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Preface

This redbook provides information to help you understand and exploit the 
new generation of computer systems based on the RS/6000 POWER3 
architecture. Specifically, this publication will address the following issues:

  • POWER3 features and capabilities

  • CPU and memory optimization techniques, especially for Fortran 
programming

  • AIX XL Fortran Version 5.1.1 compiler capabilities and which options to 
use

  • Parallel processing techniques and performance

  • Available libraries and programming interfaces

  • Performance examples on commonly used kernels and on several full 
applications

The anticipated audience for this redbook is as follows:

  • Application developers

  • End users who may be involved in making modifications to applications

  • Technical managers responsible for equipment purchase decisions

  • Managers responsible for project planning

  • Researchers involved in numerical algorithm development

  • End users with an interest in understanding the performance of their 
applications

While this publication is decidedly technical in nature, the fundamental 
concepts are presented from a user point of view and numerous examples 
are provided to reinforce these concepts. Furthermore, this publication is 
organized such that the information becomes more detailed as one 
progresses through the chapters. This organization will allow readers to stop, 
once they have achieved the level of understanding they desire, without 
having to search through the publication.

To some extent, this book should be regarded as a series of subtopics that 
can be read alone. Each chapter is relatively complete in itself, referring to 
other chapters where appropriate.
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Chapter 1.  Introduction

This publication is designed to familiarize you with the IBM RS/6000 
POWER3 architecture and provide you with the information necessary to 
exploit the new high-end technical workstations based on this architecture.

The two-way symmetric multiprocessing (SMP) workstation RS/6000 43P 
7043 Model 260 will be the first POWER3 system to be available. Thus, most 
analysis presented in this publication refers to this system.

1.1  RS/6000 Processor Evolution

In this section, the stages of processor development are discussed, starting 
with the POWER1 architecture through to the latest POWER3. Various 
references for additional reading are included.

1.1.1  POWER1
The first RS/6000 products were announced by IBM in February of 1990, and 
were based on a multiple chip implementation of the POWER architecture, 
described in IBM RISC System/6000 Technology, SA23-2619. This technology is 
now commonly referred to as POWER1, in the light of more recent 
developments. The models introduced included an 8 KB instruction cache 
(I-cache) and either a 32 KB or 64 KB data cache (D-cache). They had a 
single floating-point unit capable of issuing one compound floating-point 
multiply-add (FMA) operation each cycle, with a latency of only two cycles. 
Therefore, the peak MFLOPS rate was equal to twice the MHz rate. For 
example, the Model 530 was a desk-side workstation operating at 25 MHz, 
with a peak performance of 50 MFLOPS. Commonly occurring numerical 
kernels were able to achieve performance levels very close to this theoretical 
peak.

In January of 1992, the Model 220 was announced, based on a single chip 
implementation of the POWER architecture, usually referred to as RISC 
Single Chip (RSC). It was designed as a low-cost, entry-level desktop 
workstation, and contained a single 8 KB combined instruction and data 
cache.

The last POWER1 machine, announced in September of 1993, was the 
rack-mounted Model 990. It ran at 71.5 MHz and had a 32 KB I-cache and a 
256 KB D-cache.
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1.1.2  POWER2
Announced in September 1993, the Model 590 was the first RS/6000 based 
on the POWER2 architecture, described in PowerPC and POWER2: Technical 
Aspects of the New IBM RISC System/6000, SA23-2737. The most significant 
improvement introduced with the POWER2 architecture for scientific and 
technical applications is that the floating-point unit (FPU) contains two 64-bit 
execution units, so that two floating-point multiply-add instructions may be 
executed each cycle. A second fixed-point execution unit is also provided. In 
addition, several new hardware instructions were introduced with POWER2:

  • Quad-word storage instructions. The quad-word load instruction moves 
two adjacent double-precision values into two adjacent floating-point 
registers.

  • Hardware square root instruction.

  • Floating-point to integer conversion instructions.

Although the Model 590 ran with only a marginally faster clock than the 
POWER1-based Model 580, the architectural improvements listed above, 
combined with a larger 256KB D-cache size, enabled it to achieve far greater 
levels of performance, as shown in Table 1.

Table 1.  Performance of POWER1 versus POWER2

In October 1996, IBM announced the RS/6000 Model 595. This was the first 
machine to be based on the P2SC (POWER2 Super Chip) processor. As its 
name suggests, this is a single chip implementation of the POWER2 
architecture, enabling the clock speed to be increased further. The Model 595 
runs at 135MHz, and the fastest P2SC processors, found in the Model 397 
workstation and RS/6000 SP Thin4 nodes, run at 160 MHz, with a theoretical 
peak speed of 640 MFLOPS.

Model 580 Model 590

Architecture POWER1 POWER2

MHz 62.5 66

D-cache 64KB 256KB

Peak MFLOPS 125 264

LINPACK DP MFLOPS 38 130

LINPACK % of peak 30% 49%

LINPACK TPP MFLOPS 104 237
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1.1.3  PowerPC
The RS/6000 Model 250 workstation, the first to be based on the PowerPC 
601 processor running at 66 MHz, was introduced in September, 1993. The 
601 was the first processor arising out of the partnership between IBM, 
Motorola, and Apple. The PowerPC architecture includes most of the 
POWER instructions. However, some instructions that were executed 
infrequently in practice were excluded from the architecture, and some new 
instructions and features were added, such as support for symmetric 
multiprocessor (SMP) systems. In fact, the 601 did not implement the full 
PowerPC instruction set, and was a bridge from POWER to the full PowerPC 
architecture implemented in more recent processors, such as the 603, 604, 
and 604e. Currently, the fastest PowerPC-based machines from IBM for 
technical purposes, the four-way SMP system RS/6000 7025 Model F50 and 
the uni-processor system RS/6000 43P 7043 Model 150, use the 604e 
processor running at 332 MHz and 375 MHz, respectively. 

1.1.4  POWER3
The new POWER3 processor, described in detail in Chapter 2, “The 
POWER3 Processor” on page 7, essentially brings together the POWER2 
architecture, as currently implemented in the P2SC processor, with the 
PowerPC architecture. It combines the excellent floating-point performance 
delivered by P2SC’s two floating-point execution units, while being a 64-bit, 
SMP-enabled processor ultimately capable of running at much higher clock 
speeds than current P2SC processors.

1.2  SMP-Based System Views

Since the POWER3 architecture provides SMP support, POWER3-based 
systems will feature multiple CPUs with a uniform access shared memory and 
shared I/O resources. This section outlines the different ways in which these 
multiple CPUs can be exploited, either by running multiple job streams to 
achieve greater overall system throughput, or by using a shared or distributed 
memory programming model to reduce the time to solve an individual 
problem.

1.2.1  Job Level Parallelism with Single CPU Jobs
For work loads consisting of many independent jobs each using a single 
CPU, the multiple CPUs of a POWER3 based system will provide greater 
throughput performance than a uni-processor system. For example, 
POWER3 based systems with two CPUs may provide twice the nominal 
performance on a work load when compared with a comparable 
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uni-processor system. Each POWER3 CPU will also provide an improvement 
in performance over existing CPUs.

1.2.2  Automatic Parallelization (Fortran)
The XL Fortran compiler (Version 5.1.1 or later) provides support for 
automatic parallelism of programs to provide increased performance so as to 
reduce the elapsed time of a program. Essentially, the code is analyzed for 
independent pieces of work that can be dispatched, in parallel, to the multiple 
CPUs of a POWER3 based system. This SMP capability is also available on 
machines using PowerPC processors, such as the Model F50. The ability of 
the compiler to detect opportunities for parallelism can vary and is dependent 
on the intrinsic properties of the problem being solved and the source code 
implementation. The nominal performance improvement over using a single 
CPU is generally limited to the number of CPUs on the POWER3 based 
system. Typically, new programs can be written in a manner that allows for a 
high-level of compiler-detected parallelism. Existing programs can often be 
modified to allow for significant levels of parallel efficiency. The automatic 
parallelization capabilities of XL Fortran can often be assisted through the 
insertion of compiler directives, as discussed in the next section. 

1.2.3  Compiler Directives
Compiler directives are often used in conjunction with the automatic 
parallelization capability of the XL Fortran compiler to assist in situations 
where the dependency analyzer is unable to detect independent pieces of 
work. Compiler directives appear as Fortran comments so that code 
portability is preserved. OpenMP is an evolving industry standard that will 
provide for code portability across shared-memory parallel systems.

1.2.4  Message Passing Interface
The Message Passing Interface (MPI) is the industry standard for parallel 
programming on distributed memory systems, such as the IBM RS/6000 
Scalable Parallel (SP) system. Programs that have been parallelized using 
the Message Passing Interface are highly portable between different 
platforms. In general, MPI programs also perform excellently on SMP 
systems. MPI is supported on clustered RS/6000 uni-processor machines as 
well as on SMP systems.

With this paradigm, the programmer has explicitly decomposed the problem 
to run as separate processes that communicate and synchronize through the 
MPI library. The separate processes of an MPI program are transparently 
mapped against the multiple CPUs of a POWER3 based system.
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For IBM RS/6000 SP systems, an alternative approach exploiting SMP nodes 
is to assign a separate MPI process to each CPU of each node. With this 
approach, MPI message passing will take place at both the intra-node and 
inter-node level, and threads are not required to address the multiple CPUs of 
each node.

1.2.5  Using POSIX Threads
The thread programming interface is the native interface of parallel 
programming on SMP systems, but also used for performance improvements 
on uni-processor systems. On RS/6000, POSIX threads support is provided 
through both a C and Fortran application program interface (API) and allows 
for the exploitation of the multiple CPUs of a POWER3 based system. Since 
POSIX threads is an industry standard, programs written using this library are 
generally portable to other SMP platforms. At the time of publication, the 
Fortran binding for pthreads is not part of the POSIX pthreads standard, 
therefore, Fortran pthreads implementations may be AIX specific.

1.2.6  Combined MPI/Threads Paradigm
For IBM RS/6000 SP systems with SMP nodes, a combined MPI and threads 
programming paradigm is also supported. With this approach, a single MPI 
processes is assigned to each SMP node, and multiple threads are executed 
on each node. The threads will be used to execute the computational kernels 
so as to exploit the multiple CPUs on the node, and MPI communication will 
take place between the nodes. Threads can be either explicitly created 
through the POSIX Threads library or can be implicitly created with the 
automatic parallelism features of the XL Fortran compiler (with or without 
compiler directives), as discussed in 1.2.2, “Automatic Parallelization 
(Fortran)” on page 4.
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Chapter 2.  The POWER3 Processor

The POWER3 microprocessor introduces a new generation of 64-bit 
processors especially designed for high performance and visual computing 
applications. POWER3 processors are the replacement for the POWER2 and 
POWER2 Super Chips (P2SC) in high-end RS/6000 workstations and 
technical servers.

2.1  Processor Overview

The POWER3 implementation of the PowerPC architecture provides 
significant enhancements compared to the POWER2 architecture. The SMP- 
capable POWER3 design allows for concurrent operation of fixed-point 
instructions, load/store instructions, branch instructions, and floating-point 
instructions. The POWER3 is designed for ultimate frequencies of up to 600 
MHz when fabricated with advanced semiconductor technologies such as 
copper metallurgy and silicon-on-insulator (SOI). In contrast, the P2SC 
design has reached its peak operating frequency at 160MHz. The first 
POWER3 based system, RS/6000 43P 7043 Model 260, runs at 200 MHz.

Capable of executing up to four floating-point operations per cycle (two 
multiply-add instructions), the POWER3 maintains the emphasis on 
floating-point performance and memory bandwidth that has become the 
hallmark of POWER2 based RS/6000 systems. Integer performance has 
been significantly enhanced over the P2SC with the addition of dedicated 
integer and load/store execution units, thus improving its SPECint95 
performance relative to the 160 MHz P2SC by about 50 percent at 200 MHz. 
This gives the POWER3 far more balanced performance, which is especially 
notable in graphics intensive applications.

The POWER3 is a 64-bit PowerPC implementation with a 32-byte backside 
L2 cache interface (private L2 cache bus), and a 16-byte PowerPC 6XX bus, 
as shown in Figure 1. The POWER3 has a peak execution rate of eight 
instructions per cycle (compared to six for the P2SC) and a sustained 
performance of four instructions per cycle.

Significant investments in the chip’s data flow, instruction routing, and 
operand buffering have been made in order to sustain a high computational 
and corresponding data rate. The POWER3’s level-one (L1) data cache is an 
efficient interleaved cache capable of two loads, one store, and one cache 
line reload per cycle. Although half the size of the P2SC's cache, the L1 is 
effectively supplemented by a dedicated second level (L2) cache, which may 
be from 1 MB to 16 MB in size. Data and instruction prefetching mechanisms 
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improve the memory access performance by hiding memory latency. Also, the 
large 128 byte line size takes advantage of the locality of reference (spacial 
reuse) characteristic of large engineering and scientific data reference 
patterns

Figure 1.  POWER3 Processing Units (Model 260)

2.2  POWER3 Execution Core

Unlike some competitive chips, which need several pipeline stages before 
instructions enter the first execution stage, POWER3 keeps this front end of 
the pipeline short, using only three stages. POWER3 needs only one cycle to 
access the instruction cache, one cycle to decode and dispatch the 
instructions to different execution units, and one more cycle to access the 
operands. POWER3’s relatively short pipeline keeps its mispredicted branch 
penalty to only three cycles, up to 24 cycles shorter than its competitors.

Up to eight instructions (two floating-point, two load/store, two single-cycle 
integer, a multi-cycle integer, and a branch) can be in execution in each cycle. 
Ready instructions are issued out of order from the issue queues, allowing 
instructions of different types, as well as of the same type, to execute out of 
order. The load/store and branch instructions are issued in program order.
8 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide



For branch instructions whose conditions are not known in the decode stage, 
POWER3 uses a 2,048-entry branch history table (BHT) to predict the branch 
direction. Because a branch is often resolved in the decode stage or soon 
thereafter, the benefit of the BHT when used to predict the current encounter 
of the branch is less in POWER3 than in designs with deeper pipelines. To 
better use the BHT, however, POWER3 uses the BHT to predict both the 
current and the next encounter of each conditional branch, using a branch 
target address cache (BTAC).

POWER3 uses rename registers for the general-purpose registers (GPR), 
floating-point registers (FPR), and the condition-code register (CCR) to allow 
out-of-order and speculative execution of most instructions. The few 
exceptions are stores and certain move-to-special-register instructions that 
are difficult to undo. Although instructions can be issued out-of-order, and 
thus, their operands can be read out-of-order from the registers, the rename 
registers eliminate anti- and output-dependencies by enabling the registers to 
be updated in program order.

POWER3 has two identical FPUs, each delivering up to two floating-point 
operations per cycle. POWER3’s FPUs execute multiply-add instructions, as 
Table 2 shows, taking only one cycle throughput to calculate the frequently 
used (a*b+c) operation.

Table 2.  POWER3’s Low Execution Latencies

The non-blocking caches support four outstanding L1 data demand requests 
and two outstanding L1 instruction demand requests in order to reduce the 
memory subsystem latency. The L1 cache also supports hits under misses, 
the L1 cache allows a fifth demand request which hits the cache to proceed 
even when there are four previous outstanding misses to the data cache. In 

Instruction Number of Cycles

32 bit 64 bit

Integer Multiply 3-4 3-9

Integer Divide 21 37

FP Multiply or Add 3-4 3-4

FP Multiply-Add 3-4 3-4

FP Divide 14-21 18-25

FP Square Root 14-23 22-31
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comparison, the POWER2 architecture allows only one outstanding cache 
miss without blocking. Cache hits are satisfied within a single cycle. The 
writeback data cache implements a four-state MESI cache coherence protocol 
(possible states: modified, exclusive, shared, and invalid) to support SMP 
environments.

POWER3 uses instruction- and data-prefetch mechanisms to reduce pipeline 
stalls due to cache misses. The instruction cache is two-way interleaved on 
cache-line boundaries, allowing one bank to be accessed for instruction 
fetches while the other bank is accessed for the next cache line. When the 
former access hits in the cache but the latter access does not, a prefetch 
request for this next cache line is issued to the L2 cache. Because the 
prefetch is still speculative, the request is not propagated to the main 
memory. If it misses in the L2 cache, this allows the request to be canceled 
upon detecting a mispredicted branch instruction. An instruction prefetch 
takes six cycles from the 200 MHz L2 cache.

For the data cache, the Model 260 can prefetch up to four streams of data from 
memory or L2 cache into L1 cache. To establish a prefetch stream, the 
prefetch mechanism monitors every access that misses in the data cache, 
searching for cache-miss references to two adjacent cache lines. For this 
purpose, a stream address filter queue of depth 10 is used, which contains 
the guessed next stream addresses. The filter is maintained by a least 
recently used (LRU) mechanism in order to age out seldom used prefetch 
streams. Upon finding such a pair of succeeding cache misses, it initiates a 
prefetch request for the next cache line. The stream addresses, along with the 
ascending or descending prefetch direction, is kept in a four-entry stream 
address buffer. Once a prefetch stream is identified, the address of every 
data-cache access is checked with the addresses in the stream address 
buffer. When a match is found, a prefetch request for the next cache line is 
made, and the address in the matching entry is updated with the address of 
the new prefetch request. A simplified view on the prefetch hardware is given 
in Figure 2.

When initially predicting the direction of a prefetch stream, it is assumed that 
if the word that causes the cache-miss occurs in the bottom half of the cache 
line, the next higher line will be required, but if the miss occurs in the top half, 
then the next lower line will be required. Then data is being prefetched in 
sequentially in either a forwards or backwards direction. If the initial 
prediction is wrong, the direction is corrected for the subsequent stream.
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Figure 2.  Data Prefetch Overview

The 64-bit address space is managed by using 80-bit virtual addresses and 
40-bit real memory addresses, which support up to 1 terabyte. A 256-entry 
two-way set associative translation lookaside buffer (TLB) based on a least 
recently used replacement algorithm is used to access 4 KB memory pages.

The performance of many technical applications is mainly determined by the 
performance of the memory subsystem. POWER3 systems are designed to 
deliver industry leading memory bandwidth, which has already been a 
strength of the POWER2 architecture. The bandwidth, as listed in Table 3, in 
terms of GB/s depends on the actual clock frequency. As an example the 
DAXPY operation, y(i)=y(i)+a*x(i), yields a sustained memory bandwidth of 
1.3 GB/s, close to the peak bandwidth of 1.6 GB/s of a POWER3 Model 260 
system. DAXPY performance is analyzed in more detail in Chapter 7.3.3, 
“DAXPY” on page 98.

The load latency, due to either a data or instruction L1 miss that hits the L2 
cache, amounts nine CPU cycles. A data access that misses the L1 and L2 
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cache causes a latency of about 35 cycles on a Model 260. However, this 
does not depend on the processor only, but also on the system. 

Table 3.  RS/6000 43P 7043 Model 260 Memory Bandwidth

2.3  POWER3 Roadmap

The first generation of POWER3 based systems will operate at CPU speeds 
of 200 MHz and memory bus speeds of 100 MHz. The processor board will 
hold a direct mapped L2 cache of 4 MB per processor. The initial chip design 
does not support fractional processor-to-cache and processor-to-system 
clock ratios (such as 3:2 mode). But the second generation of POWER3 chips 
will remove this limitation. This will be the first design based on IBM’s 
advanced CMOS-7S process. With help of this 0.2-micron process, which 
uses copper interconnects, clock speeds of more than 300 MHz will be 
achievable. The die size will shrink from 270 mm2 to 160 mm2, with a few 
additional functions. 

IBM plans a second derivative of POWER3 chips in a 0.18-micron process, 
targeting speeds up to 500-600 MHz. This process may showcase IBM’s 
unique Silicon-on-Insulator (SOI) technology. SOI protects the millions 
transistors on a chip with a blanket of insulation, reducing harmful electrical 
effects that consume energy and hinder performance. A floating-point and 
integer performance of SPECfp95 70+ and SPECint95 30+, respectively, is 
expected.

The faster POWER3 chips will support fractional bus modes (such as 5:2 and 
7:2 for processor-to-bus and 3:2 for processor-to-cache interfaces) which will 
allow the core to run at its full speed. Using a set-prediction mechanism, the 
new chips will also support a four-way set-associative L2 cache. 

Figure 3 on page 13 shows the high-level partition of logical units within the 
POWER3 chip.

Access Interface 
Width
[Bit]

Clock 
Frequency

[MHz]

Bandwidth 
[Byte/cycle]

Bandwidth 
[GB/s]

Load Register from L1 128 200 2*8 3.2

Store Register to L1 64 200 8 1.6

Load/Store L1 from/to L2 256 200 4*8 6.4

Load/Store L1 from/to Memory 128 100 2*8 1.6
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Figure 3.  POWER3 Chip Layout: 270 mm2 Die, 15 Million Transistors

2.4  POWER3-Based Systems

The POWER3 CPU will be featured in several different computer systems. 
There will be stand-alone workstations up through IBM RS/6000 SP nodes.

2.4.1  RS/6000 43P 7043 Model 260
The Model 260 is a desk-side RS/6000 system designed to perform as a 
high-performance technical workstation, visual client, or workgroup server. 
The mechanical package can accommodate up to two processor cards, two 
memory cards, and five PCI adapters. It also supports two hot-swap DASD 
bays (Ultra SCSI), two 5 1/4" media bays, and one floppy drive. 

Each processor card carries one POWER3 chip running at 200 MHz. 

The memory controller function is located on the planar. A system planar is 
shown in Figure 4 on page 14. The memory chipset supports a 128-bit data 
path to memory running at 100 MHz, giving the system a peak memory 
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bandwidth of 1.6 GB/s. The two processor cards have to share this 
bandwidth. The chipset is not only an interface to the memory but also to the 
6XX-MZ mezzanine bus used for the I/O.

Figure 4.  Logical View of the Model 260
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Each memory card can carry between 256 MB and 2 GB of memory using 
128 MB dual inline memory modules (DIMMs), giving the system a maximum 
total memory of 4GB. These sizes will double when 256 MB DIMMs become 
available.

2.4.2  IBM RS/6000 SP Nodes
In the future, there will be several nodes for the IBM RS/6000 SP available. 
The first one will be based on the RS/6000 43P 7043 Model 260. The 
differences between these node and the Model 260 are the form factor in 
order to fit into the IBM RS/6000 SP frame and the ability to connect it to the 
high performance switch. In order to fulfill the Accelerated Strategic 
Computing Initiative (ASCI) contract, IBM will also offer an eight- and later a 
16-way SMP based on the POWER3 processor. These models are expected 
to contain several unique features and new design points.

2.4.3  DOE ASCI Project
On July 26, 1996, Lawrence Livermore National Laboratory (LLNL) 
announced it had selected IBM for an award of a $93 million contract to build 
the world’s fastest supercomputer as part of the Department of Energy’s 
(DOE) Accelerated Strategic Computing Initiative (ASCI) program, called 
ASCI Blue Pacific. The final configuration of the proposed system will consist 
of:

  • 512 eight way POWER3 SMP nodes
  • More than three teraflops peak performance
  • 2500 GB total system memory
  • 75 terabytes global disk capacity
  • 6400 MB/s I/O bandwidth

In order to meet the increased need for computing power, the next step after 
ASCI Blue Pacific, called ASCI White, is already announced. The ASCI White 
System will consist of 8192 POWER3+ CPUs capable of peak speed of 10 
trillion operations per second.

Both the ASCI Blue Pacific and the ASCI White project will drive the future 
RS/6000 and IBM RS/6000 SP system development in hardware as well as 
software. The result of this work will provide future gains through improved 
products for IBM Customers.

For more information about the ASCI project, visit the following Web pages:

http://www.doe.org
http://www.llnl.gov/asci/
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Chapter 3.  XL Fortran Version 5

XL Fortran Version 5 is the first XL Fortran compiler that has the ability to 
exploit SMP processors concurrently for improving the performance. It is also 
the first to produce object code that runs in 64-bit mode on AIX 4.3 or later. 
This chapter mainly describes differences between XL Fortran Version 5.1 
and previous versions that users should be aware of for compiling and 
running programs on POWER3 hardware.

3.1  SMP Support

One of the most outstanding features of XL Fortran Version 5 is its support for 
SMP. The compiler automatically identifies DO loops that can be parallelized 
and makes object code that runs in a multi-threaded fashion. Or, you can give 
directives to the compiler in order to provide additional information on the 
code or to force the compiler to parallelize certain DO loops. Detailed 
explanations and examples will be given in Chapter 4, “Using the SMP 
Feature of XL Fortran” on page 29. An overview of compiler architecture is 
presented here. (See D. Kulkarni et al., “XL Fortran Compiler for IBM SMP 
Systems,” AIXpert Magazine, December 1997.)

Figure 5 on page 18 shows the path through the XL Fortran compiler when 
the parallelization facility is activated with the -qsmp option. The Fortran front 
end takes your program as input, checks the program syntactically and 
semantically, and produces an intermediate representation of it. The 
scalarizer transforms the Fortran 90 array language constructs into scalar DO 
loops.

The subsequent locality optimizer and serial and SMP optimizer perform 
optimizations, including loop reordering, array padding, loop tiling, loop 
unrolling, elimination of conditionals, and so on. If given the target 
architecture by the -qarch option, the compiler takes into account hardware 
specifics, such as cache size and cache line size. The parallelizer uses loop 
reordering transformations to automatically parallelize loops at outermost 
levels, which minimizes parallelization overheads, such as barrier 
synchronization at the end of parallel loops, and ensures larger computation 
granularity on each of the processors of the SMP system. The outliner does 
the converse of subroutine inlining. It converts DO loops, which are decided 
to be parallelized, into subroutines.

You can see how a program is outlined by reading the outlining report section 
of hotlist, which is generated by the -qreport=hotlist compiler option. An 
example of hotlist is given in 4.1, “How to Compile, Link, and Execute” on 
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page 29. By invocation of xlf_r or xlf90_r, the object code is linked with 
thread-safe libraries for parallel execution.

Figure 5.  XL Fortran Version 5 Compiler Architecture

In addition to automatic parallelization, XL Fortran Version 5 provides the 
pthreads library module (f_pthread) as an interface to the AIX pthreads 
library. See XL Fortran for AIX Language Reference Version 5 Release 1, 
SC09-2607 or "XL Fortran Compiler for IBM SMP Systems," AIXpert 
Magazine, December 1997 for details.
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3.2  Support for POWER3

The XL Fortran compiler has a -qarch option that tries to produce efficient 
object code that may contain machine instructions specific to the target 
architecture. The default value is -qarch=com, which means the executable 
can be run on any hardware platform of POWER and PowerPC, but in order to 
fully use the hardware’s capability, it is recommended to use the appropriate 
-qarch option, especially for scientific and technical applications. In addition 
to architectures supported by XL Fortran Version 4.1 (that is, com, pwr, pwr2, 
ppc, and so forth), XLF Version 5.1 introduces two new architectures: pwr3 
(V5.1.1) and rs64a (V5.1.0). Currently, RS/6000 Model 260 (and its 
corresponding SP nodes) and RS/6000 S70 (S7A) conform to pwr3 and 
rs64a, respectively.

Since XL Fortran does not optimize the program by default, you should 
specify appropriate options when compiling. To begin with, it is recommended 
to use the following combination of compiler options for POWER3 machines:

$ xlf -qarch=pwr3 -O3 -qtune=pwr3 yourprogram.f

The -O3 option instructs the compiler to do the highest level optimization. 
This optimization level has the potential to rearrange the semantics of the 
programs. Although it produces a mathematical equivalent result, it may not 
produce a bitwise identical result with the unoptimized code. If this is a 
concern, you can add the -qstrict option to ensure that you get the bitwise 
identical results with the unoptimized code. The -qarch and -qtune options 
both perform architecture-dependent optimization for the POWER3. Further 
tuning of compiler options should be carried out with these options as a 
starting point. More detailed discussions on compiler options are given in 8.2, 
“Recommended Compiler Options” on page 112.

3.3  64-Bit Support

In order to be able to exploit the huge address space offered by 64-bit 
addressing, Fortran programmers need to understand how memory is 
handled by the AIX and the XL Fortran compiler, both in 32-bit and 64-bit 
mode. This section gives both the background and some practical 
implications of 32-bit and 64-bit addressing.

In AIX, virtual memory is divided into segments. In 32-bit mode, a 32-bit 
address is divided into a 28-bit field, which gives the offset within a 256 MB 
(228 bytes) segment, and a 4-bit field, which selects between 16 segments. In 
64-bit mode, 28 bits are again used to address offsets within a 256 MB 
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segment, but the number of segments which may be addressed is vastly 
increased.

3.3.1  Fortran Storage Classes
Before explaining how segments are used, it is necessary to understand 
Fortran storage classes. Each variable belongs to one of the following 
storage classes:

Automatic For variables not retained once the procedure ends

Static For variables which retain memory throughout the 
program

Common For common block variables

Controlled Automatic For automatic arrays

Controlled For allocatable arrays

From the point of view of the operating system, these classes are categorized 
as one of the following types:

data Initialized static and common variables

bss Uninitialized static and common variables

heap Controlled (or, allocatable) arrays

stack Controlled automatic arrays and automatic variables

The size of these types, where the size is known before execution begins, 
may be determined by running the size command against the executable as 
follows:

$ size -f a.out
a.out: 1132(.text) + 216(.data) + 134217744(.bss) + 452(.loader) + 
12(.except) = 134219556 (32-bit executable)

$ size -X 64 -f a.out
a.out: 1112(.text) + 272(.data) + 134217760(.bss) + 559(.loader) + 
20(.except) = 134219723 (64-bit executable)

Note that initialized static and common variables and arrays are stored in the 
data area of the executable file itself; so very large initialized arrays can lead 
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to very large executable files. These Fortran storage classes and types are 
mapped onto AIX segments, as listed in Table 4.

Table 4.  Fortran Storage Classes and AIX Segments

Data, bss, and heap are generically termed user data and the permissible 
maximum size of user data is governed by the “data” process limit. Stack is 
governed by the “stack” process limit. Process limits can be set on a per-user 
basis in the file /etc/security/limits. Both hard and soft limits may be set in this 
file. You may then use the ulimit command to raise or lower the soft limit up 
to the hard limit, or to lower (but not raise) the hard limit. 

3.3.2  32-Bit Mode
The default mode is the 32-bit mode. As seen from Table 4, all storage 
classes are allocated to segment 2, a single 256 MB segment. By default in 
AIX 4.3, the soft limit for user data is 128 MB and for stack is 64 MB. The hard 
limits are usually set to unlimited by the root user. The linker flags -bmaxdata 
and -bmaxstack may be used to increase the permissible data and stack 
sizes beyond the soft limits up to the hard limits, without setting the shell’s 
process limits using ulimit. Note, however, that use of the -bmaxdata flag 
selects the “Large Address Space Model”, described in 3.3.3, “32-Bit Mode, 
Large Address Space Model” on page 22. If a process exceeds its data limit, 
it will fail to load if the size of data is known from the object file, or an 
ALLOCATE statement will fail if the heap grows too large. If the stack limit of 
a program is exceeded at run time, it will fail with a “Segmentation fault” error 
message.

Fortran Storage
Class

Type AIX segment
(32-bit)

AIX segment
(32-bit, with
-bmaxdata)

AIX segment
(64-bit)

Static Data or BSS seg. 2
(256 MB)

segs. 3-10
(2 GB)

segs. 0x10
-0x6FFFFFFF
(4.5 x 105 TB)Common

Controlled Heap

Automatic Stack seg. 2
(256 MB)

seg. 2
(256 MB)

segs. 0xF0000000
-0xFFFFFFFF
(6.5 x 104 TB)Controlled

Automatic
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3.3.3  32-Bit Mode, Large Address Space Model
If the program is linked with the flag -bmaxdata:N, then N bytes are allowed 
for the user data area, and the user data area is moved from segment 2 to 
segments 3 through 10, allowing a total of eight segments, or 2 GB, of user 
data. For example, to allow up to 512 MB, or two segments, of user data, link 
with the flag -bmaxdata:0x20000000. Note that even if N is less than 256 MB, 
the user data area resides above segment 2.

As shown in Table 4 on page 21, the user stack area still resides in segment 
2. In other words, in either 32-bit mode, the size of the stack (automatic 
variables and Fortran 90 automatic arrays) is limited to a little less than 256 
MB.

Even if a program is linked to use the Large Address Space Model, it is still 
limited by its stack process limits and its hard data process limit, as explained 
above.

3.3.4  64-Bit Mode
XL Fortran introduced a new compiler option, -q64, in Version 5.1, which 
allows the object code to run in 64-bit mode. As seen from Table 4 on page 
21, the permissible sizes of stack and user data are huge, although they are 
still limited by the process limits discussed above. And as with 32-bit mode, 
-bmaxstack and -bmaxdata may be used to go beyond the soft limits, up to 
the hard limits, without setting the shell’s limits with the ulimit command. 
However, in this case the -bmaxdata flag does not change the addressing 
model.

Care should be taken when increasing the size of data and/or stack. The 
user data comes from the lower address area of segment 2, whereas the 
user stack area is allocated from the top of the segment. There are no 
checks made to ensure that the user stack area doesn’t overlap with the 
user data area. If the stack overwrites the data area, it is possible either for 
the program to end abnormally, or worse, for the program to fail silently and 
produce incorrect results.

Take Note
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3.3.5  Compiler Defaults and Limits
Although the potential size of stack and user data is effectively limited only by 
the physical memory and paging space installed, there are some other 
implications of using the -q64 option and 64-bit mode:

  • The default size of an integer POINTER (often called Cray pointers or Sun 
pointers to distinguish them from standard Fortran 90 pointers) is 8 bytes 
in 64-bit mode.

  • The maximum array size increases to approximately 240 bytes.

  • The maximum dimension bound range is extended to [-263, 263-1].

  • The maximum array size for array constants has not been extended and 
will remain the same as the maximum in 32-bit mode. The limit depends 
on the space used by the compiler for a particular program.

  • Arrays with a size greater than 231-1 cannot be initialized.

  • The maximum iteration count for array constructor implied DO loops 
increases to 263-1.

  • The maximum character variable length extends to approximately 240 
bytes.

  • The maximum length of character literals remains the same as in 32-bit 
mode. This is limited by the maximum length of a single (possibly 
continued) Fortran statement, currently 6700 characters.

  • The LOC intrinsic function returns an INTEGER(8) value.

The -q64 option can be combined with -qhot, -O4, -qsmp, and -qipa options in 
version 5.1.1. Currently, settings for the -qarch option that are compatible 
with the -q64 option are, -qarch=auto (if compiling on a 64-bit system), 
-qarch=com, -qarch=ppc, -qarch=rs64a, and -qarch=pwr3. Note that you 
cannot mix 32-bit and 64-bit object files to create an executable.

3.3.6  64-bit Integer Arithmetic Support
In order to use the POWER3’s native 64-bit integer computation, you need to 
compile the program with the -q64 option, and define integers explicitly in the 
program as INTEGER*8 or use the -qintsize=8 compiler option to make the 

The default INTEGER and the default REAL size remains 4 bytes in 64-bit 
mode.

Important
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default size of INTEGER to 8 bytes. Integer constants can have INTEGER*8 
attribute by adding a suffix _8 as in 123456_8.

3.4  Performance Improvements over Previous XL Fortran

This section presents results of a benchmark for a customer, and it shows the 
improved performance of XL Fortran Version 5.1 and the relative 
performance of the P2SC chip (160 MHz) and the POWER3 chip (200 MHz). 
The benchmark was done for the following 14 programs:

cfd Computational fluid dynamics

finite Finite element method structure analysis iterative 
eigenvalue solver

modyn Molecular dynamics

ns3d 3-D computational fluid dynamics

pureg Monte Carlo simulation of gauge theories QCD

bem3d 3-D transient enclosure flow

crystal Computational physics software package 

jcg3d 3-D solid structure FEM by J-CG solver static, Yale format

chamber Time-dependent 3-D computational fluid dynamics

deft Molecular dynamics

enzlong Life science chemistry

cirta Computational fluid dynamics

mopac93 Computational chemistry software package (IBM)

gamess Computational chemistry software package

The programs were run serial  and, for each program, the sum of user CPU 
time and system CPU time for the original version and the tuned version was 

In 64-bit mode, use INTEGER*8 loop variables for better performance.

Important
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reported. The RS/6000 systems and the software used for the benchmark are 
listed in Table 5.

Table 5.  The Benchmark Environment

The programs were linked with ESSL (for three tuned codes) and the MASS 
library. For execution on POWER3, a POWER3-enabled ESSL was used. The 
Fortran preprocessors used were VAST and KAP, which were both 1995 
released versions.

Table 6 shows the results of original programs.

Table 6.  CPU Time for Original Programs in Seconds

P2SC/XLF3 P2SC/XLF5 POWER3/XLF5

CPU Clock 160 MHz 160 MHz 200 MHz

Memory 1 GB 1 GB 2 GB

AIX 4.3 4.3 4.3

XL Fortran 3.2.4 5.1.1 5.1.1

Compiler option -qarch=pwr2 -O3 -qarch=pwr2 -O3 -qarch=pwr3 -O3

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Prepro-

cessor

cfd 125.5 115.3 101.1 1.09 1.14 vast

finite 296.5 289.4 184.0 1.02 1.57

modyn 744.4 640.5 593.0 1.16 1.08

ns3d 236.0 237.5 194.4 0.99 1.22 kap

pureg 666.2
676.8

697.0
659.3

532.7
505.3

0.96
1.03

1.31
1.30

kap

bem3d 372.7 347.9 284.4 1.07 1.22 vast

crystal 7901.1 7621.0 6177.8 1.04 1.23

jcg3d 156.0 155.0 166.5 1.01 0.93

chamber 28.1 24.5 18.7 1.15 1.31

deft 9.5 8.4 7.6 1.13 1.11

enzlong 80.1 67.6 65.2 1.18 1.04 vast

cirta 74.9 73.2 53.2 1.02 1.38 kap
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XL Fortran Version 5.1.1 shows a marked improvement in optimizing these 
programs on the average of seven percent over Version 3.2.5, and because 
of this improvement of the compiler, the Fortran preprocessors seem less 
effective. Only jcg3d became slower on POWER3 than P2SC, whose key 
kernel is sparse matrix-vector multiplication. The new cache organization and 
size of POWER3 was not able to hold the indirect addressing vector in cache. 
However, in general, the load/store units of POWER3 greatly enhanced 
kernels in these benchmark programs, and when comparing P2SC/XLF5 and 
POWER3/XLF5, POWER3 was faster by 23 percent on average. It was also 
observed that the majority of these programs gained performance 
improvement by using the MASS library.

