
AIX 64-bit Performance in Focus

SG24-5103-00

International Technical Support Organization

http://www.redbooks.ibm.com

Andy Hoetzel, Rosa Fernandez, Motonobu Koh, Romuald Marshall
Dave Martin

AIX 64-bit Performance in Focus

SG24-5103-00

April 1998

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (April 1998)

This edition applies to AIX Version 4, Release 3.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix F, “Special Notices” on page 179.

Take Note!

© Copyright IBM Corp. 1998 iii

Contents

Figures . ix

Tables . xi

Preface .xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xvi

Chapter 1. Introduction to 64-bit Components . 1
1.1 64-bit Machine Architecture . 1

1.1.1 Basic Concepts. 2
1.1.2 PowerPC: A 64-bit Architecture Design . 2
1.1.3 Other Hardware Architectures. 3
1.1.4 Benefits of 64-bit PowerPC Architecture . 4

1.2 64-bit Operating System Capabilities . 6
1.2.1 AIX V4.3 Key Messages . 7

1.3 64-bit Application Software. 10
1.4 Conclusion . 11
1.5 References. 11

Chapter 2. Why Do I Need 64-bit? . 13
2.1 IBM’s RS/6000 PowerPC 64-bit Architecture 14

2.1.1 Full Binary Compatibility . 16
2.1.2 What 64-bit Architecture is Not . 16
2.1.3 A Summary So Far . 16

2.2 The Move to 64-bit . 17
2.3 Users in Engineering, Science and Business 17

2.3.1 Typical 64-bit Applications . 18
2.4 Users of Existing 32-bit Systems . 19

2.4.1 Heavy-Duty 32-bit Application Users. 20
2.5 AIX 64-bit Architecture Benefits . 22
2.6 Performance of Migrated Programs . 23

2.6.1 Variable Performance . 23
2.7 The Necessity for 64-bit Applications . 24

2.7.1 Inventory of AIX 64-bit Programs . 25
2.7.2 A PC-Based Illustration. 25

2.8 64-bit Hardware . 25
2.8.1 S70 Memory Optimization. 26
2.8.2 S70 I/O Address Space . 26
2.8.3 S70 Floating-Point Performance . 26

2.9 Summary and Recommendation. 27

iv AIX 64-bit Performance in Focus

2.10 References. 28
2.10.1 Web Pages . 28

Chapter 3. Performance Tools Changes . 31
3.1 Packaging Changes . 31
3.2 Summary of Changes to the Tools . 32
3.3 Performance Toolbox for AIX V4.3 . 34

3.3.1 The bf and bfrpt Commands . 34
3.3.2 The filemon Command . 35
3.3.3 The fileplace Command . 36
3.3.4 The genld Command . 36
3.3.5 The genkld Command. 37
3.3.6 The rmss Command . 37
3.3.7 The stripnm Command . 38
3.3.8 The svmon Command. 38
3.3.9 The syscalls Command. 38
3.3.10 The tprof Command . 38
3.3.11 The perfagent.server Tool. 39

3.4 Standard Performance Tools . 39
3.4.1 The no Command . 39
3.4.2 The nfso Command . 41
3.4.3 The prof Command. 41

3.5 Other Tools . 42
3.5.1 The trace Facility . 42
3.5.2 The PerfPMR Package . 44
3.5.3 The cpu_state Command . 44
3.5.4 The vmtune Command . 44
3.5.5 The Program Visualizer . 45
3.5.6 The Xprofiler Tool . 46

3.6 References. 47

Chapter 4. Performance Tuning Considerations 49
4.1 CPU Tuning Considerations . 49

4.1.1 The schedtune Command. 49
4.2 Memory Tuning Considerations . 51

4.2.1 Paging Space . 51
4.2.2 Modifying VMM with vmtune . 52
4.2.3 Binding Processes to Processors . 54

4.3 I/O Tuning Considerations . 54
4.3.1 Logical Volume Striping . 54
4.3.2 Modifying I/O with vmtune . 55
4.3.3 Working with the jfslog . 56

4.4 Network Tuning Considerations . 58

v AIX 64-bit Performance in Focus

4.4.1 Modifying the Path MTU Settings . 58
4.4.2 Modifying NFS Performance with nfso . 59

4.5 References. 60

Chapter 5. Programming in 64-bit . 61
5.1 64-bit Programming Specifications . 61

5.1.1 64-bit C Programming Specifications . 61
5.1.2 64-bit FORTRAN Programming Specifications 71
5.1.3 64-bit Object Format Specification . 77
5.1.4 64-bit Performance Benefits . 85

5.2 Cache Line Size and Performance . 87
5.3 Data Sharing with 32-bit and 64-bit Applications. 87

5.3.1 Creating Large Files . 87
5.3.2 Using Large Memory Area . 89
5.3.3 Read Data with 32-bit Application . 92

5.4 References. 95

Chapter 6. Migration Techniques . 97
6.1 Migration to AIX V4.3 . 97

6.1.1 AIX V4.3 Changes . 98
6.2 32-bit to 64-bit Application Migration Planning 98

6.2.1 Limitation . 98
6.2.2 32-bit and 64-bit Application . 98
6.2.3 32-bit Binary Compatibility on 64-bit Hardware 98
6.2.4 64-bit and 32-bit Interoperability Requirements. 99
6.2.5 System Limits . 100
6.2.6 The 64-bit Migration Procedure. 100

6.3 64-bit Corresponding Commands . 101
6.3.1 New Crash Commands . 101
6.3.2 Header File Changes . 103
6.3.3 Code and Data Analysis . 103
6.3.4 The New lint Option -t . 106
6.3.5 The Compiler Option -qwarn64 . 108
6.3.6 Superseded Libraries . 109
6.3.7 64-bit to 32-bit Data Reformatting . 109
6.3.8 APIs Not Moved to 64-bit . 109
6.3.9 Application-Specific Porting Issues . 110

6.4 Thread Considerations . 112
6.4.1 Thread Programming and Performance 112
6.4.2 New Pthreads . 112
6.4.3 Thread-Safe Libraries . 113
6.4.4 Porting Issues. 113
6.4.5 Threads Scheduling . 116

vi AIX 64-bit Performance in Focus

6.4.6 Thread Data Size . 118
6.4.7 64-bit Thread Benefits . 118

6.5 Device Drivers Considerations . 119
6.5.1 Device Drivers and 64-bit Application Support 119
6.5.2 Changes to ioctl() . 120
6.5.3 PCI d_map Changes . 120
6.5.4 Common Problems with PCI Device Drivers in 64-bit 120
6.5.5 Network Device Drivers . 122
6.5.6 Streams Modules and Drivers. 123

6.6 References. 123

Chapter 7. 64-bit Interlanguage Calls . 125
7.1 Mixing FORTRAN and C: Programming Techniques. 125

7.1.1 Conventions for XL Fortran and C External Names. 125
7.1.2 Passing Data between FORTRAN and C Languages 128
7.1.3 Passing Arguments by Value . 132

7.2 Type Encoding and Checking . 138

Appendix A. Some 64-bit Mathematics Hints and Tips 139
A.1 Hints and Tips for 32-bit Mathematics . 139

A.1.1 Values and Representation of Binaries . 139
A.1.2 The AIX 32-bit Values. 142

A.2 Hints and Tips for 64-bit Mathematics . 143
A.2.1 Useful 64-bit Notations . 144
A.2.2 AIX 64-bit Examples . 145
A.2.3 A Fast Way to Read 64-bit Values . 146
A.2.4 A Useful Calculator . 147

Appendix B. Process Address Space Layout . 149
B.1 Terminology . 149
B.2 32-Bit Process Address Space Layout . 150

B.2.1 32-bit Address Space Layout . 150
B.2.2 32-bit Large Address Space Layout . 151
B.2.3 Paging Space Considerations for Large Programs. 153
B.2.4 32-bit Address Space Layout and Inter-Process Communication . 153

B.3 64-Bit Process Address Space Layout . 155
B.3.1 64-bit Address Space Layout . 155
B.3.2 Large Data and Paging Space Allocation Policies 158
B.3.3 64-bit Address Space Layout and Inter-Process Communication . 160

vii AIX 64-bit Performance in Focus

Appendix C. A Sample Thread Program . 161

Appendix D. AIX Linker/Loader . 165

Appendix E. Migration Documentation . 167
E.1 C for AIX: 32-bit to 64-bit Migration Considerations 167

E.1.1 Constants . 167
E.1.2 Assignment of Long Variables to Integers and Pointers 169
E.1.3 Structure Sizes, Alignments, and Bitfields 170
E.1.4 Miscellaneous Issues . 171
E.1.5 Interlanguage Calls with FORTRAN . 171

E.2 README: C for AIX . 172

Appendix F. Special Notices . 179

Appendix G. Related Publications . 183
G.1 International Technical Support Organization Publications 183
G.2 Redbooks on CD-ROMs. 183
G.3 Other Publications . 183

How To Get ITSO Redbooks . 187
How IBM Employees Can Get ITSO Redbooks . 187
How Customers Can Get ITSO Redbooks. 188
IBM Redbook Order Form . 189

List of Abbreviations . 191

Index . 195

ITSO Redbook Evaluation . 199

viii AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 ix

Figures

1. PowerPC’s 64-bit Implementation vs. 32-bit Implementation 15
2. Storage Mapping of Parm Area in 32-bit Environments. 137
3. Storage Mapping of Parm Area in 64-bit Environments. 138
4. Process Private Segment (Segment 2) . 151
5. Process Private Segment (Segment 2) for Large Programs 152

x AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 xi

Tables

1. 32-bit/64-bit Compatibility . 3
2. Will It Work?. 10
3. Summary of Changes for the Performance Toolbox for AIX V4.3 Tools . . 32
4. Summary of Changes for the Standard (UNIX) Tools 33
5. Summary of Changes for the Other Tools . 34
6. ILP32, LP64 and C for AIX Compiler Model Type Size 63
7. RISC System/6000 Alignment Rules . 64
8. Macintosh and Twobyte Alignment Rules . 66
9. Settings for -qarch with -q32 or -q64 . 79
10. Default Compiler Bit Mode Determined by the OBJECT_MODE Setting . 83
11. 64-Bit System Limits . 86
12. Corresponding Data Type in FORTRAN and C . 129
13. Storage of a Two-Dimensional Array with C and FORTRAN. 131
14. Binary/Hexadecimal Values (from 0 to 15) . 139
15. Binary/Hexadecimal Values (from 16 to 31) . 140
16. Huge Values . 144
17. Powers of Two to Know . 144
18. KB, MB, GB, TB, PB, EB Decimal Values . 147
19. 32-bit Address Space Implementation . 150
20. 64-bit Address Space Layout (Part 1) . 157
21. 64-bit Address Space Layout (Part 2) . 158
22. Important Linker/Loader Options . 165
23. Changed Limits in limits.h . 167
24. Undesirable Boundary Side Effects . 168
25. Constant Values after Bit-Shift. 169
26. FORTRAN Types. 171

xii AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 xiii

Preface

This redbook focuses on 64-bit performance issues and AIX V4.3
performance enhancements. It describes in detail modifications made to the
performance tools that support 64-bit AIX.

System and application performance tuning topics are covered, with an
emphasis on large memory and file issues. Tuning for both 32-bit and 64-bit
applications is described. Furthermore, 64-bit programming issues for new
applications and the migration of existing 32-bit applications are described.

This redbook is intended to give Technical Sales Representatives, Technical
Consultants, System Administrators and System Engineers an in-depth
understanding of 64-bit AIX performance and tuning. Developers involved in
writing 64-bit applications and migrating existing 32-bit applications to the
64-bit environment will find the chapter on migration very useful.

A new mindset will develop as large memory 64-bit machines become
generally available, leading to unusual and unconventional programs that
take full advantage of large memory and other increased resources. This
redbook is intended to prepare Developers, System Engineers and others to
handle the performance issues associated with such applications.

To benefit from this redbook, the reader should have a basic understanding of
the hardware and software used in modern information systems. Detailed
knowledge of specific hardware or software products is not assumed.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Andy Hoetzel is an International Technical Support Specialist for RS/6000
and AIX Performance at the International Technical Support Organization,
Austin Center. He writes extensively and teaches IBM classes worldwide on
all areas of AIX internals, performance and tuning. Andy holds a master of
science degree in computer science from the University of Texas at El Paso.
Before joining the ITSO, Andy worked in the AIX Competence Center in
Munich, Germany as an AIX Technical Support Specialist.

Rosa Fernandez is an IT Specialist in France for RS/6000 at the West Area
AIX Competence Center in Paris, France. She has six years of experience as
a developer in CAD/CAM, device drivers and graphics real-time applications.

xiv AIX 64-bit Performance in Focus

She joined IBM in 1990 and was in charge of the national technical support
for CADAM products for two years. After four years as marketing and press
manager for CATIA/CADAM Products, she joined the RS/6000 division. She
holds a master of computer science from the University of Tours in France.

Motonobu Koh is an IT Specialist in Japan. He has six years of experience
with AIX and is a certified Advanced Technical Expert RS/6000 AIX V4.2. His
areas of expertise include performance measurement and tuning, capacity
planning, and eNetwork Software.

Romuald Marshall is an IT Specialist in Singapore. He has nine years of
experience with AIX. He holds a degree in Electrical and Electronic
Engineering from the National University of Singapore. His areas of expertise
include performance analysis and databases.

Dave Martin is an AIX Product Developer in the UK. He has six years of
experience with the DirectTalk for AIX product. He holds a degree in Electrical
and Electronic Engineering from The Queen’s University of Belfast. His areas
of expertise include performance measurement and tuning and capacity
planning.

Thanks to the following people for their invaluable contributions to this
project:

Marcus Brewer
International Technical Support Organization, Austin Center, Texas, USA

John Weiss
International Technical Support Organization, Austin Center, Texas, USA

Tara Campbell
International Technical Support Organization, Austin Center, Texas, USA

Steve Gardner
International Technical Support Organization, Austin Center, Texas, USA

Jasenn McNair
International Technical Support Organization, Austin Center, Texas, USA

Terry Rosser
International Technical Support Organization, Austin Center, Texas, USA

Janice Hawley
International Technical Support Organization, Austin Center, Texas, USA

xv

Mathew Accapadi
IBM Austin

Boyd Murrah
IBM Austin

Ahmed Chibib
IBM Austin

Herman Dierks
IBM Austin

Ryan France
IBM Austin

Augie Mena III
IBM Austin

Stephen Nasypany
IBM Austin

Bret Olszewski
IBM Austin

Deanna Quigg
IBM Austin

David Sheffield
IBM Austin

Luc Smolders
IBM Austin

Chet Holliday
IBM Dallas

Harold Lee
IBM Dallas

Jhy-Chun Wang
IBM Poughkeepsie

Bill Oswald
IBM Rochester

xvi AIX 64-bit Performance in Focus

Marcel Fryters
IBM Toronto

David Olshefski
IBM Watson Research Center

Heidemarie Hoetzel
IBM Germany

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 199
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com

© Copyright IBM Corp. 1998 1

Chapter 1. Intr oduction to 64-bit Components

64-bit computing and 64-bit technology is a current topic of discussion
between computer engineers and users. In certain areas of the computer
industry, 64-bit technology is, truly, the state of the art. It is clear that 64 bits
will typically give you more computing power than 16 bits or 32 bits. However,
64-bit advantages differ between environments. That is why we begin this
redbook by defining the capabilities of IBM RS/6000 64-bit and 32-bit
systems.

With the introduction of AIX V4.3 and the announcement of the RISC
System/6000 model S70, IBM is providing 64-bit solutions for its customers.

From the start, the PowerPC was designed as a 64-bit architecture (with
32-bit mode as a functional subset). The 64-bit capability is not an adaptation
or a "remodelling" of an existing 32-bit architecture, as are some of its
competitors.

This chapter describes the main 64-bit benefits for users and highlights the
different components of the 64-bit RS/6000 solutions, such as:

 • 64-bit machine architecture
 • 64-bit operating system capabilities
 • 64-bit application software

We continue by referring to the subsequent chapters that describe the
considerations and procedures that must be taken to move your solution into
the 64-bit dimension without any performance degradation.

1.1 64-bit Machine Architecture

All computers handle data in chunks of a fixed size. Originally, almost all
parts of a computer system operated on data of the same size. These chunks
of data were referred to as the wordlength of that specific machine. Since it
governed many of the capabilities, the wordlength was a key machine
characteristic. Systems were classified as "8-bit", "16-bit" or "32-bit", and
there was a clear implication that larger was better.

Defining the size of a modern system is more difficult and does not
necessarily have the same significance. Today’s designs tend to use different
data sizes in different parts. For example, most of the RISC System/6000
Micro-Channel Architecture (MCA) platforms have a 128-bit memory bus
width and are 32-bit machines. Also, most machines, such as all RISC
System/6000s, handle floating-point data in 64-bit registers.

2 AIX 64-bit Performance in Focus

What is the size of a machine that has a 32-bit integer part, a 64-bit floating-
point part, a 52-bit virtual address, and a 256-bit memory bus?

Since the smallest size, typically the integer part, is the limiting factor, this
would be defined as a 32-bit machine. Although, in many aspects, this
machine has parts that are as large or larger than its 64-bit counterparts.

1.1.1 Basic Concepts
From an operational point of view, an architecture is said to be 64-bit when:

 • It can handle 64-bit-long data. In other words, a contiguous block of 64 bits
(8 bytes) in memory is the elementary unit that the CPU can handle. This
means that the instruction set includes instructions for moving 64-bit-long
data and arithmetic instructions for performing arithmetic operations on
64-bit-long integers. Arithmetic instructions on floating-point numbers are
already implemented with 64-bit-long instructions in 32-bit machines.

 • It generates 64-bit-long addresses, both as effective addresses (the
addresses generated and used by machine instructions) and as physical
addresses (those used by the memory cards plugged into the machine
memory slots). Individual processor implementations may generate
shorter addresses, but the architecture must support up to 64-bit
addresses.

Therefore, the two great advantages of a 64-bit architecture are the possibility
of using long integers in computations and the capability of addressing large
memory spaces.

Note that virtual addresses govern the amount of memory space addressing
available to applications. They are not specified by the processor
architecture. Since virtual addresses are handled by the AIX Virtual Memory
Manager (VMM), the operating system defining its virtual memory
implementation defines the virtual address limits and application capabilities
for using the memory.

In the same manner, large file access is not specified by the processor
architecture. For example, AIX V4.2 implements support on RS/6000 32-bit
machines for large file access (beyond the 2 GB limit). If you want more
details about AIX V4.2 large file support implementation, see the redbook AIX
Version 4.2 Differences Guide, SG24-4807.

1.1.2 PowerPC: A 64-bit Architecture Design
The full 64-bit instruction set of the PowerPC architecture has been
implemented on a new line of RS64 PowerPC processors which were

Introduction to 64-bit Components 3

delivered with the RS/6000 S70 machine. Of course, the 32-bit instruction
subset of the PowerPC architecture is still present, ensuring binary
compatibility for any 32-bit applications that currently run on the PowerPC.
Moreover, 32-bit applications and 64-bit applications can run concurrently on
the same machine. Hardware 32-bit binary compatibility on PowerPC
architecture does not rely on high-overhead emulation techniques and has
required no development efforts.

This scenario lets customers make a smooth migration that satisfies all their
environmental demands, whatever they may be. Ultimately, RS/6000
customers can run their established 32-bit information technology
investments, at the same or better performance level, in the new 64-bit
environment.

One of the main successes of the 64-bit computer system is its 32-bit
compatibility and interoperability. At the PowerPC hardware level, 32-bit
compatibility is guaranteed.

Table 1. 32-bit/64-bit Compatibility

The line of PowerPC 60xe processors (PowerPC 601, PowerPC 603e,
PowerPC 604, PowerPC 604e, PowerPC 604e3) is still a 32-bit subset
implementation of the 64-bit PowerPC architecture.

The RS64A PowerPC chip is the first full 64-bit PowerPC implementation.

For more information on the 64-bit architecture, see the redbook AIX Version
4.3 Differences Guide, SG24-2014.

1.1.3 Other Hardware Architectures
For the reasons explained above, the system architecture base for systems
with large physical memory, or any memory above the 32-bit real address, is
the Common Hardware Reference Platform (CHRP). AIX supports real
memory addressing greater than 32 bits only on CHRP systems. This feature
does not support the combination of Micro-Channel on top of CHRP
(PCI-based) systems. Specifically, MCA DMA services remain a 32-bit
subsystem.

32-bit Applications 64-bit Applications

32-bit platforms Binary compatibility Fail to execute

64-bit platforms Binary compatibility The only platform to run 64-bit

4 AIX 64-bit Performance in Focus

1.1.4 Benefits of 64-bit PowerPC Architecture
The benefits of 64-bit PowerPC architecture can be summarized as follows:

 • Extended-Precision integer arithmetic
 • Access to larger executables
 • Access to larger data
 • Access to larger file datasets
 • Access to larger physical memory
 • Access to higher SMP server scalability

1.1.4.1 Extended-Precision Integer Arithmetic
The ability to use very long integers in computations is a feature that can be
very helpful in specialized applications. Some applications need to deal with
integers or bit strings larger than 32 bits. The 64-bit RS64 PowerPC does this
more efficiently than 32-bit hardware.

For example, programs that perform data matrix manipulation can deal with
large sets in potentially half as many references and logical/arithmetic
operations as before. Programs that perform software operations on bit areas
(graphics) in virtual storage can deal with twice as much data per operation
as before.

1.1.4.2 Access to Larger Executables
The ability to use a very long integer as an offset address allows applications
to handle, within the same executable, larger data areas such as malloc areas
and initialized and uninitialized variables. This support means that it is
possible to develop much larger and more complex applications than with
today’s 32-bit applications.

However, most current applications do not reach or even approach an
instruction number limit. The most important application benefit will be the
availability for a program to handle many more and much larger variables and
constants.

1.1.4.3 Access to Larger Data
Another advantage of the 64-bit architecture is the capability of managing
very large amounts of data, possibly in real memory. This simplifies the task
of the applications that need to handle big data sets.

Examples are typically in the areas of multimedia, statistics, decision support
and databases. Once again, most of the existing applications do not find
32-bit environments limiting, but the demand for 64-bit capability will increase
in the future as more powerful and demanding applications are developed.

Introduction to 64-bit Components 5

The ability to handle elementary data that is larger than 32-bit is also very
desirable. However, many advanced applications still work on data smaller
than 64-bit.

For instance, in the multimedia environment, sound requires 16-bit data and
graphics are based on 24-bit (and sometimes 32-bit) data.

1.1.4.4 Access to Larger File Datasets
The ability to create and maintain very large file systems is increasingly
important for many users. Today’s applications tend to require larger and
larger sets of data. Modern techniques, such as datamining, are based on
fast access to all data. New and emerging applications areas, such as
multimedia, often use and produce huge amounts of data. The 64-bit
architecture allows efficient handling of large amounts of data.

As seen before, accessing large files (beyond the 2 GB limit) is an operating
system issue that has been implemented since AIX V4.2. However, in some
cases it is not sufficient to access such large files; users want to handle, in
memory, the data coming from files. Moreover, when you are able to handle
large data in memory, you increase the number of files you are able to
manipulate.

That’s why large files support and larger file datasets are usually issues
mentioned as 64-bit issues, because they depend on the large memory
support provided by the 64-bit architecture.

1.1.4.5 Access to Larger Physical Memory
As mentioned before, the physical addresses that a 64-bit CPU generates are
up to 64 bits in length. Once again, this eliminates the 4 GB real memory limit
that all 32-bit architectures have. Many of today’s 32-bit systems don’t even
support as much as 4 GB of real memory and have much lower physical
limits. Not many UNIX installations currently have that much memory, but, as
for the previous items, application needs grow every year, and real memory
greater than 2 GB will become more common in the future.

1.1.4.6 Access to Higher SMP Server Scalability
As seen before, 64-bit hardware expands addressability. Greater
addressability allows for more memory and, consequently, for more
processors.

64-bit technology lets you scale enterprise SMP servers to higher capacity
performance.

6 AIX 64-bit Performance in Focus

1.2 64-bit Operating System Capabilities

Building a 64-bit machine around PowerPC processors is fairly
straightforward, so there is no lack of capable hardware. However, to really
exploit large size processors, the entire system has to support 64-bit.
Designing an operating system for 64-bit is more challenging, especially in
the UNIX open arena, where portability and standard conformance are key
aspects.

Along with the introduction of 64-bit machines, AIX operating system
enhancements exploit large memory, expose a standard-compliant 64-bit
Application Programming Interface (API) to applications and middleware, and
maintain binary compatibility with current 32-bit applications that are able to
run concurrently.

Two distinct topics are included in the term 64-bit standards. One is the latest
step in the evolution of open systems standards, the Single UNIX
Specification Version 2, also referred to as UNIX98. The second is a broad
industry agreement on data size in 64-bit programs, referred to as the LP64
data model, described in 5.1.1, “64-bit C Programming Specifications” on
page 61.

UNIX98 includes 64-bit computing features, without actually defining it, and
does not specify any dependency on 64-bit hardware. The specification
defines a programming environment for large files that allows both 32-bit and
64-bit programs to have this capability. The specification also cleans up a few
APIs that carried implications of 32-bit data types, allowing a 64-bit
programming environment the same opportunity to have standard
conformance as a 32-bit programming environment. The nature of the
specification is such that a conforming 64-bit environment might exist on a
system that supports only 64-bit programs, or on a system that supports
other environments (such as 32-bit binary compatibility) in addition to 64-bit
programs.

Consider the benefits of 64-bit computing for several customers, each with
different information technology investments that are based on existing 32-bit
system implementations. It becomes obvious that 64-bit computing will
complement 32-bit computing in different ways for each customer, and each
customer will exploit the various elements of 64-bit computing at different
speeds.

For these reasons, the AIX performance tools changes described in Chapter
3, “Performance Tools Changes” on page 31, are minor and reflect IBM’s
intent to preserve the general look and feel of the existing tools, yet expand

Introduction to 64-bit Components 7

their scope to cover 64-bit applications. Therefore, customers can take
advantage of a larger SMP provided by a 64-bit hardware architecture and
continue to work with the same tools they used on their 32-bit RS/6000
machines.

Chapter 4, “Performance Tuning Considerations” on page 49, describes
64-bit performance tuning and gives the new parameters and main
characteristics needed to handle large memory and files without any
revolutionary concept introduction. AIX V4.3, since it is a 32-bit binary
compatibility and interoperability operating system, allows 64-bit capabilities
while it maintains all well-known tools and features used by AIX system
administrators.

In these ways, AIX V4.3 gives IBM customers a smooth way to migrate the
64-bit environment capabilities with minimal user training and system
management changes.

1.2.1 AIX V4.3 Key Messages
Users new to AIX V4.3 should understand the following key messages in
order to avoid some of the misconceptions about the support of both 32-bit
and 64-bit programs by AIX V4.3.

Complete binary compatibility for 32-bit programs in AIX V4.3
 • 32-bit programs run on the 64-bit PowerPC.
 • It is not necessary to modify or recompile existing 32-bit programs.
 • 32-bit programs will run on both 32-bit and 64-bit hardware, unchanged.
 • There is 100 percent compatibility in 32-bit mode.
 • There is no performance penalty (or gain) for 32-bit applications.

PowerPC is a 64-bit architecture
 • 64-bit environment is a superset of 32-bit.
 • 32- and 64-bit environments are native.
 • There is no emulation whatsoever in either mode.

There are no barriers between 64-bit and 32-bit
 • They are complementary, not competing, environments.
 • AIX V4.3 enhances 32-bit systems.
 • AIX V4.3 enables 64-bit systems.

The following is not a complete set of features in AIX V4.3, but rather those
features relevant to 64-bit function and application migration.

Note

8 AIX 64-bit Performance in Focus

 • 64-bit environment is an upwards-compatible AIX addition.
 • 64-bit is not just a replacement for existing 32-bit functions.
 • AIX V4.3 provides two application environments on 64-bit systems.
 • There is only one AIX product for both 32-bit and 64-bit platforms.
 • There is no intention to force all applications to become 64-bit.

The 4 GB limit for system memory has been lifted
 • 4 GB (232) was the limit for 32-bit PowerPC platforms.
 • AIX V4.3 now supports memory > 4 GB.
 • AIX V4.3 supports 16 GB memory in the RS/6000 S70 server.
 • AIX will automatically extend to larger memory sizes when available.
 • 32-bit programs are still limited to < 4 GB each (because there are only 16

x 256 MB segments available in the 32-bit AIX model).
 • On the S70, a number of large 32-bit programs can each have up to 4 GB

of real memory.
 • In other words, a large 32-bit workload can make good use of any memory

> 4 GB.
 • 64-bit programs can access 260 bytes (there are 264 segments available).

Application address space can be > 4 GB
 • On an S70 with AIX 4.3 with programs compiled for 64-bit.
 • For applications that have outgrown 32-bit addressing.

It is not necessary to recompile for performance
 • 32-bit apps will perform no differently on a 64-bit machine if recompiled as

a 32-bit application, neglecting any compiler improvements.
 • 32-bit apps recompiled to 64-bit may see very slight performance variation

either way. See 2.6, “Performance of Migrated Programs” on page 23.
 • Default compiler mode is to produce 32-bit executables.
 • Simple flag (-q64) to produce 64-bit executables.

Kernel is 32-bit, with additional 64-bit extension on 64-bit platforms
 • Kernel does not need to be 64-bit to support full 64-bit function.
 • 32-bit Kernel maintains robustness and compatibility with 32-bit.
 • Kernel extensions provide all the function required by 64-bit programs.
 • New 64-bit Application Binary Interface (ABI).
 • Binary compatibility for device drivers.
 • VMM now supports 64-bit process address spaces.
 • Where necessary, some system calls are modified for 64-bit arguments

(for example, files and memory operations).
 • There are some device driver implications.

Full co-existence of 32-bit and 64-bit processes
 • On 64-bit machines 32- and 64-bit processes can be mixed.

Introduction to 64-bit Components 9

 • There is no performance penalty or compatibility issue.

Full interoperability for 32- and 64-bit processes
1. Process to Process

 • Can share files, memory, IPC resources, signal each other (but watch
alignment of shared memory).

 • Can exec() each other transparently.
 • Both 32- and 64-bit can set process limits for the other type process.

2. 32-bit and 64-bit Infrastructure

 • Compiler remains 32 bit.
 • Runs on both 32-bit and 64-bit platforms.
 • Is able to produce both 32-bit and 64-bit executables.

 • Header files changed to support both environments.
 • Infrastructure of shared libraries enhanced.

 • Same pathnames in both environments.
 • Maintaining single source files, makefiles, is straightforward.
 • Tool to manage shared libraries defaults to 32-bit content.

3. 32-bit and 64-bit Kernel Support

 • Both 32- and 64-bit virtual address spaces supported.
 • VMM and dispatcher and others involved.
 • 32- and 64-bit have equal access to system services.
 • Default behavior always favors 32-bit compatibility.
 • Device drivers generally isolated by kernel from processes.

Can I run 64-bit applications on 32-bit machines?
 • Obviously, a 64-bit program will not run since the 32-bit PowerPC lacks the

64-bit instructions. See Table 2.
 • But compiling and linking of 64-bit programs on 32-bit machines is quite

possible (if the relevant libraries and so forth are installed).

10 AIX 64-bit Performance in Focus

Table 2. Will It Work?

AIX commands and tools
 • Most elements of AIX remained 32-bit: they don’t need 64-bit abilities.
 • Most tools that need to support 64-bit do so (to handle 64-bit object

formats, process contexts and process address spaces).
 • All tools and commands will continue to support 32-bit.
 • Compilers and linkers support 64-bit (note, this does not mean that they

are 64-bit applications).

1.3 64-bit Application Software

As shown above, 64-bit computing is mainly about supporting and exploiting
large memory. Therefore, a 64-bit machine running with 256 or 512 MB
memory will have little advantage over a 32-bit counterpart.

The same is true for 64-bit applications. If your application will manage less
than 2 GB of 32-bit data, porting it to be a 64-bit application will only increase
the executable size and loader time. This could be a potential performance
disadvantage and a wasted development investment.

More details about the benefits of porting your applications from the 32-bit to
the 64-bit model and the necessary migrating efforts are discussed in
Chapter 2, “Why Do I Need 64-bit?” on page 13. Moreover, Chapter 5,
“Programming in 64-bit” on page 61, Chapter 6, “Migration Techniques” on
page 97, and Chapter 7, “64-bit Interlanguage Calls” on page 125, describe
the different programming techniques, source code migration tips and
32-bit/64-bit program interoperability.

The following list details the two main characteristics of 64-bit application
development:

32-bit platform 64-bit platform

Program compiled
for 32-bit

OK, normal performance OK, normal performance

Program compiled
for 64-bit

Will not run. The 32-bit
PowerPC processors and
all RISC processors do not
include any 64-bit
instructions.(1)

Performance may be better
or worse than 32-bit
program.

(1) AIX displays an error message similar to:
exec(): 0509-036 Cannot load program kt_64 because of the following
errors:0509-032 Cannot run a 64-bit program on a 32-bit machine.

Introduction to 64-bit Components 11

1. Development of 64-bit applications does not require 64-bit hardware.

All development tools that process program source code are able to target
the 64-bit execution environment while running on 32-bit hardware
systems.

2. Testing of 64-bit executables requires 64-bit hardware.

There is no simulation environment of the 64-bit ABI on 32-bit hardware.
The equivalence of function between 32-bit and 64-bit environments
allows programs to be easily ported with equivalent functionality, with data
size issues being the primary porting concern.

1.4 Conclusion

It should be noted that 64-bit is just one way to address the need for fast
access to large amounts of data. IBM mainframes, still the most powerful
general purpose database engines available, are 32-bit machines dealing
with data in memory through expanded storage. Massively parallel machines
such as the IBM RS/6000 SP can support extremely large memory by using
multiple, independent memory in parallel.

On the other hand, for the past two years, IBM AS/400s with OS/400 V3.6
have been 64-bit machines handling 64-bit database addressing. For
example, DB2 for OS/400 can handle 1 TB of indexes.

This book covers the 64-bit capabilities introduced in AIX V4.3 to familiarize
users with the 64-bit dimension.

1.5 References

The following are good sources for additional information.

 • 64-Bit Announcement from THE ACHIEVER

 • The RS/6000 64-bit Solution

http://www.rs6000.ibm.com/resource/technology/64bit6.html

 • AIX V4.3 Migration Guide

http://w3dev.austin.ibm.com/library/aix4.3/

12 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 13

Chapter 2. Wh y Do I Need 64-bit?

In this chapter we take a look at why the industry and IBM are moving to a
64-bit software and hardware base and the sort of applications that benefit
most. We describe the key benefits of the AIX V4.3 64-bit architecture and
give examples of applications.

We attempt to answer the question "Do I Need a 64-bit Application?" and to
debunk some myths about 64-bit systems and architecture.

We then take a look at the specific implementation of 64-bit function in IBM’s
AIX V4.3 on RS/6000 systems and discuss issues of compatibility and
performance.

This chapter assumes some familiarity with standard 32- and 64-bit concepts
as well as the basic PowerPC architecture and the specific implementation of
64-bit support in AIX V4.3.

As a quick refresher, remember that a 32-bit machine can address 232 bytes
of memory, which is a little more than 4,000,000,000 bytes or 4,096 MB or 4
GB. In discussing large address spaces, frequently-used quantities are the
megabyte (MB) which is 220 bytes or approximately 1,000,000 bytes, the
gigabyte (GB), 230 bytes or approximately 1000,000,000 bytes, and the
terabyte (TB) which is 240 bytes.

Virtual address spaces can, of course, be much larger than physical address
spaces, and it will be no surprise that the AIX V4.3 64-bit virtual address
space on 64-bit platforms is huge compared to that available to 32-bit
applications.

With today’s high-density memory technologies, the cost of 1 GB, 4 GB, or
even 16 GB of memory is high, but not out of proportion to other hardware
costs. So it is reasonable for users to want to purchase and use more
memory than existing 32-bit systems can access.

Costs shown below are relative to RS/6000 Model S70:

 • Base RS/6000 Model S70 4-way CPU + 1 GB RAM = 100%
 • Each additional 1 GB RAM = +15% (max 16 GB)
 • Each additional 4-way CPU card = +35% (max 12-way)

Relative Costs

14 AIX 64-bit Performance in Focus

2.1 IBM’s RS/6000 PowerPC 64-bit Architecture

The PowerPC was defined, from the start, to have a 64-bit architecture. The
32-bit chips (for example, the PPC601 and PPC604) all implemented a
subset of the 64-bit architecture. Now, with the 64-bit chip (RS64A), the full
64-bit architecture is implemented. The 64-bit instruction set is a superset of
the PowerPC 32-bit chip’s instruction set, with additional instructions for
controlling and handling the wider 64-bit data types and registers.

The number of CPU registers (the basic storage cell where the CPU stores
the data on which it performs its computations) remains the same, but these
registers are now 64 bits long instead of 32 bits. A few other control registers
also move from 32 to 64 bits in length.

64-bit data can now be moved or operated upon in one operation, rather than
having to be broken by the programmer or compiler into two 32-bit parts as
would have been the case with 32-bit processors.

Note that the floating-point registers do not change in size since even the
32-bit PowerPC chips had 64-bit floating-point registers in order to conform
with industry standards for floating-point, which require both 32- and 64-bit
data lengths.

