
Converting from Oracle AIX
to DB2 for OS/390

Paolo Bruni, Debra Eaton, Gregery Green, Luca Montini

International Technical Support Organization

SG24-5478-00

www.redbooks.ibm.com

International Technical Support Organization SG24-5478-00

Converting from Oracle AIX
to DB2 for OS/390

December 1999

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 1999)

This edition applies to Version 6 of IBM DATABASE 2 Universal Database Server for OS/390, Program Number
5645-DB2.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix E,
“Special notices” on page 265.

Take Note!

Contents

Figures . ix

Tables . xiii

Preface . xv
The team that wrote this redbook . xv
Comments welcome . xvi

Chapter 1. Introduction .1
1.1 Decision to convert .1
1.2 Project overview .2

Chapter 2. Project scenario .5
2.1 What is CIPROS? .5

2.1.1 CIPROS architecture. .5
2.1.2 CIPROS components .6

2.2 Scope of work for the project .9

Chapter 3. Conversion process .13
3.1 Overview. .13
3.2 Stage one — defining the strategy .14

3.2.1 Survey. .15
3.2.1.1 Objective . 15
3.2.1.2 Inputs . 15
3.2.1.3 Tasks . 15
3.2.1.4 Deliverable . 16
3.2.1.5 Resources . 16

3.2.2 Business reasons and requirements .16
3.2.2.1 Objective . 16
3.2.2.2 Inputs . 17
3.2.2.3 Tasks . 17
3.2.2.4 Deliverables . 18
3.2.2.5 Resources . 18

3.2.3 Portfolio analysis .18
3.2.3.1 Objectives. 18
3.2.3.2 Inputs . 18
3.2.3.3 Tasks . 18
3.2.3.4 Deliverables . 23
3.2.3.5 Resources . 23

3.2.4 Strategy definition .23
3.2.4.1 Objective . 23
3.2.4.2 Inputs . 23
3.2.4.3 Coexistence . 23
3.2.4.4 Tasks . 24
3.2.4.5 Deliverables . 25
3.2.4.6 Resources . 25

3.2.5 Conversion methods .26
3.2.5.1 Objective . 26
3.2.5.2 Inputs . 26
3.2.5.3 Tasks . 26
3.2.5.4 Deliverables . 32
3.2.5.5 Resources . 32
© Copyright IBM Corp. 1999 iii

3.2.6 Defining the strategy deliverables . 32
3.3 Stage two — proof of concept . 32

3.3.1 Once-only tasks . 33
3.3.1.1 Systems environment .34
3.3.1.2 DB2 environment .34
3.3.1.3 Database design .35
3.3.1.4 Inventory .35
3.3.1.5 Data layout .36
3.3.1.6 Cross reference. .36

3.3.2 Iterative tasks . 36
3.3.3 Implementation plans. 37

3.3.3.1 Data conversion plan .37
3.3.3.2 Application conversion plan .38
3.3.3.3 Test plan .38
3.3.3.4 Performance plan .39
3.3.3.5 Change control plan .39

3.3.4 Proof of concept . 40
3.3.4.1 Project plan .40
3.3.4.2 Review .41
3.3.4.3 Tested proof of concept .41

3.3.5 Deliverables. 42
3.3.6 Personnel . 42

3.4 Stage three — implementation and cutover . 43

Chapter 4. System environment . 45
4.1 The source system environment . 45

4.1.1 System configuration and physical design consideration 45
4.1.2 Creating table space containers. 48
4.1.3 The CIPROS database . 49
4.1.4 Process and Laboratory bridges . 54

4.1.4.1 Process loader .55
4.1.4.2 Laboratory loader .55

4.1.5 The data . 56
4.1.5.1 The tables .56
4.1.5.2 Oracle data types used in CIPROS data. .56

4.2 The target system environment . 58
4.2.1 Configuration . 59
4.2.2 Security . 59
4.2.3 Backup . 59
4.2.4 Partitioned data sets . 60
4.2.5 Communications . 60
4.2.6 Compilers . 60

Chapter 5. Database conversion . 61
5.1 DB2 environment . 61

5.1.1 Installation and configuration . 61
5.1.2 Security . 61
5.1.3 Sample DB2 database and code . 62

5.2 Database design . 64
5.2.1 Physical design . 65

5.2.1.1 Approach to data definition and SQL .65
5.2.1.2 The database creation .65
5.2.1.3 Table space definitions .66
5.2.1.4 Users, roles, and groups .67
iv Converting from Oracle AIX to DB2 for OS/390

5.2.1.5 Data types comparison. 69
5.2.1.6 Table definition conversion. 75
5.2.1.7 Indexes and primary keys conversion . 80
5.2.1.8 Foreign keys conversion . 84
5.2.1.9 Authorizations. 85
5.2.1.10 Check constraints. 88
5.2.1.11 Synonyms and aliases . 89
5.2.1.12 Views . 91
5.2.1.13 Triggers . 93
5.2.1.14 Standard operators and functions . 94
5.2.1.15 Distinct user-defined types . 103
5.2.1.16 User-defined functions and stored procedures 103
5.2.1.17 Packages . 104
5.2.1.18 Sequences . 104

5.3 Data layout .105
5.3.1 Source tables .105
5.3.2 Source columns .106
5.3.3 Target tables .106
5.3.4 Target columns .107

5.4 Cross reference .107

Chapter 6. Data conversion .109
6.1 Clean data .109
6.2 Unloading data from Oracle .109

6.2.1 Character, numeric, and date data types .109
6.2.2 Other data types and exceptions .112

6.2.2.1 Long and non-spoolable fields . 112
6.2.2.2 Binary fields . 114

6.3 File transfer and format programs .116
6.4 Creating a PDS on OS/390 .117
6.5 Transferring data from AIX to OS/390 .118
6.6 Reformatting data for DB2 .119
6.7 Checking data for the correct format .121
6.8 Loading data into DB2 using the LOAD utility .121
6.9 Loading data into DB2 using DataJoiner .127

6.9.1 Installing and configuring DataJoiner for AIX127
6.9.1.1 Installing and configuring the base product 128
6.9.1.2 Configuring DataJoiner to access Oracle. 129
6.9.1.3 Configuring DataJoiner to access DB2 for OS/390 133

6.9.2 Using DataJoiner to migrate data from Oracle to DB2136
6.9.3 Exceptions in using DataJoiner to migrate data136

6.9.3.1 Large objects . 136
6.9.3.2 Long indexes . 138

Chapter 7. Application conversion. .141
7.1 Proof of concept iterative process .141

7.1.1 Convert application programs .141
7.1.2 Review program code .142
7.1.3 Run tests. .142
7.1.4 Performance tuning .142
7.1.5 Change control .142

7.2 Programs for pilot .143
7.2.1 Source program inventory summary .143
7.2.2 Target program environment .147
v

7.2.2.1 Mapping the program libraries .147
7.2.2.2 Mapping the editing functions .149
7.2.2.3 Mapping the module names .149

7.3 Program redesign . 150
7.3.1 Prototype application . 150
7.3.2 Prototype JCL . 151
7.3.3 Sample Oracle source code . 152
7.3.4 Sample DB2 target code . 152
7.3.5 Pointers . 154
7.3.6 TYPEDEF . 156
7.3.7 Host variables . 156
7.3.8 Error and message handling . 158

7.3.8.1 Oracle and DB2 error handling (SQLCA) .158
7.3.8.2 Message handling .160

7.3.9 File handling . 161
7.3.10 Name length limitation . 162
7.3.11 Functions . 162

7.4 Program preparation . 162
7.4.1 Resources . 162
7.4.2 General program preparation process . 163
7.4.3 Source makefile . 164
7.4.4 JCL for precompile, compile, link, bind, and run 166
7.4.5 Precompile. 168

7.4.5.1 Precompile parameters .168
7.4.5.2 Precompiler DD statements .169

7.4.6 Compiler . 169
7.4.6.1 Compiler parameters. .169
7.4.6.2 Compiler DD statements .170

7.4.7 Link . 171
7.4.8 BIND . 171
7.4.9 Run . 173
7.4.10 SDSF usage for output messages . 174

7.5 Program conversion . 174
7.5.1 Database programming methods . 174

7.5.1.1 Embedded SQL. .174
7.5.1.2 Dynamic SQL .174
7.5.1.3 Stored procedures. .175
7.5.1.4 ODBC .176

7.5.2 SQL statements . 176
7.5.2.1 INSERT .177
7.5.2.2 SELECT .177
7.5.2.3 UPDATE .177
7.5.2.4 COMMIT .177
7.5.2.5 ROLLBACK .178
7.5.2.6 Indicator variables .178

7.5.3 Tabs . 178
7.5.4 Square brackets. 179

Chapter 8. Testing, change control, and tuning. 183
8.1 Testing . 183

8.1.1 Function tests . 183
8.1.1.1 Database definition test. .184
8.1.1.2 Data migration test .185
8.1.1.3 Application test .187
vi Converting from Oracle AIX to DB2 for OS/390

8.1.2 Unit test .189
8.1.2.1 Database definition test . 189
8.1.2.2 Data migration test . 189

8.1.3 System and user acceptance test .189
8.2 Performance tuning. .189
8.3 Change control .189

8.3.1 Change control overview .190
8.3.2 Change control procedure .190

Appendix A. Sample script functions . 191
A.1 ddltabs.sh script . 191

A.1.1 sednn.sh script . 194
A.1.2 pk.awk script . 194

A.2 ddlind.sh script . 194
A.3 ddlfk.sh script . 197
A.4 ddlgrnt.sh. 198
A.5 ddlchk.sh script . 200
A.6 ddlalias.sh script . 201
A.7 ddlsyn.sh script . 202
A.8 ddlview.sh script . 204
A.9 download.sh script. 205

A.9.1 count.awk script . 207
A.9.2 desc.awk script . 207

A.10 nick.sh script . 208
A.10.1 nick.awk script. 209

A.11 gendcl.sh script . 209
A.12 genmemset.sh script . 211
A.13 genstrcpy.sh script . 212

Appendix B. Sample DB2 for OS/390 jobs . 215
B.1 JCL for base function compile. 215
B.2 JCL for SQL function precompile and compile . 216
B.3 JCL for compile, prelink and link of main programs 217
B.4 JCL for running the main programs RTDIN and LABIN 218
B.5 JCL for creation of storage group, database, table spaces and tables 218
B.6 JCL for creation of indexes for CIPROS tables. 220
B.7 JCL to alter tables for foreign keys . 221
B.8 JCL for synonym creation . 221
B.9 JCL for creation of CIPROS views . 222
B.10 JCL for deletion of CIPROS database and table spaces 222
B.11 JCL for REORG, RUNSTATS and COPY of CIPROS table spaces 223
B.12 JCL for RECOVER of a CIPROS table space. 226
B.13 JCL for rebuilding a CIPROS index. 227
B.14 JCL to produce C language table structures (DCLGEN) 227
B.15 JCL for first job to LOAD CIPROS tables . 228
B.16 JCL for second job to LOAD CIPROS tables . 230
B.17 JCL for binding with use of packages . 231
B.18 JCL stream including REXX program . 231
B.19 JCL for the conversion of data using REXX program 234
B.20 DSNTIJUZ - DB2 installation job stream . 236
B.21 DSNTEJ2U - DB2 sample JCL to create user defined functions 240
B.22 DSNTEJ2D - Sample C program execution using sample tables 251
vii

Appendix C. Sample data preparation program .253

Appendix D. OS/390 TSO tools and tips .257
D.1 TSO and ISPF .257
D.2 SDSF output messages .262

Appendix E. Special notices .265

Appendix F. Related publications .269
F.1 International Technical Support Organization publications269
F.2 Redbooks on CD-ROMs. .269
F.3 Other publications .270
F.4 Web sites .271

How to get ITSO redbooks . 273
IBM redbook fax order form. .274

List of abbreviations . 275

Index . 277

ITSO redbook evaluation . 281
viii Converting from Oracle AIX to DB2 for OS/390

Figures

1. CIPROS client/server architecture . 6
2. An example of a CIPROS GUI dialog . 9
3. Process and Lab data segments of CIPROS data model 10
4. Three stages of conversion . 14
5. Inputs and outputs for stage one . 15
6. CIPROS architecture . 19
7. Process and Laboratory source interdependency diagram 20
8. Project check points and end point . 29
9. Testing cycle . 29
10. Components of stage two . 33
11. Tested proof of concept . 42
12. Output of lscfg and lspv commands . 46
13. Relationship between a logical volume and its components 47
14. crdbcipros.sql file . 50
15. crdb2cipros.sql file . 51
16. initcipros.ora file . 52
17. configcipros.ora file . 52
18. Relationship diagram of CIPROS Process and Laboratory bridges. 54
19. Example of a General table . 57
20. Example of a Reference table . 57
21. Example of a Laboratory table . 58
22. Example of a Process table . 58
23. A typical PDS hierarchy. 60
24. Sample JCL changes example . 63
25. Pragma needed in UDFs . 63
26. Example of the DSNSYSP macro . 64
27. Example of a table space definition . 66
28. Example of a table with a ROWID column . 75
29. Example of a table containing large objects. 77
30. Parameter file exp.prf for the Oracle export utility . 78
31. Example of a CREATE TABLE statement . 80
32. Job step with create table . 80
33. Example 1 - ALTER TABLE statement . 83
34. Example 2 - CREATE INDEX statement . 83
35. Example 3 - ALTER TABLE statement . 83
36. Index creation. 84
37. Example of a FOREIGN KEY definition . 85
38. Foreign key creation using ALTER TABLE . 85
39. Example of a GRANT statement . 86
40. GRANT and ALIAS creation for CIPROS. 87
41. GRANT examples . 88
42. Example of a CHECK CONSTRAINT definition. 89
43. Usage of CREATE VIEW with an Oracle DECODE instruction 92
44. Usage of CREATE VIEW with a DB2 CASE instruction 92
45. CIPROS view definition . 93
46. Example of a trigger to create a sequence number . 105
47. Example of SQLplus usage . 110
48. Create table example . 120
49. Transmitted Oracle data. 120
50. REXX input control file . 120
© Copyright IBM Corp. 1999 ix

51. Example of LOAD statement with a NULLIF parameter121
52. Sample database graphical layout .122
53. Sample reference listing .122
54. CTLOUT file .123
55. Hex version of DATAOUT file contents .123
56. Sample LOAD statement .123
57. Sample LOAD statement with NULLIF .124
58. Sample DISPLAY DATABASE command. .125
59. Sample DISPLAY UTILITY command. .125
60. SampleTERMINATE UTILITY command .125
61. Cancelling a TSO user .126
62. Forcing a TSO userid from the system .126
63. The STOP DB2 command .126
64. The START DB2 command .126
65. The STOP IRLM proc OS/390 command .127
66. DataJoiner configuration .127
67. Example of LISTENER definition in listener.ora file .131
68. Example of tnsname definition in tnsnames.ora file .131
69. Proof of concept iterative process. .142
70. Sorted list of functions. .143
71. AIX source module list .145
72. Process and Laboratory data source modules .146
73. Screen 1 for OS/390 target module Data Set List Utility147
74. Screen 2 for OS/390 target module Data Set Utility List148
75. Screen 3 for OS/390 target module Data Set Utility List148
76. Process and Laboratory Data OS/390 target modules150
77. Prototype JCL .151
78. Sample Oracle source code .152
79. Sample DB2 target code .153
80. Example 1. Source module header file .154
81. Example 2. Source module function declaration. .154
82. Example 3. Source module SQL statement .155
83. Sample DCLGEN .157
84. Example of C access to Oracle SQLCA .159
85. Example of C access to DB2 SQLCA .160
86. File management of C for AIX. .161
87. File management of C for OS/390 .161
88. Table name script .162
89. General program preparation process .163
90. proc.mk file .164
91. Example of a makefile file. .165
92. JCL program preparation process. .167
93. Compile DD statements .171
94. Link Edit JCL .171
95. IBIND screen one .172
96. BIND screen two .172
97. BIND screen three. .173
98. Turning hex on .178
99. Tabs to spaces .179
100.Step one - set terminal type .180
101.Step two - set terminal type .181
102.Oracle table definition test .184
103.DB2 table definition test (using DataJoiner) .184
x Converting from Oracle AIX to DB2 for OS/390

104.Oracle referential integrity definition test . 184
105.DB2 referential integrity definition test . 185
106.Content of a data file on AIX environment . 185
107.Content of a data file on MVS environment . 185
108.Data file after processing with REXX script . 186
109.Oracle table content retrieved using SQLPlus. 186
110.DB2 table content retrieved using SPUFI . 186
111.Oracle table content retrieved using SQLPlus. 187
112.DB2 table content retrieved using DataJoiner . 187
113.Contents of READING table before the first execution of the program 187
114.Contents of READING table after the first execution of the program 188
115.Contents of READING table after the second execution of the program. . . . 188
116.Example of a query statement to check data consistency. 189
117.Using a fastpath command . 257
118.Application selection panel . 258
119.Enter userid panel . 258
120.Password panel . 258
121.TSO READY prompt . 259
122.ISPF Primary Option Menu . 259
123.Logoff command from the TSO READY prompt . 260
124.Edit entry panel . 261
125.ISPF Edit panel . 261
126.SDSF step one . 262
127.SDSF step two. 263
128.SDSF step three . 263
xi

xii Converting from Oracle AIX to DB2 for OS/390

Tables

1. Scope of conversion. 16
2. Business reasons for conversion . 17
3. Business requirements for conversion . 17
4. Application property list . 20
5. Database design assessment . 21
6. Portfolio analysis summary . 22
7. Conversion strategy statement . 24
8. Application comparison by weighted factor . 25
9. Choice of conversion starting point application and pilot 25
10. Conversion method overview. 27
11. Oracle and DB2 feature incompatibilities . 28
12. Tools requirements and investigation list . 30
13. Resource list . 30
14. Project conversion summary . 31
15. Proof of concept conversion plan . 41
16. List of Oracle CIPROS containers . 48
17. List of Oracle system containers . 49
18. DB2 CIPROS table spaces . 67
19. Oracle primary data types . 69
20. Oracle additional data types. 70
21. DB2 for OS/390 V6 data types. 70
22. Comparison between Oracle and DB2 data types . 72
23. DB2 format for string representation of DATE data types 73
24. Comparison between Oracle and DB2 DATE components format 73
25. DB2 format for string representation of TIME data type. 74
26. Sample user-defined functions provided with DB2 for OS/390 V6. 74
27. Comparison between Oracle and DB2 operators . 94
28. Comparison between Oracle and DB2 functions . 96
29. Additional DB2 functions . 101
30. List of functions for each source file . 143
31. List of all files ordered by type . 143
32. Application nested subroutines calls . 144
33. Application nested header files calls . 144
34. SQL modules inventory . 146
35. AIX to OS/390 system utility mapping . 149
36. Program name cross reference . 149
37. Comparison of main SQL error codes . 158
38. Program preparation JCL PDS members . 167
39. Program preparation PDS libraries . 168
40. AIX to OS/390 system utility mapping . 260
© Copyright IBM Corp. 1999 xiii

xiv Converting from Oracle AIX to DB2 for OS/390

Preface

This redbook describes how to define, implement, and document a migration
project from Oracle on AIX to DB2 for OS/390. A sample scenario based on a
subset of a real application developed in C Language has been used throughout
this project. This allowed us to gain first-hand experience and gave us a starting
point to evaluate alternatives and to extrapolate to more general considerations
applicable to a variety of applications.

This redbook will help you plan for and conduct a conversion of your application
from an Oracle AIX environment to a DB2 for OS/390 environment. It particularly
applies to Version 6 of IBM DATABASE 2 Universal Database Server for OS/390,
Program Number 5645-DB2.

It is primarily intended for database administrators and system designers with
Oracle AIX and/or DB2 for OS/390 background: several considerations are
applicable to the porting of general data and programs from the AIX platform to
the S/390 platform.

We start with an introduction to the project and a summary of our conclusions.
This will be especially useful for people responsible for deciding and defining the
scope of similar projects.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Paolo Bruni is a Senior Data Management Specialist for DB2 for OS/390 at the
International Technical Support Organization, San Jose Center, where he
conducts projects on all areas of DB2 for OS/390.

Debra Eaton is a Field Technology Sales Specialist at the IBM Software
Migration Project Office in Chicago, IL. She has been with IBM for 15 years, and
her areas of expertise on migrations include Oracle and DB2. Debra has written
extensively and has presented to several conferences on migration topics.

Gregery Green is a Staff Application Programmer in Mechanicsburg, PA. He has
15 years of experience in application development and maintenance. He has
worked at IBM for 3 years. His areas of expertise include most mainframe
platform languages and subsystems.

Luca Montini is an Information Technology Specialist working for IBM Italy. He
has 3 years of experience in system and database management, and he has
been supporting customers in the process and downstream industry areas. His
areas of expertise include Oracle RDBMS and application programming. Luca
holds a degree in Mathematics from La Sapienza University of Rome.

Thanks to the following people for their invaluable contributions to this project:

Rich Conway
Bob Haimowitz
Vasilis Karras
Frank Kyne
© Copyright IBM Corp. 1999 xv

IBM International Technical Support Organization, Poughkeepsie Center

Emma Jacobs
Yvonne Lyon
Elsa Martinez
Joerg Reinschmidt

IBM International Technical Support Organization, San Jose Center

Roger Miller
Rosie Rushidally
Hugh Smith

IBM Santa Teresa Laboratory

Bart Steegmans

IBM Belgium

Chris Tett

Mantech Systems Solution Corporation

Corrado Venturini

DB2 Independent Consultant in Italy

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO redbook evaluation” on page 281 to the
fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xvi Converting from Oracle AIX to DB2 for OS/390

Chapter 1. Introduction

The objective of this redbook is to help you plan for and conduct a conversion of
your application from an Oracle AIX environment to a DB2 for OS/390
environment. To do so we have chosen a sample scenario based on a subset of a
real application and we have used it throughout the project, documenting the
migration step by step. The selection of a specific application and the actual
implementation of the migration have allowed us to gain first-hand experience
and to test realistic alternatives. On the other hand, the characteristics of this
specific application cannot be valid for all possible permutations of application
variables. We have also tried, whenever possible, to go beyond the sample
scenario and to extrapolate to more general considerations applicable to a larger
variety of environments.

This chapter contains an introduction to the project and a summary of our
conclusions, and it can be useful to people responsible for decision-making and
defining the scope of similar projects.

1.1 Decision to convert

Converting an application across different platforms and different databases is
certainly not a trivial task. The decision to convert is generally made at high level
and when there is full justification in terms of costs and expected returns on
investment. The major issues that bring up the need to convert, and are the main
components for building a business case, are related to:

• Performance

Aspects of performance include scalability, availability, data movement,
response time, and the ability to support multiple query workloads.

• Configuration costs

Realistic cost assessment is based on overall development, maintenance, and
tuning cost and the full exploitation of current investments, both in terms of
skill sets and reduced licence costs.

• Data integration

Market trends are highlighting the importance of enterprise servers and the
need to avoid data structure fragmentation in order to increase the value of
business-critical systems; fragmentation may cause cross-functional currency
and consistency issues and hamper innovation.

• Data infrastructure

Data is no longer an application-specific resource, but an enterprise-wide tool
to provide critical business information for a competitive advantage; often it is
not enough to navigate through the data, but it is necessary to invest in their
infrastructure in order to more easily integrate enterprise views of data.

The deployment of enterprise resource planning, customer relationship
management, and business intelligence systems may raise the need to
reconsider the current choice of environment for important applications and
appreciate the strength and value of DB2 and S/390. OS/390 with DB2 and
Sysplex configurations offer scalability, high capacity, and high availability.
© Copyright IBM Corp. 1999 1

Other reasons for choosing DB2 and S/390 are mainly the ability to leverage
existing skills and investments, reduced licence costs, performance guarantees,
and synergies from data originating predominantly from other S/390 systems.

Several documents can help in making this decision. Please refer to Selecting a
Server - The Value of S/390, SG24-4812-01, and its related bibliography for more
information.

1.2 Project overview

The project consisted of taking an existing application package based on Oracle
and UNIX and converting a meaningful subset of it to use DB2 on OS/390.

The chosen application is based on the IBM Computer Integrated Process and
Refinery Operations System (CIPROS) solution package for oil industries,
program number 5799-A28. Please refer to Chapter 2, “Project scenario” on page
5, for more details on CIPROS. The client/server architecture of CIPROS solution
provides a good case study for a conversion project because:

1. It is a real application now running in several refineries all over the world, so it
does not constitute just a “case study”, but it represents instead a “project
study”.

2. It contains most of the needed functions to test conversion methodology and
technical paths.

3. The objective of using CIPROS on DB2 for OS/390 is a real customer
requirement.

Since not all the CIPROS features could be covered during the limited time
available for this project, we have isolated a meaningful subset of the application
package for our conversion case study.

The team achieved a working application, starting with an empty RS/6000
machine, with only three people working full time for one month. The project
elapsed time was two months, but about half of the time was spent documenting
all findings and writing the book. Naturally we encountered several problems, but
this achievement proves the viability of such conversion.

Chapter 2, “Project scenario” on page 5 contains more information on the
application package chosen, and Chapter 3, “Conversion process” on page 13
describes the methodology used. The text of the book follows the general
methodology as applied to our particular pilot case. The following chapters
describe the conversion by topic: Chapter 4, “System environment” on page 45,
Chapter 5, “Database conversion” on page 61, Chapter 6, “Data conversion” on
page 109, Chapter 7, “Application conversion” on page 141, and Chapter 8,
“Testing, change control, and tuning” on page 183.

The general methodology involves a three stage process. The process in this
project ends after stage one, the definition of the strategy, and stage two, the
proof of concept — that is, after we have selected part of the total application, set
the strategy, and converted programs, database, and data, providing a tested
proof of conversion. It does not include stage three, the full implementation and
cutover.
2 Converting from Oracle AIX to DB2 for OS/390

The database design, the data, and the batch applications were successfully
converted, though unfortunately, in the short time available, we were unable to
convert the on-line part of the application. Nevertheless, we feel that the project
reached its objectives and demonstrated the viability of the conversion.

Summary of considerations:
The team spent approximately half of the time satisfying the need to document
the findings in a meaningful way.

Implementing a database design on DB2 and OS/390 similar to the one on Oracle
and AIX and converting the application to run on OS/390 proved to be a
challenging but successful task. At the end of the time scheduled for the project
we were able to complete it and implement the batch C language jobs. The
programs executed successfully and were able to perform embedded and
dynamic SQL against the converted data in DB2. The interactive portion of the
pilot application was not tested and was excluded from the project because the
requested third-party software was not received in time to complete the task
within the confines of the residency. We do not think that it would have added
much more to our learning process, but it could have helped in assessing
alternatives for the middleware architecture.

Of the two main goals of the project — converting the data and replicating the
database design in DB2 V6 for OS/390, and converting a specific subset of the C
language application to run on OS/390 — the database conversion was certainly
the easier task. The common relational logical model and the similarities between
the two databases in terms of functions were the contributing factors. It is our
opinion that the functions across the two databases are mapping reasonably well
today and will map even better in the future.

Moving the actual raw data from AIX to OS/390 took a bit longer than expected
because we needed some work-around for populating the tables with the DB2
LOAD utility. The LOAD utility is certainly faster than any program using the
normal INSERT SQL command, but has specific rules on the way that input data
must be presented. One rule is about variable length record, so that the rows,
formatted and padded with blanks at the maximum length when unloading from
Oracle, had to be converted to eliminate blanks at the end of the variable length
fields, and allow binary length fields to be inserted in the load source files.

Another factor which contributed to complexity was the intricate relationships
among the tables based on foreign keys defined in the sample application. The
referential integrity considerations required a good analysis of the logical data
design. Attention had to be paid to the order of loading and the correctness of the
data definition to ensure that no recovery was needed during loading. When
pressed with time and not totally familiar with the source data design, several
errors may happen.

We experimented with an alternative solution using DataJoiner. Data transfer
using Datajoiner was much easier and required no data conversion or JCL;
variable length field and referential integrity are maintained with normal DB2 rules
enforcement during SQL insert. The drawbacks may be the planning for the
product itself, the need for some system programming time when establishing
communication, and, most of all, its suitability for moving large amounts of data.
Coexistence requirements during the phased implementation of a conversion
project, though, can make the investment worthwhile on its own right.
Introduction 3

In our scenario the amounts of data were small. If large amounts of data must be
moved, using the DB2 LOAD utility would certainly be the more efficient
approach, providing better performance and allowing no logging, worth the
relative investment in data pre-conditioning. The database physical design must
be implemented on the OS/390 server for either approach to work.

Converting the C language code to enable it to use DB2 on OS/390 was the more
extensive undertaking. The DCLGEN feature of DB2 provided savings in
producing usable C language structures for the tables. However, the design of the
application on AIX extensively utilized pointers to host variables. This function is
not supported in C by DB2 V6 for OS/390. Host variables had to be specifically
defined. Other differences are related to the usage of environment variables and
the getenv and __getenv functions of C. Finally some initial learning was needed
for the application converters in order to configure and use the precompile,
compile, prelink, and link available on OS/390.

The feasibility of the conversion was proved; it can certainly be done given
circumstances similar to the pilot effort and assuming there are sufficiently
experienced and skilled people available to do the work. We stress that highly
skilled personnel are needed on both sides of the conversion if the objectives
must be reached in a short time. Also, communication with the site systems
personnel needs to be clear, effective, and flow freely, since we found that system
support was crucial to our project success.
4 Converting from Oracle AIX to DB2 for OS/390

Chapter 2. Project scenario

This chapter provides a description of the project scenario, constituted by the
conversion of the process and laboratory segments of the IBM Computer
Integrated Process and Refinery Operations System (CIPROS) solution for oil
industries, program number 5799-A28.

2.1 What is CIPROS?

IBM experience with several refineries and process plant information systems has
shown the existence of common situations:

• Different problems of production management and control are approached in a
partial way by different plant departments. The integration between the
different solutions is usually very poor.

• To reduce investment costs, companies use specialized packages to approach
and solve specific problems. The packages are chosen as the best in the
market in each specific area. This enables the customers to have a good tool
for each specific problem, but without any form of integration.

To obviate this lack of integration, IBM proposes a new approach to Plant
Production Information System (PPIS), based on a three-layered architecture:

1. Management Information System (MIS)

2. Process Data Management (PDM)

3. Data Acquisition (DA)

The three-layered architecture needs an integration component to allow coherent
connections among all packages and/or applications of the Integrated Plant
Information System (IPIS). CIPROS facilitates and helps in managing the logical
interconnection of the applications that build an IPIS on the three architectural
levels.

2.1.1 CIPROS architecture
CIPROS has been designed in a client/server architecture. All the CIPROS client
workstations, the CIPROS servers, and all the other application servers inside
IPIS are to be connected through a plant-wide network.

The integration function between all the components of IPIS is the most important
role of CIPROS. The user is enabled to access data belonging to different
application subsystems by controlling and maintaining all the information inside
the relational database using a standardized and user-friendly interface. Menus
and specific CIPROS functions, which do not require deep knowledge of the data
model structure, guide the user to navigate among the data.

Workstations are the work tools for each plant user. The client/server architecture
chosen to develop CIPROS, together with common tools available in the
workstation environment, gives additional value to the solution by enabling
personalized analysis on data. Figure 1 shows the architecture and the platforms
involved in the CIPROS solution.
© Copyright IBM Corp. 1999 5

Figure 1. CIPROS client/server architecture

The actual environment used during our project is composed of the following
elements:

• AIX 4.2.1 CIPROS server

• Oracle DB 7.3 (on server)

• Uniface (Compuware) Polyserver 7.2.03 (on server)

• Clients OS/2, Windows 3.11, Windows 95, Windows NT 4.0 (all with Uniface
Runtime)

• TCP/IP communication protocol.

• MQSeries 5 (both on client and server)

2.1.2 CIPROS components
As shown in 2.1, “What is CIPROS?” on page 5, CIPROS is a complex
environment that integrates data originated from several other applications,
enabling them to exchange information in a standardized and controlled way.

Relational data model
The core component of CIPROS is a relational data model, which maps the
“production scheme” of the plant.

CIPROS
Server

CIPROS
Client

CIPROS
Client

CIPROS
Client

Other appl
Client

Other Appl.
Server

Windows or OS/2
Uniface Run Time
TCP/IP

AIX/6000
Oracle DB
Polyserver

Windows or OS/2
Uniface Run Time
TCP/IP

Windows or OS/2
Uniface Run Time
TCP/IP

..Application Sw.
TCP/IP

Run Time Appl.
TCP/IP
6 Converting from Oracle AIX to DB2 for OS/390

This means that it contains a “definition” of all the facilities of the plant, in a format
that is supposed to be useful to all the departments of the plant itself, for a
general view of the production process and all the information related to it
(measures, movements of materials, and so on).

Tables
To better understand what can be stored inside CIPROS tables, we have divided
this information into the following segments:

• Reference Tables — contain definition of plant facilities, materials etc.

• Process and Laboratory Data — contains variables that come from Real Time
Database packages and from Laboratory systems.

• Movement Data — contains information related to material movement
between facilities of the plant and to external movements (shipments and
receipts).

• Databook — contains reference data of the plant related to the ways of
running of each unit in terms of yields, qualities, consumptions, capacities,
and so on.

• Planning and Scheduling — contains information related to planned material
productions and operations for a specific period (generally a month) and
day-by-day scheduled operations for the modeled plant part.

Bridges
CIPROS provides communication services to guarantee data exchange between
the different subsystems that make up the IPIS at the different architectural
levels. The programs that perform all this work are called Bridges, so a bridge is
an application that automatically transfers data to and from the CIPROS relational
database. When a bridge exists on the CIPROS side, an equivalent program must
exist on the side of the application that is exchanging data with CIPROS, either to
extract data that has to be provided to the bridge on the CIPROS side to be
inserted into the database, or to load into the application the data that has been
extracted from CIPROS. A bridge is made of two parts:

• Poller: a program that extracts data from CIPROS or from an application and
prepares it in a standard format

• Loader: a program that can load data into CIPROS or into an application.

The communication between the Poller and the Loader happens through
exchange of files.

A third component of the bridge architecture is the Dispatcher.

The Dispatcher is a standard CIPROS tool that allows communication between
the client and the server parts of a CIPROS application, like Poller and Loader of
a bridge. Its main purpose is to guarantee the correct transmission of data files
whatever the conditions of the communication are at the moment when the
request is issued. Since the Dispatcher handles communications between two
machines, it has also been enabled to send on-line requests or remote execution
commands.

In the case of data file transfer, the Dispatcher has to deal with functions like:

• Communication synchronization

• Automatic restart and reconnect after a failure
Project scenario 7

• Retransmission of corrupted information

• Acknowledgment of successful transmission

• Security in data transmission

• Independence from communication protocol, hardware and software
platforms.

The product chosen to build the Dispatcher logic is MQSeries. This is part of the
IBM Open Blueprint and meets all the previous requirements.

MQSeries must be present as a Server on each machine where a Loader runs,
and as a Client on each machine where a Poller runs; server functionality
contains also a Client part.

Batch programs
CIPROS provides also several batch programs that perform calculation and
reporting activities, such as:

• Tank Content/Composition application

• Daily/Monthly average and cumulated values application

• Summary Operation Data feature

• Standard Reports

Graphical User Interface
The management and query operations of the CIPROS database can be
performed using the CIPROS Graphical User Interface (GUI). The CIPROS GUI
is a Uniface application, based on Compuware Uniface/Polyserver architecture,
which allows multi-platform and multi-DBMS interface of application
development.

CIPROS provides a set of standard tools to allow the user to see, manage, and
insert or modify data in the relational database, in a simple and guided way.
These consist of user interfaces, basic database access routines and calculation
functions, and some production tools as:

• Report Viewer: a tool that enables the user to connect to the relational
database, in a manual or automatic way, and create in it reports produced
inside or outside CIPROS.

• Log Event facility: a user interface that allows the user to see the status of all
the applications in CIPROS, to correct the errors and to start a reload
procedure.

• Process and Laboratory Data Analysis feature: an application that enables the
user to search, retrieve, report, trend and export outside CIPROS
environment, process and laboratory data related to one or more specific
facilities, in a simple and driven way.

• DataBook feature: an application that manages all the data related to the runs
of the plant units via user driven dialogs. It is based on a set of relational
database tables that model all the parameters needed to identify the standard
modes of operation of a plant unit and also to simulate (with a Simulation
Interpolation function) the run of a unit if some parameters of the unit are
changed.

An example of the CIPROS GUI desktop is provided in Figure 2.
8 Converting from Oracle AIX to DB2 for OS/390

Figure 2. An example of a CIPROS GUI dialog

2.2 Scope of work for the project

As mentioned in 1.2, “Project overview” on page 2, not all the CIPROS features
could be covered during the project; the chosen subjects of the conversion
consist of:

• The reference, process and laboratory area of the CIPROS Database (see
Figure 3) in terms of physical and logical design

• The reference, process and laboratory data

• The Real Time Database to CIPROS C-language bridge

• The Laboratory to CIPROS C-language bridge

Moreover, whenever the other related data model areas and applications include
significative items, we also try to provide specific examples and migration paths
for these items.

The client/server CIPROS GUI application (based on Uniface/Polyserver
architecture) is not included in our sample scenario, even though it is part of the
conversion project. The Compuware Uniface/Polyserver solution is designed in
such a way that it should provide cross-DBMS compatibility and allow for easier
porting at a minor cost, but we have been unable to confirm this.
Project scenario 9

Figure 3. Process and Lab data segments of CIPROS data model

Architectural considerations:
In a real project such as ours, choosing the easiest, fastest, and least expensive
paths for the implementation of the project is probably one the most important
goals of the project itself.

The architectural choices (in terms of platforms, products, resources) are
conditioned by the time available and economic factors.

Our architectural choices have been based on similar assumptions, besides pure
technical considerations.

For these reasons we decided to use:

• C-language for OS/390 with embedded SQL, together with DB2 C precompiler
for the bridge programs

• Uniface/Polyserver architecture (even if we did not have the possibility to
include the conversion of the client/server graphical user interface in the
project)

The language used and the architectural communication design are the same as
the source application.

STANDARDSTANDARD
RESULTRESULT

ANALYSISANALYSIS
METHODMETHOD

METHODMETHOD
RESULTRESULT

FACILITY
INSTRUMENT
ASSIGNMENT

FACILITY

SAMPLESAMPLE
ANALYSISANALYSIS

SAMPLESAMPLE

SAMPLESAMPLE
POINTPOINT

STREAM
INSTRUMENT
ASSIGNMENT

STREAM

PROCESS AND LABORATORY SEGMENT

LAB DATALAB DATA

PROCESS DATAPROCESS DATA

TAGTAG

READINGREADING

INSTRUMENTINSTRUMENT
TYPETYPE

READINGREADING
TYPETYPE

INSTRUMENTINSTRUMENT

STREAMSTREAM
SAMPLESAMPLE
POINTPOINT

READINGREADING
TEXTTEXT
10 Converting from Oracle AIX to DB2 for OS/390

Other technical solutions were feasible and reasonable for the target
environment:

• Since on the OS/390 platform skills on COBOL (or PLI) language are more
consolidated in most companies, when comparing to C language, a possible
alternative could have been the decision to convert the C programs into
COBOL (or PLI) programs with embedded SQL.

• Moreover, the DB2 family provides the DRDA architecture for distributed
environments. Using DB2 Connect on the AIX machine and accessing DB2 for
OS/390 through DRDA could have been another feasible solution.
Project scenario 11

12 Converting from Oracle AIX to DB2 for OS/390

Chapter 3. Conversion process

This chapter discusses the conversion process used for the CIPROS database
and application conversion from Oracle7 on AIX to DB2 UDB Server for OS/390
Version 6.

3.1 Overview

In defining the conversion process we have used the three-stage conversion
methodology as defined in Planning for Conversion to the DB2 Family:
Methodology and Practice, GG24-4445.

Figure 4 represents the three stages for the conversion:

• Stage one — defining the strategy

• Stage two — proof of concept

• Stage three — implementation and cutover

Stage one (defining the strategy) and stage two (proof of concept) are the focus
of this project and redbook. Stage three (implementation and cutover), would be a
future project following the completion of this redbook.
© Copyright IBM Corp. 1999 13

Figure 4. Three stages of conversion

3.2 Stage one — defining the strategy

Stage one (defining the strategy) asks a lot of questions and sorts opinions about
the conversion. The results of these are recorded and used to set out a
conversion strategy. Stage one includes the following steps:

• Survey

• Business reasons and requirements

• Portfolio analysis

• Strategy definition

• Conversion methods

• Deliverables

Figure 5 displays the inputs, outputs, and tasks for each step in stage one.

Three stages of conversion

Stage one - defining
the strategy

Stage two - proof of
concept

Stage three -
implementation

and cutover

Conversion scope
Conversion benefits

Project factors
Status of system and application

Interdependence
RDBMS design

Data quality
Conversion strategy
Conversion method

Data cleaning
Test cycle
Tools list

Resource list

System environment
DB2 environment
RDBMS design

Inventory
Data layout

Cross reference
Iterative process

Implementation plan
Project plan

Proof of concept
Workbook

Differences log
Review

Implementation
Cutover
Fallback
14 Converting from Oracle AIX to DB2 for OS/390

Figure 5. Inputs and outputs for stage one

3.2.1 Survey
This section discusses the objective, inputs, tasks, deliverables, and resources
for the survey step of stage one (defining the strategy).

3.2.1.1 Objective
The objective of this step is to set the scope of the conversion. It defines which
system or systems are candidates, the data sources, the database, and the
programming languages. The survey results are used in 3.2.2, “Business reasons
and requirements” on page 16, 3.2.3, “Portfolio analysis” on page 18 and 3.2.5,
“Conversion methods” on page 26.

3.2.1.2 Inputs
The inputs are the application and environment areas under consideration.

3.2.1.3 Tasks
The following survey sets the boundary for the conversion proposal. The form
shown in Table 1 represents a portion of our survey. Other source and target
applications were considered for the conversion. The form captures the main
points of the survey.

Inputs and outputs for stage one

Conversion benefits
Project factors

Status of system and
application

Interdependence
RDBMS design

Data quality

1. Survey

2. Business reasons
and requirements

3. Portfolio analysis

Define strategy

4. Strategy definition

Conversion method
Data cleaning

Test
Tools

Resources

5. Conversion method

Stage
two

Define scope
Conversion process 15

Table 1. Scope of conversion

3.2.1.4 Deliverable
The deliverable is a completed statement of scope of conversion, listing the
system candidate, the data sources, the database, and the programming
languages which are to be considered.

The scope of our conversion is the Process and Laboratory data application
segments of the CIPROS system. The data sources are the process Real Time
Database package, the Laboratory Data System, and the database. The source
database Oracle DB 7.3 on AIX to the target database DB2 UDB for OS/390 V6.
The source ProC for AIX, embedded static SQL, and dynamic SQL languages will
be converted to the C for OS/390 V1.7, embedded static SQL, and dynamic SQL.

3.2.1.5 Resources
The personnel involved with this step are:

• Project sponsor

• IT architect

3.2.2 Business reasons and requirements
This section discusses the objectives, inputs, tasks, deliverables and resources
for the business reasons and requirements step of stage one (defining the
strategy).

3.2.2.1 Objective
The objective of this step is to set out business reasons and requirements for the
conversion. The business reasons are benefits expected from the move and the
grade of importance of each. The business requirements access project factors
that relate to the conversion itself. These requirements are not a reason to
convert to DB2, but are project factors that represent the business requirements
for the conversion. The reasons and requirements recorded now are used in
3.2.5, “Conversion methods” on page 26 to decide what type of conversion is best
for a particular installation’s real needs.

Survey Question Source application/area Target application/area

Candidate Process and Laboratory Data Process and Laboratory Data

Data source Real Time Database packages,
Laboratory Data System and Oracle
DB7.3 on AIX

Real Time Database packages,
Laboratory Data System and DB2
UDB for OS/390 V6

Database Oracle DB 7.3 on AIX DB2 UDB for OS/390 V6

Batch/on-line Batch via libraries of C functions,
message catalog, configuration file
and main programs

Batch via libraries of C functions,
message catalog, configuration file,
and main programs

Programming Language ProC for AIX, Embedded Static SQL
and Dynamic SQL

C for OS/390 V1.8, Embedded Static
SQL and Dynamic SQL

Transaction processing Bridges, Uniface and Polyserver
7.2.0.3 by Compuware

Bridges, Uniface and Polyserver by
Compuware

Operating System AIX 4.2.1, Windows NT 4.0 OS/390 V2.7, Windows NT 4.0
16 Converting from Oracle AIX to DB2 for OS/390

3.2.2.2 Inputs
The inputs are the results of 3.2.1, “Survey” on page 15, understanding of
problems, requirements, and effects of relational factors.

3.2.2.3 Tasks
Table 2 is completed to represent the business reasons why the conversion is
needed. Table 3 is completed to record the business requirements of the
conversion. The column headings for the tables are:

Important This is classified as one of the main reasons for the
conversion. Items here must be delivered by the project to
make the project a success.

Nice to have These are items that are valued and may be used later, but are
not important at the moment. The project should try to
incorporate these if possible.

Not important These are items that are not necessary. They do not need to
be incorporated into the project.

Table 2. Business reasons for conversion

Table 3. Business requirements for conversion

Business reason Important Nice to have Not important

Improve performance X

Enable client/server X

Enable distributed data X

Enable new application areas X

Enable development on personal computers X

Meet government regulations X

Provide alternative solution to current database
vendor

X

Exploit existing skill base X

Exploit latest technology X

Business requirements Important Nice to have Not important

Budget X

Time X

Skills and resources X

System availability X

Better understanding of data X
Conversion process 17

3.2.2.4 Deliverables
The deliverables are a list of completed business reasons for conversion and a
list of completed business requirements for conversion.

The business reasons for our conversion were to provide an alternative solution to
the current database vendor, exploit the existing skill base, and take advantage of
latest technology. In addition, we had to maintain the client /server architecture,
distributed data environment and ability to easily develop new applications. Our
business requirements were to assess the project from time, skills and resources
areas.

3.2.2.5 Resources
The personnel involved with the task are:

• Project sponsor

• Management

• Application and data owners

• Data consultant

3.2.3 Portfolio analysis
This section discusses the objectives, inputs, tasks, deliverables and resources
for the portfolio analysis step of stage one (defining the strategy).

3.2.3.1 Objectives
The objective of this step is to understand the current state of the applications
and systems, the interdependence, the DBMS design and the data quality. The
information obtained in the portfolio analysis is used to make decisions in 3.2.4,
“Strategy definition” on page 23 and 3.2.5, “Conversion methods” on page 26.

3.2.3.2 Inputs
The inputs are the results of 3.2.1, “Survey” on page 15, understanding of present
applications, systems, data and database in Chapter 2, “Project scenario” on
page 5.

3.2.3.3 Tasks
A summary of the portfolio analysis step tasks are:

1. Describe the system and applications
2. Assess interdependence
3. Assess the application
4. Assess the database
5. Assess the quality of the data
6. Portfolio analysis summary

A subset of our portfolio analysis work proceeds as follows, based on the portfolio
analysis task list:

1. Describe the system and applications.

This task describes the system, the application, and their data sources. The
data sources include applications and database.
18 Converting from Oracle AIX to DB2 for OS/390

The structure of the CIPROS system is made up of a core function and a set of
featured applications. The base component of CIPROS is the relational data
model, valid for Oracle or DB2. The data stored inside CIPROS tables are
divided into segments grouped by the different applications.The architecture of
the CIPROS system allows the split of the system into functional application
segments. The application of the CIPROS system we are evaluating is the
Process and Laboratory Data application. The database tables for this
application contain data that come from Real Time Database application
packages and from Laboratory Data System. See Figure 6.

Figure 6. CIPROS architecture

2. Assess interdependence.

This task identifies application components and the degree of system and
application interdependence based on relationships between inputs, outputs
and use of data. The level of interdependence will affect the choice and
method for conversion because the effect on the related systems must be
considered.

The essential questions that this piece of work will answer are:
Can the application and the data be moved on a piece-by-piece basis,
and if so, what are the pieces?

The answers are important in three areas:

1. Pilot — If we test using a pilot, what piece should we use?
2. Testing — This piece can be tested independently.
3. Implementation — If we move a piece to DB2, it works by itself, and the rest

of the application still functions successfully.

The database Process tables contain information related to instrumentation
measurements with the related timestamp. The process data is received from
the Real Time Database system. An example of some of these tables are
INSTRUMENT, TAG, and READING. See Figure 3 on page 10.

The database Laboratory tables contain information related to the results of
the analysis performed on a sample that is taken in the plant from a facility.
The data is received from the Laboratory Data System. An example of some of
these tables are SAMPLE, STANDARD RESULT and ANALYSIS METHOD.
See Figure 3 on page 10.

M ate ria l
ba la nce

too l
C IP R O S

S chedu ling
to o l

Labo ra to ry
D ata

S ys tem

R e a l T im e
D atabase

P rocess un it
recon c ilia tion
Conversion process 19

There are several database tables that are common to all CIPROS
applications. The Process and Laboratory Data application uses these
common tables. An example of some of these tables are STREAM and
FACILITY. See Figure 3 on page 10.

The Process and Laboratory Data application is made up of several
components. See Figure 7. The main program component for the application
uses various libraries based on function. The SQL library component contains
.pc functions with SQL calls to the database used by both the Process main
program and the Laboratory main program. The Utility library component
contains .c functions that are common to all the CIPROS application main
programs. Other main programs have other SQL libraries that call the
database.

Figure 7. Process and Laboratory source interdependency diagram

3. Assess the application.

This task uses the Application Property List to describe the properties of
conversion candidate applications to assess the benefits of possible changes.
The result of this assessment will be input when deciding what strategy to use.
Table 4 is a subset of our Application Property List assessment. Other source
applications were considered for the conversion

Table 4. Application property list

Property Application/area

Application name Process and Laboratory data

Source IBM software package

Source language ProC for AIX, embedded static SQL and dynamic SQL

Data groups used Process, laboratory, utilities

Test data Good and comprehensive of all functionality of conversion

Test scripts Good and comprehensive use of application

Test system Good

Process and Laboratory source
interdependency diagram

Process
Laboratory

CIP ROS App A
CIP ROS App B

...

Function 1
Function 2

...

SQ L 1
SQ L 2

...

M ain (.c)

U tility library (.c)
SQL library (.pc)

Oracle or
DB2 UDB

SQL 1
SQL 2

...

C IPRO S

Other SQL
libraries (.pc)

RD BM S
Other m ain
20 Converting from Oracle AIX to DB2 for OS/390

4. Assess the database.

The database design assessment assesses the data. It shows how easy it is
to map existing structures into another database system. The result of this
assessment will be input when deciding what strategy to use. Table 5 is a
subset of our database assessment.

Table 5. Database design assessment

Number of batch programs
for conversion

2

% batch programs used for
conversion

100%

Estimate % not needed for
conversion

0%

Number of on-line client
connections for conversion

3

Number of programs with
database calls for
conversion

2

Average number of
database calls per program
for conversion

Process 5 and Laboratory 10

I/O modules for conversion 30%

On-line module usage for
conversion

1 module used on average for a transaction

Conversational for
conversion

0% of transactions are conversational

Suitability for conversion
tool

Database 70%, data 60%, .pc code 60%, .c code 10%

Code consistency Efficient, no bugs, 4GL, tool

Current data source Oracle 7.3, Real Time Database and Laboratory Data
System

Security Database and operating system

Associated packages Unicode (requires changes to the Uniface table names) and
Polyserver

Property Source application/area

Data group name instance=CIPROS,tablespace=CPRS_BASE,
CPRS_LAB,CPRS_LOGE,CPRS_READING,
CPRS_READING_IND,CPRS_PRDSCN

Location Oracle database, instance=CIPROS

Owning user for application CIPROS

Other users sharing applications CPRS_VIEW

Data model Second normal form, some third normal form

Property Application/area
Conversion process 21

5. Assess the quality of data.

This step assesses the accuracy of the actual data for quality. The result of
this corruption assessment will be used in the strategy definition step.

A data corruption assessment was completed prior to this project with no
errors in the data. Database errors, data corruption caused by programming,
and data errors in the actual data were checked.

6. Portfolio analysis summary.

This task summarizes the findings of the Portfolio analysis step. Table 6 states
the current state of the applications and systems, the interdependence, the
database design, and the data quality.

Table 6. Portfolio analysis summary

Field definitions CIPROS documentation provides data dictionary and
field and table definitions

Data dictionary CIPROS documentation automatically generated by
CASE tool

Data dictionary data validity The data is up-to-date

Data quality There are no errors

Data corruption 0%

Data duplication Some duplication, most second normal form, some
third normal form

Number of entities 66 (64 tables and 2 view)

Number of fields Min field/table = 2, max field/table = 31, average
field/table =4

Number of bytes Average daily amount of data = 10MB

Number exits and type No

Characteristic Application/area

Application name Process and Laboratory data

Business value Enhanced value to the business can be provided by offering alternative vendor
solutions if this application uses data that is in a DB2 database

Interdependence The data and program components for this application are very independent,
except for the use of the common Utility library

Technology level — programs The programs are efficient, no bugs, and use a 4GL tool

Technology level — data The data dictionary can be used to discern the meaning of the tables and columns

Data quality Clean

Database Oracle 7.3 for AIX

Size The proposed area of conversion is small; less than 100 tables, less than 100
programs

Status The application is stable and provides enhancements

Property Source application/area
22 Converting from Oracle AIX to DB2 for OS/390

3.2.3.4 Deliverables
The deliverables for the Portfolio analysis are the following items:

• Single sheet representation of each application

• System and application interdependency analysis

• Application characteristics assessment

• Application property list assessment

• Database design assessment

• Data quality assessment

• Portfolio analysis summary

3.2.3.5 Resources
The personnel for the Portfolio analysis are the following:

• Data manager and senior database administrators

• Applications development manager and senior professionals

• Operations manager and senior professionals

• User manager and senior users

• Security personnel

3.2.4 Strategy definition
This section discusses the objectives, inputs, tasks, deliverables, and resources
for the strategy definition step of stage one (defining the strategy).

3.2.4.1 Objective
The objective of this step is to define the strategy for the proposed conversion
based on the knowledge of the source applications and system. First, the overall
strategy is defined, then the conversion starting point is stated. The result of the
strategy definition will be used in 3.2.5, “Conversion methods” on page 26.

3.2.4.2 Inputs
The inputs for this step are the deliverables from the 3.2.1, “Survey” on page 15,
3.2.2, “Business reasons and requirements” on page 16 and 3.2.3, “Portfolio
analysis” on page 18.

3.2.4.3 Coexistence
Where a piece of the application is to be moved separately, the question of how
the two parts of the total application will function must be answered.

The alternatives available are:

• Single phase — No coexistence is needed. Everything can and will be moved
in a single phase.

• Complete separation — Parts are really separated and can be moved
individually.

• Batch connection only — Batch programs can be changed to read one part
and write to a file for use by another part.

• Duplicate data — Some data is duplicated in both old and new DBMS, it is
updated by periodic batch or by continuous propagation. This is suitable for
non-volatile data in read-only for one application piece.
Conversion process 23

• Calls to two DBMSs — Some applications might retain a few calls to the old
DBMS. This might depend on the support for DRDA, or other techniques, and
certainly has performance implications. It also means that some programs
might need to be changed twice.

In our case we assessed the application and decided that coexistence was not
necessary for the selected subset as we could move in a single phase.

3.2.4.4 Tasks
A summary of the strategy definition step tasks are:

1. Decide on the overall strategy.

2. Choose a starting point.

A subset of our strategy definition step process proceeds as follows:

1. Decide on the overall strategy.

This task determines the strategy for the way forward in a conversion. The
result of this step will be a completed strategy statement used for the basis of
the conversion. Table 7 is a subset of our assessment.

Table 7. Conversion strategy statement

2. Choose a starting point.

This task determines which application in the system will be used for the
conversion pilot. The result of this step is a completed starting point
statement.

Table 8 is a subset of our assessment. This assessment compared
applications in the system by weighted factors. The application with the
highest score indicates which application to convert. The application that
received the highest total score (95) in our assessment was the Process and
Laboratory Data application.

Decision Area Comments

General strategy Piece by piece

Process A definable application in the system and its data will be converted from the
source system and application to the target source system and application.
No enhancements are made to the application during the conversion, and
future enhancements are made in DB2.

Source system Oracle 7.3 and CIPROS

Target system DB2 UDB for OS/390 V6

Attitude to outside assistance and
tools

Use outside assistance and tools where needed

Confirm priority order 1. Quality of result
2. Speed
3. Least risk
4. Least cost
24 Converting from Oracle AIX to DB2 for OS/390

Table 8. Application comparison by weighted factor

Once the application in the system that will be used in the conversion is
selected, a starting point for the conversion can be defined. Table 9 is a
summary of our starting point for the conversion. This table records the
starting point for the application and the conversion pilot.

Table 9. Choice of conversion starting point application and pilot

3.2.4.5 Deliverables
The deliverables for the strategy definition are the following items:

• Overall conversion strategy statement

• Choice of starting point application and pilot

3.2.4.6 Resources
The personnel for the strategy definition are the following:

• Data manager and senior database administrators

• Application development manager and senior professionals

• Operations manager and senior professionals

• User manager and senior users

• Security administrator

Factor for piece by piece
strategy

Weight Process and Laboratory
Application/Area
(1-low through 5-high)

Enhanced business value X1.5 5

Interdependence X1.5 5

Technology level X1 4

Size X1 5

Total Score X5 95

Question Choice

Which system will be converted? CIPROS and Oracle 7.3 for AIX

Which application will be the conversion
starting point?

Process and Laboratory data

What conversion strategy will be used? Piece by piece

What about reporting and reporting
programs?

Not applicable

Is this a piece of a large application? No

How will coexistence be handled? Not applicable

What will be used as a pilot? Process and Laboratory data application in the
CIPROS and Oracle 7.3 AIX system will be
converted to the Process and Laboratory Data
application in the CIPROS and DB2 UDB for
OS/390 V6 system.

Any special factor for security? No
Conversion process 25

3.2.5 Conversion methods
This section discusses the objectives, inputs, tasks, deliverables and resources
for the conversion methods step of stage one (defining the strategy).

3.2.5.1 Objective
The objective of this step is to decide which conversion method to use for the
pilot. Based on the selection of the conversion method, data cleaning, testing
cycle, tools and resources will be determined. The result of the conversion
method step will be used in section 3.3, “Stage two — proof of concept” on page
32.

3.2.5.2 Inputs
The inputs for this step are the results for the survey, 3.2.1, “Survey” on page 15,
3.2.2, “Business reasons and requirements” on page 16, 3.2.3, “Portfolio
analysis” on page 18 and 3.2.4, “Strategy definition” on page 23.

3.2.5.3 Tasks
A summary of the conversion methods step tasks are:

1. Evaluate different conversion methods

2. Evaluate source and target database features

3. Select a conversion method

4. Select a conversion end point

5. Decide about data cleaning

6. Define a test cycle

7. Select tools

8. List resources

9. Conversion summary

A subset of our process for the Conversion method step proceeds as follows:

1. Evaluate different conversion methods.

This task evaluates the different conversion methods and their advantages
and disadvantages. The result of this step will be an understanding of all the
conversion methods. See Table 10 for the results of our evaluation.
26 Converting from Oracle AIX to DB2 for OS/390

Table 10. Conversion method overview

2. Evaluate source and target database features.

This task evaluates the incompatibilities between the source database
features and the target database features. The result of this step will be a list
of items in the source database solution that must be redesigned for the use
with the target database solution. Table 11 is a subset of the incompatibilities
between Oracle 7.3 for AIX and DB2 forOS/390 V6 features for our project.

Conversion Method Description Advantages Disadvantages

Translation *Data layout ’as is’ to DB2
*Program calls changed 1:1

*Easiest method
*Easy for tools

*Few advantages of DB2
*Design inflexible for future

Transparency Module written to
- Intercept calls to old

database
- Translate to SQL
- Route to new

Database

*Data may be restructured
*Tools can be used for data
*Applications can be

rewritten later
* Low risk

*Performance a problem
* Module difficult to write
*Application maintenance

increased
*Conversion takes much

longer

Re-engineering Make changes to take
advantage of new database
- Time and data
- Numbers
- Sequence

*Obtain advantages of DB2
*Allows limited redesign

*Longer time
*Tools need some

intervention

Reverse engineering *Capture old design into
tools

*Reverse into
-Data model
-Process model
*Generate new DB2 design
*Generate new application

*Design may be optimized
for performance

*Later enhancements easier
*Possible to remove

redundant code

*Tools do not handle all
situations

*Longer time

Redevelop *Check requirements with
users

*Add enhancements
*Start from scratch

*Tools available
*Known process
*Proper documentation easy
*Future maintenance easy

*Much longer development
time

*Less efficient code from
tools

* Existing investment lost

Corporate model *Model business at high level
*Model part of business
*Get new application

working
*Gradually add other parts

*Business modeled as whole
*Less redundant code
*Case tools available

*Significant time before
benefits

*Large up front investment
*Existing investment lost
*Need to manage changes
Conversion process 27

Table 11. Oracle and DB2 feature incompatibilities

3. Select a conversion method.

This task selects the conversion method for the pilot. The information gathered
in Table 10 on page 27 and Table 11 on page 28 are used as input to this task.

We decided to use the translation conversion method for compatible features
of Oracle 7.3 for AIX and DB2 UDB for OS/390 V6 and the re-engineering
conversion method for incompatible features of Oracle 7.3 for AIX and DB2
UDB for OS/390 V6.

4. Select a conversion end point.

This task defines the end point of the pilot conversion project. The result of
this task will be a list check points and end points for the project. Figure 8 is a
summary of the check points and end point for our project

5. Decide about data cleaning.

This task defines how the data will be cleaned for the conversion. The data for
our project had been cleaned prior to the start of our project, so it was not
necessary for us to clean the data.

If data cleaning is necessary for a project, three areas must be considered:

Validation Checking and testing are done for incorrect or corrupt data.

Corrections Once a corruption has been identified, it must be corrected.

Audit-trail Any changes are recorded on a searchable audit trail.

Feature Oracle 7.3 for AIX DB2 UDB for OS/390 V6

Data types

DATE DATE or TIMESTAMP

NUMBER NUMBER, INTEGER or FLOAT

Programming Use of C pointers for host variables No use of C pointers for host variables

Error handling Use of C system calls to UNIX operating
system for message catalog

C system calls cannot use similar calls to
MVS system for message catalog

Database Table, foreign key and index names are
longer than 18 characters

Table, foreign key and index names are less
than or equal to 18 characters
28 Converting from Oracle AIX to DB2 for OS/390

.

Figure 8. Project check points and end point

6. Define a testing cycle.

This task defines the testing cycle for the conversion project. Figure 9 is a
diagram of our testing cycle.

Figure 9. Testing cycle

7. Select tools.

This task evaluates the use of tools during the project. No tool can provide
100% conversion without manual intervention but they do reduce the
amount of that intervention. Table 12 is a summary of our very reductive
analysis and even smaller adoption of tools for this project.

C h e c k p o in ts a n d e n d p o in t

T ra n s la t io n ,
re e n g in e e r in g

a n d
c o n v e rs io n to

D B 2

P e r fo r m a n c e
a n d fu n c t io n

te s t in g

L iv e ru n
p e r io d A r c h iv e

C h e c k p o in ts E n d p o in t

Tes tin g cyc le

R eview
D B 2

da tabase
and

app lica tion
des ign

Se t up
and run

test
schedu le

R ev iew
equ iva len t

function
test

resu lts

R ev iew
perfo rm ance
test resu lts

O K ?

S top
changes

and
prepare

fo r
cutove r

C hange
D B 2

da tabase
and

app lica tion
des ign

N oF ix F ix

Y es
Conversion process 29

Table 12. Tools requirements and investigation list

8. List resources.

This task sets up a list of resources that will be needed for the project.
Table 13 is a summary of the resources for this project.

Table 13. Resource list

Tool area Description Requirement Candidate

Data analysis Pictorially represent data
entities and relationships

Not applicable Bachman, Cheyenne, ADW

DBMS design and
conversion

Read old DBMS, generate
entity model, create new
model for new DBMS

Automate DDL conversion Implemented through
scripts

Source program
conversion

Convert source code from
code using old DBMS to
code using SQL for DB2

Not applicable Mantech

Propagation Propagate asynchronous
and synchronous updates
from old DBMS to DB2

Not applicable DPROP

Unload and reload Move data from source
database to target
database

Load into DB2 DB2 LOAD utility, Data
Joiner

On-line identical function
testing

Test that new code still
provides same function as
old code

Compare results of old and
new application

Executed through sample
transactions and queries

Full testing analysis Make sure all parts of the
program are tested

Not applicable Not applicable

Batch output comparisons Compare batch outputs run
with old and new code

Not applicable Not applicable

Stress testing of system Run test transactions
through new system at rate
equal to or greater than the
production service

Not applicable Not applicable

Real-time performance
monitoring

On-line performance
monitor

Verify that performance are
within the expected ranges

DB2 PM

Function Part
time

Full
time

Description Person

Sponsor X Committed executive sponsor who
wants the project to succeed

Project manager X Person to plan, track progress,
resources and interfaces between
groups

DB2 database administrator X Person to resolve DB2 issues including
performance tuning

Oracle database administrator X Person to resolve Oracle issues

Business analyst X Assesses the impact of the conversion
on the business
30 Converting from Oracle AIX to DB2 for OS/390

9. Conversion summary.

This task summarizes the conversion method for the project. Table 14 is a
summary of our conversion decisions.

Table 14. Project conversion summary

Conversion consultant X Understands source and target
environment, ensures right questions
are asked

Source application programmers X Understands the old application,
language and SQL

Target application programmers X Understands the target language and
SQL

System programmer X Installs DB2, sets up OS/390 and
system standards

Test system specialist X Set up and run testing system

Operations analyst X Convert utilities, back up system

Change control specialist X Controls design changes

Performance specialist X Understands performance tools

Item Comment

System CIPROS

Application Process and Laboratory data

Source database Oracle 7.3 for AIX

Target database DB2 UDB for OS/390 V6

Source operating system AIX 4.2.1, Windows NT 4.0

Target operating system OS/390 V1.7, Windows NT 4.0

Conversion method * Translation for compatible features of Oracle and DB2
* Re-engineering for incompatible features of Oracle and DB2

Conversion check points Translation, re-engineering, conversion to DB2, performance, function testing,
live run period

Conversion end point Archive

Data cleansing requirements Validation, corrections and audit trail completed prior to this project

Test cycle The test cycle will review the DB2 database and application design, set up and
run the test schedule, review equivalent function test results, review
performance test results, change DB2 database and application design where
necessary, stop changes and prepare for cutover

Tools DB2 Load utility

Resources Sponsor, project manager, DB administrators, business analyst, conversion
consultant, programmers, test specialist, operations analyst, change control
specialist, performance specialist

Function Part
time

Full
time

Description Person
Conversion process 31

3.2.5.4 Deliverables
The deliverables for the conversion method are the following items:

• Selection of conversion method

• Completed data cleaning

• Completed test cycle

• Completed tools list

• Completed resource list

• Conversion summary

3.2.5.5 Resources
The personnel for the strategy definition are the following:

• Data manager and senior database administrators

• Application development manger and senior professionals

• Operations manager and senior professionals

• User manager and senior users

3.2.6 Defining the strategy deliverables
The deliverables of stage one (defining the strategy) are:

• Conversion scope

• Conversion benefits

• Project factors

• Status of the system and application

• Interdependence

• Database design

• Data quality

• Conversion strategy

• Conversion method

• Data cleaning

• Test cycle

• Tools list

• Resource list

3.3 Stage two — proof of concept

Stage two (proof of concept) validates the opinions recorded in stage one
(defining the strategy) and thinks through the details of how the conversion
project will actually function. The results of this stage are the conversion of the
first application as a pilot and a tested proof of concept. This tested proof of
concept is used as input for stage three (implementation and cutover).
32 Converting from Oracle AIX to DB2 for OS/390

The activities in stage two are covered in detail in the following sections. Input
from stage one is used in each activity. The main activities during stage two are
shown in Figure 10. Each discrete activity needs to take into account other
activities. The main activities are:

• Once-only tasks

• Iterative tasks

• Implementation plans

• Proof of concept

Figure 10. Components of stage two

3.3.1 Once-only tasks
There are a number of tasks that have to be done only once during stage two in
order for the conversion to function. The task activities are based on input from
section 3.2, “Stage one — defining the strategy” on page 14. The once-only tasks
for a conversion include:

• Systems environment

• DB2 environment

• Database design

• Inventory

• Data layout

• Cross reference

Components of stage two
Stage one - defining the strategy

Data conversion
Application conversion

Test
Performance

Change control
Project plan

Systems environment
DB2 environment
RDBMS design

Inventory
Data layout

Cross reference

Stage three - implementation and cutover

Convert programs
Review code

Test
Performance

Change control

Implementation plansOnce-only tasks Iterative tasks

Stage two - proof of concept

Pilot

Proof of concept
Conversion process 33

3.3.1.1 Systems environment
Both the source and target system environments will need to be configured and
set up for the conversion. Chapter 4, “System environment” on page 45 discusses
the following system environment tasks, tools and resources for our project:

• Configuration

• Security

• Backup and recovery

• Storage management

• Communication

• Compiler

• AIX to OS/390 terminology mapping

• OS/390 tools and tips

The required tools for the system environment are:

• AIX C, awk, sed

• FTP for AIX

• FTP for OS/390

• DB2 UDB for OS/390 V6 utility programs

• JCL

The resources for the system environment are:

• UNIX systems

• UNIX programmers

• Oracle DBA

• OS/390 systems

• S/390 storage administrator

• S/390 C Language programmers

3.3.1.2 DB2 environment
A separate DB2 environment is best for a conversion and leads to the least
conflicts with other work. If DB2 is new to the installation, then the whole range of
systems, including systems programming, program test, system test, and
production will need to be set up. Section 5.1, “DB2 environment” on page 61
discusses the following DB2 environment tasks, tools and resources for our
project.

