RS/6000 Scientific and Technical Computing:
POWERS3 Introduction and Tuning Guide

Sefan Andersson, Ron Bell, John Hague, Holger Holthoff
Peter Mayes, Jun Nakano, Danny Shieh, Jim Tuccillo

I nternational Technical Support Organization

http://www.redbooks.ibm.com

SG24-5155-00

SG24-5155-00

International Technical Support Organization

RS/6000 Scientific and Technical Computing:
POWERS3 Introduction and Tuning Guide

October 1998

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 199.

First Edition (October 1998)

This edition applies to XL Fortran Version 5.1.1 (5765-C10 and 5765-C11) running under AIX Version
4.3 (5765-C34) on an RS/6000 43P 7043 Model 260 Workstation.

Note

This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on
versions of this redbook for more current information.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. IN9B Building 045 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

FIQUIES . . o iX
Tables. . .. Xi
Preface. e xiii
The Team That Wrote This Redbook. Xiv
Comments WelCome XVi
Chapter 1. Introduction 1
1.1 RS/6000 Processor Evolution. 1
1.1.1 POWERL ... 1
1.1.2 POWERZ . .. 2
1.1.3 PowerPC e 3
1.1.4 POWERS . .. 3
1.2 SMP-Based System VIiewsSo 3
1.2.1 Job Level Parallelism with Single CPU Jobs. 3
1.2.2 Automatic Parallelization (Fortran) 4
1.2.3 Compiler Directives 4
1.2.4 Message Passing Interface. 4
1.25 Using POSIX Threadsc00 i 5
1.2.6 Combined MPI/Threads Paradigm 5
Chapter 2. The POWER3 ProCessorttt 7
2.1 Processor OVEIVIEW . . . o vttt ittt e e e e e e 7
2.2 POWERS3 EXecUtion COre. ot i ittt e e e e 8
2.3 POWER3 RoadmMapo oo e e 12
2.4 POWER3-Based Systems 13
2.4.1 RS/6000 43P 7043 Model 260, 13
242 IBMRS/6000 SP NOdESo oottt 15
2.4.3 DOE ASCIProject 15
Chapter 3. XL Fortran Version 5 17
3.1 SMP SUPPOIt . o oo e 17
3.2 Support for POWER3 19
3.3 B4-Bit SUPPOIt 19
3.3.1 Fortran Storage Classes. 20
3.3.2 32-BitMode 21
3.3.3 32-Bit Mode, Large Address Space Model 22
3.34 B64-BitMode 22
3.3.5 Compiler Defaultsand Limits 23
3.3.6 64-bit Integer Arithmetic Support 23

© Copyright IBM Corp. 1998 i

iv

3.4 Performance Improvements over Previous XL Fortran 24

Chapter 4. Using the SMP Feature of XL Fortran 29
4.1 How to Compile, Link, and Execute 29
4.2 Consideration of Storage Classes in 32-BitMode. 33
4.3 Conditions for Automatic Parallelization 36
4.4 Automatic Parallelization - Parallelism Analysis 38
4.4.1 Examples of Parallelism Analysis. 38
4.4.2 XL Fortran Messages Related to Parallelization 44
4.5 Automatic Parallelization - Cost-Based Analysis. 45
4.5.1 Cost-Based Analysis - SingleLoops. 45
4.5.2 Cost-Based Analysis - Nested Loops 46
4.5.3 How to Affect the Decision of Cost-Based Analysis 47
4.6 DIreCtIVES . . o o 50
4.6.1 PARALLEL DO Compiler Directive 51
4.6.2 PARALLEL SECTIONS Compiler Directive. 53
4.6.3 PERMUTATION Compiler Directive 54
4.6.4 SCHEDULE Compiler Directive 54
4.6.5 THREADLOCAL Compiler Directive 56
4.7 NUM_PARTHDS Intrinsic Function. 56
4.8 XLSMPOPTS Environment Variable. 57
4.9 OpenMP Porting Considerations 58
Chapter 5. Performance Libraries. 65
5.1 The ESSL Library. 65
5.1.1 Benefitsof USINQ ESSL 69
5.1.2 Howto Use ESSL. 70
5.1.3 Performance Examples of ESSL. 70
5.2 MASS. 73
5.2.1 Howto Usethe MASS Library 74
5.2.2 Performance of the MASS Library 75
5.2.3 Further Tuning Possibilities Using Vector MASS. 77
Chapter 6. Message Passing Interface 81
6.1 MPlinan SMP Environment. i 81
6.2 MPI Communication Rates. 83
Chapter 7. Performance and Tuning Analysis 87
7.1 Relevant Information 87
7.2 CPUTUNING . .ot e e e 90
7.2.0 Unrolling. . ..o 90
7.2.2 DIVIAES . . oo 93
7.2.3 Floating Point to Integer Conversion. 94
7.2.4 Fractional PartofaNumber 95

RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

7.3 COPY. o ettt 95
7.3.2 Multiple Streams. 97
7.3.3 DAXPY .o 98
7.3.4 Loads and StOresttt 101
7.3.5 Prefetching Individual Cache Lines. 101
7.4 Large Stride 102
7.4.1 Cache Effects. 102
7.4.2 Translation Lookaside Buffer Effects 103
Chapter 8. Fortran Tuning Guide for Maximum Megaflops 107
8.1 The Tuning ProCess oot 107
8.1.1 Tuningforl/O. 108
8.1.2 Locating the Hot Spots (Profiling) 109
8.1.3 Use Pre-tuned Code, SUCh ASESSL 111
8.1.4 Hand Tunethe Code 112
8.2 Recommended CompilerOptions. 112
8.3 Architecture Independent Hand Tuning Review 114
8.3.1 Basic Coding Practices for Performance. 115
8.3.2 Commonly Occurring Examples 116
8.4 Key Aspects of POWER3 (Model 260) Architecture 119
8.4.1 The POWER3 (Model 260) Level 1 Data Cache 119
8.4.2 The POWER3 (Model 260) Level 2 Data Cache 122
8.4.3 The Translation Lookaside Buffer (TLB) 123

8.4.4 The Superscalar Floating Point Units and Peak Megaflops. ... 123
8.5 Tuning for Floating Point Performance on POWERS3 (Model 260). . . 126

8.5.1 Letting the Compiler Do the Tuning 127
8.5.2 Getting and Understanding an Object Code Listing 127
8.5.3 Tuningforthe L1 Cache.......... 129
8.5.4 Tuningforthe CPU. 135
8.6 Some Comments on Parallel Coding for Model 260 144
Chapter 9. Throughput Measurements 147
9.1 Copy Program 147
9.2 User Programs. 149
9.3 Case Study: Matrix Multiplication 150
9.3.1 The Computational Kernel 151
9.3.2 Single Processor Implementation of DGEMM 153
9.3.3 Automatically Parallelized DGEMM. 156
9.3.4 MPIl Implementations 157
Chapter 10. Kernels, Codes, and Benchmarks. 159
10.1 GAMESS . . . 159
10.2 Oil Reservoir Simulator 160

Vi

10.3 Weather ForecastCode i, 161

10.4 Computational Fluid Dynamics: FIRE 162
10.5 Crash Worthiness Analysis: RADIOSS 165
10.6 Finite Difference Kernel 167
10.7 lterative Eigenvalues Solver. 169
Appendix A. Industry Standard Benchmarks 173
A.l LINPACK Benchmark e 173
A2 SPECOS ... 174
A3 STREAM e e 174
Ad NASNPB 1.0 ... e 175
Appendix B. Enabling Vector Codes to POWER3................. 177
B.1 Data ACCESS ittt e 177
B.2 Data Dependency and Recursive Code 177
B.3 VectorLength 178
B.4 Conditional Processing 178
Appendix C. Threads. e 181
C.1 Symmetric Multiprocessing (SMP) Concepts and Architecture 181
C.2 Thread Implementation Model 182
C.3 Understanding Threads 183

C.3.1 Threads and ProCeSSESt ottt i 183

C.3.2 Threads Implementation. i, 185

C.3.3 Thread Scheduling 185

C.3.4 Thread Models and Virtual Processors 188

C.3.5 Contention Scope and Concurrency Level................... 191

C.3.6 libpthreads.a POSIX Threads Library. 192

C.3.7 libpthreads_compat.a POSIX Draft 7 Threads Library 192
C.4 ASimple Thread Program i, 193

C.4.1 Using SMP Directives.o 193

C.4.2 Using the Fortran PThread Module 194

C.4.3 CoNCIUSIONS . ..o e 197
Appendix D. Special Notices i 199
Appendix E. Related Publications.............................. 203
E.1 International Technical Support Organization Publications 203
E.2 Redbooks on CD-ROMS i e e 203
E.3 Other Publications. 203
E.4 Information Available onthe Internet 204
How to Get ITSO Redbooks 207
How IBM Employees Can Get ITSO Redbooks. 207

RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

How Customers Can Get ITSO Redbooks. 208

IBM Redbook Order FOrmo 209
List of Abbreviations. 211
INdEX . 213
ITSO Redbook Evaluation. 221

Vii

Viii RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

Figures

©CoNoGO WD

[
= O

WNNNNNNNNNNRRRRRRPR PR
OCOWONOUBRWNRPOOO~NODUNWN

POWERS3 Processing Units (Model 260). 8
Data Prefetch Overview. e 11
POWERS3 Chip Layout: 270 mm? Die, 15 Million Transistors 13
Logical View of the Model 260., 14
XL Fortran Version 5 Compiler Architecture 18
Copy Rates of a Double Precision Array, 71
DAXPY COompariSON e e 72
Three Sorting Algorithms 73
MASS USe OF EXP(). « - v v v e e e e e 77
. MPI Synchronous TransferRates 85
. MPI Asynchronous TransferRates 85
. Stream Rates for DatainCache 93
. Single Processor Copy Ratesc i 96
. Stream Rates for DataNotinCache 97
. Single Stream Prefetch 98
. DAXPY: Single RUN. ... 99
. DAXPY:Bestof 4RUNS (1) . .. oottt e 100
. DAXPY:Bestof ARUNS (2)o oot 100
. Stride versus Loop CountforL1 Cache.......................... 104
. Stride versus Loop Countfor TLB 105
. The 4-Way Set-Associative POWER2 Data Cache................. 120
. The 128-Way Set-Associative POWER3 Data Cache............... 121
. POWERS3 Floating Point Unit - Superscalar Pipeline. 125
. Aggregate Rates for Untuned Copy.t i it i i 148
. Aggregate Rates for Tuned Copyov it 148
. Block Matrix Multiplication 154
. Performance of DGEMM 157
.Ml Threads Model 189
Ll Threads Model. . ..o 190
M:N Threads Model 191

© Copyright IBM Corp. 1998 iX

X RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

Tables

©CoNoGOWDNE

(I
N =)

WWWWWWRNNNNNNNNNNRPRRRERRRPR PR
ORONPOOONOURNWNRPLPOOO~NOD U ~WN

Performance of POWER1 versus POWER2 2

POWERS's Low Execution Latencies i, 9

RS/6000 43P 7043 Model 260 Memory Bandwidth. 12

Fortran Storage Classes and AIX Segments. 21

The Benchmark Environment 25

CPU Time for Original Programs in Seconds 25

CPU Time for Tuned Programsin Seconds. 26

Storage Areas and Their Maximum Sizes 34

Four Different dcopy Approaches 70
. Three DAXPY VerSiONS: e e 72
. Cyclesof Some FuNnctions. 76
. Complex Exponential Function 79
LPower Function ... 79
. Advantages and Disadvantages of Msg Passing Techniques.......... 82
. Synchronous versus Asynchronous Transfer Times................. 86
. Data Transfer Rates for L1, L2, and Memory 88
. Case Study T1: Performance of Tuned and Untuned Code 131
. Case Study T2: Performance of Untuned and Tuned Code 134
. Performanceof Case Study T3 139
. Performance of Load/Store Bound Loop. 140
.Summary of Copy Rates 149
. RealUser Programs 149
. GAMESS RUNSINSECcONdSt 160
. Times for Oil Reservoir SimulatorCode 160
. Times for Weather ForecastCode., 161
. FIRE Kernel Benchmark Cases., 163
. FIRE Kernel Benchmark Results. 163
. FIREBenchmark Results 164
. RADIOSS Benchmark TestCasesc.oiiiiinnnnenn.. 166
. RADIOSS Benchmark Results. 166
. CPU Time for SUBROUTINE JACOBI, (in Seconds) 172
. LINPACK Performance 173
. SPECO95 Performance 174
. Sustained MB/s Memory Bandwidth Measured by STREAM 174

. NAS NPB 1.0 (LU, SP, BT) Single CPU Performance, Time in Seconds 175

© Copyright IBM Corp. 1998 Xi

Xii RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Preface

This redbook provides information to help you understand and exploit the
new generation of computer systems based on the RS/6000 POWER3
architecture. Specifically, this publication will address the following issues:

POWERS3 features and capabilities

CPU and memory optimization techniques, especially for Fortran
programming

AIX XL Fortran Version 5.1.1 compiler capabilities and which options to
use

Parallel processing techniques and performance
Available libraries and programming interfaces

Performance examples on commonly used kernels and on several full
applications

The anticipated audience for this redbook is as follows:

Application developers

End users who may be involved in making modifications to applications
Technical managers responsible for equipment purchase decisions
Managers responsible for project planning

Researchers involved in numerical algorithm development

End users with an interest in understanding the performance of their
applications

While this publication is decidedly technical in nature, the fundamental
concepts are presented from a user point of view and numerous examples
are provided to reinforce these concepts. Furthermore, this publication is
organized such that the information becomes more detailed as one
progresses through the chapters. This organization will allow readers to stop,
once they have achieved the level of understanding they desire, without
having to search through the publication.

To some extent, this book should be regarded as a series of subtopics that
can be read alone. Each chapter is relatively complete in itself, referring to
other chapters where appropriate.

© Copyright IBM Corp. 1998 Xiii

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Stefan Andersson is a Staff Engineer/Scientist at IBM Poughkeepsie. He
has an MS in mathematics from the University of Heidelberg. He began his
work with IBM at the IBM Scientific Center, Heidelberg in 1990. He has been
involved in parallel computing on RS/6000 SP since 1992. Currently, he is a
member of the technical benchmark team at IBM Poughkeepsie. His areas of
expertise include performance tuning for the POWER architecture, distributed
memory coding and tuning for the RS/6000 SP, and shared memory coding
and tuning on IBM SMPs.

Ron Bell is an IBM IT Consultant in the UK. He has an MA in Physics and a
DPhil in Nuclear Physics from the University of Oxford. He has 27 years of
experience with IBM High Performance Computing. His areas of expertise
include the Fortran language, performance tuning for POWER architecture,
and MPI parallel coding and tuning for the RS/6000 SP. He has for many
years collaborated with HKS Inc. to optimize their ABAQUS product for IBM
platforms.

John Hague is an IBM IT Consultant in the UK. He obtained a PhD in High
Energy Physics at University College, London, and worked in this field at the
Rutherford Lab in the UK and the Lawrence Livermore Lab in Berkeley until
he joined IBM in 1970. John was assigned to the IBM ITSO in Poughkeepsie
in 1985 to provide worldwide technical support for the IBM Vector Facility.
Since then, he has worked exclusively in the scientific and technical area, and
has considerable expertise in vectorizing, parallelizing, and tuning scientific
programs, particularly in the Petroleum and Weather Forecasting areas.

Holger Holthoff is an IBM IT Consultant in Germany. He has been involved
in parallel computing on RS/6000 SP since he joined the IBM Scientific
Center, Heidelberg in 1994. Currently, he is a member of the RS/6000
Technical Support focusing on high-performance computing projects and
CAE applications in manufacturing industries. He obtained the Dipl.-Ing. and
Dr.-Ing. degree in mechanical engineering from University of Karlsruhe and
Braunschweig, respectively. His areas of expertise include performance
tuning for the POWER architecture and message passing programming for
the RS/6000 SP.

Peter Mayes is a Senior IT Specialist in the UK. He has 15 years of
experience in the field of high-performance computing. He holds the degrees
of MA in Mathematics, MSc in Mathematical Modeling and Numerical

Xiv RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

Analysis, and DPhil in Engineering Mathematics, all from the University of
Oxford. His areas of expertise include Fortran programming, particularly for
high-performance and parallel computers, and administration of RS/6000
SPs.

Jun Nakano is an IT Specialist of IBM Japan. From 1990 to 1994, he was
with IBM Tokyo Research Laboratory and studied combinatorial optimization.
Since 1995, he has been involved in RS/6000 and SP benchmarks. He holds
MSc in physics from University of Tokyo. He is interested in algorithms,
computer networks, and operating systems.

Danny Shieh is a Senior Engineer/Scientist of IBM Austin. He joined the IBM
Palo Alto Scientific Center in 1969. From 1974 to 1976, he was assigned to
the Large Scale Computing department in IBM San Jose Research. From
1985 to 1986, he was assigned to the IBM International Technical Support
Center in Poughkeepsie, NY to support the IBM 3090 Vector Facility. He
joined the IBM RS/6000 team in 1992. His current assignment is technical
support of S&TC marketing for RS/6000 products. He received the MS and
PhD degrees in Atmospheric Sciences in 1967 and 1969, respectively, from
New York University.

