651 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: b.0010 data 1448 (DF)
11:24:20.431927 client1.transarc.com.cm.7b5de95c.0001 > fileserver1.transarc.com.fs: 6.0000 ack 6 (DF)
11:24:20.432221 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: c.0011 data .A.. 1448 (DF)
11:24:20.432687 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: d.0012 data 1448 (DF)
11:24:20.433101 client1.transarc.com.cm.7b5de95c.0001 > fileserver1.transarc.com.fs: 8.0000 ack 8 (DF)
11:24:20.433533 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: e.0013 data .A.. 1448 (DF)
11:24:20.436192 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: f.0014 data ..L. 244 (DF)
11:24:20.437001 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: 9.0015 data .A.. 1448 (DF)
11:24:20.437443 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: a.0016 data .A.M 1448 (DF)
11:24:20.439192 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: b.0017 data .A.. 1448 (DF)
11:24:20.440298 client1.transarc.com.cm.7b5de95c.0001 < fileserver1.transarc.com.fs: c.0018 data .A.M 1448 (DF)
Chapter 12. AFS performance tuning guide 163

12.8.3 netstat
netstat output varies in format and field names depending upon the platform on
which it is run. For this example, we look at the output from a SunOS 5.5
machine. If we were debugging Scenario #3, we would concentrate on the UDP
section and specifically on the udpInOverflows field. The command we issue is:

./netstat -s

The following is a sample output of the command:

UDP
udpInDatagrams =2954751 udpInErrors = 0
udpOutDatagrams =5738548

TCP
tcpRtoAlgorithm = 4 tcpRtoMin = 200
tcpRtoMax = 60000 tcpMaxConn = -1
tcpActiveOpens = 20974 tcpPassiveOpens = 179
tcpAttemptFails = 19 tcpEstabResets = 9
tcpCurrEstab = 5 tcpOutSegs =637145
tcpOutDataSegs =544819 tcpOutDataBytes =200221356
tcpRetransSegs = 22034 tcpRetransBytes =212746
tcpOutAck = 92316 tcpOutAckDelayed = 47300
tcpOutUrg = 46 tcpOutWinUpdate = 0
tcpOutWinProbe = 0 tcpOutControl = 42303
tcpOutRsts = 23 tcpOutFastRetrans = 14
tcpInSegs =622151
tcpInAckSegs =504560 tcpInAckBytes =200242345
tcpInDupAck = 42609 tcpInAckUnsent = 0
tcpInInorderSegs =299043 tcpInInorderBytes =38379387
tcpInUnorderSegs = 0 tcpInUnorderBytes = 0
tcpInDupSegs = 0 tcpInDupBytes = 0
tcpInPartDupSegs = 0 tcpInPartDupBytes = 0
tcpInPastWinSegs = 0 tcpInPastWinBytes = 0
tcpInWinProbe = 0 tcpInWinUpdate = 0
tcpInClosed = 5 tcpRttNoUpdate = 811
tcpRttUpdate = 39477 tcpTimRetrans = 1248
tcpTimRetransDrop = 3 tcpTimKeepalive = 450
tcpTimKeepaliveProbe= 342 tcpTimKeepaliveDrop = 0

IP
ipForwarding = 2 ipDefaultTTL = 255
ipInReceives =5457657 ipInHdrErrors = 0
ipInAddrErrors = 0 ipInCksumErrs = 0
ipForwDatagrams = 0 ipInForwProhibits = 0
ipInUnknownProtos = 27624 ipInDiscards = 0
ipInDelivers =5154339 ipOutRequests =6401650
ipOutDiscards = 0 ipOutNoRoutes = 0
ipReasmTimeout = 60 ipReasmReqds = 15914
ipReasmOKs = 15914 ipReasmFails = 0
ipReasmDuplicates = 0 ipReasmPartDups = 0
ipFragOKs = 4232 ipFragFails = 0
ipFragCreates = 9525 ipRoutingDiscards = 0
tcpInErrs = 0 udpNoPorts =246892
udpInCksumErrs = 0 udpInOverflows = 1
rawipInOverflows = 0

ICMP
icmpInMsgs = 1239 icmpInErrors = 0
icmpInCksumErrs = 0 icmpInUnknowns = 0
164 WebSphere V3 Performance Tuning Guide

icmpInDestUnreachs = 1221 icmpInTimeExcds = 9
icmpInParmProbs = 0 icmpInSrcQuenchs = 0
icmpInRedirects = 0 icmpInBadRedirects = 0
icmpInEchos = 7 icmpInEchoReps = 2
icmpInTimestamps = 0 icmpInTimestampReps = 0
icmpInAddrMasks = 0 icmpInAddrMaskReps = 0
icmpInFragNeeded = 0 icmpOutMsgs = 208
icmpOutDrops = 27623 icmpOutErrors = 0
icmpOutDestUnreachs = 201 icmpOutTimeExcds = 0
icmpOutParmProbs = 0 icmpOutSrcQuenchs = 0
icmpOutRedirects = 0 icmpOutEchos = 0
icmpOutEchoReps = 7 icmpOutTimestamps = 0
icmpOutTimestampReps= 0 icmpOutAddrMasks = 0
icmpOutAddrMaskReps = 0 icmpOutFragNeeded = 0
icmpInOverflows = 0

IGMP:
0 messages received
0 messages received with too few bytes
0 messages received with bad checksum
0 membership queries received
0 membership queries received with invalid field(s)
0 membership reports received
0 membership reports received with invalid field(s)
0 membership reports received for groups to which we belong
0 membership reports sent

From the above example, we see that the UDP buffer on this File Server
overflowed once, resulting in one dropped packet which had to be resent by the
client. A higher value in this field would help point to an ongoing problem in this
area and suggest that the udpsize option on the File Server be used.

12.9 Summary

File Server tuning is a function that we recommend be performed on a somewhat
consistent basis with a new cell and then at minimum every time the cell’s usage
patterns or machines change. There are no specific rules to follow in determining
when exactly this function should be performed and it is expected that the AFS
administrator is familiar with the cell and will be able to make a judgement call in
this regard.

As we have outlined in this document, the overall tuning of the File Server is a
two-step process beginning with analysis of current conditions and subsequent
changes or additions to the parameters and switches available to the fileserver
instance. This tuning can be either proactive or reactive depending upon the
current conditions in your cell and will employ for the most part the same
data-gathering techniques and analysis outlined here.

Use this document as a guide to help you better understand your cell and the
loads placed on the File Servers within it. Please keep in mind that this document
is intended to provide guidance and as such will not necessarily solve every
problem or need you encounter. If you experience questions or problems that this
guide does not answer, please contact AFS technical support for further
assistance.
Chapter 12. AFS performance tuning guide 165

166 WebSphere V3 Performance Tuning Guide

Appendix A. TCP/IP overview and tuning

In this appendix, we give an overview of the TCP/IP and performance tuning
points.

For more in depth knowledge on AIX performance tuning, we recommend that
you read the AIX Performance Tuning Guide, SR28-5930 and RS/6000 SP
System Performance Tuning, SG24-5340.

A.1 TCP/IP overview

Before we discuss AIX TCP/IP network tuning, we should get a general
understanding of how the different layers of the TCP/IP protocol stack interact.

TCP/IP consists of several communication layers. There are parameters that
impact the different protocol layers. They can best be understood by breaking
them down into categories:

• The no parameters are the initial network options that affect TCP, UDP and IP
and are independent to the adapter type.

• The MTU, or maximum transmission unit, is the largest possible packet size
that can be sent on a specific physical medium (Ethernet, token-ring, SP
switch, and so on).

