
SG24-4873-00

RS/6000 SP Monitoring: Keeping It Alive

April 1997

This soft copy for use by IBM employees only.

International Technical Support Organization

RS/6000 SP Monitoring: Keeping It Alive

April 1997

SG24-4873-00

IBML

This soft copy for use by IBM employees only.

This soft copy for use by IBM employees only.

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix I, “Special Notices” on page 259.

First Edition (April 1997)

This edition applies to PSSP Version 2, Release 2 for use with the AIX Version 4 Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

This soft copy for use by IBM employees only.

Contents

Figures . ix

Tables . xii i

Preface . xv
The Team That Wrote This Redbook . xv
Comments Welcome . xvi

Part 1. HA Infrastructure . 1

Chapter 1. Overview . 3
1.1 Topology Services . 3

1.1.1 Topology Services Terminology . 5
1.1.2 Adapter Membership Group Algorithm 6
1.1.3 The Topology Services Daemon . 7

1.2 Group Services . 8
1.2.1 The Group Services Daemon . 8
1.2.2 The Group Services Domain . 10
1.2.3 Group Services Groups . 14

1.3 Event Management . 16
1.3.1 Event Management Subsystem . 19
1.3.2 The Event Management Daemon . 21

Part 2. Subsystems . 25

Chapter 2. Resource Monitors . 27
2.1 Resource Monitor Overview . 27
2.2 Resource Monitor Objectives . 29
2.3 What Are Resources? . 30
2.4 Resource Representation . 30

2.4.1 Resource Monitor Modes . 30
2.4.2 Resource Variable Types . 31
2.4.3 Resource Variable Data Types . 33
2.4.4 Information Exchange of Resource Variables 35
2.4.5 Resource Variable Names . 38
2.4.6 Classes of Resource Variables . 42
2.4.7 Resource Variable Instance Vector . 44
2.4.8 Event Management SDR Classes . 46

2.5 Resource Variable Definition . 48
2.6 Pseudocode for a Resource Monitor . 50
2.7 Event Management Configuration . 51
2.8 Event Generation . 57
2.9 Event Registration and Notification . 58
2.10 Predicates . 61
2.11 PSSP 2.2 Resource Monitors . 63

2.11.1 External Resource Monitors . 64
2.11.2 Internal Resource Monitors . 65

2.12 Support for System Partitioning . 66
2.13 Extensibility . 67
2.14 Resource Monitor API . 67

 Copyright IBM Corp. 1997 iii

This soft copy for use by IBM employees only.

2.15 Summary of Functional Flow . 68

Chapter 3. Problem Management Subsystem 71
3.1 Introduction to the Problem Management Subsystem 71

3.1.1 What Can You Monitor? . 72
3.1.2 What Can You Do When System Resources Are Changed? 72
3.1.3 What Kind of Monitoring Tools Can You Use? 72

3.2 Create Your Own Monitor Using pmand . 72
3.2.1 Scenario 1 . 73
3.2.2 Get a Rough Idea . 73
3.2.3 Find Resource Variables You Might Want 73
3.2.4 Find the Resource Variable You Want 74
3.2.5 Find the Instance Vector You Want . 75
3.2.6 Use the pmandef Command . 76
3.2.7 Try Your Own Monitor . 77

3.3 Create Your Own Monitor Using pmand and pmanrmd 77
3.3.1 Scenario 2 . 78
3.3.2 Create a pmanrmd Configuration File 78
3.3.3 Find the Instance Vector You Want . 80
3.3.4 Find the Type of Your Resource Variable 81
3.3.5 Find the Structured Byte String You Want 81
3.3.6 Use the pmandef Command . 81
3.3.7 Try Your Own Monitor . 82
3.3.8 Scenario 3 . 82
3.3.9 Use the pmandef Command . 82
3.3.10 Try Your Own Monitor . 82

3.4 Problem Determination . 83
3.4.1 Are You Authorized? . 83
3.4.2 Is the Problem Management Subsystem Active? 84
3.4.3 Is Your Event Subscribed? . 86
3.4.4 Is Your Event Ready to Be Acted On? 87
3.4.5 Is Your Event Active and Correct? . 88

3.5 Hints and Tips for Problem Management Subsystem Commands 90
3.5.1 Commands for The Problem Management Daemon 91
3.5.2 Commands for the Problem Management Resource Monitor Daemon 92

3.6 Short Examples . 93
3.6.1 The File System Monitor . 93
3.6.2 The Process Monitor . 94
3.6.3 /etc File Changed Monitor . 94
3.6.4 Server Monitor . 94

Chapter 4. Application Program Interfaces (APIs) 97
4.1 Some Details Before We Start . 97
4.2 Example EMAPI Programs . 98

4.2.1 Utility Functions and Construction of EMAPI Clients 98
4.2.2 The lsemv Program . 101
4.2.3 The getemv Program . 111
4.2.4 The monemv Program . 115
4.2.5 EMAPI Summary . 119

4.3 Sample RMAPI Program . 119
4.3.1 The httprtA Program . 119
4.3.2 Resource Monitor Configuration . 128
4.3.3 RMAPI Summary . 132

4.4 Corrections and Clarifications . 133

iv RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Part 3. Tools . 135

Chapter 5. SP Perspectives GUI . 137
5.1 Introduction . 137

5.1.1 What Tasks Can Perspectives Perform? 137
5.1.2 How Is Perspectives Invoked? . 138

5.2 Using the Event Perspective . 139
5.2.1 Example 1: Monitoring Memory Usage 140
5.2.2 Example 2: Monitoring File System Size 148
5.2.3 More about Using the Event Perspective 152

5.2.3.1 Some Terminology Considerations 152
5.2.3.2 Where Is My Event Definition Stored? 154
5.2.3.3 Can I Modify or Delete an Event Definition? 156
5.2.3.4 Summary of Authorizations Needed 156
5.2.3.5 SDR and Some Helpful SDR Commands 156
5.2.3.6 Runtime Error Message Help Facility 158

5.2.4 Example 3: Monitoring CPU Usage . 160
5.2.5 The pcount and xpcount Resource Variables 162
5.2.6 Example 4: Monitoring a Daemon . 165
5.2.7 Example 5: Monitoring the Health of Your System 167

Chapter 6. Problem Management SNMP Subagent 173
6.1 Problem Management SNMP Support . 174

6.1.1 Understanding Network Management 174
6.1.2 Understanding Simple Network Management Protocol (SNMP) . . . 175
6.1.3 Understanding the Management Information Base (MIB) 175
6.1.4 Understanding the SNMP Multiplexor (SMUX) Protocol 176
6.1.5 SP SNMP Multiplexor Agent . 176
6.1.6 How Problem Management Uses SNMP 177

6.2 Installation and Configuration . 178
6.2.1 Configuring the Ports . 178
6.2.2 Configuring SNMP Agents . 179

6.2.2.1 Community Name . 179
6.2.2.2 SMUX Peer Configuration . 181

6.2.3 Configuring the SNMP Manager . 181
6.2.4 Configuring the MIB . 182
6.2.5 Configure Subagent sp_configd . 184
6.2.6 Customizing Traps . 186
6.2.7 Topological View of SP . 188
6.2.8 The ibmSP MIB . 189
6.2.9 Viewing the ibmSP MIB . 194

6.2.9.1 The snmpinfo Command . 194
6.2.9.2 NetView for AIX MIB Browser . 196

6.3 The AIX Error Log . 197
6.3.1 SNMP Subagent (sp_configd) Monitor of AIX Error Log 197
6.3.2 Subsystem Logs . 201

6.3.2.1 High Availability Subsystem Logs 201
6.3.2.2 SNMP Agent and sp_configd Subagent Logs 201
6.3.2.3 SNMP Log . 203

6.4 Monitoring SP Resources: The Mechanics 205
6.4.1 Basic Example - Monitoring Server Key Switch 207

Appendix A. Overview of NetView for AIX Ruleset Editor 221

Contents v

This soft copy for use by IBM employees only.

Appendix B. Makefile for the Resource Monitor Examples 223

Appendix C. User Response Time . 225
C.1 Avoiding Surprises by Monitoring User Response Times 225
C.2 Sample Response Time Monitor: HTTP Client 226

C.2.1 httprtB, an HTTP Response Time Server 226
C.2.2 How to Improve httprtB . 233

Appendix D. Essence of the Event Management and Problem Management
Subsystems . 235

D.1 Event Management Subsystem SDR Class 235
D.2 Event Management Resource Monitor Class 235

D.2.1 What Can You Get? . 235
D.2.2 Why Is It Useful? . 236

D.3 Event Management Resource Class Class 237
D.3.1 What Can You Get? . 237
D.3.2 Why Is It Useful? . 238

D.4 Event Management Instance Vector Class 238
D.4.1 What Can You Get? . 238
D.4.2 Why Is It Useful? . 239

D.5 Event Management Resource Variable Class 240
D.5.1 What Can You Get? . 240
D.5.2 Why Is It Useful? . 240

D.6 Event Management Structured Byte String Class 241
D.6.1 What Can You Get? . 241
D.6.2 Why Is It Useful? . 241

D.7 Problem Management Daemon (pmand) 242
D.7.1 SDR Class . 242
D.7.2 Commands . 242

D.8 Problem Management Resource Monitor Daemon (pmanrmd) 243
D.8.1 SDR Class for pmanrmd . 243
D.8.2 Configuration File . 244
D.8.3 Resource Variables . 244
D.8.4 Commands . 244

Appendix E. The IBM.PSSP.Prog.pcount Resource Variable 245
E.1 Limitations . 246

E.1.1 Instance Vector Wildcarding . 246
E.2 Related Resource Variable IBM.PSSP.Prog.xpcount 246

Appendix F. The IBM.PSSP.Prog.xpcount Resource Variable 249
F.1 Limitations . 250

F.1.1 Instance Vector Wildcarding . 250
F.2 Related Resource Variable IBM.PSSP.Prog.pcount 250

Appendix G. SNMP-Related Request For Comments 253
G.1 How to Get RFCs . 256

Appendix H. How to Get the Examples in This Book 257
H.1 Diskette Version . 257
H.2 FTP Site . 257
H.3 WWW Site . 258

Appendix I. Special Notices . 259

vi RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix J. Related Publications . 261
J.1 International Technical Support Organization Publications 261
J.2 Redbooks on CD-ROMs . 261
J.3 Other Publications . 261

How to Get ITSO Redbooks . 263
How IBM Employees Can Get ITSO Redbooks 263
How Customers Can Get ITSO Redbooks . 264
IBM Redbook Order Form . 265

List of Abbreviations . 267

Index . 269

ITSO Redbook Evaluation . 271

Contents vii

This soft copy for use by IBM employees only.

viii RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figures

 1. Topology Services Structure . 4
 2. Group Services Structure . 8
 3. Group Services Daemon Structure . 9
 4. Event Management Subsystem Structure 17
 5. Event Management Basic Structure . 28
 6. Resource Monitor Types . 31
 7. Resource Variable Types . 32
 8. Resource Variable Types . 33
 9. Structured Byte String . 34
10. Resource Variable Data Types . 35
11. Information Exchange of Resource Variables 36
12. Set of PTX/6000 Statistics . 37
13. Partial Listing from xmpeek . 38
14. Resource Variable Names . 39
15. Example for Creating Resource Variables 40
16. Example Message File rmapi_smp.msg . 42
17. Resource Variable Classes . 43
18. Example EM_Resource_Class Entries . 44
19. Event Management Instance Vector . 45
20. Instance Vector Example . 46
21. SDR Classes . 46
22. Event Management SDR Classes . 47
23. Create EM_Resource_Monitor Entries . 49
24. Pseudocode of a Daemon-Based Resource Monitor 50
25. Event Management Configuration Steps 52
26. Compile the SDR Data to EMCDB . 53
27. Event Management Database-Related Subdirectories 53
28. Event Management Database Subdirectories with New EMCDB 54
29. Shutdown of the Event Management Daemons 54
30. Restart of the Event Management Daemons 55
31. List of the lssrc Command . 56
32. Observation Interval Example . 58
33. Event Perspective View Condition Dialog Box 60
34. Event Notification Log . 60
35. Monitoring Resource Variables with PTX 61
36. External Resource Monitors . 65
37. Internal Resource Monitors . 66
38. Event Management Information Flow . 68
39. Flow of Using the pmand Command . 76
40. File pmanrmd.conf . 79
41. File sysctl.pman.acl . 84
42. Status of Problem Management Subsystem Daemons and pmanctrl

Command Options . 86
43. Flow of Problem Determination . 90
44. Commands for the Problem Management Daemon 92
45. Commands for the Problem Management Resource Monitor Daemon . 93
46. The Makefile File for Constructing lsemv, getemv, and monemv 99
47. Excerpts from util.h Showing Utility Functions 100
48. Two Examples of the lsemv Program . 101
49. Another Example of lsemv . 102
50. The main() Function for lsemv . 103

 Copyright IBM Corp. 1997 ix

This soft copy for use by IBM employees only.

51. The processNames() Function for lsemv 104
52. The processResponses() Function for lsemv 106
53. The processOneResponse() Function for lsemv 108
54. The processQerrList() Function for lsemv 109
55. The processDefinedList() Function for lsemv 110
56. Using getemv to List All Instances of Names That Start with IBM . . . 111
57. Using getemv to List Specific Instances of One Resource Variable . . 111
58. The processName() Function for getemv 112
59. The processOneResponse() Function for getemv 113
60. The processValueList() Function for getemv 114
61. Example of monemv Monitoring Key Mode Switches on Nodes 115
62. Use of spmon to Alter Key Mode Switches on Nodes 116
63. The processResponses() Function for monemv 117
64. The processEventList() Function for monemv 118
65. The main() Function for httprtA . 121
66. The Top of the DoIt() Function for httprtA 122
67. The Middle of the DoIt() Function for httprtA 123
68. The Bottom of the DoIt() Function for httprtA 124
69. The ConnectAndGo() Function for httprtA 125
70. The Top of the Monitor() Function for httprtA 126
71. The Bottom of the Monitor() Function for httprtA 127
72. The SendRMData() Function for httprtA 128
73. The Message Catalog File for httprtA . 130
74. Part of the SDR Configuration Script for httprtA 131
75. Output for WWW.HTTP.ResponseTimeMon.delay from the lsemv

Command . 132
76. The Perspectives GUI Launch Pad . 138
77. The Event Perspective Primary Window 140
78. The Definition Page of the Create Event Definition Notebook 142
79. The Definition Page after Selecting a Predefined Condition 143
80. The Completed Definition Page in Example 1 145
81. The View Event Notification Log Window 146
82. The Response Options Page . 148
83. The Create Condition Dialog Box . 149
84. Resource Variables Classes . 150
85. Displaying the Resource Variables of a Resource Class 150
86. Interrelation of Event Perspective with the Underlying Subsystems . . 155
87. Deleting a Condition from the SDR . 156
88. Displaying the Class Names in the SDR 157
89. Displaying the Objects and Attributes of a Class 158
90. The Event Perspective Pop-Up Error Window 159
91. The SP Perspectives Help Window with Message Help 159
92. The SP Perspectives Help Window with Detailed Error Information . . 160
93. Process Flags: p_flags Field in the /usr/include/sys/proc.h File 164
94. Sample Output of the ps Command . 164
95. SP Distributed Management . 173
96. Object Identifier Tree - MIB Structure . 176
97. IBM Private SP MIB . 177
98. Relationship between NetView for AIX and SNMP Agents 178
99. SNMP Configuration . 182
100. Loading a MIB . 183
101. Loading the MIB from File . 183
102. snmp and sp_configd . 184
103. Add the ibmSP Enterprise . 186
104. Adding Predefined Traps . 187

x RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

105. Topological Representation of the IBM SP 189
106. MIB Browser - ibmSPConfig . 190
107. MIB Browser - ibmSPErrlogVars . 192
108. MIB Browser - ibmSPEMVariables . 193
109. MIB Browser . 196
110. NetView Subagent Event (Page 1) . 199
111. NetView Subagent Event (Page 2) . 200
112. Condition . 206
113. PMAN Subsystem . 206
114. Registration for Event . 208
115. Event Description . 211
116. Ruleset Logic . 212
117. Trap Configuration Window . 213
118. NetView Control Desk - Events Application 213
119. Ruleset Editor . 214
120. Block Event Behavior . 214
121. Trap Settings . 215
122. Thresholds Setup Window . 216
123. Action Node . 217
124. Dynamic Workspace . 218
125. NetView for AIX Ruleset Editor . 222
126. Interesting Part of httprtB′s main() Function 227
127. Function AcceptClient() in httprtB . 228
128. Processing Loop After Client is Accepted in httprtB 230
129. Interesting Part of Function FetchIt() . 231
130. First Half of GetIt() Preparing to Get HTTP Object 232
131. Bottom Half of GetIt() Where HTTP Object is Retrieved 233
132. Installing Examples from Diskette to the Recommended Location . . . 257
133. Installing Examples to the Recommended Location Using FTP 257

Figures xi

This soft copy for use by IBM employees only.

xii RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Tables

 1. EM_Resource_Monitor . 63
 2. Equivalent Terms between the SDR and the Event Perspective 152
 3. Equivalent Attribute Names between Problem Management and Event

Perspective . 154
 4. IBM Default Predefined EM_Condition Class Objects 170
 5. Event Management Resource Monitor Class (1 of 3) 236
 6. Event Management Resource Monitor Class (2 of 3) 236
 7. Event Management Resource Monitor Class (3 of 3) 236
 8. Event Management Resource Class Class 237
 9. Event Management Instance Vector Class 239
10. Event Management Resource Variable Class 240
11. Event Management Structured Byte String Class 241

 Copyright IBM Corp. 1997 xiii

This soft copy for use by IBM employees only.

xiv RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Preface

This redbook contains detailed information about the configuration and use of
the new RS/6000 SP High Availability Infrastructure. It also includes examples
with NetView for AIX in order to integrate the SP in an environment managed by
a central manager, such as NetView. Programming examples that use the new
APIs available with POWERparallel System Support Programs Version 2, Release
2 are provided to help you develop your own code.

This redbook is written in a how-to style, providing examples that illustrate the
potential of the new features. It is divided into three parts: basic concepts and
infrastructure, subsystems that make up this new infrastructure, and the
front-end interfaces that allow you to manage your system. It is intended for
system administrators who need to manage an SP system running PSSP 2.2. It
is also a good starting point for anyone wanting to learn about the new
capabilities of the High Availability Infrastructure.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Marcelo R. Barrios is an Advisory International Technical Support Organization
(ITSO) Specialist for RS/6000 at the Poughkeepsie Center. He writes extensively
and teaches IBM classes worldwide on all areas of RS/6000 SP. Before joining
the ITSO, Mr. Barrios worked as an assistant professor in the Electronics
Department of Santa Maria University, Valparaiso, Chile. In 1993, he joined IBM
as a Marketing Specialist in the RS/6000 Unit, IBM Chile.

Paul G. Crumley is a Senior Programmer in IBM′s Research Division at the
Center for Scalable Computing Solutions, the group that developed many parts
of the SP. Before joining IBM, Paul worked at Transarc, the developer of DFS
and Encina. Previous to that, he led various research projects at the Information
Technology Center at Carnegie Mellon University. The ITC developed a number
of distributed systems, including the AFS file system, the ATK multimedia GUI
system, and AMS, a multimedia messaging system.

Abbas Farazdel is a consultant and SP specialist with the Scientific and
Technical Systems and Solutions (STSS) group at the IBM Thomas J. Watson
Research Center. He is responsible for generating worldwide business
opportunities for IBM in the area of numerically intensive scientific and technical
computing. Abbas Farazdel′s recent focus has been to help clients evaluate,
plan for, and implement advanced highly and massively parallel high
performance computing and open systems technologies. He holds an M.S.
degree in Physics and a Ph.D. degree in Computational Chemistry from the
University of Massachusetts.

Hajo Kitzhoefer is an SP specialist at the RS/6000 and AIX Competence Center,
IBM Germany. He holds a Ph.D. degree in Electrical Engineering from the
University of Bochum (RUB). He has worked at IBM for six years. His areas of
expertise include RS/6000 SP, SMP, benchmarks, networking, PC integration, and
AIX/ESA.

 Copyright IBM Corp. 1997 xv

This soft copy for use by IBM employees only.

Vijji Korlipara is an SP specialist at the IBM Software Technical Center, IBM
Sweden. She holds a degree in Joint Honours in Science (Statistics) from the
University of Salford, Manchester. She joined IBM in 1988 as a Network
Software Developer in the UK, and has since worked on distributed
heterogeneous networks. She now specializes in the system and network
management of distributed systems on the RS/6000 SP AIX platform. Vijji was
the instructor for NetView for AIX, IBM UK education.

Yoshimichi Kosuge is an Advisory I/T Specialist at the AIX Technical Support
Center, IBM Japan. He holds a degree in Electrical Engineering from Waseda
University, and later studied Computer Science. He joined IBM Japan in 1982 as
an LSI designer. He has worked on ES/9000 microcode, and in OS/2 and AIX
programming. His current job is in AIX second-level support and professional
service for customers.

Thanks to the following people for their invaluable contributions to this project:

Endy Chiakpo
International Technical Support Organization, Poughkeepsie Center

Peter Kes
International Technical Support Organization, Poughkeepsie Center

IBM PPS Lab Poughkeepsie
Mike Browne
Michael Schmidt
Stephen Tovcimak
James Gilman
Tim Race
Peter Badovinatz

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 271 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Home Pages at
the following URLs:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com/redbooks

• Send us a note at the following address:

redbook@vnet.ibm.com

xvi RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Part 1. HA Infrastructure

 Copyright IBM Corp. 1997 1

This soft copy for use by IBM employees only.

2 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Chapter 1. Overview

POWERparallel System Support Programs Version 2.2 provides the foundation for
the new High Availability Infrastructure on RS/6000 SP. Major code changes
offer high performance and high availability, in an attempt to achieve a complete
and robust commercial environment.

Many new features are included in this version. Perhaps the biggest changes
are in the basic components, including Topology Services, Group Services,
Resource Monitors, and Event Management. These components are the basic
bricks used to build the new infrastructure; they are explained in the first two
chapters.

The rest of the chapters will take you through the new tools available to monitor
your system, such as Problem Management and Perspectives. An important
feature not available in the previous versions of PSSP is the availability of
Application Programming Interfaces (APIs). We include one chapter and
appendices that will help you write your own code to tailor your system, or to
create powerful new monitors.

We provide examples to make it easier for you to start working with these new
tools. There are no extensive discussions of the concepts underlying the
features, since the focus is on “how to” information, that is, how to create
monitors, or how to monitor your system. The examples in this redbook can be
retrieved via FTP or the Web, as explained in Appendix H, “How to Get the
Examples in This Book” on page 257.

Enjoy the reading and do not poll your system, monitor it!

1.1 Topology Services
The Topology Services subsystem provides the foundation for the PSSP 2.2 High
Availability Infrastructure. It is part of the internal components, also known as
Internal Phoenix Components. These components provide essential function
within the HA infrastructure to support the higher-level Group Services and Event
Management subsystems. Their primary purpose is to maintain information
about the topology of the communication networks, including accessibility of
communication adapters and processors, functions usually referred to as
“adapter membership” and “node membership.”

These components exist as a rough hierarchy of services:

 1. At the “bot tom” is Adapter Membership. This is the level that is responsible
for passing heartbeats or pulses among all of the communications adapters
to ensure that the available networks remain accessible from all nodes.
Rather than a broadcast or all-to-all set of pulses, each node heartbeats only
with a specified set of nodes. The combined coverage of the heartbeats
results in all nodes and all networks being monitored on a regular basis.

 2. Above this pulsing layer is the Topology Manager. This component controls
the heartbeat function of Adapter Membership by specifying the topology of
the network for heartbeating, and tells each node what the set of nodes is
with which it should be concerned. It maintains a full graph of the system,
and updates it as links fail or return.

 Copyright IBM Corp. 1997 3

This soft copy for use by IBM employees only.

 3. Node Membership reads the graph generated by the Topology Manager to
construct a graph of all accessible nodes in the system. It also interfaces
with the SP hardware monitor to collect information about node hardware
failure.

 4. Finally, the Reliable Messaging component provides a communication facility
to carry messages even across node and communication adapter failures.
As part of this function, it uses information from Node Membership to build
routing maps of the system. This allows it to use intermediate nodes to
route messages if two nodes are not able to communicate.

To enhance the performance and scalability of these layers, the dynamic
topology information is kept in a loosely-consistent manner. Each node is given
the same static topology map from the System Data Repository (SDR), which is
essentially a graph of the system configuration. However, each node
independently constructs a dynamic (or connection) topology map over this that
shows the accessibility from this node to all other nodes at that moment. As the
state of the nodes and communications adapters changes over time, the nodes
will gradually update their information as they attempt to communicate with a
node, or receive updated information passed among the Topology Managers.

This is part of the reason why client subsystems cannot directly access these
functions, because they would have to provide their own protocols for developing
a consistent, ordered view of the system. That is done by Group Services, which
maintains System Membership Groups (HostMembership and enMembership),
which reflect an ordered view of the state of the nodes and communication
adapters. Event Management uses these groups to generate events that signal
when the states of these entities should change.

Figure 1 shows a diagram with the main components of Topology Services.

Figure 1. Topology Services Structure

4 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The design of Topology Services is based on a route-discovering mechanism
that provides a way to get information about a set of nodes that use different
network interfaces and are connected to multiple networks at the same time.
The current implementation of Topology Services uses the SP Ethernet and the
Switch network to discover whether a node has failed or there is a problem
trying to reach it. The information used to create the routing table is based on
the SDR information, specifically the SP network and adapter information.

From the Topology Services perspective a system consists of a number of
workstations or nodes connected through a number of networks. Each node can
reach any other node through any number of networks. A node can have
multiple network adapters and thereby be connected to several different
networks.

The static configuration used to build the topology information is taken from the
SDR, so Topology Services has a dependency on this subsystem, at least when it
starts up. Also, Topology Services assumes that the information is available and
static at the time it reads it from the SDR.

1.1.1 Topology Services Terminology
Before we continue, we must define some new terms used in Topology Services:

Adapter Membership Group (AMG)

This is an association of adapters connected to the
same network. There is one AMG per network.

Node Membership Group (NMG)

There is one NMG per Topology Services domain or
system partition, made up of all nodes belonging to
that partition.

Group Leader (GL) The adapters within a network have a predefined
priority ordering. The adapter with the highest IP
address, and the highest priority, is the GL. It is
responsible for maintaining the topology and
connectivity information of a group, and distributing
that information to the other members. The GL will
also attempt to recruit other adapters into the group,
or to merge with groups that have a GL with a higher
IP address.

Crown Prince (CP) The CP monitors the availability of the GL and
assumes the leadership role in case the GL fails. The
CP has the second-highest IP address in the group.

Singleton This is a group with one member. All adapters
initialize into a Singleton before they join a larger
group.

Proclaim Until all the configured members of a network have
joined the AMG, the leader is always in search of new
adapters to join the group. This is accomplished by
periodically broadcasting a proclaim message to all
lower-priority adapters in its network that have not
already joined the group.

Chapter 1. Overview 5

This soft copy for use by IBM employees only.

As mentioned earlier, Topology Services maintains complete routing information
on every node in the system. The following algorithm is used to maintain that
topology information:

• If this is a node connected to multiple adapter groups, that is, multiple
networks, it will periodically send a message to the GL in each adapter
group telling it which other groups it can talk to. It also sends this message
immediately whenever this information changes.

• If the node is a GL, then in addition to maintaining the information for every
node in the group, it keeps track of the current adapter group membership.
Periodically, and whenever this information changes, it will send it to all
nodes in the group.

• Each node keeps the latest state message that it receives from the adapter
group.

• If the node is connected to multiple adapter groups, it will forward this
message to all those groups. Because each state message has a time
stamp, only messages with a new time stamp will be forwarded.

• Each node receiving this message will incorporate the information in its
internal data structures.

1.1.2 Adapter Membership Group Algorithm
An AMG is created and maintained for each network in the system by using the
following algorithm:

 1. Each node acquires the node list from the SDR on the Control Workstation.

 2. Each adapter initializes itself into a Singleton group.

 3. GLs periodically send proclaim messages to all lower-priority adapters.

 4. Lower-priority GLs respond to proclaim messages by requesting to join that
group.

 5. The GL receives those requests and incorporates their group topology.

 6. The GL notifies all members of the newly forming group to prepare to
commit the new group topology.

 7. Group members acknowledge this “prepare to commit” message.

 8. The GL waits for all acknowledgements, then sends a message to commit
the new topology.

 9. Members acknowledge receipt of the commit message.

10. The GL then delivers the new topology to all members.

11. The members then determine the new GL, CP, and neighbors.

12. All members begin sending and receiving heartbeats to and from neighbors.

Once a group has been committed, each adapter computes the address of its
upstream_neighbor, and its downstream_neighbor. Each adapter is responsible
for listening for the heartbeats of its upstream_neighbor and sending heartbeats
to its downstream_neighbor.

There are two exceptions to this statement: the GL, and the adapter with the
lowest IP address. The GL receives heartbeats from the member with the lowest
IP address, making the sequence circular. In this way, the traffic over the
network is kept to a minimum, sending live messages only to neighbors.

6 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

 Attention

It should be clear that neighbors are defined as such by their IP addresses,
not by physical proximity.

1.1.3 The Topology Services Daemon
The Topology Services subsystem is provided by a daemon running in each
node connected to, and part of, the topology domain. This daemon, called hatsd,
is controlled as an SRC subsystem.

Topology Services is a partition-sensitive subsystem. Each partition is handled
as a separate system, so the routing information is limited to each partition.
Topology Services has a separate group of daemons, logs, and configuration
files for each partition.

To query the status of all daemons running in the Control Workstation, you may
use the following command:

[sp21en0:/]# lssrc -g hats
Subsystem Group PID Status
 hats.sp21en0 hats 37412 active
 hats.sp21en1 hats 27430 active
[sp21en0:/]# ps -ef | grep hatsd

root 13172 28638 2 14:32:44 pts/19 0:00 grep hatsd
root 27430 3148 0 Sep 13 - 62:10 /usr/lpp/ssp/bin/hatsd
root 37412 3148 0 Sep 13 - 68:16 /usr/lpp/ssp/bin/hatsd

This command will give you the list of daemons running on the system. Each
daemon manages a different topology domain or partition.

The Topology Services daemon provides availability information to the Group
Services subsystem through a UNIX Domain Stream Socket (UDS). You may find
this special file in the /var/ha/soc/hats directory. In our example, we have two
partitions. Therefore, there are two hats daemons running. For each daemon,
there is one UNIX socket to connect its Group Services counterpart, as we can
see in the following command output:

[sp21en0:/var/ha/soc/hats]# ls -l
total 0
srwxrwxrwx 1 root system 0 Sep 13 10:28 server_socket.sp21en0
srwxrwxrwx 1 root system 0 Sep 13 10:28 server_socket.sp21en1

In this example there are two sockets, one for each hats daemon running in a
different partition.

Topology Services provides availability information to Group Services using the
UNIX socket. This means the connection with Group Services is always local. In
this way, Group Services may detect when Topology Services daemon has died
prematurely. The hats daemon also provides routing information to the Reliable
Messaging library, using a shared memory segment.

Chapter 1. Overview 7

This soft copy for use by IBM employees only.

1.2 Group Services
Group Services (GS) is a distributed subsystem of the IBM POWERparallel
System Support Programs (PSSP) on the RS/6000 SP. It is one of several
subsystems in PSSP that provide a set of high availability services.

The function of the GS subsystem is to provide other subsystems with a
distributed coordination and synchronization service. The structure of GS is
described in Figure 2.

Figure 2. Group Services Structure

1.2.1 The Group Services Daemon
The GS daemon, called hagsd, is part of the GS subsystem and provides most of
its services. One instance of this daemon executes on the Control Workstation
for each system partition. Another executes on every node of a system partition.
It is under the control of the System Resource Controller (SRC). Its structure is
shown in Figure 3 on page 9.

8 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 3. Group Services Daemon Structure

The GS daemon obtains information from Topology Services via a UNIX domain
socket, located at /var/ha/soc/hagsd.<syspar_name>. It also communicates
with the hagsd daemon on other nodes via a UDP/IP socket. The UDP port can
be obtained by using the following command:

� �
[sp21en0:/]# SDRGetObjects Syspar_ports
subsystem port
hats 10000
hags 10001
haem 10002� �

The GS subsystem subscribes to the Adapter Membership and Node
Membership group from Topology Services, locally using the UNIX Domain
Stream Socket. If hatsd is not running, hagsd will not start. It will log an error in
/var/ha/ log/gs.default .<syspar_name> log f i le. Then it will log errors
continually until Topology Services is available. The entries in the log file are as
follows:

Chapter 1. Overview 9

This soft copy for use by IBM employees only.

� �
[sp21n01:/var/ha/log]# cat gs.default.sp21en0
hb_init: hb_init_communication failed
hb_init: hb_init_communication failed
hb_init: hb_init_communication failed
hb_init: hb_init_communication failed
hb_init: hb_init_communication failed
status.sp21en0] previous incarnation [5] nothing special.
[TOD(Sep 13 10:43:56)](TRACE_FYI) in main: Our NodeId is 1.6
[TOD(Sep 13 10:43:56)](TRACE_FYI) in Establish_Resource_Limits(void):
Successfully modified priority from [71] to [38] for pid [17350]
/usr/lpp/ssp/bin/hagsreap input arguments: hags sp21en0 Erase
hagsreap parsed arguments: hags sp21en0 Erase 5242880 1 /var/ha/log
/var/ha/run/hags.sp21en0
SizeLimit = 5242880
 n CumSize MB weight size name
 1 1060 0.001 0.00 1060 hags_1_6.sp21en0
 2 2551 0.002 1.00 1491 hags_1_5.sp21en0

3 20044 0.019 2.00 17493 hags_1_4.sp21en0
4 22536 0.021 3.00 2492 hags_1_3.sp21en0
5 100213 0.096 4.00 77677 hags_1_2.sp21en0
6 224021 0.214 5.00 123808 hags_1_1.sp21en0
7 318856 0.304 6.00 94835 hags_1_0.sp21en0

Keep 7 logs, 318856 bytes, 0.304 MB; Trash 0 logs, 0 bytes, 0.000 MB.
7 total logs, 318856 total bytes, 0.304 total MB.
keep 7, trash 0, 0 MB. rc = 0, 0x0� �

From this output you can also see that GS has a limit on the space used by the
log files. This is why 5MB are needed for GS log files in /var/ha/log. The hagsd
daemon keeps historical log files, and the space occupied by them cannot
exceed 5MB. Core dump fi les are kept in the /var/ha/run/hags.<syspar_name>
directory. The hagsreap script cleans up the core dump and log files to keep the
space used below the limit.

1.2.2 The Group Services Domain
The set of nodes that is defined to GS is called a GS domain. It consists of the
set of nodes that makes up a system partition. The subsystems that use GS are
called client subsystems, and these can form groups by having their processes
connected to GS using the Group Services Application Program Interface
(GSAPI).

A key feature of GS is to provide a single group namespace across the SP.
Actually, each SP partition is an isolated namespace that defines the complete
scope of GS. All references to a specific group name within a group namespace
will result in those references being directed to the same group. Any reference
to that name in another group namespace refers to a completely independent
group. Currently, there is no mechanism that allows a GS client within a group
namespace to make any references outside of that namespace.

GS must be able to keep track of the group that its clients want to form. To do
this, it establishes a GS name server within each domain, which is responsible
for keeping track of all client groups that are created in that domain.

To ensure that only one node becomes a GS name server, GS uses the following
protocol:

 1. When a GS daemon is connected to the Topology Services subsystem, it
waits for Topology Services to tell it which nodes are currently running in
this system partition.

10 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

 2. Based on the input from Topology Services, each daemon finds the
lowest-numbered running node in the partition. It then compares its own
node number to that number and performs one of the following:

• If the daemon′s own node is the lowest-numbered node, it waits for all
other running nodes to nominate it as the GS name server.

• If the daemon′s node is not the lowest-numbered node, it starts sending
nomination messages to the lowest-numbered node every 5 seconds.