Note

Why Do I Need 64-bit? 15

Figure 1. PowerPC’s 64-bit Implementation vs. 32-bit Implementation

The type of operations which can benefit from the 64-bit chip’s wider registers
and busses include:

 • Logical operations on 64-bit strings
 • Shift operations on 64-bit registers
 • Arithmetic operations and pointer calculations (on 64-bit integers)
 • String (large data) moves or copies

When a 64-bit chip executes a 32-bit instruction, it uses half of the register
width. This happens automatically, and the 32-bit application does not know
and does not need to know that it is executing on a 64-bit processor. This is
part of the "full binary compatibility" provided by AIX V4.3, but such
compatibility is also inherent in the PowerPC architecture.

16 AIX 64-bit Performance in Focus

2.1.1 Full Binary Compatibility
With IBM’s 64-bit PowerPC chip, AIX V4.3 will run existing 32-bit applications
unchanged and without requiring a recompile.

This was the prime objective of AIX V4.3: full binary compatibility for 32-bit
applications on 64-bit systems with no modification or recompilation required.

2.1.2 What 64-bit Architecture is Not
Rapid advances in chip technology have enabled very large and complex
chips to be manufactured. This has made possible the move from 32-bit to
64-bit chips. 64-bit chips will typically be up to twice the area of 32-bit chips.
This area increase is due to data buses ("highways") that are twice as wide
as before, to the many registers that are twice as wide as before, and to the
arithmetic and logical units which now need to be able to process data of
twice the previous width.

Thus a 64-bit architecture enables the more efficient handling of 64-bit data
types and the utilization of more physical memory. In itself, however, a 64-bit
architecture does not improve performance.

The last sentence is important. Just in case you missed it, go back and
reread it now. There is a widespread misconception that application
performance automatically doubles when run on a 64-bit system.

Only a very few specialized 32-bit applications, when significantly modified
and then recompiled as 64-bit applications, will perform much better by taking
full advantage of the 64-bit address space.

2.1.3 A Summary So Far
Obviously, this is not the full story, and in the following sections we will
expand on the performance and compatibility implications of both 32-bit and
64-bit applications running on 64-bit systems.

Keep in mind, however, that a 64-bit system and architecture does not
automatically increase performance. We will see, however, that there are

No 64-bit system, not even IBM’s 64-bit PowerPC chip running AIX V4.3,
will run most existing 32-bit applications any faster than an equivalent
32-bit system.

Note

Why Do I Need 64-bit? 17

some types of applications and workloads which are very suited to 64-bit
systems.

There are, at present, very few applications which have hit the 32-bit
addressability barrier. But, those which have will benefit greatly from the
64-bit address space and from running as a 64-bit application.

2.2 The Move to 64-bit

Two main forces are driving the move from 32-bit to 64-bit architectures. In
brief:

Engineering, scientific and business
Some applications in these areas have an increasing and real
need for an address space greater than 32 bits in size, in other
words, greater than 4 GB, and hence a need to become real 64-bit
applications. Section 2.3, “Users in Engineering, Science and
Business” on page 17 takes a closer look at these applications.

Existing 32-bit systems
These are becoming short of resources (for example, memory)
which limits the overall performance and throughput of heavy
users of 32-bit applications. We take a detailed look at this aspect
in 2.4, “Users of Existing 32-bit Systems” on page 19.

2.3 Users in Engineering, Science and Business

This group of users will be the leaders in using new 64-bit applications
because 64-bit systems will provide them with the tools to tackle the two most
pressing problems in this area: the need to be able to handle very large files
and the need to handle ever more complex and heavy-duty computational
problems.

Large Datasets
The sizes of datasets that engineering, scientific and business users require
to handle are frequently larger than will fit in the memory of a 32-bit machine.

Memory mapping of large files and databases is a common technique which
aims to avoid constant disk I/O by keeping the whole file resident in memory,
where it can be read and modified at the maximum speed of the processor.

If a file is too large for a 32-bit workspace, special programming steps need to
be taken to access the data in smaller amounts which will reside in memory.
This will invariably give less-than-optimum performance and may excessively

18 AIX 64-bit Performance in Focus

complicate the programs. Many users will, instead, rely on AIX’s paging
function to bring the data in from disk when required, but this is also at some
considerable performance penalty.

Computation needs
There are two aspects to this need.

1. The first aspect is about program complexity. Some computations often
require access to huge amounts of memory, for example, for simulations
which make use of very large arrays. Again, the 32-bit physical memory
addressing sets a limit which is too low for many heavy-duty computational
users.

As in the case of large files, complex programming work-arounds are
possible to operate on large data with small memory. It would be much
easier if there was sufficient memory in the first place to enable problems
to be solved without having to handle programming limitations at the same
time. As a beneficial side-effect, performance would almost certainly
increase also.

2. The second aspect concerns application throughput. Increasingly, SMP
systems (for example, the 12-way S70) are being used along with parallel
programming algorithms to handle scientific and other problems. In the
case of 32-bit systems, this means sharing no more than 4 GB of memory
(and often restricted to 2 GB or less) with up to 12 very fast processors.
This is almost certainly a situation in which the processors would not each
have sufficient memory to operate at their maximum capability.

A 64-bit system is able to provide the necessary memory and I/O resource
per processor to enable SMP systems to scale well and to provide the bulk
computation needs of the engineering, scientific and business
communities. The RS/6000 Model S70 provides up to 16 GB of memory.

To get an idea of the types of applications that will benefit from 64-bit
treatment, we now look at a selection.

2.3.1 Typical 64-bit Applications
There is no typical 64-bit application! The common goal, however, is to exploit
the benefits of the 64-bit architecture. The typical engineering, scientific or
business application which needs a 64-bit system will display some of the
characteristics described below. There will be considerable overlap in the
characteristics of 64-bit applications. These examples attempt to highlight the
key areas in which 64-bit applications will have the greatest impact:

Decision Support Large databases, compute intensive. Definition:
Use of data to identify ways in which a business

Why Do I Need 64-bit? 19

can change its ways to become more efficient and
competitive. Two examples are:

Data Warehousing Medium to large databases requiring
significant amount of memory. SQL user data
selection.

Data Mining Compute-intensive with medium to large
databases, requiring significant amounts of
memory. Large flat files or data warehouse
databases.

Internet-based Apps. Large number of users; significant processing
required.

e-business Apps. Large databases, many applications, significant
processing.

Huge Web Servers High throughput required, large file caches, many
simultaneous users, significant processing, much
I/O.

Multimedia Servers High throughput required, using large file caches
in the large amounts of physical memory
available.Very high I/O.

Numerically Intensive Scientific and engineering compute and memory
intensive, including computations using very large
arrays, sparse arrays.

General Databases For greatly increased performance, it will be
possible to hold databases completely in memory.
These applications will range from the large data
warehouses to smaller databases requiring
near-real-time response.

Large Array Operations In-memory compute-intensive simulations, for
example, nuclear physics, crash simulations,
aerodynamic simulations.

2.4 Users of Existing 32-bit Systems

For existing 32-bit multi-user systems, performance is often restricted, not by
the processor capacity, but by disk I/O capacity (bandwidth). The I/O is
caused by paging due to insufficient memory resource available to the users.
When paging takes place, performance decreases considerably because disk
accesses are much slower than memory accesses.

20 AIX 64-bit Performance in Focus

The availability of additional memory to such a system could greatly reduce
or stop paging, with consequent very significant performance gains, enabling
much more effective and efficient use of the processing resource.

2.4.1 Heavy-Duty 32-bit Application Users
This defines the second category of users who will benefit from 64-bit
systems.

For such users, when using 64-bit machines, the operating system will use
the large amount of memory at its disposal to provide more resource to each
individual 32-bit application. The applications will not use 64-bit functions
directly, but AIX will make use of the huge address space on behalf of the
applications.

Some of this type of 32-bit application are also good candidates for migration
to 64-bit. However in many cases these 32-bit applications will gain most
simply by allocating to them the memory resource that will enable them to
function without excessive paging.

Some examples follow:

Internet-based Apps. Large number of users; significant processing
required.

e-business Apps. Large databases, many applications, significant
processing.

Huge Web Servers High throughput required, large file caches, many
simultaneous users, significant processing, much
I/O.

Multimedia Servers High throughput required, using large file caches
in the large amounts of physical memory
available.Very high I/O.

General Servers Server consolidation for ease of administration
and cost-performance.

Real-time Applications Requiring responses within milliseconds. Some
transaction-processing systems,
voice-recognition, and voice-response systems
are examples.

For users with large install bases and heavy-duty 32-bit applications on
RS/6000 systems, the need for 64-bit hardware capability arises from the
need to fully utilize today’s powerful processors. 32-bit RS/6000 systems
have powerful processors but are limited by AIX to a maximum of 2 GB

Why Do I Need 64-bit? 21

memory. When shared among a large number of applications, this may not be
sufficient to enable the processor(s) to operate near to full capacity, without
becoming I/O bound due to paging.

With 264 addresses available, 64-bit RS/6000 systems have a very
significantly larger address space: this enables more physical memory to be
installed and used, and many more virtual memory segments to be
addressed before the onset of paging.

With a 64-bit physical address bus, in theory up to 264 bytes of memory could
be addressed. In practice, because of technology and cost limitations, it will
be less than this. At present, the IBM RS/6000 Model S70 64-bit server
enables 16 GB of memory, which is significantly more than in any existing
32-bit system.

Thus, such a system could host many more memory-hungry 32-bit
applications, than could any 32-bit system. Hence, 64-bit systems can
potentially run many more concurrent, large, 32-bit applications on the same
RS/6000 system than could a 32-bit system. This gives the customer
advantages in terms of higher system utilization, and reduced system
administration, due to the need to maintain a smaller total number of RS/6000
systems.

In this way some users of 32-bit applications will find that a 64-bit machine is
a very suitable platform for their applications, even though those applications
will remain compiled as 32-bit applications.

This, indeed, was one of the objectives of 64-bit support in AIX: to provide
more resource for large-scale 32-bit solutions.

If AIX allocates more virtual memory than it has physical memory, it
effectively has to extend the memory size by grabbing space in the paging
volume. This disk-based memory is paged-in to physical memory when an
application needs to access it. Naturally, disk I/O is 1000’s of times slower
than direct accesses to memory, so when any application needs to access
the contents of memory which has been paged-out to disk, its performance
suffers.

Excessive Paging

22 AIX 64-bit Performance in Focus

2.5 AIX 64-bit Architecture Benefits

The following are the key benefits of the AIX V4.3 64-bit architecture on which
this redbook is focussing for discussion of performance and tuning in these
areas:

64-bit data types Specialized applications can benefit from the extra
precision and performance of the 64-bit integer
hardware. But probably the main use will be by most
other 64-bit applications which will use 64-bit integer
arithmetic to manipulate 64-bit address pointers.
Additionally, logical (bit mask) operations and shift
operations will be able to be performed on 64-bit
data, benefiting some application types. Note that
even with 32-bit PowerPC hardware, the
floating-point hardware has always been to 64-bit
precision, so floating-point hardware precision has
not changed.

Access to large files Data warehousing, scientific and multimedia
applications frequently need very large files and
filesystems. The previous support in AIX 4.2 is
extended to include 64-bit applications. Large files
are now easily handled by the naturally large 64-bit
data types.

Huge address space Specialized applications can exploit both the large
physical memory (16 GB = 234) and huge virtual
memory (280) available. Many scientific applications
will be able to be programmed more simply and
perform significantly better. The segments for data
and stack are now huge, and memory mapping is
significantly improved.

Larger executables (large text) Specialized applications may utilize the
possibility of executables > 2 GB. in size.

To some extent, all the above can be summed up in two words: convenience
and performance. In almost every case the rationale for going to a 64-bit
application will be to gain performance by utilizing larger memory spaces,
mapping larger files, and so on.

A desirable by-product of the 64-bit address space, however, will make the
programming of such large applications less complex and more convenient.
The programmer will far less frequently hit artificial limits. Far larger data
objects can be addressed, a larger range of integers can easily be used,

Why Do I Need 64-bit? 23

larger strings and numbers can be used for logical and shift operations, and
large files can be easily handled using the naturally larger 64-bit pointers.

No longer will it be necessary to artificially partition data in order to operate
on it in amounts that can fit into the relatively small amount of memory
available to 32-bit systems.

2.6 Performance of Migrated Programs

Earlier we claimed that most 32-bit applications will not benefit from being
compiled and run as a 64-bit application, and that only a small number of
specialized programs will benefit from the full 64-bit treatment.

So then, what will be the performance difference (better or worse) if we were
to take our favorite 32-bit application and re-compile it as a 64-bit application?

There is no reason for a large performance difference between a 32-bit
program and the same program re-compiled as a 64-bit program. There are,
however, a number of reasons for small performance variations. The total
effect of these variations will be very application-dependent.

Summarized below are a number of these factors which will cause
performance to vary:

64-bit program performance may be better due to:

 • Compiler optimizations to better sequence 64-bit instructions where
possible.

 • Code re-structure to make it more amenable to 64-bit optimization.

64-bit program performance may be poorer due to:

 • Larger footprint, both text and data, causing longer load times.
 • The use of 64-bit pointers that need to be translated when making calls

into the 32-bit kernel.
 • Program load times (affects fork(), exec(), exit()) are slower for 64-bit

programs.

2.6.1 Variable Performance
Taking each of the above factors in turn, here is some additional detail:

 • There is no evidence of any general gain yet in the area of compiler
optimization. However if your 32-bit application makes use of long long
(64-bit) data types, some improvement should be possible due to the

24 AIX 64-bit Performance in Focus

compiler being able to use one 64-bit instruction instead of two 32-bit
instruction.

 • Re-designed code, which, for example, concatenated 32-bit bit fields to
enable handling 64-bit fields in one go, could allow the compiler to
generate 64-bit instructions and thus handle the data in approximately half
the number of operations.

 • The larger footprint (size of executable and data) is explained by 32-bit
data types which have become 64-bit (for example, pointers) and thus
occupy more space, and by the larger amount of space required for
padding in some structures to correctly align some datatypes.

 • For 64-bit pointer operations, although the actual instructions, both 32-bit
and 64-bit, proceed at the same speed, there is a small additional
overhead in bus bandwidth when 64-bit datatypes are transferred to and
from memory.

 • A simple test of program load times showed the 64-bit program to take
longer than the 32-bit program load. For the effect to become significant,
an exceptionally high rate of loads would have to be performed.

 • Another simple test program, using getpid() calls, which issued system
calls at a very high rate showed a little bit poorer performance when run as
a 64-bit application. The getpid() runs only a small number of
instructions: many system calls would average 10 to 100 times as many
instructions, and thus the overhead of the system call would be distributed
more thinly, the lower the call rate became. A figure close to one percent
on average would be expected. The difference is explained by the need for
64-bit processes making system calls, to go via a 64-bit library interface
routine lib64.a which handle reformatting of the data and mapping of
64-bit addresses to the kernel’s 32-bit address map. When a 64-bit AIX
kernel is implemented in the future, the effect will likely be reversed.

Individually, the performance effect of most of these items are almost
negligible. Taken together they could however add up to a small performance
degradation. But it is very unlikely that all the factors are present at the same
time.

Neglecting potential performance improvements via compiler or re-designing
the application, it appears that for 32-bit applications that are re-compiled as
64-bit applications, performance should be comparable.

2.7 The Necessity for 64-bit Applications

Let’s look at some indicators of the future for 64-bit operating systems and
applications.

Why Do I Need 64-bit? 25

2.7.1 Inventory of AIX 64-bit Programs
At present, there does not appear to be a need for a large number of 64-bit
applications or a great rush to migrate them. A good illustration of the need
can be gained by looking at the following URL in the Internet:

http://www.rs6000.ibm.com/software/Apps/LPPmap.html

On this web site called "The AIX V4 IBM Licensed Program Products
RoadMap", IBM lists all its AIX Licensed Program Products (LPP’s) and
indicates their compatibility with AIX 4.3 in terms of:

 • Whether the LPP functions with AIX 4.3 or not.
 • Whether the LPP exploits new function (64-bit addressing) of AIX 4.3.

At present (March 1998), this list shows that out of some hundreds of IBM
LPP’s, only DB2 claims to exploit AIX V4.3 functions. Obviously the accuracy
and currency of this list is only as good as the efforts of those who maintain it,
and it is likely to be somewhat down-level, but nevertheless reasonably
accurate.

There already exist other applications like Oracle Version 8 which is a 64-bit
server, with support for both 32-bit and 64-bit applications.

It appears that the real need for the 64-bit address space is only for a very
few applications, and that the conversion rate is slow at present.

We can expect to see many more LPP’s become 64-bit in time, as more and
more applications begin to hit the limits of the 32-bit address space.

2.7.2 A PC-Based Illustration
Think of the PC marketplace: when Intel introduced the first 32-bit processor
(the 80386) in 1985, 32-bit applications did not exist, nor did a 32-bit
operating system! Both IBM and Microsoft gradually introduced 32-bit
function into their OS/2 and Windows operating systems. Even now, 13 years
later, we find that some parts of these operating systems are still 16-bit.

2.8 64-bit Hardware

At the time of writing, our experience of 64-bit systems is based on the
RS/6000 7017-S70 server which briefly provides, per system:

 • 4 to 12-way SMP processing capability (64-bit 125 MHz RS64A cpu’s)
 • Up to 16 GB memory
 • Up to 60 media/disk bays
 • Up to 56 PCI adapter slots

26 AIX 64-bit Performance in Focus

There are some S70 hardware-related performance issues that are worth
discussing briefly. Note that each of these affect the performance of both
32-bit programs and 64-bit programs.

2.8.1 S70 Memory Optimization
The S70 memory sub-system uses dual ports to communicate with the
processors. Performance will be optimized if memory is balanced with the
same amount of memory on each of the two ports.

Memory must be installed in groups of 4 identical cards. For example Feature
Code 4173 comprises four 256 MB cards, totalling 1 GB.

One Feature Code 4173 would be functional, but would not give optimum
performance. A second Feature Code 4173 should be installed on the other
memory port to properly balance the system.

The S70 feature codes provide memory in increments of 0.5, 1, 2 and 4 GB.

2.8.2 S70 I/O Address Space
The S70 implements I/O address space as 2 GB starting at the first 2 GB
boundary. The remainder of physical memory starts at the 4 GB boundary.
Any I/O access in a system with greater than 2 GB of memory (for 32-bit
adapters) requires a layer of mapping to make the devices think that the
addresses are still in the 4 GB address space, that is, addressable by 32 bits.

The I/O mapping is only required when more than 2 GB of memory is
installed. Thus applications (32-bit or 64-bit) will suffer a slight performance
loss if S70 system memory is upgraded from 2 GB or less, to greater than 2
GB.

2.8.3 S70 Floating-Point Performance
The RS64A chip’s floating-point performance may not match your expectation
of a 64-bit PowerPC chip. The design point for the RS64A was for commercial
server performance and capability.

There is a limit of a total of 20 memory slots, therefore plans for memory
upgrades should take future needs into account so that optimal
performance is achieved, without limiting future memory expansion.

Also Note

Why Do I Need 64-bit? 27

The RS/6000 Model S70 is the only platform currently using the RS64A chip,
and it is marketed as a commercial server system.

Future versions of the RS64A chip are intended to have enhanced
floating-point performance, which will better support scientific and
engineering applications, without hurting commercial and server
performance.

Consequently, if your application is numeric-intensive
(Engineering/Scientific), you may wish to consider either SP technology or
stand-alone servers, in either case using SMP technology or the P2SC
(Power2 Single Chip).

2.9 Summary and Recommendation

Owners of existing 32-bit applications should think carefully before
re-compiling them as 64-bit applications.

 • Simply recompiling will not change the function of the program to use any
more address space.

 • Re-compiling as a 64-bit application can in some cases cause a small
performance reduction (Section 2.6, “Performance of Migrated Programs”
on page 23).

32-bit applications which would benefit from breaking the 32-bit address
space limitation should be considered separately:

 • There may be significant programming effort required to convert these to
efficient 64-bit programs.

 • Once converted, however, maintenance should be easier due to the less
restricted, simpler, 64-bit programming environment.

We Recommend
Consider carefully whether you need a 64-bit application. Obviously some
people have already decided that they do not need 64-bit yet.

Bearing in mind the performance effects of migration to 64-bit (see 2.6,
“Performance of Migrated Programs” on page 23), there is no clear
performance advantage for most existing 32-bit programs.

The correct choice should generally be to use a 32-bit application unless
64-bit addressability is required by the application or can be used to
dramatically improve its performance.

28 AIX 64-bit Performance in Focus

By writing a 32-bit application carefully and obeying the migration guidelines
(see Chapter 6, “Migration Techniques” on page 97), you can have a
well-performing application, and at the same time be positioned to easily
migrate to 64-bit, if or when you need to in the future.

2.10 References

AIX Version 4.3 Differences Guide, SC24-2014.

Optimization and Tuning Guide for Fortran, C, and C++, SC09-1705.

The PowerPC Architecture: A Specification for a New Family of RISC
processors, 2nd Ed, Morgan Kaufmann Publishers, Inc.

2.10.1 Web Pages
There are a large number of Internet Web pages which contain relevant
information. These are grouped into two categories for convenience:

1. Publicly Accessible Web Pages
2. IBM Business Partner Pages

Only pages labelled "[www]" are freely accessible. Other pages will be
accessible by IBM internal users only.

Key
"[www]" means www page with public access.

"[sdp]" means page requiring SDP (IBM Solution Developer Program)
password access, which is generally free. To register, visit:
http://w3dev.austin.ibm.com/welcome/w_home.html

"[ibm]" means w3 IBM internal page with general IBM access

Numbered references are the top-level pages: the following un-numbered
references will be found within those top-level pages.

2.10.1.1 Publicly Accessible Web Pages
RS/6000 Systems Hardware
 • [www] RS/6000 Enterprise Server Model S70

http://www.rs6000.ibm.com/hardware/enterprise/s70.html

 • [www] PowerPC Hardware Architecture Reference

http://www.rs6000.ibm.com/resource/technology/chrp/index.html

Why Do I Need 64-bit? 29

RS/6000 Tech ReSource
1. [www] RS/6000 Tech ReSource [Papers] Top Level

http://www.rs6000.ibm.com/resource/technology

 • [www] The RS/6000 64-bit Solution [White Paper]

http://www.rs6000.ibm.com/resource/technology/64bit6.html

http://www.rs6000.ibm.com/resource/technology/rswp64bt.pdf

 • [www] New Dimensions in Scalability & Performance

http://www.rs6000.ibm.com/resource/technology/aix43ppr.html

http://www.rs6000.ibm.com/resource/technology/rsaix43.pdf

 • [www] PowerPC Hardware Architecture Reference (Full text)

http://www.rs6000.ibm.com/resource/technology/chrp/index.html

 • [www] Beyond the 32-bit Barrier (In "RS/6000 Results" Magazine)

http://www.rs6000.ibm.com/resource/results/archive/november/cver_str
y.htm

IBM AIX V4 LPPs
 • [www] The AIX V4 IBM Licensed Program Products Roadmap

http://www.rs6000.ibm.com/software/Apps/LPPmap.html

InfoExplorer in HTML
 • [www] AIX System and Related Product Documentation [InfoExplorer]

http://www2.austin.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

 • [www] 64-bit Updates to Device Driver Information

http://www2.austin.ibm.com/doc_link/en_US/a_doc_lib/aixgen/devdr/ove

rview.htm

ITSO and Redbooks
 • [www] Redbooks Home Page (full text of some older books)

http://www.redbooks.ibm.com/homepage.html

 • [www] RS/6000 Redbooks Collection (full text, older books)

http://www.rs6000.ibm.com/resource/aix_resource/Pubs/redbooks

2.10.1.2 IBM Business Partner Pages
 • [ibm] ISV's RS/6000 Information [RS/6000 Level]

http://w3isv.austin.ibm.com/info/rs6kinfo.html

 • [ibm] AIX 4.3 Migration Guide (25Jun97, old)

30 AIX 64-bit Performance in Focus

http://w3isv.austin.ibm.com/info/mguide/index.html

 • [sdp] AIX 4.3 Migration Guide (currently being updated)

http://www.developer.ibm.com/library/aix4.3/aix43_revision.html

 • [ibm] AIX 4.3 migration guide (0.4.4 1/98, HTML and PostScript)

http://w3dev.austin.ibm.com/library/aix4.3/ (HTML)

http://w3dev.austin.ibm.com/library/aix4.3/aix43dl.html (PostScript)

 • [sdp] AIXpert 9/97 Focus on 64-bit Architecture

http://www.developer.ibm.com/library/aixpert/cd/97SEPTEM/S97TOC.PDF

http://w3dev.austin.ibm.com/library/aixpert/cd/97SEPTEM/S97TOC.PDF

 • [sdp] AIX Version 4.3 Release Notes

http://www.developer.ibm.com/sdp/library/aix4.3notes/index.html

http://w3dev.austin.ibm.com/sdp/library/aix4.3notes/index.html

© Copyright IBM Corp. 1998 31

Chapter 3. P erf ormance T ools Chang es

A number of things are addressed in this chapter. First is the change in the
packaging of the performance tools. The second thing addressed is the new
enhancements that have been made to the tools. In some cases, the changes
take the form of new parameters or flags. In others, it is in the format of the
output reports. Occasionally, when there is something else of interest worth
mentioning, it is documented.

As you will see, the performance tools on AIX have not changed very much
since AIX V4.2. Since these tools have been quite extensively covered in the
redbook titled RS/6000 Performance Tools in Focus, SG24-4989, they are not
readdressed here. In any case, most of the modifications to the tools were
made to enable them to operate on both 64-bit and 32-bit environments.
These changes do not modify the functional operation of the commands or
tools.

3.1 Packaging Changes

In earlier releases of AIX V4, some of the AIX-specific performance tools,
such as bf and fdpr, were packaged and sold as a separately licensed
program product outside the Base Operating System (BOS). AIX users who
wanted to collect and analyze performance on their systems were
constrained to the standard UNIX tools. These tools are great in helping
users determine at the first level what the resources holding back system
performance were. To go anywhere beyond that, such as to analyze the
performance of a specific program and tune it, they either had to invest some
money on additional tools or work their way through by means of trial and
error.

Some of these tools are now bundled together with AIX V4.3 as the fileset
perfagent.tools 2.2.30.0 . The fileset, which comes with no additional charge,
has to be explicitly installed if you wish to use the tools contained within. The
tools provided are:

 • bf (Bigfoot) and bfrpt
 • fdpr (Feedback Directed Program Restructuring)
 • filemon
 • fileplace
 • genkex
 • genkld
 • genld
 • lockstat

32 AIX 64-bit Performance in Focus

 • netpmon
 • rmss
 • stem
 • stripnm
 • svmon
 • syscalls
 • tprof

A brief description of some of the tools and their functions can be found in the
file /usr/lpp/perfagent/README.perfagent.tools .

As these analysis tools are closely tied to the kernel due to the use of VMM
and other data structures, they should be of great help when optimizing
performance on AIX. These tools also greatly assist performance groups and
support centers in debugging customer performance problems.

3.2 Summary of Changes to the Tools

The following tables give indications of changes that were made to the
performance tools in the process of migrating them from the 32-bit AIX to the
64-bit AIX. Generally, the tools were enabled for 64-bit support. Other
changes worthy of note, if any, are discussed in the later pages of this
chapter.

The first column of the table specifies the name of the tool. The second gives
a very brief comment, and the third column indicates if the tool is discussed in
this chapter by pointing to the relevant section.

Table 3 shows a summary of changes for AIX-specific tools.

Table 3. Summary of Changes for the Performance Toolbox for AIX V4.3 Tools

Tool Comments Section

bf and bfrpt No 64-bit support 3.3.1 on page 34

filemon Enabled for 64-bit 3.3.2 on page 35

fileplace Enabled for 64-bit 3.3.3 on page 36

fdpr Enabled for 64-bit Not discussed

genld Enabled for 64-bit 3.3.4 on page 36

genkld Enabled for 64-bit 3.3.5 on page 37

genkex Enabled for 64-bit Not discussed

Performance Tools Changes 33

Table 4 shows a summary of changes for standard UNIX tools.

Table 4. Summary of Changes for the Standard (UNIX) Tools

lockstat No 64-bit support Not discussed

netpmon Enabled for 64-bit Not discussed

rmss Enabled for 64-bit 3.3.6 on page 37

stem No 64-bit support Not discussed

stripnm Enabled for 64-bit 3.3.7 on page 38

svmon Enabled for 64-bit 3.3.8 on page 38

syscalls No 64-bit support 3.3.9 on page 38

tprof Enabled for 64-bit 3.3.10 on page 38

perfmgr No change Not discussed

perfagent.server No change 3.3.11 on page 39

Tool Comments Section

vmstat No change Not discussed

iostat No change Not discussed

sar No change Not discussed

ps No change Not discussed

pstat No change Not discussed

netstat Expanded to support IPv6 Not discussed

nfsstat No change Not discussed

no New parameters added 3.4.1 on page 39

nfso New parameter added 3.4.2 on page 41

nice No change Not discussed

renice No change Not discussed

prof Enabled for 64-bit 3.4.3 on page 41

gprof No change Not discussed

Tool Comments Section

34 AIX 64-bit Performance in Focus

Table 5 shows a summary of changes for a variety of tools that deal with
performance issues.

Table 5. Summary of Changes for the Other Tools

3.3 Performance Toolbox for AIX V4.3

Performance Toolbox for AIX V4.3 is the name given to a suite of AIX-specific
performance tools. It is made up of perfagent.tools , perfagent.server , and
perfmgr . The following pages document the changes that have taken place
with some of the tools from this suite.

3.3.1 The bf and bfrpt Commands
The bf (bigfoot) command monitors memory usage of applications. It can be
run using executable programs without recompilation and can provide
memory footprints for processes, system components, and subroutines. It is
possible for bf to identify page sharing between processes and subroutines
within the processes.

The bfrpt command is the post-processing utility which can produce
graphical and tabular reports.

Tool Comments Section

lslv No change Not discussed

trace and trcpt Enable for 64-bit 3.5.1 on page 42

Performance Diagnostic Tool No change Not discussed

perfpmr No change 3.5.2 on page 44

cpu_state No change 3.5.3 on page 44

bindprocessor No change Not discussed

schedtune No change Not discussed

vmtune New parameter added 3.5.4 on page 44

xgprof No change Not discussed

Program Visualizer No change 3.5.5 on page 45

utld No change Not discussed

Xprofiler Not 64-bit enabled 3.5.6 on page 46

Performance Tools Changes 35

The bf and bfrpt commands are currently undergoing modification work to
adapt them to fit in the 64-bit environment. No change in functionality is
expected.

However, due to the changes in the 64-bit architecture, changes such as the
increase in the number of segments, segment ID, and number of frames, the
format of the output may change.

3.3.2 The filemon Command
The filemon command collects and presents trace data on the various layers
of file system utilization, including the logical file system virtual memory
segments, logical volume manager (LVM), and physical disk layers. Data can
be collected on all the layers or on specific layers by specifying the -O option.
The default is to collect data on the VM segments, LVM, and physical layers.
Both summary and detailed reports are generated. This command now
supports 64-bit addresses.

At the time of this writing, there was a defect outstanding on the Detailed File

Stats section of the output for reads and writes. You are advised to be on the
lookout for the latest PTFs for perfagent.tools if you need the read and write
time information.

The report segment shows INF and NaNQ instead of figures.

--
Detailed File Stats
--

FILE: /tmp/big/xaa volume: /dev/biglv (/tmp/big) inode: 17
opens:1
total bytes xfrd:104861696
reads:25601(0 errs)
 read sizes (bytes):avg 4096.0 min 4096 max 4096 sdev 0.0
 read times (msec):avg NaNQ min INF max 0.000 sdev NaNQ

FILE: . volume: /dev/hd1 (/home) inode: 56
opens:13206
total bytes xfrd:104857600
writes:25600(0 errs)
 write sizes (bytes):avg 4096.0 min 4096 max 4096 sdev 0.0
 write times (msec):avg NaNQ min INF max 0.000 sdev NaNQ
lseeks:13205

36 AIX 64-bit Performance in Focus

3.3.3 The fileplace Command
The fileplace command displays the placement of a file’s blocks within a
logical volume or within one or more physical volumes. This command
expects an argument containing the name of the file to examine.

This command has been modified in AIX V4.2 to support reporting for files
larger than 2 GB. However, In AIX V4.3, running the command
#/usr/bin/fileplace fname against a file that is 2 GB (2,147,483,648 bytes) or
larger may return the error fname: Value too large to be stored in data type .

Otherwise, there is no change in the observed output.

3.3.4 The genld Command
The genld command extracts a list of loaded objects for each process
currently running on the system. It has not changed much from the version on
the previous release of AIX, except that it now supports 64-bit addresses. It
displays information for 32-bit and 64-bit loaded objects for each process
running on the system. Thus, a 32-bit process such as init would generate
the following output:

Proc_pid: 1 Proc_name: init
 10000000 init

while a 64-bit one such as shlap would cause the following to be reported:

Proc_pid: 3188 Proc_name: shlap
 100000000 shlap

The shlap command is a part of the bos.64bit fileset. On systems with
hardware that supports 64-bit, such as the S70, the installation of this fileset
will enable the AIX operating system to execute 64-bit applications.

Notice that the address value has one more digit for the 64-bit process (shlap)
than for the 32-bit one (init).

At the time of this writing, genld fails to output addresses, paths, and object
names for 32- or 64-bit libraries for 32/64-bit processes. An APAR
(IX74290) is being worked on to address this defect.

Note

Performance Tools Changes 37

3.3.5 The genkld Command
The genkld command extracts the list of shared libraries and shared objects
currently loaded onto the system and displays the address, size, and path
name for each object on the list. It has been modified to include 64-bit
support.

An excerpt of the report created when the genkld command is run is shown
below to illustrate this.

Virtual Address Size File

d04e0980 16a0d /usr/lib/libpthreads.a/shr_xpg5.o
d04e0980 16a0d /usr/lib/libpthreads.a/shr_xpg5.o
d01df000 acd /sbin/comp.uext/
:
:
:
d0000520 192355 /usr/lib/libc.a/shr.o
9000000002bc980 29aa7 /usr/lib/libpthreads.a/shr_xpg5_64.o
9000000002bc980 29aa7 /usr/lib/libpthreads.a/shr_xpg5_64.o
9000000002ba2c0 1402 /usr/lib/libcrypt.a/shr_64.o
900000000000520 2b9851 /usr/lib/libc.a/shr_64.o
9000000002ba2c0 1402 /usr/lib/libcrypt.a/shr_64.o
900000000000520 2b9851 /usr/lib/libc.a/shr_64.o

The last six lines in this case report 64-bit shared library modules. The
repeated entries indicate they were loaded more than once.

3.3.6 The rmss Command
The rmss command simulates a system with various sizes of real memory,
without having to extract and replace memory boards. By running an
application at several memory sizes and collecting performance statistics,
one can determine the memory needed to run an application with acceptable
performance.

The -f option, which defines the final memory size that rmss can simulate, no
longer takes a value of 4 MB. The range of values acceptable are 8 MB to the
total physical memory available on the system. The same is true with the -c

option. Specifying a value smaller than 4 MB to the command would result in
the following message:

Simulated memory size must be between 8 and 4096 Mb.

The performance of the rmss command will decrease as real memory
increases. This is because rmss goes through the free list from the page

38 AIX 64-bit Performance in Focus

frame to the table and marks those required to decrease the amount of real
memory available, as used. As real memory increases, the time taken to mark
these frame by frame will increase as well.

3.3.7 The stripnm Command
The stripnm command displays the symbol information of a specified object
file. It is concerned with the archive file format as well as the XCOFF format.

The stripnm command looks at the XCOFF format of the file on which it is to
process and determines from there if it is 32-bit or 64-bit.

3.3.8 The svmon Command
The svmon command is an AIX-specific tool that provides global,
process-level, and segment-level reporting of memory use.

Currently, it breaks when run against 64-bit processes. It does not display the
"lib data" and "shared library text" working segment information.

Also, comparing the output of "vmstat 2 10 " against "svmon -G -i 2 10 ", it is
found that the fre value of vmstat no longer correlates with the free value from
svmon.

3.3.9 The syscalls Command
The syscalls command is used to trace system calls for all or specified
processes on a system. The tool is currently undergoing some changes, and
you would encounter the following error message when you attempt to run it:

You must first configure the stem kex.

This tool will not support 64-bit applications.

3.3.10 The tprof Command
The tprof command is an AIX-specific profile that is based on the trace
facility. By using this profiler, you can identify the heaviest processes on the
machine, the heaviest subroutines in your programs, and the time spent in
each subroutine. You should use the -g flag when compiling your source if
you are using an AIX C compiler to get the most out of this profiler.

xlc -g foo.c -o foo

The implementation of tprof on AIX V4.3 has been modified to allow
operation on both 64-bit and 32-bit executables. It does not differ functionally
from that the release found in AIX 4.2.1 or earlier.

Performance Tools Changes 39

The tprof command looks at the XCOFF format of the file on which it is to
process and determines from there if it is 32-bit or 64-bit.

3.3.11 The perfagent.server Tool
No additional features have been added to perfagent for AIX V4.3. Its
libraries, such as libSpmi and libarm , will remain as 32-bit libraries. This
means two things. First, 64-bit applications cannot compile or link with
libSpmi because mixed-mode compilation is not supported.

Second, response time monitoring using libarm for a 64-bit application is not
supported.

When installing the perfagent.server fileset on your system, you should also
install APAR IX68740 to fix certain known problems.

3.4 Standard Performance Tools

Standard tools covers the tools that follow have been a part of the standard
AIX package for many years. Again, the following pages document changes
that have been made to them in the process of porting them over to AIX V4.3.

3.4.1 The no Command
The no command is used to configure network attributes. It sets or displays
current network attributes in the currently running kernel and therefore must
be run again after each reboot.