Jim Tuccillo is an atmospheric scientist by training. He has attended Cornell
University, Old Dominion University, and Johns Hopkins University. Jim has been
involved in the development of Numerical Weather Prediction (NWP) Models on
high-performance vector, parallel vector, and distributed memory systems since
1980. Jim has worked in the NWP development labs of the US Weather Service
and NASA where he has been involved in the development of research and
operational NWP codes for weather forecasting in the US. Jim currently works for
IBM’s Global Government Industry organization where he is involved in issues
associated with NWP and high-performance computing on IBM’s SP system. Jim
has research interests in the areas of parallel algorithms and parallel
programming paradigms for high-performance, numerically intensive computing.

This project was coordinated by:
Scott Vetter IBM Austin

Thanks to the following people for their invaluable contributions to this
project:

Alan Adamson IBM Toronto
Yukiya Aoyama IBM Japan
Arthur Ban IBM Austin
Howard Brauer IBM Austin

XV

Luke Browning
Frank Johnston
Matthias Laux
Lisa Martin
Joan McComb
Frank O’Connell
Mark Papermaster
Farid Parpia
Jim Shearer
David Tuttle
Steve White

IBM Austin

IBM Poughkeepsie
IBM Heidelberg
IBM Toronto

IBM Poughkeepsie
IBM Austin

IBM Austin

IBM Poughkeepsie
IBM Watson Research
IBM Austin

IBM Austin

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

XVi

* Fax the evaluation form found in “ITSO Redbook Evaluation” on page 221
to the fax number shown on the form.

* Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users
For IBM intranet users

htt p: // waw r edbooks. i bm com
http://w3.itso.ibmcom

e Send us a note at the following address:

r edbook@s. i bm com

RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

Chapter 1. Introduction

This publication is designed to familiarize you with the IBM RS/6000
POWERS3 architecture and provide you with the information necessary to
exploit the new high-end technical workstations based on this architecture.

The two-way symmetric multiprocessing (SMP) workstation RS/6000 43P
7043 Model 260 will be the first POWER3 system to be available. Thus, most
analysis presented in this publication refers to this system.

1.1 RS/6000 Processor Evolution

In this section, the stages of processor development are discussed, starting
with the POWERZ1 architecture through to the latest POWERS3. Various
references for additional reading are included.

1.1.1 POWER1

The first RS/6000 products were announced by IBM in February of 1990, and
were based on a multiple chip implementation of the POWER architecture,
described in IBM RISC System/6000 Technology, SA23-2619. This technology is
now commonly referred to as POWER1, in the light of more recent
developments. The models introduced included an 8 KB instruction cache
(I-cache) and either a 32 KB or 64 KB data cache (D-cache). They had a
single floating-point unit capable of issuing one compound floating-point
multiply-add (FMA) operation each cycle, with a latency of only two cycles.
Therefore, the peak MFLOPS rate was equal to twice the MHz rate. For
example, the Model 530 was a desk-side workstation operating at 25 MHz,
with a peak performance of 50 MFLOPS. Commonly occurring numerical
kernels were able to achieve performance levels very close to this theoretical
peak.

In January of 1992, the Model 220 was announced, based on a single chip
implementation of the POWER architecture, usually referred to as RISC
Single Chip (RSC). It was designed as a low-cost, entry-level desktop
workstation, and contained a single 8 KB combined instruction and data
cache.

The last POWER1 machine, announced in September of 1993, was the
rack-mounted Model 990. It ran at 71.5 MHz and had a 32 KB I-cache and a
256 KB D-cache.

© Copyright IBM Corp. 1998 1

1.1.2 POWER2

Announced in September 1993, the Model 590 was the first RS/6000 based
on the POWER?2 architecture, described in PowerPC and POWER2: Technical
Aspects of the New IBM RISC System/6000, SA23-2737. The most significant
improvement introduced with the POWER?2 architecture for scientific and
technical applications is that the floating-point unit (FPU) contains two 64-bit
execution units, so that two floating-point multiply-add instructions may be
executed each cycle. A second fixed-point execution unit is also provided. In
addition, several new hardware instructions were introduced with POWER2:

¢ Quad-word storage instructions. The quad-word load instruction moves
two adjacent double-precision values into two adjacent floating-point
registers.

« Hardware square root instruction.

« Floating-point to integer conversion instructions.
Although the Model 590 ran with only a marginally faster clock than the
POWER1-based Model 580, the architectural improvements listed above,

combined with a larger 256KB D-cache size, enabled it to achieve far greater
levels of performance, as shown in Table 1.

Table 1. Performance of POWER1 versus POWER2

Model 580 Model 590
Architecture POWER1 POWER2
MHz 62.5 66
D-cache 64KB 256KB
Peak MFLOPS 125 264
LINPACK DP MFLOPS 38 130
LINPACK % of peak 30% 49%
LINPACK TPP MFLOPS 104 237

In October 1996, IBM announced the RS/6000 Model 595. This was the first
machine to be based on the P2SC (POWER2 Super Chip) processor. As its
name suggests, this is a single chip implementation of the POWER2
architecture, enabling the clock speed to be increased further. The Model 595
runs at 135MHz, and the fastest P2SC processors, found in the Model 397
workstation and RS/6000 SP Thin4 nodes, run at 160 MHz, with a theoretical
peak speed of 640 MFLOPS.

RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

1.1.3 PowerPC

The RS/6000 Model 250 workstation, the first to be based on the PowerPC
601 processor running at 66 MHz, was introduced in September, 1993. The
601 was the first processor arising out of the partnership between IBM,
Motorola, and Apple. The PowerPC architecture includes most of the
POWER instructions. However, some instructions that were executed
infrequently in practice were excluded from the architecture, and some new
instructions and features were added, such as support for symmetric
multiprocessor (SMP) systems. In fact, the 601 did not implement the full
PowerPC instruction set, and was a bridge from POWER to the full PowerPC
architecture implemented in more recent processors, such as the 603, 604,
and 604e. Currently, the fastest PowerPC-based machines from IBM for
technical purposes, the four-way SMP system RS/6000 7025 Model F50 and
the uni-processor system RS/6000 43P 7043 Model 150, use the 604e
processor running at 332 MHz and 375 MHz, respectively.

1.1.4 POWERS

The new POWERS3 processor, described in detail in Chapter 2, “The
POWERS3 Processor” on page 7, essentially brings together the POWER2
architecture, as currently implemented in the P2SC processor, with the
PowerPC architecture. It combines the excellent floating-point performance
delivered by P2SC'’s two floating-point execution units, while being a 64-bit,
SMP-enabled processor ultimately capable of running at much higher clock
speeds than current P2SC processors.

1.2 SMP-Based System Views

Since the POWERS architecture provides SMP support, POWERS3-based
systems will feature multiple CPUs with a uniform access shared memory and
shared 1/O resources. This section outlines the different ways in which these
multiple CPUs can be exploited, either by running multiple job streams to
achieve greater overall system throughput, or by using a shared or distributed
memory programming model to reduce the time to solve an individual
problem.

1.2.1 Job Level Parallelism with Single CPU Jobs

For work loads consisting of many independent jobs each using a single
CPU, the multiple CPUs of a POWER3 based system will provide greater
throughput performance than a uni-processor system. For example,
POWERS3 based systems with two CPUs may provide twice the nominal
performance on a work load when compared with a comparable

Introduction 3

uni-processor system. Each POWER3 CPU will also provide an improvement
in performance over existing CPUs.

1.2.2 Automatic Parallelization (Fortran)

The XL Fortran compiler (Version 5.1.1 or later) provides support for
automatic parallelism of programs to provide increased performance so as to
reduce the elapsed time of a program. Essentially, the code is analyzed for
independent pieces of work that can be dispatched, in parallel, to the multiple
CPUs of a POWERS based system. This SMP capability is also available on
machines using PowerPC processors, such as the Model F50. The ability of
the compiler to detect opportunities for parallelism can vary and is dependent
on the intrinsic properties of the problem being solved and the source code
implementation. The nominal performance improvement over using a single
CPU is generally limited to the number of CPUs on the POWER3 based
system. Typically, new programs can be written in a manner that allows for a
high-level of compiler-detected parallelism. Existing programs can often be
modified to allow for significant levels of parallel efficiency. The automatic
parallelization capabilities of XL Fortran can often be assisted through the
insertion of compiler directives, as discussed in the next section.

1.2.3 Compiler Directives

Compiler directives are often used in conjunction with the automatic
parallelization capability of the XL Fortran compiler to assist in situations
where the dependency analyzer is unable to detect independent pieces of
work. Compiler directives appear as Fortran comments so that code
portability is preserved. OpenMP is an evolving industry standard that will
provide for code portability across shared-memory parallel systems.

1.2.4 Message Passing Interface

The Message Passing Interface (MPI) is the industry standard for parallel
programming on distributed memory systems, such as the IBM RS/6000
Scalable Parallel (SP) system. Programs that have been parallelized using
the Message Passing Interface are highly portable between different
platforms. In general, MPI programs also perform excellently on SMP
systems. MPI is supported on clustered RS/6000 uni-processor machines as
well as on SMP systems.

With this paradigm, the programmer has explicitly decomposed the problem
to run as separate processes that communicate and synchronize through the
MPI library. The separate processes of an MPI program are transparently
mapped against the multiple CPUs of a POWERS based system.

4 RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

1.2.5 Using

For IBM RS/6000 SP systems, an alternative approach exploiting SMP nodes
is to assign a separate MPI process to each CPU of each node. With this
approach, MPI message passing will take place at both the intra-node and
inter-node level, and threads are not required to address the multiple CPUs of
each node.

POSIX Threads

The thread programming interface is the native interface of parallel
programming on SMP systems, but also used for performance improvements
on uni-processor systems. On RS/6000, POSIX threads support is provided
through both a C and Fortran application program interface (API) and allows
for the exploitation of the multiple CPUs of a POWER3 based system. Since
POSIX threads is an industry standard, programs written using this library are
generally portable to other SMP platforms. At the time of publication, the
Fortran binding for pthreads is not part of the POSIX pthreads standard,
therefore, Fortran pthreads implementations may be AIX specific.

1.2.6 Combined MPI/Threads Paradigm

For IBM RS/6000 SP systems with SMP nodes, a combined MPI and threads
programming paradigm is also supported. With this approach, a single MPI
processes is assigned to each SMP node, and multiple threads are executed
on each node. The threads will be used to execute the computational kernels
S0 as to exploit the multiple CPUs on the node, and MPI communication will
take place between the nodes. Threads can be either explicitly created
through the POSIX Threads library or can be implicitly created with the
automatic parallelism features of the XL Fortran compiler (with or without
compiler directives), as discussed in 1.2.2, “Automatic Parallelization
(Fortran)” on page 4.

Introduction 5

6 RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

Chapter 2. The POWER3 Processor

The POWERS3 microprocessor introduces a new generation of 64-bit
processors especially designed for high performance and visual computing
applications. POWERS3 processors are the replacement for the POWER2 and
POWER2 Super Chips (P2SC) in high-end RS/6000 workstations and
technical servers.

2.1 Processor Overview

The POWERS3 implementation of the PowerPC architecture provides
significant enhancements compared to the POWER?2 architecture. The SMP-
capable POWER3 design allows for concurrent operation of fixed-point
instructions, load/store instructions, branch instructions, and floating-point
instructions. The POWER3 is designed for ultimate frequencies of up to 600
MHz when fabricated with advanced semiconductor technologies such as
copper metallurgy and silicon-on-insulator (SOI). In contrast, the P2SC
design has reached its peak operating frequency at 160MHz. The first
POWERS3 based system, RS/6000 43P 7043 Model 260, runs at 200 MHz.

Capable of executing up to four floating-point operations per cycle (two
multiply-add instructions), the POWER3 maintains the emphasis on
floating-point performance and memory bandwidth that has become the
hallmark of POWER2 based RS/6000 systems. Integer performance has
been significantly enhanced over the P2SC with the addition of dedicated
integer and load/store execution units, thus improving its SPECint95
performance relative to the 160 MHz P2SC by about 50 percent at 200 MHz.
This gives the POWER3 far more balanced performance, which is especially
notable in graphics intensive applications.

The POWERS is a 64-bit PowerPC implementation with a 32-byte backside
L2 cache interface (private L2 cache bus), and a 16-byte PowerPC 6XX bus,
as shown in Figure 1. The POWER3 has a peak execution rate of eight
instructions per cycle (compared to six for the P2SC) and a sustained
performance of four instructions per cycle.

Significant investments in the chip’s data flow, instruction routing, and
operand buffering have been made in order to sustain a high computational
and corresponding data rate. The POWER3's level-one (L1) data cache is an
efficient interleaved cache capable of two loads, one store, and one cache
line reload per cycle. Although half the size of the P2SC's cache, the L1 is
effectively supplemented by a dedicated second level (L2) cache, which may
be from 1 MB to 16 MB in size. Data and instruction prefetching mechanisms

© Copyright IBM Corp. 1998 7

improve the memory access performance by hiding memory latency. Also, the
large 128 byte line size takes advantage of the locality of reference (spacial
reuse) characteristic of large engineering and scientific data reference

patterns
Floating| | Floating| | Fixed Fixed Fixed LD/ST || LDST CPU registers:
Point Point Point Paint Point Unit Unit 32 x 64-bit Integer
Unit Unit Unit Unit Unit 32 x 64-bit FP
FPU1 FPU2 FXu1 FXuz FXU3 LS1 LS2
f + + * f * * Register buffers for
' register renaming:
Branch/Dispatch Branch history table: 2048 entries 24 FP
Branch target cache: 236 entries
16 Integer
? 32 KB, 128-way 64 KB, 128-way
Memory Mgmt Unit Memory Mgmt Unit
Instruction Cache ' Data Cache
u bu
[Lo
Bytes y Eytes
BIU Bus Interface Unit: L2 Control, Clock v
A A
32 Bytes 16 Bytes
¥ @200 MHz=64 GB/s ¥ @100 MHz = 1.6 GB/s
i L2 Cache BXX B
Direct mapped 196 MB us

Figure 1. POWERS3 Processing Units (Model 260)

2.2 POWERS3 Execution Core

Unlike some competitive chips, which need several pipeline stages before
instructions enter the first execution stage, POWER3 keeps this front end of
the pipeline short, using only three stages. POWER3 needs only one cycle to
access the instruction cache, one cycle to decode and dispatch the
instructions to different execution units, and one more cycle to access the
operands. POWERS's relatively short pipeline keeps its mispredicted branch
penalty to only three cycles, up to 24 cycles shorter than its competitors.

Up to eight instructions (two floating-point, two load/store, two single-cycle
integer, a multi-cycle integer, and a branch) can be in execution in each cycle.
Ready instructions are issued out of order from the issue queues, allowing
instructions of different types, as well as of the same type, to execute out of
order. The load/store and branch instructions are issued in program order.

8 RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide

For branch instructions whose conditions are not known in the decode stage,
POWERS3 uses a 2,048-entry branch history table (BHT) to predict the branch
direction. Because a branch is often resolved in the decode stage or soon
thereafter, the benefit of the BHT when used to predict the current encounter
of the branch is less in POWERS3 than in designs with deeper pipelines. To
better use the BHT, however, POWERS3 uses the BHT to predict both the
current and the next encounter of each conditional branch, using a branch
target address cache (BTAC).

POWERS3 uses rename registers for the general-purpose registers (GPR),
floating-point registers (FPR), and the condition-code register (CCR) to allow
out-of-order and speculative execution of most instructions. The few
exceptions are stores and certain move-to-special-register instructions that
are difficult to undo. Although instructions can be issued out-of-order, and
thus, their operands can be read out-of-order from the registers, the rename
registers eliminate anti- and output-dependencies by enabling the registers to
be updated in program order.

POWERS3 has two identical FPUs, each delivering up to two floating-point
operations per cycle. POWER3's FPUs execute multiply-add instructions, as
Table 2 shows, taking only one cycle throughput to calculate the frequently
used (a*b+c) operation.

Table 2. POWER3's Low Execution Latencies

Instruction Number of Cycles
32 bit 64 bit
Integer Multiply 3-4 3-9
Integer Divide 21 37
FP Multiply or Add 3-4 3-4
FP Multiply-Add 3-4 3-4
FP Divide 14-21 18-25
FP Square Root 14-23 22-31

The non-blocking caches support four outstanding L1 data demand requests
and two outstanding L1 instruction demand requests in order to reduce the
memory subsystem latency. The L1 cache also supports hits under misses,
the L1 cache allows a fifth demand request which hits the cache to proceed
even when there are four previous outstanding misses to the data cache. In

The POWER3 Processor 9

comparison, the POWER?2 architecture allows only one outstanding cache
miss without blocking. Cache hits are satisfied within a single cycle. The
writeback data cache implements a four-state MESI cache coherence protocol
(possible states: modified, exclusive, shared, and invalid) to support SMP
environments.

POWERS3 uses instruction- and data-prefetch mechanisms to reduce pipeline
stalls due to cache misses. The instruction cache is two-way interleaved on
cache-line boundaries, allowing one bank to be accessed for instruction
fetches while the other bank is accessed for the next cache line. When the
former access hits in the cache but the latter access does not, a prefetch
request for this next cache line is issued to the L2 cache. Because the
prefetch is still speculative, the request is not propagated to the main
memory. If it misses in the L2 cache, this allows the request to be canceled
upon detecting a mispredicted branch instruction. An instruction prefetch
takes six cycles from the 200 MHz L2 cache.