• Installation

• Configuration

• Security

• Backup and recovery

• Storage management

• Communications
34 Converting from Oracle AIX to DB2 for OS/390

The required tools for the DB2 environment are:

• DB2 UDB for OS/390 V6 utility programs

• DB2 interactive functions

• DB2 sample programs

The resources for the DB2 environment are:

• DB2 system programmers

• DB2 application programmers

• DB2 DBA

3.3.1.3 Database design
Good DB2 database design is important for assuring identical function, good
performance, future maintenance and good operations. Much of what goes on
here is standard DB2 design. Section 5.2, “Database design” on page 64
discusses in more detail the following database design tasks, tools and resources
for our project.

• Logical design

• Physical design

The required tools for system environment are:

• DB2 UDB for OS/390 V6 utility programs

• JCL

The resources for system environment are:

• Oracle DBA

• DB2 DBA

• OS/390 systems and support

• DB2 programmers

3.3.1.4 Inventory
The inventory is an extremely important component of the conversion. Without a
comprehensive inventory of both the programs and the data sources,
cross-related to the new system, it is impossible either to perform a reliable
conversion or to make detailed plans and estimates for the rest of the project.
The inventory is related to:

• Source programs

• Source data source

• Target programs

• Target data source

The required tools for inventory are:

• DB2 UDB for OS/390 V6 utilities

The resources for inventory are:

• Oracle DBA

• DB2 DBA
Conversion process 35

• Oracle programmers

• DB2 programmers

3.3.1.5 Data layout
The source data source must be analyzed. Every component must be placed in
the inventory with a cross reference to the corresponding position in the new
database. In 5.3, “Data layout” on page 105 we discuss the following data layout
tasks, tools and resources for our project:

• Source tables

• Source columns

• Target tables

• Target columns

The required tools for data layout are:

• DB2 UDB for OS/390 V6 utility programs

The resources for data layout are:

• Oracle DBA

• DB2 DBA

• Oracle programmers

• DB2 programmers

3.3.1.6 Cross reference
A cross reference of fields to source tables and columns to target tables and
columns needs to be built so that any field reference can be changed to the
equivalent in DB2. Input for the cross reference is from the inventory task 3.3.1.4,
“Inventory” on page 35 and data layout tasks 3.3.1.5, “Data layout” on page 36.
Section 5.4, “Cross reference” on page 107 discusses the cross reference we
used for our project.

3.3.2 Iterative tasks
When the once-only tasks are complete, the iterative tasks can be begin. The
iterative tasks take the application programs through all the steps needed until
they are ready for cutover. Section 7.1, “Proof of concept iterative process” on
page 141 demonstrates the use of this process during our project. The iterative
tasks, tools and resources for our project are.

• Convert application programs

• Review program code

• Run tests

• Performance tuning

• Change control

The required tools for the iterative tasks are:

• DB2 UDB for OS/390 V6 utility programs
36 Converting from Oracle AIX to DB2 for OS/390

The resources for data layout are:

• Oracle DBA

• DB2 DBA

• Oracle programmers

• DB2 programmers

3.3.3 Implementation plans
The implementation plans are used as input to an overall project plan. The plans
are based on input from section 3.2, “Stage one — defining the strategy” on page
14. The implementation plans for a conversion include:

• Data conversion plan

• Application conversion plan

• Test plan

• Performance plan

• Change control plan

A project plan and review plan for the proof of concept is developed based on the
individual implementation plans.

3.3.3.1 Data conversion plan
The data will need to be unloaded from the source database and reloaded into
the target database. The data conversion plan will detail how this will take place,
with what tools and resources. See Chapter 6, “Data conversion” on page 109 for
details.

The tasks for our data conversion plan are:

• Clean data

• Unload data from Oracle

• Create programs to prepare data for file transfer and DB2 format

• Reformat data for DB2

• Create partitioned data sets on OS/390 for the data

• Transfer data from the AIX system to the OS/390 system

• Test data for correct format

• Load data into DB2

The required tools for data conversion are:

• AIX C, awk, sed

• FTP for AIX

• FTP for OS/390

• DB2 UDB for OS/390 V6 utility programs

• JCL

The resources for data conversion are:

• UNIX Programmers
Conversion process 37

• UNIX systems

• Oracle DBA

• DB2 DBA

• OS/390 systems

• DB2 programmers

• Storage administrators

3.3.3.2 Application conversion plan
The application conversion plan will say how the programs are to be converted.
The application conversion plan will detail how this will take place, with what tools
and resources. See Chapter 7, “Application conversion” on page 141 for details.

The tasks for our application conversion plan are:

• Proof of concept iterative process

• Programs for pilot

• Program redesign

• Program preparation

• Program conversion

• Program testing cycle

• Change control

• Program status

The required tools for application conversion are:

• AIX C

• FTP for AIX

• FTP for OS/390

The resources for application conversion are:

• UNIX Programmers

• UNIX systems

• Oracle DBA

• DB2 DBA

• OS/390 systems

• DB2 programmers

3.3.3.3 Test plan
Testing is a very important area because over half of all conversion activity, and
perhaps as much as 80%, will be testing, changing, and then retesting. The test
plan will detail how this will take place, with what tools and resources. See
Chapter 8, “Testing, change control, and tuning” on page 183 for details.

The tasks for our test plan are:

• Function

• Unit
38 Converting from Oracle AIX to DB2 for OS/390

• System

• User acceptance

The tools we used for testing are:

• AIX C, awk, sed

• FTP for AIX

• FTP for OS/390

• DB2 UDB for OS/390 V6 utility programs

• JCL

The resources for testing are:

• UNIX Programmers

• UNIX systems

• Oracle DBA

• DB2 DBA

• OS/390 systems

• DB2 programmers

3.3.3.4 Performance plan
The application and system must be performance tuned during the conversion.
The performance plan will detail how this will take place, with what tools and
resources. See Chapter 9, “Performance tuning” on page 203 for more details.

The tasks for our performance plan are:

• Database configuration

• System configuration

The required tools for performance tuning are:

• Explain

• DB2 PM

The resources for performance tuning are:

• UNIX systems

• UNIX programmers

• Oracle DBA

• OS/390 systems

• S/390 storage administrator

• DB2 DBA

3.3.3.5 Change control plan
The way that changes are made is crucial. For example, if the DBMS design is
changed over the conversion, how does this affect data and programs? The
change control plan is a process which makes sure that changes to solve one
problem do not cause problems with other areas. The change control plan will
Conversion process 39

detail how this will take place, with what tools and resources. See Chapter 10,
“Change control” on page 205 for more detail.

The tasks for our change control plan are:

• Document change request

• Review change

• Review effect of change

• Approval of change

The required tools for change control are:

• Current tools or procedures adopted in your enterprise (like SMP/E for OS/390
systems, SCLM for applications)

The resources for change control are:

• Team leader

• Project leader

3.3.4 Proof of concept
The pilot for proof of concept is performed after the project plan is complete.
A project review is performed at the end of the pilot.

3.3.4.1 Project plan
A project plan is developed for the proof of concept pilot based on the individual
implementation plans, once-only tasks, and iterative tasks. The whole project
needs to be controlled by a project manager. This person will keep track of all the
activities needed to ensure the success of the project.

Two items worthy of special mention are the workbook and the problem and
differences log kept during the project.

Workbook A manual that states SQL standards,
conversion processes, programming
standards, testing, and tools

Problem and differences log A log of all the problems and their
resolutions

The project plan includes tasks, resources and estimate. Table 15 is a subset of
our project plan. It represents the general tasks our project.
40 Converting from Oracle AIX to DB2 for OS/390

Table 15. Proof of concept conversion plan

3.3.4.2 Review
When the pilot programs are capable of running well with DB2, the equivalent
tests have been passed, and the performance is acceptable, then there should be
a thorough review of the project to date and the plans for the overall conversion.

The reviewers should be people who have skills in all the main areas including
project management, the data source, the source system, the source application,
and especially DB2. The objectives of the review are:

• That the project is on course and the issues well understood

• That the project will deliver the required system

• That the final system is likely to deliver the required performance, integrity and
benefits required

• To recommend changes to the plans in the light of the results of the pilot

3.3.4.3 Tested proof of concept
After the successful pilot and review, the tested proof of concept will be a fact.
Adjustments to the various conversion plans will be needed for section 3.4,
“Stage three — implementation and cutover” on page 43 in the light of the pilot
and the review. Figure 11 represents a summary of the steps for the proof of
concept. These steps are discussed in stage two (proof of concept).

Task Resource Estimate

Once-only tasks

Systems environment X

DB2 environment X

Database design X

Inventory X

Data layout X

Cross reference X

Iterative tasks

Convert programs X

Review code X

Test X

Performance X

Change control X

General

Data conversion X

Application conversion X
Conversion process 41

Figure 11. Tested proof of concept

3.3.5 Deliverables
The deliverables for stage two (proof of concept) are the following items:

• Target system environment

• DB2 environment

• Database design

• Inventory

• Data layout

• Cross reference

• Iterative process

• Implementation plan

• Project plan

• Review

• Proof of concept

• Workbook

• Differences log

3.3.6 Personnel
The personnel for stage two (proof of concept) are the following:

• Data manager and senior database administrators

• Application development manager and senior professionals

• Operations manager and senior professionals

Tested proof of concept

Program
library

Conversion

Clean
compile

Changes

Pilot

Workbook

Test

Performance

OK?

Yes
No

New
program
library

OK? YesReview
No

Change
control

DB
design
42 Converting from Oracle AIX to DB2 for OS/390

3.4 Stage three — implementation and cutover

Stage three (implementation and cutover) involves taking the lessons learned
during the pilot, and using them to revise the plans worked out during stage two
(proof of concept), then roll the rest of the programs through the conversion and
test process. There will be problems along the way, but having built on a sound
and practical foundation will ensure that the project meets its objectives and is on
time and within budget. The end point for our redbook project is stage two,
however. Stage three would be the next project for a real user environment.
Conversion process 43

44 Converting from Oracle AIX to DB2 for OS/390

Chapter 4. System environment

The setup for the system environment is a once-only task, as discussed in
3.3.1.1, “Systems environment” on page 34. This setup includes the following
activities:

• Configuration

• Security

• Backup and recover

• Partitioning of data

• Communication

• Compiler

• AIX to OS/390 terminology mapping

In this chapter we describe the source and the target system environments. While
the source system environment is normally dedicated and directly dependent in
terms of definition upon the Oracle subsystem and its usage, the reader has to be
aware that the DB2 subsystem is only one of the several subsystems that concur
in defining the requirements and the sizing of the target S/390 environment. This
explains why several database related functions are described in this chapter for
the source environment, while for the target system environment, we only provide
a very general description of the existing system. The target database
environment is described in more detail in Chapter 5, “Database conversion” on
page 61.

A very simple description of the OS/390 tools and functions utilized, and some
tips for the non-initiated, are reported in Appendix D, “OS/390 TSO tools and tips”
on page 257.

4.1 The source system environment

In this section we describe the project environment of the CIPROS application. It
contains a description of the physical definitions of the source database machine
(Oracle 7.3 for AIX) and its logical configurations (users, groups, communication,
logical volumes, and general settings).

4.1.1 System configuration and physical design consideration
The Oracle 7.3 Server has been installed on an RS/6000 machine, 520H Power
Station, running the AIX 4.2.1 operating system. Its hostname is BALTIC. We
have installed and configured the operating system and the network connection in
order to be able to reach the server machine from any of our client Windows NT
machines. For the installation and configuration of the AIX operating system,
please refer to the AIX Version 4.2 Installation Guide, SC23-1924.

You can check the operating system level with the following command, issued by
an AIX shell:

oslevel
© Copyright IBM Corp. 1999 45

The current operating system level is then prompted (4.2.1.0, in our case).

The communication setup is described in 6.3, “File transfer and format programs”
on page 116. Refer also to AIX Version 4 System User’s Guide: Communications
and Networks, SC23-2545.

The machine we used for our project has six 400 MB SCSI internal disks, all
belonging to the rootvg volume group. Each physical partition (PP) of rootvg
volume group is 4 MB.

You can check the configured disks and the volume group they belong to with the
following command:

Figure 12 shows the results:

Figure 12. Output of lscfg and lspv commands

AIX JFS Manager is the AIX O.S. facility to manage the AIX file systems, in terms
of files and directories.

Oracle database implements database managed (DMS) containers for the table
spaces. In Oracle, they are generally called data files and can be defined as JFS
files. It is possible to assign to the same table space, one or more data files, that
is, one or more JFS files.

AIX Logical Volume Manager (LVM) provides the possibility to define logical
volumes on physical disk volumes (raw devices, in classical database definition).

Raw devices can be used as database containers, too. In the current naming
convention, usually the name data files is referred both to JFS files and to raw
logical volumes.

Figure 13 shows the relationship between a logical volume and its components.
In this example, the logical volume is made up of two mirrored logical partitions,
that means four physical partitions on two different disks. The logical volume is
the table space container for an Oracle table space.

lscfg | grep hdisk; lspv

+ hdisk0 00-07-00-0,0 400 MB SCSI Disk Drive
+ hdisk1 00-07-00-1,0 400 MB SCSI Disk Drive
+ hdisk2 00-07-00-2,0 400 MB SCSI Disk Drive
+ hdisk3 00-07-00-3,0 400 MB SCSI Disk Drive
+ hdisk4 00-08-00-0,0 400 MB SCSI Disk Drive
+ hdisk5 00-08-00-1,0 400 MB SCSI Disk Drive
hdisk0 0000270700106442 rootvg
hdisk1 0000270700106cd9 rootvg
hdisk2 00002707001075a7 rootvg
hdisk3 0000270700107e42 rootvg
hdisk4 0000270700030fcc rootvg
hdisk5 00002707001087c9 rootvg
46 Converting from Oracle AIX to DB2 for OS/390

Note that in the case of a table space on a raw device, the logical volume must be
created in advance (for the JFS files, the file is automatically created by the
RDBMS).

Figure 13. Relationship between a logical volume and its components

The creation of a logical volume is shown in 4.1.2, “Creating table space
containers” on page 48. For all the references to the AIX device management,
refer also to AIX Version 4 System Management Guide: Operating System and
Devices, SC23-2525.

The physical design of the database is the first important operation while creating
a new database. It is important to evenly spread data and index spaces among
the available traditional storage media in order to optimize space availability and
usage, avoid I/O contention on disks, reduce the risk of losing data, and optimize
database access, according to the application data flow.

For example, if you have a large table, often accessed by user applications, it is
convenient to separate data and indexes on different table spaces, in different
storage media.

For our project, we have created the CIPROS table spaces containers (data files)
on raw devices.

The following system groups have been created, using SMIT or the command:

• cipros: the CIPROS system group

• mqm: the MQSeries owner group

• dba: the Oracle DBA group

• poly: the Polyserver owner group

HDx

HDy

PP1

PP4

PP2

PP3

4 Physical Partitions

LP01

LP02

2 Logical Partitions mylv
Logical
Volume

"Raw Device"

rootvg Volume Group

mkgroup -'A' group_name
System environment 47

The following system users have been created, using SMIT or the command:

• cipros: the owner of CIPROS applications, belonging to cipros group

• mqm: the MQSeries owner, belonging to mqm group

• oracle: the Oracle DBA user, belonging to dba group

• poly: the Polyserver owner, belonging to poly group

4.1.2 Creating table space containers
For each one of the Oracle table spaces, a set of raw devices has been created,
using the AIX SMIT tool or with the command mklv, as in the following example:

With this command, the mylv device is created on disk device hdisk3, in the
rootvg volume group, with 48 MB of allocated space distributed across 12
physical partitions (PP) of 4 MB (no similarity to the DB2 partitions in OS/390)
with raw as logical volume type. This is just a description, but it can be useful to
differentiate the table space containers across all the system logical volumes.

In this example no mirroring has been used for the logical volume. This means
that there is a one-to-one correspondence between the logical and the physical
partitions, that i, each physical partition has just one copy in the logical volume.

If we want to create a mirrored logical volume, as shown in Figure 13 on page 47,
the following command must be issued:

This command can be issued for all the data containers of the database.

For the CIPROS table spaces, the following raw devices have been created, as
listed in Table 16.

Table 16. List of Oracle CIPROS containers

Logical volume
name

Volume
group

of PP Description

baselv rootvg 12 CPRS_BASE table space

readdtlv rootvg 1 CPRS_READING table space

readixlv rootvg 1 CPRS_READING_IND table space

lablv rootvg 1 CPRS_LAB table space

logelv rootvg 1 CPRS_LOGE table space

prdscnlv rootvg 1 CPRS_PRDSCN table space

mkuser pgrp=’group_name’ user_name

mklv -y'mylv' -t'raw' rootvg 12 hdisk3

mklv -y'mylv' -t'raw' -c'2' rootvg 2 hdiskx hdisky
48 Converting from Oracle AIX to DB2 for OS/390

Note: The sizes of the data table spaces of our project database are very small.
In an operating environment, usually the READING table spaces (both data and
index) should be dimensioned according to the daily data flow coming from the
Real Time database and according to the timeframe the customer wants to keep
on-line in the database. In real-life production environments, the typical size for
the READING table is 20 to 30 GB.

In addition to the user data table spaces, an Oracle database also requires a set
of default table spaces and system objects:

• Control files

• System catalog table space

• Rollback segments table space

• Temporary table space

• USERS default table space

• TOOLS default table space

For these objects, a set of raw devices has been created as listed in Table 17:

Table 17. List of Oracle system containers

In our project we did not specify the disk each logical volume has been created
on. This should be always done in a real operating environment. For instance, the
control files should be allocated on different disks.

An Oracle database requires also a specific space for the redo log files, which
record all the changes made to the database before being written on the
dedicated storage media.

In our database, for the Oracle redo log files, a specific JFS 32 MB file system,
allocated on /home/oracle/redolog, has been created.

4.1.3 The CIPROS database
Oracle 7.3 RDBMS has been installed in /home/oracle directory. Refer to the
Oracle7 Release 7.3 for AIX Installation Guide, A43771-1 for detailed information
on Oracle installation.

Logical volume
name

Volume
group

of PP Description

systemlv rootvg 16 CIPROS database catalog

rbs01lv rootvg 8 Rollback segments table space

temp01lv rootvg 4 Temporary table space

toolslv rootvg 1 TOOLS default Oracle table space

userslv rootvg 1 USERS default Oracle table space

crtl01lv rootvg 1 Control file, copy #1

crtl02lv rootvg 1 Control file, copy #2

crtl03lv rootvg 1 Control file, copy #3
System environment 49

The /home/oracle directory is a 396 MB file system owned by the oracle system
user, belonging to the dba system group. Then, a cipros database has been
created (cipros instance, that is ORACLE_SID=cipros), using the system
containers indicated in Table 17 on page 49 and the Oracle default
scriptcrdbcipros.sql by executing crdb2cipros.sql for the creation of the database
(modified for our environment) and of all the system objects (the table spaces
system, temp, rbs, tools, users, the system catalog, the default administration
users internal, sys and system). Please refer to ORACLE 7, The Complete
Reference, ISBN 0-07-882285-8, and to the ORACLE 7 standard documentation
for further details on Oracle installation and configuration.

The content of the two files is listed in Figure 14 and Figure 15.

Figure 14. crdbcipros.sql file

spool /home/oracle/app/oracle/admin/cipros/create/crdbcipros.lst

connect internal

startup nomount
pfile=/home/oracle/app/oracle/admin/cipros/pfile/initcipros_0.ora

create database "cipros"
maxinstances 8
maxlogfiles 32
maxdatafiles 60
character set "US7ASCII"
datafile

'/dev/rsystemlv'size 65000K
logfile

'/home/oracle/redolog/redocipros01.log'size 4M,
'/home/oracle/redolog/redocipros02.log'size 4M,
'/home/oracle/redolog/redocipros03.log'size 4M;

disconnect
spool off
50 Converting from Oracle AIX to DB2 for OS/390

Figure 15. crdb2cipros.sql file

spool crdb2cipros.lst
connect internal
@/home/oracle/app/oracle/product/7.3.3/rdbms/admin/catalog.sql
connect internal

create rollback segment r0 tablespace system
storage (
initial 16k
next 16k minextents
2 maxextents 20);

alter rollback segment r0 online;

create tablespace rbs datafile
'/dev/rrbs01lv'size 32000K
default storage (
initial1M
next 1M
pctincrease 0
minextents 2);

create tablespace temp datafile
'/dev/rtemp01lv'size 16000K
default storage (
initial 256k
next 256k

pctincrease 0);

create tablespace tools datafile
'/dev/rtoolslv'size 4000K;

create tablespace users datafile
'/dev/ruserslv'size 4000K;

create rollback segment r01 tablespace rbs;
create rollback segment r02 tablespace rbs;
create rollback segment r03 tablespace rbs;
create rollback segment r04 tablespace rbs;

alter rollback segment r01 online;
alter rollback segment r0 offline;
drop rollback segment r0;

alter user sys temporary tablespace temp;
alter user system default tablespace tools temporary tablespace temp;

connect system/manager
@/home/oracle/app/oracle/product/7.3.3/rdbms/admin/catdbsyn.sql

spool off
System environment 51

The configuration of the Oracle database is written into two Oracle specific files:

• initcipros.ora

• configcipros.ora

as listed in Figure 16 and Figure 17.

Figure 16. initcipros.ora file

Figure 17. configcipros.ora file

#
$Header: initx.orc 1.1 95/02/27 12:14:56 wyim Osd<unix> $ Copyr (c) 1992
Oracle
#

ifile = /home/oracle/app/oracle/admin/cipros/pfile/configcipros.ora

rollback_segments = (r01,r02,r03,r04)

tuning parameters

db_files = 60

db_file_multiblock_read_count = 8 # SMALL
db_block_buffers = 200 # SMALL
shared_pool_size = 3500000 # SMALL
log_checkpoint_interval = 10000
processes = 50 # SMALL
dml_locks = 100 # SMALL
log_buffer = 8192 # SMALL
sequence_cache_entries = 10 # SMALL
sequence_cache_hash_buckets = 10 # SMALL
max_dump_file_size = 10240 # limit trace file size to 5 Meg each

open_cursors = 200
compatible = 7.3.0.0.0
global_names = TRUE

*#
$Header: cnfg.orc 1.1 95/02/27 12:14:25 wyim Osd<unix> $ Copyr (c) 1992
Oracle
#
cnfg.ora - instance configuration parameters

control_files = (/dev/rctrl01lv,
/dev/rctrl02lv,
/dev/rctrl03lv)

background_dump_dest = /home/oracle/app/oracle/admin/cipros/bdump
core_dump_dest = /home/oracle/app/oracle/admin/cipros/cdump
user_dump_dest = /home/oracle/app/oracle/admin/cipros/udump
#log_archive_dest = /home/oracle/app/oracle/admin/cipros/arch/arch.log
#db_block_size <blocksize>

db_name = cipros
52 Converting from Oracle AIX to DB2 for OS/390

After the base installation, we have also issued the pupbld.sql script (for the
creation of SQLPlus product and user profiles) and catproc.sql (for the creation of
system tables, views, procedures and packages).

For a detailed description of the Oracle database objects, please refer to
ORACLE 7, The Complete Reference, ISBN 0-07-882285-8, and the ORACLE 7
standard documentation.

The Process and Laboratory segments of the CIPROS database are made up of
six table spaces:

• CPRS_BASE: base reference tables (used by all database areas, including
Process and Laboratory areas)

• CPRS_LAB: Laboratory specific tables

• CPRS_READING: READING table data (Process area)

• CPRS_READING_IND: READING table index (Process area)

• CPRS_LOGE: Log Event feature tables (bridges)

• CPRS_PRDSCN: Process and Laboratory Data Analysis tool specific tables
(both Process and Laboratory areas)

Each one of these table spaces have been created on the related logical volume,
as listed in Table 16 on page 48, with an Oracle DDL command as following:

Note: The creation of the all the CIPROS table spaces is performed by the
CIPROS installation procedure, after configuring a specific definition file. In our
scope of work it is interesting to describe at least one example of table space
creation.

To run the execution of the statements, we have used SQLPlus, the standard
Oracle command line, that can be issued by a cipros shell with the command:

In this case, we can also create a file (for instance, crtbbase.sql) containing the
CREATE TABLESPACE statement listed above, and then run the command:

Note: The table space must be created on the character device corresponding to
the baselv logical volume (the raw device) and not on the /dev/baselv device
(block device).

CREATE TABLESPACECPRS_BASE
DATAFILE'/dev/rbaselv'
SIZE 48000K
DEFAULT STORAGE
(MAXEXTENTS UNLIMITED
PCTINCREASE 0);

sqlplus

sqlplus system/manager @crtbbase.sql
System environment 53

Note: The device file /dev/rbaselv must be owned by the Oracle user. Since, at
the first creation, the device belongs to root/system, before creating the table
space we had to change the ownership of the file with the command:

chown oracle:dba /dev/rbaselv

4.1.4 Process and Laboratory bridges
An important segment of the CIPROS solution is constituted by the bridges.

As we described in 2.1.2, “CIPROS components” on page 6, bridges allow the
CIPROS database to exchange data with all the other refinery areas, providing,
with their mapping facility, standard and unique information to the end-user
applications.

An important part of CIPROS communication segment is also the Dispatcher, an
MQSeries-based module which allows communication synchronization between
source (poller) and target (loader) machines.

We do not analyze the dispatcher modules in our conversion study, concentrating
our analysis on the Process loader and the Laboratory loader, that are the two
C-language programs that interface directly with the CIPROS database, by
loading the related data.

The structure of the C programs is shown in Figure 18:

Figure 18. Relationship diagram of CIPROS Process and Laboratory bridges

The main executable programs are rtd_in and lab_in, whose sources are
constituted respectively by the rtd_in.c and lab_in.c source files.

r t d _ i n l a b _ i n

S Q L
l i b r a r y

B A S E
U t i l i t i e s
l i b r a r y

. p c
S Q L
f i l e s

. c
f i l e s

d
y
n
a
m
i
c

l
i
n

k
s

d
y
n
a
m
i
c

l
i
n

k
s

l a b _ i n . c r t d _ i n . c

O r a c l e
P r o * C
l i b r a r y
54 Converting from Oracle AIX to DB2 for OS/390

The two programs dynamically link to the following two Dynamic Linked Libraries
(DLLs):

• The SQL functions library consists of several .pc source files, linked in a
unique object file, and then compiled as a dynamic library with the ar AIX C
compiler command; the SQL library is also precompiled with the Oracle Pro*C
precompiler files. This library contains the SQL functions for querying,
inserting and updating CIPROS tables.

• The BASE utilities library consists of several .c source files, linked in a unique
object file and then compiled as a dynamic library as the SQL library. This
library contains general-purpose functions, such as opening, reading, writing,
and closing a file, accessing the message catalog, and so on.

4.1.4.1 Process loader
The Process loader bridge is responsible to load into CIPROS, in a controlled
way, data related to Process values.

The CIPROS Process loader performs two main functions:

• Define/update INSTRUMENT related tables occurrences (INSTRUMENT,
TAG)

• Insert/update READING occurrences

The CIPROS loader bridge is supposed to be the authoritative source for
definition of occurrences inside the relational database tables.

This means that all the information that allows the program to define/update
tables on the relational database must be present in the transfer file used by the
bridge. This enables CIPROS, in cooperation with the poller part of the bridge
that runs on the Real Time side, to automatically define into the CIPROS
database a new TAG, added in the REAL TIME environment, and from this
moment on, to start storing the values related to it inside CIPROS database.

The same procedure is also followed for the update function: Changes on the
Real Time side are automatically reflected into the relational database.

4.1.4.2 Laboratory loader
The Laboratory loader bridge is responsible to load into CIPROS, in a controlled
way, data related to Laboratory values.

Starting from the SAMPLE_POINT, occurrences of all entities can be
automatically defined inside CIPROS Laboratory segment of the CIPROS Data
Model, starting from the information contained in the transfer file records coming
from the Laboratory system during the bridge process.

ANALYSIS_METHOD and STANDARD_RESULT, together with SAMPLE_POINT
definition, make the 'static' part of the lab tables. The loader can automatically
create new occurrences into these tables, as well as new occurrences into the
SAMPLE and SAMPLE_ANALISYS (the tables that contain the information on
sample and values of analysis performed on it).

The loader is also responsible for mapping operations between the two
environments using mapping tables.
System environment 55

4.1.5 The data
The Process and Laboratory data segment of the CIPROS Data Model, as
described in 2.2, “Scope of work for the project” on page 9, contains reference
and operating tables for the refinery data coming from Real Time (process) and
Laboratory databases.

4.1.5.1 The tables
We divide the related tables into four groups:

• General tables: These tables contain general data used by all the
applications (such as the ENGINEERING_UNIT tables) and the "domain"
tables provided for decoding some general codes used by all the applications
(such as D_IN_OR_OUT, containing the code used for INput or OUTput
streams).

• Reference tables: These tables define the facilities of the plant, the materials,
the parameters related to the units of operation and so on. Inside them you
can find the definitions of the UNITS, the TANKS, the PIPELINES, the
LOADING RACKS. Also stored here are the STREAMS, tables that contain
the definitions of input and output points of the materials to and from the
UNITS.

• Process tables: These tables contain information related to instrument
measurements with the related timestamp. The INSTRUMENT may represent
a real instrument in the plant field or not. Different TAGS, that represent
different types of information, can be related to an INSTRUMENT. Values are
stored in a table called READING with their own timestamp and percentage of
reliability.

• Laboratory tables: These tables contain information related to the results of
the analyses performed on a SAMPLE that is taken in the plant from a facility.
Once a SAMPLE_POINT in the plant is defined, all the results of the analyses
performed on the SAMPLE taken from that SAMPLE_POINT can be stored in
the table called SAMPLE_ANALYSIS. In the table structure there are also the
two tables ANALYSIS_METHOD and STANDARD_RESULT which, together,
uniquely identify the "name" of Laboratory analysis performed on a sample.

In addition to these types of tables, we also have some tables containing specific
information related to the CIPROS GUI desktop (such as the HELP_TABLE table,
containing the on-line help of the CIPROS GUI).

4.1.5.2 Oracle data types used in CIPROS data
In general, CIPROS table definitions use several Oracle data types. Let us
consider some examples.

In Figure 19 you see an example of a General table, containing just VARCHAR2
fields, and the output of a SELECT statement on the table.
56 Converting from Oracle AIX to DB2 for OS/390

Figure 19. Example of a General table

In Figure 20 you see an example of a Reference table, containing also NUMBER
and NUMBER(n) fields, with the output of a SELECT statement on the table.

Figure 20. Example of a Reference table

In Figure 21 you see an example of a Laboratory table, containing DATE and
CHAR fields.

SQL> desc compos_type;
Name Null? Type
------------------------------- -------- ----
COMPOS_TYPE NOT NULL VARCHAR2(10)
DESCRIPTION VARCHAR2(40)

SQL> select * from compos_type;

COMPOS_TYP DESCRIPTION
---------- --
VOLUME Volume
MASS Mass

SQL> desc loading_rack
Name Null? Type
------------------------------- -------- ----
LOAD_RACK_NAME NOT NULL VARCHAR2(20)
LOAD_RACK_TYPE VARCHAR2(10)
LOAD_PT_NUM NUMBER(3)
FEED_LINE_DIAM NUMBER
ENG_UNT_FLDIAM VARCHAR2(10)
DESCRIPTION VARCHAR2(40)
PRINT_FNAME VARCHAR2(8)

SQL> select * from loading_rack;

LOAD_RACK_NAME LOAD_RACK_ LOAD_PT_NUM FEED_LINE_DIAM ENG_UNT_FL
-------------------- ---------- ----------- -------------- ----------
DESCRIPTION PRINT_FN
-- --------
LR1 BARGE 1 32 ft
Loading rack 1 - Barge loader LR1

LR2 TRUCK 2 62 ft
Loading rack 2 - Truck loader LR2

LR3 RAIL 3 23 m
Loading rack 3 - Rail loader LR3

LR4 SHIP 4 213 ft
Loading rack 4 - Ship loader LR4
System environment 57

Figure 21. Example of a Laboratory table

In Figure 22 you see an example of a Process table.

Figure 22. Example of a Process table

4.2 The target system environment

In this section we describe the DB2 for OS/390 environment and its configuration.

SQL> desc sample_analysis
Name Null? Type
------------------------------- -------- ----
SAMPLE_PT_NAME NOT NULL VARCHAR2(20)
TIMESTAMP NOT NULL DATE
ANLY_METH_NAME NOT NULL VARCHAR2(20)
STD_RESLT_NAME NOT NULL VARCHAR2(20)
ANLY_VALUE VARCHAR2(20)
FLAG_RANGE CHAR(1)
FLAG_CONF CHAR(1)
FLAG_RECONF CHAR(1)

SQL> select * from sample_analysis where STD_RESLT_NAME=’D15’;

SAMPLE_PT_NAME TIMESTAMP ANLY_METH_NAME STD_RESLT_NAME
-------------------- --------- -------------------- --------------------
ANLY_VALUE F F F
-------------------- - - -
T_0001_SP 03-JUN-99 ASTM D-86 D15
0.801 Y Y Y

T_0002_SP 03-JUN-99 ASTM D-86 D15
0.928 Y Y Y

T_0003_SP 03-JUN-99 ASTM D-86 D15
0.827 Y Y Y

T_0004_SP 03-JUN-99 ASTM D-86 D15
0.492 Y Y Y

SQL> desc reading_text;
Name Null? Type
------------------------------- -------- ----
TAG_NAME NOT NULL VARCHAR2(20)
TIMESTAMP NOT NULL DATE
VALUE VARCHAR2(1024)

SQL> select * from reading_text where TAG_NAME=’CDU_STATUS.SNP’;

TAG_NAME TIMESTAMP
-------------------- ---------
VALUE
--

CDU_STATUS.SNP 03-JUN-99
Disconnected
58 Converting from Oracle AIX to DB2 for OS/390

4.2.1 Configuration
The mainframe system is a sysplex. Our TSO, known to us as SC63TS, is
running as a logical partition (LPAR) on 9672-R76 hardware with OS/390 Version
2 Release 7 (OS/390 for the purposes of this book). The relational database
management system is DB2 UDB for OS/390 Version 6.

OS/390 is packaged together with all products that are considered part of the
system environment. TCP/IP, for example is included in the packaging and does
not need to be added to the environment. All various software parts of the system
are at the same level of the operating system.

A list of the base features of OS/390 V2 R7 can be found in OS/390 V2R7.0
Planning for Installation, GC28-1726-06.

The software subsystems, such as DB2, are separate products.

4.2.2 Security
Data stored in DB2 can be accessed by using the DB2 access functions or by
directly accessing the data objects at the physical data set level. In both cases
the appropriate level of access control must be in place. The security
implementation at the target system is based on standard RACF and DB2
functions which map access levels between DB2 objects and authorization
identifiers (IDs). RACF makes sure that only the DB2 subsystem can access its
data and, within DB2, RACF and DB2 security functions provide the IDs with a set
of granular privileges related to DB2 objects such as databases, tables, and rows,
and the type of actions that can performed on them.

The logon process is described in Appendix D, “OS/390 TSO tools and tips” on
page 257.

4.2.3 Backup
The backup and recovery strategy for the target system is based on standard
DB2 utilities (Image COPY, RECOVER, REBUILD, and so on). These are covered
in detail in the DB2 UDB Server for OS/390 V6 Administration Guide, SC26-9003,
and the DB2 UDB Server for OS/390 V6 Utility Guide and Reference, SC26-9015.

We have made backup copies of the database table spaces with the normal DB2
image copy utility. This is run at regular intervals during the data migration
process. If recovery is needed, it is achieved in one of two ways:

• If the data has not changed from the initial load, the table (or tables) may be
easily dropped, recreated, and reloaded. This may be attractive early on, due
to the referential integrity issue.

• Later on, once the data has been loaded and possibly updated, the needed
recovery strategy based on cyclic execution of COPY, REORG, secure
archiving of logs, and tested recovery procedures must be in place.

You will find sample JCL for image copies and other utilities in Appendix B,
“Sample DB2 for OS/390 jobs” on page 215.
System environment 59

4.2.4 Partitioned data sets
In a native OS/390 environment a file hierarchy is maintained through the use of
up to three levels of qualification for their names. The three levels of qualification
are defined with the names project, group and type.

Our project has been named CIPROS, and this name was chosen as the first
level qualification of the PDS. Since most of the code and changes are related to
the C language, the second level of qualification has been designated as "C". The
third level relates to the various kinds of files that are needed, such as source,
include, JCL, DCLGEN, DLL, DBRM, load, and so on.

PDS can be used to maintain a library of members with this approach. Inside
each PDS is a set of members whose attributes are the same. For example, all of
the C source code is maintained in the CIPROS.C.SOURCE PDS, each with its
own member. The fully qualified name would be CIPROS.C.SOURCE(BRIDGE).

Figure 23. A typical PDS hierarchy.

4.2.5 Communications
See 6.5, “Transferring data from AIX to OS/390” on page 118 for examples of the
functions utilized during the project.

4.2.6 Compilers
The C compiler used was the OS/390 R2 V7 C compiler. An example of the
compile JCL used is reported in Appendix B, “Sample DB2 for OS/390 jobs” on
page 215. The JCL procedures used may be found in your installation system
procedure library. Often this library is named "SYS1.PROCLIB".

CIPROS PDS LAYOUT
CIPROSN

|
C
|

SOURCE INCLUDE PARMS JCL SQLDLL BASEDLL LOADLIB DBRM

BRIDGE CLOGEV PARM1 JOB1 SQLINS BRIDGE RTDIN SQLINS
. . . . SQLDEL DINEXEC LABIN SQLDEL
.
.
60 Converting from Oracle AIX to DB2 for OS/390

Chapter 5. Database conversion

In this chapter we discuss the database conversion tasks, which include:

• DB2 environment

• Database design

• Inventory

• Data layout

• Cross reference

• Oracle and DB2 feature incompatibilities

5.1 DB2 environment

The setup for the DB2 environment specific for the conversion is a once-only task
discussed in 3.3.1.2, “DB2 environment” on page 34, which includes the following
activities:

• Installation and configuration

• Security (including userid)

• Backup and recovery

• System work space

• Communications

• Sample DB2 database and code

The project assumption is that the DB2 subsystem is already established and in
use at the target site. We only highlight the changes necessary to accommodate
the new converted application either in an existing DB2 subsystem, or in a new
dedicated one.

5.1.1 Installation and configuration
The installation and configuration of a DB2 subsystem is achieved by filling in the
various parameters presented by the several panels that constitute the
installation DSNTINST CLIST and then executing several jobs that are part of the
output of the CLIST execution.

Normally, the addition of a new DB2 application in an environment where DB2
subsystems are already in production requires a minimal update of the
installation parameters. The decision of defining a new DB2 subsystem depends
on the size and the service level requirements of the application being migrated.
For more information on the various aspects of the installation, refer to DB2 UDB
for OS/390 Version 6 Installation Guide, GC26-9008.

5.1.2 Security
Security in OS/390 and DB2 is usually achieved by a combination of usage of
Resource Access Control Facility (RACF) and the DB2 provided security
functions. RACF, or equivalent product, is the controller of accesses to the
system and its data at logon time. RACF is designed to work with the various
access points to an OS/390 system, such as TSO.
© Copyright IBM Corp. 1999 61

Users are part of a RACF group, and the group has more or less access to menu
options and data. If a group or user has access to DB2, DB2 may still control
access to various functions and tables by use of GRANTS of authority to perform
those functions or access the tables. For instance, SELECT authority may be
granted to PUBLIC for a particular table. Under PUBLIC, anyone with access to
the DB2 subsystem could view the contents of the table. However, UPDATE,
INSERT, or DELETE authority may be granted only to specific users, or not at all.

The two-layer combination of access control software and DB2 internal security
facilities has been the most commonly used one. However, some shops are
moving toward placing all security responsibilities in the hands of a systems
security group. These people usually do not know DB2, nor do they need to.
Access control can be achieved though software such as RACF alone. DB2 V5
and OS/390 Release 4 have introduced the possibility of delegating to RACF the
DB2 security definitions utilizing the RACF/DB2 External Security Module. See
Ready for e-business: OS/390 Security Server Enhancements, SG24-5158 for a
description of this function and related bibliography.

Security for our project, beyond the login security to OS/390 TSO/ISPF, is
achieved through the use of GRANT and REVOKE DB2 commands.

Backup and recovery is achieved through the normal DB2 facilities provided.
These subjects are covered in detail in the DB2 UDB for OS/390 V6
Administration Guide, SC26-9003, and the DB2 UDB for OS/390 V6 Utility Guide
and Reference, SC26-9015. Examples of the backup and recovery jobs used
during the project can be found in B.11, “JCL for REORG, RUNSTATS and COPY
of CIPROS table spaces” on page 223, B.12, “JCL for RECOVER of a CIPROS
table space” on page 226, and B.13, “JCL for rebuilding a CIPROS index” on
page 227.

5.1.3 Sample DB2 database and code
DB2 provides a full set of samples. The sample libraries also contain jobs to
establish facilities you may need — for example, User Defined Functions or UDF.
The samples cover code for various languages, the usage of the various utilities,
setting up, maintaining and accessing sample databases. Sample jobs provide
examples of JCL for the use of LOAD, REORG, COPY, and other utilities. The
sample databases themselves demonstrate the use of various DB2 features,
such as partitioned and segmented table spaces. These libraries reside in data
sets defined according to your site standards. They might be found under names
such as ’DB2V610.NEW.SDSNSAMP’ which is the default name of the version of
DB2V610.SDSNSAMP customized by the DSNTINST installation procedure.

For our project, we executed job DSNTEJ1. Refer to Appendix B, “Sample DB2
for OS/390 jobs” on page 215 for a listing of this job. DSNTEJ1 establishes a
sample database and executes various utilities for it. This was done to establish a
DB2 environment in which to test the C language precompile, compile, prelink,
link, bind and run in preparation for using similar jobs to execute the projects
converted C language code.

Job DNSTEJ2D, also found in Appendix B, “Sample DB2 for OS/390 jobs” on
page 215, produces the executable C language version of the sample phone
application and runs it. The sample produces several updates to the sample
tables and writes a report.
62 Converting from Oracle AIX to DB2 for OS/390

Both of these jobs ran with minor modifications to the data set names and DB2
system parameters. The sample installed high level qualifier, DB2V610X, needed
to be set, and our instance of DB2 known as DB2X. See Figure 24.

Figure 24. Sample JCL changes example

User defined functions
Job DSNTEJ2U creates a number of DB2 user defined functions, UDF. See B.21,
“DSNTEJ2U - DB2 sample JCL to create user defined functions” on page 240.
The UDFs provide special formatting and handling for data. In particular, we
needed the ALTDATE and ALTTIME UDFs.

To use UDFs, you must ensure that some prerequisites are in place. First, the
Workload Management (WLM) application environment must be in place: UDFs
are handled like stored procedures with WLM. A good source of information for
setting up the environment for stored procedures is the redbook WOW! DRDA
Supports TCP/IP: DB2 Server for OS/390 and DB2 Universal Database,
SG242212.

WLM has requirements for Resource Measurement Facility (RMF) and, since we
are operating in a client/server environment, the RACF Remote Sharing Facility
must be active for Distributed Relational Database Architecture (DRDA) use.
The functionalities of these required products are described in detail in the
OS/390 V2R6.0 RMF User's Guide, SC26-9015; OS/390 V2R7.0 MVS Workload
Management Services, GC28-1773-06; OS/390 V2R7.0 MVS Planning: Workload
Management, GC28-1761-08; and DB2 UDB for OS/390 V6 Administration
Guide, SC26-9003.

In creating the DB2 UDFs and compiling the supporting C language programs,
we noticed that the C programs needed to be modified to be fetchable and to
compile properly. The C programs associated with the UDFs are DSN8DUAD,
DSN8DUAT, DSN8DUCD, DSN8DUCT, DSN8DUCY and DSN8DUTI. They may
be found in a PDS with a name similar to DSN610.SDSNSAMP. To have them
compile correctly in the job, you have to add the statement found in Figure 25 to
the code. This line should be added as the first line of code in the C program. You
need to change the program name to match the program you are inserting the
code into. The program name in the example is DSN8DUAD.

Figure 25. Pragma needed in UDFs

//SYSTSIN DD *
DSN SYSTEM(DB2X)
BIND PLAN(DSN8BD61) MEMBER(DSN8BD3) ACT(REP) ISOLATION(CS)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) -

LIB('DB2V610X.RUNLIB.LOAD')
RUN PROGRAM(DSN8BD3) PLAN(DSN8BD61) -

LIB('DB2V610X.RUNLIB.LOAD')
END

#pragma linkage(DSN8DUAD,fetchable)
Database conversion 63

Since you might be using DRDA, and you will need it if you consider the
DataJoiner option discussed, we recommend that the DB2 system parameter for
extended security be set to YES. It can be set in the DSNTIPR panel of the
installation procedure or in the system installation job DSNTIJUZ in the macro
DSN6SYP, as shown in Figure 35 on page 83. This setting allows more
informative error messages to be returned with detailed reason codes when
security problems occur. This helps the DRDA clients in problem determination
without involving the host operator. See the DB2 UDB for OS/390 V6 Installation
Guide, GC26-9008 for a discussion of this and other parameters.

Figure 26. Example of the DSNSYSP macro

5.2 Database design

The database design is a once-only task, discussed in 3.3.1.3, “Database design”
on page 35, which includes the following tasks:

• Physical design

• Logical design

DSN6SYSP AUDITST=NO, X00410086
BACKODUR=5, X00410087
CONDBAT=64, X00410088
CTHREAD=70, X00410089
DBPROTCL=DRDA, X00410090
DLDFREQ=5, X00410091
DSSTIME=5, X00410092
EXTRAREQ=100, X00410093
EXTRASRV=100, X00410094
IDBACK=20, X00410095
IDFORE=40, X00410096
IDXBPOOL=BP0, X00410097
LBACKOUT=AUTO, X00410098
LOBVALA=2048, X00410099
LOBVALS=2048, X00410100
LOGAPSTG=0, X00410101
LOGLOAD=50000, X00410102
MAXDBAT=64, X00410103
MON=NO, X00410104
MONSIZE=8192, X00410105
PCLOSEN=5, X00410106
PCLOSET=10, X00410107
RLF=NO, X00410108
RLFTBL=01, X00410109
RLFERR=NOLIMIT, X00410110
RLFAUTH=SYSIBM, X00410111
ROUTCDE=(1), X00410112
EXTSEC=YES, X00410113
SMFACCT=(1), X00410114
SMFSTAT=YES, X00410115
STATIME=30, X00410116
STORMXAB=0, X00410117
STORPROC=DB2ZSPAS, X00410118
STORTIME=180, X00410119
TBSBPOOL=BP0, X00410120
TRACSTR=NO, X00410121
TRACTBL=16, X00410122
URCHKTH=0, X00410123
WLMENV= 00410124
64 Converting from Oracle AIX to DB2 for OS/390

5.2.1 Physical design

5.2.1.1 Approach to data definition and SQL
The Data Definition Language (DDL) and Data Manipulation Language (DML)
used to establish the DB2 database on OS/390 was produced by scripts written
and run on the AIX system.

To achieve a set of tables and data that matched the Oracle/AIX design as closely
as possible, the information contained in the Oracle catalogue was used to model
the code. The scripts produced the DDL, which was then modified by hand where
needed, though little in the way of manual intervention was required, except to
use the files of SQL to build jobs to run on OS/390. The approach was deliberate
and step-wise. The DDL for the table spaces was written manually on OS/390.
The DDL for the tables, indexes, views, primary, and foreign keys was almost
entirely produced by scripts on AIX. To keep the complexity of the scripts under
control, each of the components of the database definition was done separately.
This is why, for example, in the CREATE TABLE SQL, you will see no parameters
for designation of primary or foreign keys. These were done later with ALTER
TABLE statements.

5.2.1.2 The database creation
The database creation is achieved either of two ways. The SQL needed to
establish the database can be executed in interactive DB2 (DB2I option under
TSO), or through a sample program interface in an OS/390 batch job stream.

We chose to use the batch approach. The JCL can be found in Appendix B,
“Sample DB2 for OS/390 jobs” on page 215. The jobs are named beginning with
CIPROS. The database creation job is CIPROSDB, for example. The job
CIPROSDB was used to create the storage group, database, table spaces and
tables.

Our first step was to establish a storage group. The storage group establishes
where the database reside on the server by designating the volume or volumes
the database will use. Notes and details of the syntax of this and other SQL
statements discussed here can be found in DB2 UDB for OS/390 V6 SQL
Reference, SC26-9014.

Since our set of tables has a relatively small amount of data, the storage group to
hold our database is only on one volume. The statement for storage group
creation is:

Our volume is named SBOX10, and the catalog for the database is the one
established for DB2 at DB2 install time. We had the luxury of being the only users
of this DB2 subsystem.

The database is created with the following statement:

CREATE STOGROUP CIPROS01
VOLUMES ("SBOX10")
VCAT DB2V610X;
Database conversion 65

In our case, the statement specifies buffer pool as BP0, which is also the default
in our system. Buffer pools are used by DB2 as temporary storage needed during
I/O activity. For example, if a program selects a row of data from a table, the page
containing that row is placed in a buffer in the buffer pool in memory. Buffers
increase performance by lowering the amount of data movement needed. For our
small application, BP0 was used. In real production you may want to point your
data to a buffer pool different from BP0 and even set up a different default at
system level. You need to talk to your DBA to define number and sizes of the
buffer pools involved. Information on buffer pools and their management can be
found in DB2 UDB for OS/390 V6 Administration Guide, SC26-9003.

The CCSID parameter sets the encoding scheme for the data. Since the
converted system runs on a standard OS/390 system, we explicitly set the
encoding to EBCDIC.

5.2.1.3 Table space definitions
Table space is the DB2 basic unit of data storage. A table space can hold one or
more tables. The table space may be simple, segmented, or partitioned. Both
simple and segmented table spaces may hold one or many tables. The difference
is in how the data is held and managed. Normally, you use the segmented table
spaces in both cases, trying to group tables that are relatively small and have
similar recovery requirements, or assigning the whole segmented table space to
larger tables. If the table is really large, you might consider the partitioned table
space, which holds pages only of a single table, but spreads them over multiple
partitions based on index ranges. This can help in providing better performance
and easier operations. Each has advantages and disadvantages, depending on
your data. Information and comparisons are reported in DB2 UDB for OS/390 V6
Administration Guide, SC26-9003. We chose the segmented table space
approach mainly because we have several relatively small tables in the
application.

The DDL for table space creation is shown in Figure 27.

Figure 27. Example of a table space definition

CREATE DATABASE CIPROS
STOGROUP CIPROS01
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE TABLESPACE CPRSBASE
IN CIPROS
USING STOGROUP CIPROS01

PRIQTY 150000
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
SEGSIZE 16
CCSID EBCDIC;
66 Converting from Oracle AIX to DB2 for OS/390

Note: Since DB2 accepts 8 characters table space names as a maximum, all the
table spaces have been renamed into 8 character names. Also, no "_" symbols
(underscore) are allowed.

Specifying the SEGSIZE parameter in the CREATE TABLESPACE statement
implies the creation of a segmented table space.

CPRSBASE is the name of our largest table space holding most of the tables.
PRIQTY is the primary space allocation. SECQTY is the secondary allocation
amount that is used by DB2 when more space is needed, in this example it is a
small value because the data is very stable. The amounts are in KB. ERASE NO
indicates that the data is not erased from the disk after a delete operation. The
data is only logically deleted and is not accessible by DB2. If YES is used the
data is reformatted. LOCKSIZE PAGE LOCKMAX SYSTEM is the default for the
granularity of the locks while the application is accessing the data. Row level
locking is available, but since our conversion is for a batch subsystem it is not
needed and can cause only unnecessary overhead. CLOSE NO indicates that the
data set may not be closed when the table is not in use. SEGSIZE tells DB2 the
table space is segmented and the integer following it states the number of pages
in each segment.

See Table 18 for a list the five CIPROS segmented table spaces defined in DB2
and the number of tables each one contains for a total of 65 tables.

Table 18. DB2 CIPROS table spaces

5.2.1.4 Users, roles, and groups
Oracle has an internal security management to grant access to the database.

WIth the CREATE USER and CREATE ROLE statements, the Oracle DBA can
create, inside Oracle itself, authorized users and groups of users (roles, in Oracle
terminology). Users can also be "identified externally" in order to use the
operating system security management for the authentication towards the Oracle
database.

We can use the CIPROS application to provide an example of Oracle
management of users.

The CIPROS application has two standard default users (cipros and cprs_view)
and two standard default roles (role_cipros and role_view).

The cipros and its role role_cipros have all the authorizations on CIPROS tables.
In particular, cipros user is the creator and the owner of CIPROS objects.

Table space name Type Number of tables

CPRSBASE Segmented 53

CPRSLAB Segmented 2

CPRSLOGE Segmented 3

CPRSREAD Segmented 2

CPRSPRDS Segmented 5

Total number of tables 65
Database conversion 67

The cprs_view and its role role_view have only SELECT grants on the CIPROS
tables.

An example of the SQL statement needed to create the cipros user (to be issued
by system Oracle user from a SQLplus command line) is:

We have then created a role called role_cipros with the following statement:

After that, we have granted access and authorizations to the role role_cipros:

For a complete list of Oracle authorizations and grants, refer to ORACLE 7, The
Complete Reference, ISBN 0-07-882285-8.

Finally we have granted the role to the user cipros with the following Oracle SQL
statement:

In this way, the cipros user inherits all the authorizations defined for the role he is
granted.

create user cipros
identified by ciprospwd
default tablespace CPRS_BASE
temporary tablespace TEMP
quota unlimited on CPRS_BASE
quota unlimited on CPRS_READING
quota unlimited on CPRS_READING_IND
quota unlimited on CPRS_MVMNT
quota unlimited on CPRS_LOGE
quota unlimited on CPRS_LAB
quota unlimited on CPRS_REPV
quota 5M on USERS
quota 5M on TEMP;

create role role_cipros;

grant
ALTER ANY CLUSTER,
ALTER ANY INDEX,
ALTER ANY PROCEDURE,
...
...
...
SELECT ANY SEQUENCE,
SELECT ANY TABLE,
UPDATE ANY TABLE

to
role_cipros;

grant role_cipros to cipros;
68 Converting from Oracle AIX to DB2 for OS/390

Security in OS/390 and DB2 is usually achieved by a combination of usage of
RACF and of the DB2 provided security functions, refer to 5.1.2, “Security” on
page 61.

DB2 provides GRANT and REVOKE Data Control Language statements of SQL
to grant and revoke object access or system authorities. Refer also to 5.2.1.9,
“Authorizations” on page 85.

In our project, we have decided not to migrate the Oracle original users and roles
into RACF/TSO users and groups. We have used the user PAOLOR3 with system
administrator level of authority SYSADM to create our database objects.

You should consult your security department before migrating users and groups
definitions in order to comply with your security standards.

5.2.1.5 Data types comparison
in this section we briefly describe the data types managed by Oracle and DB2
and point out some differences.

Oracle data types
Table 19 shows the list of basic Oracle data types and their description, refer also
to ORACLE 7, The Complete Reference, ISBN 0-07-882285-8 for more
information.

Table 19. Oracle primary data types

Oracle data type Description

NUMBER Numeric field (maximum value: 1*10125, maximum precision: 38
digits). If NUMBER(n) is specified, the total length of the number
can be n as maximum (n<=126). If NUMBER(d,p) is specified,
the number can have d total digits with a precision of p digits
(digits after decimal point)

CHAR(n) Fixed-length character data, n chars long, up to 255 bytes

VARCHAR2(n) Variable length character string having maximum length n
bytes. The maximum length is 2000

RAW(n) Binary data, n bytes long, with n up to 255 bytes.

LONG Character data of variable length up to 2 GB

LONG RAW Binary data of variable length up to 2GB

DATE Valid date range from January 1, 4712 BC to December 31,
4712 AD.

ROWID Hexadecimal string representing the unique address of a row
in its table. This data type is primarily for values returned by
the ROWID pseudo-column.
Database conversion 69

In Table 20 a list of further Oracle data types is shown. Most of these data types
are accepted by the CREATE TABLE statement for compatibility with other SQL
databases.

Table 20. Oracle additional data types

DB2 for OS/390 V6 data types
DB2 for OS/390 V6 provides a large number of data types, in addition to the
possibility for users to define their own data types.

Table 21 provides a list of the DB2 for OS/390 V6 data types, refer to DB2 UDB
for OS/390 Version 6 SQL Reference, SC26-9014 for a complete description of
DB2 data types.

Table 21. DB2 for OS/390 V6 data types

Oracle data type Description

MLSLABEL Data type format of an operating system label (4 bytes
representation). This data type is used primarily with Trusted
Oracle.

DECIMAL Same as NUMBER. If no arguments are passed, a default data
type NUMBER(38) is assumed

FLOAT According to the documentation, it should be the same as
NUMBER. But if no arguments are passed, a default of 126 digits
is assumed. If FLOAT(n) is specified, the FLOAT field, when
inserted, is truncated or approximated. FLOAT(d,p) cannot be
specified.

INTEGER Same as NUMBER(38). INTEGER does not accept arguments
for the size. The inserted numbers are approximated to the
nearest integer value.

LONG VARCHAR Same as LONG

SMALLINT Same as INTEGER

VARCHAR(n) Same as VARCHAR2, but its use is not advisable since this
data type may change in future versions of Oracle.

DB2 for OS/390 data type Description

SMALLINT Small integer with range (-32768 +32767)

INTEGER
INT

Large integer with range (-2147483648
+2147483647)

DEC
DECIMAL
NUMERIC

Packed decimal number. DECIMAL(d,p) where d is
the total number of digits (max 31), p is the precision.
Default for p is 0, that is DECIMAL(d) means
DECIMAL(d,0). Default for d is 5, that is DECIMAL
means DECIMAL(5,0)

FLOAT(n) Floating point number. If 1<=n<=21, the format is
single precision floating point, if 22<=n<=53, the
format is double precision floating point

REAL Single precision floating point number. The range is
-7.2E+75 to 7.2E+75. In this range, the largest
negative value is -5.4E-79, the smallest positive value
is 5.4E-79
70 Converting from Oracle AIX to DB2 for OS/390

Comparison between Oracle and DB2 data types
Table 22 provides a mapping table for data type comparison and conversion
between Oracle and DB2.

DOUBLE
DOUBLE PRECISION
FLOAT

Double precision floating point number. The range is
-7.2E+75 to 7.2E+75. In this range, the largest
negative value is -5.4E-79, the smallest positive value
is 5.4E-79

CHAR(n)
CHARACTER(n)

Fixed length character string, with 1<=n<=255.
Default is n=1, that is CHAR means CHAR(1)

VARCHAR(n)
CHAR VARYING(n)
CHARACTER VARYING(n)

Varying length character string. The value of n
depends on the page size, and cannot be greater
than 32714.
For CHAR and VARCHAR data types the "FOR
subtype DATA" clause can be also specified, where
subtype can be:

- SBCS for single bit data
- MIXED for mixed data
- BIT for BIT data

CLOB(n)
CHAR LARGE OBJECT(n)
CHARACTER LARGE OBJECT(n)

Character large object string of maximum length n,
with 1<=n<=2147483647. n K or n M or n G can be
also specified, where K means 1024 bytes, M
means 1048576 bytes, G means 1073741824
bytes

BLOB(n)
BINARY LARGE OBJECT(n)

Binary large object string of maximum length n,
with 1<=n<=2147483647. n K or n M or n G can be
also specified, where K means 1024 bytes, M
means 1048576 bytes, G means 1073741824
bytes

GRAPHIC(n) Fixed length graphic string, with 1<=n<=127

VARGRAPHIC(n) Varying length graphic string, 1<=n<=R/2, where R is
the maximum row size minus 2 bytes

DBCLOB(n) Double bytes character large object string of
maximum length n, with 1<=n<=1073741823. n K or
n M or n G can be also specified, where K means
1024 bytes, M means 1048576 bytes, G means
1073741824 bytes

DATE A three part value for year, month and day

TIME A three part value for hour, minute and second

TIMESTAMP A seven part value for year, month, day, hour, minute,
second and microsecond

ROWID A value that uniquely identifies a row in a table

DB2 for OS/390 data type Description
Database conversion 71

Table 22. Comparison between Oracle and DB2 data types

Oracle data type DB2 for OS/390 V6 data type

NUMBER FLOAT

NUMBER(n) FLOAT(n). If n<16, SMALLINT should be used. If
16<=n<=31, INTEGER should be used.

NUMBER(d,p) DECIMAL(d,p), when p<=31. If p>31, FLOAT or
DOUBLE can be used

DECIMAL(n) Same as NUMBER(n)

DECIMAL(d,p) Same as NUMBER(d,p)

FLOAT FLOAT

FLOAT(n) FLOAT(n), when n<53. If n>=53, FLOAT or DOUBLE
can be used

SMALLINT SMALLINT or DOUBLE

INTEGER INTEGER or DOUBLE

CHAR(n) CHAR(n)

VARCHAR(n) VARCHAR(n)

VARCHAR2(n) VARCHAR(n)

LONG VARCHAR CLOB(2 G)

RAW(n) CHAR(n) FOR BIT DATA

LONG CLOB(2 G). A ROWID column is also required for
LOBs in DB2.
If data stored in the source database is shorter, less
space can be reserved for DB2 CLOBs.
If the effective length of LONG Oracle data is less then
the maximum length of a VARCHAR in your DB2 target
table, you can also use VARCHAR

LONG RAW BLOB(2 G). A ROWID column is also required for
LOBs in DB2.
If data stored in the source database is shorter, less
space can be reserved for DB2 BLOBs.
If the effective length of LONG RAW Oracle data is less
then the maximum length of a VARCHAR in your DB2
target table, you can also use VARCHAR FOR BIT
DATA

DATE TIMESTAMP (but including microseconds)

ROWID ROWID GENERATED ALWAYS BY DEFAULT. While
in Oracle it is a pseudo data type and ROWID column
is created automatically at table creation, in DB2 it is a
data type that requires an explicit creation in the
CREATE/ALTER table statements

MLSLABEL Not applicable to DB2 for OS/390
72 Converting from Oracle AIX to DB2 for OS/390

DATE and TIME data types
Oracle has the DATE data type. DB2 has DATE, TIME, and TIMESTAMP. The
Oracle DATE is equivalent to the DB2 TIMESTAMP data type, but does not
include microseconds. In Oracle there is a default external format, depending on
the language conventions used for the instance configuration. To extract data in
another format, the TO_CHAR function must be used, as in the following
example:

DB2 uses the TIMESTAMP data type, which includes up to microseconds, and
whose ISO standard external format is YYYY-MM-DD-HH24.MI.SS.mmmmmm.
DB2 has also the DATE data type for the dates (ISO standard external format:
YYYY-MM-DD) and the TIME data type (ISO standard external format:
HH.MM.SS).

The formats for string representation of dates in DB2 is shown in Table 23.

Table 23. DB2 format for string representation of DATE data types

From within your application program you have different options between DB2
and Oracle in dealing with date format and its components.

Table 24 maps the equivalent functions.

Table 24. Comparison between Oracle and DB2 DATE components format

Format name Abbreviation Date format

ISO standard ISO yyyy-mm-dd

IBM USA standard USA mm/dd/yyyy

IBM European standard EUR dd.mm.yyyy

Japanese industrial standard -
Christian Era

JIS yyyy-mm-dd

Installation defined LOCAL depending on installation

Oracle DB2 for OS/390 V6

SELECT TO CHAR(DATE_FIELD,’DD’) SELECT DAY(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’DAY’) SELECT DAYNAME(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’D’) SELECT DAYOFWEEK(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’DDD’) SELECT DAYOFYEAR(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’HH24’) SELECT HOUR(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’MI’) SELECT MINUTE(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’MM’) SELECT MONTH(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’MONTH’) SELECT MONTHNAME(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’SS’) SELECT SECOND(DATE_FIELD) FROM TABLE

SELECT TO CHAR(DATE_FIELD,’YYYY’) SELECT YEAR(DATE_FIELD) FROM TABLE

select TO_CHAR(sysdate,’YYYY-MM-DD-HH24.MI.SS’) from DUAL;
Database conversion 73

The formats for string representation of times in DB2 are shown in Table 25.

Table 25. DB2 format for string representation of TIME data type

With DB2 for OS/390 V6, several sample user-defined functions are provided to
manage date and time formats which are different from the standard ones, as
shown in Table 26.

Table 26. Sample user-defined functions provided with DB2 for OS/390 V6

Refer to Appendix C, “Sample data preparation program” on page 253 for the
configuration and usage steps of these DB2 sample functions, and see DB2 UDB
for OS/390 Version 6 SQL Reference, SC26-9014 for a description of these and
other DB2 user-defined functions. Refer also to 5.2.1.16, “User-defined functions
and stored procedures” on page 103.

Numeric data types
Usually the numeric formats cannot be converted just starting from the data type
definition of the table, but also, the content of the numeric field should be taken
into consideration. For example, the NUMBER(n) Oracle data type has a natural
corresponding value in DB2 in FLOAT(n), but in Oracle NUMBER(n) means a
simple INTEGER number.

ROWID data type
In Oracle, the ROWID pseudo column is always created with the CREATE TABLE
statement. The name of the pseudo-column is ROWID for all the tables.

DB2 for OS/390 V6 supports the ROWID data type, and it can be defined with a
CREATE TABLE or ALTER TABLE statement.