 3. Once all running nodes have nominated the GS name server-to-be and a
variable-length timer has expired, the nominee sends an insert message to
the nodes. All nodes must acknowledge this message. When they have
done so, the nominee becomes the established GS name server and sends a
commit message to all the nodes.

 4. At this point, the GS domain is established, and requests by clients to join or
subscribe to groups are processed.

Note that this is the case when all nodes are being booted simultaneously, such
as at initial system power-on. Often, however, a GS daemon is already running
in at least one node (for example, the Control Workstation) and the GS domain is
already established, making the Control Workstation the GS name server. In
that case, the GS name server will execute insert protocols when nodes start
running. The list will be filled on a first-come, first-served basis.

The GS subsystem provides several commands that allow you to see the
changes and information within a group. Since GS is an SRC subsystem, it can
be controlled by SRC commands. For example, the following command will tell
us whether the GS daemon is running:

� �
[sp21en0:/]# lssrc -s hags.sp21en0
Subsystem Group PID Status
hags.sp21en0 hags 24178 active� �

But if you want more information about the GS daemon, you can specify the -l
flag as follows:

� �
[sp21en0:/]# lssrc -ls hags.sp21en0
Subsystem Group PID Status
 hags.sp21en0 hags 24178 active
 2 locally-connected clients. Their PIDs:
 16856 19316
 HA Group Services domain information:
 Domain established by node 7.
 Number of groups known locally: 2

Number of Number of local
 Group name providers providers/subscribers
cssMembership 3 0 1
ha_em_peers 6 1 0� �

This output tells us that there are two clients connected locally. These are
defined by default and are part of the High Availability Infrastructure. We will
discuss these clients and groups later in this chapter.

Chapter 1. Overview 11

This soft copy for use by IBM employees only.

The important thing here is the line: Domain established by node 7. This
indicates that a domain is established and the GS name server for that domain
is Node 7.

Now if you want to see the list of nodes that are part of this domain, use the
following command:

� �
[sp21en0:/]# hagsmg -s hags.sp21en0
2.1 cssMembership: 1 5 7 6 0 8
1.1 ha_em_peers: 7 5 1 6 0 8
0.Nil ZtheNameServerXY: 7.1 5.Nil 1.Nil 6.Nil 0.2 8.2
0.Nil theGROVELgroup:� �

This is the output you get from the Control Workstation. It shows us the
members of each group, and more importantly, what their order is in the list.
Take a closer look at the following line:

� �
0.Nil ZtheNameServerXY: 7.1 5.Nil 1.Nil 6.Nil 0.2 8.2� �

This line specifies the list of nodes in the domain, which is called MetaGroup. It
is made up of all the nodes in the partition that are running the GS daemon. The
nomenclature in the list is quite simple: each pair is defined as
node_number.incarnation_number, where incarnation number corresponds to a
counter that tells us how many times the GS daemon has been started on that
node. For example, 8.2 means that on Node 8, hagsd was started twice.

When the hagsd daemon wishes to start, it needs to determine the previous
incarnation number. This is achieved by referencing the file
hagsd. in<number>, where <number> is the previous incarnat ion number.
This f i le is located in the /var/ha/lck/hags.tid.<syspar_name> directory; see
the following example:

� �
[sp21n01:/var/ha/lck/hags.tid.sp21en0]# ls -l
total 0
---------- 1 root system 0 Sep 13 10:48 hagsd.in7� �

In this example we are in the /var/ha/lck/hags.tid.sp21en0 directory on Node 1.
The partition name is sp21en0, and the incarnation number is 7. This means that
if the current GS daemon is up and running, it must be using this incarnation
number. If not, the next time it starts it will use an incarnation number of 8.

This information is useful, because if the incarnation number is much larger than
the number of times the node has been rebooted, then the daemon has been
started several times, which indicates that something is wrong.

The incarnation number remains the same throughout the hagsd daemon′s
lifetime. It will vary between the nodes and the control workstation, as
subsystems will typically stop and restart at different times. Hence, to maintain
a highly available system, we must limit the dependency of these subsystems.

In the previous output we saw entries like 5.Nil, which means the node where
the command was executed does not know the incarnation number for Node 5.
This is as it should be, because only the GS name server has all the information.

12 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

In this way, only the information that is needed is passed to the network. Take a
look at the same output after executing the command on the GS name server,
Node 7:

� �
[sp21n07:/]# hagsmg -s hags
2.1 cssMembership: 1 5 7 6 0 8
1.1 ha_em_peers: 7 5 1 6 0 8
0.Nil ZtheNameServerXY: 7.1 5.1 1.1 6.3 0.2 8.2
0.Nil theGROVELgroup:� �

You now see all the information. Also, notice that the subsystem is called hags
only; that is because in the Control Workstation there are as many GS
subsystems as partitions, but in the node there is only one, because a node can
belong to only one partition at a time.

When the GS name server dies for any reason, the next node in the list takes its
place. There is no conflict to decide which will be the next GS name server
because GS guarantees that all the nodes have the same information, so all the
nodes know which is next in the list. They send a nomination message to that
node, and it becomes the new GS name server after it sends a commit message
back to the nodes. When the previous GS name server comes back, it joins the
MetaGroup and is put at the end of the list. For example, if the GS daemon dies
in Node 7, Node 5 becomes the new GS name server. Let′s kill the daemon in
Node 7:

� �
[sp21n07:/]# ps -ef|grep hagsd

root 12768 3542 0 Sep 09 - 0:17 /usr/lpp/ssp/bin/hagsd
root 16460 11022 0 19:37:45 pts/3 0:00 grep hagsd

[sp21n07:/]# kill -9 12768� �

Now if we query GS, we get the new list:

� �
[sp21en0:/]# hagsmg -s hags.sp21en0
2.1 cssMembership: 1 5 6 0 8 7
1.1 ha_em_peers: 5 1 6 0 8 7
0.Nil ZtheNameServerXY: 5.1 1.Nil 6.Nil 0.2 8.2 7.2
0.Nil theGROVELgroup:� �

The new GS name server is Node 5, and Node 7 has been put at the end with an
incarnation number of 2. If we now query the SRC subsystem, we get the
following:

� �
[sp21en0:/]# lssrc -ls hags.sp21en0
Subsystem Group PID Status
 hags.sp21en0 hags 24178 active
 2 locally-connected clients. Their PIDs:
 16856 19316
 HA Group Services domain information:
 Domain established by node 5.
 Number of groups known locally: 2

Number of Number of local
 Group name providers providers/subscribers
cssMembership 4 0 1
ha_em_peers 6 1 0� �

Chapter 1. Overview 13

This soft copy for use by IBM employees only.

This output tells us that the domain has been established and Node 5 is the GS
name server. If we were fast enough, we could see an intermediate state, that
is, when the domain is being recovered and Node 5 becomes the GS name
server. We would see the line Domain is recovering.

1.2.3 Group Services Groups
Once the domain is established, processes from the nodes can start creating
and joining groups. Any authorized process in a GS domain may create a new
group, and ask to become a member of a group. Such a request is called a join
request, or joining the group.

The process that has joined a group is called a provider. If this process only
wants to monitor a group, without initiating any change to the group information,
it is called a subscriber.

Each group is uniquely named within the domain, and GS guarantees that all
processes that are joined to a group will see the same group information, and
more importantly, it guarantees that they will see all changes to the group
information in the same order.

The concept of membership is based on processes that are running in the nodes
within the domain or partition. A group may have members on multiple nodes in
the domain, and each node may have multiple members.

For each group, the GS subsystem maintains consistent group state data. A
group ′s state consists of two pieces of information:

• The membership list

This is the list of providers in the group. Each provider is identified as
follows:

Identifier: [instance/node number]

The instance number is passed to GS by the provider itself, when it wants to
join the group. This identifier can be used by the client subsystem to specify
different instances of a provider. A good example of this are NFS daemons.
You may have several NFS daemons running in the same node, so they can
be part of a group being identified by different instance numbers. The
membership list is held on a first-come, first-served basis, so the first
provider to join the group is at the head and the last one is at the end. All
providers and subscribers in a group see the same ordering of the list.

• The group state value

The state value of a group is defined by the application that is using the
GSAPI and is controlled by the providers in a way that is meaningful to the
application. This is a field of 256 bytes that is handled by the application and
is not interpreted by GS.

The membership list of a group is modified by providers joining and leaving the
group. Several protocols define how these processes can join or leave a group.
Sometimes a process must leave the group involuntarily, due to a failure of the
provider process itself or a failure of the node where the process provider is
running. An involuntary leave is called a failure leave and is initiated by the GS
subsystem.

14 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

A GS client that asks to become a provider or subscriber of a group must be
admitted by the current members of that group. This is accomplished by a
voting protocol, by which each member has to vote “approved” or “rejected.”

In PSSP 2.2, two groups are created by default in each GS domain. These
groups are:

cssMembership This group is initiated by the hagsglsmd daemon, which is part
of the GS subsystem and provides a general purpose facility for
coordinating and monitoring changes to the state of an
application that is running on a set of nodes. This daemon
provides global synchronization services for the High
Performance Switch adapter membership group.

ha_em_peers This group is initiated by the Event Manager daemon, haemd,
which observes Resource Variable instances that are updated
by Resource Monitors, and reports events to client programs.

The GS subsystem provides a command to query the group information in the
GS domain. For example, to query the group information in a GS domain or
system partition, you can use the following command:

� �
[sp21en0:/usr/lpp/ssp/bin]# hagsgr -s hags.sp21en0
Number of: groups: 6

Group slot # [0] Group name[HostMembership] group state[Idle |]
Providers[[0/5][0/1][0/6][0/0][0/8][0/7]]
Local subscribers[[10/0]]

Group slot # [1] Group name[ha_em_peers] group state[Inserted |Idle |]
Providers[[1/5][1/1][1/0][1/6][1/8][1/7]]
Local subscribers[]

Group slot # [2] Group name[!SwitchGroupie!] group state[Idle |]
Providers[]
Local subscribers[]

Group slot # [3] Group name[enMembership] group state[Idle |]
Providers[[0/0][0/1][0/5][0/6][0/8][0/7]]
Local subscribers[[10/0]]

Group slot # [4] Group name[cssMembership] group state[Inserted |Idle |]
Providers[[0/1][0/6][0/5][0/7]]
Local subscribers[[10/0]]

Group slot # [5] Group name[theSourceGroup] group state[Inserted |Idle |]
Providers[[100/6]]
Local subscribers[]� �

The first two lines show how many groups are present in this domain, followed
by descriptions for each group that list its name, state, providers, and
subscribers.

HostMembership and enMembership are two groups internal to GS. They are
formed from the information provided by Topology Services. The group
!SwitchGroupie! is a special group used to help build CSS adapter membership
information, and joins to it are done internally only by GS.

The last group, theSourceGroup, was created by a GS client running on Node 6.

Chapter 1. Overview 15

This soft copy for use by IBM employees only.

From the output you can see that one of the groups does not have a provider. In
that case we could say that the group should not exist. That is partially true
because, since the group exists “internally” to GS, the internal data structures in
the daemon continue to persist unless all GS daemons that knew of that group
fail or are intentionally stopped.

What does not exist is any indication of the former group′s provider membership
list or its group state value. Therefore, the first provider to join the group again
will see no current providers, and the group state value will have reverted to 0
(0x00000000). Also, the group attributes formerly used to establish the group are
no longer used (and the new providers joining the group may use different group
attributes to re-establish the group). If you try to subscribe to this group, you will
get a group does not exist error.

Therefore, from an “external” viewpoint, the group really does not exist any
longer. Internally, the data structures are maintained, so that when providers do
start joining again, it will not be necessary to rebuild everything.

Since hagsgr is intended to dump out internal information, it will show these null
groups sitting there.

1.3 Event Management
The Event Management subsystem is part of, and also a client of, the HA
infrastructure. It is a distributed system that uses GS to provide event
management and event notification to other client subsystems, such as the
Problem Management subsystem. It can be used to monitor the system,
subsystems, processes and application resources. Its applicability is intended
for, but not limited to, SP platforms.

The structure of the Event Management subsystem can be seen in Figure 4 on
page 17.

16 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 4. Event Management Subsystem Structure

In Figure 4 we can see the Event Management subsystem as three layers:

• Client programs (such as the Problem Management subsystem)

• Event Manager daemons

• Resource Monitors

Client programs are applications or other subsystems that wish to receive event
information when resources change state. Client programs use the Event
Manager Application Programming Interface (EMAPI) to register their interest in
the events from a set of resources. The Event Manager daemon receives this
request for notification through the API, and sends those events when they are
produced. The events are created by the Event Manager based on the
information reported by Resource Monitors. These may be daemons, or they
may be included in the software components that manage the resources of
interest.

Client programs communicate with an Event Manager daemon located on the
same node. Resource Monitors provide data to an Event Manager daemon
located on the same node. An Event Manager daemon communicates with Event
Manager daemons on other nodes in order to provide events to its local clients.
Therefore, a client program may register for and receive events about any
resource in the SP system. In addition, a client program executing outside the
SP system may remotely communicate with the Event Manager daemon located
on the Control Workstation.

An event is defined as a change in state of a resource. The resource is
represented by one or more variables. An event is further defined as the
existence, at some point in time, of a particular relationship of the value of a
variable to some other value, which may be a constant or a prior value of the
Resource Variable. This relationship is called predicate. Each time a Resource

Chapter 1. Overview 17

This soft copy for use by IBM employees only.

Variable is observed, the predicate is applied to the observed value. If the
predicate is true, then an event is generated. For example, the percentage of
free space in a file system may be a Resource Variable. The predicate could be
P<10, where P is the name of the Resource Variable. Whenever P is observed
and its value is less than 10, an event is generated.

A Resource Variable has a unique name and an instantiation vector. Since a
Resource Variable represents a resource and resources typically have multiple
copies or instances in the system, a Resource Variable also has multiple
instances. The instantiation vector contains a sufficient and necessary number
of elements to uniquely identify an instance of a Resource Variable in the
system. For example, a variable that represents the number of free blocks in a
file system requires a vector with three elements: node ID, volume group name
and logical volume name. A variable that represents the power state of a node
requires a single element: node ID.

There are three types of Resource Variables: Counter, Quantity, and State. The
value of Counter increases monotonically. The value of Quantity fluctuates over
time. The only semantics that Event Management assumes for these two types
is that they may be updated more often than they are observed without loss of
meaningful information with respect to event generation. The value of State
fluctuates over time, also. However, a State Resource Variable must be
observed every time it is updated in order to avoid missing potential events.

At the most elemental level, Event Management gathers Resource Variables,
applies predicates to them and, if the predicates are true, generates events.
These events are then delivered to clients that registered interest in them. A
client is any program that uses the EMAPI to obtain events.1 Events are
generated by the Event Manager daemon from Resource Variables supplied by
Resource Monitors. Refer to Chapter 2, “Resource Monitors” on page 27 for a
complete description of these monitors.

An Event Manager daemon and one or more Resource Monitors are located on
any AIX node that contains Resource Variables from which events of interest
may be generated. An Event Manager daemon is also located on any AIX node
where an Event Management client program is expected to be run. The AIX
node must contain the appropriate level of AIX, Group Services, and Reliable
Messaging.

A client registers interest in an event by passing the name and instantiation
vector of the Resource Variable from which the event is to be generated, and by
passing a predicate to be applied to that variable. If no predicate is provided by
the client, a default predicate, configured with the Resource Variable, is used.
The client may name more than one Resource Variable and optionally associate
the instantiation vector. If each variable instance is listed, then a different
predicate may be specified for each variable. If an instantiation vector is
wildcarded, then the associated predicate applies to each variable instance
found as a result of the wildcard.

If a Resource Variable specified by the client is located on other nodes, then the
Event Manager assumes the role of a client and sends a registration request to
the Event Managers on the appropriate nodes. In this case the Event Manager is

1 Refer to Chapter 4 for examples of how to use the EMAPI.

18 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

a proxy acting on behalf of the client. A registration request from either a client
or a proxy client, such as an Event Manager daemon, is processed the same
way by the receiving Event Manager daemon.

When the Event Manager daemon receives the registration request, it ensures
that the Resource Monitors that supply the named Resource Variable are
running, assuming the monitors are not implemented as commands. If they are
not running, and are of a type that can be started by the Event Manager, then
they are started. If a Resource Monitor is not a command, it is then sent a
request to start supplying data.

A Resource Monitor sends a Resource Variable by one of two methods: if the
variable is of type Counter or Quantity, it is passed to the Event Manager
through shared memory; if the variable is of type State, it is passed to the Event
Manager as a message. Resource Variables of type Counter or Quantity are
observed by the Event Manager daemon every x seconds, where x is
configurable. Resource Variables of type State are observed when they are
received by the Event Manager daemon. At each observation of a variable its
associated predicates are applied. For each predicate that evaluates as true, an
event is generated.

Once an event is generated it is sent to the client that registered for it, including
proxy clients. An Event Manager daemon acting as a proxy forwards events it
receives from the other daemons to the appropriate clients.

1.3.1 Event Management Subsystem
The Event Management subsystem is an SRC subsystem and can be controlled
by SRC commands. For example, the following command will tell us whether the
subsystem is running, and whether there is more than one daemon, in case the
system is partitioned:

� �
[sp21en0:/]# lssrc -g haem
Subsystem Group PID Status
 haem.sp21en0 haem 36306 active
 haem.sp21en1 haem 29604 active� �

In this case, the system is partitioned and we have one daemon running for each
partition.

Chapter 1. Overview 19

This soft copy for use by IBM employees only.

If you want to know more details about the Event Management subsystem, you
can specify the -l parameter with the SRC command, as follows:

� �
[sp21en0:/]# lssrc -ls haem.sp21en0
Subsystem Group PID Status
 haem.sp21en0 haem 36306 active

Trace flags set: None

 Configuration Data Base version: 852569469,788246784,0(SDR)

 Daemon started on 01/06/97 at 11:51:31.044042496
running 0 days, 0 hours, 57 minutes and 28 seconds

 Daemon connected to group services: TRUE
 Daemon has joined peer group: TRUE
 Daemon communications enabled : TRUE
 Peer count: 8

 Logical Connection Information
Type LCID FD Node/PID Start Time

 local 0 12 13456 Mon Jan 6 11:52:46 1997
 local 1 13 13456 Mon Jan 6 11:52:46 1997
 local 2 14 36404 Mon Jan 6 11:52:46 1997
 local 3 21 36092 Mon Jan 6 11:53:35 1997

 Resource Monitor Information
 Resource Monitor Name Type FD PID Locked
 IBM.PSSP.harmld server 16 31914 No
 IBM.PSSP.harmpd server 17 13108 No
 IBM.PSSP.hmrmd server 20 33660 No
 IBM.PSSP.pmanrmd client 15 -2 No
 Membership internal -1 -2 No
 Response internal -1 -2 No
 aixos internal -1 -2 No

 Highest file descriptor in use is 22

 Peer Daemon Status
0 S S 1 I A 2 I A 3 - A 4 - A 5 I A
6 I A 7 - A 8 - A 9 I A 10 I A 11 - A
12 - A 13 I A 14 I A� �

20 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The second part of the command output shows internal counters, CPU utilization
by the daemons, and the data segment size:

� �
 Internal Daemon Counters

GS init attempts = 11 GS join attempts = 1
GS resp callback = 28 CCI conn rejects = 0
RMC conn rejects = 0 HR conn rejects = 0
Retry req msg = 0 Retry rsp msg = 0
Intervl usr util = 1 Total usr util = 70
Intervl sys util = 1 Total sys util = 66
Intervl time = 12100 Total time = 343865
lccb′ s created = 4 lccb′ s freed = 0
Reg rcb′ s creatd = 1 Reg rcb′ s freed = 0
Qry rcb′ s creatd = 6 Qry rcb′ s freed = 6
vrr created = 1 vrr freed = 0
vqr created = 1095 vqr freed = 1095
var inst created = 516 var inst freed = 0
Events regstrd = 1 Events unregstrd = 0
Insts assigned = 9 Insts unassigned = 0
Smem vars obsrv = 114 State vars obsrv = 3129
Preds evaluated = 9 Events generated = 9
Smem lck intrvl = 0 Smem lck total = 0
PRM msgs to all = 0 PRM msgs to peer = 0
PRM resp msgs = 0 PRM msgs rcvd = 0
PRM_NODATA = 0 PRM_BADMSG errs = 0
xcb alloc′ d = 40 xcb freed = 40
xcb freed msgfp = 0 xcb freed reqp = 0
xcb freed reqn = 0 xcb freed rspc = 23
xcb freed rspp = 0 xcb freed cmdrm = 17
xcb freed unkwn = 0

 Daemon Resource Utilization
User: 0.010 secs 0.008% (last interval)

0.700 secs 0.020% (total)
System: 0.010 secs 0.008% (last interval)

0.660 secs 0.019% (total)
U+S: 0.020 secs 0.017% (last interval)

1.360 secs 0.040% (total)

Date segment size: 1415K� �

1.3.2 The Event Management Daemon
The Event Management daemon, /usr/lpp/ssp/bin/haemd, runs on every node of
a system partition and on the Control Workstation. If there is more than one
partition, there will be multiple daemons running on the Control Workstation.

Each daemon operates in a different domain (partition) with a complete set of log
files and sockets.

The log files are located on /var/ha/log, and there is one for each daemon
running. In our case, these are the log files present in the /var/ha/log directory:

� �
[sp21en0:/var/ha/log]# ls -l em.*
-rwxr-xr-x 1 root system 339 Jan 06 11:52 em.default.sp21en0
-rwxr-xr-x 1 root system 0 Jan 06 11:52 em.default.sp21en1� �

The Event Manager uses different types of communication:

• UDP packets for daemon-to-daemon communication

Chapter 1. Overview 21

This soft copy for use by IBM employees only.

• TCP packets for daemon-to-client communication

• UNIX domain sockets for local communication between Event Management
clients and Event Management daemons

The UDP port number used for daemon-to-daemon communication is stored in
the SDR, class Syspar_ports:

� �
[sp21en0:/]# SDRGetObjects Syspar_ports
subsystem port
hats 10000
hags 10001
haem 10002� �

The TCP port number for daemon-to-client communication is also stored in the
SDR, class SP_ports:

� �
[sp21en0:/]# SDRGetObjects SP_ports
daemon hostname port
hardmon sp21en0 8435
hb ″″ 4893
haemd ″″ 10000� �

The class contains the daemon, hostname, and port attributes. The hostname
attribute is not used by the Event Management subsystem.

The UNIX domain sockets, which are connection-oriented, are used for local
communication between the EM clients and the Event Manager daemon (EMAPI),
and for local communication between the Event Manager daemon and the
Resource Monitors (RMAPI). The following names are used:

� �
[sp21en0:/var/ha/soc]# ls -l em.*
srw------- 1 root system 0 Jan 06 11:53 em.RMIBM.PSSP.harmld.sp21en0
srw------- 1 root system 0 Jan 06 11:52 em.RMIBM.PSSP.harmpd.sp21en0
srw------- 1 root system 0 Jan 06 11:52 em.RMIBM.PSSP.hmrmd.sp21en0
srw------- 1 root system 0 Jan 06 11:53 em.RMIBM.PSSP.hmrmd.sp21en1
srw-rw-rw- 1 root system 0 Jan 06 11:52 em.clsrv.sp21en0
srw-rw-rw- 1 root system 0 Jan 06 11:52 em.clsrv.sp21en1
srw-rw-rw- 1 root system 0 Jan 06 11:52 em.rmsrv.sp21en0
srw-rw-rw- 1 root system 0 Jan 06 11:52 em.rmsrv.sp21en1� �

/var/ha/soc/em.clsrv. syspar_name

Used by the EMAPI to connect to the Event Manager
daemon

/vsr/ha/soc/em.rmsrv. syspar_name

Used by Resource Monitors with a connection type of
client to connect to the Event Manager daemon

/var/ha/soc/em.RM rmname.syspar_name

Used by the Event Manager daemon to connect to the
Resource Monitor that is specified by rmname. This
monitor has a connection type of server.

22 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

For more information refer to IBM Parallel System Support Programs for AIX:
Administration Guide, GC23-3897.

Chapter 1. Overview 23

This soft copy for use by IBM employees only.

24 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Part 2. Subsystems

 Copyright IBM Corp. 1997 25

This soft copy for use by IBM employees only.

26 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Chapter 2. Resource Monitors

This chapter gives an overview of Resource Monitors. It discusses what they are
used for and how they are integrated into the new High Availability
Infrastructure.

In PSSP 2.2, there are Resource Monitors that provide the information for the
higher layers of the High Availability (HA) subsystem. Many of the resources in
the system are already monitored by these integrated Resource Monitors.

To extend the HA infrastructure, you may need to write your own Resource
Monitor; for example, you may have to supply new Resource Variables from your
application to the HA subsystem. This chapter gives examples for doing this.

In the following sections, we refer to three examples of Resource Monitors,
located in /usr/lpp/ssp/samples/haem/rmapi, that are included in the PSSP 2.2
code.

 1. The first example is a command line-based Resource Monitor that simulates
an adapter interface. From the command line you can mimic state changes,
such as going from Unconfig → Config. These state changes can be used to
initiate activities in the Problem Management subsystem.

 2. The next example is a Resource Monitor daemon that can be triggered via a
signal to send random numbers to the Event Management subsystem.

 3. The third example is a Resource Monitor daemon that is implemented as a
server. This daemon generates random numbers, and these can be used by
the Event Management subsystem. As soon as some client of Event
Management registers interest in this Resource Variable, the daemon starts
to produce the random numbers.

In this chapter, we focus on the third example.

The source code for these examples can easily be used as a framework for
writing your own Resource Monitor daemon. It consists mainly of setting up the
Resource Monitor Application Programming Interface (RMAPI). The code
generating the random numbers is only one line, which can easily be modified.

Information about Resource Monitors can be found in a number of documents,
such as the Administration Guide, the Event Management Programming Guide
and Reference, and RS/6000 SP High Availability Infrastructure. See Appendix J,
“Related Publications” on page 261 for details. However, in order to be able to
write a Resource Monitor, a sufficient set of basic information is needed.
Therefore, some items you may already know from other sources may be
repeated here.

2.1 Resource Monitor Overview
An RS/6000 SP must be highly available to the users of the SP. To provide such
availability, all the resources that comprise a user′s application must be highly
available. These resources include applications, subsystems such as
transaction processing and databases, file systems, networks, processors, disks,
and so forth. Not one resource in the system, from the application to the most

 Copyright IBM Corp. 1997 27

This soft copy for use by IBM employees only.

basic hardware, may be a single point of failure. Each resource must be quickly
recoverable to an available state without user intervention.

In a system that provides highly available resources, it is assumed that some
recovery action is performed when a resource fails or becomes unavailable. In
order to initiate recovery, the failure, or the change in the state of the resource,
must be detected.

In order to support these requirements, a more universal infrastructure is
needed to mask failures from the end user and recover from them automatically.
That is the main reason why the HA subsystems are integrated into PSSP 2.2.

The components that make up the HA infrastructure have already been
described. This chapter focuses on Resource Monitors, which are the software
components that observe the state of specific system resources and transform
this information into unambiguous variables. These Resource Variables are
used to describe the state of the system. What these resources are and what
kinds of Resource Variables exist are discussed.

Resource Monitors provide the Resource Variables to the next higher level of the
HA subsystem, Event Management. Event Management observes these
Resource Variables. The change of state of a variable is defined as an event.
Events are then communicated to other subsystems, which are responsible for
the recovery.

Figure 5. Event Management Basic Structure

Event Management is a distributed subsystem initially intended for, but not
limited to, the SP platform. It provides comprehensive event detection by
monitoring hardware and software resources. It is one of several subsystems in
PSSP 2.2 that provides a set of high availability services, and consists of three
types of components:

28 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Client programs

Client programs are applications or other subsystems that wish to
be notified when resources change state. Client programs use an
Event Management Application Programming Interface (EMAPI) for
communication with the Event Management daemon. An example of
a client program is the Problem Management subsystem. For
details, see Chapter 3, “Problem Management Subsystem” on
page 71.

Event Management daemon

The Event Management daemon is the central component that
receives data from the Resource Monitor, processes it, and
generates events that are transferred to the clients. The Event
Manager informs the interested parties (clients) whenever the state
of a resource changes. The resource state change is reflected by a
change in a resource attribute.

Resource Monitors

The Resource Monitors provide the state of a resource to the next
higher level of control, which is the Event Management daemon.
The Resource Monitors provide data to the Event Management
daemon located on the same node. The data is provided to Event
Management through the Resource Monitor Application
Programming Interface (RMAPI). This interface is also the way Event
Management daemon controls the Resource Monitor.

2.2 Resource Monitor Objectives
System administrators who monitor the hardware and software components of a
system may find that the hardware seems different from what was expected, the
software does not behave as expected, and the user applications do not use the
system resources in an efficient manner. By monitoring these components and
analyzing the results, the system administrator tries to optimize the system.

Monitoring the system also means to detect tendencies and to try to prevent
performance bottlenecks and system down time by the timely changing of
unhealthy system components.

The monitored results must be transferred to a higher level of software that
processes the data (filtering, applying predicates, analyzing, and so on). The
method of transferring this data to a higher level should be very efficient,
otherwise the monitoring process itself puts more load on the system and the
results are distorted.

The data obtained from a monitor program could be of interest to more than one
higher-level analyzer. Therefore, the interface must be shareable among system
components.

The shared interface must be standardized. Using a standard interface also
allows independent software vendors to incorporate the monitoring functionality
into their applications in order to make it more reliable and achieve the best
possible system performance.

To summarize, the objectives of a Resource Monitor are to:

Chapter 2. Resource Monitors 29

This soft copy for use by IBM employees only.

• Monitor hardware and software

• Transfer information to manager subsystems

• Use shared interfaces

• Communicate through a standard API

2.3 What Are Resources?
A resource is an entity in the system that is observed. Examples of resources
include hardware entities such as processors, disk drives, memory, and
adapters, and software entities such as databases, processes, and file systems.
Each resource in the system has one or more attributes that define the state of
the resource. The number of attributes is defined by the resource.

Overview of resources:

Hardware

• CPUs
• Memory
• Disk subsystems
• Adapters

Software

• System software
− AIX subsystems
− SP subsystems

• Application software
− Databases
− OLTP

Other System Resources

• File system space
• Networks

2.4 Resource Representation
A resource is represented by one or more variables that originate in, and are
updated by, a Resource Monitor. The Event Manager daemon observes each
variable as it changes, or at some periodic rate that is configurable.

2.4.1 Resource Monitor Modes
A Resource Monitor can operate in one of two modes. In the first mode of
operation, a Resource Monitor pushes Resource Variables to the Event Manager.
In the second mode of operation, a Resource Monitor pulls Resource Variables
from the component being monitored and then transfers the information to Event
Management.

Push mode

The push mode is implemented by incorporating Resource Monitor
logic into the component that is the source of the Resource
Variables. The component sends new values of its Resource
Variables to the Event Management daemon as appropriate for the
type of Resource Variable. A push mode Resource Monitor may

30 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

also be implemented as a command. The Resource Monitor part is
integrated into the application; in other words, the application is
Resource Monitor-enabled. This type of application is also called a
Resource Monitor client.

Pull mode

The pull mode is implemented by creating a daemon process that
contains the Resource Monitor logic. The Resource Monitor
daemon, using interfaces defined for the component being
monitored, periodically polls the component for Resource Variable
values. (These values may also be obtained in an asynchronous
manner if the component supports this.) Again, as these values are
obtained, the Resource Monitor sends them to the Event Manager
daemon as appropriate for the particular Resource Variable. This
type of application is also called a Resource Monitor server.

Figure 6. Resource Monitor Types

Resource Monitors that are implemented as daemons are started automatically
by the Event Manager daemon whenever a client registers for events and when
the related Resource Variables are provided by a Resource Monitor. Whenever
resource information is required, Event Management requests that the Resource
Monitor start supplying data, unless the Resource Monitor is a command.

2.4.2 Resource Variable Types
Resource Variables are one of the following three value types:

Counter Counter is a variable whose value increases monotonically; for
example, the number of input packets from an Ethernet adapter.

Quantity Quantity is a variable whose value fluctuates over time; for example,
the number of input packets per second from an Ethernet adapter.

Chapter 2. Resource Monitors 31

This soft copy for use by IBM employees only.

State State is a variable whose value fluctuates over time also. However,
every time it changes value it must be observed in order to not miss
generating events. While the time between updates of a State
variable may be very short, on average a State variable is expected
to change at a relatively slow rate.

Figure 7. Resource Variable Types

The command in Figure 8 on page 33, shows Resource Variables and their
related variable types.

32 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
SDRGetObjects EM_Resource_Variable rvName rvValue_type

rvName rvValue_type
.
IBM.PSSP.CSS.bcast_rx_ok Quantity
IBM.PSSP.CSS.bcast_tx_ok Quantity
.
IBM.PSSP.SP_HW.Node.tempRange State
IBM.PSSP.SP_HW.Node.type State
.
IBM.PSSP.aixos.Mem.Real.%free Quantity
IBM.PSSP.aixos.Mem.Real.%pinned Quantity
.
IBM.PSSP.aixos.Mem.Virt.pagein Counter
IBM.PSSP.aixos.Mem.Virt.pageout Counter
.
IBM.PSSP.aixos.PagSp.%totalfree Quantity
IBM.PSSP.aixos.PagSp.%totalused Quantity
.
IBM.PSSP.Prog.pcount State
IBM.PSSP.Prog.xpcount State
.

� �
Figure 8. Resource Variable Types

2.4.3 Resource Variable Data Types
The data types for Resource Variables are:

• Long

• Float

• Structured Byte String

A Resource Variable of type State can be of any of these data types. But
Counter and Quantity Resource Variables can only be of type long or float.

The long and float formats are identical to the C-language types of the same
name.

A Structured Byte String (SBS) is a string of bytes, where each byte may have
any value from 0 through 255. The SBS starts with a 32-bit (4-byte) length field
that specifies the total length of the structured fields (one or more) that follow.

Figure 9 on page 34 shows the format of an SBS.

Chapter 2. Resource Monitors 33

This soft copy for use by IBM employees only.

Figure 9. Structured Byte String

A structured field consists of a 4-byte header, followed by a value. The first two
bytes of the header contain the length of the structured field. The third byte is a
structured field data type, and the fourth byte is an 8-bit serial number.

A structured field is one of the following types:

• Long

• Float

• Character string

• Byte string

Long and float types are the same as in the C language.

A character string is some number of non-zero bytes terminated by a null byte.
The null byte is included in the structured field length, like the C-language
character string.

A byte string is some number of bytes, where each byte may have any value
from 0 to 255.

The serial number is a unique value that identifies the structured field. It is
defined by the Resource Monitor that supplies the SBS Resource Variable for
each structured field. The set of serial numbers defined for the SBS starts with 0
and is contiguous.

The screen output in Figure 10 on page 35 shows some Resource Variables and
their related data types.

34 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
SDRGetObjects EM_Resource_Variable rvName rvValue_type rvData_type

rvName rvValue_type rvData_type
.
IBM.PSSP.CSS.bcast_rx_ok Quantity long
IBM.PSSP.CSS.bcast_tx_ok Quantity long
.
IBM.PSSP.SP_HW.Node.tempRange State long
IBM.PSSP.SP_HW.Node.type State long
.
IBM.PSSP.aixos.Mem.Real.%free Quantity long
IBM.PSSP.aixos.Mem.Real.%pinned Quantity long
.
IBM.PSSP.aixos.Mem.Virt.pagein Counter long
IBM.PSSP.aixos.Mem.Virt.pageout Counter long
.
IBM.PSSP.aixos.PagSp.%totalfree Quantity float
IBM.PSSP.aixos.PagSp.%totalused Quantity float
.
IBM.PSSP.Prog.pcount State SBS
IBM.PSSP.Prog.xpcount State SBS
.

� �
Figure 10. Resource Variable Data Types

2.4.4 Information Exchange of Resource Variables
Resource Variables of type Counter or Quantity are useful not only to Event
Management, but also to performance monitoring. Therefore, these variables
are placed in a shared memory to make them accessible to other observers.

Figure 11 on page 36 shows how information is exchanged among Resource
Variables.

Chapter 2. Resource Monitors 35

This soft copy for use by IBM employees only.