• The adapter queues specify the number of packets that can be queued on a
specific adapter while it is sending or receiving data. These are specific to an
adapter even if there are other adapters of the same type.

For a review of the TCP/IP layer model and to clarify the interrelationships, let’s
break this down further, step by step:

1. An application performs a write request. Data is copied from the application’s
working buffer to the socket send buffer.

2. The socket layer passes the data to TCP or UDP.

3. For remote networks, if the data is larger than the maximum segment size
(MSS), TCP breaks the data into fragments that comply with the MSS.

4. For local networks, if the data is larger than the MTU, TCP breaks the data
into fragments that comply with the MTU.

5. UDP leaves the fragmentation to the IP layer.

6. The interface layer makes sure that no packet exceeds the MTU.

7. The packets are then placed on the adapter output queue, and transmitted to
the receiving system.

8. The receiving host places the incoming packets on the adapter’s receive
queue. They are then passed up to the IP layer.

9. The IP layer then determines if any fragmentation has taken place due to the
MTU. If so, it puts the fragments back to their original form and passes the
packets to TCP or UDP.

10.TCP reassembles the original segments and puts them on the socket receive
buffer in kernel memory or UDP passes the data on to the socket receive
buffer in kernel memory.
© Copyright IBM Corp. 1999 167

11.The application’s read request causes the appropriate data to be copied from
the socket receive buffer to the buffer in the application’s working area.

Figure 111. TCP/UDP/IP data flow

There are many parameters that can affect your network performance.

At the device driver layer you have your transmit queue size marked by the
parameters xmt_que_size. You also have your receive queue size marked by
rec_que_size.

At the interface layer you have enforcement of the MTU or segment size as it
pertains to what type of network media is being used, Ethernet, token-ring, or
others.

At the transport layer your performance parameters are set by tcp/udp
send/recvspace.

You also have the socket layer, between the transport and application layers, the
parameter sb_max, which determines the maximum amount of memory or mbuf
space that can be used by TCP or UDP for socket buffers for each socket.

Lastly, the parameters listed above all impact system memory. thewall parameter
determines the maximum amount of buffer space that can be used across the
entire communication subsystems.

Now, we will discuss these in more detail.

Socket Layer
(Subsytem
e.g. NFS, DFS

Application

TCP or
UDP
Layer

IP Input
Queue

S
E

N
D

IN
G

R
E

C
E

IV
IN

G

IP Layer

DEVICE
DRIVER

ADAPTERMTU

DMA

MTU

DMA

Media

IF LayerMTU Enforcement

MTU Compliance

Socket Send
Buffer

Socket Receive
Buffer

TCP
UDP TCP UDP(MTU Compliance)

Receive
Queue

Transmit
Queue

mbufs

mbuf mbuf

User space

System space

DatagramsStream

Send
Buffer

Read
Buffer

copy copy
168 WebSphere V3 Performance Tuning Guide

A.2 Maximum Transmission Unit (MTU)

The Maximum Transmission Unit (MTU) specifies the maximum size of packets
(including all the protocol headers) that can be transmitted on a network. For an
overview see Figure 116 on page 175. All systems on the same physical network
must have the same MTU. The MTU can be displayed using the netstat -i

command. Table 10 on page 169 gives an overview of common network adapters
and their related MTU sizes.

The MTU value can be changed per adapter using the ifconfig command or via
SMIT. Because all systems on the same physical network should have the same
MTU, any changes made should be made simultaneously. The change is effective
across system boots.

Table 10. Maximum Transmission Units

A.3 Adapter queue size

There is a fixed number of adapter queue slots to stage packets in each network
adapter device driver for traffic to that network. The transmit adapter queue
length specifies the maximum number of packets for the adapter. The send and
receive pools are separate buffer pools as shown in Figure 112 on page 170.

If the adapter queue size is exceeded, subsequent packets are discarded by the
adapter device driver, resulting in dropped packets. This results in a transmit time
out in the TCP layer, which leads to a rollback of the TCP window and the
resending of data. For UDP the result is lost packets.

Adapter queue overflows can be detected by looking at the errors logged in the
adapter counters as "S/W Transmit Queue Overflows". For Ethernet, token ring,
FDDI and ATM the adapter statistics can be seen by using the entstat, tokstat,
fddistat and atmstat commands respectibelly.

Most communication drivers provide a set of tunable parameters to control
transmit and receive resources. These parameters typically control the transmit
queue and receive queue limits, but may also control the number and size of
buffers or other resources. They limit the number of buffers or packets that may
be queued for transmit or limit the number of receive buffers that are available for
receiving packets. For an example see Table 11 and Table 12 on page 170. These
parameters can be tuned to ensure enough queueing at the adapter level to
handle the peak loads generated by the system or the network.

Network Type Default MTU Maximum MTU Optimal

Ethernet 1500 1500 1500

Token Ring 1492 17284 4096

FDDI 4352 4352 4352

ATM 9180 65530 9180

Gigabit Ethernet 9000 9000
Appendix A. TCP/IP overview and tuning 169

Figure 112. Adapter queue overview

Table 11. Transmit queue size examples: MCA

Table 12. Transmit queue size examples: PCI

A.3.1 Transmit and receive queues

For transmit, the device drivers may provide a "transmit queue" limit. There may
be both hardware queue and software queue limits, depending on the driver and
adapter. Some drivers have only a hardware queue, some have both hardware
and software queues. Some drivers control the hardware queue internally and

Adapter Default Range

Ethernet 512 20 - 2048

10/100 Ethernet 64 16, 32, 64, 128, 256

Token Ring 99 or 512 32 - 2048

FDDI 512 3 - 2048

ATM/155 ATM 512 0 - 2048

Adapter Default Range

Ethernet 64 16, 32, 64, 128, 256

10/100 Ethernet 256 - 512 16, 32, 64, 128, 256

Token Ring 96 - 512 32 - 2048

FDDI 30 3 - 250

155 ATM 100 0 - 4096

ADAPTER

Network

Transmit
Queue

Receive
Queue

Memory

Node

Memory
170 WebSphere V3 Performance Tuning Guide

only allow the software queue limits to be modified. Generally, the device driver
will queue a transmit packet directly to the adapter hardware queue. If the system
CPU is fast relative to the speed of the network, or on an SMP system, the
system may produce transmit packets faster than they can be transmitted on the
network. This will cause the hardware queue to fill. Once the hardware queue is
full, some drivers provide a software queue and subsequent packages will be
queued to it. If the software transmit queue limit is reached, then the transmit
packets are discarded. This can affect performance because the upper level
protocols must then retransmit the discarded packets.

A typical example would be that you set your adapter queue length to 30.
Assuming that the MTU of that adapter is 1500, you have set the maximum
amount of data which that adapter can hold to 45,000 bytes. Figure 113 illustrates
the different MTU ratios. If you try and stage more packets to an adapter, then the
packets that arrive when this queue is full get thrown away.

Receive queues are the same as transmit hardware queues.

Figure 113. MTU ratio

A.3.2 Adapter queue settings

To show the adapter configuration settings, you can use the lsattr command or
SMIT. For example, to display the default values of the settings, you can use the
command:

lsattr -D -l <adapter - name>

and to display the current values, you can use:

lsattr -E -l <adapter - name>

Finally, to display the range of legal values of an attribute (for example,
xmt_que_size) for a given adapter (for example, Token Ring), you can use the
command:

lsattr -R -l tok0 -a xmt_que_size

Different adapters have different names for these variables. For example, they
may be named sw_txq_size, tx_que_size, xmt_que_size to name a few for the
transmit queue parameter. The receive queue size and/or receive buffer pool

Network
Type

Maximum
MTU

Ratio to
Ethernet

Ethernet

FDDI

Token
Ring

1500

4352

17284

1

2.9

11.5
Appendix A. TCP/IP overview and tuning 171

parameters may be named rec_que_size, rx_que_size, or rv_buf4k_min, for
example.