For the data cache, the Model 260 can prefetch up to four streams of data from
memory or L2 cache into L1 cache. To establish a prefetch stream, the
prefetch mechanism monitors every access that misses in the data cache,
searching for cache-miss references to two adjacent cache lines. For this
purpose, a stream address filter queue of depth 10 is used, which contains
the guessed next stream addresses. The filter is maintained by a least
recently used (LRU) mechanism in order to age out seldom used prefetch
streams. Upon finding such a pair of succeeding cache misses, it initiates a
prefetch request for the next cache line. The stream addresses, along with the
ascending or descending prefetch direction, is kept in a four-entry stream
address buffer. Once a prefetch stream is identified, the address of every
data-cache access is checked with the addresses in the stream address
buffer. When a match is found, a prefetch request for the next cache line is
made, and the address in the matching entry is updated with the address of
the new prefetch request. A simplified view on the prefetch hardware is given
in Figure 2.

When initially predicting the direction of a prefetch stream, it is assumed that
if the word that causes the cache-miss occurs in the bottom half of the cache
line, the next higher line will be required, but if the miss occurs in the top half,
then the next lower line will be required. Then data is being prefetched in
sequentially in either a forwards or backwards direction. If the initial
prediction is wrong, the direction is corrected for the subsequent stream.

10 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Load/Store Unit L7 Data Cache Streamn Data Buffer Main Memory

| >
i-1 i .
i X ! .
)] Streamn Address Filter
+1] x !
! 1
) | 2 lime i41 .
E 3 Stream Address Buffer
i+3 ! 4 1 line i+2
L 5
i 2
H i 6 - - 3
! 7 4
i 8
'—/‘:’/_'_\——_‘ g
, 10
128 Byle line

Figure 2. Data Prefetch Overview

The 64-bit address space is managed by using 80-bit virtual addresses and
40-bit real memory addresses, which support up to 1 terabyte. A 256-entry
two-way set associative translation lookaside buffer (TLB) based on a least
recently used replacement algorithm is used to access 4 KB memory pages.

The performance of many technical applications is mainly determined by the
performance of the memory subsystem. POWER3 systems are designed to
deliver industry leading memory bandwidth, which has already been a
strength of the POWER?2 architecture. The bandwidth, as listed in Table 3, in
terms of GB/s depends on the actual clock frequency. As an example the
DAXPY operation, y(i)=y(i)+a*x(i), yields a sustained memory bandwidth of
1.3 GB/s, close to the peak bandwidth of 1.6 GB/s of a POWER3 Model 260
system. DAXPY performance is analyzed in more detail in Chapter 7.3.3,
“DAXPY” on page 98.

The load latency, due to either a data or instruction L1 miss that hits the L2
cache, amounts nine CPU cycles. A data access that misses the L1 and L2

The POWERS Processor 11

cache causes a latency of about 35 cycles on a Model 260. However, this
does not depend on the processor only, but also on the system.

Table 3. RS/6000 43P 7043 Model 260 Memory Bandwidth

Access Interface Clock Bandwidth | Bandwidth
Width Frequency | [Byte/cycle] [GB/s]
[Bit] [MHZz]
Load Register from L1 128 200 2*8 3.2
Store Register to L1 64 200 8 1.6
Load/Store L1 from/to L2 256 200 4*8 6.4
Load/Store L1 from/to Memory 128 100 2*8 1.6

2.3 POWER3 Roadmap

The first generation of POWERS3 based systems will operate at CPU speeds
of 200 MHz and memory bus speeds of 100 MHz. The processor board will
hold a direct mapped L2 cache of 4 MB per processor. The initial chip design
does not support fractional processor-to-cache and processor-to-system
clock ratios (such as 3:2 mode). But the second generation of POWERS3 chips
will remove this limitation. This will be the first design based on IBM’s
advanced CMOS-7S process. With help of this 0.2-micron process, which
uses copper interconnects, clock speeds of more than 300 MHz will be
achievable. The die size will shrink from 270 mm? to 160 mm?, with a few

additional functions.

IBM plans a second derivative of POWER3 chips in a 0.18-micron process,
targeting speeds up to 500-600 MHz. This process may showcase IBM’s
unique Silicon-on-Insulator (SOI) technology. SOI protects the millions
transistors on a chip with a blanket of insulation, reducing harmful electrical
effects that consume energy and hinder performance. A floating-point and
integer performance of SPECfp95 70+ and SPECIint95 30+, respectively, is

expected.

The faster POWER3 chips will support fractional bus modes (such as 5:2 and
7:2 for processor-to-bus and 3:2 for processor-to-cache interfaces) which will
allow the core to run at its full speed. Using a set-prediction mechanism, the
new chips will also support a four-way set-associative L2 cache.

Figure 3 on page 13 shows the high-level partition of logical units within the
POWERS3 chip.

RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

INSTHUETIGHN
CREHE

DCMRU-

Figure 3. POWER3 Chip Layout: 270 mm2 Die, 15 Million Transistors

2.4 POWER3-Based Systems

The POWER3 CPU will be featured in several different computer systems.
There will be stand-alone workstations up through IBM RS/6000 SP nodes.

2.4.1 RS/6000 43P 7043 Model 260

The Model 260 is a desk-side RS/6000 system designed to perform as a
high-performance technical workstation, visual client, or workgroup server.
The mechanical package can accommodate up to two processor cards, two
memory cards, and five PCI adapters. It also supports two hot-swap DASD
bays (Ultra SCSI), two 5 1/4" media bays, and one floppy drive.

Each processor card carries one POWERS3 chip running at 200 MHz.

The memory controller function is located on the planar. A system planar is
shown in Figure 4 on page 14. The memory chipset supports a 128-bit data
path to memory running at 100 MHz, giving the system a peak memory

The POWER3 Processor 13

bandwidth of 1.6 GB/s. The two processor cards have to share this
bandwidth. The chipset is not only an interface to the memory but also to the
6XX-MZ mezzanine bus used for the 1/O.

POWER3 POWER3
CPU Card CPU Card
4MBL2 AMB L2
POWER3 [MTTH POWER3 I
320 32 byt
200 MHz @thOT/IHZI Ll 200 MHz @ZgOTAHZI Ll

6XX DataBus

6?(.5(Address i
100 MH
3cyc|etzenure 100 MHz
AB4
Memory Data Bus Clock
Addr/Cntl 16 bytes @ 100 MHz —
planar A
6XX-MX Bus
Memory Card 66 MHz
Memory Card 256 MB - 2 GB
256 MB - 2 GB
planar B
PCI Bridge PCI Bridge
Integrated
Service Processor
ISA Bridge
W83C553 2PCl Slots
64-Bit / 50 MHz

I 1 10/100 ETH U2-SCSl U-SCsI

Audio | Jsuper 1/0] | 79ce71 53C895 53C875 PO Slots
cs4236 | | 87308 32:Bit /33 MHz

Figure 4. Logical View of the Model 260

14 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Each memory card can carry between 256 MB and 2 GB of memory using
128 MB dual inline memory modules (DIMMS), giving the system a maximum
total memory of 4GB. These sizes will double when 256 MB DIMMs become
available.

2.4.2 IBM RS/6000 SP Nodes

In the future, there will be several nodes for the IBM RS/6000 SP available.
The first one will be based on the RS/6000 43P 7043 Model 260. The
differences between these node and the Model 260 are the form factor in
order to fit into the IBM RS/6000 SP frame and the ability to connect it to the
high performance switch. In order to fulfill the Accelerated Strategic
Computing Initiative (ASCI) contract, IBM will also offer an eight- and later a
16-way SMP based on the POWERS3 processor. These models are expected
to contain several unique features and new design points.

2.4.3 DOE ASCI Project

On July 26, 1996, Lawrence Livermore National Laboratory (LLNL)
announced it had selected IBM for an award of a $93 million contract to build
the world’s fastest supercomputer as part of the Department of Energy’s
(DOE) Accelerated Strategic Computing Initiative (ASCI) program, called
ASCI Blue Pacific. The final configuration of the proposed system will consist
of:

512 eight way POWER3 SMP nodes

« More than three teraflops peak performance
2500 GB total system memory

75 terabytes global disk capacity

6400 MB/s 1/0 bandwidth

In order to meet the increased need for computing power, the next step after
ASCI Blue Pacific, called ASCI White, is already announced. The ASCI White
System will consist of 8192 POWER3+ CPUs capable of peak speed of 10
trillion operations per second.

Both the ASCI Blue Pacific and the ASCI White project will drive the future
RS/6000 and IBM RS/6000 SP system development in hardware as well as
software. The result of this work will provide future gains through improved
products for IBM Customers.

For more information about the ASCI project, visit the following Web pages:

http://ww doe. org
http://waw |1 nl.gov/asci/

The POWERS Processor 15

16 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 3. XL Fortran Version 5

XL Fortran Version 5 is the first XL Fortran compiler that has the ability to
exploit SMP processors concurrently for improving the performance. It is also
the first to produce object code that runs in 64-bit mode on AIX 4.3 or later.
This chapter mainly describes differences between XL Fortran Version 5.1
and previous versions that users should be aware of for compiling and
running programs on POWER3 hardware.

3.1 SMP Support

One of the most outstanding features of XL Fortran Version 5 is its support for
SMP. The compiler automatically identifies DO loops that can be parallelized
and makes object code that runs in a multi-threaded fashion. Or, you can give
directives to the compiler in order to provide additional information on the
code or to force the compiler to parallelize certain DO loops. Detailed
explanations and examples will be given in Chapter 4, “Using the SMP
Feature of XL Fortran” on page 29. An overview of compiler architecture is
presented here. (See D. Kulkarni et al., “XL Fortran Compiler for IBM SMP
Systems,” AlXpert Magazine, December 1997.)

Figure 5 on page 18 shows the path through the XL Fortran compiler when
the parallelization facility is activated with the -qgsmp option. The Fortran front
end takes your program as input, checks the program syntactically and
semantically, and produces an intermediate representation of it. The
scalarizer transforms the Fortran 90 array language constructs into scalar DO
loops.

The subsequent locality optimizer and serial and SMP optimizer perform
optimizations, including loop reordering, array padding, loop tiling, loop
unrolling, elimination of conditionals, and so on. If given the target
architecture by the -qarch option, the compiler takes into account hardware
specifics, such as cache size and cache line size. The parallelizer uses loop
reordering transformations to automatically parallelize loops at outermost
levels, which minimizes parallelization overheads, such as barrier
synchronization at the end of parallel loops, and ensures larger computation
granularity on each of the processors of the SMP system. The outliner does
the converse of subroutine inlining. It converts DO loops, which are decided
to be parallelized, into subroutines.

You can see how a program is outlined by reading the outlining report section
of hotlist, which is generated by the -qreport=hotlist compiler option. An
example of hotlist is given in 4.1, “How to Compile, Link, and Execute” on

© Copyright IBM Corp. 1998 17

page 29. By invocation of xIf_r or xIf90_r, the object code is linked with
thread-safe libraries for parallel execution.

v

Fortran Frontend

User Program

<
A 4

Scalarizer

\ 4
Locality Optimizer

Dataflow and
Dependence Analyzer

v

Serial/SMP Optimizer | ¥ Loop Transformer
\ 4
Parallelizer Data Transformer
\ 4
Outliner

v

Optimizing Backend

v

Object Code

Runtime

A

Figure 5. XL Fortran Version 5 Compiler Architecture

In addition to automatic parallelization, XL Fortran Version 5 provides the
pthreads library module (f_pthread) as an interface to the AlX pthreads
library. See XL Fortran for AIX Language Reference Version 5 Release 1,
SCO09-2607 or "XL Fortran Compiler for IBM SMP Systems," AlXpert
Magazine, December 1997 for details.

18 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

3.2 Support for POWER3

The XL Fortran compiler has a -garch option that tries to produce efficient
object code that may contain machine instructions specific to the target
architecture. The default value is -garch=com, which means the executable
can be run on any hardware platform of POWER and PowerPC, but in order to
fully use the hardware’s capability, it is recommended to use the appropriate
-garch option, especially for scientific and technical applications. In addition
to architectures supported by XL Fortran Version 4.1 (that is, com, pwr, pwr2,
ppc, and so forth), XLF Version 5.1 introduces two new architectures: pwr3
(V5.1.1) and rs64a (V5.1.0). Currently, RS/6000 Model 260 (and its
corresponding SP nodes) and RS/6000 S70 (S7A) conform to pwr3 and
rs64a, respectively.

Since XL Fortran does not optimize the program by default, you should
specify appropriate options when compiling. To begin with, it is recommended
to use the following combination of compiler options for POWER3 machines:

$ xIf -garch=pw3 - -qtune=pw 3 yourprogram f

The -O3 option instructs the compiler to do the highest level optimization.
This optimization level has the potential to rearrange the semantics of the
programs. Although it produces a mathematical equivalent result, it may not
produce a bitwise identical result with the unoptimized code. If this is a
concern, you can add the -gstrict option to ensure that you get the bitwise
identical results with the unoptimized code. The -garch and -gtune options
both perform architecture-dependent optimization for the POWERS3. Further
tuning of compiler options should be carried out with these options as a
starting point. More detailed discussions on compiler options are given in 8.2,
“Recommended Compiler Options” on page 112.

3.3 64-Bit Support

In order to be able to exploit the huge address space offered by 64-bit
addressing, Fortran programmers need to understand how memory is
handled by the AIX and the XL Fortran compiler, both in 32-bit and 64-bit
mode. This section gives both the background and some practical
implications of 32-bit and 64-bit addressing.

In AIX, virtual memory is divided into segments. In 32-bit mode, a 32-bit
address is divided into a 28-bit field, which gives the offset within a 256 MB
(228 bytes) segment, and a 4-bit field, which selects between 16 segments. In
64-bit mode, 28 bits are again used to address offsets within a 256 MB

XL Fortran Version5 19

segment, but the number of segments which may be addressed is vastly
increased.

3.3.1 Fortran Storage Classes

Before explaining how segments are used, it is necessary to understand
Fortran storage classes. Each variable belongs to one of the following
storage classes:

Automatic For variables not retained once the procedure ends

Static For variables which retain memory throughout the
program

Common For common block variables

Controlled Automatic For automatic arrays

Controlled For allocatable arrays

From the point of view of the operating system, these classes are categorized
as one of the following types:

data Initialized static and common variables

bss Uninitialized static and common variables

heap Controlled (or, allocatable) arrays

stack Controlled automatic arrays and automatic variables

The size of these types, where the size is known before execution begins,

may be determined by running the si ze command against the executable as
follows:

$ size -f a. out
a.out: 1132(.text) + 216(.data) + 134217744(.bss) + 452(.| ocader) +
12(. except) = 134219556 (32-bit executabl e)

$ size -X 64 -f a. out
a.out: 1112(.text) + 272(.data) + 134217760(.bss) + 559(.|oader) +
20(. except) = 134219723 (64-bit executabl e)

Note that initialized static and common variables and arrays are stored in the
data area of the executable file itself; so very large initialized arrays can lead

20 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

3.3.2 32-Bit

to very large executable files. These Fortran storage classes and types are
mapped onto AIX segments, as listed in Table 4.

Table 4. Fortran Storage Classes and AIX Segments

Fortran Storage | Type AlX segment | AlX segment | AIX segment
Class (32-hit) (32-bit, with | (64-bit)
-bmaxdata)

Static Data or BSS | seg. 2 segs. 3-10 segs. 0x10
(256 MB) (2 GB) - OX6FFFFFFF

Common (4.5 x 10° TB)

Controlled Heap

Automatic Stack seg. 2 seg. 2 segs. 0xFO000000
(256 MB) (256 MB) - OXFFFFFFFF

Controlled (6.5 x 104 TB)

Automatic

Data, bss, and heap are generically termed user data and the permissible
maximum size of user data is governed by the “data” process limit. Stack is
governed by the “stack” process limit. Process limits can be set on a per-user
basis in the file /etc/security/limits. Both hard and soft limits may be set in this
file. You may then use the ulinit command to raise or lower the soft limit up
to the hard limit, or to lower (but not raise) the hard limit.

Mode

The default mode is the 32-bit mode. As seen from Table 4, all storage
classes are allocated to segment 2, a single 256 MB segment. By default in
AIX 4.3, the soft limit for user data is 128 MB and for stack is 64 MB. The hard
limits are usually set to unlimited by the root user. The linker flags -bmaxdata
and -bmaxstack may be used to increase the permissible data and stack
sizes beyond the soft limits up to the hard limits, without setting the shell’s
process limits using ul i nit. Note, however, that use of the - braxdat a flag
selects the “Large Address Space Model”, described in 3.3.3, “32-Bit Mode,
Large Address Space Model” on page 22. If a process exceeds its data limit,
it will fail to load if the size of data is known from the object file, or an
ALLOCATE statement will fail if the heap grows too large. If the stack limit of
a program is exceeded at run time, it will fail with a “Segmentation fault” error
message.

21

XL Fortran Version 5

— Take Note

Care should be taken when increasing the size of data and/or stack. The
user data comes from the lower address area of segment 2, whereas the
user stack area is allocated from the top of the segment. There are no
checks made to ensure that the user stack area doesn’t overlap with the
user data area. If the stack overwrites the data area, it is possible either for
the program to end abnormally, or worse, for the program to fail silently and
produce incorrect results.

3.3.3 32-Bit Mode, Large Address Space Model

If the program is linked with the flag -bmaxdata:N, then N bytes are allowed
for the user data area, and the user data area is moved from segment 2 to
segments 3 through 10, allowing a total of eight segments, or 2 GB, of user
data. For example, to allow up to 512 MB, or two segments, of user data, link
with the flag -bmaxdata:0x20000000. Note that even if N is less than 256 MB,
the user data area resides above segment 2.

As shown in Table 4 on page 21, the user stack area still resides in segment
2. In other words, in either 32-bit mode, the size of the stack (automatic
variables and Fortran 90 automatic arrays) is limited to a little less than 256
MB.