A number of new parameters have been added to this command in AIX V4.3,
and they are briefly documented below. Most of them are related to the newly
introduced IPv6. Parameters beginning with ndp refer to neighbor discovery.
You can obtain further details on neighbor discovery from the RFC1970:
Neighbor Discovery for IP Version 6 (IPv6).

ndpqsize Number of packets to hold waiting on completion of a
NDP entry. Its default value is 50 packets.

Sometimes, especially on SMP machines, because of the way things have
been designed, the kernel masks its interrupts when running certain
processes. As a result, tprof would end up reporting less CPU ticks than
had actually taken place.

Note

40 AIX 64-bit Performance in Focus

ndpt_keep The time, in half seconds, to keep an NDP entry. The
default value is 120 or 60 seconds.

ndpt_reachable The time, in half seconds, to test if an NDP entry is
still valid. The default is 30 or 15 seconds.

ndpt_retrans The time, in half seconds, to wait before retransmitting
an NDP request. The default value is 1 or half a
second.

ndpt_probe The time, in half seconds, to delay before sending
their first NDP probe. Its default is 5 units or 2.5
seconds.

ndpt_down The time, in half seconds, to hold down a NDP entry
before deleting it. Its default value is 3 units or 1.5
seconds.

ndp_umaxtries The maximum number of Unicast NDP packets to
send. Its default value is 3.

ndp_mmaxtries The maximum number of Multicast NDP packets to
send. Its default value is 3.

ip6srcrouteforward Specifies whether the system forwards source-routed
IPv6 packets. The default value of 1 allows the
forwarding of source-routed packets. A value of 0
causes all source-routed packets that are not at their
destinations to be discarded.

ip6_defttl This is the default hop count to use for IPv6 packets if
no other hop count is specified. Since hop counts are
normally specified in most situations, this value is not
used much. The default value for this parameter is 64
hops.

ip6_prune This tells how often to check the IPv6 routing table for
expired routes. Its default is 2 seconds.

inet_stack_size This parameter lets you configure the inet interrupt
stack table size. The only time you would normally
need to use this is if you are running with unoptimized
debug kernel and/or netinet. To change the value, it
must be set in the rc.net file because changing it on
the fly has no effect.

You will probably not get any significant performance gains from changing
these parameters for anything except, perhaps, in very specialized

Performance Tools Changes 41

environments. The command for changing any of the no parameters takes the
form:

no -o <parameter>=<value>

3.4.2 The nfso Command
The nfso command can be used to configure NFS attributes. It sets or
displays network options in the currently running kernel. A new parameter,
nfs_rfc1323 , has been added to this command in AIX V4.3. This parameter
allows users to enable rfc1323 functionality for NFS without having to modify
any network options (no) parameters.

It is turned off by default. To turn it on, you will need to enter:

nfso -o nfs_rfc1323=1

This option can be used to enable very large TCP window size negotiation to
occur between systems. If using the TCP transport between NFS client and
server, and both systems support it, this allows the systems to negotiate a
TCP window size in a way that will allow more data to be "in-flight" between
the client and server.

3.4.3 The prof Command
The prof command interprets profile data collected by the monitor subroutine
for the executable file (a.out by default). It reads the symbol table in the object
file program and correlates it with the profile file (mon.out by default). The prof

command displays, for each external text symbol, the percentage of execution
time spent between the address of that symbol and the address of the next,
the number of times that function was called, and the average number of
milliseconds per call.

A few minor reporting problems were observed with prof at the time of this
writing. First, the memory addresses are not represented properly. Programs
compiled in 32-bit mode get their addresses of functions returned as zeroes.

prof -x
Address Name %Time Seconds Cumsecs #Calls
msec/call
 0 .main 0.0 0.00 0.00 1 0.
 0 .free 0.0 0.00 0.00 2 0.
 0 .free_y 0.0 0.00 0.00 2 0.
 0 ._findbuf 0.0 0.00 0.00 1 0.
:
:

42 AIX 64-bit Performance in Focus

If compiled in 64-bit, the address is returned as 1100000000 if the -o (octal)
flag is used with prof and as 900000 if the -x (hex) flag is used instead.

prof -o
 Address Name %Time Seconds Cumsecs #Calls
msec/call
 1 .main 0.0 0.00 0.00 1 0.
1100000000 .printf 0.0 0.00 0.00 1 0.
1100000000 ._doprnt 0.0 0.00 0.00 1 0.
1100000000 .free 0.0 0.00 0.00 2 0.
1100000000 .free_y 0.0 0.00 0.00 2 0.
:
:

A second problem observed is that executing prof with the -v flag does not
send the graphic version of the profile to the standard output, but instead
causes a core dump.

prof -v
Illegal instruction(coredump)

3.5 Other Tools

Some of the other performance or performance-related tools are discussed
here.

3.5.1 The trace Facility
The AIX trace facility captures a sequential flow of time-stamped system
events that can be monitored. To capture a meaningful trace, you would
normally specify trace hooks to it.

There are two types of trace hooks, namely the generic, and the non-generic.
Trace data is formatted with trace templates, which are found on the system
in /etc/trcfmt.

A number of functional changes have been made to the trace subsystem to
support 64-bit tracing. The changes are as follows:

 • The trcgen and trcgenk system calls take a 64-bit buffer address.

 • Up to two 64-bit data words can be traced with a non-generic hook.

 • Two new formatting codes are provided to format signed and unsigned
64-bit decimal numbers. Thus, 64-bit data may be traced using the generic
trace interfaces, which have not changed.

Performance Tools Changes 43

 • To preserve binary compatibility, no changes have been made to generic
trace hooks. However, this means that the data word associated with a
generic hook is 32 bits only.

 • Two new formatting codes, D8 and U8, are provided to format signed and
unsigned 64-bit decimal numbers. These formatting codes operate on data
in the variable length generic trace buffer as well as on the non-generic
entry’s data words. Thus, 64-bit data may be traced using the generic
trace interfaces.

In addition to this, programming interfaces have also been defined for 64-bit
trace.

The following prototype statements have been added to
/usr/include/sys/trcmacros.h . These are under the #else of a "#ifdef

_NO_PROTO" statement, with the unprototyped calls kept under _NO_PROTO:

extern void utrchook(unsigned int hkwd, unsigned int d1, unsigned int d2,
unsigned int d3, unsigned int d4, unsigned int d5);

extern void trcgen(int chan, unsigned int hkwd, unsigned int dword,
unsigned int len, char * buf);

extern void trcgent(int chan, unsigned int hkwd, unsigned int dword,
unsigned int len, char * buf);

extern int trcon(int chan);
extern int trcoff(int chan);
extern int trcstart(char * str);
extern int trcstop(int chan);

This applies to applications only, not to kernel and kernel extension code.
This may cause compiler warnings when compiling some applications on AIX
V4.3.

The new TRCHK64L1, TRCHK64L1T, TRCHK64L2, and TRCHK64L2T macros can be used
to trace one or two 64-bit values to channel 0, non-generic.

The new $L1 and $L2 macros are used to access the first or second 64-bit
value traced in non-generic entries.

The trace daemon will not change. Users will have to output the 64-bit data
through the variable-length trace buffer provided by the trcgen and trcgent

system calls, or use the TRCHK64.

44 AIX 64-bit Performance in Focus

3.5.2 The PerfPMR Package
The PerfPMR package is a collection of scripts which gathers performance
and configuration information in order to help IBM analyze a possible AIX
performance defect. It is not intended to be used as a tool for general
performance monitoring or analysis.

However, many customers are curious as to how perfpmr gathers its data. The
following is a listing of the exact commands and flags the PerfPMR scripts
use to monitor and record system performance:

ps -elk
ps gv
vmstat -s
netstat -v
netstat -m
netstat -rs
netstat -s
sar -A
vmstat
iostat
netstat
nfsstat -csnr
trace
tprof -k -s
filemon -O all -v
netpmon -O all

3.5.3 The cpu_state Command
The cpu_state command controls and lists which processors on a
multiprocessor system will be active when the system is next started.

The cpu_state command is not supported on the S70. When the command
cpu_state -l is run, the following message results:

1731-007: Command not supported on this platform

3.5.4 The vmtune Command
The vmtune command can be used to modify the VMM parameters that control
the behavior of the memory-management subsystem.

A new parameter has been added to this command, namely lrubucket . This
parameter was added to vmtune as part of the page-replacement changes
made for large real memory machines. The default value is 512 MB, and

Performance Tools Changes 45

there is really no reason to change that, though IBM wanted to provide the
mechanism via vmtune just in case.

The VMM’s page replacement strategy is a pseudo least-recently-used
algorithm. It simply looks at each frame in the system to ascertain if it had
been referenced recently. If it has, the VMM clears the reference bit and
keeps looking. The next time around, if the frame has not been referenced,
the reference bit will still be clear, and the VMM will page out that page (or
just take it if it's not dirty).

With large real-memory machines, it takes a long time to make this second
pass and successfully free up a frame. Therefore, when the VMM runs out of
frames, it takes a long time to satisfy the request for a new one.

The solution is to divide large-memory systems into smaller buckets. Then
the page-replacement routine makes two passes per bucket before continuing
on to the next bucket. This means less latency when a frame is needed.

The lrubucket parameter is the size (in 4K pages) of this bucket. So with the
default value of 512 MB, the latency to get a free frame should always be
similar to a system with 512 MB of total memory, no matter how much real
memory there is.

3.5.5 The Program Visualizer
The Program Visualizer (PV) for AIX, is a tool that provides graphical,
animated views of trace data. It can display the behavior of a target program
and the system underlying it concurrently, allowing you to observe the
application and system behavior as it unfolds over time. The layers displayed
include the program itself, user-level libraries, the operating system, and the
hardware.

The version of PV available still stands at 0.8.3. Besides some bug fixes,
there have been no major changes made to it over the last year. PV, as it is
distributed now, will not work with traces from a shared-memory
multiprocessor because there is no facility to show behavior by CPU. As such,
its usefulness is considerable diminished if you want to run it on a
multiprocessor machine.

If you would like to follow the developments of this tool, you can do so by
accessing its World Wide Web site at http://www.research.ibm.com/pv . If you
are an IBM internal user, you can also access the internal PV FORUM.

46 AIX 64-bit Performance in Focus

3.5.6 The Xprofiler Tool
Xprofiler is a GUI-based tool that helps you analyze your application’s
performance. You can profile both serial and parallel applications with this
product, though it would probably be more useful profiling parallel
applications. When you run a serial application, a single profile data file is
generated, while a parallel application produces multiple profile data files.

Like gprof , Xprofiler lets you analyze CPU (busy) usage only. It does not give
you other information such as CPU idle, I/O, or communication.

To use Xprofiler, you application must be compiled with the -pg option. For
example, if you want to profile a program called foo.c, you would:

xlc -pg -o foo foo.c

If you need to, you could compile and link it in two separate steps, as follows:

xlc -pg -c foo.c
xlc -pg -o foo foo.o

Notice that when you compile and link separately, you must use the -pg option
with both the compile and the link commands.

The Xprofiler GUI provides the capability of viewing included functions. Note,
however, that your application must also be compiled with the -g option in
order for Xprofiler to display the included functions. The -g option is also
required for source statement profiling.

When you run a program compiled with the -pg option, a file called "gmon.out"
is created in the local directory, if the application is a serial one. For a parallel
application, a separate gmon.out file is written for each task running in the
application. The output files are suffixed with the task ID to prevent them from
overwriting each other—for instance, gmon.out.0 , gmon.out.1 , and so on.

In order to get a complete picture of your parallel application’s performance,
you must indicate all of its gmon.out files when you load the application into

The -pg option is not a combination of the -p and the -g compiling options.
The man pages for xlc list the meanings of the three flags, -g , -p and -pg,

as follows:

-g Produces information for the debugger.
-p Generates profiling support code.
-pg Generates profiling support code including BSD profiling support.

Important note

Performance Tools Changes 47

Xprofiler. When you specify more than one gmon.out file, Xprofiler shows you
the sum of the profile information contained in each file.

It is possible to generate the gmon.out files in one system and then to transfer
it to another to run Xprofiler on it. However, you must make certain that all the
libraries used in the source and destination machines are at identical
software levels. Otherwise, the resultant profiles would be rendered
meaningless.

The Xprofiler is currently packaged as part of the Parallel Environment for AIX
Version 2.3 and not available as a separate, stand-alone product.

3.6 References

The following are good sources for additional information.

 • RS/6000 Performance Tools in Focus, SG24-4989-00

 • PE Operation and Use Vol. 2 - Tools Reference, SC28-1980

 • RFC1970: Neighbor Discovery for IP Version 6 (IPv6)

If an application is compiled in real 64-bit mode, the gmon.out file created
when this application is run will be in the new 64-bit output file format.
Xprofiler is not yet able to read this format.

Note

48 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 49

Chapter 4. P erf ormance T uning Considerations

Though the architecture has changed, with AIX V4.3 being 64-bit, the
methodology for performance tuning, nevertheless, remains very much
unchanged. It is still a matter of resource management and proper system
parameter setting.

Chapter 2, “Why Do I Need 64-bit?” on page 13, went into some detail about
the categories of applications that could benefit from a 64-bit environment.
The common tie that binds all these applications is that they are driven by
their need for large addresses. In this chapter, we look at the performance
tuning considerations for those types of applications.

For good methodologies on performance tuning, the reader is advised to refer
to the AIX Versions 3.2 and 4 Performance Tuning Guide, SC23-2365.

4.1 CPU Tuning Considerations

The 64-bit AIX V4.3 does not provide much in enhancement by way of CPU
performance tuning. However, there are some issues worth mentioning
considering the nature of the loads that a machine running it may be
subjected to.

4.1.1 The schedtune Command
Below, we look at some of the schedtune parameters that could be of
particular interest in AIX V4.3 environments. The schedtune command can be
used to set the parameters for CPU scheduling and VMM processing. The
command can only be executed by the root user, and changes made by this
tool last only until the next reboot of the system. Executing the schedtune

command with no options shows the current parameter values:

/usr/samples/kernel/schedtune
 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
 6 4 2 1 2 10 16 16 1

 • multi

A large machine running the 64-bit AIX V4.3 would probably be used to
handle a large or multiuser-type environment rather than a
workstation-type workload. Thus, it is reasonable to expect that the
number of active user processes at any given time would be more than
two.

50 AIX 64-bit Performance in Focus

The m, or multi, parameter, determines a lower limit for the number of
active processes that are allowed to stay active when the system is
thrashing. These are the processes that are runable and waiting for page
I/O. Processes that are waiting for events and processes suspended are
not considered active. Nor is the wait process considered active. Also
excluded from the count are kernel processes and processes with fixed
priority values less than 60, pinned memory, or awaiting events because
no process in these categories is ever eligible for suspension.

The default value specified for this limit is 2. It ensures that at least two
user processes are always able to be active when the system is thrashing.
Increasing this to some larger value may result in better performance.
Since there is no clear guideline on what an optimum value of m should be,
you will probably have to experiment with different values of m to find your
ideal figure.

/usr/samples/kernel/schedtune -m 10

This parameter, however, is ignored by the system if the memory load
control is not turned on. Thus, there is no sense in tuning the value of m

unless the value of h is not zero.

Thrashing occurs when memory is over-committed.

When a page fault occurs, the referenced page must be paged in and, on
average, one or more pages must be paged out. AIX attempts to steal real
memory from pages that are unlikely to be referenced in the near future via
the page replacement algorithm.

At some level of competition for memory, no pages are good candidates for
paging out to disk because they will all be reused in the near future by the
active set of processes. When this happens, continuous paging in and out
occurs. This condition is called thrashing.

Thrashing results in incessant I/O to the paging disk and causes each
process to encounter a page fault almost as soon as it is dispatched, with
the result that none of the processes make any significant progress.

At a certain point in time when this happens, the system will begin to
suspend jobs so as to attempt to recover from the thrashing state. The CPU
will keep suspending jobs until it reaches the value specified by the -m

option.

Note

Performance Tuning Considerations 51

 • timeslice

The default CPU timeslice is 10 ms. This is the longest possible time that a
process or thread can be in control before it is replaced by another
process or thread. The timeslice parameter value of 1 corresponds to this,
and in most cases, you would leave this parameter unchanged.

However, if the applications you run on your machines predominantly use
threads with the SCHED_RR scheduling policy, such as do certain
database applications, you may want to consider increasing this value so
that it is 30 ms or more.

/usr/samples/kernel/schedtune -t 3

4.2 Memory Tuning Considerations

One of the main benefits of the 64-bit AIX V4.3 is it expanded addressability.
What this translates to, among other things, is the ability to support more
physical memory, up to 16 GB in the case of the new S70 machine.

4.2.1 Paging Space
A side effect of using large amounts of memory is that there should be a large
amount of paging space made available to back it up. At the very least, the
disk space allocated for paging space should be equivalent to the size of real
memory. Of course, the actual amount of paging space to be defined on any
system varies and will depend on the load imposed on it.

It follows then that paging space will be very huge. For example, if there is 16
GB of real memory available on a system, at least 16 GB of disk space has to
be put aside for paging. The default hd6 created in the rootvg would, in most
cases, be far from sufficient, and it will be necessary to expand the hd6
paging space. Care must be taken when expanding hd6 to ensure that it is
one contiguous whole and not fragmented since fragmentation would impact
performance negatively.

Ideally, there should be several paging spaces of roughly equal sizes created,
each on a separate physical disk drive. You should also attempt to create

This parameter only applies to threads with the SCHED_RR scheduling
policy. That is to say, the variable time slices only affect fixed priority
threads.

Note

52 AIX 64-bit Performance in Focus

these paging spaces on relatively lightly loaded physical volumes so as to
avoid causing any of these drives to become bottlenecks.

4.2.2 Modifying VMM with vmtune
The vmtune command is used to modify the VMM parameters that control the
behavior of the memory-management subsystem. The vmtune command can
only be invoked successfully by the root user, and any changes made to its
parameters will only remain in effect until the next reboot. Running vmtune with
any parameters gives you the current settings:

/usr/samples/kernel/vmtune
vmtune: current values:
-p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
3067 12268 2 8 119 127 524288 0

-M -w -k -c -b -B -u -l
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket
 13088 1024 256 1 93 64 9 131072

number of valid memory pages = 16360 maxperm=75.0% of real memory
maximum pinable=80.0% of real memory minperm=18.7% of real memory
number of file memory pages = 2492 numperm=15.2% of real memory

 • numclust

Since you have large amounts of memory, you should probably do some
tuning so that when the syncd runs, there won't be a huge amount of I/O
that gets flushed to disk. One of the things you should consider is turning
on the write-behind options using the vmtune command. This increases
performance by asynchronously writing modified pages in memory to disk
rather than waiting for syncd to do the flushing.

Sequential write-behind initiates I/O for pages if the VMM detects that
writing is sequential. The file system divides each file into clusters of four
dirty pages of 4 KB each. These 16 KB clusters are not written to disk until
the program begins to write the next 16 KB cluster. At this point, the file
system forces the four dirty pages to be written to disk. By spreading out
the I/O over time instead of waiting for syncd , it prevents I/O bottlenecks
from taking place. A benefit derived from the clustering is that file
fragmentation is diminished.

If it is envisaged that there would be sequential writes of very large files, it
may benefit performance by boosting the numclust value to an even higher
figure. Any integer greater than 0 is valid, and the default is 1 cluster. Care

Performance Tuning Considerations 53

must be taken when changing this parameter to ensure that the devices
used on the machine support fast writes.

To turn on sequential write-behind:

/usr/samples/kernel/vmtune -c 2

 • maxrandwrt

Another type of write-behind supported by the vmtune command is the
random write-behind. This option can be used to specify the threshold (in
4 KB pages) for random writes to be accumulated in memory before the
pages are written to disk. This threshold is on a per-file basis. You may
also want to consider turning on random write behind. To turn on random
write-behind, try the following value:

/usr/samples/kernel/vmtune -W 128

It should be noted that not every application would benefit in performance
from write-behind. In the case of database index creation, it is actually
beneficial to disable the write-behind before the creation activity.
Write-behind can than be re-enabled after the indexes have been created.

 • maxperm

If it is intended for the system to serve as an NFS file server, the large bulk
of its memory would be dedicated to storing persistent file pages rather
than working segments. Thus, it would help performance to push up the
maxperm value to take up as much of the memory as possible. The following
command would do just that:

/usr/samples/kernel/vmtune -P 100

The converse is true if the system is to be used for numerically intensive
computations or in some other application where working segments form
the dominant part of the virtual memory. In such a situation, the minperm

and maxperm values should be lowered. Fifty percent would be a good start.

 • maxpgahead

If large files are going to be read into memory often, the maxpgahead should
be increased from its default value of 8. The new value could be any power
of 2 value because the algorithm for reading ahead keeps doubling the
pages read. The flag to modify maxpgahead is -R. So, to set the value to 16,
you would enter:

/usr/samples/kernel/vmtune -R 16

54 AIX 64-bit Performance in Focus

4.2.3 Binding Processes to Processors
The bindprocessor command is used to bind or unbind all the threads of a
process to a processor. For thread-based programs, especially those with
many threads, you should avoid binding the process to a specific processor.
Binding it to a processor will result in the process running as though on a
uniprocessor machine, taking absolutely no advantage of the multiprocessor
capability of an SMP machine. Thus, unless you have a very good reason for
it, you should be careful not to bind such processes to a specific processor.

This is something that you normally should not do.

4.3 I/O Tuning Considerations

The expanded addressability of the 64-bit AIX V4.3 means that larger files
can be read and written than was possible with earlier releases of AIX. There
are some possible tuning steps that can be taken to get the most out of a
system running this version of AIX.

4.3.1 Logical Volume Striping
For an application accessing very large files on a system with large memory,
the primary bottleneck would be the disk I/O. Files have to be read from the
disk to memory in order to be processed and then written from memory to
disk once the work on it is completed. A great deal of time would have to be
spent waiting on I/O in these instances.

In such a situation, it seems prudent to implement logical volume striping.
With the data in a logical volume spread evenly across several disks, the
application accessing the large files is able to utilize the I/O capacity of a few
drives in parallel.

It would be worth your while to keep some of the following in mind when
tuning for a system for lots of sequential I/O over striped logical volume.

 • The stripe unit size should be set to a large value, such as 64 or 128 KB.

When maxpgahead is changed, maxfree will have to be adjusted to
accommodate the change. The maxfree value should be greater than
minfree by at least 8 or by the maxpgahead value, whichever is greater.

Note

Performance Tuning Considerations 55

 • The max_coalesce value should be set to equal the stripe size. The
max_coalesce value is the largest request size (in terms of data transmitted)
that the device driver attempts to transfer to or from a logical disk in a
single operation.

 • The minpgahead should be left at its default of 2, while maxpgahead can be
raised to 16 times the number of disk drives, resulting in the reading of
one stripe unit from each of the disk for each read ahead.

 • I/O requests should be made in blocks the size of maxpgahead .

 • If the logical volume will occupy physical drives that are connected to two
or more disk adapters, the I/O buffers used should be allocated on 64-byte
boundaries. 64-byte-aligned I/O buffers should be used so as to avoid
having the LVM serialize the I/Os to the different disks. The following code
would yield a 64-byte-aligned buffer pointer:

char *buffer;
buffer = malloc(MAXBLKSIZE+64);
buffer = ((int)buffer 64) & ~0x3f;

4.3.2 Modifying I/O with vmtune
Some of the parameters provided by vmtune can help in I/O performance
tuning. Of interest is the write-behind facility which has been addressed in an
earlier section, “Memory Tuning Considerations” on page 51.

Turning on and tuning these parameters (numclust and maxrandwrt) could
result in a reduced I/O bottleneck because now, writes to disk to not have to
wait on the syncd daemon, but rather, can be spread more evenly over time.
There will also be less file fragmentation because dirty pages are clustered
first before being written to disk.

The other vmtune parameters that can be tuned for I/O performance are listed
below. It is important to bear in mind, though, that using large files does not
necessarily warrant any tuning of these parameters. The decision to tune
them will depend very much on what type of I/Os are occurring to the files.
The size of the I/O, whether it is raw or journaled file system I/O, and the rate
at which the I/O is taking place are important considerations.

 • numfsbufs

This parameter specifies the number of file system buf structs. Buf structs
are defined in /usr/include/sys/buf.h .

When doing writes, each write buffer will have an associated buffer header
as described by the struct buf. This header describes the contents of the
buffer.

56 AIX 64-bit Performance in Focus

Increasing this value will help write performance for very large writes size
on devices that support very fast writes. A filesystem will have to be
unmounted and then mounted again after changing this parameter in
order for it to take effect.

/usr/samples/kernel/vmtune -M 100

The default value for this parameter is 93 for AIX V4. Each filesystem gets
two pages worth of buf structs. Since two pages is 8192 bytes and since
sizeof(struct buf) is about 88, the ratio is around 93. 8192/88=93. What
the value of numfsbufs should be is based on how many simultaneous I/Os
you would be doing to a single filesystem.

Usually, though, this figure will be left unchanged, unless your application
is issuing very large writes (many megabytes at a time) to fast I/O devices
such as HIPPI.

 • lvm_bufcnt

This parameter specifies the number of LVM buffers for raw physical I/Os.
If the striped logical volumes are on raw logical volumes and writes larger
than 1.125 MB are being done to these striped raw logical volumes,
increasing this parameter might increase throughput of the write activity.

/usr/samples/kernel/vmtune -u 16

The 1.125 MB figure comes about because the default value of lvm_bufcnt
is 9, and the maximum size the LVM can handle in one write is 128 KB. (9
buffers * 128 KB equals 1.125 MB.)

 • hd_pbuf_cnt

This attribute controls the number of pbufs available to the LVM device
driver. Pbufs are pinned memory buffers used to hold I/O requests.

In AIX V4, a single pbuf is used for each sequential I/O request regardless
of the number of pages in that I/O. The default allows you to have a queue
of at least 16 I/Os to each disk, which is quite a lot. So, it is often not a
bottleneck. However, if you have a RAID array which combines a lot of
physical disks into one hdisk, you may need to increase it.

4.3.3 Working with the jfslog
The jfslog is written to every time when:

 • A file is created.
 • A file is deleted.
 • An application opens a file with O_SYNC (in which case, every write causes

a corresponding jfslog write);

Performance Tuning Considerations 57

 • A sync or an fsync is done (in which case, one or more JFS transactions
may occur for each file that has outstanding I/Os).

Two things can be done to avoid the jfslog from becoming a performance
bottleneck. The first is to increase the size of the jfslog, and the second is to
create more than one jfslog per volume group.

4.3.3.1 Increasing the JFS Log Size
With the increased filesystem sizes available to current versions of AIX, it is
not unimaginable that the amount of concurrent transactions within the
filesystem would increase. When this happens, there is a possibility of a lot of
writes taking place in the jfslog.

By default, a jfslog file is created the size of one logical partition in a volume
group. When the amounts of writes to jfslog increases beyond a threshold so
that there is not enough time to commit these logs, any further writes will be
suspended. These pending writes will remain so until all the outstanding
writes are committed and the meta data and jfslog are in sync with each
other.

If the jfslog is made bigger than the default, I/O can continue to proceed
because the jfslog wrap threshold would not be reached as easily.

The steps taken to increase the jfslog would be as follows:

1. Backup the file system.

2. Create the log logical volume. Suppose you wish to make the jfslog size
two logical partitions now, instead of one.

mklv -t jfslog -y LVname VGname 2 PVname

where LVname is the name of the jfslog logical volume, VGname is the name of
the volume group on which it is to reside, and PVname is the hdisk name on
which the jfslog is to be located.

3. When the jfslog logical volume has been created, it has to be formatted:

/usr/sbin/logform /dev/LVname

4. The next step is to modify the affected filesystem or filesystems and the
logical volume control block (LVCB).

chfs -a log=/dev/LVname /filesystemname

5. Finally, unmount and then mount the affected file system so that this new
jfslog logical volume can start being used.

unmount /filesystemname; mount /filesystemname

58 AIX 64-bit Performance in Focus

4.3.3.2 Creating More Than One jfslog for a Volume Group
By default, one jfslog is created per volume group containing journaled
filesystems. Sometimes, because of heavy transactions taking place in more
than one file system in this volume group, it may be beneficial from a
performance standpoint to create more jfslogs so that there would be less
sharing, and thus less resource contention, for them.

The steps outlined in the earlier section can be used to create these
additional jfslogs. Where possible, the jfslogs should be created on disks of
relatively low activity so as to free the disk resources to focus on the logging
activity.

4.4 Network Tuning Considerations

64-bit enablement does not generally change the way performance tuning of
the network is viewed. However, a side effect of using 64-bit hardware is that
more physical memory usage is supported. The increased memory could
mean that the number of processes running on the system could be
increased. When this happens, it may be necessary to review the default
settings of some of the network parameters.

4.4.1 Modifying the Path MTU Settings
For two hosts communicating across a path of multiple networks, a
transmitted packet will become fragmented if its size is greater than the
smallest MTU of any network in the path. Since packet fragmentation can
result in reduced network performance, it is desirable to avoid fragmentation
by transmitting packets with a size is no greater than the smallest MTU in the
network path. This size is called the path MTU.

AIX supports a path MTU discovery algorithm as described in RFC1191. By
default, this option is turned off. You can turn it on by using the no parameters
tcp_pmtu_discover and udp_pmtu_discover .

no -o tcp_pmtu_discover=1
no -o udp_pmtu_discover=1

Since routes can change dynamically, the path MTU value for a path may also
change over time. Decreases are automatically checked at a frequency
specified by the pmtu_default_age , the default of which is 10 minutes.
Increases, on the other hand, are checked at the frequency specified by the
pmtu_rediscover_interval , which is set to a default of 30 minutes.

Performance Tuning Considerations 59

Turning on the tcp_pmtu_discover and udp_pmtu_discover parameters would
probably be beneficial, from a performance viewpoint, for machines that
support large MTUs and that sit on large bandwidth networks.

4.4.2 Modifying NFS Performance with nfso
A new parameter, nfs_rfc1323 , is provided with the nfso command in AIX
V4.3.

As described in 3.4.2, “The nfso Command” on page 41, this option is used to
enable very large TCP window size negotiation to occur between systems. It
increases the throughput potential between client and server. The option
requires that both client and server have the following:

 • TCP support
 • MTU discovery
 • Socket buffers large enough to handle the new MTU size

Some tests carried out internally have shown that setting nfs_rfc1323=1

improves performance when running over ATM with a large MTU size (59 KB
for MCA, and 64 KB for PCI). Generally, applications that do large sequential
reads and writes over TCP NFS between machines connected via a
high-speed media, such as the ATM and the SP switch, should benefit from
turning this parameter on. The MTUs of these are generally greater than 32
KB.

This parameter works independently of the no command’s rfc1323 option.
Thus, if you can choose to have the optimization on just for NFS, do so.

A cautionary note should be provided about tuning this parameter, though.
If your network comprises many smaller machines, such as PCs with small
MTUs, you could end up running your network with a very small path MTU,
thereby impacting your network performance negatively. In such a case, it
would be prudent to weigh the performance degradation due to
fragmentation against that due to small MTU sizes and decide on what
whether or not to change the default setting.

It may also be worthwhile considering organizing your network physically
along the capabilities of the machines in the network, putting components
that can manage large MTUs in one network and the others in another.
That way, the smaller machines do not pace the MTU sizing.

Note

60 AIX 64-bit Performance in Focus

4.5 References

The following are good sources for additional information.

 • AIX Version 4.3 Differences Guide, SC24-2014

 • AIX Performance Tuning Guide: Versions 3.2 and 4, SC23-2365

 • RS/6000 Performance Tools in Focus, SG24-4989

 • EMEA Power Academy 1997: Fine Tuning AIX with vmtune and schedtune

© Copyright IBM Corp. 1998 61

Chapter 5. Pr ogramming in 64-bit

While the large process space frees programmers from concerns about
memory constraints, porting in general to 64-bit will present a modest
technical effort which can rapidly worsen in the face of poor coding practices.

This chapter discusses 64-bit technical and programming issues in designing
64-bit applications.

If you want more details about AIX V4.2 large file support implementation,
refer to the AIX Version 4.2 Differences Guide, SG24-4807.

5.1 64-bit Programming Specifications

To take advantage of a 64-bit hardware and operating system, you should be
able to create 64-bit processes. Since AIX is UNIX standard compliant (X
OPEN, XPG, ANSI, POSIX), 64-bit processes are often restricted to C
programs: almost all UNIX implementations are written in C.

However, as seen in Chapter 2, “Why Do I Need 64-bit?” on page 13, one of
the main audience for 64-bit programming applications are scientists and
engineers involved in large numeric computations. Their favorite
programming language is still FORTRAN.

Because of these reasons, 64-bit programming specifications are given for C
language and FORTRAN language.

In this section, techniques for writing efficient C and FORTRAN programs are
not discussed because they are extensively described in the book titled
Optimization and Tuning Guide for Fortran, C, and C++, SC09-1705. Reading
this book will be a great benefit for programmers.

If you want more details about AIX V4.2 large file support implementation,
see the AIX Version 4.2 Differences Guide, SG24-4807, redbook.

5.1.1 64-bit C Programming Specifications
To enable 64-bit C programming, the C language standard has been
extended to include 64-bit capabilities. This paragraph illustrates 64-bit
features in the AIX C compiler.

5.1.1.1 Defining a New Standard: LP64
Although there are a number of choices regarding 64-bit processes, the
choice that was settled upon by the Aspen working group, formed by X OPEN

62 AIX 64-bit Performance in Focus

and a consortium of hardware vendors, is called LP64, short for
Long-Pointer 64. This is commonly called the 4/8/8 model, which stands for
the Integer/Long/Pointer type sizes.

The benefit of this configuration is that it provides 64-bit addressing with
8-byte pointers, large object support (8-byte longs) and backward
compatibility (4-byte ints). Other alternatives include an 8/8/8 solution called
ILP64 and the LLP64 which was rejected.

In choosing LP64, we are allowing most int types in programs (which most
people use anyway) to remain int types.

Depending on the coding style and function of the application, the number of
cases where users expect the size of ints to be the same as pointers and long
types will vary from program to program. Overall, this is a small percentage.
The LP64 choice has been made to avoid migration efforts on many
programs: there should be a migration need for a few instances of actual code
changes.

Most of the other unexpected behavior only occur at the limits of numerical
specifications where we expect an even smaller number of cases.

Currently, all IBM compilers are basically what is called ILP32 + long long.
They use the ILP32 model and include a long long type. The following table,
Table 6 on page 63, illustrates the type size for the different models.

In this table, ANSI fixed-size types are included and highlighted with (2). ANSI
introduced the two set of types: One is the signed fixed-size integral types;
the other is the unsigned fixed-size integral types. All AIX users are
encouraged to use these ANSI types through the header <inttypes.h> rather
than __int8/16/32/64 types highlighted with (3).

The use of __int8/16/32/64 are strictly used for Microsoft portability and
compatibility with VisualAge C for Intel products. They should not be used for
new coding. They do not have the same sign behavior in default char mode
(command line option -qchar=signed/unsigned). We highly recommend using
ANSI fixed-size types for further compatibility.

Programming in 64-bit 63

Table 6. ILP32, LP64 and C for AIX Compiler Model Type Size

5.1.1.2 Structure Alignment
The LP64 specification changes the size and alignment of certain structure
elements, thus effecting the size of the structure itself. In general, all

Datatype ILP32 (size in bit) LP64 (size in bit) C for AIX (32-bit / 64-bit)

char 8 8 Implemented

short 16 16 Implemented

int 32 32 Implemented

long 32 64 Implemented

long long Not Defined Not Defined 64 / 64

pointer 32 64 Implemented

float 32 32 Implemented

double 64 64 Implemented

long double Not Defined Not Defined 64 or 128 / 64 or 128(1)

int8_t
uint8_t

Not Defined Not Defined Fixed-width type(2)

8 bits (1 byte)

int16_t
uint16_t

Not Defined Not Defined Fixed-width type(2)

16 bits (2 bytes)

int32_t
uint32_t

Not Defined Not Defined Fixed-width type(2)

32 bits (4 bytes)

int64_t
uint64_t

Not Defined Not Defined Fixed-width type(2)

64 bits (8 bytes)

__int8
__uint8

Not Defined Not Defined Fixed-width type(3)

1 byte

__int16
__uint16

Not Defined Not Defined Fixed-width type(3)

2 bytes

__int32
__uint32

Not Defined Not Defined Fixed-width type(3)

4 bytes

__int64
__unit64

Not Defined Not Defined Fixed-width type(3)

8 bytes

(1) Depend on the setting of the long double option. By default, the size is 8.
(2) ANSI fixed-size types.
(3) Should not be used; use ANSI types instead.

64 AIX 64-bit Performance in Focus

structures but the simplest will have to be checked for size and alignment
dependencies.

Structures with long integers and pointers will at least double in size under
64-bit mode, depending on the alignment. Sharing data structures between
32- and 64-bit processes is no longer possible, unless the structure is devoid
of pointer and long types. Unions that attempt to share long and int types, or
overlay pointers onto int types, will now be aligned differently or be corrupted.

The -qalign suboptions specify what aggregate alignment rules the compiler
uses for file compilation. Use this option to specify the maximum alignment to
be used when mapping a class-type object, either for the whole source
program or for specific parts. You can choose six type suboptions. The default
value is -qalign=full .

power The compiler uses the RISC System/6000 alignment rules.

full The compiler uses the RISC System/6000 alignment rules. The
power option is the same as full.

mac68k The compiler uses the Macintosh alignment rules.

twobyte The compiler uses the Macintosh alignment rules. The mac68k
option is the same as twobyte.

packed The compiler uses the packed alignment rules.

natural The compiler maps structure members to their natural boundaries.
This has the same effect as the power suboption, except that it
also applies alignment rules to doubles and long doubles that are
not the first member of a structure or union.