The easiest way to change the adapter settings is by using SMIT. The other
method is to use the chdev command.

For example, to change tx_que_size on en0 to 1024, use the following sequence of
commands. Note that this driver only supports four different sizes, so it is better
to use SMIT to see the valid values.

ifconfig en0 detach

chdev -1 ent0 -a tx_que_size=1024

ifconfig en0 up

A.3.3 Adapter tuning recommendations

If you consistently see output errors when running the netstat -i command,
increasing the size of the xmt_que_size parameter may help. Check also the
adapter transmit average overflow count. As a rule of thumb, always set
xmt_que_size to the maximum.

One way to tune IP to prevent exceeding the adapter queue size is to reduce the
aggregate TCP window size or udp_sendspace so that it is less than the transmit
queue size times the segment size (MTU) on the network. This usually results in
optimal throughput and slightly higher system overhead for network traffic. If
multiple connections are sharing an adapter at the same time, the aggregate TCP
window size across all connections should be slightly less than the transmit
queue size times the segment size for the network media type.

A.4 TCP maximum segment size (MSS)

The TCP protocol includes a mechanism for both ends of a connection to
negotiate the maximum segment size (MSS) to be used over the connection. In
other words, the MSS is the largest segment or “chunk” of data that TCP will send
to a destination. Each end uses the Options field in the TCP header to advertise a
proposed MSS. The MSS that is chosen is the smaller of the values provided by
the two ends.

The purpose of this negotiation is to avoid the delays and throughput reductions
caused by fragmentation of the packets when they pass through routers or
gateways and reassembly at the destination host.

The value of MSS advertised by the TCP software during connection setup
depends on whether the other end is a local system on the same physical
network (that is, the systems have the same network number) or whether it is on
a different, remote, network.

A.4.1 Subnetting and the subnetsarelocal

Several physical networks can be made to share the same network number by
subnetting. The easiest way to understand subnet addressing is to imagine that a
site has a single class B IP network assigned to it, but has two or more physical
networks. Only local routers know that there are multiple physical nets and how to
route among them.
172 WebSphere V3 Performance Tuning Guide

Conceptually, adding subnets only changes the interpretation of the IP address
slightly. Instead of dividing the 32-bit IP address into a network prefix and a host
suffix, subnetting divides the address into a network portion and a local portion.
The interpretation of the network portion remains the same as for networks that
do not use subnetting. The interpretation of the local portion is left up to the site.

The example in Figure 114 shows subnet addressing with a class B address that
has a 2-octet internet portion and 2-octet local portion. In the example one octet
of the local portion identifies a physical network and the other octet identifies a
host on that network.

Figure 114. Subnet addressing

In AIX the no option subnetsarelocal specifies, on a system-wide basis, whether
subnets are to be considered local or remote networks. With subnetsarelocal=1
(the default), Host A on subnet 1 considers Host B on subnet 2 to be on the same
physical network.

The consequence of this is that when Host A and Host B establish a connection,
they negotiate the MSS, assuming they are on the same network. Each host
advertises an MSS based on the MTU of its network interface. This usually leads
to an optimal MSS being chosen.

This approach has several advantages:

• It does not disable or override the TCP MSS negotiation, so that small
differences in the MTU between adjacent subnets can be handled
appropriately.

• In order for small differences between adjacent subnets in the MTU to be
handled appropriately, it does not disable or override the TCP MSS
negotiation.

Figure 116 on page 175 shows the relations between MSS and MTU. The value
of MSS is determined as follows:

1. If the destination is local, that is, if the network ID and the subnet ID of the
destination IP address are the same as the local ones, then the MSS value is
calculated based on the MTU value of the outgoing interface, as follows:

MSS = MTU - (20 + 20)if rfc1323 = 0

MSS = MTU - (20 + 20 + 12)if rfc1323 = 1

since the TCP header is 20 bytes, and the IP header is also 20 bytes long.
Furthermore, enabling rfc1323 costs an additional 12 bytes.

local
part

Internet
part

physical
network

host
Internet

part
Appendix A. TCP/IP overview and tuning 173

2. If the destination address is remote, that is, if the network ID of the destination
IP address is different from the local one, then TCP uses a global variable that
determines the MSS.

3. If the destination has the same network ID as the local one but with a different
subnet ID, then the destination could be either local or remote. The no option
of subnetsarelocal lets you specify whether subnets on the same network are
local or remote. If local, you would follow item (1) above. If remote, you would
follow item (2) above.

Since segmentation occurs at the TCP level, if the total packet is less than the
MTU, then IP does not do anything to the packet other than preappend a header
and send the data to the interface layer. TCP on the receiving side will
reassemble the packet in the correct sequence and deliver the data to the
application. Figure 115 illustrates this.

Figure 115. Inter-subnet fragmentation

In this scenario, Hosts A and B would establish a connection based on a common
MTU of 4352. A packet going from A to B would be fragmented by Router 1 and
defragmented by Router 2, and the reverse would occur going from B to A.
Source and destination must both consider subnets to be local.

A.4.2 TCP data flow

TCP breaks the data into smaller pieces called segments to comply with the
MSS. See also Figure 116 on page 175. The resulting IP datagram is 40 or 52
bytes larger: 20 bytes for the IP header and 20 bytes for the TCP header and an
optional 12 bytes for rfc1323.

When a connection is established, each end has the option of announcing the
tcp_sendspace it is willing to receive depending upon its buffer space. Since the
moving-window technique requires that the two systems be able to buffer the
same amount of data, the effective window size is set to the lesser value in both
directions. The nominally available extra space for buffering output shown in
Figure 117 on page 175 is never used.

Host A Host B

FDDI FDDIEthernet

MTU=4352 MTU=4352MTU=1500

Router 1 Router 2
174 WebSphere V3 Performance Tuning Guide

Figure 116. TCP data flow

Figure 117. TCP window size

In general, the larger the MSS the better, as long as it is not so large that it
causes fragmentation at the IP layer.

A.5 TCP sliding window

TCP enforces flow control of data from the sender to the receiver through a
mechanism referred to as sliding window. This helps ensure delivery to a
receiving application. The size of the window is defined by the tcp_sendspace
and tcp_recvspace values.

The window is the maximum amount of data that a sender can send without
receiving any ACK segment. This obviously contributes to performance
improvement. A receiver always advertises its window size in the TCP header of
the ACK segments.

MTU

DATA

TCP DATATCP TCP

TCPIP IP DATATCP IP TCP

TCPIPLINK LINK IP DATATCP LINK IP TCP

MSS

MTUMTU MTU

MTU=XXX MTU=YYY

tcp_mssdflt=min(XXX,YYY)
Default: 512 bytes

for addresses that match the local network mask

if (subnetsarelocal)
use MTU

or
if not (subnetsarelocal)

use tcp_mssdflt
or

if not (tcp_pmtu_discover)
probe max packet size

tcp_sendspace

Initiator

tcp_recvspace

Maximum
window
size

Listener

tcp_recvspace tcp_sendspace

Unused
Appendix A. TCP/IP overview and tuning 175

In the example in Figure 118, the sending application is sleeping because it has
attempted to write data that would cause TCP to exceed the send socket buffer
space (that is, tcp_sendspace). The sending TCP has sent the last part of rec5,
all of rec6 and rec7, and the beginning of rec8. The receiving TCP has not yet
received the last part of rec7 or any of rec8.