Even if a program is linked to use the Large Address Space Model, it is still
limited by its stack process limits and its hard data process limit, as explained
above.

3.3.4 64-Bit Mode

XL Fortran introduced a new compiler option, -q64, in Version 5.1, which
allows the object code to run in 64-bit mode. As seen from Table 4 on page
21, the permissible sizes of stack and user data are huge, although they are
still limited by the process limits discussed above. And as with 32-bit mode,
-bmaxstack and -bmaxdata may be used to go beyond the soft limits, up to
the hard limits, without setting the shell’s limits with the ul i nit command.
However, in this case the -bmaxdata flag does not change the addressing
model.

22 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

3.3.5 Compiler Defaults and Limits

3.3.6 64-bit

Although the potential size of stack and user data is effectively limited only by
the physical memory and paging space installed, there are some other
implications of using the -q64 option and 64-bit mode:

« The default size of an integer POINTER (often called Cray pointers or Sun
pointers to distinguish them from standard Fortran 90 pointers) is 8 bytes
in 64-bit mode.

« The maximum array size increases to approximately 249 bytes.
« The maximum dimension bound range is extended to [-262, 263-1].

« The maximum array size for array constants has not been extended and
will remain the same as the maximum in 32-bit mode. The limit depends
on the space used by the compiler for a particular program.

231

e Arrays with a size greater than -1 cannot be initialized.

e The maximum iteration count for array constructor implied DO loops
increases to 263-1.

« The maximum character variable length extends to approximately 24°
bytes.

« The maximum length of character literals remains the same as in 32-bit
mode. This is limited by the maximum length of a single (possibly
continued) Fortran statement, currently 6700 characters.

e The LOC intrinsic function returns an INTEGER(8) value.

Important

The default INTEGER and the default REAL size remains 4 bytes in 64-bit
mode.

The -q64 option can be combined with -ghot, -O4, -qsmp, and -gipa options in
version 5.1.1. Currently, settings for the -garch option that are compatible
with the -q64 option are, -garch=auto (if compiling on a 64-bit system),
-garch=com, -garch=ppc, -qarch=rs64a, and -garch=pwr3. Note that you
cannot mix 32-bit and 64-bit object files to create an executable.

Integer Arithmetic Support

In order to use the POWER3's native 64-bit integer computation, you need to
compile the program with the -q64 option, and define integers explicitly in the
program as INTEGER*8 or use the -qgintsize=8 compiler option to make the

XL Fortran Version5 23

default size of INTEGER to 8 bytes. Integer constants can have INTEGER*8
attribute by adding a suffix _8 as in 123456_8.

Important

In 64-bit mode, use INTEGER*8 loop variables for better performance.

3.4 Performance Improvements over Previous XL Fortran

This section presents results of a benchmark for a customer, and it shows the
improved performance of XL Fortran Version 5.1 and the relative
performance of the P2SC chip (160 MHz) and the POWER3 chip (200 MHz).
The benchmark was done for the following 14 programs:

cfd

finite

modyn
ns3d
pureg
bem3d
crystal
jcg3d
chamber
deft
enzlong
cirta
mopac93

gamess

Computational fluid dynamics

Finite element method structure analysis iterative
eigenvalue solver

Molecular dynamics

3-D computational fluid dynamics

Monte Carlo simulation of gauge theories QCD
3-D transient enclosure flow

Computational physics software package

3-D solid structure FEM by J-CG solver static, Yale format
Time-dependent 3-D computational fluid dynamics
Molecular dynamics

Life science chemistry

Computational fluid dynamics

Computational chemistry software package (IBM)

Computational chemistry software package

The programs were run serial and, for each program, the sum of user CPU
time and system CPU time for the original version and the tuned version was

24 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

reported. The RS/6000 systems and the software used for the benchmark are

listed in Table 5.

Table 5. The Benchmark Environment

P2SC/XLF3 P2SC/XLF5 POWER3/XLF5
CPU Clock 160 MHz 160 MHz 200 MHz
Memory 1GB 1GB 2GB
AIX 4.3 4.3 4.3
XL Fortran 3.24 51.1 511
Compiler option -qarch=pwr2 -O3 -qarch=pwr2 -O3 -qarch=pwr3 -O3

The programs were linked with ESSL (for three tuned codes) and the MASS
library. For execution on POWER3, a POWER3-enabled ESSL was used. The
Fortran preprocessors used were VAST and KAP, which were both 1995

released versions.

Table 6 shows the results of original programs.

Table 6. CPU Time for Original Programs in Seconds

P2SC/ | P2SC/ | POWER3/ | Ratio | Ratio | prepro-
XLF3 (A) | XLF5(B) | XLF5(C) | (M)/(B) | (B)/(C) cessor
cfd 125.5 115.3 101.1 1.09 1.14 vast
finite 296.5 289. 4 184.0 1.02 1.57
modyn 744. 4 640. 5 593.0 1.16 1.08
ns3d 236.0 237.5 194. 4 0.99 1.22 kap
pureg 666. 2 697.0 532.7 0. 96 1.31 kap
676.8 659. 3 505. 3 1.03 1.30
bem3d 372.7 347.9 284. 4 1.07 1.22 vast
crystal 7901. 1 7621.0 6177. 8 1.04 1.23
jcg3d 156.0 155. 0 166. 5 1.01 0.93
chamber 28.1 24.5 18.7 1.15 1.31
deft 9.5 8.4 7.6 1.13 1.11
enzlong 80.1 67.6 65. 2 1.18 1. 04 vast
cirta 74.9 73.2 53.2 1.02 1.38 kap

XL Fortran Version 5

25

P2Ssc/ P2Ssc/ POWERS/ | Ratio | Ratio | prepro-
XLF3 (A) | XLF5(B) | XLF5 (C) | (A)/(B) | (B)/(C)
cessor
mopac93 4899. 6 3840. 2 3824.5 1.28 1. 00
gamess 317.0 352.2 218.7 0.90 1.61
Average 1. 07 1.23

XL Fortran Version 5.1.1 shows a marked improvement in optimizing these
programs on the average of seven percent over Version 3.2.5, and because
of this improvement of the compiler, the Fortran preprocessors seem less
effective. Only jcg3d became slower on POWER3 than P2SC, whose key
kernel is sparse matrix-vector multiplication. The new cache organization and
size of POWER3 was not able to hold the indirect addressing vector in cache.
However, in general, the load/store units of POWERS3 greatly enhanced
kernels in these benchmark programs, and when comparing P2SC/XLF5 and
POWERS3/XLF5, POWER3 was faster by 23 percent on average. It was also
observed that the majority of these programs gained performance
improvement by using the MASS library.

Table 7 shows the results of tuned programs.

Table 7. CPU Time for Tuned Programs in Seconds

P2SC/ P2SC/ POWER3/ | Ratio Ratio Note
XLF3(A) | XLF5(B) | XLF5 (C) | (A)(B) | (B)(C)
cfd 69.6 67.3 64.3 1.03 1.05
finite 114.0 111.6 107.6 1.02 1.04
modyn 66. 3 71.5 59. 4 0.93 1.20
ns3d 164.2 157. 4 131.3 1.04 1.20
pureg 183.4 184. 2 167. 6 1. 00 1.10
bem3d 69.8 66. 1 55.0 1.06 1.20
crystal not
tuned
jcg3d 87.0 87.1 72.7 1.00 1.20 tune 1
76.9 63. 4 1.21 tune 2
chamber 18.9 16.5 15.7 1.15 1. 05
deft 6.3 6.4 6.1 0.98 1.05

RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

P2SC/ P2SC/ POWER3/ | Ratio Ratio Note
XLF3 (A) | XLF5(B) | XLF5 (C) | (A)(B) | (B)/(C)
enzlong 69. 3 67.2 64. 4 1.03 1.04
cirta 60. 9 52.2 36.8 1.17 1.42
mopac93 | 2279.3 2257.5 2058. 4 1.01 1.10
gamess not
tuned
Average 1.03 1.14

The tuned versions did not need the preprocessor for performance, and the
improvement of the compiler had less impact on tuned programs, that is,
P2SC/XLF5 was faster than P2SC/XLF3 by only three percent on the

average. Still for tuned programs, POWER3/XLF5 was faster than

P2SC/XLF5 by 14 percent on the average.

XL Fortran Version5 27

28 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 4. Using the SMP Feature of XL Fortran

Starting with Version 5.1, the XL Fortran compiler provides an option, -qgsmp,
which instructs the compiler to automatically parallelize Fortran DO loops.
This includes both DO loops coded explicitly by the user and DO loops
generated by the compiler for array language constructs, such as FORALL
and array assignment. However, the compiler will only automatically
parallelize loops that are independent, that is, loops whose iterations can be
computed independently of any other iterations.

While automatic parallelization might be sufficient for some users, the SMP
directives give you an option of providing additional information about the
source code to the compiler. The information you pass to the compiler will
either be used during automatic parallelization or to specify that certain parts
of the program can be parallelized. For example, a directive
ASSERT(ITERCNT(100)) gives an estimate to the compiler about roughly
how many iterations the DO loop will typically execute, and the PARALLEL
DO directive specifies that the DO loop immediately following it should be
executed in parallel.

Some of the directives available for XL Fortran 5.1 conform to the OpenMP
Specification Version 1.0 which defines directives and APIs for SMP
workstations. Currently, OpenMP is endorsed by more than 20 hardware and
software vendors, including IBM. It is probably that the future releases of XL
Fortran will become more compatible with OpenMP and that the portability of
codes will increase. For details of OpenMP, visit htt p: / / v opennp. org/ .

In this chapter, only topics that are thought to be useful in parallelizing real
applications are discussed. Not all of the SMP features of XL Fortran are
explained. For comprehensive documentations, refer to XL Fortran for AIX
Language Reference Version 5 Release 1, SC09-2607 and XL Fortran for
AlIX User’s Guide Version 5 Release 1, SC09-2606.

4.1 How to Compile, Link, and Execute

As an example, consider the following code that adds all the positive integers
up to 100:

sample.f

PROGRAM MAI N
PARAMETER (N=100)
INTEGER AN, S
DOI=1, N

© Copyright IBM Corp. 1998 29

Al) =1
ENDDO
S=0
I SWP$ PARALLEL DO REDUCTI QN +: S)
DO1=1, N
S=S+ Al)
ENDDO
PRNT *, S
END

The line beginning with ISMP$ is an example of XL Fortran directive that tells
the compiler that the following DO loop should be executed in parallel and
that the variable S is used for storing summation. Details of directives will be
described later in this chapter. Typically, the preceding code is compiled as
follows:

$ x1f90_r -gfixed -@ -gstrict -gsnp sanpl e. f

The option -qsmp specifies that the object code may be run in parallel, and
that the invocation commands you use should be either xIf_r or xIf90_r so that
the code is automatically linked with thread-safe libraries. Otherwise, you
have to be responsible for linking with appropriate libraries. If you want two
threads for execution, set the XLSMPOPTS environment variable as

$ export XLSMPCPTS=par t hds=2

and if necessary, the value of parthds can be accessed from inside of the
code by using the NUM_PARTHDS intrinsic function, whose usage will be
illustrated in Section 4.7, “NUM_PARTHDS Intrinsic Function” on page 56.
The default value of parthds is the number of on-line processors of the
machine.

You can see how the code is parallelized (or not) by looking into the .Ist file
produced by the smplist suboption of the -qreport option:

$ xIf90_r -gfixed -G -gstrict -gsnp sanpl e.f -qgsource -greport=snplist

Note that this report is produced before loop and other optimizations are
performed. The contents of sample.Ist are as follows. (The options section
and tail sections are omitted.)

>>>>> SOURCE SECTI ON <<<<<
| PROGRAM NAI N

| PARAMETER (N=100)
| INTEGER A(N), S

| DO =1, N

| ACl) =1

| ENDDO

OB WN PR

30 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

S =

DO1=1, N

** main === End of Conpilation 1 ===
>>>>> PARALLELI ZATI ON AND LOOP TRANSFCRIVATI ON SECTI ON <<<<<
1585-107 *** SMP Parall elization Report ***

program mai n()

integer*4 :: main
integer*4 :: a(1:100)
integer*4 :: s
integer*4 :: i

address :: #ALLOCATEMP
integer*4 :: #1
integer*4 :: wet_1
integer*4 :: SSA STACK 2
integer*4 :: SSA STACK 4

external :: main

integer*4 :: main
external :: _ trap
external :: _xlfBeginlO

integer*4 :: _xlfBeginlO
external :: _xIfWitelLD nt
external :: _xlIfEndlO

integer*4 :: _xIfEndl O
external :: _xlIfExit
external :: TRAP

program mai n()
#ALLOCATEMP = 0
C 1585-501 Original Source Line 4
PARALLEL do i =1, 100, 1
a(i) =i
end do
s =0
C 1585-501 Original Source Line 9
PARALLEL do i =1, 100, 1
s =s + a(i)
end do
#1 = _xIfBeginl (6, 257,0,0,0,0,0)
call _xIfWitelLD nt(#1,s,4,4)
wet _1 = _xI fEndl Q(#1)
call _xIfExit(0)
TRAP(3)
return
end

In the report, PARALLEL do indicates that the following loop is parallelized. In
this case, both the initialization loop and the summation loop are parallelized
as expected. In 4.4.2, “XL Fortran Messages Related to Parallelization” on
page 44, you will see what kind of messages XL Fortran outputs when it does
not parallelize particular loops. If you specify -qreport=hotlist, even more
detailed information will be reported. The following is a part of the hotlist of

Using the SMP Feature of XL Fortran 31

the sample code where the sum is calculated. (For explanation and
readability, the line numbers are added and the line continuation is modified.)

>>>>> PARALLELI ZATI ON AND LOOP TRANSFCRIVATI ON SECTI ON <<<<<

1585-103 *** Loop Transfornati on Report ***

1585-105 *** Qutlining Report ***

1 s =0

2 C 1585-501 Oiginal Source Line 9

3 if ((_xIsmpInCritical() .eq. O .and. _xlsnplnParallel() .eq. O
4 & .and. (1)) .ne. 0) then

5 __pardo_do_ctl_13(1) = int(1)

6 __pardo_do_ctl _13(2) = int(100)

7 __pardo_do_ctl_13(3) = int(1)

8 __pardo_chunk_ctl _14(1) =1

9 __pardo_chunk_ctl _14(2) =5

10 __pardo_chunk_ctl _14(3) =0

11 __pardo_chunk_ctl _14(4) =0

12 __pardo_flags_15 = 3

13 cal |l _x| snpPar DoSet up(__pardo_flags_15, 0,

14 & __pardo_do_ct| _13,

15 & __pardo_chunk_ct| _14,

16 & __main_out_2,

17 & NARGS(__main_out_2) - 1,
18 & PERCENTARGE 1, __mai n_out _2, 2),
19 & PERCENTARG(100, __mai n_out_2, 3),
20 & PERCENTARG(1, _ _main_out_2,4),a,s)
21 el se
22 C 1585-501 Original Source Line 9
23 do i=1,100,1
24 s =s + a(i)
25 end do

26 end if

27 #1 = _xl fBegi nl 6, 257, 0,0, 0, 0, 0)

28 call _xIfWitelLD nt(#1,s,4,4)

29 wet 1 = xIfEndl Q(#1)

30 call _xIfExit(0)

31 TRAP(3)

32 return

33 cont ai ns

34 subroutine _ main_out_2(__lib_ctl_2,

35 & __do_from2,

36 & __do_to_2,

37 & __do_step_2,a_2,s_2)

38 integer*4 :: _ lib_ctl_2

39 integer*4 :: _ do_from2
40 integer*4 :: _ do_to_2
41 integer*4 :: _ do_step_2
42 integer*4 :: a_2(1:100)
43 integer*4 :: s_2
44 integer*4 :: _ pardo_from2
45 integer*4 :: _ pardo_to_2
46 integer*4 :: _ pardo_step_2
47 integer*4 :: i_2
48 integer*4 :: local _accums_2
49 local _accums 2 =0

32 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

50 C 1585-501 Original Source Line 9

51 do while (_xIsnpParDoChunk(__lib_ctl_2,

52 & __pardo_from 2,

53 & __pardo_to_2,

54 & __pardo_step_2) .eq. 1)
55 do i _2=_pardo_from2,_ pardo_to_2,_ pardo_step_2
56 local _accums_2 = local _accums_2 + a_2(i_2)
57 end do

58 i_2=1i_2- _ pardo_step_2 + _ do_step_2

59 end do

60 cal | _xl snpGet Def aul t SLock(__lib_ctl_2)

61 s_2 =s_2 + local _accums_2

62 call _xl snpRel Def aul t SLock(__lib_ctl_2)

63 return

64 end

65 end

The hotlist is a pseudo-Fortran listing, which is not meant to be compiled as it
is, but you can see how the compiler outliner converts the DO loops into
subroutines. The IF statement in lines 3 and 4 decides whether to execute the
DO loop in parallel (lines 5-20) or in serial (lines 23-25). This is because the
DO loop may not be executed in parallel depending on whether the loop is a
nested parallel loop or whether the loop appears in a critical section. In
addition, the IF clause may control whether a loop is parallelized (section
4.6.1.3, “IF" on page 53). You do not see any DO statements in lines 5-20.
Instead, the DO loop is converted to a subroutine call to _xI snpPar DoSet up,
which divides the work into chunks and assigns these chunks to threads
indicating which procedure to execute, that is, _ nai n_out _2 defined in lines
34-64, and which arguments to pass to this subroutine (lines 18-20). In
__main_out_2, each thread is supposed to calculate the sum of its assigned
portion into the variable | ocal _accums_2, and this local sum is added to the
global sum, s_2. The lock mechanism (lines 60 and 62) assures that only one
thread can change the value of s_2 at a time.