Figure 11. Information Exchange of Resource Variables

The Performance Toolbox for AIX (PTX/6000) provides a mechanism for easily
obtaining Resource Variables. PTX/6000 also includes an API, called the System
Performance Measurement Interface (SPMI), for obtaining these variables from
shared memory and for placing additional variables in shared memory. This
already-defined and available interface was chosen to enable monitoring of
Resource Variables of type Counter and Quantity by other software packages,
such as Performance Toolbox/6000 or Event Management.

Programs that supply additional values to the shared memory are called
Dynamic Data Supplier (DDS) programs. This data can also be monitored using
the PTX/6000 Manager.

It is important to know where this data can be found within the hierarchical
information structure of PTX/6000. A model of this hierarchy appears in
Figure 12 on page 37.

36 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 12. Set of PTX/6000 Statistics

Use xmpeek -l to get an overview of the resources that can be monitored.
Figure 13 on page 38 shows an example of this.

Chapter 2. Resource Monitors 37

This soft copy for use by IBM employees only.

� �
.
/sp21n01/CPU/cpu0/kern Time executing in kernel mode (percent)
.
/sp21n01/CPU/cpu0/syscall Total system calls on this processor
.
/sp21n01/Mem/Real/size Size of physical memory (4K pages)
.
/sp21n01/Mem/Real/%free % memory which is free
.
/sp21n01/PagSp/%totalfree Total free disk paging space (percent)
.
/sp21n01/Disk/hdisk0/rblk 512 byte blocks read from disk
.
/sp21n01/Disk/hdisk1/wblk 512 byte blocks written to disk
.
/sp21n01/LAN/ent0/xmitovfl Count of transmit queue overflows
.
/sp21n01/Proc/5792biod/.....
.
/sp21n01/Syscall/total Total system calls
.
/sp21n01/FS/rootvg/free Free space in volume group, MB
.
/sp21n01/DDS/ Dynamic Data Supplier Statistics
/sp21n01/DDS/IBM/ IBM data suppliers.
/sp21n01/DDS/IBM/PSSP.SampleDaeMon/ RMAPI Sample Monitor
/sp21n01/DDS/IBM/PSSP.SampleDaeMon/StaticVars/static_var1 Example

non-instantiable resource variable (Counter or Quantity
� �
Figure 13. Partial Listing from xmpeek

Note: In Figure 13, a value has been added as subcontext to a context called
DDS/IBM, and is named static_var1.

This information is referenced in 2.4.5, “Resource Variable Names.”

Resource Variables of type State send the data as a message using the
communication path established between the Event Management daemon and
the Resource Monitor.

The communication path for Resource Variables is one of the following:

• Shared memory

• Messages

2.4.5 Resource Variable Names
A Resource Variable name is a series of two or more components separated by
a period. Each component is a character string that starts with an alphabetic
character. Any component other than the first may also begin with a percent
sign. The last component of a Resource Variable name is the resource attribute.
All preceding components represent the name of the resource.

The name represents a hierarchical organization, from the general to the
specific, similar to a fully qualified UNIX file name.

An example of a Resource Variable is as follows:

38 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

IBM.PSSP.Response.Host.state
IBM.PSSP.Response.Switch.state
IBM.PSSP.aixos.Disk.busy
IBM.PSSP.aixos.FS.%totused
IBM.PSSP.Prog.pcount

In order to avoid conflicts in the naming of Resource Variables, the first
component of each variable name is the name of the vendor that supplied the
subsystem containing the resource whose state is represented by the Resource
Variable. For example, the vendor name for all IBM subsystems is IBM. The
second component of each Resource Variable in an IBM subsystem is the name
of the product containing the subsystem.

Example: IBM.PSSP...

To get an overview of all predefined Resource Variables, use the example shown
in Figure 14.

� �
SDRGetObjects EM_Resource_Variable rvName rvClass | more

rvName rvClass
IBM.PSSP.Response.Host.state IBM.PSSP.Response
IBM.PSSP.Response.Switch.state IBM.PSSP.Response
.
IBM.PSSP.aixos.Disk.busy IBM.PSSP.aixos.Disk
.
IBM.PSSP.aixos.FS.%totused IBM.PSSP.aixos.FS
.
IBM.PSSP.Prog.pcount IBM.PSSP.Prog
.

� �
Figure 14. Resource Variable Names

Currently, 367 Resource Variables are defined.

All Resource Variables and their related attributes are defined in the SDR Class
EM_Resource_Variable. The attributes for a Resource Variable are:

rvName A string that contains the name of the Resource Variable.

rvDescription This is an index (ID) to the textual description of the variable.

rvValue_type This is the value type as described in 2.4.2, “Resource Variable
Types” on page 31. The type must be one of Counter, Quantity
or State.

rvData_type A string indicates the data type of the variable. It may be one of
the following: long, float, or Structured Byte String (SBS).

rvInitial_value This is the Resource Variable′s initial value; it is the value that
exists before the Resource Variable is observed for the first
time.

rvClass All Resource Variables are grouped into classes (see 2.4.6,
“Classes of Resource Variables” on page 42). These entries
are pointers to the EM_Resource_Class SDR object.

rvPTX_name This name is used to read and write the variable on the
Performance Toolbox/6000 shared memory (SPMI). It is only
required for variables of type Counter and Quantity.

Chapter 2. Resource Monitors 39

This soft copy for use by IBM employees only.

rvPTX_description

This is a string that contains a comma-separated list of message
IDs that correspond to the components of the variable′s PTX
name.

rvLocator This is a string that contains either an Instance Vector element
name or a null string.

rvPredicate This is the default predicate, and its value is optional.

rvEvent_description

This is the ID of the message that contains a short description of
an event.

rvDynamic_instance

This is a Boolean value. True (non-zero) indicates that
instances of this Resource Variable are created dynamically by
the Resource Monitor whenever an instance is referenced
through the EMAPI.

rvIndex_vector This is a string that contains either an Instance Vector element
name or a null string, and is optional.

Note: For more information, refer to Chapter 2 in the RS/6000 SP: Event
Management Programming Guide and Reference, SC23-3996.

The example program generates three Resource Variables of type Quantity. The
command shown in Figure 15 creates one of these three Resource Variables.

� �
SDRCreateObjects EM_Resource_Variable \

′ rvName=IBM.PSSP.SampleDaeMon.StaticVars.static_var1′ \
′ rvLocator=NodeNum′ \
′ rvDescription=3′ \
′ rvValue_type=Quantity′ \
′ rvInitial_value=0′ \
′ rvData_type=long′ \
′ rvPTX_name=StaticVars/static_var1′ \
′ rvPTX_description=7′ \
′ rvPTX_min=0′ \
′ rvPTX_max=500′ \
′ rvClass=IBM.PSSP.SampleDaeClass′ \
′ rvDynamic_instance=0′

� �
Figure 15. Example for Creating Resource Variables

Let us have a closer look at each entry:

 1. rvName

This is the name of the first Resource Variable.

 2. rvLocator

If the Instance Vector for this resource implies the resource′s location, the
value of this item is the name of the vector element whose value is the
number of the node that contains the resource instance.

 3. rvDescription

This item identifies a test string ID within a message file. For details, see
Figure 16 on page 42.

40 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

 4. rvValue_type

As already meantioned, the example program generates Resource Variables
of type Quantity.

 5. rvInitial_value

The initial value in this case is zero.

 6. rvData_type

The data type for the Quantity variable is long.

 7. rvPTX_name

The last line of Figure 13 on page 38 is:
/sp21n01/DDS/IBM/PSSP.SampleDaeMon/StaticVars/static_var1
The highlighted part is exactly what is appended to the DDS variable by the
rvPTX_name. PSSP.SampleDaeMon will be defined within the
EM_Resource_Monitor class.

 8. rvPTX_description

This ID points to a message string within a message file.

 9. rvPTX_min rvPRX_max

These values define the plotting range for the Performance Monitor.

10. rvClass

This is a link to the appropriate entry in the EM_Resource_Class.

11. rvDynamic_instance

This value is set to false (rvDynamic_instance=0), which means this variable
is static (see definition).

Having created the first Resource Variable, let us see how the message IDs are
converted into text strings during run time. The message file for the example is
shown in Figure 16 on page 42.

Chapter 2. Resource Monitors 41

This soft copy for use by IBM employees only.

� �
.
$ Lines beginning with a dollar sign are comments. Lines
$ beginning with numbers are the messages.
$
1 ″IBM Data Suppliers″
$
2 ″RMAPI Sample Monitor″
$
3 ″Example non-instantiable resource variable (Counter or Quantity).″
$
4 ″Example dynamically instantiable resource variable.″
$
5 ″Example instantiable resource variable (Counter or Quantity).″
$
6 ″Example instantiable resource variable (State).″
$
7 ″Example non-instantiable variables.″
$
8 ″Example instantiable variables.″
$
9 ″Example ivector NodeNum. Used to instantiate variables as node \n\
specific and as the variable locator field.″
$
10 ″Example instance vector for creating multiple instances of variables.″
$
11 ″Example SBS field: Action. Last action requested by the sample ...″
$
12 ″Example SBS field: Options. Last options parameter passed to ...″
$
13 ″Example SBS field: StateChange. Success of last sample ...″
$
14 ″Example SBS field: State. State of the resource.″
$

� �
Figure 16. Example Message File rmapi_smp.msg

Every ID in the Description areas points to a string in this message file, which is
converted to the AIX internal message catalog format by using the command:

� �
runcat rmapi_smp rmapi_smp.msg
#

� �

This will create the file rmapi_smp.cat, which needs to be copied to the NLS
directory for the language set by your environment.

2.4.6 Classes of Resource Variables
As we have seen in Figure 14 on page 39, Resource Variables are combined
into classes. Currently, 17 classes are defined. To get an overview of these, use
the command shown in Figure 17 on page 43

42 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
SDRGetObjects EM_Resource_Class

rcClass Resource_monitor Observation_interval Reporting_int.
IBM.PSSP.CSS IBM.PSSP.harmld 5 5
IBM.PSSP.HARMLD IBM.PSSP.harmld 30 30
IBM.PSSP.LL IBM.PSSP.harmld 250 250
IBM.PSSP.Membership Membership 0 0
IBM.PSSP.PRCRS IBM.PSSP.harmld 86400 86400
IBM.PSSP.Prog IBM.PSSP.harmpd 0 0
IBM.PSSP.Response Response 0 0
IBM.PSSP.SP_HW IBM.PSSP.hmrmd 0 0
IBM.PSSP.VSD IBM.PSSP.harmld 10 10
IBM.PSSP.aixos.CPU aixos 15 0
IBM.PSSP.aixos.Disk aixos 30 0
IBM.PSSP.aixos.FS aixos 60 0
IBM.PSSP.aixos.LAN aixos 40 0
IBM.PSSP.aixos.Mem aixos 15 0
IBM.PSSP.aixos.PagSp aixos 30 0
IBM.PSSP.aixos.Proc aixos 60 0
IBM.PSSP.pm IBM.PSSP.pmanrmd 0 0
#

� �
Figure 17. Resource Variable Classes

Note: The Resource Class is used for grouping Resource Variables with the
same resource characteristics, like the Resource Monitor, observation
interval, and reporting frequency.

Following are the items included in the Resource Class definition:

rcClass

This class name represents a name that uniquely defines the
resource class. It is referenced from the EM_Resource_Variable
SDR class.

rcResource_monitor

This item specifies the Resource Monitor definition in the
EM_Resource_Monitor class that supplies data to the variables of
this class.

rcObservation_interval

The Observation Interval specifies the amount of time, in seconds,
between each observation of any Counter or Quantity Resource
Variable.

rcReporting_interval

The Reporting Interval is the amount of time in seconds between
each update of any Counter or Quantity by the corresponding
Resource Monitor. The Resource Monitor can ask the Event
Management daemon for this value.

Note: The value of the observation interval must be greater than or equal to the
value of the reporting interval.

For creating the appropiate EM_Resource_Class entries for the example, issue
the command shown in Figure 18 on page 44.

Chapter 2. Resource Monitors 43

This soft copy for use by IBM employees only.

� �
SDRCreateObjects EM_Resource_Class \

′ rcClass=IBM.PSSP.SampleDaeClass′ \
′ rcResource_monitor=IBM.PSSP.SampleDaeMon′ \
′ rcObservation_interval=10′ \
′ rcReporting_interval=10′

#
� �
Figure 18. Example EM_Resource_Class Entries

The items are:

 1. rcClass

This is the name of the newly created Resource Class,
IBM.PSSP.SampleDaeClass.

 2. rcResource_monitor

This is a pointer to the EM_Resource_Monitor class. It is covered in more
detail in 2.5, “Resource Variable Definition” on page 48.

 3. rcObservation_interval

The values for the observation and reporting interval are equal.

 4. rcReporting_interval

For more information about the observation and reporting interval values see
2.8, “Event Generation” on page 57.

2.4.7 Resource Variable Instance Vector
Most resources in a system have multiple copies. For example, there is more
than one disk per node, more than one logical volume per node, more than one
CPU per node, more instances of a database, and certainly additional nodes.

The Resource Variables that represent the states of these resources also have
multiple copies. Each of these copies is called an instance of the Resource
Variable.

To uniquely identify each copy of a resource and all of its variables, each
resource in the system has one, and only one, associated Instance Vector. An
Instance Vector is a list of elements, where each element is a name/value pair.
The name describes the element. The set of values in the Instance Vector
uniquely identifies the copy of the resource in the system. By extension, these
values also uniquely identify the copy of the Resource Variable in the system. If
there is only one copy of the resource in the system, its Instance Vector is null.

Examples of Resource Variables and Instance Vectors are:

IBM.PSSP.Response.Host.state (NodeNum=15)
IBM.PSSP.Response.Switch.state (NodeNum=1)
IBM.PSSP.aixos.Disk.busy (NodeNum=5, Name=hdisk10)
IBM.PSSP.aixos.FS.%totused (NodeNum=3, VG=spdata, LV=lv00)
IBM.PSSP.Prog.pcount (NodeNum=2, UserName=″root″, ProgName= ″dbserv″)

Note: A Resource Variable has a name and an Instance Vector.

44 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

In order to see how many elements an Instance Vector for a particular Resource
Variable consists of, use the command in Figure 19 on page 45.

� �
SDRGetObjects EM_Instance_Vector

ivResource_name ivElement_name ivElement_description
IBM.PSSP.CSS NodeNum 30
IBM.PSSP.HARMLD NodeNum 30
IBM.PSSP.LL.SCHEDD NodeNum 30
IBM.PSSP.LL.SCHEDD SCHEDD 33
IBM.PSSP.LL.STARTD STARTD 32
IBM.PSSP.LL.STARTD NodeNum 30
IBM.PSSP.Membership.LANAdapter NodeNum 3
IBM.PSSP.Membership.LANAdapter AdapterType 4
IBM.PSSP.Membership.LANAdapter AdapterNum 5
IBM.PSSP.Membership.Node NodeNum 6
IBM.PSSP.PRCRS NodeNum 30
IBM.PSSP.Prog ProgName 3
IBM.PSSP.Prog UserName 4
IBM.PSSP.Prog NodeNum 5
IBM.PSSP.Response.Host NodeNum 3
IBM.PSSP.Response.Switch NodeNum 4
IBM.PSSP.SP_HW.Frame FrameNum 255
IBM.PSSP.SP_HW.Node NodeNum 256
IBM.PSSP.SP_HW.Switch SwitchNum 257
IBM.PSSP.VSD NodeNum 30
IBM.PSSP.VSD VSD 31
IBM.PSSP.VSDdrv NodeNum 30
IBM.PSSP.aixos.CPU NodeNum 42
IBM.PSSP.aixos.Disk NodeNum 45
IBM.PSSP.aixos.Disk Name 46
IBM.PSSP.aixos.FS NodeNum 47
IBM.PSSP.aixos.FS VG 48
IBM.PSSP.aixos.FS LV 49
IBM.PSSP.aixos.LAN Adapter 53
IBM.PSSP.aixos.LAN NodeNum 52
IBM.PSSP.aixos.Mem.Kmem Type 55
IBM.PSSP.aixos.Mem.Kmem NodeNum 54
IBM.PSSP.aixos.Mem.Real NodeNum 56
IBM.PSSP.aixos.Mem.Virt NodeNum 57
IBM.PSSP.aixos.PagSp NodeNum 60
IBM.PSSP.aixos.Proc NodeNum 61
IBM.PSSP.aixos.VG NodeNum 50
IBM.PSSP.aixos.VG VG 51
IBM.PSSP.aixos.cpu CPU 44
IBM.PSSP.aixos.cpu NodeNum 43
IBM.PSSP.aixos.pagsp NodeNum 58
IBM.PSSP.aixos.pagsp Name 59
IBM.PSSP.pm NodeNum 3
#

� �
Figure 19. Event Management Instance Vector

For more detailed analysis, take a closer look at the screen output in Figure 19.
If you want to know, for example, how many Instance Vector elements are
required for the IBM.PSSP.aixos.FS Resource Variable, use the command shown
in Figure 20 on page 46.

Chapter 2. Resource Monitors 45

This soft copy for use by IBM employees only.

� �
SDRGetObjects EM_Instance_Vector | grep IBM.PSSP.aixos.FS

IBM.PSSP.aixos.FS NodeNum 47
IBM.PSSP.aixos.FS VG 48
IBM.PSSP.aixos.FS LV 49
#

� �
Figure 20. Instance Vector Example

From Figure 20, you can see that three Instance Vector elements are required to
uniquely identify a Resource Variable. For example, look for an Instance Vector
that describes the use of the /tmp file system, which is always located on logical
volume hd3 and always belongs to the rootvg volume group. The Instance
Vector for /tmp on Node 3 is:

IBM.PSSP.aixos.FS.%totused (NodeNum=3, VG=rootvg, LV=hd3)

2.4.8 Event Management SDR Classes
Up to now, we have seen that all Resource Monitor-related information is
defined in the SDR. We have already used information from SDR classes such
as EM_Resource_Class, EM_Resource_Variable and EM_Instance_Vector, but we
did not describe in detail what these SDR classes are.

In this section, we provide details about the information contents of these
classes and how they are related to each other. This knowledge is useful for
understanding examples in later chapters.

To get an overview of which Event Management-related SDR classes are
defined, use the command in Figure 21.

� �
SDRListClasses | grep EM

EM_Condition
EM_Instance_Vector
EM_Resource_Class
EM_Resource_Monitor
EM_Resource_Variable
EM_Structured_Byte_String

� �
Figure 21. SDR Classes

More information about each of these classes follows:

EM_Condition

This class is only used by Perspectives to save predicates. For
details see Chapter 5, “SP Perspectives GUI” on page 137. classes.

EM_Instance_Vector

This class describes the Instance Vectors for each resource and
their associated Resource Variables.

46 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

EM_Resource_Class

This class contains information about the characteristics of obtaining
Resource Variables. This class groups Resource Variables with the
same basic characteristics into groups. It references the
EM_Resource_Monitor for the Resource Monitor definitions.

EM_Resource_Monitor

This SDR class contains information about every Resource Monitor
program.

EM_Resource_Variable

This class references the EM_Instance_Vector,
EM_Structured_Byte_String and EM_Resource_Class classes.
References to the EM_Instance_Vector class are made through the
resource name portion of the Resource Variable name (the Resource
Variable name without the final component).

EM_Structured_Byte_String

The Structured Byte String variable descriptions are stored in this
class and are referenced from the EM_Resource_Variables class.

The relations between the Event Management SDR classes are shown in
Figure 22.

Figure 22. Event Management SDR Classes

As already mentioned, the EM_Resource_Variable contains information about all
defined Resource Variables. These are grouped into resource classes with the
same basic characteristics. Every resource class has a dedicated Resource
Monitor and every Resource Variable consists of a name and an Instance Vector.
More details for each field of a Structured Byte String variable can be found in
the EM_Structured_Byte_String class.

Chapter 2. Resource Monitors 47

This soft copy for use by IBM employees only.

2.5 Resource Variable Definition
Resource Variable Definition is the process by which Resource Variables are
made known to Event Management. The definition of a Resource Variable
includes the following information:

• Resource Variable name

• Resource Variable Instance Vector

• Resource Variable description

• Default predicate (optional)

• Name of the Resource Monitor that supplies the Resource Variable

The Resource Variable description should describe the semantics of the
variable. This information is necessary to understand how and why to specify
predicates.

In order to define a Resource Variable, you need more information about all the
attributes of the SDR class EM_Resource_Monitor. Following is an overview of
the SDR attributes of the EM_Resource_Monitor and their meanings:

rmName This is the name of the Resource Monitor definition. It must
be unique in the database, and it uniquely identifies the SDR
object in the EM_Resource_Monitor class. It is referenced
from the EM_Resource_Class SDR class.

rmPath This specifies the executable path name of the Resource
Monitor if it is a daemon that is startable by the Event
Management daemon. If this is not possible (for example, if
the Resource Monitor is incorporated into the application),
then the entry is a null string.

rmArguments This is an optional string of arguments that are passed to the
executable path when starting the Resource Monitor
daemon.

rmMessage_file This specifies the name of the message catalog for the
Resource Monitor. This catalog contains descriptions for all
of this monitor′s Resource Variables.

rmMessage_set This specifies the message set within the message catalog.

rmConnect_type This indicates whether the Event Management daemon
connects to the Resource Monitor (server) or whether the
Resource Monitor connects to the Event Management
daemon (client).

rmPTX_prefix This name is used to read and write the variable in the
PTX/6000 shared memory (SPMI). It is only required for
variables of type Counter and Quantity. It is a variable name
known to PTX/6000.

rmPTX_description This is an ID pointing to a textual description for PTX/6000.

rmPTX_asnno An integer that is the ASN.1 number equal to the SNMP
Assigned Enterprise Number for the vendor that supplies this
Resource Monitor. For IBM-supplied Resource Monitors, this
value is 2. See also AIX Performance Toolbox/6000 User′s
Guide.

48 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The example in Figure 23 on page 49 creates the entries for the
EM_Resource_Monitor class.

� �
SDRCreateObjects EM_Resource_Monitor \

′ rmName=IBM.PSSP.SampleDaeMon′ \
′ rmPath=′ / usr/lpp/ssp/samples/haem/rmapi/rmapi_smpdae′ \
′ rmMessage_file=rmapi_smp.cat′ \
′ rmMessage_set=1′ \
′ rmConnect_type=server′ \
′ rmPTX_prefix=IBM/PSSP.SampleDaeMon′ \
′ rmPTX_description=1,2′ \
′ rmPTX_asnno=2′

� �
Figure 23. Create EM_Resource_Monitor Entries

Let us take a closer look at each item for the EM_Resource_Monitor entries.

 1. rmName

This is the name of the Resource Monitor definition.

 2. rmPath

This is the name of our sample Resource Monitor daemon. It is located in
the PSSP 2.2 production path /usr/lpp/ssp/samples/haem/rmapi.

 3. rmMessage_file

This is the name of the message file. It should be located in the NLS
directory for the language set by your environment. All description IDs point
to the messages in this file.

 4. rmMessage_set

The message catalogs support multiple message sets. Each set can be
dedicated to a special subsystem. Within each message set, the message
IDs are unique. Only one message set is supported in the example in
Figure 23.

 5. rmConnect_type

The sample Resource Monitor daemon is of type server, so the Event
Management subsystem can start this daemon as soon as a client registers
for the appropriate Resource Variables.

 6. rmPTX_prefix

The last line of Figure 13 on page 38 is:
/sp21n01/DDS/IBM/PSSP.SampleDaeMon/StaticVars/static_var1

The middle part, IBM/PSSP.SampleDaeMon, is exactly what is appended to the
DDS variable by the rvPTX_prefix. The last part, StaticVars/static_var1, is
defined in the EM_Resource_Variable Class.

 7. rmPTX_description

See Figure 13 on page 38 for the messages on the second and third line
starting with /sp21n01/DDS.

 8. rvPTX_asnno

This is the ASN.1 number assigned to IBM.

Chapter 2. Resource Monitors 49

This soft copy for use by IBM employees only.

Note: Resource Variables may be defined at any time without disrupting the
operation of Event Management. But in order to make it known to the
Event Management subsystem, you need to stop and restart the Event
Management daemons. See the next section for more information.

2.6 Pseudocode for a Resource Monitor
Having created the SDR entries for the Resource Monitor, let us have a look at
how to code a daemon-based Resource Monitor. This section only presents a
program flow of such a daemon. For details, see Chapter 4, “Application
Program Interfaces (APIs)” on page 97, or Event Management Programming
Guide and Reference, SC23-3996.

A daemon-based Resource Monitor performs the following functions:

• Initializing

• Creating a server session

• Registering Resource Variables and their instances

• Starting a session

• Getting control messages from the Event Management subsystem

• Processing the control messages

• Ending a session

• Terminating

Figure 24 shows a pseudocode outline of a Resource Monitor that uses RMAPI
subroutines.

Call ha_rr_init

Call ha_rr_makserv
Add the file descriptor (fdc) to the select mask.

Call ha_rr_reg_var with all known variable instances.

Loop on select
If fdc is ready

Call ha_rr_start_session
Add the file descriptor (fdN) to the select mask.

If fdN is ready
Call ha_rr_get_ctrlmsg with fdN

Process the control message

If the session is disconnected
Call ha_rr_end_session

end Loop

Call ha_rr_terminate.

Figure 24. Pseudocode of a Daemon-Based Resource Monitor

50 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

See also the source code examples. A Makefile for the examples can be found
in Appendix H, “How to Get the Examples in This Book” on page 257.

2.7 Event Management Configuration
Event Management requires information about which Resource Variables are
defined and which predicates should be applied to them. The Resource
Monitors will supply these variables. All this information for the Event
Management subsystem is placed in the Event Management Configuration
Database (EMCDB), which includes the following:

• Resource Variable definition

• Resource Class definition

• Resource Monitor definition

The EMCDB is a binary database. Therefore, if you add new Resource Variables
and new Resource Monitor definitions to the SDR, the next step is to compile
this modified SDR into a form readable for the Event Management daemon. This
is done by using the haemcfg command, which compiles the EMCDB into a binary
form placed in a file. This file is created in the /spdata/sys1/ha/cfg directory,
which is used as a staging directory. The haemcfg command also updates the
SDR Syspar class with the new version of the configuration. During the
compilation, the last compiled version of the EMCDB in the staging directory is
renamed by appending its version string to its name (the version string is a time
stamp).

When the Event Management daemon starts up, it determines the correct
version of the EMCDB to use by checking the SDR Syspar class and then
matching the version string found there against the version string used by the
other running Event Management daemon. The version string used by the
already running Event Management daemons takes precedence. The correct
copy of the EMCDB is then copied from the staging area on the Control
Workstation to /etc/ha/cfg. The haemrcpcdb command is used for this transfer.
For more details about the Event Management configuration, see the RS/6000
SP: Administration Guide, GC23-3897.

So far we have created the SDR entries for the sample Resource Monitor
daemon. Now we need to compile the EMCDB. Before doing this, let us look at
the SP configuration we used for this test in order to understand the following
screen output.

The SP was divided into two partitions; Partition 1 was named sp21en0 and
Partition 2 was named sp21en1. The system was equipped as follows:

• Partit ion1 = sp21en0

− High Node = sp21n01

− Thin Node = sp21n05

− Thin Node = sp21n06

− Thin Node = sp21n07

− Thin Node = sp21n08

• Partit ion2 = sp21en1

Chapter 2. Resource Monitors 51

This soft copy for use by IBM employees only.

− Wide Node = sp21n09

− Wide Node = sp21n11

− Wide Node = sp21n13

− Wide Node = sp21n15

Event Management configuration requires several steps. From the Control
Workstation, store the resource definitions as a set of objects in the SDR. There
are several ways to do this.

The preferred way to load your data for a new Resource Monitor into the SDR is
to create a load list file and run the haemloadcfg command. For details on how to
do this, see the haemloadcfg command in the RS/6000 SP: Command and
Technical Reference, GC23-3900.

Another solution for loading data into the SDR is to use commands such as the
SDRCreateObjects command. You can do this most easily by creating a shell
script with the appropriate commands. The steps to configure a new EMCDB are
listed in Figure 25.

Figure 25. Event Management Configuration Steps

The configuration consists of the following steps:

 1. Create the SDR objects that uniquely identify the entries for the
EM_Resource_Variable, EM_Resource_Class, and EM_Resource_Monitor
SDR classes.

See 2.4.5, “Resource Variable Names” on page 38, 2.4.6, “Classes of
Resource Variables” on page 42, and 2.5, “Resource Variable Definition” on
page 48.

 2. Compile the SDR data to the Event Management Configuration Database
(EMCDB) by using the haemcfg command, as shown in Figure 26 on page 53.

52 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
export SP_NAME=sp21en0
haemcfg

haemcfg: Reading Event Management data for partition: sp21en0.
haemcfg: Created EMCDB file: /spdata/sys1/ha/cfg/em.sp21en0.cdb \

Version: 843059753,172068608,0.
#

� �
Figure 26. Compile the SDR Data to EMCDB

Now look at the appropriate subdirectories:

� �
cd /spdata/sys1/ha/cfg
ls -l

total 528
-rw-r--r-- 1 root system 89284 Sep 9 15:29 em.sp21en0.cdb
-rw-r--r-- 1 root system 89284 Sep 9 10:01 em.sp21en0.cdb.842281279,950688768,0
-rw-r--r-- 1 root system 89284 Sep 9 15:30 em.sp21en1.cdb

cd /etc/ha/cfg
ls -l

total 368
-rw-r--r-- 1 root system 89284 Sep 9 15:29 em.sp21en0.cdb
-rw-r--r-- 1 root system 22 Sep 13 10:28 em.sp21en0.cdb_vers
-rw-r--r-- 1 root system 89284 Sep 9 15:30 em.sp21en1.cdb
-rw-r--r-- 1 root system 21 Sep 13 10:28 em.sp21en1.cdb_vers
#� �

Figure 27. Event Management Database-Related Subdirectories

The screen in Figure 27 lists all the files before starting the compilation. The
screen in Figure 28 on page 54 shows the situation after the compilation.

Note that each time you update the EMCDB for a system partition, haemcfg
modifies the version number. The version number allows each instance of
the Event Management subsystem and each Resource Monitor in a system
partition to verify that they have access to the correct version of
configuration information. The haemcfg command maintains the version
number in both the EMCDB and the SDR.

Each database may be updated at any time without interfering with the
operation of any Event Management subsystem, client, or Resource Monitor.
However, once a database has been updated in a system partition, the Event
Management subsystem in that partition must be restarted to refresh its
configuration information from the newly updated database.

Chapter 2. Resource Monitors 53

This soft copy for use by IBM employees only.

� �
cd /spdata/sys1/ha/cfg
ls -l

total 720
-rw-r--r-- 1 root system 95332 Sep 18 10:15 em.sp21en0.cdb
-rw-r--r-- 1 root system 89284 Sep 9 10:01 em.sp21en0.cdb.842281279,950688768,0
-rw-r--r-- 1 root system 89284 Sep 9 15:29 em.sp21en0.cdb.842300962,458441216,0
-rw-r--r-- 1 root system 89284 Sep 9 15:30 em.sp21en1.cdb

cd /etc/ha/cfg
ls -l

total 384
-rw-r--r-- 1 root system 95332 Sep 18 10:15 em.sp21en0.cdb
-rw-r--r-- 1 root system 22 Sep 18 10:30 em.sp21en0.cdb_vers
-rw-r--r-- 1 root system 89284 Sep 9 15:30 em.sp21en1.cdb
-rw-r--r-- 1 root system 21 Sep 13 10:28 em.sp21en1.cdb_vers
#� �

Figure 28. Event Management Database Subdirectories with New EMCDB

 3. Stop all clients of the Event Management subsystem, such as the Problem
Management subsystem and Perspectives.

 4. Stop all Event Management daemons:

� �
haemctrl -k haem.sp21en0

0513-044 The stop of the haem.sp21en0 Subsystem was completed successfully.

lssrc -a | grep haem

 haem.sp21en1 haem 24820 active
 haem.sp21en0 haem inoperative

cat /tmp/wcoll | dsh -w - /usr/lpp/ssp/bin/haemctrl -k
sp21n01: 0513-044 The stop of the haem Subsystem was completed successfully.
sp21n05: 0513-044 The stop of the haem Subsystem was completed successfully.
sp21n06: 0513-044 The stop of the haem Subsystem was completed successfully.
sp21n07: 0513-044 The stop of the haem Subsystem was completed successfully.
sp21n08: 0513-044 The stop of the haem Subsystem was completed successfully.
#

� �
Figure 29. Shutdown of the Event Management Daemons

 5. Restart the Event Management daemons:

54 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
haemctrl -s

0513-059 The haem.sp21en0 Subsystem has been started. Subsystem PID is 14580.

cat /tmp/wcoll | dsh -w - /usr/lpp/ssp/bin/haemctrl -s

sp21n01: 0513-059 The haem Subsystem has been started. Subsystem PID is 13066.
sp21n05: 0513-059 The haem Subsystem has been started. Subsystem PID is 6280.
sp21n06: 0513-059 The haem Subsystem has been started. Subsystem PID is 14944.
sp21n07: 0513-059 The haem Subsystem has been started. Subsystem PID is 15338.
sp21n08: 0513-059 The haem Subsystem has been started. Subsystem PID is 13886.
#

� �
Figure 30. Restart of the Event Management Daemons

 6. Check all Event Management daemons with commands like lssrc or ps -ef.

Chapter 2. Resource Monitors 55

This soft copy for use by IBM employees only.

� �
lssrc -l -s haem.sp21en0 | awk ′ {print NR $0}′

 1 Subsystem Group PID Status
 2 haem.sp21en1 haem 24820 active
 3
 4 Trace flags set: None
 5
 6 Configuration Data Base version: 842301020,69089024,0(SDR)
 7
 8 Daemon started on 09/09/96 at 15:37:41.670352384
 9 running 0 days, 0 hours, 6 minutes and 58 seconds
10 Daemon connected to group services: TRUE
11 Daemon has joined peer group: TRUE
12 Daemon communications enabled : TRUE
13 Peer count: 5
14
15 Logical Connection Information
16 Type LCID FD Node/PID Start Time
17 peer 0 6
18 peer 1 7
19 peer 2 5
20 local 10 21 41158 Mon Sep 09 18:22:23 1996
21 local 12 18 26378 Mon Sep 09 15:39:19 1996
22 local 13 22 41158 Mon Sep 09 18:22:39 1996
23 local 26 14 15794 Mon Sep 09 17:19:10 1996
24 local 27 15 56226 Mon Sep 09 17:37:12 1996
25
26 Resource Monitor Information
27 Resource Monitor Name Type FD PID
28 IBM.PSSP.harmld server 19 62196
29 IBM.PSSP.harmpd server 20 29430
30 IBM.PSSP.hmrmd server 13 45896
31 IBM.PSSP.pmanrmd client 17 -1
32 Membership internal -1 -1
33 Response internal -1 -1
34 aixos internal -1 -1
35 IBM.PSSP.SampleDaeMon server 16 36174
36
37 Highest file descriptor in use is 22
38
39 Peer Daemon Status
40 0 S S 1 I A 2 - A 3 - A 4 - A 5 I A
41 6 I A 7 I A 8 I A
.

� �
Figure 31. List of the lssrc Command

The partial screen output shown in Figure 31 gives you the following
information:

• Line 6

Compare the version number of the Configuration Database to the
version number from Figure 28 on page 54. In the staging area
/spdata/sys1/ha/cfg, the old and new versions of the EMCDB are still
there. The Event Management daemon for Partition sp21en0 is using the
newest version.

• Line 13

Peer count: 5 shows that there are 5 peer connections to other Event
Management daemons. That is exactly the number of nodes in Partition

56 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

sp21en0. The two last lines of the screen output also give you this
information.

• Lines 20 - 24

These lines show you that there are five external clients locally
connected to the Event Management daemon. Peer connections are
listed for those Event Management daemons that have sent requests to
this Event Management daemon.

• Lines 28 - 35

These lines give more details about which external and internal monitors
are up and running.

• Lines 40 - 41

The Peer Daemon Status gives you the following information:

− The first field gives you the node number [1 I A].

− The second field gives you the connection state [1 I A]. I means In
the group. It indicates that the peer on the specified node is a peer
group member.