Table 7 shows the results of tuned programs.

Table 7.  CPU Time for Tuned Programs in Seconds

mopac93 4899.6 3840.2 3824.5 1.28 1.00

gamess 317.0 352.2 218.7 0.90 1.61

Average 1.07 1.23

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Note

cfd 69.6 67.3 64.3 1.03 1.05

finite 114.0 111.6 107.6 1.02 1.04

modyn 66.3 71.5 59.4 0.93 1.20

ns3d 164.2 157.4 131.3 1.04 1.20

pureg 183.4 184.2 167.6 1.00 1.10

bem3d 69.8 66.1 55.0 1.06 1.20

crystal not
tuned

jcg3d 87.0 87.1
76.9

72.7
63.4

1.00 1.20
1.21

tune 1
tune 2

chamber 18.9 16.5 15.7 1.15 1.05

deft 6.3 6.4 6.1 0.98 1.05

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Prepro-

cessor
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The tuned versions did not need the preprocessor for performance, and the 
improvement of the compiler had less impact on tuned programs, that is, 
P2SC/XLF5 was faster than P2SC/XLF3 by only three percent on the 
average. Still for tuned programs, POWER3/XLF5 was faster than 
P2SC/XLF5 by 14 percent on the average.

enzlong 69.3 67.2 64.4 1.03 1.04

cirta 60.9 52.2 36.8 1.17 1.42

mopac93 2279.3 2257.5 2058.4 1.01 1.10

gamess not
tuned

Average 1.03 1.14

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Note
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Chapter 4.  Using the SMP Feature of XL Fortran

Starting with Version 5.1, the XL Fortran compiler provides an option, -qsmp, 
which instructs the compiler to automatically parallelize Fortran DO loops. 
This includes both DO loops coded explicitly by the user and DO loops 
generated by the compiler for array language constructs, such as FORALL 
and array assignment. However, the compiler will only automatically 
parallelize loops that are independent, that is, loops whose iterations can be 
computed independently of any other iterations.

While automatic parallelization might be sufficient for some users, the SMP 
directives give you an option of providing additional information about the 
source code to the compiler. The information you pass to the compiler will 
either be used during automatic parallelization or to specify that certain parts 
of the program can be parallelized. For example, a directive 
ASSERT(ITERCNT(100)) gives an estimate to the compiler about roughly 
how many iterations the DO loop will typically execute, and the PARALLEL 
DO directive specifies that the DO loop immediately following it should be 
executed in parallel.

Some of the directives available for XL Fortran 5.1 conform to the OpenMP 
Specification Version 1.0 which defines directives and APIs for SMP 
workstations. Currently, OpenMP is endorsed by more than 20 hardware and 
software vendors, including IBM. It is probably that the future releases of XL 
Fortran will become more compatible with OpenMP and that the portability of 
codes will increase. For details of OpenMP, visit http://www.openmp.org/.

In this chapter, only topics that are thought to be useful in parallelizing real 
applications are discussed. Not all of the SMP features of XL Fortran are 
explained. For comprehensive documentations, refer to XL Fortran for AIX 
Language Reference Version 5 Release 1, SC09-2607 and XL Fortran for 
AIX User’s Guide Version 5 Release 1, SC09-2606.

4.1  How to Compile, Link, and Execute

As an example, consider the following code that adds all the positive integers 
up to 100:

sample.f

PROGRAM MAIN
      PARAMETER (N=100)
      INTEGER A(N), S
      DO I=1, N
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        A(I) = I
      ENDDO
      S = 0
!SMP$ PARALLEL DO REDUCTION(+:S)
      DO I=1, N
        S = S + A(I)
      ENDDO
      PRINT *, S
      END

The line beginning with !SMP$ is an example of XL Fortran directive that tells 
the compiler that the following DO loop should be executed in parallel and 
that the variable S is used for storing summation. Details of directives will be 
described later in this chapter. Typically, the preceding code is compiled as 
follows:

$ xlf90_r -qfixed -O3 -qstrict -qsmp sample.f

The option -qsmp specifies that the object code may be run in parallel, and 
that the invocation commands you use should be either xlf_r or xlf90_r so that 
the code is automatically linked with thread-safe libraries. Otherwise, you 
have to be responsible for linking with appropriate libraries. If you want two 
threads for execution, set the XLSMPOPTS environment variable as

$ export XLSMPOPTS=parthds=2

and if necessary, the value of parthds can be accessed from inside of the 
code by using the NUM_PARTHDS intrinsic function, whose usage will be 
illustrated in Section 4.7, “NUM_PARTHDS Intrinsic Function” on page 56. 
The default value of parthds is the number of on-line processors of the 
machine.

You can see how the code is parallelized (or not) by looking into the .lst file 
produced by the smplist suboption of the -qreport option:

$ xlf90_r -qfixed -O3 -qstrict -qsmp sample.f -qsource -qreport=smplist

Note that this report is produced before loop and other optimizations are 
performed. The contents of sample.lst are as follows. (The options section 
and tail sections are omitted.)

>>>>> SOURCE SECTION <<<<<
          1 |      PROGRAM MAIN
          2 |      PARAMETER (N=100)
          3 |      INTEGER A(N), S
          4 |      DO I=1, N
          5 |        A(I) = I
          6 |      ENDDO
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          7 |      S = 0
          8 |!SMP$ PARALLEL DO REDUCTION(+:S)
          9 |      DO I=1, N
         10 |        S = S + A(I)
         11 |      ENDDO
         12 |      PRINT *, S
         13 |      END
** main   === End of Compilation 1 ===
 
>>>>> PARALLELIZATION AND LOOP TRANSFORMATION SECTION <<<<<

1585-107  *** SMP Parallelization Report ***

       program main()
       integer*4 :: main
       integer*4 :: a(1:100)
       integer*4 :: s
       integer*4 :: i
       address :: #ALLOCATEMP
       integer*4 :: #1
       integer*4 :: wct_1
       integer*4 :: SSA_STACK_2
       integer*4 :: SSA_STACK_4
       external :: main
         integer*4 :: main
       external :: __trap
       external :: _xlfBeginIO
         integer*4 :: _xlfBeginIO
       external :: _xlfWriteLDInt
       external :: _xlfEndIO
         integer*4 :: _xlfEndIO
       external :: _xlfExit
       external :: TRAP
       program main()
       #ALLOCATEMP = 0
C 1585-501  Original Source Line 4
       PARALLEL do i=1,100,1
         a(i) = i
       end do
       s = 0
C 1585-501  Original Source Line 9
       PARALLEL do i=1,100,1
         s = s + a(i)
       end do
       #1 = _xlfBeginIO(6,257,0,0,0,0,0)
       call _xlfWriteLDInt(#1,s,4,4)
       wct_1 = _xlfEndIO(#1)
       call _xlfExit(0)
       TRAP(3)
       return
       end

In the report, PARALLEL do indicates that the following loop is parallelized. In 
this case, both the initialization loop and the summation loop are parallelized 
as expected. In 4.4.2, “XL Fortran Messages Related to Parallelization” on 
page 44, you will see what kind of messages XL Fortran outputs when it does 
not parallelize particular loops. If you specify -qreport=hotlist, even more 
detailed information will be reported. The following is a part of the hotlist of 
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the sample code where the sum is calculated. (For explanation and 
readability, the line numbers are added and the line continuation is modified.)

>>>>> PARALLELIZATION AND LOOP TRANSFORMATION SECTION <<<<<

1585-103  *** Loop Transformation Report ***
...

1585-105  *** Outlining Report ***
...

1        s = 0
   2 C 1585-501  Original Source Line 9
   3        if ((_xlsmpInCritical() .eq. 0 .and. _xlsmpInParallel() .eq. 0
   4      &      .and. (1)) .ne. 0) then
   5          __pardo_do_ctl_13(1) = int(1)
   6          __pardo_do_ctl_13(2) = int(100)
   7          __pardo_do_ctl_13(3) = int(1)
   8          __pardo_chunk_ctl_14(1) = 1
   9          __pardo_chunk_ctl_14(2) = 5
  10          __pardo_chunk_ctl_14(3) = 0
  11          __pardo_chunk_ctl_14(4) = 0
  12          __pardo_flags_15 = 3
  13          call _xlsmpParDoSetup(__pardo_flags_15,0,
  14      &                         __pardo_do_ctl_13,
  15      &                         __pardo_chunk_ctl_14,
  16      &                         __main_out_2,
  17      &                         NARGS(__main_out_2) - 1,
  18      &                         PERCENTARG(1,__main_out_2,2),
  19      &                         PERCENTARG(100,__main_out_2,3),
  20      &                         PERCENTARG(1,__main_out_2,4),a,s)
  21        else
  22 C 1585-501  Original Source Line 9
  23          do i=1,100,1
  24            s = s + a(i)
  25          end do
26        end if

  27        #1 = _xlfBeginIO(6,257,0,0,0,0,0)
  28        call _xlfWriteLDInt(#1,s,4,4)
  29        wct_1 = _xlfEndIO(#1)
  30        call _xlfExit(0)
  31        TRAP(3)
  32        return
  33       contains
  34        subroutine __main_out_2(__lib_ctl_2,
  35      &                         __do_from_2,
  36      &                         __do_to_2,
  37      &                         __do_step_2,a_2,s_2)
  38        integer*4 :: __lib_ctl_2
  39        integer*4 :: __do_from_2
  40        integer*4 :: __do_to_2
  41        integer*4 :: __do_step_2
  42        integer*4 :: a_2(1:100)
  43        integer*4 :: s_2
  44        integer*4 :: __pardo_from_2
  45        integer*4 :: __pardo_to_2
  46        integer*4 :: __pardo_step_2
  47        integer*4 :: i_2
  48        integer*4 :: local_accum_s_2
  49        local_accum_s_2 = 0
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  50 C 1585-501  Original Source Line 9
51        do while (_xlsmpParDoChunk(__lib_ctl_2,

  52      &                            __pardo_from_2,
  53      &                            __pardo_to_2,
  54      &                            __pardo_step_2) .eq. 1)
  55          do i_2=__pardo_from_2,__pardo_to_2,__pardo_step_2
  56            local_accum_s_2 = local_accum_s_2 + a_2(i_2)
  57          end do
  58          i_2 = i_2 - __pardo_step_2 + __do_step_2
  59        end do
  60        call _xlsmpGetDefaultSLock(__lib_ctl_2)
  61        s_2 = s_2 + local_accum_s_2
  62        call _xlsmpRelDefaultSLock(__lib_ctl_2)
  63        return
  64        end
  65        end

The hotlist is a pseudo-Fortran listing, which is not meant to be compiled as it 
is, but you can see how the compiler outliner converts the DO loops into 
subroutines. The IF statement in lines 3 and 4 decides whether to execute the 
DO loop in parallel (lines 5-20) or in serial (lines 23-25). This is because the 
DO loop may not be executed in parallel depending on whether the loop is a 
nested parallel loop or whether the loop appears in a critical section. In 
addition, the IF clause may control whether a loop is parallelized (section 
4.6.1.3, “IF” on page 53). You do not see any DO statements in lines 5-20. 
Instead, the DO loop is converted to a subroutine call to _xlsmpParDoSetup, 
which divides the work into chunks and assigns these chunks to threads 
indicating which procedure to execute, that is, __main_out_2 defined in lines 
34-64, and which arguments to pass to this subroutine (lines 18-20). In 
__main_out_2, each thread is supposed to calculate the sum of its assigned 
portion into the variable local_accum_s_2, and this local sum is added to the 
global sum, s_2. The lock mechanism (lines 60 and 62) assures that only one 
thread can change the value of s_2 at a time.

4.2  Consideration of Storage Classes in 32-Bit Mode

When using the -qsmp option and running a program in parallel in 32-bit 
mode, it is important to understand the relationship between the types of 
variables that appear in the loop and the limits on their size. Table 4 on page 
21 shows the XL Fortran storage classes and their corresponding AIX VMM 
segments. 

Data in the user data area (that is, data, bss, and heap) are shared among all 
the threads that belong to the same process. On the other hand, data in the 
user stack area is assigned memory individually per procedure call and is not 
shared among threads (even if they are calling the same subroutine or 
function). Loop iteration variables, variables for reduction operations, and 
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temporary variables in a loop should not be shared among threads in order 
for the loop to be executed correctly.

As can be seen in the /etc/xlf.cfg file, xlf_r uses -qsave by default, whereas 
xlf90_r uses -qnosave. In other words, the default storage class is static when 
a module is compiled with xlf_r, and automatic with xlf90_r. According to the 
section on the -qsmp option in XL Fortran for AIX User’s Guide Version 5 
Release 1, SC09-2606, it is recommended to use the -qnosave option to 
make the default storage class automatic when a code is compiled by xlf_r 
with the -qsmp option. Therefore, when you use the -qsmp compiler option, 
the variables and arrays in your program are likely to be stored in the user 
stack area, which was not the case when you compiled programs with xlf for 
single thread execution.

Here, another complexity is introduced in 32-bit mode regarding the 
maximum size of data in the user data area and the user stack area, as 
explained in sections 3.3.2, “32-Bit Mode” on page 21 and 3.3.3, “32-Bit 
Mode, Large Address Space Model” on page 22. For data in the user data 
area, the maximum size is 256 MB (that is, the segment size of AIX) by 
default, but can be extended as much as 2 GB by using the -bmaxdata 
compiler option, which allows you to allocate memory across multiple 
segments. For data in the user stack area, however, the maximum size per 
procedure call is 256 MB and cannot go beyond the limit of AIX segment size. 
Table 8 summarizes the preceding argument.

Table 8.  Storage Areas and Their Maximum Sizes

User Data Area User Stack Area

Variable Type Variables in common block
Variables with SAVE attribute
(Default of xlf and xlf_r is
-qsave)
Allocatable arrays

Variables with NOSAVE
attribute (Default of xlf90 and
xlf90_r is -qnosave)

Characteristics These variables are kept static
in the user data area.

Memory area for these
variables is allocated when a
procedure is called, and will not
be retained once the procedure
ends.

Maximum size AIX default value is 128 MB.
Can be 256 MB by using the
ulimit command.
Up to 2 GB is possible by the
-bmaxdata compiler option.

AIX default value is 64 MB.
Can be 256 MB by using the
ulimit command or by the
-bmaxstack compiler option,
but no more.
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Now consider the following code that requires 512 MB of memory for array A:

storage.f

PROGRAM MAIN
      PARAMETER (N=512*1024*1024/8)
      REAL*8 A(N)
      DO I=1,N
        A(I)=I
      ENDDO
      END

If this program is compiled with xlf -bmaxdata:600000000, there is no 
problem in running it serial in 32-bit mode. But if storage.f is compiled with the 
-qnosave option, as recommended when you use the -qsmp option, the 
resulting executable cannot be executed in 32-bit mode, because the 
operating system tries to store array A in the user stack area, but it has at 
most 256 MB of memory available. Since in parallelizing codes, XL Fortran 
divides loops into sets of disjoint iterations and allocates them to threads, the 
array A can be shared among threads without interfering with each other. 
Therefore, in this case, you can legitimately declare A as SAVE, which 
causes A to be stored in the user data area.

storage.f (modified)

PROGRAM MAIN
      PARAMETER (N=512*1024*1024/8)
      REAL*8 A(N)

SAVE A ! The array A is stored in the user data area.
DO I=1,N

        A(I)=I
      ENDDO
      END

This code can be compiled as,

$ xlf90_r -qfixed -qsmp -bmaxdata:600000000 storage.f

or

$ xlf_r -qnosave -qsmp -bmaxdata:600000000 storage.f

and XL Fortran will automatically parallelize the DO loop and generates an 
executable for multi-threaded execution. In fact, the original version of 
storage.f can be compiled with the -qsave option and be executed in parallel, 
in this case, because the compiler automatically generates loop iteration 
variables that are local to threads.
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In parallel execution in 32-bit mode, you should also be careful in sizing 
automatic arrays that are used in subroutines. The memory area that you 
need in the user stack area for a certain subroutine is (the number of threads 
executing the subroutine concurrently) x (the size of arrays).

4.3  Conditions for Automatic Parallelization

Without directives, XL Fortran only tries to parallelize DO loops. Only DO 
loops with iteration variables are considered for parallelization.

Loop that will possibly be parallelized

DO I=1,N
      ...
      ENDDO

Loops that will not be parallelized

C Infinite loop
DO

      ...
      ENDDO

C DO-WHILE structure
      DO WHILE (...)
      ...
      ENDDO

C Non-DO loop
  100 CONTINUE
      ...
      GOTO 100

The compiler analyzes the loop to find out whether each iteration is 
independent of one another or not, and if it turns out to have parallelism, the 
compiler further estimates the benefit of parallelization by a cost-based 

In 32-bit mode, the user stack area is limited by 256 MB. More user stack 
area will be consumed in parallel execution than in serial because (1) 
recommended storage class is NOSAVE and (2) each thread needs its own 
copy of stack. Never underestimate the size needed for the user stack 
area.

Important
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analysis to make the final decision. The former analysis (parallelism analysis) 
makes use of information that is available within the procedure that contains 
the loop under consideration. There are several conditions in order for a loop 
to be parallelized (the following is not a complete list):

1. Each iteration is independent of each other, that is, no variables that 
are written in some iteration will be read and/or written in another 
iteration.

2. The program will not exit from the loop before the last iteration is 
executed.

3. There are no I/O statements in the loop.

4. There are no ALLOCATE or DEALLOCATE statements in the loop.

5. In nested loops, at most one loop can be parallelized. Therefore, a loop 
in a certain nest level will not be parallelized if another level is.

More details will be discussed in 4.4, “Automatic Parallelization - Parallelism 
Analysis” on page 38 by showing examples. In the remainder of this section, 
general discussion on dependences between iterations are given ( see 
Bacon, Graham, and Sharp, “Compiler Transformations for High-Performance 
Computing,” ACM Computing Surveys, Vol. 26, 1994).

There are two kinds of dependences: control dependence and data 
dependence. Control dependence between statements s1 and s2 means that 
s1 determines whether s2 is executed, or vice versa. The following is an 
example of control dependence:

s1 IF (I>MAX) GOTO 100
s2 I=I+1

The condition 2 of the preceding list is more precisely expressed as,

2’. There are no control dependences between iterations.

Two statements have a data dependence if they cannot be executed 
simultaneously due to conflicting uses of the same variable. There are three 
types of data dependences: flow dependence, anti-dependence, and output 
dependence. A statement s3 has a flow dependence on s4 when s3 must be 
executed first because it writes a variable that is read by s4 as follows:

s3 A(I) = A(I-1) + 1.0
s4 A(I+1) = A(I) + 1.0

A statement s6 has an anti-dependence on s5 when s6 writes a variable that 
is read by s5:

s5 A(I-1) = A(I) + 1.0
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s6 A(I) = A(I+1) + 1.0

In the preceding example, anti-dependence can be eliminated by storing the 
value of A(I) to a temporary variable, say T, before the execution of s5 and s6, 
and by using T instead of A(I) in s5.

Statements s7 and s8 have output dependence if both write the same 
variable:

s7 T = A(I)
s8 T = A(I+1)

These three data dependences and combinations of them constitute cases 
that violate the first condition. They prohibit automatic parallelization in 
principle, but in some cases where dependent variables are only used 
temporarily and are insignificant outside the iteration, or when you can use 
directives, parallelization might be possible.

4.4  Automatic Parallelization - Parallelism Analysis

Ideally, the compiler parallelizes all the DO loops that can be parallelized at 
all. During compilation, there may be a lack of sufficient information in the 
code for the compiler to make an analysis, thus the compiler automatically 
parallelizes loops, and in the other, it needs assistance through the use of 
directives. In either cases, it is important that you know, to some extent, how 
the compiler tries to analyze and transform DO loops for parallel execution.

4.4.1  Examples of Parallelism Analysis
Subsections from 4.4.1.1, “Loops That Have Parallelism” on page 38 through 
4.4.1.10, “Dynamic Allocations, and Pointer Substitutions” on page 44 show 
how structures in DO loops allow or disallow the compiler to parallelize them. 
Note that some of the examples might have too few iterations to pass the 
cost-based analysis following the parallelism analysis, but they are for 
explanation purposes only and loops that are automatically parallelized 
usually have more than the minimum number of iterations in their cases.

4.4.1.1  Loops That Have Parallelism
Each iteration in the following loop is independent of each other and can be 
parallelized automatically. By declaration of A and B, you (and the compiler) 
know that these two array do not overlap in memory, that is, no equivalence 
relation between any elements of A and B.

REAL*8 A(100), B(100)
DO I=1,100
38 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide



        A(I)=B(I)
      ENDDO

If this loop is to be executed concurrently by two threads, each thread should 
execute half of the whole iterations:

Thread 0

DO I0=1,50
        A(I0)=B(I0)
      ENDDO

Thread 1

DO I1=51,100
        A(I1)=B(I1)
      ENDDO

As mentioned in 4.2, “Consideration of Storage Classes in 32-Bit Mode” on 
page 33, the compiler takes care of the loop iteration variable regardless of 
whether it is static (SAVE) or automatic (NOSAVE). In the preceding example, 
symbolic names (I0 and I1) are used for non-shared thread-local loop iteration 
variables, but you can guess how the compiler actually translates this loop by 
looking into hotlist report as follows. (The line continuation is modified for 
readability.)

subroutine ___main_out_1(__lib_ctl_1,
     &                          __do_from_1,
     &                          __do_to_1,
     &                          __do_step_1,a_1,b_1,i_1,CLLIV_4_1)
       integer*4 :: __lib_ctl_1
       integer*4 :: __do_from_1
       integer*4 :: __do_to_1
       integer*4 :: __do_step_1
       real*8 :: a_1(1:100)
       real*8 :: b_1(1:100)
       integer*4 :: i_1
       integer*4 :: CLLIV_4_1
       integer*4 :: local_i_1
       integer*4 :: local_CLLIV_4_1
       integer*4 :: __pardo_from_1
       integer*4 :: __pardo_to_1
       integer*4 :: __pardo_step_1
       integer*4 :: _do_executed_T_15
       local_CLLIV_4_1 = CLLIV_4_1
       local_i_1 = i_1
C 1585-501  Original Source Line 2
       do while (_xlsmpParDoChunk(__lib_ctl_1,
     &                            __pardo_from_1,
     &                            __pardo_to_1,
     &                            __pardo_step_1) .eq. 1)

_do_executed_T_15 = 0
         do local_CLLIV_4_1=__pardo_from_1,__pardo_to_1,__pardo_step_1
           _do_executed_T_15 = 1
           local_i_1 = local_CLLIV_4_1
           a_1(local_i_1) = b_1(local_i_1)
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         end do
         local_CLLIV_4_1 = local_CLLIV_4_1 - __pardo_step_1 + __do_step_1
         if ((_do_executed_T_15 .eq. 1 .and.
     &         (__do_step_1 .gt. 0 .and. local_CLLIV_4_1 .gt. __do_to_1
     &          .or.
     &          __do_step_1 .lt. 0 .and. local_CLLIV_4_1 .lt. __do_to_1)
     &       .and. (1)) .ne. 0) then
           i_1 = local_i_1
           CLLIV_4_1 = local_CLLIV_4_1
         end if
       end do
       return
       end

This hotlist report is generated with the -qsave option and it shows that the 
DO loop is converted into a subroutine so that each thread can execute its 
own assignment and that a loop iteration variable local_i_1 which is local to 
thread, is used to avoid shared access by threads.

By default, loops are divided into a set of iterations in a block scheduling 
fashion, but you can choose cyclic scheduling, block-cyclic scheduling, or 
dynamic scheduling by specifying SCHEDULE directive, which will be 
explained in section 4.6.4, “SCHEDULE Compiler Directive” on page 54.

4.4.1.2  Loops That Have Flow Dependence
The following loop will not be parallelized because it has flow dependence:

DO I=2,N
        A(I)=A(I-1)+B(I)
      ENDDO

When the loop is unrolled iteration by iteration, you can see the difficulty in 
parallelization:

A(2)=A(1)+B(2) (iteration 2)
A(3)=A(2)+B(3) (iteration 3)
A(4)=A(3)+B(4) (iteration 4)
A(5)=A(4)+B(5) (iteration 5)
...

The variable A(3), for instance, is updated in the iteration 3 and this updated 
value is used in the iteration 4. This is a true recursive. Therefore the 
iterations 3 and 4 must be executed in this order and cannot be exchanged 
nor be executed concurrently. This is why loops with flow dependence cannot 
be parallelized automatically, but the preceding discussion has some 
suggestions in parallelizing them manually: suppose iterations 2 and 3 are 
assigned to thread 0 and 4 and 5 to thread 1. In this case, threads 0 and 1 
can be executed concurrently if thread 1 uses the value of A(3) written by 
thread 0, that is, it is the variables on the boundary between threads that 
matter in parallelization, and you can get rid of this dependence by using the 
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same technique as prefix sum. In section 4.7, “NUM_PARTHDS Intrinsic 
Function” on page 56, you will see how to parallelize this loop using 
NUM_PARTHDS intrinsic function.

4.4.1.3  Loops That Have Anti-Dependence
Loops with anti-dependence also prevent the compiler from parallelization:

DO I=1,N-1
        A(I)=A(I+1)+B(I)
      ENDDO

Again, for the purpose of illustrative understanding of the loop structure, the 
first few iterations are written down explicitly:

A(1)=A(2)+B(1) (iteration 1)
A(2)=A(3)+B(2) (iteration 2)
A(3)=A(4)+B(3) (iteration 3)
A(4)=A(5)+B(4) (iteration 4)
...

It is easy to see that these iterations cannot be executed concurrently. 
Although it might not be beneficial in a performance point of view, it is 
possible to parallelize the loop manually by using a temporary array:

DO I=1,N-1
        T(I)=A(I+1)
      ENDDO

DO I=1,N-1
        A(I)=T(I)+B(I)
      ENDDO

4.4.1.4  Temporary Variables
Temporary variables that appear in a loop can impose both anti-dependence 
and output dependence on the loop:

DO I=1,N
        T = B(I)

A(I) = T
ENDDO

In the following, dependence is considered not in terms of statement but in 
terms of iteration, which is suitable for discussing loop parallelization. Look at 
iterations I and I+1. (Subscripts for Ts are for explanation purpose only.)

T1 = B(I) (iteration I)
A(I) = T2
T3 = B(I+1) (iteration I+1)
A(I+1) = T4
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Iteration I has anti-dependence on I+1 because of T2 and T3. At the same 
time, both iterations have output dependence since they write to the same 
variable (T1 and T3). By preparing two variables, one for T1 and T2, the other 
for T3 and T4, the dependences can be eliminated because statements in 
each iteration is assured to be executed in order. In this simple case, the 
compiler automatically parallelizes the loop by providing local temporary 
variables for each thread regardless of whether T is static (SAVE) or 
automatic (NOSAVE). If the value of T is referred after the loop, the compiler 
makes sure that the variable T holds the same value as when the loop is 
executed serially. Suppose a loop with temporary variables is not parallelized 
automatically and you force the compiler to parallelize it. Depending on 
whether these temporary variables are referred to after the loop, there are 
two clauses to the PARALLEL DO directive, namely PRIVATE and 
LASTPRIVATE, which will be explained in section 4.6.1.1, “PRIVATE and 
LASTPRIVATE” on page 51.

4.4.1.5  Conditions
The following loop will not be parallelized because the first occurrence of I 
such that IFLAG(I) equals 1 affects the remaining iterations:

T=0.0
      DO I=1,N
        IF (IFLAG(I)==1) T=1.0

A(I)=T
      ENDDO

On the other hand, the compiler automatically parallelizes the following:

DO I=1,N
        IF (IFLAG(I)==1) THEN
          T=1.0
        ELSE
          T=0.0
        ENDIF
        A(I)=T
      ENDDO

In the current implementation of XL Fortran 5.1.1, dependence between 
iterations including IF statements must be observable to the compiler 
syntactically, not semantically, for automatic parallelization. For instance, the 
following code is not parallelized:

DO I=1,N
        IF (IFLAG(I)==1) T=1.0
        IF (IFLAG(I)/=1) T=0.0
        A(I)=T
      ENDDO
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Future IBM implementations of XL Fortran might behave in a different 
manner.

4.4.1.6  Reduction Operations
XL Fortran automatically parallelizes the following code if the -O3 option is 
set. Obviously, there are flow dependence and output dependence between 
iterations in reduction operations, but the compiler transforms the loop for 
parallel execution.

S=0.0
      DO I=1,N
        S=S+A(I)
      ENDDO

The additional compiler flag -qstrict will prevent parallelization of the 
preceding loop. In concurrent execution, threads calculate the subtotal of 
array A, and those subtotals are added to produce the total. The order of 
summation could be different from what it will be if the loop is executed 
serially; thus the option -qstrict must not be set for parallelization. Indeed the 
results could be different from execution to execution within numerical error 
depending on the order in which subtotals are added up. In 4.6.1.2, 
“REDUCTION” on page 52, a method is presented to force the compiler to 
parallelize the reduction operation. The following shows examples of 
reduction operations that can be parallelized:

  • Scalar = scalar op expression

S = S + A(I)
S = S * A(I)
S = S + A(I)*B(I)

  • Scalar = func(scalar, expression)

AMAX = MAX(AMAX, A(I))
AMIN = MIN(AMIN, A(I))

4.4.1.7  Indirect Addressing
The compiler does not parallelize the following loop because it cannot 
determine whether there is an output dependence or not:

DO I=1,N
        A(INDEX(I))=B(I)
      ENDDO

If there exist J and K such that , , and INDEX(J)=INDEX(K), 
the loop has indeed an output dependence. If you know that it is not the case, 
you can tell the compiler of this fact by giving the PERMUTATION directive 
(Section 4.6.3, “PERMUTATION Compiler Directive” on page 54).

1 J K N≤,≤ J K≠
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4.4.1.8  Subroutine Calls
The compiler does not automatically parallelize a loop containing subroutine 
calls and/or function calls. In the smplist report, the compiler outputs 
messages as follows:

C 1585-108  SMP: Did not parallelize this loop potentially because:
C 1585-111  Side effects of procedure call(s) cannot be determined.

It is your responsibility whether to parallelize the loop with directives, such as 
PARALLEL DO and CNCALL, or not.

4.4.1.9  I/O Operations
The compiler does not parallelize a loop having I/O statements.

4.4.1.10  Dynamic Allocations, and Pointer Substitutions
The compiler does not parallelize the following loops:

loop 1

      REAL, ALLOCATABLE :: A(:)
      DO I=1,100
        ALLOCATE(A(1000))
        ...
        DEALLOCATE(A)
      ENDDO

loop 2

      POINTER P
      TARGET A(100)
      DO I=1,100
        P=>A(I)
        ...
      ENDDO

4.4.2  XL Fortran Messages Related to Parallelization
There are several messages that the compiler outputs regarding 
parallelization when a source code is compiled with the -qreport=smplist 
option. When a DO loop is automatically parallelized, you will see a listing like 
the following:

PARALLEL DO I=1,100,1
 A(I) = B(I)

END DO
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On the other hand, if the compiler fails in automatic parallelization, it puts 
messages before the loop; this accounts for the reason why the loop was not 
parallelized.

C 1585-108  SMP: Did not parallelize this loop potentially because:
C 1585-113  Data dependence prevents parallelization.

DO I=2,100,1
         ScRep_3 = A(I - 1) + B(I)

A(I) = ScRep_3
END DO

The first message 1585-108  SMP: Did not parallelize this loop potentially 
because: is common and a detail reason is given in the following message(s). 
The whole list is listed as follows:

  • 1585-109  Granularity of computation is relatively small.

  • 1585-110  Loop has loop carried control dependence.

  • 1585-111  Side effects of procedure call(s) cannot be determined.

  • 1585-112  Dependence information is not precise.

  • 1585-113  Data dependence prevents parallelization.

  • 1585-114  Parallelization may result in poor cache locality.

  • 1585-115  Loop nest needs to be serial for better cache locality.

Messages from 1585-110 to 1585-113 show that the loop was not parallelized 
by parallelism analysis and the others show that the compiler decided not to 
parallelize it by cost-based analysis, which is explained in 4.5, “Automatic 
Parallelization - Cost-Based Analysis” on page 45.

4.5  Automatic Parallelization - Cost-Based Analysis

Even if the parallelism analysis found that a DO loop could be executed in 
parallel, that DO loop must pass cost-based analysis in order to be 
parallelized. The logic of cost-based analysis is not documented in manuals, 
but obviously, it takes into consideration cache locality (that is, stride) and 
granularity of work assigned to each thread. What is described in the 
following sections is based on experiments run on XL Fortran Version 5.1.1 
and is subject to change in any future release of XL Fortran or service 
update.

4.5.1  Cost-Based Analysis - Single Loops
In the cost-based analysis, the compiler primarily takes into account the 
number of iterations of DO loops:
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SUBROUTINE SUB1(A,MAX)
PARAMETER (N=10)

      DIMENSION A(MAX)
      DO I=1,N
        A(I)=I
      ENDDO
      END

      SUBROUTINE SUB2(A,IMAX)
      DIMENSION A(10)
      DO I=1,IMAX
        A(I)=I
      ENDDO
      END

In subroutine SUB1, the number of iterations is explicitly given within the 
subroutine because variables defined by PARAMETER statements are 
replaced by actual values. In subroutine SUB2, the value of IMAX is unknown 
but the compiler assumes that it is the same as the dimension of A, that is, 
10.

The compiler parallelizes an unnested DO loop when the number of iterations 
is unknown, or is greater than or equal to a certain threshold value. Otherwise 
the loop is not parallelized and smplist reports the reason as C 1585-109  
Granularity of computation is relatively small. The default threshold value 
is 100 in XL Fortran 5.1.1.

4.5.2  Cost-Based Analysis - Nested Loops
In case of nested loops, the compiler decides to parallelize them, or not, 
based on the numbers of iterations of all nested levels. Examine the double 
loops first. In the loop below, whether it is parallelized or not depends on both 
JMAX and IMAX:

DO J=1,JMAX
        DO I=1,IMAX
          A(I,J)=B(I,J)
        ENDDO
      ENDDO

In this simple example, it is always the outer loop that is parallelized, if the 
nested loop is parallelized at all. If the outer loop has no parallelism and the 
inner one does, the compiler tries to parallelize the inner loop according to 
the same criteria for single loops:

DO J=1,JMAX ! Not parallelized
        CALL SUB
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        DO I=1,IMAX ! Might be parallelized
          A(I,J)=B(I,J)
        ENDDO
      ENDDO

For loops with more than two levels, the same argument applies except that 
the compiler may possibly change the order of loops. For instance, a nested 
loop:

DO K=1,4
        DO J=1,1000
          DO I=1,1000
            A(I,J,K)=B(I,J,K)
          ENDDO
        ENDDO
      ENDDO

is parallelized as follows:

DO J=1,1000 ! Parallelized
        DO K=1,4 ! Not parallelized
          DO I=1,1000 ! Not parallelized
            A(I,J,K)=B(I,J,K)
          ENDDO
        ENDDO
      ENDDO

Note that loop J and loop K are exchanged.

4.5.3  How to Affect the Decision of Cost-Based Analysis
XL Fortran estimates the benefit of parallelization according to its own logic, 
which is not always ideal. There are cases where DO loops are not 
parallelized while they should be, or DO loops are parallelized even if the 
performance degrades. In this section, some techniques are presented for 
changing how the compiler estimates loops.

As described in 4.5.1, “Cost-Based Analysis - Single Loops” on page 45 and 
4.5.2, “Cost-Based Analysis - Nested Loops” on page 46, the information that 
the compiler uses in cost-based analysis is the number of iterations of loops. 
Therefore, if the compiler presumed the value that you wish for the number of 
iteration of some loop, the compiler would behave as you wish regarding 
parallelization of the loop. For that purpose, there is a directive called 
ASSERT(ITERCNT(N)) that tells the compiler to use n in the evaluation of the 
number of iterations of the loop immediately following the directive. Since the 
value of n is used only in the cost-based analysis, you can specify a different 
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number from the one that the loop actually iterates. The following are 
examples of how to use this directive.

The DO loop in the following subroutine is parallelized because the value of N 
is unknown:

SUBROUTINE SUB(A,N)
      DIMENSION A(N)
      DO I=1,N ! Parallelized
        A(I)=0.0
      ENDDO
      END

If you know that the value of N is small and that parallelization will degrade 
the performance, you can give the compiler a small value and serialize the 
loop, or you can force the compiler to serialize the loop by the DO SERIAL 
directive:

SUBROUTINE SUB(A,N)
      DIMENSION A(N)
!SMP$ ASSERT(ITERCNT(1)) ! DO SERIAL also works
      DO I=1,N ! Not parallelized
        A(I)=0.0
      ENDDO
      END

Even if the number of iterations is explicitly given in the code, the directive 
can be used. The following is a case where for some reason you parallelize a 
loop against compiler’s decision:

SUBROUTINE SUB(A,N)
      DIMENSION A(N)
!SMP$ ASSERT(ITERCNT(1000))
      DO I=1,10 ! Parallelized
        A(I)=0.0
      ENDDO
      END

But in the current implementation of XL Fortran, if the compiler knows that the 
size of an array is below threshold value, it neglects the directive:

SUBROUTINE SUB(A)
      DIMENSION A(10)
!SMP$ ASSERT(ITERCNT(1000))
      DO I=1,10 ! Not parallelized
        A(I)=0.0
      ENDDO
      END
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In parallelizing nested loops, you may have to write an ASSERT directive for 
a loop which is not the one you want to parallelize:

SUBROUTINE SUB(A)
      DIMENSION A(2,1000)
      DO K=1,1000 ! Not parallelized (but should be)
        DO J=1,2 ! Not parallelized
          A(J,K)=0.0
        ENDDO
      ENDDO
      END

It is the few iteration of J that prevents the compiler from parallelizing K’s loop:

SUBROUTINE SUB(A,N)
      DIMENSION A(N,1000)
      DO J=1,1000 ! Parallelized
!SMP$   ASSERT(ITERCNT(1000))
        DO I=1,2 ! Not parallelized
          A(I,J)=0.0
        ENDDO
      ENDDO
      END

Note that you need to hide A’s first dimension size from the compiler in order 
for the directive to work.