A table cannot have more than one ROWID column. It must be specified with the
GENERATED ALWAYS or GENERATED BY DEFAULT options. The BY
DEFAULT option can be specified only if a unique, single-column index on the
ROWID column is created, otherwise the SQL INSERT statement and the LOAD
utility cannot be used to add rows to the table. Unless you are using data

Format name Abbreviation Date format

ISO standard ISO hh.mm.ss

IBM USA standard USA hh:mm AM/PM

IBM European standard EUR hh.mm.ss

Japanese industrial standard -
Christian Era

JIS hh:mm:ss

Installation defined LOCAL depending on installation

Function name Description

DSN8.ALTDATE Returns the current date or a user-specified date in a
user-specified format

DSN8.ALTTIME Returns the current time or a user-specified time in a
user-specified format

DSN8.DAYNAME Returns the name of the day of the week on which a date in ISO
format falls

DSN8.MONTHNAME Returns the name of the month in which a date in ISO format falls
74 Converting from Oracle AIX to DB2 for OS/390

propagation, it is recommended to use the ALWAYS clause. the ROWID cast
function is provided to access directly ROWID columns.

Moreover, a ROWID column is mandatory when the table contains LOB columns
(BLOB, CLOB, DBCLOB).

The internal representation of a row ID value is transparent to the user. The value
is never subject to translation because it is considered to contain BIT data. The
length of ROWID column, as described in the LENGTH column of catalog table
SYSCOLUMNS, is the internal length, which is 17 bytes. The length as described
in the LENGTH2 column of DB2’s catalog table SYSIBM.SYSCOLUMNS is the
external length, which is 40 bytes.

You can see an example of creation of the ROWID column in Figure 28.

Figure 28. Example of a table with a ROWID column

Large OBjects
The BLOB, CLOB and DBCLOB definition in DB2 for OS/390 V6 requires the
definition of a ROWID column in the table containing the large object column(s).

Once the table is been created, some additional steps are also required to access
the table.

Refer to 5.2.1.6, “Table definition conversion” on page 75 for a description of the
syntax for defining tables containing large object columns.

5.2.1.6 Table definition conversion
The syntax of the CREATE TABLE statement is quite different between Oracle
and DB2 for OS/390 V6. The main difference is that in the Oracle CREATE
TABLE statement some clauses can be specified, which can modify some
physical table definitions (effective at table space level). In DB2 all the physical
definitions are always implemented at table space level.

This fact implies that a full conversion of the table definitions should be divided
into two steps:

• Analysis of the physical definition of the table and conversion into
corresponding table space definitions in DB2 (refer to 5.2.1.3, “Table space
definitions” on page 66)

• Migration of the logical definition of the table into a DB2 CREATE TABLE
statement

Managing long names
Another difference to take into consideration is that in DB2 table names cannot
be longer than 18 characters, while in Oracle, the maximum is 30 characters.

CREATE TABLE EMPLOYEE (NAME CHAR(30) NOT NULL,
DEPT CHAR(10) NOT NULL,
ROWID ROWID GENERATED ALWAYS);

INSERT INTO EMPLOYEE (NAME, DEPT) VALUES (’HUGH FANTOZZI’,’FINANCIAL’);

SELECT NAME, ROWID FROM EMPLOYEE;
Database conversion 75

We can retrieve the Oracle table names longer than 18 bytes from the Oracle
catalog with the following statement:

The same limitation to 18 characters is valid for column names. You can retrieve
the column names longer than 18 characters with the following statement:

A similar command can be used also for the index names, which have the same
limit, as shown also in 5.2.1.7, “Indexes and primary keys conversion” on page
80:

As shown in 5.2.1.3, “Table space definitions” on page 66, also the table space
names have to be changed if they do not comply with DB2 limitation. The
command to find table space names with the same limit is:

Managing numeric and null fields
In some cases there no direct unique matching between Oracle and DB2 data
types. An example is provided by NUMBER(n), that can be converted into
SMALLINT or INTEGER or FLOAT, depending upon the value of n. Refer to
5.2.1.5, “Data types comparison” on page 69.

Furthermore, since primary key fields cannot be NULL, Oracle database
automatically changes to NOT NULL the primary key fields when executing the
command ALTER TABLE ADD PRIMARY KEY (if this has not been done in the
CREATE TABLE statement). This is not true in DB2, you need to add the NOT
NULL clause to the primary key fields in the CREATE TABLE statement.

Tables containing large objects
Even if the CIPROS Process and Laboratory segments do not contain LONG or
LONG RAW columns, they need a separate treatment.

As shown in 5.2.1.5, “Data types comparison” on page 69, LONG and LONG
RAW Oracle columns can be mapped respectively into CLOB and BLOB DB2
objects.

This is not enough on the DB2 side, since a ROWID column is necessary to
correctly create the table with large object fields.

select table_name, length(table_name) from cat
where length(table_name)>18;

select table_name, column_name, length(column_name)
from user_tab_columns where length(column_name)>18;

select index_name, length(index_name) from user_indexes where
length(index_name)>18;

select tablespace_name, length(tablespace_name) from dba_tablespaces where
length(tablespace_name)>18;
76 Converting from Oracle AIX to DB2 for OS/390

After that, the following steps are also needed before being able to access the
table:

• Create a table space to store the LOB data with the CREATE LOB
TABLESPACE statement

• Create a table to store the LOB data with the CREATE AUXILIARY TABLE
statement

• Create a unique index on the auxiliary table

Note that both the table and the auxiliary table must be created in the same
database.

Figure 29 shows an example on how to create a table with large objects. Refer
also to DB2 UDB for OS/390 Version 6 SQL Reference, SC26-9014.

Figure 29. Example of a table containing large objects

The DUAL pseudo table
The Oracle DUAL pseudo (or dummy) table is used by applications to extract
information or data from the database which are not stored in user tables.

Typical examples are the following SQL statements that you can use to select the
current date or display a message:

DB2 has the SYSIBM.SYSDUMMY1 table which can be used in similar situations
as follows:

CREATE TABLE CIPROS.LOBTAB (F1 CHAR(255) FOR BIT DATA,
F2 CLOB(2 G),
F3_ROWID ROWID GENERATED ALWAYS);

CREATE LOB TABLESPACE LOBTABTS
IN DSNDB04
LOG NO;

CREATE AUXILIARY TABLE LOBTABAU
IN DSNDB04.LOBTABTS
STORES CIPROS.LOBTAB
COLUMN F2;

CREATE UNIQUE INDEX X_LOBTAB ON LOBTABAU;

select sysdate from dual;
select ’HALLO’ from dual;

SELECT CURRENT DATE FROM SYSIBM.SYSDUMMY1;
SELECT ’HALLO’ FROM SYSIBM.SYSDUMMY1;
Database conversion 77

Automatic conversion of table definitions
Paying attention to the exceptions (as for large objects columns), the simplest
way to migrate the table definition and creation using an automatic procedure is
to start from an Oracle export file and process the CREATE TABLE statements
with an AIX shell script, which uses sed and awk UNIX commands (refer also to
DATABASE 2 for AIX Conversion Guide - Oracle 7.1 to DB2 Version 2,
SG24-2567).

The first step is to use the export Oracle utility to extract the objects definition.

First, we have created a flat file containing the list of tables belonging to the part
of the source application which is the object of our conversion project. This file is
useful also in other steps of the conversion.

Second, a parameter file exp.prf for the export utility has been created, as shown
in Figure 30, containing the instructions for the exp Oracle command and the
abbreviated list of all the tables involved in the conversion of our application:

Figure 30. Parameter file exp.prf for the Oracle export utility

Then, the exp command has been issued as follows:

We obtain a tables.exp file (as indicated in the exp.prf file) containing just the
table definitions, including indexes, constraints and grants but not the data (as
specified in the exp.prf file with the option rows=N).

Once the export file has been created, we can start processing the file with the
shell script ddltabs.sh provided in A.1, “ddltabs.sh script” on page 191.

This shell script can be issued with the syntax:

userid=cipros/cipros
rows=n
constraints=y
grants=y
indexes=y
file=tables.exp
tables=
ANALYSIS_METHOD
.
.
.
VALUE_TYPE

exp parfile=exp.prf

ddltabs.sh tables.exp > tables.ddl
78 Converting from Oracle AIX to DB2 for OS/390

It performs the following operations:

• Selects just the CREATE TABLE statements

• Deletes the PCTFREE/STORAGE clauses from the CREATE TABLE
statements

• Converts the column data types, according to the tables described in 5.2.1.5,
“Data types comparison” on page 69

• Deletes the double quote symbols and adds a ";" character at the end of each
statement

• Changes the old table space names into new ones, according to a list of local
environment variables defined at the beginning of the script

• Changes some data types into new ones, according to a list of local
environment variables defined at the beginning of the script

• Creates a temporary file containing the list of the table fields which compose
the primary key of each table

• Changes the field definition of the primary key fields to NOT NULL, by using
the pk.awk and the sednn.sh external files (see A.1.1, “sednn.sh script” on
page 194 and A.1.2, “pk.awk script” on page 194)

• Changes the table names that have to be changed into the new names,
according to a list of local environment variables defined at the beginning of
the script

• Formats the statements in a more readable layout by inserting new lines after
the field definitions and before the table space definition

The substitution of the table space and table names has to be performed in order
to comply with the DB2 constraints on table space definitions.

The last step can be useful to change some specific Oracle definition that can be
mapped into a different DB2 data type. In our example, we decided to change all
the VARCHAR2(1) and VARCHAR2(3) into CHAR and CHAR(3) instead of
VARCHAR(1) and VARCHAR(3) respectively.

Moreover, an environment variable DBN is provided at the beginning of the script
for the automatic insertion of the DB2 database name as a table space qualifier.

In Figure 31 we show an example of a CREATE TABLE statement with the old
Oracle and the new DB2 syntax.
Database conversion 79

Figure 31. Example of a CREATE TABLE statement

The ddltabs.sh script does not perform any change on field names, since
CIPROS tables do not contain column names longer than 18 characters. If your
application has a few column names that have to be changed, it is easier to do it
manually on the DDL file, otherwise you can modify the script by adding a global
substitution in the same way it is done with table names.

Table creation on DB2
See B.5, “JCL for creation of storage group, database, table spaces and tables”
on page 218. Job CIPROSDB contains the converted DDL as input to DB2’s
sample program DSNTIAD. See Figure 32.

Figure 32. Job step with create table

5.2.1.7 Indexes and primary keys conversion
The same approach used for the table conversion can also be used for the
indexes.

Syntax differences in index definitions
In this case there are some additional differences in the definition of primary
indexes between Oracle and DB2.

Old Oracle CREATE TABLE statement:
CREATE TABLE "LOADING_RACK" ("LOAD_RACK_NAME" VARCHAR2(20),
"LOAD_RACK_TYPE" VARCHAR2(10), "LOAD_PT_NUM" NUMBER(3, 0), "FEED_LINE_DIAM"
NUMBER, "ENG_UNT_FLDIAM" VARCHAR2(10), "DESCRIPTION" VARCHAR2(40),
"PRINT_FNAME" VARCHAR2(8)) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
STORAGE(INITIAL 20480 NEXT 20480 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1) TABLESPACE "CPRS_BASE"

New DB2 CREATE TABLE statement:
CREATE TABLE LOADING_RACK (LOAD_RACK_NAME VARCHAR(20) NOT NULL,

LOAD_RACK_TYPE VARCHAR(10),
LOAD_PT_NUM INTEGER,
FEED_LINE_DIAM FLOAT,
ENG_UNT_FLDIAM VARCHAR(10),
DESCRIPTION VARCHAR(40),
PRINT_FNAME VARCHAR(8))
IN CIPROS.CPRSBASE;

//* STEP 2: CREATE CIPROS TABLES, VIEWS
//STEP002 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB2X)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) -

LIB('DB2V610X.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
CREATE TABLE ANALYSIS_METHOD (ANLY_METH_NAME VARCHAR(20) NOT NULL,

DESCRIPTION VARCHAR(40))
IN CIPROS.CPRSBASE;
80 Converting from Oracle AIX to DB2 for OS/390

With Oracle a primary key can be defined in either one of the following two ways
available for specifying different parameters of the ALTER TABLE command:

• ALTER TABLE table_name ADD CONSTRAINT constr_name PRIMARY KEY

• ALTER TABLE table_name ADD PRIMARY KEY

In the first case, the statement automatically creates a unique index on the table
with the same definition as the primary key, and it gives to the unique index the
same name of the primary key constraint. In the second case, a unique index is
created on the table, but a random unique name is given by Oracle to the index.

In DB2 for OS/390 V6 the automatic creation of a primary index with a default
name is performed only by the CREATE TABLE statement (and only if the
processor is the owner of the schema), while the ALTER TABLE ADD PRIMARY
KEY statement creates only the primary key definition.

This leads to the following considerations:

• If the primary key of the Oracle table has been created using the first syntax,
we can create both the index (using the constraint name as the index name)
and the primary key

• If the primary key of the Oracle table has been created using the second
syntax, we can only create the primary key. The corresponding primary index
has to be created according to the definition of the primary key fields, by
choosing an appropriate naming convention for the new indexes. An example
is reported in Figure 33 on page 83.

In both PRIMARY KEY clause types, the fields composing the primary key are
automatically set to NOT NULL by Oracle in the table definition. DB2 for OS/390
V6 requires the explicit NOT NULL clause in the CREATE TABLE statement. See
also 5.2.1.6, “Table definition conversion” on page 75.

Moreover, a null string and NULL are handled in different ways by DB2, while
Oracle considers a null string just the same as the NULL value (see also 7.3.5,
“Pointers” on page 154).

Automatic conversion of index definitions
The script ddlind.sh (see A.2, “ddlind.sh script” on page 194) creates, for each
ALTER TABLE ADD CONSTRAINT PRIMARY KEY Oracle statement, two DB2
statements, one for the unique index and the other one for the primary key, and
for each ALTER TABLE ADD PRIMARY KEY statement, a DB2 statement only for
the primary key.

Starting from the Oracle export file, it prompts to standard output the DDL for the
indexes in DB2 syntax.

The script also looks for the ALTER TABLE ADD CONSTRAINT UNIQUE
statements and convert them into CREATE UNIQUE INDEX statements.

Finally, it converts the CREATE (UNIQUE) INDEX statements into DB2 syntax.

As for the tables, also the index names have the limit of 18 characters, so the
script allows to automatically change the index names. You can retrieve from the
Oracle catalog the list of the indexes having long names with the following
statement:
Database conversion 81

When you use the DB2 implicit VSAM definition for indexes, DB2 creates a name
for the index space based on the index name. If the index names are very similar,
as it can happen coming from a conversion from longer names, you may have
problems with the required uniqueness of names for VSAM allocation of the index
space (especially if the indexed tables belong to the same database). You might
need to modify again the index names.

In DB2 for OS/390 V6, the index maximum length is 255-n, where n=# of NULL
columns composing the index. Oracle allows longer indexes (the maximum length
is platform-dependent, in our environment it is 1578 bytes).

The shell script can be issued with the syntax:

This script performs the following operations:

• Selects just the ALTER TABLE ADD CONSTRAINT PRIMARY KEY/UNIQUE
and CREATE INDEX statements

• Deletes the INDEX STORAGE clause

• Creates the CREATE INDEX/ALTER TABLE ADD PRIMARY KEY statements
in the DB2 syntax

• Deletes the double quote symbols and adds a ";" character at the end of each
statement

• Changes the table and index names that have to be changed with the new
names, according to a list of local environment variables defined at the
beginning of the script

• Formats the statements in a more readable layout by inserting new lines
before the field and storage definitions

Moreover, at the beginning of the script some local environment variables are
provided, containing the database name, the STOGROUP, the PRIQTY, the
SECQTY and the ERASE clauses that should be used for the creation of the DB2
statements. They can be evaluated for the applicability of default values to be
used for all the CREATE INDEX statements in the script. Refer to DB2 UDB for
OS/390 Version 6 SQL Reference, SC26-9014 for a complete description of
CREATE INDEX syntax and options.

Every exception should be processed manually, by changing the default values in
the final output file. If cluster indexes or specific values for the FREE_BLOCK
section or other specific DB2 parameters such as GBPCACHE, BUFFERPOOL or
PIECESIZE are needed, they should be analyzed in detail in order to optimize the
utilization of DB2 structures and facilities.

In Figure 33, Figure 34 and Figure 35 we show some examples of Oracle ALTER
TABLE and CREATE INDEX statements with the old Oracle and the new DB2
syntax.

select index_name, length(index_name) from user_indexes
where length(index_name)>18;

ddlind.sh tables.exp > indexes.ddl
82 Converting from Oracle AIX to DB2 for OS/390

Figure 33. Example 1 - ALTER TABLE statement

Figure 34. Example 2 - CREATE INDEX statement

Figure 35. Example 3 - ALTER TABLE statement

Old Oracle ADD CONSTRAINT PRIMARY KEY statement:
ALTER TABLE "ANALYSIS_METHOD" ADD CONSTRAINT "ANALYSIS_METHODP1" PRIMARY
KEY ("ANLY_METH_NAME") USING INDEX STORAGE (INITIAL 20480 NEXT 20480
MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 50 FREELISTS 1) TABLESPACE
"CPRS_BASE"

New DB2 CREATE UNIQUE INDEX/ADD PRYMARY KEY statements:
CREATE UNIQUE INDEX ANALYSIS_METHODP1

ON ANALYSIS_METHOD
(ANLY_METH_NAME)
USING STOGROUP CIPROS01

PRIQTY 4000
SECQTY 400
ERASE NO;

ALTER TABLE ANALYSIS_METHOD ADD PRIMARY KEY
(ANLY_METH_NAME);

Old Oracle CREATE INDEX statement:
CREATE INDEX "SAMPLEI2" ON "SAMPLE" ("MTRL_NAME") PCTFREE 10 INITRANS 2
MAXTRANS 255 STORAGE (INITIAL 20480 NEXT 20480 MINEXTENTS 1 MAXEXTENTS
2147483645 PCTINCREASE 50 FREELISTS 1) TABLESPACE "CPRS_BASE"

New DB2 CREATE INDEX statement:
CREATE INDEX SAMPLEI2

ON SAMPLE
(MTRL_NAME)
USING STOGROUP CIPROS01

PRIQTY 4000
SECQTY 400
ERASE NO;

Old Oracle ALTER TABLE ADD CONSTRAINT UNIQUE statement:
ALTER TABLE "MATERIAL" ADD CONSTRAINT "MATERIALC2" UNIQUE ("MTRL_NUM")
USING INDEX STORAGE (INITIAL 20480 NEXT 20480 MINEXTENTS 1 MAXEXTENTS
2147483645 PCTINCREASE 50 FREELISTS 1) TABLESPACE "CPRS_BASE"

New DB2 CREATE UNIQUE INDEX statement:
CREATE UNIQUE INDEX MATERIALC2

ON MATERIAL
(MTRL_NUM)
USING STOGROUP CIPROS01

PRIQTY 4000
SECQTY 400
ERASE NO;
Database conversion 83

Index creation on DB2
See B.6, “JCL for creation of indexes for CIPROS tables” on page 220. Job
CIPROSIX contains the converted DDL as input to DB2’s sample program
DSNTIAD. See Figure 36.

Figure 36. Index creation

5.2.1.8 Foreign keys conversion
Also the definitions of foreign keys can be extracted by the Oracle export file
used for tables and indexes. The syntax is very similar in both databases.

The script ddlfk.sh (see A.3, “ddlfk.sh script” on page 197) converts each ALTER
TABLE ADD CONSTRAINT FOREIGN KEY Oracle statement into DB2 syntax.

The shell script can be issued with the syntax:

The script performs the following operations:

• Selects just the ALTER TABLE ADD CONSTRAINT FOREIGN KEY
statements from the Oracle export file

• Converts the syntax of the ALTER TABLE ADD FOREIGN KEY statement

• Deletes the double quote symbols and adds a ";" character at the end of each
statement

• Changes the table names that have to be changed with the new names,
according to a list of local environment variables defined at the beginning of
the script

• Formats the statements in a more readable layout by inserting a new line
before the definitions of the FOREIGN KEY and before the REFERENCES
clause

In Figure 37 we show an example of a CREATE TABLE statement with the old
Oracle and the new DB2 syntax.

//* STEP 1: CREATE CIPROS INDEXES
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB2X)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) -

LIB('DB2V610X.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
CREATE UNIQUE INDEX ANALYSIS_METHODP1

ON ANALYSIS_METHOD
(ANLY_METH_NAME)
USING STOGROUP CIPROS01

PRIQTY 400
SECQTY 40
ERASE NO;

ddlfk.sh tables.exp > fk.ddl
84 Converting from Oracle AIX to DB2 for OS/390

Figure 37. Example of a FOREIGN KEY definition

The self-referenced foreign keys have to be handled manually, since DB2 for
OS/390 V6 requires the explicit ON DELETE CASCADE or ON DELETE NO
ACTION clause in the ALTER TABLE ADD FOREIGN KEY statement.

The default DELETE rules are normally different between Oracle and DB2 (NO
ACTION in Oracle and RESTRICT in DB2) unless otherwise stated in the
CURRENT RULES DB2 special register. If the value of the CURRENT RULES is
not set explicitly it contains DB2 and the default is RESTRICT. If the value of
CURRENT RULES is set to SQL, the default is NO ACTION. Refer to the
DELETE rules on DB2 UDB for OS/390 Version 6 SQL Reference, SC26-9014 for
details.

Foreign key definition on DB2
Refer to B.7, “JCL to alter tables for foreign keys” on page 221 where the job
CIPROSFK contains the converted DDL as input to the sample program
DSNTIAD. Figure 38 contains an example of FOREIGN KEY creation with ALTER
TABLE.

Figure 38. Foreign key creation using ALTER TABLE

5.2.1.9 Authorizations
Most of the authorization GRANT statements on database objects work in DB2 as
they are extracted from the table Oracle export. The syntax of the GRANT
statement is very similar in both databases.

The script ddlgrnt.sh (see A.4, “ddlgrnt.sh” on page 198) converts each GRANT
Oracle statement into DB2 syntax.

Old Oracle ALTER TABLE ADD FOREIGN KEY statement:
ALTER TABLE "STREAM_INSTR_ASSIGNMENT" ADD CONSTRAINT
"STREAM_INSTR_ASSIGNMENTF2" FOREIGN KEY ("STREAM_NAME","FACILITY_NAME")
REFERENCES "STREAM" ("STREAM_NAME","FACILITY_NAME")

New DB2 ALTER TABLE ADD FOREIGN KEY statement:
ALTER TABLE STREAM_INSTR_ASG

FOREIGN KEY (STREAM_NAME,FACILITY_NAME)
REFERENCES STREAM (STREAM_NAME,FACILITY_NAME);

//PH01S01 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB2X)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) -

LIB('DB2V610X.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *

ALTER TABLE ANALYSIS_SPEC
FOREIGN KEY (MTRL_NAME)
REFERENCES MATERIAL (MTRL_NAME);
Database conversion 85

The shell script can be issued with the syntax:

This script performs the following operations:

• Selects just the GRANT statements from the Oracle export file

• Converts the syntax of the GRANT statement

• Deletes the double quote symbols and adds a ";" character at the end of each
statement

• Changes the table names that have to be changed with the new names,
according to a list of local environment variables defined at the beginning of
the script

Since the Oracle users and roles have to be mapped into DB2 for OS/390 users
and groups (see 5.2.1.4, “Users, roles, and groups” on page 67), a list of
environment variables for the conversion is provided at the beginning of the
script.

In Figure 39 we show an example of a GRANT statement with the old Oracle and
the new DB2 syntax.

Figure 39. Example of a GRANT statement

However, there are several differences especially with administrative
authorizations. The administrative authorizations, together with the objects
authorizations, can be extracted with an Oracle full export that can be obtained
with the following command:

Then, using the same script ddlgrnt.sh as follows:

ddlgrnt.sh tables.exp > grants.ddl

Old Oracle GRANT statements:
GRANT DELETE ON "ANALYSIS_SPEC" TO "ROLE_CIPROS"
GRANT INSERT ON "ANALYSIS_SPEC" TO "ROLE_CIPROS"
GRANT SELECT ON "ANALYSIS_SPEC" TO "ROLE_CIPROS"
GRANT UPDATE ON "ANALYSIS_SPEC" TO "ROLE_CIPROS"
GRANT SELECT ON "ANALYSIS_SPEC" TO "ROLE_VIEW"

New DB2 GRANT statements:
GRANT DELETE ON ANALYSIS_SPEC TO PAOLOR2;
GRANT INSERT ON ANALYSIS_SPEC TO PAOLOR2;
GRANT SELECT ON ANALYSIS_SPEC TO PAOLOR2;
GRANT UPDATE ON ANALYSIS_SPEC TO PAOLOR2;
GRANT SELECT ON ANALYSIS_SPEC TO PAOLOR3;

exp sys/sys full=y rows=n file=full.exp

ddlgrnt.sh full.exp > allgrants.ddl
86 Converting from Oracle AIX to DB2 for OS/390

It is possible to see and modify, when necessary, the GRANT statements in the
allgrants.ddl file.

For a list of all the GRANT options, refer to DB2 UDB for OS/390 Version 6 SQL
Reference Version 6, SC26-9014.

Grant statements on DB2
Refer to B.8, “JCL for synonym creation” on page 221 for examples. Job
CIPROSSY contains the converted DDL as input to sample program DSNTIAD.
For example, in Figure 40 on page 87 a GRANT is made to allow the CIPROS
users to create aliases. CIPROS is then set as the current id. Then a CIPROS
alias is created for each table. This allows tables to be accessed with a
qualification of CIPROS.*. This is done to limit program changes since the SQL in
the CIPROS code is qualified with CIPROS. For example, table
ANALYSIS_METHOD is qualified as CIPROS.ANALYSIS_METHOD.

An alternative method is to create all tables with CIPROS as qualifier by
assigning DBADM or higher authority to the creator PAOLOR3.

Figure 40. GRANT and ALIAS creation for CIPROS

Creating plans and packages
B.17, “JCL for binding with use of packages” on page 231 contains sample JCL to
bind a plan for use with packages. Packages allow greater flexibility to
programmers in complex systems. Each program has a DB2 package associated
with it. If an individual program must be changed then only that package needs to
have the bind operation performed. If packages are not used then every DBRM
associated with a plan would have to be bound when a change occurs.

Grants on being able to execute the plan CIPROS1 are made to public and the
batch jobs to run the main programs are able to access the tables. GRANTs to
public are satisfactory for our project purposes. However, in any production
environment you want to limit executions and accesses only to specific IDs or
RACF groups through selective grants. Our GRANTs were issued in DB2
interactive (DB2I) SPUFI option. The GRANTs were coded as in Figure 41.

//* STEP 1: CREATE CIPROS SYNONYMS
//PH01S01 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB2X)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) -

LIB('DB2V610X.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *

GRANT CREATEALIAS TO CIPROS;
SET CURRENT SQLID = 'CIPROS';
CREATE ALIAS ANALYSIS_METHOD FOR PAOLOR2.ANALYSIS_METHOD;
CREATE ALIAS ANALYSIS_SPEC FOR PAOLOR2.ANALYSIS_SPEC;
Database conversion 87

Figure 41. GRANT examples

Once the plan has been created and GRANTs are executed, binding the DBRM
makes the programs code executable in DB2.

5.2.1.10 Check constraints
The CHECK CONSTRAINT statements are extracted with the Oracle export
command, too. In DB2 the syntax is similar: ALTER TABLE ADD CHECK or
ALTER TABLE ADD CONSTRAINT CHECK.

The script ddlchk.sh (see A.5, “ddlchk.sh script” on page 200) creates a DDL file
for the creation of the check constraints.

Since in the CIPROS applications involved in our conversion project there are no
CHECK CONSTRAINT definitions, for test purpose we have created a sample
table SPEED_LIMIT as follows (using SQLPlus Oracle command line):

Note that the CHECK constraint can be defined, as in DB2, with or without an
explicit constraint name. If a constraint name is not specified, a random unique
name is generated by Oracle.

Then, an Oracle export has been issued with the command:

The shell script can be issued with the syntax:

This script performs the following operations:

• Select all the ALTER TABLE ... CHECK statements from the input export file

• Deletes all the double quote symbols and adds a ";" character at the end of
each statement

• Changes the table names that have to be changed into the new names,
according to a list of local environment variables defined at the beginning of
the script

GRANT EXECUTE ON PLAN CIPROS1
TO PUBLIC;

GRANT CREATE IN COLLECTION CIPROS1
TO PUBLIC;

GRANT BIND, EXECUTE ON PACKAGE CIPROS1.*
TO PUBLIC;

CREATE TABLE SPEED_LIMIT (ROAD CHAR(30), MILE INTEGER, LIMIT SMALLINT);
ALTER TABLE SPEED_LIMIT ADD CONSTRAINT SL_P1 PRIMARY KEY (ROAD, MILE);
ALTER TABLE SPEED_LIMIT ADD CONSTRAINT SL_C1 CHECK (LIMIT<=65);
ALTER TABLE SPEED_LIMIT ADD CHECK (LIMIT>0);

exp sys/sys file=speed_limit.exp rows=n tables=speed_limit

ddlchk.sh speed_limit.exp> chk.ddl
88 Converting from Oracle AIX to DB2 for OS/390

In Figure 42 an example of a CHECK constraint creation is shown:

Figure 42. Example of a CHECK CONSTRAINT definition

5.2.1.11 Synonyms and aliases
There are some differences between Oracle and DB2 in the way synonyms and
aliases are used.

Oracle database uses only synonyms to create an alternative name for a
database object. DB2 has both synonyms and aliases.

With Oracle synonyms can be either PRIVATE or PUBLIC. A PRIVATE synonym
can be created by each user only for directly owned objects. A PUBLIC synonym
can be created only by a DBA and is available to all users.

For example, if the table USER_NAME.MY_TABLE_WITH_LONG_NAME is often
accessed by the USER_NAME user, the user can define a private synonym
MYTAB for that table with the command:

If the user is also a DBA and the table is also accessed by other users, the user
can create a public synonym for that table as follows:

Differences between Oracle and DB2 synonyms
The concept of SYNONYM in DB2 is similar to a PRIVATE SYNONYM in Oracle.
To map a PUBLIC SYNONYM in Oracle a DB2 ALIAS can be defined with the
CREATE ALIAS command.

In DB2 a SYNONYM can be created by all the users and it is local to the owner’s
schema, while an ALIAS can be created only by a SYSADM user, a SYSCTL
user, or a user with a CREATE ALIAS privilege, and it is public to all users.

An ALIAS, in DB2 for OS/390 V6, is always a full-qualified name, so it can be
referenced by all users only together with the creation schema. In our project we
have created a CIPROS schema, and all the alias have been created as
CIPROS.table_name.

Old Oracle ALTER TABLE ADD ... CHECK statements:
ALTER TABLE "SPEED_LIMIT" ADD CONSTRAINT "SPEED_LIMITC1" CHECK (limit<=65)
ALTER TABLE "SPEED_LIMIT" ADD CHECK (limit>=0)

New DB2 ALTER TABLE ADD ... CHECK statements:
ALTER TABLE SPEED_LIMIT ADD CONSTRAINT SPEED_LIMITC1 CHECK (limit<=65);
ALTER TABLE SPEED_LIMIT ADD CHECK (limit>=0);

CREATE SYNONYM MYTAB FOR USER_NAME.MY_TABLE_WITH_LONG_NAME;

CREATE PUBLIC SYNONYM MYTAB FOR USER_NAME.MY_TABLE_WITH_LONG_NAME;
Database conversion 89

Another difference between Oracle and DB2 is that in Oracle a synonym can be
created even if the corresponding objects do not exist, and the deletion of the
reference object does not delete the synonym. In DB2 for OS/390 V6 this is true
only for the aliases. Differently from Oracle, if a table is dropped, all its synonyms
are deleted also. In DB2, if an alias is created with the referenced object not
existent, a warning message is issued.

The syntax of the CREATE SYNONYM in DB2 is the same as in Oracle. An
example of the CREATE ALIAS command is the following:

where DB2SOMEWHERE is the location name of a DB2.

Let us clarify the difference between aliases and synonyms in DB2 for OS/390:

• SYSADM or SYSCTRL authority or the CREATE ALIAS privilege is required to
define an alias. No authorization is required to define a synonym.

• An alias can be defined on the name of a table or view, including tables and
views that are not at the current server. A synonym can only be defined on the
name of a table or view at the current server.

• An alias can be defined on an undefined name. A synonym can only be
defined on the name of an existing table or view.

• Dropping a table or view has no effect on its aliases. But dropping a table or
view does drop its synonyms.

• An alias is a qualified name that can be used by any authorization ID. A
synonym is an unqualified name that can only be used by the authorization ID
that created it.

• An alias defined at one DB2 subsystem can be used at another DB2
subsystem when connected through DRDA. A synonym can only be used at
the DB2 subsystem where it is defined.

• When an alias is used, an error occurs if the name that it designates is
undefined or is the name of an alias at the current server. (The alias can
designate an alias defined at another server if that alias represents a table or
view at the other server.) When a synonym is used, this error cannot occur.

Automatic conversion of synonym definitions
The private and public synonyms are not extracted and written in a simple Oracle
export. Their definition is only extracted in a full export that can be obtained with
the following command:

Unfortunately, with a full export all the synonyms defined in the database are
exported in the output file.

For this reason it is better to start directly from the Oracle catalog tables
SYNONYMS (public synonyms) and USER_SYNONYMS (private synonyms) to
extract only what we need to migrate.

CREATE ALIAS LOCTABLES FOR DB2SOMEWHERE.SYSIBM.TABLES;

exp sys/sys full=y rows=n file=full.exp
90 Converting from Oracle AIX to DB2 for OS/390

In our case, since the database area is well defined (we have created a file
containing the list of the tables) and they belong to a single Oracle user (cipros),
we can use two simple scripts ddlalias.sh and ddlsyn.sh (see A.6, “ddlalias.sh
script” on page 201 and A.7, “ddlsyn.sh script” on page 202) to create two DDL
files for the creation of the synonyms and the aliases used by the application.

Since the CIPROS application does not use private synonyms, in this section we
analyze only the alias creation and the related ddlalias.sh script (the ddlsyn.sh
script is very similar).

The shell script can be issued with the syntax:

This script performs the following operations:

• Creates an SQL file containing the SELECT statement for the Oracle
SYNONYMS table, using the input file tables.lst as the list of the PUBLIC
synonyms that should be created. This SELECT statement creates at the
same time the CREATE ALIAS DB2 statement for the DB2

• Creates and applies a sed script file to handle the last line of the SQL file

• Executes the SQLplus Oracle command line using the SQL file as a command
file

• Adds a ";" character at the end of each statement

• Writes to the output file, as the first line, the SET CURRENT SQLID=CIPROS
statement

• Changes the table names that have to be changed with the new names,
according to a list of local environment variables defined at the beginning of
the script

5.2.1.12 Views
The view definitions in Oracle and DB2 may contain some differences that have
to be handled manually. For instance, a view definition may contain in the body of
the subquery functions that are different between Oracle and DB2 (refer to
5.2.1.14, “Standard operators and functions” on page 94).

DB2 cannot create a view on a non-existing object (this can be done in Oracle
with the FORCE option, a warning is returned by the database) and cannot
replace an existing view (in Oracle this can be obtained with the CREATE OR
REPLACE VIEW command).

The CHECK OPTION clause in Oracle can only be local. In DB2 for OS/390 V6 a
WITH CASCADE CHECK OPTION or WITH LOCAL CHECK OPTION clause can
be specified. Refer to DB2 UDB for OS/390 Version 6 SQL Reference,
SC26-9014 for a complete description of the CREATE VIEW statement.

The view definitions can be extracted by a full Oracle export.

The script ddlview.sh (see A.8, “ddlview.sh script” on page 204) selects from an
input file all the CREATE VIEW statements.

ddlalias.sh tables.lst > alias.ddl
Database conversion 91

The shell script can be issued with the syntax:

Then, the views.ddl file can be edited to modify the statements according to the
DB2 syntax.

In Figure 43 we show an example of a view definition using the Oracle DECODE
function. In Figure 44 the corresponding DB2 CREATE VIEW command (using
the CASE expression) is listed.

Note that in the two statements we use the catalog structures for the table
authorizations (ALL_TAB_PRIVS for Oracle, SYSTABAUTH in DB2), which
contain the same information but in different formats. Note also that the USER
register is used to retrieve the authorizations of the user connected to DB2. In
Oracle the ALL_TAB_PRIVS catalog view already contains only the information
related to the user currently logged on.

Figure 43. Usage of CREATE VIEW with an Oracle DECODE instruction

Figure 44. Usage of CREATE VIEW with a DB2 CASE instruction

ddlview.sh full.exp > views.ddl

CREATE VIEW TABLES_PERMS (TABLE_NAME, ACCESS_STRING) AS
SELECT
T.TABLE_NAME,
DECODE(PRIVILEGE,'SELECT','-','S') ||
DECODE(PRIVILEGE,'UPDATE','-','U') ||
DECODE(PRIVILEGE,'INSERT','-','I') ||
DECODE(PRIVILEGE,'DELETE','-','D') ACCESS_STRING
FROM
ALL_TAB_PRIVS T, ALL_OBJECTS O
WHERE
T.TABLE_NAME = O.OBJECT_NAME
AND
O.OBJECT_TYPE IN ('TABLE','VIEW')
AND
T.TABLE_SCHEMA='CIPROS';

CREATE VIEW TABLES_PERMS (TABLE_NAME,ACCESS_STRING) AS
SELECT TTNAME,
CASE SELECTAUTH WHEN 'Y' THEN 'S'

WHEN 'G' THEN 'S' ELSE '-' END ||
CASE UPDATEAUTH WHEN 'Y' THEN 'U'

WHEN 'G' THEN 'U' ELSE '-' END ||
CASE INSERTAUTH WHEN 'Y' THEN 'I'

WHEN 'G' THEN 'I' ELSE '-' END ||
CASE DELETEAUTH WHEN 'Y' THEN 'D'

WHEN 'G' THEN 'D' ELSE '-' end
FROM SYSIBM.SYSTABAUTH
WHERE TCREATOR='CIPROS' AND GRANTEE=USER;
92 Converting from Oracle AIX to DB2 for OS/390

Views definition in DB2
Refer to B.9, “JCL for creation of CIPROS views” on page 222. Job CIPROSVW
contains the converted DDL as input to sample program DSNTIAD. Figure 45
provides an example of view definition in DB2.

Figure 45. CIPROS view definition

5.2.1.13 Triggers
With DB2 for OS/390 V6, the syntax is similar to Oracle, but there are differences
that may need to be addressed when migrating to DB2, refer to ORACLE 7, The
Complete Reference, ISBN 0-07-882285-8 and DB2 UDB for OS/390 SQL
Reference Version 6, SC26-9014.

The major differences are:

• With Oracle, the CREATE or REPLACE command can be specified while
creating a trigger. In DB2, we have to DROP and then CREATE the trigger
again.

• In Oracle, the trigger body is a PL/SQL block (with no DDL, ROLLBACK or
COMMIT statements), in DB2 we can only specify a list of statements. If you
need to migrate a complex PL/SQL trigger, you might want to use a stored
procedure as the action of the trigger, written in a standard language like C or
COBOL, or with the new SQL Procedures language (see 5.2.1.16,
“User-defined functions and stored procedures” on page 103).

• With Oracle, you can link together the before and after actions with the OR
boolean conjunction, in DB2 only one before and after action at a time is
supported for each trigger.

//* STEP 1: CREATE CIPROS VIEWS 00005400
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00005500
//SYSTSPRT DD SYSOUT=* 00005600
//SYSTSIN DD * 00005700
DSN SYSTEM(DB2X) 00005800
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00005900

LIB(’DB2V610X.RUNLIB.LOAD’) 00006000
//SYSPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300
CREATE VIEW CASES_GLOBAL
(CASE_NAME,
LOCATION,
CASE_OWNER,
CASE_TITLE,
DESCRIPTION,
PERIOD_NAME,
START_DATE,
END_DATE,
CASE_TIME_RES,
DATE_CHANGE,
DATA_STORED) AS
SELECT CASE_NAME,
LOCATION,
CASE_OWNER,
CASE_TITLE,
DESCRIPTION,
PERIOD_NAME,
START_DATE,
END_DATE,
CASE_TIME_RES,
TIMESTAMP_CHANGE,
DATA_STORED FROM CASES WHERE LOCATION = ’GLOBAL’;
Database conversion 93

• In DB2, when defining a trigger, you must specify it as either a FOR EACH
ROW or a FOR EACH STATEMENT trigger. Oracle defaults to FOR EACH
STATEMENT if nothing is specified. Another difference is that Oracle allows
the FOR EACH STATEMENT to be specified on BEFORE triggers; this is not
allowed in DB2 for OS/390 V6.

• In DB2, the NO CASCADE BEFORE clause must be specified for before
triggers. It implies that the trigger does not allow other triggers to be activated.

• DB2 allows you to use the REFERENCING clause to specify correlation
names for the rows modified by the trigger (both the old and the new values),
while Oracle use the old and new keywords. In addition, with DB2, you can
reference the transient tables containing all the affected rows before and after
the trigger modified them.

• DB2 allows the WHEN clause with statement-level triggers, Oracle does not.

You can see an example of a DB2 trigger in Figure 46 on page 105. We have
used SPUFI to run the single statements.

5.2.1.14 Standard operators and functions
Most of the Oracle built-in operators and functions can be mapped into DB2 ones.
For a detailed description of the DB2 operator and functions refer to DB2 UDB for
OS/390 - SQL Reference Version 6, SC26-9014.

Table 27 shows, for all the Oracle built-in operators, the corresponding item and
the possible differences with the DB2 for OS/390 V6 equivalent operator.

Table 27. Comparison between Oracle and DB2 operators

Oracle operator DB2 operator Notes

+ +

- -

* *

/ / DB2 default is to truncate the result to the lower
integer, Oracle default (in SQLPlus command
line) is decimal value with 8 digits after decimal
point. Use DOUBLE or DECIMAL function to
cast the operators and then the result to the
desired output.

||, CONCAT ||, CONCAT - CONCAT function is preferable because the ||
operator can be wrongly parsed in some

countries or in particular statements
- Oracle performs an implicit data type
conversion, DB2 concatenates only
homogeneous and compatible data types

= =

!, ^ ^ If possible, an alternate operator is preferable to
the ^ (not) operator, since it can be wrongly
parsed in some countries or in particular
statements. For example, substitute '<>' for '^=',
'<=' for '^>', and '>=' for '^<'

!=, ^=, <> ^=, <> In Oracle, not all the forms are available on all
platforms. In DB2, <> is preferable (see above)
94 Converting from Oracle AIX to DB2 for OS/390

Table 28 shows, for all the Oracle built-in functions, the correspondent item and
the possible differences with the DB2 for OS/390 V6 equivalent function.

>, <, >=, <= >, <, >=, <=

NOT NOT

AND AND

OR OR

ANY ANY Usable in DB2 only with subqueries, not with
lists. With lists, the OR operator can be used.
With =ANY (list), use IN

ALL ALL Usable in DB2 only with subqueries, not with
lists. With lists, the AND operator can be used

IN, = ANY IN, = ANY = ANY can be used only with subqueries, not
with lists. With lists, the OR operator can be
used

NOT IN, != ALL NOT IN, ^=ALL ^= ALL can be used only with subqueries, not
with lists. With lists, NOT IN or the AND operator
can be used

[NOT] BETWEEN [NOT] BETWEEN

[NOT] EXISTS [NOT] EXISTS

[NOT] LIKE
[ESCAPE]

[NOT] LIKE
[ESCAPE]

IS [NOT] NULL IS [NOT] NULL

UNION [ALL] UNION [ALL]

INTERSECT Not available in DB2. Use WHERE ... IN (...) or
WHERE EXISTS (...)

MINUS Not available in DB2. Use WHERE ... NOT IN
(...) or WHERE NOT EXISTS (...)

(+) (outer join) ... OUTER JOIN ...
ON ...

Specify the OUTER JOIN command for the
outer joins.

Oracle operator DB2 operator Notes
Database conversion 95

Table 28. Comparison between Oracle and DB2 functions

Oracle function DB2 function Notes

ABS ABS, ABSVAL

ACOS ACOS Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

ADD_MONTHS Not available. You can use the date/time DB2
arithmetic.
For example:
- in Oracle: SELECT ADD_MONTHS(hiredate,1)
from EMPLOYEE
- In DB2: SELECT hiredate + 1 MONTHS from
EMPLOYEE

ASCII Not available

ASIN ASIN Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

ATAN ATAN Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

ATAN2 ATAN2 Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

AVG AVG Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format.

CEIL CEIL Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

CHARTOROWID ROWID Same syntax but different external formats for the
ROWID pseudo-column, since DB2 uses external
hexadecimal representation for ROWID columns

CHR Not available

CONVERT Not available

COS COS Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

COSH COSH Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

COUNT COUNT The explicit ALL argument is not supported (it is the
default with the * argument)

DECODE CASE Different syntax. See the examples in Table 43 on
page 92 and Table 44 on page 92

DUMP Not available
96 Converting from Oracle AIX to DB2 for OS/390

EXP EXP Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

FLOOR FLOOR

GREATEST Not available

GREATEST_LB Not available

HEXTORAW X Either use X’xxxx’ to represent an hexadecimal
value (for FOR BIT DATA columns, for example) or,
if needed, cast functions (GRAPHIC,
VARGRAPHIC) to translate hexadecimal values into
graphic binary data

INITCAP Not available. Use TRANSLATE function

INSTR POSSTR Oracle syntax is INSTR(str1,str2,n,m) where n is the
starting position in str1 and m is the mth occurrence
to be positioned. DB2 POSSTR function
corresponds to INSTR(str1,str2,1,1)

INSTRB Not available. The POSSTR command has to be
used. Note that special rules are used in DB2 for
mixed and double-byte strings (refer to DB2 UDB for
OS/390 Version 6 SQL Reference, SC26-9014 for
a complete description of the POSSTR function)

LAST DAY Not available. You can use the DB2 built-in functions
and date arithmetic to obtain the last day of a month.

LEAST Not available

LEAST_LB Not available

LENGTH LENGTH Oracle returns the effective data length, DB2 returns,
except the VARCHAR fields, the maximum field
length

LENGTHB Not available. The LENGTH function performs a
byte-count operation on the input argument, unless
for GRAPHIC data types, for which the double-byte
length is returned

LN(x) LN, LOG Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

LOG(x,y) Not available. You can either use LOG(y)/LOG(x) or
LOG10(y)/LOG10(x)

LOWER LOWER,
LCASE

LPAD Not available. Use INSERT, LEFT, LOCATE,
SPACE, REPEAT, POSSTR, REPLACE functions

Oracle function DB2 function Notes
Database conversion 97

LTRIM LTRIM With DB2 you can just remove the leading blanks.
Use STRIP function to remove any type of character.
Oracle LTRIM allows to specify a substitution string,
with DB2 you can only specify a substitution single
character. To perform a string substitution, you can
use nested STRIP functions. For example:
- Oracle: LTRIM(’abcd’,’ab’)
- DB2: STRIP(STRIP(’abcd’,L,’a’),L,’b’)
Note that the result is the same only if you have only
one occurrence of the substitution characters

MAX MAX

MIN MIN

MOD MOD

MONTHS_
BETWEEN

Not available. You can use the date/time DB2
arithmetic to build a UDF performing the same
operation.

NEW_TIME Not available.

NEXT_DAY Not available. You can use the date/time DB2
arithmetic to build a UDF performing the same
operation.

NLS_INITCAP Not available. Use TRANSLATE function with SET
CURRENT LOCALE LC_CTYPE command

NLS_LOWER Not available. Use LOWER or LCASE functions with
SET CURRENT LOCALE LC_CTYPE command

NLS_UPPER Not available. Use UPPER or UCASE functions with
SET CURRENT LOCALE LC_CTYPE command

NLSSORT Not available. SET CURRENT LOCALE LC_CTYPE
command before querying the database

NVL NULLIF

POWER POWER

RAWTOHEX Use HEX function.

REPLACE REPLACE

ROUND ROUND The syntax is the same: ROUND(n,m). In DB2 m is
not optional, as it is in Oracle. Moreover, Oracle
allows the user to input dates to the ROUND
function.

ROWIDTOCHAR CHAR DB2 CHAR function can convert ROWID columns to
the external hexadecimal representation.

RPAD Not available. Use INSERT, RIGHT, LOCATE,
REPEAT, SPACE, POSSTR, REPLACE functions

Oracle function DB2 function Notes
98 Converting from Oracle AIX to DB2 for OS/390

RTRIM RTRIM With DB2 you can just remove the trailing blanks.
Use STRIP function to remove any type of character.
Oracle LTRIM allows to specify a substitution string,
with DB2 you can only specify a substitution single
character. To perform a string substitution, you can
use nested STRIP functions.For example:
- Oracle: RTRIM(’abcd’,’cd’)
- DB2: STRIP(STRIP(’abcd’,T,’c’),T,’d’)
Note that the result is the same only if you have only
one occurrence of the substitution characters.

SIGN SIGN

SIN SIN

SINH SINH

SOUNDEX Not available

SQRT SQRT Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

STDDEV STDDEV Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

SUBSTR SUBSTR The DB2 SUBSTR function operates on a byte-count
basis. If the input string is a mixed or double-byte
string, the result will not necessarily be a properly
formed mixed or double-byte data string

SUBSTRB Not available. See SUBSTR

SUM SUM The explicit ALL argument is not supported (it is the
default)

SYSDATE CURRENT
DATE

TAN TAN Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

TANH TANH Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

TO_BINARY_INT
EGER

TO_CHAR(date) CHAR The CHAR cast function can be used to convert
dates/times/timestamps strings from the installation
format into another format. The valid formats are
listed in Table 23 on page 73 and Table 25 on page
74

TO_CHAR(label) Not available

TO_CHAR(num) CHAR WIth CHAR DB2 function, the output number format
can not be specified

Oracle function DB2 function Notes
Database conversion 99

Due to the different storage management, data type definitions and data access,
DB2 owns several additional built-in functions, as listed in Table 29. Some of
them have been already introduced in Table 28 on page 96, since in some cases
they can be used to map Oracle functions. For a detailed description and usage
of these functions, refer to DB2 UDB for OS/390 Version 6 SQL Reference,
SC26-9014.

TO_DATE DB2 provides a lot of functions to manipulate
date-time columns. Refer to Table 26 on page 74
and to

TO_LABEL Not available

TO_MULTI_
BYTE

Not available. Cast functions GRAPHIC,
VARGRAPHIC or BLOB can be used to convert into
double-byte columns

TO_NUMBER SMALLINT,
INT[EGER],
FLOAT,
DOUBLE,
DEC[IMAL],

WIth DB2 functions, the input number format can not
be specified

TO_SINGLE_
BYTE

Not available. Cast functions CHAR or CLOB can be
used to convert into double-byte columns

TO_VARCHAR2 Not available

TRANSLATE TRANSLATE

TRUNC TRUNC[ATE] Not to be confused with TRUNCATE Oracle
command. For numeric operands, the behavior and
the considerations are similar to the ROUND
functions. Moreover, as for the ROUND function,
Oracle allows the user to input dates to the TRUNC
function.

UPPER UPPER,
UCASE

USER USER

USERENV Not available

VARIANCE VARIANCE Different default output formatting. Use INT, CEIL,
FLOOR, DECIMAL, FLOAT DB2 functions to obtain
the desired output format

VSIZE LENGTH In DB2 the internal length, determined by the data
type, is prompted

Oracle function DB2 function Notes
100 Converting from Oracle AIX to DB2 for OS/390

Table 29. Additional DB2 functions

Additional DB2 for
OS/390 V6 functions

Description

BLOB Returns a BLOB representation of its argument

CHAR Returns a fixed-length character string representation of its
arguments

CLOB Returns a CLOB representation of its argument

COALESCE Returns the first argument in a set of arguments that is not
null

COUNT_BIG Same as COUNT, except the result can be greater than the
maximum value of an integer

DATE Returns a date derived from its argument

DAY Returns the day part of its argument

DAYOFMONTH Similar to DAY

DAYOFWEEK Returns an integer in the range of 1 to 7, where 1 represents
Sunday

DAYOFYEAR Returns an integer in the range of 1 to 366, where 1
represents January 1

DAYS Returns an integer representation of a date

DBCLOB Returns a DBCLOB representation of its argument

DEC[IMAL] Returns a decimal representation of its argument

DEGREES Returns the number of degrees for an argument that is
expressed in radians

DIGITS Returns a character string representation of a number

DOUBLE [PRECISION] Returns a double precision floating-point representation of its
argument

FLOAT Same as DOUBLE

GRAPHIC Returns a GRAPHIC representation of its argument

HEX Returns a HEX representation of its argument

HOUR Returns the hour part of its argument

IFNULL Returns the first argument in a set of two arguments that is
not null

INSERT Returns a string that is composed of an argument inserted
into another argument at the same position where some
number of bytes have been deleted

INT[EGER] Returns an integer representation of its argument

JULIAN_DAY Returns an integer that represents the number of days from
January 1, 4712 B.C.

LEFT Returns a string that consists of the specified number of
left-most bytes of a string
Database conversion 101

LOCATE Returns the starting position of the first occurrence of a string
within another string optionally passing the position from
where to start the search

LOG10 Returns the base 10 logarithm of an argument

MICROSECONDS Returns the microsecond part of its argument

MIDNIGHT_SECONDS Returns an integer in the range of 0 to 86400 that represents
the number of seconds between midnight and the argument

MINUTE Returns the minute part of its argument

MONTH Returns the month part of its argument

POSSTR Returns the starting position of the first occurrence of a string
within another string searching from the beginning

QUARTER Returns an integer in the range of 1 to 4 that represents the
quarter of the year for the date specified in the argument

RADIANS Returns the number of radians for an argument that is
expressed in degrees

RAISE_ERROR Raises an error in the SQLCA with the specified SQLSTATE
and error description

RAND Returns a double precision floating-point random number

REAL Returns a single precision floating-point representation of its
argument

REPEAT Returns a character string composed of an argument
repeated a specified number of times

RIGHT Returns a string that consists of the specified number of
right-most bytes of a string

ROWID Returns a row ID representation of its argument

SECOND Returns the second part of its argument

SMALLINT Returns a small integer representation of its argument

SPACE Returns a string that consists of the number of blanks the
argument specifies

STRIP Returns the characters of a string with the blanks (or
specified character) at the beginning, end, or both beginning
and end of the string removed

TIME Returns a time derived from its argument

VALUE Same as COALESCE

VARCHAR Returns the varying-length character string representation of
its argument

VARGRAPHIC Returns the graphic string representation of its argument

WEEK Returns an integer that represents the week of the year

YEAR Returns the year part of its argument

Additional DB2 for
OS/390 V6 functions

Description
102 Converting from Oracle AIX to DB2 for OS/390

5.2.1.15 Distinct user-defined types
DB2 offers the possibility to create user-defined types (UDT). They can be useful
to create types corresponding to missing Oracle data types, or to create your own
types that more closely match application needs and the values being stored.

We show in the following example how to create a UDT:

UDTs are strongly typed. This means that a UDT, such as SPEED, cannot be
compared to an INTEGER, even though it is based on the integer type. To do
such a comparison, two casting functions (SPEED(integer) and INTEGER(speed)
are automatically generated during the distinct type creation. Moreover, the
comparison operators (=,<,>,^ and so on) for the new type are created.

For further information on user-defined types, refer to DB2 UDB for OS/390
Version 6 SQL Reference, SC26-9014.

5.2.1.16 User-defined functions and stored procedures
Both user-defined functions (UDFs) and stored procedures are available in
Oracle and DB2 and are defined with CREATE FUNCTION and CREATE
PROCEDURE statements.

Up to DB2 Version 5, the difference consisted in the language used to create
them: PL/SQL in Oracle, an external language (ASSEMBLER, C/C++, COBOL,
PLI) in DB2. This implied the re-writing of Oracle PL/SQL functions and
procedures into one of the languages listed above and then the use of SQL CALL
statement.

With DB2 for OS/390 V6 and V5 at September 1999 refresh level, a new
language called SQL Procedures can be used to create stored procedures.It
provides functions comparable to PL/SQL Oracle procedure language, and it
offers a lot functions that can be useful especially in conversion projects from
other databases:

• DB2 stored procedures can be written entirely in SQL Procedures language

• SQL Procedures language is an ISO extension of SQL defined by the SQL
Persistent Storage Module (PSM) standard

• SQL Procedures language is standard across the DB2 family of products and
can be used to access local and remote DB2 databases

In addition, the DB2 Software Development Kit (SDK), distributed with the
products belonging to the DB2 family, includes a new tool, the DB2 Stored
Procedure Builder (SPB). SPB provides a graphical user interface for
developing in Java or SQL Procedures language across the DB2 servers in the
various platforms. It runs either stand-alone or embedded in most of developing
graphical environments, such as Microsoft Visual Basic, Microsoft Visual Studio,
IBM VisualAge for Java, on Windows 95-98-NT operating systems.

For details and examples on coding DB2 stored procedures utilizing these two
new functions, refer to the very recent redbook Developing Cross-Platform DB2
Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder,
SG24-5485.

CREATE DISTINCT TYPE SPEED AS INTEGER WITH COMPARISONS
Database conversion 103

See also 7.5.1.3, “Stored procedures” on page 175.

5.2.1.17 Packages
In Oracle, a package is a collection of procedures, functions, variables,
constants, exceptions, and cursors. They allow multiple procedures to use same
objects, such as variables and cursors.

The package specifies the functions and the procedures used and their
parameters (it is the declaration of the package).

The package body specifies the PL/SQL to be executed when the package
function or the package procedure is executed by an application (it is the source
of the package).

In DB2, the term package refers to a database object that includes information
required to execute SQL statements associated with the source file of an
application program. A package is generated by pre-compiling a source file or by
binding a precompiler-generated bind file using the BIND command.

For these reasons, the CREATE PACKAGE statement is not available on DB2.
The Oracle packages should be converted into stand-alone functions or
procedures, using the CREATE PROCEDURE statement for each one of the
Oracle package procedures.

5.2.1.18 Sequences
Sequences are used by some Oracle applications to assign unique numbers
automatically. For instance, we can create a table EMPLOYEE and a sequence
EMPLOYEE_ID and then use the sequence to insert a new record in the table, as
described with the following commands:

In DB2 for OS/390 V6 the CREATE SEQUENCE command is not available. A
user-defined function, associated to a before-insert trigger, can be used to obtain
the same result. If NEXT_EMP_ID is the user-defined function which calculates
and returns the next available value of ID field in EMPLOYEE table, the trigger
can be created as in Figure 46.

create table EMPLOYEE (name VARCHAR2(30) NOT NULL,
location VARCHAR2(20),
dep VARCHAR2(20),
id NUMBER(5) NOT NULL);

create sequence EMPLOYEE_ID increment by 1 start with 1;

insert into EMPLOYEE (name, location, dep, id) values
(’ROMINA CORDELLA’,’BUILDING M-93’,’FINANCIAL’,EMPLOYEE_ID.NextVal);
104 Converting from Oracle AIX to DB2 for OS/390

Figure 46. Example of a trigger to create a sequence number

The NEXT_EMP_ID function should contain a CASE statement similar to the
following:

If you are inserting more than one row at the same time, this trigger will insert the
same value for all the inserted rows, unless the SCRATCHPAD option in the
user-defined function is used. Refer to DB2 UDB for OS/390 Version 6 Application
Programming and SQL Guide, SC26-9004 for further information.

5.3 Data layout

The cross relating of the source and target data sources through data layout is a
once only task discussed in 3.3.1.5, “Data layout” on page 36 that includes the
following tasks:

• Source tables

• Source columns

• Target tables

• Target columns

5.3.1 Source tables
As explained in 5.2.1.6, “Table definition conversion” on page 75, the main
differences between Oracle and DB2 in the definition of tables are related to the
following items:

• Table names length

• Column names length

• Index names length

• Foreign key names length

• NULL definition for primary key fields

create table EMPLOYEE (name VARCHAR(30) NOT NULL,
location VARCHAR(20),
dep VARCHAR(20),
id INTEGER NOT NULL);

CREATE TRIGGER EMP_TRIG NO CASCADE BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AS NEWROW
FOR EACH ROW MODE DB2SQL
SET NEWROW.ID = NEXT_EMP_ID();

CASE
WHEN (SELECT COUNT(ID) FROM EMPLOYEE) = 0 THEN 1
ELSE (SELECT MAX(ID) + 1 FROM EMPLOYEE)
END
Database conversion 105

These differences do not affect the migration path of data from Oracle to DB2
tables. In any case, an inventory of the source tables and their possible
differences from DB2 requirements is highly recommended, before starting any
automatic conversion/transcodification procedures.

Refer to 5.2.1.6, “Table definition conversion” on page 75 for the migration path of
the table definitions and to Chapter 6, “Data conversion” on page 109 for the
conversion of data.

5.3.2 Source columns
In the conversion of table definitions, column data types have to be converted into
DB2 valid data types, in order to maintain the structure and the contents of source
data in the target environment.

As shown in 5.2.1.5, “Data types comparison” on page 69, each Oracle data type
has a DB2 corresponding data type.

From a data point of view, some problems can arise for the following situations:

• NUMBER: source data out of DB2 range and precision

• LONG: temporary space for the data download/load; bad performance; data
conversion; limitation on SQLPlus interface

• LONG RAW: temporary space for the data download/load; bad performance;
data conversion; limitation on SQLPlus interface

Refer to Chapter 6, “Data conversion” on page 109 for the detailed path used for
the conversion of data.

5.3.3 Target tables
Once you have successfully migrated their definitions, target tables can be
loaded with source data.

We used two data migration methods:

• Usage of data flat files to download data from Oracle; after transferring them
(using ftp) to the S/390 where DB2 is installed, load them into DB2 tables with
the LOAD utility

• Usage of IBM DataJoiner for AIX to access simultaneously both Oracle and
DB2 tables

In the first case, we have created, using SQLPlus, one file for each table. The
data file layout has been determined starting from the table definition. In the
second case, once two nicknames for each table have been created (one for the
Oracle table, the other for the DB2 table), a direct insert/select statement
between the two tables can be used. Refer to Chapter 6, “Data conversion” on
page 109 for a detailed description of the used methods.
106 Converting from Oracle AIX to DB2 for OS/390

5.3.4 Target columns
In general, non-binary, non-long and non-varying character fields can be simply
migrated using the first method described in 5.3.3, “Target tables” on page 106.

The other data types have to be handled with specific actions. Some of the
possible migration paths are described in Chapter 6., “Data conversion” on page
109.

5.4 Cross reference

A cross reference of fields to source tables and columns to target tables and
columns needs to be built so that any field reference can be changed to the
equivalent in DB2. Input for the cross reference is from 3.3.1.4, “Inventory” on
page 35 and 3.3.1.5, “Data layout” on page 36.

Oracle and DB2 feature incompatibilities
The major differences between the two databases can be summarized as related
to the following:

• Name limit

• Views

• Triggers

• UDT and UDF
Database conversion 107

108 Converting from Oracle AIX to DB2 for OS/390

Chapter 6. Data conversion

The data conversion implementation plan in 3.3.3.1, “Data conversion plan” on
page 37 details how this conversion takes place, with what tools and resources,
from the methodology point of view.

In this chapter we describe the contents of the tasks included in our data
conversion plan:

• Clean data

• Unload data from Oracle

• Create programs to prepare data for file transfer and DB2 format

• Create partitioned data sets on OS/390 for the data

• Transfer data from the AIX system to the OS/390 system

• Reformat data for DB2

• Test data for correct format

• Load data into DB2

Most of the considerations reported in this chapter on DB2 are meant for
inexperienced users.

6.1 Clean data

Normally, before transferring the data from one platform to the other, the data
needs to checked with some tests for corruption. The policy decided upon in
section 3.2, “Stage one — defining the strategy” on page 14 will be implemented
as the data cleansing plan.

In our project we did not include data cleansing, because the data was checked
for validity and correctness when packaging the application prior to the start of
the project.

6.2 Unloading data from Oracle

In this section we describe the methods we used to unload data from the source
Oracle database.

6.2.1 Character, numeric, and date data types
The Process and Laboratory segments of CIPROS Oracle database contain only
CHAR, VARCHAR2, DATE, NUMBER and NUMBER(n) data types.

This is a very common situation: In this case, we can use Oracle SQL*Plus
(called SQLPlus from now on) to download data from the Oracle database into
flat files. SQLPLus is a front-end product to the SQL language in Oracle, which,
by means of format commands, also allows you to manipulate data and spool it
on flat files. The output is usually formatted in columns, as we can see in the
example reported in Figure 47.
© Copyright IBM Corp. 1999 109

Figure 47. Example of SQLplus usage

The file file.out contains the following lines:

The commands columns, set linesize, set pagesize, set feedback allow you to
manipulate the output. For example, if you have records longer than the default
SQLPlus line length, your lines will be split into more than one line; in this case
we can use the set linesize command to increase the SQLPlus line length.

Unfortunately, we could not use the "*" symbol to select all the columns from the
tables, because in some cases (DATE columns, for example) we need to
manipulate the output format to handle differences. So, we have created a script
that gets the table description automatically from Oracle catalog and, with an awk
script, generates the SELECT statement with the concatenation of the columns.

When the script concatenates columns, we lose the automatic formatting in
columns of SQLPlus, so we need to re-create the column layout in the output
files.

To do this, we have used the RPAD function. With this function we could fill in,
with blanks, the space to the right of each column, up to the exact maximum
length of each field. We used the DECODE function in order to fill NULL fields
with blanks.

cipros@BALTIC /home/cipros > sqlplus ciprosusr/ciprospwd

SQL*Plus: Release 3.3.3.0.0 - Production on Thu Jul 8 11:45:41 1999

Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.

Connected to:
Oracle7 Server Release 7.3.3.0.0 - Production Release
PL/SQL Release 2.3.3.0.0 - Production

SQL> spool file.out
SQL> select * from data_type;

DATA_T DESCRIPTION
------ --
REAL Real value
TEXT Text Value

SQL> spool off

SQL> select * from data_type;

DATA_T DESCRIPTION
------ --
REAL Real value
TEXT Text Value

SQL> spool off
110 Converting from Oracle AIX to DB2 for OS/390

If you have tables with no special handling of columns required, like dates, you
can create a simple SQLPlus file mytable.sql containing the following commands:

And then you can issue the command:

The script download.sh (see A.9, “download.sh script” on page 205) uses the
SQLPLus Oracle command line and the DESCRIBE, RPAD, DECODE, SELECT
commands to download onto flat files the source Oracle data (one file for each
table).

The shell script can be issued with the syntax:

where tables.lst is a file containing just the list of the downloaded tables.

This script performs the following operations:

• Scans each table TABLE_NAME listed in the input file

• Extracts the table definition with the DESCribe command

• Creates a file TABLE_NAME.dsc containing, for each field of the table, the
length of the columns, according to their data type

• Computes the total record length of the table using the count.awk awk script
file reported in A.9.1, “count.awk script” on page 207

• Creates a TABLE_NAME.sql file containing the select statement, built also
using the desc.awk awk script file reported in A.9.2, “desc.awk script” on page
207

• Runs the TABLE_NAME.sql file and spools the output onto the
TABLE_NAME.dat file

• Closes the loop on each table of the input file

clear columns
clear breaks
set pagesize 50000
set linesize 200
set feedback off
set heading off
set echo off
set space 0
set newpage 0
spool lll.lst
select * from MYTABLE;
spool off
quit

sqlplus ciprosusr/ciprospwd @mytable.sql

download.sh tables.lst
Data conversion 111

After unloading the data files, we have transferred them to the OS/390 system for
the DB2 loading operation. Refer to 6.5, “Transferring data from AIX to OS/390”
on page 118.

For variable length character fields (VARCHAR), we cannot use the DB2 LOAD
utility unless the length of the data itself is written in its binary representation in
the first two bytes of each VARCHAR field of each record. Refer to 6.6,
“Reformatting data for DB2” on page 119.