O means Out of the group. It indicates that the peer is no longer a
peer group member (but was at one time).

- indicates that no peer on that node has ever joined the group.

S in the second and third position indicates that this is the node on
which the daemon is running.

− The third field gives you group information [1 I A]

A means Accepting join requests, which indicates

the node is accepting join requests from the group.

R means Rejecting join requests, which indicates the node is
rejecting join requests from the group.

This status information should be seen only for a short period (15
seconds) during a node recovery.

 7. Restart all the clients of the Event Management subsystem.

 8. Repeat steps 3 to 7 for all partitions.

For details, see the RS/6000 SP: Administration Guide, GC23-3897.

Note: The data in the EMCDB file, not the SDR, is the data that is used by the
Event Management subsystem.

2.8 Event Generation
The Event Management daemon observes each Resource Variable at some
periodic rate, which is configurable, or as the variable changes. At each
observation, a predicate is applied. A predicate is a relational expression
between the value of a Resource Variable and some other value. This other
value may be a constant or a value of the variable from the prior observation.
An event is generated if the Boolean value of the predicate is true.

Note: More than one predicate may be applied to a Resource Variable at the
same observation.

Chapter 2. Resource Monitors 57

This soft copy for use by IBM employees only.

In order to see the reporting rate of a Resource Variable, use the command at
the top of Figure 32 on page 58.

� �
SDRGetObjects EM_Resource_Class

rcClass Resource_monitor Observation_interval Reporting_int.
IBM.PSSP.CSS IBM.PSSP.harmld 5 5
IBM.PSSP.HARMLD IBM.PSSP.harmld 30 30
IBM.PSSP.LL IBM.PSSP.harmld 250 250
.
IBM.PSSP.VSD IBM.PSSP.harmld 10 10
.
IBM.PSSP.aixos.CPU aixos 15 0
IBM.PSSP.aixos.Disk aixos 30 0
.

� �
Figure 32. Observation Interval Example

Changing the Observation or Reporting Intervals requires the following steps:

 1. Change the appropriate entries in the EM_Resource_Class.

 2. Compile the EMCDB as described.

 3. Stop the Event Management subsystem clients.

 4. Stop the Event Management subsystem.

 5. Restart the Event Management subsystem.

 6. Restart the Event Management subsystem clients.

 7. Repeat steps 3 to 6 for every partition.

This is the same procedure as described in 2.7, “Event Management
Configuration” on page 51. Currently, it is the only available solution with PSSP
2.2.

2.9 Event Registration and Notification
Event registration is the process that an application or subsystem uses to
declare its desire to be notified of changes in the state of resources. The
application or subsystem provides the following information:

• The name of the Resource Variable from which the event is generated

• The Instance Vector of the Resource Variable from which the event is
generated

The variable Instance Vector may be wildcarded. Wildcarding is used to receive
events generated from more than one variable instance.

Each Resource Variable is optionally defined with a single default predicate for
event generation. However, the application or subsystem may provide
predicates to be applied against the variable in addition to, or instead of, the
default predicate. These additional predicates are used to generate events for
the calling application or subsystem.

58 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

As an event is generated when applying a predicate to a resource variable, and
the result is true, it is sent to the application or subsystem which registered for
that variable with that predicate.

Note: Applications or subsystems that registered for a variable without
specifying a predicate receive the event generated by the application of
the default predicate. Included with the event information is the current
value of the Resource Variable specified in the predicate.

After adding the appropriate entries to the SDR class, compiling the EMCDB, and
restarting the Event Management daemons, you should be able to register for
your new Resource Variables. Perspectives is an easy-to-use tool to test the
new Resource Monitor.

Remember that our Resource Monitor is generating random numbers from 0 to
500. Define an event within Perspectives, and you will be notified if the
Resource Variable exceeds the value of 200. You may also want to send a
message about this fact to all the users (by using the wall command).

Chapter 2. Resource Monitors 59

This soft copy for use by IBM employees only.

Figure 33. Event Perspective View Condition Dialog Box

The screen capture of the Event Perspective View Condition dialog box shows
some of the definitions of our event. For details about Perspectives see
Chapter 5, “SP Perspectives GUI” on page 137.

The notification output from Perspectives is shown in Figure 34.

Figure 34. Event Notification Log

60 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

As you can see, the Resource Monitor is up and running and producing random
numbers. You should also be able to monitor this Resource Variable by using
PTX/6000. After starting PTX and defining a new console, you get the screen
shown in Figure 35 on page 61.

Figure 35. Monitoring Resource Variables with PTX

This gives an overview of monitoring the newly created Resource Variable.

2.10 Predicates
Predicates have already been mentioned, but not defined in detail. A predicate
is a relational expression containing a Resource Variable in one or more
modified forms. The evaluation of a predicate is Boolean; it occurs each time a
Resource Variable is observed.

A predicate is of the following form:

predicate:: expression rel_op constant

expression rel_op expression

predicate log_op predicate

unary_op predicate

unary_op expression

expression:: var_name

var_name arith_op constant

var_name arith_op expression

var_name:: X

X@var_name_mod

var_name_mod:: One of:

 P,R,PR, sbs_sn, Psbs_sn

unary_op:: !

Chapter 2. Resource Monitors 61

This soft copy for use by IBM employees only.

rel_op:: One of:

= = ! = < > < = > =

log_op:: One of:

&& ||

arith_op:: One of:

* / % + -

sbs_sn:: A structured field serial number

Operators have the same meaning and the same precedence as in the C
language. Parentheses may be used for grouping, as in C. Constants are
integer or floating point, also as in C. The variable name modifier P indicates
that the value of the variable from the previous observation is used. The
variable name modifier R indicates that the raw value of the variable is used;
this is only useful with a resource variable of type Counter.

When both of these modifiers are present, the raw value of the variable from its
previous observation is used. The variable name modifier sbs_sn is a structured
field serial number. This modifier is only used with an SBS Resource Variable
and is used to select which structured field value is used in the evaluation of the
expression. When used with P, the selected structured field is taken from the
value of the variable from the previous observation.

Operands that are modified to select structure fields of type string or byte may
only be used with the relational operators; both must be of the same type. When
the operands are character strings, the implied comparison and its result are
equivalent to the C library function strcmp(). When the operands are byte
strings, the implied comparison and its result are equivalent to the C library
function memcmp().

Predicates may only contain the name of a single Resource Variable. The
variable name may be repeated in the predicate and may be one of its modified
forms.

In the following example, we want to monitor the file system space of the /tmp
file system. As soon as it is more than 80% used, we want an event to be
generated. (This could be used, for example, to send mail to the system
administrator or pop up a new red flashing window.) For this event, you need to
define a predicate.

The Resource Variable name (var_name) is represented by an uppercase X,
followed by a modifier:

var_name:: X
X@var_name_modifier

The variable name modifier is one of the following:

X@P This means the previous value of the Resource Variable.

X@R This means the raw value.

X@PR This means the previous raw value.

X@sbs_sn The sbs_sn has to be substituted by the Structured Byte String field
serial number. The predicate expresses the field value in the
Structured Byte String identified by the serial number.

62 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

X@Pssb_sn The sbs_sn has to be substituted by the Structured Byte String field
serial number. The predicate expresses the field value in the
Structured Byte String identified by the serial number returned from
the previous observation.

This is the predicate you are looking for:

X>80 The Resource Variable is greater than 80

Another example for a valid predicate is the following:

(X@0!=X@1)&&(X@2<20) If the first field (sbs_sn=0) of a Structured Byte
String is not equal to the second field (sbs_sn=1)
and at the same time the third field (sbs_sn=2) of
the structured byte field is less the 20, then
the expression becomes true and an event is
generated.

Note: A predicate may not include more than one Resource Variable.

For more information, refer to Chapter 4 in the RS/6000 SP: Event Management
Programming Guide and Reference, SC23-3996.

2.11 PSSP 2.2 Resource Monitors
In PSSP 2.2, Resource Monitors have already been implemented. As mentioned
before, there are two types:

• Server

• Client

Both types of monitors are either implemented as daemons (this means
separated processes) or incorporated in other software components, for example
directly into AIX (look at EM_Resource_Class IBM.PSSP.aixos).

To get an overview of which Resource Monitors are already there, use:

� �
SDRGetObjects EM_Resource_Monitor rmName rmPath rmArguments rmConnect_type

� �

Table 1. EM_Resource_Monitor

rmName rmPath rmArguments rmConnect_type

IBM.PSSP.harmld /usr/ lpp/ssp/bin/haemRM/harmld -f server
IBM.PSSP.harmpd /usr/ lpp/ssp/bin/haemRM/harmpd server
IBM.PSSP.hmrmd /usr/ lpp/ssp/bin/haemRM/hmrmd IBM.PSSP.hmrmd server
IBM.PSSP.pmanrmd /usr/ lpp/ssp/bin/pmand client
Membership internal
Response internal
aixos internal

From Table 1 you can see that there are seven Resource Monitors in PSSP 2.2.

Chapter 2. Resource Monitors 63

This soft copy for use by IBM employees only.

2.11.1 External Resource Monitors
Four of the seven Resource Monitors are external monitors (see also Figure 36
on page 65). They perform the following tasks:

IBM.PSSP.harmld

This monitor supplies Resource Variables from the CSS, VSD,
LoadLeveler, Processor_online information and internal variables of
the harmld daemon. The data is of type Counter or Quantity, and is
transferred to the Event Management daemon through the SPMI
shared memory interface. Therefore, the data is also furnished to
the performance monitoring subsystem. This is a server-type
daemon.

IBM.PSSP.harmpd

This monitor supplies the Resource Variables that represent the
number of processes executing a particular program. These
variables are used to determine whether or not a particular system
daemon is running. All variables are sent directly to the Event
Management daemon and are of Structured Byte String (SBS)
format. This is a server-type daemon.

IBM.PSSP.hmrmd

This monitor supplies the Resource Variables that represent the
hardware state of the RS/6000 SP. The resource information is
obtained from the PSSP hardware monitoring subsystem (hardmon).
All the variables are of type State and are transferred to the Event
Management daemon directly as messages. This is a server-type
daemon.

IBM.PSSP.pmanrmd

This monitor supplies the Resource Variables provided by the
Problem Management subsystem. The variables are of type State
and are transferred to the Event Management daemon directly as
messages. This is a client-type daemon.

64 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 36. External Resource Monitors

2.11.2 Internal Resource Monitors
The three internal Resource Monitors embedded in the Event Management
subsystem are shown in Figure 37 on page 66. They perform the following
tasks:

Membership

This monitor supplies the Resource Variables that represent host
membership and adapter membership states. This information is
obtained directly from the Group Services subsystem by subscribing
to the system groups hostMembership, enMembership and
cssMembership. The variabes are of type State.

The Resource Monitor supplies data to two Resource Variables:

• IBM.PSSP.Membership.Node.state

• IBM.PSSP.Membership.LANAdapter.state

Response

This monitor supplies the Resource Variables that represent the
information in the SDR classes host_response and switch_response.
These Resource Variables are provided for compatibility with prior
releases of PSSP. They are:

• IBM.PSSP.Response.Host.state

• IBM.PSSP.Response.Switch.state

The IBM.PSSP.Response.Host.state Resource Variable represents
the host response information that is obtained from the Host
Response daemon (hrd). For nodes running PSSP 2.2, hrd obtains
information about the state of the nodes from the Event Management

Chapter 2. Resource Monitors 65

This soft copy for use by IBM employees only.

daemon. The hrd uses the client Event Management API (EMAPI)
receiving events from the IBM.PSSP.Membership.LANAdapter.state,
with Instance Vector (NodeNum=*, AdapterType=en,
AdapterNum=0).

For nodes running at a lower level than PSSP 2.2 (level 2.1 or level
1.2), the hrd obtains information about the state of the nodes from
the PSSP Heartbeat daemon (hbd).

The information about the state of the nodes is then stored in the
IBM.PSSP.Response.Host.state Resource Variable. At the same
time, the hrd updates the SDR host_response class.

The IBM.PSSP.Response.Switch.state is taken directly from the SDR
switch_response class.

Figure 37. Internal Resource Monitors

aixos

This monitor supplies the Resource Variables that represent AIX
Operating System resources like CPU (idle, kern, user, and wait),
disks, file systems, LAN, memory, paging space, and processes
information.

The aixos Resource Monitor supplies the Resource Variables
IBM.PSSP.aixos.*.

66 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

2.12 Support for System Partitioning
Whenever a reference is made to system in this redbook, it should be interpreted
as an SP system partition. If the SP consists of only one partition, then the term
system refers to the entire SP.

Note: The Control Workstation (CW) is a member of each partition, so that
clients on the CW or connecting to the CW can receive events from the
partition.

Event Manager daemons only communicate with other Event Manager daemons
in the same partition.

Note: On the CW, there is one Event Manager daemon per system partition.

While there may be multiple resource monitors of the same name executing on
the Control Workstation (one per Event Manager daemon), such resource
monitors may only supply State variables. Only one instance of a resource
monitor supplying Counter or Quantity variables may execute on the Control
Workstation.

Clients executing on SP nodes may establish connections with the Event
Management subsystem in a partition other than their current partition. This is
done by connecting to the Event Management daemon on the Control
Workstation that is in the other partition.

2.13 Extensibility
The Event Management subsystem is extensible for the following reasons:

• Resource Variable names follow an open naming convention. Names for
new Resource Variables can be selected without conflicting with existing
variable names.

• Resource Variables and Resource Monitors are defined to the Event
Management daemon. This means the knowledge of Resource Variables
and Resource Monitors is not hard-coded in Event Management.

• The interfaces necessary to define Resource Variables and Resource
Monitors are published in the Event Management Programming Guide and
Reference documentation.

• The API to send Resource Variables from Resource Monitors to the Event
Management daemon is also published in the Event Management
Programming Guide and Reference documentation.

All this was demonstrated by the sample Resource Monitor generating random
numbers.

2.14 Resource Monitor API
Resource Monitors send Resource Variables to the Event Management daemon
through the Resource Monitor Application Programming Interface (RMAPI). The
RMAPI uses one of two mechanisms to actually transfer the data to the daemon.
If the Resource Variable is of type Counter or Quantity, the data is placed in the
shared memory. If the data is of type State, then the data is sent as a message
using the communication path established between the Event Manager daemon

Chapter 2. Resource Monitors 67

This soft copy for use by IBM employees only.

and the Resource Monitor. Familiarity with the RMAPI should enable you to
write customized Resource Monitors, or to incorporate the functionality into an
application. More information about the RMAPI can be found in the Event
Management Programming Guide and Reference documentation.

2.15 Summary of Functional Flow
At the most elemental level, Event Management gathers the Resource Variables,
applies predicates to those Resource Variables and, if the predicates are true,
generates events. These events are then delivered to the clients that registered
interest in the events. A client is any program that uses the Event Management
Application Programming Interface (EMAPI) to obtain events. Events are
generated by the Event Management daemon from Resource Variables supplied
by Resource Monitors.

Figure 38. Event Management Information Flow

An Event Management daemon and one or more Resource Monitors are located
on any SP node that contains Resource Variables from which events of interest
may be generated. An Event Management daemon is also located on any SP
node where an Event Management client program is expected to run.

A client registers interest in an event by passing the name and the Instance
Vector of the Resource Variable from which the event is generated and by
passing a predicate to be applied to the Resource Variable. If no predicate is
provided by the client, a default predicate configured with the Resource Variable
is used. The client may name more than one Resource Variable and optional
associated predicates in a single registration. Multiple Resource Variables can
also be specified by wildcarding the Instance Vector. If each Instance Vector is
listed, then a different predicate may be specified for each variable. If an
Instance Vector is wildcarded, then the associated predicate applies to each
variable instance found as result of the wildcard.

68 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

If the Resource Variables specified are located on other nodes, then Event
Management assumes the role of a client and sends a registration request to
Event Management on the appropriate nodes. In this case, Event Management
is a proxy on behalf of the client. A registration request from either a client or a
proxy client (for example an Event Management daemon), is processed
identically by the receiving Event Management daemon.

When the Event Management daemon receives the registration, it ensures that
the Resource Monitors that supply the named Resource Variables are running,
assuming the Resource Monitors are not implemented as commands. If they are
not running, and if they are of a type that can be started by Event Management,
then Event Management starts them.

A Resource Monitor sends a Resource Variable by one of two methods. If the
Resource Variable is of type Counter or Quantity, then the resource variable is
passed to the Event Management through shared memory. If the Resource
Variable is of type State, then it is passed to Event Management as a message.

Once an event is generated, it is sent to the client that registered for it, including
proxy clients. An Event Management daemon acting as a proxy forwards events
it receives from other daemons to the appropriate clients.

Chapter 2. Resource Monitors 69

This soft copy for use by IBM employees only.

70 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Chapter 3. Problem Management Subsystem

The Problem Management subsystem (pman) is an application of the Event
Management subsystem designed to provide system administrators with
configurable access to the Event Management client and the Resource Monitor
function, without the necessity of writing C programs that use the Event
Management APIs. It also provides some generic recovery scripts for handling
events, and a set of “built-in” actions to take on commonly monitored events.

In this chapter, the following topics are described:

Section 3.1, “Introduction to the Problem Management Subsystem” describes
what you can do with the Problem Management subsystem.

Section 3.2, “Create Your Own Monitor Using pmand” on page 72, and section
3.3, “Create Your Own Monitor Using pmand and pmanrmd” on page 77,
describe how to create your own monitors, step by step, along with three
scenarios.

Section 3.4, “Problem Determination” on page 83 provides you with some hints
and tips on how to debug your monitor.

Section 3.5, “Hints and Tips for Problem Management Subsystem Commands”
on page 90 provides you with some hints and tips on how to use Problem
Management subsystem commands.

Section 3.6, “Short Examples” on page 93 provides you with several short
examples.

Appendix D, “Essence of the Event Management and Problem Management
Subsystems” on page 235 provides you with a condensed summary of the Event
Management and Problem Management subsystems. It contains enough
information to create your own monitor.

3.1 Introduction to the Problem Management Subsystem
There are three ways to monitor your system if you use POWERparallel System
Support Programs Version 2.2 High Availability Infrastructure:

 1. Commands

 2. A GUI

 3. Programs

If you are a command-oriented administrator, this chapter is for you. If you are a
GUI-oriented administrator, use Perspectives in Chapter 5, “SP Perspectives
GUI” on page 137. If you are a programmer, use the APIs in Chapter 4,
“Application Program Interfaces (APIs)” on page 97.

 Copyright IBM Corp. 1997 71

This soft copy for use by IBM employees only.

3.1.1 What Can You Monitor?
To monitor your system means that you monitor Resource Variables. PSSP 2.2
provides you with many Resource Variables. These can be categorized into two
groups:

 1. All the Resource Variables that the Event Management subsystem provides.
(There are more than 300 of these available.)

 2. Up to 16 user-configurable Resource Variables. (These are provided by the
Problem Management subsystem.)

3.1.2 What Can You Do When System Resources Are Changed?
The Problem Management subsystem provides you with three possible actions
to perform when your system resources are changed:

 1. Run a command.

 2. Issue an SNMP trap.

 3. Write to the AIX Error Log or BSD syslog facilities.

3.1.3 What Kind of Monitoring Tools Can You Use?
The Problem Management subsystem provides you with two monitoring
daemons:

 1. The Problem Management daemon (pmand)

 2. The Problem Management Resource Monitor daemon (pmanrmd)

Use their commands to create your own monitor.

If you monitor Resource Variables provided by the Event Management
subsystem, you need to have only the Problem Management daemon running. If
you monitor Resource Variables provided by the Problem Management
subsystem, consisting of up to 16 user-configurable Resource Variables, you
need to have the Problem Management Resource Monitor daemon running also.

3.2 Create Your Own Monitor Using pmand
This section explains how to create your own monitor using the Problem
Management daemon.

The Event Management subsystem provides you with more than 300
sophisticated and useful Resource Variables. The Problem Management
daemon monitors these Resource Variables and performs an action according to
their changes.

In the first part of this section, we provide you with a sample scenario to monitor
your system, and then help you create your own monitor, step by step, using this
scenario.

Once you become familiar with this example, it will be easy to create other
monitors.

72 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

3.2.1 Scenario 1
Following is the sample scenario used in this section:

Scenario 1

You want to monitor CPU usage. When the CPU idle time on Node 5
becomes less than 10%, you want to send an alert message to all users on
Node 5. In this case, you use the wall command with the message Operator:
Save CPU time.

3.2.2 Get a Rough Idea
Before you start with the Problem Management subsystem, you have to know
what you want to monitor. Because more than 360 variables are provided by the
Event Management subsystem, you have to choose the one(s) that best fit your
monitoring requirements.

To help with this task, take a look at the Event Management Resource Class first.
This class gives you a rough idea as to which Resource Class the Resource
Variable you are interested in belongs.

Use the following command to get Event Management Resource Class data:

� �
SDRGetObjects EM_Resource_Class� �

Refer to Table 8 on page 237. There are 17 Resource Class classes available.

All the Resource Class classes provided by the Event Management subsystem
are listed in Table 8 on page 237. Resource Class IBM.PSSP.aixos.CPU is in
this table. It includes CPU-related Resource Variables, and these are the ones
you want. You will also see that Resource Class IBM.PSSP.aixos.CPU is
monitored by Resource Monitor aixos, is observed every 15 seconds, and is
reported at intervals fixed by the design of aixos.

3.2.3 Find Resource Variables You Might Want
If you are interested in all Resource Variables that are provided by the Event
Management subsystem, you may use the following command (remember, there
are more than 300 Resource Variables):

� �
SDRGetObjects EM_Resource_Variable | more� �

To get Resource Variables that belong to Resource Class IBM.PSSP.aixos.CPU,
use the following command:

� �
SDRGetObjects EM_Resource_Variable rvClass==IBM.PSSP.aixos.CPU� �

You will see the following information:

Chapter 3. Problem Management Subsystem 73

This soft copy for use by IBM employees only.

� �
SDRGetObjects EM_Resource_Variable rvClass==IBM.PSSP.aixos.CPU
rvName rvDescription rvValue_type rvData_type rvInitial_value
rvClass rvPTX_name rvPTX_description rvPTX_min rvPTX_max rvPredicate
rvEvent_description rvLocator rvDynamic_instance rvIndex_vector
IBM.PSSP.aixos.CPU.glidle 1 Quantity float 0
IBM.PSSP.aixos.CPU CPU/glidle ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
IBM.PSSP.aixos.CPU.glkern 2 Quantity float 0
IBM.PSSP.aixos.CPU CPU/glkern ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
IBM.PSSP.aixos.CPU.gluser 3 Quantity float 0
IBM.PSSP.aixos.CPU CPU/gluser ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
IBM.PSSP.aixos.CPU.glwait 4 Quantity float 0
IBM.PSSP.aixos.CPU CPU/glwait ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
IBM.PSSP.aixos.cpu.idle 5 Quantity float 0
IBM.PSSP.aixos.CPU CPU/$CPU/idle ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
IBM.PSSP.aixos.cpu.kern 6 Quantity float 0
IBM.PSSP.aixos.CPU CPU/$CPU/kern ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
IBM.PSSP.aixos.cpu.user 7 Quantity float 0
IBM.PSSP.aixos.CPU CPU/$CPU/user ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
IBM.PSSP.aixos.cpu.wait 8 Quantity float 0
IBM.PSSP.aixos.CPU CPU/$CPU/wait ″″ ″″ ″″ ″″

″″ NodeNum 0 ″″
#� �

From this we see that the following Resource Variables belong to Resource
Class IBM.PSSP.aixos.CPU:

• IBM.PSSP.aixos.CPU.glidle
• IBM.PSSP.aixos.CPU.glkern
• IBM.PSSP.aixos.CPU.gluser
• IBM.PSSP.aixos.CPU.glwait
• IBM.PSSP.aixos.cpu.idle
• IBM.PSSP.aixos.cpu.kern
• IBM.PSSP.aixos.cpu.user
• IBM.PSSP.aixos.cpu.wait

We also know that their value type is Quantity, their data type is float, and their
initial value is 0.

Descriptions of these Resource Variables are available in a message catalog.
Note that rvDescription (in this case, 1 through 8) is a message number in this
catalog.

3.2.4 Find the Resource Variable You Want
To find out which message catalog your Resource Monitor uses, you have to
look up the Event Management Resource Monitor class. This class provides you
with the name of a message catalog and the set number in the message catalog
that your Resource Monitor uses.

Use the following command to get you this information:

� �
SDRGetObjects EM_Resource_Monitor� �

74 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Refer to Table 5 on page 236 and Table 6 on page 236. Two message catalogs
are available for seven Resource Monitor classes.

The Resource Monitor aixos uses message catalog harm_des.cat and set
number 6 in this catalog, whose full path name is
/usr/l ib/nls/msg/$LANG/harm_des.cat. You already know the message numbers
from the previous section; they are 1 through 8.

To display the message catalog, use the following command:

� �
dspcat harm_des.cat 6 | head -8� �

You will see the following information:

� �
dspcat harm_des.cat 6 | head -8
System-wide time CPU is idle (percent)
System-wide time executing in kernel mode (percent)
System-wide time executing in user mode (percent)
System-wide time waiting for IO (percent)
Time CPU is idle (percent)
Time CPU executing in kernel mode (percent)
Time CPU executing in user mode (percent)
Time CPU waiting for IO (percent)
#� �

There are two kinds of idle Resource Variables: one is for system-wide use, and
the other is for the use of a specific CPU. Pick up the idle Resource Variable for
system-wide use, IBM.PSSP.aixos.CPU.glidle.

3.2.5 Find the Instance Vector You Want
The previous section mentioned that monitoring your system is equivalent to
monitoring a Resource Variable. It also means using the pmandef command.
When you use pmandef, you have to specify the -e option. In the -e option, you
need a Resource Variable, an Instance Vector, and a Predicate. The Instance
Vector you have to specify is dependent on the Resource Variable. What kind of
Instance Vector can you use for Resource Class IBM.PSSP.aixos.CPU?

To answer this question, look up the Event Management Instance Vector class,
using the following command:

� �
SDRGetObjects EM_Instance_Vector� �

Refer to Table 9 on page 239. Only one Instance Vector, NodeNum, is provided
for Resource Class IBM.PSSP.aixos.CPU. You can see that it uses message
number 42. If you do not know what Instance Vector NodeNum is, use the
following command:

� �
dspcat harm_des.cat 6 42� �

You will see the following information:

Chapter 3. Problem Management Subsystem 75

This soft copy for use by IBM employees only.

� �
dspcat harm_des.cat 6 42
The number of the node for which the information applies.
#� �

If your Resource Variable uses SBS type data, you have to get familiar with the
Event Management Structured Byte String class. Refer to section 3.3, “Create
Your Own Monitor Using pmand and pmanrmd” on page 77 for information on
this topic.

3.2.6 Use the pmandef Command
You now have all the information needed to create your own monitor. Try to use
the pmandef command.

Following is the shell script file scenario_1.sub used to subscribe this monitor:

� �
pmandef -s CPU_Idle_Monitor \

-e ′ IBM.PSSP.aixos.CPU.glidle:NodeNum=5:X<10′ \
-c ″wall Operator: Save CPU time″ \
-n 5� �

Following is the shell script file scenario_1.unsub used to unsubscribe this
monitor:

� �
pmandef -u CPU_Idle_Monitor� �

Figure 39 shows a flow of how to build the pmandef command to create your own
monitor.

Figure 39. Flow of Using the pmand Command

76 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

3.2.7 Try Your Own Monitor
To check your monitor, issue the pmandef command, then execute a CPU-eater
process like the following program on Node 5:

� �
main()
{

for(;;);
}� �

You will get the message Operator: Save CPU time every 15 seconds on Node 5.
After receiving the message, kill this process.

� �
#

Broadcast message from root@sp21n05 (tty) at 10:42:36 ...

Operator: Save CPU time

#� �

If you want to create your own monitors with your own Resource Variables, the
next section will be helpful to you.

3.3 Create Your Own Monitor Using pmand and pmanrmd
This section explains how to create your own monitor using the Problem
Management daemon and the Problem Management Resource Monitor daemon.

The Event Management subsystem provides you with more than 300
sophisticated and useful Resource Variables, but at times you may want to use a
unique Resource Variable that you defined. For this purpose, the Problem
Management Resource Monitor daemon provides you with up to 16
user-configurable Resource Variables, IBM.PSSP.pm.User_state1 through
IBM.PSSP.pm.User_state16. The Problem Management daemon monitors these
variables and takes action according to their changes.

There are two ways to use user-configurable Resource Variables:

 1. Use the Problem Management Resource Monitor daemon configuration file.

In this case, the Problem Management Resource Monitor daemon
automatically changes these Resource Variables at certain intervals. You
can define these intervals in the Problem Management Resource Monitor
daemon configuration file.

 2. Do not use the Problem Management Resource Monitor daemon
configuration file.

In this case, you change these Resource Variables with the pmanrminput
command.

This section provides sample scenarios 2 and 3 to monitor your system, and
then helps you create your own monitors, step by step, using these scenarios.

Chapter 3. Problem Management Subsystem 77

This soft copy for use by IBM employees only.

3.3.1 Scenario 2
Scenario 2 uses the Problem Management Resource Monitor daemon
configuration file.

Scenario 2

In this scenario, the su command is not allowed to be used to become a root
user account on Node 5. You want to check the file /var/adm/sulog every
minute for this purpose. If someone uses the su command to become a root
user account, you want to send SNMP trap 10001 locally.

3.3.2 Create a pmanrmd Configuration File
First you have to create a Problem Management Resource Monitor daemon
configuration file. In this file, you have to define one of the user-configurable
Resource Variables. This scenario uses IBM.PSSP.pm.User_state9.

There is a sample Problem Management Resource Monitor daemon
configuration file named pmanrmd.conf in directory /spdata/sys1/pman.
Figure 40 on page 79 shows the content of this file.

78 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
**
* *
* Licensed Materials - Property of IBM *
* *
* 5765-529 PSSP *
* *
* (C) Copyright IBM Corporation 1996 All Rights Reserved. *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
* *
**

* ″@(#)70 1.7 src/ssp/pman/pmanrmd.conf, probmgmt, ssp_rloc, rloct7d4
7/21/96 10:45:57″

* Problem Management resource monitor configuration file.

*
* This will run a user script resource monitor every 1 minutes and
* place the stdout of the monitor into event management as a resource
* variable when it runs. It will run on the CWS only.
*
*TargetType=NODE_LIST
*Target=CWS
*Rvar=IBM.PSSP.pm.User_state1
*SampInt=60
*Command=/u/joe/checker

*
* This will provide a resource monitor that will run every 10 minutes
* and will provide the most recently changed file in the
* etc file system as a string state variable named
* IBM.PSSP.pm.User_state2.
* It runs on all the nodes in the partition.
*
*TargetType=NODE_GROUP
*Target=ALLPMAN
*Rvar=IBM.PSSP.pm.User_state2
*SampInt=600
*Command=″ / bin/ls -tl /etc | /bin/head -2 | /bin/grep -v total″

� �
Figure 40. File pmanrmd.conf

You need to specify the following items in the Problem Management Resource
Monitor daemon configuration file:

• TargetType
• Target
• Rvar
• Command
• SampInt

Chapter 3. Problem Management Subsystem 79

This soft copy for use by IBM employees only.

The Problem Management Resource Monitor daemon configuration file for this
monitor, scenario_2.conf, is as follows:

� �
TargetType=NODE_RANGE
Target=5
Rvar=IBM.PSSP.pm.User_state9
Command=″grep -e -root /var/adm/sulog | tail -1″
SampInt=60� �

Before you use Resource Variable IBM.PSSP.pm.User_state9, you have to load
this configuration to the pmanrmdConfig SDR. To do this, use the following
command on the Control Workstation:

� �
pmanrmdloadSDR scenario_2.conf� �

Even though your Resource Variable is in the pmanrmdConfig SDR, the Problem
Management Resource Monitor daemon does not know this Resource Variable
dynamically. To let it recognize the variable, refresh the Problem Management
subsystem with the following command on the Control Workstation:

� �
dsh -a stopsrc -s pmanrm; stopsrc -s pmanrm.partition_name� �

Then issue this command:

� �
dsh -a startsrc -s pmanrm; startsrc -s pmanrm.partition_name� �

3.3.3 Find the Instance Vector You Want
Again, you have to use the pmandef command to monitor your system. This
command requires the -e option. In the -e option, you have to specify an
Instance Vector.

To find the Instance Vector required by IBM.PSSP.pm.User_state9, use the
following command:

� �
SDRGetObjects EM_Instance_Vector | grep IBM.PSSP.pm
IBM.PSSP.pm NodeNum 3
#� �

There is one Instance Vector, NodeNum, required for IBM.PSSP.pm.User_state9.
To see its description, use the following command:

� �
dspcat harm_des.cat 3 3
The number of the node on which the resource resides.
#� �

Using Table 8 on page 237, you can find that Resource Class IBM.PSSP.pm is
monitored by Resource Monitor IBM.PSSP.pmanrmd.

80 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Then, using Table 6 on page 236, you can see that Resource Monitor
IBM.PSSP.pmanrmd uses message catalog harm_des.cat and set number 3.

3.3.4 Find the Type of Your Resource Variable
Next, you must specify the predicate. To do this, you have to know the type of
the Resource Variable, which you can find with the following command::

� �
SDRGetObjects EM_Resource_Variable | grep IBM.PSSP.pm.User_state9
IBM.PSSP.pm.User_state9 2 State SBS ″″
IBM.PSSP.pm ″″ ″″ ″″ ″″ ″″
″″ NodeNum 0 ″″
#� �

The fourth member, rvData_type, is SBS. This means that Resource Variable
IBM.PSSP.pm.User_state9 is Structured Byte String-type data.

3.3.5 Find the Structured Byte String You Want
When you use a Resource Variable and its data type is SBS, you have to refer to
the Event Management Structured Byte String class. To find the SBS of
Resource Variable IBM.PSSP.pm.User_state9, use the following command:

� �
SDRGetObjects EM_Structured_Byte_String | grep IBM.PSSP.pm.User_state9
IBM.PSSP.pm.User_state9 STRING cstring 0 ″″
#� �

Resource Variable IBM.PSSP.pm.User_state9 uses only one cstring type. When
you specify a predicate, you have to use X@0 instead of X, and you have to
compare X@0 with the character string.

3.3.6 Use the pmandef Command
To monitor Resource Variable IBM.PSSP.pm.User_state9, you have to use the
pmandef command. Following is the shell script file scenario_2.sub used to
subscribe this monitor:

� �
pmandef -s sulog_changed \

-e ′ IBM.PSSP.pm.User_state9:NodeNum=5:X@0!=X@P0′ \
-t 10001 \
-h local� �

Following is the shell script file scenario_2.unsub used to unsubscribe this
monitor:

� �
pmandef -u sulog_changed� �

Chapter 3. Problem Management Subsystem 81

This soft copy for use by IBM employees only.

3.3.7 Try Your Own Monitor
Execute the pmandef command. Use the su command to become a root user
account. You will have SNMP trap 10001 within a minute.

3.3.8 Scenario 3
Scenario 3 does not use the Problem Management Resource Monitor daemon
configuration file; instead, it uses the pmanrminput command.

Scenario 3

A program uses a lot of resources. When this program is executed, it has to
notify the Problem Management subsystem when it is started and ended.

The administrator prepares a reaction to this notification, as follows:

• When the program is started, the Problem Management subsystem sends
the message This node is going to be busy.

• When the program is ended, the Problem Management subsystem sends
the message This node is not busy now via the wall command.

This program runs on Node 5.

3.3.9 Use the pmandef Command
This scenario uses Resource Variable IBM.PSSP.pm.User_state8. To monitor it,
you must create a protocol. This scenario uses the following protocol:

• When the program is started, it changes Resource Variable
IBM.PSSP.pm.User_state8 to START.

• When the program is ended, it changes Resource Variable
IBM.PSSP.pm.User_state8 to END.