There is a trick that does not use ASSERT directive. Suppose that you want 
to parallelize the inner loop in the following subroutine:

SUBROUTINE SUB(A,M,N)
      DIMENSION A(M,N)
      DO J=1,4 ! Not parallelized
        DO I=1,1000 ! Not parallelized
          A(I,J)=0.0
        ENDDO
      ENDDO
      END

As mentioned in 4.5.2, “Cost-Based Analysis - Nested Loops” on page 46, if 
the outer loop does not have parallelism, the compiler tries to parallelize the 
inner one:

SUBROUTINE SUB(A,M,N)
      DIMENSION A(M,N)
      DO J=1,4 ! Not parallelized
        CALL DUMMY
        DO I=1,1000 ! Parallelized
          A(I,J)=0.0
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        ENDDO
      ENDDO
      END

      SUBROUTINE DUMMY
      END

A dummy subroutine call prevents the automatic parallelization (Section 
4.4.1.8, “Subroutine Calls” on page 44) and the inner loop is parallelized as 
desired.

If you use the PARALLEL DO directive, you can also parallelize a specific 
loop that you want. But there is a considerable difference between ASSERT 
and PARALLEL DO: ASSERT is an assertion directive, that is, it is still up to 
the compiler whether to parallelize the loop or not. On the other hand, 
PARALLEL DO is a prescriptive directive that forces the compiler to 
parallelize the loop regardless of parallelism and cost-based analyses, and it 
is you who has to take care of variables (other than loop iteration variables) in 
the loop with appropriate clauses, such as PRIVATE and REDUCTION.

4.6  Directives

When XL Fortran does not parallelize a certain part of a code, you can force 
or give a hint to the compiler to parallelize that part by using directives. 
Directives related to parallelization are classified into three categories. The 
asterisks indicate directives that are described in the following sections.

1. Assertion directives that provide information to the compiler about the 
source code that the compiler would not necessarily be able to determine 
on its own:

  • ASSERT

  • CNCALL

  • INDEPENDENT

  • PERMUTATION*

2. Prescriptive directives that specify how and when the compiler should 
parallelize the code:

  • CRITICAL

  • PARALLEL DO*

  • PARALLEL SECTIONS*

  • SCHEDULE*
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  • DO SERIAL

3. Thread-safing directive that allocates thread-specific COMMON areas at 
run time:

  • THREADLOCAL*

Directives are triggered by !SMP$, !$OMP, !IBM*, or others by default, but 
!SMP$ is used throughout the chapter. The next several sections describe the 
directives that are considered to be used most frequently in parallelizing real 
codes. For complete reference of all the directives, see Chapter 11 of XL 
Fortran for AIX Language Reference Version 5 Release 1, SC09-2607.

4.6.1  PARALLEL DO Compiler Directive
When you know that no iteration of a DO loop can interfere with any other 
iteration and the compiler fails to parallelize the loop automatically, you can 
specify a PARALLEL DO directive to parallelize the loop. In real codes, it is 
often the case that it is not enough to write a PARALLEL DO directive alone. 
In addition to the PARALLEL DO directive a, PARALLEL DO clause, such as 
PRIVATE or REDUCTION, might be necessary. In this section, parallelization 
of DO loops having subroutine calls and/or function calls is not described.

The following subsections describe PARALLEL DO clauses.

4.6.1.1  PRIVATE and LASTPRIVATE
A variable should be specified with the PRIVATE attribute, if its value is used 
during the calculation of a single iteration of a loop, and that value is not 
dependent on any other iteration of the loop. Copies of the PRIVATE variable 
exist locally on each thread. All DO loop iteration variables within the lexical 
extent of the PARALLEL DO directive are given the PRIVATE attribute by 
default. (The lexical extent of a PARALLEL DO directive includes the 
corresponding DO loop and the code that is enclosed in that DO loop.) The 
following is an example where you force the compiler to parallelize a DO loop 
for some reason, although the compiler automatically parallelizes this simple 
case without directives:

!SMP$ PARALLEL DO PRIVATE(P,Q)
      DO I=1,N
        P=A(I)
        Q=B(I)
        C(I)=P
        D(I)=Q
      ENDDO

A variable in the PRIVATE clause must not:
Using the SMP Feature of XL Fortran 51



  • Be a pointer, or

  • Be an assumed-size array, or

  • Be an assumed-shape array, or

  • Be a THREADLOCAL common block variable.

The LASTPRIVATE clause functions in a similar manner to the PRIVATE 
clause and should be specified for variables that match the same criteria. The 
exception is the status of the variable upon exit from the loop. The compiler 
determines the value of the variable at the final iteration and takes a copy of 
that value. The copy of the value is then saved in the named variable for use 
after the loop.

4.6.1.2  REDUCTION
The REDUCTION clause specifies named variables that appear in reduction 
operations. The compiler will maintain local copies of such variables, but will 
combine them at loop exit. The intermediate values of the REDUCTION 
variables are combined in random order, dependent on which threads finish 
their calculation first. There is, therefore, no guarantee that bit-identical 
results will be obtained from one parallel run to another, even if the parallel 
runs use the same number of threads and the same scheduling type and 
chunk size. The syntax of REDUCTION clause is

REDUCTION( [op_fnc :] named_variable_list )

where op_fnc is one of the reduction operators: +, -, *, .AND., .OR., .EQV., 
.NEQV., .XOR. or one of the reduction functions: MAX, MIN, IAND, IOR, 
IEOR. In order to maintain compatibility with OpenMP, op_fnc must be 
specified when the directive is triggered by $OMP. The following is an 
example:

!SMP$ PARALLEL DO REDUCTION(+:S1,S2),
!SMP$&            REDUCTION(MAX:CMAX)
      DO I=1,N
        S1=S1+A(I)
        S2=S2+B(I)
        CMAX=MAX(CMAX,C(I))
      ENDDO

In the following loop, it is the outer loop that is parallelized, and you need to 
declare S as PRIVATE rather than REDUCTION:

!SMP$ PARALLEL DO PRIVATE(S)
      DO J=1,N ! Parallelized
        S=0.0
        DO I=1,N ! Not parallelized
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          S=S+A(I,J)
        ENDDO
        B(J)=S
      ENDDO

4.6.1.3  IF
The IF clause performs a run time test to choose between executing the loop 
in serial or parallel:

!SMP$ PARALLEL DO IF(N>1000)
      DO I=1,N
        A(I)=0.0
      ENDDO

4.6.1.4  SCHEDULE
The SCHEDULE clause in a PARALLEL DO directive specifies the chunking 
method for parallelization of the DO loop immediately following it, whereas a 
directive starting with SCHEDULE applies to all loops in the scoping unit that 
do not already have explicit scheduling types specified. Section 4.6.4, 
“SCHEDULE Compiler Directive” on page 54, describes types that you can 
choose in the SCHEDULE directive.

4.6.2  PARALLEL SECTIONS Compiler Directive
The PARALLEL SECTIONS directive is used to define independent blocks of 
code that the compiler can execute concurrently. In using this directive, you 
have to keep in mind the following:

  • The larger the granularity of the independent blocks is, the smaller the 
relative overhead of parallel execution will be.

  • On the other hand, if the granularity of the independent blocks is large, 
the assigned work for each thread will likely be unbalanced, in general.

  • The number of sections is given statically in the code. That is, the 
number of threads for parallel execution of this part of the code is no 
more than the number of sections, unless the prescriptive parallel 
construct (PARALLEL SECTIONS or PARALLEL DO) is nested and you 
compiled the program with -qsmp=nested_par option. Of course, in 
either case, the number of threads cannot exceed the value of parthds 
run-time option. See 4.1, “How to Compile, Link, and Execute” on page 
29 for parthds.

The following is a simple example of the PARALLEL SECTIONS directive:

!SMP$ PARALLEL SECTIONS
!SMP$ SECTION
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      CALL SUB1
!SMP$ SECTION
      CALL SUB2
!SMP$ END PARALLEL SECTIONS

If necessary, you must add the appropriate clause to the PARALLEL 
SECTIONS directive, such as PRIVATE and SHARED. For details, see XL 
Fortran for AIX Language Reference Version 5 Release1, SC09-2607.

4.6.3  PERMUTATION Compiler Directive
As mentioned in section 4.4.1.7, “Indirect Addressing” on page 43, indirect 
addressing of array elements prevents the compiler to parallelize the loop 
containing it. If you know that there are no repeated values in the array used 
for addressing, you can tell the compiler of that information by using the 
PERMUTATION directive:

!SMP$ PERMUTATION(INDEX)
DO I=1,N ! Parallelized

        A(INDEX(I))=A(INDEX(I))+B(I)
      ENDDO

4.6.4  SCHEDULE Compiler Directive
The SCHEDULE directive specifies how the iterations of a DO loop are 
divided and assigned to threads. The syntax for the SCHEDULE directive is 
as follows:

SCHEDULE(sched_type [, n])

where n is an integer and sched_type is one of AFFINITY, DYNAMIC, 
GUIDED, RUNTIME, or STATIC. When using RUNTIME, n must not be 
specified. The following shows how each scheduling policy assigns iterations 
to threads for the case where the number of iterations is 1000 and the 
number of threads is four:

STATIC If n has been specified, say n=50, the iterations of a loop are 
divided into chunks containing 50 iterations. Each thread is 
assigned chunks in a round-robin fashion. This is known as 
block cyclic scheduling. If the value of n is 1, then the 
scheduling type is specifically referred to as cyclic 
scheduling.
If n has not been specified, the iteration is divided into four 
chunks containing 1000/4=250 iterations and each thread is 
assigned one of these chunks. This is known as block 
scheduling.
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DYNAMIC If n has been specified, say n=50, the iterations of a loop are 
divided into chunks containing 50 iterations each. 
Otherwise, the chunk size will be 1000/4=250. Threads are 
assigned these chunks on a first-come, first-do basis until all 
chunks have been assigned.

GUIDED If n has been specified, the iterations of a loop are divided 
into progressively smaller chunks until a minimum chunk 
size of n loop iteration is reached. If n has not been 
specified, the default value for n is 1 iteration. The first 
chunk contains 1000/4=250 iterations. The subsequent 
chunks contain (1000-250)/4=750/4=188 iterations, 
(750-188)/4=562/4=141 iterations, (562-141)/4=106 
iterations, and so forth. Available threads are assigned 
chunks on a first-come, first-do basis. Chunks of the 
remaining work are assigned to available threads, until all 
work has been assigned.

AFFINITY The iterations of a loop are initially divided into four 
partitions containing 1000/4=250 iterations. Each partition is 
initially assigned to a thread, and is then further subdivided 
into chunks containing n iterations, if n has been specified. 
Otherwise, each partition is subdivided into two chunks. 
When a thread becomes free, it takes the next chunk from 
its initially assigned partition. If there are no more chunks in 
that partition, the thread takes the next available chunk from 
a partition initially assigned to another thread.

RUNTIME Determine the scheduling type at run time. At run time, the 
scheduling type can be specified using the environment 
variable XLSMPOPTS. If no scheduling type is specified by 
XLSMPOPTS, STATIC is used as default.

If you specify more than one method of determining the scheduling type, the 
compiler will follow in the order of precedence:

1. SCHEDULE clause of the PARALLEL DO directive (for example, 
!SMP$ PARALLEL DO SCHEDULE(STATIC,1))

2. SCHEDULE directive (for example, !SMP$ SCHEDULE(STATIC,1))

3. The schedule suboption to the -qsmp compiler option (for example, 
-qsmp=schedule=static=1)

4. XLSMPOPTS run-time option (for example, 
XLSMPOPTS=schedule=static=1)

5. Run-time default, that is, STATIC
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4.6.5  THREADLOCAL Compiler Directive
In general, data in a COMMON block is shared among all the threads that 
belong to the same process. The THREADLOCAL directive is used to ensure 
that a COMMON block is local to each thread but is global within the thread. If 
a common block is declared as THREADLOCAL within a scoping unit, any 
subprogram that declares or references the common block, and that is 
directly or indirectly referenced by the scoping unit, must be executed by the 
same thread executing the scoping unit.

4.7  NUM_PARTHDS Intrinsic Function

The NUM_PARTHDS intrinsic function returns the number of parallel Fortran 
threads at run time. With this function and the PARALLEL DO directive, you 
can determine how the work is divided to threads, which gives more flexibility 
to you than the SCHEDULE directive does. In this section, an example is 
given that shows how NUM_PARTHDS is used in parallelizing a loop having 
flow dependence.

The following subroutine cannot be parallelized because it has flow 
dependence (see Section 4.4.1.2, “Loops That Have Flow Dependence” on 
page 40):

SUBROUTINE SUB(A,B,N)
      DIMENSION A(0:N),B(N)

      DO I=1,N
        A(I)=A(I-1)+B(I)
      ENDDO
      END

When the loop exits, the array A has the following values:

A(1)=A(0)+B(1)
      A(2)=A(0)+B(1)+B(2)
      A(3)=A(0)+B(1)+B(2)+B(3)
      ...
      A(N)=A(0)+B(1)+B(2)+B(3)+...+B(N)

The idea in parallelizing this loop is as follows:
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1. Divide the array B into chunks,

2. Let each thread calculate the subtotal of its assigned chunk, and

3. Calculate the array A in parallel.

The manually parallelized code is as follows:

SUBROUTINE PSUB(A,B,N)
      DIMENSION A(0:N),B(N)
      INTEGER,ALLOCATABLE :: ISTA(:),IEND(:)

      NTHDS=NUM_PARTHDS()
      ALLOCATE(ISTA(0:NTHDS-1),IEND(0:NTHDS-1))
      CALL PARA_RANGE(1,N,NTHDS,ISTA,IEND)

!SMP$ PARALLEL DO PRIVATE(S)
      DO ID=0,NTHDS-1            ! Parallelized
        S=0.0
        DO I=ISTA(ID),IEND(ID)
          S=S+B(I)
        ENDDO
        A(IEND(ID))=S
      ENDDO
      DO ID=0,NTHDS-1            ! Serial
        A(IEND(ID))=A(IEND(ID))+A(ISTA(ID)-1)
      ENDDO
!SMP$ PARALLEL DO
      DO ID=0,NTHDS-1            ! Parallelized
        DO I=ISTA(ID),IEND(ID)-1
          A(I)=A(I-1)+B(I)

ENDDO
      ENDDO
      END

The existence of a subroutine PARA_RANGE is assumed, which, in this case, 
assigns integers from 1 to N to NTHDS threads in block scheduling fashion and 
stores the initial and the final values of each chunk to arrays ISTA and IEND. 
Roughly speaking, the running time in the unit of addition is N for serial and is 
p+2N/p for parallel where p is the number of threads.

4.8  XLSMPOPTS Environment Variable

The XLSMPOPTS environment variable specifies run-time options related to 
parallel execution. Section 4.1, “How to Compile, Link, and Execute” on page 
29 describes the parthds option, which specifies the number of threads to be 
used for parallel execution of the code, and its default value is the number of 
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on-line processors. For instance, if you want to execute your program using 
four threads, set this environment variable as follows:

$ export XLSMPOPTS=parthds=4

Section 4.6.4, “SCHEDULE Compiler Directive” on page 54 also mentions the 
schedule option, which takes one of the following forms:

$ export XLSMPOPTS=schedule=affinity[=n]
$ export XLSMPOPTS=schedule=dynamic[=n]
$ export XLSMPOPTS=schedule=guided[=n]
$ export XLSMPOPTS=schedule=static[=n]

When you need multiple options, separate each option by a colon:

$ export XLSMPOPTS="parthds=4:schedule=static"

In addition, there are three options (spins, yields, and delays) that control 
busy-wait and sleep states of XL Fortran run-time library routines. In 
execution, each thread tries to look for its work in the following steps:

1. Scan the work queue up to spins number of times. If no work is found in 
a scan, then loop delays number of times before starting a new scan.

2. If work has not been found, then yield the current time slice.

3. Repeat the above steps up to yields number of times.

4. If no work has been found, then go to sleep.

The syntax for specifying these options is as follows.

  • spins=n where n is the number of spins before a yield (default: spins=100)

  • delays=n where n is the number of delays while busy-waiting (default: 
delays=500)

  • yields=n where n is the number of yields before a sleep (default: 
yields=10)

By setting spins=0 and yields=0, you can force complete busy-waiting, 
sacrificing other processes’ CPU time. Normally in a benchmark test on a 
dedicated system, both of these options would be zero, but note that 
complete busy-waiting does not always improve the performance.

4.9  OpenMP Porting Considerations 

The OpenMP initiative was launched in 1997 in order to provide a simple and 
flexible application program interface (API) for developing portable 
multi-platform shared-memory parallel applications on UNIX platforms and 
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Microsoft Windows NT architectures. At the time of writing, the OpenMP 
Fortran API specification Version 1.0 is available. A C/C++ API is under 
development. For further details refer to URL http://www.openmp.org. IBM is 
part of a multi-company initiative supporting this standard.

The current release 5.1.1.0 of XL Fortran provides a subset of the OpenMP. A 
complete OpenMP implementation is expected with future releases of XLF, 
driven by the ASCI project. XLF also offers an interface to the pthread library, 
which does help to cover certain OpenMP function when porting codes to the 
RS/6000 platform. This section will give some hints concerning differences 
between XLF and OpenMP and the usage of the pthread library module in 
this context. 

In particular, XLF has partial support for the CRITICAL, END CRITICAL, 
PARALLEL DO, PARALLEL SECTIONS, SECTION, and END PARALLEL 
SECTIONS directives. To ensure the greatest portability of code, it is 
recommended to use these directives whenever possible. These directives 
should be used with the OpenMP directive sentinel !$OMP. SMP directives 
are recognized by the compiler if either xlf_r or xlf90_r is used and the -qsmp 
option is specified. 

XLF does not recognize the OpenMP conditional compilation, for example, 
triggered by the directive sentinel !$. Nor does XLF define the C preprocessor 
macro _OPENMP to be used for conditional compilation (see #ifdef 
_OPENMP). If appropriate _OPENMP can be defined through the compiler 
command line flag -WF,-D_OPENMP.

XLF does not provide the OpenMP END PARALLEL DO directive. This is a 
minor difference since the PARALLEL DO is assumed to end with the DO 
loop that immediately follows the PARALLEL DO in OpenMP as well.

For explicit process synchronization, XLF relies on CRITICAL and END 
CRITICAL directives. Besides, there is an implied barrier at the end of a 
parallel region, since only the master thread continues execution. The 
PARALLEL DO and PARALLEL SECTIONS directives are shortcuts of the 
OpenMP PARALLEL REGION construct, which is not available in XLF. In 
particular, no OpenMP BARRIER directive is available. The BARRIER 
directive can be substituted by a common pthread construct, as shown in the 
example program at the end of this section.

The XLF THREADLOCAL directive makes named common blocks private to a 
thread but global within a thread. It is a possible method of ensuring that 
access to data contained within COMMON blocks is serialized. Threads can 
be created in one of the following ways: explicitly through pthread library calls 
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or implicitly by the compiler for parallel loop or parallel section execution. The 
THREADLOCAL directive does not require the -qsmp compiler option. 

The semantics of the XLF THREADLOCAL directive slightly differs from the 
OpenMP THREADPRIVATE directive. The THREADLOCAL attribute is not 
allowed in a pure subprogram. Members of a THREADLOCAL common block 
must not appear in NAMELIST statements. A common block that is 
use-associative must not be declared as THREADLOCAL in the scoping unit 
that contains the USE statement. A THREADLOCAL common block may 
have the SAVE attribute. In OpenMP, the data in THREADPRIVATE common 
blocks is guaranteed to persist only if the OpenMP dynamic thread 
mechanism has been disabled and if the number of threads is the same for all 
parallel regions.

For clarification, objects within THREADLOCAL common blocks may be used 
in parallel loops and parallel sections. However, these objects are implicitly 
shared across the iteration of the loop and across code blocks within parallel 
sections. In other words, within a scoping unit, all accessible common blocks, 
whether declared as THREADLOCAL or not, have the SHARED attribute 
within parallel loops and sections in that scoping unit.

XLF 5.1.1.0 does not support the OpenMP Execution Environment Routines, 
such as OMP_SET_NUM_THREADS(), OMP_GET_NUM_PROCS(), 
OMP_SET_DYNAMIC(), nor the OpenMP Lock Routines, such as 
OMP_SET_LOCK(). As a substitute, the programmer can use the XLF 
intrinsic functions NUM_PARTHDS() and NUM_USRTHDS() to inquire the 
run-time environment, and the pthread mutex constructs to create and 
destroy locks.

The function NUM_PARTHDS() returns the number of parallel Fortran 
threads the run time should create during execution of a program. This value 
is set by using XLSMPOPTS PARTHDS run-time option. If not set the 
run-time environment will return the number of processors on the machine, 
or, if specified, the value of the run-time option USRTHDS. The function 
NUM_USRTHDS() returns the number of threads that will be explicitly 
created by the user during execution of a program. This value is set by using 
the XLSMPOPTS USRTHDS run-time option. The default value is 0. To be 
noticed, the compiler option -qsmp has to be specified, otherwise 
NUM_PARTHDS() will always return a value of 1.

The following simple example shows how to use the pthread Fortran90 
module to apply locks and barriers. The program was written for 
demonstration purposes only. It was not intended to present the most efficient 
60 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide



or complete implementation of a barrier. Indeed this version assumes a 
constant number of parallel threads. For briefness, return codes are ignored.

As shown in the example, it is straight forward to mix SMP compiler directives 
and pthread calls. In this case, the parallel threads are created implicitly by 
the PARALLEL DO directive. At the beginning of the program, mutex objects 
and condition variables have to be initialized. A lock is set though the function 
call f_pthread_mutex_lock(mutex_name), similar to the OpenMP 
OMP_SET_LOCK(var_name) subroutine call. The barrier is implemented as 
a Fortran module. The subroutine fpth_barrier_set() uses a typical pthread 
construct to build up a barrier.

The execution overhead to set up a barrier through the pthread interface 
increases with the number of threads. It amounts to less than 33 micro 
seconds compared to less than 8 micro seconds for a f_pthread_mutex_lock() 
call or less than 12 micro seconds for a CRITICAL directive, as found at least 
for eight or less parallel threads on a two processor machine, using the 
defaults for the XLSMP run-time variables spins, yields, and delays.

      program hello_omp

      use f_pthread
      use fpth_barrier

      implicit none

      integer, parameter      :: maxtask=20

      integer                 :: ntask, sg
      type(f_pthread_mutex_t) :: lock_mutex
      integer                 :: itask(maxtask), it, nb, rc 

      common /global/ sg, lock_mutex

!     --- init
      lock_mutex = pthread_mutex_initializer
      call fpth_barrier_init()
      ntask = num_parthds()
      sg = 0

      nb = 10

!     --- parallel threads
!$OMP PARALLEL DO
      do it=1,ntask
        itask(it) = it-1
        call sub(nb, itask(it))
      end do

!     --- clean up
      rc = f_pthread_mutex_destroy(lock_mutex)
      call fpth_barrier_destroy()

      end program hello_omp
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! **********************************************************************

      subroutine sub(nb, itask)

      use f_pthread
      use fpth_barrier

      implicit none

      integer                 :: nb, itask

      integer                 :: sg
      integer                 :: s, i, istart, iend
      type(f_pthread_mutex_t) :: lock_mutex
      integer                 :: rc

      common /global/    sg, lock_mutex
      common /local/     s

!IBM* THREADLOCAL /local/

!$OMP CRITICAL(crit0)
      print *, ’task ’, itask, ’starting ... ’
!$OMP END CRITICAL(crit0)

!     --- compute partial sum
      istart = 1+itask*nb 
      iend   = (itask+1)*nb 

      s = 0
      do i = istart, iend
        s = s + i
      end do

!     --- update global sum
      rc = f_pthread_mutex_lock(lock_mutex)
      sg = sg + s
      rc = f_pthread_mutex_unlock(lock_mutex)

!     --- wait until all tasks are finished
      call fpth_barrier_set()
      if (itask .eq. 0) then
         print *, ’Sum is ’, sg 
      end if

      end subroutine sub

! **********************************************************************

      module fpth_barrier

      use f_pthread

! --- global vars --------------------------------------------

      type(f_pthread_mutex_t) :: barrier_mutex
      type(f_pthread_cond_t)  :: barrier_cond

integer                 :: taskcounter
      integer :: numtasks
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      contains

! --- init barrier ------------------------------------------- 

      subroutine fpth_barrier_init()

      use f_pthread

      implicit none

      taskcounter = 0
numtasks = num_parthds()

      barrier_mutex = pthread_mutex_initializer
      barrier_cond  = pthread_cond_initializer

      end subroutine fpth_barrier_init

! --- set barrier --------------------------------------------

      subroutine fpth_barrier_set()

      use f_pthread

      implicit none
      integer :: rc

      rc = f_pthread_mutex_lock(barrier_mutex)

      taskcounter = taskcounter + 1
      if (taskcounter .eq. numtasks) then
         taskcounter = 0
         rc = f_pthread_cond_broadcast(barrier_cond)
      else if (taskcounter .lt. numtasks) then

rc = f_pthread_cond_wait(barrier_cond, barrier_mutex)
      end if

      rc = f_pthread_mutex_unlock(barrier_mutex)

      end subroutine fpth_barrier_set

! --- destroy barrier ----------------------------------------
      subroutine fpth_barrier_destroy()

      use f_pthread

      implicit none
      integer :: rc

      rc = f_pthread_mutex_destroy(barrier_mutex)
      rc = f_pthread_cond_destroy(barrier_cond)

      end subroutine fpth_barrier_destroy
      
      end module fpth_barrier
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Chapter 5.  Performance Libraries

There are several challenges to write programs that perform well on all 
machines, since different architectures require different tuning techniques.

One solution is to have a unique program version for each architecture it is 
intended to run on. This will, in general, increase the complexity of the code 
as well as the complexity of the development. But even if you manage to 
maintain only one version, the tuning itself tends to increase the complexity of 
your program. As a more complex program increases the effort to maintain 
the code, the development costs will also increase.

Therefore, commercial programs tend to be unoptimized. They will have a few 
general optimization techniques implemented, but this will not give them the 
performance they can expect, especially from a new processor like the 
POWER3.

One way to solve this problem and get performance across different 
architectures is to use standard libraries that are specifically tuned for each 
platform. 

This chapter describes two libraries, ESSL and MASS, that increase the 
performance on all platforms they are used on, without losing portability. The 
MASS library is a replacement of some FORTRAN intrinsic like EXP(). ESSL 
provides significantly higher functions, such as linear algebra and FFTs. 

5.1  The ESSL Library

The family of Engineering and Scientific Subroutine Library (ESSL) is a 
collection of highly tuned routines you can use in your program. The ESSL 
family for the AIX operating system consists of: 

  • Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for 
Advanced Interactive Executive (AIX), program number 5765-C41 

  • Engineering and Scientific Subroutine Library (ESSL) for AIX, program 
number 5765-C42 

These products are state-of-the-art collections of mathematical subroutines 
that provide a wide range of functions for many different scientific and 
engineering applications. 
© Copyright IBM Corp. 1998 65



Parallel ESSL runs under the IBM RS/6000 SP and clusters of IBM RS/6000 
workstations. It offers mathematical subroutines in the six computational 
areas and has one extra area for utilities, namely:

  • Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS) 

Level 2 PBLAS include a subset of the standard set of distributed memory 
parallel versions of the Level 2 Basic Linear Algebra Subprograms 
(BLAS). The Level 2 subroutines of BLAS perform vector-matrix operation.

  • Level 3 PBLAS

Level 3 PBLAS include a subset of the standard set of distributed memory 
parallel versions of the Level 3 BLAS. The Level 3 subroutines of the 
BLAS subroutines perform matrix-matrix operations.

  • Linear Algebraic Equations

Linear Algebraic Equations Subroutines consist of dense, banded, and 
sparse subroutine, and include a subset of the ScaLAPACK 
subroutines.The ScaLAPACK library can be found at:

http://www.netlib.org/scalapack/ 

The routines in PESSL includes:

  • Dense Linear Algebraic Equations Subroutines provide solutions to 
linear systems of equations for real and complex general matrices and 
their transposes, and for positive definite real symmetric and complex 
Hermitian matrices. 

  • Banded Linear Algebraic Equations Subroutines provide solutions to 
linear systems of equations for real positive definite symmetric band 
matrices, real general tridiagonal matrices, diagonally-dominant real 
general tridiagonal matrices, and real positive definite tridiagonal 
matrices. 

  • Sparse Linear Algebraic Equations Subroutines and their utility 
subroutines provide iterative solutions to linear systems of equations 
for real general sparse matrices.

  • Eigensystem Analysis and Singular Value Analysis 

Eigensystem Analysis and Singular Value Analysis Subroutines provide 
solutions to the algebraic eigensystem analysis problem for real 
symmetric matrices and the ability to reduce real symmetric and real 
general matrices to condensed form. These subroutines include a subset 
of the ScaLAPACK subroutines.
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  • Fourier Transforms 

Fourier Transform Subroutines perform mixed-radix transforms in two and 
three dimensions. 

  • Random Number Generation 

Random Number Generation Subroutine generates uniformly distributed 
random numbers.

  • Utilities 

Utility Subroutines perform general service functions, rather than 
mathematical computations. 

ESSL runs on the following platforms: 

  • POWER3

  • IBM RS/6000 POWER, PowerPC, symmetric multiprocessing (SMP) 
PowerPC, and POWER2 Processors 

  • IBM RS/6000 SP 

It offers mathematical subroutines in nine computational areas and on an 
extra utility area:

  • Linear Algebra Subprograms 

Linear Algebra Subprograms consist of vector-scalar, sparse 
vector-scalar, matrix-vector, and sparse matrix-vector linear algebra 
subprograms:

  • Vector-Scalar Linear Algebra Subprograms include a subset of the 
standard set of Level 1 BLAS and subroutines for other commonly used 
computations. Both real and complex versions of the subprograms are 
provided. 

  • Sparse Vector-Scalar Linear Algebra Subprograms operate on sparse 
vectors; only the nonzero elements of the vectors need to be stored. 
These subprograms provide functions similar to those of the 
vector-scalar subprograms and represent a subset of the sparse 
extensions to the Level 1 BLAS. Both real and complex versions of the 
subprograms are provided. 

  • Matrix-Vector Linear Algebra Subprograms operate on a higher-level 
data structure, matrix-vector rather than vector-scalar, using optimized 
algorithms to improve performance. These subprograms represent a 
subset of the Level 2 BLAS. Both real and complex versions of the 
subprograms are provided. 
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  • Sparse Matrix-Vector Linear Algebra Subprograms operate on sparse 
matrices; only the nonzero elements of the matrix need to be stored. 
These subprograms provide functions similar to those of the 
matrix-vector subprograms. 

  • Matrix Operations 

Matrix Operations Subroutines include Level 3 BLAS, as well as the 
commonly used matrix operations: addition, subtraction, multiplication, 
and transposition. 

  • Linear Algebraic Equations 

Linear Algebraic Equations Subroutines consist of dense, banded, sparse, 
and linear least squares subroutines: 

  • Dense Linear Algebraic Equations Subroutines provide solutions to 
linear systems of equations for real and complex general matrices and 
their transposes, positive definite real symmetric and complex 
Hermitian matrices, and triangular matrices. Some of these subroutines 
correspond to the Level 2 and Level 3 BLAS. 

  • Banded Linear Algebraic Equations Subroutines provide solutions to 
linear systems of equations for real general band matrices, real 
positive definite symmetric band matrices, real or complex general 
tridiagonal matrices, real positive definite symmetric tridiagonal 
matrices, and real or complex triangular band matrices. 

  • Sparse Linear Algebraic Equations Subroutines provide direct and 
iterative solutions to linear systems of equations, both for general 
sparse matrices and their transposes and for sparse symmetric 
matrices. 

  • Linear Least Squares Subroutines provide least squares solutions to 
linear systems of equations for real general matrices. Two methods are 
provided: one with a singular value decomposition and another with a 
QR decomposition with column pivoting. 

  • Eigensystem Analysis

Eigensystem Analysis Subroutines provide solutions to the algebraic 
eigensystem analysis problem Az = wz and the generalized eigensystem 
analysis problem Az = wBz. These subroutines give you several options 
for computing eigenvalues or eigenvalues and eigenvectors. 

  • Fourier Transforms, Convolutions and, Correlations:

  • Fourier Transform Subroutines perform mixed-radix transforms in one, 
two, and three dimensions. 
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  • Convolution and Correlation Subroutines offer a choice between 
Fourier methods or direct methods. The Fourier-method subroutines 
contain a high-performance mixed-radix capability. Also, several 
direct-method subroutines provide decimated output. 

  • Sorting and Searching 

Sorting and Searching Subroutines operate on three types of data: integer, 
short-precision real, and long-precision real. The sorting subroutines 
perform a sort with or without index designations. The searching 
subroutines perform either a binary or a sequential search. 

  • Interpolation 

Interpolation Subroutines provide capabilities for polynomial interpolation, 
local polynomial interpolation, and both one- and two-dimensional cubic 
spline interpolation.

  • Numerical Quadrature 

Numerical Quadrature Subroutines provide one-dimensional methods for 
integrating a tabulated function and a user-supplied function over a finite, 
semi-infinite, or infinite region of integration by Gaussian quadrature 
methods. They also provide a two-dimensional quadrature capability 
within a rectangular boundary. 

  • Random Number Generation 

Random Number Generation Subroutines generate uniformly or normally 
distributed random numbers. 

  • Utilities 

Utility Subroutines perform general service functions, rather than 
mathematical computations.

Several versions of most subroutines are provided, depending on the type of 
data you are processing. These may include a short- and long-precision real 
version, a short- and long-precision complex version, and an integer version. 

The following Web pages contains more information on ESSL and PESSL:

http://www.rs6000.ibm.com/software/Apps/essl.html
http://www.rs6000.ibm.com/software/sp_products/esslpara.html 

5.1.1  Benefits of Using ESSL
The main benefits include:

  • Portability
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Since there exists an ESSL for each RS/6000 machine, you can move the 
code between different machines and different architectures, without 
changing the source code. It is also compatible with public domain 
subroutine libraries such as BLAS, Scalable Linear Algebra Package 
(ScaLAPACK), PBLAS, making it easy to migrate from these libraries to an 
ESSL product.

  • Performance

The ESSL routines are written to perform well on each RS/6000 
architecture. There is also a SMP version of the ESSL, in which a subset 
of the functions are thread enabled. By using this version of ESSL, your 
code would take advantage of all SMP features without any new 
development.

5.1.2  How to Use ESSL
For access to the Guide and Reference see the following Web page: 

http://www.rs6000.ibm.com/resource/aix_resource/sp_books/

Porting Fortran between CRAY and the IBM RISC System/6000:

http://www.software.ibm.com/ad/fortran/xlfortran/cray.htm

5.1.3  Performance Examples of ESSL
This section will discuss the performance of some of the ESSL routines. The 
official ESSL and PESSL Performance Report can be found on:

http://www.rs6000.ibm.com/software/sp_products/performance/pesslperf.html

5.1.3.1  Dcopy
The following three approaches for copying the double precision array A into 
array B are compared:

Table 9.  Four Different dcopy Approaches

Simple Prefetch ESSL C memcpy

 B(I)=A(I) B(I)=A(I)+B(I)*ZERO CALL DCOPY() CALL memcpy()

The ESSL used in this publication is an early beta of a POWER3-enhanced 
library, please refer to Appendix D, “Special Notices” on page 199 
regarding the performance numbers. 

Notice
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How the prefetch works is shown in Figure 2., “Data Prefetch Overview” on 
page 11.

In Figure 6, the performance of these copy routines using one POWER3 CPU 
are shown. The numbers shown are the best out of three runs and both the 
L1 as the L2 cache are flushed between each measurement. The most 
efficient one is the ESSL. The simple approach from above is the second 
slowest, but surprisingly, the slowest one is the C memcpy() function. By 
unrolling the copy routine 16 times and multiplying only the first element with 
zero, almost the same performance as the ESSL library is obtained. The main 
difference is the drop of performance at 700000 KB. This event is currently 
being investigated.

Figure 6.  Copy Rates of a Double Precision Array
Performance Libraries 71



5.1.3.2  DAXPY
The three DAXPY versions shown in Table 10 are compared.

Table 10.  Three DAXPY Versions:

Only the best run out of three is used, and the caches are flushed between 
each run. As can be seen in Figure 7, the ESSL version is slower than the 
handwritten versions for a vector length up until 5300. Above 5300, it is the 
fastest one. This is an effect of the overhead in the ESSL routine, as it checks 
the input arguments.

Figure 7.  DAXPY Comparison

5.1.3.3  DGEMM
For an example and performance numbers using DGEMM, consult section 
9.3, “Case Study: Matrix Multiplication” on page 151.

Simple 4x Unrolled ESSL

 Y(I)=Y(I)+A*X(I) Y(I)=Y(I)+A*X(I)
Y(I+1)=Y(I+1)+A*X(I+1)
Y(I+1)=Y(I+2)+A*X(I+2)
Y(I+1)=Y(I+3)+A*X(I+3)

CALL DAXPY()
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5.1.3.4  Sorting of an Array
One way to optimize your program is to change the algorithm you are using. 
Consider the following example of sorting an array. The simplest way of doing 
it is by a bubble sort. Another algorithm is quick sort, which XL Fortran provides a 
version of. ESSL has several sort algorithms, dsort was selected here. In 
Figure 8, the three algorithms are compared. The timings are the best out of 
three runs, and the caches are flushed between each run. All timings over 30 
seconds were excluded. As can be seen in Figure 8, the bubble sort is only 
good for a few thousand values. The ESSL dsort routine is faster than the 
qsort provided by XL Fortran.