Figure 118. TCP sliding window

The receiving application got rec4 and the beginning of rec5 when it last read the
socket, and it is now processing that data. When the receiving application next
reads the socket, it will receive (assuming a large enough read), the rest of rec5,
rec6, and as much of rec7 and rec8 as has arrived by that time.

In the course of establishing a session, the initiator and the listener converse to
determine their respective capacities for buffering input and output data. The
smaller of the two sizes defines the size of the effective window. As data is written
to the socket, it is moved into the sender’s buffer. When the receiver indicates
that it has space available, the sender transmits enough data to fill that space
(assuming that it has that much data). It then informs the sender that the data has
been successfully delivered. Only then does the sender discard the data from its
own buffer, effectively moving the window to the right by the amount of data
delivered. If the window is full because the receiving application has fallen
behind, the sending thread will be blocked.

Nowadays we have a lot of high-speed network media and memory for a
workstation. The maximum of 64 KB for a window may not be big enough for such
an advanced environment. TCP has been enhanced to support such situations by
RFC 1323, TCP Extensions for High Performance.

If the rfc1323 parameter is 1, the maximum TCP window size is 4 GB (instead of
64 KB). Figure 119 on page 177 illustrates this TCP enhancement.

ec5 rec6 rec7 rec8

ec5 rec6 rec

Sender TCP

Receiver TCP

rec4 r...

Receiving Appl.
(processing)

Available space for the
data that is in transit

Data Stream

Unacknowledged
Data

Acknowledged
Data Sending Appl.

(sleeping)

Transmit Window

Receive Window
176 WebSphere V3 Performance Tuning Guide

Figure 119. rft1323 - TCP extension

There is, of course, no such thing as free function. The additional operations
performed by TCP to ensure a reliable connection result in about 7 to 12% higher
CPU time than in UDP.

A.6 Socket layer

Sockets provide the application program interface (API) to the communication
subsystem. There are several types of sockets that provide various levels of
service by using different communication protocols. Sockets of type
SOCK_DGRAM use the UDP protocol. Sockets of type SOCK_STREAM use the
TCP protocol. See Figure 120 on page 178 for on overview.

The semantics of opening, reading, and writing to sockets are similar to those for
manipulating files.

The sizes of the buffers in system virtual memory (that is, the total number of
bytes from the mbuf pools) that are used by the input and output sides of each
socket are limited by system-wide default values (which can be overridden for a
given socket by a call to the setsockopt() subroutine):

• udp_sendspace and udp_recvspace

The buffer sizes per datagram socket.

• tcp_sendspace and tcp_recvspace

The buffer sizes per stream socket.

Window Size

rfc1323 = 1 4 Gbytes (2)32

rfc1323 = 0 64 Kbytes (2)16

rfc1323 = 0

Ethernet

ACKACKACKACK

45 TCP messages

1500 1500 1500 1500

NETWORK

64K Max.

NETWORK

> 64K

Ethernet

ACKACKACKACK

Limited by max. outstanding data
on the adapter

1500 1500 1500 1500 1500 1500 1500

ACK ACK ACK ACK

rfc1323 = 1

Socket send or receive buffer sizes are limited to no more than sb_max bytes,
because sb_max is a ceiling on buffer space consumption. The two quantities
are not measured in the same way, however.

The socket buffer size limits the number of bytes that can be held in the socket
buffers. sb_max limits the amount of space in network memory pool buffers
that can be allocated to a socket at any given time.

Note
Appendix A. TCP/IP overview and tuning 177

Figure 120. Socket layer

A.7 Communication subsystem memory management

AIX can efficiently allocate and reclaim pinned (physical) memory within the
communication subsystem. This is achieved through the use of mbufs and
additional buffers called clusters.

Use netstat -m to get on overview of cluster usage and to which subsystems
clusters are allocated. See Figure 121 on page 179 for an overview.

As you can see from the command output, each CPU in an SMP system has a
dedicated network memory pool. This is to improve performance by having pools
dedicated per CPU. This eliminates the need to look at mbuf pool access.

MTU

INTERFACE
LAYER

PROTOCOL LAYERS
(TCP,UDP,IP,ICMP,IGMP)

SOCKET
LAYER

APPLICATION
LAYER

Function
Call

SOCKET
QUEUES

PROTOCOL QUEUE
(IP INPUT QUEUE)

INTERFACE QUEUES

Software Interrupt
(Caused by Interface Layer)

Hardware Interrupt
(Caused by Network Device)

HARDWARE LAYER

System Calls
178 WebSphere V3 Performance Tuning Guide

Figure 121. netstat -m output

By setting the extendednetstat parameter with the no command, you will get more
detailed information, for example:

no -o extendednetstat=1

Figure 122 on page 180 shows the output of the netstat -m command after the
modification. In this screen you will notice that the netstat command now gives
more information about the use of the various buffers.

The inuse column shows how many pinned pieces of kernel virtual memory are
currently used, which means that they always reside in physical memory and are
never paged out.

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 135 17392 0 121 640 0
64 77 1826 0 51 320 0
128 52 2678 0 12 160 0
256 42 3129745 0 86 384 0
512 51 3594 0 29 40 3
1024 22 19845 0 62 100 0
2048 0 768 0 4 100 0
4096 2 664 0 5 120 0
16384 1 1026 0 18 24 7
32768 1 1 0 0 2048 0

******* CPU 1 *******
By size inuse calls failed free hiwat freed
32 19 12593 0 109 640 0
64 14 2522 0 50 320 0
128 6 2345 0 26 160 0
256 59 2980466 0 69 384 0
512 23 3946 0 41 40 0
1024 3 15438 0 65 100 0
2048 0 716 0 6 100 0
4096 1 641 0 1 120 0
16384 0 916 0 18 24 8

******* CPU 2 *******
By size inuse calls failed free hiwat freed
32 9 2903 0 119 640 0
...

By type inuse calls failed memuse memmax mapb

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
Appendix A. TCP/IP overview and tuning 179

Figure 122. netstat -m with extendednetstat=1

In addition to avoiding duplication, sharing the mbuf and cluster pools allows the
various layers to pass pointers to one another, reducing mbuf management calls
and copying of data.

The only network option used to tune the network maximum memory pool is
thewall. Since the new scheme is self-tuning, there is no need to tune any other
parameter. If the system memory requirements exceed thewall, then it will start to
drop packets.

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 135 17394 0 121 640 0
64 77 1827 0 51 320 0
128 53 2760 0 11 160 0
256 42 3130406 0 86 384 0
512 51 3596 0 29 40 3
1024 22 19847 0 62 100 0
2048 0 768 0 4 100 0
4096 2 664 0 5 120 0
16384 1 1026 0 18 24 7
32768 1 1 0 0 2048 0

******* CPU 1 *******
By size inuse calls failed free hiwat freed
32 19 12598 0 109 640 0
64 14 2526 0 50 320 0
...

By type inuse calls failed memuse memmax mapb
mbuf 21 452 0 5376 10240 0
socket 321 8 0 1348 1120 0
pcb 728 4 0 78 128 0
fragtbl 0 4 0 0 32 0
...