If you use the -qalign option more than once on the command line, the last
alignment rule specified applies to the file.

RISC System/6000 Alignment Rules (power, full, natural)
On the RISC System/6000 system, an aggregate is aligned according to its
most strictly aligned member. Within aggregates, members are aligned
according to their type. Table 7 summarizes size and alignment information
for each type.

Table 7. RISC System/6000 Alignment Rules

Type Alignment (ILP32) Alignment (LP64)

char byte aligned byte aligned

short half word aligned half word aligned

int word aligned word aligned

Programming in 64-bit 65

The first element in a structure will be aligned according to the strictest
alignment of its members. Because of the potential padding introduced by the
member alignment, structure alignment will not be exactly the same as in the
32-bit mode. This is especially important for arrays of structures which
contain pointer or long types. The member alignment will change forcing each
structure element of the array to start at a double word boundary.

Example:

#include <stdio.h>
void main(void) {
 struct li{
 long la;
 int ia;
 } li;

 struct lii{
 long la;
 int ia;
 int ib;
 } lii;

 struct ili{
 int ia;
 long la;
 int ib;
 } ili;

 printf("length li = %d\n",sizeof(li));
 printf("length lii = %d\n",sizeof(lii));
 printf("length ili = %d\n",sizeof(ili));

long word aligned double word aligned

long long int double word aligned double word aligned

pointer word aligned double word aligned

float word aligned word aligned

double double word aligned if
-qalign=natural . Otherwise, word
aligned

double word aligned if
-qalign=natural . Otherwise,
word aligned

long double long double word aligned if
-qalign=natural . Otherwise, word
aligned

long double word aligned if
-qalign=natural . Otherwise,
word aligned

Type Alignment (ILP32) Alignment (LP64)

66 AIX 64-bit Performance in Focus

}

This sample program output will be different of 32-bit and 64-bit mode.

32-bit mode:

length li = 8
length lii = 12
length ili = 12

64-bit mode:

length li = 16
length lii = 16
length ili = 24

In 32-bit mode, both integers and long integers are four bytes, and struct size
is four bytes times number of members. In 64-bit, each element of the array
must be double word aligned. Thus the size of the struct li is 16 bytes (8 byte
long + 4 byte int + 4 byte pad). The struct lii and ili are the same element,
but have a different order. Because of the padding, the struct ili is expanded
24 bytes (4 byte int + 4 byte pad + 8 byte long + 4 byte int + 4 byte pad).

One should be careful when using an array of structures. The proper
alignment will save system resource and have better performance. Keep in
mind that many types of subroutines delivered have an alias for long or
pointer. For example, the size_t type is defined as unsigned long.

Macintosh and Twobyte Alignment Rules
All unions and structures are half word aligned regardless of their members.
Within the aggregate, members are aligned according to their type.
Therefore, both IPL32 and LP64 use the same alignment rules. The table
below summarizes alignment information for each type.

Table 8. Macintosh and Twobyte Alignment Rules

Type Alignment (ILP32,LP64) Size (IPL32) Size (LP64)

char byte aligned byte byte

short half word aligned half word half word

int half word aligned word word

long half word aligned word double word

long long int half word aligned double word double word

pointer half word aligned word double word

Programming in 64-bit 67

The following sample program output shows the struct size difference only
comes from the size of the data types.

32-bit mode:

length li = 8
length lii = 12
length ili = 12

64-bit mode:

length li = 12
length lii = 16
length ili = 16

Packed Alignment Rules
All structures are byte-aligned regardless of their members. All members are
also byte-aligned. (Bit fields are byte-aligned, but bit-field members are not.)
Using packed alignment rules, the struct size only depends on the data size.

The following sample program output also shows the struct size is equal to
the total size of the members.

32-bit mode:

length li = 8
length lii = 12
length ili = 12

64-bit mode:

length li = 12
length lii = 16
length ili = 16

float half word aligned word word

double half word aligned double word double word

long double half word aligned double word double word

long double with
-qlongdouble or
-qlbdl128 option

half word aligned quadruple word quadruple word

Type Alignment (ILP32,LP64) Size (IPL32) Size (LP64)

68 AIX 64-bit Performance in Focus

5.1.1.3 Bit Fields
Structure bit fields in 32-bit mode are limited to 32 bits, and can be of type
signed int, unsigned int, or plain int. Bit fields are packed into a word.
Adjacent bit fields that cross a word boundary will start at a storage unit
which is a word aligned, half word in the mac68k and two byte alignment, and
byte in the packed alignment.

In 64-bit mode, bit fields are limited to at most 64-bits in size and can be of
type signed int, unsigned int, plain int, long, and unsigned long. If it is of type
long, or unsigned long, the maximum size is 64 bits and is double word
aligned. The alignment will remain the same in all other alignment modes.
This means that adjacent declarations of bit fields which used to take two
consecutive words in 32-bit mode can now be contained in a simple long
declaration in 64-bit mode. Since long bit fields were not permitted before in
32-bit mode, this is usually not a portability problem.

Example:

struct bit_fields {
 unsigned a : 7; /* total 7 bits */
 unsigned b : 6; /* total 13 bits */
 unsigned c : 2; /* total 15 bits */
 unsigned d : 8; /* total 23 bits */
 unsigned e : 4; /* total 27 bits */
 unsigned f : 4; /* total 31 bits */
 unsigned g : 2; /* total 33 bits */
};

In 32-bit mode, elements a to f are packed in a single word with 1 bit of
padding. Element g is placed in the next consecutive word. In 64-bit mode,
however, all the elements of the structure are packed into a double word.

5.1.1.4 C for AIX Compiler
The 64-bit implementation of the C front end has not changed the behavior of
the compiler. The default compilation and assembly mode is 32-bit. The
compiler will only change the behavior of code when compiling for 64-bit
mode. This change from the default 32-bit to 64-bit mode is under user
control.

64-bit printf Support
The printf subroutine format string for a 64-bit integer is different than the
string used for a 32-bit integer. Programs that do these conversions must be
careful to use the proper format specifier.

Programming in 64-bit 69

You should also consider the maximum figure size of long and unsigned long

type. The ULONG_MAX (18,446,744,073,709,551,615) is twenty digits long.

Example:

i#include <stdio.h>
void main(void) {
 printf("LONG_MAX(d) = %d\n",LONG_MAX);
 printf("LONG_MAX(x) = %x\n",LONG_MAX);
 printf("LONG_MAX(lu) = %lu\n",LONG_MAX);
 printf("LONG_MAX(lx) = %lx\n",LONG_MAX);
}

Output:

LONG_MAX(d) = -1
LONG_MAX(x) = ffffffff
LONG_MAX(lu) = 9223372036854775807
LONG_MAX(lx) = 7fffffffffffffff

64-bit Iconv Support
The iconv_open subroutine uses the LOCPATH environment variable to search
for a converter whose name is of the form:

iconv/FromCodeSet_ToCodeSet

The FromCodeSet string represents the sender's code set, and the ToCodeSet

string represents the receiver's code set. The underscore character
separates the two strings.

Since the iconv converter is a loadable object module, a different object is
required when running in the 64-bit environment. In the 64-bit environment,
the iconv_open routine will use the LOCPATH environment variable to search for
a converter whose name is in the form:

iconv/FromCodeSet_ToCodeSet__64

The iconv library will automatically choose whether to load the standard
converter object or the 64-bit converter object. If the iconv_open subroutine
does not find the converter, it uses the FromCodeSet and ToCodeSet name
pair to search for a file that defines a table-driven conversion. Many
conversion tables are only for the 32-bit environment. The code conversion

All setuid and setgid programs will ignore the LOCPATH environment variable.

Note

70 AIX 64-bit Performance in Focus

table is created by the genxlt command. The iconvTable converter uses the
LOCPATH environment variable to search for a file whose name is in the form:

iconvTable/FromCodeSet_ToCodeSet

The genxlt command is included in the fileset bos.loc.adt.iconv. If the genxlt

command failed because no code was set, iconv_open will return error 22
(EINVAL). We recommend generating a code set conversion table for 64-bit in
advance, for better application performance. See the genxlt command in the
AIX Version 4.3 Commands Reference for more information.

Compiler Invocation
The features added to the compiler to enable 64-bit mode include:

 • Predefined __64BIT__ macro when invoked for 64-bit compilations
 • OBJECT_MODE environment variable
 • -qarch support for 64bit suboption

The compiler can be invoked for 64-bit or 32-bit mode by setting an
environment variable, or by using a command line option to set the
compilation mode of the compiler.

The compiler evaluates competing options for compilation mode in the
following order:

1. OBJECT_MODE setting
2. Configuration file
3. Command line

The above list forms the user-chosen compilation mode. This choice must be
evaluated with the arch/tune setting to decide the actual compilation mode.
The interaction of the above list of user-chosen compilation mode and the
arch/tune setting is described in 5.1.3, “64-bit Object Format Specification” on
page 77

__64BIT__ Macro
When the compiler is invoked to compile for 64-bit mode, the preprocessor
macro __64BIT__ is defined. When it is invoked in 32-bit (default) mode, this
macro is not defined.

This variable can be tested via #if defined(__64BIT__) or #ifdef __64BIT__ to
select lines of code (such as printf statements) that are appropriate for 64- or
32-bit mode. This ability to choose execution mode (of the final executable) at
compile time and the existence of the __64BIT__ macro implies there is no
need to test execution mode at runtime.

Programming in 64-bit 71

OBJECT_MODE
The C compiler obtains information from environment variables. These may
be the setlocale variable which changes the language of messages, or the
_xlC_test_usrinc path variable which overrides the default place to look for
system header files (/usr/include).

This latter option facilitates easy testing of new header files without having to
change them in the default location. Neither of these environment variables
have a competing command line option that can contradict it.

A new environment variable called OBJECT_MODE has been introduced
that, when used, replaces the default compilation mode of the compiler.

Command Line Options
Command line options override the environment variable OBJECT_MODE
when setting the compilation mode.

When compiling for 64-bit mode, the compiler generates 64-bit instructions
and produces files in the 64-bit XCOFF format. The compiler cannot generate
64-bit instructions that operate safely on 32-bit XCOFF. This implies that
64-bit and 32-bit objects can not be mixed.

5.1.2 64-bit FORTRAN Programming Specifications
FORTRAN (FORmula TRANSlation) is a high-level programming language
primarily designed for applications involving numeric computations.
FORTRAN, the language of choice for scientists and engineers, is now
celebrating its 40th birthday. Due to its ease of use and intuitive structure, it is
also the language of choice for novice programmers in universities.

Due to these reasons, we know a lot about FORTRAN as FORTRAN 77
standard and we still ignore the new capabilities of the Fortran 90 standard.
In this section the main characteristics of Fortran 90 are presented so 64-bit
capabilities can be discussed. FORTRAN examples are written in Fortran 90.

5.1.2.1 Fortran 90 Standard
The Fortran 90 language standard supports the FORTRAN 77 language
standard. Fortran 90 adds a wealth of new features to FORTRAN 77.
Compared to FORTRAN 77, Fortran 90 may offer an improved method or
feature for performing a given task.

The following outlines some of the key features that Fortran 90 brings to the
FORTRAN 77 language:

 • Fortran 90 free source form

72 AIX 64-bit Performance in Focus

In addition to the fixed source form format (defined in FORTRAN 77),
Fortran 90 defines a free source form format.

 • Parameterized data types

Although the length specification for a data type (for example,
INTEGER*4) is a common industry extension, Fortran 90 provides
facilities for specifying the precision and range of non-character intrinsic
data type and the character sets available for the character data type.

 • Derived types

A derived type is a user-defined type whose components are of intrinsic
type and/or other derived types.

 • Array enhancements

With Fortran 90, you can specify arrays expressions and assignments. An
array section, a portion of a whole array, can be used as an array. Array
constructors offer a concise syntax for specifying the values of an array.

 • Pointers

Pointers refer to memory addresses instead of values. Pointers provide
the means for creating linked lists and dynamic arrays.

 • Dynamic behavior

Storage is not set aside for pointers targets and allocatable arrays at
compile time. The ALLOCATE/DEALLOCATE statement lets users control
the storage usage at run time. You can also use pointer assignment to
alter the storage space with the pointer.

 • Control construct enhancements

The CASE construct provides a syntax for selecting, at most, one of a
number of statement blocks for execution. The DO statement with no
control clause and the DO WHILE construct offer increased versatility.

 • New intrinsic procedures

Fortran 90 brings dozens of new intrinsic procedures to FORTRAN.

 • Procedure enhancements

Fortran 90 introduces many features that make the use of procedures
easier.

 • Modules

Modules provide the means for data encapsulation and the operations that
apply to the data. A module is a non-executable program unit that can
contain data object declarations, derived-type definitions, procedures and
procedures interfaces.

Programming in 64-bit 73

The following examples of array programming code illustrates how powerful
Fortran 90 features are:

 • FORTRAN 77 source

REAL A(7,8), B(7,8), C(7,8)
DO 10 I=1,7

DO 20 J=1,8
C(I,J) = A(I,J)+B(I,J)

20 CONTINUE
10 CONTINUE

 • Fortran 90 source

REAL ,DIMENSION(7,8):: A, B, C
C=A+B ! Add the Two arrays

5.1.2.2 64-bit FORTRAN Integer Capabilities
As shown in Table 6 on page 63, ILP32 implementation does not implement
64-bit integer computations for C language. Only the optional feature long
long in C for AIX compiler allows 64-bit integer computations.

However, in for FORTRAN, standard specification defines 64-bit integer
capabilities. This section illustrates the different level of 64-bit size proposed
by Fortran 90 (FORTRAN 77) standard.

FORTRAN Data Types
The Fortran 90 specification defines two categories of data types: intrinsic
types and derived types. The derived types are user-defined data types, this
feature is described in 5.1.2.1, “Fortran 90 Standard” on page 71. The
intrinsic types, including their operations, are predefined and are always
accessible. There are two classes of intrinsic data types:

 • Numeric (also known as arithmetic): integer, real, complex and byte
 • Nonnumeric: character, logical and byte

The Fortran 90 specification requires:

 • Default integer and default real occupy one numeric storage unit.
 • Double precision occupies two numeric storage units.

Since FORTRAN on PowerPC uses 32- and 64-IEEE floating-point formats, a
numeric storage unit is 32 bits. Hence, INTEGER is 32 bits.

74 AIX 64-bit Performance in Focus

64-bit Integer Computations
FORTRAN variables that are 64-bit integers can be defined using
INTEGER(8).

A compiler option can force the FORTRAN for AIX compiler to default integers
to 64 bits; this would then be out of conformance with Fortran 90. The
-qintsize compiler option is used to change the default integer (and logical)
to 2, 4 (the default) or 8 bytes. This option is intended to allow you to port
programs unchanged from systems that have different default sizes for data.

For example, you might need -qintsize=2 for programs written for a 16-bit
microprocessor or -qintsize=8 for programs for a Cray computer.

The XL Fortran V3 compiler, released in December 1993, already supports
64-bit integer arithmetic in 32-bit environments. Defining INTEGER(8), you
can compute values between -9,223,372,036,854,775,808 (-263) and
9,223,372,036,854,775,807 (263-1).

5.1.2.3 XL Fortran V5.1 Capabilities
In addition to all of the functions available in XL Fortran for AIX Version 4.1,
XL Fortran for AIX Version 5.1 provides the following features:

 • SMP support
 • 64-bit support
 • Asynchronous I/O
 • Debug memory routines

Although we are focusing on FORTRAN’s 64-bit capabilities, it is important to
mention that XL Fortran for AIX Version 5.1 is the first IBM FORTRAN
compiler exploiting the RS/6000 Symmetric Multi-Processing (SMP)
architecture. It supports both automatic parallelization of a FORTRAN
program and explicit parallelization (through a set of directives that you can
use to parallelize selected portions of your program). It also implements
multithreaded programming capabilities and asynchronous I/O.

Unlike C’s long data type, FORTRAN’s default INTEGER can not grow from
32 to 64 bits.

FORTRAN default INTEGER is 32 bits, even in the 64-bit environment.

FORTRAN specification defines 64-bit integer capabilities, even for a 32-bit
environment.

FORTRAN Data Types

Programming in 64-bit 75

Though FORTRAN is a 40 year-old programming language, the continuing
evolution of its specification gives FORTRAN many attractive features,
especially for heavy SMP use and performance benefits.

5.1.2.4 XL Fortran 64-bit Support
FORTRAN compiled for 64-bit execution does the following:

 • Extends the address part of a Fortran 90 POINTER to 64 bits:
POINTER*8.

 • Leaves the Fortran 90 default integer at 32 bits.
 • Allows maximum array bounds to grow from +/− 231 to +/− 263.

The IBM FORTRAN compiler implementing 64-bit features for AIX V4.3 and
higher is referenced as XL Fortran Version 5.1. The 64-bit support includes:

 • The OBJECT_MODE environment variable that enables you to obtain a
64-bit development environment.

 • The -q64 compiler option, to indicate the 64-bit compilation bit mode, and
when combined with the -qarch option, determine the target machines on
which the 64-bit executable will run.

 • The -q32 compiler option, to enable 32-bit compilation bit mode support in
a 64-bit environment.

 • The -qwarn64 compiler option, to help port code from a 32-bit environment
to a 64-bit environment.

OBJECT_MODE, -q64 , -q32 , and -qarch are explained in 5.1.3, “64-bit Object
Format Specification” on page 77.

The -qwarn64 option is discussed in 6.3.5, “The Compiler Option -qwarn64” on
page 108.

Please refer to these technical articles:

 • XL Fortran Compiler for IBM SMP Systems (AIXpert Magazine,
December 1997).

 • Multithreaded Programming in XL Fortran Version 5 (AIXpert Magazine,
December 1997).

For Further Reading

76 AIX 64-bit Performance in Focus

5.1.2.5 Program Enlarged Limits
These are the new enlarged limits for a FORTRAN program compiled in 64-bit
mode:

 • The default integer and default real size is four bytes.
 • The default integer pointer size is eight bytes.
 • The maximum array size increases to the size of one segment

(approximately 240 bytes).
 • The maximum dimension bound range is extended to [-263, 263-1].
 • The maximum array constants have not been extended and will remain the

same as the maximum in 32-bit mode. Therefore, arrays with a size
greater than 231-1 cannot be initialized.

 • The maximum iteration count for array constructor implied DO loops
increases to 231-1.

 • The maximum character variable length extends to the size of one
segment (approximately 240 bytes).

 • The maximum character length of character literals remains the same as
in 32-bit mode.

 • The LOC intrinsic returns an INTEGER(8) value.

5.1.2.6 64-bit FORTRAN Migration Issues
The impact on FORTRAN applications should be very minimal. Unlike C
pointers, Fortran 90 POINTER can not be manipulated arithmetically. The
length of a POINTER is unspecified in the standardization specification;
therefore, FORTRAN programs can not make assumptions about pointer size.
Moreover, FORTRAN programs can not use EQUIVALENCE with anything
containing a pointer.

However, programs that use pre-Fortran 90 integers pointers (a FORTRAN
extension) may require changes:

 • Such a pointer is defined by the language as a scalar variable of type
INTEGER(4). This will have to change to INTEGER(8).

 • Integer pointers can be manipulated arithmetically like C pointers and
such arithmetic may not be portable from 32 to 64 bits.

Note that high optimization level (-O4 and -qhot), interprocedural analysis
(-qipa), and SMP features (-qsmp) are not supported for 64-bit codes with
XL Fortran V5.1.

Note

Programming in 64-bit 77

A legal Fortran 90 program should not contain anything that depends on the
length of a storage address, and the default integer length remains
unchanged. It should be possible to run such programs in 64-bit address
spaces by recompiling.

5.1.3 64-bit Object Format Specification
To support larger executables that can be fit within a 64-bit address space, a
new object format has been created to meet the requirements of 64-bit
executables. This section explains the meaning of the XCOFF object format
and the AIX V4.3 format change due to XCOFF.

5.1.3.1 Definition
The eXtended Common Object File Format (XCOFF) is the object format for
AIX. XCOFF combines the standard common object file format COFF
(defined by AT&T) with the Table Of Contents (TOC) module format concept,
which provides for dynamic linking and replacement of units within an object
file.

One of the major interests in XCOFF is in its ability to dynamically resolve
references to shared libraries and other external objects. COFF, on the other
hand, can only resolve references statically.

XCOFF is the formal definition of machine-image object and executable files:

 • These XCOFF objects are produced by language processors (assemblers
and compilers).

 • The binder combines individual object files into an XCOFF executable file.

 • The system loader reads an XCOFF executable file to create an
executable memory image of a program.

 • The symbolic debugger reads an XCOFF executable file to provide
symbolic access to functions and variables of an executable memory
image.

In AIX V4.3, XCOFF has been extended to provide for 64-bit environment,
object files and executable files. Now, there are two XCOFF formats: 32-bit
XCOFF format (referred as XCOFF32) and 64-bit XCOFF format (referred as
XCOFF64).

For a detailed description of these formats, see AIX Version 4 Files
Reference for AIX, SC 23-2512 and AIX V4.3 Files Reference for AIX,
SC23-4168.

78 AIX 64-bit Performance in Focus

Notice that the f_magic field, at offset 0 in the XCOFF object, defines the
integer known as magic number. It specifies the target machine and
environment of the object file. For XCOFF32, the only valid value is 0x01DF
(0737 Octal). For XCOFF64, the only valid value is 0x01EF (0757 Octal)
referred to as U803XTOCMAGIC.

Example:

od -x -N2 a.out.32
0000000 01df
0000002
od -x -N2 a.out.64
0000000 01ef
0000002

5.1.3.2 XCOFF Format Implications
There are different implications in the XCOFF format change of which users
should be aware:

 • Only AIX V4.3 and above can generate and load 64-bit XCOFF objects.

 • When compiling for 64-bit mode, compilers generate 64-bit instructions
and produce files in the 64-bit XCOFF format. The binder binds only 64-bit
objects to create 64-bit executables. Note that objects bound together,
statically or shared, must all be of the same object format. This means that
64-bit and 32-bit objects can not be mixed.

 • The following scenarios are not permitted, and will fail to load and/or
execute:

 • A 64-bit object that references symbols which cannot be satisfied by
64-bit libraries.

 • A 64-bit executable that has references to symbols from a shared
library with no 64-bit-capable version.

As mentioned in 1.3, “64-bit Application Software” on page 10, if 64-bit
application development does not require 64-bit hardware, AIX V4.3
should be installed on all RS/6000 32-bit development machines.

Important Note

The generation of 64-bit instructions and 64-bit XCOFF is called the
64-bit compilation mode.

64-bit Compilation Mode

Programming in 64-bit 79

 • A 32-bit executable that has references to symbols from a shared
library with no 32-bit-capable version.

 • A 64-bit executable that attempts to explicitly load a 32-bit module.

 • A 32-bit executable that attempts to explicitly load a 64-bit module.

 • Attempts to run 64-bit applications on 32-bit platforms.

 • 64-bit mode support in compilers is mainly provided through the two new
compiler options, -q64 and -q32 , used in conjunction with the compiler
option -qarch . This combination determines the bit mode and instruction
set for the target architecture. The -q32 and -q64 options take precedence
over the setting of the -qarch option. Conflicts between the -q32 and -q64

options are resolved by the last option wins rule. Setting -qarch=com will
ensure future compatibility for applications, whereas the rs64a and auto

settings will be more system dependent.

Examples:

1. Using 32-bit compilation mode and targeting the 601 architecture:

-qarch=601 -q32

2. Now keep the same compilation mode, but alter the target to RS64A:

-qarch=601 -q32 -qarch=rs64a

Notice that the last setting for -qarch wins.

3. Now keep the same target, but alter the compilation mode to 64-bit:

-qarch=601 -q32 -qarch=rs64a -q64

Notice that specifying -q64 overrides the earlier instance of -q32 .

Table 9. Settings for -qarch with -q32 or -q64

 • In compilers that do not support 64-bit, such as Pascal and PL1X, use of
the -q32 and/or the -q64 option will cause the following warning:

Compilation Mode -qarch Setting

-q32 -qarch= <all_settings> except -qarch=ppc64

-q64 -qarch= auto if compiling on a 64-bit systems
-qtune=rs64a

-q64 -qarch=com, -qarch=ppc, -qarch=rs64a
-qtune=rs64a

-q64 overrides a conflicting setting for -qarch
-qarch=601, -qarch=603, -qarch=604
-qarch=pwrx, -qarch=pwr2, -qarch=pwr,
-qarch=p2sc, -qarch=pwr2s

80 AIX 64-bit Performance in Focus

1501-055 Option -q32, -q64 is not recognized and is ignored

 • A new archives file type appears in AIX V4.3 and above. The big archives
format, ar_big, is the default file format and supports both 32-bit and 64-bit
object files. It will work with files larger than two GB. The previous one,
referred to as the small archives format, can be used to create archives
that are recognized on version of AIX older than 4.3. It can not be larger
than two GB.

To specify which kind of objects files the ar command should examine, a
new flag, -X , has been added. With -X64 , ar processes only 64-bit object
files. With -X32 , the default, ar processes 32-bit object files (and ignores
64-bit objects). With -X32_64 , both 32-bit and 64-bit object files are
processed. The behavior can also be changed by setting the
OBJECT_MODE environment variable. See 5.1.3.3, “AIX V4.3 Default
Mode” on page 81. If a 64-bit object is added to a small format archives, ar

first converts it to the big format, unless -g is specified. By default, ar only
handles 32-bit object files; any 64-bit object files in an archive are silently
ignored.

In almost all cases, the -g flag physically positions the archive members in
the order in which they are logically linked. The resulting archives are
always written in the small format, so this flag can be used to convert a
big-format archive to a small-format archive. Archives that contain 64-bit
XCOFF objects cannot be created in or converted to the small format.

 • Like the ar command, there are other AIX utilities which use XCOFF
objects. They have been expanded with the same new flag, -X . These
utilities are:

dump Dumps selected parts of an object file. The -X {32|64|32_64}

mode specifies the type of object file dump should examine.

The ar command does support two x flags:

 • -x which extracts the named files by copying them into the current
directory.

 • -X which specifies the type of object files ar should examine.

Note that uppercase X and lowercase x are two ar flags with different
meanings; don’t be confused.

Note

Programming in 64-bit 81

lorder Finds the best order for member files in an object library. The -X

{32|64|32_64} mode specifies the type of object file lorder

should examine.

nm Displays information about symbols in object files, executable
files, and object-file libraries.

ranlib Converts archive libraries to random libraries.

strip Reduces the size of an XCOFF object file by removing
information used by the binder and symbolic debug program.

size Displays the section sizes of the XCOFF object files.

 • 64-bit mode support in AIX linker is mainly provided through the two new
linker options, -b64 and -b32 , coming from the compiler stanza file
(/etc/xlC.cfg or /etc/xlf.cfg). In -b32 mode, all input object files must be
XCOFF32 files or an error is reported. Only XCOFF32 archives members
are processed. XCOFF64 archive members are ignored. In -b64 mode, all
input object files must be XCOFF64 files or an error is reported. Only
XCOFF64 archive members are processed. XCOFF32 archive members
are ignored.

If both -b32 and -b64 options are specified, the last option specified wins
(same behavior as -q32 /-q64). The compiler driver automatically and
quietly generates the correct options to call the binder or the correct
assembler option (-a32 or -a64). Therefore, the user does not need to
specify them.

 • The make command doesn’t discriminate XCOFF object formats; it only
discriminates on the timestamp of files. The one case where this can
cause a problem is when you try to add 32-bit and 64-bit objects with the
same name to an archive. Running make in 32-bit mode, then 64-bit mode
will not update the second object. The make command only checks the
timestamp of the first object it finds with the correct name.

5.1.3.3 AIX V4.3 Default Mode
As shown previously, setting the type for XCOFF objects is an important issue
because of the consequences it has on the system. To set the compiler’s
default mode to 64-bit will not maintain behavior compatibility with AIX V4.3
installed on a 32-bit machine. On the other hand, to set default mode to 32-bit
will be painful to 64-bit users on a 64-bit machine.

OBJECT_MODE Definition
For these reasons, AIX V4.3 defines an environment variable called
OBJECT_MODE which replaces the default of compilers if the environment
variable exists. If OBJECT_MODE does not exist, then compilers will have a

82 AIX 64-bit Performance in Focus

default and it will be 32-bit mode; this facilitates compatibility with systems
that do not have OBJECT_MODE set (such as AIX V4.3 installed on a 32-bit
machine).

OBJECT MODE can be set to one of three values:

1. OBJECT_MODE=32

This sets the mode of utilities to generate and/or use 32-bit objects.

2. OBJECT_MODE=64

This sets the mode of utilities to generate and/or use 64-bit objects.

3. OBJECT_MODE=32_64

This sets the mode of utilities to accept both 32- and 64-bit objects.

Compilers, AIX binder and AIX loader will not function in this mode and
will generate the error message:

1501-054 OBJECT_MODE=32_64 is for mixed-mode and is not a valid
setting for the compiler.

Utilities accepting this OBJECT_MODE setting are: ar , dump, nm, lorder ,
ranlib , size , and strip . These utilities have been discussed in 5.1.3.2,
“XCOFF Format Implications” on page 78.

If OBJECT_MODE is not set, the default mode for all utilities is set to 32-bit. If
OBJECT_MODE is set to anything else, this error message is issued:

1501-055 OBJECT_MODE setting is not recognized and is not a valid
setting for the compiler.

In AIX V4.3, 32-bit XCOFF objects and 64-bit XCOFF objects are
supported both and at the same time only by a limited number of utilities.
This capability of supporting both object types is called mixed-mode.

Utilities supporting mixed-mode are: ar , dump, nm, lorder , ranlib , size , strip .

They have been expanded with a new flag, -X . The valid settings for this
flag are 32, 64 and 32_64.

Compilers, AIX binder and AIX loader are not mixed-mode eligible.

Mixed-Mode Definition

Programming in 64-bit 83

OBJECT_MODE and Default Bit Mode
Between compiler options, compiler configuration files and source file
statements and, OBJECT_MODE environment variable, a priority policy has
been defined.

As mentioned earlier, in AIX V4.3, the last one wins rule is applied on the
following evaluation order (from lowest to highest priority):

1. OBJECT_MODE setting

2. Compilers configuration file:

/etc/xlC and /etc/xlf

3. Command Line:

-q32 , -q64 or -a32 , -a64 or -b32 , -b64 or -X32 , -X64 , -X32_64

4. Source file:

Source file priority is defined to be the highest, although since AIX V4.3,
there is no more arch suboption to the pragma directive (see “Bit Mode
Setting and Pragma Directive” on page 84).

Concerning OBJECT_MODE setting and compiler options, Table 10 on page
83 shows the default bit mode and options that are set for each setting of the
OBJECT_MODE environment variable.

Table 10. Default Compiler Bit Mode Determined by the OBJECT_MODE Setting

When you mix 32-bit and 64-bit compilation modes, you may not know if your
object is XCOFF32 or XCOFF64 format. In other words, if you compiled and
produced 64-bit objects, you need to remember to link these objects using the
64-bit mode, otherwise the objects will not link. Similarly, 32-bit objects must
be linked using 32-bit mode. The only solution is to recompile completely
making sure that all objects will be in the same mode, as explained in the
following note.

OBJECT_MODE Setting Default Bit Mode Default Option Set

Unset 32-bit -q32

32 32-bit -q32

64 64-bit -q64

32_64 Not permitted n/a

84 AIX 64-bit Performance in Focus

These are some examples of mixed-mode utilities:

1. To list all files in lib.a, whether 32-bit, 64-bit, or non-objects, enter:

ar -X32_64 -t -v lib.a

2. To dump the object file headers from only 64-bit objects in lib.a, enter:

dump -X64 -o lib.a

3. To display symbol of all 64-bit objects in libc.a, ignoring all 32-bit objects:

nm -X64 /usr/lib/libc.a

4. To remove both the 32-bit and 64-bit symbol tables from lib.a, enter:

strip -X 32_64 lib.a

5. To compile in 64-bit mode when you have an 32-bit environment:

.
export OBJECT_MODE=32
.
xlf -q64 myprog.f

Notice that -q64 overrides OBJECT_MODE setting.

Bit Mode Setting and Pragma Directive
A potential conflict exists if you compile a file with the following line in the
source file:

#pragma options arch=601
main()
{
.....
}

If this file was compiled with the command line option:

xlc -q64 or xlc -qarch=ppc64

The use of OBJECT_MODE to determine the default bit mode can cause
serious problems if a user is unaware of the setting of OBJECT_MODE.
For example, the user may not be aware that OBJECT_MODE has been
set to 64 and may unexpectedly obtain 64-bit object files.

We strongly urge users to be aware of the setting of OBJECT_MODE at all
times and to set OBJECT_MODE themselves to ensure that the compiler is
invoked for the correct bit mode.

Important Note

Programming in 64-bit 85

the resolution rule (the last one wins) will cause the source file to be compiled
in 32-bit mode but the stanza file, xlc, will proceed to call the linker or the
assembler in 64-bit mode, and they will fail.

For this reason, C for AIX compiler will not implement the arch option to the
pragma directive to prevent a change of architecture after the compiler has
been invoked.

5.1.4 64-bit Performance Benefits
The 64-bit address space can be used to dramatically improve the
performance of applications that manipulate large amounts of data. This data
can either be created within the application or obtained from files. Generally,
the performance gain comes from the fact that the 64-bit application can
contain the data in its address space (either created in data structures or
mapped into memory), where the data would not fit into a 32-bit address
space. Thus, the data would need to be multiple GBs in size or larger to show
this benefit.

5.1.4.1 Program Size
If the same source code is used to create a 32-bit and a 64-bit application,
the 64-bit application will usually be larger than the 32-bit application. The
64-bit application is not likely to run faster than the 32-bit application unless it
makes use of the larger 64-bit addressability. Because most C programs are
pointer-intensive, a 64-bit application will be almost twice as large, depending
on how many pointers and longs are declared. A C++ program’s text and data
usage is almost always twice the size, due to the large number of pointers it
uses under the covers to implement virtual function tables, objects,
templates, and so on. The following example shows the size difference of
compiling the same code (see 5.1.1.2, “Structure Alignment” on page 63) with
the -q64 option and without.

Example:

-rwxr-xr-x 1 root staff 4191 Feb 26 09:59 sample32
-rwxr-xr-x 1 root staff 4608 Feb 26 09:59 sample64

Generally, the correct choice is to create a 32-bit application, unless 64-bit
addressability is required by the application or can be used to dramatically
improve its performance.

5.1.4.2 Include Files
Many include files have pointers and structures in them, and their inclusion in
64-bit mode will change the size of your data section even if the application
does not use structures and pointers explicitly.

86 AIX 64-bit Performance in Focus

5.1.4.3 Using Large Data
Programs with large data spaces require a large amount of paging space. For
example, if a program with a 3 GB address space tries to access every page
in its address space, the system must have 3 GB of paging space. The
operating system page-space monitor terminates processes when paging
space runs low.

64-bit applications may require paging I/O tuning in compensation for the
large data handling benefit.

5.1.4.4 Using Large Memory Address
One of the 64-bit application benefits is mapping large data into real memory
to access it without disk I/O. You can handle more than 2 GB data in real
memory. On a 64-bit system, the hardware provides a continuous range of
virtual memory addresses, from 0x0000 0000 0000 0000 0000 to 0xFFFF
FFFF FFFF FFFF FFFF, for accessing data. The total addressable space is
more than 1 TB. However, maximum hardware physical memory size is still
16 GB (as for the IBM RS/6000 Model S70). To prevent paging, it is important
to keep memory use to no more than the physical amount.

5.1.4.5 Using Extended System Limits
System limits have been expanded on 64-bit AIX. This does not have a direct
effect on performance, but offers new and expanded application solutions. For
example, some network server type applications, using many socket file
descriptors, will benefit from being able to handle more than 2,000 sessions.

Table 11. 64-Bit System Limits

Reference Old Limit New Limit

File descriptors per process*1 2,000 32,768

System open file table 200,000 1,000,000

Number of shared memory IDs 4096 65,536

Number of kernel threads per process*1 512 32,768

Number of processes 131,072 Not expanded

Number of threads per system 262,143 Not expanded

Size of Shared or Mapped Files 256 MB 2 GB

Executables 7*256 bytes*2

*1 both 32-bit and 64-bit processes
*2 7*256 bytes = 458,752 TB
*3 264 = 16,777,216 T

Programming in 64-bit 87

5.2 Cache Line Size and Performance

The unit of access in the cache is called a line. In SMP environments, it is
possible for two processes to reference two different portions of data that fall
in the same cache line because they lie close to each other in memory. In a
case where a process on processor 1 changes a value in cache, the cache
consistency logic will invalidate the other processor’s cache line, causing a
cache miss when another value is accessed, even though the two processes
were not sharing any data. This is called false sharing. False sharing
increases cache misses and bus traffic, further reducing SMP throughput and
scaling.

One solution for false sharing is to allocate padding between data.

Example:

struct critical_data{
long long_type_data;
char pad[124];
} critical_data[DATA_SIZE];

This sample is based on a data cache line of 128 bytes and the long type is
32-bit in length. You can see the size of data cache line with
_system_configuration.dcache_block in sys/systemcfg.h. When migrating to
64-bit, you have to check the padding size for the right size. This size may not
affect for application behavior but can affect application performance.

5.3 Data Sharing with 32-bit and 64-bit Applications

These samples show how to access large files and memory between
coexisting 32-bit and 64-bit applications.