Note: The download.sh script would also download the RAW data, not present in
our application, since SQLPlus performs an implicit conversion to the
hexadecimal representation of RAW data columns. But then a REXX program on
S/390 must be written to decode the hexadecimal data in the file into its binary
character representation. After such conversion the DB2 LOAD utility can be
used.

6.2.2 Other data types and exceptions
Unfortunately, not all the data can be downloaded to a flat file, transferred to the
S/390 and loaded into DB2 without some loss of information during this
operation. This can happen because of:

• The special data types used in table definitions

• The differences between the two operating systems

• The conversions made by ftp

6.2.2.1 Long and non-spoolable fields
One limitation is due to the maximum length of a spoolable line allowed in Oracle
SQLPLus command line. The maximum length is platform-dependent. This value
can be changed with the SET MAXDATA parameter of SQLPlus Oracle utility, but
the limit with AIX is 60000 bytes.

The ARRAYSIZE parameter of the SET statement affects the maximum line
length, too. It allows to change the size of the batch of rows that SQLPlus fetches
at one time. The combination of the two parameters must not overflow the buffer
length of the SQLPLus product.

Another limitation comes from the maximum LINESIZE parameter for the SET
command of SQLPlus product, that is, 32767 bytes. Moreover, the LONG
parameter of the SET command, used to increase the maximum spoolable length
of LONG fields, has the same limit of 32767 bytes.

These limitations in SQLPlus constitute a problem if your tables contain LONG
fields and the content of the LONG field is longer than 32767.

Instead, if the data contained in the LONG fields of your tables is shorter than
32767 bytes, we can use SQLPLus as in the following example:

We have created and inserted a table with the following statements issued from a
SQLplus command line:

CREATE TABLE LTAB (L LONG);
INSERT INTO LTAB VALUES(’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’);
112 Converting from Oracle AIX to DB2 for OS/390

Then, we have created a file mylongtab.sql containing the following lines:

Then, we have issued the SQL script with the following command:

Since the LONG fields are variable length character fields, they have to be
managed as VARCHAR. Refer to 6.6, “Reformatting data for DB2” on page 119. If
the page size in the table space which contains your DB2 table is large enough to
contain the Oracle data, you may also define in DB2 the LONG field as a
VARCHAR.

Another limitation is constituted by the maximum result of a string concatenation,
that is, 2000 bytes. If you are using the download.sh script described in 6.2.1,
“Character, numeric, and date data types” on page 109, you will have problems
with tables whose record length is more than 2000 bytes.

In these cases, you can spool one on more columns on different files and then
use the paste AIX command to join vertically the columns in a unique file.

Let us look at an example of string concatenation with maximum length of 2000
bytes.

We have created a table with the following definition:

We have creates two SQL scripts as follows:

set pagesize 50000
set linesize 500
set long 500
set feedback off
set heading off
set echo off
set space 0
set newpage 1
spool LTAB.DAT
select * from LTAB;
spool off
quit

sqlplus ciprosusr/ciprospwd @mylongtab.sql

CREATE TABLE LONGTAB (FIELD1 CHAR(50) NOT NULL,
FIELD2 VARCHAR2(1000),
LONG_FIELD VARCHAR2(1000));
Data conversion 113

We can execute the two SQL files with the following command to obtain the
output data files LONGTAB_1.DAT and LONGTAB_2.DAT (n should be 1 and 2):

After deleting the first heading line in both files and the last empty line (if any), we
can paste vertically the two files into the LONGTAB.DAT file with the following AIX
command:

Note: Since also the vi editor has a limitation on the displayable line length (2048
bytes), you may not see the file with this editor. You can either use the CDE
system editor, if you have it installed in your environment, or the cat command.

6.2.2.2 Binary fields
Care must be taken when managing binary fields.

rem Script longtab_1.sql
clear columns
clear breaks
set pagesize 50000
set linesize 1050
set feedback off
set heading off
set space 0
set newpage 1
spool LONGTAB_1.DAT
select ''
|| rpad(DECODE(FIELD1,NULL,' ',FIELD1),50)
|| rpad(DECODE(FIELD2,NULL,' ',FIELD2),1000)
from LONGTAB;
spool off
quit

rem Script longtab_2.sql
clear columns
clear breaks
set pagesize 50000
set linesize 1000
set feedback off
set heading off
set space 0
set newpage 1
spool LONGTAB_2.DAT
select ''
|| rpad(DECODE(LONG_FIELD,NULL,' ',LONG_FIELD),1000)
from LONGTAB;
spool off
quit

sqlplus ciprosusr/ciprospwd @longtab_n.sql

paste -d"\0" LONGTAB_1.DAT LONGTAB_2.DAT > LONGTAB.DAT
114 Converting from Oracle AIX to DB2 for OS/390

The short binary data, such as RAW(n) or CHAR(n) FOR BIT DATA, can be
unloaded by using the download.sh script described in 6.2, “Unloading data from
Oracle” on page 109 and transferred using ftp, since the SQLPlus interface
performs an implicit conversion or RAW data into hexadecimal representation.

Unfortunately, the LOAD utility does not allow to load binary data from a file
containing its external hexadecimal representation.

You can write a simple batch program (REXX or C, or the language you prefer) to
decode the hexadecimal strings into binary strings.

If the size of your table is not large, you can also INSERT it into the DB2 table.
We have tested this with the following example.

We have created in the Oracle database, from an SQLPlus command line, a table
called RAWTAB as follows:

The corresponding DB2 table is created, for instance from SPUFI, as follows:

The INSERT statements can be extracted directly with SQLPLus by creating a file
extr_ins.sql containing the following lines:

and then by executing the extr_ins.sql script as follows:

After deleting the heading and trailing lines, the INSRAW file can be transferred
to the OS/390 system and used, for example, with SPUFI.

We can use also DataJoiner to map both tables and then use the
INSERT/SELECT concatenated statements to migrate the data. Refer to 6.9,
“Loading data into DB2 using DataJoiner” on page 127.

CREATE TABLE RAWTAB (FIELD RAW(255));

CREATE TABLE RAWTAB (FIELD CHAR(255) FOR BIT DATA);

clear columns
clear breaks
set pagesize 50000
set linesize 1000
set feedback off
set space 0
set newpage 1
spool INSRAW
select 'INSERT INTO RAWTAB VALUES(X''' || FIELD || ''');' from RAWTAB;
spool off
quit

sqlplus ciprosusr/ciprospwd @extr_ins.sql
Data conversion 115

Note: Both using a data file and DataJoiner, DB2 fills in the trailing space of
CHAR FOR BIT DATA fields with blanks.

As an example, we inserted into Oracle RAWTAB table a record as follows:

After migrating the data to DB2 using one of the two methods above, the content
of the RAWTAB DB2 table, as selected from SPUFI, is as follows:

6.3 File transfer and format programs

After the data has been downloaded into a file, we used the TCP/IP File Transfer
Protocol (ftp) to transfer the data files to the OS/390 system. The TCP/IP services
were already installed on S/390 system. On the AIX system, TCP/IP is included in
the base operating system. The configuration of the systems for the transmission
implies:

• The definition of an ip address and a hostname (BALTIC, in our case),
provided centrally by the network administrator, together with the domain
name, the router address, the network mask and the nameserver address

• The definition of a hostname for the OS/390 system in /etc/hosts file (mvsftp,
in our case), corresponding to its ftp address.

Refer to AIX Version 4 System User’s Guide: Communications and Networks,
SC23-2545 and to OS/390 eNetwork Communications Server: IP Configuration,
SC31-8513 for detailed information on network configuration and set up.

To perform an automatic transfer from AIX to OS/390 systems and vice versa, we
used the .netrc network configuration file of cipros user, located in its home
directory (/home/cipros).

It contains the following lines:

This file needs to have read/write/execution permission only for the owner, and
neither for the group cipros user belongs to, nor for other users. To inhibit the
usage from the other users, you can issue the command:

insert into rawtab values(hextoraw('ab10ab10ffffff'))

SELECT HEX(FIELD) FROM RAWTAB;
---------+---------+---------+---------+---------+---------+---------+

---------+---------+---------+---------+---------+---------+---------+
AB10AB10FFFFFF40
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
SNE612I DATA FOR COLUMN HEADER COLUMN NUMBER 1 WAS TRUNCATED
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+

machine mvsftp login paolor3 password pr3pwd
116 Converting from Oracle AIX to DB2 for OS/390

At the end, after creating a partitioned data set PAOLOR3.CIPROS.DATA on
OS/390, refer to 6.4, “Creating a PDS on OS/390” on page 117, we have created
a file put.ftp containing the ftp commands for the file transfer, as follows:

The files TABLE_NAME.dat have been created by the script download.sh
described in 6.2, “Unloading data from Oracle” on page 109, but a new naming
convention for the data files has to be used on the OS/390 side, since the data
set name qualifiers cannot be longer than 8 characters.

With the asc option, an automatic conversion between ASCII and EBCDIC is
performed by the ftp protocol. We were able to use this options for all our files
since they all contained only ASCII (or externally ASCII) data.

The put.ftp file can be executed from an AIX shell by the cipros user with the
command:

6.4 Creating a PDS on OS/390

You can use ISPF option 3.2 to create the PDS that is going to receive in OS/390
the data transmitted from AIX. In our project we transmitted files that are all of the
same length. Therefore, we created a fixed format PDS.

You should calculate your own space requirements when allocating the PDS (or
any data set). Request enough space in the initial space allocation to contain all
of the expected data. Only the initial allocation is provided to you. Do not depend
on OS/390 to allocate default extents to hold initial data. Multiple extents may
affect performance, especially if they are not allocated in contiguous storage on
traditional devices, and later on you might run out of space interrupting the
transmission at the most unsuitable time. It might be worthwhile creating a small
procedure to calculate the allocation for all data objects needed.

Be sure to use block sizes that are efficient for the DASD device you will be
using. Your installation may have CLISTS, or ISPF menu options, that will do this
calculation for you. See your ISPF system programmer about this. The other
option in OS/390 is to use system determined block sizes. OS/390 will calculate

chmod 600 /home/cipros/.netrc

asc
put ANALYSIS_METHOD.DAT 'paolor3.cipros.data(ANMETHOD)'
put ANALYSIS_SPEC.DAT 'paolor3.cipros.data(ANSPEC)'
put APPL_DATA.DAT 'paolor3.cipros.data(APPLDATA)'
...
...
...
put UNIT_ISLAND.DAT 'paolor3.cipros.data(UNITISL)'
put USRID_CONFIG.DAT 'paolor3.cipros.data(USRIDCON)'
put VALUE_TYPE.DAT 'paolor3.cipros.data(VALUETYP)'

ftp mvsftp < put.ftp
Data conversion 117

the optimum block size for the device the data will reside on. This is done by
entering 0 as the block size.

Note: A quick way to allocate a PDS (or any OS/390 data set) is to use another
one as a model. In ISPF option 3.2, from the Data Set Utility option, enter the
name of a known PDS. If possible, one that is resident on the device you plan to
use for your PDS. When the “Data Set Information” panel is displayed press
enter. This returns you to the “Data Set Utility” initial panel. However, the
information from the previous operation is saved. Type “A” on the command line,
for allocation of a new data set, and type in the data set name on either the lines
provided for ISPF libraries or the one labeled for "Other...". A panel will be
displayed titled “Allocate New Data Set”. On this panel will be the information
from the data set you chose as a model. Change any parameters you need to. Be
sure to allocate enough “directory blocks” to hold what will become the index
associated with the data. When you have made changes to your satisfaction,
press enter.

6.5 Transferring data from AIX to OS/390

Oracle on AIX uses ASCII data encoding, our existing DB2 on OS/390 uses
EBCDIC. This, of course, presents us with the a known problem. However, this
was easily solved because in the project we used File Transfer Protocol (FTP) to
move the data from the client to the OS/390 server. During the transfer process
we utilized the Character Data Conversion (CDC) facility of FTP. When file
transfer is initiated the correct Coded Character Set Identifier (CCSID) is
specified and conversion is achieved by FTP. Refer also to DB2 UDB for OS/390
Version 6 SQL Reference, SC26-9014 and DB2 UDB for OS/390 Version 6
Installation Guide, GC26-9008 for considerations on ASCII CCSID support and
coexistence provided by DB2. We decided to convert all data because of some
restrictions when accessing DB2 tablespaces with different CCSID.

As shown in 6.3, “File transfer and format programs” on page 116, after
configuring the network layer between the two servers and creating the files
.netrc and put.ftp, we were able to transfer the data files with the following
command executed by cipros user from an AIX shell:

The data, when stored on the OS/390 system is now in EBCDIC representation
and ready for use by DB2 LOAD utility. But we need to first execute the REXX
program that we coded to establish the 2 binary bytes VARCHAR length field, see
6.6, “Reformatting data for DB2” on page 119.

Originally we intended to add the 2 byte length field when the data was extracted
from Oracle. However, placing 2 bytes of binary data in the extracted record using
a C language program proved too difficult to do. This left us with the alternative of
changing the data on the OS/390 side after transmission. The binary field could
be dealt with easily using any of the well known mainframe languages. We chose
REXX because it could be coded quickly, the amount of data was limited, and the
talent was immediately available to write the program. The same kind of program
could be written in COBOL or PLI, for example, and optimized for performance.

ftp mvsftp < put.ftp
118 Converting from Oracle AIX to DB2 for OS/390

Using FTP, the transmitted files on OS/390 were received on PDS where each
member represented the data for one table. This approach is feasible since we
were using small amounts of data. However, the receiving data set need not be a
PDS and could be defined as a sequential file large enough to hold any large
table. For very large tables the receiving sequential data set could also be
specified as a tape data set if not enough disk space is available.

6.6 Reformatting data for DB2

The DB2 LOAD utility will load data from a flat-file format either from a partitioned
data set or a regular flat file. The file must include length information for those
fields that become VARCHAR columns in a DB2 table. Reformatting the data for
DB2 means adding 2 bytes of binary data to the beginning of such a field. These
2 bytes contain a binary number representing the length of the data within the
field. The DB2 LOAD utility requires that this field be present for VARCHAR data.
DB2 also requires that the 2 byte binary field be at the beginning of the data to be
considered VARCHAR but it is not, itself, counted as data to be loaded. For
example, if a variable character field able to hold up to 10 bytes is to be loaded,
the entire field will be 12 bytes long. 2 bytes for the binary length field and 10
bytes for the data. The position indicated to DB2 as the beginning of the field to
become VARCHAR for the LOAD, is the beginning of the 2 bytes of binary data.

The data unloaded from the Oracle tables and transmitted to OS/390 is stored in
a PDS whose members represent the data for the individual tables that have
been transmitted. For example, the data for table PIPELINE has been stored in
member named PIPELINE. Since member names for a PDS may only be 8
characters long, abbreviation is necessary. The data stored in the PDS is used as
input for a program process to determine the length of the variable character data
and create and populate the binary bytes.

The data for our project was processed by a REXX program. It needs positional
input describing where in its input file records it will find the beginning of each
field and what kind of data will be encountered. Leading and embedded blanks
are significant data and will be included in the resulting count of variable
character positions. Trailing blanks are not counted.

The REXX program also outputs a file with the positions and lengths of the fields
in the reformatted output data file. This file is useful when setting up the LOAD
utility commands. The positions indicated by the REXX program are those the
LOAD utility will expect when it reads the REXX converted data as input. The
REXX program writes the complete input file plus any needed binary bytes to the
output file.

We decided to pass to OS/390 records whose fields were the maximum length for
the data type they held. Therefore, if the field was a VARCHAR(10) column in the
Oracle database table then the field in the record transmitted to OS/390 was 10
bytes long. The extra bytes are filled with blanks. Integer fields varied in size from
2 to 10 bytes. Floating decimal fields were transmitted at their maximum size of
41 bytes. Timestamp fields were transmitted as 26 bytes. All of these fields would
have been defined to the REXX program as fixed fields. The program recognizes
fixed fields as identified by an “F”. Variable fields are identified by a “V”. Refer to
B.19, “JCL for the conversion of data using REXX program” on page 234 for the
example JCL and an explanation of the nomenclature.
Data conversion 119

Table DATA_TYPE, for example, consists of 2 columns of VARCHAR data as
shown by the following CREATE TABLE SQL statement in Figure 48

Figure 48. Create table example

The input data from the Oracle table looks like Figure 49.

Figure 49. Transmitted Oracle data

The position indication input file for the REXX program is like Figure 50.

Figure 50. REXX input control file

The “//CTLIN DD *” is a JCL statement indicating the data represented by file
CTLIN follows instream in the job. Each line represents one input record to the
program. The first record’s layout indicates that starting in position 1 there are 6
bytes of data that are variable. The second record indicates that starting in
position 7 there are 40 bytes of variable data.

Note: REXX utilizes main storage for its processing and reads in all of its input.
The maximum limit may be reached quickly when processing a table with a large
number of rows. Our tables held small amounts of data and were appropriate for
the REXX solution. For a large amount of data you will want to design and write a
program in COBOL or PLI using the REXX program as a model.

The program, reported in B.19, “JCL for the conversion of data using REXX
program” on page 234, was run as an OS/390 batch job. The first step sets up the
REXX program in a temporary load file. The subsequent steps process each
member of the source data in turn.

You will notice in the JCL that the REXX output is variable. This is done to save
space. When you calculate the potential length of the output file you need to
count three things: the length of the data, the extra 2 bytes needed for each
variable character field, and 4 bytes for the system generated lengths attached to
a variable file’s records. For example, if your file has 4 original fields and two are
fixed in length and 2 will be variable and each of the 4 is 10 bytes long then the
output length is 48. 40 for the 4 actual fields, 4 for the binary length data for the 2
variable character fields and 4 for the system generated length for the variable
blocked file record.

Null columns are dealt with by the REXX program in this way: If the null or empty
column is VARCHAR it will have its length set to 1 and be filled with spaces

CREATE TABLE DATA_TYPE (DATA_TYPE VARCHAR(6) NOT NULL,
DESCRIPTION VARCHAR(40))
IN CIPROS.CPRSBASE;

REAL Real value

TEXT Text Value

//CTLIN DD *
1 6 V DATA_TYPE (DATA_TYPE VARCHAR(6)
7 40 V DESCRIPTION VARCHAR(40))
120 Converting from Oracle AIX to DB2 for OS/390

(x’40’). If it is fixed, it will be padded with spaces. The NULLIF verb will have to be
utilized to correctly load these fields. See Figure 51.

Figure 51. Example of LOAD statement with a NULLIF parameter

You can find a description of the output and its use in 6.8, “Loading data into DB2
using the LOAD utility” on page 121.

6.7 Checking data for the correct format

After converting the data to include the length for VARCHAR columns, you should
check the results. The obvious reason for this is that no matter how careful you
have been in calculating the positions and lengths for the input, errors will be
introduced. Examining the output now is a quality control point that is well worth
the effort.

Quick visual scanning of the output will tell you if any fields have been misplaced.
You will see problem indications like the 2 byte binary data in a location that is not
at the beginning of the appropriate field, or fields that seem too short or long. This
can indicate that the calculation for the position of the beginning of the file was in
error or that the input was actually longer or shorter than expected. If your data is
too short ensure you have allowed for all the potential length fields (the 2 bytes
binary data) and for the 4 bytes of system generated length for variable blocked
records. Correct your counts or JCL and resubmit the job.

This may seem like a tedious task but it is really important to make sure to have
correct data before the DB2 loads are run.

6.8 Loading data into DB2 using the LOAD utility

The DB2 LOAD utility is normally run as an OS/390 batch job. Another possibility
is to run it from the DB2I panels. See the LOAD job in Appendix B.15, “JCL for
first job to LOAD CIPROS tables” on page 228 for the sample JCL that we used
during the project.

When loading data into a table you can also use the INSERT SQL statement from
an application program. The LOAD utility is more efficient than the INSERT
program. This is especially true for large amounts of data. Among other things,
with LOAD, you may specify LOG NO, avoiding the overhead of logging all the
inserted records, and just doing a quick COPY of the table space at the end. The
LOAD utility also checks for referential integrity during its operation when the
parameter ENFORCE CONSTRAINTS is specified.

If referential integrity is needed, enforcing referential integrity and detecting
referential integrity errors at the time the various tables are loaded can be less
time consuming than using the CHECK DATA utility after all the data has been

LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES
INTO TABLE PAOLOR2.ENGINEERING_UNIT

(ENG_UNT POSITION(1) VARCHAR,
ENG_UNT_TYPE POSITION(13) VARCHAR
NULLIF (ENG_UNT_TYPE = ' '),
DESCRIPTION POSITION(30) VARCHAR)

ENFORCE CONSTRAINTS
Data conversion 121

loaded. If tables are loaded in the proper order based on their primary and foreign
keys definitions this will work well.

We suggest that you graphically lay out the referential integrity relationships
across the tables as reported in Figure 52.

Figure 52. Sample database graphical layout

Just include a listing of all tables with foreign key reference. This will help in
determining the order of loading the tables. An example is shown in Figure 53. In
this approach the table with the foreign key is indented below the table to which it
refers to. Do this for each table. Tables with no references will have no indented
lines below them. Here you can see readily that both ANALLYSIS_METHOD and
COMPOS_TYPE need to be loaded before METHOD_RESULT.

Figure 53. Sample reference listing

If you do not enforce referential integrity at load time with the ENFORCE
CONSTRAINTS DISCARDS 0 option of the LOAD utility, tables may be loaded in
any order. However, when you do check referential integrity any missing data will
cause errors. Therefore, you will still have to load the data for all affected tables.
The consequence of this approach is that if there are integrity problems you will
have a bigger mess to clean up since you may now have more dependent tables
to deal with at the same time. DB2 can be directed to delete offending rows. This
may have a ripple effect through various tables depending on how interlaced the
foreign key structure is. Your table spaces will now be in check pending status
and in need of extra work.

The description of the data to DB2 is contained in the LOAD statement
parameters. The POSITION parameter in the LOAD statement should match the
position in the input file of the various fields. For example, if you state position 1
begins a fixed length character data field of 3 bytes DB2 will expect to find 3
bytes of character data there to place into a CHAR(3) column in the specified
table. If the next position, which would be 4, represents the beginning variable
character data DB2 should find the 2 byte binary length field not the beginning of
the actual data. DB2 will expect to find the beginning of the data in the third byte,
or position 6.

DESIGNATION MEANING

CIPROS01 STORAGE GROUP NAME

CIPROS DATABASE NAME

CPRSBASE CPRSLAB CPRSLOGE CPRSREAD CPRSPRDS TABLESPACE NAMES

DATA_TYPE SAMPLE APPL_DATA READING CASES TABLE NAMES
.
.

ANALYSIS_METHOD
METHOD_RESULT

COMPOS_TYPE
METHOD_RESULT
122 Converting from Oracle AIX to DB2 for OS/390

As mentioned in 6.6, “Reformatting data for DB2” on page 119 the description
output from the REXX program is valuable when setting up the positional input for
the DB2 LOAD. In our example JCL this output is named, for example,
CIPROS.DATATYPE.CTLOUT. DATATYPE is the abbreviated name representing
the table DATA_TYPE. The actual converted data is found in the file named
CIPROS.DATATYPE.DATAOUT. You can see that the positional description found
in CTLOUT matches the locations of the various fields in DATAOUT.

Examples of these two files are in Figure 54.

Figure 54. CTLOUT file

The two dots in front of each readable piece of data represent the 2 binary length
bytes since these fields are to become VARCHAR columns.

If we set the data set profile for DATAOUT to "hex on" under ISPF we would be
able to view the values, in hexadecimal of course, for the length. See Figure 55.

Figure 55. Hex version of DATAOUT file contents

You may notice that the word "TEXT" above is 4 bytes long. However, we are
sure you have also noticed that there are 6 positions represented in the file. As
we mentioned, the REXX program moves all of the input record’s fields to the
output record. DB2 will load only the 4 bytes "TEXT" as indicated by its length of
4. The same is true for the other field.

The DB2 LOAD statement for DATA_TYPE taken out from its JCL context is
reported in Figure 56.

Figure 56. Sample LOAD statement

Notice that position 1 and position 9 are where DB2 looks for the data and that it l
finds the 2 byte length information there with the data following. The parameter
INDDN(CPRSRECS) refers the LOAD to the input file DD card which describes
the input file for the LOAD. LOG NO tells DB2 not to log the loaded records. The
implication here is that the log cannot be used for recovery. However, this is not
much of a problem since we are loading the table for the first time. To recover
before the LOAD is completed we would use the LOAD again. If any rows had

CTLOUT:
* Control file describing converted data (DATAOUT)
* (same format as CTLIN)
1 6 V
9 40 V
DATAOUT:
..REAL ..Real value
..TEXT ..Text Value

...REAL ..Real value
00DCCD4400D8894A89A8444444444444444444444444444444
049513000A9513051345000000000000000000000000000000

..TEXT ..Text Value
00ECEE4400E8AA4E89A8444444444444444444444444444444
043573000A3573051345000000000000000000000000000000

LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES
INTO TABLE PAOLOR2.DATA_TYPE

(DATA_TYPE POSITION(1) VARCHAR,
DESCRIPTION POSITION(9) VARCHAR)
Data conversion 123

been loaded we would have to delete them before reloading due to the RESUME
YES parameter specified for our segmented table space. If the rows are not
deleted the LOAD abends for duplicate keys. RESUME YES is needed for
segmented table spaces with more than one table in each table space. If
REPLACE were used, data of tables loaded previously would be destroyed.

Table DATA_TYPE has, in our project, a referentially dependent table TAG.
Therefore, DATA_TYPE must be loaded before TAG. DATA_TYPE is not
dependent on any other table and may be loaded at anytime in the loading
sequence as long as it is before TAG.

If the field to be loaded is known to have null then the NULLIF condition should be
coded. For example, table TAG has several columns that may be null. The input
to the LOAD will be all spaces. So, you must code the NULLIF condition as
shown in Figure 57. Notice the parameter ENFORCE CONSTRAINTS.

Figure 57. Sample LOAD statement with NULLIF

With the REXX output of a length of 1 and spaces for the VARCHAR column, it
can be assumed that null should be the result. The float and timestamp columns
have corresponding fixed fields in the REXX file. It can be assumed that spaces
mean null and the NULLIF condition will establish this in the table.

The obvious caution here is for a character column where space may be valid. If
this is so, is a nullable column the best solution? If null is acceptable use some
other character unacceptable as a value for the column as the indicator for
NULLIF.

The EXTERNAL(n) parameter should be coded on the LOAD statement for
integer, float and timestamp data types. This tells the LOAD utility what size field
to expect.

Refer to DB2 UDB for OS/390 Version 6 Utility Guide and Reference, SC26-9015
for details on the LOAD Utility.

Pending statuses
Occasionally a LOAD or other utility job will fail. When this happens the utility
places the table space in a pending status. The status depends upon what was
going on at the time. The statuses you are most likely to see are RECP, recovery
pending; CHKP, check pending; COPY, copy pending (when LOG NO is
specified); RBDP, index rebuild pending;. A list of these and other statuses along

LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES
INTO TABLE PAOLOR2.TAG

(TAG_NAME POSITION(1) VARCHAR,
...
...
...

STATUS POSITION(73) VARCHAR NULLIF (STATUS = ' '),
HI_VALUE POSITION(85) FLOAT EXTERNAL(41) NULLIF (HI_VALUE = ' '),
LO_VALUE POSITION(126) FLOAT EXTERNAL(41) NULLIF (LO_VALUE = ' '),

DATA_TYPE POSITION(167) VARCHAR,
ENG_UNT POSITION(175) VARCHAR,
DESCRIPTION POSITION(187) VARCHAR,
CREATION_DATE POSITION(229) TIMESTAMP EXTERNAL(26)

NULLIF (CREATION_DATE = ' '),
DISCONN_DATE POSITION(255) TIMESTAMP EXTERNAL(26)

NULLIF (DISCONN_DATE = ' '))
ENFORCE CONSTRAINTS
124 Converting from Oracle AIX to DB2 for OS/390

with a discussion of them and various solutions can be found in DB2 UDB for
OS/390 V6 Command Reference, SC26-9006 and the DB2 UDB for OS/390 V6
Administration Guide, SC26-9003.

To begin recovery from a status that prevents further work, such as copy pending,
you need to see if any utility is still running against the table space and what kind
of pending status it is in. In several instances the utility execution may be
restarted after correcting the situation.

Figure 58 shows the command to be executed under DB2 interactive (DB2I),
option 7, to verify anomalies in the status of the database objects. Use caution
when executing commands from the command processor since you might leave
the cursor positioned for execution on the wrong line.

Figure 58. Sample DISPLAY DATABASE command

The DISPLAY command will show the CIPROS table spaces with restricted
statuses. The table spaces in the correct read/write (R/W) status will not display
because of the RESTRICT parameter.

The next step is to see if any utilities are still running. Figure 59 shows the related
command.

Figure 59. Sample DISPLAY UTILITY command

If any utility is running with your ID, and it is certainly recommended, you need to
terminate it before DB2 lets you run a recovery utility for the table space. Figure
60 shows the TERMINATE command.

Figure 60. SampleTERMINATE UTILITY command

Once this is done you will be able to execute a recovery job using the appropriate
utility statement. Appendix B, “Sample DB2 for OS/390 jobs” on page 215 has
several sample jobs for recovery, rebuild, check or copy executions.

Submit the job with the correct command and utility and, when the job is
complete, the status will be reset by DB2 to read/write (RW).

For example, the LOAD utility, coded with LOG NO, leaves the table space in
COPY pending status. To relieve this situation you will have to run an image copy
of the table space. B.11, “JCL for REORG, RUNSTATS and COPY of CIPROS
table spaces” on page 223 shows a job with steps that take image copies.

DB2 keeps track of the names of data sets used to store the image copy made
during any job. You will have to change the file name each time you run an image
copy. Using some sort of numbering scheme or generation data group that makes
this easier for you to keep track of it, as well.

-DIS DATABASE(CIPROS) SPACENAM(*) RESTRICT

-DIS UTILITY(*)

-TERM UTILITY(DSNTEX)
Data conversion 125

Hang situation
Occasionally, our prerelease copy of DB2 V6 would hang. When this condition
occurred the only solution was to take drastic measures. Sometimes cancelling
the job that was running against a table space was enough. Some other times we
had to stop and restart the DB2 subsystem and cancel the TSO userids of those
involved. You may or may not be able to execute these commands yourself.
Usually the computer console operator can execute the cancel command if you
cannot. He or she can also execute the stop and start commands of the DB2
subsystem, as well.

The userid cancel command is in Figure 61.

Figure 61. Cancelling a TSO user

If cancelling the userid is not enough to remove it from the system you can use
the FORCE command. See Figure 62.

Figure 62. Forcing a TSO userid from the system

The START and STOP commands for the DB2 subsystem must be entered from
the console, or console like function (SDSF command option or started task.) The
format for the stop command is in Figure 63.

Figure 63. The STOP DB2 command

The ’=DB2X’ part of the command tells the operating system which instance of
DB2 is to be stopped. This is very important since there may be more than one in
your system. In our environment we had six. The MODE(FORCE) tells DB2 to
stop regardless of what is running. If you use the regular stop command DB2 will
wait until there is no other activity before stopping.

You should watch the system log in SDSF to see the progress of the shutdown
and for the indication from DB2 that it is ready for restart. When this message is
displayed you can enter the start DB2 command shown in Figure 64.

Figure 64. The START DB2 command

Notice that the DB2 instance must be specified if you have more than one.

If everything else fails the OS/390 command reported in Figure 65 will bring all
DB2 address spaces down. Hopefully you will not need these commands at all.

/c u=paolor1

force u=paolor1

=db2x stop db2 mode (force)

=db2x start db2
126 Converting from Oracle AIX to DB2 for OS/390

Figure 65. The STOP IRLM proc OS/390 command

6.9 Loading data into DB2 using DataJoiner

DataJoiner may represent significant time and effort savings if it is available to
you. It can be used to move data directly from Oracle on a client, such as a RISC
6000, directly to a DB2 database on a server machine running OS/390.
Connectivity can be achieved through TCP/IP. SQL is written to select the data
from the various tables of the Oracle database and insert it into the corresponding
tables of the DB2 database. Of course, before using DataJoiner the database
design will have to be implemented in DB2 on the server. That is, the same jobs
that we used to create the storage group, table spaces, tables, indexes, primary
and foreign keys, and so forth will have to be run to use this approach as well.

6.9.1 Installing and configuring DataJoiner for AIX
In our project, we have used an F50 RISC machine, whose hostname is sky, as
the gateway machine for the connection to both Oracle for AIX and DB2 for
OS/390 servers.

On this machine, DB2 UDB for AIX V5.2 and Oracle 8.0.4 are installed. Using
Oracle 8.0.4 as client for our Oracle 7.3 server did not present any compatibility
problem.

Refer to Figure 66 for the DataJoiner configuration used.

Figure 66. DataJoiner configuration

P IRLMprocname

user
PAOLOR2

user
PAOLOR3

DB2 for OS/390

Oracle

DB2 for AIX
Oracle
DataJoiner

user
PAOLO

user
PAOLOR1

Local Area Network
Data conversion 127

Oracle is required for the client access to the Oracle server. You may decide to
install DataJoiner on the same machine where your Oracle server is installed.

DataJoiner Version 2.1.1 on AIX is the version that we used in our project. For
more detailed information on the installation and configuration of DataJoiner,
refer to DataJoiner Implementation and Usage Guide, SG24-2566 and to Mining
Relational and Nonrelational Data with IBM Intelligent Miner for Data Using
Oracle SPSS and SAS As Sample Data Sources, SG24-5278.

6.9.1.1 Installing and configuring the base product
After inserting the DataJoiner distribution media in the appropriate drive, you can
install the product as follows:

• From an AIX shell and with root user, run the command:

• Input your installation device identifier (for example, /dev/cd0)

• On the next screen, select the components you want to install (with F4 key), or
select all_latest

After installing DataJoiner base product, the configuration includes the following
steps:

• Create an AIX group for the DataJoiner instance (for example, djinst) using
SMIT or with the AIX command:

• Create an AIX user for the DataJoiner instance (for example, djinst), belonging
to the djinst group previously created, using SMIT or with the AIX command:

• Create a DataJoiner instance for the djinst user previously defined, with the
following command:

The three commands previously described have to be issued by root user.

At this point, you can login to the AIX system as the djinst user and add the
following line in the .profile file (running in a Korn shell):

where /home/djinst is the djinst home directory.

Open the db2profile file in the sqllib subdirectory of djinst home directory
(/home/djinst) and modify the lines as follows:

smitty install_latest

mkgroup -A djinst

mkuser pgrp=djinst djinst

/usr/lpp/djx_01_01_0000/instance/db2instance djinst

. /home/djinst/sqllib/db2profile
128 Converting from Oracle AIX to DB2 for OS/390

Execute the djinst .profile file, for example, with the command:

At this point, the DataJoiner can be started by the djinst user with the command:

and a DataJoiner database can be created, for example, with the following
command:

6.9.1.2 Configuring DataJoiner to access Oracle
In this section we describe the configuration of DataJoiner for the connection to
the Oracle CIPROS database.

Configuration of DataJoiner Data Access Modules
Login as root and add the following lines in the /.profile file:

where /oracle8/product/8.0.4 is the Oracle home directory.

then, execute the .profile file with the command:

Run the djxlink.sh script to create the Data Access Module for Oracle 8 RDBMS
(net8).

DB2COMM=TCPIP
export DB2COMM
...
DJXCOMM=’db2ra drda drdaIP net8’
export DJXCOMM

. $HOME/.profile

db2start

db2 create database DJDB

ORACLE_HOME=/oracle8/product/8.0.4
LIBPATH=/usr/lpp/djx_02_01_01/lib
export ORACLE_HOME LIBPATH

. /.profile

cd /usr/lpp/djx_02_01_01/lib
./djxlink.sh
Data conversion 129

Note that this script creates all the Data Access Modules available with the
DataJoiner release you are running. In our case, it creates also, for example, the
drdaIP module for DB2 for OS/390 connection via TCP/IP.

Also the SQLNet Data Access Module is created. SQL*Net, as it is properly
named but generally called SQLNet, is the Data Access Module of Oracle 7
RDBMS. If you are installing DataJoiner on the same machine where your Oracle
7 is installed, you have to use SQLNet instead of net8 in the following
configuration operations and commands.

Configuration of Oracle connection (SQLNet)
Login as djinst and add the following lines in his .profile file (home/djinst/.profile):

and run again his .profile file, as shown in 6.9.1.1, “Installing and configuring the
base product” on page 128.

If you have installed DataJoiner on your Oracle machine, you are now able to
connect to the Oracle RDBMS with the djinst user.

Since in our project the CIPROS Oracle database is installed on another machine
(BALTIC), we had to configure SQLNet to reach the CIPROS database from the
DataJoiner machine (sky). Refer to the Oracle documentation ORACLE7 The
Complete Reference, G. Koch and K. Loney, Oracle Press, ISBN 0-07-882285-8
for detailed information on the Oracle Network (SQLNet) configuration.

With the Oracle owner user (oracle, in our case) we have added the lines listed in
Figure 67 on page 131 in the listener.ora file of the
$ORACLE_HOME/network/admin directory of CIPROS (BALTIC) server (if the
listener.ora does not exist, create a new one):

ORACLE_BASE=/oracle8
ORACLE_HOME=/oracle8/product/8.0.4
TNS_ADMIN=$ORACLE_HOME/network/admin
export ORACLE_HOME ORACLE_BASE TNS_ADMIN
LIBPATH=/usr/lpp/djx_02_01_01/lib
export LIBPATH
130 Converting from Oracle AIX to DB2 for OS/390

Figure 67. Example of LISTENER definition in listener.ora file

where:

• port=1525 is referred to the port, in the file /etc/services, indicated either with
listener or with orasrv names

• cipros is the name of the Oracle instance (ORACLE_SID variable of your
instance owner .profile file) you are connecting to

• baltic is the hostname of the Oracle server machine (as it is in the /etc/hosts
file)

• /home/oracle/app/oracle/product/7.3.3 is your Oracle home directory
(ORACLE_HOME variable of your instance owner .profile file)

Then, we started the Oracle SQLNet listener as follows:

On the DataJoiner machine (sky, in our case), we have added the lines listed in
Figure 68 in the tnsnames.ora file of $ORACLE_HOME/network/admin directory
(if the tnsnames.ora does not exist, create a new one):

Figure 68. Example of tnsname definition in tnsnames.ora file

We could test the connection between the two machines by executing, for
example, the following command from the djinst user on the DataJoiner machine:

LISTENER =
(ADDRESS_LIST =

(ADDRESS= (PROTOCOL= IPC)(KEY= cipros))
(ADDRESS= (PROTOCOL= IPC)(KEY= PNPKEY))
(ADDRESS= (PROTOCOL= TCP)(host= baltic)(port= 1525))

)
SID_LIST_LISTENER =
(SID_LIST =
(SID_DESC =
(GLOBAL_DBNAME= cipros.)
(ORACLE_HOME= /home/oracle/app/oracle/product/7.3.3)
(SID_NAME = cipros)

)
)

STARTUP_WAIT_TIME_LISTENER = 0
CONNECT_TIMEOUT_LISTENER = 10
TRACE_LEVEL_LISTENER = OFF

lsnrctl start

baltic =
(DESCRIPTION =
(ADDRESS = (PROTOCOL= TCP)(host= baltic)(port= 1525))
(CONNECT_DATA = (SID = cipros))

)

Data conversion 131

The quit or exit commands can be executed to exit the SQLPlus command line.

Refer also to Understanding SQL*Net Release 2.3, A42484-1

Configuration of DataJoiner mappings and nicknames
Now, you can create the server mapping for your Oracle database.

First you need to connect to the DataJoiner database (with djinst user, from an
AIX shell), as follows:

Then, you run the CREATE SERVER MAPPING statement with the following
command:

where:

• SERVER NAME is a unique name of your choise (oradb, in our case)

• NODE NAME is the SQLNet name used in listener.ora file (baltic, in our case)

• DATABASE SERVER TYPE is oracle

• VERSION NUMBER is the version of your Oracle database (8.0, in our case)

• DAM is the Data Access Module you are using (net8, in our case)

In our environment, the command was the following:

With the following command, create the user mapping for the Oracle connection:

where:

• djinst is the local user

• oradb is the server mapping previously created

• ciprosusr is the Oracle CIPROS user

• ciprospwd is his password

sqlplus ciprosusr/ciprospwd@baltic

db2 connect to djdb

db2 create server mapping from <SERVER NAME> to node <NODE NAME> \
type <DATABASE SERVER TYPE> version <VERSION NUMBER> protocol \"<DAM>\"

db2 create server mapping from oradb to node baltic type oracle \
version 8.0 protocol \"net8\"

db2 create user mapping from djinst to server oradb \
authid ciprosusr password ciprospwd
132 Converting from Oracle AIX to DB2 for OS/390

At the end, a locale nickname for a remote Oracle table can be created with the
following command:

that is, in our case, for example:

In Appendix A.10, “nick.sh script” on page 208 we provide a shell script which
creates a list of CREATE NICKNAME statements for the creation of all the
nicknames for our CIPROS tables, starting from a file containing the list of the
tables. The script creates also the DB2 nicknames (refer to 6.9.1.3, “Configuring
DataJoiner to access DB2 for OS/390” on page 133).

You can test the connection by selecting from the OCASES nickname, as follows:

6.9.1.3 Configuring DataJoiner to access DB2 for OS/390
If you have already configured DataJoiner for Oracle database, you should
already have the drdaIP Data Access Module (see 6.9.1.2, “Configuring
DataJoiner to access Oracle” on page 129), otherwise you need to run, with root
user, the following commands:

Configuration of DB2 for OS/390 TCP/IP services
Refer to Wow! DRDA Supports TCP/IP: DB2 Server for OS/390 and DB2
Universal Database, SG24-2212.

Configuration of DataJoiner TCP/IP services for DB2
On the DataJoiner machine (sky), we need to enable the communication TCP/IP
services for the connection to the remote DB2 for OS/390, using DRDA
architecture.

To start you need to know the ip address related to the DB2 for OS/390 server.
You can also define a hostname for it and insert it into local /etc/hosts file (with
root user), as we show in the following example:

Then login to the DataJoiner machine as the djinst user and catalog a TCPIP
node for your remote DB2 for S/390 as follows:

create nickname <NICKNAME> for <SERVERNAME.REMOTEUSER.TABLE>

db2 create nickname OCASES for oradb.cipros.CASES

db2 "select * from OCASES"

cd /usr/lpp/djx_02_01_01/lib
./djxlink.sh

9.12.2.35 wtsc63oe wtsc63oe.itso.ibm.com
Data conversion 133

The node name (wtsc63oe, in our case) can be chosen by you. We used the
same hostname of the remote machine, as defined in /etc/hosts file.

The server number (33340, in our case), must be the same you have defined as
the listener port number on your DB2 for OS/390 environment. Refer to
“Configuration of DB2 for OS/390 TCP/IP services” on page 133.

Then you can catalog the database in the local database directory, as follows:

where the first db63 database name is a pointer to the local DCS database
directory (see next command), the second db63 database name is an alias by
which the database has to be known in the local server and wtsc63oe is the node
name previously defined.

Now you can create an entry in the local DCS database directory with the
command:

where db63 is the database alias previously defined in the CATALOG DATABASE
command and db2x is the target database name by which the DB2 subsystem is
known to the OS/390 system and which must match the location name stored in
the BSDS of the DB2 for OS/390 subsystem.

You can now try to test the connection to the remote DB2 server with the
command:

where paolor3/pr3pwd are valid user/password on OS/390 system.

Configuration of DataJoiner mappings and nicknames
Now you can create the server mapping for your DB2 database.

First you need to reconnect to the DataJoiner database (with djinst user, from an
AIX shell), as follows:

Then you can run the CREATE SERVER MAPPING statement with the following
command:

catalog tcpip node wtsc63oe remote 9.12.2.35 server 33340

catalog database db63 as db63 at node wtsc63oe authentication dcs

catalog dcs database db63 as db2x

db2 connect to db63 user paolor3 using pr3pwd

db2 connect to djdb
134 Converting from Oracle AIX to DB2 for OS/390

where:

• mvs63 is the server name of your choice

• wtsc63oe is the node name previously defined

• DB2X is the target database name (the same that we used in the CATALOG
DCS DATABASE statement in section “Configuration of DataJoiner TCP/IP
services for DB2” on page 133

• db2/mvs is the type)

• 6.1.0 is the version number of the DB2 database

• drdaIP is the Data Access Module

• paolor3/pr3pwd are valid user and password on the OS/390 system

With the following command, create the user mapping for the Oracle connection:

where:

• djinst is the local user

• MVS63 is the server mapping previously created

• ciprosusr is the Oracle CIPROS user

• ciprospwd is his password

At the end, a locale nickname for a remote DB2 table can be created with the
following command:

that is, in our case, for example:

Note: In the previous command, cipros is the name of the schema the table
belongs to. In our project, we have created all the tables with the paolor2 user,
then we have created an alias in the cipros schema for all the tables, as we have
described in 5.2.1.11, “Synonyms and aliases” on page 89.

For example, you can test the connection by selecting from the TAG nickname,
as follows:

db2 create server mapping from mvs63 to node \"wtsc63oe\" \
database \"DB2X\" type db2/mvs version 6.1.0 protocol \"drdaIP\"
authid paolor3 password pr3pwd

db2 create user mapping from djinst to server \"MVS63\" \
authid paolor3 password pr3pwd

create nickname <NICKNAME> for <SERVERNAME.REMOTEUSER.TABLE>

db2 create nickname TAG for mvs63.cipros.TAG
Data conversion 135

In Appendix A.10, “nick.sh script” on page 208 we provide a shell script which
creates a list of CREATE NICKNAME statements for the creation of all the
nicknames for our CIPROS tables, both for Oracle and DB2 databases, starting
from a file containing the list of the tables.

6.9.2 Using DataJoiner to migrate data from Oracle to DB2
As we described in 6.9.1, “Installing and configuring DataJoiner for AIX” on page
127 and using the command file created by the nick.sh script described in A.10,
“nick.sh script” on page 208, in our DataJoiner machine (sky) we have created
two sets of nicknames for CIPROS tables.

The first set, the names of the tables starting with an "O", is constituted by the
nicknames of Oracle tables.

The second set, the names of the tables are the same of the DB2 table names, is
constituted by the nicknames of DB2 tables.

Note: For some Oracle nicknames the total length of the nickname (“O” + the
table name) was greater than 18. In our nick.sh script we have defined a list of
environment variables (at the beginning of the script) containing the old and the
new, shorter nicknames of Oracle tables.

At this point, we can use the INSERT/SELECT statement to migrate data from
Oracle to DB2 tables, as in the following example; DataJoiner will provide for us
the data conversion:

Since DB2 performs the referential integrity check during INSERT statements, the
order used for inserting data using DataJoiner must follow the right order
provided by the referential constraints.

6.9.3 Exceptions in using DataJoiner to migrate data
In this section we describe some specific cases for which DataJoiner either
should be used in a different way or cannot be used to migrate data from Oracle
to DB2.

6.9.3.1 Large objects
DB2 large objects (CLOB, BLOB, DBCLOB) are not supported at the moment by
DataJoiner. If your Oracle database uses LONG or LONG RAW data, you should
verify that the length of the data fits into a standard DB2 VARCHAR or VARCHAR
FOR BIT DATA field.

In case of LONG field mapped into DB2 VARCHAR data type, DataJoiner can be
used to migrate data with a simple INSERT/SELECT statement.

db2 "describe select * from TAG"

db2 "insert into TAG select * from OTAG"
136 Converting from Oracle AIX to DB2 for OS/390

If you have LONG RAW Oracle data mapped into DB2 VARCHAR FOR BIT
DATA, you can use the EXPORT/IMPORT DataJoiner utility to migrate data from
Oracle to DB2 table.

We show how to do this in the following example.

We have created in the Oracle database a table called LRAWTAB as follows:

Let us suppose that the source data in the Oracle table is not longer than 1000
bytes. A corresponding DB2 table (with paolor3 user) was created as follows:

Then, we have created the DataJoiner nicknames for the two tables as follows:

The EXPORT statement can be executed as follows:

Note: The EXPORT utility truncates the LONG field to 32700 bytes.

Then, the IMPORT utility towards the DB2 nickname can be executed as follows:

As an example, we inserted into Oracle LRAWTAB table a record with the
following command, issued on the Oracle machine from a SQLPlus command
line:

After migrating the data to DB2 using EXPORT/IMPORT utilities, the content of
the LRAWTAB DB2 table is as follows (we used SPUFI to select from the table):

CREATE TABLE LRAWTAB (LRAW LONG RAW);

CREATE TABLE LRAWTAB (LRAW VARCHAR(1000) FOR BIT DATA);

db2 create nickname OLRAWTAB for oradb.cipros.LRAWTAB
db2 create nickname LRAWTAB for mvs63.paolor3.LRAWTAB

db2 "export to exp.ixf of ixf messages exp.txt select * from olrawtab"

db2 "import from exp.ixf of ixf messages imp.txt insert into olrawtab"

insert into lrawtab values(hextoraw('1234567890'));
Data conversion 137

Note: As for CHAR FOR BITA DATA type, DB2 fills in the trailing space of
VARCHAR FOR BIT DATA fields with blanks. Furthermore to show the content of
the table in hexadecimal external format using SPUFI, we had to truncate the
LRAW field to 255 bytes, maximum length supported by the HEX function.

6.9.3.2 Long indexes
In 5.2.1.7, “Indexes and primary keys conversion” on page 80 we discussed the
different limitations in index creation between Oracle and DB2. These limitations
also apply to DataJoiner.

If your tables have indexes longer than 255 bytes, the nickname cannot be
created.

In our project we have solved the problem by creating a view on the table.

In this example, RTDB_LIST table in the Oracle CIPROS database has the
following structure:

The index is constituted by the columns CODE and ENV_NAME for a total length
of 264 bytes.

Since our data does not require 256 bytes for the CODE column, we have created
the DB2 table by defining only 246 bytes for the CODE column length. The other
fields of the table remained unchanged.

Then we have created a view on the Oracle table with the following command
using SQLPlus:

After that, on the DataJoiner system we have created the two nicknames, one on
the RTDB_VIEW Oracle view, the other one on the RTDB_LIST DB2 table, as
follows:

SELECT HEX(SUBSTR(LRAW,1,255)) FROM LRAWTAB; 00270799
---------+---------+---------+---------+---------+---------+---------+

---------+---------+---------+---------+---------+---------+---------+
123456789040
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE612I DATA FOR COLUMN HEADER COLUMN NUMBER 1 WAS TRUNCATED
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+

SQL> desc rtdb_list
Name Null? Type
------------------------------- -------- ----
CODE NOT NULL VARCHAR2(256)
ENV_NAME NOT NULL VARCHAR2(8)
TAG_NAME VARCHAR2(40)
ENG_UNT VARCHAR2(10)

create view rtdb_view as select * from rtdb_list;
138 Converting from Oracle AIX to DB2 for OS/390

At this point, we can INSERT/SELECT between the two nicknames with the
command:

db2 create nickname ORTDB_LIST for oradb.cipros.RTDB_VIEW
db2 create nickname RTDB_LIST for mvs63.cipros.RTDB_LIST

db2 "insert into RTDB_LIST select * from ORTDB_LIST"
Data conversion 139

140 Converting from Oracle AIX to DB2 for OS/390

Chapter 7. Application conversion

In this chapter we discuss the first five tasks of our application conversion plan as
described in 3.3.3.2, “Application conversion plan” on page 38. That section
details how this conversion takes place, with what tools and resources:

• Proof of concept iterative process

• Programs for pilot

• Program redesign

• Program preparation

• Program conversion

7.1 Proof of concept iterative process

The proof of concept iterative process takes the application programs through all
the steps needed for the conversion until they are ready for cutover. During the
pilot, the iterative loop is executed a series of times until success is achieved and
the conversion is complete. The actual execution times are reviewed and used for
future estimates. Section 3.3.2, “Iterative tasks” on page 36 describes the use of
this process during our project. Figure 69 on page 142 represents the iterative
process. The iterative tasks for a conversion proof of concept include:

• Convert application programs

• Review program code

• Run tests

• Performance tuning

• Change control

7.1.1 Convert application programs
The activity related to the application programs conversion starts when the
application code is at the state where it will precompile, compile, link, bind and
run cleanly with SQL statements. The tasks for this activity are:

• Programs for pilot, 7.2, “Programs for pilot” on page 143 shows how we
determined our pilot program

• Program redesign, 7.3, “Program redesign” on page 150 shows how we
redesigned areas of our program

• Program preparation, 7.4, “Program preparation” on page 162 shows how we
prepared and ran our programs

• Program conversion, 7.5, “Program conversion” on page 174 shows how we
converted the programs for our project
© Copyright IBM Corp. 1999 141

Figure 69. Proof of concept iterative process

7.1.2 Review program code
The SQL to be used in the programs may be tested with Explain or checked by
the database administrator before it is system-tested. A few samples should
suffice because function and performance are about to be automatically tested in
7.1.3, “Run tests” on page 142 and 7.1.4, “Performance tuning” on page 142.

7.1.3 Run tests
The run test task verifies that the program still produces the same results using
the target database as it does using the source database. To do this effectively
means finding the right test data. Section 8.1, “Testing” on page 183 discusses
how we ran tests for our project.

7.1.4 Performance tuning
Data collected from the source system should show the CPU and elapsed time of
the source system but this is not really suitable. The same tests with the same
data need to be run on the both systems and the resources taken compared. It
may not be necessary to do this for every possibility, but the critical transactions
and important batch jobs do need to be thoroughly tested. Also, stress tests of
the system ensure that the system will perform well when needed. This involves
sending many transactions for processing at the same time. Section 8.2,
“Performance tuning” on page 189 discusses how we performed some
performance tuning for this project.

7.1.5 Change control
During stage two, any changes to the RDBMS or programs need to be done in a
controlled manner. Section 8.3, “Change control” on page 189 discusses how we
performed some change control for this project.

Proof of concept iterative process

Review
program

code

Convert
application
programs

Run tests

Performance
tune

Change
control
142 Converting from Oracle AIX to DB2 for OS/390

7.2 Programs for pilot

The program inventory process identifies and evaluates the source application
modules needed for the target application modules. The Laboratory and Process
batch application consisted of two main programs (lab_in.c and rtd_in.c). Several
functions in various libraries were used. See Chapter 2, “Project scenario” on
page 5 and Chapter 3, “Conversion process” on page 13 for more detail about the
source application and how we determined our pilot application. The inventory
process covered the areas of .c C non-SQL source code, .pc C SQL code and .h
include files.

Section 7.2.1, “Source program inventory summary” on page 143 describes our
source program inventory. Section 7.2.2, “Target program environment” on page
147 describes how we mapped the AIX source application environment to the
OS/390 target application environment.

7.2.1 Source program inventory summary
A variety of program inventories were conducted. Table 30 provides a sample list
of functions by .c/pc file.

Table 30. List of functions for each source file

In Figure 70 we report a sample sorted list of program functions.

Figure 70. Sorted list of functions

In Table 31 we provide an example of a list of all files by file type.

Table 31. List of all files ordered by type

.c/.pc files List of functions for each .c/.pc file

lab_in.c elabora_lab inserisci_lab select_mtrl_la
b

sqlins.pc CPRS_i_instr
ument

CPRS_i_read
ing

CPRS_i_read
ing_text

CPRS_i_sam
ple_point

CPRS_i_sam
ple

CPRS_i_tag

sqlerr.pc CPRS_sql_er
ror

util.c CPRS_cerca
_stanza

CPRS_read_
stripstr

CPRS_to_da
y

CPRS_open_
file

CPRS_readfil
e

mod_str

.h Include files .c C non-SQL source files .pc C SQL source files .exp files

bridge.h bridge.c sqlerr.pc cprsbase.exp

cbridge.h corertd.c sqlins.pc cprssql.exp

ccprsrtd.h dinexec.c sqllog.pc

...

build_lab_code
build_u_stmt
CPRS_build_log_path
CPRS_cerca_stanza
...
Application conversion 143

In Table 32 we show a sequence of calls to nested subroutines.

Table 32. Application nested subroutines calls

In Table 33 we show the list of nested header file calls by application.

Table 33. Application nested header files calls

We identified the AIX source modules that we would use in the target
environment. The AIX command "ls -R" run in the CIPROS home directory was
used to generate a directory list with subdirectories which contain the AIX source
modules for the Process and Laboratory Data. See Figure 71 for the related
example.

Application Subroutines

lab_in.c CPRS_initbr

CPRS_read_cfg readcfg.c

CPRS_read_cfg_file

CPRS_cerca_stanza util.c

CPRS_sql_connect

CPRS_sql_error sqlerr.pc

...

Application Header files

lab_in.c

"lab.h"

<stdio.h>

"mbridge.h"

"cbridge.h"

<stdio.h>

"cprscat.h"

"cprs_msg.h"

<limits.h>

<nl_types.h>
144 Converting from Oracle AIX to DB2 for OS/390

Figure 71. AIX source module list

Figure 72 represents the program inventory summary of the AIX source modules
and includes C include files (.h), C non-SQL source files (.c), C SQL source files
(.pc), C make files to precompile, compile and link the C main application
programs, and the message source (.msg).

cipros /home/cipros/ciproso> ls -R

aix

include

msg

source

./aix:

lab_in

rtd_in

./include:

bridge.h

cbridge.h

ccprsrtd.h

...

./msg:

en_US

./msg/en_US:

cprs.msg

cprs_msg.h

./source:

bridge.c

corertd.c

cprsbase.o

...

sqlerr.pc

sqlins.pc

sqllog.pc

...
Application conversion 145

.

Figure 72. Process and Laboratory data source modules

Table 34 is a detailed program inventory of the Oracle ProC (.pc) files. The result
of the inventory was used as a basis for application redesign efforts. In addition,
the inventory was used to estimate the application development hours needed for
the .pc module conversion effort.

Table 34. SQL modules inventory

Module SQL
count

Comments Design
Hours

Code
Hours

Test
Hours

Total
hours

sqlerr.pc 0 Redesign effort - medium
Code length -short
Conversion-error message

8 8 8 24

sqlins.pc 24 1 to 1 - medium
Code length - long
Conversion-error code, pointer, date

24 16 8 48

sqllog.pc 10 Redesign effort - medium
Code length-medium
Conversion-error code, pointer, date,
system call

24 16 8 48

sqlsel.pc 9 1 to 1 - easy
Code length-medium
Conversion-indicator, pointer

16 8 8 32

sqlupd.pc 10 1 to 1 - easy
Code length-medium
Conversion-error code, pointer, date

16 16 8 40

sqlutil.pc 10 Redesign effort-medium
Code length - medium
Conversion - dual, date, dynamic

24 16 8 48

P ilo t A IX s o u r c e m o d u le s
h o m e

in c lu d e m s g s o u rc e a ix

6 4 (.h) e n _ U S

1 (.m s g) , 1 (.h) 2 (e x e c)

1 0 (.c) , 6 (.p c) , 1 m a k e

N o te : T h e .p c f i le s c o n ta in s th e 6 3 S Q L s ta te m e n ts u s e d

c ip ro s o

c ip ro s
146 Converting from Oracle AIX to DB2 for OS/390

7.2.2 Target program environment
In this section we describe analogies and differences when dealing with the
program libraries on the OS/390 environment. Please also refer to Appendix D,
“OS/390 TSO tools and tips” on page 257 for some tips on TSO usage for the first
time user.

7.2.2.1 Mapping the program libraries
The target modules are located in partitioned data sets library on the OS/390
system. OS/390 partitioned data sets are not the same as the hierarchical file
system structure in AIX. The AIX source module directory structure needs
mapping to the OS/390 target module partitioned data set. Partitioned data sets
have three qualifiers in their name, then a member name. The source module AIX
directory structure with several levels is mapped to the three levels nomenclature
structure for partitioned data sets. The next three figures show the three levels as
reported in the target program environment on OS/390 through the ISPF/PDF
Data Set List Utility.

Figure 73 shows the search at data set name level CIPROSN.C.

Figure 73. Screen 1 for OS/390 target module Data Set List Utility

Figure 74 shows the output with the list of PDS with the specified two-level
qualifier and the selection of a specific data set.

Menu RefList RefMode Utilities Help
sss

Data Set List Utility
Option ===>

blank Display data set list P Print data set list
V Display VTOC information PV Print VTOC information

Enter one or both of the parameters below:
Dsname Level . . . CIPROSN.C
Volume serial . .

Data set list options
Initial View . . . 1 1. Volume Enter "/" to select option

2. Space / Confirm Data Set Delete
3. Attrib / Confirm Member Delete
4. Total

When the data set list is displayed, enter either:
"/" on the data set list command field for the command prompt pop-up,
an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or
"=" to execute the previous command.

F1=Help F3=Exit F10=Actions F12=Cancel
Application conversion 147

Figure 74. Screen 2 for OS/390 target module Data Set Utility List

Figure 75 shows the list of members contained in the specified data set:

Figure 75. Screen 3 for OS/390 target module Data Set Utility List

Menu Options View Utilities Compilers Help
ss
DSLIST - Data Sets Matching CIPROSN.C Row 1 of 14
Command ===> Scroll ===> PAGE

Command - Enter "/" to select action Message Volume

CIPROSN.C.BASEDLL SBOX09
CIPROSN.C.DBRMLIB SBOX09
CIPROSN.C.DCLGEN SBOX09
CIPROSN.C.ENVARS SBOX09
CIPROSN.C.ENVAR1 SBOX09

/ CIPROSN.C.INCLUDE SBOX09
CIPROSN.C.JCL SBOX02
CIPROSN.C.LOADLIB SBOX09
CIPROSN.C.OBJ SBOX09
CIPROSN.C.PARMS SBOX09
CIPROSN.C.SOURCE SBOX09
CIPROSN.C.SQLDLL SBOX09
CIPROSN.C.TEST SBOX09
CIPROSN.C.VARS SBOX09

***************************** End of Data Set list ****************************
F1=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap
F10=Left F11=Right F12=Cancel

Menu Functions Confirm Utilities Help
ss
DSLIST CIPROSN.C.INCLUDE Row 00001 of 00064
Command ===> Scroll ===> DATA

Name Prompt VV MM Changed Size Init Mod ID
_________ BRIDGE
_________ CBRIDGE
_________ CCPRSRTD
_________ CDINEXEC
_________ CFINDEU
_________ CFINDMTR
_________ CFINDTYP
_________ CFINDVAL
_________ CLOGEV
_________ CMAPPING
_________ CPRSCAT
_________ CPRSMSG
_________ CPRSRTD
_________ CPRSSQL
_________ CREADCFG
_________ CSQLDEL
_________ CSQLFET
_________ CSQLINS
F1=Help F3=Exit F10=Actions F12=Cancel
148 Converting from Oracle AIX to DB2 for OS/390

7.2.2.2 Mapping the editing functions
ISPF/PDF is a powerful and comprehensive set of tools for the application
programmer. The OS/390 V2R7.0 TSO/E Command Reference, SC28-1969-02,
and OS/390 V2R7.0 TSO/E User's Guide, SC28-1968-01, cover the
functionalities in detail. In Table 35 we report a brief summary of comparable
functions between AIX and ISPF.

Table 35. AIX to OS/390 system utility mapping

7.2.2.3 Mapping the module names
OS/390 partitioned data sets and their members have an 8 character name length
limit. The AIX source module names must be changed to names of 8 characters
or less.

Table 36 represents a subset of the program name cross reference.

Table 36. Program name cross reference

Note: The members in a partitioned data set do not have file extensions similar to
the AIX file extensions of .pc, .h, .c etc..

The ISPF/PDF Data Set utility was used to allocate partitioned data sets and
members on OS/390 for the AIX source module files. The AIX source module files
were transferred to the OS/390 target module partitioned data sets via FTP.

Figure 76 represents the inventory summary of the OS/390 target modules for the
Process and Laboratory Data application. It represents only a relationship
diagram because PDS member attributes are different. We describe the SQL
related members in 7.4.4, “JCL for precompile, compile, link, bind, and run” on
page 166.

Tool AIX OS/390

Editor vi ISPF Editor

List ls ISPF Data Set Utility Dslist

New directory/PDS mkdir ISPF Data Set Utility Data Set

New file/member touch, vi For a PDS open the member as its name in
edit. For a new file, create it in the data set
utility and open the file as its name in edit.

Move mv ISPF Data Set Utility Move/Copy

Copy cp ISPF Data Set Utility Move/Copy

Delete rmdir, del ISPF Data Set Utility Data Set

AIX module name in AIX hierarchical file
structure

OS/390 module name in OS/390
partitioned data set member

sqlins.pc sqlins

inslab.c inslab

cprs_msg.h cprsmsg

.

.

.

.

.

.

Application conversion 149

Figure 76. Process and Laboratory Data OS/390 target modules

7.3 Program redesign

Some Oracle ProC source program modules in the Process and Laboratory Data
application required redesign. Table 34 on page 146 identifies which Oracle ProC
files required redesign. The areas of redesign are as follows:

• Pointers

• TYPDEF

• Host variables

• Error and message handling

• File handling

• Name length limitation

• Functions

Before we detail the areas of redesign, an explanation of the prototype
application and prototype JCL to test the redesign is given. In addition we show
sample Oracle source code and sample DB2 target code.

7.3.1 Prototype application
In order to prototype the areas of redesign, we used the DB2 SAMPLE database
and sample Phone application. Chapter 5., “Database conversion” on page 61
discusses the installation and setup of the DB2 SAMPLE database. The Phone
application has a structure similar to the Process and Laboratory Data Oracle
ProC module structure. For example, both the Phone application and the
Laboratory and Process Data application are batch programs, use the C
language and use embedded static SQL. The DB2 UDB for OS/390 Version 6
Application Programming and SQL Guide, SC26-9004 describes the DB2 sample
applications and the environments under which each application runs. It also
provides information on how to use the applications. The DB2 UDB for OS/390
Version 6 Installation Guide, GC26-9008 contains detailed information about the
sample applications.

P ilo t O S /3 9 0 ta rg e t m o d u le s

c ip ro s n

(6 4 h e a d e r)

(2 e x e c u ta b le)(1 8 s o u r c e)

C

(J C L)

(6 S Q L o b je c t)

in c lu d e b a s e d l ls o u r c e J C Llo a d libd b rm libs q ld ll e n v a ra p p io

(1 0 C o b je c t) (6 D B R M) (6 in p u t/o u tp u t)

(1 e n v ir o n)
150 Converting from Oracle AIX to DB2 for OS/390

The Phone sample application C source code is located in the on-line sample
library included with the DB2 product at prefix.SDSNSAMP(DSN8BD3). The
program lists employee telephone numbers and updates them as requested. It
also contains calls to C functions. The JCL member name for the Phone
application is prefix.SDSNSAMP(DSNTEJ2D).

A partitioned data set was allocated for our prototype environment. It contained
the JCL member in PAOLOR1.JCL.CNTL(DSNTEJ2D). Figure 77 shows how the
JCL was altered to suit our system environment. The partitioned data set that
contained the Phone application member is PAOLOR1.C.SOURCE (DSN8BD3).
To precompile the Phone application in our prototype environment, we added the
high level qualifier DSN8610.VPHONE to eliminate the message "SQLCODE
-204: PAOLOR1.VPHONE is an undefined name”.

7.3.2 Prototype JCL
During our redesign phase, we created JCL to precompile and compile the PDS
members that contained SQL based on the sample JCL for the Phone application
DSN610.QPP.SDSNSAMP(DSNTEJ2D). This would be similar to creating a
make file on AIX to precompile and compile the source files (Oracle ProC .pc, C
.c and header .h). We did this to test syntax, the host variable declarations, the
include libraries, the initialization of the host variables and the SQL statements.