4.2 Consideration of Storage Classes in 32-Bit Mode

When using the -gsmp option and running a program in parallel in 32-bit
mode, it is important to understand the relationship between the types of
variables that appear in the loop and the limits on their size. Table 4 on page
21 shows the XL Fortran storage classes and their corresponding AIX VMM
segments.

Data in the user data area (that is, data, bss, and heap) are shared among all
the threads that belong to the same process. On the other hand, data in the
user stack area is assigned memory individually per procedure call and is not
shared among threads (even if they are calling the same subroutine or
function). Loop iteration variables, variables for reduction operations, and

Using the SMP Feature of XL Fortran 33

temporary variables in a loop should not be shared among threads in order
for the loop to be executed correctly.

As can be seen in the /etc/xlf.cfg file, xIf_r uses -gsave by default, whereas
xIf90_r uses -gnosave. In other words, the default storage class is static when
a module is compiled with xIf_r, and automatic with xIf90_r. According to the
section on the -gsmp option in XL Fortran for AIX User’s Guide Version 5
Release 1, SC09-2606, it is recommended to use the -gnosave option to
make the default storage class automatic when a code is compiled by xIf_r
with the -gsmp option. Therefore, when you use the -qsmp compiler option,
the variables and arrays in your program are likely to be stored in the user
stack area, which was not the case when you compiled programs with xIf for
single thread execution.

Here, another complexity is introduced in 32-bit mode regarding the
maximum size of data in the user data area and the user stack area, as
explained in sections 3.3.2, “32-Bit Mode” on page 21 and 3.3.3, “32-Bit
Mode, Large Address Space Model” on page 22. For data in the user data
area, the maximum size is 256 MB (that is, the segment size of AlX) by
default, but can be extended as much as 2 GB by using the -bmaxdata
compiler option, which allows you to allocate memory across multiple
segments. For data in the user stack area, however, the maximum size per
procedure call is 256 MB and cannot go beyond the limit of AIX segment size.
Table 8 summarizes the preceding argument.

Table 8. Storage Areas and Their Maximum Sizes

User Data Area

User Stack Area

Variable Type

Variables in common block
Variables with SAVE attribute
(Default of xIf and xIf_r is
-qsave)

Allocatable arrays

Variables with NOSAVE
attribute (Default of xIf90 and
xIf90_r is -qnosave)

Characteristics

These variables are kept static
in the user data area.

Memory area for these
variables is allocated when a
procedure is called, and will not
be retained once the procedure
ends.

Maximum size

AIX default value is 128 MB.
Can be 256 MB by using the
ulimt command.

Up to 2 GB is possible by the
-bmaxdata compiler option.

AIX default value is 64 MB.
Can be 256 MB by using the
ulimt command or by the
-bmaxstack compiler option,
but no more.

34 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Now consider the following code that requires 512 MB of memory for array A:

storage.f

PROGRAM MA N
PARAMVETER (NE512*1024* 1024/ 8)
REAL*8 A(N)
DO I =1, N

A=l
ENDDO
END

If this program is compiled with xIf -bmaxdata:600000000, there is no
problem in running it serial in 32-bit mode. But if storage.f is compiled with the
-gnosave option, as recommended when you use the -gsmp option, the
resulting executable cannot be executed in 32-bit mode, because the
operating system tries to store array A in the user stack area, but it has at
most 256 MB of memory available. Since in parallelizing codes, XL Fortran
divides loops into sets of disjoint iterations and allocates them to threads, the
array A can be shared among threads without interfering with each other.
Therefore, in this case, you can legitimately declare A as SAVE, which
causes A to be stored in the user data area.

storage.f (modified)

PROCRAM NAI N
PARAMETER (N=512* 1024* 1024/ 8)
REAL*8 A(N
SAVE A I The array Ais stored in the user data area.
DO =1, N
A=l
ENDDO
END

This code can be compiled as,
$ xIf90_r -qgfixed -gsnp - bnaxdat a: 600000000 st or age. f

or

$ xIf_r -gnosave -qgsnp -bnaxdat a: 600000000 st or age. f

and XL Fortran will automatically parallelize the DO loop and generates an
executable for multi-threaded execution. In fact, the original version of
storage.f can be compiled with the -qsave option and be executed in parallel,
in this case, because the compiler automatically generates loop iteration
variables that are local to threads.

Using the SMP Feature of XL Fortran 35

In parallel execution in 32-bit mode, you should also be careful in sizing
automatic arrays that are used in subroutines. The memory area that you
need in the user stack area for a certain subroutine is (the number of threads
executing the subroutine concurrently) x (the size of arrays).

—— Important

In 32-bit mode, the user stack area is limited by 256 MB. More user stack
area will be consumed in parallel execution than in serial because (1)
recommended storage class is NOSAVE and (2) each thread needs its own
copy of stack. Never underestimate the size needed for the user stack
area.

4.3 Conditions for Automatic Parallelization

Without directives, XL Fortran only tries to parallelize DO loops. Only DO
loops with iteration variables are considered for parallelization.

Loop that will possibly be parallelized
DO 1=1,N

ENDDO

Loops that will not be parallelized

Clnfinite | oop
Do

ENDDO

C DOVWA LE structure
DOWALE (...)

ENDDO

C Non-DO | oop
100 COONTI NE

GOro 100

The compiler analyzes the loop to find out whether each iteration is
independent of one another or not, and if it turns out to have parallelism, the
compiler further estimates the benefit of parallelization by a cost-based

36 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

analysis to make the final decision. The former analysis (parallelism analysis)
makes use of information that is available within the procedure that contains
the loop under consideration. There are several conditions in order for a loop
to be parallelized (the following is not a complete list):

1. Each iteration is independent of each other, that is, no variables that
are written in some iteration will be read and/or written in another
iteration.

2. The program will not exit from the loop before the last iteration is
executed.

3. There are no I/O statements in the loop.
4. There are no ALLOCATE or DEALLOCATE statements in the loop.

5. In nested loops, at most one loop can be parallelized. Therefore, a loop
in a certain nest level will not be parallelized if another level is.

More details will be discussed in 4.4, “Automatic Parallelization - Parallelism
Analysis” on page 38 by showing examples. In the remainder of this section,
general discussion on dependences between iterations are given (see
Bacon, Graham, and Sharp, “Compiler Transformations for High-Performance
Computing,” ACM Computing Surveys, Vol. 26, 1994).

There are two kinds of dependences: control dependence and data
dependence. Control dependence between statements s; and s, means that
s, determines whether s, is executed, or vice versa. The following is an
example of control dependence:

sy IF (I>M) GOTO 100

Sy I=l+1

The condition 2 of the preceding list is more precisely expressed as,

2'. There are no control dependences between iterations.
Two statements have a data dependence if they cannot be executed
simultaneously due to conflicting uses of the same variable. There are three
types of data dependences: flow dependence, anti-dependence, and output

dependence. A statement s3 has a flow dependence on s, when s3 must be
executed first because it writes a variable that is read by s, as follows:

s3 Al) =Al-1) +1.0
Sy Al+1) = AI) +10

A statement sg has an anti-dependence on s5 when sg writes a variable that
is read by sg:

ss Al-1) =Al) +1.0

Using the SMP Feature of XL Fortran 37

Ss Al) = Al+1) +1.0

In the preceding example, anti-dependence can be eliminated by storing the
value of A(1) to a temporary variable, say T, before the execution of s and sg,
and by using T instead of A(1) in sg.

Statements s; and sg have output dependence if both write the same
variable:

Sz T=Al)
sg T =Al+)

These three data dependences and combinations of them constitute cases
that violate the first condition. They prohibit automatic parallelization in
principle, but in some cases where dependent variables are only used
temporarily and are insignificant outside the iteration, or when you can use
directives, parallelization might be possible.

4.4 Automatic Parallelization - Parallelism Analysis

Ideally, the compiler parallelizes all the DO loops that can be parallelized at
all. During compilation, there may be a lack of sufficient information in the
code for the compiler to make an analysis, thus the compiler automatically
parallelizes loops, and in the other, it needs assistance through the use of
directives. In either cases, it is important that you know, to some extent, how
the compiler tries to analyze and transform DO loops for parallel execution.

4.4.1 Examples of Parallelism Analysis

Subsections from 4.4.1.1, “Loops That Have Parallelism” on page 38 through
4.4.1.10, “Dynamic Allocations, and Pointer Substitutions” on page 44 show
how structures in DO loops allow or disallow the compiler to parallelize them.
Note that some of the examples might have too few iterations to pass the
cost-based analysis following the parallelism analysis, but they are for
explanation purposes only and loops that are automatically parallelized
usually have more than the minimum number of iterations in their cases.

4.4.1.1 Loops That Have Parallelism
Each iteration in the following loop is independent of each other and can be
parallelized automatically. By declaration of A and B, you (and the compiler)
know that these two array do not overlap in memory, that is, no equivalence
relation between any elements of A and B.

REAL*8 A(100), B(100)

DO | =1, 100

38 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

ACT) =8(1)
ENCDO

If this loop is to be executed concurrently by two threads, each thread should
execute half of the whole iterations:

Thread 0
DO 1 ¢=1, 50
Al g)=B(10)
ENDDO
Thread 1
DO | =51, 100
A(l1)=B(11)
ENDDO

As mentioned in 4.2, “Consideration of Storage Classes in 32-Bit Mode” on
page 33, the compiler takes care of the loop iteration variable regardless of
whether it is static (SAVE) or automatic (NOSAVE). In the preceding example,
symbolic names (I and I;) are used for non-shared thread-local loop iteration
variables, but you can guess how the compiler actually translates this loop by
looking into hotlist report as follows. (The line continuation is modified for
readability.)

subroutine __ main_out_1(_ lib_ctl_1,
& __do_from1,
& __do_to_1,
& __do_step_1,a_1,b_1,i_1,CLLIV_ 4_1)
integer*4 :: _ lib_ctl_1
integer*4 :: _ do_from1l
integer*4 :: _ do_to_1
integer*4 :: _ do_step_1

real *8 :: a_1(1:100)
real *8 :: b_1(1:100)

integer*4 :: i_1

integer*4 :: CLLIV_4_1
integer*4 :: local _i_1
integer*4 :: local _CLLIV 4 1
integer*4 :: _ pardo_froml1
integer*4 :: _ pardo_to_1
integer*4 :: _ pardo_step_1
integer*4 :: _do_executed_T_15
local _CLLIV 4.1 = CLIV. 4.1
local _i_1=1i_1

C 1585-501 Original Source Line 2

do while (_xI snpParDoChunk(__lib_ctl_1,
__pardo_from1,
__pardo_to_1,
_ _pardo_step_1) .eq. 1)

Ro R0 Ro

_do_executed_T_15 = 0

do local _CQLLIV_4_1=_pardo_from1,_pardo_to_1,_ pardo_step_1
_do_executed_T_15 =1
local _i_1 =local _CQLIV 41
a_1(local _i_1) = b_1(local _i_1)

Using the SMP Feature of XL Fortran 39

end do
local _CLLIV_4_1 = local _CLLIV_4 1 - _ pardo_step_1 + _ do_step_1
if ((_do_executed_T_ 15 .eq. 1 .and

& (__do_step_1 .gt. O .and. local _CLLIV 4.1 .gt. _ do_to_1
& .or.
& _do_step_1 .l1t. O .and. local _CQLLIV.4.1 .It. _ do_to_1)
& .and. (1)) .ne. 0) then
i_1=1local_i_1
CLLIV_ 4 1 = local _CLLIV_4_1
end if
end do
return
end

This hotlist report is generated with the -qsave option and it shows that the
DO loop is converted into a subroutine so that each thread can execute its
own assignment and that a loop iteration variable | ocal _i _1 which is local to
thread, is used to avoid shared access by threads.

By default, loops are divided into a set of iterations in a block scheduling
fashion, but you can choose cyclic scheduling, block-cyclic scheduling, or
dynamic scheduling by specifying SCHEDULE directive, which will be
explained in section 4.6.4, “SCHEDULE Compiler Directive” on page 54.

4.4.1.2 Loops That Have Flow Dependence
The following loop will not be parallelized because it has flow dependence:
DO =2, N

A1) =A(1-1) +B(1)
ENDDO

When the loop is unrolled iteration by iteration, you can see the difficulty in
parallelization:

A(2)=A(1)+B(2) (iteration 2)
A(3)=A(2) +B(3) (iteration 3)
A(4)=A(3) +B(4) (iteration 4)

A(5) =A(4) +B(5) (iteration 5)

The variable A(3), for instance, is updated in the iteration 3 and this updated
value is used in the iteration 4. This is a true recursive. Therefore the
iterations 3 and 4 must be executed in this order and cannot be exchanged
nor be executed concurrently. This is why loops with flow dependence cannot
be parallelized automatically, but the preceding discussion has some
suggestions in parallelizing them manually: suppose iterations 2 and 3 are
assigned to thread 0 and 4 and 5 to thread 1. In this case, threads 0 and 1
can be executed concurrently if thread 1 uses the value of A(3) written by
thread 0, that is, it is the variables on the boundary between threads that
matter in parallelization, and you can get rid of this dependence by using the

40 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

same technique as prefix sum. In section 4.7, “NUM_PARTHDS Intrinsic
Function” on page 56, you will see how to parallelize this loop using
NUM_PARTHDS intrinsic function.

4.4.1.3 Loops That Have Anti-Dependence
Loops with anti-dependence also prevent the compiler from parallelization:
DOI=1,N1
A1) =A(1+1) +B(1)
ENDDO

Again, for the purpose of illustrative understanding of the loop structure, the
first few iterations are written down explicitly:

A(1)=A(2)+B(1) (iteration 1)
A(2)=A(3) +B(2) (iteration 2)
A(3) =A(4) +B(3) (iteration 3)

A(4) =A(5) +B(4) (iteration 4)

It is easy to see that these iterations cannot be executed concurrently.
Although it might not be beneficial in a performance point of view, it is
possible to parallelize the loop manually by using a temporary array:

DO 1=1, N1
T(1) =A(1 +1)

ENDDO

DO 1=1, N1
AC)=T(1) +B(1)

ENDDO

4.4.1.4 Temporary Variables
Temporary variables that appear in a loop can impose both anti-dependence
and output dependence on the loop:

DO 1=1,N
T=81)
Al) =T

ENCDO

In the following, dependence is considered not in terms of statement but in
terms of iteration, which is suitable for discussing loop parallelization. Look at
iterations | and I+1. (Subscripts for Ts are for explanation purpose only.)

Ty = §1) (iteration I)
All) =T,

T3 = B(1+1) (iteration |+1)
Al +1) =Ty

Using the SMP Feature of XL Fortran 41

Iteration | has anti-dependence on |+1 because of T, and T3. At the same
time, both iterations have output dependence since they write to the same
variable (T; and T3). By preparing two variables, one for T, and T, the other
for T3 and T4, the dependences can be eliminated because statements in
each iteration is assured to be executed in order. In this simple case, the
compiler automatically parallelizes the loop by providing local temporary
variables for each thread regardless of whether T is static (SAVE) or
automatic (NOSAVE). If the value of T is referred after the loop, the compiler
makes sure that the variable T holds the same value as when the loop is
executed serially. Suppose a loop with temporary variables is not parallelized
automatically and you force the compiler to parallelize it. Depending on
whether these temporary variables are referred to after the loop, there are
two clauses to the PARALLEL DO directive, namely PRIVATE and
LASTPRIVATE, which will be explained in section 4.6.1.1, “PRIVATE and
LASTPRIVATE” on page 51.

4.4.1.5 Conditions

The following loop will not be parallelized because the first occurrence of |
such that IFLAG(l) equals 1 affects the remaining iterations:

T=0.0

DO I =1, N
IF (IFLAQ1)==1) T=1.0
A1)=T

ENDDO

On the other hand, the compiler automatically parallelizes the following:

DO I =1, N
IF (I FLAQ1)==1) THEN
T=1.0
ELSE
T=0.0
END F
A1)=T
ENDDO

In the current implementation of XL Fortran 5.1.1, dependence between
iterations including IF statements must be observable to the compiler
syntactically, not semantically, for automatic parallelization. For instance, the
following code is not parallelized:

DO =1, N
IF (IFLAQ1)==1) T=1.0
IF (IFLAQ1)/=1) T=0.0
A1)=T

ENDDO

42 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Future IBM implementations of XL Fortran might behave in a different
manner.

4.4.1.6 Reduction Operations
XL Fortran automatically parallelizes the following code if the -O3 option is
set. Obviously, there are flow dependence and output dependence between
iterations in reduction operations, but the compiler transforms the loop for
parallel execution.