5.3.1 Creating Large Files
The open subroutine allows the creation of a file larger than 2 GB, if the
_LARGE_FILES flag is defined. It is possible to create and open large files

Sum of sizes of text, data and BSS sections 7*256 bytes*2

Symbol values (generally address of objects) 264 *3

Reference Old Limit New Limit

*1 both 32-bit and 64-bit processes
*2 7*256 bytes = 458,752 TB
*3 264 = 16,777,216 T

88 AIX 64-bit Performance in Focus

greater than 2 GB in 32-bit applications. You can also can use the open64 or
create64 subroutines. The following sample program works in 32-bit mode
and 64-bit mode.

#include <stdio.h>
#include <fcntl.h>
#include <sys/errno.h>

#define ROOP_256 (16 * 1024 * 1024) /* 16 MB */
#define ROOP_3GB (4 * 3) /* total 3 GB */

void main(void) {
 int fp64;
 int seg_no;
 int counter;
 char data[17];

 if((fp64 = open64("/large_data/test.data", O_RDWR)) < 0) {
 printf("open64 error %d\n", errno);
 exit();
 }
 for (seg_no = 0; seg_no < ROOP_3GB; seg_no ++) {
 sprintf(data,"*%02d-256 MB area*",seg_no);/* 16 bytes data */
 printf("%s\n",data);
 for (counter = 0; counter < ROOP_256; counter ++) {
 if (write(fp64, data, 16) < 0) {
 printf("fprintf error %d\n",errno);
 close(fp64);
 exit();
 }
 }
 }
 close(fp64);
}

This sample program creates a 3 GB data file. It would be the same if written
as part of a 32-bit application, the only difference being in the use of the
open64 subroutine instead of the open subroutine (or fopen64 instead of fopen).
The open64 subroutine is equivalent to the open subroutine, except that the
O_LARGEFILE flag is set in the open file description associated with the
returned file descriptor. The open64 subroutine does not return EOVERFLOW
even if file size exceeds OFF_MAX (232-1 bytes or 2 GB -1). Instead, the file
offset limit of DEV_OFF_MAX (240 -1 bytes or 1 TB -1) is used.

The i-node mechanism limitations of AIX V4 prevent a file from growing
beyond 68,589,453,312 bytes (64 GB - 124 MB).

Programming in 64-bit 89

Remember that files larger than 2 GB can only be created in a large
file-enabled JFS. When creating the JFS, the bf option must be set to
bf=true.

Using large files may make disk tuning an even more important performance
consideration.

5.3.2 Using Large Memory Area
This sample program is reading 3 GB data from a large file and copies it to
twelve shared memory segments.

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define TEST_FILE "/large_data/test.data"
#define SHMEM_SIZE 256*1024*1024 /* 256 MB */

void main(void) {
 int mem_id[16];
 char *fp64_ptr;
 char *sh_data[16];
 int fd64;
 int i, j;
 off64_t eof;

 if((fd64 = open64(TEST_FILE, O_RDWR)) < 0) {
 printf("open error %d\n", errno);
 exit();
 }
 eof = lseek64(fd64, 0, SEEK_END);
 printf("Data size = %x\n", eof);
 lseek64(fd64, 0, SEEK_SET);

 for (i = 0; i < 12 ; i++) {
 mem_id[i] = shmget((key_t)(0x20000 + i),SHMEM_SIZE,IPC_CREAT |
0x0666);
 if (mem_id[i] < 0) {
 printf("shmget[%d] error %d\n",i, errno);
 exit();
 }
 if ((sh_data[i] = shmat(mem_id[i],0,0)) == (char *)-1L) {
 printf("shmat[%d] error %d\n",i, errno);
 exit();
 }

90 AIX 64-bit Performance in Focus

 printf("shmat = %p ",sh_data[i]);
 read(fd64, sh_data[i], SHMEM_SIZE);
 printf("sh_data[%02d] = ",i);
 for (j = 0; j < 16; j++) {
 printf("%c",*(sh_data[i] + j));
 }
 printf("\n");
 }
 close(fd64);
 for (i = 0; i < 12 ; i++) {
 shmdt(sh_data[i]);
 }
}

The program’s output will be as follows:

Data size = c0000000
shmat = 700000000000000 sh_data[00] = *00-256 MB area*
shmat = 700000010000000 sh_data[01] = *01-256 MB area*
shmat = 700000020000000 sh_data[02] = *02-256 MB area*
shmat = 700000030000000 sh_data[03] = *03-256 MB area*
shmat = 700000040000000 sh_data[04] = *04-256 MB area*
shmat = 700000050000000 sh_data[05] = *05-256 MB area*
shmat = 700000060000000 sh_data[06] = *06-256 MB area*
shmat = 700000070000000 sh_data[07] = *07-256 MB area*
shmat = 700000080000000 sh_data[08] = *08-256 MB area*
shmat = 700000090000000 sh_data[09] = *09-256 MB area*
shmat = 7000000a0000000 sh_data[10] = *10-256 MB area*
shmat = 7000000b0000000 sh_data[11] = *11-256 MB area*

The following ipcs command shows shared memory information:

ipcs -mb
IPC status from /dev/mem as of Wed Feb 25 16:30:36 CST 1998
T ID KEY MODE OWNER GROUP SEGSZ
Shared Memory:
m 0 0x0d076951 --rw-rw-rw- root system 1440
m15503361 0x00020000 -----r--rw- root system 268435456
m 94210 0x00020001 -----r--rw- root system 268435456
m 90115 0x00020002 -----r--rw- root system 268435456
m 73732 0x00020003 -----r--rw- root system 268435456
m 61445 0x00020004 -----r--rw- root system 268435456
m 61446 0x00020005 -----r--rw- root system 268435456
m 61447 0x00020006 -----r--rw- root system 268435456
m 61448 0x00020007 -----r--rw- root system 268435456
m 61449 0x00020008 -----r--rw- root system 268435456
m 61450 0x00020009 -----r--rw- root system 268435456
m 61451 0x0002000a -----r--rw- root system 268435456

Programming in 64-bit 91

m 61452 0x0002000b -----r--rw- root system 268435456

You can see that there are twelve shared memory IDs; each is 256 MB, with a
3 GB memory area from virtual address 0x0700 0000 0000 0000 to 0x0700
0000 BFFF FFFF.

You can also read data from memory using a 64-bit pointer:

for (i = 0; i < 12 ; i++) {
 read(fd64, sh_data[0] + (long)SHMEM_SIZE * (long)i, SHMEM_SIZE);
 }

The read subroutine mechanism does the following:

1. Assures that the FileDescriptor parameter is valid and that the process
has read permissions. The subroutine then gets the file table entry
specified by the FileDescriptor parameter.

2. Sets a flag in the file to indicate a read operation is in progress. This locks
other processes out of the file during the operation.

3. Converts the offset byte value and the value of the NBytes variables into a
block address.

4. Transfers the contents of the identified block into a storage buffer.
5. Copies the contents of the storage buffer into the area designated by the

Buffer variable.
6. Updates the current offset according to the number of bytes actually read.

Resetting the offset assures that the data is read in sequence by the next
read process.

7. Deducts the number of bytes read from the total specified in the NByte
variable.

8. Loops until the number of bytes to be read is satisfied.
9. Returns the total number of bytes read.

The cycle completes when the file to be read is empty, the number of bytes
requested is met, or a reading error is encountered during the process. Errors
can occur while the file is being read from disk or in copying the data to the
system file space. That is why the maximum data the read subroutine can
handle at any time is 2 GB -1. Thus, the sample program cannot be modified
as follows:

read(fd64, sh_data[0], SHMEM_SIZE * 12);

If you do this, the read subroutine will return an error with EFAULT (bad
address), because the conversion of the offset byte value into a block
address will fail. Remember that the AIX kernel is still 32-bit.

92 AIX 64-bit Performance in Focus

During the read operation, the i-node is locked. No other processes are
allowed to modify the contents of the file while a read is in progress. However
the file is unlocked immediately on completion of the read operation. If
another process changes the file between two read operations, the resulting
data is different, but the integrity of the data structure is maintained. That is
why the read operations are not managed in a strict parallelism, although they
are executed on a SMP system. You have to consider the size of the data to
be read, especially if it is referred to by many processes.

The write subroutine functions much like the read subroutine. The byte offset
for the write operation is found in the system file table's current offset.

Sometimes when you write to a file it does not contain a block corresponding
to the byte offset, resulting from the write process. When this happens, the
write subroutine allocates a new block. This new block is added to the i-node
information that defines the file. If adding the new block produces an indirect
block position (i_rindirect), the subroutine allocates more than one block
when a file moves from direct to indirect geometry.

During the write operation, the i-node is also locked. No other processes are
allowed to modify the contents of the file while a write is in progress. However
the file is unlocked immediately on completion of the write operation. If
another process changes the file between two write operations, the resulting
data is different, but the integrity of the data structure is maintained.

It is not guaranteed that all shared memory addresses are continuous. It is
better to specify the address with the shmat subroutine.

if ((sh_data[i] = shmat(mem_id[i]
 ,(const void *)(0x7F0000000000000L + 0x10000000L * i)
 ,0)) == (char *)-1L) {
/* Do error handling */
}
if (sh_data[i] != (char *)(0x7F0000000000000L + 0x10000000L * i) {
/* Do something recovery */
}

The segment number for shmap/mmap is from 0x7000 0000 to 0x7FFF FFFF.
You should ensure that the offset value is suffixed as a long integer type,
otherwise you will see an unsuffixed number problem. This problem is
discussed in 6.3.3, “Code and Data Analysis” on page 103.

5.3.3 Read Data with 32-bit Application
The following sample program has five threads, one is the initial thread, and
the other four threads write shared memory data to files. Reading shared

Programming in 64-bit 93

memory created by a 64-bit application is no different from 32-bit
applications.

#include <pthread.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define SHMEM_SIZE 256*1024*1024 /* 256 MB */
#define SH_MAX 12
#define MAX_NAME 64
void *read_th(void *);
int mem_id[SH_MAX];
char *sh_data[SH_MAX];

void main(void) {
 pthread_attr_t attr;
 pthread_t th_read[SH_MAX];
 int i,j,rc;

 if ((rc = pthread_attr_init(&attr)) != 0) {
 printf("pthread_attr_init error, rc = %d\n", rc);
 exit();
 }
 rc = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 if (rc != 0) {
 printf("pthread_setdetachstate error, rc = %d\n", rc);
 exit();
 }
 for (i = 0; i < SH_MAX; i +=3) {
 if ((rc = pthread_create(&th_read[i],&attr,read_th,(void*)i))!=0) {
 printf("pthread_create(sig_th) error, errno = %d\n" , errno);
 }
 }
 for (i = 0; i < SH_MAX; i +=3) {
 pthread_join(th_read[i], NULL);
 }
 for (i = 0; i < SH_MAX; i +=3) {
 printf("shmat = %p ",sh_data[i]);
 printf("sh_data[%02d] = ",i);
 for (j = 0; j < 16; j++) {
 printf("%c",*(sh_data[i] + j));
 }
 printf("\n");
 shmdt(sh_data[i]);
 }

94 AIX 64-bit Performance in Focus

 pthread_attr_destroy(&attr);
 printf("Normal end\n");
 exit();
} /* End of Main */

void *read_th(void *i) {
 extern int mem_id[SH_MAX];
 extern char *sh_data[SH_MAX];
 int th_no;
 int fd;
 char fname[MAX_NAME +1];

 th_no = (int)i;
 bzero(fname, MAX_NAME +1);
 sprintf(fname, "/save_data/test.data%02d", th_no);
 if((fd = open(fname, O_RDWR | O_CREAT)) < 0) {
 printf("open error %s\n", fname);
 pthread_exit(NULL);
 }
 mem_id[th_no] = shmget((key_t)(0x20000 +
(int)th_no),SHMEM_SIZE,IPC_EXCL);
 if (mem_id[th_no] < 0) {
 printf("shmget[%d] error \n",th_no);
 pthread_exit(NULL);
 }
 if ((sh_data[th_no] = shmat(mem_id[th_no],0,0)) == (char *)-1L) {
 printf("shmat[%d] error %d\n",th_no, errno);
 pthread_exit(NULL);
 }
 printf("thread = %d\n",th_no);
 printf("thread = %d\n",th_no);
 if (write(fd, sh_data[th_no], SHMEM_SIZE) < 0) {
 printf("write error\n");
 }
 close(fd);
 pthread_exit(NULL);
} /* End of read_th */

The output of this program is as follows:

thread = 0
thread = 6
thread = 3
thread = 9
shmat = 30000000 sh_data[00] = *00-256 MB area*
shmat = 40000000 sh_data[03] = *03-256 MB area*
shmat = 50000000 sh_data[06] = *06-256 MB area*

Programming in 64-bit 95

shmat = 60000000 sh_data[09] = *09-256 MB area*
Normal end

The order of the threads is sometime different because of the thread
scheduling mechanism. The sample output shows that the third thread
executed before the second thread. If you want to ensure strict ordering, use
a synchronized mechanism, such as the pthread_cond_wait subroutine.

Notice the value of shared memory address is four bytes in length. This
sample has a 1 GB memory address from 0x3000 0000 to 0x6FFF FFFF.

The sample has some critical performance issues. It will manage logical
parallel write operations, but not physical disk I/O operations, because all files
are in the same file system. The file layout will also impact performance.

5.4 References

The following are good sources for additional information.

 • The RS/6000 64-Bit Solution

http://www.rs6000.ibm.com/resource/technology/64bit6.html

 • AIX V4.3 Migration Guide

http://w3dev.austin.ibm.com/library/aix4.3/

 • AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

96 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 97

Chapter 6. Migration T echniques

This chapter explains how to migrate your 32-bit application to 64-bit.

The most serious challenge comes from 32-bit applications that store internal
data structures directly into their programs. Although this issue is simple to
solve, code that makes assumptions about the size of native integer storage
must be fixed. For example, code that casts or converts memory pointers to
integers must be checked and corrected. While less prevalent, code must be
checked to insure that any shifting and masking operations that manipulate
long integers still work properly with a 64-bit long.

One significant migration task is dealing with input and output file
dependencies. This is relevant when you migrate an application that is in the
middle of a pipeline of applications, where each application reads the
previous application’s output as input, and then passes its output to the next
application in the pipe. Before migrating one of these applications to 64-bit,
you must verify that the output will not produce values outside of the 32-bit
range. Typically, once an application is ported to 64-bit, all downstream
applications (that is, any application that depends on output from the ported
application) have to be ported to 64-bit.

Porting to 64-bit involves well-known technical issues that average
programmers can master.

The migration process has three steps:

1. Component analysis
2. Port code to 64-bit environment
3. Package 64-bit solution

The first step is to decide which component of your application should be
used on 64-bit. You have already seen how to determine this in Chapter 2,
“Why Do I Need 64-bit?” on page 13. The second step is to modify the
program such that it has the same behavior on 64-bit. The last step is to
incorporate additional functions or new application limitation for 64-bit.

6.1 Migration to AIX V4.3

When planning to migrate an application to 64-bit, you must also consider
migration to the AIX V4.3 operating system.

98 AIX 64-bit Performance in Focus

6.1.1 AIX V4.3 Changes
There are many changes from AIX V4.2 to AIX V4.3, and some of them may
affect your code.

 • The time_t type has changed from long type in AIX 4.2 to int type in AIX
4.3.

 • MB_CUR_MAX has changed from int to size_t in AIX 4.3.
 • Calling setlocale() in 64-bit mode will not find the user-defined locale file.
 • Make doesn't discriminate on object formats but on time stamps of files.
 • The new variable name int64 is type-defined in inttypes.h.
 • New header file predefined types that are based on long.

See "Operating System-specific issues that may affect your code" in the
/usr/vac/README.C file, or Appendix E.2, “README: C for AIX” on page 172
for more information.

6.2 32-bit to 64-bit Application Migration Planning

There are two reasons for performance improvements using 64-bit
application. The system call overhead of reading and writing files can be
avoided by mapping the files into memory. Moreover, 64-bit systems can
support a physical memory that is larger than the addressability of 32-bit
applications, so 64-bit applications are needed to make full use of the
physical memory available.

6.2.1 Limitation
There is no way to create an object or application using both 32-bit and 64-bit
object files. The linker selects the appropriate objects from the library based
on the type of linking that is requested (32-bit or 64-bit) and creates an object
or application of that type.

6.2.2 32-bit and 64-bit Application
There are two archive file types in AIX. The first one does not recognize
64-bit object files and cannot be larger than 2 GB. The second archive file
type recognizes both 32-bit and 64-bit object files and will work with files
larger than 2 GB. The second type can be produced using AIX V4.3 on any of
the 32-bit processor models, but can be run on the 64-bit processor models.

6.2.3 32-bit Binary Compatibility on 64-bit Hardware
Kernel exploitation of hardware binary compatibility also helps AIX V4.3
provide binary compatibility for well-behaved 32-bit device drivers and kernel

Migration Techniques 99

extensions, running on 64-bit systems with 32-bit application workloads.
There are a few situations where an existing device driver or kernel extension
must be enhanced to handle direct interaction with a 64-bit application, but
this can be done in ways that do not impact its compatibility for 32-bit
applications.

Under the RS/6000 philosophy of not forcing unnecessary recompilation to
64-bit, the large majority of application programs are likely to remain 32-bit
and only a small number of key programs scale up to exploit the performance
benefits of a 64-bit address space. 32-bit binary compatibility in AIX V4.3, on
both 32-bit and 64-bit systems, is an important ingredient for building the
smooth evolutionary road to 64-bit computing.

6.2.4 64-bit and 32-bit Interoperability Requirements
32-bit binary compatibility on 64-bit systems alone may not be sufficient. It is
not enough to just say that 32-bit programs will continue to run on the same
system where 64-bit programs also run. Serious investment protection means
being able to leave 32-bit programs alone, even when another program they
cooperate with is changed to exploit a 64-bit address space.

A simple example of interoperability is provided by the sophisticated
interaction between processes in a transaction processing environment.
Client processes provide end user transaction function, calling on the
database management processes for reading or updating database objects.
The database manager program may become a 64-bit application process in
order to expand its buffer space into very large memory. The client programs
that call the database manager should continue to run as 32-bit programs,
with binary compatibility, and no requirement to recompile because the
database manager changed. The operating system’s role in this example is to
provide the infrastructure by which this goal is easily achieved by the
middleware applications.

The open systems standards do not define interoperability requirements
between 32-bit and 64-bit programming environments. The extensive
interoperability requirements between 32-bit and 64-bit programming
environments are seen as equals, differentiated only by their address space
size and data model size. The corresponding model for 32-bit programming is
ILP32, that is, the types int, long, and pointer are each 32-bit quantities. The
model for 64-bit, LP64 data model, is different only in its size of long and
pointer. These extensive interoperability requirements makes it a design
requirement in AIX V4.3, so they cooperate and interoperate as well as
homogeneous processes.

100 AIX 64-bit Performance in Focus

64-bit and 32-bit interoperability refers to the two programming environments
that AIX V4.3 provides on 64-bit systems, where 64-bit and 32-bit processes
coexist, interact, and share common resources. This interoperability is
actually present at several levels:

 • They can share system resources, files, shared memory, and
Inter-Process Communication (IPC) resources, and can signal each other.

 • They can execute each other by using the exec subroutine, without
concern or knowledge that the process being created will be 32-bit or
64-bit.

 • They can set process resource limits that will apply to a process of the
opposite type. The extensions in this area, for 32-bit processes to set
64-bit limits, are modeled upon comparable extensions provided for large
file support in a 32-bit environment.

6.2.5 System Limits
The maximum theoretical limits for size of 64-bit applications, their heaps,
stacks, shared libraries, and loaded objects is millions of GB. The practical
limits are dependent on the file system limits, paging space sizes, and system
resources available.

6.2.6 The 64-bit Migration Procedure
The following list shows how to migrate to 64-bit. This procedure does not
mean application tuning or extending functions; just the steps for the same
behavior on 64-bit mode are explained. You may have to change code for
using expanded limits after this procedure.

1. Code and data analysis

Examine all types to determine whether the types should be 32-bit or
64-bit. For system types, the type will be the appropriate size for use with
library/system calls. For user-defined types, 32-bit types should be defined
based upon int or unsigned int or some system type that is 32 bits long in
64-bit mode. For user-defined types, 64-bit types should be defined based
upon long or unsigned long or some system type that is 64 bits long.

2. Modify data types

Change all types to the chosen type. When doing so, examine all
arithmetic calculations to make sure that expansion and truncation of data
values is done appropriately. Make sure that no assumption is made that
pointer values will fit into integer types.

3. Verify other program’s output usage

Migration Techniques 101

Make sure that all output produced is contained in the 32-bit range. If this
is not possible, then any other application using this data needs to be
ported to 64-bit or at least be made 64-bit aware.

4. Remove dependency location

Remove any dependencies on the locations (relative and absolute) of the
application text, application data, application heap, application stack
value, errno, tok_of_stack structure, shared library data, shared library
text, and SVC tables.

5. Bad address usage

64-bit processes may now receive the signal SIGSEGV (segmentation
violation) rather than an error of type EFAULT (errno 14 Bad address)
when passing a bad address to a system call. Any dependency on system
call protection of bad address usage should be removed.

6. Debug and test

Test 64-bit code and confirm as same behavior. If you see any difference,
debug the code and go to step 1.

6.3 64-bit Corresponding Commands

The commands yacc , lex , and lint work with source code destined for both
32-bit and 64-bit objects. The commands make, ar , strip , dump, nm, prof , gprof ,
ld , ranlib , size , strings , and sum work with both 32-bit and 64-bit objects and
applications. The commands dbx and xldb allow the debugging of both 32-bit
and 64-bit applications.

6.3.1 New Crash Commands
The following are new commands for the crash debugger.

sr64
Usage: sr64 [-p pid] [-l limit] [-n] [start_esid [end_esid]]

The command sr64 displays esids (effective segment IDs, also known as
segment register number) and their corresponding segvals (segment register
contents). In absence of the -p flag, sr64 will use the current process. It will
list all entries in the adspace unless a starting esid (and possibly ending esid)
is given.

It will stop listing if the number of entries specified by the -l flag have been
printed. Since an adspace_t (address space mapping struct) holds 16 entries
(contents of all segment registers), each line will consist of an esid, its

102 AIX 64-bit Performance in Focus

corresponding value, and the three subsequent values following it in the
adspace_t .

This is done to optimize screen usage and to keep consistency with the
kernel debugger. The -n flag also prints the uadnodes for the displayed data.
The data structure that represents the mapping from a 64-bit address to an
srval is a tree. the tree has radix-4 (that is, each non-leaf node may have up
to 16 children). The leafs of the tree contain adspace_t's (that is, the srvals
for 16 segments). In general, the tree is unbalanced, with the maximum
number of nodes between the root and a leaf equal to 8 (for a 260 byte
address space). struct uadnode is the declaration for a node in the tree
(uadnode entries are not included in the count when limiting the data via -l).

Example:

crash
> p |grep sample
 43 a 2ba6 3fdc 2ba6 0 0 42 sample
> sr64 -p 43 |pg
 SegReg Num : Values (* = segment register is allocated)
 0x000000000: *0x60000000 0x007fffff *0x60038f4e 0x007fffff
 0x000000004: 0x007fffff 0x007fffff 0x007fffff 0x007fffff

 0x080020010: 0x007fffff 0x007fffff 0x007fffff 0x007fffff
 0x080020014: *0x60038cae 0x007fffff 0x007fffff 0x007fffff

 0x090000000: *0x60010184 0x007fffff 0x007fffff 0x007fffff
 0x090000004: 0x007fffff 0x007fffff 0x007fffff 0x007fffff

 0x0fffffff0: *0x60074c1d *0x60004f41 *0x60014f45 *0x60040f10
 0x0fffffff4: *0x60040f50 *0x60030f4c *0x6004cf13 *0x6002cf4b

segst64
Usage: segst64 [-p pid] [-l limit] [-s

segflag[:value][,segflag[:value]]...] [-n] [start_esid [end_esid]]

The command segst64 displays segstate info. The segstate structure is used
by the shared memory services to mark the usage of allocated segments.
The segstate for the current process is displayed unless the -p flag is given.
All of the segstate entries are displayed unless limited by the -l flag or the
starting and possibly ending esid parameters.

Example:

> segst64 -p 43 |pg
 ESID segstate segflag num_segs fno/shmp/srval/nsegs
 SR00000003 [0] AVAILABLE 00000000 0000000a

Migration Techniques 103

 SR0000000d [1] OTHER 00000001 00000001
 SR0000000e [2] AVAILABLE 00000000 00000001
 SR0000000f [3] OTHER 00000001 00000001
 SR00000010 [4] TEXT 00000001 00000001
 SR00000011 [5] WORKING 00000001 00000000
 SR00000012 [6] WORKING 00000001 00000000

 SR00000038 [12] WORKING 00000001 00000000
 SR00000039 [13] WORKING 00000001 00000000
 SR0000003a [14] AVAILABLE 00000000 8001ffda
 SR80020014 [15] WORKING 00000001 00000000
 SR80020015 [0] AVAILABLE 00000000 0ffdffea

 SR8fffffff [1] WORKING 00000001 00000000

6.3.2 Header File Changes
The header file types.h includes three new types for easy migration of header
files:__long32_t , __ulong32_t , and ptr64 . When an application is compiled in
32-bit mode, __long32_t is of type long , and __ulong32_t is of type ulong . For
applications compiled in 64-bit mode, __long32_t is of type int , and
__ulong32_t is of type uint . Thus, the new types __long32_t and __ulong32_t

remain size invariant at four bytes.

Shipped header files that can be used by both 32-bit and 64-bit applications
and contain structures for entities that must remain size invariant between
32-bit and 64-bit, must make these two modifications:

 • Replace all fields of type long with type __long32_t or some other 32-bit
type. Similarly replace all fields of type ulong with type __ulong32_t or
some other 32-bit type.

 • Replace all pointers of type int or some other 32-bit type. This change
only applies if you can not let a 64-bit application use a 64-bit pointer for
this field, which should not be the case for most structures.

6.3.3 Code and Data Analysis
In 64-bit mode, the size of long and pointer types is changed. You have to
check application behavior, especially if the logic depends on data size.

long, int
The types long and int are not interchangeable. The C long type (and types
derived from it) in 64-bit mode is 64 bits in size. You should consider all types
related to the long and unsigned long types. For example, size_t , used in
many subroutines, is typedef as unsigned long.

104 AIX 64-bit Performance in Focus

Unsuffixed Number
A number like 4294967295 (UINT_MAX), when parsed by the compiler, will be a
typed signed long in 32-bit mode. This is appropriate since signed long is four
bytes and mixing long with int is usually allowed in 32-bit mode.

In 64-bit mode, this same number will choose signed long , which is eight
bytes. This causes some operations, such as comparing the
sizeof(4294967295) , to return 8. The fix for the above case is to write the
number as 4294967295U. This will allow the compiler to pick unsigned int .

Unsuffixed constants are more likely to become 64-bit long if they are in
hexadecimal. When porting code, this needs to be remembered. All constants
that have the potential of impacting constant assignment should be explicitly
suffixed. Using suffixes and explicit types with all numbers will save the
application from unexpected behavior.

Example:

#include <stdio.h>
void main(void) {
 long l = LONG_MAX;
 printf("size(2147483647) = %d\n",sizeof(2147483647));
 printf("size(2147483648) = %d\n",sizeof(2147483648));
 printf("size(4294967295U) = %d\n",sizeof(4294967295U));
 printf("size(-1) = %d\n",sizeof(-1));
 printf("size(-1L) = %d\n",sizeof(-1L));
 printf("LONG_MAX = %d\n",l);
}

32-bit

size(2147483647) = 4
size(2147483648) = 4
size(4294967295U) = 4
size(-1) = 4
size(-1L) = 4
LONG_MAX = 2147483647

64-bit

size(2147483647) = 4
size(2147483648) = 8
size(4294967295U) = 4
size(-1) = 4
size(-1L) = 8
LONG_MAX = -1

Migration Techniques 105

The sample 64-bit output LONG_MAX is not really -1. The reason for the -1 is that
the printf subroutine handles it as an integer. Keep in mind that the C
language limit (sys/limits.h) has also changed.

#ifdef __64BIT__
#define LONG_MAX (9223372036854775807)
#define LONG_MIN (-LONG_MAX - 1)
#define ULONG_MAX (18446744073709551615)
#else /* __64BIT__ */
#define LONG_MAX INT_MAX
#define LONG_MIN INT_MIN
#define ULONG_MAX (UINT_MAX)
#endif /* __64BIT__ */

In 64-bit mode, (LONG_MAX == (int)LONG_MAX) returns a negative value.

pointer, int
In 32-bit mode, int, long and pointer types have the same size and can be
freely assigned into each other. In extended mode, integer and long types can
be assigned into pointer types and vice versa with only a warning. In ANSI
mode, assignment between integral and pointer types will generate a
service-level message.

In 64-bit mode, all pointer types are 64 bits in size. Exchanging pointers and
int types can cause segmentation faults, and passing pointers to a function
expecting an int type will result in truncation.

The following is an example of an incorrect assignment:

 int i;
 int *p;
 i = (int)p;

Using cast makes the problem harder to detect. The warning message will
disappear but the problem still exists. The following steps should be taken:

 • Remove any assumption that a pointer type can fit in a C integer type (or
types derived from an integer).

 • Remove any assumption that a C long type can fit in a C integer type (or
types derived from an integer).

 • Remove any assumption about the number of bits in a C long type object
when bit shifting or doing bitwise operations.

 • Remove any assumption that a C integer can be passed to an
unprototyped long or pointer parameter.

106 AIX 64-bit Performance in Focus

 • Remove any assumption that an unprototype function can return a pointer
or long.

6.3.4 The New lint Option -t
The command lint -t checks for problematic assignments when porting from
32- to 64-bit. The lint -t command will find the following common potential
problems:

 • Functions not prototyped

Function prototypes allow the compiler and lint to flag mismatched
parameters.

 • Assignment of a long or a pointer to an int

This type of assignment could cause truncation. Even assignments with
an explicit cast will be flagged.

 • Assignment of an int to a pointer

If the pointer is referenced it may be invalid.

 • Shift operations involving a long or pointer

Since the pointer size was increased to 64-bits, the result may no longer
be valid.

 • Masks using bitwise OR, AND or XOR involving longs or pointers

Again, since the pointer size has changed, the mask may no longer be
sufficient.

Example:

 +1 #include <stdio.h>
 +2 void main(void) {
 +3 int foo_i;
 +4 long foo_l;
 +5 int *foo_pt;
 +6
 +7 foo_l = boo(1);
 +8 foo_l = foo_l << 1;
 +9 foo_l = 0xFFFFFFFF;
+10 foo_l = (foo_l & 0xFFFFFFFF);
+11 foo_l = LONG_MAX;
+12 foo_l = (long)foo_i;
+13 foo_i = (int) &foo_l;
+14 foo_pt = (int *)foo_i;
+15 }
+16 long boo(long boo_l) {
+17 return(boo_l);

Migration Techniques 107

+18 }
lint -t sample.c
"sample.c", line 7: warning: conversion from "int" may lose accuracy
"sample.c", line 8: warning: Left Shift involving a "long"
"sample.c", line 10: warning: bitwise " AND " involving a "long"
"sample.c", line 12: warning: conversion from "int" may lose accuracy
"sample.c", line 13: warning: conversion from "PTR long" may lose accuracy
"sample.c", line 16: error: illegal redeclaration of boo
"sample.c", line 17: warning: conversion from "long" may lose accuracy

This sample will be compiled with no error with the cc command. Notice line
9,11 and 14 are also affected for 64-bit porting. There are a few other
problems that lint -t cannot find:

 • Shared data must be the same size in both 32-bit and 64-bit.

For example, the utmp structure in /usr/include/utmp.h is used to read and
write data from /etc/utmp and its size must be consistent in both 32-bit and
64-bit modes.

 • Unions that use longs or pointers may no longer work.

The following two union examples work fine in a 32-bit environment but will
not work in a 64-bit environment.

1. Example:

union {
 int *p; /* 32 bits / 64 bits */
 int i; /* 32 bits / 32 bits */
};

2. Example:

union {
 double d; /* 64 bits / 64 bits */
 long l[2]; /* 64 bits / 128 bits */
};

There are two other differences that can affect programs:

 • In 32-bit mode, long long's are passed in two general purpose registers
while 64-bit mode long long's are passed in only one general purpose
register.

 • In 32-bit mode, when a function is passed a floating-point argument(s) and
it is not prototyped, each floating-point argument is placed in one floating-
point register and in two general purpose registers. In 64-bit mode, each
floating-point argument is still placed in one floating-point register but only
one general purpose register.

108 AIX 64-bit Performance in Focus

6.3.5 The Compiler Option -qwarn64
The compiler option, -qwarn64 , checks for possible long-to-integer truncation.
This option functions in either 32- or 64-bit compiler modes. In 32-bit mode, it
functions as a preview aid to discover possible 32- to 64-bit migration
problems.

Informational messages are displayed where data conversion may cause
problems. In 64-bit compiler mode, the -qwarn64 option checks the following
common problems:

 • Truncation due to explicit or implicit conversion of long types into int types.
 • Unexpected results due to explicit or implicit conversion of int types into

long types.
 • Invalid memory references due to explicit conversion by cast operations of

pointer types into types.
 • Invalid memory references due to explicit conversion by cast operations of

int types into pointer types.
 • Problems due to explicit or implicit conversion of constants into long types.
 • Problems due to explicit or implicit conversion by cast operations of

constants into pointer types.
 • Conflicts with pragma options arch in source files and on the command

line.

Example:

/usr/vac/bin/cc sample.c -qwarn64
"sample.c", line 9.12: 1506-743 (I) 64-bit portability: possible change of
result through conversion of int type into long type.
"sample.c", line 12.12: 1506-743 (I) 64-bit portability: possible change of
result through conversion of int type into long type.
"sample.c", line 13.12: 1506-744 (I) 64-bit portability: possible
truncation of pointer through conversion of pointer type into int type.
"sample.c", line 14.12: 1506-745 (I) 64-bit portability: possible incorrect
pointer through conversion of int type into pointer.

This sample used the same code as lint -t . The -qwarn64 option also
checked unsuffixed numbers and conversions of int type into pointer . Lines 9
and 14 cannot be checked correctly with only the lint -t command.

Using 64-bit compiler mode invokes an even more detailed portability check.
The last portability problem of the sample code in line 11 is also checked.

Example:

/usr/vac/bin/cc sample.c -qwarn64 -q64

Migration Techniques 109

"sample.c", line 7.15: 1506-743 (I) 64-bit portability: possible change of
result through conversion of int type into long type.
"sample.c", line 9.12: 1506-743 (I) 64-bit portability: possible change of
result through conversion of int type into long type.
"sample.c", line 10.21: 1506-743 (I) 64-bit portability: possible change of
result through conversion of int type into long type.
"sample.c", line 11.12: 1506-748 (I) 64-bit portability: constant which
will overflow in 32-bit mode may select unsigned long int or long int in
64-bit mode
"sample.c", line 12.12: 1506-743 (I) 64-bit portability: possible change of
result through conversion of int type into long type.
"sample.c", line 13.12: 1506-744 (I) 64-bit portability: possible
truncation of pointer through conversion of pointer type into int type.
"sample.c", line 14.12: 1506-745 (I) 64-bit portability: possible incorrect
pointer through conversion of int type into pointer.
"sample.c", line 16.6: 1506-343 (S) Redeclaration of boo differs from
previous declaration on line 7 of "sample.c".
"sample.c", line 16.6: 1506-050 (I) Return type "long" in redeclaration is
not compatible with the previous return type "int".

6.3.6 Superseded Libraries
Some libraries that have been superseded or deprecated for 32-bit
applications are not being provided to 64-bit applications, so their APIs will be
missing in 64-bit execution mode.

6.3.7 64-bit to 32-bit Data Reformatting
The 64-bit interface makes it appear to the kernel that the system service
request came from a 32-bit program. To this end, any data passed across the
interface in either direction must be adjusted in width to match the size
expected.

See the AIX Version 4.3 Difference Guide, SG24-2014 for more information.

6.3.8 APIs Not Moved to 64-bit
The libraries and APIs listed below will not be supported in the 64-bit
environment. Note that this section is to cover user-level APIs. Kernel, kernel
extension and device driver APIs are not discussed in this section.

The -qwarn64 option does not check shift operation. However, using both
lint -t command and -qwarn64 compiler options, you can perform
extensive code analysis.

Note

110 AIX 64-bit Performance in Focus

The following libraries do not have 64-bit versions:

lib300.a Obsolete ASCII graphing library
lib300s.a Obsolete ASCII graphing library
lib4014.a Obsolete ASCII graphing library
lib450.a Obsolete ASCII graphing library
libIN.a Interactive systems library from old RT
libPW.a Obsolete programmer's workbench library
libcur.a Obsolete IBM-invented curses extensions
libplot.a Obsolete ASCII graphing library
libbsd.a Nonstandard BSD APIs (others are in libc.a)
libasl.a ASCII interface library for SMIT
libvsm.a GUI library for VSM
libi18n.a Layout object library for internationalization
libnck.a NCS library
libnetls_shr.a Obsolete licence management library
libtermcap.a terminfo interface library
All CDE libraries

The following API sets do not have 64-bit versions:

 • All of the back level X11 compatibility versions
 • All of the back level libcurses versions

The list of services that will not be made available to 64-bit applications until a
later release include:

 • Support for creating executables and libraries larger than 256 MB
 • Support for more than one stack segment
 • Support for page-level shmat granularity for 64-bit processes
 • Printer device drivers (working with 64-bit processes)
 • OpenGL

6.3.9 Application-Specific Porting Issues
Some types applications need specific consideration.

6.3.9.1 Asynchronous I/O
Asynchronous I/O (AIO) has been enhanced to support 64-bit enabled
applications. On 64-bit platforms, both 32-bit and 64-bit AIO can occur
simultaneously.