Following is the shell script file scenario_3.sub used to subscribe this monitor:

� �
pmandef -s simple_protocol \

-e ′ IBM.PSSP.pm.User_state8:NodeNum=5:X@0==″START″ ′ \
-r ′ X@0==″END″ ′ \
-c ″wall This node is going to be busy″ \
-C ″wall This node is not busy now″ \
-h local� �

Following is the shell script file scenario_3.unsub used to unsubscribe this
monitor:

� �
pmandef -u simple_protocol� �

3.3.10 Try Your Own Monitor
Execute the pmandef command, then execute the shell script file scenario_3.appl:

82 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
pmanrminput -s pman -a″IBM.PSSP.pm.User_state8+START+″
#
USE A LOT OF RESOURCES HERE!
sleep 10
#
pmanrminput -s pman -a″IBM.PSSP.pm.User_state8+END+″� �

You will receive the message This node is going to be busy when the program
is started, and This node is not busy now when the program is ended.

3.4 Problem Determination
You may encounter some difficulties while creating your own monitor. This
section provides hints and tips to help you solve some problems.

3.4.1 Are You Authorized?
Following is a list of Problem Management subsystem commands:

� �
-r-xr-x--- 1 bin bin 7760 Sep 28 00:18 pmanctrl
-r-xr-xr-x 1 bin bin 41099 Sep 28 00:18 pmandef
-r-xr-xr-x 1 bin bin 8399 Sep 28 00:17 pmanquery
-r-xr-x--- 1 bin bin 15545 Sep 28 00:17 pmanrmdloadSDR
-r-x------ 1 root system 4528 Sep 28 00:25 pmanrminput� �

This shows that even though you are a general user belonging to the staff group,
you can use the pmandef and pmanquery commands. But there is another hurdle
to overcome, and that is Kerberos.

The pmandef command is based on Sysctl, which uses Kerberos for user
authentication. All users of pmandef must have valid Kerberos credentials.

You may see the following message when you use pmandef:

� �
sysctl: 2501-122 svcconnect: Insufficient Authorization.
pmandef: You are not authorized to use Problem Management.� �

To solve this problem, check the Access Control List (ACL) file for the Problem
Management subsystem, where the file sysctl.pman.acl in directory /etc exists
for this purpose. If there is no user ID that will use pmandef, you must add one.
Figure 41 on page 84 shows the default content of this file:

Chapter 3. Problem Management Subsystem 83

This soft copy for use by IBM employees only.

� �
#acl#

These are the kerberos principals for the users that can configure
Problem Management on this node. They must be of the form as indicated
in the commented out records below. The pound sign (#) is the comment
character, and the underscore (_) is part of the ″_PRINCIPAL″ keyword,
so do not delete the underscore.

#_PRINCIPAL root.admin@PPD.POK.IBM.COM
#_PRINCIPAL joeuser@PPD.POK.IBM.COM

� �
Figure 41. File sysctl.pman.acl

As the comment in the default content indicates, this file is effective only on this
node.

The user′s Kerberos principal must be listed both in this file on the local node
(in order to store the subscription in the SDR), and on the nodes that are
affected by the new subscription. In this way, the affected Problem Management
subsystem daemons will be notified of the new subscription.

If the user′s Kerberos principal is listed only in this file on the local node, the
subscription will be stored in the SDR, but the Problem Management subsystem
daemons will not act on the new subscription until the next time they are
restarted.

If the requested action is to write an entry in the AIX error log and BSD syslog or
to generate an SNMP trap, then the Kerberos principal that owns the
subscription must have been listed in the root user′s $HOME/.klogin file.

If the requested action is to execute a command, then the Kerberos principal
must be listed in the $HOME/.klogin file of the user, which will be used to run the
command.

3.4.2 Is the Problem Management Subsystem Active?
There are three states for Problem Management subsystem daemons:

 1. The active state

 2. The inoperative state

 3. The pman Group is not on file state

To check the current status of the Control Workstation, use the following
command on the Control Workstation:

� �
lssrc -g pman� �

To check the current status of nodes, use the following command on the Control
Workstation:

� �
dsh -a lssrc -g pman� �

84 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The lssrc command reports only Problem Management subsystem daemons on
the local node. Therefore, you have to use this command with the dsh
command, which gives you a short list showing Problem Management daemon
status and Problem Management Resource Monitor daemon status. If some
Problem Management subsystem daemons are inactive, you have to activate
them.

Following is an example showing two active nodes, sp21n01 and sp21n05:

� �
lssrc -g pman
Subsystem Group PID Status
 pman.sp21en0 pman 64610 active
 pmanrm.sp21en0 pman 45156 active
dsh -a lssrc -g pman
sp21n01: Subsystem Group PID Status
sp21n01: pman pman 11300 active
sp21n01: pmanrm pman 15520 active
sp21n05: Subsystem Group PID Status
sp21n05: pman pman 17620 active
sp21n05: pmanrm pman 18656 active� �

If the Problem Management subsystem daemons on node sp21n01 are in the
inoperative state, you will see the following message:

� �
lssrc -g pman
Subsystem Group PID Status
 pman.sp21en0 pman 64610 active
 pmanrm.sp21en0 pman 45156 active
dsh -a lssrc -g pman
sp21n01: Subsystem Group PID Status
sp21n01: pman pman inoperative
sp21n01: pmanrm pman inoperative
sp21n05: Subsystem Group PID Status
sp21n05: pman pman 17620 active
sp21n05: pmanrm pman 18656 active
#� �

To solve this problem, you have to start the Problem Management subsystem
daemons on node sp21n01 by using one of the following commands on the
Control Workstation:

� �
dsh -w sp21n01 startsrc -g pman
sp21n01: 0513-059 The pman Subsystem has been started. Subsystem PID is 17074.
sp21n01: 0513-059 The pmanrm Subsystem has been started. Subsystem PID is 17588.
#� �

or

� �
dsh -w sp21n01 pmanctrl -s
sp21n01: 0513-059 The pman Subsystem has been started. Subsystem PID is 13492.
sp21n01: 0513-059 The pmanrm Subsystem has been started. Subsystem PID is 19144.
#� �

Of course, you can execute these commands on Node sp21n01 without the dsh
command.

Chapter 3. Problem Management Subsystem 85

This soft copy for use by IBM employees only.

Figure 42 on page 86 shows the relationship between the three states for
Problem Management subsystem daemons, and options for the pmanctrl
command:

Figure 42. Status of Problem Management Subsystem Daemons and pmanctr l Command
Options

3.4.3 Is Your Event Subscribed?
You have to subscribe your Problem Management subscription to the
pmandConfig SDR.

To check the content of the pmandConfig SDR, use the following command:

� �
pmanquery -n all -k all� �

This command provides all handles and all the Kerberos principal′s
subscriptions. If you are interested in your particular handle, CPU_Idle_Monitor
(used in Scenario 1), use the following command:

� �
pmanquery -n CPU_Idle_Monitor
pmActivated:pmHandle:pmRvar:pmIvec:pmPred:pmCommand:pmCommandTimeout:pmTrapid:pm
PPSlog:pmText:pmRearmPred:pmRearmCommand:pmRearmCommandTimeout:pmRearmTrapid:pmR
earmPPSlog:pmRearmText:pmUsername:pmPrincipal:pmHost:pmTargetType:pmTarget:pmUse
rLabel
1:CPU_Idle_Monitor:IBM.PSSP.aixos.CPU.glidle:NodeNum=5:X<10:wall Operator: Save
CPU time:0:-1:0: : : :0:-1:0: :root:
root.admin@MSC.ITSO.IBM.COM:sp21en0.msc.itso.ibm.com:NODE_RANGE:5:

#� �

86 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

If you cannot find your Problem Management subscription, you have to subscribe
your Problem Management subscription to the pmandConfig SDR.

To solve this problem, use pmandef with the -s option.

3.4.4 Is Your Event Ready to Be Acted On?
Unfortunately, pmandef allows you to subscribe meaningless data into the
pmandConfig SDR. So, even though you find your Problem Management
subscription in the pmandConfig SDR, if there is something wrong (a syntax
error, for example), the Problem Management subsystem will not accept your
Problem Management subscription.

When you use pmandef, you might see the following error message:

� �
pmansubscr: subscribe for my_subscription failed.

Reason: HA_EM_RSP_EVECSYNTAX (syntax error in vector)
Please execute ″pmandef -u my_subscription″� �

Note the third line, Please execute ″pmandef -u my_subscription″ . This message
is received because, even though your subscription has a syntax error, pmandef
allows you to subscribe it into the pmandConfig SDR. You have to unsubscribe it
as soon as possible.

To check whether the Problem Management subsystem accepts your Problem
Management subscription, use the following command:

� �
pmandef -q all� �

This command gives you all events that are currently subscribed and ready to be
acted on. If you are interested in your particular handle, CPU_Idle_Monitor used
in Scenario 1, use the following command:

� �
pmandef -q CPU_Idle_Monitor
sp21n05: event CPU_Idle_Monitor status:
sp21n05: event subscribed and ready to be acted on
#� �

If your Problem Management subscription is not subscribed and ready to be
acted on, you have to unsubscribe it first. Then subscribe your corrected
Problem Management subscription.

To do this, use pmandef with the -u option to unsubscribe, and then use it with the
-s option to subscribe.

Following is an example in which your Problem Management subscription′s
handle is CPU_Idle_Monitor:

Chapter 3. Problem Management Subsystem 87

This soft copy for use by IBM employees only.

� �
pmandef -u CPU_Idle_Monitor
sp21n05: event CPU_Idle_Monitor unsubscribed
pmandef -s CPU_Idle_Monitor \

-e ′ IBM.PSSP.aixos.CPU.glidle:NodeNum=5:X<10′ \
-c ″wall Operator: Save CPU time″ \
-n 5

#� �

3.4.5 Is Your Event Active and Correct?
When you subscribe your Problem Management subscription, it will be activated
normally.

To check your Problem Management subscription, use the following command:

� �
lssrc -ls pman� �

This command provides you with a current status (active or inactive), of Problem
Management subscriptions on the local node. If you are interested in the status
of Node sp21n05, use the following command on the Control Workstation:

� �
dsh -w sp21n05 lssrc -ls pman
sp21n05: Subsystem Group PID Status
sp21n05: pman pman 4502 active
sp21n05:
sp21n05: pmand started at: Wed Sep 25 09:51:31 1996
sp21n05: pmand last refreshed at:
sp21n05: Tracing is off
sp21n05: ===
sp21n05: Events for which registrations are as yet unacknowledged:
sp21n05: ===
sp21n05: ===
sp21n05: Events for which actions are currently being taken:
sp21n05: ===
sp21n05: ===
sp21n05: Events currently ready to be acted on by this daemon:
sp21n05: ===
sp21n05: ------------------ CPU_Idle_Monitor ----------------
sp21n05: Currently INACTIVE
sp21n05: Client root root.admin@MSC.ITSO.IBM.COM at sp21en0.msc.itso.ibm.
sp21n05: com
sp21n05: Resource Variable: IBM.PSSP.aixos.CPU.glidle
sp21n05: Instance: NodeNum=5
sp21n05: Predicate: X<10
sp21n05: Command to run: wall Operator: Save CPU time
sp21n05: Has run 0 times
#� �

In this example, the message indicates that CPU_Idle_Monitor is Currently
INACTIVE.

To activate your Problem Management subscription, CPU_Idle_Monitor, use the
following command:

88 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
dsh -w sp21n05 pmandef -a CPU_Idle_Monitor
sp21n05: sp21n05: event CPU_Idle_Monitor activated
#� �

You will see CPU_Idle_Monitor become Currently ACTIVE, as follows:

� �
dsh -w sp21n05 lssrc -ls pman
sp21n05: Subsystem Group PID Status
sp21n05: pman pman 4502 active
sp21n05:
sp21n05: pmand started at: Wed Sep 25 09:51:31 1996
sp21n05: pmand last refreshed at:
sp21n05: Tracing is off
sp21n05: ===
sp21n05: Events for which registrations are as yet unacknowledged:
sp21n05: ===
sp21n05: ===
sp21n05: Events for which actions are currently being taken:
sp21n05: ===
sp21n05: ===
sp21n05: Events currently ready to be acted on by this daemon:
sp21n05: ===
sp21n05: ------------------ CPU_Idle_Monitor ----------------
sp21n05: Currently ACTIVE
sp21n05: Client root root.admin@MSC.ITSO.IBM.COM at sp21en0.msc.itso.ibm.
sp21n05: com
sp21n05: Resource Variable: IBM.PSSP.aixos.CPU.glidle
sp21n05: Instance: NodeNum=5
sp21n05: Predicate: X<10
sp21n05: Command to run: wall Operator: Save CPU time
sp21n05: Has run 0 times
#� �

This message also shows you how the Problem Management subsystem treats
Problem Management subscription, and its statistical data.

Figure 43 on page 90 shows a flow of problem determination. If something is
wrong with your monitor, check the following items, step by step, to find the
problem:

Chapter 3. Problem Management Subsystem 89

This soft copy for use by IBM employees only.

Figure 43. Flow of Problem Determination

3.5 Hints and Tips for Problem Management Subsystem Commands
When you operate Problem Management subsystem daemons, you have to know
whether you are operating a daemon, SDR, or both. Operating a daemon is
effective for the current setting, but once the daemon dies, the current setting
will be gone.

Operating SDR is effective the next time the daemon is started or refreshed.
Operating SDR does not change the current setting.

You should be aware, also, that commands for Problem Management subsystem
can be separated into three groups:

 1. Node-wide commands

 2. Partition-wide commands

 3. Partition-wide commands executable only on the Control Workstation

The pmanctrl and pmanrminput commands are node-wide commands. If you want
to execute on another node, you must use the dsh command with these
commands.

On the other hand, pmandef and pmanquery are partition-wide commands. You can
use these commands on any node as long as it is in the same partition.

The pmanrmdloadSDR command is also a partition-wide command, but it is
executable only on the Control Workstation.

90 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The following sections offer information about the Problem Management daemon
and the Problem Management Resource Monitor daemon.

3.5.1 Commands for The Problem Management Daemon
The Problem Management daemon refers to the pmandConfig SDR when it is
started or refreshed. The Problem Management subsystem provides you with
the pmanctrl command for this purpose. But this command works for both the
Problem Management daemon and the Problem Management Resource Monitor
daemon at the same time. If you want to operate only the Problem Management
daemon, you have to use the commands provided by System Resource Control
(SRC).

You can start the Problem Management daemon with the commands:

� �
• startsrc -s pman
• pmanctrl -s

� �

You can refresh the Problem Management daemon with the command:

� �
refresh -s pman� �

The pmandef command works for both pmand and the pmandConfig SDR when
you use it to subscribe, unsubscribe, activate, or deactivate.

Be careful when you use pmandef to query. It reports only the current pmand
status. If you want to know the content in the pmandConfig SDR, you have to
use the pmanquery command instead.

Figure 44 on page 92 shows the relationship among commands for the Problem
Management daemon, pmand, and the pmandConfig SDR.

Chapter 3. Problem Management Subsystem 91

This soft copy for use by IBM employees only.

Figure 44. Commands for the Problem Management Daemon

3.5.2 Commands for the Problem Management Resource Monitor Daemon
The Problem Management Resource Monitor daemon refers to the
pmanrmdConfig SDR when it is started or refreshed. The Problem Management
subsystem provides the pmanctrl command for this purpose. But this command
works for both the Problem Management daemon and the Problem Management
Resource Monitor daemon at the same time. If you want to operate only the
Problem Management Resource Monitor daemon, you have to use commands
provided by System Resource Control (SRC).

You can start the Problem Management Resource Monitor daemon with the
following commands:

� �
• startsrc -s pmanrm
• pmanctrl -s

� �

There is no refresh command for the Problem Management Resource Monitor
daemon.

To create a new object in the pmanrmdConfig SDR, the Problem Management
subsystem provides the pmanrmdloadSDR command. If you want to perform an
action other than create, you can use regular SDR commands, such as
SDRGetObjects or SDRDeleteObjects.

Be careful when you use the pmanrmdloadSDR command, because it works on the
pmanrmdConfig SDR only. If you want to use this object, you have to restart the
Problem Management Resource Monitor daemon.

92 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The pmanrminput command changes the status of the Resource Variable
immediately.

Figure 45 shows the relationship among commands for the Problem
Management Resource Monitor daemon, pmanrmd, and the pmanrmdConfig
SDR.

Figure 45. Commands for the Problem Management Resource Monitor Daemon

3.6 Short Examples
This section offers several simple examples of monitors.

3.6.1 The File System Monitor
Whenever the file system associated with the hd3 logical volume and the rootvg
volume group on Nodes 1 through 8 becomes more than 90% full, the text /tmp
file system is almost full is written to the AIX error log and BSD syslog
facilities on the node where the file system filled up.

� �
pmandef -s Tmp_Filesystem_Monitor \

-e ′ IBM.PSSP.aixos.FS%totused: \
NodeNum=1-8;VG=rootvg;LV=hd3: \
X>90′ \

-l ″ / tmp file system is almost full″ \
-h local� �

Chapter 3. Problem Management Subsystem 93

This soft copy for use by IBM employees only.

3.6.2 The Process Monitor
Running this example on Node 1 causes the command echo program has stopped
>/tmp/root_proc.out to run on Node 1 whenever the number of processes named
root_proc and owned by user root on Node 2 becomes 0. When this number
increases back to 1, the command echo program has restarted
>/tmp/root_proc.out runs on Node 1.

� �
pmandef -s Process_Monitor \

-e ′ IBM.PSSP.Prog.pcount: \
NodeNum=2;ProgName=root_proc;UserName=root: \
X@0==0′ \

-r ″X@0>0″ \
-c ″echo program has stopped >/tmp/root_proc.out″ \
-C ″echo program has restarted >/tmp/root_proc.out″� �

3.6.3 /etc File Changed Monitor
If you use the following Problem Management Resource Monitor daemon
configuration file, the Problem Management Resource Monitor daemon will run
the command /bin/ls -tl /etc | /bin/head -2 | /bin/grep -v total every 10
minutes on Node 5, and it will send the output of that command as the value of
the Resource Variable IBM.PSSP.pm.User_state2 to Event Management.

� �
TargetType=NODE_RANGE
Target=5
Rvar=IBM.PSSP.pm.User_state2
SampInt=600
Command=″ / bin/ls -tl /etc | /bin/head -2 | /bin/grep -v total″� �

The output of this command is the name and time stamp of the last file to be
changed. You could then subscribe to changes in the /etc directory with the
following command:

� �
pmandef -s Etc_File_Changed_Monitor \

-e ′ IBM.PSSP.pm.User_state2:NodeNum=5:X@0!=X@P0′ \
-c ″echo File changed in /etc directory on node 5 \

at \$(date) >> /tmp/etc_change_log″ \
-n 1-5� �

Whenever the most recent output of the command /bin/ls -tl / etc | /bin/head
-2 | /bin/grep -v total on Node 5 is different from the previous output, the
event definition will be satisfied and the command echo File changed in /etc
directory on node 5 at \$(date) >> /tmp/e tc _change_log wil l get executed on
Nodes 1 through 5.

3.6.4 Server Monitor
Suppose you have a server application running on Node 10 and you sometimes
want to tell users on Nodes 1 through 9 to stop using this application. Create a
Problem Management subscription on Nodes 1 through 9 to run the wall
command to inform the users about the state of the server application.

When the server application is ready for users, it uses the pmanrminput command
to communicate its state to the Problem Management subsystem. The Problem

94 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Management subsystem passes the string READY to Event Management as the
value of the Resource Variable IBM.PSSP.pm.User_state3. This value satisfies
the event definition, so the command wall Node 10 is ready runs on Nodes 1
through 9.

When the server application has a problem, it can use pmanrminput to
communicate a state change. The Resource Variable NOT READY satisfies the
rearm event definition, so the command wall Stop using node 10 runs on Nodes
1 through 9.

� �
$ pmandef -s Server_Monitor \

-e ′ IBM.PSSP.pm.User_state3:NodeNum=10:X@0==″READY″ ′ \
-r ′ X@0!=″READY″ ′ \
-c ″wall Node 10 is ready″ \
-C ″wall Stop using node 10″ \
-n 1-9

$ pmanrminput -s pman -a ″IBM.PSSP.pm.User_state3+READY+″

$ pmanrminput -s pman -a ″IBM.PSSP.pm.User_state3+NOT READY+″� �

Chapter 3. Problem Management Subsystem 95

This soft copy for use by IBM employees only.

96 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Chapter 4. Application Program Interfaces (APIs)

The Event Management subsystem provides two APIs that allow you to create
your own monitors. One API allows programs to be clients of the Event
Management subsystem, while the other supports the creation of new Resource
Monitors.

Customized Event Management clients can be created if the Problem
Management subsystem and Perspectives programs that are supplied with
POWERparallel System Support Programs Version 2.2 (PSSP 2.2) are not
appropriate for your special circumstances. Customized Resource Monitors
allow information from new applications and facilities to be collected and passed
on to the Event Management subsystem.

4.1 Some Details Before We Start
 Important

It is possible for Event Management clients to cause serious performance
problems for any partition on an RS/6000 SP, not just for the partition that the
client is monitoring. In particular, it is possible to cause very high network
traffic on the RS/6000 SP systems′ networks. The CPU and virtual memory
utilization on the Control Workstation can be severely affected by Event
Management clients.

Carefully evaluate whether it is appropriate to develop and test EMAPI code
on your systems.

Note: All of these examples and programs are written in ANSI C and compiled
using the xlc compiler. This compiler is a separate product and must be
purchased and installed on your system before you can compile the examples.
Be careful in the use of _BSD when building distributed applications. The AIX
API documentation is pretty vague on the usage of _BSD. Our examples are
coded using interfaces that do not require _BSD.

The include files and libraries needed by these examples are installed on the
Control Workstation when PSSP 2.2 is installed. A number of samples can be
found in the /usr/lpp/ssp/samples/ directory.

The examples depend on the ssp.clients fileset, which must be installed on an
AIX system so that the libraries can be loaded by the example programs. You
should be aware that the construction of the programs must be changed if this
dependency needs to be removed for some reason.

The complete source code is available in machine-readable form. See
Appendix H, “How to Get the Examples in This Book” on page 257 for more
details.

All of the code was compiled and tested. We reformatted the source code
figures in this book and made other small changes to improve the appearance.
It is possible that we introduced some error during this process. If you find
anything that looks wrong, check the diskette or online versions.

 Copyright IBM Corp. 1997 97

This soft copy for use by IBM employees only.

The Event Management subsystem APIs are documented in IBM Parallel System
Support Programs for AIX, Event Management Programming Guide and
Reference, SC23-3996. An online version of this manual is installed in
/usr/lpp/ssp/docs.

Review the contents of the files in the /usr/lpp/ssp/README directory for
release-specific information.

 Attention

Read this before you rewrite the whole system.

The Problem Management subsystem can be configured to use the
information that is obtained from the Event Management subsystem to
provide many customized interfaces. Though writing your own Event
Management subsystem client is an interesting and worthwhile project, it
would be a good idea to take some time to learn about the tools that are
provided with PSSP 2.2, as these are very different from those available in
PSSP 2.1 and PSSP 1.2.

Even if you find that the current tools do not provide the facilities you need,
an understanding of how those clients work will be helpful in designing and
creating your custom Event Management subsystem client.

4.2 Example EMAPI Programs
Perhaps the best way to understand the Event Manager APIs is to construct a
program that uses them. PSSP 2.2 provides you with a few sample programs.
They can be found in the /usr/lpp/ssp/samples directory.

Three Event Management subsystem clients are described in this section. They
are:

lsemv Lists Event Management variables in various ways, obtaining the
information from the Event Management subsystem rather than using
the possibly stale information in the SDR.

getemv Gets the current values of the specified instances of an Event
Management subsystem variable.

monemv Registers a user-specified Event Management event predicate, then
sends messages to stdout when the events occur.

4.2.1 Utility Functions and Construction of EMAPI Clients
The construction process for EMAPI clients requires little special work. Note the
following points:

• EMAPI clients must be linked with libha_em.a to resolve the EMAPI functions.

• EMAPIs are defined in ha_emapi.h, which includes other files. These files
are installed in the normal locations in /usr when PSSP 2.2 is installed, so no
special search flags are needed in your Makefile.

The Makefile that is used to build these sample programs is shown in Figure 46
on page 99.

98 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

PROGS=lsemv getemv monemv
DESTDIR=/var/local/SPmonitoring/bin
CC=xlc
CFLAGS=-g

all: $(PROGS)

lsemv: lsemv.o util.o Makefile
$(CC) -o $@ lsemv.o util.o -lha_em

getemv: getemv.o util.o Makefile
$(CC) -o $@ getemv.o util.o -lha_em

monemv: monemv.o util.o Makefile
$(CC) -o $@ monemv.o util.o -lha_em

lsemv.o: lsemv.c util.h Makefile
$(CC) $(CFLAGS) -c lsemv.c -o $@

getemv.o: getemv.c util.h Makefile
$(CC) $(CFLAGS) -c getemv.c -o $@

monemv.o: monemv.c util.h Makefile
$(CC) $(CFLAGS) -c monemv.c -o $@

util.o: util.c util.h Makefile
$(CC) $(CFLAGS) -c util.c -o util.o

install: all
cp $(PROGS) $(DESTDIR)

clean:
rm -f *.o $(PROGS)

Figure 46. The Makefile File for Constructing lsemv, getemv, and monemv

The util.c utility contains a number of common routines. The util.h header file,
which is shown in Figure 47 on page 100, is included in all EMAPI sample
programs.

These utility functions fall into three categories:

• Error message routines

• Wrapper functions for printf() that test the return codes

• Functions to manipulate SBS data items

Check the sources for these routines if you are interested in the details.

Error handling is very important in Event Management subsystem clients and
many of the routines help with this task. Generally, functions that provide return
codes are checked to make sure that all calls complete correctly. The error
message routines are an exception to this, because if the return code is in an
error function, things are probably already going badly and any meaningful
recovery may not be possible. There are other instances where error codes are

Chapter 4. Application Program Interfaces (APIs) 99

This soft copy for use by IBM employees only.

ignored. Examples include the movement of data to successfully allocated
memory.

#ifndef ___UTIL_H
#define ___UTIL_H

struct sbs_elem_t {
struct sbs_elem_t *next; /* points to next element, NULL in end */
unsigned short length; /* as defined in SBS */
unsigned char sn; /* serial number 0-255 */
unsigned char type; /* enum ha_emField_Type */
union {

 long l; /* length is 4 */
float f; /* length is 4 (this is really a float, not a double */
char *c; /* \0 terminated string. \0 is included in length */
char *b; /* string of bytes. no trailing \0 */

} value;
};

extern const int EXIT_NOEXIT;
extern const int EXIT_NOERROR;
extern const int EXIT_USAGE;
extern const int EXIT_NOTFOUND;
extern const int EXIT_TIMEOUT;
extern const int EXIT_RESOURCE;
extern const int EXIT_UNEXPECTED;

extern void setThisProgramName(const char *name);

extern char * getThisProgramName();

extern void errorExit(const int exitCode, const char *format, ...);

extern void printEMMsg(const int exitCode, const char *msg,
const struct ha_em_err_blk *error);

void printEventItemError(const struct ha_em_rpb_event error);
void printCurrentItemError(const struct ha_em_rpb_qcur error);
void printQueryItemError(const struct ha_em_rpb_qerr error);
void printDefinedItemError(const struct ha_em_rpb_qdef error);
void printRegisterItemError(const struct ha_em_rpb_rerr error);

extern void safePrintf(const char *format, ...);

unsigned long writeSBSElements(FILE *file, const struct sbs_elem_t *data);
void freeSBSElements(struct sbs_elem_t *data);
char * elementsToSBS(const struct sbs_elem_t *sbs);
struct sbs_elem_t * SBSToElements(const char *sbs);
void safePrintSBS(char *sbs);

#endif /* ___UTIL_H */

Figure 47. Excerpts from util.h Showing Util ity Functions

The util.h utility is shown in Figure 47; the following describes details of using it.

Using setThisProgramName(char *name) stores the program name, argv [0], for
later use by the error printing functions.

100 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

errorExit(const int exitCode, const char *format, ...) is built on printf(const
char *format, ...).

The parameter exitCode causes the program to terminate with an exit code after
printing the formatted message (if its value is not EXIT_NOEXIT).

A variety of functions are provided to send formatted messages to stdout that
describe errors returned by EMAPI routines.

safePrintf(const char * format, ...) is similar to regular printf(), except that
the return code is tested, and if nothing is written to stdout, an error is
generated.

Finally, a number of routines are provided to manipulate SBS data objects.
These break an SBS object into a list of its elements and allow it to be written to
a stream in a human-readable format.

To see how these utility functions are used, let us turn our attention to the first
example.

4.2.2 The lsemv Program
We start with the simplest sample program, lsemv. This program queries the
Event Management subsystem to discover the Resource Variables and Instance
Vectors that are currently available. Two examples of this program (lsemv and
lsemv -l) are shown in Figure 48.

� �
pgc@sp2en0: lsemv
IBM.PSSP.aixos.Proc.swpque
IBM.PSSP.aixos.Proc.runque
...
IBM.PSSP.CSS.bcast_tx_ok
IBM.PSSP.CSS.bcast_rx_ok
pgc@sp2en0:
pgc@sp2en0: lsemv -l
IBM.PSSP.aixos.Proc.swpque Q F IBM.PSSP.aixos.Proc NodeNum=int
IBM.PSSP.aixos.Proc.runque Q F IBM.PSSP.aixos.Proc NodeNum=int
IBM.PSSP.aixos.pagsp.size Q L IBM.PSSP.aixos.PagSp Name=cstring;N
odeNum=int

...� �
Figure 48. Two Examples of the lsemv Program

Chapter 4. Application Program Interfaces (APIs) 101

This soft copy for use by IBM employees only.

� �
pgc@sp2en0: lsemv -v IBM.PSSP.aixos.Proc.swpque
======================
Resource Variable Name: ″IBM.PSSP.aixos.Proc.swpque″
Variable Value Type: Quantity
Variable Data Type: float
Variable SBS Format: ″″
Variable Initial Value: ″0.000000″
Variable Class: ″IBM.PSSP.aixos.Proc″
Instance Vector: ″NodeNum=int″
PTX Name: ″″
Default Predicate: ″″
Locator: ″NodeNum″

Variable Description

Average count of processes waiting to be paged in

Instance Vector Desciption

The number of the node for which the information applies.

Event Description

pgc@sp2en0:� �

Figure 49. Another Example of lsemv

The flow of lsemv is:

 1. Parse the command line.
 2. Initialize the environment for EMAPI.
 3. Open a session with the Event Management subsystem.
 4. For each name on the command line:

a. Construct and send the query request to Event Management.
b. Receive and process the responses from Event Management.

 5. Close the session with the Event Management subsystem.
 6. Clean up the environment and exit.

Figure 50 on page 103 shows the main() function. The program name is stored
so that it can be printed in error messages. The values of the command line
flags are stored in global variables. The parse() function uses getopt() to
retrieve parameters from the command line. If specified on the command line,
an alarm is started to terminate the process if something stalls. The EMAPI
documents encourage you to ignore SIGPIPE. (This might not be possible,
depending on your application′s needs.) In the lsemv program, SIGPIPE is not
needed, so it is ignored.

Next, a session is opened to the Event Management subsystem.
processNames() processes each name on the command line. If there are no
names on the command line, an empty line is created.

After all the names are processed, the Event Management subsystem session is
closed and the program terminates with the appropriate return code.

102 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

int
main(int argc, char *argv[])
{
int sessionFD;
int nextName;
struct ha_em_err_blk error;

 setThisProgramName(argv[0]); /* keep this for use in error messages */
nextName = parse(argc, argv);
if (helpFlag) {
usage();
exit(EXIT_USAGE);

}

if (timeoutFlag > 0) {
if (signal(SIGALRM, timeoutHandler) == (void(*)(int)) -1) {
errorExit(EXIT_UNEXPECTED, ″problem installing SIGPIPE handler\n″) ;

}
alarm(timeoutFlag);

}

if (signal(SIGPIPE, SIG_IGN) == (void(*)(int)) -1) {
errorExit(EXIT_UNEXPECTED, ″problem ignoring SIGPIPE\n″) ;

}

sessionFD = ha_em_start_session(spNameFlag, &error);
if (sessionFD == -1) {
printEMMsg(EXIT_UNEXPECTED, ″ha_em_start_session″, &error);

}

if (argc == nextName) {
char *emptyString = ″″ ;
processNames(&sessionFD, 1, &emptyString); /* no names on command l

} else {
processNames(&sessionFD, argc - nextName, &argv[nextName]);

}

if (ha_em_end_session(sessionFD, &error) == -1) {
printEMMsg(EXIT_UNEXPECTED, ″ha_em_end_session″, &error);

}

exit(numberNotFound ? EXIT_NOTFOUND : EXIT_NOERROR);
return 0;

}

Figure 50. The main() Function for lsemv

Chapter 4. Application Program Interfaces (APIs) 103

This soft copy for use by IBM employees only.

void
processNames(int *sessionFD, int count, char *list[])
{
int loop;
size_t commandSize;
struct ha_em_cmd_blk *commandP;
struct ha_em_err_blk error;
ha_em_qid_t qId;

for (loop = 0; loop < count; loop++) {
commandSize = sizeof(struct ha_em_cmd_blk)+sizeof(struct ha_em_rb_que
if ((commandP = malloc(commandSize)) == NULL) {
errorExit(EXIT_RESOURCE, ″Can not allocate emCommand struct.\n″) ;

}

commandP->em_cmd_num_elem = 1;
commandP->em_cmd = HA_EM_CMD_QUERY;
commandP->em_subcmd = HA_EM_SCMD_QDEF;
commandP->em_qcb = NULL;
commandP->em_qcb_arg = NULL;

commandP->em_res_blk.em_rb_query[0].em_class = ″″ ;
commandP->em_res_blk.em_rb_query[0].em_name = list[loop];
commandP->em_res_blk.em_rb_query[0].em_ivector = ″*″ ;

if (ha_em_send_command(*sessionFD, commandP, &error) == -1) {
printEMMsg(EXIT_UNEXPECTED, ″ha_em_send_command″, &error);

}

qId = commandP->em_qid; /* save this so we can match up the response
free(commandP);

processResponses(sessionFD, qId);
 } /* for (loop ...) through names on command line */
}

Figure 51. The processNames() Function for lsemv

Figure 51 shows processNames(), which constructs a command block that
requests a query of the defined Resource Variables. That command block is
sent to the Event Management subsystem using the ha_em_send_command()
command. After the command block has been successfully sent,
processResponses() is called to sort through all the responses that the Event
Management subsystem sends to satisfy the query.

This program wildcards the class, because we are looking for Resource
Variables by name. We also wildcard the Instance Vector. Notice that the class
is wildcarded by using an empty string, while the Instance Vector requires a
string containing an asterisk (*) character. The name parameter uses an empty
string (like the one that is used if no name is provided on the command line) as
a wildcard.

In this program, the command block is allocated and then freed each time
through the loop. We could have declared a command block as an automatic
variable in the function. There is no requirement that the command block be
dynamically allocated.

104 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The command block is sent to the Event Manager via the ha_em_send_command()
function. Few errors are reported by this function. Most of the interesting errors
are discovered when the responses are processed. Still, you must check for
errors at this point.

If the send function completes successfully, the EMAPI will generate a unique
query identifier for this request. You should store this value so you can make
sure that the responses you receive are for the appropriate query. In this simple
program, this should not be a problem. In a program that issues multiple
queries, the query identifiers are used to sort out the information as it is
received.

Creating the command block and sending it to the Event Manager is relatively
easy. Processing the information that is received in response to the query is the
tough part. Let us see what happens in processResponses(), which is shown in
Figure 52 on page 106.