$=0.0

DO 1=1,N

S=S+A(I)
ENDDO

The additional compiler flag -gstrict will prevent parallelization of the
preceding loop. In concurrent execution, threads calculate the subtotal of
array A, and those subtotals are added to produce the total. The order of
summation could be different from what it will be if the loop is executed
serially; thus the option -gstrict must not be set for parallelization. Indeed the
results could be different from execution to execution within numerical error
depending on the order in which subtotals are added up. In 4.6.1.2,
“REDUCTION" on page 52, a method is presented to force the compiler to
parallelize the reduction operation. The following shows examples of
reduction operations that can be parallelized:

e Scalar = scalar op expression

S=S+ Al)
S=S* Al)
S=8+ Al)*E)

e Scalar = func(scalar, expression)

AVRX = MAX(AVRX, - A(1))
AMN = MNCAMN - A(1))

4.4.1.7 Indirect Addressing
The compiler does not parallelize the following loop because it cannot
determine whether there is an output dependence or not:

DO =1, N

ACTNDEX(1)) =B(1)
ENCDO

If there exist J and K such that 1<J K< N, J# K, and INDEX(J)=INDEX(K),
the loop has indeed an output dependence. If you know that it is not the case,
you can tell the compiler of this fact by giving the PERMUTATION directive
(Section 4.6.3, “PERMUTATION Compiler Directive” on page 54).

Using the SMP Feature of XL Fortran 43

4.4.1.8 Subroutine Calls

The compiler does not automatically parallelize a loop containing subroutine
calls and/or function calls. In the smplist report, the compiler outputs
messages as follows:

C 1585-108 SMP. Did not parallelize this |oop potentially because:
C 1585-111 Side effects of procedure call(s) cannot be detern ned.

It is your responsibility whether to parallelize the loop with directives, such as
PARALLEL DO and CNCALL, or not.

4.4.1.9 1/0O Operations
The compiler does not parallelize a loop having I/O statements.

4.4.1.10 Dynamic Allocations, and Pointer Substitutions
The compiler does not parallelize the following loops:

loop 1

REAL, ALLOCATABLE :: A(:)
DO | =1, 100
ALLQCATE(A 1000))

DEALLCOATE(A)
ENDDO

loop 2

PQ NTER P

TARGET A(100)

DO | =1, 100
P=>A(1)

ENDDO

4.4.2 XL Fortran Messages Related to Parallelization

44

There are several messages that the compiler outputs regarding
parallelization when a source code is compiled with the -greport=smplist
option. When a DO loop is automatically parallelized, you will see a listing like
the following:

PARALLEL DO =1, 100, 1

Al) = B(1)
END DO

RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

On the other hand, if the compiler fails in automatic parallelization, it puts
messages before the loop; this accounts for the reason why the loop was not
parallelized.

C 1585-108 SMP. Did not parallelize this |oop potentially because:
C 1585-113 Data dependence prevents paral |l el i zati on.
DO 1=2, 100, 1
ScRep 3 = Al - 1) + B(I)
All) = ScRep_3
END DO

The first message 1585-108 SMP: Did not parallelize this loop potentially
because: is common and a detail reason is given in the following message(s).
The whole list is listed as follows:

« 1585-109 Granularity of computation is relatively small.

1585-110 Loop has loop carried control dependence.

1585-111 Side effects of procedure call(s) cannot be determined.

1585-112 Dependence information is not precise.

1585-113 Data dependence prevents parallelization.

1585-114 Parallelization may result in poor cache locality.

1585-115 Loop nest needs to be serial for better cache locality.

Messages from 1585-110 to 1585-113 show that the loop was not parallelized
by parallelism analysis and the others show that the compiler decided not to
parallelize it by cost-based analysis, which is explained in 4.5, “Automatic
Parallelization - Cost-Based Analysis” on page 45.

4.5 Automatic Parallelization - Cost-Based Analysis

Even if the parallelism analysis found that a DO loop could be executed in
parallel, that DO loop must pass cost-based analysis in order to be
parallelized. The logic of cost-based analysis is not documented in manuals,
but obviously, it takes into consideration cache locality (that is, stride) and
granularity of work assigned to each thread. What is described in the
following sections is based on experiments run on XL Fortran Version 5.1.1
and is subject to change in any future release of XL Fortran or service
update.

4.5.1 Cost-Based Analysis - Single Loops

In the cost-based analysis, the compiler primarily takes into account the
number of iterations of DO loops:

Using the SMP Feature of XL Fortran 45

SUBROUTI NE SUBL(A MAX)
PARAMETER (N=10)
DI MENS| ON' A(NAX)
DO 1=1,N
A1) =l
ENDDO
END

SUBROUTI NE SUB2(A, | M)
DI MENSI ON A(10)
DO I =1, | M&X
A=l
ENDDO
END

In subroutine SUB1, the number of iterations is explicitly given within the
subroutine because variables defined by PARAMETER statements are
replaced by actual values. In subroutine SUB2, the value of IMAX is unknown
but the compiler assumes that it is the same as the dimension of A, that is,
10.

The compiler parallelizes an unnested DO loop when the number of iterations
is unknown, or is greater than or equal to a certain threshold value. Otherwise
the loop is not parallelized and smplist reports the reason as C 1585- 109
Ganularity of conputation is relatively snall. The default threshold value
is 100 in XL Fortran 5.1.1.

4.5.2 Cost-Based Analysis - Nested Loops

46

In case of nested loops, the compiler decides to parallelize them, or not,
based on the numbers of iterations of all nested levels. Examine the double
loops first. In the loop below, whether it is parallelized or not depends on both
JMAX and IMAX:

DO J=1, IMAX
DO I =1, | MAX
AL, 3)=B(1, J)
ENCDO
ENCDO

In this simple example, it is always the outer loop that is parallelized, if the
nested loop is parallelized at all. If the outer loop has no parallelism and the
inner one does, the compiler tries to parallelize the inner loop according to
the same criteria for single loops:

DO J=1, IMAX I Not parallelized
CALL SUB

RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

DO I =1, | MAX I Mght be parallelized

AL, J) =K1, J)
ENDDO
ENDDO

For loops with more than two levels, the same argument applies except that
the compiler may possibly change the order of loops. For instance, a nested

loop:
DO K=1, 4
DO J=1, 1000
DO 1 =1, 1000
A('!‘]!K):B(IrJrK)
ENDDO
ENDDO
ENDDO

is parallelized as follows:

DO J=1, 1000 | Parallelized
DO K=1, 4 I Not parallelized
DO 1 =1, 1000 I Not parallelized
A1, 3, K =B(1,J,K
BENDDO
ENDDO
ENDDO

Note that loop J and loop K are exchanged.

4.5.3 How to Affect the Decision of Cost-Based Analysis

XL Fortran estimates the benefit of parallelization according to its own logic,
which is not always ideal. There are cases where DO loops are not
parallelized while they should be, or DO loops are parallelized even if the
performance degrades. In this section, some techniques are presented for
changing how the compiler estimates loops.

As described in 4.5.1, “Cost-Based Analysis - Single Loops” on page 45 and
4.5.2, “Cost-Based Analysis - Nested Loops” on page 46, the information that
the compiler uses in cost-based analysis is the number of iterations of loops.
Therefore, if the compiler presumed the value that you wish for the number of
iteration of some loop, the compiler would behave as you wish regarding
parallelization of the loop. For that purpose, there is a directive called
ASSERT(ITERCNT(N)) that tells the compiler to use n in the evaluation of the
number of iterations of the loop immediately following the directive. Since the
value of n is used only in the cost-based analysis, you can specify a different

Using the SMP Feature of XL Fortran 47

number from the one that the loop actually iterates. The following are
examples of how to use this directive.

The DO loop in the following subroutine is parallelized because the value of N
is unknown:

SUBROJTI NE SUB(A N

D MENSI ON A(N

DO =1, N I Parallelized
A(1)=0.0

ENDDO

END

If you know that the value of N is small and that parallelization will degrade
the performance, you can give the compiler a small value and serialize the
loop, or you can force the compiler to serialize the loop by the DO SERIAL
directive:

SUBRAUTI NE SUB(A'N
D MENSI ON A(N)
I SWP$ ASSERT(| TERONT(1)) | DO SERAL al so works
DO 1=1,N I Not parallelized
A(1)=0.0
ENDDO
END

Even if the number of iterations is explicitly given in the code, the directive
can be used. The following is a case where for some reason you parallelize a
loop against compiler’s decision:

SUBRAUTI NE SUB(A' N
D MENSI ON A(N
I SWP$ ASSERT(| TERCNT(1000))
DO 1=1, 10 | Parallelized
A(1)=0.0
ENDDO
END

But in the current implementation of XL Fortran, if the compiler knows that the
size of an array is below threshold value, it neglects the directive:

SUBRAUTI NE SUB(A)
D MENSI ON A(10)
I SMP$ ASSERT(| TERONT(1000))
DO 1=1, 10 I Not parallelized
A(1)=0.0
ENDDO
END

48 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

In parallelizing nested loops, you may have to write an ASSERT directive for
a loop which is not the one you want to parallelize:

SUBROUTI NE SUB(A)
DI MENS| ON A(2, 1000)

DO K=1, 1000 I Not parallelized (but shoul d be)
DO J=1, 2 I Not parallelized
AJ,K=0.0
ENDDO
ENDDO
END

It is the few iteration of J that prevents the compiler from parallelizing K’s loop:

SUBROJTI NE SUB(A N
DI MENSI ON A(N, 1000)
DO J=1, 1000 I Parallelized
ISW$ ASSERT(| TERONT(1000))
DOI=1,2 I Not parallelized
A(l,J3)=0.0
ENDDO
ENDDO
END

Note that you need to hide A’s first dimension size from the compiler in order
for the directive to work.

There is a trick that does not use ASSERT directive. Suppose that you want
to parallelize the inner loop in the following subroutine:

SUBROUTI NE SUB(A M N
D MENSI N A(M N

DO J=1, 4 I Not parallelized
DO | =1, 1000 I Not parallelized
A(l,J3)=0.0
ENDDO
ENDDO
END

As mentioned in 4.5.2, “Cost-Based Analysis - Nested Loops” on page 46, if
the outer loop does not have parallelism, the compiler tries to parallelize the
inner one:

SUBROUTI NE SUB(A M N
DI MENSI N A(M N

DO J=1, 4 I Not parallelized
CALL DUMWY
DO | =1, 1000 I Parallelized
A(l,J)=0.0

Using the SMP Feature of XL Fortran 49

SUBRAUTI NE DUMWY
END

A dummy subroutine call prevents the automatic parallelization (Section
4.4.1.8, “Subroutine Calls” on page 44) and the inner loop is parallelized as
desired.

If you use the PARALLEL DO directive, you can also parallelize a specific
loop that you want. But there is a considerable difference between ASSERT
and PARALLEL DO: ASSERT is an assertion directive, that is, it is still up to
the compiler whether to parallelize the loop or not. On the other hand,
PARALLEL DO is a prescriptive directive that forces the compiler to
parallelize the loop regardless of parallelism and cost-based analyses, and it
is you who has to take care of variables (other than loop iteration variables) in
the loop with appropriate clauses, such as PRIVATE and REDUCTION.

4.6 Directives

50

When XL Fortran does not parallelize a certain part of a code, you can force
or give a hint to the compiler to parallelize that part by using directives.
Directives related to parallelization are classified into three categories. The
asterisks indicate directives that are described in the following sections.

1. Assertion directives that provide information to the compiler about the
source code that the compiler would not necessarily be able to determine
on its own:

* ASSERT
* CNCALL
* INDEPENDENT
* PERMUTATION*

2. Prescriptive directives that specify how and when the compiler should

parallelize the code:

* CRITICAL

* PARALLEL DO*

* PARALLEL SECTIONS*
* SCHEDULE*

RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

* DO SERIAL

3. Thread-safing directive that allocates thread-specific COMMON areas at
run time:

* THREADLOCAL*

Directives are triggered by !ISMP$, ISOMP, !IBM*, or others by default, but
ISMP$ is used throughout the chapter. The next several sections describe the
directives that are considered to be used most frequently in parallelizing real
codes. For complete reference of all the directives, see Chapter 11 of XL
Fortran for AIX Language Reference Version 5 Release 1, SC09-2607.

4.6.1 PARALLEL DO Compiler Directive

When you know that no iteration of a DO loop can interfere with any other
iteration and the compiler fails to parallelize the loop automatically, you can
specify a PARALLEL DO directive to parallelize the loop. In real codes, it is
often the case that it is not enough to write a PARALLEL DO directive alone.
In addition to the PARALLEL DO directive a, PARALLEL DO clause, such as
PRIVATE or REDUCTION, might be necessary. In this section, parallelization
of DO loops having subroutine calls and/or function calls is not described.

The following subsections describe PARALLEL DO clauses.

4.6.1.1 PRIVATE and LASTPRIVATE

A variable should be specified with the PRIVATE attribute, if its value is used
during the calculation of a single iteration of a loop, and that value is not
dependent on any other iteration of the loop. Copies of the PRIVATE variable
exist locally on each thread. All DO loop iteration variables within the lexical
extent of the PARALLEL DO directive are given the PRIVATE attribute by
default. (The lexical extent of a PARALLEL DO directive includes the
corresponding DO loop and the code that is enclosed in that DO loop.) The
following is an example where you force the compiler to parallelize a DO loop
for some reason, although the compiler automatically parallelizes this simple
case without directives:

I SWP$ PARALLEL DO PR VATE(P, Q
DO I=1, N
P=A(1)
Q=B(1)
ql)=pP
X1)=Q
ENDDO

A variable in the PRIVATE clause must not:

Using the SMP Feature of XL Fortran 51

« Be a pointer, or

« Be an assumed-size array, or

« Be an assumed-shape array, or

Be a THREADLOCAL common block variable.

The LASTPRIVATE clause functions in a similar manner to the PRIVATE
clause and should be specified for variables that match the same criteria. The
exception is the status of the variable upon exit from the loop. The compiler
determines the value of the variable at the final iteration and takes a copy of
that value. The copy of the value is then saved in the named variable for use
after the loop.

4.6.1.2 REDUCTION

The REDUCTION clause specifies named variables that appear in reduction
operations. The compiler will maintain local copies of such variables, but will
combine them at loop exit. The intermediate values of the REDUCTION
variables are combined in random order, dependent on which threads finish
their calculation first. There is, therefore, no guarantee that bit-identical
results will be obtained from one parallel run to another, even if the parallel
runs use the same number of threads and the same scheduling type and
chunk size. The syntax of REDUCTION clause is

REDUCTION([op_fnc :] named_variable_list)

where op_fnc is one of the reduction operators: +, -, *, .AND., .OR., .EQV.,
.NEQV., .XOR. or one of the reduction functions: MAX, MIN, IAND, IOR,
IEOR. In order to maintain compatibility with OpenMP, op_fnc must be
specified when the directive is triggered by $OMP. The following is an
example:

I SWP$ PARALLEL DO REDUCTI ON +: S1, &2),
| SMP$& REDUCTI QN MAX: QVAX)
DO 1=1,N
S1=S1+A(I)
2=S2+B(1)
QUAX=NAX(QVAX, (1))
ENDCDO

In the following loop, it is the outer loop that is parallelized, and you need to
declare S as PRIVATE rather than REDUCTION:

I SW$ PARALLEL DO PR VATE(S)

DO J=1,N | Parallelized
S=0.0
DO =1, N I Not parallelized

52 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

S=SHA(L, J)
ENDDO
B(J)=S

ENDDO

4.6.1.3 IF

The IF clause performs a run time test to choose between executing the loop
in serial or parallel:

I SWP$ PARALLEL DO | F(N>1000)
DO I=1, N
A(1)=0.0
ENDDO

4.6.1.4 SCHEDULE

The SCHEDULE clause in a PARALLEL DO directive specifies the chunking
method for parallelization of the DO loop immediately following it, whereas a
directive starting with SCHEDULE applies to all loops in the scoping unit that
do not already have explicit scheduling types specified. Section 4.6.4,
“SCHEDULE Compiler Directive” on page 54, describes types that you can
choose in the SCHEDULE directive.

4.6.2 PARALLEL SECTIONS Compiler Directive

The PARALLEL SECTIONS directive is used to define independent blocks of
code that the compiler can execute concurrently. In using this directive, you
have to keep in mind the following:

¢ The larger the granularity of the independent blocks is, the smaller the
relative overhead of parallel execution will be.

¢ On the other hand, if the granularity of the independent blocks is large,
the assigned work for each thread will likely be unbalanced, in general.

« The number of sections is given statically in the code. That is, the
number of threads for parallel execution of this part of the code is no
more than the number of sections, unless the prescriptive parallel
construct (PARALLEL SECTIONS or PARALLEL DO) is nested and you
compiled the program with -gsmp=nested_par option. Of course, in
either case, the number of threads cannot exceed the value of parthds
run-time option. See 4.1, “How to Compile, Link, and Execute” on page
29 for parthds.

The following is a simple example of the PARALLEL SECTIONS directive:

| SW$ PARALLEL SECTI ONS
I SWP$ SECTI ON

Using the SMP Feature of XL Fortran 53

CALL SuBl
I SWP$ SECTI ON
CALL SuB2
I SWP$ END PARALLEL SECTI ONS

If necessary, you must add the appropriate clause to the PARALLEL
SECTIONS directive, such as PRIVATE and SHARED. For details, see XL
Fortran for AIX Language Reference Version 5 Releasel, SC09-2607.

4.6.3 PERMUTATION Compiler Directive

As mentioned in section 4.4.1.7, “Indirect Addressing” on page 43, indirect
addressing of array elements prevents the compiler to parallelize the loop
containing it. If you know that there are no repeated values in the array used
for addressing, you can tell the compiler of that information by using the
PERMUTATION directive:

I SWP$ PERVUTATI O\(| NDEX)

DO 1=1,N | Parallelized
ACTNDEX(1)) =A(1T NDEX(I')) +B(1)
ENDDO

4.6.4 SCHEDULE Compiler Directive

The SCHEDULE directive specifies how the iterations of a DO loop are
divided and assigned to threads. The syntax for the SCHEDULE directive is
as follows:

SCHEDULK(sched_type [, n])

where n is an integer and sched_t ype is one of AFFINITY, DYNAMIC,
GUIDED, RUNTIME, or STATIC. When using RUNTIME, n must not be
specified. The following shows how each scheduling policy assigns iterations
to threads for the case where the number of iterations is 1000 and the
number of threads is four:

STATIC If n has been specified, say n=50, the iterations of a loop are
divided into chunks containing 50 iterations. Each thread is
assigned chunks in a round-robin fashion. This is known as
block cyclic scheduling. If the value of n is 1, then the
scheduling type is specifically referred to as cyclic
scheduling.