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
180 WebSphere V3 Performance Tuning Guide

Figure 123. The network memory pool

A.8 Interface specific network options for AIX 4.3.3

Many AIX systems have multiple network interfaces combining traditional and
high-speed TCP/IP interfaces on a single system. Up to Version 4.3.3, AIX
provides a single set of system-wide values, set using the no command, for the
key IP interface network tuning parameters making it impossible to tune a system
that has widely differing network adapter interfaces.

As new high-speed (100 Mbps or more) network options became available, AIX
system administrators learned these TCP/IP interfaces must be specially tuned to
achieve good, high-speed performance.

So system administrators faced performance trade-off decisions; perhaps tuning
for one TCP/IP network interface while sacrificing performance on the other, or
balancing the two with options that were not totally suited for either interface type.
Ideally, system administrators should be able to tune for each TCP/IP interface
individually for best performance. This feature is now included in AIX V 4.3.3.

Starting with Version 4.3.3 AIX offers a feature called Interface Specific Network
Options (ISNO) which allows IP network interfaces to be custom tuned for the
best performance. Values set for an individual interface take precedence over the
system-wide values set with the network option (no) command. The feature is
enabled (the default) or disabled for the whole system with the no command’s
use_isno option. This single point ISNO disable option is included as a diagnostic

thewall

mbuf
256 bytes

minimum
cluster

32 bytes

mcluster
16384 bytes

mcluster
4096 bytes
Appendix A. TCP/IP overview and tuning 181

tool to eliminate potential tuning errors if the system administrator needs to
isolate performance problems.

A.8.1 Implementation overview

The AIX V4.3.3 programmers and performance analysts should note that the
ISNO values will not show up in the socket; this means they cannot be read by
getsockopt() until after the TCP connection is made. The interface this socket will
actually be using is not known until the connection is complete, so the socket
reflects the system no defaults. Once the connection is accepted, ISNO values
are put into the socket.

Five new parameters:

• rfc1323

• tcp_nodelay

• tcp_sendspace

• tcp_recvspace

• tcp_mssdflt

have been added for each supported network interface. When set for a specific
interface, these values override the corresponding no option values set for the
system. These parameters are available for all of the mainstream TCP/IP
interfaces we checked -- token ring, FDDI, 10/100 Ethernet, and Gigabit Ethernet
-- except the css# IP interface on the SP switch. As a simple workaround, SP
switch users can set the tuning options appropriate for the switch using the
system-wide no command, then use the ISNOs to set the values needed for the
other system interfaces.

A.8.2 How to use the new options

The five new ISNO parameters cannot be displayed or changed using SMIT. Here
are commands that can be used to first verify system and interface support and
then set and verify the new values.

1. Verify general system and interface support using the no and lsattr

commands.

Make sure the use_isno option is enabled using the following command or a
variation:

$ no -a | grep isno
use_isno=1

Make sure the interface supports the five new ISNOs using the lsattr -El

command:

$ lsattr -E -l en0 -H
attribute value description
rfc1323 N/A

These options are set for the TCP/IP interface such as en0 or tr0 but not for the
network adapter interfaces such as ent0 or tok0.

Note
182 WebSphere V3 Performance Tuning Guide

tcp_nodelay N/A
tcp_sendspace N/A
tcp_recvspace N/A
tcp_mssdflt N/A

2. Set the interface specific values, using either the ifconfig or chdev commands.
The ifconfig command sets values temporarily so it is good for testing. The
chdev command alters the ODM, so custom values return after system reboots.

For example, to set the tcp_recvspace and tcp_sendspace to 64 KB and enable
tcp_nodelay use one of the following methods:

$ ifconfig en0 tcp_recvspace 65536 tcp_sendspace 65536 tcp_nodelay 1
$ chdev -l en0 -a tcp_recvspace=65536 -a tcp_sendspace=65536 -a \
tcp_nodelay=1

Or, assuming the no command reports an rfc1323=1 global value, user root
can turn rfc1323 off for all connections over en0 with the following commands:

$ ifconfig en0 rfc1323 0
$ chdev -l en0 -a rfc1323=0

Verify the settings using the ifconfig or lsattr commands.

$ ifconfig en0
en0:flags=e080863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT
,64BIT> inet 9.19.161.100 netmask 0xffffff00 broadcast 9.19.161.255
tcp_sendspace 65536 tcp_recvspace 65536 tcp_nodelay 1 rfc1323 0
$ lsattr -El en0
rfc1323 0 N/A True
tcp_nodelay1 N/A True
tcp_sendspace65536 N/A True
tcp_recvspace65536 N/A True
tcp_mssdflt N/A True

A.8.3 References for the ISNO

More information about the interface specific network options (ISNO) can be
found in:

• AIX Version 4.3 Differences Guide, SG24-2014

• AIX Commands Reference, available at:

http://www.austin.ibm.com.

The following is an excerpt from the ifconfig command page. Here are two
clarifications to the command page text:

1. The main purpose of RFC 1323 is to allow TCP to increase its window size
larger than 64 KB (controlled by tcp_recvspace) for large MTU adapters.

In our simple tests, we were pleased to see that changes made via chdev were
reflected in the ifconfig output. Specifically, our test machine was already set
to 64 KB send and receive space, so we used ifconfig to set a 16 KB value.
We ran ifconfig en0 to verify that setting. Next, we set the 64 KB value using
chdev, executed the ifconfig en0 command and discovered that the ifconfig

output reflected the new 64 KBvalue we'd just set using chdev.

Note
Appendix A. TCP/IP overview and tuning 183

Without RFC 1323, a 64K MTU adapter could only have one packet
outstanding, which results in very poor performance.

2. The tcp_sendspace option only affects send space buffering in the kernel. The
tcp_recvspace value on the receiver system is the only value that affects TCP
maximum window size.

In AIX Version 4.3.3 and later versions, the following network options, commonly
known as ISNO (Interface Specific Network Options), can be configured on a per
interface basis as noted below.

Table 13. Network options for AIX V4.3.3

rfc1323 [0 | 1] Enables or disables TCP enhancements as specified by RFC
1323, TCP Extensions for High Performance. A value of 1 specifies
that all TCP connections using this interface will attempt to
negotiate the RFC enhancements. A value of 0 disables rfc1323 for
all connections using this interface. The SOCKETS application can
override this ISNO and global behavior on individual TCP
connections with the setsockopt subroutine.

-rfc1323 Removes the use of ISNO for rfc1323 for this network. A
SOCKETS application can override the global behavior on
individual TCP connections using the setsockopt subroutine.

tcp_mssdflt Number Sets the default maximum segment size used in communicating
with remote networks. If communicating over this interface, a
socket uses Number as the value of the default maximum segment
size.

-tcp_mssdflt Removes the use of ISNO for tcp_mssdflt. The global value,
manipulated via /usr/sbin/no, is used instead.

tcp_recvspace Specifies the default socket buffer size for interface sockets
receiving data. The buffer size affects the window size used by
TCP. (See the no command for more information.)

-tcp_recvspace Removes the use of ISNO for tcp_recvspace. The global value is
used instead.

tcp_sendspace Specifies the default socket buffer size for interface sockets
sending data. The buffer size affects the window size used by TCP.
(See the no command for more information.)

-tcp_sendspace Removes the use of ISNO for tcp_sendspace. The global value is
used instead.

tcp_nodelay [0 | 1] Specifies that sockets using TCP over this interface follow the
Nagle algorithm when sending data. By default, TCP follows the
Nagle algorithm.