Figure 77. Prototype JCL

//CPRSPCPL JOB (999,POK),'PAOLOR1',CLASS=A,MSGCLASS=T,
// NOTIFY=PAOLOR1,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC63
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR
//*
//* STEP001: PREPARE C PROGRAM
//*
//STEP001 EXEC DSNHC,MEM=SQLINS,
// COND=(4,LT),
// PARM.PC='HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)',
// PARM.C='/LSEARCH(''CIPROSN.C.INCLUDE'') OPTF(DD:OF)',
// PARM.LKED='AMODE=31,RMODE=ANY,MAP'
//PC.DBRMLIB DD DSN=CIPROSN.DBRMLIB.DATA(SQLINS),
// DISP=SHR
//PC.SYSLIB DD DSN=CIPROSN.C.INCLUDE,
// DISP=SHR
//PC.SYSIN DD DSN=CIPROSN.C.SOURCE(SQLINS),
// DISP=SHR
//C.OF DD *
SOURCE LIST MARGINS(1,72) NESTINC(255) LONGNAME

//LKED.SYSLMOD DD DSN=CIPROSN.RUNLIB.LOAD(SQLINS),
// DISP=SHR
//LKED.RUNLIB DD DSN=CIPROSN.RUNLIB.LOAD,
// DISP=SHR
//LKED.SYSIN DD *

INCLUDE SYSLIB(DSNELI)
INCLUDE RUNLIB(SQLINS)

//*
Application conversion 151

7.3.3 Sample Oracle source code
Figure 78 represents a sample of the original CIPROS Oracle code. It is a ProC
(.pc) file that contains C with embedded static SQL. This file contains all the SQL
UPDATE statements for the Process and Laboratory application. Each SQL
statement is contained in a C function. There is a one-to-one mapping of C
function with an SQL statement.

Figure 78. Sample Oracle source code

7.3.4 Sample DB2 target code
Figure 79 represents a sample of the target CIPROS DB2 code. It is a member in
a PDS that contains C with embedded static SQL. This example contains all the
SQL UPDATE statements for the Process and Laboratory application. Each SQL
statement is also contained in a C function. There is a one-to-one mapping of C
function with an SQL statement.

#include "sqlupd.h"
EXEC SQL INCLUDE SQLCA;

int CPRS_u_sample_point(pr_sample_point rtb,char *msg,int cmt)
{

int rc=CPRS_ORA_OK;

EXEC SQL UPDATE SAMPLE_POINT
SET FACILITY_NAME=:rtb->facility_name,DESCRIPTION=:rtb->description
WHERE SAMPLE_PT_NAME=:rtb->sample_pt_name;

if (((rc=CPRS_sql_error(CPRS_NO,msg))==0) && cmt==CPRS_YES)
EXEC SQL COMMIT WORK;

return(rc);
}

152 Converting from Oracle AIX to DB2 for OS/390

Figure 79. Sample DB2 target code

#include "sqlupd.h"
EXEC SQL INCLUDE SQLCA;

/* Include host variable declarations created by DCLGEN */
EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL INCLUDE HOSTVARS;
EXEC SQL END DECLARE SECTION;

int CPRS_u_sample_point(pr_sample_point rtb,char *msg,int cmt)
{
int rc=CPRS_ORA_OK;

/* Initialize values of host variable structure to NUL*/
memset(DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_data,'\0',
sizeof(DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_data));

memset(DCLSAMPLE_POINT.DESCRIPTION.DESCRIPTION_data,'\0',
sizeof(DCLSAMPLE_POINT.DESCRIPTION.DESCRIPTION_data));

memset(DCLSAMPLE_POINT.FACILITY_NAME.FACILITY_NAME_data,'\0',
sizeof(DCLSAMPLE_POINT.FACILITY_NAME.FACILITY_NAME_data));

/* Determine length of VARCHAR host variable */
DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_len =
strlen(rtb->sample_pt_name);
DCLSAMPLE_POINT.DESCRIPTION.DESCRIPTION_len =
strlen(rtb->description);
DCLSAMPLE_POINT.FACILITY_NAME. FACILITY_NAME_len =
strlen(rtb->facility_name);

/* Initialize host variables with values
from pointer parameter */

strncpy(DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_data,
rtb->sample_pt_name,
DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_len);
strncpy(DCLSAMPLE_POINT.DESCRIPTION.DESCRIPTION_data,
rtb->description,
DCLSAMPLE_POINT.DESCRIPTION.DESCRIPTION_len);
strncpy(DCLSAMPLE_POINT.FACILITY_NAME.FACILITY_NAME_data,
rtb->facility_name,
DCLSAMPLE_POINT.FACILITY_NAME.FACILITY_NAME_len);

/* Execute SQL */
EXEC SQL UPDATE SAMPLE_POINT
SET FACILITY_NAME=:DCLSAMPLE_POINT.FACILITY_NAME,
DESCRIPTION=:DCLSAMPLE_POINT.DESCRIPTION
WHERE SAMPLE_PT_NAME=:DCLSAMPLE_POINT.SAMPLE_PT_NAME;

/* Error handling */
if (((rc=CPRS_sql_error(CPRS_NO,msg))==0) && cmt==CPRS_YES)
EXEC SQL COMMIT WORK;
return(rc);
}

Application conversion 153

154
7.3.5 Pointers
C supports some data types and storage classes with no SQL equivalents,
for example, pointers. You cannot use pointers as host variables. See DB2
UDB for OS/390 Version 6 Application Programming and SQL Guide,
SC26-9004.

The Oracle source modules used pointers to structures as host variables
in the embedded SQL statements. Figure 80 represents the header (.h) file
that contains the definition for the pointer to the TYPDEF C structure.

Figure 80. Example 1. Source module header file

Figure 81 represents the header (.h) file that contains the function
declaration for the function with the pointer.

Figure 81. Example 2. Source module function declaration

Figure 82 represents the Oracle ProC (.pc) file that contains the function
and the Oracle embedded SQL using a TYPEDEF pointer to a structure as
a host variable using an Oracle implicit host variable declaration.

#ifndef SQLTYPE_H
#define SQLTYPE_H
.
.
.
#define TABLE_SAMPLE_PT "SAMPLE_POINT"
typedef struct{
char sample_pt_name[CPRS_LENSPT+1];
char description[CPRS_LENDESCR+1];
char facility_name[CPRS_LENFAC+1];
} r_sample_point;

typedef r_sample_point *pr_sample_point;
#define R_SAMPLE_POINT_SIZE sizeof(r_sample_point)
.
.
.

#ifndef SQLUPD_H
#define SQLUPD_H
.
.
.
int CPRS_u_sample_point(pr_sample_point,char *,int);
.
.
.

Converting from Oracle AIX to DB2 for OS/390

Figure 82. Example 3. Source module SQL statement

Several changes had to be made to the DB2 target module because the host
variable could not be defined as a pointer. See A.11, “gendcl.sh script” on page
209, A.12, “genmemset.sh script” on page 211, A.13, “genstrcpy.sh script” on
page 212 for sample scripts we used to make the code changes. See 7.3.7, “Host
variables” on page 156 for a detailed discussion about host variables and
DCLGEN. See Figure 79 on page 153 for an example of the target code without
the use of a pointer as a host variable. Below is a list of the changes that we
made.

• DCLGEN was used to create the host variables.

• The host variable structures members had to be initialized to NUL using the C
function memset to make sure the host variable was clean. The function
memset cannot be used with a structure if it is an integer, char or float, only if
it is a varchar.

memset(DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_data,'\0',
sizeof(DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_data));

• The length of the VARCHAR host variable length n had to be determined
using the C function strlen.

DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_len =
strlen(rtb->sample_pt_name);

• The host variables had to be initialized from the pointer input parameter with
values by using atoi for ascii to integer, atof for ascii to float, strcpy for a char
of length n+1 and strncpy for a varchar of length n. If an integer or float was
returned to the calling program, sprintf was used to set the return variable.

strncpy(DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_data,
rtb->sample_pt_name,
DCLSAMPLE_POINT.SAMPLE_PT_NAME.SAMPLE_PT_NAME_len);

• The SQL statement was executed with the DCLGEN host variable structure,
not a pointer.

EXEC SQL UPDATE SAMPLE_POINT
SET FACILITY_NAME=:DCLSAMPLE_POINT.FACILITY_NAME,
DESCRIPTION=:DCLSAMPLE_POINT.DESCRIPTION
WHERE SAMPLE_PT_NAME=:DCLSAMPLE_POINT.SAMPLE_PT_NAME;

#include "sqlupd.h"
.
.
.
int CPRS_u_sample_point(pr_sample_point rtb,char *msg,int cmt)
{
.
.
.
EXEC SQL UPDATE SAMPLE_POINT
SET FACILITY_NAME=:rtb->facility_name,DESCRIPTION=:rtb->description
WHERE SAMPLE_PT_NAME=:rtb->sample_pt_name;
.
.
.
}

Application conversion 155

Note: C and SQL differ in the way they use the word null. The C language has a
null character (NUL), a null pointer (NULL), and a null statement (just a
semicolon). The C NUL is a single character which compares equal to 0. The C
NULL is a special reserved pointer value that does not point to any valid data
object. The SQL null value is a special value that means unknown and needs IS
and IS NOT NULL for comparisons.

7.3.6 TYPEDEF
There are some C data types with no SQL equivalent. C supports some data
types and storage classes with no SQL equivalents, for example, TYPEDEF. See
DB2 UDB for OS/390 Version 6 Application Programming and SQL Guide,
SC26-9004.

Figure 82 on page 155 represents the Oracle ProC (.pc) file that contains the
function and the Oracle embedded SQL using a TYPEDEF pointer to a structure
as a host variable using an Oracle implicit host variable declaration. Figure 80 on
page 154 contains the TYPEDEF declaration of the host variable as a pointer.
See 7.3.5, “Pointers” on page 154 for a description of the code changes that were
necessary for DB2 because TYPEDEF and pointers were used.

7.3.7 Host variables
Oracle can use an implicit declaration of a host variable. When this feature of
Oracle is used, a host variable declaration section does not need to be used.
See Figure 80 on page 154, Figure 81 on page 154, and Figure 82 on page 155
for an example of the source module’s use of implicit host variable declaration.

DB2 UDB for OS/390 Version 6 Application Programming and SQL Guide,
SC26-9004 states that you must explicitly declare each host variable before its
first use in an SQL statement.

Figure 79 on page 153 represents how we changed the Oracle implicit use of host
variable declaration to explicitly declared host variable without pointers. For a
detailed discussion of the changes that were made in the code, see 7.3.5,
“Pointers” on page 154.

We used DCLGEN, the declarations generator supplied with DB2 to produce a
host variable DECLARE statement for C so that we did not need to code the
statement ourselves. See DB2 UDB for OS/390 Version 6 Application
Programming and SQL Guide, SC26-9004. DCLGEN generates a table
declaration and host variable declaration and puts it into a member of a
partitioned data set that you can include in your program. See Figure 83.
The host variable declarations are based on the table declaration.
156 Converting from Oracle AIX to DB2 for OS/390

Figure 83. Sample DCLGEN

If you want to include the C host variable declarations from a member of a
partitioned data set, add the following SQL statement in the source code where
you want to embed the statements:

EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL INCLUDE HOSTVARS;
EXEC SQL END DECLARE SECTION;

HOSTVARS is the file containing the host variables.See also Figure 79 on page
153.

We created the DCLGEN for each table, then combined all the individual files into
one file on AIX using the following AIX command:

/***/
/* DCLGEN TABLE(READING) */
/* LIBRARY(CIPROSN.C.DCLGEN(READING)) */
/* ACTION(REPLACE) */
/* LANGUAGE(C) */
/* APOST */
/* ... IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS */
/***/
EXEC SQL DECLARE READING TABLE

(TAG_NAME VARCHAR(20) NOT NULL,
TIMESTAMP TIMESTAMP NOT NULL,
VALUE FLOAT,
VALIDITY_FLAG INTEGER

) ;
/***/
/* C DECLARATION FOR TABLE READING */
/***/
struct
{ struct

{ short int TAG_NAME_len;
char TAG_NAME_dataÝ20¨;

} TAG_NAME;
char TIMESTAMPÝ27¨;
double VALUE;
long int VALIDITY_FLAG;

} DCLREADING;
/***/

cat * > hostvars
Application conversion 157

B.14 contains the JCL used to create the DCLGEN and the sample DCLGEN.
Below are some points we discovered during our project:

• You cannot nest EXEC SQL INCLUDE statements.

• Do not use C #include statements to include SQL statements or C host
variable declarations

• Host variable cannot be defined as hostvar[length_name+1]. The length must
be numeric.

• The same column names can be in different tables because DCLGEN host
variable names are table_name.column_name. The table_name and
column_name combination makes the host variable name unique.

• DCLGEN maps C host variable data types to DB2 host variable data types
based on the table definitions for you. This reduces data type matching errors
between the host variable and the table definition.

• DCLGEN uses varchar with no null (n), and a char with a null (n+1).

• DCLGEN handles the Oracle DATE to DB2 TIMESTAMP mapping

7.3.8 Error and message handling
This section describes differences and analogies in handling application and
system messages.

7.3.8.1 Oracle and DB2 error handling (SQLCA)
Oracle and DB2 for OS/390 V6 have a similar management of exceptions, with
the command, available in both RDBMS:

Oracle has also DO and STOP commands which can be specified for an
exception.

The CIPROS function that handles the error codes returned by the RDBMS does
not use the standard SQL exception handling. It is instead based on a series of
if/then/else C statements in order to choose the proper behavior of the program
according to the result of the previous SQL statement.

A mapping between the sqlcodes used by the application is listed in Table 37.

Table 37. Comparison of main SQL error codes

Oracle sqlcodes DB2 sqlcodes Description

-1403 100 NOT FOUND

-2291 -530 Integrity constraint violation

-1 -803 Duplicate record

-1427 -811 More than one row returned

0 0 Successful execution

EXEC SQL WHENEVER [SQLERROR | SQLWARNING | NOT FOUND]
[CONTINUE | GOTO]
158 Converting from Oracle AIX to DB2 for OS/390

The SQLCA is used in both cases to retrieve from the RDBMS/C language
interface both the return code and the return message of the SQL statements.

In Figure 84 on page 159 an example of C listing to access the Oracle SQLCA is
shown. In our code this function is a specific C function, CPRS_sql_error, which
is issued after the execution of the SQL statement:

Figure 84. Example of C access to Oracle SQLCA

C programs for DB2 for OS/390 V6 have to use the DSNTIAR subroutine to
retrieve the sqlcode and the return message from SQLCA, as shown in Figure 85
on page 160. In our code this function is the specific C function CPRS_sql_error
which is issued after the execution of the SQL statement.

#define SQLCA_STORAGE_CLASS
#include <sqlca.h>
...
char msg[500];
...
strncpy(msg,sqlca.sqlerrm.sqlerrmc,500);
sqlca.sqlerrm.sqlerrmc[sqlca.sqlerrm.sqlerrml]='\0';
...
if(sqlca.sqlcode == 0)

{
strcpy(msg,"OK!!!");
printf("OK!!!\n");
}

else if(sqlca.sqlcode == -1403)
printf("NOT FOUND!\n");

else if(sqlca.sqlcode == -1)
printf("DUPLICATE KEY!\n");

...
Application conversion 159

Figure 85. Example of C access to DB2 SQLCA

For a complete reference to DB2 and Oracle SQLCA/SQLDA/ORACA structures,
refer to DB2 UDB for OS/390 Version 6 Application Programming and SQL
Guide, SC26-9004 and to Oracle7 Programmer's Guide to the Pro*C Precompiler,
Part No. A16458-1.

7.3.8.2 Message handling
CIPROS programs use the AIX National Language Support (NLS) catalog facility
to handle system messages.

The NLcatopen and catgets functions are used to open the message catalog file
and retrieve the proper message string.

#pragma linkage(dsntiar, OS)

#define data_len 100
#define data_dim 5

char msg[500];
char msg_temp[100];
int lrecl = data_len, i;

struct error_struct {
short int error_len;
char error_text[data_dim][data_len];
} error_message = {data_dim * data_len};

extern short int dsntiar(struct sqlca *sqlca,
struct error_struct *msg,
int *len);

...
dsntiar(&sqlca,&error_message,&lrecl);

for (i=0;i<data_dim;i++)
{
memset(msg_temp, '\0', sizeof(msg_temp));
sprintf(msg_temp,"%.100s",error_message.error_text[i]);
strcat(msg,msg_temp);
}

if(sqlca.sqlcode == 0)
{
strcpy(msg,"OK!!!");
printf("OK!\n");
}

else if(sqlca.sqlcode == -1403)
printf("NOT FOUND!\n");

else if(sqlca.sqlcode == -1)
printf("DUPLICATE KEY!\n");

...
160 Converting from Oracle AIX to DB2 for OS/390

In our project we decided not to use this functionality. Instead, we handled the
message file as a simple flat file that is read with fopen and fgets standard
functions.

Refer to 7.3.9, “File handling” on page 161 for further details on file management

7.3.9 File handling
In order to comply with data sets and members management on the OS/390 side
(for example, in OS/390 you use "."(dot) instead of "/" (slash) as the directory
separator) the fopen functions have to be reviewed.

Functions like fgets or fclose and all the file functions that use the FILE* pointer
do not need to be changed, since they refer to the already open file.

Since in our programs the file name is built by concatenating the path and the file
name, and all our files have been mapped into members of a partitioned data set,
the fopen function has been converted accordingly.

In Figure 86 an example of C management of files on AIX is shown:

Figure 86. File management of C for AIX

In Figure 87 we show the equivalent example of file management on OS/390:

Figure 87. File management of C for OS/390

Note: If the complete file path is passed to the fopen function without enclosing it
in single quotes, the userid running the program is appended to the path before
the specified data set. In our example in Figure 87 on page 161, the file
’userid.CIPROSN.C.TEST(V080718D)’ is opened. If the partitioned data set does

...
FILE *fd;
char file[100], filepath[70], filename[30];
...
strcpy(filepath,"/home/cipros/rtdb/data");
strcpy(filename,"VALTAG_1999080718.DAT");

sprintf(file,"%s%s%s",filepath,"/",filename);
...
fd=fopen(file,"w");
...

...
FILE *fd;
char file[100], filepath[70], filename[30];
...
strcpy(filepath,"CIPROSN.C.TEST");
strcpy(filename,"V080718D");
...
sprintf(file,"%s%s%s%s",filepath,"(",filename,")");
...
fd=fopen(file,"w");
...
Application conversion 161

not exist, a variable block length PDS with default settings is allocated by the
program. For details, refer to DB2 UDB for OS/390 Version 6 Application
Programming and SQL Guide, SC26-9004.

7.3.10 Name length limitation
Because of the DB2 limit of 18 characters for names of tables, columns, indexes,
etc.., we changed the names of a few tables, columns and indexes to comply. We
had to change the names in any place where these tables, columns, and indexes
were referenced in the target module code. See Chapter 5, “Database
conversion” on page 61 for information on how to find the database object names
for tables, columns and indexes that incurr in this limitation.

See Figure 88 for an example of the AIX script we used to find and change the
names of these objects in our target code.

Figure 88. Table name script

7.3.11 Functions
Two functions in the application had to be mapped from the AIX C environment to
the OS/390 C environment.

On OS/390 the __getenv() (double underscore getenv) function was used
instead of the AIX getenv(). getenv() returns the address of the environment
variable value string that has been copied into a buffer, whereas __getenv()
returns the address of the actual value string in the environment variable array.

Also, on OS/390 the __dlgth() function was used instead of the AIX dayligth(). On
OS/390 the __dlght() function is needed to access the thread-specific value of
daylight.

7.4 Program preparation

This section details how we performed the program preparation consisting on
precompile, compile, bind, link and run of our application.

7.4.1 Resources
The following manuals provided us with guidance in creating our JCL:

• OS/390 V2R6.0 C/C++ User’s Guide, SC09-2361-03

• DB2 UDB for OS/390 Version 6 Application Programming and SQL,
SC26-9004

old=OLD_TABLE_NAME
new=NEW_TABLE_NAME
for i in *.c *.h
do
echo $i
sed "s/$old/$new/g" $i > $i.new
done
162 Converting from Oracle AIX to DB2 for OS/390

We used the following DB2 and C samples for guidance in creating our JCL for:

• DSN610.NEW.SDSNSAMP(DSNTEJ2D) JCL to precompile, compile,
pre-linkedit, linkedit. DSNHC for precompile, IKJEFT01 for bind and run under
TSO.

• DSN610.NEW.SDSNSAMP(DSNTIJMV) JCL to precompile (DSNHPC),
compile (EDCDC120), pre-linkedit (EDCPRLK), and link (IEWL) a C program

• SYS1.PROCLIB(DSNHC) JCL to precompile (DSNHPC), compile
(CBCDRIVER), pre-linkedit (EDCPRLK) and linkedit (IEWL) a C program

• SYS1.PROCLIB(EDCC) JCL to compile a C program (CBCDRIVER)

7.4.2 General program preparation process
The general program preparation process we used is detailed in the DB2 UDB for
OS/390 Version 6 Application Programming and SQL Guide V6, SC26-9004.
Figure 89 is a summary diagram of the DB2 process.

Figure 89. General program preparation process

G enera l program preparation process

S ource
program

D B2
precom pile r

M odified
source D B RM

C om pile

O bject
program

Link ed it

Load
m odule

B ind package

Run

Package

P lan
Application conversion 163

7.4.3 Source makefile
A makefile has been used to build the compiling steps for the creation of the
precompiled sources, the dynamic link libraries and the main executable of the
programs.

It includes the standard proc.mk file provided by Oracle PROC interface in the
directory $ORACLE/precomp/demo/proc in order to execute the precompile steps
of the .pc files containing SQL statements.

In Figure 90 you can see an example of the proc.mk file:

Figure 90. proc.mk file

• The oracle.cfg file contains some configuration information for the Oracle
PROC precompiler, such as:

• The indentation of configuration stanzas must be done with tabulation
characters (as in the C makefile files)

• the proc.mk file has to be included into the makefile file with the following
include statement:

Let us give an example of the usage of a makefile. We have not used our original
makefile because it contains statements and links to CIPROS programs and
applications which are not within the scope of work of our project.

SHELL=/bin/sh

INCLUDE=../include
CC=xlc
CFLAGS=-I. -I$(INCLUDE) -I$(ORACLE_HOME)/precomp/public
LDFLAGS=-L$(ORACLE_HOME)/lib -lsql -lsqlnet -lncr -lclient -lcommon -lgeneric -lepc
-lnlsrtl3 -lc3v6 -lcore3 -lclntsh -lm
CPPFLAG=
PROFILING=-O
SOURCELIST=-qflag=i:i -qinfo
DEBUGFLS=$(PROFILING) $(SOURCELIST) $(CPPFLAG)

CONFIG=./oracle.cfg
PROC=$(ORACLE_HOME)/bin/proc

$(EXE): $(OBJS)
$(CC) $(LDFLAGS) -o $@ $@.o $(OBJS) $(DEBUGFLS) -DAIX -bloadmap

Suffix rules
.SUFFIXES: .o .c .pc

.pc.c:
$(PROC) $(PROFLAGS) config=$(CONFIG) include=$(INCLUDE) iname=$*.pc

.c.o:
$(CC) $(CFLAGS) -c $*.c $(DEBUGFLS) -DAIX

.pc.o:
$PROC) $(PROFLAGS) config=$(CONFIG) include=$(INCLUDE) iname=$*.pc
$(CC) $(CFLAGS) -c $*.c $(DEBUGFLS) -DAIX

RELEASE_CURSOR=YES
CODE=ANSI_C
AUTO_CONNECT=YES
MAXOPENCURSORS=100

include ./proc.mk
164 Converting from Oracle AIX to DB2 for OS/390

As in our application, you may have a dynamic link library (DLL) constituted by
only SQL functions (we call it libsql.a) and a DLL constituted by standard and
user defined C functions (libstd.a).

The first library is constituted by file1.pc and file2.pc. The second library is
constituted by file3.c and file4.c.

Your main program is called mainprg.c. In Figure 91 you can see the makefile file
to compile your program:

Figure 91. Example of a makefile file

• The indentation of configuration stanzas must be done with tabulation
characters

• The files sql.exp and std.exp contain a lists of all the external functions used
by the main program and contained into the corresponding source files

• The environment variables CC, LDFLAGS and DEBUGFLS are defined into
the proc.mk file

• The Entry_SQL_Function and Entry_STD_Function functions are entry points
of the executable output file

• For the execution of the make statements, you can simply run the command
(from an AIX shell):

First, the object code of the two libraries must be compiled, as follows:

include ./proc.mk

LIBP=-L.
LIBSTD=-lstd
LIBSQL=-lsql

EXECMD=$(CC) $(LDFLAGS) -o $@ $@.o $(LIBP) $(LIBSTD) $(LIBSQL) $(DEBUGFLS)

sql.o:./sql.exp file1.o file2.o
ld -o sql.o file1.o file2.o $(LDFLAGS) \
-bE:./sql.exp \
-bM:SRE \
-e Entry_SQL_Function -lc -lm

std.o:.std.exp file3.o file4.o
ld -o std.o file3.o file4.o $(LDFLAGS) \
-bE:.std.exp \
-bM:SRE \
-e Entry_STD_Function -lc -lm $(LIBSQL)

libsql.a: sql.o
rm -f libsql.a
ar vro libsql.a sql.o

libstd.a: std.o
rm -f libstd.a
ar vro libstd.a std.o

mainprg: mainprg.o
$(CC) -o $@ $@.o $(LIBP) $(LIBSTD) $(LIBSQL) $(DEBUGFLS)

make stanza_name

make sql.o
make std.o
Application conversion 165

Then, the two dynamic libraries must be compiled executing the ar command, as
in the following statements:

At the end, the main program can be compiled activating with the command:

With the provided example we cannot cover all the possible and more optimized
facilities that the C language and the AIX programming interface offer. This is just
one of several possible alternatives. Refer to AIX Version 4 General
Programming Concepts: Writing and Debugging Programs, SC23-2533 for details
on AIX programming interface.

7.4.4 JCL for precompile, compile, link, bind, and run
We used the OS/390 V2R6.0 C language compiler. AIX uses a makefile for
precompile, compile, link and run. OS/390 uses JCL to precompile, compile, link
and run the application. See Appendix B, “Sample DB2 for OS/390 jobs” on page
215 for the BASECOMP, SQLCOMP, CGLOB, and RTDIN/LABIN JCL described
in this section.

Figure 92 shows a summary of our program preparation process. The boxes in
the figure represent the JCL PDS members that we used for that process. For
example, the BASECOMP PDS member contained the JCL to compile non-SQL
C source code. The circles in Figure 92 represent either input or output PDS to
the JCL. For example, the SOURCE PDS members contained C source code. In
general, our process consisted of several steps:

1. Step 1a. (JCL BASECOMP) was to compile non-SQL source code and Step
1b.(JCL SQLCOMP) was to precompile/compile SQL source code.

2. Step 2 (JCL CGLOB) was to compile the 2 main application programs and link
the non-SQL, SQL and application object code.

3. Step 3 (Interactive BIND) was to BIND the DBRM’s for each of the SQL
members.

4. Step 4a.(RTDIN) and 4b.(LABIN) was to run the executable application code.

make libsql.a
make libstd.a

make mainprg
166 Converting from Oracle AIX to DB2 for OS/390

Figure 92. JCL program preparation process

Table 38 lists the PDS members containing the JCL.

Table 38. Program preparation JCL PDS members

Members of JCL PDS Purpose Input PDS Output PDS Proc/ Program in JCL

BASECOMP Compile non-SQL
source

SOURCE,
INCLUDE

BASEDLL CBCDRIVER

SQLCOMP Precompile, compile
SQL source

SOURCE,
INCLUDE

SQLDLL, DBRMLIB DSNHPC

CGLOB Compile, prelink, link
2 main applications

SOURCE,
INCLUDE,
BASEDLL,
SQLDLL

OBJ, LOADLIB EDCC

RTDIN Run rtdin application LOADLIB,
ENVARS

APPIO RTDIN

LABIN Run labin
application

LOADLIB,
ENVARS,
APPIO

APPIO LABIN

JC L program preparation process

1a.BAS EC O M P 1b.SQ LC O M P

2.C G LO B
3.D B 2

in te ra ctive
B IN D

S O U R C E ,
IN C LU D E

S O U R C E ,
INC LU D E

SQ LD LL

4a. R TD IN , 4b .
LAB IN

LO AD LIB

O BJ

EN V A RSAP PIO

Co m pile P recom pile , com pile

C om pile

B IN D

R un

L ink

S O U R C E ,
IN C LU D E

D BR M LIBBA SE D LL
Application conversion 167

Table 39 describes the PDS libraries needed for program preparation.

Table 39. Program preparation PDS libraries

7.4.5 Precompile
This section discusses the details of the JCL we used to precompile the SQL
source code. This section references the SQLCOMP JCL in B.2, “JCL for SQL
function precompile and compile” on page 216.

7.4.5.1 Precompile parameters
The sample code below is an excerpt from the SQLCOMP JCL. It lists the
precompile parameter options that we used. This section discusses the
parameters that we changed for our application.

//PC EXEC PGM=DSNHPC,
// PARM='HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)',
// REGION=4096K

C Compiler
The C language is defined to the precompiler by the HOST parameter.

HOST(C)

Margin
The MARGINS parameter specifies that the SQL code statements will be in
columns 1 through 72.

MARGINS(1,72)

PDS Purpose

BASEDLL Contains object code generated by BASECOMP JCL for non-SQL source
code and serves as input for CGLOB JCL

DBRMLIB Contains a DBRM for each SQL source code generated by SQLCOMP
JCL and serves as input to the DB2 Interactive BIND process

ENVARS Flat file containing input for environment variables used when the RTDIN
and LABIN applications run

INCLUDE Contains DCLGEN and include files used as input during the compile
process in the BASECOMP, SQLCOMP and CGLOB JCL

JCL Contains JCL to prepare the program

LOADLIB Contains the executable code generated by the CGLOB JCL for the RTDIN
and LABIN applications

OBJ Contains the object code generated by the CGLOB JCL for the RTDIN and
LABIN applications and serves as input to the CGLOB JCL link step to
create the executable code

SOURCE Contains non-SQL and SQL source code used as input during the compile
process in the BASECOMP, SQLCOMP an d CGLOB JCL

SQLDLL Contains object code generated by SQLCOMP JCL for SQL source code
and serves as input for the CGLOB JCL

APPIO Contains input/output files used when the RTDIN and LABIN application
executables generated by CGLOB JCL run
168 Converting from Oracle AIX to DB2 for OS/390

SQLCA
The STDSQL parameter is set to NO to specify that the SQLCA will be included
explicitly in the C program by using the statement "EXEC SQL INCLUDE
SQLCA;".

STDSQL(NO)

7.4.5.2 Precompiler DD statements
This section discusses the precompile DD statements. The DD statements are:

•STEPLIB determines where the precompile EXEC PGM member DSNHPC is
located.

• DBRMLIB determines where to put the DBRM output members as a result of
the precompile

• SYSLIB determines where the source code INCLUDE members are located

• SYSIN determines where the source code member for the precompile is
located

//STEPLIB DD DISP=SHR,DSN=DSN610B.SDSNEXIT.SC63
// DD DISP=SHR,DSN=DSN610B.SDSNLOAD
//DBRMLIB DD DSN=CIPROSN.C.DBRMLIB(SQLLOG),
// DISP=SHR
//SYSLIB DD DSN=CIPROSN.C.INCLUDE,
// DISP=SHR
//SYSIN DD DSN=CIPROSN.C.SOURCE(SQLLOG),
// DISP=SHR

7.4.6 Compiler
This section discusses the details of the JCL we used to compile the SQL source
code. This section will reference the SQLCOMP JCL in B.2, “JCL for SQL
function precompile and compile” on page 216.

7.4.6.1 Compiler parameters
The sample code below is an excerpt from the SQLCOMP JCL. It lists the
compile parameter options that we used. This section discusses the parameters
that we changed for our application.

//C EXEC PGM=CBCDRVR,COND=(4,LT,PC),REGION=4096K,
// PARM='/LSEARCH(''CIPROSN.C.INCLUDE'') OPTF(DD:OF)'
...
//C.OF DD *

SOURCE LIST MARGINS(1,72) NESTINC(255) LONGNAME RENT

Multiple parameters
The OPTF option directs the compiler to look for compiler options in the file
specified by filename.

OPTF(DD:OF)

...

//C.OF DD *
SOURCE LIST MARGINS(1,72) NESTINC(255) LONGNAME RENT

• Margins
Application conversion 169

The MARGINS option specifies the columns in the input record that are to
be scanned for input to the compiler.

MARGINS(1,72)

• Function name length

The LONGNAME option generates untruncated and mixed case external
names in the object module produced by the compiler for functions with
non-C++ linkage.

LONGNAME

• Reentrant

The RENT option specifies that the compiler is to take code that is not
naturally reentrant and make it reentrant.

RENT

Include directive
Several areas were addressed to use the include user members. They are
discussed below:

• The LSEARCH option directs the preprocessor to look for the user include
files in the specified PDS library. Although the include PDS member does not
end in ".h", you may specify the include directive in the source member as
"#include "sqlupd.h".

/LSEARCH(''CIPROSN.C.INCLUDE'')

...

//SYSLIB DD DSN=CIPROSN.C.INCLUDE,

// DISP=SHR

• If you alter the include member, remember to alter the source member or
delete the object member so the compiler will re-compile. For example, add a
space to the source member.

• The NESTINC option specifies the number of nested include files to be
allowed in your source program.

NESTINC(255)

7.4.6.2 Compiler DD statements
This section discusses the compile DD statements. The DD statements in Figure
93 are:

•STEPLIB determines where the compile EXEC PGM member CBCDRVR and C
compiler are located.

• SYSLIB determines where the necessary C INCLUDE members are located

• SYSLIN determines where the modified source code member from the
precompiler for the compile is located
170 Converting from Oracle AIX to DB2 for OS/390

Figure 93. Compile DD statements

7.4.7 Link
This section discusses the details of the JCL we used to link the object code for
the non-SQL, SQL and application code. This section will reference the CGLOB
JCL in B.3, “JCL for compile, prelink and link of main programs” on page 217.
This section discusses the compile DD statements. The DD statements are in
Figure 94.

•SYSLMOD determines which PDS the executable code for the application will
be placed after the link edit.

• SYSIN specifies the input PDS members for the link edit.

Figure 94. Link Edit JCL

7.4.8 BIND
This section discusses the process we used to interactively BIND the DBRM
produced by the precompiler to a plan or package before the DB2 application can
run. The bind process we used is detailed in the DB2 for UDB for OS/390
Application Programming and SQL Guide V6, SC26-9004. Figure 95 on page
172, Figure 96 on page 172 and Figure 97 on page 173 are sample screens and
options we selected by using DB2 Interactive for the bind process.

Figure 95 displays our selection of option 5 in DB2 Interactive to perform the bind
process.

//STEPLIB DD DSN=CBC.SCBCCMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR
// DD DSN=DSN610B.SDSNC.H,DISP=SHR
// DD DSN=GDDM.SADMSAM,DISP=SHR
//C.OF DD *
SOURCE LIST MARGINS(1,72) NESTINC(255) LONGNAME RENT

//SYSLIN DD DSN=CIPROSN.C.SQLDLL(SQLLOG),DISP=SHR

//LKED.SYSLMOD DD DSN=CIPROSN.C.LOADLIB(RTDIN),DISP=SHR
//LKED.RUNLIB DD DSN=CIPROSN.C.LOADLIB,DISP=SHR
//LKED.SYSIN DD *

INCLUDE SYSLIB(DSNELI)
INCLUDE RUNLIB(RTDIN)
Application conversion 171

Figure 95. IBIND screen one

Figure 96 displays our selection of option 4 in DB2 Interactive BIND to add a
package.

Figure 96. BIND screen two

DB2I PRIMARY OPTION MENU SSID: DB2X
COMMAND ===> 5

Select one of the following DB2 functions and press ENTER.

1 SPUFI (Process SQL statements)
2 DCLGEN (Generate SQL and source language declarations)
3 PROGRAM PREPARATION (Prepare a DB2 application program to run)
4 PRECOMPILE (Invoke DB2 precompiler)
5 BIND/REBIND/FREE (BIND, REBIND, or FREE plans or packages)
6 RUN (RUN an SQL program)
7 DB2 COMMANDS (Issue DB2 commands)
8 UTILITIES (Invoke DB2 utilities)
D DB2I DEFAULTS (Set global parameters)
X EXIT (Leave DB2I)

PF 1=HELP 2=SPLIT 3=END 4=RETURN 5=RFIND 6=RCHANGE
PF 7=UP 8=DOWN 9=SWAP 10=LEFT 11=RIGHT 12=RETRIEVE

BIND/REBIND/FREE SSID: DB2X
COMMAND ===> 4

Select one of the following and press ENTER:

1 BIND PLAN (Add or replace an application plan)

2 REBIND PLAN (Rebind existing application plan or plans)

3 FREE PLAN (Erase application plan or plans)

4 BIND PACKAGE (Add or replace a package)

5 REBIND PACKAGE (Rebind existing package or packages)

6 REBIND TRIGGER PACKAGE (Rebind existing trigger package or packages)

7 FREE PACKAGE (Erase a package or packages)

PF 1=HELP 2=SPLIT 3=END 4=RETURN 5=RFIND 6=RCHANGE
PF 7=UP 8=DOWN 9=SWAP 10=LEFT 11=RIGHT 12=RETRIEVE
172 Converting from Oracle AIX to DB2 for OS/390

Figure 97 displays the options and defaults that we chose to BIND the package.
We specified "cipros1" as our collection id in option 2, "DBRM" as the package
source in option 3, "sqlupd" as our member in option 4 and "ciprosn.c.dbrmlib" as
the location of our DBRM.

Figure 97. BIND screen three

7.4.9 Run
This section discusses the details of the JCL we used to run the application
executable code. This section will reference the RTDIN JCL in Appendix B.4,
“JCL for running the main programs RTDIN and LABIN” on page 218. Below is a
sample section of the RTDIN JCL.

IKJEFT01 is the EXEC PGM we used to run the application. We used __getenv()
(double underscore getenv) instead of getenv() because getenv() returns the
address of the environment variable value string that has been copied into a buffer,
whereas __getenv() returns the address of the actual value string in the environment
variable array. The MYVARS DD statement specifies in which PDS the
environment is kept. The LIB statement specifies where the application
executables are kept. The program we are running in this JCL is specified in the
PROGRAM parameter.

//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//MYVARS DD DSN=CIPROSN.C.ENVARS,DISP=SHR
...
DSN SYSTEM(DB2X)
RUN PROGRAM(RTDIN) PLAN(CIPROS1) -

LIB('CIPROSN.C.LOADLIB') -
PARM ('ENVAR("_CEE_ENVFILE=DD:MYVARS")/V060308D')

BIND PACKAGE "DOWN " is not active
COMMAND ===>

Specify output location and collection names:
1 LOCATION NAME ===> (Defaults to local)
2 COLLECTION-ID ===> cipros1 (Required)
Specify package source (DBRM or COPY):
3 DBRM: COPY: ===> DBRM (Specify DBRM or COPY)
4 MEMBER or COLLECTION-ID ===> sqlupd
5 PASSWORD or PACKAGE-ID .. ===>
6 LIBRARY or VERSION ===> ciprosn.c.dbrmlib

(Blank, or COPY version-id)
7 -- OPTIONS ===> (COMPOSITE or COMMAND)
Enter options as desired:
8 CHANGE CURRENT DEFAULTS? .. ===> NO (NO or YES)
9 ENABLE/DISABLE CONNECTIONS? ===> NO (NO or YES)
10 OWNER OF PACKAGE (AUTHID).. ===> (Leave blank for primary ID)
11 QUALIFIER ===> (Leave blank for OWNER)
12 ACTION ON PACKAGE ===> REPLACE (ADD or REPLACE)
13 INCLUDE PATH?.............. ===> NO (NO or YES)
14 REPLACE VERSION ===>

(Replacement version-id)
PF 1=HELP 2=SPLIT 3=END 4=RETURN 5=RFIND 6=RCHANGE
PF 7=UP 8=DOWN 9=SWAP 10=LEFT 11=RIGHT 12=RETRIEVE
Application conversion 173

7.4.10 SDSF usage for output messages
Extensive use of SDSF was made to monitor the execution of our jobs and to
verify the results of the output held in the JES2 output queue. Refer to D.2,
“SDSF output messages” on page 262 for a demostration of the process.

7.5 Program conversion

This section will discuss the program conversion consisting on database
programming methods, the SQL language and the special characters tabs and
brackets.

7.5.1 Database programming methods
The scope of our project included embedded SQL and dynamic SQL
programming methods. This section contains a detailed discussion of these
methods. See DB2 UDB for OS/390 Version 6 Application Programming and SQL
Guide, SC26-9004 for details and sample code on the stored procedures and
ODBC programming methods.

7.5.1.1 Embedded SQL
For most DB2 users, static SQL (embedded in a host language program and
bound before the program runs) provides a straight-forward, efficient path to DB2
data. You can use static SQL when you know before run time what SQL
statements your application needs to execute.

We used embedded SQL and OS/390 C for target modules. The reasons were
that the programming method was most similar to the source, the skills available
in the project team, the scope of effort of the project, and the solutions chosen for
the architectural environment. For a more detailed discussion with sample code
on our target embedded static SQL with C code, see 7.3, “Program redesign” on
page 150.

7.5.1.2 Dynamic SQL
Dynamic SQL allows the applications to build SQL statements and prepare them
at a run-time level. The major benefit is that there is no precompilation or binding
required prior to the execution of the application. DB2 provides support for
dynamic SQL statements such as PREPARE, EXECUTE, EXECUTE
IMMEDIATE, and DESCRIBE.

CIPROS applications use only the EXECUTE IMMEDIATE statement. The syntax
is identical in both Oracle and DB2, so we did not need to change our source
code, as we show in the following example:
174 Converting from Oracle AIX to DB2 for OS/390

Refer to DB2 UDB for OS/390 Version 6 Application Programming and SQL
Guide, SC26-9004, for further information on dynamic statements execution.

7.5.1.3 Stored procedures
There are two ways to implement stored procedures with DB2 UDB for OS/390
Version 6: external and internal SQL stored procedure. An external stored
procedure and an internal SQL procedure differ in the way that they specify the
code for the stored procedure. An external stored procedure definition specifies
the name of the stored procedure program. An SQL procedure definition contains
the source code for the stored procedure.

External stored procedures
First, an external stored procedure is a compiled program, stored at a DB2 local
or remote server, that can execute SQL statements. A typical stored procedure
contains two or more SQL statements and some manipulative or logical
processing in a host language. A client application program uses the SQL
statement CALL to invoke the stored procedure. See DB2 UDB for OS/390
Version 6 Application Programming and SQL Guide, SC26-9004 for a detailed
discussion on external stored procedures.

Internal stored procedures
Second, an internal stored procedure is a stored procedure in which the source
code for the procedure is in an SQL CREATE PROCEDURE statement. The part
of the CREATE PROCEDURE statement that contains the code is called the
procedure body.

Creating an SQL procedure involves writing the source statements for the SQL
procedure, and defining the SQL procedure to DB2. There are two ways to create
an SQL procedure:

• Use the IBM DB2 Stored Procedure Builder product to specify the source
statements for the SQL procedure, define the SQL procedure to DB2 and
prepare the SQL procedure for execution.

• Write a CREATE PROCEDURE statement for the SQL procedure. Then define
the SQL procedure to DB2 and create an executable procedure.

The SQL Procedures language is used to write the CREATE PROCEDURE
statement that contains the procedure body. A procedure body consists of a
single simple or compound statement that you can include in a procedure body.
Some types of statements that you can include in a procedure body are:

int rc=0;

EXEC SQL BEGIN DECLARE SECTION;
struct { short len;

char data[256];
} stmt;

EXEC SQL END DECLARE SECTION;

strcpy(statement,"UPDATE TAG SET STATUS=’OK’ WHERE TAG_NAME=’T1000’");
memset(stmt.data,'\0',sizeof(stmt.data));
stmt.len=strlen(statement);
strncpy(stmt.data,statement,stmt.len);

EXEC SQL EXECUTE IMMEDIATE :stmt;
Application conversion 175

• Assignment statement

• CASE statement

• IF statement

• LOOP statement

• REPEAT statement

• WHILE statement

• Compound statement

• SQL statement

Refer to Developing Cross-Platform DB2 Stored Procedures: SQL Procedures
and the DB2 Stored Procedure Builder, SG24-5485 for more information on how
to develop stored procedures with DB2.

7.5.1.4 ODBC
DB2 Open Database Connectivity (ODBC) is IBM's callable SQL interface by the
DB2 family of products. It is a 'C' and 'C++' application programming interface for
relational database access, and it uses function calls to pass dynamic SQL
statements as function arguments. It is an alternative to embedded dynamic SQL,
but, unlike embedded SQL, it eliminates the need for precompiling.

DB2 ODBC is based on the Microsoft(TM) Open Database Connectivity (ODBC)
specification, and the X/Open Call Level Interface specification. These
specifications were chosen as the basis for the DB2 ODBC in an effort to follow
industry standards and to provide a shorter learning curve for those application
programmers already familiar with either of these data source interfaces. In
addition, some DB2 specific extensions were added to help the DB2 application
programmer to specifically exploit DB2 features.

ODBC lets you access data through ODBC function calls in your application. You
execute SQL statements by passing them to DB2 through a ODBC function call.
ODBC not only eliminates the need for precompiling but also for binding your
application, and increases its portability. If you are writing your applications in
Java, you can use Java Database Connectivity (JDBC) application support to
access DB2. JDBC is similar to ODBC but is designed specifically for use with
Java and is therefore a better choice than ODBC for making DB2 calls from Java
applications. For more information on ODBC, refer to the DB2 UDB for OS/390
Version 6 ODBC Guide and Reference, SC26-9005.

7.5.2 SQL statements
The target code for our project included all the following standard SQL data
manipulation language statements.

• INSERT

• SELECT

• UPDATE

• COMMIT

• ROLLBACK

• Indicator variable
176 Converting from Oracle AIX to DB2 for OS/390

Generally, the Oracle SQL source code mapped to the DB2 target code. We had
to change the DB2 target EXEC SQL statement to handle the non-pointer host
variables. See 7.3.5, “Pointers” on page 154. Below are samples of the source
and target code EXEC SQL statements.

7.5.2.1 INSERT
Below is a sample of the Oracle embedded SQL with C SQL statement INSERT:

EXEC SQL INSERT INTO ANALYSIS_METHOD
(ANLY_METH_NAME,DESCRIPTION)
VALUES
(:rtb->anly_meth_name,:rtb->description);

Below is a sample of the DB2 embedded SQL with C SQL statement INSERT

EXEC SQL INSERT INTO ANALYSIS_METHOD
(ANLY_METH_NAME,
DESCRIPTION)
VALUES
(:DCLANALYSIS_METHOD.ANLY_METH_NAME,
:DCLANALYSIS_METHOD.DESCRIPTION);

7.5.2.2 SELECT
Below is a sample of the Oracle embedded SQL with C SQL statement SELECT:

EXEC SQL SELECT MTRL_NAME
INTO :mtrl_name :ind_mtrl_name
FROM MAP_MATERIAL
WHERE MTRL_ENV=:mtrl AND ENV_NAME=:env;

Below is a sample of the DB2 embedded SQL with C SQL statement SELECT:

EXEC SQL SELECT MTRL_NAME
INTO :MTRL_NAME :ind_mtrl_name
FROM MAP_MATERIAL
WHERE MTRL_ENV=:MTRL AND ENV_NAME=:ENV_NAME;

7.5.2.3 UPDATE
Below is a sample of the Oracle embedded SQL with C SQL statement UPDATE:

EXEC SQL UPDATE ANALYSIS_SPEC
SET HI_VALUE=:rtb->hi_value, LO_VALUE=:rtb->lo_value
WHERE MTRL_NAME=:rtb->mtrl_name AND STD_RESLT_NAME=:rtb->std_reslt_name

Below is a sample of the DB2 embedded SQL with C SQL statement UPDATE:

EXEC SQL UPDATE ANALYSIS_SPEC
SET HI_VALUE=:DCLANALYSIS_SPEC.HI_VALUE,
LO_VALUE=:DCLANALYSIS_SPEC.LO_VALUE
WHERE MTRL_NAME=:DCLANALYSIS_SPEC.MTRL_NAME AND
STD_RESLT_NAME=:DCLANALYSIS_SPEC.STD_RESLT_NAME;

7.5.2.4 COMMIT
Below is a sample of the Oracle embedded SQL with C SQL statement COMMIT:

EXEC SQL COMMIT WORK;

Below is a sample of the DB2 embedded SQL with C SQL statement COMMIT:

EXEC SQL COMMIT WORK;
Application conversion 177

7.5.2.5 ROLLBACK
Below is a sample of the Oracle embedded SQL with C SQL statement
ROLLBACK:

EXEC SQL ROLLBACK WORK;

Below is a sample of the DB2 embedded SQL with C SQL statement ROLLBACK:

EXEC SQL ROLLBACK WORK;

7.5.2.6 Indicator variables
Below is a sample of the Oracle embedded SQL with C SQL statement indicator
Variable:

EXEC SQL SELECT TAG_NAME,ENG_UNT
INTO :tag_name :ind_tag_name, :eng_unt :ind_eng_unt
FROM RTDB_LIST
WHERE CODE=:rtb->code AND ENV_NAME=:rtb->env_name;

Below is a sample of the DB2 embedded SQL with C SQL statement indicator
variable:

EXEC SQL SELECT TAG_NAME, ENG_UNT
INTO :DCLRTDB_LIST.TAG_NAME :ind_tag_name,
:DCLRTDB_LIST.ENG_UNT :ind_eng_unt
FROM RTDB_LIST
WHERE CODE=:DCLRTDB_LIST.CODE AND
ENV_NAME=:DCLRTDB_LIST.ENV_NAME;

7.5.3 Tabs
Tab characters (x’05’) have to be changed to space (x’40’). You may change the
tab characters to spaces in two ways:

1. On OS/390

Edit the PDS member in ISPF. On the ISPF editor command line, as reported
in Figure 98, enter “hex on” in the command line to see the hex values for the
tab and space characters.

Figure 98. Turning hex on

File Edit Confirm Menu Utilities Compilers Test Help
sss
EDIT CIPROSN.C.SOURCE(BRIDGE) - 01.00 Columns 00001 00072
Command ===> hex on Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 #include "bridge.h"
000002 #define _POSIX1_SOURCE 2
000003 #include <env.h>
000004
000005 int CPRS_initbr(
000006 char *pgm,
000007 char *filename,
000008 char *room,
000009 pr_cfg pcfg,
000010 pr_log_event plogev,
000011 pr_log_errlines plog_errlines,
000012 char *endmsg,
000013 int initlog)
000014 {
178 Converting from Oracle AIX to DB2 for OS/390

You can now enter the command "c x’05’ x’40’ all" to change the tabs to space
characters as reported in Figure 99. Then you can enter the command “hex
off” .

Figure 99. Tabs to spaces

2. On AIX

Use the vi editor command "%s/<tab>/<blank>/g" to change the tab
characters to spaces.

7.5.4 Square brackets
In our environment, when using the ISPF editor to look at the C code we are
using code page 037. The left bracket ’[’ x'AD' in code page 037 displays a "Y"
with an accent over it and right bracket ’]’ x'BD' in code page 037 displays as a
double quote ("). USS and the C compiler are setup to use code page 1047. In
code page 1047 x'AD' is a left square bracket and x'BD' is a right square bracket.
These are the correct hexadecimal values for left and right square brackets when
working with C and the C compiler on OS/390 even though they look funny when
editing them.

If you experience the same problem you may want to change this situation so you
can see a left bracket or right bracket in C file by changing your PCOMM
workstation keyboard mapping and resetting your ISPF terminal type to 3278A. In
this case follow the instructions below.

Your PCOMM workstation V4.1 for windows emulator keyboard mapping can be
changed so that when you type a [it writes a x'AD' character and likewise for] a
x’BD’ character will be written. From your PCOMM emulator icon bar:

1. Choose keyboard MAP

2. Select the key on the keyboard where you want the [to be located

3. In Change Current Actions for Selected Key, click the right arrow for the base
option

4. In "Select a Key-Action", choose y with an accent over it

5. The y with an accent over it will appear in the base option

File Edit Confirm Menu Utilities Compilers Test Help
sss
EDIT CIPROSN.C.SOURCE(BRIDGE) - 01.00 Columns 00001 00072
Command ===> c x'05' x'40' all Scroll ===> CSR
****** ***************************** Top of Data ******************************
--
000001 #include "bridge.h"

78989A8847898888487444
B95334450F299475B8F000

--
000002 #define _POSIX1_SOURCE 2

788889846DDECEF6EDEDCC4F44
B4569550D762971D2649350200

--
000003 #include <env.h>

78989A884489A48644
B95334450C555B8E00

--
Application conversion 179

6. Repeat steps 2 - 5 for the right bracket, but choose second double quotes in
the Character selection area

To change your ISPF terminal type, enter option 0 Settings from the ISPF
Primary Option Menu. Refer to Figure 100.

Figure 100. Step one - set terminal type

On the ISPF settings screen, in the Terminal Characteristics area, select option 4
for terminal type 3278A as reported in Figure 101.

Menu Utilities Compilers Options Status Help
--

ISPF Primary Option Menu
Option ===> 0

0 Settings Terminal and user parameters User ID . : PAOLOR1
1 View Display source data or listings Time. . . : 16:22
2 Edit Create or change source data Terminal. : 3278A
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : PDF
6 Command Enter TSO or Workstation commands TSO logon : IKJACCT
7 Dialog Test Perform dialog testing TSO prefix: PAOLOR1
8 LM Facility Library administrator functions System ID : SC63
9 IBM Products IBM program development products MVS acct. : ACCNT#
10 SCLM SW Configuration Library Manager Release . : ISPF 4.5
11 Workplace ISPF Object/Action Workplace

Enter X to Terminate using log/list defaults

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel
180 Converting from Oracle AIX to DB2 for OS/390

Figure 101. Step two - set terminal type

Log/List Function keys Colors Environ Workstation Identifier Help
ss

ISPF Settings End of data
Command ===>

More: -
/ Tab to point-and-shoot fields General

Restore TEST/TRACE options Input field pad . . N
Session Manager mode Command delimiter . ;

/ Jump from leader dots
Edit PRINTDS Command

/ Always show split line
Enable EURO sign

Terminal Characteristics
Screen format 1 1. Data 2. Std 3. Max 4. Part

Terminal Type 4 1. 3277 2. 3277A 3. 3278 4. 3278A
5. 3290A 6. 3278T 7. 3278CF 8. 3277KN
9. 3278KN 10. 3278AR 11. 3278CY 12. 3278HN
13. 3278HO 14. 3278IS 15. 3278L2 16. BE163
17. BE190 18. 3278TH

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel
Application conversion 181

182 Converting from Oracle AIX to DB2 for OS/390

Chapter 8. Testing, change control, and tuning

In this chapter we briefly mention our test techniques, and the need for change
control and possible tuning actions.

8.1 Testing

The test implementation plan in 3.3.3.3, “Test plan” on page 38 mentions how the
test plan is to be implemented, with what tools and resources.

In this section we look at the tasks related to the test plan, which normally
includes the following five levels of testing:

• Function

• Unit

• System

• User acceptance

• Performance source/target

In our test plan for a pilot subset of the application we basically concluded the
project at a level equivalent to unit test.

For each level you need to define the contents:

• Input data

• Sequence of key steps

• Defined completion point

• Expected result (program function no change, data access code, error logic,
data accuracy, error free compile, error free execution, acceptance of input,
output format)

• Test script/driver (how test results, contents of results)

• Test data

• Output files

• Log of test

• Clean data

• How to verify input, output, function

• Functional, ensure that the overall process runs to normal completion with a
small sample of data

Program redesign addressed the areas of the project where it was necessary to
prototype and test sections of module code that had to be redesigned for use with
DB2. See 7.3, “Program redesign” on page 150. In addition, we had to conduct
unit, function and system test for these changes. See Figure 9 on page 29 for a
diagram of our testing cycle.

8.1.1 Function tests
This section describes the function tests which we performed after the conversion
completion.
© Copyright IBM Corp. 1999 183

The function tests have been executed by means of:

• System tools and database query tools (MVS ISPF editor, AIX vi editor, DB2
SPUFI, Oracle SQLPlus, DataJoiner), as far as the database definitions and
the data are concerned

• The execution on specific test data of the final application, what concerns the
final application itself

8.1.1.1 Database definition test
The database definitions (tables, relationships, other database objects) can be
tested using standard DB2 and Oracle query tools.

As an example we show in Figure 102 the table definitions on Oracle (using
SQLPlus) and in Figure 103 the final table definitions on DB2 (using DataJoiner),
as retrieved from the catalog:

Figure 102. Oracle table definition test

The sqptype fields reported in Figure 103 are contained in SQLDA and are
explained in the DB2 UDB for OS/390 SQL Reference, SC26-9014.

Figure 103. DB2 table definition test (using DataJoiner)

We can access the catalog of the two RDBMS to retrieve the referential integrity
definitions. Figure 104 and Figure 105 provide you with a comparison between
the foreign key definitions on Oracle (using SQLPlus) and DB2 (using SPUFI).
The related DDL is described in 5.2.1.8, “Foreign keys conversion” on page 84.

Figure 104. Oracle referential integrity definition test

SQL> desc reading
Name Null? Type
------------------------------- -------- ----
TAG_NAME NOT NULL VARCHAR2(20)
TIMESTAMP NOT NULL DATE
VALUE NUMBER
VALIDITY_FLAG NUMBER(3)

$ db2 "describe select * from reading"

SQLDA Information

sqldaid : SQLDA sqldabc: 896 sqln: 20 sqld: 4
sqltype sqllen sqlname.length sqlname.data
448 20 8 TAG_NAME
392 26 9 TIMESTAMP
481 8 5 VALUE
497 4 13 VALIDITY_FLAG

SQL> select constraint_name, r_constraint_name, delete_rule from
user_constraints where table_name='SAMPLE' and constraint_type='R';

CONSTRAINT_NAME R_CONSTRAINT_NAME DELETE_RULE
------------------------------ ------------------------------ ---------
SAMPLEF1 MATERIALP1 NO ACTION
SAMPLEF2 SAMPLE_POINTP1 NO ACTION
184 Converting from Oracle AIX to DB2 for OS/390

The two semantically different delete rules reported in the example, NO ACTION
for Oracle and R (RESTRICT) for DB2, have the same meaning in our case (do
not delete rows from the parent table that have dependents in the dependent
table of the referential constraint) because no self-referencing constraints are
present. See DB2 UDB for OS/390 SQL Reference, SC26-9014 under DELETE
rules for details.

Figure 105. DB2 referential integrity definition test

8.1.1.2 Data migration test
Our test on data migration consisted of four steps:

1. Check of data files downloaded from Oracle (see 6.2, “Unloading data from
Oracle” on page 109)

2. Check of data files on OS/390 side, after transferring to the OS/390 system

3. Check of data files after processing VARCHAR fields with REXX script (see
6.6, “Reformatting data for DB2” on page 119)

4. Check and comparison of table contents on both Oracle and DB2 tables

In case of usage of DataJoiner, only point 4 needs to be performed.

For example, in Figure 106 we show the content of a data file on AIX machine,
after unloading from the table:

Figure 106. Content of a data file on AIX environment

In Figure 107 we show the content of a data file on AIX machine, after unloading
from the table:

Figure 107. Content of a data file on MVS environment

SELECT RELNAME, REFTBNAME, DELETERULE FROM SYSIBM.SYSRELS 00260199
WHERE TBNAME='SAMPLE'; 00260299

---------+---------+---------+---------+---------+---------+---------+---------+
RELNAME REFTBNAME DELETERULE
---------+---------+---------+---------+---------+---------+---------+---------+
MTRL$NAM MATERIAL R
SAMPLE$P SAMPLE_POINT R
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+

cipros@BALTIC /home/cipros/DATA/DOWNLOAD > cat SAMPLE.DAT
1 T_0001_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tank 0001 sample
point
2 T_0002_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tank 0002 sample
point
3 T_0003_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tank 0003 sample
point
4 T_0004_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tank 0004 sample
point

Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 1 T_0001_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tan
000002 2 T_0002_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tan
000003 3 T_0003_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tan
000004 4 T_0004_SP 1999-06-03-08.00.00.000000ARABIAN_HEAVY Tan
****** **************************** Bottom of Data ****************************
Testing, change control, and tuning 185

After processing the file with the REXX script for the insertion of two-bytes binary
length for VARCHAR fields, the file contains the following lines, as we show in
Figure 108 in its hexadecimal representation (only the left part of the file is
shown):

Figure 108. Data file after processing with REXX script

You can see that the two bytes before the second and fourth fields contain the two
bytes hexadecimal representation of the length of the related data (0009 and
000D, respectively).

At the end, after loading the data into the table, the comparison between the table
content is shown in Figure 109, Figure 110 (only the left part of the table is
shown), Figure 111 on page 187 and Figure 112 on page 187:

Figure 109. Oracle table content retrieved using SQLPlus

Figure 110. DB2 table content retrieved using SPUFI

****** ***************************** Top of Data ******************************

--
000001 1 T_0001_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY

F444444400E6FFFF6ED44444444444FFFF6FF6FF6FF4FF4FF4FFFFFF00CDCCCCD6CCCEE4
10000000093D0001D27000000000001999006003008B00B00B0000000D1912915D851580

--
000002 2 T_0002_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY

F444444400E6FFFF6ED44444444444FFFF6FF6FF6FF4FF4FF4FFFFFF00CDCCCCD6CCCEE4
20000000093D0002D27000000000001999006003008B00B00B0000000D1912915D851580

--
000003 3 T_0003_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY

F444444400E6FFFF6ED44444444444FFFF6FF6FF6FF4FF4FF4FFFFFF00CDCCCCD6CCCEE4
30000000093D0003D27000000000001999006003008B00B00B0000000D1912915D851580

--
000004 4 T_0004_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY

F444444400E6FFFF6ED44444444444FFFF6FF6FF6FF4FF4FF4FFFFFF00CDCCCCD6CCCEE4
40000000093D0004D27000000000001999006003008B00B00B0000000D1912915D851580

--
****** **************************** Bottom of Data ****************************

SQL> select * from sample;

SAMPLE_NUM SAMPLE_PT_NAME TIMESTAMP MTRL_NAME DESCRIPTION
---------- -------------------- --------- --------------- ----------------------

1 T_0001_SP 03-JUN-99 ARABIAN_HEAVY Tank 0001 sample point
2 T_0002_SP 03-JUN-99 ARABIAN_HEAVY Tank 0002 sample point
3 T_0003_SP 03-JUN-99 ARABIAN_HEAVY Tank 0003 sample point

SELECT * FROM CIPROS.SAMPLE; 00260099
---------+---------+---------+---------+---------+---------+---------+---------+
SAMPLE_NUM SAMPLE_PT_NAME TIMESTAMP MTRL_NAME
---------+---------+---------+---------+---------+---------+---------+---------+

1 T_0001_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY
2 T_0002_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY
3 T_0003_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY
4 T_0004_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY

DSNE610I NUMBER OF ROWS DISPLAYED IS 4
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+
186 Converting from Oracle AIX to DB2 for OS/390

Figure 111. Oracle table content retrieved using SQLPlus

Figure 112. DB2 table content retrieved using DataJoiner

8.1.1.3 Application test
For the application test at a function level, we used a set of input files for the
application, containing specific data which allow us to test each functionality of
the application itself.

For example, since the Process bridge, while inserting data into the READING
table, updates the duplicate records found in the input file, we tried to run the
program twice with the same file, by changing something in the file before the
second run. The expected result is that the first time the input data are inserted
into the table, the second time the table is updated with the new input data.

To show this, first we select the contents of the table, as shown in Figure 113
(using SPUFI):

Figure 113. Contents of READING table before the first execution of the program

Then we executed the program with the following input file:

$ db2 "select * from osample"

SAMPLE_NUM SAMPLE_PT_NAME TIMESTAMP MTRL_NAME DESCRIPTION
----------- -------------------- -------------------------- ---------------
--

1 T_0001_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0001
sample point

2 T_0002_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0002
sample point

3 T_0003_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0003
sample point

4 T_0004_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0004
sample point

4 record(s) selected.

$ db2 "select * from sample"

SAMPLE_NUM SAMPLE_PT_NAME TIMESTAMP MTRL_NAME DESCRIPTION
----------- -------------------- -------------------------- ---------------
--

1 T_0001_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0001
sample point

2 T_0002_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0002
sample point

3 T_0003_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0003
sample point

4 T_0004_SP 1999-06-03-08.00.00.000000 ARABIAN_HEAVY Tank 0004
sample point

4 record(s) selected.

SELECT * FROM CIPROS.READING; 00260099
---------+---------+---------+---------+---------+---------+---------+---------+
TAG_NAME TIMESTAMP VALUE VALID
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE610I NUMBER OF ROWS DISPLAYED IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+
Testing, change control, and tuning 187

The content of the table after the execution of the program is shown in Figure
114.

Figure 114. Contents of READING table after the first execution of the program

After changing the VALUE field of the first record of the file into 55555, we
re-submitted the program, and the result of a select after the end of the execution
is shown in Figure 115.

Figure 115. Contents of READING table after the second execution of the program

The test case described above should be repeated for all the basic functionalities
of the application.

****** ***************************** Top of Data *********************
000001 FM0010.PVHVG,0,1999-06-03-08.00.00.000000,0
000002 FM0011.PVHVG,0,1999-06-03-08.00.00.000000,0
000003 FM0012.PVHVG,0,1999-06-03-08.00.00.000000,0
000004 FM0013.PVHVG,0,1999-06-03-08.00.00.000000,0
000005 FM0014.PVHVG,0,1999-06-03-08.00.00.000000,0
000006 FM0015.PVHVG,0,1999-06-03-08.00.00.000000,0
000007 FM0016.PVHVG,0,1999-06-03-08.00.00.000000,0
000008 FM0017.PVHVG,0,1999-06-03-08.00.00.000000,0
000010 PM0018.PVHVG,0,1999-06-03-08.00.00.000000,0
****** **************************** Bottom of Data *******************

SELECT * FROM CIPROS.READING; 00260099
---------+---------+---------+---------+---------+---------+---------+---------+
TAG_NAME TIMESTAMP VALUE VALID
---------+---------+---------+---------+---------+---------+---------+---------+
FM0010.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0011.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0012.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0013.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0014.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0015.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0016.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0017.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
PM0018.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
DSNE610I NUMBER OF ROWS DISPLAYED IS 9
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+

SELECT * FROM CIPROS.READING; 00260099
---------+---------+---------+---------+---------+---------+---------+---------+
TAG_NAME TIMESTAMP VALUE VALID
---------+---------+---------+---------+---------+---------+---------+---------+
FM0010.PVHVG 1999-06-03-08.00.00.000000 +0.5555500000000000E+05
FM0011.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0012.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0013.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0014.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0015.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0016.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0017.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
FM0018.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
PM0018.PVHVG 1999-06-03-08.00.00.000000 +0.0 E+00
DSNE610I NUMBER OF ROWS DISPLAYED IS 10
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+
188 Converting from Oracle AIX to DB2 for OS/390

8.1.2 Unit test
This section describes the unit tests performed after the conversion completion.

8.1.2.1 Database definition test
We did not perform unit tests for the database definition. We considered that a
function definition for all the database objects definition could be considered as a
unit test.

8.1.2.2 Data migration test
From a data migration point of view, we performed some queries to check the
validity of the loaded data, and made comparisons across the tables in order to
check the consistency of each area of the data model.

An example is shown in Figure 116.

Figure 116. Example of a query statement to check data consistency

8.1.3 System and user acceptance test
In our simplified environment the unit test was considered satisfactory also for
system and user acceptance test.