If an API set is not listed, assume that it supports dual versions.

Note

Migration Techniques 111

The struct aiocb , fundamental data structure associated with all
asynchronous I/O operation, has changed. The element of this struct,
aio_return , is now defined as ssize_t . Previously, it was defined as an int.

AIO supports large files by default. An application compiled in 64-bit mode
can do AIO to a large file without any additional #defines or special opening of
those files.

6.3.9.2 X11R6/Motif 2.1
AIX 4.3 supports X11R6 and Motif 2.1, providing a thread-safe stack and
64-bit libraries to Motif applications. 64-bit versions of the system libraries are
provided in order to build 64-bit Motif or X programs.

In AIX 4.3, the X Server is 32-bit. The 32-bit and 64-bit libraries connect to
the X Server by formatting the data into the appropriate data structures which
the X Server understands. There are no problems in displaying either 32-bit
or 64-bit applications on a 32-bit X Server.

See AIX Version 4.3 Differences Guide, SG24-2014 to get more information
about X11R6.

6.3.9.3 Locales (ILS)
Locale objects are loadable objects. AIX 4.3 provides locale support for 64-bit
applications. 64-bit input methods are supported for C locales only. Also,
32-bit loadable objects can not be used in 64-bit environments and vice
versa.

AIX 4.3 provides dual objects for locales. 64-bit objects have __64 appended
to the normal name. The setlocale subroutine is responsible for loading the
correct object. From a normal user perspective however, locale support will
function as expected. For example, if the user is using the "en_US" locale, then
The setlocale subroutine will automatically load the 32-bit en_US locale object
when running 32-bit applications and will load the 64-bit en_US locale object
when running a 64-bit application.

A new command, locale64 , has been added. Additionally, the locale

command can be used with the "-O 64 " option added to it to exec the locale64

command. The locale64 command has the same functionality as the standard
locale command. However, it is compiled as 64-bit application so that
locale64 (or locale -O 64) can be used to query locale status for 64-bit
applications. In general, locale data should be the same in both 32-bit and
64-bit applications.

112 AIX 64-bit Performance in Focus

User or vendor-created 32-bit locale objects will not work in 64-bit
applications unless they recompile and reship their locales using AIX V4.3.
The localedef command has been modified in AIX V4.3 to create the 64-bit
locale object at the same time the 32 bit locale object is created. For example,
localedef -i foo.src foo will create locale objects foo and foo__64 on AIX
V4.3, where foo is the 32-bit locale object, and foo__64 is the 64-bit locale
object.

6.4 Thread Considerations

AIX V4.3 does not distinguish the 64-bit execution environment by making
new functionality exclusively available to 64-bit applications, except
functionality from having a large address space. In general, all new
functionality is available to both 32-bit and 64-bit processes.

6.4.1 Thread Programming and Performance
Multithreaded programming is not only intended to improve application
response time. Threads share the file descriptor table, signal handlers, and
memory. Using multi-threads instead of many processes will require less
system resources and lead to better performance. Also, creating a thread
requires less overhead than creating process with the fork subroutine.
Creating a thread only requires the allocation of the thread’s private data
area, usually 64 KB, and two system calls. Creating a process is far more
expensive, because the entire parent process addressing space is
duplicated.

6.4.2 New Pthreads
The current 1:1 threads implementation has been replaced with an M:N
version. This provides increased performance for several types of database
applications, as well as greater per-process limits for applications with large
number of threads, such as databases.

Existing AIX pthread applications are based on industry standard POSIX
1003.1c Draft 7. AIX V4.3 supports both Draft 7 and Draft 10 in 32-bit mode.
However, only Draft 10 is supported in 64-bit mode. Porting pthread

64-bit applications will use different locale objects than 32-bit applications.

Note

Migration Techniques 113

applications to 64-bit will have to convert to Draft 10. Default pthread is Draft
10. To invoke to compile with Draft 7 pthread, use libpthreads_compat.a.

xlc_r -o sample sample.c -D_AIX_PTHREADS_D7 -lpthreads_compat

It is impossible to use this with the -q64 option, because Draft 7 does not
support 64-bit mode. If you use it anyway, the loader will return an error
message.

ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more
information.:

The command genkld will show threads-shared modules.

genkld |grep thread
 Virtual Address Size File
 d02020f8 14f9 /usr/lib/libpthreads_compat.a/shr.o
 d021c980 16a0d /usr/lib/libpthreads.a/shr_xpg5.o
 d021a5e8 1082 /usr/lib/libpthreads.a/shr_comm.o
 d0204100 15992 /usr/lib/libpthreads.a/shr.o
 9000000002ba980 29aa7 /usr/lib/libpthreads.a/shr_xpg5_64.o
 900000000000520 2b9851 /usr/lib/threads/libc.a/shr_64.o

The libpthreads_compat.a/shr.o is 32-bit Draft 7-shared modules. The
libpthreads.a/shr.o is a 32-bit Draft 7 LOADONLY-shared module for binary
compatibility. The shr_xpg5.o is 32-bit Draft 10, and shr_xpg5_64.o is 64-bit
Draft 10. The /usr/lib/thread/libc.a is a symbolic linked to /usr/ccs/lib/libc.a.

6.4.3 Thread-Safe Libraries
Non-thread-safe and thread-safe _r libraries have been combined into one
set of libraries, thereby turning thread-safety on by default. On AIX V4.3, both
libc.a and libc_r.a are symbolic links to the same library, /usr/ccs/lib/libc.a.
The cc_r and xlc_r compiler command still works, but using the cc or xlc

command with -D_THREAD_SAFE and -lpthreads also produces thread-safe
applications.

xlc_r -o samp samp.c
xlc -o samp samp.c -D_THREAD_SAFE -lpthreads

In AIX V4.3, these commands have the same meaning.

6.4.4 Porting Issues
When planning to migrate a multithreaded application to 64-bit, you also have
to consider migration to POSIX threads Draft 10.

114 AIX 64-bit Performance in Focus

6.4.4.1 No More Implicit Default Attribute
Some default attributes are changed. For example, PTHREAD_MUTEX_DEFAULT is
not defined in Draft 10. Applications should not reference the following
variables on Draft 10 environment;

pthread_attr_default
pthread_condattr_default
pthread_mutexattr_default
pthread_set_mutexattr_default_np

The default detach state is also changed. In Draft 10 the default is joinable
(same as PTHREAD_CREATE_UNDETACHED) instead of detachable. All threads
should be clearly initialized.

Example:

pthread_attr_t attr; /* thread attribute */
pthread_t tid; /* thrtead ID */

pthread_attr_init(&attr); /* initialize an attribute */
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_create(&tid, &attr , thread_main, arg);

/* Do something */

pthread_attr_destroy(&attr);/* destory thread attribute */

The thread created with the NULL attribute parameter will show a different
behavior.

6.4.4.2 Parameters Types
Some of subroutine parameter types are changed. See the include file
/usr/include/pthread.h, to check parameter types.

6.4.4.3 Removed pthread_yield() Subroutine
The pthread_yield subroutine that forced the calling thread to relinquish use
of its processor and to wait in the run queue before it is scheduled again, is
removed in Draft 10.

The pthread_yield subroutine may be used for programs implementing their
own high-level locking services, instead of using the standard locking
services (mutexes) provided in the threads library. For example, a database
product may already use a set of internally-defined services and use this
subroutine. The following example shows custom high-level routines
independent of the thread library using the pthread_yield subroutine along
with the _check_lock subroutine.

Migration Techniques 115

Example:

#include <sys/atomic_op.h> /* for locking primitives */
#define SUCCESS 0
#define FAILURE -1
#define LOCK_FREE 0
#define LOCK_TAKEN 1
typdef struct {
 atomic_p lock; /* lock word */
 tid_t owner; /* identifies the lock owner */
 ... /* implementation dependent fields */
} my_mutex_t;
...
int my_mutex_lock(my_mutex_t *mutex) {
tid_t self; /* caller's identifier */
 /* Perform various checks:is mutex a valid pointer? */
 /* has the mutex been initialized? */
 ...
 /* test that the caller does not have the mutex */
 self = thread_self();
 if (mutex->owner == self)
 return FAILURE;
 /* Perform a test-and-set primitive in a loop. */
 /* In this implementation, yield the processor if failure.*/
 /* Other solutions include: spin (continuously check); */
 /* or yield after a fixed number of checks. */
 while (!<_check_lock>(&mutex->lock, LOCK_FREE, LOCK_TAKEN))
 pthread_yield(); /* give up CPU */
 mutex->owner = self;
 return SUCCESS;
} /* end of my_mutex_lock */

Now, you might modify your code to use the standard locking service,
mutexes, insted of your own high-level locking services.

Example:

/* the initial thread */
pthread_mutex_t mutex;
int i;
...
pthread_mutex_init(&mutex, NULL); /* creates the mutex */
for (i = 0; i < num_req; i++) /* loop to create threads */
 pthread_create(th + i, NULL, rtn, &mutex);
... /* waits end of session */
pthread_mutex_destroy(&mutex); /* destroys the mutex */
...
/* the request handling thread */

116 AIX 64-bit Performance in Focus

... /* waits for a request */
pthread_mutex_lock(&db_mutex); /* locks the database */
... /* handles the request */
pthread_mutex_unlock(&db_mutex); /* unlocks the database */
...

For more details about locking services, refer to AIX Version 4.3 General
Programming Concepts: Writing and Debugging Programs, SC23-4128.

6.4.5 Threads Scheduling
Each thread has its own set of scheduling parameters. These parameters can
be set using the thread attributes object before the thread’s creation.

6.4.5.1 Scheduling Policy and Priority
The scheduling policy can be set when creating a thread by setting the
schedpolicy attribute of the thread attributes object. The
pthread_attr_setschedpolicy subroutine sets the scheduling policy to one of
the three previously-defined scheduling policies. The current value of the
schedpolicy attribute of a thread attributes object can be obtained by the
pthread_attr_getschedpolicy subroutine.

The scheduling priority can be set at the thread’s creation time by setting the
schedparam attribute of the thread attributes object. The
pthread_attr_setschedparam subroutine sets the value of the schedparam
attribute, copying the value of the specified structure. The
pthread_attr_getschedparam subroutine gets the schedparam attribute.

The current schedpolicy and schedparam attributes of a thread are returned
by the pthread_getschedparam subroutine. These attributes can be set by
calling the pthread_setschedparam subroutine. If the target thread is currently
running on a processor, the new scheduling policy and priority will be
implemented the next time the thread is scheduled. If the target thread is not
running, it may be scheduled immediately at the end of the subroutine call.

The setting of scheduling policy and priority is also influenced by the
contention scope of threads. Using the FIFO or the RR policy may not always
be allowed.

6.4.5.2 Contention Scope
The threads library defines two possible contention scopes:

PTHREAD_SCOPE_PROCESS

Migration Techniques 117

Process (or local) contention scope. Specifies that the thread will be
scheduled against all other local contention scope threads in the process.

PTHREAD_SCOPE_SYSTEM

System (or global) contention scope. Specifies that the thread will be
scheduled against all other threads in the system.

The contention scope can only be set before thread creation by setting the
contention-scope attribute of a thread attributes object. The
pthread_attr_setscope subroutine sets the value of the attribute; the
pthread_attr_getscope returns it.

The contention scope is only meaningful in a mixed-scope M:N library
implementation. A single-scope 1:1 library implementation, as it was so far in
AIX V4, always returns an error when trying to set the contention-scope
attribute to PTHREAD_SCOPE_PROCESS, because all threads have system
contention scope. Local user thread can set any scheduling policy and
priority, within the valid range of values. However, two threads that have the
same scheduling policy and priority but have different contention scopes will
not be scheduled in the same way. Threads having process contention scope
are executed by kernel threads whose scheduling parameters are set by the
library.

6.4.5.3 Process Contention Scope
Applications should use the default scheduling policy, unless a specific
application requires the use of a fixed-priority scheduling policy. Process
contention scope has more opportunity to be used safely for multithreaded
programs.

Using the RR policy ensures that all threads having the same priority level will
be scheduled equally, regardless of their activity. This can be useful in
programs where threads have to read sensors or write actuators.

Using the FIFO policy should be done with great care, even though process
contention scope is implemented. A thread running with FIFO policy runs to
completion, unless it is blocked by some calls, such as performing input and
output operations.

On the 1:1 library environment, setting scheduling policy always affects
system performance.

Note

118 AIX 64-bit Performance in Focus

See "Threads Scheduling" in AIX Version 4 General Programming Concepts:
Writing and Debugging Programs, SC23-2533, for more information.

6.4.6 Thread Data Size
In 64-bit mode, thread stack minimal size and thread-specific data is changed
to double size.

#ifdef __64BIT__
#define PTHREAD_SPECIFIC_DATA 2*PAGESIZE /* per-thread data */
#else
#define PTHREAD_SPECIFIC_DATA PAGESIZE /* per-thread data */
#endif /* __64_BIT__ */

#ifdef __64BIT__
#define PTHREAD_STACK_MIN (2 * PAGESIZE * 2)
#else /* __64BIT__ */
#define PTHREAD_STACK_MIN (PAGESIZE * 2)
#endif /* __64_BIT__ */

6.4.7 64-bit Thread Benefits
Threads do not share register files, stacks, thread-specific data, or heap-
allocated storage. Creating many threads may cause a contention for
memory addresses. Using 64-bit mode, it is possible to assign one segment
size (256 MB) for each thread even if you create more than 12 threads.

Example:

#include <pthread.h>
#include <stdio.h>
#define ROOP 40
#define THREAD_STACK_MAX (256 * 1024 *1024)

void *th_func(void *dummy) {
 sleep(60);
 pthread_exit(NULL);
}
void main(void) {
 pthread_attr_t p_attr_t;
 pthread_t func_th[PTHREAD_THREADS_MAX];
 char dummy;
 int counter;

 pthread_attr_init(&p_attr_t);
 pthread_attr_setdetachstate(&p_attr_t, PTHREAD_CREATE_JOINABLE);
 pthread_attr_setstacksize(&p_attr_t, THREAD_STACK_MAX);

Migration Techniques 119

 for (counter=0; counter < ROOP; counter ++) {
 pthread_create(&func_th[counter], &p_attr_t, th_func, NULL);
 }

 for (counter=0; counter < ROOP; counter ++) {
 pthread_join(func_th[counter], NULL);
 }
 pthread_attr_destroy(&p_attr_t);
}

This program creates 40 threads, and each thread has a 256 MB stack
segment. Thus, the process has 41 threads (including the initial thread) and
needs more than 10 GB address space. To enable this large address space,
you have to use the -bmaxdata flag with the xlc or ld command. To link this
program that will have more than 40 segments assigned, the following
command could be used:

/usr/vac/bin/xlc_r sample.c -q64 -bmaxdata:0x290000000

The number 0x290000000 is the number of bytes, in hexadecimal format,
equal to 41 segments each of 256 MB . The last segment is for the initial
thread, and does not use 256 MB. So, it is possible to use
-bmaxdata:0x281000000 . If you forget the size of this initial thread and request
only -bmaxdata:0x280000000 , your application will fail with an error message.

6.5 Device Drivers Considerations

Device drivers provide application programming interfaces. The APIs can be
accessed from 32-bit or 64-bit programs. Since the AIX kernel executes in
32-bit mode, the structures passed to device drivers (and kernel extensions in
general) from 64-bit user programs have to be interpreted differently than the
structures originating in 32-bit user programs. This refers to the long and
pointer elements of the structures.

6.5.1 Device Drivers and 64-bit Application Support
The AIX system call remapping approach reallocates and reformats most of
the system call structures when they originate in the 64-bit programs. As a
result, kernel services (including extensions) see them as if they originate in
the 32-bit programs. In a few cases, the system call structures are not explicit
and therefore the system call remapping methodology cannot perform
remapping and reformatting. The ioctl system call is the most obvious
example of this, in that the third argument data type is undefined.

120 AIX 64-bit Performance in Focus

6.5.2 Changes to ioctl()
For AIX V4.3, the kernel guarantees that the arg parameter received by a
device driver is always a 32-bit value. For 64-bit applications the kernel will
remap the address to a 32-bit address. Device drivers that support 64-bit
embedded pointers need to notify the kernel of this by setting the DEV_64BIT
define for the d_opts flag passed to the devswadd() call from the config entry
point of the device driver. For example:

devsw_struct.d_opts = DEV_MPSAFE | DEV_64BIT;
devswadd(devno,&devsw_struct);

A 64-bit application can use a device driver unmodified for 64-bit by using a
new system call ioctl32 (). This is available in both 32-bit and 64-bit mode.

If a device driver calls the devswadd kernel services to add a device to the
device switch table, the device driver must indicate its ability to support 64-bit
processes. This can be done in one of two ways:

1. By passing a new option (DEV_64BIT) in the d_opts field of devsw structure
to the devswadd kernel service.

2. By issuing a SYS_64BIT command to sysconfig .

If the device driver does not indicate this capability, the kernel will fail the
ioctl system call from 64-bit processes. This explicit indication of 64-bit
process support is necessary so that structures that originated from 64-bit
programs are not passed to device drivers that are not aware or capable of
supporting 64-bit processes.

6.5.3 PCI d_map Changes
The Peripheral Component Interface (PCI) bus architecture allows for PCI
devices that can drive a fully qualified 64-bit address. It is possible on a 64-bit
PCI address bus with a single address cycle, or on a 32-bit address PCI bus
using the Dual Address Cycle (DAC) protocol to issue the two halves of the
64-bit address. Even if a device is 64-bit capable, the parent host bridge must
support 64-bit addressing before the function can be enabled.

6.5.4 Common Problems with PCI Device Drivers in 64-bit
The following is a list of common problems that PCI device drivers may
encounter when running on a 64-bit system, even though they run without
problems on 32-bit systems.

1. Not specifying mappable DMA space requirements.

Migration Techniques 121

Symptoms DMA_NORES return codes from d_map_page and/or d_map_list .
Degraded performance due to resource pool being too
small.

Description Prior to 64-bit systems, there was no real resource tied to a
DMA mapping. So a device driver could have infinitely many
outstanding d_map_page and d_map_list mappings. However,
that is not the case with 64-bit systems, since there are
resources tied to each mapping. The DMA_MAXMIN_* flags on
the d_map_init call indicate to the DMA services how much
space to reserve for this device.

2. Not calling d_unmap_page and d_unmap_list .

Symptoms DMA_NORES return codes from d_map_page and/or d_map_list

due to exhausting the resource pool.

Description Prior to 64-bit systems, the d_unmap_page and d_unmap_list

services were basically no-ops since there were no
resources to unmap. However, there are resources tied to
each mapping for 64-bit systems.

3. Calling d_unmap_page or d_unmap_list with incorrect parameters.

Symptoms System crashes, unpredictable behavior.

Description This is the type of problem that could have been undetected
until running for the first time on a 64-bit system. The
d_unmap_page call takes the address of the bus address
parameter, just as the d_map_page call did. A common
mistake is to pass the bus address parameter by value
rather than by reference. Also, it is important that the
bus_list parameter used on the d_unmap_list correctly
reflects the number of list entries and addresses to unmap
as previously mapped by a d_map_list call.

4. Improper use of DMA_READ/DMA_WRITE flags on d_map_list or d_map_page.

Symptoms PCI target aborts with I/O failures.

Description Prior to 64-bit systems, a device driver could have gotten
away with setting up a DMA mapping as DMA_WRITE

(indicating the memory will only be read by the device) and
then having his device perform a DMA write to that memory.
On 64-bit systems, that will result in a PCI target abort due
to page access violations. If a memory page is to ever be
written by a device, the flag setting must be DMA_READ on the
mapping call.

5. Improper serialization.

122 AIX 64-bit Performance in Focus

Symptoms System crash (system asserts detecting re-entry).

Description All calls to the mapping and unmapping services for a single
handle (d_handle) must be serialized. This could have gone
undetected on 32-bit systems, since there were no
resources being allocated or freed during the map and
unmap calls.

6. Improper handling of DMA return codes.

Symptoms Unpredictable system behavior, system crashes.

Description The DMA_NORES return code from d_map_page and d_map_list is
one that is only possible on 64-bit systems. This condition
does not necessarily indicate an error, only that there are
not enough resources currently available to map this entire
request. The device driver must detect and handle this
condition properly whether it be to unmap any partial
mapping, or proceed with the partial I/O and re-issue the
remainder later. The DMA_NORES returned by d_map_page does
not require a corresponding d_unmap_page call, since the
smallest granularity of mapping is a single page.The
corresponding unmap service (d_unmap_page or d_unmap_list)
must NOT be called when the DMA_NOACC return code is
received, since no mapping was performed.

6.5.5 Network Device Drivers
AIX Common Data Link Interface (CDLI) architecture defines the ndd_ctl

function in the Network Device Driver (NDD) structure. This function is used
to implement user ioctls. User processes allocate sockets in the AF_NDD
family, and then issue ioctls on the socket descriptor. The AIX sockets
subsystem processes these ioctls. It copies the user space data to the kernel
buffers and then passes the kernel space buffer to the ndd_ctl function. If the
ioctls are invoked from 64-bit processes, the sockets subsystem uses
appropriate mechanisms (such as copyin64 and copyout64) to copy the user
space data to the kernel buffers.

Since the ndd_ctl interface uses kernel buffers, there is no special
consideration with respect to the address of this buffer. However, if this buffer
points to a structure that contains long or pointer elements, then NDDs need
to interpret these two data types differently depending upon the calling
process execution mode. For example, if the calling process is 64-bit, the long
type must be interpreted as a 8-byte field (long long in 32 bit mode); similarly,
the pointer type must be interpreted as a 64-bit pointer and needs to be used
in the copyin64 or copyout64 operations.

Migration Techniques 123

To maintain binary compatibility with prior AIX releases, existing NDDs
continue to work when used from 32-bit processes. To account for the new
64-bit data types, NDDs explicitly declare their 64-bit capability using a new
NDD_64BIT flag. The sockets subsystem does not pass ioctls from 64-bit
processes unless this flag is set.

6.5.6 Streams Modules and Drivers
The streams framework is enhanced so that streams system calls can be
used from 64-bit and 32-bit user processes. The exported system calls
getmsg , putmsg , getpmsg and putpmsg are being remapped consistent with AIX
64-bit remapping methodology. These system calls use the strbuf structure.

struct strbuf {
 int maxlen; /* max buffer length */
 int len len; /* length of data */
 char *buf; /* pointer to buffer */
 };

The buffer may contain a structure that is not explicitly defined by the system
calls. This structure in turn may contain elements that have different lengths
in the two execution modes. To account for this, the streams modules and
drivers need to interpret the structures based on the mode of the calling
process. Also, the streams framework needs to make sure that the streams
modules and drivers are aware of the 64-bit data types to guard against
passing the data structures to the ones that are not capable of handling them.
All the existing streams modules and drivers fall in this category, unless they
are enhanced to support 64-bit user processes.

6.6 References

The following are good sources for additional information.

 • AIX V4.3 Migration Guide

http://w3dev.austin.ibm.com/library/aix4.3/

 • AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

124 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 125

Chapter 7. 64-bit Interlangua ge Calls

A significant number of applications use C and FORTRAN together, by calling
each other or sharing files. Such applications are among the early candidates
for porting to 64-bit for their abilities to handle more complex mathematical
calculations.

For these reasons, this chapter will focus on FORTRAN and C interlanguage
calls. However, programmers who use other languages will also benefit from
the following content, which can be considered as a guideline for many other
interlanguage calls.

7.1 Mixing FORTRAN and C: Programming Techniques

This section does not cover all the programming techniques but it discusses
the programming techniques that are new issues in a 64-bit environment.

7.1.1 Conventions for XL Fortran and C External Names
You should follow these recommendations when writing C for AIX or
FORTRAN for AIX code to call functions written in other languages:

 • Names that begin with "_" are reserved for the names of library routines
(naming convention for the C language library). Do not use "_" as the first
character of a FORTRAN external name or for C external names.

 • Also avoid the dollar character ($) as the first character in identifiers, to
prevent conflict with the naming conventions for the C language library.
The -qdollar option allows you to use the "$" character in identifiers.

 • Programs and symbolic names in FORTRAN are interpreted as all
lowercase by default. For example, FORTRAN does not distinguish
between PROFIT and profit. It is the same variable by default. Use all
lowercase procedure names to simplify calling the procedure from C or
from FORTRAN.

 • Avoid using long identifier names. The maximum number of significant
characters in identifiers is 250 characters. They are recognized by both
languages but carry a performance penalty.

 • Names for module procedures are formed by concatenating "__" (two
underscores), the module name, "_MOD_", and the name of the module
procedure. For example, module procedure MYPROC in module MYMOD
has the external names:

__mymod_MOD_myproc

126 AIX 64-bit Performance in Focus

Notice that names with "__" (two underscores) or an underscore followed by a
uppercase letter, are reserved in all contexts. For all these reasons, we
strongly recommend not to use the "$" and "_" characters in identifiers to
avoid naming conflicts in your programs.

FORTRAN for AIX provides you the -qextname option, which adds an
underscore to the end of the FORTRAN names. This avoids conflicts between
FORTRAN and non-FORTRAN function names. In this case, you should use
an underscore as the last character of any non-FORTRAN procedure that you
want to call from FORTRAN. Let’s see an example without -qextname option:

 • <myinterlanguage_prog.c file>

/* We need to declare all external FORTRAN procedure.
*/

extern void myaddprog (int*,int*,int*);

/* this is my main program written in C
* it calls a FORTRAN program to do computations.
*/

main{}
{
int a,b,c;
call myaddprog (&a,&b,&c);
printf ("c, %d, is equal to a+b, %d + %d\n", c,a,b);
}

 • <mycallee_prog.f file>

subroutine myaddprog(d,e,f)
integer*4 d,e,f
logical*2 ok
f=d+e
call myverif(d,e,f,ok)
if (ok .eq. .true.) write(6,*) ’You know what? I’’m happy’
end

 • <mycallee_prog.c file>

/* this is a C program called by FORTRAN. */
extern void myverif (int* i, int* j, int* k, unsigned short int* valid)
{
/* this is my subroutine written in C
* it is called by a FORTRAN program.
*/

int l;
l= *i + *j;
if (l == *k) valid=1;
else valid=0;

64-bit Interlanguage Calls 127

}

Now, the same example is written for using the -qextname option. The
programs below show how to call programs that are written in other
languages:

 • <myinterlanguage_prog.c file>

/* We need to declare all external FORTRAN procedure.
*/

extern void myaddprog_(int*,int*,int*);

/* this is my main program written in C
* it calls a FORTRAN program to do computations.
*/

main{}
{
int a,b,c;
call myaddprog_(&a,&b,&c) ;
printf ("c, %d, is equal to a+b, %d + %d\n", c,a,b);
}

 • <mycallee_prog.f file>

subroutine myaddprog(d,e,f)
integer*4 d,e,f
logical*2 ok
f=d+e
call myverif_(d,e,f,ok)
if (ok .eq. .true.) write(6,*) ’You know what? I’’m happy’
end

 • <mycallee_prog.c file>

/* this is a C program called by FORTRAN.
*/

extern void myverif (int* i, int* j, int* k, unsigned short int* valid)
{
/* this is my subroutine written in C
* it is called by a FORTRAN program.
*/

int l;
l= *i + *j;
if (l == *k) valid=1;
else valid=0;
}

If porting an application or if your application encounters naming conflicts like
these, you can use the -brename linker option to rename the symbol:

128 AIX 64-bit Performance in Focus

xlf90 -brename:<oldname>,<new_name> myinterlanguage_prog.f

However, our recommendation is to use only lowercase names, though you
may still want the external procedure names to use both upper- and
lowercase. You can use the -U option or the @PROCESS MIXED directive:

@process mixed
external C_Func ! With MIXED, we can call C_Func, not just c_func.
integer aBc, ABC ! With MIXED, these are different variables.
common /xYz/ aBc ! xYz and XYZ are external names that
common /XYZ/ ABC ! are visible during linking.

end

7.1.2 Passing Data between FORTRAN and C Languages
FORTRAN uses only variable addresses when it passes an argument
between FORTRAN routines: FORTRAN default is call-by-reference.
FORTRAN language specification does not allow the call-by-value.

Because of XL Fortran’s call-by-reference conventions, even scalar values
from another language must be passed as the address of the value rather
than the value itself.

For example, a C function passing an integer value "X" to FORTRAN must
pass "&X". On the other hand, a C function called by FORTRAN must define
its arguments as pointers to the corresponding type (see the program
example in 7.1.1, “Conventions for XL Fortran and C External Names” on
page 125).

If you write C functions that:

 • You want to call from a FORTRAN program, declare all parameters as
pointers.

 • Calls a program written in FORTRAN, then all arguments must be
pointers or scalars with the address operator.

Call-by-Reference Parameters

64-bit Interlanguage Calls 129

Table 12 on page 129 shows the corresponding types in FORTRAN and C.

Table 12. Corresponding Data Type in FORTRAN and C

XL Fortran Data Types C Data Types
Alignment3

2/64bit
(min, max)

INTEGER(1) BYTE signed char (1/1, 1/1)

INTEGER(2) signed short (1/1, 2/2)

INTEGER(4) signed int (1/1, 4/4)

INTEGER(8) signed long long (1/1, 4/8)

REAL or REAL(4) float (1/1, 4/4)

REAL(8) or DOUBLE PRECISION double (1/1, 8/8)

REAL(16) long double (with -qldbl128) 1/1,16/16

COMPLEX or COMPLEX(4) structure of 2 floats (1/1,4/4)

COMPLEX(8) or DOUBLE COMPLEX structure of 2 doubles (1/1,8/8)

COMPLEX(16) structure of 2 long doubles 1/1,16/16 1

LOGICAL(1) unsigned char (1/1, 1/1)

LOGICAL(2) unsigned short (1/1, 2/2)

LOGICAL(4) unsigned int (1/1, 4/4)

LOGICAL(8) unsigned long long (1/1, 4/8)

CHARACTER char (1/1,1/1)

CHARACTER(n) char[n] (1/1,1/1)

POINTER void 1 1/1,4/8

Array array see 2

Sequence derived type structure (with -qalign=packed) see 3

1 Double and long double structure members are treated differently depending on where
they are in the structure. If they are the first member, double and 8-byte long doubles are
doubleword-aligned, while 16-byte long doubles are quadword-aligned. Floats are
singleword-aligned. All are singleword-aligned if they are not the first member.
2 The alignment of an array is the same as the alignment of its element type.
3 The alignment of the beginning of a structure or a union is the maximum alignment of
any of its members. Each member within the structure or union must be placed at its
proper alignment as defined by the table above, which may require implicit internal
padding, depedning on the previous member.

130 AIX 64-bit Performance in Focus

Notice that:

1 means byte alignment
2 means half word alignment
4 means word alignment
8 means double word alignment

16 means quad word alignment

7.1.2.1 Passing Characters and Strings
In C, character strings are stored as arrays of the type char. These arrays are
delimited by a "\0" character.

In FORTRAN, the only character type is CHARACTER, which is stored as a
set of contiguous bytes, one character per byte. All character variables and
expressions have a length that is determined at compile time. If FORTRAN
passes a string argument to another routine, it adds a hidden argument giving
the length to the end of the argument list. This FORTRAN hidden length
argument must be declared explicitly in C.

On the other hand, C code should not assume a null terminator in FORTRAN-
passed strings; the supplied and declared length should be always used. Use
the strncat , strncpm , and strncpy functions of the C runtime library. These
functions are described in the AIX Version 4 Technical Reference, Volumes 1
and 2: Base Operating System and Extensions, SC23-2614 and SC23-1615.

You can use the -qnullterm option of the compiler to automatically add the
NULL character to certain arguments. This does not change the length of the
dummy argument as defined by the XL Fortran calling convention. In the
following example, there are two calls to the same C function, with and
without the option.

Example:

@PROCESS NONULLTERM
SUBROUTINE CALL_C_1

CHARACTER*9, PARAMETER :: HOME = "/home/rosa"
! Call the libc routine mkdir() to create some directories.

CALL mkdir ("/home/rosa/testfiles\0", %val(448))
! Call the libc routine unlink() to remove a file

CALL unlink (HOME // "/.hushlogin" // CHAR(0))
END SUBROUTINE

@PROCESS NULLTERM
SUBROUTINE CALL_C_2

CHARACTER*9, PARAMETER :: HOME = "/home/koh"

64-bit Interlanguage Calls 131

! Call the libc routine mkdir() to create some directories.
CALL mkdir ("/home/koh/testfiles", %val(448))

! Call the libc routine unlink() to remove a file
CALL unlink (HOME // "/.hushlogin")

END SUBROUTINE

7.1.2.2 Passing Arrays
A C array does not need to be passed as pointer: C passes arrays to others C
routines by reference, like FORTRAN’s call-by-reference default behavior. So,
a C array can be passed to FORTRAN without the "&" operator. Keep in mind
that although C passes individual scalar array elements by value, it passes
arrays by reference.

However, C stores array elements in row major order (array elements in the
same row occupy adjacent memory locations). FORTRAN stores array
elements in ascending storage units in column-major order (array elements in
the same column occupy adjacent memory locations). Table 13 on page 131
shows how a two-dimensional array declared by A[3][2] in C and by A(3,2) in
FORTRAN is stored:

Table 13. Storage of a Two-Dimensional Array with C and FORTRAN

In general, for a multi-dimensional array, if you list the elements for the array
in the order they are laid out in memory, a row-major array will be such that
the right-most index varies fastest, while a column-major array will be such
that the left-most index varies fastest.

For example, the FORTRAN array reference A(X,Y,Z) must be expressed in C
as a[Z-1][Y-1][X-1].

7.1.2.3 Passing Pointers
A C function passing a pointer value P to FORTRAN so that FORTRAN can
use it as integer POINTER must declare it as void **p .

Storage Unit C Element Name FORTRAN Element Name

Lowest A[0][0] A(1,1)

A[0][1] A(1,2)

A[1][0] A(2,1)

A[1][1] A(2,2)

A[2][0] A(3,1)

Highest A[2][1] A(3,2)

132 AIX 64-bit Performance in Focus

7.1.3 Passing Arguments by Value
To call subprograms written in languages other than FORTRAN (for example,
AIX operating system routines), the actual arguments may need to be passed
by a method different from the default method call-by-reference used by
FORTRAN.

7.1.3.1 Call-by-Value Definition
C routines, including those in system libraries such as libc.a, require
arguments to be passed by value instead of by reference.

The default passing method can be changed by using the %VAL and %REF
built-in functions in the argument list of a CALL statement or function
reference.

%REF Passes an argument by reference (the default FORTRAN
call-by-reference method) except that it suppresses the extra length
argument strings.

%VAL Passes an argument by value (that is, the called subprogram
receives an argument that has the same value as the actual
argument, but any change to this argument does not affect the
actual argument). Please notice that %VAL can not be used with
actual arguments that are array entities, procedure names, or
character expressions of length greater than one byte.

Passing arguments with %REF is referred as call-by-reference and passing
arguments with %VAL is referred as call-by-value.

The book AIX Version 4 Assembler Language Reference, SC23-2642
describes the following details of the subroutine linkage convention:

If you write a FORTRAN program that calls a C subroutine that expects its
arguments as values, you need to use the built-in function %VAL.

 • The called function will receive a copy of the value passed to it.

 • The arguments by value are stored inside the available General
Registers (GPRs) and the floating-point registers (FPRs). The GPRs
and FPRs available for argument passing are specified in two fixed lists:
R3-R10 and FP1-FP13.

 • Remaining arguments are passed in storage on the stack.

Call-by-Value Parameters

64-bit Interlanguage Calls 133

 • Register usage (general-purpose, floating-point, and special-purpose
registers)

 • Stack
 • The calling routine's responsibilities
 • The called routine's responsibilities

As seen previously in 7.1.2, “Passing Data between FORTRAN and C
Languages” on page 128, alignment depends on data type. Since %VAL
causes the argument value to be passed, alignment within the user stack will
happen. The alignment will not be the same in both a 32-bit environment and
a 64-bit environment.

%VAL causes the actual argument to be passed as 32-bit or 64-bit
intermediate values depending on compilation mode.

If the actual argument is:

 • An integer or logical that is shorter than 32 bits, it is sign-extended to a
32-bit value.

 • An integer or logical that is longer than 32 bits, it is passed as two 32-bit
intermediate values.

 • Of type real or complex, it is passed as multiple 64-bit intermediate
values.

 • Of type sequence derived type, it is passed as multiple 32-bit
intermediate values.

Byte named constants and variables are passed as if they were
INTEGER(1). If the actual argument is a CHARACTER(1), it is padded on
the left with zeros to a 32-bit value, regardless of whether the -qctyplss

compiler option is specified.

In 32-bit Mode

134 AIX 64-bit Performance in Focus

7.1.3.2 Linkage Convention for Argument by Value Passing
The following refers to call-by-value, as in C or as in FORTRAN when %VAL
is used. For purposes of their appearance in the list, arguments are classified
as floating-point values or non-floating-point values:

If the actual argument is:

 • An integer or logical that is shorter than 64 bits, it is sign-extended to a
64-bit value.

 • Of type real or complex, it is passed as multiple 64-bit intermediate
values.

 • Of type sequence derived type, it is passed as multiple 32-bit
intermediate values.

Byte named constants and variables are passed as if they were
INTEGER(1). If the actual argument is a CHARACTER(1), it is padded on
the left with zeros to a 64-bit value, regardless of whether -qctyplss

compiler option is specified.

In 64-bit Mode

64-bit Interlanguage Calls 135

 • Each INTEGER(8) and LOGICAL(8) argument requires two words.

 • Any other non-floating-point scalar argument of intrinsic type requires
one word and appears in that word exactly as it would appear in a GPR.
It is right-justified, if language semantics specify, and is word-aligned.