-tcp_nodelay Removes the use of ISNO for the tcp_nodelay option.
184 WebSphere V3 Performance Tuning Guide

Appendix B. Special notices

This publication is intended to help customers, business partners, and IBM
employees to do performance tuning of WebSphere V3.The information in this
publication is not intended as the specification of any programming interfaces that
are provided by WebSphere V3. See the PUBLICATIONS section of the IBM
Programming Announcement for WebSphere V3 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 2000 185

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In Denmark,
Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned
by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

AFP AIX
AS/400 DB2
DB2 Universal Database IBM
MQSeries Netfinity
RS/6000 S/390
SP System/390
TXSeries WebSphere
Wizard
186 WebSphere V3 Performance Tuning Guide

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks

For information on ordering these publications see “How to get IBM Redbooks” on
page 189.

• RS/6000 SP System Performance Tuning, SG24-5340

• AIX Version 4.3 Differences Guide, SG24-2014

• IBM HTTP Server Powered by Apache on RS/6000, SG24-5132

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

C.3 Other resources

These publications are also relevant as further information sources:

• DB2 Universal Database V6.1 for UNIX, Windows, and OS/2 Certification
Guide, by Jonathan Cook, Robert Harbus, and Tetsuya Shirai, ISBN
0-13-086755-1

• AIX Performance Tuning Guide, SR28-5930

• AIX Commands Reference, available at http://www.austin.ibm.com

• WebSphere Application Server Advanced Edition: Getting Started (shipped
with the product)

• Apache: The Definitive Guide, by Ben Laurie, Peter Laurie, and Robert Denn,
ISBN 1565925289

• Apache Server Bible, by Mohammed J. Kabir, ISBN 0764532189

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 187

http://www.redbooks.ibm.com/

C.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.redbooks.ibm.com

• http://www.spec.org

• http://www.apache.org

• http://www.zeustech.net

• http://www.radview.com

• http://www.merc-int.com

• http://www.rational.com

• http://www.mindcraft.com

• http://www.ibm.com/software/webservers/appserv/siteanalysis.html

• http://www.austin.ibm.com

• http://w3.itso.ibm.com

• http://w3.ibm.com
188 WebSphere V3 Performance Tuning Guide

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 189

http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
190 WebSphere V3 Performance Tuning Guide

Index

A
acknowledgment 155
ACL 143
Activations 93
Active Beans 93
Active Entity Beans 95
Active Stateful Session Beans 95
Active threads 103
ActiveX 87
adapter queue size 169
AddModule 25
admin.config 47, 58, 59
adminclient 2, 29, 49, 58
Administration Server 2, 58
Administrative Console 2, 29
administrative repository 57, 59, 71
adminserver 2, 47
Advanced Edition 1, 3
affinity 81
AfpaBindLogger 25
AfpaCache 25
AfpaEnable 25
AfpaLogFile 25
AfpaLogging 26
AfpaMaxCache 26
AfpaMiCache 26
AfpaRevalidationTimeout 26
AfpaSendServerHeader 26
AFS 141
AIX 9, 15, 139
AKrecord 85
AKstress 85, 86, 123
AKtools 85
allow from domain 24
Allow Overflow 78
Apache 21, 136
Apache Bench 86
Apache Software Foundation 86, 87
apachectl 26
APAR 25, 27
applheapsz 58, 70, 71
application heap size 71
application server 2, 29
AS/400 139
asynchronous garbage collection 34
atmstat 169
Auto Reload 40
Average Lifetime 100

B
Base Memory Size 78, 82, 83
BINARY 25
Binary Log Format 25
BLOBs 80
BMP 93
bosserver 156
© Copyright IBM Corp. 2000
buffer pool 67, 69
buffer pool cache 70
buffpage 67
buserver 156

C
cache absolute limit 43
cache preferred limit 42
cache size 42
callback 143
cell 141
CGI 24
challenge/authentication 51
chdev 19, 172
chunksize 143
class garbage collection 34
-classgc 35
CLF 25
cloning 76
clustering 82
CMP 93
command line arguments 30, 35, 45
Command Log Format 25
Common Object Request Broker Architecture (CORBA) 1
Component Broker 1
Connection Manager 1
Connection Manager API 61
connection pooling 61
connection poolsize 132
connection timeout 62
container cache manager 43
Container Managed Entity EJBs 12
Content analysis 135
cookies 82, 85, 88, 136
CORBA 45
CosNaming 4
cpu_state 115
crawler 135
create() 92, 93, 94, 95

D
Database Manager 72
database server 7
DataSource object 57, 61, 64, 76
DB2 9
DCE 45
Dcom.ibm.CORBA.iiop.noLocalCopies 45
Dcom.ibm.ejs.dbm.PrepStmtCacheSize 65
Dcom.ibm.ejs.dbm.PrepStmtKeyCacheSize 66
Default Server 35
Demilitarized Zone (DMZ) 11
deny from domain 24
Destroys 92
dft_degree 71
DFT_MON_BUFPOOL 68
Djava.compiler 33, 35
Djavax.rmi.CORBA.UtilClass 45
191

doGet() 98
Domain Name System (DNS) 4, 24, 136
Don’t Fragment flag 154, 156
doPost() 98

E
ECLF 25
EJB 24, 29, 45
EJB container 2, 29, 30, 41
EJB server 4
EJB specification 44
encryption 51
Enterprise beans 91
Enterprise Edition 1
Enterprise Java APIs 1
Enterprise JavaBeans (EJB) 1, 11
Entity Activations 95
Entity Creates 95
Entity Destroys 94
Entity Instantiates 94
Entity Passivations 96
Entity Removes 95
entstat 169
ERP 88
Ethernet 146, 167
exclusive 44
Execution Time 93
Extended Common Log Format 25
Extensible Markup Language (XML) 1

F
Fast Response Cache Accelerator (FRCA) 21, 24
FDDI 146
fddistat 169
fetchdata 147
fetchstatus 143
FID 143
fileserver 141, 143, 146, 156, 165
firewall 11
FiveMinute thread 144
frcactrl 25, 26
FTP 139

G
garbage collection 30, 32, 34, 45, 120
GET 23
getsockopt() 182
Gigabit Ethernet 182

H
hardware queue limit 170
HostCheck thread 144
HostnameLookups 24
HP-UX 9, 158
HTTP 1.0 22, 88
HTTP 1.1 22, 85
HTTP cookies 4
HTTP server 7

httpd.conf 21, 25, 26
HTTPS 49
HttpSession 75, 82, 83
HyperText Markup Language (HTML) 1
HyperText Transfer Protocol (HTTP) 1

I
IBM HTTP Server (IHS) 21, 38, 86, 136
IBMSession 83
idle timeout 63
ifconfig 169, 183
ihshttpd 25
IIS 136
INET Sockets 37, 38, 39
inittab 25
InstantDB 2, 29, 57
Instantiates 92
instfix 27
Interface Specific Network Options 181, 184
Internet Inter-ORB Protocol (IIOP) 11, 36, 38
Internet service providers (ISPs) 3
Intervals 77
INTRA_PARALLEL 72
Invalidate Time 77
Invalidates 100
invoker 54
IOMGR thread 144
ISNO 181, 184
isOverflow() 83