8.2 Performance tuning

The performance plan in 3.3.3.4, “Performance plan” on page 39 describes how
performance tuning takes place, with what tools and resources.

The tasks for a performance plan are:

• Database configuration

• System configuration

• Tools and utilities

8.3 Change control

The change control plan in 3.3.3.5, “Change control plan” on page 39 describes
how the change control procedure takes place, with what tools and resources.

SELECT ANLY_VALUE, SA.TIMESTAMP FROM SAMPLE_ANALYSIS SA, SAMPLE S, 00260099
STANDARD_RESULT SR WHERE S.SAMPLE_PT_NAME=SA.SAMPLE_PT_NAME AND 00260199
SR.STD_RESLT_NAME=SA.STD_RESLT_NAME AND SA.STD_RESLT_NAME 00260299
='D15' AND ANLY_VALUE>'0.5'; 00260399

---------+---------+---------+---------+---------+---------+---------+---------+
ANLY_VALUE TIMESTAMP
---------+---------+---------+---------+---------+---------+---------+---------+
0.801 1999-06-03-08.00.00.000000
0.928 1999-06-03-08.00.00.000000
0.827 1999-06-03-08.00.00.000000
DSNE610I NUMBER OF ROWS DISPLAYED IS 3
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+
Testing, change control, and tuning 189

The tasks for a change control procedure are:

• Document Change Request

• Review change

• Review effect of change

• Approval of change

8.3.1 Change control overview
Recognizing that some changes can occur during a project, a formal change
control procedure is required to accommodate them. Such a procedure allows
users to make cost and benefit trade-offs based on analysis or requested
changes. It also ensures that only approved changes are implemented. Changes
are handled through the formal Project Change Control Procedure.

8.3.2 Change control procedure
The tasks defined and approved at each phase of the project served as a
baseline for the next phase. Changes to this baseline are requested through the
Project Change Control Procedure.

The following provides a detailed process to follow if a change to the project plan
is required:

• A change request will be the vehicle for communication change. The change
request must describe the change, the rationale for the change and the effect
the change will have on the project.

• The designated team leader of the requesting party will review the proposed
change and determine whether to submit the request to the other party.

• Both team leaders will review the proposed change and approve it for further
investigation or reject it. If the investigation is authorized, the team leaders
and project manager will approve the investigation. The investigation will
determine the effect that the implementation of the change request will have
on the project and the schedule.

• A written change request must be signed by both team leaders and the project
manager to authorize implementation of the investigated changes.
190 Converting from Oracle AIX to DB2 for OS/390

Appendix A. Sample script functions

This appendix contains the sample script functions that have been written during
the project for the Oracle AIX environment. They are referred to in the text of the
book and contain in the comments section of each listing a short description of
their functionalities.

A.1 ddltabs.sh script
#!/usr/bin/ksh
#
Shell script ddltabs.sh
#
Starting from an Oracle export file containing the table definitions,
extracts the CREATE TABLE DDLs and converts them into DB2/MVS syntax
#
Syntax: ddltabs.sh export_file
#
The script writes the DDLs on standard output. If you want to save
the DDLs, redirect the stdout to a file. Example:
#
ddltabs.sh export_file > output_ddl_file
#
#
Some environment variables have to be defined before launching the script:
#
Variable containing the DB2 database name
export DBN=CIPROS

List of variables containing old and new names for the tablespaces
The first variable is the number of the changed tablespaces
export NTS=6
export OLDTSN[1]=CPRS_BASE
export NEWTSN[1]=CPRSBASE
export OLDTSN[2]=CPRS_READING
export NEWTSN[2]=CPRSREAD
export OLDTSN[3]=CPRS_READING_IND
export NEWTSN[3]=CPRSRIDX
export OLDTSN[4]=CPRS_LOGE
export NEWTSN[4]=CPRSLOGE
export OLDTSN[5]=CPRS_LAB
export NEWTSN[5]=CPRSLAB
export OLDTSN[6]=CPRS_PRDSCN
export NEWTSN[6]=CPRSPRDS

List of variables containing old and new names for the tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT

List of variables containing old and new names
(in DB2 syntax) for some data types
The first variable is the number of the changed data types
export NDT=2
export OLDDT[1]="VARCHAR(1)"
export NEWDT[1]="CHAR"
export OLDDT[2]="VARCHAR(3)"
export NEWDT[2]="CHAR(3)"

Function definition: Cut the " (double quote) symbols
#

© Copyright IBM Corp. 1999 191

function dq_cut
{

tr -d '"'
}

Function definition: Cut the "(", ")" and " " (blank) symbols
#
function par_cut
{

tr -d '(' | tr -d ')' | tr -d ' '
}

Function definition: Modify the Oracle storage clause
#
function sto_cl
{

sed -e "s/\(^.*\) PCTFREE\(.*\)TABLESPACE \(.*\)$/\1IN $DBN\.\3/g"
}

Function definition: Convert Number Datatypes
#
function dt_num
{

sed -e 's/ DECIMAL/ NUMBER/g' \
-e 's/ NUMBER(*)/ NUMBER/g' \
-e 's/ NUMBER(*[]*,[0]*)/ NUMBER/g' \
-e 's/ NUMBER(\([0-9]*\)\,\([0]*\))/ INTEGER/g' \
-e 's/ NUMBER(\([0-9]*\)\,\([0-9]*\))/ DECIMAL(\1\,\2)/g' \
-e 's/ NUMBER(\([0-9]*\))/ INTEGER/g' \
-e 's/ NUMBER/ FLOAT/g'

}

Function definition: Convert Character Datatypes
#
function dt_char
{

sed -e 's/ VARCHAR2/ VARCHAR/g' \
-e 's/ LONG VARCHAR/ LONG/g' \
-e 's/ LONG/ CLOB(2G)/g' \
-e 's/ CHAR(\(.*\))/ VARCHAR(\1)/g'

}

Function definition: Convert Binary Datatypes
#
function dt_bin
{

sed -e 's/ LONG RAW/ BLOB(2G)/g' \
-e 's/ RAW(\([0-9]*\))/ CHAR(\1) FOR BIT DATA/g'

}

Function definition: Convert Date Datatypes
#
function dt_date
{

sed -e 's/ DATE,/ TIMESTAMP,/g' \
-e 's/ DATE)/ TIMESTAMP)/g'

}

Function definition: Modify the Oracle primary key clause
for the primary key definitions (with CONSTRAINT clause)
#
function pk_cl
{

sed "s/ALTER TABLE\(.*\)ADD[]*CONSTRAINT\(.*\) \
PRIMARY KEY\(.*\) USING.*/\1,\3/"
}

Function definition: Modify the Oracle primary key clause
for the primary key definitions (without CONSTRAINT clause)
#
function pk_cl_nc
{

sed "s/ALTER TABLE\(.*\)ADD[]*PRIMARY[]*KEY\(.*\) \
USING.*/\1,\2/"
}

Function definition: Add ';' to end of each create table
#

192 Converting from Oracle AIX to DB2 for OS/390

function stmt_end
{

sed -e 's/$/;/g'
}

Function definition: Add a newline to end of each field declaration
#
function new_line
{

sed 's/),/),\
/g
s/FLOAT,/FLOAT,\
/g
s/INTEGER,/INTEGER,\
/g
s/SMALLINT,/SMALLINT,\
/g
s/DECIMAL,/DECIMAL,\
/g
s/CHAR,/CHAR,\
/g
s/DATA,/DATA,\
/g
s/ROWID,/ROWID,\
/g
s/TIMESTAMP,/TIMESTAMP,\
/g
s/NOT NULL,/NOT NULL,\
/g
s/IN \(.*\)\.\(.*\);/\
IN \1\.\2;/'

}

Start of main program
#
Select the CREATE TABLE statements in Oracle export file
and apply the functions

grep -w "CREATE TABLE " $1 | dq_cut | sto_cl | \
dt_num | dt_bin | dt_char | dt_date | stmt_end > $1.tmp.0

Modify the Oracle tablespace names

i=0
while [[$i -lt $NTS]]
do
im1=$i
i=`expr $i + 1`
OLD=${OLDTSN[$i]}
NEW=${NEWTSN[$i]}

sed "s/$DBN.$OLD/$DBN.$NEW/" $1.tmp.$im1 > $1.tmp.$i
done

mv $1.tmp.$i $1.tmp.0

Modify the data types declared at the beginning of the script

i=0
while [[$i -lt $NDT]]
do
im1=$i
i=`expr $i + 1`
OLD=${OLDDT[$i]}
NEW=${NEWDT[$i]}

sed "s/$OLD/$NEW/g" $1.tmp.$im1 > $1.tmp.$i
done

export CRFN=$1.tmp.$i

Select all the primary keys and write into a temporary file

grep -w "ALTER TABLE" $1 | grep -w "PRIMARY KEY" | dq_cut | \
pk_cl | pk_cl_nc | par_cut > $1.pk

awk -f pk.awk $1.pk > $1.tmp.0

Modify the Oracle table names as declared at the beginning of the script
Sample script functions 193

i=0
while [[$i -lt $NT]]
do
im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}

sed "s/TABLE $OLD/TABLE $NEW/" $1.tmp.$im1 > $1.tmp.$i
done

Add the newline characters and display the result to standard output

cat $1.tmp.$i | new_line

Remove the temporary files

rm -f $1.tmp*

A.1.1 sednn.sh script
#!/bin/ksh
sed -e "s/$1[]*VARCHAR(\([0-9]*\))/$1 VARCHAR(\1) NOT NULL/" \

-e "s/$1[]*CHAR(\([0-9]*\))/$1 CHAR(\1) NOT NULL/" \
-e "s/$1[]*CHAR,/$1 CHAR NOT NULL,/" \
-e "s/$1[]*CHAR)/$1 CHAR NOT NULL)/" \
-e "s/$1[]*CLOB(\([0-9]*\))/$1 CLOB(\1) NOT NULL/" \
-e "s/$1[]*BLOB(\([0-9]*\))/$1 BLOB(\1) NOT NULL/" \
-e "s/$1[]*DBCLOB(\([0-9]*\))/$1 DBCLOB(\1) NOT NULL/" \
-e "s/$1[]*FLOAT(\([0-9]*\))/$1 FLOAT(\1) NOT NULL/" \
-e "s/$1[]*FLOAT,/$1 FLOAT NOT NULL,/" \
-e "s/$1[]*FLOAT)/$1 FLOAT NOT NULL)/" \
-e "s/$1[]*REAL/$1 REAL NOT NULL/" \
-e "s/$1[]*DOUBLE/$1 DOUBLE NOT NULL/" \
-e "s/$1[]*INTEGER/$1 INTEGER NOT NULL/" \
-e "s/$1[]*SMALLINT/$1 SMALLINT NOT NULL/" \
-e "s/$1[]*TIMESTAMP,/$1 TIMESTAMP NOT NULL,/" \
-e "s/$1[]*TIMESTAMP)/$1 TIMESTAMP NOT NULL)/" \
-e "s/$1[]*DECIMAL(\([0-9,]*\))/$1 DECIMAL(\1) NOT NULL/" \
-e "s/NOT[]*NULL[]*NOT[]*NULL/NOT NULL/g"

A.1.2 pk.awk script
BEGIN { FS="," }
{
system("cp $CRFN $CRFN.sed."$2)
for (i=2;i<=NF;i++)
{
j=i+1
system("grep -w \"CREATE TABLE "$1" \" $CRFN.sed."$i" | sednn.sh "$i" >$CRFN.sed."$j)
}
system("mv $CRFN.sed."$j" $CRFN.sed")
system("cat $CRFN.sed")
system("rm -f $CRFN.sed*")
}

A.2 ddlind.sh script
#!/usr/bin/ksh
#
Shell script ddlind.sh
#
Starting from an Oracle export file,
extracts the CREATE INDEX DDLs and ALTER TABLE DDLs and converts them
into DB2/MVS syntax
#
Syntax: ddlind.sh export_file
#
The script writes the DDLs on standard output. If you want to save
the DDLs, redirect the stdout to a file. Example:
#

194 Converting from Oracle AIX to DB2 for OS/390

ddlind.sh export_file > output_ddl_file
#
#
Some environment variables have to be defined before launching the script:
#
Variables on DB2 definitions
export DBN=CIPROS
export STOGROUP=CIPROS01
export PRIQTY=4000
export SECQTY=400
export ERASE=NO

List of variables containing old and new names for the tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT

List of variables containing old and new names for the indexes
The first variable is the number of the changed indexes
export NI=5
export OLDIN[1]=CASE_FACILITY_ASGP1
export NEWIN[1]=CASE_FACIL_ASGP1
export OLDIN[2]=ENG_UNIT_STANDARDP1
export NEWIN[2]=ENG_UNIT_STNDRDP1
export OLDIN[3]=INSTRUMENT_SERVICEP1
export NEWIN[3]=INSTR_SERVICEP1
export OLDIN[4]=STREAM_METH_RESULTP1
export NEWIN[4]=STREAM_METH_RESP1
export OLDIN[5]=CASE_FACILITY_ASGI2
export NEWIN[5]=CASE_FACIL_ASGI2

Function definition: Cut the " (double quote) symbols
#
function dq_cut
{

tr -d ’"’
}

Function definition: Modify the Oracle storage clause
#
function sto_cl
{

sed -e "s/\(^.*\) PCTFREE.*/\1 USING STOGROUP $1 PRIQTY $2 SECQTY $3 ERASE $4/"

}

Function definition: Modify the Oracle unique clause
#
function uni_cl
{

sed "s/ALTER TABLE\(.*\)ADD[]*CONSTRAINT\(.*\) \
UNIQUE\(.*\)USING.*/CREATE UNIQUE INDEX \2 ON \1 \3 USING \
STOGROUP $1 PRIQTY $2 SECQTY $3 ERASE $4/"
}

Function definition: Modify the Oracle primary key clause
for the primary indexes (with CONSTRAINT clause)
#
function pki_cl
{

sed "s/ALTER TABLE\(.*\)ADD[]*CONSTRAINT\(.*\)\
PRIMARY KEY\(.*\)USING.*/CREATE UNIQUE INDEX \2 ON \1 \3 \
USING STOGROUP $1 PRIQTY $2 SECQTY $3 ERASE $4/"
}

Function definition: Modify the Oracle primary key clause
for the primary key definitions (with CONSTRAINT clause)
Sample script functions 195

#
function pk_cl
{

sed "s/ALTER TABLE\(.*\)ADD[]*CONSTRAINT\(.*\) \
PRIMARY KEY\(.*\) USING.*/ALTER TABLE \1 ADD PRIMARY KEY \3/"
}

Function definition: Modify the Oracle primary key clause
for the primary key definitions (without CONSTRAINT clause)
#
function pk_cl_nc
{

sed "s/ALTER TABLE\(.*\)ADD[]*PRIMARY[]*KEY\(.*\) \
USING.*/ALTER TABLE \1 ADD PRIMARY KEY \2/"
}

Function definition: Add ’;’ to end of each create table
#
function stmt_end
{

sed -e ’s/$/;/g’
}

Function definition: Add a newline to end of each field declaration
#
function new_line
{

sed ’s/ ON /\
ON /g
s/(/\
(/g
s/USING/\
USING/g
s/PRIQTY/\

PRIQTY/g
s/SECQTY/\

SECQTY/g
s/ERASE/\

ERASE/g’
}

Start of main program
#
Select the ALTER TABLE ADD CONSTRAINT PRIMARY KEY statements in the export
file and apply the functions for the creation of the primary unique indexes

grep -w "ALTER TABLE" $1 | grep "CONSTRAINT" | grep "PRIMARY KEY" | \
dq_cut | pki_cl $STOGROUP $PRIQTY $SECQTY $ERASE | stmt_end >> $1.tmp.0

Select the ALTER TABLE ADD CONSTRAINT PRIMARY KEY statements in the export
file and apply the functions for the creation of the primary keys

grep -w "ALTER TABLE" $1 | grep "CONSTRAINT" | grep "PRIMARY KEY" | \
dq_cut | pk_cl $STOGROUP $PRIQTY $SECQTY $ERASE | stmt_end >> $1.tmp.0

Select the ALTER TABLE ADD PRIMARY KEY statements in the export
file and apply the functions for the creation of the primary keys

grep -w "ALTER TABLE" $1 | grep "PRIMARY KEY" | grep -v "CONSTRAINT" | \
dq_cut | pk_cl_nc $STOGROUP $PRIQTY $SECQTY $ERASE | stmt_end >> $1.tmp.0

Select the CREATE INDEX statements in Oracle export file
and apply the functions

grep -w "CREATE[A-Z]*INDEX " $1 | dq_cut | \
sto_cl $STOGROUP $PRIQTY $SECQTY $ERASE | stmt_end >> $1.tmp.0

Select the ALTER TABLE ... UNIQUE statements in Oracle export file
and apply the functions

grep -w "ALTER TABLE" $1 | grep "UNIQUE" | dq_cut | \
uni_cl $STOGROUP $PRIQTY $SECQTY $ERASE | stmt_end >> $1.tmp.0

Modify the Oracle table names as declared at the beginning of the script

i=0
196 Converting from Oracle AIX to DB2 for OS/390

while [[$i -lt $NT]]
do
im1=$i
i=‘expr $i + 1‘
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}

sed "s/$OLD/$NEW/g" $1.tmp.$im1 > $1.tmp.$i
done

mv $1.tmp.$i $1.tmp.0

Modify the DB2 index names as declared at the beginning of the script

i=0
while [[$i -lt $NI]]
do
im1=$i
i=‘expr $i + 1‘
OLD=${OLDIN[$i]}
NEW=${NEWIN[$i]}

sed "s/$OLD/$NEW/g" $1.tmp.$im1 > $1.tmp.$i
done

Add the newline characters and display the result to standard output

cat $1.tmp.$i | new_line

Remove the temporary files

rm -f $1.tmp*

A.3 ddlfk.sh script
#!/usr/bin/ksh
#
Shell script ddlfk.sh
#
Starting from an Oracle export file,
extracts the ALTER TABLE ... FOREIGN KEY DDLs
and converts them into DB2/MVS syntax
#
Syntax: ddlfk.sh export_file
#
The script writes the DDLs on standard output. If you want to save
the DDLs, redirect the stdout to a file. Example:
#
ddlfk.sh export_file > output_ddl_file
#
#
Some environment variables have to be defined before launching the script:
#
List of variables containing old and new names for the tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT

Function definition: Cut the " (double quote) symbols
#
function dq_cut
{

tr -d '"'
}

Function definition: Modify the Oracle storage clause
Sample script functions 197

#
function fk_cl
{

sed -e "s/ADD[]*CONSTRAINT\(.*\)FOREIGN KEY/FOREIGN KEY/"
}

Function definition: Add ';' to end of each create table
#
function stmt_end
{

sed -e 's/$/;/g'
}

Function definition: Add a newline to end of each field declaration
#
function new_line
{

sed 's/FOREIGN KEY/\
FOREIGN KEY/
s/REFERENCES/\
REFERENCES/
s/ON DELETE/\
ON DELETE/'

}

Start of main program
#
Select the ALTER TABLE ... FOREIGN KEY statements in Oracle export file
and apply the functions

grep -w "ALTER TABLE" $1 | grep "FOREIGN KEY" | \
dq_cut | fk_cl | stmt_end > $1.tmp.0

Modify the Oracle table names as declared at the beginning of the script

i=0
while [[$i -lt $NT]]
do
im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}

sed "s/$OLD/$NEW/g" $1.tmp.$im1 > $1.tmp.$i
done

Add the newline characters and display the result to standard output

cat $1.tmp.$i | new_line

Remove the temporary files

rm -f $1.tmp*

A.4 ddlgrnt.sh
#!/usr/bin/ksh
#
Shell script ddlgrnt.sh
#
Starting from an Oracle export file containing the table definitions,
extracts the GRANT statements and converts them into DB2/MVS syntax
#
Syntax: ddlgrnt.sh export_file
#
The script writes the statements on standard output. If you want to save
the statements, redirect the stdout to a file. Example:
#
ddlgrnt.sh export_file > output_ddl_file
#
#

198 Converting from Oracle AIX to DB2 for OS/390

Some environment variables have to be defined before launching the script:
#
List of variables containing old and new names for the tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT

List of variables containing old and new names
of granted users and roles
The first variable is the number of the changed definition
export NG=2
export OLDG[1]="ROLE_CIPROS"
export NEWG[1]="PAOLOR2"
export OLDG[2]="ROLE_VIEW"
export NEWG[2]="PAOLOR3"

Function definition: Cut the " (double quote) symbols
#
function dq_cut
{

tr -d '"'
}

Function definition: Add ';' to end of each grant statement
#
function stmt_end
{

sed -e 's/$/;/'
}

Start of main program
#
Select the GRANT statements in Oracle export file
and apply the previous functions

grep -w "^GRANT" $1 | dq_cut | stmt_end > $1.tmp.0

Modify the granted users as declared at the beginning of the script

i=0
while [[$i -lt $NG]]
do

im1=$i
i=`expr $i + 1`
OLD=${OLDG[$i]}
NEW=${NEWG[$i]}
sed "s/$OLD/$NEW/g" $1.tmp.$im1 > $1.tmp.$i

done

mv $1.tmp.$i $1.tmp.0

Modify the table names as declared at the beginning of the script

i=0
while [[$i -lt $NT]]
do
im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}

sed "s/ $OLD/ $NEW/" $1.tmp.$im1 > $1.tmp.$i
done

Display the result to standard output

cat $1.tmp.$i
Sample script functions 199

Remove the temporary files

rm -f $1.tmp*

A.5 ddlchk.sh script
#!/usr/bin/ksh
#
Shell script ddlchk.sh
#
Starting from an Oracle export file,
extract the ALTER TABLE DDLs with ADD CHECK and convert them
into DB2/MVS syntax
#
Syntax: ddlchk.sh export_file
#
The script writes the DDLs on standard output. If you want to save
the DDLs, redirect the stdout to a file. Example:
#
ddlchk.sh export_file > output_ddl_file
#
#
List of variables containing old and new names for the tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT

Function definition: Cut the " (double quote) symbols
#
function dq_cut
{

tr -d '"'
}

Function definition: Add ';' to end of each create table
#
function stmt_end
{

sed -e 's/$/;/g'
}

Start of main program
#
Select the ALTER TABLE ... ADD CHECK statements in Oracle export file
and apply the functions

grep -w "ALTER TABLE" $1 | grep -E "ADD.*CHECK" | \
dq_cut | stmt_end >> $1.tmp.0

Modify the Oracle table names as declared at the beginning of the script

i=0
while [[$i -lt $NT]]
do
im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}

sed "s/$OLD/$NEW/g" $1.tmp.$im1 > $1.tmp.$i
done

Write the file to standard output

cat $1.tmp.$i
200 Converting from Oracle AIX to DB2 for OS/390

Remove the temporary files

rm -f $1.tmp*

A.6 ddlalias.sh script
#!/usr/bin/ksh
#
Shell script ddlalias.sh
#
Starting from a file containing the list of the tables,
extracts from Oracle catalog all the defined PUBLIC synonyms
for the CIPROS user and creates the CREATE ALIAS DB2 statements
#
Syntax: ddlalias.sh list_table_file
#
The script writes the output on standard output. If you want to save
the output, redirect the stdout to a file. Example:
#
ddlalias.sh list_table_file > output_ddl_file
#
#
The following environment variables contain the CIPROS user and
the SYS user with the related Oracle password:
#
SYS=SYS
SYS_PWD=SYS
OWNER=CIPROS
#
The following environment variable contains the DB2 schema
#
SCHEMA=PAOLOR2
#
List of variables containing old and new names for the tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT
#
These environment variables are for internal use:
#
SQLFILE=selalias.sql
OUTFILE=selalias.out
FILENAME=$1
#
Function definition: Create the sed script file
to append the last line of the sql file to the previous one
#
function create_last_line_sed
{
echo "/.*/{" > last_line.sed
echo "N" >> last_line.sed
echo "s/_\\\n);/);/" >> last_line.sed
echo "}" >> last_line.sed
}

Start of main program
#
Create the select statement for ALIASES and write into the SQLFILE file
The "@" symbol (instead of "'") and the "_" symbol (instead of ",")
are used to avoid problems with sed command

NTABS=`wc -l < $FILENAME`
DIV2=`expr $NTABS % 2`
echo "select 'create alias ' || " > $SQLFILE
Sample script functions 201

echo "sname || ' for $SCHEMA.' || " >> $SQLFILE
echo "tname || ';' from synonyms " >> $SQLFILE
if [[$DIV2 -eq 0]]
then
echo "where creator='$OWNER' and syntype='PUBLIC'" >> $SQLFILE
else
echo "where creator='$OWNER' " >> $SQLFILE
echo " and syntype='PUBLIC'" >> $SQLFILE
fi
echo "and tname in (" >> $SQLFILE
awk '{printf("%s%s%s_\n"),"@",$1,"@"}' $FILENAME >> $SQLFILE
echo ");" >> $SQLFILE

Change the "@" characters in "'"
sed s/@/\'/g $SQLFILE > $SQLFILE.tmp
mv $SQLFILE.tmp $SQLFILE

Create and apply the sed command file to append the
last line containing ");" to the previous one, then remove the sed file
create_last_line_sed
sed -f last_line.sed $SQLFILE > $SQLFILE.tmp
mv $SQLFILE.tmp $SQLFILE
rm -f last_line.sed

Change the "_" characters at the end of each line in ","
sed s/_$/,/g $SQLFILE > $SQLFILE.tmp
mv $SQLFILE.tmp $SQLFILE

Run the sql scripts
sqlplus -s $SYS/$SYS_PWD <<EOF >/dev/null 2>&1
clear columns
clear breaks
set pagesize 50000
set newpage 1
set feedback off
spool $OUTFILE
@$SQLFILE
spool off
EOF

rm -f $SQLFILE

Cut head from the file

tail +4 $OUTFILE > $OUTFILE.tmp1
mv $OUTFILE.tmp1 $OUTFILE

Modify the Oracle table names as declared at the beginning of the script

mv $OUTFILE $OUTFILE.tmp.0

i=0
while [[$i -lt $NT]]
do

im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}
sed "s/$OLD/$NEW/g" $OUTFILE.tmp.$im1 > $OUTFILE.tmp.$i

done

Write the SET CURRENT SQLID statement to standard output

echo "SET CURRENT SQLID=CIPROS;"

Write the file to standard output

cat $OUTFILE.tmp.$i

Remove the temporary files

rm -f $OUTFILE*

A.7 ddlsyn.sh script
#!/usr/bin/ksh
202 Converting from Oracle AIX to DB2 for OS/390

#
Shell script ddlsyn.sh
#
Starting from a file containing the list of the tables,
extracts from Oracle catalog all the defined PRIVATE synonyms
for the CIPROS user and creates the CREATE SYNONYNM DB2 statements
#
Syntax: ddlsyn.sh list_table_file
#
The script writes the output on standard output. If you want to save
the output, redirect the stdout to a file. Example:
#
ddlsyn.sh list_table_file > output_ddl_file
#
#
The following environment variables contain the CIPROS user and password
#
OWNER=CIPROS
OWNER_PWD=CIPROS
#
The following environment variable contains the DB2 schema
#
SCHEMA=CIPROS
#
List of variables containing old and new names for the tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT
#
These environment variables are for internal use:
#
SQLFILE=selsyn.sql
OUTFILE=selsyn.out
FILENAME=$1
#
Function definition: Create the sed script file
to append the last line of the sql file to the previous one
#
function create_last_line_sed
{
echo "/.*/{" > last_line.sed
echo "N" >> last_line.sed
echo "s/_\\\n);/);/" >> last_line.sed
echo "}" >> last_line.sed
}

Start of main program
#
Create the select statement for SYNONYMS and write into the SQLFILE file
The "@" symbol (instead of "'") and the "_" symbol (instead of ",")
are used to avoid problems with sed command

NTABS=`wc -l < $FILENAME`
DIV2=`expr $NTABS % 2`
echo "select 'create synonym ' || " > $SQLFILE
echo "synonym_name || ' for $SCHEMA.' || " >> $SQLFILE
echo "table_name || ';' from user_synonyms " >> $SQLFILE
if [[$DIV2 -eq 0]]
then
echo "where table_owner='$OWNER' " >> $SQLFILE
echo "and table_name in (" >> $SQLFILE
else

echo "where table_owner='$OWNER' and table_name in (" >> $SQLFILE
fi
awk '{printf("%s%s%s_\n"),"@",$1,"@"}' $FILENAME >> $SQLFILE
echo ");" >> $SQLFILE
Sample script functions 203

Change the "@" characters in "'"
sed s/@/\'/g $SQLFILE > $SQLFILE.tmp
mv $SQLFILE.tmp $SQLFILE

Create and apply the sed command file to append the
last line containing ");" to the previous one, then remove the sed file
create_last_line_sed
sed -f last_line.sed $SQLFILE > $SQLFILE.tmp
mv $SQLFILE.tmp $SQLFILE
rm -f last_line.sed

Change the "_" characters at the end of each line in ","
sed s/_$/,/g $SQLFILE > $SQLFILE.tmp
mv $SQLFILE.tmp $SQLFILE

Run the sql scripts
sqlplus -s $OWNER/$OWNER_PWD <<EOF >/dev/null 2>&1
clear columns
clear breaks
set pagesize 50000
set newpage 1
set feedback off
spool $OUTFILE
@$SQLFILE
spool off
EOF

rm -f $SQLFILE

Cut head from the file

tail +4 $OUTFILE > $OUTFILE.tmp1
mv $OUTFILE.tmp1 $OUTFILE

Modify the Oracle table names as declared at the beginning of the script

mv $OUTFILE $OUTFILE.tmp.0

i=0
while [[$i -lt $NT]]
do

im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}
sed "s/$OLD/$NEW/g" $OUTFILE.tmp.$im1 > $OUTFILE.tmp.$i

done

Write the file to standard output

cat $OUTFILE.tmp.$i

Remove the temporary files

rm -f $OUTFILE*

A.8 ddlview.sh script
#!/usr/bin/ksh
#
Shell script ddlview.sh
#
Starting from an Oracle full export file, extracts the CREATE VIEW statements
#
Syntax: ddlview.sh export_file
#
The script writes the statements on standard output. If you want to save
the statements, redirect the stdout to a file. Example:
#
ddlview.sh export_file > output_ddl_file
#
#
Some environment variables have to be defined before launching the script:
#
List of variables containing old and new names for the tables
The first variable is the number of the changed tables
204 Converting from Oracle AIX to DB2 for OS/390

export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT

Function definition: Cut the " (double quote) symbols
#
function dq_cut
{

tr -d '"'
}

Function definition: get the CREATE VIEW statements from the input file
#
function views
{
read line
while [$? -eq 0]
do

echo $line | grep "^CREATE VIEW" 2>&1 >/dev/null
if [$? -eq 0]
then
echo $line | tr -d '"'
read line
while ["$line" != ""]
do

echo $line | sed -e 's/^.*select/select/' \
-e 's/^.*SELECT/SELECT/'

read line
done

echo ";"
fi
read line

done
}

Start of main program
#
Cat the Oracle export file and apply the previous functions

cat $1 | dq_cut | views > $1.tmp.0

Modify the table names as declared at the beginning of the script

i=0
while [[$i -lt $NT]]
do
im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}

sed "s/ $OLD/ $NEW/" $1.tmp.$im1 > $1.tmp.$i
done

Display the result to standard output

cat $1.tmp.$i

Remove the temporary files

rm -f $1.tmp*

A.9 download.sh script
#!/bin/ksh
#
Shell script download.sh
Sample script functions 205

#
Starting from an flat file containing a list of all the table,
extracts data from Oracle for each table and writes data into
a file named table_name.DAT, formatted in columns
#
Syntax: download.sh table_list_file
#
This script uses the awk command with the following awk command files:
#
desc.awkformats the query command files using RPAD and DECODE
#to obtain a column-formatted output
#
count.awkcomputes the total length of a record
#
#
Define the environment variables for the oracle user and password
CPRS_USR=cipros
CPRS_PWD=cipros
#
Start of main program
#
Loop on all the tables listed in the input file

for i in `cat $1`
do

Define some environment variables for temporary files

export OUTFILE=$i.DAT
DSCFILE=$i.dsc
SQLFILE=$i.sql
VARFILE=$i.var
ALLFILE=$i.all
POSFILE=$i.pos
rm -f $OUTFILE
rm -f $DSCFILE
rm -f $SQLFILE

Extract the table description from Oracle catalog

sqlplus -s $CPRS_USR/$CPRS_PWD <<EOF >/dev/null 2>&1
clear columns
clear breaks
set pagesize 100
set newpage 1
set feedback off
spool $DSCFILE
desc $i
EOF

Cut head and tail from the file containing the descriptions of the tables
Change also the NOT NULL clause in a blank string
and cut the blanks in the first column

tail +3 $DSCFILE | sed 's/NOT NULL/ /; s/^ //' > $DSCFILE.tmp1
NL=`wc -l < $DSCFILE.tmp1`
NLM1=`expr $NL - 1`
head -$NLM1 $DSCFILE.tmp1 > $DSCFILE.tmp2
cp $DSCFILE.tmp2 $VARFILE

Change the data types, leaving in the file the respective lengths
It is assumed that 41 bytes are enough to contain the significative
part of the NUMBER fields

sed -e 's/ VARCHAR2(/ /' \
-e 's/ NUMBER(/ /' \
-e 's/ NUMBER/ 41/' \
-e 's/ INTEGER(/ /' \
-e 's/ INTEGER/ 41/' \
-e 's/ CHAR(/ /' \
-e 's/ CHAR/ 1/' \
-e 's/ RAW(/ /' \
-e 's/ VARCHAR(/ /' \
-e 's/)//' \
-e 's/\([0-9]*\)\,\([0-9]\)*/\1/' \

$DSCFILE.tmp2 > $DSCFILE.tmp3

mv $DSCFILE.tmp3 $DSCFILE
206 Converting from Oracle AIX to DB2 for OS/390

rm -f $DSCFILE.tmp*

Compute the record length of the table
using the count.awk awk script

LS=`awk -f count.awk $DSCFILE`

Prepare the heading of the query statement on the table
by echoing the statements into the sql file

echo "clear columns" > $SQLFILE
echo "clear breaks" >> $SQLFILE
echo "set pagesize 50000" >> $SQLFILE
echo "set linesize $LS" >> $SQLFILE
echo "set feedback off" >> $SQLFILE
echo "set heading off" >> $SQLFILE
echo "set space 0" >> $SQLFILE
echo "set newpage 1" >> $SQLFILE
echo "spool $OUTFILE" >> $SQLFILE
echo "select '' " >> $SQLFILE

Append to the query statement file the list of the table fields
to obtain the column layout, using the desc.awk awk script

awk -f desc.awk $DSCFILE >> $SQLFILE

Append to the query statement file the "from" clause
and the closing instructions

echo "from $i;" >> $SQLFILE
echo "spool off" >> $SQLFILE
echo "quit" >> $SQLFILE

Execute the query statement

sqlplus -s $CPRS_USR/$CPRS_PWD @$SQLFILE >/dev/null 2>&1

Cut the first line from the output file

tail +2 $OUTFILE > $OUTFILE.tmp
mv $OUTFILE.tmp $OUTFILE

Change the DATE data type into its DB2 external length, 26 bytes

sed 's/ DATE/ 26/' $DSCFILE > $DSCFILE.tmp1
mv $DSCFILE.tmp1 $DSCFILE

End of the loop

done

A.9.1 count.awk script
BEGIN { total=0 }
{
if ($2 == "DATE")
total +=26
else
total += $2
}
END { print total }

A.9.2 desc.awk script
BEGIN {}
{
if ($2 == "DATE")
print " || rpad(DECODE("$1",NULL,' ',TO_CHAR("$1",'YYYY-MM-DD-HH24.MI.SS') || '.000000'),26)
"
else
print " || rpad(DECODE("$1",NULL,' ',"$1"),"$2") "
}

Sample script functions 207

A.10 nick.sh script
#!/bin/ksh
#
Shell script nick.sh
#
Starting from an flat file containing a list of all the table,
creates the "db2 create nickname" statements
for the DataJoiner configuration
#
Syntax: nick.sh table_list_file
#
The script writes on standard output the list of sql commands
If you want to save the list to a file, you can redirect the stdout
using the following syntax:
#
nick.sh table_list_file > sql_file
#
and then launch the db2 CLP as following:
#
db2 -tvf sql_file
#
This script uses the awk command with the following awk command files:
#
nick.awk parses and creates the sql command list starting
#from the table list file
#
#
Some environment variables as to be defined before launching the script:
#
List of variables containing the server and db names (db2 on workstation
where DataJoiner is installed, Oracle, DB2/MVS)
DB2 server and database name
export DB2SVR="mvs63"
export DB2DB="cipros"
Oracle server and database name
export OSVR="oradb"
export ODB="cipros"
DB2 workstation database name
export DJDB="djdb"

List of variables containing old and new names for the DB2 tables
The first variable is the number of the changed tables
export NT=6
export OLDTN[1]=CASE_FACILITY_ASSIGNMENT
export NEWTN[1]=CASE_FACILITY_ASG
export OLDTN[2]=ENG_UNIT_CONVERSION
export NEWTN[2]=ENG_UNIT_CONV
export OLDTN[3]=FAC_INSTR_ASSIGNMENT
export NEWTN[3]=FAC_INSTR_ASG
export OLDTN[4]=INSTRUMENT_MDL_TYPE
export NEWTN[4]=INSTRUMENT_MDL
export OLDTN[5]=STREAM_INSTR_ASSIGNMENT
export NEWTN[5]=STREAM_INSTR_ASG
export OLDTN[6]=STREAM_SAMPLE_PT_ASS
export NEWTN[6]=STREAM_SAMPLE_PT

List of variables containing old and new names
for the Oracle nicknames (for Oracle table names, whose length
is greater then 18 characters after adding an "O" before the name
The first variable is the number of the changed tables
export NOT=2
export OLDOT[1]=OINSTRUMENT_SERVICE
export NEWOT[1]=OINSTRUMENT_SERV
export OLDOT[2]=OSTREAM_METH_RESULT
export NEWOT[2]=OSTREAM_METH_RES

Function definition: Ad ';' to end of each create nickname statement
#
function stmt_end
{

sed -e 's/$/;/g'
}

Start of main program
Copy the input file in a temporary file
208 Converting from Oracle AIX to DB2 for OS/390

cp $1 $1.tmp.0

Processing the nickname creation

awk -f nick.awk $1.tmp.0 > $1.tmp

mv $1.tmp $1.tmp.0

#Modify nicknames longer then 18 chars
#
i=0
while [[$i -lt $NT]]
do

im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}
sed "s/nickname $OLD/nickname $NEW/g" $1.tmp.$im1 | \
sed "s/nickname O$OLD/nickname O$NEW/g" > $1.tmp.$i

done

mv $1.tmp.$i $1.tmp.0

#Modify source table names (DB2/MVS) longer then 18 chars
#
i=0
while [[$i -lt $NT]]
do

im1=$i
i=`expr $i + 1`
OLD=${OLDTN[$i]}
NEW=${NEWTN[$i]}
sed "s/$DB2SVR\.$DB2DB\.$OLD/$DB2SVR\.$DB2DB\.$NEW/g" $1.tmp.$im1 > $1.tmp.$i

done

mv $1.tmp.$i $1.tmp.0

#Modify Oracle nick names
#
i=0
while [[$i -lt $NOT]]
do

im1=$i
i=`expr $i + 1`
OLD=${OLDOT[$i]}
NEW=${NEWOT[$i]}
sed "s/nickname $OLD/nickname $NEW/g" $1.tmp.$im1 > $1.tmp.$i

done

Add the connect statement (to the DataJoiner database)
to the output command file
and add the ";" at the end of each statement

echo "connect to $DJDB;"; cat $1.tmp.$i | stmt_end

Remove the temporary files

rm -f $1.tmp.*

A.10.1 nick.awk script
BEGIN { }
{
system("echo create nickname " $1 " for $DB2SVR.$DB2DB." $1)
system("echo create nickname O" $1 " for $OSVR.$ODB." $1)
}
END { }

A.11 gendcl.sh script
#!/usr/bin/ksh
#
Shell script gendcl.sh
#
Starting from a file containing the declaration of the
Sample script functions 209

host variables generated by DCLGEN DB2 utility,
creates the following C-language statements, for each table
(from rtb input structure into DB fields):
#
For VARCHAR fields:
TAB_STRUCT.FIELD.FIELD_len=strlen(rtb->field);
strncpy(TABSTRUCT.FIELD.FIELD_data,rtb->field,TABSTRUCT.FIELD.FIELD_len);
For DOUBLE fields:
TABSTRUCT.FIELD=atof(rtb->field);
For LONG INT and SHORT INT fields:
TABSTRUCT.FIELD=atoi(rtb->field);
For CHAR fields:
strcpy(TABSTRUCT.FIELD,rtb->field);
#
Syntax: gendcl.sh dclgen_input_file
#
The script writes the statements on standard output. If you want to
save them, redirect the stdout to a file. Example:
#
gendcl.sh dclgen_input_file > output_file
#
#
Function definition: parses the input file and creates the statements
#
function dclgen
{
read line
while [$? -eq 0]
do
echo "$line" | grep "C DECLARATION FOR TABLE"
if [$? -eq 0]
then
echo ""
tn1=`echo "$line" | awk '{print $6}' | sed 's/ //g'`
tn="DCL"$tn1
read line
read line
endtab=0
while [$endtab -eq 0]
do
read line
datatype=`echo "$line" | \
sed 's/{//; s/long int/longint/; s/short int/shortint/' | \
awk '{print $1}' | sed 's/ //g'`
if [["$datatype" = "struct"]]
then
read line
read line
read line
fld=`echo "$line" | sed "s/ //g; s/\;//; s/\}//"`

lowfld=`echo $fld | \
sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`

echo "$tn.$fld.$fld""_len=strlen(rtb->$lowfld);"
echo "strncpy($tn.$fld.$fld""_data,rtb->$lowfld,$tn.$fld.$fld""_len);"

elif [[$datatype = "double"]]
then

fld=`echo "$line" | sed "s/ //g; s/\;//; s/double//; s/^{//"`
lowfld=`echo $fld | \

sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`
echo "$tn.$fld=atof(rtb->$lowfld);"

elif [[$datatype = "longint"]]
then

fld=`echo "$line" | sed "s/ //g; s/\;//; s/longint//; s/^{//"`
lowfld=`echo $fld | \

sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`
echo "$tn.$fld=atoi(rtb->$lowfld);"

elif [[$datatype = "shortint"]]
then

fld=`echo "$line" | sed "s/ //g; s/\;//; s/shortint//; s/^{//"`
lowfld=`echo $fld | \

sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`
echo "$tn.$fld=atoi(rtb->$lowfld);"

elif [[$datatype = "char"]]
then

fld=`echo "$line" | sed "s/ //g; s/\[.*\]\;//" | \
sed "s/\;//; s/char//; s/^{//"`

lowfld=`echo $fld | \
sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`
210 Converting from Oracle AIX to DB2 for OS/390

echo "strcpy($tn.$fld,rtb->$lowfld);"
else
echo ""
echo ""

endtab=1
fi

done
fi
read line

done
}

Start of main program
#
Applies the parsing function and displays the result to standard output
#
cat $1 | dclgen

A.12 genmemset.sh script
#!/usr/bin/ksh
#
Shell script genmemset.sh
#
Starting from a file containing the declaration of the
host variables generated by DCLGEN DB2 utility,
creates memset C-language statements, for each table, for
#VARCHAR fields
#
Syntax: genmemset.sh dclgen_input_file
#
The script writes the statements on standard output. If you want to
save them, redirect the stdout to a file. Example:
#
genmemset.sh dclgen_input_file > output_file
#
#
Function definition: parses the input file and creates the statements
#
function dclgen_memset
{
read line
while [$? -eq 0]
do
echo "$line" | grep "C DECLARATION FOR TABLE"
if [$? -eq 0]
then
tn1=`echo "$line" | awk '{print $6}' | sed 's/ //g'`
tn="DCL"$tn1
echo ""
read line
read line
endtab=0
while [$endtab -eq 0]
do
read line
datatype=`echo "$line" | \
sed 's/{//; s/long int/longint/; s/short int/shortint/' | \
awk '{print $1}' | sed 's/ //g'`
if [["$datatype" = "struct"]]
then
read line
read line
read line
fld=`echo "$line" | sed "s/ //g; s/\;//; s/\}//"`
echo "memset($tn.$fld.$fld""_data,'\\\0',sizeof($tn.$fld.$fld""_data));"

elif [[$datatype = "double"]]
then
i=OK

elif [[$datatype = "longint"]]
then
i=OK

elif [[$datatype = "shortint"]]
then
i=OK
Sample script functions 211

elif [[$datatype = "char"]]
then
fld=`echo "$line" | sed "s/ //g; s/\[.*\]\;//" | \

sed "s/\;//; s/char//; s/^{//"`
echo "memset($tn.$fld,'\\\0',sizeof($tn.$fld));"

else
echo ""
echo ""

endtab=1
fi

done
fi
read line

done
}

Start of main program
#
Applies the parsing function and displays the result to standard output
#
cat $1 | dclgen_memset

A.13 genstrcpy.sh script
#!/usr/bin/ksh
#
Shell script genstrcpy.sh
#
Starting from a file containing the declaration of the
host variables generated by DCLGEN DB2 utility,
creates strcpy and sprintf C-language statements, for each table
(from the DB fields into the rtb fields), for fields:
#
VARCHAR
DOUBLE
LONG INT
SHORT INT
CHAR
#
Syntax: genstrcpypcy.sh dclgen_input_file
#
The script writes the statements on standard output. If you want to
save them, redirect the stdout to a file. Example:
#
genstrcpy.sh dclgen_input_file > output_file
#
#
Function definition: parses the input file and creates the statements
#
function dclgen_strcpy
{
read line
while [$? -eq 0]
do
echo "$line" | grep "C DECLARATION FOR TABLE"
if [$? -eq 0]
then
tn1=`echo "$line" | awk '{print $6}' | sed 's/ //g'`
tn="DCL"$tn1
echo ""
read line
read line
endtab=0
while [$endtab -eq 0]
do
read line
datatype=`echo "$line" | \
sed 's/{//; s/long int/longint/; s/short int/shortint/' | \
awk '{print $1}' | sed 's/ //g'`
if [["$datatype" = "struct"]]
then
read line
read line
read line
fld=`echo "$line" | sed "s/ //g; s/\;//; s/\}//"`
212 Converting from Oracle AIX to DB2 for OS/390

lowfld=`echo $fld | \
sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`

echo "strcpy(rtb->$lowfld,$tn.$fld.$fld""_data);"
elif [[$datatype = "double"]]
then
fld=`echo "$line" | sed "s/ //g; s/\;//; s/double//; s/^{//"`
lowfld=`echo $fld | \
sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`

echo "sprintf(rtb->$lowfld,\"%.8f\",$tn.$fld);"
elif [[$datatype = "longint"]]
then
fld=`echo "$line" | sed "s/ //g; s/\;//; s/longint//; s/^{//"`
lowfld=`echo $fld | \
sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`

echo "sprintf(rtb->$lowfld,\"%i\",$tn.$fld);"
elif [[$datatype = "shortint"]]
then
fld=`echo "$line" | sed "s/ //g; s/\;//; s/shortint//; s/^{//"`
lowfld=`echo $fld | \
sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`

echo "sprintf(rtb->$lowfld,\"%i\",$tn.$fld);"
elif [[$datatype = "char"]]
then
fld=`echo "$line" | sed "s/ //g; s/\[.*\]\;//" | \

sed "s/\;//; s/char//; s/^{//"`
lowfld=`echo $fld | \
sed "y/QWERTYUIOPASDFGHJKLZXCVBNM/qwertyuiopasdfghjklzxcvbnm/"`

echo "strcpy(rtb->$lowfld,$tn.$fld);"
else
echo ""
echo ""

endtab=1
fi

done
fi
read line

done
}

Start of main program
#
Applies the parsing function and displays the result to standard output
#
cat $1 | dclgen_strcpy
Sample script functions 213

214 Converting from Oracle AIX to DB2 for OS/390

Appendix B. Sample DB2 for OS/390 jobs

This appendix contains the OS/390 JCL used for executing various DB2 batch
jobs during the project. Here you will find jobs for DB2 definition, for data objects
definition, for program preparation and execution, and for creation and use of
user defined functions.

B.1 JCL for base function compile
//CPRSCBAS JOB (999,POK),’PAOLOR1’,CLASS=A,MSGCLASS=T, 00000107
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000207
/*JOBPARM L=999,SYSAFF=SC63 00000307
//**00060007
//* 00060007
//**00060007
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR 00070007
// DD DSN=DSN610B.SDSNLOAD,DISP=SHR 00080007
//*
//* COMPILE THE C PROGRAM IF THE PRECOMPILE
//* RETURN CODE IS 4 OR LESS
//*
//C EXEC PGM=CBCDRVR,REGION=4096K,
// PARM=’/LSEARCH(’’CIPROSN.C.INCLUDE’’) OPTF(DD:OF)’ 00150007
//STEPLIB DD DSN=CBC.SCBCCMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR
// DD DSN=DSN610B.SDSNC.H,DISP=SHR
// DD DSN=GDDM.SADMSAM,DISP=SHR
//C.OF DD * 00230007
SOURCE LIST MARGINS(1,72) NESTINC(255) LONGNAME RENT 00240007

//SYSLIN DD DSN=CIPROSN.C.BASEDLL(BRIDGE),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSTERM DD DUMMY
//SYSIN DD DSN=CIPROSN.C.SOURCE(BRIDGE),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT2 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT3 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//*
© Copyright IBM Corp. 1999 215

B.2 JCL for SQL function precompile and compile
//CPRSSQLC JOB (999,POK),’PAOLOR1’,CLASS=A,MSGCLASS=T, 00000107
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000207
/*JOBPARM L=999,SYSAFF=SC63 00000307
//* 00060007
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR 00070007
// DD DSN=DSN610B.SDSNLOAD,DISP=SHR 00080007
//* 00090007
//* STEP PC: SQL PREPROCESSOR 00100007
//* 00110007
//PC EXEC PGM=DSNHPC,
// PARM=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00140007
// REGION=4096K
//STEPLIB DD DISP=SHR,DSN=DSN610B.SDSNEXIT.SC63
// DD DISP=SHR,DSN=DSN610B.SDSNLOAD
//DBRMLIB DD DSN=CIPROSN.C.DBRMLIB(SQLLOG), 00170007
// DISP=SHR 00180007
//SYSLIB DD DSN=CIPROSN.C.INCLUDE, 00190007
// DISP=SHR 00200007
//SYSIN DD DSN=CIPROSN.C.SOURCE(SQLLOG), 00210007
// DISP=SHR 00220007
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(800,(500,500))
//SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSALLDA
//SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSALLDA
//*
//* COMPILE THE C PROGRAM IF THE PRECOMPILE
//* RETURN CODE IS 4 OR LESS
//*
//C EXEC PGM=CBCDRVR,COND=(4,LT,PC),REGION=4096K,
// PARM=’/LSEARCH(’’CIPROSN.C.INCLUDE’’) OPTF(DD:OF)’ 00150007
//STEPLIB DD DSN=CBC.SCBCCMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR
// DD DSN=DSN610B.SDSNC.H,DISP=SHR
// DD DSN=GDDM.SADMSAM,DISP=SHR
//C.OF DD * 00230007
SOURCE LIST MARGINS(1,72) NESTINC(255) LONGNAME RENT 00240007

//SYSLIN DD DSN=CIPROSN.C.SQLDLL(SQLLOG),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSTERM DD DUMMY
//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//SYSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT2 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT3 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,DISP=(NEW,DELETE),
216 Converting from Oracle AIX to DB2 for OS/390

// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//*

B.3 JCL for compile, prelink and link of main programs
//CPRSGLOB JOB (999,POK),’PAOLOR2’,CLASS=A,
// MSGCLASS=T,NOTIFY=&SYSUID,MSGLEVEL=(1,1),
// REGION=0M
/*JOBPARM T=1,L=50,SYSAFF=SC63
//**
//*
//* CHANGE ALL >>>>>>>> RTDIN <<<<<<<<< TO WHATEVER IS NEXT
//*
//**
//*--*
//* COMPILE C DLL PROGRAM
//*--*
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=DSN610B.SDSNLOAD,DISP=SHR
//COMP01 EXEC EDCC,
// INFILE=’’,
// CPARM=’OPTFILE(DD:MYOPT)’
//COMPILE.SYSIN DD DSN=CIPROSN.C.SOURCE(RTDIN),DISP=SHR
//COMPILE.SYSLIN DD DSN=CIPROSN.C.OBJ(RTDIN),DISP=SHR
//COMPILE.MYOPT DD *
LSEARCH(’CIPROSN.C.INCLUDE’)
LO DLL SO SSCOMM SOURCE LIST MARGINS(1,72) NESTINC(255) LONGNAME RENT

//*--*
//* PRELINK/LINK MYDLL1 AS A DLL
//*--*
// EXEC EDCPL
//PLKED.SYSIN DD DSN=CIPROSN.C.OBJ(RTDIN),DISP=SHR
// DD DSN=CIPROSN.C.SQLDLL(SQLERR),DISP=SHR
// DD DSN=CIPROSN.C.SQLDLL(SQLINS),DISP=SHR
// DD DSN=CIPROSN.C.SQLDLL(SQLLOG),DISP=SHR
// DD DSN=CIPROSN.C.SQLDLL(SQLSEL),DISP=SHR
// DD DSN=CIPROSN.C.SQLDLL(SQLUPD),DISP=SHR
// DD DSN=CIPROSN.C.SQLDLL(SQLUTIL),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(BRIDGE),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(CORERTD),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(DINEXEC),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(FINDTYP),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(INSLAB),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(LOGEV),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(MAPPING),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(READCFG),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(UTIL),DISP=SHR
// DD DSN=CIPROSN.C.BASEDLL(WRTLOG),DISP=SHR
// DD *
IMPORT DATA ’libhttpdapi.so’ all_api_callbacks
IMPORT DATA ’libhttpdapi.so’ asciitoebcdic
IMPORT DATA ’libhttpdapi.so’ badthread
IMPORT DATA ’libhttpdapi.so’ ebcdictoascii
IMPORT CODE ’libhttpdapi.so’ set_api_callbacks
IMPORT CODE ’libhttpdapi.so’ HTAPIdata_delete
IMPORT CODE ’libhttpdapi.so’ HTAPIdata_new
IMPORT CODE ’libhttpdapi.so’ HTAUTHEN
IMPORT CODE ’libhttpdapi.so’ HTCGI_new
IMPORT CODE ’libhttpdapi.so’ HTEXEC
IMPORT CODE ’libhttpdapi.so’ HTFilterstream_new
IMPORT CODE ’libhttpdapi.so’ HTFILE
IMPORT CODE ’libhttpdapi.so’ HTLOGE
IMPORT CODE ’libhttpdapi.so’ HTREAD
IMPORT CODE ’libhttpdapi.so’ HTREST
IMPORT CODE ’libhttpdapi.so’ HTSET
IMPORT CODE ’libhttpdapi.so’ HTWRITE
IMPORT CODE ’libhttpdapi.so’ HTXTRACT
IMPORT DATA ’libhttpdapi.so’ WWW_ENC_EBCDIC
IMPORT DATA ’libhttpdapi.so’ WWW_ENC_7BIT
IMPORT DATA ’libhttpdapi.so’ WWW_ENC_8BIT

//PLKED.SYSDEFSD DD DUMMY
//LKED.SYSLMOD DD DSN=CIPROSN.C.LOADLIB(RTDIN),DISP=SHR
//LKED.RUNLIB DD DSN=CIPROSN.C.LOADLIB,DISP=SHR
//LKED.SYSIN DD *
Sample DB2 for OS/390 jobs 217

INCLUDE SYSLIB(DSNELI)
INCLUDE RUNLIB(RTDIN)

/*

B.4 JCL for running the main programs RTDIN and LABIN
//CPRSRTDI JOB (999,POK),’PAOLOR2’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00250000
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR 00260000
// DD DSN=DSN610B.SDSNLOAD,DISP=SHR 00270000
//* 00280000
//* STEP 1 : RUN PROGRAM RTDIN 00630000
//* 00280000
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00640000
//MYVARS DD DSN=CIPROSN.C.ENVARS,DISP=SHR 00660000
//SYSERR DD SYSOUT=* 00660000
//SYSPRINT DD SYSOUT=* 00670000
//SYSTSPRT DD SYSOUT=* 00670000
//CEEDUMP DD SYSOUT=* 00680000
//SYSUDUMP DD SYSOUT=* 00690000
//SYSOUT DD SYSOUT=* 00700000
//SYSTSIN DD * 00740000
DSN SYSTEM(DB2X) 00750000
RUN PROGRAM(RTDIN) PLAN(CIPROS1) - 00770000

LIB(’CIPROSN.C.LOADLIB’) - 00780000
PARM (’ENVAR("_CEE_ENVFILE=DD:MYVARS")/V060308D’) 00660000

END 00810000
//* 00900000

B.5 JCL for creation of storage group, database, table spaces and tables
//CPRSDB JOB (999,POK),’CIPROSDB’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00005300
//* STEP 1: CREATE CIPROS STORAGE GROUPS, DATABASE, TABLESPACES 00005400
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00005500
//SYSTSPRT DD SYSOUT=* 00005600
//SYSTSIN DD * 00005700
DSN SYSTEM(DB2X) 00005800
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00005900

LIB(’DB2V610X.RUNLIB.LOAD’) 00006000
//SYSPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300

CREATE DATABASE CIPROS
STOGROUP CIPROS01
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE TABLESPACE CPRSBASE
IN CIPROS
USING STOGROUP CIPROS01

PRIQTY 150000
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
SEGSIZE 16
CCSID EBCDIC;

CREATE TABLESPACE CPRSLAB
IN CIPROS
USING STOGROUP CIPROS01

PRIQTY 10000
SECQTY 20
218 Converting from Oracle AIX to DB2 for OS/390

ERASE NO
LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
SEGSIZE 16
CCSID EBCDIC;

CREATE TABLESPACE CPRSLOGE
IN CIPROS
USING STOGROUP CIPROS01

PRIQTY 10000
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
SEGSIZE 16
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE CPRSREAD
IN CIPROS
USING STOGROUP CIPROS01

PRIQTY 5000
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
SEGSIZE 16
CCSID EBCDIC;

CREATE TABLESPACE CPRSPRDS
IN CIPROS
USING STOGROUP CIPROS01

PRIQTY 10000
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
SEGSIZE 16
CCSID EBCDIC;

00017200
COMMIT; 00017300
//* 00017500
//* STEP 2: CREATE CIPROS TABLES, VIEWS 00017600
//STEP002 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00017700
//SYSTSPRT DD SYSOUT=* 00017800
//SYSTSIN DD * 00017900
DSN SYSTEM(DB2X) 00018000
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00018100

LIB(’DB2V610X.RUNLIB.LOAD’) 00018200
//SYSPRINT DD SYSOUT=* 00018300
//SYSUDUMP DD SYSOUT=* 00018400
//SYSIN DD * 00018500
CREATE TABLE ANALYSIS_METHOD (ANLY_METH_NAME VARCHAR(20) NOT NULL,

DESCRIPTION VARCHAR(40))
IN CIPROS.CPRSBASE;

CREATE TABLE ANALYSIS_SPEC (MTRL_NAME VARCHAR(15) NOT NULL,
STD_RESLT_NAME VARCHAR(20) NOT NULL,
DESCRIPTION VARCHAR(40),
HI_VALUE VARCHAR(20),
LO_VALUE VARCHAR(20))

IN CIPROS.CPRSBASE;
.
.
.
CREATE TABLE USRID_CONFIG (CODE INTEGER NOT NULL,

USR_NAME VARCHAR(20) NOT NULL,
VARIABLE_VALUE VARCHAR(40))
IN CIPROS.CPRSBASE;

CREATE TABLE VALUE_TYPE (VALUE_TYPE VARCHAR(6) NOT NULL,
DESCRIPTION VARCHAR(40))
IN CIPROS.CPRSBASE;

COMMIT; 00060700
Sample DB2 for OS/390 jobs 219

B.6 JCL for creation of indexes for CIPROS tables
//CPRSIX JOB (999,POK),’CIPROSIX’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00005300
//* STEP 1: CREATE CIPROS INDEXES 00005400
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00005500
//SYSTSPRT DD SYSOUT=* 00005600
//SYSTSIN DD * 00005700
DSN SYSTEM(DB2X) 00005800
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00005900

LIB(’DB2V610X.RUNLIB.LOAD’) 00006000
//SYSPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300
CREATE UNIQUE INDEX ANALYSIS_METHODP1

ON ANALYSIS_METHOD
(ANLY_METH_NAME)
USING STOGROUP CIPROS01

PRIQTY 400
SECQTY 40
ERASE NO;

CREATE UNIQUE INDEX ANALYSIS_SPECP1
ON ANALYSIS_SPEC
(MTRL_NAME,STD_RESLT_NAME)
USING STOGROUP CIPROS01

PRIQTY 400
SECQTY 40
ERASE NO;

.

.

.
CREATE UNIQUE INDEX VALUE_TYPEP1

ON VALUE_TYPE
(VALUE_TYPE)
USING STOGROUP CIPROS01

PRIQTY 400
SECQTY 40
ERASE NO;

CREATE UNIQUE INDEX MAP_FACILITYP1
ON MAP_FACILITY
(FACILITY_ENV,ENV_NAME)
USING STOGROUP CIPROS01

PRIQTY 400
SECQTY 40
ERASE NO;

COMMIT; 00060700
ALTER TABLE ANALYSIS_METHOD

ADD PRIMARY KEY (ANLY_METH_NAME);
ALTER TABLE ANALYSIS_SPEC ADD PRIMARY KEY

(MTRL_NAME,STD_RESLT_NAME);
.
.
.
ALTER TABLE VALUE_TYPE ADD PRIMARY KEY

(VALUE_TYPE);
ALTER TABLE MAP_FACILITY ADD PRIMARY KEY

(FACILITY_ENV,ENV_NAME);
COMMIT; 00060700
CREATE INDEX ANALYSIS_SPECI2

ON ANALYSIS_SPEC
(STD_RESLT_NAME)
USING STOGROUP CIPROS01

PRIQTY 400
SECQTY 40
ERASE NO;

.

.

.
CREATE UNIQUE INDEX UNITC2

ON UNIT
(UNT_NUM)
USING STOGROUP CIPROS01
220 Converting from Oracle AIX to DB2 for OS/390

PRIQTY 400
SECQTY 40
ERASE NO;

COMMIT; 00060700
//* 00139300

B.7 JCL to alter tables for foreign keys
//CPRSFK JOB (999,POK),’CIPROSFK’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00005300
//* STEP 1: CREATE SAMPLE STORAGE GROUPS, TABLESPACES 00005400
//PH01S01 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00005500
//SYSTSPRT DD SYSOUT=* 00005600
//SYSTSIN DD * 00005700
DSN SYSTEM(DB2X) 00005800
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00005900

LIB(’DB2V610X.RUNLIB.LOAD’) 00006000
//SYSPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300

ALTER TABLE ANALYSIS_SPEC
FOREIGN KEY (MTRL_NAME)
REFERENCES MATERIAL (MTRL_NAME);

.

.