 • Each single-precision (REAL(4)) value occupies one word, each
double-precision (REAL(8)) value occupies two successive words in the
list, and each extended-precision (REAL(16)) value occupies four
successive words in the list.

 • A COMPLEX value occupies twice as many words as a REAL value with
the same kind type parameter.

 • In FORTRAN and C, structure values appear in successive words as
they would anywhere in storage, satisfying all appropriate alignment
requirements. Structures are aligned to a fullword and occupy
(sizeof(struct X)+3)/4 fullwords with any padding at the end. A structure
that is smaller than a word, is left-justified within its word or register.
Larger structures can occupy multiple registers, and may be passed
partly in storage and partly in registers.

In a 32-bit Environment

 • All non-floating-point values require one doubleword that is doubleword-
aligned.

 • Each single-precision (REAL(4)) value AND each double precision
(REAL(8)) value occupies one doubleword in the list, and each
extended-precision (REAL(16)) value occupies two successive
doublewords in the list.

 • A COMPLEX value occupies twice as many doublewords as a REAL
value with the same kind type parameter.

 • In FORTRAN and C, structure values appear in successive words as
they would anywhere in storage, satisfying all appropriate alignment
requirements. Structures are aligned to a doubleword and occupy
(sizeof(struct X)+7)/8 fullwords with any padding at the end. A structure
that is smaller than a word is left-justified within its word or register.
Larger structures can occupy multiple registers, and may be passed
partly in storage and partly in registers.

In a 64-bit Environment

136 AIX 64-bit Performance in Focus

This is a FORTRAN example of a call-by-value to a C function, which gives
the storage mapping of the PARM AREA for 32-bit and 64-bit environment.

integer(2) court1
integer(4) entier1, entier2
real(4) flottant1
real(8) double1, double2
character car1
complex(8) cx1
call cfuncval (%val(entier1), %val(entier2), %val(double1),

%val(flottant1), %val(car1), %val(double2),
%val(court1), %val(cx1))

In Figure 2 on page 137, we can see that:

 • A parameter is guaranteed to be mapped only if its address occupied.

 • Data with less than fullword-alignment is copied into high-order bytes.
Because the function in the example is prototyped, the mapping of
parameters c and s1 is right-justified.

 • The parameter list is a conceptually contiguous piece of storage
containing a list of words. For efficiency, the first eight words of the list are
not actually stored in the space reserved for them, but passed in
GPR3-GPR10. Furthermore, the first 13 floating-point value parameter
values are not passed in GPRs, but are passed in FPR1-FPR13. In all
cases, parameters beyond the first eight words of the list are also stored in
the space reserved for them.

 • If the called procedure intends to treat the parameter list as a contiguous
piece of storage (for example, if the address of a parameter is occupied in
C), the parameter registers are stored in the space reserved for them in
the stack.

 • A register image is stored on the stack.

64-bit Interlanguage Calls 137

Figure 2. Storage Mapping of Parm Area in 32-bit Environments

As we can see in Figure 3 on page 138, the parm area (part of the user stack)
is bigger in 64-bit than in 32-bit. We do not recommend programs to read the
parm area by a direct mapping, due to these alignment differences between
the two compilation modes.

Also notice that using 32-bit integers in a 64-bit environment does waste
some space for alignment on subroutine call.

Comparing both 32-bit and 64-bit parm areas, you can see that this
subroutine call will have better performance in a 32-bit than in a 64-bit
environment. Developers should remember these issues when deciding to
migrate their application to 64-bit.

entier1

entier2

double1

flottant1

car1

double2

court1

cx1

Right-justified (if language
semantics specify such as
non-prototyped C function).

Right-justified (if language
semantics specify such as
non-prototyped C function).

0
4
8

12
16
20
24
28
32
36
40

R3
R4

FP1 (R5,R6 unused)

FP2 (R7 unused)

R8

FP3 (R9 unused)

R10

FP4and Stack

Offset

PARM AREA

138 AIX 64-bit Performance in Focus

Figure 3. Storage Mapping of Parm Area in 64-bit Environments

7.2 Type Encoding and Checking

Detecting errors before a program is run is a key objective of the C for AIX
compiler. Runtime errors are hard to find, and many are caused by
mismatching subroutine interfaces or conflicting data definitions.

The C for AIX compiler and XL Fortran use a scheme for early detection that
encodes information about all external symbols (data and programs). If the
-qextchk option has been specified, this information about external symbols is
checked at bind or load time for consistency.

entier1

entier2
double1

flottant1

car1

double2
court1

cx1

Right-justified (if
language semantics
specify such as non-
prototyped C
function).

0
8

16
24
32
40
48
56

R3
R4

FP1 (R5 unused)
FP2 (R6 unused)

R7

FP3 (R8 unused)

R9

FP4 (R10 unused)

Right-justified (if
language semantics
specify such as non-
prototyped C
function).

Offset

PARM AREA

Interlanguage applications can be hard to achieve due to the different
passing argument techniques and rules. Therefore, we recommend you
use -qextchk in the debugging step. For the final executable production, we
recommend not using it, because it enlarges object size.

To store type information in the object file so the linker can detect
mismatches, use the -qextchk compiler option.

Our Recommendation

© Copyright IBM Corp. 1998 139

Appendix A. Some 64-bit Mathematics Hints and Tips

Building machines that can handle large data areas like files and memory of
more than four GB is not an obvious design. It also is more difficult for the
user, who must manage large system resources or develop large programs,
to keep from getting confused with such a wide range of data addresses.

If you are used to simple conversions such as 0xF is ’1111’ is 15, you are
probably less familiar with the translation of 252 or 0x6FFFFFFF, which are
very basic values inside the AIX 64-bit dimension. What is the value in the
base 10 mathematical model? Can you name the number? This appendix
provides some different hints and tips useful for the main conversions in the
AIX environment. These will help illustrate how huge the AIX 64-bit dimension
can be.

A.1 Hints and Tips for 32-bit Mathematics

This appendix is useful for users who are not familiar with hexadecimal and
binary writing. The basic notions are explained here. If you are comfortable
with 32-bit mathematics, proceed directly to Appendix A.2, “Hints and Tips for
64-bit Mathematics” on page 143.

A.1.1 Values and Representation of Binaries

This section defines the basic notion of a base value and how to convert an
hexadecimal value to a decimal value.

The Basic Key Table
First, we manipulate four digits in the three main references. These are basic
and common values (see Table 14 on page 139).

Table 14. Binary/Hexadecimal Values (from 0 to 15)

Base 16 Base 10 Base 2

0 0 0 0 0 0

1 1 0 0 0 1

2 2 0 0 1 0

3 3 0 0 1 1

4 4 0 1 0 0

5 5 0 1 0 1

140 AIX 64-bit Performance in Focus

The following is the conversion table for the next 16 values, from 16 to 31
(see Table 15 on page 140).

Table 15. Binary/Hexadecimal Values (from 16 to 31)

6 6 0 1 1 0

7 7 0 1 1 1

8 8 1 0 0 0

9 9 1 0 0 1

A 10 1 0 1 0

B 11 1 0 1 1

C 12 1 1 0 0

D 13 1 1 0 1

E 14 1 1 1 0

F 15 1 1 1 1

Base 16 Base 10 Base 2

10 16 1 0 0 0 0

11 17 1 0 0 0 1

12 18 1 0 0 1 0

13 19 1 0 0 1 1

14 20 1 0 1 0 0

15 21 1 0 1 0 1

16 22 1 0 1 1 0

17 23 1 0 1 1 1

18 24 1 1 0 0 0

19 25 1 1 0 0 1

1A 26 1 1 0 1 0

1B 27 1 1 0 1 1

1C 28 1 1 1 0 0

Base 16 Base 10 Base 2

Some 64-bit Mathematics Hints and Tips 141

This last table shows us that the number written in binary can be very long.
For that reason, we remember only the first 16 values and we will use
different ways to write and to convert them.

The Hexadecimal Representation for Binary Values
As the binary writing becomes difficult after the value 15, the usual
convention in computer science, is to represent large binary values in
hexadecimal base. In this case, where "1 1 1 1" means "F", we group binary
digits by four.

Let’s see some examples of this representation:

1111 1111 represented by FF
1010 1000 represented by A8
1100 1110 represented by CE
1100 1011 1000 0100 represented by CB 84

This last example shows us hexadecimal values grouped by two digits which
represent four bits each. "CB" represents the value of one byte.

Using this notation, we are able to write large binary values very quickly.
However, we still have problems telling how much it represents since we
normally count in decimal.

The Necessary Hexadecimal/Binary Conversions
Even if we can understand at first sight that "CD" is greater than "A8", we still
don’t really know how much it is. To make this conversion easily, we have to
convert the base value to the decimal system using the mathematical
definition of base value.

 • Base value definition

This is the rule to convert a value in a different base.

1D 30 1 1 1 0 1

1E 31 1 1 1 1 0

1F 32 1 1 1 1 1

Base 16 Base 10 Base 2

142 AIX 64-bit Performance in Focus

Examples:

(base 10) 124 represents (1x100)+(2x10)+(4x1) = 1x102 + 2x101 + 4x100
(base 16) FCE represents 15x162 + 12x161 + 14x160
(base 2) 1 1001 represents 1x25+ 1x24+ 1x20

 • Value capacity of bytes

The binary conversion is by far the most-used method, because
computers still manipulate everything in bits. Let’s apply the previous rule
and see how much a byte can represent:

"1111 1111" represents 27+26+ 25+ 24+ 23+22+ 21+ 20= 255

If we add 1 to this value, the result is 256. That is "1 0000 0000" coded
with 9 bits and we see that 256 is 28.

If we use these 8 bits to code an address, we can have from address
"0000 0000" to address "1111 1111", that is 256 (28) addresses.

We have just defined the second basic computer rule which is:

A.1.2 The AIX 32-bit Values

Depending on different choices that the AIX operating system uses to
manage the memory (and therefore, the bits), some typical binary values are
very well-known by the AIX system administrators’ community.

These are the most well-known values:

1. 32-bit architecture limits the addressing capacity at four GB.

Four GB is the value of 232.

Each digit of a number has to be multiplied by the base power of its
ranking (ranking begins at 0).

digitn...digit4 digit3 digit2 digit1

Written in base, W represents the value of:

(digitn x Wn-1)+...+(digit4x W3)+(digit3x W2)+(digit2x W1)+(digit1x W0)

with W0 = 1.

Base Value Definition

With n bits, you can represent 2n addresses or values between 0 to
2n-1.

Byte Value Capacity

Some 64-bit Mathematics Hints and Tips 143

2. One byte can address 256 locations.

256 is the value of 28.

3. The AIX memory is organized with 4 K pages.

4 K (4096) is the value of 212.

The byte offset within an AIX memory page is coded with 12 bits.

4. The AIX memory segments are 256 MB long: they contain 65536 pages
each.

65536 is the value of 216.

The page offset within an AIX memory segment is coded with 16 bits.

5. Inside AIX memory 32-bit architecture, four GB are addressed by 16
segments of 256 MB (4 GB / 0.25 GB = 4 x 4 = 16).

16 is the value of 24.

An AIX segment number is coded with 4 bits.

A.2 Hints and Tips for 64-bit Mathematics

The 64-bit architecture and the capabilities provided by 64-bit data excites
people. But some are unaware that managing this huge data/address
dimension will oblige us to review our usual ways of working. One of them is
our pocket calculator.

As we have seen previously, manipulating 32-bit data/address with the help of
some rules can be easily achieved. If you need to know the value of 226, your
calculator will give you the precise answer.

67,108,864

However, if you need to know the value of 227, most calculators only give
approximate answers:

1.342177e+08 --> 134,217,7??

Moreover, if you’re new to the AIX 64-bit dimension like most people today,
you’ll like to know how many bytes VMM can address with four Giga
segments of 256 MB each. You’ll know how many segments are available for
your user data stack (segment numbers from 0x10 to 0x6FFFFFFF). Your
pocket calculator won’t help you precisely manage such huge hexadecimal
values.

With some algebra rules, it is easy to manipulate, without any calculator,
64-bit values.

144 AIX 64-bit Performance in Focus

A.2.1 Useful 64-bit Notations

These are some mathematical notions concerning calculation of huge values.

Algebra Rules of Power Numbers
We use Giga, Mega and Kilo quite often. A few of us remember that 1 K is
210, 1 M is 220 and 1 G is 230.

To manipulate numbers such as these, which are conveniently expressed as
powers of two, two simple algebraic rules are all that is needed:

Some Useful High Values
To use these rules, it helps to memorize the major powers of two, as:

Table 16. Huge Values

Note that the values to power of 10 are approximate values. That’s why, for
manipulating huge values, we only have to remember the values of power of
two.

This is the table that will help you:

Table 17. Powers of Two to Know

Terminology Power of 2 Power of 16 Power of 10

1 KB (kilobyte) 210 4 x 162 1024 ≠ 103 !

1 MB (megabyte) 220 165 ≅ 106

1 GB (gigabyte) 230 4 x 167 ≅ 1019

1 TB (terabyte) 240 1610 ≅ 1012

1 PB (petabyte) 250 4 x 1612 ≅ 1015

1 EB (exabyte) 260 1615 ≅ 1018

Power of 2 Decimal Values Terminology

22 4

23 8

 These are the two rules to remember:

1. 2a x 2b = 2a+b or 16a x 16b = 16a+b

2. (2a)b = 2axb or (16a)b = 16axb

Two Rules to Know

Some 64-bit Mathematics Hints and Tips 145

A.2.2 AIX 64-bit Examples

Let’s look at some examples demonstrating how easy it is to manipulate huge
values with the concepts discussed above.

How Much Memory Can VMM Handle
In AIX 64-bit address implementation, segment numbers are stored in a
32-bit field. So, we would like to know how many segments and how much
memory VMM can handle.

1. How many segments can VMM handle? Four Giga segments:

232 segments = 22 x 230 = 22 Giga = 4 Giga

2. How much memory can VMM handle?

1 EB =

4 Giga segments =

4 Giga x 256 MB =

4 x 230 x 256 x 220 = 4 x 256 x 250 =

22 x 28 x 250 = 260 = 1 exabyte of memory!

24 16

25 32

26 64

27 128

28 256

29 512

210 1024 1 KB

220 1,048,576 1 MB

230 1,073,741,824 1 GB

240 1,099,511,627,776 1 TB

250 11,258,990,684,262 1 PB

260 1,152,921,504,606,846,976 1 EB

Power of 2 Decimal Values Terminology

146 AIX 64-bit Performance in Focus

How Many Segments Can the Application Text Section Use
The AIX 64-bit environment defines that application text, data, BSS, and the
heap will be stored from segment number 0x10 to segment number 0x6fffffff.
So, let’s see how many segments are available between 0x0 and 0x6fffffff.

1. We read 0x6fffffff as 0x6 fff ffff.

2. fff ffff represents 167 segment numbers.

167= (24)7 = 228 = 28 x 2 20 = 28 Mega segments.

3. Since we have 0x6 fff ffff, it represents:

6 x 28 Mega segments=

6 x 256 Mega segments.

If you have an odd number (like 7), you should keep the result as: 7 x 256.
You should not compute the result. Keeping it like this is useful if we want to
do further calculations such as how much memory (6 x 256 Mega) segments
represent:

6 x 256 Mega segments =

6 x 256 x 220 x 256 MB =

6 x 28 x 220 x 28 x 220 bytes =

6 x 216 x 240 bytes =

6 x 26 x 250 bytes =

6 x 64 petabytes =

384 petabytes or 384,000 terabytes of memory!

A.2.3 A Fast Way to Read 64-bit Values

When you see your first 64-bit hexadecimal values, your eyes could get lost
reading 16 digits. We are still not used to read 16 hexadecimal digits. They
are not easy to read and not easy to write, for example:

0x26FFE5A97410BC43

At first sight, you can hardly say how much it represents except that it is a
huge value. This is fact that everyone knows, due to the 64-bit environment.
However, there is a way that you can get a first idea about how much this
number could represent.

Reading 64-bit Hexadecimal Values
If you look at the powers of 16, also see Table 16 on page 144, we have
previously said that these values were not very helpful because they can be

Some 64-bit Mathematics Hints and Tips 147

computed with values to the power of 2. That is true except that three of them
have an interesting feature such as:

 • 1 megabyte is 165

 • 1 terabyte is 1610

 • 1 exabyte is 1615

Let’s group our previous 64-bit hexadecimal value by five digits. Now, at the
first sight, we can say that we have:

0x2 6FFE5 A9741 0BC43

2 EXABYTE+<tag1>+ 5 TERABYTE+<tag2>+ 1 MEGABYTE+<tag3>

In this way, you can not get the real decimal values: we are using EB, TB, GB,
and MB which are not powers of ten. However, it gives you an idea if the
number or quantity you are regarding is an average of Exa or Tera or Mega.

Table 18. KB, MB, GB, TB, PB, EB Decimal Values

A.2.4 A Useful Calculator

Since most calculators will be little help like xcalc , there still is the AIX
desktop application "Calculator" within Desktop_Apps under Application
Manager.

This calculator can do all the calculations previously described inside this
appendix.

However, to get dtcalc running, you should have an AIX graphic display
available running the AIX Common Desktop. It is not always the case: 64-bit
SMP machines rarely have a graphic console.

Terminology Decimal Value

1 KB 1,024

1 MB 1,048,576

1 GB 1,073,741,824

1 TB 1,099,511,627,776

1 PB 11,258,990,684,262

1 EB 1,152,921,504,606,846,976

148 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 149

Appendix B. Pr ocess Ad dress Space La yout

This appendix describes how the Virtual Memory Manager (VMM) handles
memory for 32-bit and 64-bit process execution. With this address space
layout description, 32-bit and 64-bit application’s capabilities and limits, such
as large program support, number of shared memory segments and large file
support, are easily explained.

B.1 Terminology

VMM defines different elementary units of memory differentiated by the type
of their content. This classification and associated terminology remains the
same for 64-bit process address layout.

Text segment The text segment contains the object code of the process
(executable instructions). It is shared read-only by all
processes executing the same program.

Library segment This segment contains instructions that perform functions
that will be used by many processes.

User block Small and fixed-size memory space where user
information is stored and maintained by the kernel (not
accessible by user process).

Kernel stack Small and fixed-size memory space allocated from the
kernel’s memory space that serves to store local variable
and subroutine return information when a process makes
a call to a kernel routine. The kernel maintains kernel
stack space for each process.

User stack Memory space used by processes to store process
private functions/subroutines calls and associated
information (subroutine return code, arguments list).

User data Memory space used by processes to store data. Data are
stored into csect sections, depending on their type:

Heap section: dynamically allocated memory space
(malloc calls).

BSS section: un-initialized variables.

Data section: initialized variables and constants.

150 AIX 64-bit Performance in Focus

B.2 32-Bit Process Address Space Layout

This part describes how the Virtual Memory Manager (VMM) handles
memory for 32-bit process execution.

B.2.1 32-bit Address Space Layout

The layout described in Table 19 on page 150 is the segment register usage
convention for 32-bit processes.

Table 19. 32-bit Address Space Implementation

The kernel and shared-library text segment are shared by all processes and
have restricted access when executing in the user protection domain.

The process text segment is held by segment 1.

The process private segment, containing user block, kernel stack, user stack
and user data regions, is held by segment 2. We have mentioned user block
and kernel stack, small and fixed-size areas, because we cannot ignore their
existence. But no user process or tunable system parameters can modify
these areas dedicated to the system. For that reason, we can now ignore
them and say that segment 2 is mainly used for user stack and user data
regions.

The segment registers 3 through 12 may be loaded (using interfaces such as
shmat or mmap) to provide access to files or shared memory data.

Segment Number Use Size Available Number

0x0 Kernel 256 MB 1

0x1 Process text 256 MB 1

0x2 Process private 256 MB 1

0x3

0xC

shmat/mmap

(Attached with explicit
compiler options)

2.56 GB 10

0xD Shared library text 256 MB 1

0xE shmat/mmap 256 MB 1

0xF Shared library data 256 MB 1

Process Address Space Layout 151

These conventions place constraints on the size of the user data and the user
stack regions, given that they share a single 256 MB segment: segment 2
(see figure Figure 4 on page 151).

Figure 4. Process Private Segment (Segment 2)

B.2.2 32-bit Large Address Space Layout

A large program address space model is supported to handle programs with
requirements for large amounts of uninitialized data. In this model, the
process user data is relocated to begin at segment 3 for as much data as the
program needs to a maximum of eight segments. The program can therefore
have up to two GB of data.

Other aspects of the program address space remain unchanged. The user
stack, kernel stack and u-block continue to reside in segment 2. As a result of
this organizational scheme, the user stack is still limited by the size of
segment 2 (see Figure 5 on page 152).

Note that this model still does not address the need for programs with
executables greater than one segment in size (more than 256 MB of
executable instructions). This is not an ordinary programming issue
(excessive program complexity) and does not normally impact programs. To

User block

Kernel stack

User stack

User Data 0x2000 0000

0x2FF2 3000

0x2FF3 B400

u.ulimit[MAX].stack

u.ulimit[CUR].data

u.ulimit[CUR].stack

u.ulimit[MAX].data

initialized variables
& constants

uninitialized variables

Malloc allocated space
in /etc/security/limits:
fsize =
core =
cpu =

data =
rss =

stack =

DATA

BSS

HEAP

Unused Space

152 AIX 64-bit Performance in Focus

enable the large address-space model, use the -bmaxdata flag of the ld

command.

Figure 5. Process Private Segment (Segment 2) for Large Programs

For example, to link a program that will have the maximum eight segments
reserved to it, the following command line could be used:

cc sample.o -bmaxdata:0x80000000

The number 0x80000000 is the number of bytes, in hexadecimal format,
equal to eight 256 MB segments. Although larger numbers can be used, they
are ignored because a maximum of eight segments can be reserved. The
value following the -bmaxdata flag can also be specified in decimal or octal
format. Use the -bmaxdata option only if the program needs very large data
areas.

The maxdata value is stored in the o_maxdata field of the XCOFF header. The
Extended Common Object File Format (XCOFF) is the object file format for
AIX.

After placing the program’s initialized and uninitialized data in segment 3 and
beyond, the system computes the break value. The break value defines the

User block

Kernel stack

User stack

0x2000 0000

0x2FF2 3000

0x2FF3 B400

Unused space

u.ulimit
[MAX].stack

Kernel
Process text
Process private

User data

Shared library data

0

1

2

3

15
14

13 Shared library text
shmat/mmap

12
11

10

Process Address Space Layout 153

end of process’ static data and the beginning of its dynamically allocatable
data. Using the malloc , brk , sbrk subroutine, the process is free to move the
break value toward the end of the segment identified by the maxdata field in
the a.out header file.

For example, if the value specified in the maxdata field in the a.out header file
is 0x80000000, then the maximum break value is up to the end of segment 10
(0xAFFFFFFF). The brk subroutine extends the break across segment
boundaries but not beyond the point specified in the maxdata field.

Using the following command, you can do the following:

1. Patch large programs to use large data without relinking them:

/usr/bin/echo ’\0200\0\0\0’ | /bin/dd of= <executable_file_name> bs=4
count=1 seek=19 conv=notrunc

2. Patch program to use small address space model:

/usr/bin/echo ’’ | /bin/dd of= <executable_file_name> bs=4 count=1
seek=19 conv=notrunc

B.2.3 Paging Space Considerations for Large Programs

Programs with large data spaces require a large amount of paging space. For
example, if a program tries to access every page in its address space, the
system must have two GB of paging space. The operating system
page-space monitor terminates processes when paging space runs low.

AIX uses two modes for paging space allocation: the late and the early
paging space allocation. These policies can dramatically reduce or increase
your paging space size requirement. This issue becomes important when
your program handles large data areas like the 64-bit address capability.
Therefore, AIX paging space policies will be discussed in Appendix B.3.2,
“Large Data and Paging Space Allocation Policies” on page 158.

B.2.4 32-bit Address Space Layout and Inter-Process Communication

Prior to AIX 4.2, AIX used the segment registers from 0x3 to 0xC for shared
memory regions, only 10 could be simultaneously attached to the process.
Then, in AIX V4.2, a new segment (segment 0xE) became available for
process use. This allows applications running with AIX V4.2 to attach 11
shared memory segments.

A single shared memory region, whatever its size may be, always consumed
a 256 MB region of its address space. The rest of the address space not used
within this 256 MB region is left practically inaccessible to the application.

154 AIX 64-bit Performance in Focus

This caused problems for application developers who wanted to use the total
address space with shared memory regions of various sizes. It has been a
concern for middleware developers, such as database vendors, who develop
their software with common code and port it to various platforms.

In AIX V4.2, an extended shmat capability is available. If an environment
variable EXTSHM=ON is defined, then processes executing in that
environment will be able to create and attach more than 11 shared memory
segments. The segments can be of size from one byte to 256 MB. The
process can attach these segments to the address space for the size of the
segment. Another segment could be attached at the end of the first one in the
same 256 MB region. The address at which a process can attach will be at
page boundaries, that is, a multiple of SHMLBA_EXTSHM bytes.

This new constant, SHMLBA_EXTSHM, is defined to be 0x1000 (page
boundaries) for applications that need this value. The old constant, SHMLBA,
is treated as 0x1000 internally, if the environment variable is set. Otherwise,
the value of SHMLBA is interpreted to be 0x10000000 (segment boundary).

The maximum address space available for shared memory with or without the
environment variable and for memory mapping is 2.75 GB. An additional
segment register, 0xE, is available for user data, so the address space is
0x30000000 to 0xE0000000. However, a 256 MB region starting from
0xD0000000 is used for shared libraries and is therefore unavailable for
shared memory regions or mmapped regions.

There are some restrictions on the use of the extended shmat feature. These
shared memory regions can not be used as I/O buffers where the unpinning
of the buffer occurs in an interrupt handler. The restrictions on the use are the
same as that of mmap buffers.

However, the smaller region sizes are not supported for mapping files.
Regardless of whether EXTSHM=ON or not, mapping a file will consume at
least 256 MB of address space.

The SHM_SIZE shmctl command is not supported for segments created with
EXTSHM=ON. The system call, shmctl(), is used by a process to remove,
modify the attributes or obtain information about a shared memory region.
When the command value is SHM_SIZE, the size of the shared memory
region is to be resized. This feature is not supported with the page segment
boundary for shared memory segments.

The environment variable provides the option of executing an application
either with the additional functionality of attaching more than 11 segments

Process Address Space Layout 155

when EXTSHM=ON (with no need to recompile the application), or the
higher-performance access to 11 or fewer segments when the environment
variable is not set.

To take advantage of the new shared functionality, all the processes should
have the new environment variable set in their environment. However, sharing
of memory regions between processes with and without the new environment
variable is supported.

When a shared memory region is created with the environment variable set:

 • A process using the new environment variable will be able to attach the
region using the new mechanism.

 • A process using the old method (without the environment variable defined)
will be able to attach to the region in the old method. This will consume a
256 MB area of the address space irrespective of the size of the shared
memory region.

When a shared memory region is created without the environment variable
set:

 • A process using the new environment variable will be able to attach the
shared memory region, but in the old mode consuming a 256 MB area of
the address space, irrespective of the size of the region.

 • A process not using the new environment variable will be able to attach to
the region in the old fashion consuming a 256 MB area of the address
space, irrespective of the size of the region.

B.3 64-Bit Process Address Space Layout

This part describes how the Virtual Memory Manager (VMM) handles
memory for 64-bit execution programs.

B.3.1 64-bit Address Space Layout

The layout described in Table 20 on page 157 and Table 21 on page 158 is
the segment register usage convention for 64-bit processes.

Terminology like text segment, user block and other terms are defined in
Appendix B.1, “Terminology” on page 149. Also, the 64-bit address space
layout description, described in Appendix B.2, “32-Bit Process Address
Space Layout” on page 150, gives the changes to the 32-bit address space
layout. To understand what follows, a look at both of these sections is useful.

156 AIX 64-bit Performance in Focus

The kernel section, previously held by segment 0, is now handled by two
segments, 0 and 1.

The process text section, previously held by segment 1 and therefore given
the program text section size limit of 256 MB, is now handled by segments
10-0x6FFFFFFF (384 000 TB), but it is still limited to 256 MB.

The user stack area, previously held by segment 2, is relocated to the
segments 0xF0000000-0xFFFFFFFF (64 000 TB). The user stack area is still
limited to 256 MB. Note that user block and kernel stack remain in segment 2
(process private).

The user data area, previously held by segment 2 or segments 3-C, is now
handled with the text section by segments 10-0x6FFFFFFF.

Segments 0x80000000-0x8FFFFFFF may be used to load private copies of
shared libraries.

Process Address Space Layout 157

Table 20. 64-bit Address Space Layout (Part 1)

Segment Number Use Size Available Number

0x0000 0000 Kernel 256 MB 1

0x0000 0001 Kernel 256 MB 1

0x0000 0002 Process private 256 MB 1

0x0000 0003

0x0000 000C

shmat/mmap
(Fixed addresses to be
specified within 64-bit
applications)

2.56 GB 10

0x0000 000D Loader use 256 MB 1

0x0000 000E shmat/mmap (idem) 256 MB 1

0x0000 000F Loader use 256 MB 1

0x0000 0010

0x1000 0000

0x2000 0000

0x3000 0000

0x4000 0000

0x5000 0000

0x6FFF FFFF

Application text,
application user data
(BSS, Data, Heap)

384 000 TB 6 x 256 x 220

segments

158 AIX 64-bit Performance in Focus

Table 21. 64-bit Address Space Layout (Part 2)

B.3.2 Large Data and Paging Space Allocation Policies

AIX uses two modes for paging space allocation. The setting of the PSALLOC
environment variable determines the paging space allocation mode.

Segment Number Use Size Available Number

0x7000 0000

0x7FFF FFFF

Default
shmap/mmap

64 000 TB 256 x 220

segments

0x8000 0000

0x8FFF FFFF

Private load

64 000 TB 256 x 220

segments

0x9000 0000

0x9FFF FFFF

Shared library text
and data

64 000 TB 256 x 220

segments

0xA000 0000

0xB000 0000

0xC000 0000

0xD000 0000

0xEFFF FFFF

Reserved for
system use

Reserved for
system use

Reserved for
system use

256 000 TB 230

segments

0xF000 0000

0xFFFF FFFF

Application user
stack

64 000 TB 256 x 220

segments

Process Address Space Layout 159

The default mechanism is the late paging space allocation algorithm. The
user can switch to an early paging space mode by setting the value of
PSALLOC environment variable to early:

export PSALLOC=early

If the PSALLOC environment variable is not set, is set to null, or is set to any
value other than early, the system uses the default late allocation algorithm.

The default late allocation algorithm for memory and paging space allocation
assists in the efficient use of disk resources and supports applications of
customers who want to take advantage a sparse allocation algorithm for
resource management.

The late allocation algorithm does not reserve paging space when pages are
touched. Under late allocation algorithm, a paging slot is allocated to a page
of virtual memory only when that page is first read from or written into. That is
the first time that the page’s content is of interest to the executing program.

Some programs allocate large amounts of virtual memory and then use only
a fraction of the memory. Many programs exploit late allocation by allocating
virtual memory address ranges for maximum-sized data structures such as
sparse vectors or matrixes as data structures, and then only using as much of
the structure as the situation requires.

The pages of the virtual memory address range that are never accessed
never require real-memory frames or paging space slots. This technique does
involve some degree of risk because it is possible to overcommit resources. If
all the programs running in a machine happened to encounter maximum-size
situations simultaneously, paging space might be exhausted. Some programs
might not be able to continue to completion.

The early allocation algorithm is intended for use in installations where this
situation is likely, or where the cost of failure to complete is intolerably high.
This algorithm causes the appropriate number of paging space slots to be
allocated at the time the virtual memory address range is allocated, for
example, with the malloc command. If there are not enough paging space
slots to support the malloc , an error code is set.

Though the normal recommendation for paging space size is at least twice
the size of the system’s real memory (up to a memory size of 256 MB), the
recommendation for systems that use PSALLOC=early is at least four times
real memory size. As an example, at one time the AIX Windows server
required 250 MB of paging space when run with early allocation policy.

160 AIX 64-bit Performance in Focus

For memories larger than 256 MB, and when using the default allocation, we
recommend:

Total paging space = 512 MB + (memory size - 256 MB) * 1.25

As an example, a machine with 2048 MB memory should have 2752 MB
paging space size. A machine with 16 GB memory should have 20672 MB
paging space size with a late paging space algorithm (more than 20 GB of
disk space).

The paging space required for any application depends on how the
application is written and how it is run. Certain applications can use extreme
amounts of paging space if they are run in early allocation mode: for 64-bit
applications, this could be a very expensive execution mode.

Because a 64-bit application’s data size can grow to almost twice that of its
32-bit foot print, more paging space is needed. An application that had a
virtual memory size of 512 MB on a 32-bit system will be closer to 1 GB when
migrated to 64-bit.

The early paging space allocation for 64-bit applications or 32-bit large
programs, should be chosen after the user has analyzed the virtual storage
requirements of the machine workload and allocated paging space to
accommodate them.

B.3.3 64-bit Address Space Layout and Inter-Process Communication

64-bit applications should explicitly specify a segment address from 3 to C to
allocate shmat /mmap areas. By default, the system will allocate another
segment address pool to a 64-bit application. So, interoperability between
64-bit and 32-bit application through memory shared areas must be explicitly
designed and written within the 64-bit application source code:

 • If no fixed address is specified, then allocation takes place from the
shmat /mmap pool at ESIDs (Effective Segment Identifiers) 0x7000 0000 to
0x7FFF FFFF.

 • If a fixed address is specified by a user, then the allocation will be allowed
as long as the ESID is less than 0x8000 0000 and is not the ESID 0-2, 13
or 15.

© Copyright IBM Corp. 1998 161

Appendix C. A Sample Thread Pr ogram

This sample creates five threads. One is for the signal handler, and the other
four threads are for writing shared-memory data to files. Reading shared
memory created by a 64-bit application is no different than with a 32-bit
application.

#include <pthread.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define SHMEM_SIZE 256*1024*1024 /* 256 MB */
#define SH_MAX 12
#define MAX_NAME 64

void *sig_th(void *);
void *read_th(void *);

int mem_id[SH_MAX];
char *sh_data[SH_MAX];

void main(void) {
 pthread_attr_t attr, sig_attr;
 pthread_t th_read[SH_MAX];
 pthread_t th_sig;
 int i,j,rc;

 if ((rc = pthread_attr_init(&attr)) != 0) {
 printf("pthread_attr_init error, rc = %d\n", rc);
 exit();
 }
 rc = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 if (rc != 0) {
 printf("pthread_setdetachstate error, rc = %d\n", rc);
 exit();
 }
 if ((rc = pthread_attr_init(&sig_attr)) != 0) {
 printf("pthread_attr_init error, rc = %d\n", rc);
 exit();
 }
 rc = pthread_attr_setdetachstate(&sig_attr, PTHREAD_CREATE_DETACHED);
 if (rc != 0) {
 printf("pthread_setdetachstate error, rc = %d\n", rc);

162 AIX 64-bit Performance in Focus

 exit();
 }
 rc = pthread_create(&th_sig, &sig_attr, sig_th,(void *)NULL);
 if (rc != 0) {
 printf("pthread_create(sig_th) error, errno = %d\n" , errno);
 exit();
 }
 for (i = 0; i < SH_MAX; i +=3) {
 if ((rc=pthread_create(&th_read[i],&attr,read_th,(void *)i))!= 0) {
 printf("pthread_create(read_th) error, errno = %d\n" , errno);
 }
 }
 for (i = 0; i < SH_MAX; i +=3) {
 pthread_join(th_read[i], NULL);
 }
 for (i = 0; i < SH_MAX; i +=3) {
 printf("shmat = %p ",sh_data[i]);
 printf("sh_data[%02d] = ",i);
 for (j = 0; j < 16; j++) {
 printf("%c",*(sh_data[i] + j));
 }
 printf("\n");
 shmdt(sh_data[i]);
 }
 pthread_attr_destroy(&attr);
 printf("Normal end\n");
 exit();
} /* End of Main */

void *sig_th(void *dummy) {
 sigset_t set;
 int sig;
 int rc;

 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 sigaddset(&set, SIGUSR1);

 rc = sigthreadmask(SIG_BLOCK, &set, NULL);
 if (rc != 0) {
 printf("sigthreadmask error\n");
 pthread_exit(NULL);
 }
 while(1) {
 rc = sigwait(&set, &sig);
 if (rc != 0) {
 printf("sigwait error\n");

A Sample Thread Program 163

 pthread_exit(NULL);
 }
 switch(sig) {
 case SIGINT:
 printf("sig_handler recieve SIGINT\n");
 sigdelset(&set, SIGINT);
 rc = sigthreadmask(SIG_BLOCK, &set, NULL);
 if (rc != 0) {
 printf("sigthreadmask error\n");
 pthread_exit(NULL);
 }
 break;
 case SIGUSR1:
 printf("sig_handler recieve SIGUSR1\n");
 break;
 default:
 printf("sig_handler recieve SIG=>%d", sig);
 break;
 } /* End of witch(sig) */
 } /* End of while(1) */
 pthread_exit(NULL);
} /* End of sig_th */

void *read_th(void *i) {
 extern int mem_id[SH_MAX];
 extern char *sh_data[SH_MAX];
 int th_no;
 int fd;
 char fname[MAX_NAME +1];

 th_no = (int)i;
 bzero(fname, MAX_NAME +1);
 sprintf(fname, "/save_data/test.data%02d", th_no);
 if((fd = open(fname, O_RDWR | O_CREAT)) < 0) {
 printf("open error %s\n", fname);
 pthread_exit(NULL);
 }
 mem_id[th_no] = shmget((key_t)(0x20000 +
(int)th_no),SHMEM_SIZE,IPC_EXCL);
 if (mem_id[th_no] < 0) {
 printf("shmget[%d] error \n",th_no);
 pthread_exit(NULL);
 }
 if ((sh_data[th_no] = shmat(mem_id[th_no],0,0)) == (char *)-1L) {
 printf("shmat[%d] error \n",th_no);
 pthread_exit(NULL);
 }

164 AIX 64-bit Performance in Focus

 printf("thread = %d\n",th_no);
 if (write(fd, sh_data[th_no], SHMEM_SIZE) < 0) {
 printf("write error\n");
 }
 close(fd);
 pthread_exit(NULL);
} /* End of read_th */

This program will show output as follows:

thread = 0
thread = 6
thread = 3
thread = 9
shmat = 30000000 sh_data[00] = *00-256 MB area*
shmat = 40000000 sh_data[03] = *03-256 MB area*
shmat = 50000000 sh_data[06] = *06-256 MB area*
shmat = 60000000 sh_data[09] = *09-256 MB area*
Normal end

© Copyright IBM Corp. 1998 165

Appendix D . AIX Linker/Loader

In this appendix, the most important parameters controlling the linker/loader
are described. You should be aware of some of these because they control
the executable’s capabilities, such as extending the user stack beyond
segment 2 or defining the maximum segment number your application is able
to attach.