J
Java DataBase Connectivity (JDBC) 1, 12, 30
Java heap size 30, 35, 45
Java Interface Definition Language (JIDL) 1
Java Messaging Service (JMS) 1
Java Naming and Directory Interface (JNDI) 1, 4
Java Remote Method Invocation over Internet Inter-ORB
Protocol (RMI/IIOP) 1
Java Server Pages (JSP) 1, 3, 11, 89
Java Servlets 1, 11
Java stack size 31, 34
JAVA TCP/IP 38
Java Transaction API (JTA) 1, 4
Java Transaction Service (JTS) 1
JavaScript 3
JavaSoft 30, 31
JDBC 77
JDBC 2.0 61
JDK 1.1.6 30, 33
JDK 1.1.7 33
JDK 1.1.8 30, 33
JDK 1.2 30
JDK 1.3 30
JMeter 87
JNI 82
JSP 24
jumbograms 146
Just In Time (JIT) 30, 33
JVM 2, 7, 29, 101, 119
192 WebSphere V3 Performance Tuning Guide

K
kaserver 156
KDUMP 154
KeepAlive 23
keep-alive 85, 88
KeepAliveTimeout 23
klog 143

L
Least Recently Used (LRU) 147
light weight process (LWP) 147, 151
Lightweight Directory Access Protocol (LDAP) 1, 4, 49
listen backlog 16
ListenBacklog 22
Listener thread 144
Live Beans 93
Live Entity Beans 95
Live Stateful Session Beans 94
Live Stateless Session Beans 94
load balance 82
LoadModule 25
LoadRunner 88
Local Pipes 37, 38
locklist 72
Log Limit 61
Lotus Domino Go 136
lsattr 19, 171
lsps 109

M
manual update 82
Max Connections 38
Maxappls 71
MaxClients 21, 38
maximum connection pool size 62, 65
maximum connections 36
maximum segment size 19, 167, 172
Maximum Transmission Unit 169
MaxKeepAliveRequests 23
maxlocks 72
MaxRequestsPerChild 22
MaxSpareServers 22
mbuf 180
Mercury Interactive Corporation 88
Microsoft Internet Information Server 136
Mindcraft Inc. 85
minimum connection pool size 62
MinSpareServers 22
MQSeries 1
-ms 31, 32, 35, 119
MSS 19, 167, 172
MTU 18, 19, 146, 167, 169
multirow 80
-mx 31, 32, 119

N
National Center for Supercomputing Applications 136
native thread stack size 31, 34

nb_max_cache 25
NBC 17
nbc_limit 18, 25
nbc_max_cache 17, 18
nbc_min_cache 25
nbc_pseg 18
nbc_pseg_limit 17
NCSA 136
ndd 158
Netscape Enterprise Server 136
netstat 26, 116, 146, 157, 164, 169, 178
Network Buffer Cache 17, 25, 26
Network Dispatcher (ND) 3, 5, 82
no 15, 19, 25, 158, 173, 179, 181
-noasyncgc 34
nobufs 150, 158, 160
-noclassgc 34, 132
-nojit 33
noLocalCopies 46
NONE 38, 39
NPAGES 67

O
OLT/OLD 38
OLTP 71
Open Servlet Engine (OSE) 11, 36, 37, 38, 39
Option A 44, 45
Option C 44
Oracle 2, 9, 29, 57, 80
ORB 1, 30, 45, 53
orphan timeout 63
-oss 34, 35
overflow 82

P
package cache size 71
Pass By Value 45
Passivations 93
pckcachesz 71
Performance Studio 87
persistent connection 23
persistent sessions 64, 75, 76, 101
plug-in 36
POSIX threads 147, 151
POST 23, 24, 85
PowerBuilder 87
prepared SQL statements 12
prepared statement 57, 64
prepared statement cache 64, 65
prepared statement key cache 65
private segments 17
PROPID 81
Proxy 86
proxy 45
Proxy Server 82
ps 110, 111
ptserver 143, 150, 156
PUT 23
193

Q
queue type 36, 39

R
Radview 88
Rational Suite Performance Studio 87
rec_que_size 168, 172
receive buffer 16
relational database 57
Remote Method Invocation (RMI) 45
remove() 92, 93, 95
ReqLevel 28
Resource Analyzer 43, 54, 78, 83, 85, 89, 120
RFC 1323 176, 183
RFC 2001 147
rfc1323 17, 173, 176, 182
RLimitCPU 23
RLimitMEM 23
RLimitNPROC 24
RMI/IIOP 38, 47, 49
RMI/IIOP/SSL 49
robot.txt 135
RS/6000 S80 21
RTE 88
rv_buf4k_min 172
RX 145
rx_que_size 172
rxdebug 150, 152, 158, 160
RXTUNE 157

S
S/390 139
sar 109, 114
SAS 53
sb_max 15, 168, 177
Secondary hash table 84
Secure Association Server 53
Secure Sockets Layer (SSL) 1, 49, 85, 88
security 49
Security Cache Timeout 52
send buffer 16, 17
SendBufferSize 24
Serious Event listener 59
Serious Event Pool Interval 60
service() 98
Servlet API 75
Servlet Engine 29, 36, 37, 39
servlet redirector 10, 11, 38
Servlets Auto Reload 29
Session Manager 61, 75, 76, 77
session objects 75
shared 44
Signal thread 144
Silicon Graphics 85
Single Sign-On 49
Site Analyzer 89, 133, 135
Site Surveyor 135
sliding window 175
SMIT 169, 171

SMP 71, 116, 171, 178
snapshot 69
SOCK_DGRAM 177
SOCK_STREAM 177
software queue limit 170
Solaris 9, 30, 31, 34, 37, 39, 139, 158
somaxconn 16
SP 13
SP switch 167
SPECweb96 19, 21
-ss 34, 35
SSL 24
SSL V3 timeout 53
Standard Edition 1, 3
StartServers 22
Stateful Activations 95
Stateful Passivations 96
Stateful Session Creates 95
Stateful Session Destroys 94
Stateful Session Instantiates 94
Stateful Session Removes 95
Stateless Session Destroys 94
Stateless Session EJB 12
Stateless Session Instantiates 94
Static HTML 3
storedata 147
subnet 172
subnetsarelocal 19, 172, 173
subnetting 173
Sun 32
SunOS 164
SunSoft 30, 32
svmon 110, 111
sw_txq_size 171
System Configuration Repository 2

T
TCP window 17
TCP/IP 15, 167
tcp_mssdflt 18, 182
tcp_nodelay 182
tcp_recvspace 15, 16, 175, 177, 182
tcp_sendspace 15, 16, 174, 177, 182
tcp_timewait 17
tcpdump 154, 162
thewall 15, 18, 25, 168
Thread creates 103
Thread destroys 103
time 115
Timeout 23
token-ring 167
tokstat 169
Trade 11
transport queue 29, 36
transport type 36, 37, 38
tx_que_size 171
TXSeries 1
194 WebSphere V3 Performance Tuning Guide

U
UDB 29, 58, 80, 139
UDB V5.2 2, 57
UDB V6.1 2, 57
udp_recvspace 15, 17, 177
udp_sendspace 15, 17, 172, 177
udpInOverflows 157, 164
UDPSIZE 157, 158
UID 24
UNIX 9, 47
Usage analysis 136
use_isno 181

V
VBUSY 145, 148, 150
V-CLF 25
V-ECLF 25
-verbosegc 32
Virtual Memory Manager 107
Visual Basic 87
Visual C++ 87
vlserver 156
VMM 107
vmstat 63, 78, 89, 113, 119
vnode 143
volserver 146, 153, 156
vos 152

W
W3C 136
Web Application 29
Web server 7
Web Traffic Express 82
WebLoad 88
WebSphere Application Server Engine 7
WebSphere Application Server V3 1
WebSphere Performance Pack 3, 5, 82, 141
WebSphere Studio 138
WebStone 85
window size 174, 175
Windows NT 9, 30, 31, 33, 37, 47, 65, 139
Work Load Management (WLM) 3, 4, 10
World Wide Web Consortium 136
wproc 158, 161
WTE 82

X
xmt_que_size 168, 171, 172
195

196 WebSphere V3 Performance Tuning Guide

© Copyright IBM Corp. 2000 197

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook
"made the difference" in a task or problem you encountered. Using one of the following methods, please review the
Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

• Use the online Contact us review redbook form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5657-00
WebSphere V3 Performance Tuning Guide

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the following
groups:

O Customer
O Business Partner
O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may be
used to provide you with information
from IBM or our business partners
about our products, services or
activities.