.
ALTER TABLE USRID_CONFIG

FOREIGN KEY (CODE)
REFERENCES CIPROS_CONFIG (CODE);

00018600
COMMIT; 00060700
//* 00139300

B.8 JCL for synonym creation
//CPRSSY JOB (999,POK),’CIPROSSY’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00005300
//* STEP 1: CREATE CIPROS SYNONYMS 00005400
//PH01S01 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00005500
//SYSTSPRT DD SYSOUT=* 00005600
//SYSTSIN DD * 00005700
DSN SYSTEM(DB2X) 00005800
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00005900

LIB(’DB2V610X.RUNLIB.LOAD’) 00006000
//SYSPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300

GRANT CREATEALIAS TO CIPROS;
SET CURRENT SQLID = ’CIPROS’;
CREATE ALIAS ANALYSIS_METHOD FOR PAOLOR2.ANALYSIS_METHOD;
CREATE ALIAS ANALYSIS_SPEC FOR PAOLOR2.ANALYSIS_SPEC;
.
.
.
CREATE ALIAS MAP_FACILITY FOR PAOLOR2.MAP_FACILITY;

00018600
COMMIT; 00060700
//* 00139300
Sample DB2 for OS/390 jobs 221

B.9 JCL for creation of CIPROS views
//CPRSVW JOB (999,POK),’CIPROSDB’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00005300
//* STEP 1: CREATE CIPROS VIEWS 00005400
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00005500
//SYSTSPRT DD SYSOUT=* 00005600
//SYSTSIN DD * 00005700
DSN SYSTEM(DB2X) 00005800
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00005900

LIB(’DB2V610X.RUNLIB.LOAD’) 00006000
//SYSPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300
CREATE VIEW CASES_GLOBAL
(CASE_NAME,
LOCATION,
CASE_OWNER,
CASE_TITLE,
DESCRIPTION,
PERIOD_NAME,
START_DATE,
END_DATE,
CASE_TIME_RES,
DATE_CHANGE,
DATA_STORED) AS
SELECT CASE_NAME,
LOCATION,
CASE_OWNER,
CASE_TITLE,
DESCRIPTION,
PERIOD_NAME,
START_DATE,
END_DATE,
CASE_TIME_RES,
TIMESTAMP_CHANGE,
DATA_STORED FROM CASES WHERE LOCATION = ’GLOBAL’;

CREATE VIEW CORE_TABLES (TABLE_NAME,ACCESS) AS
SELECT
TTNAME,
CASE SELECTAUTH WHEN ’Y’ THEN ’S’

WHEN ’G’ THEN ’S’ ELSE ’-’ END ³³
CASE UPDATEAUTH WHEN ’Y’ THEN ’U’

WHEN ’G’ THEN ’U’ ELSE ’-’ END ³³
CASE INSERTAUTH WHEN ’Y’ THEN ’I’

WHEN ’G’ THEN ’I’ ELSE ’-’ END ³³
CASE DELETEAUTH WHEN ’Y’ THEN ’D’

WHEN ’G’ THEN ’D’ ELSE ’-’ END
FROM SYSIBM.SYSTABAUTH
WHERE TCREATOR=’PAOLOR2’
AND GRANTEE=USER;
COMMIT; 00060700

SET CURRENT SQLID = ’CIPROS’;

CREATE ALIAS CIPROS.CORE_TABLES FOR PAOLOR2.CORE_TABLES;
CREATE ALIAS CIPROS.CASES_GLOBAL FOR PAOLOR2.CASES_GLOBAL;

COMMIT; 00060700

B.10 JCL for deletion of CIPROS database and table spaces
//CPRSDLT JOB (999,POK),’CIPROSDB’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
222 Converting from Oracle AIX to DB2 for OS/390

//* 00005300
//* STEP 1: CREATE CIPROS STORAGE GROUPS, DATABASE, TABLESPACES 00005400
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00005500
//SYSTSPRT DD SYSOUT=* 00005600
//SYSTSIN DD * 00005700
DSN SYSTEM(DB2X) 00005800
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00005900

LIB(’DB2V610X.RUNLIB.LOAD’) 00006000
//SYSPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300
DROP TABLESPACE CIPROS.CPRSBASE;
COMMIT; 00060700
DROP TABLESPACE CIPROS.CPRSLAB;
COMMIT; 00060700
DROP TABLESPACE CIPROS.CPRSLOGE;
COMMIT; 00060700
DROP TABLESPACE CIPROS.CPRSREAD;
COMMIT; 00060700
DROP TABLESPACE CIPROS.CPRSPRDS;
COMMIT; 00060700
DROP DATABASE CIPROS;
COMMIT; 00060700
DROP STOGROUP CIPROS01;
COMMIT; 00060700

//* 00139300

B.11 JCL for REORG, RUNSTATS and COPY of CIPROS table spaces
//CPRSRRIC JOB (999,POK),’DB2V610X’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//JOBLIB DD DSN=DSN610B.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610B.SDSNLOAD,DISP=SHR 00002200
//* 00002300
//* JOB TO REORG, DO RUNSTATS AND TAKE IMAGE COPIES OF TABLESPACES 00002300
//* COMPRISING THE CIPROS DATABASE. 00002300
//* 00002300
//* WHILE DB2 VERSION 6 ALLOWS THE CONCATINATION OF REORGS, RUNSTATS 00002300
//* AND IMAGE COPIES, THESE ARE IN SEPERATE STEPS FOR CLARITY. 00002300
//* 00002300
//* STEP000: STOP CIPROS DATABASE AND RESTART IT WITH ACCESS UTILITY 00114100
//* THIS IS INSURANCE AGAINST OTHER ACCESS DURING REORGS 00114100
//* 00002300
//STEP001 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00114200
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00114400
//SYSIN DD * 00114500

00114600
QUIESCE TABLESPACE CIPROS.CPRSBASE 00114700

TABLESPACE CIPROS.CPRSLAB 00114700
TABLESPACE CIPROS.CPRSLOGE 00114700
TABLESPACE CIPROS.CPRSREAD 00114700
TABLESPACE CIPROS.CPRSPRDS 00114700

00115000
//* 00118600
//* STEP002: REORGANIZE TABLESPACE CPRSBASE 00118600
//* 00118600
//STEP002 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00118700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00118800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00118900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119300
//DSNTRACE DD SYSOUT=* 00119400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00119500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00119600
//SYSIN DD * 00119700

00119800
REORG TABLESPACE CIPROS.CPRSBASE SORTDEVT(SYSDA) 00119900
//* 00118600
//* STEP003: REORGANIZE TABLESPACE CPRSLAB 00118600
//* 00118600
//STEP003 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00118700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00118800
Sample DB2 for OS/390 jobs 223

//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00118900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119300
//DSNTRACE DD SYSOUT=* 00119400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00119500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00119600
//SYSIN DD * 00119700

00119800
REORG TABLESPACE CIPROS.CPRSLAB SORTDEVT(SYSDA) 00119900
//* 00118600
//* STEP004: REORGANIZE TABLESPACE CPRSLOGE 00118600
//* 00118600
//STEP004 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00118700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00118800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00118900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119300
//DSNTRACE DD SYSOUT=* 00119400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00119500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00119600
//SYSIN DD * 00119700

00119800
REORG TABLESPACE CIPROS.CPRSLOGE SORTDEVT(SYSDA) 00119900
//* 00118600
//* STEP005: REORGANIZE TABLESPACE CPRSREAD 00118600
//* 00118600
//STEP005 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00118700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00118800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00118900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119300
//DSNTRACE DD SYSOUT=* 00119400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00119500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00119600
//SYSIN DD * 00119700

00119800
REORG TABLESPACE CIPROS.CPRSREAD SORTDEVT(SYSDA) 00119900
//* 00118600
//* STEP006: REORGANIZE TABLESPACE CPRSPRDS 00118600
//* 00118600
//STEP006 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00118700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00118800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00118900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00119300
//DSNTRACE DD SYSOUT=* 00119400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00119500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00119600
//SYSIN DD * 00119700

00119800
REORG TABLESPACE CIPROS.CPRSPRDS SORTDEVT(SYSDA) 00119900
//* 00118600
//* STEP007: PRODUCE STATISTICS FOR CPRSBASE 00137500
//* 00137600
//STEP007 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00137700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00137800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00137900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138300
//DSNTRACE DD SYSOUT=* 00138400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00138500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00138600
//SYSIN DD * 00138700

00120600
RUNSTATS TABLESPACE CIPROS.CPRSBASE 00120700

INDEX(ALL) 00120800
00139200

//* 00118600
224 Converting from Oracle AIX to DB2 for OS/390

//* STEP008: PRODUCE STATISTICS FOR CPRSLAB 00137500
//* 00137600
//STEP008 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00137700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00137800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00137900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138300
//DSNTRACE DD SYSOUT=* 00138400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00138500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00138600
//SYSIN DD * 00138700

00138800
00120600

RUNSTATS TABLESPACE CIPROS.CPRSLAB 00120700
INDEX(ALL) 00120800

00139200
//* 00118600
//* STEP009: PRODUCE STATISTICS FOR CPRSLOGE 00137500
//* 00137600
//STEP009 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00137700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00137800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00137900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138300
//DSNTRACE DD SYSOUT=* 00138400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00138500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00138600
//SYSIN DD * 00138700

00138800
00120600

RUNSTATS TABLESPACE CIPROS.CPRSLOGE 00120700
INDEX(ALL) 00120800

00139200
//* 00118600
//* STEP010: PRODUCE STATISTICS FOR CPRSREAD 00137500
//* 00137600
//STEP010 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00137700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00137800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00137900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138300
//DSNTRACE DD SYSOUT=* 00138400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00138500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00138600
//SYSIN DD * 00138700

00138800
00120600

RUNSTATS TABLESPACE CIPROS.CPRSREAD 00120700
INDEX(ALL) 00120800

00139200
//* 00118600
//* STEP011: PRODUCE STATISTICS FOR CPRSPRDS 00137500
//* 00137600
//STEP011 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00137700
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00137800
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00137900
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138000
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138100
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138200
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND) 00138300
//DSNTRACE DD SYSOUT=* 00138400
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(50,50),,,ROUND) 00138500
//SYSREC DD UNIT=SYSALLDA,SPACE=(4000,(200,200),,,ROUND) 00138600
//SYSIN DD * 00138700

00138800
00120600

RUNSTATS TABLESPACE CIPROS.CPRSPRDS 00120700
INDEX(ALL) 00120800

00139200
//* 00139300
//* STEP012: TAKE IMAGE COPY OF TABLESPACE CPRSBASE 00115100
//* 00139300
Sample DB2 for OS/390 jobs 225

//STEP012 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00115200
//DSNTRACE DD SYSOUT=* 00115300
//SYSCOPY DD DSN=CIPROS.COPY.BASE0001, 00115400
// UNIT=3390,DISP=(NEW,CATLG),SPACE=(4000,(200,20)), 00115500
// VOL=SER=SBOX09 00115600
//SYSIN DD * 00116600

00116700
COPY TABLESPACE CIPROS.CPRSBASE 00116800
//* 00139300
//* STEP013: TAKE IMAGE COPY OF TABLESPACE CPRSLAB 00115100
//* 00139300
//STEP013 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00115200
//DSNTRACE DD SYSOUT=* 00115300
//SYSCOPY DD DSN=CIPROS.COPY.LAB0001, 00115400
// UNIT=3390,DISP=(NEW,CATLG),SPACE=(4000,(200,20)), 00115500
// VOL=SER=SBOX09 00115600
//SYSIN DD * 00116600

00116700
COPY TABLESPACE CIPROS.CPRSLAB 00116800
//* 00139300
//* STEP014: TAKE IMAGE COPY OF TABLESPACE CPRSLOGE 00115100
//* 00139300
//STEP014 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00115200
//DSNTRACE DD SYSOUT=* 00115300
//SYSCOPY DD DSN=CIPROS.COPY.LOGE0001, 00115400
// UNIT=3390,DISP=(NEW,CATLG),SPACE=(4000,(200,20)), 00115500
// VOL=SER=SBOX09 00115600
//SYSIN DD * 00116600

00116700
COPY TABLESPACE CIPROS.CPRSLOGE 00116800
//* 00139300
//* STEP015: TAKE IMAGE COPY OF TABLESPACE CPRSREAD 00115100
//* 00139300
//STEP015 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00115200
//DSNTRACE DD SYSOUT=* 00115300
//SYSCOPY DD DSN=CIPROS.COPY.READ0001, 00115400
// UNIT=3390,DISP=(NEW,CATLG),SPACE=(4000,(200,20)), 00115500
// VOL=SER=SBOX09 00115600
//SYSIN DD * 00116600

00116700
COPY TABLESPACE CIPROS.CPRSREAD 00116800
//* 00139300
//* STEP016: TAKE IMAGE COPY OF TABLESPACE CPRSPRDS 00115100
//* 00139300
//STEP016 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00115200
//DSNTRACE DD SYSOUT=* 00115300
//SYSCOPY DD DSN=CIPROS.COPY.PRDS0001, 00115400
// UNIT=3390,DISP=(NEW,CATLG),SPACE=(4000,(200,20)), 00115500
// VOL=SER=SBOX09 00115600
//SYSIN DD * 00116600

00116700
COPY TABLESPACE CIPROS.CPRSPRDS 00116800
//* 00005500

B.12 JCL for RECOVER of a CIPROS table space
//CPRSRCVY JOB (999,POK),’CIPROSDB’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00005300
//STEP001 EXEC PGM=DSNUTILB,PARM=’DB2X,DSNTEX’ 00005500
//SYSPRINT DD SYSOUT=* 00006100
//UTPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300
RECOVER TABLESPACE CIPROS.CPRSBASE 00005900
226 Converting from Oracle AIX to DB2 for OS/390

B.13 JCL for rebuilding a CIPROS index
//CPRSRBLD JOB (999,POK),’CIPROSDB’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* 00002100
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00005300
//STEP001 EXEC PGM=DSNUTILB,PARM=’DB2X,DSNTEX’ 00005500
//SYSPRINT DD SYSOUT=* 00006100
//UTPRINT DD SYSOUT=* 00006100
//SYSUDUMP DD SYSOUT=* 00006200
//SYSIN DD * 00006300
REBUILD INDEX ALL TABLESPACE CIPROS.CPRSBASE 00005900

B.14 JCL to produce C language table structures (DCLGEN)
//CPRSDGEN JOB (999,POK),’DB2V610X’,CLASS=A,MSGCLASS=T, 00000000
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000100
//* 00000208
//* **00000308
//* THIS JOB CREATES OR REPLACES DCLGENS FOR THE CIPROS EXAMPLE TABLES. 00000508
//* EVERY TABLE IS INCLUDED IN THIS JOB. FOR INDIVIDUAL TABLE 00000608
//* CHANGES, A ONE STEP JOB WITH THE PROPER PARAMETERS COULD BE 00000708
//* SUBMITTED OR YOU COULD USE DB2I OPTION 2. 00000808
//* 00000908
//* NOTE: IF RUNNING A BATCH DCLGEN FOR THE FIRST TIME AND THE DESIRED 00001008
//* PDF MEMBER DOES NOT EXIST SET THE PARAMETER FOR ACTION TO: 00001108
//* ACTION (ADD) 00001208
//* THE UTILITY WILL CREATE THE MEMBER NAMED IN THE LIBRARY PARM 00001308
//* IF RUNNING A BATCH DCLGEN SUBSEQUENTLY FOR THE SAME TABLE 00001408
//* SET THE PARAMETER FOR ACTION TO: 00001508
//* ACTION (REPLACE) 00001608
//* THE UTILITY WILL REPLACE THE MEMBER NAMED IN THE LIBRARY PARM 00001708
//* 00001808
//* JOB CARDS, JOBPARM CARD, JOBLIB, STEPLIB, DATASET NAMES AND OTHER 00001908
//* INFORMATION WILL HAVE TO BE CHANGED TO REFLECT CONDITIONS, 00002008
//* NAMING STANDARDS AND PREFERENCES AT YOUR SITE. 00002108
//* **00002208
//* 00002308
/*JOBPARM L=999,SYSAFF=SC63 00002408
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002508
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002608
// DD DSN=DB2V610X.RUNLIB.LOAD,DISP=SHR 00002708
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00002808
//SYSTSPRT DD SYSOUT=* 00002908
//SYSPRINT DD SYSOUT=* 00003008
//SYSUDUMP DD SYSOUT=* 00003108
//SYSTSIN DD * 00003208
DSN SYSTEM(DB2X) 00003308
DCLGEN TABLE(ANALYSIS_METHOD) - 00003408

LIBRARY(’CIPROSN.C.DCLGEN(ANMETHOD)’) - 00003508
LANGUAGE(C) - 00003608
ACTION (REPLACE) - 00003708
APOST 00003808

.

.

.
//STEP064 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 06180007
//SYSTSPRT DD SYSOUT=* 06190001
//SYSPRINT DD SYSOUT=* 06200001
//SYSUDUMP DD SYSOUT=* 06210001
//SYSTSIN DD * 06220001
DSN SYSTEM(DB2X) 06230001
DCLGEN TABLE(VALUE_TYPE) - 06240003

LIBRARY(’CIPROSN.C.DCLGEN(VALUETYP)’) - 06250001
LANGUAGE(C) - 06260001
ACTION (REPLACE) - 06261005
APOST 06270001
Sample DB2 for OS/390 jobs 227

B.15 JCL for first job to LOAD CIPROS tables
//CPRSLOD1 JOB (999,POK),’PAOLOR2 ’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//**00105600
//** TABLES LOADED WITH THIS JCL ARE THOSE CIPROS TABLES THAT HAVE 00105600
//** NO REFERENTIAL INTEGRITY CONSTRAINTS OR ARE THE ONES THAT MUST 00105600
//** BE LOADED FIRST BECAUSE OF REFERENTIAL INTEGRITY CONSTRAINTS. 00105600
//** 00105600
//** THE EXCEPTION TO THIS ARE THE ENGINEERING TABLES. TABLES 00105600
//** ENG_UNIT_TYPE, ENGINEERING_UNIT, ENG_UNIT_CONV AND 00105600
//** ENG_UNIT_STANDARD ARE IN THE ORDER THEY NEED TO BE LOADED DUE TO 00105600
//** REFERENTIAL INTEGRITY CONSTRAINTS. 00105600
//**00105600
//* 00102200
//STEP001 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.ANMETHOD.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.ANALYSIS_METHOD 00105000
(ANLY_METH_NAME POSITION(1) VARCHAR,
DESCRIPTION POSITION(23) VARCHAR)

ENFORCE CONSTRAINTS 00105600
//*
.
.
.
//* 00102200
//STEP007 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.EUNITTYP.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.ENG_UNIT_TYPE 00105000
(ENG_UNT_TYPE POSITION(1) VARCHAR,
DESCRIPTION POSITION(18) VARCHAR)

ENFORCE CONSTRAINTS 00105600
//* 00102200
//STEP008 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.ENGUNIT.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
228 Converting from Oracle AIX to DB2 for OS/390

//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.ENGINEERING_UNIT 00105000
(ENG_UNT POSITION(1) VARCHAR,
ENG_UNT_TYPE POSITION(13) VARCHAR
NULLIF (ENG_UNT_TYPE = ’ ’),
DESCRIPTION POSITION(30) VARCHAR)

ENFORCE CONSTRAINTS 00105600
//* 00102200
//STEP009 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.EUNITSTD.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.ENG_UNIT_STANDARD 00105000
(INSTR_TYPE POSITION(1) VARCHAR,
VALUE_TYPE POSITION(18) VARCHAR,
STANDARD_TYPE POSITION(26) VARCHAR,
ENG_UNT POSITION(34) VARCHAR)

ENFORCE CONSTRAINTS 00105600
//* 00102200
//STEP010 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.EUNITCON.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.ENG_UNIT_CONV 00105000
(MULTIPLIER POSITION(1) FLOAT EXTERNAL(41),
BIAS POSITION(42) FLOAT EXTERNAL(41),
SRC_ENG_UNT POSITION(83) VARCHAR,
TARG_ENG_UNT POSITION(95) VARCHAR)

ENFORCE CONSTRAINTS 00105600
//*
.
.
.
//* 00102200
//STEP029 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.VALUETYP.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.VALUE_TYPE 00105000
(VALUE_TYPE POSITION(1) VARCHAR,
Sample DB2 for OS/390 jobs 229

DESCRIPTION POSITION(9) VARCHAR)
ENFORCE CONSTRAINTS 00105600

//* 00139300

B.16 JCL for second job to LOAD CIPROS tables
//CPRSLOD2 JOB (999,POK),’PAOLOR2 ’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR 00002200
// DD DSN=DSN610A.SDSNLOAD,DISP=SHR 00002200
//* 00102200
///* 00102200
//STEP000 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.MATERIAL.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.MATERIAL 00105000
(MTRL_NAME POSITION(1) VARCHAR,
MTRL_NUM POSITION(18) INTEGER EXTERNAL(4),
MTRL_TYPE POSITION(22) VARCHAR,
DESCRIPTION POSITION(39) VARCHAR,
GROUP_FLAG POSITION(81) CHAR)

ENFORCE CONSTRAINTS
.
.
.
//* 00102200
//STEP011 EXEC DSNUPROC,PARM=’DB2X,DSNTEX’,COND=(4,LT) 00102300
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102400
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 00102500
//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102600
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102700
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00102800
//DSNTRACE DD SYSOUT=* 00103100
//CPRSRECS DD DSN=CIPROS.TAG.DATAOUT, 00103200
// DISP=SHR 00103300
//SYSERR DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104400
//SYSDISC DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104500
//SYSMAP DD UNIT=SYSALLDA,SPACE=(4000,(10,5),RLSE,,ROUND) 00104600
//SYSIN DD * 00104700
LOAD DATA INDDN(CPRSRECS) LOG NO RESUME YES 00104900

INTO TABLE PAOLOR2.TAG
(TAG_NAME POSITION(1) VARCHAR,
INSTR_NAME POSITION(23) VARCHAR,
READING_TYPE POSITION(45) VARCHAR,
VALUE_TYPE POSITION(53) VARCHAR,
TIME_RES POSITION(61) VARCHAR,
STATUS POSITION(73) VARCHAR,
HI_VALUE POSITION(85) FLOAT EXTERNAL(41),
LO_VALUE POSITION(126) FLOAT EXTERNAL(41),
DATA_TYPE POSITION(167) VARCHAR,
ENG_UNT POSITION(175) VARCHAR,
DESCRIPTION POSITION(187) VARCHAR,
CREATION_DATE POSITION(229) TIMESTAMP EXTERNAL(26)
NULLIF (CREATION_DATE = ’ ’),
DISCONN_DATE POSITION(255) TIMESTAMP EXTERNAL(26)
NULLIF (DISCONN_DATE = ’ ’))

ENFORCE CONSTRAINTS 00105600
//*
230 Converting from Oracle AIX to DB2 for OS/390

B.17 JCL for binding with use of packages
//PAOLOC JOB (999,POK),’PAOLOR2’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR 00260000
// DD DSN=DSN610.QPP.SDSNLOAD,DISP=SHR 00270000
//STEP001 EXEC PGM=IKJEFT01,DYNAMNBR=20 00640000
//SYSTSPRT DD SYSOUT=* 00660000
//SYSPRINT DD SYSOUT=* 00670000
//CEEDUMP DD SYSOUT=* 00680000
//SYSUDUMP DD SYSOUT=* 00690000
//SYSOUT DD SYSOUT=* 00700000
//REPORT DD SYSOUT=* 00710000
//SYSTSIN DD *

DSN SYSTEM(DB2X) RETRY (1) TEST (0)
BIND PLAN(CIPROS1) -

PKLIST(CIPROS1.*) -
ACTION(REPLACE) -
ACQUIRE(USE) -
RELEASE(COMMIT) -
ISOLATION(CS) -
VALIDATE(BIND) -
RETAIN -
EXPLAIN(YES)

END
/*

B.18 JCL stream including REXX program
//ITSIS20 JOB 9101,’PBRUNI ’,NOTIFY=ITSIS2,
// MSGLEVEL=(1,1),MSGCLASS=8,CLASS=K,REGION=6M
//*===
//*--- TEST XXLOAD - Prepare variable length data for DB2 LOAD -------
//*===
//COPY1 EXEC PGM=IEBGENER
//SYSUT1 DD *,DLM=$$
/* REXX - Prepare variable length data for DB2 LOAD -----------------*/
/* */
/* Description: Prepare input for DB2 LOAD adding length field to */
/* variable length data */
/* */
/* Input: CTLIN - Description of Input data */
/* DATAIN - Input data to be converted */
/* Output: SYSPRINT - Messages */
/* DATAOUT - Output data for DB2 LOAD */
/* CTLOUT - Description of Output data ... da fare */
/* */
/*-- C.Venturini */

ExitRC = 0 /* Init Return Code = OK */
IoMeC = Sysvar(’SYSICMD’) /* Nome di questa Exec */
EnvXe = Sysvar(’SYSENV’) /* Environment: FORE o BACK */

If EnvXe = "FORE" Then
Do
Say "This eXec must be run in BATCH only"
EXIT 16

End

/* Try writing to DDName DATAOUT ------------------------------*/
"EXECIO * DISKW DATAOUT (FINIS STEM BegLine.)"
If RC > 4 Then
Do
Say "Error writing DDname DATAOUT"
Say "Return Code from EXECIO:" RC
AllocError = 1

End

/* Try writing to DDName CTLOUT -------------------------------*/
"EXECIO * DISKW CTLOUT (FINIS STEM BegLine.)"
If RC > 4 Then
Do
Say "Error writing DDname CTLOUT"
Sample DB2 for OS/390 jobs 231

Say "Return Code from EXECIO:" RC
AllocError = 1

End

/* Read data from DDName CTLIN --------------------------------*/
"EXECIO * DISKR CTLIN (FINIS STEM CtIn.)"
If RC > 4 Then
Do
Say "Error reading DDname CTLIN"
Say "Return Code da EXECIO:" RC
AllocError = 1

End

/* Read data from DDName DATAIN -------------------------------*/
"EXECIO * DISKR DATAIN (FINIS STEM DatIn.)"
If RC > 4 Then
Do
Say "Error reading DDname DATAIN"
Say "Return Code da EXECIO:" RC
AllocError = 1

End

If AllocError = 1 Then
Do
Say "Error accessing files ... quitting ..."
EXIT 16

End

oCtl. = "" ; oCtlIx = 0 ; oCtl.0 = 0 /* Clear output array */

oCtlIx = oCtlIx+1
oCtl.oCtlIx = "* Control file describing converted data (DATAOUT)"
oCtlIx = oCtlIx+1
oCtl.oCtlIx = "* (same format as CTLIN)"

/* Clear arrays to be loaded from CTLIN -----------------------*/
cBeg. = "" ; cLen. = "" ; cTyp. = "" ; j = 0
oBeg = 1 /* init output position */

/* Load CTLIN into arrays doing some validity check -----------*/
Do i = 1 to CtIn.0
If Left(CtIn.i,1) = "*" Then Iterate /* Skip comment line */
j = j+1
Parse VAR CtIn.i w1 w2 w3 .
If ((w3 <> "F") & (w3 <> "V")) Then
Do
Say "Wrong data in CTLIN ..."
Say "Type must be ’F’ or ’V’ ... "
Exit 8

End
cBeg.j = Strip(w1)
cLen.j = Strip(w2)
cTyp.j = Strip(w3)
oLen = cLen.j
oTyp = cTyp.j
oCtlIx = oCtlIx+1
oCtl.oCtlIx = oBeg oLen oTyp
If w3 = "V" Then
Do
oBeg = oBeg+oLen+2

End
Else
Do
oBeg = oBeg+oLen

End
End
NumFields = j

oCtl.0 = oCtlIx
"EXECIO * DISKW CTLOUT (FINIS STEM oCtl.)"
If RC > 4 Then
Do
Say "Error writing DDname CTLOUT"
Say "Return Code from EXECIO:" RC
EXIT 8

End

oData. = "" ; oDataIx = 0 ; oData.0 = 0 /* Clear output array */
232 Converting from Oracle AIX to DB2 for OS/390

/* Convert DATAIN into DATAOUT --------------------------------*/
Do i = 1 to DatIn.0
wOut = "" /* clear output row */
Do j = 1 to NumFields
wField = Substr(DatIn.i,cBeg.j,cLen.j)
If cTyp.j = "V" Then
Do
wF = Strip(wField) /* remove blanks */
wL = Length(wF) /* get length */
wLX1 = Right(’000’D2X(wL),4) /* convert to hex */
wLX2 = X2C(wLX1) /* ... binary */
wOut = wOut³³wLX2³³wField /* append length & data */

End
Else
Do
wOut = wOut³³wField /* append data to out row */

End
End
oDataIx = oDataIx+1
oData.oDataIx = wOut

End

oData.0 = oDataIx
"EXECIO * DISKW DATAOUT (FINIS STEM oData.)"
If RC > 4 Then
Do
Say "Error writing DDname DATAOUT"
Say "Return Code from EXECIO:" RC
EXIT 8

End

EXIT 0

$$
//SYSUT2 DD DSN=&&TEMP(XXLOAD),DISP=(NEW,PASS),
// DCB=SYS1.TSO.CLIST,
// SPACE=(TRK,(5,5,5)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//CLEANUP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE ITSIS2.PROVA.PBRUNI.DATAOUT
DELETE ITSIS2.PROVA.PBRUNI.DATAOUT NOSCRATCH
DELETE ITSIS2.PROVA.PBRUNI.CTLOUT
DELETE ITSIS2.PROVA.PBRUNI.CTLOUT NOSCRATCH
SET MAXCC=0

//*
//CALLEXEC EXEC PGM=IKJEFT01,DYNAMNBR=99,PARM=XXLOAD
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CTLIN DD *
* Control file describing input file to be converted (DATAIN)
* Each line of this control file contains 3 fields
* separated by blank(s):
* 1) Position of input field
* 2) Length of input field
* 3) Type of input field (V=Variable_length F=Fixed_length)
* comments are allowed after 3rd field
1 10 V 1st input field from position 1 is Variable length
15 9 F 2nd 15 is Fixed length
30 8 V 3rd 30 is Variable length
45 8 F 4th 45 is Fixed length
//DATAIN DD *
VAR1 FIX1 VAR2 FIX2 UNUSED DATA
1234567890 123456789 12345678 12345678***********
ABCDEFGHIJ KLMNOPQRS TUVWXYZA HGFEDCBA***********
Sample datain for testing ***********
may contain hex
±<*%õ***********
//*-+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
//DATAOUT DD DSN=ITSIS2.PROVA.PBRUNI.DATAOUT,
// DCB=(LRECL=255,BLKSIZE=0,RECFM=VB),
// UNIT=SYSDA,SPACE=(TRK,(15,15)),DISP=(NEW,CATLG)
//CTLOUT DD DSN=ITSIS2.PROVA.PBRUNI.CTLOUT,
Sample DB2 for OS/390 jobs 233

// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// UNIT=SYSDA,SPACE=(TRK,(1,1)),DISP=(NEW,CATLG)
//SYSPROC DD DISP=SHR,DSN=SYS1.TSO.CLIST
//SYSEXEC DD DISP=SHR,DSN=&&TEMP
//SYSTSIN DD DUMMY

B.19 JCL for the conversion of data using REXX program
//CPRSALLL JOB (999,POK),’PAOLOR2’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//* **
//* THIS JOB CREATES THE LOAD FILES FOR ALL THE PROJECT TABLES.
//* THE REXX PROGRAM ALLOWS FOR COMMENTS BEYOND THE POSITIONAL INPUT
//* AS EXPLAINED BELOW. IN THIS AREA WE HAVE CHOSEN TO PLACE THE
//* PARTIAL DDL USED TO DESCRIBE THE TABLE TO WHICH THE DATA IS RELATED.
//* THESE COMMENTS CAN BE USED TO CHECK THE ACCURACY OF THE POSITIONAL
//* AND DATA TYPE VALUES FOR INPUT TO THE REXX PROGRAM.
//* THE FIRST STEP LOADS THE REXX PROGRAM AND THE SUBSEQUENT STEPS ARE
//* ARRANGED IN PAIRS. THE FIRST OF THE PAIR DELETES THE FILES THE NEXT
//* WILL CREATE FOR THE ADJUSTED DATA. THERE IS ONE PAIR FOR EACH TABLE.
//*
//* NOTE: LENGTHS OF FIELDS WITH A DDL COMMENT INDICATING AN INTEGER
//* VALUE WILL VARY. THIS WILL DEPEND UPON THE ORACLE "NUMBER"
//* DEFINITION THAT WAS USED TO GENERATE THE INPUT DATA AND THE
//* INTEGER DDL DEFINITION. IF THE ORACLE NUMBER WAS 3 THE FIELD
//* WILL BE 3 BYTES LONG. IF IT WAS 4 THE INPUT WILL CONTAIN 4,
//* AND SO ON. THE POSITION USED TO LOCATE THE DATA IN THE FILE
//* WILL, OF COURSE, VARY AS WELL. SO, FIELDS INDICATED TO BE
//* INTEGER BY THE DDL WILL HAVETO BE EXAMINED AND THE
//* POSITIONAL LOCATOR FOR THE REXX PROGRAM ADJUSTED TO MATCH.
//* DO NOT ASSUME ALL INTEGER FIELDS WILL BE THE SAME SIZE.
//*
//* NEXT TO THE DDL INTEGER DEFINITION WE HAVE ADDED THE SIZE OF
//* THE FIELD BASED ON THE INPUT FILE GENERATED FROM THE ORACLE
//* DATA.
//*
//* THIS HAS DOWNSTREAM CONSEQUENCES FOR THE DB2 UTILITY LOAD FOR
//* WHICH THIS JOB PREPARES THE DATA. THE POSITION DESCRIPTION OF
//* INTEGER DATA FOR ANY PARTICULAR INPUT FILE WILL HAVE TO
//* REFLECT THE ABOVE, AS WELL.
//*
//* REMEMBER: THE FILE BLOCK AND RECORD SIZES FOR OUTPUT ARE VARIABLE
//* BLOCKED AT 1. THEREFORE, ADD 4 TO THE TOTAL FOR THE
//* RECORD TO ACCOUNT FOR THE BLOCK SIZE AND RECORD SIZE BYTES
//* OR YOUR RECORDS WILL LOOSE THEIR LAST 4 BYTES OF DATA.
//* THESE LENGTH BYTES AT THE BEGINING OF THE RECORDS ARE NOT
//* DISPLAYED. THE OPERATING SYSTEM WILL ASSUME YOU HAVE
//* ACCOUNTED FOR THESE BYTES IN YOUR ALLOCATION.
//* IN THIS JOB, ONLY FILE DATAOUT IS AFFECTED BY THIS
//* CONSIDERATION.
//*
//* **
//*===
//*--- TEST XXLOAD - PREPARE VARIABLE LENGTH DATA FOR DB2 LOAD -------
//*===
//LOAD001 EXEC PGM=IEBGENER
//SYSUT1 DD DSN=PAOLOR2.C.SOURCE(REXXPGM),DISP=SHR
//SYSUT2 DD DSN=&&TEMP(XXLOAD),DISP=(NEW,PASS),
// DCB=(LRECL=80,BLKSIZE=6160,RECFM=FB),
// SPACE=(TRK,(5,5,5)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//STEP001 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE CIPROS.ANMETHOD.DATAOUT
DELETE CIPROS.ANMETHOD.DATAOUT NOSCRATCH
DELETE CIPROS.ANMETHOD.CTLOUT
DELETE CIPROS.ANMETHOD.CTLOUT NOSCRATCH
SET MAXCC=0

//*
//STEP002 EXEC PGM=IKJEFT01,DYNAMNBR=99,PARM=XXLOAD
//SYSTSPRT DD SYSOUT=*
234 Converting from Oracle AIX to DB2 for OS/390

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*** CONTROL FILE DESCRIBING INPUT FILE TO BE CONVERTED (DATAIN)
//** EACH LINE OF THIS CONTROL FILE CONTAINS 3 FIELDS
//** SEPARATED BY BLANK(S):
//** 1) POSITION OF INPUT FIELD
//** 2) LENGTH OF INPUT FIELD
//** 3) TYPE OF INPUT FIELD (V=VARIABLE_LENGTH F=FIXED_LENGTH)
//** COMMENTS ARE ALLOWED AFTER 3RD FIELD
//*1 10 V 1ST INPUT FIELD FROM POSITION 1 IS VARIABLE LENGTH
//*15 9 F 2ND 15 IS FIXED LENGTH
//*30 8 V 3RD 30 IS VARIABLE LENGTH
//*45 8 F 4TH 45 IS FIXED LENGTH
//*-+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
//CTLIN DD *
1 20 V ANALYSIS_METHOD (ANLY_METH_NAME VARCHAR(20)
21 40 V DESCRIPTION VARCHAR(40)
//DATAIN DD DSN=PAOLOR3.CIPROS.DATA(ANMETHOD),DISP=SHR
//DATAOUT DD DSN=CIPROS.ANMETHOD.DATAOUT,
// DCB=(LRECL=68,BLKSIZE=0,RECFM=VB),
// UNIT=3390,VOL=SER=SBOX09,
// SPACE=(TRK,(15,15)),DISP=(NEW,CATLG,CATLG)
//CTLOUT DD DSN=CIPROS.ANMETHOD.CTLOUT,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// UNIT=SYSDA,SPACE=(TRK,(1,1)),DISP=(NEW,CATLG,CATLG)
//SYSPROC DD DISP=SHR,DSN=SYS1.TSOCLIST
//SYSEXEC DD DISP=(OLD,PASS),DSN=&&TEMP
//SYSTSIN DD DUMMY
//*
.
.
.
//*
//STEP127 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE CIPROS.VALUETYP.DATAOUT
DELETE CIPROS.VALUETYP.DATAOUT NOSCRATCH
DELETE CIPROS.VALUETYP.CTLOUT
DELETE CIPROS.VALUETYP.CTLOUT NOSCRATCH
SET MAXCC=0

//*
//STEP128 EXEC PGM=IKJEFT01,DYNAMNBR=99,PARM=XXLOAD
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*** CONTROL FILE DESCRIBING INPUT FILE TO BE CONVERTED (DATAIN)
//** EACH LINE OF THIS CONTROL FILE CONTAINS 3 FIELDS
//** SEPARATED BY BLANK(S):
//** 1) POSITION OF INPUT FIELD
//** 2) LENGTH OF INPUT FIELD
//** 3) TYPE OF INPUT FIELD (V=VARIABLE_LENGTH F=FIXED_LENGTH)
//** COMMENTS ARE ALLOWED AFTER 3RD FIELD
//*1 10 V 1ST INPUT FIELD FROM POSITION 1 IS VARIABLE LENGTH
//*15 9 F 2ND 15 IS FIXED LENGTH
//*30 8 V 3RD 30 IS VARIABLE LENGTH
//*45 8 F 4TH 45 IS FIXED LENGTH
//*-+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
//CTLIN DD *
1 6 V VALUE_TYPE (VALUE_TYPE VARCHAR(6)
7 40 V DESCRIPTION VARCHAR(40))
//DATAIN DD DSN=PAOLOR3.CIPROS.DATA(VALUETYP),DISP=SHR
//DATAOUT DD DSN=CIPROS.VALUETYP.DATAOUT,
// DCB=(LRECL=54,BLKSIZE=0,RECFM=VB),
// UNIT=3390,VOL=SER=SBOX09,
// SPACE=(TRK,(15,15)),DISP=(NEW,CATLG,CATLG)
//CTLOUT DD DSN=CIPROS.VALUETYP.CTLOUT,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// UNIT=SYSDA,SPACE=(TRK,(1,1)),DISP=(NEW,CATLG,CATLG)
//SYSPROC DD DISP=SHR,DSN=SYS1.TSOCLIST
//SYSEXEC DD DISP=(OLD,PASS),DSN=&&TEMP
//SYSTSIN DD DUMMY
Sample DB2 for OS/390 jobs 235

B.20 DSNTIJUZ - DB2 installation job stream
//DB2ZE JOB (999,POK),’DB2V610Z’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=HAIMO,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//***/00010000
//* JOB NAME = DSNTIJUZ */00020000
//* */00030000
//* DESCRIPTIVE NAME = INSTALLATION JOB STREAM */00040000
//* */00050000
//* LICENSED MATERIALS - PROPERTY OF IBM */00060000
//* 5645-DB2 */00070000
//* (C) COPYRIGHT 1982, 1998 IBM CORP. ALL RIGHTS RESERVED. */00080000
//* */00090000
//* STATUS = VERSION 6 */00100000
//* */00110000
//* FUNCTION = DSNZPARM AND DSNHDECP UPDATES */00120000
//* */00130000
//* PSEUDOCODE = */00140000
//* DSNTIZA STEP ASSEMBLE DSN6.... MACROS, CREATE DSNZPARM */00150000
//* DSNTIZL STEP LINK EDIT DSNZPARM */00160000
//* DSNTLOG STEP UPDATE PASSWORDS */00170000
//* DSNTIZP STEP ASSEMBLE DSNHDECP DATA-ONLY LOAD MODULE */00180000
//* DSNTIZQ STEP LINK EDIT DSNHDECP LOAD MODULE */00190000
//* DSNTIMQ STEP SMP/E PROCESSING FOR DSNHDECP */00200000
//* */00210000
//* NOTES = STEP DSNTIMQ MUST BE CUSTOMIZED FOR SMP. SEE THE NOTES */00220000
//* NOTES PRECEDING STEP DSNTIMQ BEFORE RUNNING THIS JOB. */00230000
//* */00240000
//***/00250000
//* 00260000
//DSNTIZA EXEC PGM=ASMA90,PARM=’OBJECT,NODECK’ 00270000
//SYSLIB DD DISP=SHR, 00280000
// DSN=DSN610.QPP.SDSNMACS 00290000
// DD DISP=SHR, 00300000
// DSN=SYS1.MACLIB 00310000
//SYSLIN DD DSN=&&LOADSET(DSNTILMZ),DISP=(NEW,PASS), 00320000
// UNIT=SYSALLDA, 00330000
// SPACE=(800,(50,50,2)),DCB=(BLKSIZE=800) 00340000
//SYSPRINT DD SYSOUT=* 00350000
//SYSUDUMP DD SYSOUT=* 00360000
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND) 00370000
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND) 00380000
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND) 00390000
//SYSIN DD * 00400000

DSN6ENV MVS=XA 00410000
DSN6SPRM RESTART, X00410001

ALL, X00410002
ABEXP=YES, X00410003
ABIND=YES, X00410004
AUTH=YES, X00410005
AUTHCACH=1024, X00410006
BINDNV=BINDADD, X00410007
BMPTOUT=4, X00410008
CACHEDYN=NO, X00410009
CACHEPAC=32768, X00410010
CACHERAC=32768, X00410011
CATALOG=DB2V610Z, X00410012
CDSSRDEF=1, X00410013
CHGDC=NO, X00410014
CONTSTOR=NO, X00410015
DECDIV3=NO, X00410016
DEFLTID=IBMUSER, X00410017
DESCSTAT=NO, X00410018
DLITOUT=6, X00410019
DSMAX=3000, X00410020
EDMPOOL=14812, X00410021
EDMDSPAC=0, X00410022
EDPROP=NO, X00410023
HOPAUTH=BOTH, X00410024
IRLMAUT=YES, X00410025
IRLMPRC=IRLZPROC, X00410026
IRLMSID=IRLZ, X00410027
IRLMRWT=60, X00410028
IRLMSWT=300, X00410029
LEMAX=20, X00410030
MAXRBLK=4000, X00410031
236 Converting from Oracle AIX to DB2 for OS/390

MAXKEEPD=5000, X00410032
NUMLKTS=1000, X00410033
NUMLKUS=10000, X00410034
OPTHINTS=NO, X00410035
RECALL=YES, X00410036
RECALLD=120, X00410037
RELCURHL=YES, X00410038
RETLWAIT=0, X00410039
RETVLCFK=NO, X00410040
RGFCOLID=DSNRGCOL, X00410041
RGFDBNAM=DSNRGFDB, X00410042
RGFDEDPL=NO, X00410043
RGFDEFLT=ACCEPT, X00410044
RGFESCP=, X00410045
RGFFULLQ=YES, X00410046
RGFINSTL=NO, X00410047
RGFNMORT=DSN_REGISTER_OBJT, X00410048
RGFNMPRT=DSN_REGISTER_APPL, X00410049
RRULOCK=NO, X00410050
SEQCACH=BYPASS, X00410051
SEQPRES=NO, X00410052
SITETYP=LOCALSITE, X00410053
SRTPOOL=1000, X00410054
SYSADM=HAIMO, X00410055
SYSADM2=PAOLO, X00410056
SYSOPR1=SYSOPR, X00410057
SYSOPR2=SYSOPR, X00410058
TRKRSITE=NO, X00410059
UTIMOUT=6 00410060

DSN6ARVP ALCUNIT=BLK, X00410061
ARCWRTC=(1,3,4), X00410062
ARCWTOR=YES, X00410063
ARCPFX1=DB2V610Z.ARCHLOG1, X00410064
ARCPFX2=DB2V610Z.ARCHLOG2, X00410065
ARCRETN=9999, X00410066
BLKSIZE=28672, X00410067
CATALOG=YES, X00410068
COMPACT=NO, X00410069
PRIQTY=1234, X00410070
PROTECT=NO, X00410071
QUIESCE=5, X00410072
SECQTY=154, X00410073
TSTAMP=NO, X00410074
UNIT=SYSALLDA, X00410075
UNIT2=SYSALLDA 00410076

DSN6LOGP DEALLCT=(0), X00410077
INBUFF=60, X00410078
MAXARCH=1000, X00410079
MAXRTU=2, X00410080
OUTBUFF=4000, X00410081
TWOACTV=YES, X00410082
TWOARCH=YES, X00410083
WRTHRSH=20, X00410084
ARC2FRST=NO 00410085

DSN6SYSP AUDITST=NO, X00410086
BACKODUR=5, X00410087
CONDBAT=64, X00410088
CTHREAD=70, X00410089
DBPROTCL=DRDA, X00410090
DLDFREQ=5, X00410091
DSSTIME=5, X00410092
EXTRAREQ=100, X00410093
EXTRASRV=100, X00410094
IDBACK=20, X00410095
IDFORE=40, X00410096
IDXBPOOL=BP0, X00410097
LBACKOUT=AUTO, X00410098
LOBVALA=2048, X00410099
LOBVALS=2048, X00410100
LOGAPSTG=0, X00410101
LOGLOAD=50000, X00410102
MAXDBAT=64, X00410103
MON=NO, X00410104
MONSIZE=8192, X00410105
PCLOSEN=5, X00410106
PCLOSET=10, X00410107
RLF=NO, X00410108
RLFTBL=01, X00410109
Sample DB2 for OS/390 jobs 237

RLFERR=NOLIMIT, X00410110
RLFAUTH=SYSIBM, X00410111
ROUTCDE=(1), X00410112
EXTSEC=NO, X00410113
SMFACCT=(1), X00410114
SMFSTAT=YES, X00410115
STATIME=30, X00410116
STORMXAB=0, X00410117
STORPROC=DB2ZSPAS, X00410118
STORTIME=180, X00410119
TBSBPOOL=BP0, X00410120
TRACSTR=NO, X00410121
TRACTBL=16, X00410122
URCHKTH=0, X00410123
WLMENV= 00410124

DSN6FAC DDF=NO, X00410125
CMTSTAT=ACTIVE, X00410126
IDTHTOIN=0, X00410127
RESYNC=2, X00410128
RLFERRD=NOLIMIT, X00410129
TCPALVER=NO, X00410130
MAXTYPE1=0 00410131

DSN6GRP DSHARE=NO, X00410132
GRPNAME=DSNCAT, X00410133
MEMBNAME=DSN1, X00410134
COORDNTR=NO, X00410135
ASSIST=NO 00410136

END 01780000
//*** 01790000
//* LINK EDIT THE NEW DSNZPARM MEMBER. PUT LOAD MODULE IN SDSNEXIT. * 01800000
//*** 01810000
//DSNTIZL EXEC PGM=IEWL,PARM=’LIST,XREF,LET,RENT’, 01820000
// COND=(4,LT) 01830000
//ADSNLOAD DD DISP=SHR, 01840000
// DSN=DSN610.QPP.SDSNLOAD 01850000
// DD DISP=SHR, 01860000
// DSN=DSN610.QPP.ADSNLOAD 01870000
//SYSPUNCH DD DSN=&&LOADSET(DSNTILMZ),DISP=(OLD,DELETE) 01880000
//SYSLMOD DD DISP=SHR, 01890000
// DSN=DSN610.QPP.SDSNEXIT 01900000
//SYSPRINT DD SYSOUT=* 01910000
//SYSUDUMP DD SYSOUT=* 01920000
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(1024,(50,50)) 01930000
//SYSLIN DD * 01940000

INCLUDE SYSPUNCH(DSNTILMZ) 01950000
INCLUDE ADSNLOAD(DSNZPARM) 01960000
ORDER DSNAA 01970000
INCLUDE ADSNLOAD(DSNAA) 01980000
INCLUDE ADSNLOAD(DSNFSYSP) 01990000
INCLUDE ADSNLOAD(DSNJARVP) 02000000
INCLUDE ADSNLOAD(DSNJLOGP) 02010000
INCLUDE ADSNLOAD(DSNTSPRM) 02020000
INCLUDE ADSNLOAD(DSNVDIR1) 02030000
INCLUDE ADSNLOAD(DSNZMSTR) 02040000
INCLUDE ADSNLOAD(DSN3DIR1) 02050000
INCLUDE ADSNLOAD(DSN7GRP) 02060000
ENTRY DSNZMSTR 02070000
NAME DSNZDB2Z(R) 02080000

//* 02090000
//* CHANGE LOG INVENTORY: 02100000
//* UPDATE BSDS 02110000
//* 02120000
//DSNTLOG EXEC PGM=DSNJU003,COND=(4,LT) 02130000
//STEPLIB DD DISP=SHR,DSN=DSN610.QPP.SDSNLOAD 02140000
//SYSUT1 DD DISP=OLD,DSN=DB2V610Z.BSDS01 02150000
//SYSUT2 DD DISP=OLD,DSN=DB2V610Z.BSDS02 02160000
//SYSPRINT DD SYSOUT=* 02170000
//SYSUDUMP DD SYSOUT=* 02180000
//SYSIN DD * 02190000
DDF LOCATION=DB2Z,LUNAME=SCPDB2Z, 02190001

NOPASSWD,RESPORT=33341,PORT=33340 02190002
//* 02220000
//*** 02230000
//* ASSEMBLE AND LINK EDIT DATA-ONLY LOAD MODULE DSNHDECP. 02240000
//* THE FOLLOWING STEPS ARE NEEDED ONLY IF THE 02250000
//* VALUES ARE CHANGED FROM THOSE WHICH ARE SHIPPED. 02260000
//*** 02270000
//DSNTIZP EXEC PGM=ASMA90,PARM=’OBJECT,NODECK’,COND=(4,LT) 02280000
238 Converting from Oracle AIX to DB2 for OS/390

//SYSLIB DD DISP=SHR, 02290000
// DSN=DSN610.QPP.SDSNMACS 02300000
//SYSLIN DD DSN=&&LOADSET(DSNHDECA),DISP=(NEW,PASS),UNIT=SYSALLDA, 02310000
// SPACE=(80,(50,50,2)),DCB=(BLKSIZE=80) 02320000
//SYSPRINT DD SYSOUT=* 02330000
//SYSUDUMP DD SYSOUT=* 02340000
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND) 02350000
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND) 02360000
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND) 02370000
//SYSIN DD * 02380000

DSNHDECM CHARSET=ALPHANUM, X02380001
ASCCSID=0, X02380002
AMCCSID=65534, X02380003
AGCCSID=65534, X02380004
SCCSID=0, X02380005
MCCSID=65534, X02380006
GCCSID=65534, X02380007
ENSCHEME=EBCDIC, X02380008
DATE=ISO, X02380009
DATELEN=0, X02380010
DECARTH=DEC15, X02380011
DECIMAL=PERIOD, X02380012
DEFLANG=IBMCOB, X02380013
DELIM=DEFAULT, X02380014
MIXED=NO, X02380015
SQLDELI=DEFAULT, X02380016
DSQLDELI=APOST, X02380017
SSID=DB2Z, X02380018
STDSQL=NO, X02380019
TIME=ISO, X02380020
TIMELEN=0, X02380021
DYNRULS=YES, X02380022
LOCALE=, X02380023
COMPAT=OFF 02380024

END 02630000
//* 02640000
//*** 02650000
//* LINK EDIT DSNHDECP. * 02660000
//* DSNHDECP IS A DATA-ONLY LOAD MODULE CONTAINING DEFAULT VALUES * 02670000
//* REQUIRED BY DB2 AND APPLICATION PROGRAMS. * 02680000
//* THIS STEP IS CREATED ONLY WHEN THE DEFAULTS SUPPLIED IN * 02690000
//* DSNHDECP ARE NOT SUITABLE. * 02700000
//*** 02710000
//DSNTIZQ EXEC PGM=IEWL,PARM=’LIST,XREF,LET,RENT’, 02720000
// COND=(4,LT) 02730000
//ADSNLOAD DD DISP=SHR, 02740000
// DSN=DSN610.QPP.SDSNEXIT 02750000
// DD DISP=SHR, 02760000
// DSN=DSN610.QPP.ADSNLOAD 02770000
//SYSPUNCH DD DSN=&&LOADSET(DSNHDECA),DISP=(OLD,DELETE) 02780000
//SYSLMOD DD DISP=SHR, 02790000
// DSN=DSN610.QPP.SDSNEXIT 02800000
//SYSPRINT DD SYSOUT=* 02810000
//SYSUDUMP DD SYSOUT=* 02820000
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(1024,(50,50)) 02830000
//SYSLIN DD * 02840000

INCLUDE SYSPUNCH(DSNHDECA) 02850000
ORDER DSNAA 02860000
INCLUDE ADSNLOAD(DSNAA) 02870000
INCLUDE ADSNLOAD(DSNARIB) 02880000
INCLUDE ADSNLOAD(DSNHDECP) 02890000
ENTRY DSNHDECP 02900000
MODE AMODE(24),RMODE(24) 02910000
NAME DSNHDECP(R) 02920000

//* 02930000
//*** 02940000
//* DO SMP/E PROCESSING TO TRACK DSNHDECP CHANGES. * 02950000
//* THIS STEP IS ONLY USED WHEN THE DEFAULT DSNHDECP IS NOT SUITABLE. * 02960000
//* * 02970000
//* NOTE: THIS STEP MUST BE CUSTOMIZED AS FOLLOWS FOR SMP: * 02980000
//* 1. LOCATE AND CHANGE THE FOLLOWING STRINGS TO THE VALUES YOU * 02990000
//* SPECIFIED FOR THEM IN JOB DSNTIJAE: * 03000000
//* A.’?SMPPRE?’ TO THE PREFIX OF YOUR SMP LIBRARY NAME. * 03010000
//* B.’?SMPMLQ?’ TO THE MIDDLE LEVEL QUALIFIER OF YOUR SMP CSI * 03020000
//* 2. UPDATE SYSOUT CLASSES AS DESIRED (DEFAULT IS ’*’) * 03030000
//*** 03040000
//DSNTIMQ EXEC PGM=GIMSMP,PARM=’CSI=?SMPPRE?.?SMPMLQ?.CSI’, 03050000
// REGION=4096K,COND=(2,LT) 03060000
Sample DB2 for OS/390 jobs 239

//SYSPRINT DD SYSOUT=* 03070000
//SYSUDUMP DD SYSOUT=* 03080000
//SMPCNTL DD * 03090000

SET BDY(DSNTARG). 03100000
JCLIN. 03110000

//SMPJCLIN DD DISP=SHR, 03120000
// DSN=DB2V610Z.NEW.SDSNSAMP(DSNTIJUZ) 03130000
//* 03140000

B.21 DSNTEJ2U - DB2 sample JCL to create user defined functions
//PAOLOR2 JOB (999,POK),’PAOLOR2’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//**00000100
//* NAME = DSNTEJ2U *00000200
//* *00000300
//* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *00000400
//* PHASE 2 *00000500
//* USER DEFINED FUNCTIONS (C/C++) *00000600
//* *00000700
//* NOTE: THE C++ FUNCTIONS ARE REMOVED FROM THIS JCL *00000600
//* NOTE: SUBSTITUTE YOUR INSTALLATION DATASET NAMES WHERE APPROPRIATE*00000600
//* NOTE: WHERE THE ! IS FOUND BELOW. *00000600
//* *00000700
//* LICENSED MATERIALS - PROPERTY OF IBM *00000800
//* 5645-DB2 *00000900
//* (C) COPYRIGHT 1998 IBM CORP. ALL RIGHTS RESERVED. *00001000
//* *00001100
//* STATUS = VERSION 6 *00001200
//* *00001300
//* FUNCTION = THIS JCL PREPARES THE FOLLOWING DB2 USER-DEFINED *00001400
//* FUNCTIONS (UDF’S) AND A DRIVER PROGRAM TO INVOKE THEM. *00001500
//* *00001600
//* NOTES = ENSURE THAT LINE NUMBER SEQUENCING IS SET ’ON’ IF *00001700
//* THIS JOB IS SUBMITTED FROM AN ISPF EDIT SESSION *00001800
//* *00001900
//* THIS JOB IS RUN AFTER PHASE 1. *00002000
//* *00002100
//* CHANGE ACTIVITY = *00002200
//**00002300
//* 00002400
//JOBLIB DD DSN=CEE.V!R!M!.SCEERUN,DISP=SHR 00002500
// DD DSN=DSN!!0.SDSNEXIT,DISP=SHR 00002600
// DD DSN=DSN!!0.SDSNLOAD,DISP=SHR 00002700
// DD DSN=DSN!!0.RUNLIB.LOAD,DISP=SHR 00002800
//* 00002900
//* STEP 1: DROP ANY EXISTING DB2 SAMPLE UDF’S 00003000
//* 00003100
//PH02US01 EXEC PGM=IKJEFT01,DYNAMNBR=20 00003200
//SYSTSPRT DD SYSOUT=* 00003300
//SYSTSIN DD * 00003400
DSN SYSTEM(DSN) 00003500
RUN PROGRAM(DSNTIAD) - 00003600

PLAN(DSNTIA!!) - 00003700
LIB(’DSN!!0.RUNLIB.LOAD’) - 00003800
PARM(’RC0’) 00003900

//SYSPRINT DD SYSOUT=* 00004000
//SYSUDUMP DD SYSOUT=* 00004100
//SYSIN DD * 00004200
DROP SPECIFIC FUNCTION DSN8.DSN8DUCDDVV RESTRICT; 00004300
DROP SPECIFIC FUNCTION DSN8.DSN8DUCDVVV RESTRICT; 00004400
DROP SPECIFIC FUNCTION DSN8.DSN8DUADV RESTRICT; 00004500

00004600
DROP SPECIFIC FUNCTION DSN8.DSN8DUCTTVV RESTRICT; 00004700
DROP SPECIFIC FUNCTION DSN8.DSN8DUCTVVV RESTRICT; 00004800
DROP SPECIFIC FUNCTION DSN8.DSN8DUATV RESTRICT; 00004900

00005000
DROP SPECIFIC FUNCTION DSN8.DSN8DUCYFV RESTRICT; 00005100
DROP SPECIFIC FUNCTION DSN8.DSN8DUCYFVV RESTRICT; 00005200

00005300
DROP SPECIFIC FUNCTION DSN8.DSN8EUDND RESTRICT; 00005400
DROP SPECIFIC FUNCTION DSN8.DSN8EUDNV RESTRICT; 00005500

00005600
DROP SPECIFIC FUNCTION DSN8.DSN8EUMND RESTRICT; 00005700
DROP SPECIFIC FUNCTION DSN8.DSN8EUMNV RESTRICT; 00005800
240 Converting from Oracle AIX to DB2 for OS/390

00005900
DROP SPECIFIC FUNCTION DSN8.DSN8DUTINV RESTRICT; 00006000
DROP SPECIFIC FUNCTION DSN8.DSN8DUTINVV RESTRICT; 00006100
DROP SPECIFIC FUNCTION DSN8.DSN8DUTINVVV RESTRICT; 00006200

00006300
DROP SPECIFIC FUNCTION DSN8.DSN8DUTISV RESTRICT; 00006400
DROP SPECIFIC FUNCTION DSN8.DSN8DUTISVV RESTRICT; 00006500
DROP SPECIFIC FUNCTION DSN8.DSN8DUTISVVV RESTRICT; 00006600

00006700
DROP SPECIFIC FUNCTION DSN8.DSN8DUTILV RESTRICT; 00006800
DROP SPECIFIC FUNCTION DSN8.DSN8DUTILVV RESTRICT; 00006900
DROP SPECIFIC FUNCTION DSN8.DSN8DUTILVVV RESTRICT; 00007000

00007100
DROP SPECIFIC FUNCTION DSN8.DSN8DUWFV RESTRICT; 00007200
//* 00007300
//* STEP 2: DEFINE SAMPLE UDF’S TO DB2 00007400
//* 00007500
//PH02US02 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00007600
//SYSTSPRT DD SYSOUT=* 00007700
//SYSTSIN DD * 00007800
DSN SYSTEM(DSN) 00007900
RUN PROGRAM(DSNTIAD) - 00008000

PLAN(DSNTIA!!) - 00008100
LIB(’DSN!!0.RUNLIB.LOAD’) 00008200

//SYSPRINT DD SYSOUT=* 00008300
//SYSUDUMP DD SYSOUT=* 00008400
//SYSIN DD * 00008500

00008600
CREATE FUNCTION 00008700
DSN8.ALTDATE(00008800
VARCHAR(13)) 00008900

RETURNS 00009000
VARCHAR(17) 00009100

SPECIFIC DSN8.DSN8DUADV 00009200
LANGUAGE C 00009300
DETERMINISTIC 00009400
NO SQL 00009500
EXTERNAL NAME DSN8DUAD 00009600
PARAMETER STYLE DB2SQL 00009700
NULL CALL 00009800
NO EXTERNAL ACTION 00009900
NO SCRATCHPAD 00010000
NO FINAL CALL 00010100
ALLOW PARALLEL 00010200
NO COLLID 00010300
ASUTIME LIMIT 5 00010400
STAY RESIDENT NO 00010500
PROGRAM TYPE SUB 00010600
WLM ENVIRONMENT WLMENV 00010700
EXTERNAL SECURITY DB2 00010800
NO DBINFO; 00010900

00011000
CREATE FUNCTION 00011100
DSN8.ALTDATE(00011200
VARCHAR(17), 00011300
VARCHAR(13), 00011400
VARCHAR(13)) 00011500

RETURNS 00011600
VARCHAR(17) 00011700

SPECIFIC DSN8.DSN8DUCDVVV 00011800
LANGUAGE C 00011900
DETERMINISTIC 00012000
NO SQL 00012100
EXTERNAL NAME DSN8DUCD 00012200
PARAMETER STYLE DB2SQL 00012300
NULL CALL 00012400
NO EXTERNAL ACTION 00012500
NO SCRATCHPAD 00012600
NO FINAL CALL 00012700
ALLOW PARALLEL 00012800
NO COLLID 00012900
ASUTIME LIMIT 5 00013000
STAY RESIDENT NO 00013100
PROGRAM TYPE SUB 00013200
WLM ENVIRONMENT WLMENV 00013300
EXTERNAL SECURITY DB2 00013400
NO DBINFO; 00013500

00013600
Sample DB2 for OS/390 jobs 241

CREATE FUNCTION 00013700
DSN8.ALTDATE(00013800
DATE, 00013900
VARCHAR(13), 00014000
VARCHAR(13)) 00014100

RETURNS 00014200
VARCHAR(17) 00014300

SPECIFIC DSN8.DSN8DUCDDVV 00014400
SOURCE SPECIFIC DSN8.DSN8DUCDVVV; 00014500

00014600
CREATE FUNCTION 00014700
DSN8.ALTTIME(00014800
VARCHAR(14)) 00014900

RETURNS 00015000
VARCHAR(11) 00015100

SPECIFIC DSN8.DSN8DUATV 00015200
LANGUAGE C 00015300
DETERMINISTIC 00015400
NO SQL 00015500
EXTERNAL NAME DSN8DUAT 00015600
PARAMETER STYLE DB2SQL 00015700
NULL CALL 00015800
NO EXTERNAL ACTION 00015900
NO SCRATCHPAD 00016000
NO FINAL CALL 00016100
ALLOW PARALLEL 00016200
NO COLLID 00016300
ASUTIME LIMIT 5 00016400
STAY RESIDENT NO 00016500
PROGRAM TYPE SUB 00016600
WLM ENVIRONMENT WLMENV 00016700
EXTERNAL SECURITY DB2 00016800
NO DBINFO; 00016900

00017000
CREATE FUNCTION 00017100
DSN8.ALTTIME(00017200
VARCHAR(11), 00017300
VARCHAR(14), 00017400
VARCHAR(14)) 00017500

RETURNS 00017600
VARCHAR(11) 00017700

SPECIFIC DSN8.DSN8DUCTVVV 00017800
LANGUAGE C 00017900
DETERMINISTIC 00018000
NO SQL 00018100
EXTERNAL NAME DSN8DUCT 00018200
PARAMETER STYLE DB2SQL 00018300
NULL CALL 00018400
NO EXTERNAL ACTION 00018500
NO SCRATCHPAD 00018600
NO FINAL CALL 00018700
ALLOW PARALLEL 00018800
NO COLLID 00018900
ASUTIME LIMIT 5 00019000
STAY RESIDENT NO 00019100
PROGRAM TYPE SUB 00019200
WLM ENVIRONMENT WLMENV 00019300
EXTERNAL SECURITY DB2 00019400
NO DBINFO; 00019500

00019600
CREATE FUNCTION 00019700
DSN8.ALTTIME(00019800
TIME, 00019900
VARCHAR(14), 00020000
VARCHAR(14)) 00020100

RETURNS 00020200
VARCHAR(11) 00020300

SPECIFIC DSN8.DSN8DUCTTVV 00020400
SOURCE SPECIFIC DSN8.DSN8DUCTVVV; 00020500

00020600
CREATE FUNCTION 00020700
DSN8.CURRENCY(00020800
FLOAT, 00020900
VARCHAR(2)) 00021000

RETURNS 00021100
VARCHAR(19) 00021200

SPECIFIC DSN8.DSN8DUCYFV 00021300
LANGUAGE C 00021400
242 Converting from Oracle AIX to DB2 for OS/390

DETERMINISTIC 00021500
NO SQL 00021600
EXTERNAL NAME DSN8DUCY 00021700
PARAMETER STYLE DB2SQL 00021800
NULL CALL 00021900
NO EXTERNAL ACTION 00022000
NO SCRATCHPAD 00022100
NO FINAL CALL 00022200
ALLOW PARALLEL 00022300
NO COLLID 00022400
ASUTIME LIMIT 5 00022500
STAY RESIDENT NO 00022600
PROGRAM TYPE MAIN 00022700
WLM ENVIRONMENT WLMENV 00022800
EXTERNAL SECURITY DB2 00022900
NO DBINFO; 00023000

00023100
CREATE FUNCTION 00023200
DSN8.CURRENCY(00023300
FLOAT, 00023400
VARCHAR(2), 00023500
VARCHAR(5)) 00023600

RETURNS 00023700
VARCHAR(19) 00023800

SPECIFIC DSN8.DSN8DUCYFVV 00023900
LANGUAGE C 00024000
DETERMINISTIC 00024100
NO SQL 00024200
EXTERNAL NAME DSN8DUCY 00024300
PARAMETER STYLE DB2SQL 00024400
NULL CALL 00024500
NO EXTERNAL ACTION 00024600
NO SCRATCHPAD 00024700
NO FINAL CALL 00024800
ALLOW PARALLEL 00024900
NO COLLID 00025000
ASUTIME LIMIT 5 00025100
STAY RESIDENT NO 00025200
PROGRAM TYPE MAIN 00025300
WLM ENVIRONMENT WLMENV 00025400
EXTERNAL SECURITY DB2 00025500
NO DBINFO; 00025600

00025700
CREATE FUNCTION 00025800
DSN8.DAYNAME(00025900
VARCHAR(10)) 00026000

RETURNS 00026100
VARCHAR(9) 00026200

SPECIFIC DSN8.DSN8EUDNV 00026300
LANGUAGE C 00026400
DETERMINISTIC 00026500
NO SQL 00026600
EXTERNAL NAME DSN8EUDN 00026700
PARAMETER STYLE DB2SQL 00026800
NULL CALL 00026900
NO EXTERNAL ACTION 00027000
NO SCRATCHPAD 00027100
NO FINAL CALL 00027200
ALLOW PARALLEL 00027300
NO COLLID 00027400
ASUTIME LIMIT 5 00027500
STAY RESIDENT NO 00027600
PROGRAM TYPE SUB 00027700
WLM ENVIRONMENT WLMENV 00027800
EXTERNAL SECURITY DB2 00027900
NO DBINFO; 00028000

00028100
CREATE FUNCTION 00028200
DSN8.DAYNAME(00028300
DATE) 00028400

RETURNS 00028500
VARCHAR(9) 00028600

SPECIFIC DSN8.DSN8EUDND 00028700
SOURCE SPECIFIC DSN8.DSN8EUDNV; 00028800

00028900
CREATE FUNCTION 00029000
DSN8.MONTHNAME(00029100
VARCHAR(10)) 00029200
Sample DB2 for OS/390 jobs 243

RETURNS 00029300
VARCHAR(9) 00029400

SPECIFIC DSN8.DSN8EUMNV 00029500
LANGUAGE C 00029600
DETERMINISTIC 00029700
NO SQL 00029800
EXTERNAL NAME DSN8EUMN 00029900
PARAMETER STYLE DB2SQL 00030000
NULL CALL 00030100
NO EXTERNAL ACTION 00030200
NO SCRATCHPAD 00030300
NO FINAL CALL 00030400
ALLOW PARALLEL 00030500
NO COLLID 00030600
ASUTIME LIMIT 5 00030700
STAY RESIDENT NO 00030800
PROGRAM TYPE SUB 00030900
WLM ENVIRONMENT WLMENV 00031000
EXTERNAL SECURITY DB2 00031100
NO DBINFO; 00031200

00031300
CREATE FUNCTION 00031400
DSN8.MONTHNAME(00031500
DATE) 00031600

RETURNS 00031700
VARCHAR(9) 00031800

SPECIFIC DSN8.DSN8EUMND 00031900
SOURCE SPECIFIC DSN8.DSN8EUMNV; 00032000

00032100
CREATE FUNCTION 00032200
DSN8.TABLE_NAME(00032300
VARCHAR(18)) 00032400

RETURNS 00032500
VARCHAR(18) 00032600

SPECIFIC DSN8.DSN8DUTINV 00032700
LANGUAGE C 00032800
DETERMINISTIC 00032900
READS SQL DATA 00033000
EXTERNAL NAME DSN8DUTI 00033100
PARAMETER STYLE DB2SQL 00033200
NULL CALL 00033300
NO EXTERNAL ACTION 00033400
NO SCRATCHPAD 00033500
NO FINAL CALL 00033600
ALLOW PARALLEL 00033700
COLLID DSN8DU!! 00033800
ASUTIME LIMIT 5 00033900
STAY RESIDENT NO 00034000
PROGRAM TYPE MAIN 00034100
WLM ENVIRONMENT WLMENV 00034200
EXTERNAL SECURITY DB2 00034300
NO DBINFO; 00034400

00034500
CREATE FUNCTION 00034600
DSN8.TABLE_NAME(00034700
VARCHAR(18), 00034800
VARCHAR(8)) 00034900

RETURNS 00035000
VARCHAR(18) 00035100

SPECIFIC DSN8.DSN8DUTINVV 00035200
LANGUAGE C 00035300
DETERMINISTIC 00035400
READS SQL DATA 00035500
EXTERNAL NAME DSN8DUTI 00035600
PARAMETER STYLE DB2SQL 00035700
NULL CALL 00035800
NO EXTERNAL ACTION 00035900
NO SCRATCHPAD 00036000
NO FINAL CALL 00036100
ALLOW PARALLEL 00036200
COLLID DSN8DU!! 00036300
ASUTIME LIMIT 5 00036400
STAY RESIDENT NO 00036500
PROGRAM TYPE MAIN 00036600
WLM ENVIRONMENT WLMENV 00036700
EXTERNAL SECURITY DB2 00036800
NO DBINFO; 00036900