 

Figure 8.  Three Sorting Algorithms

5.2  MASS

The Mathematical Acceleration SubSystem (MASS) library is another 
approach to increase the performance of a code. It provides high 
performance versions of a subset of Fortran intrinsic functions. To do this, it 
sacrifices a small amount of accuracy. Compared to the standard 
mathematical library, libm.a, the MASS library can only differ in the last bit. 
This is not significant in most programs. The libmass.a library can be used 
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with either Fortran or C applications and will run under AIX on all of the IBM 
RS/6000 processors. As all functions in the MASS library use the same 
syntax as the standard functions it replaces, you do not have to make any 
changes in the source code to use it.

MASS also offers a vector version for some of the functions. The vector 
functions are more efficient than the scaler ones, but require that the source 
code is rewritten. There are two versions of the vector MASS library. The first 
library, libmassv.a, contains vector function subroutines that will run on the 
entire IBM RS/6000 family. The second library, libmassvp2.a, contains the 
subroutines of libmassv.a and adds a set that is tuned for and based upon the 
POWER2 architecture. As code or a library that is compiled using the 
-qarch=pwr2 flag will not run under POWER3, you cannot use this library on 
Model 260. At the moment, there is no specific tuned version for the 
POWER3.

All versions of the MASS library can be downloaded from:
http://www.rs6000.ibm.com/resource/technology/MASS/

Version 2.4 is used for all tests in this section. This version is not thread safe.

The accuracy of the functions in the MASS library can be found on the MASS 
Web page mentioned above.

5.2.1  How to Use the MASS Library
To use the standard MASS library, relink your program using the linker option 
-lmass:

xlf -o my.exe -O3 -qarch=pwr3 -lmass

This assumes that the MASS library is in a directory included in your library 
search path. If this is not the case, you have to give the location of the library 
with the -L linker option. As -lmass replaces some of the function in -lm, you 
must link it before you link with -lm. 

If the use of standard MASS is successful, the chance to further increase the 
performance using the vector version of MASS is high. Please note that as 
you frequently have to include extra arrays in your code, there will be more 
memory operations to fill compared to the original version of your code. 
These extra operations could decrease the overall performance even if the 
calculation is done faster. 
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In order to guarantee the portability of a code using the vector MASS library, 
the MASS package also provides Fortran source for all vector MASS library 
functions which can be used on different platforms.

5.2.2  Performance of the MASS Library 

In order to see the performance gain of using the MASS libraries, the number 
cycles used to perform some often used mathematical functions were 
counted. The results are listed in Table 11.

In general, there is a speedup factor between 1.2 and a little over 2 by going 
from the standard math library to the scalar MASS library and another factor 
between 2 and 5 by going to the vector MASS library. There are two important 
exceptions:

1. The POWER3 has the square root function implemented in the hardware 
of the CPU. When compiling for POWER3 using the compiler option 
-qarch=pwr3, the compiler will not generate a call to the sqrt() library 
function but use the hardware instead. Therefore, there is no difference in 
the cycle count comparing the standard math library with the MASS library. 
Figure 2 on page 11 shows the number of cycles for a hardware sqrt to be 
22. As each POWER3 processor has two FPU, it can calculate two sqrts 
simultaneously. The Fortran compiler generates codes, which dispatches 
the sqrt calls very well; so only 11 cycles cost per sqrt call are required.

When compiling with -qarch=com, which disables the hardware sqrt , a 
speedup from about 20percent is obtained, by using MASS compared to 
libm. The vector MASS is almost six times faster than the libm.

2. Table 2 on page 9 also shows that the number of cycles needed for a 
double precision division is 18. Again, as the POWER3 has 2 FPUs, two 
divisions can be performed in parallel and the compiler does a very good 
job in dispatching them to get only 9 cycles cost per division, but the 

The MASS library used was not tuned for the POWER3 processor. The 
generic version of the MASS library is used for measurements in this 
section. 

Take Note
Performance Libraries 75



MASS library is able to speed up it slightly. Note that this could be 
improved if a POWER3 optimized library is developed.

Table 11.  Cycles of Some Functions

Remarks:

1. The arrays A and X each have 1024 elements.
2. R describes the range the value of input arguments can take:

  • A: 0<A(i)<1 
  • B: -1<A(i)<1 
  • C: 0<A(i)100 
  • D: -100<A(i)<100.

3. Compiled with -qarch=com.
4. A is in range B, B is in range D.

The cycle numbers show the performance gain by a given vector length. But 
you will get a different speedup for different vector length. As an example 
consider the following simple loop using the exponential function:

DO I=1,N
 A(I)=EXP(B(I)
END DO

Function 1 R 2 libm.a MASS Vector MASS

Cycles Cycles Speedup Cycles Speedup

X(I)=SQRT(A(I)) A 11.0 11.0 1.0 9.4 1.2

X(I)=SQRT(A(I)) 3 A 58.9 45.4 1.3 9.4 6.3

X(I)=EXP(A(I)) D 64.3 33.3 1.9 11.0 5.8

X(I)=LOG(A(I)) C 83.0 53.4 1.6 11.5 7.2

X(I)=SIN(A(I)) B 37.7 15.7 2.4 6.6 5.7

X(I)=SIN(A(I)) D 50.0 31.5 1.6 16.4 1.9

X(I)=COS(A(I)) B 37.2 15.7 2.4 5.8 6.4

X(I)=COS(A(I)) D 48.3 32.7 1.5 16.3 3.0

X(I)=TAN(A(I)) D 84.1 50.1 1.7 18.4 4.6

X(I)=TAN(A(I)) D 80.8 50.3 1.6 18.4 4.4

X(I)=A(I)/B(I) B,D 4 9.2 9.2 1.0 7.1 1.3

X(I)=1.0/A(I) D 9.0 9.0 1.0 7.0 1.3
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with A and B are double precision arrays. Compare this loop using the 
standard exp() function from libm, the standard MASS exp() function, and 
with the vector MASS function, You get by changing the loop into a function 
call:

CALL EXPV(A,B,N)

The speedup gained is seen in Figure 9 on page 77. The two horizontal lines 
mark the positions the arrays size exceeds the size of the L1 and L2 cache. 
The time for the standard version of the exp() function is normalized to one. 
The middle curve is the speedup for the standard MASS library. The speedup 
is around 1.8 for large N’s. The upper curve is the speedup gained by using 
the vector mass library. It has a peak of 5.9 at a vector length of 3000 
elements. The speedup for very large values of N approximates 4.97.

Figure 9.  MASS Use of Exp( )

5.2.3  Further Tuning Possibilities Using Vector MASS
As some functions provided by the standard math library can be rewritten 
using a different algorithm which benefits from the vector MASS library, it is 
worthwhile to demonstrate the following.
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5.2.3.1  The Complex Exp() Function
The standard Fortran exp() function can be used in conjunction with complex 
numbers. You would simply write (where X and Y are complex numbers): 

DO I=1,N
 X(I)=EXP(Y(I)) 
END DO  (ex.1),

By splitting y(j) into its real and imaginary parts a(j) and b(j) with y(j)=a(j)+ib(j) 
and using Euler’s equation, you get the following formula for the complex 
exp() function: 

By coding this into Fortran, you get:

X(I)=CMPLX(
EXP(REAL(A(I)))*COS(IMAG(A(I))),
EXP(REAL(A(I)))*SIN(IMAG(A(I)))) (ex.2)

In order to use the vector MASS library, you must rewrite it one more time 
using the vector MASS subroutine vsincos. This subroutine calculates both 
the sin and the cosine value of one argument in one call:

DO I=1,N
 RA(I) = REAL(A(I))
 IA(I) = IMAG(A(I))
END DO
CALL VEXP(RA, REA, N)
CALL VSINCOS(ISA, ICA, IA, N)
DO I=1,N
 X(I) = CMPLX(REA(i)*ICA(i), REA(i)*ISA(i))
END DO  (ex.3)

This is an example in which you have to introduce more arrays in order to use 
the vector library. Please note that this code fragment is written to see the 
relationship to the Euler’s equation. It is, simply, to reduce the numbers of 
arrays needed.

Examples 1,2, and 3 are programmed, and the number of cycles needed to 
solve the problem are counted. As Table 12 shows, the results are very good. 
By using the vector MASS, you could speedup the calculation by a factor 
between 5.2 and 5.9 depending on the vector length. 

xi ai ibi+( )exp aiexp iaiexp⋅ aiexp bicos i bisin+( )⋅= = =
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Table 12.  Complex Exponential Function

5.2.3.2  The Power Function Using The Vector MASS Library
Another frequently used function is the power function x(i)=a(i)**q (ex.1). The 
power function is one of the most expensive intrinsic. Replace the standard 
Fortran power function with the following equation:  

This can be written in Fortran:

DO I=1,N
 X(I)=EXP(Q*LOG(Y(I))) 
END DO    (ex.2)

In this example, you don’t have to introduce an extra array in order to use the 
vector MASS, since you can use X for temporary values:

CALL VLOG(X,Y,N)
DO I=1,N
 X(I)=X(I)*Q
END DO
CALL VEXP(X,X,N) (ex.3)

As can be seen in the Table 13, you get a speedup factor close to ten by 
using the vector MASS library compared to the standard power function.

Table 13.  Power Function

Ex. using n=16 n=64 n=256 n=1024

1 libm.a 179.0 1.0 171.0 1.0 169.5 1.0 168.5 1.0

1 MASS 85.2 2.1 84.8 2.0 84.7 2.0 84.7 2.0

2 MASS 75.0 2.4 74.7 2.3 74.4 2.3 74.5 2.3

3 vector 34.7 5.2 30.3 5.6 30.0 5.7 28.8 5.9

Ex. using n=16 n=64 n=256 n=1024

1 libm.a 228.5 1.0 227.8 1.0 224.0 1.0 224.8 1.0

2 libm 152.4 1.5 150.8 1.5 150.1 1.5 150.4 1.5

1 MASS 98.2 2.3 97.9 2.3 97.8 2.3 97.7 2.3

2 MASS 90.6 2.5 90.5 2.5 90.4 2.5 90.4 2.5

3 vector 29.1 7.9 24.7 9.2 23.7 9.5 23.4 9.6

xi yi
q q yilog⋅( )exp= =
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Chapter 6.  Message Passing Interface

A large number of programs have already been written for parallel processing 
using MPI. Many of these programs will be running on the single processor 
nodes of IBM SP configurations. These programs can be run without change 
on the two processors of the Model 260 simply by using MPI on the 260.

The following sections consider the use of MPI in a mixed shared memory 
and distributed memory environment, followed by some measurements of 
MPI data transmission rates on the Model 260.

6.1  MPI in an SMP Environment

This section takes a look at how existing MPI programs, written for distributed 
memory systems, can make the best use of both SMP and distributed 
memory systems. A number of different scenarios are considered below:

1. MPI only

IBM’s MPI currently uses IP for message passing between processes on 
the same node and between processes on different nodes. This incurs 
relatively high latencies and IP overheads.

With the multiple userspace version of MPI, the overhead will be reduced, 
but it may still be higher between processes on the same node than using 
shared memory.

Eventually, it is expected that a version of MPI will be available that will use 
shared memory for processes on the same node and userspace (or IP) for 
processes on different nodes. However, it is expected that overall 
performance will still be limited by communication between the nodes. 
This could be reduced for group operations (such as broadcast) by having 
one processor per node handle all the internode communication. This 
process would use shared memory to collect and distribute data to other 
processes on the same node.

Since the different processes on the same node have different address 
spaces they will communicate though a shared memory segment. This 
mean either a double copy of the data (into and out of the shared memory 
segment), or each process must keep its data in the shared memory 
segment (which will require some degree of reprogramming).

For scenarios that only require SMP processing, the public domain 
software from Argonne (MPICH) is currently available. This uses shared 
memory to communicate data and has low latency and high data transfer 
rates.
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Generally, no reprogramming is required.

2. MPI and SMP Fortran

In this scenario, there are fewer MPI processes than processors per node. 
(For the Model 260, this means one MPI process.) Fortran can be used to 
parallelize the code between SMP calls. However, the overhead of Fortran 
parallelization is similar to that of MPI data transfers; so care must be 
taken to parallelize sufficiently large chunks.

A small amount of reprogramming may be required.

3. MPI and Large Chunk Threads

In this scenario, there is only one MPI process per node. The initial 
process (or master thread) creates threads which, instead of issuing MPI 
calls, use pthread techniques to transfer data between themselves and the 
master thread. The master thread uses MPI to transfer all data between 
the nodes.

Data does not have to be copied between threads, since they all use the 
same address space. Synchronization can be achieved either with 
standard pthread calls, or, with even less overhead, by using spin loops 
and the atomic fetch_and_add function (which guarantees that only one 
thread at a time can update a variable).

The total number of messages between nodes is reduced, and hence, 
delays due to latency are reduced. Since the master thread handles all 
messages, it should perhaps be coded to do less work than the other 
threads

However, all of this may imply considerable reprogramming. The program 
may have used the MPI task-ID to create its arrays and organize its data. 
The threads will have to arrange this differently, because they share the 
same task-ID, and are using the same address space.

The advantages and disadvantages of these scenarios are summarized in 
Table 14

Table 14.  Advantages and Disadvantages of Msg Passing Techniques

Advantages Disadvantages

MPI only No program changes.
MPI copy between processes on 
same node.

Double copy between processes 
on same node.
Not all functions available yet.

MPI and 
SMP 
Fortran

MPI exchanges reduced. Some reprogramming required.
May not be possible to fully use the 
CPUs.
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In conclusion, all of the scenarios are viable. The scenario chosen for any 
particular application will depend on the requirements. Going from the top to 
the bottom of the table, the efficiency of the solution increases, but the 
amount of reprogramming required also increases.

The last, and most efficient, scenario is the one used by the sPPM ASCI 
benchmark code. More information about this can be obtained from:

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

6.2  MPI Communication Rates

Three varieties of MPI were investigated to look at the communication rates 
obtainable:

1. IBM MPI

This was run in IP mode using loopback mode (obtained by inserting 
loopback in the host.list file). Various IP options were set as follows:

/usr/sbin/no -o thewall=16384
/usr/sbin/no -o sb_max=1310720
/usr/sbin/no -o tcp_sendspace=327680
/usr/sbin/no -o cp_recvspace=327680
/usr/sbin/no -o udp_sendspace=65536
/usr/sbin/no -o udp_recvspace=655360
/usr/sbin/no -o rfc1323=1

The maximum transmission unit (MTU) value for the loopback interface 
was 16896. Generally, a lower value is used for Ethernet connections 
between workstations, and a higher value for IP connections over the SP 
switch.

2. MPICH

This is a portable implementation of MPI developed at the Argonne 
National Laboratory. It can run either over a cluster of workstations, using 
IP for communication, or on a single workstation with multiple processors, 
using shared memory for communication. MPICH was run using the 
shared memory option.

MPI and 
Large 
Chunk 
Threads

MPI Exchanges reduced.
Exchanges and overhead 
between threads reduced.

Considerable reprogramming may 
be required.

Advantages Disadvantages
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3. Test MPI

For processing that involves processors on the same and different 
systems, it will be good to have an MPI version that uses shared memory 
for processors on the same workstation or SP node, but uses the network 
interface to communicate with other workstations or SP nodes. 

Such a version is currently under development, but in order to get an idea 
of the performance that might be achievable, a simple shared memory 
implementation of MPI blocking and non-blocking send and blocking 
receive (MPI_SEND, MPI_ISEND, and MPI_RECV) was written. This 
implementation was used to measure the performance for calls between 
processors on the same node.

If these calls require communication between different nodes, the current 
IBM MPI can be invoked. For an IBM SP, the high performance userspace 
option of IBM MPI would be used.

The results for synchronous send and receive (that is, with one processor 
issuing a blocking send followed by a blocking receive, and the other 
processor issuing matching receive followed by a send) are shown in Figure 
10 on page 85.

The results for asynchronous send and receive (that is, with both processors 
issuing a non-blocking send followed by a blocking receive) are shown in 
Figure 11 on page 85.
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Figure 10.  MPI Synchronous Transfer Rates

Figure 11.  MPI Asynchronous Transfer Rates
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Clearly, the test MPI implementation is the fastest. Since many programs 
issue a relatively small number of different MPI calls, it is felt that the test MPI 
implementation could be fairly rapidly extended to cover a subset of the most 
frequently used calls. This would enable SMP nodes in an SP environment to 
be used to their fullest advantage in the very near future.

A subset of frequently used calls might be:

MPI_SEND, MPI_ISEND
MPI_RECV, MPI_IRECV
MPI_BCAST, MPI_REDUCE
MPI_ALLREDUCE, MPI_ALLTOALL

A further enhancement might be to make one processor on each node a 
dedicated communicator. The dedicated communicator could collect and 
combine all messages from processors on the same node that went to other 
nodes. This would decrease the number of messages passed between 
nodes, thus decreasing the overall delay due to latency.

The minimum latency time and maximum transfer rates are summarized in 
Table 15.

Table 15.  Synchronous versus Asynchronous Transfer Times

Synchronous Transfer Asynchronous Transfer

Latency
(microsec)

Rate
(MB/s)

Latency
(microsec)

Rate
(MB/s)

Test MPI 3 227 2 393

MPICH 8 142 6 297

IBM MPI 1044 78 55 100
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Chapter 7.  Performance and Tuning Analysis

This section investigates some of the main design features of POWER3 that 
are relevant to tuning scientific and technical programs running on Model 
260.

It is intended to provide all the information necessary for experienced Fortran 
programmers, who have a general understanding of tuning techniques, to 
tune their programs for POWER3 and the Model 260. For programmers with 
relatively little experience of tuning for the IBM RS/6000 RISC, Chapter 8, 
“Fortran Tuning Guide for Maximum Megaflops” on page 107, will be more 
appropriate.

After summarizing relevant information, tuning for the CPU is discussed, and 
then tuning for memory access. A few basic examples are presented.

7.1  Relevant Information

The information below is relevant for tuning purposes. To some extent, it is a 
summary of information presented previously in Chapter 2, “The POWER3 
Processor” on page 7, and Chapter 3, “XL Fortran Version 5” on page 17.

  • Floating-point units

There are two floating-point units. The length of the pipeline in each is 
three or four cycles. It will be four cycles if the input data for one pipe 
comes from the other pipe. Since this is difficult to influence, it is best to 
assume four cycles for planning purposes.

Each unit can deliver one result per cycle.

  • Other Processing Units 

  • In addition to the two floating-point units, there are three fixed point 
units, and two load/store units, all of which can execute in parallel.

  • Instructions must complete in order, although results from an 
instruction can be used by other instructions prior to completion of the 
previous instruction.

  • A maximum of 32 instructions can be handled simultaneously, where 
handling includes other operations (such as instruction fetch, decode 
and dispatch, rename buffer allocation, and write back to architected 
registers) as well as execution.

  • A maximum of four instructions can be completed per cycle.
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  • Data transfer rates 

Data transfer rates between memory, cache and processor are listed in 
Table 16.

Table 16.  Data Transfer Rates for L1, L2, and Memory

Note that the transfer rate from memory to L2 (or L1) is the total aggregate 
rate for the memory subsystem to both L2s (or L1s). The other transfer 
rates are for each processor.

  • Prefetch

The Model 260 can prefetch streams of data from memory into L1 cache. 
When data is prefetched, it is not put into the L2 cache.

Four prefetch streams can be active at any one time. Activation of a 
stream is performed using a set of ten stream address filters. Following a 
load-cache-miss for a cache line, a prediction is made of which line will be 
required next. This prediction is entered into the least recently used filter. 
If a subsequent cache-miss actually agrees with one of the ten entries, 
then one of the four prefetch streams is activated, and the next cache line 
is read into a prefetch buffer.

For an active prefetch-stream, a new line is read into the prefetch buffer 
as soon as the prefetch buffer is accessed.

The prediction, referred to above, is made by assuming that if the word 
that causes the cache-miss occurs in the bottom half of the buffer, the next 
higher line will be required, but if the miss occurs in the top half, then the 
next lower line will be required. If data is being accessed sequentially in 
either a forwards or backwards direction, then if the first prediction is 
wrong, it is easy to see that the next prediction will be correct. (It is left as 
an exercise for the reader to verify this.)

  • L1 Cache

The L1 cache contains 512 lines of 128 bytes each and is 128-way 
associative. This means that any word in memory can be loaded into any 
one of 128 lines in a specific congruence class (determined by bits 55 and 
56 of the address to be specific).

 Memory to L2 or L1 L2 to L1 L1 to Registers

Width 16 bytes/2 cycles 32 bytes/cycle 2 x 8 bytes/cycle

Rate 1.6 GB/s 6.4 GB/s 3.2 GB/s

Latency 35 cycles 
(approximately)

6 to 7 cycles 
(approximately)

1 cycle
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Cache lines are loaded, and replaced, in their entirety, starting with the 
word that is referenced. Lines are replaced on a round-robin basis within 
each congruence class.

  • L2 Cache

Each processor has a private L2 cache of 4 MB. Real addresses are 
directly mapped to the cache. This means that 128 byte line in memory 
has just one place in the cache into which it can be loaded. Since the 
loading and replacement of lines depends on real addresses, replacement 
may appear to be random as far as a program is concerned.

  • L1 Interleaving

The L1 cache is 8-way interleaved to achieve multiple accesses per cycle. 
There is 4-way interleaving on cache lines and 2-way interleaving on 
double-words. This means that a pair of load accesses to the cache can 
execute in the same cycle with the following exception: successive 
accesses to two even double words or to two odd double words (same bit 
59) that are in the same congruence class (same bits 55 and 56) cause 
one of the accesses to be delayed by one cycle.

In addition, if there are two or more lines in the cache with identical 
addresses in bits 43 though 54, the cache access method allows only one 
of them to be accessed without penalty. The other(s) will incur a delay of 
approximately seven cycles.

  • Translation Lookaside Buffer

The translation lookaside buffer (TLB) contains 256 entries and is 2-way 
associative. Each entry provides the resolution between a virtual and real 
memory address for a 4 KB page. If there is an appropriate entry in the 
TLB, a virtual address can be translated to a real address without any 
additional cycles.

However, only 1 MB of memory can be covered by the TLB entries, and in 
the absence of a TLB entry, a table entry group, occupying 64 bytes, must 
be fetched from memory. This may in itself cause a cache-miss. Also, the 
address of the TLB entry is found by a hashing algorithm, and so the entry 
may not be found at the first attempt.

  • Fortran Compiler Flags

This following is a small selection of the compiler flags that have been 
found to be most relevant for tuning.

-O2 will optimize the program but maintain the semantics. That 
is, it will not change the order of computation specified by 
the program if this may cause the results to be non-bit 
wise identical. It will do a minimal amount of unrolling.
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-O3 will optimize the program and may change the order of 
computation to give mathematically equivalent (but 
non-bitwise identical) results. It may implement a 
significant amount of unrolling.

-qstrict can be used with -O3 to obtain optimization benefits, but 
to maintain bitwise identical results.

-qarch=pwr3 will use the new POWER3 instructions, including those for 
single precision computation. It will not use the POWER2 
quad-word load instruction.

-qfloat=hsflt  will enable divides to be calculated by computing the 
reciprocal followed by one or more multiplies. This can 
result in significant speedups if two or more divides are 
replaced in this way.

Note that without -qarch=pwr3, hsflt also removes all 
checking when double precision numbers are converted 
to single precision. This speeds up computation but is not 
safe if a single precision exponent may exceed its limits.

However, with -qarch=pwr3, this is not the case. Checking 
is implemented, or POWER3 single precision instructions 
are used.

-q64 tells the compiler to use 64 bit integer instructions for 
integers that have been declared as 8 bytes (either with 
-qintsize=64 or INTEGER*8). Note that -q64 also has 
many other implications (see 3.3, “64-Bit Support” on 
page 19).

In the following discussions, -O3 and -qarch=pwr3 optimization is 
assumed unless stated otherwise.

7.2  CPU Tuning

The POWER3 processor is similar to that of the POWER2. Differences are 
mainly due to the increase in the floating-point pipe length from two or three 
to three or four cycles. There is also an additional integer unit and two 
load/store units.

7.2.1  Unrolling
Since the Model 260 has floating-point pipes of three or four cycles long, up 
to six to eight instructions, which are not dependent on each other, should be 
scheduled successively. Also, for best performance, the number of loads plus 
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the number of stores should not exceed the number of floating-point 
operations. 

Usually, the Fortran compiler does an excellent job of unrolling the loops 
(particularly when using the -O3 flag). This facilitates the overlapping of 
independent operations. However, there are some occasions when the 
compiler does not succeed, and some assistance in unrolling the loops is 
beneficial. It is difficult to give any firm rule about this because the compiler 
improves with each release, but a couple of examples (using V5.1.1.0 of the 
compiler) are given in the following sections.

Further examples are also presented in Chapter 8, “Fortran Tuning Guide for 
Maximum Megaflops” on page 107.

7.2.1.1  Convolution
The convolution algorithm is frequently used in signal processing. It is 
included here as an example of how unrolling can be used to achieve nearly 
maximum possible performance. The basic code shown below runs at only 
about 150 MFLOPS:

DO I=1,1500
DO J=1,150
C(I)=C(I)+B(I+J-1)

ENDDO
ENDDO

If the code is unrolled as shown below, up to ten independent floating-point 
multiply/add operations can be overlapped. Also, for a total of 20 
floating-point operations, only 13 loads are required. Theoretically, the Model 
260 can process load/store operations at the same rate as floating-point 
operations, but, because of L1 Interleaving (see 7.1, “Relevant Information” 
on page 87), it is generally better to have fewer load/store operations.

DO I=1,1500,10
S0=0.E0
S1=0.E0
...
S9=0.E0
DO J=1,150,2
C0=C(I+J-1)
C1=C(I+J)
....
C10=C(I+J+9)
B0=B(J)
B1=B(J+1)
S0=S0+B0*C0
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S1=S1+B0*C1
....
S9=S9+B0*C9
S0=S0+B1*C1
S1=S1+B1*C2
....
S9=S9+B1*C10

ENDDO
C(I)=S0
C(I+1)=S1
....
C(I+9)=S9

ENDDO

This code ran at 785 MFLOPS, which is very close to the theoretical 
maximum of 800 MFLOPS. The compiler flags used were -O2 and 
-qarch=pwr3. Interestingly, this code was originally written for the POWER1 
in 1990 and still produces exceptional performance.

7.2.1.2  Multiple Loads
The following example is used to demonstrate both unrolling for good 
processor performance (when the data is in the cache) and the effect of 
prefetch on multiple streams of data when the data is not in the cache (see 
“Multiple Streams” on page 97).

The basic loop for L streams of data in arrays A1 through AL is:

DO I=1,N
S = S + A1(I)*A2(I) + A3(I)*A4(I) + ...AL(I)

ENDDO

This type of summation has a history of giving the compiler problems, and 
this loop does not perform well with the current version of the compiler 
(V5.1.1.0), either with -O3 or -O4. The loop can be rewritten as below to give 
improved performance:

DO I=1,N
S1 = S1 + A1(I)*A2(I)
S2 = S2 + A3(I)*A4(I)
....

ENDDO
S = S1 + S2 + ... 

Results for both loops are shown in Figure 12 on page 93, where each data 
array is only 8 KB so that all data arrays will be kept in the cache.
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The performance of the loop is limited by the data transfer rate. The 
maximum theoretical rate is 3.2 GB/s. This is almost achieved for two 
streams by both the basic and the hand unrolled loop. The basic loop also 
achieves 3.2 GB/s for eight streams, although the hand unrolled loop gives as 
good or better results except for the other streams.

It is not easy to fully understand how the compiler unrolls and overlaps 
instructions, and since this is likely to change from release to release, no 
attempt is made to do so here. Suffice to say, that if, for any loop, the 
compiler does not do as well as expected, then it may be beneficial to unroll 
the loop by hand. The right thing to do is to try it and see.

Figure 12.  Stream Rates for Data in Cache

7.2.2  Divides
As always, divides take a lot of cycles (14 for single precision floating point, 
and 18 for double precision), and should be avoided where possible. 
However, where they cannot be avoided, they frequently take a large part of 
the processing time, and every effort should be made to minimize their effect.

If there is more than one divide using the same denominator in a loop, then if 
hsflt is specified, the Fortran compiler does a good job of taking the reciprocal 
and then multiplying by the reciprocal. Where possible, the compiler also 
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does a good job of scheduling two divides (or reciprocals) together so as to 
use both floating-point pipes, often unrolling the loop to achieve this. 
However, in the following fragment from the LU decomposition of a tridiagonal 
solver, this is not possible:

DO I=1,N
T = B(I)+A(I)*B(I-1)
B(I) = -C(I)/T
Y(I) = (Y(I)-(A(I)*Y(I-1))/T

ENDDO

The compiler will take the reciprocal of T and multiply it twice. It will also 
unroll the loop, but because the loop is recursive, the reciprocal in one loop is 
dependent on the reciprocal in the previous loop, and so two reciprocals 
cannot be scheduled together. To enable the compiler to achieve this, two (or 
more) tridiagonal solutions have to be coded together. For example:

DO I=1,N
T = B (I)+A (I)*B (I-1)
T1 = B1(I)+A1(I)*B1(I-1)
B (I) = -C (I)/T
B1(I) = -C1(I)/T1
Y (I) = (Y (I)-(A (I)*Y (I-1))/T
Y1(I) = (Y1(I)-(A1(I)*Y1(I-1))/T1

ENDDO

This enables the compiler to schedule two divides together, and the solver to 
run up to two times faster.

If it is decided not to compile with hsflt because it may be unsafe (see 
“Relevant Information” on page 87), then the reciprocal computation should 
be hand coded.

7.2.3  Floating Point to Integer Conversion
Floating point to integer conversion is particularly important in many seismic 
codes, where it is used to create an index for table lookup. Floating point to 
integer conversion is implemented by hardware instructions, but still takes a 
relatively long time. For example, a loop containing:

J(I) = INT(S(I)+A)

takes over 5 cycles. By contrast:

J(I) = ISHFT((JS(I)+IA),-10)

takes only about 1.5 cycles. The array JS has been initialized to contain the 
same values as the array S, multiplied by 1024 to preserve accuracy, and then 
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accessed many times with the above code. Much greater accuracy can be 
obtained if the 64-bit integer arithmetic capability of POWER3 is used. 64-bit 
integers can store numbers up to 8x10246; so the JS array could contain the 
values of S multiplied by two or three powers of 1024.

To use 64-bit arithmetic, the required arrays must be declared INTEGER*8, 
and the -q64 compiler flag must be used to tell the compiler to use 64 bit 
integer instructions. Note that the whole program must be recompiled with 
-q64 in order for all routines to link correctly.

7.2.4  Fractional Part of a Number
There is a useful trick (provided by Jim Shearer - one of the authors of the 
MASS Library - from the IBM Watson Research Laboratory at Yorktown) that 
can be used to obtain the fractional part of a floating-point number. This is 
often required for interpolation purposes. The fractional part of a double 
precision number would normally be obtained, within a loop, by:

F(I) = A(I) - FLOAT(DNINT(A(I))

This can be done approximately 8 times more quickly by using:

PARAMETER( RND=2D0**52+2D0**51)
. . . 
F(I) = A(I) - (RND + A(I) - RND)

The code was compiled using -O3 and -qstrict. It was necessary to use 
-qstrict to prevent the compiler changing the order of computation, and 
setting F(I) equal to zero.

7.3  Memory Tuning

The Model 260 memory subsystem has a major advantage over previous 
POWER2 systems in that it can support four concurrent cache-misses and 
four prefetch streams.

This capability is discussed in the following sections.

7.3.1  Copy
A straightforward copy is as follows:

DO I=1,N
X(I)=Y(I)

ENDDO
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However, a store-miss is not prefetched. A store-miss occurs when a store 
instruction causes a line miss. The correct line must then be fetched into 
cache before the store instruction can store the data.

This delay can be overcome by taking advantage of the load-miss prefetch 
capability. The array X is loaded and multiplied by zero before it is stored. 
The tuned code becomes:

DO I=1,N
X(I)=Y(I)+ZERO*X(I)

ENDDO

Results are shown in Figure 13 on page 96.

The multiply/add instruction does not require any extra time because it is 
overlapped with the load and store instructions, but when the data is in the L1 
cache (that is when the data arrays are each less than 32 KB), the additional 
load causes the copy to run more slowly. This is because there are now three 
load/store operations and there are only two load/store pipes.

However, when the data is not in the L1 cache, the advantage of prefetch 
predominates and the copy runs more quickly.

Figure 13.  Single Processor Copy Rates
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7.3.2  Multiple Streams
The hardware will prefetch up to four streams of data. The Fortran loops 
considered here have been described in 7.2.1.2, “Multiple Loads” on page 92. 
The effects of accessing multiple streams of data, when the data is not in the 
L1 (or L2) cache, is shown in Figure 14.

As can be seen, the maximum aggregate rate is achieved with four 
streams.This to be expected since the Model 260 implements up to four 
prefetch streams. The maximum rate achieved is 1.36 MB/s, which compares 
well with the theoretical maximum of 1.6 MB/s.

Figure 14.  Stream Rates for Data Not in Cache

With only one stream, the prefetch mechanism cannot keep up with the cache 
line requests. Each prefetch begins when the previous line is accessed (see 
Figure 15 on page 98). As can be seen, the data transfer is overlapped but 
latency is not, and since the latency is about 35 cycles, the expected rate is 
about

128bytes/(35x5nsec) = 730 MB/s

This agrees well with the measured rate in Figure 14.
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Figure 15.  Single Stream Prefetch

7.3.3  DAXPY
The DAXPY algorithm is frequently used as a measure of memory 
performance because the MFLOP rate is limited by the storage access rate. 
The Fortran code is:

DO I=1,N
Y(I)=Y(I)+A*B(I)

ENDDO

Note that it is similar to the tuned copy (see 7.3.1, “Copy” on page 95, and 
Figure 13 on page 96). Measurement of the performance of this loop provides 
some interesting results.

The first measurement is shown in Figure 16 on page 99. Note that there are 
several downward spikes, occurring when the number of bytes is too large for 
the L2 cache. Further measurements showed that the exact position of the 
spikes varied with each run. Combining the best results for each individual 
point from four runs, gave the results in Figure 17 on page 100.

The presence of the downward spikes is due to the overlaying of 128 byte 
lines in the L2 cache. This varies with each run because the L2 addresses are 
directly mapped to memory, and the allocation of the program’s virtual 
memory to real memory changes with each run.

The results in Figure 17 still show a sharp dip at 4 KB. This was because the 
start of the X and Y arrays are separated by a large power of two plus 4 KB. 
The explanation is as follows. If the addresses of any two lines in the L1 
cache have the identical values for bits 43 through 54, then only one of them 
can be accessed without penalty. When the other is accessed, a delay of 
approximately seven cycles occurs. This means that if two arrays, which are 

Prefetch

1

2

3

Latency
Data
Xfer

35 cycles 16 cycles
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exactly 2 MB apart, are sequentially accessed, then the seven cycle delay will 
continually occur.

The two arrays were therefore separated by an additional 64 KB (the L1 
cache size), and the results in Figure 18 on page 100 were obtained.

Figure 16.  DAXPY: Single Run
Performance and Tuning Analysis 99



Figure 17.  DAXPY: Best of 4 Runs (1)

Figure 18.  DAXPY: Best of 4 Runs (2)
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7.3.4  Loads and Stores
It is very apparent, by comparing the MFLOPS rates obtainable using the 
DAXPY algorithm with the MFLOPS that can be obtained using the 
convolution algorithm, that loads and stores can severely inhibit achievable 
MFLOPS. A simplified example of the type of construction which is often 
found in vector processing legacy code is:

DO J=1,N
B(J)=XYZ*A(J)

ENDDO
DO J=1,N
C(J)=ABC*B(J)

ENDDO

Fairly obviously, this should be replaced by:

DO J=1,N
C(J)=ABC*XYZ*A(J)

ENDDO

thus saving one store and one load.

7.3.5  Prefetching Individual Cache Lines
It is possible to prefetch individual cache lines. The following three loops give 
an example of this. (Note that the loops are entirely for the purpose of 
illustration and are in no way meant to represent a real code.)

DO I=1,N
Y=A(I)
S=S+SQRT(SQRT(SQRT(Y))) ! Automatic Prefetch

ENDDO

DO I=1,N
Y=A(IND(I))
S=S+SQRT(SQRT(SQRT(Y))) ! No Prefetch

ENDDO

DO I=1,N
Y=X
X=A(IND(I+1))
S=S+SQRT(SQRT(SQRT(Y))) ! Hand Coded Prefetch

ENDDO

The array A covers 8 MB, which is too large to fit into the L2 cache.The first 
loop accesses data sequentially. The second loop access data randomly with 
the statement X=A(IND(I)), where the array IND contains randomly ordered 
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indices into the array A. The third loop also accesses data randomly, but 
prefetches the cache lines with the statement X=A(IND(I+1)).

The number of cycles taken by each iteration of the loops is 97,152, and 99, 
respectively. 

Comparing the first and second loop shows that the time to fetch a cache line 
(including the time to fetch the TLB table entry group), which is incurred by 
the second loop, takes approximately 152 - 97 = 55 cycles. Comparing the 
third loop with the first and second loops shows that fetching a cache line is 
almost entirely overlapped by the computation.

Practical examples of this are harder to achieve because of the previously 
mentioned restrictions (7.1, “Relevant Information” on page 87) concerning 
the number of operations that may be simultaneously in progress, the 
completion order, and the number of completions per cycle.

7.4  Large Stride

For large stride, the effects of the cache and TLB become apparent. These 
are discussed in the following sections.