O Please do not use the information collected here for future marketing or
promotional contacts or other communications beyond the scope of this
transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
http://www.ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

SG24-5657-00

Printed in the U.S.A.

W
ebSphere

V
3

P
erform

ance
T

uning
G

uide
SG

24-5657-00

®

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Overview of WebSphere Application Server V3
	1.1 WebSphere Application Server V3
	1.2 Standard Edition
	1.3 Advanced Edition

	Chapter 2. Performance tuning approach
	2.1 WebSphere Application Server V3 topologies
	2.1.1 Topology 1: single machine
	2.1.2 Topology 2: separating the database server from WAS
	2.1.3 Topology 3: multiple application servers
	2.1.4 Topology 4: advanced topology
	2.1.5 Our test application

	2.2 Network and hardware configuration

	Chapter 3. AIX TCP/IP tuning
	3.1 Network tuning with no command
	3.2 Tuning parameter summary

	Chapter 4. Web Server: IBM HTTP Server 1.3.6
	4.1 Process handling
	4.2 Connection
	4.3 Resource usage
	4.4 Name resolution
	4.5 Fast Response Cache Accelerator
	4.6 APAR for Web server performance

	Chapter 5. WebSphere Engine
	5.1 JVM
	5.1.1 Selecting a JVM
	5.1.2 Tuning the JVM
	5.1.3 JVM heap size
	5.1.4 JIT
	5.1.5 Garbage collection
	5.1.6 Java stack and native thread stack size

	5.2 Transport queue
	5.2.1 Queue type: OSE
	5.2.2 Transport type
	5.2.3 Maximum connections
	5.2.4 Queue type for servlet redirector

	5.3 Servlets Auto Reload
	5.4 EJB Container
	5.4.1 Cache size
	5.4.2 Cache preferred limit
	5.4.3 Cache absolute limit
	5.4.4 Cache cleanup interval
	5.4.5 Option A and option C caching performance considerations
	5.4.6 Number of containers

	5.5 ORB

	Chapter 6. Security
	6.1 WebSphere security overview
	6.2 Configuring security
	6.2.1 Enabling security
	6.2.2 Security cache timeout
	6.2.3 SSL V3 timeout

	6.3 The invoker servlet

	Chapter 7. Database tuning
	7.1 The WebSphere administrative repository
	7.1.1 Serious event reporting

	7.2 DataSource object settings
	7.2.1 Connection pooling

	7.3 Prepared statements
	7.3.1 Prepared statement cache
	7.3.2 Prepared statement key cache

	7.4 UDB configuration
	7.4.1 Buffpage
	7.4.2 Applheapsz
	7.4.3 Pckcachesz
	7.4.4 Maxappls
	7.4.5 Dft_degree
	7.4.6 Locklist
	7.4.7 Maxlocks
	7.4.8 Locktimeout
	7.4.9 Maxagents

	Chapter 8. Session management
	8.1 Session information
	8.2 Keeping session information in memory
	8.3 Persistent sessions
	8.3.1 Database/Datasource configuration
	8.3.2 Session Manager configuration

	8.4 Tuning the Session Manager
	8.4.1 The Invalidate Time setting
	8.4.2 Monitor and estimate Invalidate Time
	8.4.3 Tuning parameters on the Tuning tab
	8.4.4 Multirow sessions
	8.4.5 Using cache
	8.4.6 Using manual update
	8.4.7 Using native access
	8.4.8 Allow overflow
	8.4.9 Base memory size

	Chapter 9. Performance test tools
	9.1 WebStone
	9.2 AKtools
	9.3 Apache Bench
	9.4 Rational Suite Performance Studio
	9.5 JMeter
	9.6 WebLoad
	9.7 LoadRunner

	Chapter 10. Monitoring tools
	10.1 WebSphere Application Server Resource Analyzer
	10.1.1 Enterprise beans
	10.1.2 Servlets
	10.1.3 Sessions
	10.1.4 System Resources
	10.1.5 DB pools

	10.2 AIX performance tools
	10.3 Managing memory resources
	10.3.1 Monitoring memory with vmstat
	10.3.2 Monitoring memory with sar
	10.3.3 Monitoring memory with lsps
	10.3.4 Monitoring memory with ps
	10.3.5 Monitoring memory with svmon

	10.4 Managing CPU resources
	10.4.1 Monitoring the CPU with vmstat
	10.4.2 Monitoring the CPU with sar
	10.4.3 Monitoring the CPU with time
	10.4.4 Checking active CPUs using cpu_state

	10.5 Managing network resources
	10.5.1 Monitoring the network with netstat

	10.6 Tuning methodology example with changing JVM parameters
	10.6.1 Case 1: -mx64m
	10.6.2 Case 2: -ms32m, -mx64m
	10.6.3 Case 3: -ms64m, -mx64m

	Chapter 11. WebSphere Application Server Site Analyzer
	11.1 What is WebSphere Application Server Site Analyzer?
	11.2 Why do I need WebSphere Application Server Site Analyzer?
	11.2.1 Features of WebSphere Application Server Site Analyzer
	11.2.2 Content analysis
	11.2.3 Usage analysis
	11.2.4 Visualization and reports
	11.2.5 Usability
	11.2.6 Technology
	11.2.7 Client/server configuration

	Chapter 12. AFS performance tuning guide
	12.1 Overview
	12.2 Communications with the fileserver process
	12.3 Commonly used parameters
	12.4 Overview of AFS 3.5 File Server changes
	12.5 AFS 3.5 File Server performance improvements
	12.5.1 POSIX threads
	12.5.2 RX slow start
	12.5.3 File descriptor caching
	12.5.4 Reduced lock contention
	12.5.5 Overload processing
	12.5.6 Buffer management

	12.6 AFS 3.5 File Server parameter changes
	12.7 Scenarios
	12.7.1 Scenario #1
	12.7.2 Scenario #2
	12.7.3 Scenario #3
	12.7.4 Scenario #4

	12.8 Debugging tools and example output
	12.8.1 RXDEBUG incorporated in the meltdown script
	12.8.2 tcpdump
	12.8.3 netstat

	12.9 Summary

	Appendix A. TCP/IP overview and tuning
	A.1 TCP/IP overview
	A.2 Maximum Transmission Unit (MTU)
	A.3 Adapter queue size
	A.3.1 Transmit and receive queues
	A.3.2 Adapter queue settings
	A.3.3 Adapter tuning recommendations

	A.4 TCP maximum segment size (MSS)
	A.4.1 Subnetting and the subnetsarelocal
	A.4.2 TCP data flow

	A.5 TCP sliding window
	A.6 Socket layer
	A.7 Communication subsystem memory management
	A.8 Interface specific network options for AIX 4.3.3
	A.8.1 Implementation overview
	A.8.2 How to use the new options
	A.8.3 References for the ISNO

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 IBM Redbooks
	C.2 IBM Redbooks collections
	C.3 Other resources
	C.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