00037000
244 Converting from Oracle AIX to DB2 for OS/390

CREATE FUNCTION 00037100
DSN8.TABLE_NAME(00037200
VARCHAR(18), 00037300
VARCHAR(8), 00037400
VARCHAR(16)) 00037500

RETURNS 00037600
VARCHAR(18) 00037700

SPECIFIC DSN8.DSN8DUTINVVV 00037800
LANGUAGE C 00037900
DETERMINISTIC 00038000
READS SQL DATA 00038100
EXTERNAL NAME DSN8DUTI 00038200
PARAMETER STYLE DB2SQL 00038300
NULL CALL 00038400
NO EXTERNAL ACTION 00038500
NO SCRATCHPAD 00038600
NO FINAL CALL 00038700
ALLOW PARALLEL 00038800
COLLID DSN8DU!! 00038900
ASUTIME LIMIT 5 00039000
STAY RESIDENT NO 00039100
PROGRAM TYPE MAIN 00039200
WLM ENVIRONMENT WLMENV 00039300
EXTERNAL SECURITY DB2 00039400
NO DBINFO; 00039500

00039600
CREATE FUNCTION 00039700
DSN8.TABLE_SCHEMA(00039800
VARCHAR(18)) 00039900

RETURNS 00040000
VARCHAR(8) 00040100

SPECIFIC DSN8.DSN8DUTISV 00040200
LANGUAGE C 00040300
DETERMINISTIC 00040400
READS SQL DATA 00040500
EXTERNAL NAME DSN8DUTI 00040600
PARAMETER STYLE DB2SQL 00040700
NULL CALL 00040800
NO EXTERNAL ACTION 00040900
NO SCRATCHPAD 00041000
NO FINAL CALL 00041100
ALLOW PARALLEL 00041200
COLLID DSN8DU!! 00041300
ASUTIME LIMIT 5 00041400
STAY RESIDENT NO 00041500
PROGRAM TYPE MAIN 00041600
WLM ENVIRONMENT WLMENV 00041700
EXTERNAL SECURITY DB2 00041800
NO DBINFO; 00041900

00042000
CREATE FUNCTION 00042100
DSN8.TABLE_SCHEMA(00042200
VARCHAR(18), 00042300
VARCHAR(8)) 00042400

RETURNS 00042500
VARCHAR(8) 00042600

SPECIFIC DSN8.DSN8DUTISVV 00042700
LANGUAGE C 00042800
DETERMINISTIC 00042900
READS SQL DATA 00043000
EXTERNAL NAME DSN8DUTI 00043100
PARAMETER STYLE DB2SQL 00043200
NULL CALL 00043300
NO EXTERNAL ACTION 00043400
NO SCRATCHPAD 00043500
NO FINAL CALL 00043600
ALLOW PARALLEL 00043700
COLLID DSN8DU!! 00043800
ASUTIME LIMIT 5 00043900
STAY RESIDENT NO 00044000
PROGRAM TYPE MAIN 00044100
WLM ENVIRONMENT WLMENV 00044200
EXTERNAL SECURITY DB2 00044300
NO DBINFO; 00044400

00044500
CREATE FUNCTION 00044600
DSN8.TABLE_SCHEMA(00044700
VARCHAR(18), 00044800
Sample DB2 for OS/390 jobs 245

VARCHAR(8), 00044900
VARCHAR(16)) 00045000

RETURNS 00045100
VARCHAR(8) 00045200

SPECIFIC DSN8.DSN8DUTISVVV 00045300
LANGUAGE C 00045400
DETERMINISTIC 00045500
READS SQL DATA 00045600
EXTERNAL NAME DSN8DUTI 00045700
PARAMETER STYLE DB2SQL 00045800
NULL CALL 00045900
NO EXTERNAL ACTION 00046000
NO SCRATCHPAD 00046100
NO FINAL CALL 00046200
ALLOW PARALLEL 00046300
COLLID DSN8DU!! 00046400
ASUTIME LIMIT 5 00046500
STAY RESIDENT NO 00046600
PROGRAM TYPE MAIN 00046700
WLM ENVIRONMENT WLMENV 00046800
EXTERNAL SECURITY DB2 00046900
NO DBINFO; 00047000

00047100
CREATE FUNCTION 00047200
DSN8.TABLE_LOCATION(00047300
VARCHAR(18)) 00047400

RETURNS 00047500
VARCHAR(16) 00047600

SPECIFIC DSN8.DSN8DUTILV 00047700
LANGUAGE C 00047800
DETERMINISTIC 00047900
READS SQL DATA 00048000
EXTERNAL NAME DSN8DUTI 00048100
PARAMETER STYLE DB2SQL 00048200
NULL CALL 00048300
NO EXTERNAL ACTION 00048400
NO SCRATCHPAD 00048500
NO FINAL CALL 00048600
ALLOW PARALLEL 00048700
COLLID DSN8DU!! 00048800
ASUTIME LIMIT 5 00048900
STAY RESIDENT NO 00049000
PROGRAM TYPE MAIN 00049100
WLM ENVIRONMENT WLMENV 00049200
EXTERNAL SECURITY DB2 00049300
NO DBINFO; 00049400

00049500
CREATE FUNCTION 00049600
DSN8.TABLE_LOCATION(00049700
VARCHAR(18), 00049800
VARCHAR(8)) 00049900

RETURNS 00050000
VARCHAR(16) 00050100

SPECIFIC DSN8.DSN8DUTILVV 00050200
LANGUAGE C 00050300
DETERMINISTIC 00050400
READS SQL DATA 00050500
EXTERNAL NAME DSN8DUTI 00050600
PARAMETER STYLE DB2SQL 00050700
NULL CALL 00050800
NO EXTERNAL ACTION 00050900
NO SCRATCHPAD 00051000
NO FINAL CALL 00051100
ALLOW PARALLEL 00051200
COLLID DSN8DU!! 00051300
ASUTIME LIMIT 5 00051400
STAY RESIDENT NO 00051500
PROGRAM TYPE MAIN 00051600
WLM ENVIRONMENT WLMENV 00051700
EXTERNAL SECURITY DB2 00051800
NO DBINFO; 00051900

00052000
CREATE FUNCTION 00052100
DSN8.TABLE_LOCATION(00052200
VARCHAR(18), 00052300
VARCHAR(8), 00052400
VARCHAR(16)) 00052500

RETURNS 00052600
246 Converting from Oracle AIX to DB2 for OS/390

VARCHAR(16) 00052700
SPECIFIC DSN8.DSN8DUTILVVV 00052800
LANGUAGE C 00052900
DETERMINISTIC 00053000
READS SQL DATA 00053100
EXTERNAL NAME DSN8DUTI 00053200
PARAMETER STYLE DB2SQL 00053300
NULL CALL 00053400
NO EXTERNAL ACTION 00053500
NO SCRATCHPAD 00053600
NO FINAL CALL 00053700
ALLOW PARALLEL 00053800
COLLID DSN8DU!! 00053900
ASUTIME LIMIT 5 00054000
STAY RESIDENT NO 00054100
PROGRAM TYPE MAIN 00054200
WLM ENVIRONMENT WLMENV 00054300
EXTERNAL SECURITY DB2 00054400
NO DBINFO; 00054500

00054600
CREATE FUNCTION 00054700
DSN8.WEATHER(00054800
VARCHAR(44)) 00054900

RETURNS 00055000
TABLE(00055100
CITY VARCHAR(30), 00055200
TEMP_IN_F INTEGER, 00055300
HUMIDITY INTEGER, 00055400
WIND VARCHAR(5), 00055500
WIND_VELOCITY INTEGER, 00055600
BAROMETER FLOAT, 00055700
FORECAST VARCHAR(25)) 00055800

SPECIFIC DSN8.DSN8DUWFV 00055900
LANGUAGE C 00056000
DETERMINISTIC 00056100
NO SQL 00056200
EXTERNAL NAME DSN8DUWF 00056300
PARAMETER STYLE DB2SQL 00056400
NULL CALL 00056500
NO EXTERNAL ACTION 00056600
SCRATCHPAD 00056700
FINAL CALL 00056800
DISALLOW PARALLEL 00056900
NO COLLID 00057000
ASUTIME LIMIT 5 00057100
STAY RESIDENT NO 00057200
PROGRAM TYPE SUB 00057300
WLM ENVIRONMENT WLMENV 00057400
EXTERNAL SECURITY DB2 00057500
NO DBINFO; 00057600

00057700
GRANT EXECUTE ON SPECIFIC FUNCTION DSN8.DSN8DUADV, 00057800

DSN8.DSN8DUCDVVV, 00057900
DSN8.DSN8DUCDDVV, 00058000
DSN8.DSN8DUATV, 00058100
DSN8.DSN8DUCTVVV, 00058200
DSN8.DSN8DUCTTVV, 00058300
DSN8.DSN8DUCYFV, 00058400
DSN8.DSN8DUCYFVV, 00058500
DSN8.DSN8EUDNV, 00058600
DSN8.DSN8EUDND, 00058700
DSN8.DSN8EUMNV, 00058800
DSN8.DSN8EUMND, 00058900
DSN8.DSN8DUTINV, 00059000
DSN8.DSN8DUTINVV, 00059100
DSN8.DSN8DUTINVVV, 00059200
DSN8.DSN8DUTISV, 00059300
DSN8.DSN8DUTISVV, 00059400
DSN8.DSN8DUTISVVV, 00059500
DSN8.DSN8DUTILV, 00059600
DSN8.DSN8DUTILVV, 00059700
DSN8.DSN8DUTILVVV, 00059800
DSN8.DSN8DUWFV 00059900

TO PUBLIC; 00060000
00060100

//* 00060200
//* STEP 3: PREPARE EXTERNAL FOR CURRENT DATE ALTDATE UDF 00060300
//* 00060400
Sample DB2 for OS/390 jobs 247

//PH02US03 EXEC DSNHC,MEM=DSN8DUAD,COND=(4,LT), 00060500
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00060600
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00060700
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00060800
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUAD), 00060900
// DISP=SHR 00061000
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00061100
// DISP=SHR 00061200
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUAD), 00061300
// DISP=SHR 00061400
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUAD), 00061500
// DISP=SHR 00061600
//LKED.SYSIN DD * 00061700
INCLUDE SYSLIB(DSNRLI) 00061800
NAME DSN8DUAD(R) 00061900
//* 00062000
//* STEP 4: PREPARE EXTERNAL FOR GIVEN DATE ALTDATE UDF 00062100
//* 00062200
//PH02US04 EXEC DSNHC,MEM=DSN8DUCD,COND=(4,LT), 00062300
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00062400
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00062500
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00062600
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUCD), 00062700
// DISP=SHR 00062800
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00062900
// DISP=SHR 00063000
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUCD), 00063100
// DISP=SHR 00063200
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUCD), 00063300
// DISP=SHR 00063400
//LKED.SYSIN DD * 00063500
INCLUDE SYSLIB(DSNRLI) 00063600
NAME DSN8DUCD(R) 00063700
//* 00063800
//* STEP 5: PREPARE EXTERNAL FOR CURRENT TIME ALTTIME UDF 00063900
//* 00064000
//PH02US05 EXEC DSNHC,MEM=DSN8DUAT,COND=(4,LT), 00064100
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00064200
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00064300
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00064400
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUAT), 00064500
// DISP=SHR 00064600
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00064700
// DISP=SHR 00064800
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUAT), 00064900
// DISP=SHR 00065000
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUAT), 00065100
// DISP=SHR 00065200
//LKED.SYSIN DD * 00065300
INCLUDE SYSLIB(DSNRLI) 00065400
NAME DSN8DUAT(R) 00065500
//* 00065600
//* STEP 6: PREPARE EXTERNAL FOR GIVEN TIME ALTTIME UDF 00065700
//* 00065800
//PH02US06 EXEC DSNHC,MEM=DSN8DUCT,COND=(4,LT), 00065900
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00066000
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00066100
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00066200
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUCT), 00066300
// DISP=SHR 00066400
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00066500
// DISP=SHR 00066600
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUCT), 00066700
// DISP=SHR 00066800
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUCT), 00066900
// DISP=SHR 00067000
//LKED.SYSIN DD * 00067100
INCLUDE SYSLIB(DSNRLI) 00067200
NAME DSN8DUCT(R) 00067300
//* 00067400
//* STEP 7: PREPARE EXTERNAL FOR CURRENCY UDF 00067500
//* 00067600
//PH02US07 EXEC DSNHC,MEM=DSN8DUCY,COND=(4,LT), 00067700
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00067800
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00067900
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00068000
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUCY), 00068100
// DISP=SHR 00068200
248 Converting from Oracle AIX to DB2 for OS/390

//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00068300
// DISP=SHR 00068400
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUCY), 00068500
// DISP=SHR 00068600
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUCY), 00068700
// DISP=SHR 00068800
//LKED.SYSIN DD * 00068900
INCLUDE SYSLIB(DSNRLI) 00069000
NAME DSN8DUCY(R) 00069100
//* 00069200
//* STEP 8: PREPARE EXTERNAL FOR DAYNAME UDF 00069300
//* 00069400
//PH02US08 EXEC DSNHCPP,MEM=DSN8EUDN,COND=(4,LT), 00069500
// PARM.PC=’HOST(CPP),SOURCE,XREF,MARGINS(1,80),STDSQL(NO)’, 00069600
// PARM.CP=’/CXX SOURCE XREF NOMAR OPTFILE(DD:CCOPTS)’, 00069700
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00069800
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8EUDN), 00069900
// DISP=SHR 00070000
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00070100
// DISP=SHR 00070200
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8EUDN), 00070300
// DISP=SHR 00070400
//CP.CCOPTS DD DSN=SYS1.PROCLIB(DSNHCPPS),DISP=SHR 00070500
//CP.USERLIB DD DSN=DSN!!0.SRCLIB.DATA, 00070600
// DISP=SHR 00070700
//PLKED.SYSDEFSD DD DUMMY 00070800
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8EUDN), 00070900
// DISP=SHR 00071000
//LKED.SYSIN DD * 00071100
INCLUDE SYSLIB(DSNRLI) 00071200
NAME DSN8EUDN(R) 00071300
//* 00071400
//* STEP 9: PREPARE EXTERNAL FOR MONTHNAME UDF 00071500
//* 00071600
//PH02US09 EXEC DSNHCPP,MEM=DSN8EUMN,COND=(4,LT), 00071700
// PARM.PC=’HOST(CPP),SOURCE,XREF,MARGINS(1,80),STDSQL(NO)’, 00071800
// PARM.CP=’/CXX SOURCE XREF NOMAR OPTFILE(DD:CCOPTS)’, 00071900
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00072000
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8EUMN), 00072100
// DISP=SHR 00072200
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00072300
// DISP=SHR 00072400
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8EUMN), 00072500
// DISP=SHR 00072600
//CP.CCOPTS DD DSN=SYS1.PROCLIB(DSNHCPPS),DISP=SHR 00072700
//CP.USERLIB DD DSN=DSN!!0.SRCLIB.DATA, 00072800
// DISP=SHR 00072900
//PLKED.SYSDEFSD DD DUMMY 00073000
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8EUMN), 00073100
// DISP=SHR 00073200
//LKED.SYSIN DD * 00073300
INCLUDE SYSLIB(DSNRLI) 00073400
NAME DSN8EUMN(R) 00073500
//* 00073600
//* STEP 10: PREPARE EXTERNAL FOR TABLE_NAME, TABLE_SCHEMA, 00073700
//* AND TABLE_LOCATION UDF’S 00073800
//* 00073900
//PH02US10 EXEC DSNHC,MEM=DSN8DUTI,COND=(4,LT), 00074000
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00074100
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00074200
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00074300
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUTI), 00074400
// DISP=SHR 00074500
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00074600
// DISP=SHR 00074700
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUTI), 00074800
// DISP=SHR 00074900
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUTI), 00075000
// DISP=SHR 00075100
//LKED.IGNORE DD * 00075200
//LKED.SYSIN DD * 00075300
INCLUDE SYSLIB(DSNRLI) 00075400
NAME DSN8DUTI(R) 00075500
//* 00075600
//* STEP 11: BIND PACKAGE FOR TABLE_NAME, TABLE_SCHEMA, AND 00075700
//* TABLE_LOCATION UDF’S 00075800
//* 00075900
//PH02US11 EXEC PGM=IKJEFT01,COND=(4,LT) 00076000
Sample DB2 for OS/390 jobs 249

//DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA,DISP=SHR 00076100
//SYSTSPRT DD SYSOUT=* 00076200
//SYSPRINT DD SYSOUT=* 00076300
//CEEDUMP DD SYSOUT=* 00076400
//SYSUDUMP DD SYSOUT=* 00076500
//SYSOUT DD SYSOUT=* 00076600
//REPORT DD SYSOUT=* 00076700
//SYSIN DD * 00076800
//SYSTSIN DD * 00076900
DSN SYSTEM(DSN) 00077000
BIND PACKAGE (DSN8DU!!) MEMBER(DSN8DUTI) ACT(REP) ISO(CS) 00077100
END 00077200
//* 00077300
//* STEP 12: EXERCISE THE SAMPLE UDF’S 00077400
//* 00077500
//PH02US12 EXEC PGM=IKJEFT01,COND=(4,LT),DYNAMNBR=20 00077600
//SYSTSPRT DD SYSOUT=* 00077700
//SYSPRINT DD SYSOUT=* 00077800
//SYSUDUMP DD SYSOUT=* 00077900
//SYSTSIN DD * 00078000
DSN SYSTEM(DSN) 00078100
RUN PROGRAM(DSNTEP2) PLAN(DSNTEP!!) - 00078200

LIB(’DSN!!0.RUNLIB.LOAD’) PARMS(’/ALIGN(MID)’) 00078300
END 00078400
//SYSIN DD DSN=DSN!!0.SDSNSAMP(DSNTESU), 00078500
// DISP=SHR 00078600
//* 00078700
//* STEP 13: PREPARE EXTERNAL FOR WEATHER UDF TABLE FUNCTION 00078800
//* 00078900
//PH02US13 EXEC DSNHC,MEM=DSN8DUWF,COND=(4,LT), 00079000
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00079100
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00079200
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00079300
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUWF), 00079400
// DISP=SHR 00079500
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00079600
// DISP=SHR 00079700
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUWF), 00079800
// DISP=SHR 00079900
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUWF), 00080000
// DISP=SHR 00080100
//LKED.IGNORE DD * 00080200
//LKED.SYSIN DD * 00080300
INCLUDE SYSLIB(DSNRLI) 00080400
NAME DSN8DUWF(R) 00080500
//* 00080600
//* STEP 14: PREPARE CLIENT FOR WEATHER UDF TABLE FUNCTION 00080700
//* 00080800
//PH02US14 EXEC DSNHC,MEM=DSN8DUWC,COND=(4,LT), 00080900
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00081000
// PARM.C=’SOURCE RENT XREF MARGINS(1,72)’, 00081100
// PARM.LKED=’MAP,RENT,REUS,AMODE=31,RMODE=ANY’ 00081200
//PC.DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA(DSN8DUWC), 00081300
// DISP=SHR 00081400
//PC.SYSLIB DD DSN=DSN!!0.SRCLIB.DATA, 00081500
// DISP=SHR 00081600
//PC.SYSIN DD DSN=DSN!!0.SDSNSAMP(DSN8DUWC), 00081700
// DISP=SHR 00081800
//LKED.SYSLMOD DD DSN=DSN!!0.RUNLIB.LOAD(DSN8DUWC), 00081900
// DISP=SHR 00082000
//LKED.IGNORE DD * 00082100
//LKED.SYSIN DD * 00082200
INCLUDE SYSLIB(DSNELI) 00082300
INCLUDE SYSLIB(DSNTIAR) 00082400
NAME DSN8DUWC(R) 00082500
//* 00082600
//* STEP 15: BIND PACKAGE & PLAN FOR WEATHER TBL FUNC CLIENT 00082700
//* 00082800
//PH02US15 EXEC PGM=IKJEFT01,COND=(4,LT) 00082900
//DBRMLIB DD DSN=DSN!!0.DBRMLIB.DATA,DISP=SHR 00083000
//SYSTSPRT DD SYSOUT=* 00083100
//SYSPRINT DD SYSOUT=* 00083200
//CEEDUMP DD SYSOUT=* 00083300
//SYSUDUMP DD SYSOUT=* 00083400
//SYSOUT DD SYSOUT=* 00083500
//REPORT DD SYSOUT=* 00083600
//SYSIN DD * 00083700
//SYSTSIN DD * 00083800
250 Converting from Oracle AIX to DB2 for OS/390

DSN SYSTEM(DSN) 00083900
BIND PACKAGE (DSN8DU!!) MEMBER(DSN8DUWC) ACT(REP) ISO(CS) 00084000
BIND PLAN (DSN8UW!!) PKLIST(DSN8DU!!.*) ACT(REP) ISO(CS) SQLRULES(DB2) 00084100
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA!!) - 00084200

LIB(’DSN!!0.RUNLIB.LOAD’) 00084300
END 00084400

B.22 DSNTEJ2D - Sample C program execution using sample tables
//DB2XF JOB (999,POK),’DB2V610X’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=PAOLOR2,TIME=1440,REGION=0M 00000002
/*JOBPARM L=999,SYSAFF=SC63 00000003
//**00010000
//* NAME = DSNTEJ2D *00020000
//* *00030000
//* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *00040000
//* PHASE 2 *00050000
//* C *00060000
//* *00070000
//* LICENSED MATERIALS - PROPERTY OF IBM *00080000
//* 5645-DB2 *00090000
//* (C) COPYRIGHT 1982, 1998 IBM CORP. ALL RIGHTS RESERVED. *00100000
//* *00110000
//* STATUS = VERSION 6 *00120000
//* *00130000
//* FUNCTION = THIS JCL PERFORMS THE PHASE 2 C LANGUAGE SETUP FOR *00140000
//* THE SAMPLE APPLICATIONS. IT PREPARES AND EXECUTES *00150000
//* C BATCH PROGRAMS. *00160000
//* *00170000
//* NOTES = ENSURE THAT LINE NUMBER SEQUENCING IS SET ’ON’ IF *00180000
//* THIS JOB IS SUBMITTED FROM AN ISPF EDIT SESSION *00190000
//* *00200000
//* THIS JOB IS RUN AFTER PHASE 1. *00210000
//* *00220000
//* CHANGE ACTIVITY = *00230000
//**00240000
//* 00250000
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR 00260000
// DD DSN=DSN610.QPP.SDSNLOAD,DISP=SHR 00270000
//* 00280000
//* STEP 1 : PREPARE ERROR MESSAGE ROUTINE 00290000
//PH02DS01 EXEC DSNHC,MEM=DSN8MDG, 00300000
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00310000
// PARM.C=’SOURCE XREF MARGINS(1,72)’, 00320000
// PARM.LKED=’NCAL,MAP,AMODE=31,RMODE=ANY’ 00330000
//PC.DBRMLIB DD DSN=DB2V610X.DBRMLIB.DATA(DSN8MDG), 00340000
// DISP=SHR 00350000
//PC.SYSLIB DD DSN=DB2V610X.SRCLIB.DATA, 00360000
// DISP=SHR 00370000
//PC.SYSIN DD DSN=DSN610.QPP.SDSNSAMP(DSN8MDG), 00380000
// DISP=SHR 00390000
//LKED.SYSLMOD DD DSN=DB2V610X.RUNLIB.LOAD(DSN8MDG), 00400000
// DISP=SHR 00410000
//* 00420000
//* STEP 2 : PREPARE C PHONE PROGRAM 00430000
//PH02DS02 EXEC DSNHC,MEM=DSN8BD3, 00440000
// COND=(4,LT), 00450000
// PARM.PC=’HOST(C),SOURCE,XREF,MARGINS(1,72),STDSQL(NO)’, 00460000
// PARM.C=’SOURCE LIST MARGINS(1,72)’, 00470000
// PARM.LKED=’AMODE=31,RMODE=ANY,MAP’ 00480000
//PC.DBRMLIB DD DSN=DB2V610X.DBRMLIB.DATA(DSN8BD3), 00490000
// DISP=SHR 00500000
//PC.SYSLIB DD DSN=DB2V610X.SRCLIB.DATA, 00510000
// DISP=SHR 00520000
//PC.SYSIN DD DSN=DSN610.QPP.SDSNSAMP(DSN8BD3), 00530000
// DISP=SHR 00540000
//LKED.SYSLMOD DD DSN=DB2V610X.RUNLIB.LOAD(DSN8BD3), 00550000
// DISP=SHR 00560000
//LKED.RUNLIB DD DSN=DB2V610X.RUNLIB.LOAD, 00570000
// DISP=SHR 00580000
//LKED.SYSIN DD * 00590000

INCLUDE SYSLIB(DSNELI) 00600000
INCLUDE RUNLIB(DSN8MDG) 00610000

//* 00620000
//* STEP 3 : BIND AND RUN PROGRAMS 00630000
Sample DB2 for OS/390 jobs 251

//PH02DS03 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 00640000
//DBRMLIB DD DISP=SHR,DSN=DB2V610X.DBRMLIB.DATA 00650000
//SYSTSPRT DD SYSOUT=* 00660000
//SYSPRINT DD SYSOUT=* 00670000
//CEEDUMP DD SYSOUT=* 00680000
//SYSUDUMP DD SYSOUT=* 00690000
//SYSOUT DD SYSOUT=* 00700000
//REPORT DD SYSOUT=* 00710000
//SYSIN DD * 00720000
GRANT BIND, EXECUTE ON PLAN DSN8BD61 TO PUBLIC; 00730000
//SYSTSIN DD * 00740000
DSN SYSTEM(DB2X) 00750000
BIND PLAN(DSN8BD61) MEMBER(DSN8BD3) ACT(REP) ISOLATION(CS) 00760000
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) - 00770000

LIB(’DB2V610X.RUNLIB.LOAD’) 00780000
RUN PROGRAM(DSN8BD3) PLAN(DSN8BD61) - 00790000

LIB(’DB2V610X.RUNLIB.LOAD’) 00800000
END 00810000
//CARDIN DD * 00820000
L* 00830000
LJO% 00840000
L%SON 00850000
LSMITH 00860000
LBROWN ALAN 00870000
LBROWN DAVID 00880000
U 0002304265 00890000
//* 00900000
252 Converting from Oracle AIX to DB2 for OS/390

Appendix C. Sample data preparation program

This program provides a quick and dirty solution to the need of calculating the
length of variable length fields before passing it as input to the DB2 LOAD utility.

The following is a REXX program for adding the two binary bytes of length data for use by the
DB2 load utility./* REXX - Prepare variable length data for DB2 LOAD -----------------*/
/* */
/* Description: Prepare input for DB2 LOAD adding length field to */
/* variable length data */
/* */
/* Input: CTLIN - Description of Input data */
/* DATAIN - Input data to be converted */
/* Output: SYSPRINT - Messages */
/* DATAOUT - Output data for DB2 LOAD */
/* CTLOUT - Description of Output data ... da fare */
/* */
/*-- C.Venturini */

ExitRC = 0 /* Init Return Code = OK */
IoMeC = Sysvar(’SYSICMD’) /* Nome di questa Exec */
EnvXe = Sysvar(’SYSENV’) /* Environment: FORE o BACK */

If EnvXe = "FORE" Then
Do
Say "This eXec must be run in BATCH only"
EXIT 16

End

/* Try writing to DDName DATAOUT ------------------------------*/
"EXECIO * DISKW DATAOUT (FINIS STEM BegLine.)"
If RC > 4 Then
Do
Say "Error writing DDname DATAOUT"
Say "Return Code from EXECIO:" RC
AllocError = 1

End

/* Try writing to DDName CTLOUT -------------------------------*/
"EXECIO * DISKW CTLOUT (FINIS STEM BegLine.)"
If RC > 4 Then
Do
Say "Error writing DDname CTLOUT"
Say "Return Code from EXECIO:" RC
AllocError = 1

End

/* Read data from DDName CTLIN --------------------------------*/
"EXECIO * DISKR CTLIN (FINIS STEM CtIn.)"
If RC > 4 Then
Do
Say "Error reading DDname CTLIN"
Say "Return Code da EXECIO:" RC
AllocError = 1

End

/* Read data from DDName DATAIN -------------------------------*/
"EXECIO * DISKR DATAIN (FINIS STEM DatIn.)"
If RC > 4 Then
Do
Say "Error reading DDname DATAIN"
Say "Return Code da EXECIO:" RC
AllocError = 1

End

If AllocError = 1 Then
Do
Say "Error accessing files ... quitting ..."
EXIT 16

End

oCtl. = "" ; oCtlIx = 0 ; oCtl.0 = 0 /* Clear output array */
© Copyright IBM Corp. 1999 253

oCtlIx = oCtlIx+1
oCtl.oCtlIx = "* Control file describing converted data (DATAOUT)"
oCtlIx = oCtlIx+1
oCtl.oCtlIx = "* (same format as CTLIN)"

/* Clear arrays to be loaded from CTLIN -----------------------*/
cBeg. = "" ; cLen. = "" ; cTyp. = "" ; j = 0
oBeg = 1 /* init output position */

/* Load CTLIN into arrays doing some validity check -----------*/
Do i = 1 to CtIn.0
If Left(CtIn.i,1) = "*" Then Iterate /* Skip comment line */
j = j+1
Parse VAR CtIn.i w1 w2 w3 .
If ((w3 <> "F") & (w3 <> "V")) Then
Do
Say "Wrong data in CTLIN ..."
Say "Type must be ’F’ or ’V’ ... "
Exit 8

End
cBeg.j = Strip(w1)
cLen.j = Strip(w2)
cTyp.j = Strip(w3)
oLen = cLen.j
oTyp = cTyp.j
oCtlIx = oCtlIx+1
oCtl.oCtlIx = oBeg oLen oTyp
If w3 = "V" Then
Do
oBeg = oBeg+oLen+2

End
Else
Do
oBeg = oBeg+oLen

End
End
NumFields = j

oCtl.0 = oCtlIx
"EXECIO * DISKW CTLOUT (FINIS STEM oCtl.)"
If RC > 4 Then
Do
Say "Error writing DDname CTLOUT"
Say "Return Code from EXECIO:" RC
EXIT 8

End

oData. = "" ; oDataIx = 0 ; oData.0 = 0 /* Clear output array */

/* Convert DATAIN into DATAOUT --------------------------------*/
Do i = 1 to DatIn.0
wOut = "" /* clear output row */
Do j = 1 to NumFields
wField = Substr(DatIn.i,cBeg.j,cLen.j)
If cTyp.j = "V" Then
Do
wF = Strip(wField) /* remove blanks */
wL = Length(wF) /* get length */
If wL = 0 Then wL = 1 /*gag*/
wLX1 = Right(’000’D2X(wL),4) /* convert to hex */
wLX2 = X2C(wLX1) /* ... binary */
wOut = wOut³³wLX2³³wField /* append length & data */

End
Else
Do
If wField = "" Then wField = copies(’ ’,clen.j) /*gag*/
wOut = wOut³³wField /* append data to out row */

End
End
oDataIx = oDataIx+1
oData.oDataIx = wOut

End

oData.0 = oDataIx
"EXECIO * DISKW DATAOUT (FINIS STEM oData.)"
If RC > 4 Then
Do
Say "Error writing DDname DATAOUT"
254 Converting from Oracle AIX to DB2 for OS/390

Say "Return Code from EXECIO:" RC
EXIT 8

End

EXIT 0
Sample data preparation program 255

256 Converting from Oracle AIX to DB2 for OS/390

Appendix D. OS/390 TSO tools and tips

In this appendix we have included some very basic tools and tips on navigation
within TSO for those that approach TSO for the first time.

D.1 TSO and ISPF

The umbrella application which you will use inside of TSO is the Interactive
Structured Programming Facility (ISPF). ISPF is menu driven, and you can
navigate to any point inside it using the menus. Once you have become familiar
with its various options you can use the fastpath facility. A fastpath command is
signaled by using "=" in front of the path to the option. Fastpath navigation may be
done from the command line or from any line with leader dots. The option is
expressed as a number or string of numbers that designate the menu and menu
option that it represents. The numbers are separated by dots. As shown in Figure
117, the path to the data set option is menu 3 option 2. This is typed as 3.2. If you
were in the edit option (option 2) and you wanted to go to the data set utility 3.2
you would type that, with an "=" on the command line.

Figure 117. Using a fastpath command

The command could be typed in at the member line, as well, since it has "leader
dots".

TSO
Logging on to TSO will be the first step. You will usually see some kind of panel
that lists your options and will allow you to enter that option on a command line.

At the ITSO the system we used was SC63TS. You would enter this on the
command line and press enter. Figure 118 is an example screen.

Menu RefList RefMode Utilities LMF Workstation Help
ss

Edit Entry Panel
Command ===> =3.2

ISPF Library:
Project . . . PAOLOR2
Group CIPROS
Type JCL
Member . . . (Blank or pattern for member selection list)

Other Partitioned or Sequential Data Set:
Data Set Name . . .
Volume Serial . . . (If not cataloged)

Workstation File:
File Name

Options
Initial Macro / Confirm Cancel/Move/Replace
Profile Name Mixed Mode
Format Name Edit on Workstation
Data Set Password . . Preserve VB record length
© Copyright IBM Corp. 1999 257

Figure 118. Application selection panel

On the next panel in Figure 119, enter your userid and press enter.

Figure 119. Enter userid panel

Then type in your password. Your password will not appear. Then press enter, as
shown in Figure 120.

Figure 120. Password panel

EMSP03 ITSO Application Selection Help: 293-1660 Term : TCP38025
Date: 07/12/99 Time : 20:39:14
User: TCP38025 Group : DLPUBGRP

Esc PA3 Cmd PF10 Prefix $$ Print Broadcast: Printer:
Name-----Status-M/B-JmpK | Name-----Status-M/B-JmpK | Name-----Status-M/B-JmpK
ARGENTIN 11:19 PF22 | HONGKONG 11:18 PF22 | RALYDPD6 11:16 PF22
ASEAHONE 11:18 PF22 | IBMNET 11:18 PF22 | RETAIN 11:19 PF22
AUSTRALI 11:18 PF22 | IMS510 11:18 PF22 | RETAIN1 11:19 PF22
AUSTRIA 11:18 PF22 | IRELAND 11:18 PF22 | SCSCPAAV 11:18 PF22
BRAZIL 11:18 PF22 | IS2 11:19 PF22 | SCSCPAAY 11:18 PF22
CANADA 11:19 PF22 | MMS 11:19 PF22 | SCSCPAAZ 11:18 PF22
CCDNWP 11:18 PF22 | NETVMVS 11:18 PF22 | SCSCPAA1 20:00 PF22
DENMARK 11:18 PF22 | NETVNET 11:18 PA2 | SCSCPAA2 11:18 PF22
EHONE2 11:18 PF22 | NETVPOK 11:18 PF22 | SCSCPAA3 11:18 PF22
EHONE4 11:18 PF22 | NETVVMXA 11:18 PF22 | SCSCPAA4 11:18 PF22
EMEA 11:18 PF22 | NORWAY 11:18 PF22 | SCSCPAA5 11:18 PF22
FINLAND 11:18 PF22 | PORTUGAL 11:18 PF22 | SCSCPAA6 11:18 PF22
FUJISAWA 11:19 PF22 | RALAPPS 10:00 PF22 | SCSCPAA9 11:18 PF22
HONEFB 11:19 PF22 | RALTSO 09:37 PF22 | SCSCPCA1 11:18 PF22
- Enter application name or a command. (LOGOFF terminates all sessions..) ----

==> sc63ts______________ ________ ________ ________ Page 001
F1=Help PF2=Lang PF3=Disc PF4=Keys PF7=Backw PF8=Forw

IKJ56700A ENTER USERID -
paolor1

Enter LOGON parameters below: RACF LOGON parameters:

Userid ===> PAOLOR1

Password ===> New Password ===>

Procedure ===> IKJACCNT Group Ident ===>

Acct Nmbr ===> ACCNT#

Size ===> 6072

Perform ===>

Command ===>

Enter an 'S' before each option desired below:
-Nomail -Nonotice -Reconnect -OIDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a '?' in any entry field
258 Converting from Oracle AIX to DB2 for OS/390

If you are successful you will see a screen like the one in Figure 121. Here you
type in the name of the CLIST that will execute your ISPF session and press
enter. For ITSO it is ISPPDF

Figure 121. TSO READY prompt

You do not need to enter your site’s CLIST name at the ready prompt if
automatically provided at logon time at your installation by your system
programmer.

At this point, a master menu will be displayed with a number of options or the
CLIST may take you directly to the ISPF Primary Option Menu. This menu will
vary from site to site with more or less options displayed on it. At the ITSO it
appears like the menu in Figure 122.

Figure 122. ISPF Primary Option Menu

At this point you are ready to use ISPF.

Tip:
ISPF uses PF keys to do a number of functions, such as paging up and down. To
find out what they are at your site type the word "KEYS" on the command line and
a panel listing them will be displayed. To return to the previous screen type "end"
on the command line or press PF3.

ICH70001I PAOLOR1 LAST ACCESS AT 19:49:03 ON MONDAY, JULY 12, 1999
PAOLOR1 LOGON IN PROGRESS AT 21:04:05 ON JULY 12, 1999
===
= =
= This is the ITSO POK test sysplex. =
= Use the CLIST ISPPDF to access ISPF. =
= Contact Bob Haimowitz for assistance (T/L 541-3529). =
= You have no one to blame but yourself. =
= =
= SC63 and SC64 are running OS/390 V2R7 with JES2. =
= SC65 is running OS/390 V2R8 with JES3 primary, =
= JES2 secondary. =
= 13 Jun 99 =
===
READY
isppdf

Menu Utilities Compilers Options Status Help
--

ISPF Primary Option Menu
Option ===>

0 Settings Terminal and user parameters User ID . : PAOLOR1
1 View Display source data or listings Time. . . : 21:11
2 Edit Create or change source data Terminal. : 3278A
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : PDF
6 Command Enter TSO or Workstation commands TSO logon : IKJACCT
7 Dialog Test Perform dialog testing TSO prefix: PAOLOR1
8 LM Facility Library administrator functions System ID : SC63
9 IBM Products IBM program development products MVS acct. : ACCNT#
10 SCLM SW Configuration Library Manager Release . : ISPF 4.5
11 Workplace ISPF Object/Action Workplace

Enter X to Terminate using log/list defaults

F1=Help F3=Exit F10=Actions F12=Cancel
OS/390 TSO tools and tips 259

Logoff is achieved by using PF3 to back out of the session you are in till you
reach the ready prompt. At the ready prompt type in logoff. You will be returned to
the original menu screen shown in Figure 123.

Figure 123. Logoff command from the TSO READY prompt

ISPF/PDF
This is a powerful and comprehensive set of tools. The OS/390 V2R7.0 TSO/E
Command Reference, SC28-1969-02, and OS/390 V2R7.0 TSO/E User's Guide,
SC28-1968-01, cover these and other topics in detail. See Table 40.

Table 40. AIX to OS/390 system utility mapping

Data set utility:
The data set utilities will help you create and manage data sets in OS/390. In 6.4,
“Creating a PDS on OS/390” on page 117 we discuss option 3.2 and how to use
it.

Edit
Option 2 off of the Primary Menu is another place you will spend a lot of time.
This is the editor. With it you can edit all the various kinds of data sets common to
OS/390 except for VSAM. VSAM has its own set of utilities.

The option 2 main panel looks like this the panel in Figure 124.

Tool AIX OS/390

Editor vi ISPF Editor

List ls ISPF Data Set Utility Dslist

New
directory/PDS

mkdir ISPF Data Set Utility Data Set

New file/member touch, vi For a PDS open the member as its name in edit.
For a new file, create it in the data set utility and
open the file as its name in edit.

Move mv ISPF Data Set Utility Move/Copy

Copy cp ISPF Data Set Utility Move/Copy

Delete rmdir, del ISPF Data Set Utility Data Set

PAOLOR1.SC63.SPFLOG1.LIST has been deleted.
READY
logoff
260 Converting from Oracle AIX to DB2 for OS/390

Figure 124. Edit entry panel

From this panel you can enter the name of a data set to be modified. Mostly, you
will be using PDS and the member parameter because that is where you will type
in the name of a program, for example, and press enter.

If you intend to edit a new one just typing in the name will open a member to be
used. If you should save that member before typing anything, nothing is created.

If you leave the member line blank and press enter the PDS index listing is
displayed. Various information about each member is given, such as, the last time
it was changed. By running the cursor down the left side of the panel to the
member you want, and pressing enter, you will be taken into the editor.

Either way you select a member, the edit panel looks like the panel in Figure 125.

Figure 125. ISPF Edit panel

Menu RefList RefMode Utilities LMF Workstation Help
ss

Edit Entry Panel
Command ===>

ISPF Library:
Project . . . CIPROS
Group JCL
Type LOAD
Member . . . (Blank or pattern for member selection list)

Other Partitioned or Sequential Data Set:
Data Set Name . . .
Volume Serial . . . (If not cataloged)

Workstation File:
File Name

Options
Initial Macro / Confirm Cancel/Move/Replace
Profile Name Mixed Mode
Format Name Edit on Workstation
Data Set Password . . Preserve VB record length

F1=Help F3=Exit F10=Actions F12=Cancel

File Edit Confirm Menu Utilities Compilers Test Help
sss
EDIT CIPROS.JCL.LOAD(ANECOPY) - 01.00 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 //CPRSCOPY JOB (999,POK),'PAOLOR2 ',CLASS=A,MSGCLASS=T,
000002 // NOTIFY=PAOLOR2,TIME=1440,REGION=0M
000003 /*JOBPARM L=999,SYSAFF=SC63
000004 //JOBLIB DD DSN=DSN610A.SDSNEXIT.SC63,DISP=SHR
000005 // DD DSN=DSN610A.SDSNLOAD,DISP=SHR
000006 //*
000007 //* STEP 2: ESTABLISH A QUIESCE POINT
000008 //*STEP002 EXEC DSNUPROC,PARM='DB2X,DSNTEX',COND=(4,LT)
000009 //* NOTE: CONDITION CODE 4 INDICATES AN IMAGE COPY CANNOT BE TAKEN
000010 //*SYSUT1 DD UNIT=SYSALLDA,SPACE=(40,(20,20),,,ROUND)
000011 //*SYSIN DD *
000012 //*
000013 //* QUIESCE TABLESPACE CIPROS.CPRSBASE
000014 //*
000015 //* STEP 3: TAKE IMAGE COPY OF SAMPLE TABLES
000016 //STEP003 EXEC DSNUPROC,PARM='DB2X,DSNTEX',COND=(4,LT)
000017 //DSNTRACE DD SYSOUT=*
000018 //SYSCOPY DD DSN=CIPROS.SYSCOPY.CPRSBASE,
F1=Help F3=Exit F5=Rfind F6=Rchange F12=Cancel
OS/390 TSO tools and tips 261

Edit commands may be entered in the command column and on the command
line. The command column is the column of numbers down the left side of the
panel. The numbers can be over-typed with commands. See the manuals
mentioned earlier for a complete set of commands and their use.

D.2 SDSF output messages

This section discusses the process we used to view messages for our jobs held in
the JES2 output queue. The following figures are used to demonstrate the
process we used to view our messages.

After starting SDSF, step one is to select option H to look at jobs held in the JES2
output queue. See Figure 126.

Figure 126. SDSF step one

Step two is to place a question mark next to your job name, then press enter, as
shown in Figure 127.

Display Filter View Print Options Help

HQX1900------------------ SDSF PRIMARY OPTION MENU --------------------------
COMMAND INPUT ===> h SCROLL ===> CSR

LOG - Display the system log
DA - Display active users in the sysplex
I - Display jobs in the JES2 input queue
O - Display jobs in the JES2 output queue
H - Display jobs in the JES2 held output queue
ST - Display status of jobs in the JES2 queues
PR - Display JES2 printers on this system
INIT - Display JES2 initiators on this system
MAS - Display JES2 members in the MAS
LINE - Display JES2 lines on this system
NODE - Display JES2 nodes on this system
SO - Display JES2 spool offload for this system

Licensed Materials - Property of IBM

5647-A01 (C) Copyright IBM Corp. 1981, 1997. All rights reserved.
US Government Users Restricted Rights - Use, duplication or

PF 1=ifind 2=rchange 3=END 4=swap 5=split 6=help
PF 7=UP 8=DOWN 9=SWAP 10=LEFT 11=RIGHT 12=RETRIEVE
262 Converting from Oracle AIX to DB2 for OS/390

Figure 127. SDSF step two

Step 3 is to place an S next to the DDNAME of the DD you want to view, then
press enter. We viewed the following DDNAMEs in Figure 128 for the following
messages:

• JESYSMSG for JCL messages

• SYSTERM for precompile messages

• SYSCPRT for compile messages

• SYSPRINT for link messages

Figure 128. SDSF step three

Display Filter View Print Options Help

SDSF HELD OUTPUT DISPLAY ALL CLASSES LINES 23,818 LINE 1-3 (3)
COMMAND INPUT ===> SCROLL ===> CSR
NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-
? CPRSSQLC JOB09641 PAOLOR3 64 T HOLD LOCAL 16,837

CPRSGLOB JOB09642 PAOLOR3 96 T HOLD LOCAL 6,667
CPRSRTDI JOB09643 PAOLOR3 144 T HOLD LOCAL 314

PF 1=ifind 2=rchange 3=END 4=swap 5=split 6=help
PF 7=UP 8=DOWN 9=SWAP 10=LEFT 11=RIGHT 12=RETRIEVE

Display Filter View Print Options Help

SDSF JOB DATA SET DISPLAY - JOB CPRSSQLC (JOB09641) LINE 1-6 (6)
COMMAND INPUT ===> SCROLL ===> CSR
NP DDNAME STEPNAME PROCSTEP DSID OWNER C DEST REC-CNT PAGE

JESMSGLG JES2 2 PAOLOR3 T LOCAL 19
JESJCL JES2 3 PAOLOR3 T LOCAL 77
JESYSMSG JES2 4 PAOLOR3 T LOCAL 124
SYSPRINT PC 102 PAOLOR3 T LOCAL 5,294
SYSTERM PC 103 PAOLOR3 T LOCAL 8

s SYSCPRT C 106 PAOLOR3 T LOCAL 11,315
SYSOUT PLKED 108 PAOLOR3 T LOCAL 320

SYSPRINT LKED 110 PAOLOR3 T LOCAL 419

PF 1=ifind 2=rchange 3=END 4=swap 5=split 6=help
PF 7=UP 8=DOWN 9=SWAP 10=LEFT 11=RIGHT 12=RETRIEVE
OS/390 TSO tools and tips 263

264 Converting from Oracle AIX to DB2 for OS/390

Appendix E. Special notices

This publication is intended to help managers and professionals understand and
evaluate the activities involved in performing a database conversion from Oracle
7 and AIX to DB2 UDB for OS/390 Version 6. The information in this publication is
not intended as the specification of any programming interfaces that are provided
by DB2 UDB for OS/390 Version 6. See the PUBLICATIONS section of the IBM
Programming Announcement for DB2 UDB for OS/390 Version 6 for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 1999 265

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

Oracle, Net8, SQL*Plus, SQL*Net are trademarks of Oracle Corporation in the
United States and/or other countries and is used by IBM Corporation under
license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list of
Intel trademarks see www.intel.com/tradmarx.htm)

Uniface and Polyserver are registered trademarks of Compuware Company in the
United States and/or other countries and is used by IBM under special
agreement.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

AIX AS/400
AT CT
DATABASE 2 DataJoiner
DB2 Distributed Relational Database

Architecture
DRDA eNetwork
GDDM IBM
IMS Intelligent Miner
MQ MQSeries
MVS/ESA Netfinity
OpenEdition OS/2
OS/390 QMF
RACF RETAIN
RMF RS/6000
S/390 SP
SP1 System/390
VisualAge XT
3090 3890
266 Converting from Oracle AIX to DB2 for OS/390

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.
Special notices 267

268 Converting from Oracle AIX to DB2 for OS/390

Appendix F. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 International Technical Support Organization publications

For information on ordering these ITSO publications see “How to get ITSO
redbooks” on page 273.

• Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the
DB2 Stored Procedure Builder, SG24-5485

• Wow! DRDA Supports TCP/IP: DB2 Server for OS/390 and DB2 Universal
Database, SG24-2212

• DATABASE 2 for AIX Conversion Guide Oracle 7.1 to DB2 Version 2,
SG24-2567

• Planning for Conversion to the DB2 Family: Methodology and Practice,
GG24-4445

• DB2 UDB for OS/390 Version 6 Performance Topics, SG24-5351

• Porting Applications to the OpenEdition MVS Platform, GG24-4473

• DataJoiner Implementation and Usage Guide, SG24-2566

• Mining Relational and Nonrelational Data with IBM Intelligent Miner for Data
Using Oracle SPSS and SAS As Sample Data Sources, SG24-5278

• Ready for e-business: OS/390 Security Server Enhancements, SG24-5158

• Selecting a Server - The Value of S/390, SG24-4812-01

F.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 269

F.3 Other publications

These publications are also relevant as further information sources:

• DB2 UDB for OS/390 Version 6 SQL Reference, SC26-9014

• DB2 UDB for OS/390 Version 6 Administration Guide, SC26-9003

• DB2 UDB for OS/390 Version 6 Installation Guide, GC26-9008

• DB2 UDB for OS/390 Version 6 Command Reference, SC26-9006

• DB2 UDB for OS/390 Version 6 Utility Guide and Reference, SC26-9015

• "DB2 UDB for OS/390 Version 6 ODBC Guide and Reference, SC26-9005

• DB2 UDB for OS/390 Version 6 Messages and Codes, GC26-9011

• DB2 UDB for OS/390 Version 6 Application Programming and SQL Guide,
SC26-9004

• OS/390 V2R6.0 C/C++ User’s Guide, SC09-2361-03

• AIX Version 4.2 Installation Guide, SC23-1924

• AIX Version 4 System Management Guide: Operating System and Devices,
SC23-2525

• AIX Version 4.2 Network Installation Management Guide and Reference,
SC23-1926

• AIX Version 4 System User’s Guide: Communications and Networks,
SC23-2545

• AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

• ORACLE7 The Complete Reference, G. Koch and K. Loney, Oracle Press,
ISBN 0-07-882285-8

• Oracle7 Release 7.3 for AIX Installation Guide, A43771-1

• Oracle7 Programmer's Guide to the Pro*C Precompiler, A21021-2

• Understanding SQL*Net Release 2.3, A42484-1

• OS/390 eNetwork Communications Server: IP Configuration, SC31-8513

• OS/390 V2R7.0 MVS Planning: Workload Management, GC28-1761-08

• OS/390 V2R7.0 MVS Workload Management Services, GC28-1773-06

• OS/390 V2R7.0 TSO/E User's Guide, SC28-1968-01

• OS/390 V2R7.0 TSO/E Command Reference, SC28-1969-02

• OS/390 V2R7.0 Planning for Installation, GC28-1726-06

• OS/390 eNetwork Communications Server: IP Configuration, SC31-8513
270 Converting from Oracle AIX to DB2 for OS/390

F.4 Web sites

These web sites provide further up-to-date information sources:

• IBM Home Page

• http://www.ibm.com/

• ITSO Home Page

• http://www.redbooks.ibm.com/

• DB2 for OS/390 Home Page

• http://www.software.ibm.com/data/db2/os390/

• DB2 Family

•http://www.software.ibm.com/data/db2

• DB2 Family Performance

•http://www.software.ibm.com/data/db2/performance
Related publications 271

272 Converting from Oracle AIX to DB2 for OS/390

How to get ITSO redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 273

IBM redbook fax order form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
274 Converting from Oracle AIX to DB2 for OS/390

List of abbreviations

AIX Advanced Interactive
eXecutive from IBM

APAR authorized program analysis
report

ARM automatic restart manager

ASCII American National Standard
Code for Information
Interchange

BLOB binary large objects

CCSID coded character set
identifier

CEC central electronics complex

CD compact disk

CF coupling facility

CFRM coupling facility resource
management

CLI call level interface

CPU central processing unit

CSA common storage area

DASD direct access storage device

DB2 PM DB2 performance monitor

DBAT database access thread

DBD database descriptor

DBRM database request module

DCL data control language

DDCS distributed database
connection services

DDF distributed data facility

DDL data definition language

DML data manipulation language

DNS domain name server

DRDA distributed relational database
architecture

EA extended addressability

EBCDIC extended binary coded
decimal interchange code

ECS enhanced catalog sharing

ECSA extended common storage
area

EDM environment descriptor
management

ERP enterprise resource planning
© Copyright IBM Corp. 1999
ESA Enterprise Systems
Architecture

GB gigabyte (1,073,741,824
bytes)

GUI graphical user interface

IBM International Business
Machines Corporation

ICF integrated coupling facility

ICMF internal coupling migration
facility

IFCID instrumentation facility
component identifier

IFI instrumentation facility
interface

IRLM internal resource lock
manager

ISPF interactive system productivity
facility

I/O input/output

ITSO International Technical
Support Organization

JDBC Java Database Connectivity

JFS journaled file systems

KB kilobyte (1,024 bytes)

LPAR logically partitioned mode

LOB large object

LRSN log record sequence number

LVM logical volume manager

MB megabyte (1,048,576 bytes)

OBD object descriptor in DBD

ODBC Open Data Base Connectivity

OS/390 Operating System/390

PDS partioned data set

PTF program temporary fix

QMF Query Management Facility

RACF Resource Access Control
Facility

RBA relative byte address

RID record identifier

RS read stability

RR repeatable read

SMIT System Management
Interface Tool
275

SPB DB2 Stored Procedure
Builder

SQLJ Structured Query Language in
Java

Sysplex system complex

TCP/IP Transmission Control
Protocol/Internet Protocol

TSO time-sharing option

UDB universal database

UDF user-defined function

UDT user-defined data type

URL uniform resource locator

WLM workload manager
276 Converting from Oracle AIX to DB2 for OS/390

Index

A
AIX command

lscfg 46
lspv 46
mkgroup 47
mklv 48
mkuser 48
oslevel 45

ALIAS 89
alias 87
ALL_TAB_PRIVS 92
ALTER TABLE ADD CHECK 88
ALTER TABLE ADD CONSTRAINT FOREIGN KEY 84
ALTER TABLE ADD CONSTRAINT UNIQUE 81
ALTER TABLE ADD FOREIGN KEY 84
ALTER TABLE ADD PRIMARY KEY 76, 81
application conversion 141

proof of concept 141
tasks 141

application conversion plan 38
application test 187
ARRAYSIZE 112
auxiliary table 77

B
backup and recovery strategy 59
binary fields 114
BLOB 76
business reasons and requirements 16

C
change control plan 39
CHAR 79
CHAR(n) FOR BIT DATA 115
CHECK CONSTRAINT 88
CHECK DATA 121
check pending status 122
CHKP 124
CIPROS

architecture 5
batch programs 8
bridges 7, 54
components 6
conversion objects 9
description 5
example of Laboratory table 57
example of Reference table 57
graphical user interface 8
Oracle database 50, 52
Oracle table spaces 48
Poller 55
process loader 55
project environment 6
relational data model 6
scope of work 9
tables 7, 56
© Copyright IBM Corp. 1999
CIPROS dispatcher 54
CLOB 76
Compuware Uniface/Polyserver 8
Configuring DataJoiner to access DB2 133
CONSTRAINT 81
conversion

architectural choices 10
conversion effort 146
conversion method

checkpoints 28
deliverables 32
endpoint 28

conversion methodology 13
conversion methods 26
conversion of index definitions 81
conversion of table definitions 78
conversion process 13

stages 13
COPY 121, 124
CREATE AUXILIARY TABLE 77
CREATE INDEX 82
CREATE LOB TABLESPACE 77
CREATE SEQUENCE 104
CREATE UNIQUE INDEX 81
creating plans and packages 87
cross reference 36
CURRENT RULES 85

D
data cleaning 28
data conversion 109
data conversion plan 37
data files 46
data layout 36
data migration test 185
data type comparison 71
database conversion 61
database definition test 184
DataJoiner 3, 127
DataJoiner server mapping 132
DB2 data types 70
DB2 DATE 73
DB2 DDL 65
DB2 environment 34, 61
DB2 installation 61
DB2 physical design 65
DB2 sample libraries 62
DB2 sample user-defined functions 74
DB2 segmented table space 66
DB2 Stored Procedure Builder 103
DB2 TIME 73
DB2 TIMESTAMP 73
DB2 UDFs 63
DBADM 87
decision to convert 1
default table space 49
defining the strategy 14
277

deliverables 32
DISPLAY 125
DNSTEJ2D 62
DSNTEJ1 62
DSNTEJ2D 251
DSNTEJ2U 63, 240
DSNTIAD 80, 84, 85, 87, 93
DSNTIJUZ 236
DSNTINST 62
DUAL 77
dummy table 77

E
ENFORCE CONSTRAINTS 121
example of a General table 56
example of a Process table 58
exceptions in using DataJoiner 136
EXTERNAL(n) 124

F
FLOAT 74, 76
FOR EACH ROW 94
FOR EACH STATEMENT 94
foreign key definition 85
function test 183
functions

additional DB2 100
comparing Oracle and DB2 95

G
General tables 56
GRANT 86

H
hex on 123

I
implementation and cutover 43
implementation plans 37
incompatibilities 27, 107
INDDN 123
INSERT 121
installing DataJoiner 127
INTEGER 74, 76
inventory 35
ISPF 257
ISPF/PDF 149, 260

L
laboratory loader 55
laboratory loader program 54
Laboratory tables 56
LENGTH 75
LENGTH2 75
LINESIZE 112
LOAD 121

LOAD VARCHAR data preparation program 253
LOB 77
locating target modules 147
LOG NO 121, 123
Logging on to TSO 257
logging on to TSO 257
logical volume 46
LONG 76, 112
long names 75
LONG RAW 76
ls -R 144

M
migration resources 30
migration tools 29
mirrored logical volume 48

N
NO CASCADE BEFORE 94
NOT NULL 81
NULL 76
NULLIF 124
NUMBER 74
NUMBER(n) 76

O
ON DELETE CASCADE 85
ON DELETE NO ACTION 85
operators

comparing Oracle and DB2 94
Oracle data types 56, 69, 70
Oracle database implementation 46
Oracle DATE 73
Oracle formatting

DECODE 110
DESCRIBE 111
RPAD 110

Oracle system objects 49
Oracle table spaces 48

P
PACKAGE 104
packages in Oracle and DB2 104
partitioned data sets 60
pending status 124
performance plan 39
personnel 32
portfolio analysis 18

deliverables 23
position 122
PPIS architecture 5
ProC 150, 151, 152, 154
process loader 55
process loader program 54
Process tables 56
program inventories 143
project plan 40

tasks 40
278 Converting from Oracle AIX to DB2 for OS/390

project review 41
project scenario 5
proof of concept 32, 40

iterative tasks 36
once-only tasks 33
tested 41

pseudo table 77

R
RAW data 112
raw devices 46, 48
RAW(n) 115
RBDP 124
RDBMS design 64
RECP 124
redo log 49
Reference tables 56
resources 32
RESUME YES 124
ROWID 74
RS/6000 45

S
sample JCL

BIND with PACKAGEs 231
compile 215
compile, prelink and link 217
conversion of data with REXX program 234
creation of indexes 220
creation of views 222
DCLGEN 227
dropping database and table spaces 222
executing REXX program 231
initial LOAD 228
precompile and compile 216
REBUILD INDEX 227
RECOVER 226
REORG, RUNSTATS and COPY 223
running programs RTDIN and LABIN 218
second LOAD 230
synonym creation 221
to define storage group, database, table spaces and ta-
bles 218
to execute alter tables for foreign keys 221
user defined functions 240

sample script
ALTER TABLE ADD CHECK 200
ALTER TABLE FOREIGN KEY DDL 197
CREATE INDEX DDL and ALTER TABLE DDL 194
CREATE NICKNAME for DataJoiner 208
CREATE TABLE DDL 191
CREATE VIEW 204
formatting with RPAD and DECODE 206
from DCLGEN to C MEMSET 211
from DCLGEN to C STRCPY 212
from DCLGEN to C STRUCTUREs 210
GRANT 198
PRIVATE SYNONYM 203
PUBLIC SYNONYM 201

sample script functions 191
SC26 270
SCRATCHPAD 105
security 59
sequences 104
SET MAXDATA 112
SMALLINT 76
source system environment 45
SQL Procedure Language 93
SQL Procedures language 103
SQL*Net 130
SQL*Plus 109
starting the DB2 subsystem 126
stopping the DB2 subsystem 126
stored procedures 103

DB2 Stored Procedure Builder 103
SQL Procedures 103

strategy definition 23
deliverables 25
tasks 24

string concatenation 113
strongly typed 103
survey 15
SYNONYM 89

conversion 90
Oracle public and private 90

SYSIBM.SYSCOLUMNS 75
system environment 45

source 45
target 59

system group 47
system users 48

T
target system environment 58
tasks 18, 26
TERMINATE 125
test

contents 183
levels 183

test plan 38
test techniques 183
testing cycle 29
triggers 93
TSO logon 257

U
unit test 189
unload data from Oracle 109
USER 92
USER_SYNONYMS 90
user-defined function 103
user-defined types 103
using DataJoiner to migrate data 136

V
VARCHAR2 79
view 91
279

280 Converting from Oracle AIX to DB2 for OS/390

© Copyright IBM Corp. 1999 281

ITSO redbook evaluation

Converting from Oracle AIX to DB2 for OS/390
SG24-5478-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5478-00

Printed in the U.S.A.

C
onverting

from
O

racle
A

IX
to

D
B

2
for

O
S/390

SG
24-5478-00

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 Decision to convert
	1.2 Project overview

	Chapter 2. Project scenario
	2.1 What is CIPROS?
	2.1.1 CIPROS architecture
	2.1.2 CIPROS components

	2.2 Scope of work for the project

	Chapter 3. Conversion process
	3.1 Overview
	3.2 Stage one — defining the strategy
	3.2.1 Survey
	3.2.2 Business reasons and requirements
	3.2.3 Portfolio analysis
	3.2.4 Strategy definition
	3.2.5 Conversion methods
	3.2.6 Defining the strategy deliverables

	3.3 Stage two — proof of concept
	3.3.1 Once-only tasks
	3.3.2 Iterative tasks
	3.3.3 Implementation plans
	3.3.4 Proof of concept
	3.3.5 Deliverables
	3.3.6 Personnel

	3.4 Stage three — implementation and cutover

	Chapter 4. System environment
	4.1 The source system environment
	4.1.1 System configuration and physical design consideration
	4.1.2 Creating table space containers
	4.1.3 The CIPROS database
	4.1.4 Process and Laboratory bridges
	4.1.5 The data

	4.2 The target system environment
	4.2.1 Configuration
	4.2.2 Security
	4.2.3 Backup
	4.2.4 Partitioned data sets
	4.2.5 Communications
	4.2.6 Compilers

	Chapter 5. Database conversion
	5.1 DB2 environment
	5.1.1 Installation and configuration
	5.1.2 Security
	5.1.3 Sample DB2 database and code

	5.2 Database design
	5.2.1 Physical design

	5.3 Data layout
	5.3.1 Source tables
	5.3.2 Source columns
	5.3.3 Target tables
	5.3.4 Target columns

	5.4 Cross reference

	Chapter 6. Data conversion
	6.1 Clean data
	6.2 Unloading data from Oracle
	6.2.1 Character, numeric, and date data types
	6.2.2 Other data types and exceptions

	6.3 File transfer and format programs
	6.4 Creating a PDS on OS/390
	6.5 Transferring data from AIX to OS/390
	6.6 Reformatting data for DB2
	6.7 Checking data for the correct format
	6.8 Loading data into DB2 using the LOAD utility
	6.9 Loading data into DB2 using DataJoiner
	6.9.1 Installing and configuring DataJoiner for AIX
	6.9.2 Using DataJoiner to migrate data from Oracle to DB2
	6.9.3 Exceptions in using DataJoiner to migrate data

	Chapter 7. Application conversion
	7.1 Proof of concept iterative process
	7.1.1 Convert application programs
	7.1.2 Review program code
	7.1.3 Run tests
	7.1.4 Performance tuning
	7.1.5 Change control

	7.2 Programs for pilot
	7.2.1 Source program inventory summary
	7.2.2 Target program environment

	7.3 Program redesign
	7.3.1 Prototype application
	7.3.2 Prototype JCL
	7.3.3 Sample Oracle source code
	7.3.4 Sample DB2 target code
	7.3.5 Pointers
	7.3.6 TYPEDEF
	7.3.7 Host variables
	7.3.8 Error and message handling
	7.3.9 File handling
	7.3.10 Name length limitation
	7.3.11 Functions

	7.4 Program preparation
	7.4.1 Resources
	7.4.2 General program preparation process
	7.4.3 Source makefile
	7.4.4 JCL for precompile, compile, link, bind, and run
	7.4.5 Precompile
	7.4.6 Compiler
	7.4.7 Link
	7.4.8 BIND
	7.4.9 Run
	7.4.10 SDSF usage for output messages

	7.5 Program conversion
	7.5.1 Database programming methods
	7.5.2 SQL statements
	7.5.3 Tabs
	7.5.4 Square brackets

	Chapter 8. Testing, change control, and tuning
	8.1 Testing
	8.1.1 Function tests
	8.1.2 Unit test
	8.1.3 System and user acceptance test

	8.2 Performance tuning
	8.3 Change control
	8.3.1 Change control overview
	8.3.2 Change control procedure

	Appendix A. Sample script functions
	A.1 ddltabs.sh script
	A.1.1 sednn.sh script
	A.1.2 pk.awk script

	A.2 ddlind.sh script
	A.3 ddlfk.sh script
	A.4 ddlgrnt.sh
	A.5 ddlchk.sh script
	A.6 ddlalias.sh script
	A.7 ddlsyn.sh script
	A.8 ddlview.sh script
	A.9 download.sh script
	A.9.1 count.awk script
	A.9.2 desc.awk script

	A.10 nick.sh script
	A.10.1 nick.awk script

	A.11 gendcl.sh script
	A.12 genmemset.sh script
	A.13 genstrcpy.sh script

	Appendix B. Sample DB2 for OS/390 jobs
	B.1 JCL for base function compile
	B.2 JCL for SQL function precompile and compile
	B.3 JCL for compile, prelink and link of main programs
	B.4 JCL for running the main programs RTDIN and LABIN
	B.5 JCL for creation of storage group, database, table spaces and tables
	B.6 JCL for creation of indexes for CIPROS tables
	B.7 JCL to alter tables for foreign keys
	B.8 JCL for synonym creation
	B.9 JCL for creation of CIPROS views
	B.10 JCL for deletion of CIPROS database and table spaces
	B.11 JCL for REORG, RUNSTATS and COPY of CIPROS table spaces
	B.12 JCL for RECOVER of a CIPROS table space
	B.13 JCL for rebuilding a CIPROS index
	B.14 JCL to produce C language table structures (DCLGEN)
	B.15 JCL for first job to LOAD CIPROS tables
	B.16 JCL for second job to LOAD CIPROS tables
	B.17 JCL for binding with use of packages
	B.18 JCL stream including REXX program
	B.19 JCL for the conversion of data using REXX program
	B.20 DSNTIJUZ - DB2 installation job stream
	B.21 DSNTEJ2U - DB2 sample JCL to create user defined functions
	B.22 DSNTEJ2D - Sample C program execution using sample tables

	Appendix C. Sample data preparation program
	Appendix D. OS/390 TSO tools and tips
	D.1 TSO and ISPF
	D.2 SDSF output messages

	Appendix E. Special notices
	Appendix F. Related publications
	F.1 International Technical Support Organization publications
	F.2 Redbooks on CD-ROMs
	F.3 Other publications
	F.4 Web sites

	How to get ITSO redbooks
	IBM redbook fax order form

	List of abbreviations
	Index
	ITSO redbook evaluation