7.4.1  Cache Effects 
The time taken to access a double word of data varies considerably with the 
loop count and the stride. This was measured by a loop similar to:

REAL*8 A(M,*)
DO J=1,N
S=A(1,J)

ENDDO

where N is the loop count and M is the stride. Actually, the loop was unrolled 
by hand and compiled with -O2, since -O3 would have optimized away the 
loop completely.

If this loop is iterated many times, then for small loop counts and stride 1, the 
data will be in the L1 cache. When the loop count becomes greater then 8K, 
the data exceeds the cache size, and the cache is flushed every iteration.

As the stride increases, less data can be kept in the cache, and when the 
stride is 16 or greater, one cache line (of 16 double words) is required for 
each item of data.
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The L1 cache structure is summarized in 7.1, “Relevant Information” on page 
87.

A visual representation of the effects of the L1 cache is shown in Figure 19 on 
page 104. Stride goes from left to right from 1 to 300, and loop count goes 
from 1 to 600 from top to bottom. The time taken to access data is 
represented by the greyness. Light tones represent the fastest access and 
dark tones the slowest.

The dark area at the top of Figure 19 represents relatively slow access 
because of the overhead of setting up the loop.

Strides of 2, 4, 6, and 10 are slower because of double word interleaving. A 
stride of 8 is good because successive alternate words are in different 
congruence classes and do not suffer from interleaving.

Strides that are multiples of 32 words perform poorly if the loop count is 
higher than 256 because they map to only two of the cache’s four 128-entry 
congruence classes.

Strides which are multiples of 64 words are worse if the loop count is higher 
than 128 because they map to only one of the one of the cache’s four 
128-entry congruence classes.

7.4.2  Translation Lookaside Buffer Effects
The TLB structure is summarized in 7.1, “Relevant Information” on page 87.

A visual representation of the effects of the translation lookaside buffer (TLB) 
for a range of strides and loop counts (using the loop described in section 
7.4.1, “Cache Effects” on page 102) is shown in Figure 20 on page 105. 
Stride goes from left to right from 1 to 96 KB, and the loop count goes from 1 
to 300 from top to bottom.

The TLB contains 256 entries and is two-way associative. This means the 
entry to resolve the virtual to real address of any 4 KB page can go into just 
two slots. Virtual page addresses that are multiples of 512 KB apart must 
compete for the same two slots. Thus, a stride of 64 KB will incur a TLB miss 
after a loop count of 16, a stride of 32 KB after a loop count of 32, and so on. 
This is exactly what is shown by Figure 20.

For other strides, the effect is a good example of chaos theory. Very small 
differences in stride have a very large effect on performance. However, the 
chaos is actually predictable, and a program that, using the TLB structure 
described earlier, recreates the results with remarkable accuracy was written.
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Figure 19.  Stride versus Loop Count for L1 Cache
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Figure 20.  Stride versus Loop Count for TLB
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Chapter 8.  Fortran Tuning Guide for Maximum Megaflops

This chapter constitutes the basic Fortran tuning guide for POWER3. It is 
intended for Fortran programmers who have relatively little experience of 
tuning for IBM RS/6000 RISC architecture, in contrast to Chapter 7, 
“Performance and Tuning Analysis” on page 87, which was intended more as 
a POWER3 update for programmers already experienced in tuning for 
POWER2.

The subject of tuning is covered in much more detail in Optimization and 
Tuning Guide for Fortran, C, and C++, SC09-1705. This chapter is, 
nevertheless, intended to be complete in itself and to cover that subset of 
optimization and tuning techniques for POWER2 and POWER3 that those 
working in the field regard as key, together with new material relating to 
POWER3.

It is structured as follows:

  • The tuning process

  • Recommended compiler options for performance

  • Architecture-independent hand-tuning review

  • Key aspects of POWER3 architecture:

1. The L1 data cache

2. The L2 data cache

3. The translation lookaside buffer (TLB)

4. The superscalar floating point units (FPUs)

  • Tuning for peak megaflops on POWER3:

1. Avoid the negative. Tune for the data cache and TLB.

2. Exploit the positive. Tune for the superscalar FPUs.

  • Some comments on SMP parallel tuning for POWER3.

8.1  The Tuning Process

The following steps summarize the process, in approximate order of 
importance. A short section on each step follows.

1. Consider whether I/O is significant and tune if necessary.

2. Use the best set of compiler optimization flags.
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3. Locate the hot-spots in the program.

This step is very important. Do not waste time tuning code that is hardly 
ever executed.

4. Use the MASS library for intrinsic function references and code calls to 
pre-tuned libraries, such as ESSL where possible. MASS and ESSL are 
described in Chapter 5, “Performance Libraries” on page 65.

5. Hand-tune the code.

This is the subject of the remaining sub-sections.

8.1.1  Tuning for I/O
This item is considered first since, if I/O is a significant part of the program, it 
may well dominate the overall run time and render CPU tuning unproductive. 
Some guidelines for efficient I/O in Fortran are given in the list following the 
next paragraph, but the main advice is simply to eliminate or minimize I/O as 
much as possible. If I/O is your performance bottleneck, then using the best 
hardware and software options (SSA disks, striping over multiple devices and 
adaptors, and asynchronous I/O, for example) may be the best tuning option. 
A detailed discussion of this is outside the scope of this publication.

Paging is a special case of I/O. You can measure paging rates using vmstat. A 
certain amount of paging during start-up or when the program changes from 
one phase to another is to be expected. But any measurable paging rate over 
a sustained period during program execution is an indication that you are 
over-committing memory or are on the edge of doing so. This is likely to 
cause serious performance problems. The only solution is to reduce the level 
of memory over-commitment. Either tune the program so as to use less 
memory - or run on a computer with more memory (or fewer users).

Some guidelines for efficient I/O in Fortran follow:

  • Use long record lengths.

At least 100 KB if possible, preferably 2 MB or more.

  • Prefer Fortran unformatted I/O to formatted.

This reduces binary to decimal conversion overhead.

  • Prefer Fortran direct files to sequential.

This avoids Fortran record length and overflow checking. A Fortran direct 
file in AIX is a simple sequential series of data bytes. A Fortran sequential 
file has record length indicators at both ends of each record.

  • Reduce the number of calls to the I/O subsystem.
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For example, the following three ways of writing the whole of a 2-D array 
to a sequential file differ very considerably in performance. As well as 
performing very slowly, Case 3 will create a file almost twice as large as 
Case 1 (if A is REAL*8) because of the extra record length indicators.

DIMENSION A(N,N)
.
.

Case 1. Best. 1 record of N*N values.
WRITE(1)A

Case 2. N records, each of N values.
DO I=1,N

WRITE(1)(A(J,I),J=1,N)
ENDDO

Case 3. Worst. N*N records, each of one value.
DO I=1,N
DO J=1,N

WRITE(1)A(J,I)
ENDDO

ENDDO

  • Use asynchronous I/O to overlap computation with I/O activity. This is 
newly implemented in XL Fortran Version 5 using the ASYNCH keyword 
on OPEN and the WAIT statement.

  • If you write a large temporary file sequentially and need to read through it 
again at a later stage in processing, make it a direct access file and then 
try to read the end records of the file first. Ideally, read it sequentially 
backwards. This is because AIX will automatically use memory to buffer 
the file. Assuming the file is larger than memory, after the write is 
completed, memory is likely to contain a large number of buffers 
corresponding to the last part of the file. If you then read these records, 
AIX will supply them to the program from memory without physically 
reading the disk. If you read the file forwards, the incoming records from 
the front of the file will flush out the in-memory buffers before you reach 
them.

8.1.2  Locating the Hot Spots (Profiling)
Profiling tells you how the CPU time used by a program during execution is 
distributed over the code. It identifies the active subroutines and loops so that 
tuning effort can be applied most effectively.
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It is important to understand that a profile relates just to the particular run of 
the program for which the profile was obtained. The same program run with 
different data will produce a different profile. Some numerically intensive 
programs produce very consistent profiles with widely varying sets of input 
data. Others produce quite different profiles when the data is changed.

From the point of view of the person tuning the code, the ideal situation is a 
consistent profile with very pronounced concentrations of time spent in a few 
routines. Tuning effort can then be concentrated on those routines.

The AIX tools available for profiling the programs include:

  • The AIX prof and gprof commands

  • The AIX tprof command

The prof and gprof commands provide profiling at the procedure (subroutine 
and function) level. The tprof command uses the AIX trace facility to interrupt 
your program at each tick (10 milliseconds) of the AIX CPU clock and 
construct a trace table that contains the hardware instruction address 
register. At the end of your program execution, tprof creates a report (using 
the trace table) showing the number of ticks that relate to each line of your 
source code.

To use prof and gprof, do the following:

1. Compile your program with the -p or -pg option in addition to the normal 
compiler options

2. Run the program (this produces the gmon.out file)

3. Run prof or gprof by entering prof > filename or gprof > filename

The standard output, filename, of prof will contain the following information:

  • The percentage of the program’s CPU time used by the procedure.

  • The time in seconds required for all references to the procedure.

  • The cumulative total of seconds required for all procedures in the list.

  • The number of times the procedure was called and the time required to 
perform each call.

The output of gprof contains all the information provided by prof, and in 
addition the timing information of the calling tree for the procedures in the 
program.

To use tprof on a program myprog.f, do the following:
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1. Compile your program with the -g option

2. Run tprof on the program: tprof -p myprog -x myprog

This procedure creates two output files, namely __myprog.all and 
__t.myprog.f. The first file shows all the processes involved in running your 
program and provides a count of the timer ticks associated with each 
process. It also lists the percentage of ticks that are associated with the 
complete program. The second file is only produced if you compile your 
program with the -g option. It is an annotated version of your source file, that 
indicates the CPU ticks associated with each line of the source code being 
executed.

For more details on how to use prof, gprof, and tprof, see Optimization and 
Tuning Guide for Fortran, C, and C++, SC09-1705.

By far the most user-friendly and powerful tool, providing graphically assisted 
profiling down to the Fortran or assembler statement level, is Xprofiler, which 
is a development of xgprof. Xgprof is an unsupported IBM Internal tool. 
Xprofiler is a supported IBM product distributed as part of Parallel 
Environment - normally used only for the distributed memory RS/6000 SP. If 
you are running on a workstation where PE is not installed, your option is to 
use prof, gprof, or tprof.

To use Xprofiler (or xgprof), compile and link as for gprof with

-g -pg

together with -O3 or whatever other optimization you are using. It is important 
to use the same optimization options as you will use for production, since 
changing the optimization is highly likely to also change the profile.

Then simply run the executable against the chosen test data. This will 
produce the standard gmon.out file containing the profiling data. Then run 
Xprofiler. Graphics will appear showing the subroutine tree of the program, 
with each subroutine represented by a rectangle. The area of each rectangle 
is roughly proportional to the CPU time spent in that routine, giving an 
immediate visual indication of hot-spot location. Clicking on a rectangle will 
produce a set of options, one of which creates a Fortran source code listing 
with each statement annotated with the amount of CPU time (in units of 1/100 
s) used. This enables the active loops to be easily identified.

8.1.3  Use Pre-tuned Code, Such As ESSL
Do not spend time duplicating tuning work that has already been done. If your 
program performs standard functions, such as matrix multiply, equation 
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solving, other BLAS functions, FFTs, convolution, and so on, then modify your 
code to call the equivalent ESSL function. ESSL is described in 5.1, “The 
ESSL Library” on page 65, and contains probably the most highly tuned code 
available for RS/6000 numerically intensive functions. Other commercially 
and publicly available libraries, such as NAG, IMSL, LAPACK, and so on, have 
also been tuned for cache-based superscalar architectures.

8.1.4  Hand Tune the Code
Hand tuning is a last resort, since it is likely to require a lot of time and effort. 
Nevertheless, the remainder of this Tuning Guide section is devoted to it.

8.2  Recommended Compiler Options

The XL Fortran compiler is constantly improving, and you should beware that 
recommendations in this section are likely to become out of date. Currently, 
however, the following represents the practical experience of people working 
in this field and relates to XL Fortran Version 5.1.

Recommended sets of options are given first, followed by a detailed set of 
notes that justify the recommendations.

Recommended set of performance options for POWER3:

-O3 -qarch=pwr3 -qtune=pwr3 [-qcache=auto]

or

-O3 -qstrict -qarch=pwr3 -qtune=pwr3 [-qcache=auto]

  • Only specify -qcache=auto if compiling on POWER3.

  • Use -qstrict if you are worried about non-bitwise identical results.

  • Try -O4 selectively and check to see if performance improves.

  • Consider using -qipa and -Q.

  • Consider using -qfloat=hsflt (but beware that it can be unsafe - see the 
notes which follow).

  • Use -O3 -qarch=com -qtune=pwr3 if you want to tune for POWER3 but 
have the executable run on other platforms.

The following detailed set of notes explains the reasoning behind these 
recommendations:
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  • Unless you are debugging, always use at least the -O2 flag (or -O) (note 
that -O1 is not implemented). The performance of unoptimized code will 
almost always be very poor and render pointless any hand tuning you 
might do.

  • The -O3 option is reliable (in terms of giving correct answers) and usually 
(though not absolutely always) gives improved performance over -O2. 
Therefore, use it as a matter of course in preference to -O2, unless you 
have good reason for believing it to be generating faulty code or degrading 
performance. See also the discussion of -qstrict that follows in this list.

  • In the present release of the compiler (Version 5.5.1), the -O4 option is a 
short-hand for

-O3 -qhot -qipa -qarch=auto -qtune=auto -qcache=auto

That is, there is no optimization enabled by -O4 that is not given by that 
set of options. This may not remain true in future releases.

  • The -qhot (high order transforms) option, implied by -O4, is excellent for 
blocking and transforming simple loops for optimum cache and TLB 
performance. See 8.4, “Key Aspects of POWER3 (Model 260) 
Architecture” on page 119, for a detailed discussion of the data cache and 
TLB.

Early experience with XL Fortran Version 5 shows that -qhot is 
significantly improved over Version 4. For example, it now does an 
excellent job at optimizing untuned matrix multiply coding. However, -qhot 
is less successful with more complex loops. Practical experience (with XL 
Fortran Version 4) has indicated that, with real production codes, -qhot 
degrades performance more often than it improves it. Although improved 
in Version 5, -qhot should probably still not be recommended for routine 
use. Rather, use it selectively, on key subroutines, after you have verified 
by measurement that performance is improved.

  • -qstrict is used with -O3 and higher optimization levels to ensure that 
results are obtained that are bitwise identical to those from unoptimized 
code (and -O2). To do this, XL Fortran defines a strict computational 
ordering based on Fortran’s rules for operator hierarchy and left to right 
operation. Without -qstrict, optimization levels above 2 allow such 
semantics changes in the interests of performance.

For example, when evaluating the expression

A*B*C + B*C*D

the compiler might recognize that B*C is a common sub-expression and 
evaluate it once only. However, -qstrict would inhibit this optimization since 
it would violate the left to right ordering rule on A*B*C. In general, (A*B)*C 
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does not yield a bitwise identical result to A*(B*C). Which is more accurate 
- closer to the mathematically exact value - depends on the precise 
floating points values involved.)

  • -qarch=pwr3 and options such as -qfloat=hsflt.

The various sub-options of -qfloat (hsflt, hssngl, and so on) are primarily 
intended for single precision (REAL*4) operation on POWER2 
architecture, and, since this publication is based on POWER3, details will 
not given here. Suffice it to say that, for single precision floating point 
arithmetic on POWER2, hsflt is the highest performing option but that it is 
unsafe since exponent overflow can go undetected and produce wrong 
results. The highest performing safe option is -qfloat=hssngl.

However, there is a potentially important compiler optimization (reciprocal 
multiply) that is enabled only if -qfloat=hsflt is specified. There is a strong 
argument for not making this optimization dependent on an unsafe option, 
and the compiler developers are considering a change. The -qfloat=hsflt 
option is, however, safe in practice if:

  • You use double precision exclusively (with POWER2 or POWER3), or

  • You specify -qarch=pwr3 and use single precision exclusively (that is, 
do not mix single and double), or

  • You can guarantee that no expression will ever have a value outside 
the single precision exponent range (about 1.0E-38 through 1.0E+38).

Therefore, if you find that reciprocal multiply is of significant benefit for 
your code, you could consider enabling it with hsflt. However, hand-tuning 
for reciprocal multiply is usually relatively easy, and this is probably the 
better option.

8.3  Architecture Independent Hand Tuning Review

Before giving a detailed description of the performance implications of key 
parts of POWER3 (RS/6000 43P 7043 Model 260) architecture, this section 
reviews some tuning techniques that have been found to be commonly 
effective in a wide range of programs. These techniques could be described 
as common sense. They simply do things in a more efficient way: maybe by 
reducing the amount of computation to achieve the same result, maybe by 
eliminating unnecessary overhead.

Most of these techniques are likely to be effective, whatever hardware 
platform the code is run on, in contrast to the architecture dependent 
techniques discussed later.
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8.3.1  Basic Coding Practices for Performance
Sections on do’s and don’t’s follow.

8.3.1.1  Good Coding Practices for Performance
Write a clean and straightforward program to enable the compiler to do its 
optimization work.

  • Access data sequentially (unit stride), see 8.5.3.1, “Stride Minimization: 
Case Study T1” on page 129

  • Keep size of DO-loops manageable

  • Keep common sub-expressions recognizable by the compiler

  • Reduce expensive operations (such as divides, exponentiation, and so on)

  • Minimize IF statements in loops

  • Inline short routines

  • Avoid subroutine calls in loops (give routine its own loop)

  • Do not EQUIVALENCE critical variables

  • Simplify array subscripts

  • Prefer scalar temporaries over scratch arrays

  • Avoid implicit type conversions

  • Keep the number of parameters passed to subroutines and functions small

  • Avoid leading array dimensions equal to a power of two

  • If coding multiple IF tests, evaluate the most likely first

8.3.1.2  Coding Practices to be Avoided
For performance-critical DO-loops, do not do the following:

  • Access data with large stride (see 8.5.3.1, “Stride Minimization: Case 
Study T1” on page 129).

  • Create recurrences.

  • Do too few iterations of the loop.

And within performance-critical DO-loops do not use the following:

  • I/O statements

  • Subroutine calls

  • Non-intrinsic function references

  • CHARACTER or LOGICAL assignment statements
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  • ASSIGN or ASSIGNED GOTO or computed GOTO

  • GOTO which exits the loop

  • GOTO backwards in the loop

  • PAUSE, RETURN, or STOP

  • Too many or too complex nested IFs

  • Complex loop-dependent array subscripts (induction variables)

  • Non-INTEGER or INTEGER*8 DO-loop variables

  • EQUIVALENCEd data items

  • Non-optimizable data types: LOGICAL*1, BYTE, INTEGER*1, 
INTEGER*2, REAL*16, COMPLEX*32, CHARACTER, INTEGER*8 in 
32-bit mode

8.3.2  Commonly Occurring Examples
These are some examples of how to correct some inefficient coding practices 
that have been repeatedly found in real codes:

Invariant IF float-out

Untuned Tuned
------- -----

DO I=1,N IF(D(J).LE.0.0)THEN
IF(D(J).LE.0.0)X(I)=0.0 DO I=1,N
A(I)=B(I)+C(I)*D(I) A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I) X(I)=0.0

ENDDO E(I)=F*G(I)
ENDDO

ELSE
DO I=1,N
A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I)

ENDDO
ENDIF

The compiler will recognize that the IF test is invariant but will not generate 
two versions of the loop as in the tuned example.

Boundary condition IF testing

Often, you want to do something different for just the first and/or last iteration 
of a loop. If the loop is performance-critical, then it is important to treat these 
special cases separately and have the main loop without an IF:
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Untuned Tuned
------- -----

DO I=1,N A(1)=B(1)+C(1)*D(1)
IF(I.EQ.1)THEN X(1)=0.0
X(I)=0.0 E(1)=F*G(1)

ELSEIF(I.EQ.N)THEN DO I=2,N-1
X(I)=1.0 A(I)=B(I)+C(I)*D(I)

ENDIF E(I)=X(I)+F*G(I)
A(I)=B(I)+C(I)*D(I) ENDDO
E(I)=X(I)+F*G(I) X(N)=1.0

ENDDO A(N)=B(N)+C(N)*D(N)
E(N)=1.0+F*G(N)

Repeated intrinsic function calculation

In this example, the untuned code calculates the values of SIN(X(J)) N times, 
whereas in the tuned code, they are calculated once and saved in a separate 
array.

Untuned Tuned
------- -----

DO I=1,N DIMENSION SINX(N)
DO J=1,N .
A(J,I)=B(J,I)*SIN(X(J)) DO J=1,N

ENDDO SINX(J)=SIN(X(J))
ENDDO ENDDO

DO I=1,N
DO J=1,N
A(J,I)=B(J,I)*SINX(J)

ENDDO
ENDDO

Calls to vector merge functions

Codes, typically ported from other systems such, as Cray vector processors, 
often make extensive use of the vector merge functions, CVMGM, CVMGN, 
CVMGP, CVMGT, and CVMGZ. They were used to avoid IF statements in 
loops preventing vectorization. On a non-vector architecture, this is 
unnecessary. They are supported by XL Fortran but the overhead of calling 
them is usually much greater than executing the equivalent conditional code. 
This is particularly true if, for example, CVMGT is called several times with 
the same logical condition, as in the following example:

Untuned
-------

DO I=1,N
P(I)=CVMGT(A1(I),A2(I),D(I).LE.0.0)
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Q(I)=CVMGT(B1(I),B2(I),D(I).LE.0.0)
R(I)=CVMGT(C1(I),C2(I),D(I).LE.0.0)
S(I)=CVMGT(D1(I),D2(I),D(I).LE.0.0)

ENDDO

Tuned
-----

DO I=1,N
IF(D(I).LE.0.0)THEN
P(I)=A1(I)
Q(I)=B1(I)
R(I)=C1(I)
S(I)=D1(I)

ELSE
P(I)=A2(I)
Q(I)=B2(I)
R(I)=C2(I)
S(I)=D2(I)

ENDIF
ENDDO

Replacing divides by reciprocal multiply

This optimization can sometimes be done automatically by the compiler by 
specifying at least -O3 optimization level together with -qfloat=hsflt. However, 
the hsflt option can be unsafe in some circumstances, see 8.2, 
“Recommended Compiler Options” on page 112.

Since divides are very costly, any loop that divides by the same value more 
than once can be easily optimized by taking the reciprocal of the value and 
then multiplying by the reciprocal, as in this example:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OC=1.0/C(I)
P(I)=Q(I)/C(I) A(I)=B(I)*OC

ENDDO P(I)=Q(I)*OC
ENDDO

The following example shows that a similar trick can be done even when two 
(or more) different divisors are used:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OCD=1.0/( C(I)*D(I) )
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P(I)=Q(I)/D(I) A(I)=B(I)*OCD*D(I)
ENDDO P(I)=Q(I)*OCD*C(I)

ENDDO

Here, two divides have been replaced by one divide and five multiplies - still a 
considerable saving in cycles.

8.4  Key Aspects of POWER3 (Model 260) Architecture

This section covers only those aspects of the architecture that are of the 
highest direct relevance to the performance of floating-point-intensive 
programs. More details on Model 260 architecture are given in Chapter 2, 
“The POWER3 Processor” on page 7.

  • L1 data cache,

  • L2 data cache,

  • translation lookaside buffer (TLB), and

  • the superscalar floating point units (FPUs).

Other aspects of the architecture, such as the instruction cache, can be 
significant for some programs but generally much less so than those 
considered here.

The way in which you can tune code to take best advantage of the 
architecture is the subject of the next section.

8.4.1  The POWER3 (Model 260) Level 1 Data Cache
Memory is buffered by a high speed data cache of 64 KB. Its structure and 
the effect of this on performance is considered in the following two 
subsections.

8.4.1.1  Structure of the L1 Data Cache
The structure of the Model 260 L1 cache is significantly different from (and, 
on the whole, better than) that of the POWER2 cache. There are three 
concepts which are key to understanding the cache:

  • Cache lines

Each line is 128 bytes long and is the basic unit of transfer between main 
memory and cache.

  • Set-associativity

This is one of the main POWER3/POWER2 differences: the POWER2 
cache is 4-way set associative; the POWER3 cache is 128-way.
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  • Cache line prefetch

This important feature of POWER3 is not present on POWER2.

These concepts will now be explained in detail.

Cache Lines
Conceptually, memory is sectioned into contiguous 128-byte lines, each one 
starting on a cache-line boundary whose hardware address is a multiple of 
128. The cache is similarly sectioned and all data transfer between cache and 
memory is in units of these lines.

If, for example, a particular floating point number is required to be copied 
(loaded) into a floating point register so that computation may be done with it, 
then the whole cache line containing that number is transferred from memory 
to cache.

Set Associativity
The L1 data cache is mapped onto memory, as shown in Figure 21, which 
shows the L1 cache on POWER2, and Figure 22, which shows the same for 
POWER3. Each column in one of the diagrams is called a congruence class, 
and any particular line from memory may only be loaded into a cache line in 
the same congruence class and for POWER2 into one of only 4 locations; for 
POWER3 into one of 128 locations.

Figure 21.  The 4-Way Set-Associative POWER2 Data Cache
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Figure 22.  The 128-Way Set-Associative POWER3 Data Cache

Generally, when a new line from memory is loaded into the cache, existing 
data must be displaced. If the previous contents of the line have been 
modified, the line must be stored back into memory. The algorithm used by 
the hardware for selecting which cache line to use is an approximation of 
Least Recently Used on POWER2 and is round-robin on POWER3.

The set associative structure of the cache can lead to a reduction in its 
effective size. Suppose successive data elements are being processed that 
are regularly spaced in memory (that is with a constant stride). With the 
POWER2 cache, the worst case is when the stride is exactly 16 KB or a 
multiple of 16 KB. In this case, all elements will lie in the same congruence 
class and the effective cache size will be only four lines. This effect happens 
with strides that are a multiple of a power of 2.

The POWER3 cache, with its much greater degree of set associativity, is 
much less susceptible to this problem than the POWER2 cache. Strides of 
multiples of 1024 bytes will cause all the data to be in the same congruence 
class but will only cause a reduction in apparent cache size of a factor of 4. 
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Odd multiples of 512 will halve the effective size. This is minor compared with 
the possible reduction by a factor of 128 on POWER2. See also 7.4, “Large 
Stride” on page 102.

8.4.1.2  Effects of L1 Cache Misses on Performance
You can estimate the effects of cache misses on performance with the 
following approximate rules for POWER3 (Model 260):

  • A load instruction (from memory to a floating point register) takes one 
cycle if the data is in the cache.

(On a 200 MHz (cycles per second) Model 260, a cycle is 5 ns.)

  • If the data is in L2 cache, it takes six or seven cycles.

  • If the data is in memory only, it takes about 36 cycles. That is, the cost of a 
cache miss to memory is 35 additional cycles.

  • Following the initial 35 cycle delay, forward sequentially accessed items in 
the same cache line may be loaded in a further one cycle each.

  • The same timing applies to storing data from registers into memory. If the 
store is into a previously unreferenced line, the complete line must be 
fetched from memory first before the new value can be stored into it.

  • If a cache line is overwritten by newly accessed data, then, if the data from 
the old line is needed again, it must be reloaded and another cache miss 
taken.

Cache Line Prefetch
Because of the relatively large number of cycles needed for a cache miss, 
POWER3 has a mechanism for mitigating the performance impact for 
sequentially accessed data. For up to four streams of data, the hardware 
attempts to detect sequential access and initiates the loading of subsequent 
lines in parallel, so they stream into the cache behind the first line without 
waiting for the miss to occur. The beneficial effects of this on performance are 
discussed in 7.3.1, “Copy” on page 95.

8.4.2  The POWER3 (Model 260) Level 2 Data Cache
On the Model 260, the L2 data cache is 4 MB in size. For 
numerically-intensive applications, it is likely to be of less importance than the 
L1 cache. The following points summarize the operation of the L2 cache:

  • Data in the L1 cache may or may not also be in L2.

  • Data loaded into L1 by the pre-fetch mechanism does not go into L2.

  • Data loaded into L1 other than by pre-fetch (that is as a result of an L1 
cache-miss) also goes into L2.
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  • An L1 cache miss costs only about six or seven cycles if the data is in the 
L2 cache compared with 35 cycles if it is not.

8.4.3  The Translation Lookaside Buffer (TLB)
Virtual storage constitutes the addressable memory space used by the AIX 
system. This linear contiguous address space is mapped, by a combination of 
hardware and software, onto the hardware memory (real storage) of the 
computer and onto paging spaces held on disk. If the amount of memory 
used by the system is greater than can be held in real storage, the paging 
mechanism of AIX will automatically cause transfers, as needed, between 
real storage and disk in units of 4 KB pages.

It is important to understand that the TLB has nothing to do with paging. As 
will be explained, TLB misses can and do occur with pages that are already in 
real storage.

For a 1 MB subset of pages in real storage, the translation lookaside buffer 
(TLB) holds the correspondence between virtual storage addresses and real 
storage addresses.

If the address of a page is held in the TLB, no additional delay occurs when 
data within the page is accessed. Otherwise, a TLB miss occurs. (An L1 
cache miss may or may not occur at the same time.) The virtual/real address 
of the page is then resolved using the page and segment tables (held in real 
memory) and this is placed in the TLB, overwriting an existing entry on a least 
recently used basis.

The cost of a TLB miss varies between about 25 cycles if the relevant parts of 
the page and segment tables are in L2 cache, to possibly hundreds of cycles 
in unfavorable cases.

The POWER3 TLB has a total 256 entries, and therefore, addresses only 1 
MB of memory. This is the same as on POWER2.

The TLB is 2-way set associative. Therefore, an application accessing data 
with a stride of exactly 512 KB (or a multiple) would see a TLB with only two 
entries. Arguably, such a stride would be even less likely to occur in practice 
than strides which can cause trouble with the POWER2 data cache.

8.4.4  The Superscalar Floating Point Units and Peak Megaflops
The peak rate of a single 200 MHz Model 260 processor is 800 MFLOPS (that 
is, four flops per machine cycle).
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Approaching this rate in practice is only possible if delays due to the caches 
and the TLB have been eliminated. This section is therefore about what is 
normally called in cache performance but really should be in L1 cache and 
TLB performance. (It is possible to construct programs that operate in L1 
cache but out of TLB.)

Fixed point (integer) arithmetic is done by separate fixed point units. Although 
some applications (such as signal processing) make extensive use of integer 
arithmetic, this is not considered in detail here.

8.4.4.1  FPU Performance Guide
The following key facts summarize the way the FPUs perform:

  • A single Model 260 processor has two FPUs (connected to a single L1 
cache) that can operate independently in parallel.

  • The two FPUs see only floating point registers. There are 32 architected 
registers plus 24 rename registers that may substitute for an architected 
register through a hardware process known as renaming. These 56 
registers serve both FPUs. They all have 64 bits.

  • Floating point computation is carried out only with data in these registers.

  • Data is copied into the registers from the L1 cache (loaded) and copied 
back to the L1 cache (stored) by two load/store units. (This is different 
from POWER2 architecture where floating point load/stores were done by 
the fixed point unit.)

  • For in cache (and in TLB) data, a load or store of one floating point double 
precision (REAL*8) variable takes one cycle. (On POWER2, it was 
possible to load a quad-word (two adjacent double precision variables) in 
one cycle.)

  • The load/store units operate independently, except that two stores cannot 
take place in one cycle. Two loads, or a load and a store, can take place in 
one cycle.

  • Single precision (REAL*4) variables are loaded into separate registers 
(using only half their capacity) and each load takes one cycle as with 
double precision.

  • The basic computational floating point instruction is a double precision 
multiply add, with variants multiply/subtract, negative multiply/add, and 
negative multiply/subtract. There are also single precision variants in 
POWER3 architecture (unlike POWER2).

  • A single add, subtract, or multiply (not divide) is done using the same 
hardware as a multiply/add and takes the same amount of time. A 
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multiply/add counts as two floating point operations, so that, for example, 
a program doing only additions might run at half the megaflops rate of one 
doing alternate multiplies and adds.

  • The assembler acronym for the double precision floating-point multiply/add 
is FMA. This term will be used extensively as a shorthand for any of the 
variants of this basic floating point instruction.

  • The computational part of an FMA takes three or four cycles.

  • The worst case would be a sequence of wholly dependent 4-cycle FMAs 
(where a result of one FMA is needed by the next) where only one of the 
FPUs would be active. This would run at the rate of one FMA per four 
cycles, as shown in the upper part of Figure 23. If there were two 
independent streams of dependent FMAs, this could use both FPUs.

Figure 23.  POWER3 Floating Point Unit - Superscalar Pipeline
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  • A sequence of independent FMAs, however, can be pipelined as shown in 
the lower part of Figure 23, and the throughput can then approach the 
peak rate of two FMAs per cycle.

  • Divides are very costly and take about 18 cycles. Divides cannot be 
pipelined (either with another divide or with FMAs).

  • A fundamental aspect of RISC architecture is that the functional units can 
run independently. Therefore, FMAs can run in parallel with load/stores 
and other functions.

8.4.4.2  Conditions for Approaching Peak Megaflops
When considering a numerically intensive loop, the following applies to the 
instruction stream within the loop:

  • Operate solely within L1 cache and TLB.

  • No divides (or square roots or function calls and so on).

  • Multiplies must be paired with adds or subtracts so that each FMA is two 
flops.

  • FMAs must be independent (and at least eight in number to keep two 
pipes of depth four going).

  • The loop should be FMA-bound. That is, cycles needed for instructions 
other than FMAs (mainly load/stores) should be less than that needed for 
FMAs so that they can be overlapped with FMAs and effectively hidden. In 
principle, they could be equal to the FMA cycles, but, in practice, peak 
performance is approached most easily if they are less.

8.5  Tuning for Floating Point Performance on POWER3 (Model 260)

Tuning strategy can be summarized as follows and should be done in the 
following order:

1. Avoid the negative.

Code so as to avoid cache and TLB misses.

2. Exploit the positive.

Code so as to achieve pipelined FMA operation in the FPUs.

The techniques for achieving these two things are quite different and are 
discussed in the two sections which follow an introductory section on the 
automatic optimization obtainable from the compiler.
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8.5.1  Letting the Compiler Do the Tuning
The ability of the compiler to optimize (or, effectively, tune) untuned code is 
improving with each new release, and it is becoming increasingly difficult to 
find simple examples of loops that require hand tuning to perform well.

Advice about which techniques should be done by hand is broadly:

1. If the compiler does it for you at -O3, do not bother.

2. If the compiler needs -O4 (or -qhot) to do it, probably it is worth doing 
yourself - for two reasons:

  • -qhot may slow down other more complex loops in the same routine.

  • The performance characteristics of the hand tuned code will be stable, 
that is, not dependent on the way in which the advanced capabilities of 
the compiler vary from release to release.

3. If the compiler will not do it at all, you’ve no option.

The remaining two sections include a series of case studies. The purpose of 
these is both to explain the principles behind tuning and to provide examples 
of how to go about it. In purely explanatory cases (where it is not worth hand 
tuning because the compiler does it well at -O3), the behavior of untuned and 
tuned code is generally illustrated by using the -O2 optimization level.

8.5.2  Getting and Understanding an Object Code Listing
Most tuning can be done without ever looking at an object code listing 
generated by the compiler but, often, it is essential for understanding why a 
particular tuning action does not seem to be working as expected.

Understanding just enough about object code to make sense of floating 
point-intensive loops is quite easy and well worth while. (It is, incidentally, 
possible for the compiler, to produce an assembler language source file by 
using the -S flag. This may then be edited and re-assembled by the compiler. 
No further discussion of this is included here.)

To generate a listing, compile with -qsource -qlist. The listing will then be 
found in the.lst file. If you compile at optimization level -O2, then the object 
code for the loop should map on to the Fortran source directly and be easily 
understandable. An extract from such a listing follows. At higher optimization 
levels, the listing will be more complex and difficult to understand.

Extract from sample.lst generated with the command
xlf -c -qsource -qlist -O2 sample.f
-----------------------------------
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>>>>> SOURCE SECTION <<<<<
          1 |      SUBROUTINE SAMPLE(A,B,C,S,N)
          2 |      IMPLICIT REAL*8(A-H,O-Z)
          3 |      DIMENSION A(N),B(N),C(N)
          4 |      S=0.0D0
          5 |      DO I=1,N
          6 |        A(I)=X/C(I)
          7 |        S=S + A(I)*B(I)
          8 |      ENDDO
          9 |      END

>>>>> OBJECT SECTION <<<<<
.
.

5|                              CL.0:
6| 000030 lfdu     CC450008   1     LFDU     fp2,gr5=c(gr5,8)
6| 000034 fdiv     FC411024  15     DFL      fp2=fp1,fp2,fcr
7| 000038 lfdu     CC640008   0     LFDU     fp3,gr4=b(gr4,8)
6| 00003C stfdu    DC430008   0     STFDU    gr3,a(gr3,8)=fp2
7| 000040 fmadd    FC0200FA   3     FMA      fp0=fp0,fp2,fp3,fcr
8| 000044 bc       4200FFEC   0     BCT      ctr=CL.0,
7| 000048 stfd     D8060000   0     STFL     s(gr6,0)=fp0

The following points explain how to use the listing:

  • The object code shown is just the subset of the complete listing that 
includes the DO-loop. To locate the loop:

1. Note the numbers of the source statements that comprise the loop (5 - 
8 in this case).

2. Look for a BCT (branch on count) statement that loops back to a label 
(CL.0 in this case) where the numbers of the included object code 
statements is the same as in the Fortran source. Note that references 
to statements within the source loop are often found also outside the 
object code loop. These should be ignored: you need to find the BCT 
branching back to a label.

Beware also that at -O3 and above, you may sometimes find a BCT at 
the end of a tidy-up loop as well as the main loop.

  • The first statement in the loop is an LFDU statement. LFD means load 
float double. The U indicates that the address registers are automatically 
updated for the next loop iteration. This statement loads C(I) into fp2 
(floating point register 2). You can tell it is an element of C that is being 
loaded from the c(gr5,8) part of the statement.
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  • The number to the left of the mnemonic (1 against the LFDU, 15 against 
the following DFL) is the compiler’s estimate of the number of cycles 
needed for the statement (within a single FPU). A zero means that the 
instruction can be overlapped with previously listed instructions.