If n has not been specified, the iteration is divided into four
chunks containing 1000/4=250 iterations and each thread is
assigned one of these chunks. This is known as block
scheduling.

54 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

DYNAMIC

GUIDED

AFFINITY

RUNTIME

If n has been specified, say n=50, the iterations of a loop are
divided into chunks containing 50 iterations each.
Otherwise, the chunk size will be 1000/4=250. Threads are
assigned these chunks on a first-come, first-do basis until all
chunks have been assigned.

If n has been specified, the iterations of a loop are divided
into progressively smaller chunks until a minimum chunk
size of nloop iteration is reached. If n has not been
specified, the default value for nis 1 iteration. The first
chunk contains 1000/4=250 iterations. The subsequent
chunks contain (1000-250)/4=750/4=188 iterations,
(750-188)/4=562/4=141 iterations, (562-141)/4=106
iterations, and so forth. Available threads are assigned
chunks on a first-come, first-do basis. Chunks of the
remaining work are assigned to available threads, until all
work has been assigned.

The iterations of a loop are initially divided into four
partitions containing 1000/4=250 iterations. Each partition is
initially assigned to a thread, and is then further subdivided
into chunks containing n iterations, if n has been specified.
Otherwise, each partition is subdivided into two chunks.
When a thread becomes free, it takes the next chunk from
its initially assigned patrtition. If there are no more chunks in
that partition, the thread takes the next available chunk from
a partition initially assigned to another thread.

Determine the scheduling type at run time. At run time, the
scheduling type can be specified using the environment
variable XLSMPOPTS. If no scheduling type is specified by
XLSMPOPTS, STATIC is used as default.

If you specify more than one method of determining the scheduling type, the
compiler will follow in the order of precedence:

1. SCHEDULE clause of the PARALLEL DO directive (for example,
ISMP$ PARALLEL DO SCHEDULE(STATIC,1))

2. SCHEDULE directive (for example, !SMP$ SCHEDULE(STATIC,1))

3. The schedule suboption to the -gsmp compiler option (for example,
-gsmp=schedule=static=1)

4, XLSMPOPTS run-time option (for example,
XLSMPOPTS=schedule=static=1)

5. Run-time default, that is, STATIC

Using the SMP Feature of XL Fortran 55

4.6.5 THREADLOCAL Compiler Directive

In general, data in a COMMON block is shared among all the threads that
belong to the same process. The THREADLOCAL directive is used to ensure
that a COMMON block is local to each thread but is global within the thread. If
a common block is declared as THREADLOCAL within a scoping unit, any
subprogram that declares or references the common block, and that is
directly or indirectly referenced by the scoping unit, must be executed by the
same thread executing the scoping unit.

4.7 NUM_PARTHDS Intrinsic Function

The NUM_PARTHDS intrinsic function returns the number of parallel Fortran
threads at run time. With this function and the PARALLEL DO directive, you
can determine how the work is divided to threads, which gives more flexibility
to you than the SCHEDULE directive does. In this section, an example is
given that shows how NUM_PARTHDS is used in parallelizing a loop having
flow dependence.

The following subroutine cannot be parallelized because it has flow
dependence (see Section 4.4.1.2, “Loops That Have Flow Dependence” on
page 40):

SUBROUTI NE SUB(A B N

D MENSI ON A(O: N, B(N)

DO1=1,N

A1) =A(1-1) +B(1)
ENDDO
END

When the loop exits, the array A has the following values:

A1) =A(0) +5(1)
A(2)=A(0) +8(1) +5(2)

A(3)=A(0) +8(1) +5(2) +(3)

AN =A(0) +B(1) +B(2) +B(3) +. . . +B(N

The idea in parallelizing this loop is as follows:

56 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

1. Divide the array B into chunks,
2. Leteach thread calculate the subtotal of its assigned chunk, and

3. Calculate the array A in parallel.

The manually parallelized code is as follows:
SUBROUTI NE PSUB(A B, N

D MENSION A(O: N, B(N)
| NTEGER ALLQCATABLE :: ISTA(:), | ENX:)

NTHDS=NUM PARTHDS()
ALLQCATE(| STA(0: NTHDS- 1), | END(0: NTHDS- 1))
CALL PARA RANGE(1, N NTHDS, | STA, | END)

I SW$ PARALLEL DO PR VATE(S)

DO | D=0, NTHO&- 1 I Parallelized
S=0.0
DO I=ISTAID, | ENX(I D
S=S+B(1)
ENDDO
AIENX(ID)=S
ENDDO
DO | D=0, NTH>&- 1 I Serial
ATEND(I D) =A(1BENX(1 D)) +A(1 STA(1 D) - 1)
ENDDO
| SMP$ PARALLEL DO
DO | D=0, NTHDG- 1 I Parallelized
DOI=ISTAID,IENID-1
A1) =A(T-1)+B(1)
ENDDO
ENDDO
END

The existence of a subroutine PARA RANGE is assumed, which, in this case,
assigns integers from 1 to N to NTHDSthreads in block scheduling fashion and
stores the initial and the final values of each chunk to arrays | STAand | END.
Roughly speaking, the running time in the unit of addition is N for serial and is
p+2N/p for parallel where p is the number of threads.

4.8 XLSMPOPTS Environment Variable

The XLSMPOPTS environment variable specifies run-time options related to
parallel execution. Section 4.1, “How to Compile, Link, and Execute” on page
29 describes the parthds option, which specifies the number of threads to be
used for parallel execution of the code, and its default value is the number of

Using the SMP Feature of XL Fortran 57

on-line processors. For instance, if you want to execute your program using
four threads, set this environment variable as follows:

$ export XLSMPCPTS=part hds=4
Section 4.6.4, “SCHEDULE Compiler Directive” on page 54 also mentions the
schedule option, which takes one of the following forms:

$ export XLSMPCPTS=schedul e=af fi ni t y[=n]
$ export XLSMPCPTS=schedul e=dynani c[=n]
$ export XLSMPCPTS=schedul e=gui ded[=n]

$ export XLSMPCPTS=schedul e=st at i c[=n]

When you need multiple options, separate each option by a colon:
$ export XLSMPCPTS="part hds=4: schedul e=st ati c"

In addition, there are three options (spins, yields, and delays) that control
busy-wait and sleep states of XL Fortran run-time library routines. In
execution, each thread tries to look for its work in the following steps:

1. Scan the work queue up to spins number of times. If no work is found in
a scan, then loop delays number of times before starting a new scan.

2. If work has not been found, then yield the current time slice.
3. Repeat the above steps up to yields number of times.

4. If no work has been found, then go to sleep.

The syntax for specifying these options is as follows.
« spins=n where nis the number of spins before a yield (default: spins=100)
e delays=n where nis the number of delays while busy-waiting (default:
delays=500)

« yields=n where nis the number of yields before a sleep (default:
yields=10)

By setting spins=0 and yields=0, you can force complete busy-waiting,
sacrificing other processes’ CPU time. Normally in a benchmark test on a
dedicated system, both of these options would be zero, but note that
complete busy-waiting does not always improve the performance.

4.9 OpenMP Porting Considerations

The OpenMP initiative was launched in 1997 in order to provide a simple and
flexible application program interface (API) for developing portable
multi-platform shared-memory parallel applications on UNIX platforms and

58 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Microsoft Windows NT architectures. At the time of writing, the OpenMP
Fortran API specification Version 1.0 is available. A C/C++ API is under
development. For further details refer to URL htt p: // ww opennp. or g. IBM is
part of a multi-company initiative supporting this standard.

The current release 5.1.1.0 of XL Fortran provides a subset of the OpenMP. A
complete OpenMP implementation is expected with future releases of XLF,
driven by the ASCI project. XLF also offers an interface to the pthread library,
which does help to cover certain OpenMP function when porting codes to the
RS/6000 platform. This section will give some hints concerning differences
between XLF and OpenMP and the usage of the pthread library module in
this context.

In particular, XLF has partial support for the CRITICAL, END CRITICAL,
PARALLEL DO, PARALLEL SECTIONS, SECTION, and END PARALLEL
SECTIONS directives. To ensure the greatest portability of code, it is
recommended to use these directives whenever possible. These directives
should be used with the OpenMP directive sentinel ISOMP. SMP directives
are recognized by the compiler if either xIf_r or xIf90_r is used and the -qgsmp
option is specified.

XLF does not recognize the OpenMP conditional compilation, for example,
triggered by the directive sentinel !$. Nor does XLF define the C preprocessor
macro _OPENMP to be used for conditional compilation (see #ifdef
_OPENMP). If appropriate _ OPENMP can be defined through the compiler
command line flag -WF,-D_OPENMP.

XLF does not provide the OpenMP END PARALLEL DO directive. This is a
minor difference since the PARALLEL DO is assumed to end with the DO
loop that immediately follows the PARALLEL DO in OpenMP as well.

For explicit process synchronization, XLF relies on CRITICAL and END
CRITICAL directives. Besides, there is an implied barrier at the end of a
parallel region, since only the master thread continues execution. The
PARALLEL DO and PARALLEL SECTIONS directives are shortcuts of the
OpenMP PARALLEL REGION construct, which is not available in XLF. In
particular, no OpenMP BARRIER directive is available. The BARRIER
directive can be substituted by a common pthread construct, as shown in the
example program at the end of this section.

The XLF THREADLOCAL directive makes named common blocks private to a
thread but global within a thread. It is a possible method of ensuring that

access to data contained within COMMON blocks is serialized. Threads can
be created in one of the following ways: explicitly through pthread library calls

Using the SMP Feature of XL Fortran 59

or implicitly by the compiler for parallel loop or parallel section execution. The
THREADLOCAL directive does not require the -gsmp compiler option.

The semantics of the XLF THREADLOCAL directive slightly differs from the
OpenMP THREADPRIVATE directive. The THREADLOCAL attribute is not
allowed in a pure subprogram. Members of a THREADLOCAL common block
must not appear in NAMELIST statements. A common block that is
use-associative must not be declared as THREADLOCAL in the scoping unit
that contains the USE statement. A THREADLOCAL common block may
have the SAVE attribute. In OpenMP, the data in THREADPRIVATE common
blocks is guaranteed to persist only if the OpenMP dynamic thread
mechanism has been disabled and if the number of threads is the same for all
parallel regions.

For clarification, objects within THREADLOCAL common blocks may be used
in parallel loops and parallel sections. However, these objects are implicitly
shared across the iteration of the loop and across code blocks within parallel
sections. In other words, within a scoping unit, all accessible common blocks,
whether declared as THREADLOCAL or not, have the SHARED attribute
within parallel loops and sections in that scoping unit.

XLF 5.1.1.0 does not support the OpenMP Execution Environment Routines,
such as OMP_SET_NUM_THREADS(), OMP_GET_NUM_PROCS(),
OMP_SET_DYNAMIC(), nor the OpenMP Lock Routines, such as
OMP_SET_LOCK(). As a substitute, the programmer can use the XLF
intrinsic functions NUM_PARTHDS() and NUM_USRTHDS() to inquire the
run-time environment, and the pthread mutex constructs to create and
destroy locks.

The function NUM_PARTHDS() returns the number of parallel Fortran
threads the run time should create during execution of a program. This value
is set by using XLSMPOPTS PARTHDS run-time option. If not set the
run-time environment will return the number of processors on the machine,
or, if specified, the value of the run-time option USRTHDS. The function
NUM_USRTHDS() returns the number of threads that will be explicitly
created by the user during execution of a program. This value is set by using
the XLSMPOPTS USRTHDS run-time option. The default value is 0. To be
noticed, the compiler option -gsmp has to be specified, otherwise
NUM_PARTHDS() will always return a value of 1.

The following simple example shows how to use the pthread Fortran90
module to apply locks and barriers. The program was written for
demonstration purposes only. It was not intended to present the most efficient

60 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

or complete implementation of a barrier. Indeed this version assumes a
constant number of parallel threads. For briefness, return codes are ignored.

As shown in the example, it is straight forward to mix SMP compiler directives
and pthread calls. In this case, the parallel threads are created implicitly by
the PARALLEL DO directive. At the beginning of the program, mutex objects
and condition variables have to be initialized. A lock is set though the function
call f_pthread_mutex_lock(mutex_name), similar to the OpenMP
OMP_SET_LOCK(var_name) subroutine call. The barrier is implemented as
a Fortran module. The subroutine fpth_barrier_set() uses a typical pthread
construct to build up a batrrier.

The execution overhead to set up a barrier through the pthread interface
increases with the number of threads. It amounts to less than 33 micro
seconds compared to less than 8 micro seconds for a f_pthread_mutex_lock()
call or less than 12 micro seconds for a CRITICAL directive, as found at least
for eight or less parallel threads on a two processor machine, using the
defaults for the XLSMP run-time variables spins, yields, and delays.

program hel | o_onp

use f_pthread
use fpth_barrier

inplicit none

i nteger, paraneter 1o maxt ask=20

i nteger 11 ntask, sg
type(f_pthread_nutex_t) :: |ock_mutex

i nteger ;o itask(maxtask), it, nb, rc

comon /gl obal / sg, | ock_nutex

! --- init
lock_nutex = pthread_nutex_initializer
call fpth_barrier_init()
ntask = num parthds()
sg =0

nb = 10

! --- parallel threads
! $OWP PARALLEL DO
do it=1, ntask
itask(it) =it-1
call sub(nb, itask(it))
end do

! --- clean up
rc = f_pthread_nut ex_destroy(| ock_mut ex)
call fpth_barrier_destroy()

end program hel | o_onp

Using the SMP Feature of XL Fortran 61

R R R R R R T R T s

subroutine sub(nb, itask)

use f_pthread
use fpth_barrier

implicit none

i nt eger :: nb, itask

i nt eger 11 sg

i nteger ios, i, istart, iend
type(f_pthread_nutex_t) :: |ock_mutex

i nt eger iiorc

conmon / gl obal / sg, | ock_mut ex

conmon /| ocal / s

1 B THREADLOCAL /1 ocal /

1 $OWP CRITI CAL(crit0)
print *, 'task ’, itask, 'starting ...
I$OMP END CRITICAL(crit0)

,

! --- compute partial sum
istart = 1+itask*nb
iend = (itask+1)*nb

s=0

doi=istart, iend
S=s+i

end do

! - update global sum
rc = f_pthread_mutex_lock(lock_mutex)
sg=sg+s
rc = f_pthread_mutex_unlock(lock_mutex)

I - wait until all tasks are finished
call fpth_barrier_set()
if (itask .eq. 0) then
print*, 'Sum is ’, sg
end if

end subroutine sub

module fpth_barrier
use f_pthread

| --- global vars

type(f_pthread_mutex_t) :: barrier_mutex
type(f_pthread_cond_t) :: barrier_cond

integer :: taskcounter
integer : numtasks

62 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

contains

init barrier ------cccmomom i
subroutine fpth_barrier_init()

use f_pthread
inplicit none
taskcounter = 0
nunt asks = num part hds()

barrier_mutex = pthread_nutex_initializer
barrier_cond = pthread_cond_initializer

end subroutine fpth_barrier_init

Set barrier -------mmmm
subroutine fpth_barrier_set()
use f_pthread
implicit none
integer :: rc
rc = f_pthread_mut ex_| ock(barrier_mut ex)
taskcounter = taskcounter + 1
if (taskcounter .eq. numasks) then
taskcounter = 0
rc = f_pthread_cond_broadcast (barrier_cond)
else if (taskcounter .lt. nuntasks) then
rc = f_pthread_cond_wait (barrier_cond, barrier_mutex)
end if
rc = f_pthread_mut ex_unl ock(barri er_nut ex)
end subroutine fpth_barrier_set
destroy barrier ---------c--ci i
subroutine fpth_barrier_destroy()
use f_pthread
implicit none
integer :: rc
rc = f_pthread_nutex_destroy(barrier_mutex)
rc = f_pthread_cond_destroy(barrier_cond)

end subroutine fpth_barrier_destroy

end nmodul e fpth_barrier

Using the SMP Feature of XL Fortran

63

64 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 5. Performance Libraries

There are several challenges to write programs that perform well on all
machines, since different architectures require different tuning techniques.

One solution is to have a unique program version for each architecture it is
intended to run on. This will, in general, increase the complexity of the code
as well as the complexity of the development. But even if you manage to
maintain only one version, the tuning itself tends to increase the complexity of
your program. As a more complex program increases the effort to maintain
the code, the development costs will also increase.

Therefore, commercial programs tend to be unoptimized. They will have a few
general optimization techniques implemented, but this will not give them the
performance they can expect, especially from a new processor like the
POWERS.

One way to solve this problem and get performance across different
architectures is to use standard libraries that are specifically tuned for each
platform.

This chapter describes two libraries, ESSL and MASS, that increase the
performance on all platforms they are used on, without losing portability. The
MASS library is a replacement of some FORTRAN intrinsic like EXP(). ESSL
provides significantly higher functions, such as linear algebra and FFTs.