If you need more information about user stack definition, see Appendix B.2,
“32-Bit Process Address Space Layout” on page 150 and Appendix B.3,
“64-Bit Process Address Space Layout” on page 155.

Table 22. Important Linker/Loader Options

The -bmaxdata and -bmaxstack parameters are involved in the large program
support capability and large file support capability of your application.

Command Line Option Description

-bmaxdata:bytes Specifies the maximum amount of space
to reserve for the program data segment,
for programs where the default size of this
region is a constraint.
If your program allocates large arrays,
statically or dynamically, specify
-bmaxdata when linking the program. The
resulting executable uses the large data
model and can have a data region larger
than a single segment, up to two GB (in
32-bit mode).

-bmaxstack:bytes Specifies the maximum of amount of
space to reserve for the program stack
segment, for the program where the
default size of this region is a constraint.
If the program has large amounts of
automatic data, or otherwise exceeds the
soft limit on stack size for a program,
specify -bmaxstack to define the soft limit
up to 256 MB when linking the program.

-bdynamic
-bshared
-bstatic

-bdynamic and -bshared are
synonymous.
When -bstatic is in effect, shared
objects are statically linked into the output
file. When -bdynamic is in effect, shared
objects are linked dynamically.

166 AIX 64-bit Performance in Focus

These options are passed directly to the ld command and are not processed
by compilers.

© Copyright IBM Corp. 1998 167

Appendix E. Migration Documentation

This appendix contains information from two existing documents that discuss
32-bit to 64-bit application migration.

E.1 C for AIX: 32-bit to 64-bit Migration Considerations

This section outlines various portability considerations in moving programs
from 32-bit to 64-bit mode.

 • Constants
 • Assignment of Long Types to Integer and Pointers
 • Structure Sizes, Alignment, and Bitfields
 • Miscellaneous
 • Interlanguage Calls with FORTRAN

E.1.1 Constants

The limits of constants changed. This table shows changed items in the
limits.h header file, their hexadecimal value, and decimal equivalent. The
equation gives an idea of how to construct these values.

Table 23. Changed Limits in limits.h

In C, type identification of constants follows explicit rules. However, programs
that use constants exceeding the limit (relying on a 2's complement
representation) will experience unexpected results with the LP64 model. This

Type Hexadecimal Equation Decimal

Signed long min
(LONG_MIN)

0x8000000000000000L -(2 63) -9,223,372,036,854,
775,808

Signed long max
(LONG_MAX)

0x7FFFFFFFFFFFFFFFL 263-1
(-LONG_MIN-1)

+9,223,372,036,854
,775,807

Unsigned long max
(ULONG_MAX)

0xFFFFFFFFFFFFFFFFUL 264-1 +18,446,744,073,70
9,551,616

The following text originates from the HTML documentation for the C for
AIX compiler and may be found at:

file:/usr/vac/html/en_US/ref/rucl64mg.htm

or on the IBM Intranet:

http://w3.torolab.ibm.com/~batthis/C_Manual/ref/rucl64mg.htm

Source of this Material

168 AIX 64-bit Performance in Focus

is especially true of hexadecimal constants and unsuffixed constants, which
are more likely to be extended into the 64-bit long type. In each case,
constants typed as long integers will have different values depending on
whether the program was compiled in 32- or 64-bit mode.

Problematic behaviors will generally occur at boundary areas such as:

 • constant >= UINT_MAX

 • constant < INT_MIN

 • constant > INT_MAX

 Some examples of undesirable boundary side effects are:

Table 24. Undesirable Boundary Side Effects

Currently, the compiler gives warning messages for out of range when
attempting to assign a value larger than the designated range into a long
type. The warning message is:

1506-207 (W) Integer constant 0x100000000 out of range.

This warning message may not appear for every case.

Unsuffixed constants are more likely to become 64-bit length if they are in
hexadecimal. To avoid this possibility, explicitly suffix all constants that have
the potential of impacting constant assignment.

When you bit left-shift a 32-bit constant and assign it into a long type, signed
values are sign-extended and unsigned values are zero-extended. The
examples in the table below show the effects of performing a bit-shift on both
32- and 64-bit constants, using the following C code segment:

long l=constantL<<1;

C Constant Assigned to Long 32-bit Mode 64-bit Mode

-2,147,483,649 (INT_MIN-1) +2,147,483,647 -2,147,483,649

+2,147,483,648 (INT_MAX+1) -2,147,483,648 +2,147,483,648

+4,294,496,726 (UINT_MAX+1) 0 +4,294,967,296

0xFFFFFFFF (UINT_MAX) -1 +4,294,496,295

0x100000000 (UINT_MAX+1) 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF (ULONG_MAX) -1 -1

Migration Documentation 169

The following is a table that shows values before and after the bit-shift:

Table 25. Constant Values after Bit-Shift

E.1.2 Assignment of Long Variables to Integers and Pointers

In 32-bit mode, int, long and pointer types have the same size and can be
freely assigned into each other. In extended mode, integer and long types can
be assigned into pointer types, and vice versa, with only a warning. In ANSI
mode, assignment between integral and pointer types will generate a severe
level message. The following warning message is generated in extended
mode:

1506-068 (W) Operation between types "int" and "int*" is not allowed.

Using int and long types in expressions and assignments can lead to implicit
conversion through promotions and demotions, or explicit conversions
through assignments and argument passing. The following should be
avoided:

 • Using integer and long types interchangeably, leading to truncation of
significant digits or unexpected results.

 • Passing long arguments to functions expecting type int.
 • Exchanging pointers and int types, causing segmentation faults.
 • Passing pointers to a function expecting an int type, resulting in truncation.
 • Assignment of long types to float, causing possible loss of accuracy.

Assigning a long constant to an integer will cause truncation without warning.
For example:

int i;
long l=2147483648; /* INT_MAX+1*/
i=l;

What will be the value of i? We know that INT_MAX+1 is 2147483647+1
(0x80000000), which becomes INT_MIN when assigned into a signed type.
Truncation occurs because the highest bit is treated as a sign bit. The rule
here is that there will be a loss of significant digits.

Initial Constant Value Constant Value after Bit-Shift

32-bit 64-bit

0x7FFFFFFFL (INT_MAX) 0xFFFFFFFE 0xFFFFFFFE

0x80000000L (INT_MIN) 0 0x100000000

0xFFFFFFFFL (UINT_MAX) 0xFFFFFFFE 0x1FFFFFFFE

170 AIX 64-bit Performance in Focus

Similar problems occur when passing constants directly to functions, and in
functions that return long types. Making explicit use of the L and UL suffix will
avoid most, but not all, problems. Alternately, you can avoid accidental
conversions by using explicit prototyping. Another good practice is to avoid
implicit type conversion by using explicit type casting to change types.

E.1.3 Structure Sizes, Alignments, and Bitfields

Structures may face potential porting problems.

The LP64 specification changes the size, member and structure alignment
and bit fields of all structures that are recompiled in 64-bit mode. Structures
with long integers and pointers will at least double in size under 64-bit mode,
depending on the alignment. Sharing data structures between 32- and 64-bit
processes is no longer possible, unless the structure is devoid of pointer and
long types. Unions that attempt to share long and int types, or overlay
pointers onto int types will now be aligned differently or be corrupted. In
general, all but the simplest structures must be checked for alignment and
size dependencies.

The alignment for -qalign=full , power or natural changes for 64-bit mode.
Structure members are aligned on their natural boundaries. Long types and
pointer types are word-aligned in 32-bit mode, and doubleword aligned in
64-bit mode. Additional spaces could be used for padding members.
Structures and unions will double in size if they contain long and pointer
types.

The alignment for -qalign=twobyte, packed, or mac68k do not change for 64-bit
mode. Long and pointer types in twobyte and mac68k alignment are still
aligned by the halfword. They remain aligned by bytes in packed mode.

Structures are aligned according to the strictest aligned member. This
remains unchanged from 32-bit mode. Because of the padding introduced by
the member alignment, structure alignment will not be exactly the same as in
the 32-bit mode. This is especially important when you have arrays of
structures that contain pointer or long types. The member alignment will
change, most likely leading to the structure alignment to change to
doubleword alignment (if there are no long long types, double types and long
double types).

Structure bit-fields in 32-bit mode are limited to 32 bits, and can be of type
signed int, unsigned int or plain int. Bit fields are packed into the current word.
Adjacent bit fields that cross a word boundary will start at storage unit. This
storage unit is a word in power and full alignment, halfword in the mac68k and

Migration Documentation 171

twobyte alignment, and byte in the packed alignment. In 64-bit mode, bitfields
will be limited to at most 64-bit in size, and can be type signed int, unsigned
int, plain int, long, and unsigned long. If it is typed long, or unsigned long, the
maximum size is 64 bits, and the storage unit in power or full alignment is
double word. The alignment will remain the same in all other alignment
modes. This means that adjacent declarations of bit fields of type long can
now be contained into one storage unit. Since long bitfields were not
permitted before in 32-bit mode, this is usually not a portability problem.

E.1.4 Miscellaneous Issues

The sizeof operator will now return size_t, which is an unsigned long.

The length of the integer required to hold the difference between two pointers
is ptrdiff_t, and is a signed long type.

Masks will generally lead to different results when compiled in 64-bit mode
from their 32-bit mode behavior.

Many include files have pointers and structures in them, and their inclusion in
64-bit mode will change the size of your data section even if your program
does not use structures and pointers explicitly.

E.1.5 Interlanguage Calls with FORTRAN

A significant number of applications use C and FORTRAN together, by calling
each other or sharing files. Such applications are among the early candidates
for porting to 64-bit platforms for its abilities to solve larger mathematical
models. Experience shows that it is easier to modify data sizes/types on the
C side than the FORTRAN side of such applications. The following table lists
the equivalent FORTRAN type in the different modes.

Table 26. FORTRAN Types

A user must not mix XCOFF object formats from different modes. A 32-bit
FORTRAN XCOFF can not mix with a 64-bit C XCOFF object and vice versa.

C type FORTRAN 32-bit FORTRAN 64-bit

int LOGICAL LOGICAL

unsigned int INTEGER INTEGER

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

172 AIX 64-bit Performance in Focus

Since FORTRAN 77 usually does not have an explicit pointer type, it is
common practice to use INTEGER variables to hold C pointers in 32-bit
mode. In 64-bit mode, the user should use INTEGER*8 in FORTRAN. Fortran
90 does have a pointer, but it is unsuitable for conversion to the basic C
types.

In 64-bit mode, FORTRAN will have a POINTER*8 that is 8 bytes in length as
compared to their POINTER which is 4-bytes in length.

E.2 README: C for AIX

Following is the README.C file that is shipped with the current C for AIX
compiler.

* COMPONENT_NAME: (vac) C for AIX compiler * * FUNCTIONS: README * * (C)
COPYRIGHT International Business Machines Corp. 1994,1996,1997 * * All
Rights Reserved. * Licensed Materials - Property of IBM * * US Government
Users Restricted Rights - Use, duplication or * disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. *

===
These filesets install files to the /usr/vac directory. There are no
executables present in /usr/bin, due to conflicts with the existing C for
AIX and C Set ++ for AIX 3.1.4 products. This product will overwrite the C
for AIX 4.1 compiler in /usr/vac. If you have the C for AIX 4.1 compiler
installed, you should uninstall it before installing C for AIX 4.3. To
uninstall C for AIX 4.1, enter: installp -u vac installp -umemdbg

Add /usr/vac/bin to your path or invoke the compiler by full path name,
such as /usr/vac/bin/c89 helloworld.c.

The online hypertext documentation for this product can be found in
/usr/vac/html. Use a standard browser to view the online documentation by
entering the line below for the web page location.

file:/usr/vac/html/en_US/index.htm

This README has the following contents:

The following text originates from the REACME.C file shipped with the C for
AIX compiler and may be found at:

file:/usr/vac/html/en_US/index.htm

Source of this Material

Migration Documentation 173

A. 64-bit migration issues.

i. Language-specific issues

ii. Operating System-specific issues

iii. Installation issues

B. Changes from CSet 3.1.4 to C for AIX 4.3

A. 64-bit migration issues --------------------------

i. Language-specific issues that can affect 64-bit compilation.

1. Unsuffixed numbers A number like 4294967295,(UINT_MAX) when parsed by
the compiler will be typed signed long in 32-bit mode. This is OK since
signed long is 4 bytes and mixing long with int is usually OK in 32-bit
mode.

In 64-bit mode, this same number will choose signed long, which is 8-byte,
leading to some operations like comparing the sizeof(4294967295) to return
8.

In general, suffix all constants. The fix for the above case is to write
the number as 4294967295U. This will allow the compiler to pick unsigned
int.

2. Undeclared functions return int. Any function that returns a pointer
should be declared in 64-bit mode. Otherwise, the compiler will assume they
return an int and truncate the resulting pointer even if you were to assign
it into a valid pointer. Code such as:

int a=calloc(25);

which used to work fine in 32-bit mode, will now get a truncated pointer
silently.

Even -qwarn64 can not trap this since we have an int to int assignment.

The fix is to include the correct header which is actually stdlib.h and not
malloc.h as you might believe.

3. Structure with pointers and long types will change size and alignment in
64-bit mode. Any structure or unions with pointer or long types will change
size and alignment in 64-bit mode. Some structures may not change size
because they happen to fall on the exact 8 byte boundary even in 32-bit

174 AIX 64-bit Performance in Focus

mode.

4. __int64 is a long type in 64-bit mode. __int64 types will look like long
long in 32-bit mode, but long in 64-bit mode. When they look like long long
types, they will not be promoted into. When they look like long types, they
will participate in promotion rules and arithmetic conversions.

5. Long bitfields in 64-bit mode may change in future In 32-bit mode, only
in extended mode was non-integer bitfields tolerated (but not respected).
But if you have long type bitfields in 64-bit mode, their exact alignment
may change in future even if the bitfield size is under 32-bit.

6. Va_arg function parameters involving structures of 8 byte multiples
passed by value If passing a structure of 8-byte multiple by value to a
va_arg argument in 64-bit mode, the member values may not be accessed
properly. This is a known limitation of the Operating System.

7. Beware of zero extension from unsigned int to unsigned long in 64-bit
extended mode. When you zero extend an unsigned int that is negative, such
as 0xFFFF FFFF, you will get a preservation of the bit pattern resulting in
0x0000 0000 FFFF FFFF. This can cause 64-bit results to become a large
positive number.

ii. Operating System-specific issues that may affect your code:

1. time_t has changed size from 4.2 to 4.3 Library functions which take an
argument of time_t or return type time_t may find type mismatches with your
existing code in 32-bit mode because time_t has changed from long type in
AIX 4.2 to int type in AIX 4.3.

2. MB_CUR_MAX has changed from int to size_t in AIX 4.3 MB_CUR_MAX is a
macro defined in stdlib.h that calls _getmbcurmax(). This function now
returns size_t which has always been unsigned long. It used to be prototype
to return int in AIX 4.2.

3. setlocale in 64-bit mode If you have user locales defined, you need to
recompile them in 64-bit mode using localedef. This generates a 32-bit and
64-bit versions of your locale file. Otherwise, calling setlocale in 64-bit
mode will not find the user defined locale file. However, localedef in 4.3
supports only the charmap that came with the 4.3 distribution. If you need
to use the charmaps that came from an older AIX distribution, you must
explicitly copy them into your directory before using localedef with your
custom locale definition file. Also, localedef by default is set up to use
/bin/cc and /usr/bin/cc. The C for AIX 4.3 compiler does not setup links in
/usr/bin or /bin in respect of CSet distributions. Since localedef requires
the use of a 64-bit compiler, you need to run /usr/vac/bin/replaceCSet to
replace the links with the C for AIX 4.3 links, run localedef, then run

Migration Documentation 175

restoreCSet to restore the links as they were before.

4. Make doesn't discriminate object formats. Make only discriminates on
timestamp of files. The one case where this can cause problem is when you
try to add the same named 32 and 64-bit object into the archive. Running
make in 32-bit mode, then 64-bit mode will not update the 2nd object. Make
only checks the timestamp of the first object it finds with the correct
name.

5. int64 is typedefined in inttypes.h If you use int64 as a variable name,
this is now a typedef in inttypes.h

6. Header file predefined types that are based on long There are many
header file predefined types such as size_t and ptrdiff_t which remains the
same type regardless of 32 to 64-bit mode. This presents subtle opportunity
for differences when compiling the same code in different mode of the
compiler. Although size_t remains the same type (unsigned long), the length
of size_t will change between different modes of AIX. This can subtly
cause library functions that return or take size_t to change behaviour in
32-bit to 64-bit mode. Specifically, sizeof will return an 8-byte value in
64-bit and a 4-byte value in 32-bit mode. The same applies to prtdiff_t
which is signed long in both modes.

iii. Installation issues

1. Operating System level-specific files During installation, packaging
will determine your AIX Operating System level. This will decide the
correct OS-specific version of the following files to install: vac.cfg
libhmd.a libhmu_r.a libhm.a libhmd_r.a libhu.a libhm_r.a libhmu.a libhu_r.a
profiled/libhmd.a profiled/libhmu_r.a profiled/libhm.a
profiled/libhmd_r.a profiled/libhu.a profiled/libhm_r.a profiled/libhmu.a
profiled/libhu_r.a

B. Changes from CSet 3.1.4 to C for AIX 4.3

1. The main() function must be visible to IPA (i.e. in a .o compiled by
IPA), thus if main() is in a .a, .S, or .so or any other file type, IPA will
return an error.

2. Since IPA is responsible for calling the linker when it is active, the
-# option (which shows the compilation steps without executing them) will
not display anything after the IPA 2nd pass because IPA is not actually
called. This is not a bug and is known expected behaviour.

3. #pragma options arch=suboption in source files is not supported.

176 AIX 64-bit Performance in Focus

4. C++ compile is not supported thus the C++ stanzas (xlC, xlC_r, etc.)
cannot be used. The C stanzas (xlc, cc, etc.) will not compile C++ (.C,
.cpp, .cxx) suffixes. The -+ option is also not supported.

5. Some utilities which were shipped with CSet 3.1.4 are not shipped with C
for AIX 4.3. These are tcov, the Source Code Browser, and the HeapView
Debugger. Thus the options -a, -ae, -qbrowse, and -qhd are not supported.
However, some of the functionalities of the old HeapView Debugger can be
found in the new memory debug routines accessible via the -qheapdebug
option.

6. The default links in /usr/bin (xlc, cc ,c89, ... etc) will not be set up
to point to /usr/vac/bin of C for AIX 4.3. This is done at the discretion of
the product installer using replaceCSET. After using this script,
/usr/bin/xlc (cc, c89, etc.) will point into /usr/vac/bin/xlc (cc, c89,
etc.). If the links are not setup, they may point to the old CSet release
(3.1.4 and older), and you may not be using the new C for AIX 4.3 release.
If you want individual scripts in /usr/bin to point to the new C for AIX 4.3
release and also maintain simultaneous usage of /usr/bin/xlc (cc, c89,
etc.) to point to the old CSET compiler, then create these scripts in
/usr/bin:

vaxlc vacc vac89 vacc128 vaxlc128 vacc_r vaxlc_r

All these scripts could be links to the /usr/bin/vaxlc script which simply
contains:

#! /usr/bin/ksh exec /usr/vac/bin/${0##*va} "$@" #end of script vaxlc

Note that use of this script is not supported as it may have unknown side
effects through aliases and macros in the .kshrc file. This is provided
only as a suggestion.

7. When using -qipa, some symbols which are clearly referenced or set in
the source code may be optimized away by IPA, resulting in loss of these
symbols in debug, nm or dump outputs. This is normal. Using -g with IPA
will generally result in non-steppable source.

8. Files compiled with older versions of IPA cannot be mixed with files
compiled with C for AIX 4.3 IPA.

9. Invoking xlc by itself will generate a return code of 40 after
displaying the help file. Invoking xlc with an option but without a file
will generate a return code of 249.

10. Using IPA with #pragma disjoint may produce incorrect code.

Migration Documentation 177

11. When generating a listing with -qipa using -qlist, IPA will generate an
a.lst file which may overwrite any existing a.lst file. Also if your source
file is named a.c, the IPA listing will overwrite the normal compiler
listing a.lst. This is a known limitation. You can cause IPA to generate an
alternate listing via the option -qipa=list=<filename>.

12. Any pdf files generated with CSet 3.1.4 cannot be mixed with new pdf
files as optimizations are performed differently. Pdf files should always
be created using the same release/ptf level. Both -qpdf1 and -qpdf2 should
use the same xlCcode.

13. The profile directed feedback option (-qpdf1) generates a -lpdf to look
for the libpdf.a archive. This archive is in /usr/vac/lib. The user should
add the option -L/usr/vac/lib to allow -qpdf1 to find the correct library.
This is a known issue.

14. In the config file, the stanza attribute "inline" defines the location
of the Intermediate code inliner. This is no longer used and the file
xlCinline is also no longer shipped. This does not affect the -Q or
-qinline option. The -Q and -qinline options are still functional.

15. This release of C for AIX uses License Use Management (LUM) instead of
iFOR/LS. For details, please read the hardcopy README instructions that
came with the product and /usr/vac/README.password.

178 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 179

Appendix F . Special Notices

This publication is intended to give Technical Sales Representatives,
Technical Consultants, System Administrators and System Engineers an
in-depth understanding of 64-bit AIX performance and tuning. Developers
involved in writing 64-bit applications and migrating existing 32-bit
applications to the 64-bit environment will find the chapter on migration
useful. See the PUBLICATIONS section of the IBM Programming
Announcement for AIX Version 4.3 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate

180 AIX 64-bit Performance in Focus

them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

You can reproduce a page in this document as a transparency, if that page
has the copyright notice on it. The copyright notice must appear on each
page being reproduced.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX AS/400
AT C Set + +
C + +/MVS DB2
IBM InfoExplorer
Micro Channel OS/400
PowerPC PowerPC Architecture
PowerPC 601 PowerPC 603e
PowerPC 604 RISC System/6000
RS/6000 RT
SP

Special Notices 181

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

182 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 183

Appendix G. Related Pub lications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

G.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 187.

 • AIX Version 4.3 Differences Guide, SG24-2014

 • AIX Version 4.2 Differences Guide, SG24-4807

 • RS/6000 Performance Tools in Focus, SG24-4989

 • Understanding IBM RS/6000 Performance and Sizing, SG24-4810

 • Customizing Performance Toolbox and Performance Toolbox Parallel
Extensions for AIX, SG24-2011

 • Benchmarking in Focus, SG24-5052

G.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

G.3 Other Publications

These publications are also relevant as further information sources:

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
IBM Lotus Redbook Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
IBM RISC/6000 Redbooks Collection PDF SBOF-8700 SK2T-8043

184 AIX 64-bit Performance in Focus

 • AIX Versions 3.2 and 4 Performance Tuning Guide, SC23-2365

 • Performance Toolbox for AIX: Guide and Reference, SC23-2625

 • Performance Toolbox Parallel Extensions for AIX: Guide and Reference,
SC23-3997

 • Optimization and Tuning Guide for Fortran, C, and C++, SC09-1705

 • Writing a Device Driver for AIX V4.1, SC23-2593

 • PE Operation and Use Vol. 2 - Tools Reference, SC28-1980

 • AIX Version 4 System Management Guide: Operating System and
Devices, SC23-2525

 • AIX Version 4 System Management Guide: Communications and
Networks, SC23-2526

 • AIX Version 4 System User's Guide: Operating System and Devices,
SC23-2544

 • AIX Version 4 System User's Guide: Communications and Networks,
SC23-2545

 • AIX Version 4 Problem Solving Guide and Reference, SC23-2606

 • AIX Version 4 Messages Guide and Reference, SC23-2641

 • AIX Version 4 Files Reference, SC23-2512

 • AIX Version 4 Commands Reference, SBOF-1851 (Contains the following
publications that may also be ordered separately.)

 • AIX Version 4 Commands Reference, Volume 1, SC23-2537

 • AIX Version 4 Commands Reference, Volume 2, SC23-2538

 • AIX Version 4 Commands Reference, Volume 3, SC23-2539

 • AIX Version 4 Commands Reference, Volume 4, SC23-2540

 • AIX Version 4 Commands Reference, Volume 5, SC23-2639

 • AIX Version 4 Commands Reference, Volume 6, SC23-2640

 • Go Solo 2, SR28-5705

 • X/Open Single Unix Specification Go Solo: How to Implement and Go Solo
with the Single Unix Specification, SR28-5705

 • AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

 • AIX Version 4 Communications Programming Concepts, SC23-2610

Related Publications 185

 • AIX Version 4 Technical Reference, SBOF-1852 (Contains the following
publications that may also be ordered separately.)

 • AIX Version 4 Technical Reference, Volume 1: Base Operating System
and Extensions, SC23-2614

 • AIX Version 4 Technical Reference, Volume 2: Base Operating System
and Extensions, SC23-2615

 • AIX Version 4 Technical Reference, Volume 3: Communications,
SC23-2616

 • AIX Version 4 Technical Reference, Volume 4: Communications,
SC23-2617

 • AIX Version 4 Technical Reference, Volume 5: Kernel and Subsystems,
SC23-2618

 • AIX Version 4 Technical Reference, Volume 6: Kernel and Subsystems,
SC23-2619

 • AIX Version 4 Technical Reference, Volume 7: AIXwindows, SC23-2620

 • AIX Version 4 Technical Reference, Volume 8: Enhanced Xwindows,
SC23-2621

 • AIX Version 4 Technical Reference, Volume 9: Enhanced Xwindows,
SC23-2622

 • AIX Version 4 Technical Reference, Volume 10: Enhanced Xwindows,
SC23-2623

 • AIX Version 4 Technical Reference, Volume 11: Master Index,
SC23-2624

 • AIX Version 4 Assembler Language Reference, SC23-2642

 • AIX Version 4 Quick Reference, SC23-2529

 • AIX Version 4 iFOR/LS Tips and Techniques, SC23-2666

 • AIX Version 4 AIXwindows Programming Guide, SC23-2632

 • AIX Version 4 Enhanced Xwindows Programming Guide, SC23-2636

186 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 187

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com .

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • PUBORDER – to order hardcopies in United States

 • GOPHER link to the Internet – type GOPHER WTSCPOK.ITSO.IBM.COM

 • Tools disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

For a list of product area specialists in the ITSO, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks/

 • IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

 • REDBOOKS category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 • Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

188 AIX 64-bit Performance in Focus

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders (Do not send credit card information over the Internet) – send orders to:

 • Telephone orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • Direct Services – send note to softwareshop@vnet.ibm.com

 • On the World Wide Web

 • Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

189

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to

190 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 191

List of Abbre viations

ABI application binary
interface

API Application
Programming Interface

AIO asynchronous
Input/Output

AIX advanced interactive
executive

ANSI American National
Standards Institute

APAR authorized program
analysis report

API application program
interface

AS/400 Application System/400

ASCII American National
Standard Code for
Information
Interchange

ATM asynchronous transfer
mode

bf bigfoot

bfrpt bigfoot report

BOS base operating system

BSD Berkeley software
distribution

BSS Basic Software
Standard

CAD computer aided design

CAM computer aided
manufacturing

CDE Common Desktop
Environment

CD-ROM compact disk-read only
memory

CDLI common data link
interface

CHRP Common Hardware
Reference Platform

COFF common object file
format

CPU central processing unit

DAC dual address cycle

DB2 DATABASE 2

DMA direct memory access

EB exabyte

ESID effective segment
identifier

fdpr feedback directed
program restructuring

FIFO first in/first out

FORTRAN formula translation

FP floating-point

FPR floating-point register

G giga

GB gigabyte

GPR general purpose
register

GUI graphical user interface

HIPPI high performance
parallel interface

HTML Hypertext Markup
Language

I/O input/output

IBM International Business
Machines Corporation

IEEE Institute of Electrical
and Electronics
Engineers

ILP integer, long, pointer

ILS international language
support

192 AIX 64-bit Performance in Focus

IP internet protocol

IPC inter-process
communication

IPV6 Internet Protocol
Version 6

ISV independent software
vendor

IT information technology

ITSO International Technical
Support Organization

JFS journaled file system

K kilo

KB kilobyte

L long

LPP licensed program
product

LVCB Logical Volume Control
Block

LVM logical volume manager

M million

MB megabyte

MCA micro-channel
architecture

MHz megahertz

MTU maximum transmission
unit

NCS NetWork Computing
System

NDD network device driver

NDP neighbor discovery
protocol

NFS network file system

OpenGL open 3D graphics
library interface

OS/2 operating system/2

OS/400 operating system for
AS/400

P2SC Power2 Single Chip

PB petabyte

PC personal computer

PCI peripheral component
interconnect

perfPMR performance program
modification request

PL1X programming language
one extended

POSIX portable operating
system interface for
computer environments

POWER performance
optimization with
enhanced RISC

PPC PowerPC

PSSP Parallel System
Support Programs

PTF program temporary fix

PTX Performance Toolbox

PV Program Visualizer

R register

RAID redundant array of
independent disks

RAM random access
memory

RFC request for comments

RISC reduced instruction set
computer

rmss reduced memory
system simulator

RR round robin

RS RISC system

RSS resident set size

RT RISC technology

SDP solution developer
program

193

SMIT System Management
Interface Tool

SMP symmetric
multiprocessors

SP Scalable
POWERparallel

SQL structured query
language

stem scanning tunneling
encapsulating
microscope

TB terabyte

TCP transmission control
protocol

TOC table of contents

UL unsigned long

V version

VM virtual memory

VMM virtual memory
manager

VSM Visual Systems
Management

X X Window System

X11R6 X Window System
Release 6

XCOFF extended common
object file format

XL extended language

XPG X/OPEN portability
guide

194 AIX 64-bit Performance in Focus

© Copyright IBM Corp. 1998 195

Inde x

Numerics
64-bit 1, 14

Advantages 2
APIs 109
Applications 10, 24, 98, 119
Architecture 1, 2, 4, 7, 14, 16, 22
Benefits 22
Commands 80, 101, 111
Components 1
Concepts 2
Hardware 25
Header Files 103
Include Files 85
Interlanguage Calls 125
Libraries 109
Mathematics 139, 143
Migration 97, 100, 167
Move To 17
Notations 144
Operating System 6
Performance 16, 85
PowerPC 2, 4, 7
Program Size 85
Programming 61
Standards 6, 99
Storage Mapping 138
Threads 118
Utilities 80, 101, 111
XCOFF 77

A
Abbreviations 191
Acronyms 191
Address Space 13, 22, 26, 85, 86, 119, 149, 155

32-bit 150, 153
64-bit 155, 160
Layout 149, 155, 160

Addresses 2, 21
Effective 2
Physical 2, 21
Virtual 2

AIX V4.3 7, 98
Changes 98
Kernel 8, 119
Key Messages 7

Alignment 63, 133, 170
Data Types 129
Macintosh 66
Packed 67
RISC System/6000 64
Structures 63, 170
Twobyte 66

APIs 109
Application 10, 18, 24, 87, 98

64-bit 25, 98, 119
Address Space 8
Analysis 103
Data Sharing 87
Development 11
Locales 111
Migration 10, 98
Performance 23, 98
Porting 10, 103, 106, 110, 113
Shared Memory 89
Testing 11
Text Section 146
Throughput 18
Typical 18

ar 80
Archives 80
Asynchronous I/O 110

B
bf 34
bfrpt 34
Bibliography 183
Binary Compatibility 3, 7, 15, 16, 98
Binary Values 139
bindprocessor 54

C
C Compiler 68

__64BIT__ Macro 70
64-bit Iconv Support 69
64-bit printf 68
Invocation 70
OBJECT_MODE 71, 81
-q32 79
-q64 79
-qalign 64, 170
-qarch 79

196 AIX 64-bit Performance in Focus

-qextchk 138
-qnullterm 130
-qwarn64 108
README.C 172
Type Checking 138

C Language 61
Alignment 64
Data Types 129
External Names 125
ILP32 62
Interlanguage Calls 125, 171
LP64 61
Migration 167
Passing Arguments 132
Passing Data 128
Standard 61

Common Hardware Reference Platform (CHRP) 3
cpu_state 44
Crash Commands 101

segst64 102
sr64 101

D
Data Sharing 87, 128
Device Drivers 119

Network 122
PCI 120

F
False Sharing 87
filemon 35
fileplace 36
FORTRAN 71

64-bit Integer 73
Data Types 73, 129
Enlarged Limits 76
External Names 125
FORTRAN 77 71
Fortran 90 71
Interlanguage Calls 125, 171
Migration 76
Passing Arguments 132
Passing Data 128
Standard 71

FORTRAN Compiler 74
64-bit Support 75
Capabilities 74
OBJECT_MODE 75, 81

-q32 75, 79
-q64 75, 79
-qarch 79
-qextchk 138
-qextname 126
-qnullterm 130
-qwarn64 75, 108
Type Checking 138
XL Fortran 74

G
genkld 37
genld 36

H
Header Files 103
Hexadecimal Values 139

I
ILP32 62, 99
Include Files 85
Interlanguage Calls 125, 171
Interoperability 7, 9, 99
ioctl 120
IP V6 39

J
JFS 56

jfslog 56
Log Size 57

L
Large Files 22, 87
Libraries 109
Linker 81, 165

-brename 127
Convention 134
Options 165

lint 106
locale64 111
Locales 111
LP64 61, 99, 170
LVM 56

Buffers 56
pbufs 56

197

M
Migration 97, 100, 167

AIX V4.3 97
Application 98
Asynchronous I/O 110
C Language 167
FORTRAN 76
Motif 111
Process 97, 100
Threads 113
X11R6 111

Mixed-Mode 82
Motif 111
MTU 58

Setting 58

N
nfso 41, 59
no 39, 58

O
OBJECT_MODE 71, 75, 81, 83

P
Padding 87, 133
Paging Space 51, 86, 153, 158

Early Allocation 159
Late Allocation 159

Performance Toolbox 34
Perfagent 39
perfagent 31

Performance Tools 31
bf 34
bfrpt 34
bindprocessor 54
Changes 32
cpu_state 44
filemon 35
fileplace 36
Filesets 31
genkld 37
genld 36
nfso 41, 59
no 39, 58
Packaging 31
Perfagent 39
PerfPMR 44

prof 41
Program Visualizer 45
PTX 34
rmss 37
schedtune 49
stripnm 38
svmon 38
syscalls 38
tprof 38
trace 42
vmtune 44, 52, 55
Xprofiler 46

PerfPMR 44
PowerPC 2, 4, 14

Architecture 2, 4, 14
Benefits 4
Processors 3

Powers of 2 144
prof 41
Program Visualizer 45
Programming 61

64-bit 61
C Language 61
FORTRAN 71

Q
qalign 64, 170
qwarn64 108

R
read 91
Read-Ahead 53
rmss 37

S
S70 1, 3, 8, 18, 25, 26

Floating-Point 26
I/O 26
Memory 26

schedtune 49
segst64 102
Shared Memory 89, 92
sr64 101
Standards 6
Storage Mapping 137
Streams 123
Striping 54

198 AIX 64-bit Performance in Focus

stripnm 38
Subroutines

ioctl 119
read 91
write 92

svmon 38
syscalls 38
System Limits 86, 100

T
Thrashing 50
Threads 51, 92, 112

Changes 114
Contention Scope 116
Data Size 118
Draft 10 112, 113
Libraries 113
M to N 112
Migration 113
Performance 112
Program 161
Scheduling 116
Standard 112

Timeslice 51
tprof 38
trace 42
Tuning 49

CPU 49
I/O 54
Memory 51
Network 58
NFS 59
Paging Space 51

Type Checking 138

V
Values 139

32-bit 142
64-bit 146
Binary 139
Hexadecimal 139
Huge 144

VMM 2, 44, 52, 145, 149, 155
32-bit 150
64-bit 155
Page Replacement 45, 53
Read-Ahead 53
Terminology 149

Write-Behind 52, 55
vmtune 44, 52, 55

W
Wordlength 1
write 92
Write-Behind 52, 55

X
X11R6 111
XCOFF 77, 152, 171

64-bit 78
Definition 77

XL Fortran 74
Xprofiler 46

© Copyright IBM Corp. 1998 199

ITSO Redbook Ev aluation

AIX 64-bit Performance in Focus
SG24-5103-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
S

G
24

-5
10

3-
00

AIX 64-bit Performance in Focus SG24-5103-00