  • Then comes a DFL (divide float). This computes X/C(I). Since X is a 
scalar, it is loaded once before the loop starts (into fp1) and does not 
appear inside the loop.

  • Then comes another LFDU (loading B(I)), followed by an STFDU (store 
float double with update), which stores the result of X/C(I) into A(I).

  • Then comes the FMA (floating point multiply/add) that computes 
S+A(I)*B(I). Note that S is neither loaded nor stored within the loop. It was 
loaded into fp0 before the loop and can be seen to be stored immediately 
after the final BCT of the loop.

  • Note also that it was not necessary to load A(I) for this statement because 
the value was already present in fp2.

8.5.3  Tuning for the L1 Cache
Generally speaking, if you successfully tune so as to work in the L1 cache, 
you will also be working in the TLB. This is by no means always true but a 
discussion of tuning specifically for the TLB is beyond the scope of this 
publication.

There are two basic techniques for tuning for the L1 cache:

1. Stride minimization - stride 1 (sequential processing) being the goal, and

2. Blocking (also known as strip mining), whereby data is processed in 
blocks that fit in the cache.

Of these two, stride minimization is by far the most important.

8.5.3.1  Stride Minimization: Case Study T1
The stride of an array in a Fortran DO-loop refers to the way in which the 
referenced array elements are laid out in memory and is equal to the 
difference in address of successive elements. For indirectly addressed data, 
stride may be variable. For negatively incremented loops, stride is negative.

While stride can be measured in bytes, it is more usual to use units equal to 
the size of a data item. Thus, with double precision data, each element is 8 
bytes long, so that a stride of 3 would be 24 bytes.

The following example illustrates stride. In understanding the examples with 
nested loops and multi-dimensional arrays, remember that:
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1. It is the inner loop that determines the stride (assuming the compiler does 
not invert the loops).

2. Fortran arrays are laid out in memory in column major order, so that stride 
1 processing is obtained by varying the left most subscript most rapidly.

DO I=1,N
A(I)....... Stride 1
A(I+4)..... Stride 1
A(2*I)..... Stride 2

DO I=1,N,3
A(I)....... Stride 3

DO I=N,1,-2
A(2*I)...... Stride -4

DIMENSION A(100,50)
.

DO I=1,L Triply nested loop
DO J=1,M
DO K=1,N
A(K,J).. Stride 1
A(J,K).. Stride 100
A(J,I).. No stride. A(J,I) is a scalar (a single

value) in the inner loop since J and I
stay constant.

The effect of stride on performance is clearly shown by the following case 
study.

Case Study T1

Untuned Tuned
------- -----

DIMENSION A(N,N),B(N,N),C(N,N) DIMENSION A(N,N),B(N,N),C(N,N)
. .

DO I=1,N DO J=1,N
DO J=1,N DO I=1,N
C(I,J)=C(I,J)+A(I,J)*B(I,J) C(I,J)=C(I,J)+A(I,J)*B(I,J)

ENDDO ENDDO
ENDDO ENDDO

Stride N on inner loop Stride 1 on inner loop
---------------------- ----------------------
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Table 17 shows the way in which performance varies as N is increased for 
compiler optimization levels 2, 3, with and without -qhot. The maximum 
theoretical in-cache performance for this loop is 200 MFLOPS.

Table 17.  Case Study T1: Performance of Tuned and Untuned Code

The timing program used to obtain these numbers executed this code within 
an outer iteration loop. Therefore, for small arrays (small values of N), these 
figures represent in-cache performance.

The following conclusions may be drawn:

1. The effect of executing with bad stride can be very serious.

This is shown in the untuned -O2 and -O3 lines of the table where the 
performance with 1000x1000 arrays is 88 times worse than the in-cache 
performance. This is much worse than the 35x degradation that you would 
expect simply if every number referenced were a cache miss. TLB misses, 
in addition to cache misses, are the explanation.

2. Even with stride 1 processing, performance degrades (by somewhat more 
than a factor of 2) as the arrays become large.

3. As expected (since loop interchange is a function of -qhot), -O3 does not 
fix the problem.

N 20 50 100 150 200 300 500 1000

Untuned (MFLOPS)

-O2 158 141 116 65.6 9.7 4.51 2.37 1.81

-O3 131 177 108 67.2 11.4 4.59 2.50 1.83

-O3 -qhot 154 147 146 143 117 103 88.6 80.3

-O2 -qhot 160 123 142 131 97.3 102 88.8 77.4

Tuned (MFLOPS)

-O2 158 123 141 130 96.9 101 84.7 77.2

-O3 171 147 147 147 115 102 89.1 79.4

-O3 -qhot 154 147 143 150 119 102 88.6 80.2

-O2 -qhot 159 123 124 116 90.9 87.8 86.3 77.0
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4. With this simple example, -qhot (even when used only with -O2) fixes the 
problem essentially perfectly. (The bottom two lines for untuned code are 
more or less the same as for tuned code.)

Should you hand tune?

Yes.

Getting the DO-loops in the correct order so that the inner loop is stride 1 is 
such a basic easy tuning action that it really should be done. Not only does it 
mean that you are not forced to use -qhot (which might slow down other 
loops) but the code will also run much faster on other cache-based hardware 
platforms that do not boast such a powerful compiler as XL Fortran.

Of course, it is not always possible to structure the code so that all arrays are 
accessed stride 1. In that case, blocking may be essential to avoid serious 
performance problems.

8.5.3.2  Blocking: Case Study T2
The idea behind blocking is simple: process the data in small enough chunks 
that they fit in the cache.

There are two reasons for blocking large arrays:

1. If some arrays must be processed with a large stride.

2. If the data values are used many times.

In this case, you want to do as many computations as possible with the 
data while it is in the cache and before it is flushed out by more recently 
accessed lines. This applies even if everything is stride 1, although the 
benefit here is limited to recovering the stride 1 degradation factor of 
about a factor of 2.

If neither of the above conditions is true, there is no point in blocking.

The following code illustrates the point:

All stride 1. No data re-use. No point in blocking.
--------------------------------------------------

DO J=1,N
DO I=1,N
S = S + A(I,J)*B(I,J)

ENDDO
ENDDO

Unavoidable bad stride. No data re-use. (Case Study T2.)
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-----------------------------------------------------------
DO J=1,N
DO I=1,N
S = S + A(I,J)*B(J,I)

ENDDO
ENDDO

All stride 1. Much data re-use. Matrix Multiply transpose.
---------------------------------------------------------

DO I=1,N
DO J=1,N
DO K=1,N
C(J,I) = C(J,I) + A(K,J)*B(K,I)

ENDDO
 ENDDO
ENDDO

Unavoidable bad stride and much data re-use. Matrix Multiply.
-------------------------------------------------------------

DO I=1,N
DO J=1,N
DO K=1,N
C(J,I) = C(J,I) + A(J,K)*B(K,I)

ENDDO
 ENDDO
ENDDO

The last two cases above are essentially the same as the first two except for 
the extra loop on the outside. This causes each data value to be used N times 
rather than once.

Matrix multiply is discussed in detail in 9.3, “Case Study: Matrix 
Multiplication” on page 151.

Case Study T2

Untuned code
------------
DO J=1,N
DO I=1,N
S = S + A(I,J)*B(J,I)

ENDDO
ENDDO

Tuned (blocked) code
--------------------
DO JJ=1,N,NB
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DO II=1,N,NB
DO J=JJ,MIN(N,JJ+NB-1)
DO I=II,MIN(N,II+NB-1)
S = S + A(I,J)*B(J,I)

ENDDO
ENDDO
ENDDO

ENDDO

Table 18 shows the performance of this code. The maximum theoretical 
in-cache performance of this loop is 400 MFLOPS on a Model 260.

Table 18.  Case Study T2: Performance of Untuned and Tuned Code

As before, the timing program used to obtain these numbers executed this 
code within an outer iteration loop. The small values of N, therefore, represent 
in-cache performance. They are included only to show the dramatic effect of 
the bad stride as N increases.

The following conclusions may be drawn. In all cases, look only at the 
N=1600 column, since the whole point of this loop is what happens with big 
matrices and hence big strides.

1. Again, the compiler is capable of tuning this loop, but this time, both -O3 
and -qhot are needed (or -O4) before the untuned code will perform 
reasonably.

2. The tuned (blocked) code performs reasonably with all compiler options.

N 40 80 320 800 1600

Untuned (MFLOPS)

-O2 134 121 22.0 7.23 5.31

-O3 303 208 20.5 7.45 5.35

-O3 -qhot 333 174 64.3 50.8 46.4

-O2 -qhot 132 112 22.3 7.16 5.33

Tuned (MFLOPS)

-O2 129 89.3 49.4 38.1 34.9

-O3 129 96.7 49.7 38.6 35.3

-O3 -qhot 303 182 65.8 48.6 48.6

-O2 -qhot 129 105 54.5 40.1 35.6
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3. Even in the best case, the degradation compared with small matrices is 
substantial, the rate being about a factor of 6 below in-cache performance.

This is a direct consequence of the fact that there is no data re-use. 
Before the loops are executed, none of the data is in cache or addressed 
by the TLB. Therefore, both cache and TLB misses are taken as the 
arrays are used. What the blocking does is to prevent these misses being 
unnecessarily taken multiple times.

With data re-use, blocking is considerably more successful, as in 9.3, “Case 
Study: Matrix Multiplication” on page 151. Here, rates in excess of 600 
MFLOPS are achieved even for large matrices.

Should you hand-tune?

Probably.

If your code is performance-critical and is of the form that needs blocking, 
then either you or the compiler must block it. Check whether the compiler is 
doing it for you (that is, does -O4 give a substantial boost to the loop over 
-O3). If the compiler is doing it, well and good. However, make sure that -O4 
is not slowing down other loops in the same routine.

But the real benefit of hand tuning is that you will have a much more stable 
situation since the performance of the code will not be dependent on a 
particular compiler option whose characteristics might change with future 
compiler releases.

8.5.4  Tuning for the CPU 
This section discusses tuning code that is running in L1 data cache and in 
TLB. The examples given here should be regarded as kernels which, for 
in-cache performance would be embedded in outer loops in a real code. For 
example, Case Study T15 is a 2-D kernel which, when embedded in an outer 
loop, gives matrix multiply coding.

For present purposes, these kernels are simply imbedded in an outer iteration 
loop to show in-cache performance. All timings are for small matrices that fit 
in the cache.

8.5.4.1  Calculating Theoretical Performance for Simple Loops
For a simple nest of loops (not including function references), it is easy to 
calculate the theoretical maximum in-cache performance on a Model 260.
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First, let us do it assuming that the compiler does no loop rearranging or 
unrolling - what happens in practice with -O2:

1. Look only at the inner loop.

2. Count the number of loads (array elements to the right of an equals sign) 
and stores (array elements to the left of an equals sign) in the loop. Count 
only array elements that depend on the DO-loop variable. Do not count 
scalars. For example,

DO I=1,N
DO J=1,N
A(J) = A(J) * ( DEF + B(I)*C(J) )
X(I) = X(I) + PQR*C(J)

ENDDO
ENDDO

Count one store (for A(J)) and two loads (for A(J) and C(J)) for this loop. 
B(I) and X(I) are scalars since they do not depend on the inner loop index, 
J. DEF and PQR are explicit scalars. And C(J), although referenced twice, 
only needs to be loaded once. This loop, therefore, needs 3 load/stores.

3. Count the number of FMAs needed. Count one for each +* or -* pair you 
can find plus one for all unpaired + or - or *. The above loop would need 3 
FMAs (there is one unpaired *).

4. Count the number of divides.

5. Count the number of flops (arithmetic operators ignoring brackets). There 
are 5 in the above loop.

Then:

  • Cycles for loads/stores simply equals the number of load/stores.

  • Cycles for computation equals the number of FMAs plus about 18 times 
the number of divides.

Since, in general, load/stores can be overlapped with computation, the cycles 
for the loop is whichever of these is greater. If cycles for load/stores is greater 
than for FMAs, the loop is load/store-bound; if cycles for FMAs is greater, it is 
FMA-bound; if they are equal, it is balanced.

There are two CPUs that operate independently at 200 MHz, so the peak 
theoretical megaflops rate is 400*F/C, where F is the number of flops in the 
loop, and C is the number of cycles you estimate.
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8.5.4.2  Basic In-Cache Tuning Techniques: (Case Study T3)
In practice, the performance of the loop will depend also on how successful 
you are (or the compiler is) at arranging for sufficient independent FMAs to be 
present in the loop to allow the superscalar pipeline to operate. This will be 
illustrated with the following case study. The primary purpose of this is 
explanatory, so the -O2 compiler option will be used.

Case study T3

DO I=1,N
S = S + W*A(I) + X*B(I) + Y*C(I) + Z*D(I)

ENDDO

Measured speed at 200 MHz with -O2 = 133 MFLOPS

Theoretically, the loop is balanced: 4 load/stores and 4 FMAs needed. Since 
all +* operators are paired, the peak theoretical speed is 800 MFLOPS on the 
200 MHz Model 260 - compared with a measured value of 133 MFLOPS at 
-O2.

The reason is that, at -O2 (which implies -qstrict), the compiler observes a 
strict left to right computation ordering. Hence the FMA that computes "...+ 
X*B(I)" requires as input the result of "S + W*A(I)"; that is, it is dependent on 
it. All FMAs in the computation are dependent, and therefore, cannot be 
pipelined. This is even true from one iteration to the next since the expression 
uses the same reduction variable, S, as was computed in the previous 
iteration. Furthermore, because there are never any independent FMAs, only 
one FPU can be active. Dependent FMAs within a single FPU can execute 
one every three cycles (rather than the 4 normally assumed). Therefore, one 
iteration of the loop takes 12 cycles. Since there are 8 flops in the loop, the 
theoretical rate comes down to 200*8/12=133.33 MFLOPS - as measured.

So it is necessary to introduce independent FMAs.

T3A T3B
--- ---

DO I=1,N DO I=1,N
S = S + W*A(I) S1 = S1 + W*A(I)
S = S + X*B(I) S2 = S2 + X*B(I)
S = S + Y*C(I) S3 = S3 + Y*C(I)
S = S + Z*D(I) S4 = S4 + Z*D(I)

ENDDO ENDDO
S = S1 + S2 + S3 + S4

Measured at -O2: 133 MFLOPS 526 MFLOPS
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Note, first, that T3A fails to remove the dependency, since each statement in 
the loop uses the same reduction variable, so that it still goes at 133 
MFLOPS. The T3B case, however, makes the 4 FMAs in the loop 
independent and gives an immediate 4-fold performance increase (at -O2). 
(Note that 526 MFLOPS is almost exactly 2/3 of the 800 MFLOPS peak - too 
exact to be a coincidence - but also too difficult to explain in detail.)

But clearly, more independent FMAs are need to keep both FPU pipelines 
busy. So, let’s unroll the loop - to depth 4, say.

T3C
---

IODD = MOD(N,4)
DO I=1,IODD
S00 = S00 + W*A(I) + X*B(I) + Y*C(I) + Z*D(I)

ENDDO
DO I = IODD+1, N, 4
S10 = S10 + W*A(I)
S20 = S20 + X*B(I)
S30 = S30 + Y*C(I)
S40 = S40 + Z*D(I)
S11 = S11 + W*A(I+1)
S21 = S21 + X*B(I+1)
S31 = S31 + Y*C(I+1)
S41 = S41 + Z*D(I+1)
S12 = S12 + W*A(I+2)
S22 = S22 + X*B(I+2)
S32 = S32 + Y*C(I+2)
S42 = S42 + Z*D(I+2)
S13 = S13 + W*A(I+3)
S23 = S23 + X*B(I+3)
S33 = S33 + Y*C(I+3)
S43 = S43 + Z*D(I+3)

ENDDO
S = S10 + S20 + S30 + S40 + S11 + S21 + S31 + S41 +

& S12 + S22 + S32 + S42 + S13 + S23 + S33 + S43

Measured at -O2: 714 MFLOPS

As can be seen, the process of unrolling to depth N involves processing the 
loop in batches of N iterations with an extra small loop at the start (or end) to 
tidy up odd iterations. Unrolling is artificial and messy. It is vital for maximum 
megaflops - but, fortunately, at -O3, the compiler is excellent at doing it for 
you.

Possible reasons why T3C is still slightly short of 800 MFLOPS are:
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  • Interference between loads and FMAs (the loop is balanced: it is easier to 
approach the peak if a loop is FMA-bound), or

  • Possible interleaving conflicts on the loads.

  • Overhead for tidy-up loop and summation of S.

Whatever the reason, this result reflects a general observation that it seems 
more difficult to approach the peak on POWER3 than it is on P2SC. Although 
some kernels do go in excess of 790 MFLOPS, generally, most loops struggle 
to exceed 700.

How does the compiler do?

Table 19 shows the performance with various compiler options and code 
versions:

Table 19.  Performance of Case Study T3

Note that on the hand-tuned code, T3C, -O4 causes a slow down.

Should you hand-tune?

Well, on the original code, even -O4 only gives you 606 MFLOPS. It is 
disappointing that the easy hand-coding in T3B does not work well with -O3 
since -O3 is usually good at unrolling. The problem here is that -O3 does not 
introduce additional reduction variables so that dependencies remain.

The most stable situation, as before, is to do it yourself and use -O3.

8.5.4.3  Making a Load/Store-Bound Loop FMA-Bound
First, for illustration, here is a loop that is firmly load/store-bound and cannot 
be made FMA-bound:

DO I = 1,N
A(I) = B(I) + C(I)*D(I)

ENDDO

This needs four cycles for the load/stores. There is only one FMA; so even if 
this operates dependently at four cycles, it should overlap with the 
load/stores. Unrolling and so on might reduce the cycles needed for the 

Coding MFLOPS at -O2 MFLOPS at -O3 MFLOPS at -O4

T3 133 133 606

T3B 526 400 714

T3C 714 714 625
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FMAs but nothing can reduce the four cycles for the load/stores. Therefore, 
with two flops in the loop, the peak theoretical performance is 400*2/4 = 200 
MFLOPS.

Table 20 shows the measured performance. And, as can be seen, no amount 
of unrolling that -O4 might do can speed this up.

Table 20.  Performance of Load/Store Bound Loop.

Case Study T4
However, some nests of loops can be transformed so as to change the 
load/store - FMA balance. The following example, T3, is one that the compiler 
will not do, even at -O4.

T4
--

DO I = 1,N
DO J = 1,N
Y(I) = Y(I) + X(J)*A(J,I)

ENDDO
ENDDO

Measured MFLOPS on 200 MHz at -O2 -O3 -O4
138 328 385

Note that the loop is already well-structured in that the inner loop both has 
stride 1 and is a sum-reduction (Y(I) is a scalar).

The theoretical calculation for the inner loop gives 400 MFLOPS (2 loads for 
X(J) and A(J,I) and 1 FMA - loop is load/store-bound). The -O4 option nearly 
achieves this and -O3 also does quite well. -O2 suffers, as before, from each 
iteration of J being dependent on the previous one through the scalar value 
Y(I).

Reversing the order of the loops would make matters worse. Then we would 
have 3 load/stores instead of 2. Also A(J,I) would be accessed with bad 
stride. For in-cache operation, this might not be a problem, but could become 
a serious problem if the arrays became larger.

The trick to make the loop less load/store-bound is to keep the order of the 
loops the same but to unroll the outer loop. (Tidy-up code is omitted.)

MFLOPS at -O2 MFLOPS at -O3 MFLOPS at -O4

196 196 196
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T4A
---

DO I = 1, N, 8
DO J = 1, N
Y(I ) = Y(I ) + X(J)*A(J,I )
Y(I+1) = Y(I+1) + X(J)*A(J,I+1)
Y(I+2) = Y(I+2) + X(J)*A(J,I+2)
Y(I+3) = Y(I+3) + X(J)*A(J,I+3)
Y(I+4) = Y(I+4) + X(J)*A(J,I+4)
Y(I+5) = Y(I+5) + X(J)*A(J,I+5)
Y(I+6) = Y(I+6) + X(J)*A(J,I+6)
Y(I+7) = Y(I+7) + X(J)*A(J,I+7)

ENDDO
ENDDO

Measured MFLOPS on 200 MHz at -O2 -O3 -O4
149 157 606

The point is that X(J) is now re-used seven times in the loop. Each iteration of 
the loop needs nine load/stores and eight FMAs for 16 flops. It is still 
load/store-bound but only just. Unrolling more would help slightly - it would 
asymptotically become balanced as the unrolling depth increases. For depth 
8, as shown, theoretical performance is 400*16/9 = 711 MFLOPS.

The measured performance is shown below the code listing. With -O4, it’s 
reasonably close to the theoretical value - but why does -O2 only go at 149 
MFLOPS? There are eight independent FMAs in the loop; so there seems no 
reason for this. To find out why, it is necessary to study the assembler listing 
obtained with -qsource -qlist (from the V5.1.1 compiler at -O2):

Extract from T4A.lst file, XLFV5.5 at -O2 level
-----------------------------------------------

16|                              CL.6:
17| 000128 lfdu     CC950008   1     LFDU     fp4,gr21=c(gr21,8)
18| 00012C lfdu     CC760008   1     LFDU     fp3,gr22=c(gr22,8)
17| 000130 lfdu     CC340008   1     LFDU     fp1,gr20=b(gr20,8)
18| 000134 lfd      C8430000   1     LFL      fp2=a(gr3,0)
19| 000138 lfdu     CCD70008   1     LFDU     fp6,gr23=c(gr23,8)
20| 00013C lfdu     CD380008   1     LFDU     fp9,gr24=c(gr24,8)
19| 000140 lfd      C8A30008   1     LFL      fp5=a(gr3,8)
20| 000144 lfd      C9030010   1     LFL      fp8=a(gr3,16)
18| 000148 fmadd    FC4110FA   1     FMA      fp2=fp2,fp1,fp3,fcr
21| 00014C lfd      C8630018   1     LFL      fp3=a(gr3,24)
17| 000150 fmadd    FC01013A   1     FMA      fp0=fp0,fp1,fp4,fcr
21| 000154 lfdu     CC990008   1     LFDU     fp4,gr25=c(gr25,8)
23| 000158 lfdu     CD5B0008   1     LFDU     fp10,gr27=c(gr27,8)
22| 00015C lfdu     CCFA0008   1     LFDU     fp7,gr26=c(gr26,8)
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20| 000160 fmadd    FD01427A   1     FMA      fp8=fp8,fp1,fp9,fcr
23| 000164 lfd      C9230028   1     LFL      fp9=a(gr3,40)
19| 000168 fmadd    FCA129BA   1     FMA      fp5=fp5,fp1,fp6,fcr
22| 00016C lfd      C8C30020   1     LFL      fp6=a(gr3,32)
21| 000170 fmadd    FC61193A   1     FMA      fp3=fp3,fp1,fp4,fcr
18| 000174 stfd     D8430000   1     STFL     a(gr3,0)=fp2
17| 000178 stfd     D803FFF8   1     STFL     a(gr3,-8)=fp0
24| 00017C lfdu     CC9C0008   1     LFDU     fp4,gr28=c(gr28,8)
22| 000180 fmadd    FC4131FA   1     FMA      fp2=fp6,fp1,fp7,fcr
19| 000184 stfd     D8A30008   1     STFL     a(gr3,8)=fp5
23| 000188 fmadd    FCC14ABA   1     FMA      fp6=fp9,fp1,fp10,fcr
24| 00018C lfd      C8A30030   1     LFL      fp5=a(gr3,48)
20| 000190 stfd     D9030010   1     STFL     a(gr3,16)=fp8
21| 000194 stfd     D8630018   1     STFL     a(gr3,24)=fp3
24| 000198 fmadd    FC21293A   1     FMA      fp1=fp5,fp1,fp4,fcr
23| 00019C stfd     D8C30028   1     STFL     a(gr3,40)=fp6
22| 0001A0 stfd     D8430020   1     STFL     a(gr3,32)=fp2
24| 0001A4 stfd     D8230030   1     STFL     a(gr3,48)=fp1
25| 0001A8 bc       4200FF80   0     BCT      ctr=CL.6,

The loop contains eight FMAs as expected. However, instead of nine loads 
and zero stores, there are 16 loads and eight stores. Closer inspection 
reveals that the eight elements of the array Y are all being stored 
unnecessarily - and then seven of them are being reloaded unnecessarily. 
When there was only one statement involving the scalar Y(I), the compiler 
recognized it as a scalar. Now, however, at -O2, the compiler is assuming that 
the Y values used by the statements may depend on the values calculated in 
other statements. At -O4, compiler logic is invoked that works out that this is 
not so. Inspection of the assembler code for -O4 reveals that the unnecessary 
stores have been eliminated.

To produce hand-tuned code that will perform well at -O2 requires the 
introduction of explicit temporary scalars:

T4B
---

DO I = 1, N, 8
S0 = Y(I )
S1 = Y(I+1)
S2 = Y(I+2)
S3 = Y(I+3)
S4 = Y(I+4)
S5 = Y(I+5)
S6 = Y(I+6)
S7 = Y(I+7)
DO J = 1, N
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S0 = S0 + X(J)*A(J,I )
S1 = S1 + X(J)*A(J,I+1)
S2 = S2 + X(J)*A(J,I+2)
S3 = S3 + X(J)*A(J,I+3)
S4 = S4 + X(J)*A(J,I+4)
S5 = S5 + X(J)*A(J,I+5)
S6 = S6 + X(J)*A(J,I+6)
S7 = S7 + X(J)*A(J,I+7)

ENDDO
A(I ) = S0
A(I+1) = S1
A(I+2) = S2
A(I+3) = S3
A(I+4) = S4
A(I+5) = S5
A(I+6) = S6
A(I+7) = S7

ENDDO

Measured MFLOPS on 200 MHz at -O2 -O3 -O4
645 606 588

This example illustrates a good general rule:

  • To help the compiler, it is a good idea to replace scalar array elements or 
expressions with explicitly coded scalars. Note, however, that there must 
not be too many of them. The compiler will try to allocate a hardware 
register to each scalar in a loop. There are 32 architected registers and, if 
the compiler runs out, it will spill the registers to memory with a serious 
performance impact. The general advice to keep loops small and simple 
applies here.

Now -O2 is going at 645 MFLOPS - as close as we are likely to get to the 
theoretical limit of 711 MFLOPS. Note again that, with this hand-tuned loop, 
-O4 slows it down.

MxN Unrolling - Matrix Multiply
DO I=1,N
DO J=1,N
DO K=1,N
S = S + A(J,K)*B(K,I)

ENDDO
ENDDO

ENDDO
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The example coding shows the heart of matrix multiply coding where the 
scalar result element, C(I,J) has already been replaced with a temporary 
scalar. Code setting C(I,J) to S and back again has been omitted for clarity.

The problem with this is that the inner loop is load/store bound. There are two 
loads and only one FMA.

A key technique to making the loop FMA-bound instead of load/store-bound 
is to unroll both of the outer loops to relatively small depths. The following 
code, for the sake of illustration, shows 3x2 unrolling:

DO I=1,N,3
DO J=1,N,2
DO K=1,N
S00 = S00 + A(J ,K)*B(K,I )
S01 = S01 + A(J ,K)*B(K,I+1)
S02 = S02 + A(J ,K)*B(K,I+2)
S10 = S10 + A(J+1,K)*B(K,I )
S11 = S11 + A(J+1,K)*B(K,I+1)
S12 = S12 + A(J+1,K)*B(K,I+2)

ENDDO
ENDDO

ENDDO

Note the re-use of elements of A and B. There are now five loads in the loop 
and six FMAs - it has become FMA-bound.

Generally, for MxN unrolling, there are (M+N) loads and (M*N) FMAs. So 2x2 
unrolling is balanced and anything more is FMA-bound. To drive both of the 
FPU pipelines, needs 8 FMAs in the loop, so 2x4 or 3x3 would be needed. In 
practice, make it as high as possible (the more FMA-bound the better) 
consistent with not causing register spill. For this loop, 4x4 is the usual limit. 
See 9.3, “Case Study: Matrix Multiplication” on page 151, for more details on 
matrix multiply.

8.6  Some Comments on Parallel Coding for Model 260

The Model 260 is available as a 2-way SMP. Much of the discussion in this 
section, however, is equally applicable to SMPs other than Model 260, such 
as the previous PowerPC SMP models based on the 604e chip, and to 
possible follow-on POWER3 products with more than two processors.

To date, almost all RS/6000 parallelization work in the scientific and technical 
computing area has been done for the SP, because the best performance for 
such applications has been obtainable from POWER2 processors, and these 
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have not been available as SMPs. Model 260 is the first SMP processor with 
leading edge floating point performance, and this considerably widens the 
options available for parallelization.

In particular, the XL Fortran Version 5 compiler allows automatic and 
semi-automatic parallelization at the loop level.This is described in detail in 
Chapter 4, “Using the SMP Feature of XL Fortran” on page 29. With some 
programs, good speedups close to 2 can be obtained. However, for many, the 
percentage of CPU time spent in parallelizable loops is considerably less 
than 100 percent and speedups are disappointing.

With the distributed memory SP, parallelization at the loop level is not usually 
practicable because of the message passing overhead across the SP switch. 
To perform successfully across distributed memory nodes requires 
parallelization at a high level, using either explicitly coded message passing 
or the IBM XL Fortran HPF Compiler.

Usually, this high-level parallelization is far more thorough-going and effective 
than any loop-level parallelization can be. Therefore, if the work has already 
been done to create an SP version, it probably makes sense to run this on the 
2-way Model 260 rather than use the compiler to generate loop-level SMP 
parallel code. There are two options to consider:

1. If coded using MPI, run it unchanged in one of the ways discussed in 
Chapter 6, “Message Passing Interface” on page 81.

2. Keep the same structure as in the MPI code, but, instead of running two 
separate processes under the control of PE, run two pthreads. This would 
require some recoding, but, since the parallel logic would remain the 
same, it may well be straightforward.

MPI calls would be replaced with explicitly coded memory to memory 
copies plus thread-to-thread synchronization. It may also be possible to 
avoid the overhead of memory to memory copy if the logic is such that, 
with the addition of synchronization coding only, the threads can work with 
the same data areas.

The question of running an existing MPI program across multiple SMP nodes 
in an SP is discussed in Chapter 6, “Message Passing Interface” on page 81.
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Chapter 9.  Throughput Measurements

This section takes a look at the throughput obtained by running two copies of 
a program simultaneously, compared to a single copy of the program by itself. 
No parallel programming is involved.

First, a copy program, which access storage very heavily, is examined and 
then some more realistic user programs.

9.1  Copy Program

Figure 24 on page 148 and Figure 25 on page 148 show the aggregate rates 
for untuned and tuned copy program respectively, running a single copy, and 
then two copies simultaneously.

For lengths of less than 32 KB, where the data is in the L1 cache, the 
aggregate rate for two copies is almost exactly twice that for one copy.

For lengths of less than 2 MB, where the data is in the L2 cache, the 
aggregate rate for two copies is close to twice that for one copy.

For very long lengths, the aggregate rate for two tuned copies is only 
marginally improved over that for one tuned copy. This is because a single 
tuned copy by itself uses almost all of the memory bandwidth.
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Figure 24.  Aggregate Rates for Untuned Copy

Figure 25.  Aggregate Rates for Tuned Copy
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The ratios of copy rates for one and two processors are shown in Table 21.

Table 21.  Summary of Copy Rates

The low copy rate for 8 MB represents an extreme situation which will rarely 
occur in practice. The throughput ratios for real programs are much better 
than this, and are described in the next section.

9.2  User Programs 

Table 22 lists the throughput ratios for a number of real user programs.

Table 22.  Real User Programs

Program Notes:

1. Seismic Omega-X: Uses tridiagonal complex arithmetic solver, with about 
30 MB of data.

Program Rate (MB/s) Throughput 
Ratio

Single Program Two Programs

16 KB Copy 1464 2936 2.00

16 KB Tuned Copy 786 1569 2.00

1 MB Copy 510 945 1.85

1 MB Tuned Copy 704 1270 1.80

8 MB Copy 291 460 1.58

8 MB Tuned Copy 497 s 587 s 1.18

Program Elapsed Time (sec) Throughput 
Ratio

Single Program Two Programs

1. Omega-X 298 307 1.94

2. Pre-Stack Migration 184 184 2.00

3. Weather Forecast 1248 647 1.93

4. Oil Reservoir Simulator 471 480 1.96

5. RADIOSS 3476 3520 1.97

6. sPPM 99.2 101.8 1.95
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2. Pre-Stack Migration: Seismic industry program. It uses floating point to 
integer conversion to index into arrays. The data in this example occupied 
less 1 MB.

3. Weather Forecast: Details of this program are given in 10.3, “Weather 
Forecast Code” on page 159. The working set size was about 120 MB.

4. Oil Reservoir Simulator: Details of this program are given in 10.2, “Oil 
Reservoir Simulator” on page 159. The working set size was about 150 
MB.

5. RADIOSS: This is a crash analysis code, with more details in 10.5, “Crash 
Worthiness Analysis: RADIOSS” on page 163. The problem had over 
60,000 elements.

6. sPPM: ASCI benchmark program. Solves a 3D gas dynamics problem 
using a simplified version of PPM (Piecewise Parabolic Method). The 
working set size was 236 MB. For more details of the application, see:

www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

The fact that the throughput ratio for two processors is so close to 2 for all of 
the above programs, even those with large working sets, is a tribute to the 
cache design and memory access techniques implemented in the Model 260.

9.3  Case Study: Matrix Multiplication

This section analyzes various implementations of a fundamental 
building-block used in dense linear algebra and elsewhere, the Level 3 BLAS 
routine DGEMM. DGEMM implements the following matrix 
multiply-and-update operation:

C = alpha*op(A)*op(B) + beta*C

where op(A) can be either A or AT, the transpose of A. The full calling 
sequence for DGEMM is as follows:

DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

where:

TRANSA,TRANSB CHARACTER variables with values ’No Transpose’ or ’Transpose’ 
(only the first character is significant and need be supplied).

M,N,K The dimensions of the matrices. If TRANSA,TRANSB = ’N’, then 
the matrices are of dimensions A(M,K), B(K,N), and C(M,N).

ALPHA,BETA The scalar constants.

A,B,C The arrays to be multiplied.
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LDA,LDB,LDC The leading dimensions of the matrices as they are 
declared in the calling (sub)-program.

While few real applications are as simple as DGEMM, with such easily 
understood data access patterns, an understanding of how to achieve good 
performance with DGEMM can be very useful when going on to tune more 
realistic applications. Moreover, DGEMM operations are widespread 
throughout dense linear algebra, such as matrix factorizations and 
eigenvalue problems. For example, the public-domain LAPACK library 
contains a wide range of routines that have been restructured where possible 
as blocked algorithms, so that tuned Level 3 BLAS routines, such as 
DGEMM, can be used to achieve good performance on a range of different 
architectures.

9.3.1  The Computational Kernel
To illustrate the coding required to achieve close to optimal performance on 
POWER3, consider the simple multiply-and-update operation:

C = C + AT*B

(AT is used so that operations at the inner-most level are all stride one.)

This can be implemented by the following code fragment:

DO I = 1, M
DO J = 1, N

DO L = 1, K
C(I,J) = C(I,J) + A(L,I)*B(L,J)

END DO
END DO

END DO

Although the nesting order of the loops can be changed, the so-called DOT 
formulation (where the innermost loop is a dot-product) was used since this 
maps best to the POWER architecture’s FMA instructions.

The speed of the innermost loop is limited by the requirement to load both 
A(L,I) and B(L,J) in order to perform the single FMA operation. On POWER1, 
with a single floating-point unit, near optimal performance could be achieved 
by unrolling the two outermost loops to depth two, as implemented in the 
following fragment (where all tidy-up code has been omitted for simplicity):

DO I = 1, M, 2
DO J = 1, N, 2

T11 = ZERO
T21 = ZERO
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T12 = ZERO
T22 = ZERO
DO L = 1, K

T11 = T11 + A(L,I )*B(L,J )
T21 = T21 + A(L,I+1)*B(L,J )
T12 = T12 + A(L,I )*B(L,J+1)
T22 = T22 + A(L,I+1)*B(L,J+1)

END DO
C(I ,J ) = C(I ,J ) + T11
C(I+1,J ) = C(I+1,J ) + T21
C(I ,J+1) = C(I ,J+1) + T12
C(I+1,J+1) = C(I+1,J+1) + T22

END DO
END DO

With this code, each loaded element of A and B has been used twice, so that 
each FMA operation only requires a single load, which can be overlapped 
with the FMA. This code is optimal for POWER1, in the sense that the ratio of 
loads to FMA operations is precisely what the hardware supports.

For POWER2 and POWER3, with dual floating-point units, the same 
theoretical 1:1 ratio of loads to FMA instructions is still supported by the 
hardware. In practice, however, it is necessary to unroll further to facilitate the 
overlap of FMA operations and loads. The following code fragment allows the 
floating-point units to operate at peak performance for these architectures, 
while overlapping the loads:

DO I = 1, M, 4
DO J = 1, N, 4

T11 = ZERO
T21 = ZERO
...
...
T34 = ZERO
T44 = ZERO
DO L = 1, K

T11 = T11 + A(L,I )*B(L,J )
T21 = T21 + A(L,I+1)*B(L,J )
...
...
T34 = T34 + A(L,I+2)*B(L,J+3)
T44 = T44 + A(L,I+3)*B(L,J+3)

END DO
C(I ,J ) = C(I ,J ) + T11
C(I+1,J ) = C(I+1,J ) + T21
...
...
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C(I+2,J+3) = C(I+2,J+3) + T34
C(I+3,J+3) = C(I+3,J+3) + T44

END DO
END DO

On a single 200 MHz POWER3 processor, in the case where all the matrices 
fit into cache, this code performs at close to 750 MFLOPS, out of a peak of 
800 MFLOPS.