Chapter 4. Application Program Interfaces (APIs) 105

This soft copy for use by IBM employees only.

void
processResponses(int *sessionFD, const ha_em_qid_t qId)
{
int receiveRC;
struct ha_em_rsp_blk *responseP;
struct ha_em_err_blk error;

for (; ;) {
receiveRC = ha_em_receive_response(*sessionFD, &responseP, &error);
switch (receiveRC) {
case -1:
/* the only error that can be recovered is HA_EM_ECONNLOST */
if (error.em_errno == HA_EM_ECONNLOST) {
int newFD;
newFD = ha_em_restart_session(*sessionFD, &error);
if (newFD == -1) {
printEMMsg(EXIT_UNEXPECTED,

″ha_em_restart_session failed\n″, &error);
}
*sessionFD = newFD;

}
break;

case 0:
break;

default:
if (responseP->em_qid == qId) {
processOneResponse(responseP);

} else {
errorExit(EXIT_UNEXPECTED, ″got wrong qid″) ;

}
}

if (receiveRC != 0) {
if (responseP->em_qend) {
free(responseP); /* must free responseP in both cases */
return;

} else {
free(responseP); /* must free responseP in both cases */

}
}

 } /* for (; ;) */
errorExit(EXIT_UNEXPECTED, ″error in program logic!!\n″) ;

}

Figure 52. The processResponses() Function for lsemv

The function processResponses() continues to call ha_em_receive_response() until
a response is received with the query end indicator, em_qend, set. The for (; ;
) structure will loop forever. The only ways out of this loop are the return near
the end of the loop, or exiting if a nonrecoverable error is detected.

The most difficult task is making sure that all possible error-reporting variables
are tested correctly. Certain error indicators are only valid when other error
indicators are in certain states.

106 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The first thing to test is the return value from ha_em_receive_response(). If this is
0, there is nothing for your process to do except to call ha_em_receive_response()
again. None of the other error indicators should be tested, as they do not have
valid information.

If the return value was -1, the error block of type struct ha_em_err_blk that was
passed by reference will contain information about the problem that occurred.
The only problem that is recoverable is the loss of the session connection,
reported as HA_EM_ECONNLOST. If this error occurs, the application can try to
restart the session using ha_em_restart_session(). Remember that if the session
is successfully restarted, it will get a new file descriptor, so you must be able to
update this value. That is why sessionFD is passed by reference.

Once the connection to the Event Management subsystem has been lost, it may
not be possible to reestablish the connection immediately. The call may return
an HA_EM_ECONNREFUSED error in this case. lsemv tries only once to restart the
session, then gives up. However, other Event Management subsystem clients
might be more persistent in attempts to restart the failed session. The interval
selected to restart the connection depends on the needs of the client application,
but it is probably not useful for intervals less than 5 seconds long.

If the return code was not -1 or 0, then ha_em_receive_response() has allocated a
response block and returned its address to your application. The response block
must be freed by your application when you are done processing the data it
contains. The response block is created so that all of the data areas that are
referenced in the response block will be correctly freed if your application simply
calls free() with the address of the response block. As usual, do not free the
memory till you are certain your process will no longer need the data.

Note: The contents of the error block passed to ha_em_receive_response() will
only be set to valid values when ha_em_receive_response() returns -1.

While the response block has a number of fields, it is critical to check three
particular fields. The first is the response block level error number. Many
errors are reported at this level. The query identifier should be checked to make
certain this information has been sent in response to your application′s query.
Also, the query end indicator is set in the last response that contains information
for the query. This is how lsemv gets out of the loop under normal
circumstances.

If the ha_em_receive_response() return value is greater than 0 and this is data for
the correct query, the response block is passed to processOneResponse(),
shown in Figure 53 on page 108, to extract the desired information. The
response block is freed by processResponses().

Chapter 4. Application Program Interfaces (APIs) 107

This soft copy for use by IBM employees only.

void
processOneResponse(const struct ha_em_rsp_blk *responseP)
{
switch (responseP->em_cmd) {
case HA_EM_CMD_QUERY:
switch (responseP->em_subcmd) {
case HA_EM_SCMD_QDEF:
processDefinedList(responseP);
break;

default:
/* something has gone wrong */
errorExit(EXIT_UNEXPECTED, ″value of em_subcmd = %d\n″ ,

responseP->em_subcmd);
/* NOTREACHED */
break;

} /* switch (responseP->em_subcmd) */
break;

case HA_EM_CMD_QERR:
processQerrList(responseP);
break;

case HA_EM_CMD_REG:
case HA_EM_CMD_REG2:
case HA_EM_CMD_UNREG:
case HA_EM_CMD_RERR:
case HA_EM_CMD_R2ERR:
default:
/* something has gone wrong */
errorExit(EXIT_UNEXPECTED, ″value of em_cmd = %d\n″ ,

responseP->em_cmd);
/* NOTREACHED */
break;

}
}

Figure 53. The processOneResponse() Function for lsemv

The function processOneResponse() uses two fields in the response block,
em_cmd and em_subcmd, to determine what type of data is in the block. Different
functions are called to do the actual work of processing the information,
depending on the type of response.

The lsemv client expects only two types of response blocks, in particular,
HA_EM_CMD_QUERY and HA_EM_CMD_QERR. No other type of information should be
returned. If the response block contains error information (HA_EM_CMD_QERR),
processQerrList() processes the information. Responses that contain the data
that lists the Resource Variables (HA_EM_CMD_QUERY), are processed by
processDefinedList(). Let us look at processQerrList() in Figure 54 on page 109
first.

108 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

void
processQerrList(const struct ha_em_rsp_blk *responseP)
{
int loop;

for (loop = 0; loop < responseP->em_rsp_num_resp; loop++) {
printQueryItemError(responseP->em_resp_blk.em_rpb_qerr[loop]);
numberNotFound++;

}
}

Figure 54. The processQerrList() Function for lsemv

In processQerrList() we see that a single response block can hold many items.
em_rsp_num_resp provides the number of items that are contained in the response
block. Early versions of this function would look for a particular type of error that
is to be expected in the normal operation of the lsemv command. That error is
reported when a Resource Variable that was listed on the command line is not
found in the Event Management subsystem.

The current version calls the utility function printQueryItemError(). This function
sends an error message to stderr. This collects the code for decoding the errors
in a single place.

A global variable is incremented so that we can provide the correct exit code
when the application ends. This is similar to the way the ls command handles
names that are not found.

Finally we reach the function that prints the list of event manager Resource
Variables that are defined in the Event Management subsystem.

processDefinedList() looks more complex than processQerrList(), but it is quite
simple. processDefinedList() loops through the items. After it checks the per
item error code, it formats the information as requested on the command line.

processDefinedList() is shown in Figure 55 on page 110. Using #define D as
shown in the figure can save a lot of typing because the names can be long.

We could pass a pointer to the array of em_rpb_qdef, but then we would have to
pass an extra parameter with the value of em_rsp_num_resp. Good compilers
should be able to handle either choice efficiently.

Chapter 4. Application Program Interfaces (APIs) 109

This soft copy for use by IBM employees only.

void
processDefinedList(const struct ha_em_rsp_blk *responseP)
{
int loop;

/* the following saves lots of typing */
#define D responseP->em_resp_blk.em_rpb_qdef[loop]

for (loop = 0; loop < responseP->em_rsp_num_resp; loop++) {
if (responseP->em_resp_blk.em_rpb_qdef[loop].em_errnum) {
printDefinedItemError(D);
numberNotFound++;

} else {
/* OK, no errors, figure what kind of output is desired and print i
if (verboseFlag) {
/* verbose version */
safePrintf(″======================\n″) ;
safePrintf(″Resource Variable Name: \″%s\″\n″ , D.em_name);
safePrintf(″Variable Value Type: %s\n″ ,

(D.em_value_type == ha_emVTcounter) ? ″Counter″ :
(D.em_value_type == ha_emVTquantity) ? ″Quantity″ :
(D.em_value_type == ha_emVTstate) ? ″State″ : ″UNKNOWN

safePrintf(″Variable Data Type: %s\n″ ,
(D.em_data_type == ha_emDTlong) ? ″long″ :
(D.em_data_type == ha_emDTfloat) ? ″float″ :
(D.em_data_type == ha_emDTsbs) ? ″SBS″ : ″UNKNOWN″) ;

safePrintf(″Variable SBS Format: \″%s\″\n″ , D.em_sbs_format);
safePrintf(″Variable Initial Value: \″%s\″\n″ , D.em_init_value);

...

...
/* long version */
} else if (longFlag) {
safePrintf(″%-40s ″ , D.em_name);
safePrintf(″%1s ″ , (D.em_value_type == ha_emVTcounter) ? ″C″ :

(D.em_value_type == ha_emVTquantity) ? ″Q″ :
(D.em_value_type == ha_emVTstate) ? ″S″ : ″U″)

safePrintf(″%1s ″ , (D.em_data_type == ha_emDTlong) ? ″L″ :
(D.em_data_type == ha_emDTfloat) ? ″F″ :
(D.em_data_type == ha_emDTsbs) ? ″S″ : ″U″) ;

safePrintf(″%-20s ″ , D.em_class);
safePrintf(″%s\n″ , D.em_ivector);

/* normal version */
} else {
safePrintf(″%s\n″ , D.em_name);

}
}

}
}
/* clean up */
#undef D

Figure 55. The processDefinedList() Function for lsemv

The other functions in lsemv offer no insight into the use of the EMAPI and are
not discussed. The complete set of source code is provided. See Appendix H,
“How to Get the Examples in This Book” on page 257 for details.

110 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

4.2.3 The getemv Program
The getemv program queries the Event Management subsystem for the current
values of Resource Variables. Some examples of its use are shown in Figure 56
and Figure 57.

� �
pgc@sp2en0: getemv IBM
==
Resource Variable: ″IBM.PSSP.Membership.LANAdapter.state″
Instance Vector: ″NodeNum=16;AdapterType=en;AdapterNum=0″
Location: 0
Data Type: LONG
Value: 1

==
Resource Variable: ″IBM.PSSP.Membership.LANAdapter.state″
Instance Vector: ″NodeNum=15;AdapterType=en;AdapterNum=0″
Location: 0
Data Type: LONG
Value: 1

==
Resource Variable: ″IBM.PSSP.Membership.LANAdapter.state″
Instance Vector: ″NodeNum=14;AdapterType=en;AdapterNum=0″
Location: 0
Data Type: LONG
Value: 1

==

...
pgc@sp2en0:� �

Figure 56. Using getemv to List A l l Instances of Names That Start with IBM

� �
pgc@sp2en0: getemv -l IBM.PSSP.SP_
HW.Node.keyModeSwitch NodeNum=1-8
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=8 0 LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=7 0 LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=6 0 LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=5 0 LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=4 0 LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=3 0 LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=2 0 LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=1 0 LONG 0
pgc@sp2en0:� �

Figure 57. Using getemv to List Specific Instances of One Resource Variable

The structure of getemv is very similar to that of lsemv. Both programs query
the Event Management subsystem for information, and then exit. This section
discusses some of the differences between these programs.

The main() functions differ in the way the command lines are parsed. The lsemv
function can take any number of names, while getemv requires a single
Resource Variable name and allows an optional Instance Vector to be specified.
The basic setup and cleanup tasks are the same.

Chapter 4. Application Program Interfaces (APIs) 111

This soft copy for use by IBM employees only.

The processName() function in Figure 58 on page 112 illustrates how different
command blocks are created. Notice that in getemv, em_subcmd is set to
HA_EM_SCMD_QCUR rather than HA_EM_SCMD_QDEF. The Instance Vector might not be a
wildcard in getemv if the user specified a value on the command line.

void
processName(int *sessionFD, char * name, char *ivector)
{
size_t commandSize;
struct ha_em_cmd_blk *commandP;
struct ha_em_err_blk error;
ha_em_qid_t qId;

commandSize = sizeof(struct ha_em_cmd_blk)+sizeof(struct ha_em_rb_que
if ((commandP = malloc(commandSize)) == NULL) {
errorExit(EXIT_RESOURCE, ″Can not allocate emCommand struct.\n″) ;

}

commandP->em_cmd_num_elem = 1;
commandP->em_cmd = HA_EM_CMD_QUERY;
commandP->em_subcmd = HA_EM_SCMD_QCUR;
commandP->em_qcb = NULL;
commandP->em_qcb_arg = NULL;

commandP->em_res_blk.em_rb_query[0].em_class = ″″ ;
commandP->em_res_blk.em_rb_query[0].em_name = name;
commandP->em_res_blk.em_rb_query[0].em_ivector = ivector;

if (ha_em_send_command(*sessionFD, commandP, &error) == -1) {
printEMMsg(EXIT_UNEXPECTED, ″ha_em_send_command″, &error);

}

qId = commandP->em_qid; /* save this so we can match up the response
free(commandP);

processResponses(sessionFD, qId);
}

Figure 58. The processName() Function for getemv

The processResponse() functions perform the same tasks in lsemv and getemv.
However, the processOneResponse() function differs slightly.

In getemv, the responses of type HA_EM_SCMD_QCUR are the ones that contain the
information that answers the user′s request.

The processOneResponse() function is shown in Figure 59 on page 113, where
you can compare it with the version for lsemv in Figure 53 on page 108.

112 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

void
processOneResponse(const struct ha_em_rsp_blk *responseP)
{
switch (responseP->em_cmd) {
case HA_EM_CMD_QUERY:
switch (responseP->em_subcmd) {
case HA_EM_SCMD_QCUR:
processValueList(responseP);
break;

default:
/* something has gone wrong */
errorExit(EXIT_UNEXPECTED, ″value of em_subcmd = %d\n″ ,

responseP->em_subcmd);
/* NOTREACHED */
break;

} /* switch (responseP->em_subcmd) */
break;

case HA_EM_CMD_QERR:
processQerrList(responseP);
break;

case HA_EM_CMD_REG:
case HA_EM_CMD_REG2:
case HA_EM_CMD_UNREG:
case HA_EM_CMD_RERR:
case HA_EM_CMD_R2ERR:
default:
/* something has gone wrong */
errorExit(EXIT_UNEXPECTED, ″value of em_cmd = %d\n″ ,

responseP->em_cmd);
/* NOTREACHED */
break;

}
}

Figure 59. The processOneResponse() Function for getemv

Chapter 4. Application Program Interfaces (APIs) 113

This soft copy for use by IBM employees only.

void
processValueList(const struct ha_em_rsp_blk *responseP)
{
#define D responseP->em_resp_blk.em_rpb_qcur[loop]

for (loop = 0; loop < responseP->em_rsp_num_resp; loop++) {
if (responseP->em_resp_blk.em_rpb_qcur[loop].em_errnum) {
printCurrentItemError(D);
numberNotFound++;

} else {
/* OK, no errors, figure what kind of output is desired and print i
if (longFlag) {
/* long version */
safePrintf(″%s ″ , D.em_name);
safePrintf(″%s ″ , D.em_ivector);
safePrintf(″%d ″ , D.em_location);
switch (D.em_data_type) {
case ha_emDTlong:
safePrintf(″%s ″, ″LONG″) ;
safePrintf(″%ld″ , (long) D.em_val.em_vall);
break;

case ha_emDTfloat:
safePrintf(″%s ″, ″FLOAT″) ;
safePrintf(″%f″ , (double) D.em_val.em_valf);
break;

case ha_emDTsbs:
safePrintf(″%s ″, ″SBS″) ;
safePrintSBS(D.em_val.em_valsbs);
break;

default:
errorExit(EXIT_NOEXIT,″UNKNOWN DATA TYPE OF %d″ ,

(int) D.em_data_type);
}

} else {
/* normal version */
safePrintf(″==\n″) ;
safePrintf(″Resource Variable: \″%s\″\n″ , D.em_name);
safePrintf(″Instance Vector: \″%s\″\n″ , D.em_ivector);

...

...
default:
errorExit(EXIT_NOEXIT,″UNKNOWN DATA TYPE OF %d″ ,

(int) D.em_data_type);
}

}
safePrintf(″\n″) ;

}
}

}
/* clean up */
#undef D

Figure 60. The processValueList() Function for getemv

The last important difference is shown in Figure 60. processValueList() is
similar to processDefinedList(). In getemv there is less information to display,

114 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

though there will probably be more items in the lists, since each Resource
Variable can have many instances.

These first two programs are very similar. An interesting exercise would be to
rewrite lsemv and getemv as a single program. This program would alter its
behavior depending on the name by which it was invoked. Once the basic flow
is understood, it is fairly easy to create an EMAPI client that extracts information
from the Event Management subsystem.

4.2.4 The monemv Program
You could use getemv to periodically sample the values of interesting Resource
Variables. However, if these change slowly, this approach would waste
resources at the client and in the Event Management subsystem. It is more
efficient to register the Resource Variables and the instances of the variables
that are interesting to you, and have the Event Management subsystem tell you
when an event has occurred. This is what monemv does.

To see an example of how monemv works, refer to Figure 61, which shows
monemv waiting for the events of the key mode switch not being in the normal
position on any node and the switch being returned to the normal position.
Figure 62 on page 116 shows how the key mode switches were manipulated to
generate the events that monemv received. The date command shows when the
key mode switches were altered.

Notice that the quick transition from normal to service and back to normal that
occurred near 13:53:00 was completely missed by the Event Management
subsystem. The subsystem was never given the event by the Resource Monitor.
Actually, the monitor never got the information from lower-level RS/6000 SP
subsystems. The Resource Monitor for the RS/6000 SP hardware only samples
the system through the hardmon process. By default, hardmon samples the
hardware at 5-second intervals. It never noticed that the switch was set and
then reset.

It is important to understand these types of limitations of the Event Management
subsystem and the subsystems that are used to collect information. For more
information on Resource Monitors, see Chapter 2, “Resource Monitors” on
page 27.

� �
pgc@sp2en0: monemv IBM.PSSP.SP_HW.Node.keyModeSwitch ′ NodeNum=*′ ′ X!=0′ ′ X==0′
PRED1 19960925135223 IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=1 2
PRED1 19960925135238 IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=5 1
PRED2 19960925135248 IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=1 0
PRED2 19960925135253 IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=5 0
PRED1 19960925135648 IBM.PSSP.SP_HW.Node.keyModeSwitch NodeNum=1 2� �

Figure 61. Example of monemv Monitor ing Key Mode Switches on Nodes

Chapter 4. Application Program Interfaces (APIs) 115

This soft copy for use by IBM employees only.

� �
date ; spmon -key service node1
Wed Sep 25 13:52:21 EDT 1996
date ; spmon -key secure node5
Wed Sep 25 13:52:36 EDT 1996
date ; spmon -key normal node1
Wed Sep 25 13:52:47 EDT 1996
date ; spmon -key normal node5
Wed Sep 25 13:52:51 EDT 1996
date ; spmon -key service node1
Wed Sep 25 13:53:00 EDT 1996
date ; spmon -key normal node1
Wed Sep 25 13:53:02 EDT 1996
date ; spmon -key service node1
Wed Sep 25 13:56:47 EDT 1996
#� �

Figure 62. Use of spmon to Alter Key Mode Switches on Nodes

The structure of monemv differs from the structure of lsemv and getemv. The
most important difference is the way monemv never stops running once it is
started. It only exits if it encounters an error or is killed by a signal.

The processResponses() function is different in monemv in two important ways.
First, once the function is started, it is designed to loop forever waiting for
responses from the Event Management subsystem. The for (; ;) { ... }
structure is commonly used in C programs for this purpose. The second
difference is in the use of event identifiers.

In the query programs, each response was associated with a particular query
identifier. The Event Management subsystem API does not treat the responses
for events in the same way. The event identifiers are stored in the arrays of
events that are returned in each response. This means we must check each
item in the em_resp_blk.em_rpb_event array to see whether it is for the desired
event.

This is an important difference between the way replies to queries and replies
delivering events are processed. processResponses() is shown in Figure 63 on
page 117.

116 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

void
processResponses(int *sessionFD, const ha_em_eid_t eId)
{
int receiveRC;
struct ha_em_rsp_blk *responseP;
struct ha_em_err_blk error;

for (; ;) {
receiveRC = ha_em_receive_response(*sessionFD, &responseP, &error);
switch (receiveRC) {
case -1:
/* the only error that can be recovered is HA_EM_ECONNLOST */
if (error.em_errno == HA_EM_ECONNLOST) {
int newFD;
newFD = ha_em_restart_session(*sessionFD, &error);
if (newFD == -1) {
printEMMsg(EXIT_UNEXPECTED,

″ha_em_restart_session failed\n″, &error);
}
*sessionFD = newFD;

}
break;

case 0:
/* book says this is OK, just try again */
break;

default:
processOneResponse(responseP, eId);
free(responseP); /* must free responseP object */

}

 } /* for (; ;) */
errorExit(EXIT_UNEXPECTED, ″error in program logic!!\n″) ;

}

Figure 63. The processResponses() Function for monemv

The individual responses are classified into normal and error types by
processOneResponse(), just as in the query programs. Normal values cause
formatted messages to be sent to stdout, while error items generate messages
to stderr.

Chapter 4. Application Program Interfaces (APIs) 117

This soft copy for use by IBM employees only.

void
processEventList(const struct ha_em_rsp_blk *responseP)
{
int loop;
char timeBuffer[15]; /* to hold ″YYYYMMDDHHMMSS″ */
time_t thisTime;

#define D responseP->em_resp_blk.em_rpb_event[loop]

for (loop = 0; loop < responseP->em_rsp_num_resp; loop++) {
if (D.em_errnum) {
printEventItemError(D);

} else {
if (D.em_event_flags == HA_EM_EVENT_RE_ARM) {
safePrintf(″PRED2 ″) ;

} else {
safePrintf(″PRED1 ″) ;

}
thisTime = D.em_timestamp.tv_sec; /* get in right kind of containe
if (strftime(&timeBuffer[0], sizeof timeBuffer, ″%Y%m%d%H%M%S″ ,

localtime(&thisTime))) {
safePrintf(″%s ″ , timeBuffer);

} else {
safePrintf(″00000000000000 ″);

}
safePrintf(″%s %s ″ , D.em_name, D.em_ivector);
switch(D.em_data_type) {
case ha_emDTlong:
safePrintf(″%ld ″ , D.em_val.em_vall);
break;

case ha_emDTfloat:
safePrintf(″%f ″ , D.em_val.em_valf);
break;

case ha_emDTsbs:
safePrintSBS(D.em_val.em_valsbs);
break;

default:
errorExit(EXIT_UNEXPECTED, ″datatype of %d\n″ ,

(int) D.em_data_type);
}
if (fflush(stdout) == EOF) {
errorExit(EXIT_RESOURCE,″can′ t write to stdout.\n″) ;

}
} /* if (D.em_error) */

 } /* for (loop ... */
}
/* clean up */
#undef D

Figure 64. The processEventList() Function for monemv

processEventList() must determine whether an event item was caused by a
regular or by a re-arm predicate. One line of output is sent to stdout, providing
information about the event that occurred, and the stdout stream is flushed to
force the event out of any buffers. This is important because another process
could be waiting to receive the event from monemv. Without the fflush(), an
event would not be visible until a whole buffer full of event messages was
present.

118 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

4.2.5 EMAPI Summary
The lsemv, getemv, and monemv clients are probably the simplest general
purpose Event Management subsystem clients possible. You will notice that
many of the details in the EMAPI documentation found in IBM Parallel System
Support Programs for AIX, Event Management Programming Guide and
Reference, SC23-3996, are not needed for these programs.

Though these examples are simple, they allow most of the possible queries for
information and enable all possible events to be received. (Queries of defined
Resource Variables by class are not supported, but are easy to add.) The
simple control flows show you how little code is required to get useful and
reliable results from the EMAPI.

Applications can be designed using basically two programming models:
threaded and non-threaded. The use of one model over the other depends on
the application, because the EMAPI supports both of these two programming
models.

4.3 Sample RMAPI Program
Resource Monitors are constrained to execute on the Control Workstation or on
the nodes of an RS/6000 SP. When a Resource Monitor wishes to monitor a
supplied service from the client′s point of view, it must be built in two parts.
One part runs locally on the RS/6000 SP, while the other runs at the client.

This sample Resource Monitor demonstrates this arrangement. The program
discussed in this section, httprtA, is one half of an HTTP Response Time Monitor.
The second part, httprtB, is described in C.2.1, “httprtB, an HTTP Response Time
Server” on page 226.

The construction of Resource Monitors is pretty simple, but their configuration
and operation is more difficult than that of Event Monitors. The Resource
Monitors must be described to the Event Management subsystem, then that
subsystem must be restarted for the changes to take effect. Also, a Resource
Monitor must run with root authority.

The program is described first, followed by the configuration and operational
details.

4.3.1 The httprtA Program
The monitor in this example is a command-based Resource Monitor.
Daemon-based and integrated Resource Monitors are also available, but their
structures are often more complicated. The command-based Resource Monitor
requires the least amount of program overhead. In the other models, the
program does what the Resource Monitor subsystem tells it to do. The
command-based model allows the program to control what is happening.

This comes at the expense of the types of values that can be collected. All
Resource Monitors can supply State values. The other models can also supply
Counter and Quantity types of values. Any of the data types (long, float, SBS)
can be used by any model, so this is probably not a problem for a Resource
Monitor that does not produce a lot of data. Data-intensive Resource Monitors
might wish to use other value types since they are transmitted by a different

Chapter 4. Application Program Interfaces (APIs) 119

This soft copy for use by IBM employees only.

mechanism. If you are writing your own Resource Monitor, you will probably
want to try both approaches to see which is better suited to your needs.

Command-based Resource Monitor processes are just another daemon on a
system. These must be started with a cron entry, a line in /etc/inittab, or some
similar mechanism. The structure of httprtA shows that the process can be
started in a variety of ways. Selected parts of the main() function are shown in
Figure 66 on page 122. Note that httprtA takes a number of arguments that are
needed to specify which HTTP object, as described by a URL, to monitor, and
how to monitor it.

120 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

main(int argc, char *argv[], char *envp[])
{
#define programNameArg argv[0]
#define intervalArg argv[1] /* how often to recheck response time */
#define timeoutArg argv[2] /* how long to give remote server to check */
#define remoteHostArg argv[3] /* host httprtB is running on */
#define urlArg argv[4] /* URL to check */
#define nameArg argv[5] /* name since IV elem limited to 31 char */
...
remoteServerHost = gethostbyname(remoteHostArg);
if (remoteServerHost == NULL) {
WriteLog(″can not resolve observing host name ′%s′ , exit()ing\n″ ,

remoteHostArg);
exit(1);

}

if (strlen(nameArg) > 31) {
nameArg[31] = ′ \0′ ;
WriteLog(″Truncting name to 31 characters. Now = ′%s′ \n″ , nameArg);

}

thisSignal.sa_handler = (void (*)()) AlarmHandler;
sigemptyset(&thisSignal.sa_mask);
sigaddset(&thisSignal.sa_mask, SIGALRM);
thisSignal.sa_flags = 0;
if (sigaction(SIGALRM, &thisSignal, 0) == -1) {
WriteLog(″problem installing SIGALRM handler\n″) ;
exit(2);

}

thisSignal.sa_handler = (void (*)()) QuitHandler;
sigemptyset(&thisSignal.sa_mask);
sigaddset(&thisSignal.sa_mask, SIGQUIT);
thisSignal.sa_flags = 0;
if (sigaction(SIGQUIT, &thisSignal, 0) == -1) {
WriteLog(″problem installing SIGQUIT handler\n″) ;
exit(2);

}

WriteLog(″Monitoring %s via %s every %d sec with %d sec timeout.\n″ ,
urlArg, remoteHostArg, interval, timeout);

DoIt(interval, timeout, remoteServerHost, remoteHostArg, urlArg, nameArg);

WriteLog(″exit()ing\n″) ;
exit(0);

}

Figure 65. The main() Function for httprtA

The task of parsing the arguments is not shown, but nothing it does is surprising.
The command format is rigid, because it is assumed that the command will be
started by some automated process rather than by an interactive shell.

The nameArg argument is needed because we cannot use the URL as an Instance
Vector. Instance Vector element values are limited to 32 characters (including
the null terminator), and a URL could easily exceed that limit. The remoteHostArg
(truncated to 31 characters if needed) and name functions are used to create the

Chapter 4. Application Program Interfaces (APIs) 121

This soft copy for use by IBM employees only.

Instance Vector. This allows many monitors to be active, or the same URL to be
monitored from a number of remote locations.

The gethostbyname() function is used to get a list of network addresses for the
remote system. It returns a structure that is used later in the program when a
connection is made to the remote httprtB process.

If everything looks good, signal handlers are installed for SIGALRM and
SIGQUIT. A message is then written to the log and the DoIt() function is called to
connect to the RMAPI and send values.

DoIt() is a rather large function; it is easier to describe in parts. It could be
broken up into more parts if your taste in programming style requires smaller
pieces. The reason for the decision to go with a larger function is the way calls
to ha_rr_...() should be paired. For example, once ha_rr_start_session()
completes successfully, ha_rr_end_session() should be called before the process
ends.

This leads to a nesting of control flow. While the program is running, the
success of the routines is checked. If something has gone wrong, an error is
logged, and the function that is needed to pair up with previously successful
function calls is executed. Note that the error case is always the first case in the
logic flow of this function.

Eventually, if all goes well, the RMAPI attachment is complete and the function
ConnectAndGo() is called to connect to the remote httprtB process and start
sending information to the RMAPI.

Let us look at DoIt() in parts, starting with Figure 66. This function has a lot of
parameters. This is a trade-off. The other option would be to use global
variables.

There are also a number of automatic variables in this function. These are
registered with the RMAPI as the buffers for passing information to the RMAPI.
These buffers are used in other parts of the program to send the data.

void
DoIt(int interval, int timeout, struct hostent *remoteHost,

char *remoteHostName, char *url)
{
int rc;
int rMSocket;
struct ha_rr_val rMVals[HTTPRT_NUM_VARS]; /* for holding the values */
struct ha_rr_variable rMVars[HTTPRT_NUM_VARS]; /* for reg/add/delete */
long values[HTTPRT_NUM_VARS]; /* location of buffers to send info */
char instanceVector[MAX_URL_LEN + 256]; /* should be big enough */
struct ha_em_err_blk error;

rc = ha_rr_init(HTTPRT_RM_NAME, &error);
if (rc == HA_RR_FAIL) {
writeEMMsg(logFile, &error, ″ha_rr_init() failed with\n″) ;
return; /* after this, the only way out is the end of the function */

}
/* if we get this far, we must call ha_rr_terminate() */

Figure 66. The Top of the DoIt() Function for httprtA

122 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The return statement in the error handling code after ha_rr_init() is the only
one in the function. After ha_rr_init() has successfully completed,
ha_rr_terminate() is called on the only path out of the function.

Once the RMAPI is initialized, a session is created and the variables are
registered with the RMAPI. When the variables have been added, the program
is ready to start sending information to the RMAPI.

rMSocket = ha_rr_start_session(HA_RR_NOTIFY_SELECT, &error);
if (rMSocket < 0) {
writeEMMsg(logFile, &error, ″ha_rr_start_session() failed with\n″) ;

} else {
/* if we got this far, we must call ha_rr_end_session() */

sprintf(instanceVector, HTTPRT_IV_TEMPLATE, remoteHostName, url);
WriteLog(″Instance Vector = ′%s′ \n″ , instanceVector);
rMVars[0].rr_var_name = HTTPRT_VAR1_NAME;
rMVars[0].rr_var_ivector = instanceVector;
rMVars[0].rr_varu.rr_var_inst_id = HTTPRT_VAR1_ID_NO;
rMVars[1].rr_var_name = HTTPRT_VAR2_NAME;
rMVars[1].rr_var_ivector = instanceVector;
rMVars[1].rr_varu.rr_var_inst_id = HTTPRT_VAR2_ID_NO;
rc = ha_rr_reg_var(rMVars, HTTPRT_NUM_VARS, &error);
if (rc != HTTPRT_NUM_VARS) {
if (rc == HA_RR_FAIL) {
writeEMMsg(logFile, &error, ″ha_rr_reg_var() failed with\n″) ;

} else {
WriteLog(″problem in ha_rr_reg_var()\n″) ;
WriteLog(″var1 errno = %d, var2 errno = %d\n″ ,

rMVars[0].rr_var_errno, rMVars[1].rr_var_errno);
}

} else {
/* if we get this far there is no additional to clean up so keep going */

rMVars[0].rr_varu.rr_var_hndl = &(rMVals[0].rr_var_hndl);
rMVars[0].rr_value = &values[0];
rMVals[0].rr_value = &values[0];
rMVars[1].rr_varu.rr_var_hndl = &(rMVals[1].rr_var_hndl);
rMVars[1].rr_value = &values[1];
rMVals[1].rr_value = &values[1];
values[0] = 0; /* initial value */
values[1] = HTTPRT_ERROR_UNKNOWN; /* initial value */
rc = ha_rr_add_var(rMSocket, rMVars, HTTPRT_NUM_VARS, 1, &error);
if (rc != HTTPRT_NUM_VARS) {
if (rc == HA_RR_FAIL) {
writeEMMsg(logFile, &error, ″ha_rr_add_var() failed with\n″) ;

} else {
WriteLog(″problem in ha_rr_add_var()\n″) ;
WriteLog(″var1 errno = %d, var2 errno = %d\n″ ,

rMVars[0].rr_var_errno, rMVars[1].rr_var_errno);
}

} else {
/* if we get this far we must call ha_rr_del_var() */

...

Figure 67. The Middle of the DoIt() Function for httprtA

Chapter 4. Application Program Interfaces (APIs) 123

This soft copy for use by IBM employees only.

Once the session is initialized, an ha_rr_variable structure is filled in with the
information needed to register the variables. The strings used to create the
Instance Vectors were checked for length restrictions in main(), so they are used
here as provided. In a more general program or function, they should be
checked before they are used.

The ha_rr_reg_var() function does not have to be paired with any other RMAPI
function.

After ha_rr_add_var() has successfully completed, the interface to RMAPI is
ready to receive values for the variables. Notice that the initial values for the
variables are set by ha_rr_add_var(). It is probably worth taking some time to
carefully determine these initial values, since there could be an Event
Management client waiting to take action on that value.

ConnectAndGo(interval, timeout, rMVals, remoteHost, url);

rc = ha_rr_del_var(rMSocket, rMVars, HTTPRT_NUM_VARS, &error);
if (rc == HA_RR_FAIL) {
writeEMMsg(logFile, &error, ″ha_rr_del_var() failed with\n″) ;

}
}
/* no need to call anything to pair with ha_rr_reg_var() */
/* but if there is such a need, it would go here */

}
rc = ha_rr_end_session(rMSocket, &error);
if (rc == HA_RR_FAIL) {
writeEMMsg(logFile, &error, ″ha_rr_end_session() failed with\n″) ;

}
}
rc = ha_rr_terminate(&error);
if (rc == HA_RR_FAIL) {
writeEMMsg(logFile, &error, ″ha_rr_terminate() failed with\n″) ;

}
}

Figure 68. The Bottom of the DoIt() Function for httprtA

The ConnectAndGo() function connects to the remote part of the response time
monitor and starts sending delay and status information to the RMAPI.

If ConnectAndGo() ever ends, all of the ha_rr_...() function pairs are called as
required by the RMAPI specifications.

124 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

void
ConnectAndGo(int interval, int timeout, struct ha_rr_val *rMVals,

struct hostent *remoteHost, char *url)
{
int remoteSocket;
struct sockaddr_in remoteSockAddr;
in_addr_t **hostAddresses;
int loop; /* used to loop through things */
int matched; /* used to indicate a host address worked */
int rc;

remoteSocket = socket(AF_INET, SOCK_STREAM, 0);
if (remoteSocket < 0) {
WriteLog(″can not create socket for remote host\n″) ;

} else {
/* loop through list of network addresses for remote host */
hostAddresses = (in_addr_t **) remoteHost->h_addr_list;
for (loop = matched = 0 ; hostAddresses[loop] != 0 ; loop++) {
memset((char *) &remoteSockAddr, 0, sizeof(remoteSockAddr));
remoteSockAddr.sin_family = AF_INET;
remoteSockAddr.sin_len = sizeof(remoteSockAddr);
remoteSockAddr.sin_port = htons(HTTPRT_PORT_NUMBER);
memmove((char *) &remoteSockAddr.sin_addr.s_addr,

(char *) hostAddresses[loop],
sizeof (in_addr_t));

WriteLog(″trying to connect() to address 0x%08x\n″ ,
(long) *hostAddresses[loop]);

rc = connect(remoteSocket,
(struct sockaddr *) &remoteSockAddr,
sizeof(remoteSockAddr));

if (rc == 0) { /* connect()ed OK? */
matched = 1;
break; /* found one, get out */

} else {
WriteLog(″failed to connect() with errno = %d\n″ , errno);

}
}

if (matched) {
WriteLog(″connected to remote host at address 0x%08x\n″ ,

(long) remoteSockAddr.sin_addr.s_addr);
/* get in a loop to send back changes in response-time states */
rc = Monitor(interval, timeout, remoteSocket, rMVals, url);
WriteLog(″Monitor() returned with result of %d\n″ , rc);
shutdown(remoteSocket, 2);
close(remoteSocket);

} else {
WriteLog(″could not connect() to remote httprtB process\n″) ;

}
}

}

Figure 69. The ConnectAndGo() Function for httprtA

The ConnectAndGo() function shown in Figure 69 first looks for a network
connection to the remote part, the httprtB part, of the response time monitor.
This is done by cycling through the list of addresses provided by the

Chapter 4. Application Program Interfaces (APIs) 125

This soft copy for use by IBM employees only.

gethostbyname() call in main(). If a good address cannot be found, the error is
logged.