5.1 The ESSL Library

The family of Engineering and Scientific Subroutine Library (ESSL) is a
collection of highly tuned routines you can use in your program. The ESSL
family for the AIX operating system consists of:

« Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for
Advanced Interactive Executive (AlX), program number 5765-C41

* Engineering and Scientific Subroutine Library (ESSL) for AlX, program
number 5765-C42

These products are state-of-the-art collections of mathematical subroutines
that provide a wide range of functions for many different scientific and
engineering applications.

© Copyright IBM Corp. 1998 65

Parallel ESSL runs under the IBM RS/6000 SP and clusters of IBM RS/6000
workstations. It offers mathematical subroutines in the six computational
areas and has one extra area for utilities, namely:

* Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS)

Level 2 PBLAS include a subset of the standard set of distributed memory
parallel versions of the Level 2 Basic Linear Algebra Subprograms
(BLAS). The Level 2 subroutines of BLAS perform vector-matrix operation.

¢ Level 3 PBLAS

Level 3 PBLAS include a subset of the standard set of distributed memory
parallel versions of the Level 3 BLAS. The Level 3 subroutines of the
BLAS subroutines perform matrix-matrix operations.

 Linear Algebraic Equations

Linear Algebraic Equations Subroutines consist of dense, banded, and
sparse subroutine, and include a subset of the ScaLAPACK
subroutines.The ScaLAPACK library can be found at:

http://ww netlib. org/ scal apack/
The routines in PESSL includes:

« Dense Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real and complex general matrices and
their transposes, and for positive definite real symmetric and complex
Hermitian matrices.

« Banded Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real positive definite symmetric band
matrices, real general tridiagonal matrices, diagonally-dominant real
general tridiagonal matrices, and real positive definite tridiagonal
matrices.

« Sparse Linear Algebraic Equations Subroutines and their utility
subroutines provide iterative solutions to linear systems of equations
for real general sparse matrices.

« Eigensystem Analysis and Singular Value Analysis

Eigensystem Analysis and Singular Value Analysis Subroutines provide
solutions to the algebraic eigensystem analysis problem for real
symmetric matrices and the ability to reduce real symmetric and real
general matrices to condensed form. These subroutines include a subset
of the ScaLAPACK subroutines.

66 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

* Fourier Transforms

Fourier Transform Subroutines perform mixed-radix transforms in two and
three dimensions.

« Random Number Generation

Random Number Generation Subroutine generates uniformly distributed
random numbers.

 Utilities
Utility Subroutines perform general service functions, rather than
mathematical computations.

ESSL runs on the following platforms:
« POWER3

* IBM RS/6000 POWER, PowerPC, symmetric multiprocessing (SMP)
PowerPC, and POWER2 Processors

* IBM RS/6000 SP

It offers mathematical subroutines in nine computational areas and on an
extra utility area:

e Linear Algebra Subprograms

Linear Algebra Subprograms consist of vector-scalar, sparse
vector-scalar, matrix-vector, and sparse matrix-vector linear algebra
subprograms:

* Vector-Scalar Linear Algebra Subprograms include a subset of the
standard set of Level 1 BLAS and subroutines for other commonly used
computations. Both real and complex versions of the subprograms are
provided.

» Sparse Vector-Scalar Linear Algebra Subprograms operate on sparse
vectors; only the nonzero elements of the vectors need to be stored.
These subprograms provide functions similar to those of the
vector-scalar subprograms and represent a subset of the sparse
extensions to the Level 1 BLAS. Both real and complex versions of the
subprograms are provided.

¢ Matrix-Vector Linear Algebra Subprograms operate on a higher-level
data structure, matrix-vector rather than vector-scalar, using optimized
algorithms to improve performance. These subprograms represent a
subset of the Level 2 BLAS. Both real and complex versions of the
subprograms are provided.

Performance Libraries 67

e Sparse Matrix-Vector Linear Algebra Subprograms operate on sparse
matrices; only the nonzero elements of the matrix need to be stored.
These subprograms provide functions similar to those of the
matrix-vector subprograms.

* Matrix Operations

Matrix Operations Subroutines include Level 3 BLAS, as well as the
commonly used matrix operations: addition, subtraction, multiplication,
and transposition.

 Linear Algebraic Equations

Linear Algebraic Equations Subroutines consist of dense, banded, sparse,
and linear least squares subroutines:

« Dense Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real and complex general matrices and
their transposes, positive definite real symmetric and complex
Hermitian matrices, and triangular matrices. Some of these subroutines
correspond to the Level 2 and Level 3 BLAS.

« Banded Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real general band matrices, real
positive definite symmetric band matrices, real or complex general
tridiagonal matrices, real positive definite symmetric tridiagonal
matrices, and real or complex triangular band matrices.

e Sparse Linear Algebraic Equations Subroutines provide direct and
iterative solutions to linear systems of equations, both for general
sparse matrices and their transposes and for sparse symmetric
matrices.

e Linear Least Squares Subroutines provide least squares solutions to
linear systems of equations for real general matrices. Two methods are
provided: one with a singular value decomposition and another with a
QR decomposition with column pivoting.

« Eigensystem Analysis

Eigensystem Analysis Subroutines provide solutions to the algebraic
eigensystem analysis problem Az = wz and the generalized eigensystem
analysis problem Az = wBz. These subroutines give you several options
for computing eigenvalues or eigenvalues and eigenvectors.

* Fourier Transforms, Convolutions and, Correlations:

e Fourier Transform Subroutines perform mixed-radix transforms in one,
two, and three dimensions.

68 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

« Convolution and Correlation Subroutines offer a choice between
Fourier methods or direct methods. The Fourier-method subroutines
contain a high-performance mixed-radix capability. Also, several
direct-method subroutines provide decimated output.

» Sorting and Searching

Sorting and Searching Subroutines operate on three types of data: integer,
short-precision real, and long-precision real. The sorting subroutines
perform a sort with or without index designations. The searching
subroutines perform either a binary or a sequential search.

* Interpolation

Interpolation Subroutines provide capabilities for polynomial interpolation,
local polynomial interpolation, and both one- and two-dimensional cubic
spline interpolation.

¢ Numerical Quadrature

Numerical Quadrature Subroutines provide one-dimensional methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration by Gaussian quadrature
methods. They also provide a two-dimensional quadrature capability
within a rectangular boundary.

« Random Number Generation

Random Number Generation Subroutines generate uniformly or normally
distributed random numbers.

« Utilities
Utility Subroutines perform general service functions, rather than
mathematical computations.

Several versions of most subroutines are provided, depending on the type of
data you are processing. These may include a short- and long-precision real
version, a short- and long-precision complex version, and an integer version.
The following Web pages contains more information on ESSL and PESSL:

htt p: // waw r s6000. i bm cond sof t war e/ Apps/ essl . ht m
htt p: // waw r s6000. i bm cond sof t war e/ sp_pr oduct s/ essl par a. ht m

5.1.1 Benefits of Using ESSL
The main benefits include:

« Portability

Performance Libraries 69

Since there exists an ESSL for each RS/6000 machine, you can move the
code between different machines and different architectures, without
changing the source code. It is also compatible with public domain
subroutine libraries such as BLAS, Scalable Linear Algebra Package
(ScaLAPACK), PBLAS, making it easy to migrate from these libraries to an
ESSL product.

* Performance

The ESSL routines are written to perform well on each RS/6000
architecture. There is also a SMP version of the ESSL, in which a subset
of the functions are thread enabled. By using this version of ESSL, your
code would take advantage of all SMP features without any new
development.

5.1.2 How to Use ESSL
For access to the Guide and Reference see the following Web page:

htt p: // waw r s6000. i bm cond r esour ce/ ai X_r esour ce/ sp_books/

Porting Fortran between CRAY and the IBM RISC System/6000:

http://ww software. i bmconiad/ fortran/xl fortran/cray. htm

5.1.3 Performance Examples of ESSL

This section will discuss the performance of some of the ESSL routines. The
official ESSL and PESSL Performance Report can be found on:

htt p: // waw r s6000. i bm cond sof t war e/ sp_pr oduct s/ per f or nance/ pessl per f. ht n

— Notice

The ESSL used in this publication is an early beta of a POWER3-enhanced
library, please refer to Appendix D, “Special Notices” on page 199
regarding the performance numbers.

5.1.3.1 Dcopy
The following three approaches for copying the double precision array A into
array B are compared:

Table 9. Four Different dcopy Approaches

Simple Prefetch ESSL C memcpy

B(1)=A(l) B(1)=A(1)+B(1)*ZERO | CALL DOCPY() CALL nencpy()

70 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

How the prefetch works is shown in Figure 2., “Data Prefetch Overview” on
page 11.

In Figure 6, the performance of these copy routines using one POWER3 CPU
are shown. The numbers shown are the best out of three runs and both the
L1 as the L2 cache are flushed between each measurement. The most
efficient one is the ESSL. The simple approach from above is the second
slowest, but surprisingly, the slowest one is the C memcpy() function. By
unrolling the copy routine 16 times and multiplying only the first element with
zero, almost the same performance as the ESSL library is obtained. The main
difference is the drop of performance at 700000 KB. This event is currently
being investigated.

Copy B(l)=A(l)
1800 ——r—— 17— L T T
1600 | ESSL — ! .
Simple ----- :
n Prefetch ----- i]
1400 16x Unrolled - !
1200 |- MeMCPYO ~ | -
«» 1000 F . .
a @
= 800 | e S .
600 |- e i .
400 - : —
200 ! .
0 ' ol L ral pal .:.I 1 pal o E. i - pal 1
1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09
Bytes

Figure 6. Copy Rates of a Double Precision Array

Performance Libraries 71

5.1.3.2 DAXPY
The three DAXPY versions shown in Table 10 are compared.

Table 10. Three DAXPY Versions:

Simple

4x Unrolled

ESSL

YO =Y(1) +AX(1)

YO =Y() +AX(1)

Y(1+1) =Y(1 +1) +A*X(| +1)
Y(I+1) =Y(1 +2) +A* X(| +2)
Y(I+1) =Y(1 +3) +A* X(| +3)

CALL DAXPY()

Only the best run out of three is used, and the caches are flushed between
each run. As can be seen in Figure 7, the ESSL version is slower than the
handwritten versions for a vector length up until 5300. Above 5300, it is the
fastest one. This is an effect of the overhead in the ESSL routine, as it checks
the input arguments.

120

100

80

60

MFLOPS

40

20

T

ESSL
Simple
~4x Unrolled

100 1000 10000 100000 1e+06 1e+07 1e+08
Elements

Figure 7. DAXPY Comparison

5.1.3.3 DGEMM
For an example and performance numbers using DGEMM, consult section

9.3, “Case Study: Matrix Multiplication” on page 151.

72 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

5.1.3.4 Sorting of an Array

One way to optimize your program is to change the algorithm you are using.
Consider the following example of sorting an array. The simplest way of doing
it is by a bubble sort. Another algorithm is quick sort, which XL Fortran provides a
version of. ESSL has several sort algorithms, dsort was selected here. In
Figure 8, the three algorithms are compared. The timings are the best out of
three runs, and the caches are flushed between each run. All timings over 30
seconds were excluded. As can be seen in Figure 8, the bubble sort is only
good for a few thousand values. The ESSL dsort routine is faster than the
gsort provided by XL Fortran.

Sorting of an Array
40 — ' r ‘' r rtr' . rtr' . Tt T T

ESSL —
35 Quick Sort ----
Bubble Sort -----

30

25

20

Seconds

15

Lol _w’: al = R Lol L
1000 10000 100000 1e+06 1e+07 1e+08
Elements

o JL Y PR
1 10 100

Figure 8. Three Sorting Algorithms

5.2 MASS

The Mathematical Acceleration SubSystem (MASS) library is another
approach to increase the performance of a code. It provides high
performance versions of a subset of Fortran intrinsic functions. To do this, it
sacrifices a small amount of accuracy. Compared to the standard
mathematical library, libm.a, the MASS library can only differ in the last bit.
This is not significant in most programs. The libmass.a library can be used

Performance Libraries 73

with either Fortran or C applications and will run under AIX on all of the IBM
RS/6000 processors. As all functions in the MASS library use the same
syntax as the standard functions it replaces, you do not have to make any
changes in the source code to use it.

MASS also offers a vector version for some of the functions. The vector
functions are more efficient than the scaler ones, but require that the source
code is rewritten. There are two versions of the vector MASS library. The first
library, libmassv.a, contains vector function subroutines that will run on the
entire IBM RS/6000 family. The second library, libmassvp2.a, contains the
subroutines of libmassv.a and adds a set that is tuned for and based upon the
POWER?2 architecture. As code or a library that is compiled using the
-garch=pwr2 flag will not run under POWER3, you cannot use this library on
Model 260. At the moment, there is no specific tuned version for the
POWERS.

All versions of the MASS library can be downloaded from:
ht t p: // wai r $6000. i bm cond r esour ce/ t echnol ogy/ MASY

Version 2.4 is used for all tests in this section. This version is not thread safe.

The accuracy of the functions in the MASS library can be found on the MASS
Web page mentioned above.

5.2.1 How to Use the MASS Library

To use the standard MASS library, relink your program using the linker option
-l mass:

xIf -0 ny.exe - -qgarch=pw 3 -| nass

This assumes that the MASS library is in a directory included in your library
search path. If this is not the case, you have to give the location of the library
with the -L linker option. As -Imass replaces some of the function in -Im, you
must link it before you link with -Im.

If the use of standard MASS is successful, the chance to further increase the
performance using the vector version of MASS is high. Please note that as
you frequently have to include extra arrays in your code, there will be more
memory operations to fill compared to the original version of your code.
These extra operations could decrease the overall performance even if the
calculation is done faster.

74 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

In order to guarantee the portability of a code using the vector MASS library,
the MASS package also provides Fortran source for all vector MASS library
functions which can be used on different platforms.

5.2.2 Performance of the MASS Library

Take Note

The MASS library used was not tuned for the POWER3 processor. The
generic version of the MASS library is used for measurements in this
section.

In order to see the performance gain of using the MASS libraries, the number
cycles used to perform some often used mathematical functions were
counted. The results are listed in Table 11.

In general, there is a speedup factor between 1.2 and a little over 2 by going
from the standard math library to the scalar MASS library and another factor
between 2 and 5 by going to the vector MASS library. There are two important
exceptions:

1. The POWERS has the square root function implemented in the hardware
of the CPU. When compiling for POWERS using the compiler option
-garch=pwr3, the compiler will not generate a call to the sqrt() library
function but use the hardware instead. Therefore, there is no difference in
the cycle count comparing the standard math library with the MASS library.
Figure 2 on page 11 shows the number of cycles for a hardware sqrt to be
22. As each POWER3 processor has two FPU, it can calculate two sqrts
simultaneously. The Fortran compiler generates codes, which dispatches
the sqrt calls very well; so only 11 cycles cost per sqrt call are required.

When compiling with -qarch=com, which disables the hardware sqrt, a
speedup from about 20percent is obtained, by using MASS compared to
libm. The vector MASS is almost six times faster than the libm.

2. Table 2 on page 9 also shows that the number of cycles needed for a
double precision division is 18. Again, as the POWER3 has 2 FPUs, two
divisions can be performed in parallel and the compiler does a very good
job in dispatching them to get only 9 cycles cost per division, but the

Performance Libraries 75

MASS library is able to speed up it slightly. Note that this could be
improved if a POWERS3 optimized library is developed.

Table 11. Cycles of Some Functions

Function ! R? libm.a MASS Vector MASS

Cycles | Cycles | Speedup | Cycles | Speedup
X(N=SQRT(A()) A 11.0 11.0 1.0 9.4 1.2
X(1)=SQRT(A(1)) ® A 58.9 45.4 1.3 9.4 6.3
X(D=EXP(A(I)) D 64.3 33.3 1.9 11.0 5.8
X(N=LOG(A(1)) C 83.0 53.4 1.6 11.5 7.2
X(=SIN(A(1)) B 37.7 15.7 2.4 6.6 5.7
X(N=SIN(A(1)) D 50.0 315 1.6 16.4 1.9
X(1)=COS(A(1)) B 37.2 15.7 2.4 5.8 6.4
X(1)=COS(A()) D 48.3 32.7 1.5 16.3 3.0
X(1)=TAN(A(I)) D 84.1 50.1 1.7 18.4 4.6
X(H=TAN(A()) D 80.8 50.3 1.6 18.4 4.4
X()=A(1)/B(1) BD* 9.2 9.2 1.0 7.1 1.3
X()=1.0/A()) D 9.0 9.0 1.0 7.0 1.3

Remarks:

1. The arrays A and X each have 1024 elements.
2. R describes the range the value of input arguments can take:
o A: 0<A(i)<1
e B: -1<A(i)<1
» C: 0<A(i)100
» D: -100<A(i)<100.
3. Compiled with -garch=com.
4. Alisinrange B, Bis in range D.

The cycle numbers show the performance gain by a given vector length. But
you will get a different speedup for different vector length. As an example
consider the following simple loop using the exponential function:

DO =1, N

A1) =BXP(B(1)
END DO

76 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

with A and B are double precision arrays. Compare this loop using the
standard exp() function from libm, the standard MASS exp() function, and
with the vector MASS function, You get by changing the loop into a function
call:

CALL BXPV(A B, N

The speedup gained is seen in Figure 9 on page 77. The two horizontal lines
mark the positions the arrays size exceeds the size of the L1 and L2 cache.
The time for the standard version of the exp() function is normalized to one.
The middle curve is the speedup for the standard MASS library. The speedup
is around 1.8 for large N’s. The upper curve is the speedup