Note that the XL Fortran compiler is capable of performing many loop 
transformations, such as loop unrolling, in order to improve performance. If 
the above code is compiled with -O3 -qarch=pwr3, the compiler further unrolls 
the innermost loop to a depth of two. This actually reduces performance, as 
the code runs out of floating-point registers and needs temporary storage for 
register contents. On the other hand, if the code is compiled with -O2 
-qarch=pwr3, it appears that, although the optimal numbers of FMA and 
LOAD instructions are generated for the innermost loop, the order of the 
instructions produced makes it more difficult for the processor to overlap the 
loads with the FMA instructions. 

9.3.2  Single Processor Implementation of DGEMM
This section shows how the code fragment above may be extended to be a 
full implementation of DGEMM. In the discussion above, it is assumed that all 
the data fits into the Level 1 cache. In practice, for large matrices, this won’t 
be the case, and it is necessary to divide the matrices into blocks, as shown 
in Figure 26 on page 154, and then to arrange to perform as many operations 
as possible on the blocks currently residing in cache, before they are flushed 
from cache as newer blocks are loaded.
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In Figure 26, the block of C is updated with the multiplication of the blocks of 
A and B. There are many such updates involved in completing the matrix 
multiplication, and there is some choice in the order in which the updates are 
carried out. In the implementation described here, if the matrix were to be 
partitioned into 2-by-2 blocks, the block multiplication

C11|C12 C11|C12 A11|A12 B11|B12
--- --- = --- --- + --- --- * --- ---
C21|C22 C21|C22 A21|A22 B21|B22

would be carried out in the following order:

C11 = C11 + A11 * B11
C21 = C21 + A21 * B11
C11 = C11 + A12 * B21
C21 = C21 + A22 * B21
C12 = C12 + A11 * B12
C22 = C22 + A21 * B12
C12 = C12 + A12 * B22
C22 = C22 + A22 * B22

Figure 26.  Block Matrix Multiplication

In order to implement the full DGEMM specification, arrange for the 
multiplication by the constants ALPHA and BETA. The algorithm uses the 
following block structure when TRANSB=’No Transpose’:
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DO J = 1, N, NB
DO L = 1, K, KB

DO I = 1, M, MB
TEMP1 = ALPHA*AA or ALPHA*AAT

CC = BETA*CC + TEMP1T*BB
END DO

END DO
END DO

and the following when TRANSB=’Transpose’ where the DDOT kernel would 
access B along its rows with non-unit stride:

DO J = 1, N, NB
DO L = 1, K, KB

TEMP2 = ALPHA*BBT

DO I = 1, M, MB
TEMP1 = AA or AAT

CC = TEMP1T*TEMP2 + BETA*CC
END DO

END DO
END DO

In fact, the implementation of DGEMM described above is available in the 
public-domain. It is the work of Kagstrom and Ling from Umea University, 
Sweden, and is currently available from Netlib at the following URL:

http://www.netlib.org/blas/gemm_based/ssgemmbased.tgz

The performance of any blocked algorithm will clearly vary according to the 
choice of the size of the blocks. The best choice of blocksize will also depend 
upon the size of the problem and, to some extent, on the shape of the 
matrices. The only change made to public-domain code was to change the 
blocksize to have MB=32 and KB=NB=100. This is certainly not optimal, but 
gave good performance for a wide range of matrix dimensions.

In Figure 27 on page 157, the performance of this code when multiplying 
square matrices of increasing size, so that M = N = K is shown. The 
performance of the code described above (labelled Fortran) is compared 
against the implementation of DGEMM in the ESSL POWER3-enhanced 
library, and performs nearly as well for square matrices. It should be noted, 
however, that ESSL is likely to perform better across a wider range of matrix 
dimensions than the Fortran version described here, for example, on 
rectangular matrices where one dimension is relatively small.
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9.3.3  Automatically Parallelized DGEMM
Compiling the Fortran version described above with the flag -qsmp doesn’t 
yield any benefit, since the compiler is only able to parallelize the main nest of 
loops on the innermost DO-loop, which removes all the benefits of the 
four-by-four unrolling technique, and significantly reduces performance. 
However, in the block structure described above, it is easy to see that 
independent blocks of the matrix C are being updated in the DO I = 1, M, MB 
loop, and these may be performed in parallel. The code has been modified to 
use the INDEPENDENT compiler directive as follows:

DO J = 1, N, NB
DO L = 1, K, KB

*SMP$ INDEPENDENT
DO I = 1, M, MB

...
(multiply the blocks)
...

END DO
END DO

END DO

The performance of this code on a machine with two 200 MHz processors 
(labelled "Fortran -qsmp") is compared against the single processor 
performance, and also against the ESSL SMP library. As may be seen from 
Figure 27, this code performs at very close to twice the speed of the single 
processor version.

The ESSL used in this publication is an early beta of a POWER3-enhanced 
library, please refer to Appendix D, “Special Notices” on page 199 
regarding the performance numbers. 

Notice
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Figure 27.  Performance of DGEMM

9.3.4  MPI Implementations
The performance of a distributed memory version of matrix-multiply running 
on the two-processor SMP machine was also examined. The routine 
PDGEMM from the PBLAS (Parallel BLAS) library distributed with the 
SCALAPACK (Scalable LAPACK) library was used. This routine uses a 
block-cyclic distribution of the matrices, with communications performed by 
the BLACS (Basic Linear Algebra Communications Subprograms), which are 
in turn implemented in terms of MPI calls. Within processes, blocks are 
multiplied using the usual DGEMM routine, and here the beta ESSL 
POWER3 enhanced library is used. There are a number of ways in which the 
matrices can be blocked. Simply use 64-by-64 blocks, since at this matrix 
size the performance of the ESSL routine DGEMM is already close to its 
peak.

The two implementations of MPI, described in Chapter 6, “Message Passing 
Interface” on page 81, are used. The version in POE, which currently needs 
to use the IP loopback interface, and the public domain version MPICH, built 
to use shared memory.
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Figure 27 on page 157 includes timings for the PBLAS routine using MPICH 
(shown as PBLAS/MPICH+shmem), and the same routine using POE with IP 
(shown as PBLAS/POE+IP). As may be expected, the overhead of 
communicating matrix blocks, even on the same SMP machine, means that 
the MPI code is slower than the true SMP versions. But it is interesting to note 
that the version using IP is only slightly slower than the shared-memory 
version, showing that the ratio of computation to communication is relatively 
high in PDGEMM.
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Chapter 10.  Kernels, Codes, and Benchmarks

In this chapter, a discussion of common kernels, codes, and benchmarks, and 
how they relate to POWER3, is given.

10.1  GAMESS

The General Atomic and Molecular Electronic Structure System (GAMESS) is 
a general ab initio quantum chemistry package. This program is maintained 
by the members of the Gordon research group at Iowa State University.

Briefly, GAMESS can compute wavefunctions ranging from RHF, ROHF, UHF, 
GVB, and MCSCF, with CI and MP2 energy corrections available for some of 
these. Analytic gradients are available for these SCF functions, for automatic 
geometry optimization, transition state searches, or reaction path following. 
Computation of the energy Hessian permits prediction of vibrational 
frequencies. A variety of molecular properties, ranging from simple dipole 
moments to frequency dependent hyperpolarizabilities may be computed. 
Many basis sets are stored internally, and together with effective core 
potentials, all elements up to Radon may be included in molecules. Several 
graphics programs are available for viewing the final results. Many of the 
computational functions can be performed using direct techniques or in 
parallel on appropriate hardware.

Because GAMESS is distributed freely, the development of the code benefits 
from contributions from many collaborators located around the world, in 
academia, government laboratories, and industry. Among the many features 
of GAMESS, the most exciting are its enhanced performance due to a fully 
parallel implementation and the advantage it takes of modern graphics 
methods. As the POWER3 nodes for the IBM RS/6000 SP were not available 
at the time of this publication, this parallel feature was not tested.

A detailed description of the program is available in the following journal 
article:

General Atomic and Molecular Electronic Structure System, M.W.Schmidt, 
K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, 
N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J. 
Comput. Chem., 14, 1347-63(1993).

The homepage of GAMESS is located at: 

http://www.msg.ameslab.gov/GAMESS/GAMESS.html
© Copyright IBM Corp. 1998 159



The compiler options for the runs were:

xlf_r -qarch=x -O3 -qalias=noaryovrlp:nointptr:std

where x is either pwr3 or pwr2 depending on the platform.

The timing results are seen in the Table 23. Only the CPU time (user time is 
reported. The wall clock time is much higher because of I/O. The speedup 
being greater then megahertz scaleup is attributed to the extra load/store unit 
in the POWER3 processor.

Table 23.  GAMESS Runs in Seconds

10.2  Oil Reservoir Simulator

A number of measurements were made with an Oil Reservoir simulator, which 
demonstrated the performance of the Model 260 relative to the Model 590, 
the effect of Fortran V5 compared to V4, and the throughput capability when 
using two processors on the 260.

The program was compiled with -O2, and without either -qarch=pwr2 or 
-qarch=pwr3 so that the same executable could run on both the Model 590 
and the Model 260.

Measurements were made for 20 time steps for a two-phase problem with 64 
KB grid blocks. The working set size was 150 MB.

Table 24.  Times for Oil Reservoir Simulator Code

Dataset P2SC-160 Model 260 Speedup

C4H4 FULLNR MCSCF  75.74 60.47 1.25

C4H6 GVB hessian 215.32 201.81 1.07

Thymine RHF gradient 336.74 270.28 1.25

Ti2H8 MP2 energy 322.58 240.92 1.39

System Compiler Level Time (secs) Ratios

590 V4.1.0 1310

260 (1 prog) V4.1.0 471 260/590 = 2.78

260 (1 prog) V5.1.1 471 V5/V4 = 1.00

260 (2 progs) V5.1.1 480 Throughput = 1.96
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The performance of the Model 260 compared to the Model 590 is not quite in 
the ratio of the cycle times (5 nanoseconds compared to 15 nanoseconds), 
but is very much in line with expectations considering the similarity of memory 
access times.

Fortran V5 and V4 give the same results. This is probably because this code 
has been highly tuned in the past, and not so much was left for the compiler 
to tune.

The throughput ratio indicates that there is very little memory interference 
between the two programs. Apparently, a lot of the data references are to the 
L1 and L2 caches.

10.3  Weather Forecast Code

A finite different weather forecast program was run on the Model 260 to 
produce a six hour forecast. The forecast included six hours of data 
assimilation prior to the starting the forecast. The forecast was for a local 
area. The the horizontal grid size was 128 by 128, and there were 19 vertical 
levels.

The model was set up to run with four processes using MPI. It was run with 
MPI in IP mode using loopback, and so automatically used both processors of 
the Model 260. To get a throughput comparison of one processor compared 
to two, the program was bound to one processor using the bindprocessor 
command immediately after the program started.

For comparison purposes, the model was also run on a 120 MHz POWER2 
four node SP, a 160 MHz POWER2 single node, and with both Fortran V4 and 
Fortran V5. Results are shown in Table 25. The code was compiled with -O3, 
and -qarch as specified in the Table.

The total working set size of all 4 processes was about 120 MB.

Table 25.  Times for Weather Forecast Code

System Procs Fortran
Level

Fortran 
Opt

Time 
(secs)

Ratios

260 pwr3 1 V5.1.1 pwr3 968

260 pwr3 2 V5.1.1 pwr3 506 Throughput = 1.91
pwr3/nopwr = 1.20

160 MHz pwr2 1 V4.1.0 nopwr 1510

260 pwr3 1 V4.1.0 noprw 1268 260/160MHz = 1.19
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The following conclusions can be drawn:

  • As with the oil reservoir simulator, the throughput of two processors 
compared to one is greater than 1.9.

  • The Model 260 is 19 percent faster on this code than the 160 MHz 
POWER2. This is a little less than the increase in MHz (160 to 200).

  • One Model 260 (with two processors) is almost equivalent to a four node 
120 MHz POWER2 SP.

  • Fortran V5 gives a 10 percent speedup over Fortran V4. Since this code 
has not been hand tuned, the compiler has a lot of opportunity to improve 
the performance.

  • The -qarch=pwr3 option gives a 20 percent speedup. Since the code is 
mostly single precision, the new single precision floating point operations 
are extremely useful.

10.4  Computational Fluid Dynamics: FIRE

FIRE is a comprehensive computational fluid dynamics (CFD) analysis 
product developed by AVL List GmbH, Austria. It provides solutions to a wide 
variety of fluid flow and combustion applications, for example in the 
automotive, biomedical, aerospace, electronics, and chemical industries. 
FIRE applies to internal and external flow, gases, or liquids, steady state or 
transient. The code is able to handle time-dependent boundary conditions 
and moving geometries. Pre- and post-processors and solution modules are 
tightly integrated. The flow solver is based on a finite volume differential 
scheme using a modified variant of the SIMPLE algorithm. For further details, 
refer to the AVL’s Web page: 

http://firewww.avl.co.at 

FIRE represents a class of CFD codes which are also well tuned for vector 
computers. The performance of such CFD codes depends strongly on 
memory bandwidth. The FIRE Kernel Benchmarks (Serial Linear Equation 
Solver Benchmarks) are designed by AVL for performance comparison of 

260 pwr3 2 V4.1.0 nopwr 667

260 pwr3 2 V5.1.1 noprw 606 V5/V4 = 1.10

120 MHz pwr2 4 V4.1.0 pwr2 480

System Procs Fortran
Level

Fortran 
Opt

Time 
(secs)

Ratios
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different hardware platforms. Benchmark results for a lot of platforms are 
available through URL http://firewww.avl.co.at/html/346.htm. Because 
POWER2 machines offer high memory bandwidth, POWER2 and succeeding 
P2SC machines have turned out to be excellent RISC platforms for this code. 
The POWER3 workstation Model 260 is expected to deliver a similar 
performance with respect to FIRE as the fastest P2SC model, since the 
memory subsystem sustains a similar performance level. As pointed out in 
Chapter 7, “Performance and Tuning Analysis” on page 87, the L1 cache 
bandwidth is smaller compared to P2SC, whereas the prefetching mechanism 
provides a higher memory bandwidth when working out-of-cache. 

In the following, results for the FIRE kernel benchmarks and a complete FIRE 
benchmark based on an industrial relevant input deck are presented. For this 
purpose, the kernel benchmark code and FIRE version 70b (patchlevel 2) has 
been compiled using XLF 5.1.1.0. The results for P2SC were obtained on AIX 
4.2.1 using XLF 5.1.0.2.

The kernel benchmark test cases are outlined in Table 26 on page 163. In 
order to reach the expected performance level, the XLF flags, -qarch=pwr3 
-qtune=pwr3 -O3 -qhot, are required. As verified for a single case, the -qhot 
flag speeds up the computation by about 15 percent. Additional flags, such as 
-qalias=noaryovrlp:nointptr:std -qfloat=hsflt:fold, improve the performance in 
this case just by less than 2 percent. For comparison, P2SC results are given 
in Table 27.

Table 26.  FIRE Kernel Benchmark Cases

Table 27.  FIRE Kernel Benchmark Results

Test Case Number of Cells

TJUNC (t-junction) 13,845

SWIRL (helical intake port) 47,312

PENT (square duct) 108,000

COJACK (water cooling jacket) 318,044

WING (airfoil) 864,000

Execution
Times [sec]

P2SC 160 MHz
sequential

P2SC 160 MHz
MPI: 1-way

POWER3 
sequential

POWER3 
SMP: 2-way

TJUNC 1.4 0.97 0.65

SWIRL 4.6 4.9 4.7 2.3

PENT 16.9 18.2 18.7 10.6
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The following code section shows a loop which consumes a major part of the 
CPU time of the kernel benchmark. The loop counter ranges from one to the 
number of grid cells. 

DO 4 NC=NINTCI,NINTCF
        DIREC2(NC)=BP(NC)*DIREC1(NC)
     X            -BS(NC)*DIREC1(LCC(1,NC))
     X            -BW(NC)*DIREC1(LCC(4,NC))
     X            -BL(NC)*DIREC1(LCC(5,NC))
     X            -BN(NC)*DIREC1(LCC(3,NC))
     X            -BE(NC)*DIREC1(LCC(2,NC))
     X            -BH(NC)*DIREC1(LCC(6,NC))
    4 CONTINUE

The performance is determined by about three loads and one indirect 
addressing per multiply-subtract operation. The compiler performs a level two 
unrolling, limited by the number of available registers. No obvious 
possibilities of Fortran tuning have been found. Increasing the formal array 
dimensions, by a small offset, such as seven, does increase the overall 
performance of the kernel benchmark by few percent (not reported in Table 
27). The SMP performance is clearly limited by the bandwidth of the shared 
memory bus. For this application, a distributed memory approach using 
independent processors delivers a better (almost linear) speedup, as proven 
for P2SC. 

Next, an industrial application of 3D incompressible flow simulation with 
about 540000 grid cells was examined for 150 time steps. The corresponding 
benchmark results are shown in Table 28. Due to numerical round off errors, 
the accumulated sum of iterations is1566 for P2SC and 1570 for POWER3. 
The benchmark results support the expectation that FIRE will show a similar 
performance on a 200 MHz POWER3 system (1 CPU) as on P2SC.

Table 28.  FIRE Benchmark Results 

COJACK 61.0 64.0 67.3 45.7

WING 125.6 136.9 102.3

P2SC Model 397 (160 MHz) POWER3 Model 260 (200 MHz)

real 23988
user 23295
system 19

real 23907
user 23879
system 9

Execution
Times [sec]

P2SC 160 MHz
sequential

P2SC 160 MHz
MPI: 1-way

POWER3 
sequential

POWER3 
SMP: 2-way
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10.5  Crash Worthiness Analysis: RADIOSS

Crashworthiness analysis and sheet metal forming codes represent a class of 
finite element codes based on explicit time step integration schemes. 
Compared to implicit codes they require significantly less memory. In general, 
crash applications are not I/O bound, as large implicit applications often are. 
Especially running in parallel, a significant part of the working set of a 
processor might fit into a large second level cache. In case of single precision 
analysis, the PowerPC 604e based RS/6000 Model F50 (332 MHz) has 
shown for several benchmark cases a similar performance level per CPU as 
P2SC based machines, which are usually much stronger in numerical 
intensive computing. Thus, POWER3 is expected to improve crash analysis 
performance compared to P2SC.

RADIOSS CRASH is a crashworthiness analysis code developed by 
Mecalog, France. RADIOSS has been widely validated and is used worldwide 
by automotive companies and their suppliers to study the crashworthiness 
behavior of their new products. For further details, refer to the RADIOSS web 
page http://www.radioss.com.

In order to get an early performance comparison between P2SC and 
POWER3, two industrial test cases, as described in Table 29, have been 
studied for 5000 cycles (timesteps). For a complete simulation, typically more 
than 100,000 cycles are necessary. Large input decks exceed 150000 
elements. RADIOSS version 3.1n was compiled using XLF 3.2.5 for P2SC 

This benchmark was performed with a pre-GA POWER3 version of FIRE 
on pre-GA hardware for the purpose of an early performance evaluation. 
This does not imply availability of this product nor support by AVL. The 
performance may change as the application software and the compiler 
develop. For the latest Kernel Benchmark results, see the URL mentioned 
in this section.

Take Note
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and XLF 5.1.0.0 for POWER3 and PowerPC 604e, respectively. For 
POWER3 and PowerPC 604e, the flag -qstrict was applied.

Table 29.  RADIOSS Benchmark Test Cases

The benchmark results are shown in Table 30. As RADIOSS is using 64 bit 
floating-point arithmetic, the 32 bit PowerPC 604e platform is outperformed 
by P2SC. Probably due the introduction of a 4 MB L2 cache and due to the 
advanced chip logic, such as branch prediction and out-of-order execution, 
the POWER3 platform offers a solid speedup of more than 30 percent 
compared to P2SC. The throughput of a two processor system Model 260 is 
almost perfect for this benchmark, taking into account that the I/O was 
performed sequentially. With help of a second disk, the I/O performance could 
be improved, too.

Table 30.  RADIOSS Benchmark Results

case 1 Front impact of a car on a rigid wall:
66,288 3D 4-node elements

case 2 Side impact of a car with a solid barrier:
2 dummies included
47,928 3D 4-node shell elements
6,325 8-node brick solid elements

case time
[sec]

PowerPC 604e
Model F50
(332 MHz)

P2SC
Model 397
(160 MHz)

POWER3
Model 260 (200 MHz)

1 job throughput 
(2 jobs, 1 disk only)

1 real
user
system

5089
5071

1

3476
3475

1

3499 / 3540
3484 / 3523

1 / 1

2 real
user
system

6678
6622

5410
5391

1

3561
3560

1

These benchmarks were performed with a pre-GA POWER3 version of 
RADIOSS on pre-GA hardware for the purpose of an early performance 
evaluation. This does not imply availability of this product nor support by 
Mecalog. The performance may change as the application software and 
the compiler develop.

Take Note
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10.6  Finite Difference Kernel

In the finite difference numerical methods, frequently it requires to compute 
the partial derivatives and the grid-point average of the field variable. The 
example shown below illustrates the tuning method when using this type of 
computational kernel. The example is the SUBROUTINE RESID of the mg 
(multigrid) program from NAS Parallel Benchmarks (NPB).

The sample code distributed in NAS NPB 1.0 requires 18 floating adds and 3 
floating-point multiply-add instructions.

do 600 k =2,n-1
do 600 j =2,n-1
do 600 i =2,n-1

   r(i,j,k)=v(i,j,k)
>      -a0*( u(i,  j,  k  ) )

     >      -a2*( u(i-1,j-1,k  ) + u(i,  j-1,k  )
     >         +  u(i-1,j,  k  ) + u(i,  j,  k  )
     >         +  u(i,  j-1,k-1) + u(i,  j,  k-1)
     >         +  u(i,  j-1,k  ) + u(i,  j,  k  )
     >         +  u(i-1,j,  k-1) + u(i-1,j,  k  )
     >         +  u(i,  j,  k-1) + u(i,  j,  k  ))
     >      -a3*( u(i-1,j-1,k-1) + u(i,  j-1,k-1)
     >         +  u(i-1,j,  k-1) + u(i,  j,  k-1)
     >         +  u(i-1,j-1,k  ) + u(i,  j-1,k  )
     >         +  u(i-1,j,  k  ) + u(i,  j,  k  ))
  600 continue

The total number of arithmetical operations can be reduced by pre-computing 
two grid point averages of u field and storing them in two scratch vectors, 
namely u1 and u2. The following code from NAS NPB 2.3 requires nine 
floating point adds and three floating point multiply-add instructions.

do i3=2,n-1
do i2=2,n-1
do i1=1,n
u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

     > + u(i1,i2,i3-1) + u(i1,i2,i3+1)
u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

     > + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
enddo
do i1=2,n-1
r(i1,i2,i3) = v(i1,i2,i3)

     > - a0 * u(i1,i2,i3)
     > - a2 * ( u2(i1) + u1(i1-1) + u1(i1+1) )
     > - a3 * ( u2(i1-1) + u2(i1+1) )

enddo
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enddo
      enddo

The preceding code works well in a vector computer. However, due to the 
presence of two additional temporary vectors, the performance gain of the 
this code is not proportional to the reduction of the number of arithmetic 
operations on a cache based superscalar computer. On the Model 260, the 
speedup factor is about 1.13.

For Model 260, this computational kernel can be coded as follows. The two 
scratch vectors are replaced by six scalar temporaries. u1m, u1i, and u1p 
represent u1(i-1), u1(i), and u1(i+1) respectively, similarly for u2. In the loop 
u1m and u1i are iteratively replaced, and u1p is recomputed. The compiler 
will recognize that this is a predictive commoning construct. Thus, it 
eliminates the need for load/store of vector temporaries as shown in the 
previous example code.

do k=2,n-1
do j=2,n-1
u1m = u(1,j-1,k) + u(1,j+1,k)

> + u(1,j,k-1) + u(1,j,k+1)
u2m = u(1,j-1,k-1) + u(1,j+1,k-1)

> + u(1,j-1,k+1) + u(1,j+1,k+1)
u1i = u(2,j-1,k) + u(2,j+1,k)

> + u(2,j,k-1) + u(2,j,k+1)
u2i = u(2,j-1,k-1) + u(2,j+1,k-1)

> + u(2,j-1,k+1) + u(2,j+1,k+1)
do i=2,n-1
u1p = u(i+1,j-1,k) + u(i+1,j+1,k)

> + u(i+1,j,k-1) + u(i+1,j,k+1)
u2p = u(i+1,j-1,k-1) + u(i+1,j+1,k-1)

> + u(i+1,j-1,k+1) + u(i+1,j+1,k+1)
r(i,j,k) = v(i,j,k)

> - a0 * u(i,j,k)
> - a2 * ( u2i + u1m + u1p )
> - a3 * ( u2m + u2p )

u1m = u1i
u2m = u2i
u1i = u1p
u2i = u2p

enddo
enddo
enddo

The speedup factor of the above code over the original code (NPB 1.0) is 
about 1.56.
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10.7  Iterative Eigenvalues Solver

This customer benchmark program is an engineering analysis for ship 
building applications. The Jacob iterative method of computing eigenvalues 
for dense matrices dominate the CPU utilitization of this benchmark setup. 
SUBROUTINE JACOBI consumes more than 99% CPU time. The following 
code fragment shows the key part of this subroutine.

SUBROUTINE JACOBI( N, RTOL, NSMAX, IFPR, IOUT)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      PARAMETER(NNSVAB=840,NNELEM=144,MMDDOF=42)
      COMMON /P2/X(NNSVAB,NNSVAB),B(NNSVAB,NNSVAB)
      COMMON /P6/A(NNSVAB,NNSVAB)
      COMMON /P8/EIGV(NNSVAB)
C 
      ........<set up>............
      DO 300 NSWEEP = 1, NSMAX
        EPS=(0.01**NSWEEP)**2
        DO 230 J = 1, NR

DO 210 K = J+1, N
          EPTOLA = (A(J,K)*A(J,K)) / (A(J,J)*A(K,K))
          EPTOLB = (B(J,K)*B(J,K)) / (B(J,J)*B(K,K))
          IF (EPTOLA.LT.EPS .AND. EPTOLB.LT.EPS) GO TO 210
          AKK = A(K,K)*B(J,K) - B(K,K)*A(J,K)
          AJJ = A(J,J)*B(J,K) - B(J,J)*A(J,K)
          AB  = A(J,J)*B(K,K) - B(J,J)*A(K,K)
          CHECK = (AB*AB+4.*AKK*AJJ) / 4. 

IF (CHECK .LT. 0.) STOP ’CHECK’
SQCH = SQRT(CHECK)

          D1 = 0.5*AB + SQCH
          D2 = 0.5*AB - SQCH
          DEN = D1
          IF (ABS(D2) .GT. ABS(D1)) DEN = D2
          IF ( DEN .EQ. 0.) THEN
            CA = 0.D0
            CG = -A(J,K)/A(K,K)
          ELSE
            CA = AKK/DEN
            CG = -AJJ/DEN
          END IF
          IF (J.GT.2) THEN

IF (J-1 .GE. 0) THEN
              DO 120 I = 1, J-1
                AJ = A(I,J) BJ = B(I,J)
                AK = A(I,K)
                BK = B(I,K)
                A(I,J) = AJ + CG*AK
                B(I,J) = BJ + CG*BK
                A(I,K) = AK + CA*AJ
                B(I,K) = BK + CA*BJ
  120         CONTINUE
            END IF
            IF (K+1 .LE. N) THEN
              DO 150 I = K+1, N
                AJ = A(J,I)
                BJ = B(J,I)
                AK = A(K,I)
                BK = B(K,I)
                A(J,I) = AJ + CG*AK
                B(J,I) = BJ + CG*BK
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                A(K,I) = AK + CA*AJ
                B(K,I) = BK + CA*BJ
  150         CONTINUE
            END IF 

IF (J+1 .LE. K-1) THEN
              DO 180 I = JP1, KM1
                AJ = A(J,I)
                BJ = B(J,I)
                AK = A(I,K)
                BK = B(I,K)
                A(J,I) = AJ + CG*AK
                B(J,I) = BJ + CG*BK
                A(I,K) = AK + CA*AJ
                B(I,K) = BK + CA*BJ
  180         CONTINUE
            END IF
          END IF
          AK = A(K,K)
          BK = B(K,K)
          A(K,K) = AK + 2.D0*CA*A(J,K) + CA*CA*A(J,J)
          B(K,K) = BK + 2.D0*CA*B(J,K) + CA*CA*B(J,J)
          A(J,J) = A(J,J) + 2.D0*CG*A(J,K) + CG*CG*AK
          B(J,J) = B(J,J) + 2.D0*CG*B(J,K) + CG*CG*BK
          A(J,K) = 0.D0
          B(J,K) = 0.D0

DO 200 I = 1, N
            XJ = X(I,J)
            XK = X(I,K)
            X(I,J) = XJ + CG*XK
            X(I,K) = XK + CA*XJ
  200     CONTINUE
  210   CONTINUE
230 CONTINUE

        DO 250 I = 1,N
          EIGV(I) = A(I,I)/B(I,I)
  250   CONTINUE
         .....<check for convergence>.............
  300 CONTINUE
  331 CONTINUE    ! converged
      ........<clean up>.........

      RETURN
      END 

The A and B matrices are positive definite symmetric. For this benchmark, 
N=798. (arrays are declared as 840x840), and NSWEEP=20. The inner most 
DO loops 120, 150, and 180 are the hot spots of this program. Notice that 
these loops are processing the data on the upper triangle of matrix A and B. 
Loop 120 access A and B with unit stride, loop 150 with stride of 840, and 
loop 180 with unit stride of 840. A stride of 840 elements is accessing data in 
memory every 6720 bytes interval. The frequently used programming 
techniques of loop interchange (nested loops), matrix transposition, and 
cache blocking are not applicable here.

The tuning method for this code is to take advantage that A and B are the 
symmetric matrices. Loop 150 can be easily modified to a unit stride data 
access loop by working on the lower triangle of the matrices. To make loop 
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180 with a unit stride access, the method is to compute this loop upon the 
completion of loop 120 and 150 for each column of J (completion of K loop, 
DO 210). The modified will require to store CG and CA values, copy one 
column of data from lower triangle to upper triangle for every J iteration, and 
copy the upper triangle to the lower triangle for each completion of sweep 
(DO 300). The essence of the tuned code is shown below.

DO 300 NSWEEP = 1, NSMAX
        EPS=(0.01**NSWEEP)**2
        DO 230 J = 1, NR
          DO 210 K = J+1, N
            IDX(K) = 0         !!!!
            IF (A(K,J)*A(K,J).LT.A(J,J)*A(K,K)*EPS .AND.
     &          B(K,J)*B(K,J).LT.B(J,J)*B(K,K)*EPS GOTO 210
            IDX(K) = 1         !!!!
            ..... < compute CA and CG >.....
            CAX(K) = CA    !!!
            CGX(K) = CG    !!!
            IF (N .GT. 2) THEN
CIBM ...    DO THIS LOOP AT UPPER TRIANGLE
              IF (J-1 .GE. 0) THEN
                DO 120 I = 1, J-1
                  AJ = A(I,J)
                  BJ = B(I,J)
                  AK = A(I,K)
                  BK = B(I,K)
                  A(I,J) = AJ + CG*AK
                  B(I,J) = BJ + CG*BK
                  A(I,K) = AK + CA*AJ
                  B(I,K) = BK + CA*BJ 

A(I,J) = AJ + CG*AK
                  B(I,J) = BJ + CG*BK
                  A(I,K) = AK + CA*AJ
                  B(I,K) = BK + CA*BJ
  120           CONTINUE
              END IF
CIBM ................. DO THIS LOOP AT LOWER TRIANGLE
              IF (K+1 .LE. N) THEN
                DO 150 I = K+1, N
                  AJ = A(I,J)
                  BJ = B(I,J)
                  AK = A(I,K)
                  BK = B(I,K)
                  A(I,J) = AJ + CG*AK
                  B(I,J) = BJ + CG*BK
                  A(I,K) = AK + CA*AJ
                  B(I,K) = BK + CA*BJ
  150           CONTINUE
              END IF
C-------
            END IF 

AK = A(K,K)
            BK = B(K,K)
            A(K,K) = AK + 2.D0*CA*A(K,J) + CA*CA*A(J,J)
            B(K,K) = BK + 2.D0*CA*B(K,J) + CA*CA*B(J,J)
            A(J,J) = A(J,J) + 2.D0*CG*A(K,J) + CG*CG*AK
            B(J,J) = B(J,J) + 2.D0*CG*B(K,J) + CG*CG*BK
            A(K,J) = 0.D0
            B(K,J) = 0.D0
C
            DO 200 I = 1, N
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              XJ = X(I,J)
              XK = X(I,K)
              X(I,J) = XJ + CG*XK
              X(I,K) = XK + CA*XJ
  200       CONTINUE
C
  210     CONTINUE
CIBM............. DO LOOP 180 HERE
DO K = J+1,N
            ATMP = A(K,j)
            DO 180 I = K+1,N
                BJ = BTMP
                ATMP   = AJ + CGX(I) * A(I,K)
                BTMP   = BJ + CGX(I) * B(I,K)
                A(I,K) = A(I,K) + CAX(I)*AJ
                B(I,K) = B(I,K) + CAX(I)*BJ
  180       CONTINUE
            A(K,J) = ATMP
            B(K,J) = BTMP
          ENDDO
CIBM  --------  COPY ONE COLUMN TO UPPER TRIANGLE
          DO I = J+1,N
            A(J,I) = A(I,J)
            B(J,I) = B(I,J)
          ENDDO

  230   CONTINUE
C
CIBM ----  COMPLETE A SWEEP...COPY UPPER TRIANGLE TO LOWER
        DO J = 1,N-1
        DO K = J+1,N
          A(K,J) = A(J,K)
          B(K,J) = B(J,K)
        ENDDO
        ENDDO
c
        DO 220 I = 1,N
          EIGV(I) = A(I,I) / B(I,I)
  220   CONTINUE
C ...............
C
  300 CONTINUE

The performance of original and tuned for NSWEEP=20, and N=798 is shown 
in Table 31. The timing for tuned code includes the unrolling of loop 120, 150, 
and 180 manually (not shown in the above listed code).

Table 31.  CPU Time for SUBROUTINE JACOBI, (in Seconds)

M590 66.5Mhz P2SC 160Mhz POWER3 200Mhz

AIX 3, XLF 3.2.2 AIX 4.3, XLF 5.1.1 AIX 4.3, XLF 5.1.1

Original 4408.8 3637.8 2016.7

Tuned 576.4 298.8 285.7
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Appendix A.  Industry Standard Benchmarks

In this appendix, the performance of the Model 260 using four widely quoted 
industry standard benchmarks will be presented.

A.1  LINPACK Benchmark

Web site: http://www.netlib.org

The LINPACK benchmark measures the performance of a computer system in 
solving a system of linear equations. No code modification is allowed for the 
matrix order n=100 case. The performance of this case heavily depends on 
the ability of FORTRAN compiler and preprocessor making the high order 
transformation to generate a BLAS 3 code. The n=1000 case (referred to as 
TPP, Toward Peak Performance) allows for replacing LU routines. Thus, the 
efficient coding will implement a cache blocking technique. The importance of 
high sustained memory bandwidth in today’s application programs is not 
presented in this benchmark. Table 32 shows the results of Model 260.

Table 32.  LINPACK Performance

The LINPACK DP, n=100 performance differences between P2SC (160Mhz) 
and Model 260 is primarily due to the size of L1 cache. The required active 
data needed for LINPACK DP, n=100 benchmark is about 90 KB. This fits in 
L1 data cache of P2SC processor, but not in Model 260. 

P2SC(160Mhz) Model 260, 1 CPU

LINPACK DP MFLOPS, n=100 311.9 233.1

LINPACK TPP MFLOPS 528.0 642.0

% of peak 82.5 80.2

The performance numbers of the Model 260 shown in this Appendix are the 
results of pre-GA systems. All Model 260 data shown are estimated values 
and presented for illustrative purpose only. The official performance data of 
the Model 260 will be submitted by IBM to the organizations responsible for 
these benchmarks.
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A.2  SPEC95

Web site: http://www.specbench.org

System Performance Evaluation Cooperative (SPEC) benchmark suite 
consists of 10 FORRAN 77 floating-point programs (SPECfp95) and eight 
C-language integer programs (SPECint95). Since the modification of these 
benchmark programs are not allowed, the compiler optimization and 
FORTRAN preprocessor capability play an important role on floating-point 
benchmark. The memory requirements of the benchmark programs is rather 
small compared to the actual application programs running today. 

Table 33.  SPEC95 Performance

A.3  STREAM

Web site: http://www.cs.virginia.edu/stream

The CPU speed growth rate has been outpacing memory speed growth in the 
last decade. In the same time period, the problem size of application 
programs grew rapidly. The sustained memory bandwidth becomes an 
important factor of program performance. STREAM is a simple, synthetic 
benchmark that measures the sustainable memory bandwidth. The sustained 
memory bandwidth takes into account of memory latency in addition to the 
actual data transfer on the memory bus or switch.

Table 34.  Sustained MB/s Memory Bandwidth Measured by STREAM

P2SC (160Mhz) Model 260

SPECfp_base95 23.6 27.6

SPCEfp95 26.6 30.1

SPECint_base95 7.77 12.5

SPECint95 8.62 13.2

P2SC(160Mhz) Model 260

Name Kernel bytes/iteration MB/s MB/s

Copy a(i)=b(i) 16 779.2 941.8

Scale a(i)=q*b(i) 16 775.5 985.1

Sum a(i)=b(i)+c(i) 24 883.9 1096.3

Triad a(i)=b(i)+q*c(i) 24 881.2 1102.8
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The STREAM definition of bytes/iteration is based on the memory being 
referenced in a kernel. Typically, for a cache based microprocessor, it will 
require to transfer a(i) array in these kernel twice (cache load and store back) 
on the memory bus or switch. Whereas, the STREAM benchmark counts only 
once.