If a connection can be made, the Monitor() function is called to get delay and
status information and pass the values on to the RMAPI. Monitor() is not
expected to end. If it does, the socket is flushed and closed with the
shutdown()and close() functions.

Monitor() returns information about what actions might be appropriate. It is
possible that a new socket should be created and the monitoring process should
continue. In this example, the socket is closed and the function ends.

#define resultSIGQUIT (0)
#define resultError (-1)
#define resultRetry (1)
int
Monitor(int interval, int timeout, int remoteSocket,

struct ha_rr_val * rMVals, char *url)
{
char request[MAX_URL_LEN + 100]; /* should be big enough */
char result[] = ″-2147483647 -2147483647 ″ ; /* big enough plus a bit */
time_t lastTime, thisTime;
int delay;
int status;
int rc;
struct ha_em_err_blk error;

sprintf(request, ″%d %s\n″ , timeout, url);/* only needs to be done once */

for (; ;) {
alarm(timeout + 10); /* Don′ t wait forever */
lastTime = time(0); /* remember time so we know when to run again */

send(remoteSocket, request, strlen(request), 0); /* send the request */
rc = GetALine(remoteSocket, result, sizeof(result)); /* get results */
alarm(0); /* turn off alarm */

Figure 70. The Top of the Monitor() Function for httprtA

The Monitor() function shown in Figure 70 is a loop that only exits if some
problem arises. An alarm is set so we do not wait forever if something happens
to the remote httprtB process or the network. We also record the time when this
sample is taken so we can later calculate when the next sample should be
taken. A request is sent to the remote server and the result is received. The
alarm is then turned off.

The bottom part of Monitor(), shown in Figure 71 on page 127, shows what is
done with the result. The following three results can be returned by Monitor(),
depending on the reason for ending:

0 SIGQUIT was received. End the program.

1 An error occurred that might be temporary. It might make sense to
make a new connection to the remote server and try again.

-1 An error occurred that is not normal or expected. Retries probably
will not help.

126 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Most of Monitor() looks for these conditions and ends if one of them exists. In
most cases, a value is sent to the RMAPI so that interested Event Management
clients can find out what happened.

If no trouble was found, the information from httprtB is passed on to the RMAPI.
After the information is sent, the time this loop has taken is computed so we
know how long to sleep() before taking the next sample.

if (rc == 0) { /* EOF */
WriteLog(″EOF on client socket\n″) ;
SendRMData(rMVals, 0, HTTPRT_ERROR_UNKNOWN);
return resultRetry;

}
if (rc < 0) { /* some problem getting results */
WriteLog(″problem on client socket\n″) ;
SendRMData(rMVals, 0, HTTPRT_ERROR_UNKNOWN);
return resultError;

}

rc = sscanf(result, ″%d %d\n″, &delay, &status);
if (rc != 2) {
WriteLog(″problem parsing reply\n″) ;
SendRMData(rMVals, 0, HTTPRT_ERROR_UNKNOWN);
return resultError;

}

if (timeoutFlag) {
WriteLog(″Timed out!\n″) ;
SendRMData(rMVals, 0, HTTPRT_ERROR_HTTPRTB_CONNECT);
return resultRetry;

}

if (quitFlag) {
SendRMData(rMVals, 0, HTTPRT_ERROR_UNKNOWN);
WriteLog(″Got SIGQUIT\n″) ;
return resultSIGQUIT;

}

SendRMData(rMVals, delay, status);

/* figure out how long to pause */
thisTime = time(0);
sleep(interval - (thisTime - lastTime));/* ignore time already used */

}
}
#undef resultSIGQUIT
#undef resultError
#undef resultRetry

Figure 71. The Bottom of the Monitor() Function for httprtA

The response time information is actually sent to the RMAPI with the
SendRMData() function shown in Figure 72 on page 128. There is not much to
do. The values are copied to the buffers that were registered in DoIt(), and
ha_rr_send_val() is then used to send the information to the RMAPI.

Chapter 4. Application Program Interfaces (APIs) 127

This soft copy for use by IBM employees only.

void
SendRMData(struct ha_rr_val * rMVals, int delay, int status)
{
int rc;
struct ha_em_err_blk error;

*((long *) (rMVals[0].rr_value)) = delay;
*((long *) (rMVals[1].rr_value)) = status;

/* 0 means this a a new value, now a refresh */
rc = ha_rr_send_val(rMVals, HTTPRT_NUM_VARS, 0, &error);
if (rc == HA_RR_FAIL) {
writeEMMsg(logFile, &error, ″problem calling ha_rr_send_val()\n″) ;

}
}

Figure 72. The SendRMData() Function for httprtA

Remember that this program must operate with root authority in order to use the
RMAPI successfully. Also, the SDR and HAEM must be configured to accept
connections from this Resource Monitor before httprtA can be used. This will be
discussed in the next section.

There are a number of other small routines, macros and comments in the
program code that is available. See Appendix H, “How to Get the Examples in
This Book” on page 257 for more information.

4.3.2 Resource Monitor Configuration
The coding of a Resource Monitor program is only the start of what must be
done to use a Resource Monitor on your system. A number of auxiliary files
must be updated and the Event Management subsystem must be restarted to
register your Resource Monitor before it can be used.

The items that must be updated include:

Message Catalogs

The use of message catalogs allows a program to be used in a
variety of locations because the text for messages is stored away
from the program. The messages are referenced by ID rather than
being coded directly into the code. The Event Management
subsystem supports (and requires) the use of this mechanism.
Descriptions of Resource Monitors, Resource Variables and Instance
Vectors are stored in message catalogs.

SDR The SDR is used to store a wide variety of RS/6000 SP configurations.
Information about the Resource Monitors is stored in the SDR, but the
data is not used directly from the SDR.

EMCDB The Resource Monitor information in the SDR is translated to create
the Event Management Configuration Data Base, EMCDB, with the
haemcfg command. This file is read by the Event Management
subsystem when it is started.

haem Processes

The haemctrl command is used to stop and start the Event
Management subsystem to pick up the new configuration information.

128 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Event Management clients

Resource Monitors are only useful if an Event Management client is
monitoring the data the Resource Monitors are producing. If you use
Perspectives or Problem Management, you may want to change your
configurations to monitor data from your Resource Monitor.

These steps are described in the publication Event Management Programming
Guide and Reference, SC23-3996. Only an overview is presented here, with
details about the configuration of httprtA.

The message catalogs allow the same program to be used in a variety of
locations. The message catalog for httprtA is shown in Figure 73 on page 130.

Note that both comment lines and special directives to the message catalog,
such as quote and set, start with a “$” character. Comments, however, have a
space character after the “$” to avoid confusing the compiler.

If you want to define a message that contains more than one line of text, you
must explicitly add “\n.” The example shows multil ine messages.

Message catalogs are compiled with the runcat command. runcat httprtA
httprtA.cat is run on the file httprt.msg, creating the file httprt.cat. This file is
then copied to the C, en_US, and En_US directories of /usr/lib/nls/msg. It is
possible to make links rather than copy the same file to multiple locations.

The Makefile file for the Event Management subsystem examples in this book
has a target called install.cat, which performs these operations for you.

Chapter 4. Application Program Interfaces (APIs) 129

This soft copy for use by IBM employees only.

$ $$$
$
$ httprt.msg -- message for httprt Event Monitor
$
$ (C) Copyright International Business Machines Corporation 1997.
$ All rights reserved
$
$ Written by Paul G. Crumley, IBM Research
$ pgc@watson.ibm.com
$
$ You must run the command ″runcat httprt httprt.msg″ on the control
$ workstation then copy httprt.cat to the NLS directory for your
$ language.
$
$ $$$
$
$quote ″
$set 1
$
1 ″WWW HTTP Response Time Monitor″
2 ″httprt Resource Monitor″
3 ″Delay time (in seconds) of HTTP responses at remote measuring point″
4 ″Status (<0 monitor status, >0 HTTP status) of responses″
5 ″Place Holder″
6 ″The value of the Instance Variable named ′ Observer′ indicates the \n\
remote location of the httprtB process that will fetch the HTTP \n\
objects and report on what happens.″
7 ″The value of the Instance Variable named ′ Name′ is assigned on the \n\
httprtA command line and is used because Instance Vectors are limited \n\
to 31 characters so the URL can not be used directly.″
8 ″The value of the Instance Variable named ′ NodeNum′ is needed so the \n\
EM client can find the RM. This should not be needed but the current \n\
code requires an rvLocator. This is set to the SP node number \n\
automatically by the RMAPI code.″
$
$ $$$
$ End of httprt.msg file
$ $$$

Figure 73. The Message Catalog File for httprtA

Once the message catalogs are in place, you can update the SDR with
information about your Resource Monitor. This can be done in two ways. The
first is to construct a file in the format that the haemloadcfg command expects
and then use that command to update the SDR. This is convenient for
distributing a stable Resource Monitor, but since the haemloadcfg function will not
overwrite existing objects in some cases, you have to remove any altered
objects from the SDR before running haemloadcfg.

The second approach is to create a script to execute SDRCreateObjects for the
needed configuration information. It is probably a good idea to create a similar
script to remove the configuration information from the SDR. The sample
Resource Monitor uses this approach. Figure 74 on page 131 shows part of the
script that installs SDR configuration information.

130 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

#!/bin/ksh
###
#
httprt.add.sdr -- load needed config info into SDR
#
#
#
###

/usr/lpp/ssp/bin/SDRCreateObjects \
EM_Resource_Monitor \
rmName=WWW.HTTP.ResponseTimeMon \
rmMessage_file=httprt.cat \
rmMessage_set=1 \
rmConnect_type=client \
rmPTX_prefix=dummy \
rmPTX_description=5 \
rmPTX_asnno=0

/usr/lpp/ssp/bin/SDRCreateObjects \
EM_Resource_Class \
rcClass=WWW.HTTP.ResponseTimeClass \
rcResource_monitor=WWW.HTTP.ResponseTimeMon \
rcObservation_interval=0 \
rcReporting_interval=0

/usr/lpp/ssp/bin/SDRCreateObjects \
EM_Resource_Variable \
rvName=WWW.HTTP.ResponseTimeMon.delay \
rvDescription=3 \
rvValue_type=State \
rvData_type=long \
rvClass=WWW.HTTP.ResponseTimeClass \
rvDynamic_instance=0 \
rvLocator=NodeNum \
rvInitial_value=0

Figure 74. Part of the SDR Configuration Script for httprtA

After the SDR is updated, you must rebuild the EMCDB and use the haemctrl
command to stop and start the Event Management subsystem daemons so they
will start using the new information.

The install.sdr target in the sample Makefile file removes the old SDR entries,
adds the new ones, rebuilds the EMCDB, and then prints a message to remind
you to restart the Event Management subsystem processes.

After all the configuration information is refreshed, use the lsemv command from
4.2.2, “The lsemv Program” on page 101 to make sure that the current Event
Management subsystem knows about the new Resource Monitor and its
variables.

You can verify that the configuration process was successful by using lsemv as
shown in Figure 75 on page 132. In this example we see the current information
for the WWW.HTTP.ResponseTimeMon.delay variable. The lsemv command gets the
information by querying the active Event Management subsystem, rather than by

Chapter 4. Application Program Interfaces (APIs) 131

This soft copy for use by IBM employees only.

retrieving it from the SDR. You can be more confident, therefore, that the
configuration information is properly installed and ready for use.

� �
pgc@sp21en0 </u/pgc/itso>:./lsemv -v WWW.HTTP.ResponseTimeMon.delay
======================
Resource Variable Name: ″WWW.HTTP.ResponseTimeMon.delay″
Variable Value Type: State
Variable Data Type: long
Variable SBS Format: ″″
Variable Initial Value: ″0″
Variable Class: ″WWW.HTTP.ResponseTimeClass″
Instance Vector: ″Observer=cstring;Name=cstring;NodeNum=int″
PTX Name: ″″
Default Predicate: ″″
Locator: ″NodeNum″

Variable Description

Delay time (in seconds) of HTTP responses at remote measuring point

Instance Vector Description

The value of the Instance Variable named ′ Observer′ indicates the
remote location of the httprtB
process that will fetch the HTTP
objects and report on what happens.
The value of the Instance Variable named ′ Name′ is assigned on the
httprtA command line and is used
because Instance Vectors are limited
to 31 characters so the URL can not be used directly.
The value of the Instance Variable named ′ NodeNum′ is needed so the
EM client can find the RM. This should not be needed, but the current
code requires an rvLocator. This is set to the SP node number
automatically by the RMAPI code.

Event Description

pgc@sp21en0 </u/pgc/itso>:� �
Figure 75. Output for WWW.HTTP.ResponseTimeMon.delay from the lsemv Command

You can start the httprtB process on some remote (or local) machine, then start
the httprtA process to monitor a URL and report on its performance. The getemv
and monemv commands could be used to see whether the Resource Monitor is
working before you reconfigure other Event Management clients.

4.3.3 RMAPI Summary
The httprtA monitor is a simple example of a Resource Monitor. The only
complication is the connection to the remote response time server. As in the
case of the EMAPI examples, we see that only a small amount of code is needed
to collect information for the Event Management subsystem.

The httprtA monitor is a command-based Resource Monitor. The other types of
Resource Monitors use similar data structures, but the flow of control is different.
Daemon-based Resource Monitors are started by the Event Management
subsystem when needed. Daemon-based and integrated Resource Monitors
receive control directions that tell them when to take various actions.

132 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The Resource Monitor programs must exercise a bit more care than Event
Management programs because the Resource Monitor programs must run with
root authority. As with Event Management programs, care must be taken to use
Event Management subsystem resources.

As noted in 4.2.5, “EMAPI Summary” on page 119, not all RMAPI features are
needed to create a useful Resource Monitor. With little effort, you should be
able to adapt existing servers or create new Resource Monitors to collect
important information about your system.

4.4 Corrections and Clarifications
These examples were developed on early versions of the Event Management
subsystem and tested on the released software. Some details did not make it
into the early versions of documentation, and early code had some limitations.
Many of the items listed here might be fixed by newer versions of the Event
Management subsystem and the associated documentation.

This section contains information that was received from the developers to assist
in creating and debugging these Event Management examples, and lists
corrections to information in the publications.

• The ha_em_receive_response() function must be called as soon as it has
information that is available to receive. If an EMAPI client defers calling
ha_em_receive_response(), the Event Management subsystem must hold the
information for the client in Event Management subsystem buffers. This can
cause performance problems for the entire RS/6000 SP system.

• The system limit on open sessions is about 230 per partition. The EMAPI
documentation indicates that EMAPI clients can open multiple sessions to
make it easier to process information. Do not take the use of multiple
sessions to an extreme.

• SBS data structures do not preserve alignment of various data types, such
as long and float. You might wish to use byte-oriented moves to get the data
to aligned areas before you process the information.

• Connections between the Event Management subsystem and remote clients,
for example clients that execute on RS/6000 workstations or clients executing
on SP nodes that are connecting to an Event Management daemon on the
Control Workstation, are as reliable as the underlying TCP/IP protocol being
used. That is to say, neither side of the connection can immediately detect
the loss of the other side due to network problems or failure of the other
node/workstation, unless an attempt is made to send a message. If one side
of the connection is only waiting for messages, such failures are detected
only as TCP “keep alive” messages are sent. The “keep alive” protocol
typically sends such messages every two hours. However, failure of a client
process or the Event Management daemon is detected by the other side of a
remote connection immediately.

• Structure Byte Strings may not be more that 1024 bytes in length.

If a PTX name is defined for a Resource Variable, the total length of the PTX
name, as it is formed by the Event Management Subsystem, must conform to
the following limits (refer to the Event Management Configuration Data
Reference chapter in the RS/6000 SP: Event Management Programming
Guide and Reference, SC23-3996, for PTX name formation):

Chapter 4. Application Program Interfaces (APIs) 133

This soft copy for use by IBM employees only.

− The length of the name, consisting of all components but the last, must
not exceed 63 bytes.

− The length of the last component of the name must not exceed 31 bytes.

The length of any possible instance vector element value that is substituted
into the PTX name must be used in determining this length.

• Remote clients cannot establish a connection with the Event Management
subsystem if the SDR is not operational. This is also true for any Event
Management clients executing on the Control Workstation.

• Some information that is returned through the EMAPI and RMAPI is read
from the SDR. Although there is a mechanism that enforces consistency
between the EMCDB and the running Event Management daemons, there is
no mechanism to guarantee that message catalogs contain correct data.

If it is necessary to change the message numbers or set numbers in
message catalogs used by the Event Management subsystem, then before
making such changes the entire Event Management subsystem should be
shut down. After the subsystem is shut down, the changes can be made to
the catalogs, the catalogs distributed throughout the SP and the CWS, the
SDR updated, and the haemcfg command run, and then the Event
Management subsystem can be restarted. Adding messages to the end of
existing message sets, adding new sets, or adding new catalogs can be
done at any time before updating the SDR and executing the haemcfg
command. In these “add” cases, the Event Management subsystem can be
shut down and restarted any time after executing the haemcfg command.

• If the length fields of a Structured Byte String are not internally consistent,
then reference to such an SBS from within a predicate will have undefined
results upon evaluation of the predicate. Other errors in the predicate, for
example bad field types, are detected during evaluation and result in the
generation of an event with an error.

• The SDR commands given as examples of how to load Resource Monitor
information in Chapter 2 of Event Management Programming Guide and
Reference, SC23-3996, are not complete. For example, the haemcfg command
will complain if you do not include the rmPTX_prefix, rmPTX_description and
rmPTX_asnno on EM_Resource_Monitor objects. rvDynamic_instance and
rvInitial_value are needed for EM_Resource_Variable objects.

134 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Part 3. Tools

 Copyright IBM Corp. 1997 135

This soft copy for use by IBM employees only.

136 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Chapter 5. SP Perspectives GUI

Scalable POWERparallel (SP) Perspectives provides a highly interactive common
graphical user interface (GUI) through which many system management and
system monitoring tasks, as well as SP-specific user interactions, can be
performed. System objects such as frames, nodes, switches, events, node
groups, and so on, are represented by icons. You can simply click the icon with
a mouse and select an action to perform on that object from the menu bar or
tool bar.

This chapter briefly introduces the Perspectives GUI and then focuses on the
Event Perspective. Specific scenarios of practical use are presented, followed by
a step-by-step description of the way the Event Perspective may be used to solve
the problem of interest. In addition, a variety of figures and tables are
presented, as well as some tips and hints that are helpful in working with the
Event Management subsystem and the Event Perspective. Note that the Event
Management and the Event Perspective are completely new concepts in the
PSSP 2.2 software product.

5.1 Introduction
The Perspectives GUI is initially intended for the SP platform, but eventually it
will be implemented using a system management framework that will allow
integration with other platforms, making the SP just one of the many machines
being administered and monitored on a network.

5.1.1 What Tasks Can Perspectives Perform?
The present release of Perspectives provides functions for the following
categories of system management tasks. It is also possible to make your own
favorite applications accessible from the Perspectives GUI.

• Monitoring and controlling hardware

• Managing event definitions and events

• Managing IBM virtual shared disks (VSDs) and data striping devices (HSDs)

• Generating and saving system partition configurations

• Setting up performance monitoring

• Accessing SP-related SMIT panels:

− smit config_data on the CW
− smit SP_verify on the CW
− smit cluster_mgmt
− smit splogmgmt
− smit spusers on the CW

• Accessing the following Visual System Management (VSM) panels:

− vsm device
− vsm install
− vsm maintain
− vsm print
− vsm storage
− vsm user

 Copyright IBM Corp. 1997 137

This soft copy for use by IBM employees only.

5.1.2 How Is Perspectives Invoked?
This section describes how to invoke the Perspectives GUI.

Executing the following command brings up the Launch Pad of SP Perspectives
(see Figure 76):

� �
/usr/lpp/ssp/bin/perspectives &� �

The Launch Pad is a small, customable window from which you can launch
(start) executables associated with monitoring, controlling, and managing your
IBM RS/6000 SP. System administrators can also customize the Launch Pad, so
their own applications appear in addition to the one provided by default. For
more details on how to customize the Launch Pad, refer to RS/6000 SP:
Administration Guide, GC23-3897.

Figure 76. The Perspectives GUI Launch Pad

The following icons on the Launch Pad represent Perspectives applications:
hardware, event, vsd, and partitioner. In order to invoke any application from
the Launch Pad, double-click its icon. You can also invoke each Perspective
without using the Launch Pad by executing its corresponding command. For
example, the command for Event Perspective is spevent and that of Hardware
Perspective is sphardware, assuming that the directory /usr/lpp/ssp/bin is
included in your PATH. You can get the details of each Perspective by going to
the Options pull-down menu of the Launch Pad and selecting the
Options →Details View options.

Inspection shows that the file /usr/lpp/ssp/bin/perspectives is a symbolic link to
/usr/lpp/ssp/bin/.startup_script with permission 555:

� �
cd /usr/lpp/ssp/bin
ls -l pers* spev* sphar*
lrwxrwxrwx 1 bin bin 32 Sep 12 10:34 perspectives →
/usr/lpp/ssp/bin/.startup_script
lrwxrwxrwx 1 bin bin 32 Sep 12 10:34 spevent → /usr/
lpp/ssp/bin/.startup_script
lrwxrwxrwx 1 bin bin 32 Sep 12 10:34 sphardware → /u
sr/lpp/ssp/bin/.startup_script
ls -l .sta*
-r-xr-xr-x 1 bin bin 4570 Sep 10 07:08 .startup_script
#� �

138 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Therefore, any user may start the Launch Pad or start any individual Perspective
such as the Event Perspective. Many actions, however, require root
authorization, or Kerberos authorization, or both (see also 5.2.3.4, “Summary of
Authorizations Needed” on page 156).

The .startup_script script invokes the Perspectives binaries. This script
determines the language to be used and sets up the appropriate environment
variables. It then executes the binary called by the user.

5.2 Using the Event Perspective
The Event Perspective allows you to define and manage event definitions within
a system partition. An event definition allows you to specify under what
condition the event occurs and what actions to take in response.

What is an event? An event occurs when the expression within the condition
evaluates as true as the result of a change in the state of a resource within the
system. A resource is an entity in the system that is observed. Examples of
resources include hardware entities such as processors, disk drives, memory,
and adapters, as well as software entities such as database applications,
processes, and file systems. Each resource in the system has one or more
attributes that define the state of the resource. The number of attributes and the
semantics of each attribute are defined by the resource.

 Note

Terms such as event definition, expression, condition, and others are
discussed further in 5.2.3.1, “Some Terminology Considerations” on page 152
in this chapter.

Specifically, with the Event Perspective you can:

• Create an event definition

• Register or unregister an event definition

• View or modify an existing event definition

• Delete an event definition

• Create a new condition

In the following sections, we present examples using different scenarios and
provide details of how you can use the Event Perspective to address the
problems in each scenario.

Chapter 5. SP Perspectives GUI 139

This soft copy for use by IBM employees only.

5.2.1 Example 1: Monitoring Memory Usage
 Important

Go through Examples 1 and 2 before you use the Event Perspective to create
an event definition for the first time.

To create an event definition, you need a condition as one of the ingredients.
Example 1 uses a predefined condition, while Example 2 creates the needed
condition along the way.

These examples give step-by-step descriptions of how to create event
definitions. At every step, all the different options and their implications are
discussed, and helpful tips and hints are given.

Suppose you want the system to automatically take some actions and notify you
whenever the real memory on any of the nodes in the sp21en0 partition is over
85% utilized. You need to create an event definition for this scenario, hence you
invoke the Event Perspective by using the command:

� �
spevent &� �

The Event Perspective main window appears (Figure 77).

Figure 77. The Event Perspective Primary Window

Note that the title bar in Figure 77 displays the name of the application (Event
Perspective), followed by a hyphen, followed by the name of the Control

140 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Workstation (sp21en0) running the application, followed by a colon, followed by
the name of the system partition (sp21en0).

The Event Perspective creates event definitions within a system partition and
within a Kerberos principal. These event definitions are available only to users
using that Kerberos principal; other Kerberos principals cannot subscribe to,
unsubscribe to, modify, or delete them.

Before you create an event definition, you first need to make sure that the
system partition to which you want it to belong is the currently active partition.
This partition is identified by a yellow lightning bolt over its icon (see the Syspar
sp21en0 icon in Figure 77 on page 140). If the desired system partition is not
the currently active one, then:

 1. Click the system partition′s icon on the Syspars pane. It appears highlighted
to show that you have selected it.

 2. Go to the Actions pull-down menu and select the Syspars → Set Current
Partition options. The name of the new system partition now appears at the
top of the Event Perspective window and the associated event definitions (if
there are any) appear in the Event Definitions pane.

Now that the desired partition is the currently active one, you can proceed to
create the event definition in this partition by doing the following:

Step 1 Open the Event Definition Notebook.

Click the Event Definitions pane once so the pane receives focus. Go
to the Actions pull-down menu and choose the Event
Definitions →Create options, or click the Create Event Definition icon
on the tool bar instead.

The Create Event Definition notebook opens at the first page, which is
the Definition page. You must perform the following tasks in the
order shown.

Chapter 5. SP Perspectives GUI 141

This soft copy for use by IBM employees only.

Figure 78. The Definit ion Page of the Create Event Definition Notebook

Step 2 Enter an Event Definition Name.

Enter a name of your choice in the Event Definition Name box. For
example, choose realMemLowEvent (Figure 78).

The name you specify cannot include a period (.) or colon (:) and it
must be unique within the system partition in which it is created.
Notice also that the Kerberos Principal that is connected with this
event definition is displayed at the top of the Definition page. In this
case, it is listed as root.admin@MSC.ITSO.IBM.COM.

Step 3 Select a predefined condition.

Select an appropriate predefined condition using the selection box
provided. Note that the conditions are listed in alphabetical order,
with the uppercase letters listed before the lowercase letters. In the
example, choose the condition realMemLow (see Figure 79 on
page 143) based on its description, The real memory on the system is
over 85 percent utilized, which is displayed in the Description box of
the Definition page (see Table 4 on page 170).

142 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 79. The Definit ion Page after Selecting a Predefined Condition

These predefined conditions are saved in the SDR. From outside the
Event Perspective, you can display them by executing the following
command:

� �# SDRGetObjects EM_Condition� �
See Table 4 on page 170 for the predefined conditions that are
shipped with the PSSP 2.2 software product.

As soon as you choose the predefined condition, the remaining fields
of this dialog box will automatically be updated with the information
that was originally defined for the condition.

Chapter 5. SP Perspectives GUI 143

This soft copy for use by IBM employees only.

 Note

At this stage, you may view the details of the condition you select
by clicking View Condition .

In Example 1, you are choosing a predefined condition without
changing it. If you decide, however, to make some changes to the
condition, then you need to click Cancel on the View Condition
window. This brings you back to the Definition page. Click Create
Condition . Make all your changes in this dialog box. Then click
OK to save the information, close the dialog box, and return to the
Definition page of the Create Event Definition notebook.

Be aware that, in this situation, you are effectively creating a new
condition. Therefore, make sure you give your new condition a
different name than the predefined condition. Otherwise, you get
an error message like The provided Condition Name
Your_Condition_Name already exists in the database. Duplicate
is not allowed. The Condition Name is a required field.

Step 4 Select resources.

Now you need to uniquely identify the resources for your event
definition. In our scenario, you need to decide the real memory of
which nodes you would like to monitor. To select the specific
resource, select a field name from the Field Names box by clicking it,
and then select one or more values in the Field Values box by
clicking those values. Note that for selecting more than one item
from the Field Values box simultaneously, you need to hold the Ctrl
button down while clicking the desired items.

Repeat these steps for each field name that appears in the Field
Names box. The result of your selection is displayed in the view-only
Resource Identifier box. In the present scenario, select field values 1,
5, 6, 7, and 8 for NodeNum, the only field name available in your
realMemLowEvent event definition. See Figure 80 on page 145.

Step 5 Select Register/Unregister.

Next you need to specify whether you want to subscribe to the event.
You control whether or not you register for the event definition by
using the Register and Unregister buttons of the Definition page of the
Create Event Definition notebook. By registering an event definition,
you indicate that you want that event to become active. This means
that the expression that is included as part of the event definition is
applied to the instances of the Resource Variable, which is also part
of the event definition. If the expression is found to be true, an event
is generated and the system notifies you or takes actions based on
the way the event is defined (see Step 6). In our scenario, choose the
Register option, which is the default, since we are planning to test our
event definition creation later. At this stage, your Create Event
Definition page should look like Figure 80 on page 145.

144 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 80. The Completed Definit ion Page in Example 1

Now you need to specify the type of response you want for your event
definition.

Step 6 Select Response Options.

Click the Response Options tab along the right-hand edge of the
Create Event Definition notebook. The Response Options page
(Figure 82 on page 148) appears. Select the type of response you
would like for the event definition by clicking the appropriate
response buttons. You can select one or more of the following
responses for each event definition you create:

 1. Get Notified During the Event Perspective Session (default)

 2. Take Actions When the Event Occurs

 3. Take Actions When the Rearm-Event Occurs

When an event occurs, the system responds by placing an entry in
the Event Notification Log (Figure 81 on page 146) and, if you choose,
it carries out commands that you supply.

Chapter 5. SP Perspectives GUI 145

This soft copy for use by IBM employees only.

If you select only the Get Notified During the Event Perspective
Session (default) option, then there is no need to enter any more
information on the Response Options page. In addition, when the
event occurs and an entry appears in the Event Notification Log, the
event definition′s icon, in the Event Definitions pane, changes to look
like an envelope (see the varFullEvent icon in the Event Definition
pane of Figure 77 on page 140). The pop-up View Event Notification
Log window (Figure 81) also appears and shows you what event has
occurred.

Figure 81. The View Event Notification Log Window

The act of notification in this option occurs during the Event
Perspective session only. In other words, the notification stops when
the user exits the Event Perspective session but starts again when the
user runs the Event Perspective. Note that this type of event is not
stored in the SDR, but in the Home directory of the user as
$HOME/.$USER:Events. See 5.2.3.2, “Where Is My Event Definition
Stored?” on page 154 for more details.

If you choose Take Actions When the Event Occurs , then you will have
several options with this response. You may specify one, two, or all
three of the following types of actions:

• Command

• SNMP Traps

• PSSP Log

The Command option lets you supply one or more system commands
you would normally issue from the command line. The system
automatically executes the commands when the event occurs.

The SNMP Traps option allows you to specify that you want an SNMP
trap to be generated when an error log entry is made. You need to
specify the Trap ID with this option.

If you select the PSSP Log option, an entry will be added to the PSSP
log when an event occurs. You must, however, specify the text to be
placed in the PSSP log. Similar considerations are appropriate if you
choose the option Take Actions When the Rearm-Event Occurs .

In our scenario, select all three options. Choose the command, for
example, to be:

� �wall The real memory is now over 85% utilized!� �
and that of the rearm-command to be:

� �wall The real memory is now less than 85% utilized!� �

146 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

 Note

An event occurs when the expression evaluates to true. A
rearm-event occurs when the rearm expression evaluates to true.

A command is the response action to an event and a
rearm-command is the response action to a rearm-event.

A rearm expression is an expression used to generate an event
that alternates with an original event expression in the following
way: the event expression is used until it is true, then the rearm
expression is used until it is true, then the event expression is
used, and so on.

If you do not use a rearm expression, then the expression will
evaluate true after every Observation_interval seconds (Figure 84
on page 150) before it evaluates false. For instance, in Example 1
the command:

wall The real memory is now over 85% utilized

would run after every 60 seconds until the expression evaluates
false, thereby indicating that real memory is not over 85% utilized
any more.

The rearm expression is commonly the inverse of the event
expression (Example 1). It can also be used with the event
expression to define an upper and lower boundary for a condition
of interest (Example 2).

Step 7 Select target nodes.

The last step in creating an event definition is to specify where the
command or rearm-command should be run. You can choose to run
it On Local Node(s) or On Selected Node(s). A local node is the node
where the event occurs and was specified with a field name as part of
the resource identifier for the event. In our example, click On
Selected Node(s) and choose all the nodes (nodes 1, 5, 6, 7, and 8)
and the Control Workstation (node 0) (see Figure 82 on page 148).

Chapter 5. SP Perspectives GUI 147

This soft copy for use by IBM employees only.

Figure 82. The Response Options Page

Step 8 Save and close.

To save the information, click OK or Create on any of the Create
Event Definition notebook pages and close the notebook.

5.2.2 Example 2: Monitoring File System Size
Suppose you would like to be notified automatically whenever a file system (for
example, /var) becomes more than a percentage (such as 90%) full on the
Control Workstation and Node 5 of the sp21en0 partition.

To do this, make sure that sp21en0 is the current partition. Follow the procedure
described in 5.2.1, “Example 1: Monitoring Memory Usage” on page 140, except
now you need to create a new condition as well (Step 3).

Step 1 Click the Create Event Definition icon.

148 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Step 2 Make up a unique name (for example varFullEvent) and enter it in the
Event Definition Name box. Unlike Example 1, there is no predefined
condition that can help in this scenario. You have to create a new
condition.

Step 3 Create a new condition.

 1. Click the Create Condition button, which brings you to its
corresponding dialog box (see Figure 83). You need to supply
information in the fields of this box, as follows:

Figure 83. The Create Condition Dialog Box

 2. Enter a name (for example, varFull) for the new condition in the
Condition Name box, and a short description of the condition (for
example, /var is almost full) in the Condition Description field.
Both of these are required fields.

Note: The name that you enter may not be the name of a
predefined condition.

 3. Select a Resource Variable by using the selection box of the
Resource Variable Name field. This is a required field. Presently,
there are more than 360 Resource Variables shipped with the IBM
PSSP 2.2 software product.

� �# SDRGetObjects EM_Resource_Variable │ wc -l
367

#� �

Chapter 5. SP Perspectives GUI 149

This soft copy for use by IBM employees only.

When you select a Resource Variable, its description
automatically appears in the Resource Variable Description box.
However, since there are so many Resource Variables, it would
not be a pleasant task to go through all of them one by one, read
their descriptions, and then decide which one is right for your
situation. Fortunately, all Resource Variables presently available
in PSSP 2.2 belong to 17 distinct classes.

This information can be displayed by executing the following
command:

� �# SDRGetObjects EM_Resource_Class� �
The output of this command is shown in Figure 84.

� �
SDRGetObjects EM_Resource_Class
rcClass Resource_monitor Observation_interval Reporting_int.
IBM.PSSP.CSS IBM.PSSP.harmld 5 5
IBM.PSSP.HARMLD IBM.PSSP.harmld 30 30
IBM.PSSP.LL IBM.PSSP.harmld 250 250
IBM.PSSP.Membership Membership 0 0
IBM.PSSP.PRCRS IBM.PSSP.harmld 5 5
IBM.PSSP.Prog IBM.PSSP.harmpd 0 0
IBM.PSSP.Response Response 0 0
IBM.PSSP.SP_HW IBM.PSSP.hmrmd 0 0
IBM.PSSP.VSD IBM.PSSP.harmld 10 10
IBM.PSSP.aixos.CPU aixos 15 0
IBM.PSSP.aixos.Disk aixos 30 0
IBM.PSSP.aixos.FS aixos 60 0
IBM.PSSP.aixos.LAN aixos 40 0
IBM.PSSP.aixos.Mem aixos 15 0
IBM.PSSP.aixos.PagSp aixos 30 0
IBM.PSSP.aixos.Proc aixos 60 0
IBM.PSSP.pm IBM.PSSP.pmanrmd 0 0
#� �

Figure 84. Resource Variables Classes

Next you need to select the right Resource Class. For our
scenario, choose Resource Class IBM.PSSP.aixos.FS, because this
class is the only one with the string FS in it, which stands for “file
system.”