A.4  NAS NPB 1.0

Web site: http://www.nas.nasa.gov//NAS/NPB

NAS (Numerical Aerodynamic Simulation) Parallel Benchmarks NPB 1.0 
consists of eight programs. The first five (EP, FT, IS, MG, and CG) are kernel 
benchmarks with simple data structure. The simulated application 
benchmarks, which compute the numerical solution to the nonlinear partial 
differential equations, are LU (direct LU decomposition solver), SP (scalar 
pentadiagonal) and BT (block tridiagonal). NPB 1.0 is a pencil and paper 
benchmark. The primary objective is the parallel performance. In early NAS 
publications, it also includes the serial one CPU data. Table 35 shows the 
single CPU performance of LU, SP, and BT on Model 260 as compared to 
IBM RS/6000 SP Wide-node2 (77 MHz), data published in "NAS Parallel 
Benchmark Results 12-95", by S. Saini and David Bailey, Report NAS-95-02, 
December 1995. (Available from the URL listed at the beginning of this 
section).

Table 35.  NAS NPB 1.0 (LU, SP, BT) Single CPU Performance, Time in Seconds

SP Wide-node2 (77Mhz) Model 260

Class A Class B Class A Class B

LU 501.5 2066.6 235.8 980.3

SP 711.8 3087.0 422.0 1760.7

BT 1130.7 4775.7 654.2 2762.0
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Appendix B.  Enabling Vector Codes to POWER3

This appendix gives a brief discussion of the performance considerations 
when porting vector codes to the POWER3 superscalar architecture.

In general, a good vector program will perform well on POWER3 when 
compiled by XL Fortran Version 5.1.1. For optimal performance on POWER3, 
consider the following discussion.

B.1  Data Access

Most of vector codes are programmed for interleaving memory without cache. 
Vector load/store operations on a vector computer take place directly from 
memory to vector registers. POWER3 uses a cache-based memory 
subsystem. As discussed previously, the stride used is important for high 
performance on POWER3. Typically, large non-unit stride data access can be 
remedied by recoding with the following methods:

  • Interchange loops
  • Transpose matrix and arrays
  • Cache blocking

In a vector computer, many codes introduce vector temporaries to facilitate 
vectorization. This is not necessary on POWER3. If it is possible, scratch 
scalar temporaries is preferred to avoid non-necessary load/stores. 

B.2  Data Dependency and Recursive Code

Vector computers and RISC superscalar computers are both of pipeling 
machines. The vector computer pipelines the data stream, each vector 
instruction operates on data contained in the vector registers consisting of n 
elements, typical of above 64. The key performance factor of a vector 
machine is how DO loop can be vectorized. A loop with recursive data access 
cannot be vectorized (data depedence is allowed). The performance of vector 
and non-vector loop can be as much as a factor of ten. The vectorization 
consideration more often than not over shadows the reduction of arithmetic 
operations in the loops, for example, cyclic reduction algorithms and 
red-black ordering of Gauss-Seidel iteration method.

POWER3, which is a RISC superscalar computer, pipelines the instruction 
stream. Each instruction operates on a set of floating-point registers of one 
element. The performance penalty due to dependency and recursion in the 
loops is less critical than on a vector computer. At most, the penalty is 
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instruction latency is 3-4 cycles in POWER3. Nevertheless, this data 
dependency can be overcome with simple loop unrolling (xlf version 5.1.1 
does a good job of this). This will result in a sufficiently large instruction 
stream which allows pipeline executions.

B.3  Vector Length

For good performance, the vector computer benefits from a long vector. The 
peak performance of a loop is achieved when the vector length is in the order 
of 1000. Thus, many vector codes that compute 3D problems by using 1D 
arrays need to lengthen the vector length. By doing this, the code can perform 
additional computation to check boundary conditions and indexing vectors to 
address the 1D array for 3D space. Vector length consideration is significantly 
less important on POWER3. (Remember, it pipelines the instructions rather 
than data.) A straight forward coding practice is to declare explicitly the 
dimension in 3D and to code the computations with three nested loops.

B.4  Conditional Processing

A vector computer handles conditional processing (IF-THEN-ELSE) by 
computing both true and false branches, then selects the result based on a 
vector mask register which contains the value of the IF condition. POWER3 
takes the branch upon the conditional test and execute the instruction within 
the target branch. The following code fragment illustrates the difference 
between vector computer and POWER3 code.

Code A Code B

eps = 1.d0-100
DO i = 1,n
........

umax =...
umin=...
xx = sqrt(max(0.,x-a))
u=(b+prmin-plmin) / (eps+c-sgn*xx)
xx=sqrt(max(0.,x+a))
z=(b-prmin+plmin) / (eps+c-sgn*xx)
IF (umax.LT.umin) u=z

......
ENDDO

eps=1.d0-100
DO i =1,n
......

umax=...
umin=..
IF (umax.LT.umin) THEN

xx=sqrt(max(0.,x+a)
u=(b-prmin+plmin) 

ELSE
xx=sqrt(max(0.,x-a)
u=(b+prmin-plmin) 

ENDIF
u = u / (eps+c-sgn*xx)

.......
ENDDO
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For a vector computer, the performance difference of Code A and Code B is 
very little. Code B should be used for POWER3.

The Gather/Scatter coding technique is commonly employed in the vector 
programs (to minimize the arithmetical operations in the IF clause). In 
general, POWER3 programming will also benefit from this coding method.

Many old Cray vector programs may contain the vector merge intrinsic 
functions, namely CVMxx. XL FORTRAN supports these functions. For 
performance considerations, these functions should be replaced with the 
equivalent conditional codes. 
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Appendix C.  Threads

Thread support, added to AIX in Version 4, divides program-execution control 
into two elements:

  • A process is a collection of physical resources required to run the 
program, such as memory and access to files. 

  • A thread is the execution state of an instance of the program, such as the 
current contents of the instruction-address register and the 
general-purpose registers. Each thread runs within the context of a given 
process and uses that process's resources. Multiple threads can run 
within a single process, sharing its resources.

The following sections will give a short introduction to threads in general and 
specific AIX thread implementation details. The last sections shows a 
program example using both directives and the Fortran POSIX thread 
interface. For a more complete description about the AIX thread 
implementation please see:

  • AIX Performance Tuning Guide, SR28-5930

  • AIX General Programming Concepts: Writing and Debugging Programs, 
SC23-2205

C.1  Symmetric Multiprocessing (SMP) Concepts and Architecture

As with any change that increases the complexity of the system, the use of 
multiple processors generates design considerations that must be addressed 
for satisfactory operation and performance. The additional complexity gives 
more scope for hardware/software trade-offs and requires closer 
hardware/software design coordination than in uniprocessor systems. The 
different combinations of design responses and trade-offs give rise to a wide 
variety of multiprocessor system architectures. 

The major design considerations are:

  • Symmetrical verses Asymmetrical Multiprocessors 

In an asymmetrical multiprocessor system, the processors are assigned 
different roles. One processor may handle I/O, while others execute user 
programs, and so forth. Some of the advantages and disadvantages of 
this approach are:

  • By restricting certain operations to a single processor, some forms of 
data serialization and cache coherency problems (see the following 
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discussion) can be reduced or avoided. Some parts of the software 
may be able to operate as though they were running in a uniprocessor. 

  • In some situations, I/O-operation or application-program processing 
may be faster because it does not have to contend with other parts of 
the operating system or the workload for access to a processor. In 
other situations, I/O-operation or application-program processing can 
be slowed because not all of the processors are available to handle 
peak loads. 

  • The existence of a single processor handling specific work creates a 
unique point of failure for the system as a whole.

In a symmetric multiprocessor system, all of the processors are essentially 
identical and perform identical functions:

  • All of the processors work with the same virtual and real address 
spaces. 

  • Any processor is capable of running any thread in the system. 

  • Any processor can handle any external interrupt. (Each processor 
handles the internal interrupts generated by the instruction stream it is 
executing.) 

  • Any processor can initiate an I/O operation.

This interchangeability means that all of the processors are potentially 
available to handle whatever needs to be done next. The cost of this 
flexibility is primarily borne by the hardware and software designers, 
although symmetry also makes the limits on the multiprocessability of the 
workload more noticeable.

The RS/6000 family contains, and AIX Version 4 supports, only symmetric 
multiprocessors.

C.2  Thread Implementation Model

There are various thread implementation models. One model is the 
library-thread model. In such a model, the threads of a process are not visible 
to the operating system kernel, and the threads are not kernel scheduled 
entities. The process is the only kernel scheduled entity. The process is 
scheduled onto the processor by the kernel according to the scheduling 
attributes of the process. The threads are scheduled onto the single kernel 
scheduled entity (the process) by the run-time library according to the 
scheduling attributes of the threads. This is the model of threads provided on 
AIX Version 3. 
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At the other end of the spectrum is the kernel-thread model. In this model, all 
threads are visible to the operating system kernel. Thus, all threads are 
kernel scheduled entities, and all threads can concurrently execute. The 
threads are scheduled onto processors by the kernel according to the 
scheduling attributes of the threads. This model is the model provided in AIX 
Version 4.1 and AIX Version 4.2.

AIX Version 4.3 uses a hybrid model that offers the speed of library threads 
and the concurrency of kernel threads. In hybrid models, a process has a 
varying number of kernel scheduled entities associated with it. It also has a 
potentially much larger number of library threads associated with it. Some 
library threads may be bound to kernel scheduled entities, while the other 
library threads are multiplexed onto the remaining kernel scheduled entities. 
For this reason, a hybrid model is referred to as a M:N model. In this model, 
the process can have multiple concurrently executing threads; specifically, it 
can have as many concurrently executing threads as it has kernel scheduled 
entities.

In order to make the switch to thread programming easier, AIX introduced 
threads API models based on preliminary drafts of the now-official IEE POSIX 
standard. AIX 4.3 is the first release to conform fully to the IEEE POSIX 
standard for threads APIs, IEEE POSIX 1003.1-1996.

C.3  Understanding Threads

A thread is an independent flow of control that operates within the same 
address space as other independent flows of controls within a process. In 
previous versions of AIX, and in most of UNIX systems, thread and process 
characteristics are grouped into a single entity called a process. In other 
operating systems, threads are sometimes called lightweight processes, or 
the meaning of the word thread is sometimes slightly different.

C.3.1  Threads and Processes

In traditional single-threaded process systems, a process has a set of 
properties. In multi-threaded systems, these properties are divided between 
processes and threads.

C.3.1.1  Process Properties
A process in a multi-threaded system is the changeable entity. It must be 
considered as an execution frame. It has all traditional process attributes, 
such as:

  • Process ID, process group ID, user ID, and group ID 
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  • Environment 

  • Working directory

A process also provides a common address space and common system 
resources:

  • File descriptors 

  • Signal actions 

  • Shared libraries 

  • Inter-process communication tools (such as message queues, pipes, 
semaphores, or shared memory)

C.3.1.2  Thread Properties
A thread is the schedulable entity. It has only those properties that are 
required to ensure its independent flow of control. These include the following 
properties:

  • Stack 

  • Scheduling properties (such as policy or priority) 

  • Set of pending and blocked signals 

  • Some thread-specific data

An example of thread-specific data is the error indicator, errno. In 
multi-threaded systems, errno is no longer a global variable, but usually, a 
subroutine returning a thread-specific errno value. Some other systems may 
provide other implementations of errno.

Threads within a process must not be considered as a group of processes. All 
threads share the same address space. This means that two pointers having 
the same value in two threads refer to the same data. Also, if any thread 
changes one of the shared system resources, all threads within the process 
are affected. For example, if a thread closes a file, the file is closed for all 
threads.

C.3.1.3  The Initial Thread 
When a process is created, one thread is automatically created. This thread 
is called the initial thread. It ensures the compatibility between the old 
processes with a unique implicit thread and the new multi-threaded 
processes. The initial thread has some special properties, not visible to the 
programmer, that ensure binary compatibility between the old single-threaded 
programs and the multi-threaded operating system. It is also the initial thread 
that executes the main routine in multi-threaded programs.
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C.3.2  Threads Implementation

A thread is the schedulable entity, meaning that the system scheduler 
handles threads. These threads, known by the system scheduler, are strongly 
implementation-dependent. To facilitate the writing of portable programs, 
libraries provide another kind of thread.

C.3.2.1  Kernel Threads 
A kernel thread is a kernel entity, like processes and interrupt handlers; it is 
the entity handled by the system scheduler. A kernel thread runs within a 
process, but can be referenced by any other thread in the system. The 
programmer has no direct control over these threads, unless writing kernel 
extensions or device drivers. See AIX Kernel Extensions and Device Support 
Programming Concepts, SC23-2207 for more information about kernel 
programming.

C.3.2.2  User Threads
A user thread is an entity used by programmers to handle multiple flows of 
controls within a program. The API for handling user threads is provided by a 
library, the threads library. A user thread only exists within a process; a user 
thread in process A cannot reference a user thread in process B. The library 
uses a proprietary interface to handle kernel threads for executing user 
threads. The user threads API, unlike the kernel threads interface, is part of a 
portable programming model. Thus, a multi-threaded program developed on 
an AIX system can easily be ported to other systems.

On other systems, user threads are simply called threads, and lightweight 
process refers to kernel threads.

C.3.3  Thread Scheduling

In previous versions of AIX, the CPU scheduler dispatched processes. In AIX 
Version 4, the scheduler dispatches threads. In the SMP environment, the 
availability of thread support makes it easier and less expensive to implement 
SMP-exploiting applications. Forking multiple processes to create multiple 
flows of control is cumbersome and expensive, since each process has its 
own set of memory resources and requires considerable system processing 
to set up. Creating multiple threads within a single process requires less 
processing and uses less memory. 

Thread support exists at two levels: 

libpthreads.a support in the application program environment 

kernel thread support
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C.3.3.1  Default Scheduler Processing of Migrated Workloads
The new division between processes and threads is invisible to existing 
programs. In fact, workloads migrated directly from earlier releases of AIX 
create processes as before. Each new process is created with a single thread 
(the initial thread) that contends for the CPU with the threads of other 
processes. The default attributes of the initial thread, in conjunction with the 
new scheduler algorithms, minimize changes in system dynamics for 
unchanged workloads.

Priorities can be manipulated with the nice and renice commands and the 
setpri and setpriority system calls, as before. The scheduler allows a given 
thread to run for at most one time slice (normally 10ms) before forcing it to 
yield to the next dispatchable thread of the same or higher priority.

C.3.3.2  Scheduling Algorithm Variables
Several variables affect the scheduling of threads. Some are unique to thread 
support; others are elaborations of process-scheduling considerations:

  • Priority:

A thread's priority value is the basic indicator of its precedence in the 
contention for processor time. 

  • Scheduler run queue position: 

A thread's position in the scheduler's queue of dispatchable threads 
reflects a number of preceding conditions. 

  • Scheduling policy:

This thread attribute determines what happens to a running thread at the 
end of the time slice. 

  • Contention scope:

A thread's contention scope determines whether it competes only with the 
other threads within its process or with all threads in the system. A pthread 
created with process contention scope is scheduled by the library, while 
those created with system scope are scheduled by the kernel. The library 
scheduler uses a pool of kernels threads to schedule pthreads with 
process scope.

Generally, pthreads should be created with system scope, if they are 
performing I/O. Process scope is useful, when there is a lot of 
intra-process synchronizations. Contention scope is a libpthreads.a 
concept.
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  • Processor affinity:

The degree to which affinity is enforced affects performance.

The combinations of these considerations can seem complex, but there are 
essentially three distinct approaches from which to choose in managing a 
given process:

  • Default:

The process has one thread, whose priority varies with CPU consumption 
and whose scheduling policy, SCHED_OTHER, is comparable to the AIX 
Version 3 algorithm. 

  • Process-level control:

The process can have one or more threads, but the scheduling policy of 
those threads is left as the default SCHED_OTHER, which permits the use 
of the existing AIX Version 3 methods of controlling nice values and fixed 
priorities. All of these methods affect all of the threads in the process 
identically. If setpri() is used, the scheduling policy of all of the threads in 
the process is set to SCHED_RR. 

  • Thread-level control:

The process can have one or more threads. The scheduling policy of 
these threads is set to SCHED_RR or SCHED_FIFO, as appropriate. The 
priority of each thread is fixed and is manipulated with thread-level 
subroutines.

C.3.3.3  Scheduling Environment Variables
Within the libpthreads.a framework, a series of tuning knobs have been 
provided that may impact the performance of the application. When using 
XL Fortran, most of the following environment variables can and should be 
controlled by the environment variable XLSMPOPTS, described in section 
4.8, “XLSMPOPTS Environment Variable” on page 57. A case where you 

The default for the contention scoop on all IBM RS/6000 machines is 
processor scope. There are two ways to change this behavior:

1. Use of pthread_attr_setscope() in the code.

2. Set the environment variable AIXTHREAD_SCOPE to S.

Notice 
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cannot use XLSMPOPTS would be to change the default of the contention 
scope. The environment variables are:

  • SPINLOOPTIME=n, where n is the number of times to retry a busy lock 
before yielding to another processor. n must be a positive value. 

  • YIELDLOOPTIME=n, where n is the number of times to yield the 
processor before blocking on a busy lock. n must be a positive value. The 
processor is yielded to another kernel thread, assuming there is another 
runnable one with sufficient priority. 

  • AIXTHREAD_SCOPE={P|S}, where P signifies process based contention 
scope and S signifies system based contention scope. Either P or S 
should be specified. The braces are provided for syntactic reasons only. 
The use of this environment variable impacts only those threads created 
with the default attribute. The default attribute is employed when the attr 
parameter to pthread_create is NULL.

The following environment variables impact the scheduling of pthreads 
created with process based contention scope:

  • AIXTHREAD_MNRATIO=p:k, where k is the number of kernel threads that 
should be employed to handle p runnable pthreads. This environment 
variable controls the scaling factor of the library. This ratio is used when 
creating and terminating pthreads. 

  • AIXTHREAD_SLPRATIO=k:p, where k is the number of kernel threads 
that should be held in reserve for p sleeping pthreads. In general, fewer 
kernel threads are required to support sleeping pthreads, since they are 
generally woken one at a time when processing locks and/or events. This 
conserves kernel resources. 

  • AIXTHREAD_MINKTHREADS=n, where n is the minimum number of 
kernel threads that should be used. The library scheduler will not reclaim 
kernel threads below this figure. A kernel thread may be reclaimed at 
virtually any point. Generally, a kernel thread is targeted as a result of a 
pthread terminating.

C.3.4  Thread Models and Virtual Processors 

User threads are mapped to kernel threads by the threads library. The way 
this mapping is done is called the thread model. There are three possible 
thread models, corresponding to three different ways to map user threads to 
kernel threads:

  • M:1 model 

  • 1:1 model 
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  • M:N model. 

The mapping of user threads to kernel threads is done using virtual 
processors. A virtual processor (VP) is a library entity that is usually implicit. 
For a user thread, the virtual processor behaves as a CPU for a kernel 
thread. In the library, the virtual processor is a kernel thread or a structure 
bound to a kernel thread.

In the M:1 model, all user threads are mapped to one kernel thread; all user 
threads run on one VP. The mapping is handled by a library scheduler. All 
user threads programming facilities are completely handled by the library. 
This model can be used on any system, especially on traditional 
single-threaded systems. Figure 28 illustrates this model.

Figure 28.  M:1 Threads Model

In the 1:1 model, each user thread is mapped to one kernel thread; each user 
thread runs on one VP. Most of the user threads programming facilities are 
directly handled by the kernel threads. Figure 29 illustrates this model.
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Figure 29.  1:1 Threads Model

In the M:N model, all user threads are mapped to a pool of kernel threads; all 
user threads run on a pool of virtual processors. A user thread may be bound 
to a specific VP, as in the 1:1 model. All unbound user threads share the 
remaining VPs. This is the most efficient and most complex thread model; the 
user threads programming facilities are shared between the threads library 
and the kernel threads. Figure 30 illustrates this model.
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Figure 30.  M:N Threads Model

C.3.5  Contention Scope and Concurrency Level 

The contention scope of a user thread defines how it is mapped to a kernel 
thread. There are two possible contention scopes:

  • System contention scope, sometimes called global contention scope 

A system contention scope user thread is a user thread that is directly 
mapped to one kernel thread. All user threads in a 1:1 thread model have 
system contention scope.

  • Process contention scope, sometimes called local contention scope. 

A process contention scope user thread is a user thread that shares a 
kernel thread with other (process contention scope) user threads in the 
process. All user threads in a M:1 thread model have process contention 
scope.

In an M:N thread model, user threads can have either system or process 
contention scope. In the previous figure, for example, the user thread on the 
left side has system contention scope; the other ones all have process 
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contention scope. Therefore, an M:N thread model is often referred as a 
mixed-scope model.

The concurrency level is a property of M:N threads libraries. It defines the 
number of VPs used to run the process contention scope user threads. This 
number cannot exceed the number of process contention scope user threads, 
and is usually dynamically set by the threads library. The system also sets a 
limit to the number of available kernel threads.

C.3.6  libpthreads.a POSIX Threads Library 

AIX provides a threads library, called libpthreads.a, based on the POSIX 
1003.1c industry standard for a portable user threads API. Any program 
written for use with a POSIX thread library can easily be ported for use with 
another POSIX threads library; only the performance and very few 
subroutines of the threads library are implementation-dependent. For this 
reason, multi-threaded programs written for this version of AIX will work on 
any future version of AIX.

The XL Fortran V5 provides an interface to the pthread library called 
f_pthread. It is implemented as a Fortran 90 module.The naming convention 
is to use the prefix f_ before the corresponding AIX pthread routine name or 
type definition name. For more information about the f_pthread 
implementation, see the 4.10, “OpenMP Porting” on page 65 and the XL 
Fortran Language Reference, SC09-2607. 

C.3.7  libpthreads_compat.a POSIX Draft 7 Threads Library 

AIX provides binary compatibility for existing multi-threads applications that 
were coded to Draft 7 of the POSIX thread standard. These applications will 
run without re-linking. 

The libpthreads_compat.a library is actually provided for program 
development. AIX Version 4.3 provides program support for both Draft7 of the 
POSIX Thread Standard and Xopen Version 5 Standard, which includes the 
final POSIX 1003.1c Pthread Standard.

IBM’s default value for the detached state of a thread is 
PTHREAD_CREATE_DETACHED (not joinable). This is different than other 
platforms, such as SUN and SGI.

Take Note
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C.4  A Simple Thread Program

The following sections will compare the directive and POSIX thread 
approach. The example code, which is made thread-enabled, is a reduction 
of an array:

PROGRAM SEQUENTIAL
IMPLICIT NONE
INTEGER, PARAMETER :: IMAX=10000000
INTEGER(4) :: i
REAL(8) :: MYSUM
REAL(8), DIMENSION(IMAX) :: A

CALL INIT(A,IMAX)

MYSUM=0.D0
DO I=1,IMAX
MYSUM=MYSUM+A(I)
END DO

PRINT *,’SUM=’,MYSUM
END PROGRAM

The subroutine INIT sets the array A to A(I)=SIN(3.1415*I/N).

C.4.1  Using SMP Directives

This is a very simple test case and the compiler does not need any directives 
to parallelize it. By compiling with 

xlf90_r -qsmp -O3 -qarch=pwr3 -qreport=smplist simple.f

the compiler produces a parallelization report for the main loop showing the 
basic idea of the parallelization:

mysum = 0d0
ScRed_12 = mysum
ScRed_13 = dble(0)
ScRed_14 = dble(0)
ScRed_15 = dble(0)
C 1585-501  Original Source Line 11

PARALLEL do i=1,10000000,4
         ScRed_12 = ScRed_12 + a(i)
         ScRed_13 = ScRed_13 + a(i + 1)
         ScRed_14 = ScRed_14 + a(i + 2)
         ScRed_15 = ScRed_15 + a(i + 3)
       end do
mysum = ScRed_12 + ScRed_13 + ScRed_14 + ScRed_15
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As you see, the compiler recognizes the parallelism in the loop, unrolls the 
loop four times, introduces four temporary variables, and finally does the 
reduction. Please note that the above listing is only a report and does not 
necessarily show how the compiler finally optimizes the code. A deeper 
analysis and the use of the compiler flag -qlist shows that the compiler finally 
unrolled the loop 16 times.

For some programs, it make sense to compile with -qsmp=noauto telling the 
compiler not to parallelize loops without directives. This could be useful if 
your code contains a lot of loops, where the compiler makes the wrong 
decision to parallelize them. In this case, you have to tell the compiler which 
loop to parallelize. In the above example code, you could add one of the 
following directives:

  • !SMP$ PARALLEL DO REDUCTION(MYSUM)

  • !SMP$ INDEPENDENT

  • !SMP$ ASSERT(NODEPS)

before the loop. Compiling this with:

xlf90_r -qsmp=noauto -O3 -qarch=pwr3 -qreport=smplist simple.f

produces the same parallelization as above.

C.4.2  Using the Fortran PThread Module

When you want to use pthreads in Fortran, IBM provides an interface to the 
pthread library, as described in section 4.9, “OpenMP Porting Considerations” 
on page 58. As an example using this module, the sum program from the last 
section is programmed using Fortran pthreads. The example is written so that 
it easy to understand; it is not optimized in any way. The program discussed 
is located near the end of this section.

Line Comment

1-5 All global variables are put into a module.

9 To use the Fortran 90 interface to the POSIX library you have to use 
this module.

14-15 These are the thread structures needed in this case.

22-23 Here the attribute for the threads are initialized. The standard values 
are used but for the detachstate, which is set to 
PTHREAD_CREATE_UNDETACHED in order to be able to synchronize the 
threads.

26-31 The loop indices of each thread are calculated.
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33-38 The threads are started. Each thread gets three arguments:

  • A number to identify itself. The thread id thread(i) could also be used 
together with POSIX functions f_pthread_equal() and f_pthread_self().

  • The start and end index of the loop.

40-42 The synchronization. After this loop is finished, all threads but the 
initial one are gone.

64 This line could be a potential performance problem as it is likely to 
introduce false sharing between the threads. 

False sharing occurs as two threads running on two different CPUs use two 
different data that are located in the same cache line. If one threads writes to 
his data, which is located in its cache, the whole cache line has to be 
transferred to the second CPU, even if the second thread doesn’t use this 
data. 

There are several solutions to this problem:

  • Remove the array and do the update directly on the variable ENDSUM. 
This has to be done in a CRITICAL SECTION which also introduces a 
performance problem.

  • Pad the array. That way each element is in its own cache line. This can be 
done with a TYPE statement, but will increase the memory use of the 
program.

The loop calculating the sum is moved into the subroutine TSUM, which is 
started by the F_PTHREAD_CREATE() call. 

When linking a thread enabled program, you should use the xlf90_r (or xlf_r) 
call to the linker, in order to make sure that you link with the thread safe 
system libraries. Please note that the program now has over 60 lines of code 
compared to 16 lines in the version using Fortran directives.

+1  MODULE TDATA
+2   INTEGER, PARAMETER :: NRT=2, IMAX=10000000
+3   REAL(8), DIMENSION(IMAX) :: A
+4   REAL(8) :: MYSUM(NRT)
+5  END MODULE TDATA
+6
+7
+8  PROGRAM SEQUENTIAL
+9  USE F_PTHREAD
+10 USE TDATA
+11 IMPLICIT NONE
+12 INTEGER(4) :: I, IERR
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+13 ! USED BY THE THREADS :
+14 TYPE(F_PTHREAD_T) :: THREAD(NRT)
+15 TYPE(F_PTHREAD_ATTR_T) :: ATTR
+16 INTEGER(4) :: ARG(3, NRT), IBEG(NRT), IEND(NRT)
+17 REAL(8) :: ENDSUM
+18 EXTERNAL TSUM
+19
+20 CALL INIT(A,IMAX)
+21
+22 IERR = F_PTHREAD_ATTR_INIT(ATTR)
+23 IERR = F_PTHREAD_ATTR_SETDETACHSTATE(ATTR,

PTHREAD_CREATE_UNDETACHED)
+24
+25 ! SET UP THE LOOP COUNTERS
+26 IBEG(1)=1
+27 DO I=1,NRT-1
+28 BEG(I+1)=IBEG(I)+(IMAX/NRT)
+29 IEND(I)=IBEG(I+1)-1
+30 END DO
+31 IEND(NRT)=IMAX
+32
+33 DO I=1,NRT
+34 ARG(1,I)=I
+35 ARG(2,I)=IBEG(I)
+36 ARG(3,I)=IEND(I)
+37 IERR=F_PTHREAD_CREATE(THREAD(I),ATTR,FLAG_DEFAULT,TSUM,ARG(1,I))
+38 END DO
+39
+40 ! WAIT FOR THE THREADS TO FINISH
+41 DO I=1,NRT
+42 IERR = F_PTHREAD_JOIN(THREAD(I))
+43 END DO
+44
+45 ! BUILD THE SUM
+46 ENDSUM=0.D0
+47 DO I=1,NRT
+48 ENDSUM=ENDSUM+MYSUM(I)
+49 END DO
+50
+51 PRINT *,’SUM=’,ENDSUM
+52 END PROGRAM
+53
+54 SUBROUTINE TSUM(ARG)
+55 USE TDATA
+56 REAL(8),AUTOMATIC :: PART_SUM
+57 INTEGER(4) :: I, ARG(3)
+58
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+59 PART_SUM=0.D0
+60 DO I=ARG(2),ARG(3)
+61 PART_SUM=PART_SUM+A(I)
+62 END DO
+63 MYSUM(ARG(1))=PART_SUM
+64 END SUBROUTINE

C.4.3  Conclusions

This simple example shows that you should use the compiler directives if 
possible. There are several advantages to do so:

  • The code is easier to program. 

  • Directives are less error prone than direct pthread programming.

  • The code is easier to read.

  • As the directives are hidden in comments, the code can still be compiled 
and run on a system that doesn’t have a thread library.

  • You can change the scheduling of a loop, without changing the code.

The advantages of the pthread library are mainly performance and the ability 
to parallel the code on a higher level than loops. Please note that the Fortran 
pthread interface it is not an industry standard, even if it is as close to the 
POSIX standard as a Fortran module can be.

As mentioned in section 4.9, “OpenMP Porting Considerations” on page 58, 
you can mix both f_pthreads and directives, so you are not forced to use one 
of the alternatives.
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Appendix D.  Special Notices

This publication is intended for developers of numerically intensive code for 
the RISC System/6000, for business partners and sales specialists wanting 
supporting metrics of the POWER3 performance potentials, and for technical 
specialists who require detailed product information to help demonstrate IBM’s 
industry leading technology. See the PUBLICATIONS section of the IBM 
Programming Announcement for Fortran Version 5.1.1 for more information 
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not 
imply that IBM intends to make these available in all countries in which IBM 
operates. Any reference to an IBM product, program, or service is not 
intended to state or imply that only IBM’s product, program, or service may be 
used. Any functionally equivalent program that does not infringe any of IBM’s 
intellectual property rights may be used instead of the IBM product, program 
or service.

Information in this book was developed in conjunction with use of the 
equipment specified, and is limited in application to those specific hardware 
and software products and levels.

IBM may have patents or pending patent applications covering subject matter 
in this document. The furnishing of this document does not give you any 
license to these patents. You can send license inquiries, in writing, to the IBM 
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, 
NY 10594 USA.

Licensees of this program who wish to have information about it for the 
purpose of enabling: (i) the exchange of information between independently 
created programs and other programs (including this one) and (ii) the mutual 
use of the information which has been exchanged, should contact IBM 
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and 
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any 
formal IBM test and is distributed AS IS. The information about non-IBM 
("vendor") products in this manual has been supplied by the vendor and IBM 
assumes no responsibility for its accuracy or completeness. The use of this 
information or the implementation of any of these techniques is a customer 
responsibility and depends on the customer’s ability to evaluate and integrate 
them into the customer’s operational environment. While each item may have 
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been reviewed by IBM for accuracy in a specific situation, there is no 
guarantee that the same or similar results will be obtained elsewhere. 
Customers attempting to adapt these techniques to their own environments 
do so at their own risk.

Any pointers in this publication to external Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of 
these Web sites.

Any performance data contained in this document was determined in a 
controlled environment, and therefore, the results that may be obtained in 
other operating environments may vary significantly. Users of this document 
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily 
business operations. To illustrate them as completely as possible, the 
examples contain the names of individuals, companies, brands, and 
products. All of these names are fictitious and any similarity to the names and 
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal 
distribution process does not imply general availability. The purpose of 
including these reference numbers is to alert IBM customers to specific 
information relative to the implementation of the PTF when it becomes 
available to each customer according to the normal IBM PTF distribution 
process.

The following terms are trademarks of the International Business Machines 
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

AIX® AIX/6000®
DB2® Power PC 603®
Power PC 604® PowerPC 601®
PowerPC 603® PowerPC 601e®
POWER2 Architecture POWER3 Architecture
RISC System/6000® RS/6000®
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PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
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Appendix E.  Related Publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

E.1  International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO 
Redbooks” on page 207.

  • AIX Version 4.3 Differences Guide, SG24-2014

  • AIX 64-Bit Performance in Focus, SG24-5103

  • RS/6000 Models E30, F40, F50, and H50 Handbook, SG24-5143

E.2  Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and 
receive updates 2-4 times a year at significant savings.

E.3  Other Publications

These publications are also relevant as further information sources:

  • RISC System/6000 Technology, SA23-2619

  • PowerPC and POWER2: Technical Aspects of the New IBM RISC 
System/6000, SA23-2737

  • XL Fortran for AIX Language Reference Version 5 Release 1, SC09-2607

CD-ROM Title Subscription 
Number

Collection Kit 
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
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  • XL Fortran for AIX User’s Guide Version 5 Release 1, SC09-2606

  • D. Bacon, S. Graham, and O. Sharp, “Compiler Transformations for 
High-Performance Computing,” ACM Computing Surveys, Vol. 26, 1994

  • Y. Aoyama, "RS/6000 Program Tuning Vol. 3: SMP Fortran" (1998, in 
Japanese) (contact nakanoj@jp.ibm.com)

  • D. Kulkarni, S. Tandri, L. Martin, N. Copty, R. Silvera, X. Tian, X. Xue, and 
J. Wang, "XL Fortran Compiler for IBM SMP Systems," AIXpert Magazine, 
December 1997

  • Optimization and Tuning Guide for Fortran, C, and C++", SC09-1705

  • General Atomic and Molecular Electronic Structure System, M.W.Schmidt, 
K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, 
N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery 
J. Comput. Chem., 14, 1347-63(1993).

  • AIX Performance Tuning Guide, SR28-5930

  • AIX General Programming Concepts: Writing and Debugging Programs, 
SC23-2205

E.4  Information Available on the Internet

The following information is available on-line.

  • http://www.openmp.org/

  • http://www.netlib.org/blas/gemm_based/ssgemmbased.tgz

  • http://www.doe.org

  • http://www.llnl.gov/asci/

  • http://www.netlib.org/scalapack/

  • http://www.rs6000.ibm.com/software/Apps/essl.html

  • http://www.rs6000.ibm.com/software/sp_products/esslpara.html 

  • http://www.rs6000.ibm.com/resource/aix_resource/sp_books/

  • http://www.software.ibm.com/ad/fortran/xlfortran/cray.htm 

  • http://www.rs6000.ibm.com/software/sp_products/performance/

  • http://www.rs6000.ibm.com/resource/technology/MASS/

  • http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

  • http://www.netlib.org/blas/gemm_based/ssgemmbased.tgz

  • http://www.msg.ameslab.gov/GAMESS/GAMESS.html
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  • http://firewww.avl.co.at

  • http://www.radioss.com

  • http://www.netlib.org

  • http://www.specbench.org

  • http://www.cs.virginia.edu/stream

  • http://www.nas.nasa.gov//NAS/NPB

  • http://firewww.arl.co.at/html/346.htm
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How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, 
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest 
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and 
information about redbooks, workshops, and residencies in the following ways:

  • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

  • PUBORDER – to order hardcopies in the United States

  • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

  TOOLCAT REDPRINT
  TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
  TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

  TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

  TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

  TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

  • REDBOOKS Category on INEWS

  • Online – send orders to: USIB6FPL at IBMMAIL  or   DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the 
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in 
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published 
this way. The intent is to get the information out much quicker than the formal publishing process 
allows.

Redpieces
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List of Abbreviations

API Application Program 
Interface

ASCI Accelerated Strategic 
Computing Initiative

BCT Branch on Count

BHT Branch History Table

BLAS Basic Linear Algebra 
Subroutines

BLACS Basic Linear Algebra 
Communications 
Subroutines

BT Block Tridiagonal

BTAC Branch Target Address 
Cache

CCR Condition-Code 
Register

CFD Computational Fluid 
Dynamics

CPU Central Processing Unit

DASD Direct Access Storage 
Device

DFL Divide Float

DIMM Dual Inline Memory 
Modules

DOE Department of Energy

ESSL Engineering and 
Scientific Subroutine 
Library

FMA Floating-point 
Multiply-Add

FPR Floating-Point Register

FPU Floating Point Unit

GAMESS General Atomic and 
Molecular Electronic 
Structure System

GPR General-Purpose 
Register
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ITSO International Technical 
Support Organization

LFD Load Float Double

LLNL Lawrence Livermore 
National Laboratory

LRU Least Recently Used

MASS Mathematical 
Acceleration 
Subsystem

MFLOPS Millions of 
Floating-Point 
Operations per Second

MPI Message Passing 
Interface

MTU Maximum Transmission 
Unit

NUS Numerical 
Aerodynamic 
Simulation

NWP Numerical Weather 
Prediction

PBLAS Parallel Basic Linear 
Algebra Subroutines

PPM Piecewise Parabolic 
Method

P2SC POWER2 Single/Super 
Chip

RISC Reduced 
Instruction-Set 
Computer

RSC RISC Single Chip

SPEC System Performance 
Evaluation Cooperative

SOI Silicon-on-Insulator

SMP Symmetric 
Multiprocessing
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SP IBM RS/6000 Scalable 
POWERparallel 
Systems

STFDU Store Float Double with 
Update

TLB Translation Lookaside 
Buffer

TPP Toward Peak 
Performance

VP Virtual Processor

XLF XL Fortran

VMM Virtual Memory 
Manager
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