Now find the names of all Resource Variables in the Resource
Class IBM.PSSP.aixos.FS.

� �
SDRGetObjects EM_Resource_Variable rvClass==IBM.PSSP.aixos.FS rvName
rvName
IBM.PSSP.aixos.FS.%nodesused
IBM.PSSP.aixos.FS.%totused
IBM.PSSP.aixos.FS.VG.free
#� �

Figure 85. Displaying the Resource Variables of a Resource Class

As you see, there are only three Resource Variables in this class.
A Resource Variable represents the attribute of a resource in the
system. Each is represented by a unique resource name (for

150 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

example, IBM.PSSP.aixos.FS), followed by a period (.), followed by
a resource attribute (for example, %totused).

Next, click the selection box of the Resource Variable field. Scroll
down and click each of the three Resource Variables, one at a
time, and read each description in the Resource Variable
Description box. Note that the Resource Variables are listed in
alphabetical order, with the uppercase letters listed before the
lowercase letters.

For our scenario, choose IBM.PSSP.aixos.FS.%totused based on its
description. Recall that when you choose a predefined condition,
the Resource Variable and its description appear automatically.

 4. Enter the expression or predicate for the condition in the
Expression box. Note that if you choose a predefined condition,
however, its expression appears here automatically. In our
scenario, the expression is X>90.

 5. Enter a rearm expression in the Rearm Expression box if you
wish. This is an optional field. A rearm expression is used to
generate an event that alternates with the original event
expression. In the present example, choose X<85. With this
expression and rearm expression, X>90 is used until it is true,
then X<85 is used until it is true, then the X>90 is used, and so on.

Note that the view-only Resource Identifier Format box
automatically shows you the resource identifiers or the Instance
Vector that is associated with the Resource Variable you choose.

 6. The Fixed Resource Identifier Fields box is an optional one. It
allows you to set a fixed value for a specific resource that is
monitored for this event. By entering a field name and a field
value here, you can designate a specific resource against which
the expression is applied.

In our scenario, the Resource Variable
IBM.PSSP.aixos.FS.%totused is represented by three name=value
pairs: LV=x, NodeNum=x and VG=x. Since you are interested in the
/var file system, you may decide to restrict the logical volumes
and volume groups that could be monitored for this event to only
hd9var and rootvg, respectively. Enter LV=hd9var;VG=rootvg in this
field.

As a result, when you specify the condition varFull, you are only
able to choose the nodes whose /var could be monitored. If you
need to have a different logical volume or volume group than
hd9var and rootvg, then you have to create a new condition.

If you do not enter anything in the Fixed Resource Identifier
Fields, then you need to specify all the elements (here LV,
NodeNum, and VG) of the resource identifier every time you use
the condition (here varFull).

Once you enter the information in the fields of the Create
Condition dialog box (Figure 83 on page 149), click OK to save
the information, close the dialog box, and return to the Definition
page of the Create Event Definition notebook. Notice that at this
stage most of the boxes in the Definition page are greyed (not
active). In order to activate the remaining boxes, you need to

Chapter 5. SP Perspectives GUI 151

This soft copy for use by IBM employees only.

select your condition name (here varFull) in the Condition Name
box. Note that the description is automatically displayed in the
Description box.

Step 4 Select NodeNum in the Field Names box, and 0 and 5 in the Field
Values box.

Step 5 Choose the Register option, which is the default.

Step 6 Click the Response Options tab and select the Get Notified During the
Event Perspective Session option.

Step 7 Select all nodes.

Step 8 Click OK and close.

5.2.3 More about Using the Event Perspective
The use of GUI interfaces such as Perspectives is becoming increasingly popular
mainly because GUIs are able to hide most underlying details and complexities
from the end user. A drawback associated with GUIs, however, is that
debugging and troubleshooting are more difficult.

This section discusses how Event Perspective interacts with the other
subsystems of PSSP 2.2. There is also a discussion about terms that are used
for the same concepts in different subsystems.

In addition, a more accurate definition of the term condition is given. (Condition
is a concept used in Event Perspective exclusively.) Finally, we discuss the kind
of authorization needed in the Event Perspective, and offer a few other hints and
tips.

5.2.3.1 Some Terminology Considerations
Event Perspective′s terminology usage is slightly different from that of the Event
Management subsystem, in order to have more user-friendly terms in the GUI.

Following is a partial list of these terms (see also Table 3 on page 154):

• The terms predicate and rearm predicate in Event Management are called
expression and rearm-expression in Event Perspective, respectively.

• An Instance Vector in Event Management is equivalent to the combination of
Fixed Resource Identifier Fields and Resource Identifier in Event Perspective.

• The term pmHandle in the Problem Management subsystem is equivalent to
the Event Definition Name in Event Perspective.

• The term condition in Event Perspective does not have direct equivalents in
other PSSP 2.2 subsystems. Condition is a collection of seven components,
that is, the attributes of the EM_Condition class in the SDR (see Table 2).

Table 2. Equivalent Terms between the SDR and the Event Perspective

EM_Condition Attribute Event Perspective Field

name Condition Name
description Condition Description
variable Resource Variable Name
predicate Expression
rearm Rearm Expression
specified Fixed Resource Identifier Fields
unspecified Resource Identif ier

152 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

There are 16 IBM-defined typical conditions included in PSSP 2.2. These 16
objects of the EM_Condition class are displayed in Table 4 on page 170.
This table is the output of the following command (assuming no other
conditions have been added or removed after the initial installation of PSSP
2.2):

� �
SDRGetObjects EM_Condition� �

• The term event definition stands for a collection that consists of four
components:

− Event Definition Name, which should be unique within a system partition
for a given Kerberos principal.

− Condition Name, which names the condition to be observed.

− Resource Identifier, which specifies on what resource the condition is to
be observed.

− Response Options, which specifies what response is to be taken when
the event occurs.

Use of the Response Options component is completely optional. One can
create an event definition without specifying the type of response when the
event occurs.

The first three components, however, are required in order to create an
event definition.

Chapter 5. SP Perspectives GUI 153

This soft copy for use by IBM employees only.

Table 3. Equivalent Attribute Names between Problem Management and Event Perspective

Problem Man agement Attribute Values for Our Example Event
varFullEvent

Event Perspective

pmActivated 1 Register/Unregister

pmHandle varFullEvent Event Definition Name

pmRvar IBM.PSSP.aixos.FS.%totused Resource Variable Name

pmIvec NodeNum=loca l ;LV=hd9var ;VG=roo tvg Fixed Resource Identifier
Fields plus Resource
Identif ier

pmPred X >90 Expression

pmCommand wall /var now is more than 90% full! Command

pmCommandTimeout 30 How many seconds to wait
before assuming that the
command has hung, and then
killing it

pmTrapid -1 Command Trap ID

pmPPSlog 0 Command PSSP Log

pmText Command Log Text

pmRearmPred X <85 Rearm Expression

pmRearmCommand wall /var now is less than 85% full! Rearm-Command

pmRearmCommandTimeout 45 How many seconds to wait
before assuming that the
Rearm-Command has hung,
and then killing it

pmRearmTrapid -1 Rearm-Command Trap ID

pmRearmPPSlog 0 Rearm-Command PSSP Log

pmRearmText Rearm-Command Log Text

pmUsername root The username of the
subscriber client

pmPrincipal root.admin@MSC.ITSO.IBM.COM Kerberos Principal

pmHost sp21en0.msc.itso.ibm.com The host from which the
subscription initiated

pmTargetType NODE_RANGE pmTarget field format

pmTarget 0,5 Hosts on which to run
Command or
Rearm-Command

pmUserLabel varFull Condition Name

5.2.3.2 Where Is My Event Definition Stored?
Where the event definition is stored depends entirely on the type of Response
Options selected in the event definition you created.

As indicated in Figure 86 on page 155, when a registered event definition is
created and the Get Notified During the Event Perspective Session option is
selected, then the Event Definition is registered with the Event Management
subsystem directly without engaging the Problem Management subsystem. This
event definition is stored in file $HOME/.$USER:Events, which is the event

154 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

notification profile of the user. Note that, unlike the SDR, $HOME/.$USER:Events
is not shared with any other user and is writable only by the user $USER.

As long as the user is in an Event Perspective session, the Event Management
notifies the user whenever the event occurs. This notification stops when the
user ends the Event Perspective session. However, as soon as the user starts
the session again, even from a different system partition, the event information is
retrieved from $HOME/.$USER:Events and the user receives notification
whenever the event occurs.

Figure 86. Interrelation of Event Perspective with the Underlying Subsystems

When the event definition is registered and either or both options Take Actions
When the Event Occurs and Take Actions When the Rearm-Event Occurs are
selected, then the Event Definition registers with the Event Management through
the Problem Management subsystem. In this case, when the event occurs,
actions are taken whether the user is running Event Perspective or not.

If the condition of the event definition is a new one, then this condition is stored
in the SDR as an object in the EM_Condition class. Note that you may create a
new condition (similar to the Step 3 of Example 2) without creating any event
definitions. Later you can use these conditions to create event definitions.

Chapter 5. SP Perspectives GUI 155

This soft copy for use by IBM employees only.

5.2.3.3 Can I Modify or Delete an Event Definition?
Using the Event Perspective, you can view, modify, and even delete an event
definition but not the condition of the event definition. Conditions are stored in
the SDR permanently until you execute the SDRDeleteObjects command, which we
do not recommend. For example, to delete the condition varFull from the SDR,
use the following command (see also 5.2.3.5, “SDR and Some Helpful SDR
Commands”):

� �
SDRDeleteObjects EM_Condition name=varFull� �

Figure 87. Deleting a Condit ion from the SDR

You are usually better off not deleting any conditions from the SDR. These
conditions may be used later to create new event definitions.

5.2.3.4 Summary of Authorizations Needed
In order to be able to create an event definition, you need to be a Kerberos
Principal in the system partition of interest.

In addition, if in creating your event definition, you do not use a predefined
condition and create a new condition, then you need to have the SDR write
authority to update the SDR. This means that you need to be both running as
root or as a user with uid=0, and running from the Control Workstation or from a
node whose adapter is in the SDR Adapter class.

Finally, if you select response options of the type Take Actions When the...
(Figure 86 on page 155), then in addition to the Kerberos, your principal name
needs to be added to the Problem Management access control list (acl) file
/etc/sysctl.pman.acl. This is to be done for every node that is affected when the
event occurs and the response actions are taken.

5.2.3.5 SDR and Some Helpful SDR Commands
The System Data Repository (SDR) is an SP subsystem where your SP system
configuration and some operational information are stored. The SDR itself is
physically located on the Control Workstation, but it is made available to other
network-connected nodes through a client/server interface featuring the SDR
daemon sdrd.

Clearly, it is a good idea to understand the SDR and know how the data is
organized in it. You should also be familiar with some of the SDR commands
that are useful in creating and managing events. Read the following note
carefully.

 Important

The SDR commands are to be used by the IBM PSSP for AIX system
management software. Use of these commands by a user can cause
corruption of the system configuration data.

The exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles,
SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

156 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Let us briefly review the logical model used in the SDR. It is composed of
classes, objects, and attributes. Every class contains objects and every object is
uniquely identified by its set of attribute values. For example, the class Switch in
our system happens to contain only one object. The attributes of this object (our
switch) are as follows (see also Figure 89 on page 158.):

� �
switch_number = 1
frame_number = 1
slot_number = 17
switch_partition_number = 1
.
.
.
switch_name = SP_Switch
.
.
.� �

Figure 88 shows how you can display class names in the SDR.

� �
SDRListClasses
Adapter
Dont_care_pool_list
EM_Condition
.
.
.
Frame
.
.
.
Node
NodeGroup
Pool
SP
.
.
.
switch_responds
SDRListClasses │ wc -l

35
SDRListClasses │ grep EM
EM_Condition
EM_Instance_Vector
EM_Resource_Class
EM_Resource_Monitor
EM_Resource_Variable
EM_Structured_Byte_String
#� �

Figure 88. Displaying the Class Names in the SDR

Most SDR interaction is performed using the SDR command line interface. In the
next section, we see some of these commands in action.

There are 35 different classes in the SDR. Six of these pertain to the Event
Management subsystem. One class, the EM_Condition class, is used by Event
Perspective exclusively. The objects in the Switch class are shown in Figure 89
on page 158 as an example.

Chapter 5. SP Perspectives GUI 157

This soft copy for use by IBM employees only.

� �
SDRGetObjects Switch
switch_number frame_number slot_number switch_partition_number switch_ty
pe clock_input switch_level switch_name clock_source clock_change

1 1 17 1 129 0
1 SP_Switch 0 no

#� �
Figure 89. Displaying the Objects and Attributes of a Class

There are ten attributes for the class Switch. You can see that our system has
only one switch (object or row of data) of type 129 with the name SP_Switch.

Table 4 on page 170 is the output of the following command:

� �
SDRGetObjects EM_Condition� �

This table lists all the conditions belonging to the EM_Condition class. A great
deal of useful information about your system can be extracted from the SDR by
using some simple SDR commands.

Remember to refer to the note labeled “Important” at the beginning of this
section for information regarding some SDR commands. For further details on
this subject, see PSSP for AIX Administration Guide, GC23-3897, and PSSP for
AIX Command and Technical Reference, GC23-3900.

Finally, you may want to fill your ENV =$HOME/.kshrc file with your favorite
aliases. Our .kshrc file looks like the following:

� �
.
.
.
alias sdrcls=″SDRListClasses″
alias sdrc=″SDRGetObjects EM_Condition ″
alias sdriv=″SDRGetObjects EM_Instance_Vector ″
alias sdrrc=″SDRGetObjects EM_Resource_Class ″
alias sdrrm=″SDRGetObjects EM_Resource_Monitor ″
alias sdrrv=″SDRGetObjects EM_Resource_Variable ″
alias sdrsbs=″SDRGetObjects EM_Structured_Byte_String ″
.
.
.� �

5.2.3.6 Runtime Error Message Help Facility
A very useful feature of SP Perspectives (including the Event Perspective) is the
runtime error message help facility. Typically, when there is an error, the Event
Perspective displays a pop-up window (Figure 90 on page 159), which gives a
brief description of the nature of the error.

158 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 90. The Event Perspective Pop-Up Error Window

Now click Help on this pop-up window, and you are presented with a second
window named SP Perspectives Help. This window displays a Message Help, if
there is one (see Figure 91).

Figure 91. The SP Perspectives Help Window with Message Help

Finally, you can click Error Stack... on the SP Perspectives Help window, which
gives you a third window with more detailed information about the error (see
Figure 92 on page 160). If you are experiencing an error and need to call IBM
support, it is helpful to have the error stack information handy.

Chapter 5. SP Perspectives GUI 159

This soft copy for use by IBM employees only.

Figure 92. The SP Perspectives Help Window with Detailed Error Information

5.2.4 Example 3: Monitoring CPU Usage
Suppose you want to execute the command wall Do not waste CPU time! and
send an SNMP trap with ID=1006 when the CPU idle time is less than 10% on
cpu5 of Node 1 of partition sp21en0.

To do this, you must first make sure that partition sp21en0 is the current
partition, and then follow the procedure described in 5.2.2, “Example 2:
Monitoring File System Size” on page 148.

 Note

Details of the following steps are given in Examples 1 and 2.

Before you start, be sure the Event Definition pane has focus.

Step 1 Click the Create Event Definition icon.

Step 2 Make up a name which is unique within the system partition, for
example, CPU_Idle_Monitor.

There is no predefined condition that can help you here (see Table 4
on page 170). Create a new condition.

Step 3 Create a new condition.

 1. Click Create Condition .
 2. Enter a name for the condition (for example, CPU_Idle) and a

description (for example, Nodes too busy).
 3. This step can be tricky unless you are either using a predefined

condition or you already know which Resource Variable you need
to use.

160 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Since in our scenario you are creating a brand new condition and
event definition, you have to do some searching, as described in
Step 3 of 5.2.2, “Example 2: Monitoring File System Size” on
page 148.

Looking at the output of the following command tells us that the
class IBM.PSSP.aixos.CPU seems to be the right one.

� �# SDRGetObjects EM_Resource_Class� �
It is the only class that has the string CPU in it. (Instead of using
this command, you can refer directly to Figure 84 on page 150 to
determine this.)

Now you need to find the names of all the Resource Variables in
this class.

� �# SDRGetObjects EM_Resource_Variable rvClass==IBM.PSSP.aixos.CPU rvName
rvName
IBM.PSSP.aixos.CPU.glidle
IBM.PSSP.aixos.CPU.glkern
IBM.PSSP.aixos.CPU.gluser
IBM.PSSP.aixos.CPU.glwait
IBM.PSSP.aixos.cpu.idle
IBM.PSSP.aixos.cpu.kern
IBM.PSSP.aixos.cpu.user
IBM.PSSP.aixos.cpu.wait
#� �

Click the selection box of the Resource Variable Name field.
Scroll down and click the desired Resource Variables to read
their descriptions, which are automatically displayed in the
Resource Variable Description box. Based on the descriptions,
choose IBM.PSSP.aixos.cpu.idle with the description of Time CPU
is idle (percent).

 4. Enter the expression X<10.

 5. A rearm-command is not requested by the scenario, but X≥ 10
would be an appropriate one.

Note: Look at the field value displayed for this Resource Variable
in the view-only Resource Identifier Format box. The Instance
Vector has two elements: CPU and NodeNum. The reason we
have both CPU and NodeNum is that a node can have more than
one CPU.

Step 4 Set NodeNum=1 by selecting NodNum in the Field Names box, and
then 1 in the Field Values box. Similarly, set CPU=cpu5.

Step 5 If you need the event definition to become active as soon as you
create it, then choose Register .

Step 6 Select Take Actions When the Event Occurs . Also click SNMP Traps
and enter 1006 in the Trap ID window in the Command area.

Step 7 Click On Selected Node(s) and select Nodes 0, 1, 5, 6, 7, and 8 so that
you can observe the wall command run on every node in sp21en0, as
well as on the Control Workstation.

Step 8 Click Create . You are now done.

Chapter 5. SP Perspectives GUI 161

This soft copy for use by IBM employees only.

5.2.5 The pcount and xpcount Resource Variables
The Resource Variables IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount are
used to monitor daemons (5.2.6, “Example 4: Monitoring a Daemon” on
page 165) or any other process with a long lifetime. See Appendix E, “The
IBM.PSSP.Prog.pcount Resource Variable” on page 245 and Appendix F, “The
IBM.PSSP.Prog.xpcount Resource Variable” on page 249 for more information.

Both of these variables have an SBS data type. An SBS is a string that can have
multiple fields and whose format is embedded in the string. The fields 0, 1, and
2 for these variables are:

X@0 CurPIDCount:

The number of processes of the type specified that are currently
running

X@1 PrevPIDCount:

The number of processes of the type specified that were previously
running

X@2 CurPIDList:

A list of the process IDs (PIDs) of the type specified that are currently
running

For the pcount and xpcount Resource Variables, the processes to monitor are
specified with the following field types:

� �
NodeNum;ProgName;UserName� �

For example, there is a predefined condition named sdrDown (see Table 4 on
page 170) that has the following values for the field types:

� �
NodeNum=0;ProgName=sdrd;UserName=root� �

What is the difference between pcount and xpcount?

• The variable pcount represents all the processes (inherited or exec′d)
running a specified executable file.

• The variable xpcount represents only the exec′d processes running a
specified executable file.

162 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

 Attention

About Inherited and Exec ′d Processes

In AIX or any other UNIX system, the only way to make a new process is to
use a fork() system call, which causes the existing process to duplicate into
a parent-child pair.

The child process is an identical copy of the original parent process except
for its process ID number (PID). In fact, the child process inherits a copy of
its parent′s code, data, stack, open file descriptors, and signal table, and then
continues to execute the same code as its parent. In this situation, the child
process is an inherited process.

A typical child process, however, uses an exec() system call to replace its
code with that of another executable file, thereby differentiating itself from its
parent. This is called an exec′d process.

To find out whether a process is inherited or exec′d, you can use this
command:

ps -e -o ″flag,pid,ppid,comm″

If the SEXECED process flag (0x200000) is set (see Figure 93 on page 164),
then the process is exec′d. Otherwise, the process is inherited.

Chapter 5. SP Perspectives GUI 163

This soft copy for use by IBM employees only.

� �
.
.
.
/*
 * NOTE: process flag values are or′ d together for binary compatibility
 */

/*
 * process flags, p_flag
 *
 * This field can be updated under the process only. If the process
 * is single threaded, then the update can be made at base level. Otherwise
 * interrupts need to be disabled and the proc_int_lock held.
 */
#define SLOAD 0x00000001 /* user and uthread struct. pinned */
#define SNOSWAP 0x00000002 /* process can′ t be swapped out */
#define SFORKSTACK 0x00000004 /* special fork stack is allocated */
#define STRC 0x00000008 /* process being traced */
#define SFIXPRI 0x00000100 /* fixed priority, ignoring p_cpu */
#define SKPROC 0x00000200 /* Kernel processes */
#define SSIGNOCHLD 0x00000400 /* do send SIGCHLD on child′ s death*/
#define SSIGSET 0x00000800 /* process uses the SVID sigset int*/
#define SLKDONE 0x00002000 /* this process has ″done″ locks */
#define STRACING 0x00004000 /* process is a debugger */
#define SMPTRACE 0x00008000 /* multi-process debugging */
#define SEXIT 0x00010000 /* process is exiting */
#define SORPHANPGRP 0x00040000 /* orphaned process group */
#define SNOCNTLPROC 0x00080000 /* session leader relinquished */

/* the controlling terminal */
#define SPPNOCLDSTOP 0x00100000 /* Do not send parent process */

/* SIGCHLD when a child stops */
#define SEXECED 0x00200000 /* process has exec′ d */
#define SJOBSESS 0x00400000 /* job control used in session */
#define SJOBOFF 0x00800000 /* free from job control */
#define SEXECING 0x01000000 /* process is execing */
#define SPSEARLYALLOC 0x04000000 /* allocates paging space early */
.
.
.� �

Figure 93. Process Flags: p_flags Field in the /usr/include/sys/proc.h File

For example, based on the output shown in Figure 94, the variable
IBM.PSSP.Prog.pcount pertains to all 8 processes, but the variable
IBM.PSSP.Prog.xpcount only pertains to the process with PID=13394. It is
assumed that in this case, ProgName=nfsd with the appropriate NodeNum and
UserName.

� �
ps -e -o ″flag,pid,ppid,comm″ | grep nfsd

40001 12888 13394 nfsd
240001 13394 3148 nfsd
40001 14172 13394 nfsd
40001 19806 13394 nfsd
40001 20576 13394 nfsd
40001 21858 13394 nfsd
40001 22618 13394 nfsd
40001 25686 13394 nfsd

#� �
Figure 94. Sample Output of the ps Command

164 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The variables pcount and xpcount are State variables. This means that their
values are reported to the Event Manager only when the state changes. Since
the SBS in the value contains both the previous PID count and the current PID
count, useful expressions (predicates) can be created by referencing these two
fields of the SBS. For example, the expression:

� �
X@0<X@1� �

specifies that an event should be generated if the CurPIDCount is less than the
PrevPIDCount. Thus, you will get notified if a process of the specified type dies.
You also may choose to rearm this event with the expression:

� �
X@0>X@1� �

if you wish to be notified when a process is started to replace the one that died.
As we discussed earlier, you can leave the rearm predicate null and only be
notified when processes die.

Note that the expression X@0==X@1 will never happen. This is because
pcount and xpcount, being State variables, will only be reported when the state
changes. Thus, the CurPIDCount will never be the same as the PrevPIDCount.

These two variables, pcount and xpcount, are considered to be dynamically
instantiated. This means that they refer to resources in the system (in this case
processes) that are transient. Because of this, the PSSP 2.2 HA Infrastructure
does not keep track of all of the instances that could be monitored at any given
time. This tracking would require too much system resource. For the same
reason, the Event Manager will not return the field values of all possible
instances if one of the field values is wildcarded. Therefore, Perspectives cannot
fill in the possible field values in the Event Definition window. This has an effect
on conditions that you might create using pcount and xpcount. Conditions that
use either of these two Resource Variables must fully specify all of the field
types.

 Note

Do not leave any of the field types unspecified. If you do, the Event Definition
window will fail to produce a complete list of possible field values to choose
from and you will reach a dead end when trying to create an event definition.

5.2.6 Example 4: Monitoring a Daemon
Suppose you want to be notified whenever the sendmail daemon on Node 5 dies.

After going through Examples 2 and 3, you realize that the key step in creating
an event definition is Step 3C. To carry out this step, you need to know which of
the more than 360 Resource Variables is the right one for your situation.

Note that if you use a predefined condition, as in Example 3, then you do not
need to worry about Step 3C because the Resource Variable is automatically
selected for you; it comes with the predefined condition. You can see, therefore,
that storing a variety of conditions in the SDR is a smart thing to do because you
can use these predefined conditions and create variety of event definitions to

Chapter 5. SP Perspectives GUI 165

This soft copy for use by IBM employees only.

suit your situation. This is the reason why, by design, when you delete an event
definition, the corresponding condition is not deleted from the SDR automatically.

A nice thing about monitoring a daemon or process that lasts long enough to be
detected is that you need to decide between only two Resource Variables,
namely, IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount. The challenging
part, however, is to have enough knowledge about the process to be able to
answer questions such as: “Is the process going to fork (duplicate) later?” or
“Am I interested in monitoring all the child and grandchild processes created?”

 Important

Rule of Thumb for Monitoring a Process

In most cases, it is safer and perhaps most appropriate to use the
IBM.PSSP.Prog.xpcount Resource Variable to monitor a process.

However, if the process is inherited by long-running processes which do not
“exec,” then using IBM.PSSP.Prog.pcount might be appropriate. You have to
know your process and its behavior before deciding which variable is the
right one, xpcount or pcount.

In this example, the output of the ps command:

� �
ps -e -o ″flag,pid,ppid,comm″ | grep sendmail
 240401 4196 3148 sendmail
#� �

shows that the process running the sendmail program has the SEXECED process
flag set (refer to Figure 93 on page 164). In other words, sendmail is exec′d.
You also do not anticipate that the process will fork later. Therefore, you choose
the xpcount rather than the pcount Resource Variable.

The sendmail daemon is a systems daemon and runs the same way on different
nodes; it has the same process “flag” value of 240401. However, if you plan to
monitor other processes, you should run the ps command on the node on which
the desired process runs (here it is Node 5). In this way, you get the right flag
value. Now you can proceed in a manner similar to Example 2.

 Note

Details of the following steps are given in Examples 1 and 2.

Step 1 Click the Create Event Definition icon.

Step 2 Enter a unique name, such as sendmailDownEvent.

Step 3 Create a new condition and make up a name for it, such as
sendmailDown. Make up a description, such as sendmail is down!, and
press Enter. Select the IBM.PSSP.Prog.xpcount Resource Variable.
Enter X@0==0 in the Expression box and
NodeNum=5;ProgName=sendmail;UserName=root in the Fixed Resource
Identifier Fields box.

166 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Step 5 If you need the event definition to become active as soon as you
create it, then choose Register .

Step 8 Click Create . You are now done.

5.2.7 Example 5: Monitoring the Health of Your System
You can use the monitor button on the tool bar of Event Perspective to monitor
the health of your system. (This action only applies to the Syspars pane and
therefore can be used only when the Syspars pane is the current pane.)
Monitoring in this approach is different from using event definitions (as in
Examples 1 to 4).

Using event definitions, a dialog will pop up and perhaps an action will be
performed when one of the events occurs.

Using the monitor button on the tool bar of Event Perspective, the icons in the
Syspars pane will be colored according to the aggregate of the states of all the
conditions being monitored and will change whenever one of those states
changes. To set up and monitor the health of your system, perform the following
steps:

Step 1 Make the Syspars pane current by clicking it.

Step 2. Click the monitor icon in the tool bar, or select the View →Monitor
options from the pull-down menu. The Set Monitoring for Syspars
notebook appears with the following default conditions for system
partitions already listed:

• Conditions to Monitor:

− None

• Conditions of Contained Objects:

hostResponds Status of communications between
processor nodes and the Control
Workstation

keyNotNormal The position of the key mode switch on
nodes

nodeEnvProblem Status of the environment light on the
front of nodes

nodePowerDown Status of power to nodes

nodePowerLED Status of power light on front of nodes

nodeSerialLinkOpen Status of the serial one port

nodeNotReachable Status of Group Services communication
with nodes

pageSpaceLow Paging space on nodes exceeds 85
percent

realMemLow Real memory on the system exceeds 85
percent

switchNotReachable Status of communications between switch
adapters on nodes and IP

switchResponds Status of switch activity on nodes

Chapter 5. SP Perspectives GUI 167

This soft copy for use by IBM employees only.

tmpFull Status of space on the file system for
LV=hd3 and VG=rootvg

The conditions just listed are all the conditions that apply to nodes.
More exactly, they are the conditions that have an unspecified
resource identifier of only NodeNum. You can add to this list of
conditions using the Create Condition button in the Event Definition
notebook as you did in Examples 2 and 3.

Step 3 Click a condition in the list box to select it for monitoring.

• To select multiple conditions that are listed consecutively, click
the first desired condition, hold the left mouse button down, and
move the cursor down the list over the desired conditions.

• To select multiple conditions that are not listed consecutively,
hold the Ctrl key on your keyboard down while you click each
desired condition.

Step 4 Click Apply to monitor the selected conditions and leave the notebook
open, or click OK to monitor the selected conditions and close the
notebook.

• To stop monitoring selected conditions, click Stop Monitoring .

The display of the objects in the Syspars pane reflects the status of the
conditions being monitored. In a partitioned SP system, each condition selected
is being monitored for each node in each system partition (syspar). The states
of all of these are combined together to get a single state, which is then
displayed in the icon of the object as follows:

Green This indicates the system is working properly; none of the monitored
conditions for this syspar have triggered.

Red X This indicates there is a problem; one or more monitored conditions
for this syspar object have triggered.

? This indicates the state of one or more monitored conditions for this
syspar object is unknown; there may be a problem communicating
with the event manager daemon, for example.

To see detailed information for monitored conditions of objects, double click the
object to open its notebook and view the Monitored Conditions page.

If you iconify the Event Perspective window, you will also get a color cue
indicating that one of the monitored conditions occurred (for example, it will turn
red if a nodePowerDown occurs on any of the monitored nodes on the SP). You
can then open the iconified window, and “drill down” on the node indicated with
a Red X for more notebook type of information.

The Monitored Conditions page contains information about the attributes of the
system partition that are being monitored. The page lists the following
information:

Condition Name The object attribute or variable being monitored

Expression A mathematical statement that is used to compare an
attribute′s value to some defined value

Resource An entity in the SP system that provides a set of services

Variable Value The current value of the object attribute

168 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Condition Value Whether the condition has triggered, thereby changing the
display of the object

As previously mentioned, Table 4 on page 170 lists all the conditions belonging
to the EM_Condition class.

Chapter 5. SP Perspectives GUI 169

T
h

is so
ft co

p
y fo

r u
se

 b
y IB

M
 e

m
p

lo
ye

e
s o

n
ly.

Description

The frame
controller is not
responding.

The power to the
frame has been
turned off.

The node is not
responding.

Key mode switch on
a node was
switched out of the
Normal position.

The environment
indicator LED on
the node is
i l luminated.
 A hardware
problem was
detected.

The power to the
node is off.

Node power is off
when powerLED is
not 1.

The serial link to
the node (TTY) is
open.

Group services has
found no way to
communicate with
the node. The node
is presumed to be
down.

Unspecified

FrameNum

NodeNum

NodeNum

NodeNum

NodeNum

NodeNum

NodeNum

NodeNum

NodeNum

Specified

none

none

none

none

none

none

none

none

none

Rearm

X = = 1

X ! = 0

X = = 1

X = = 0

X = = 0

X ! = 0

X = = 1

X ! = 1

X ! = 0

Predicate

X ! = 1

X = = 0

X ! = 1

X ! = 0

X ! = 0

X = = 0

X ! = 1

X = = 1

X = = 0

Variable

• .SP_HW.Frame.controller
Responds

• .SP_HW.Frame.frPowerOff

• .Response.Host.state

• .SP_HW.Node.keyModeSwitch

• .SP_HW.Node.envLED

• .SP_HW.Node.nodePower

• .SP_HW.Node.powerLED

• .SP_HW.Node.serial
LinkOpen

• .Membership.Node.state

Table 4 (Page 1 of 2). IBM Default Predefined EM_Condition Class Objects

Name

Note: • stands for IBM.PSSP

Note: All Names and Variables are continuous strings

frameControl ler
NotResponding

framePowerOff

hostResponds

keyNotNormal

nodeEnvProblem

nodePowerDown

nodePowerLED

nodeSerialLinkOpen

nodeNotReachable

170
R

S
/6

0
0

0
 S

P
 M

o
n

ito
rin

g
: K

e
e

p
in

g
 It A

live

T
h

is so
ft co

p
y fo

r u
se

 b
y IB

M
 e

m
p

lo
ye

e
s o

n
ly.

Description

The paging space
utilized on the node
exceeds 85 percent.

This condition will
cause an event
when an SDR
daemon dies. Note
that conditions
using this Resource
Variable must have
all field values
specified.

The real memory on
the system is over
85 percent utilized.

Switch power is off
when powerLED is
not 1.

The switch adapter
on the node is not
responding to IP, or
the node is isolated.

The switch adapter
on the node is not
responding, or the
node is isolated.

The file system for
LV=hd3 and
VG=rootvg is
running out of
space.

Unspecified

NodeNum

none

NodeNum

SwitchNum

NodeNum

NodeNum

NodeNum

Specified

none

NodeNum=0
ProgName=sdrd
UserName=roo t

none

none

Adap te rNum=0
AdapterType=css

none

L V = h d 3
V G = r o o t v g

Rearm

X≤ 85

X≥ 15

X = = 1

X = = 1

X = = 1

X < 8 0

Predicate

X > 8 5

X @ 0 < X @ 1

X < 1 5

X ! = 1

X ! = 1

X ! = 1

X > 9 0

Variable

• .aixos.PagSp.%totalused

• .Prog.pcount

• .aixos.Mem.Real.%free

• .SP_HW.Switch.powerLED

• .Membership.LANAdapter.
state

• .Response.Switch.state

• .aixos.FS.%totused

Table 4 (Page 2 of 2). IBM Default Predefined EM_Condition Class Objects

Name

pageSpaceLow

sdrDown

realMemLow

switchPowerLED

switchNotReachable

switchResponds

tmpFull

C
h

a
p

te
r 5

.
S

P
 P

e
rsp

e
ctive

s G
U

I
171

This soft copy for use by IBM employees only.

172 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Chapter 6. Problem Management SNMP Subagent

As your SP systems increase in number, complexity, and geographic location,
the ability to report SP problems and events to an existing TCP/IP-based network
manager becomes not only desirable but necessary.

Typically the availability of these systems is vital, and therefore the ability to
monitor and detect potential problems proactively is essential. This can be
achieved by extending the new PSSP 2.2 High Availability Infrastructure by
integrating the management of SP systems to an enterprise manager, either
locally or remotely.

Figure 95 shows a hypothetical network of distributed SP systems within an
existing enterprise where the main operations center is located in London. In
this scenario, this center is responsible for the management of the total
enterprise, including the remote SP systems.

Figure 95. SP Distributed Management

This chapter describes the implementation specifics and the methodology used
to integrate and report SP-related problems to an existing enterprise solution,
specifically NetView for AIX or another Simple Network Management Protocol
(SNMP) manager that understands SNMP.

The essence of the Problem Management subsystem and the Event Management
subsystem have already been discussed in earlier chapters. This chapter does
not cover those concepts again.

 Copyright IBM Corp. 1997 173

This soft copy for use by IBM employees only.

6.1 Problem Management SNMP Support
PSSP 2.2 includes a Problem Management subsystem that provides an
infrastructure for recognizing and acting on problem events within the SP
system. This infrastructure is based on an Event Management application that
provides an Event Management client interface (EMAPI). This interface enables
the Problem Management subsystem to access the Event Management function
without the necessity of writing complex C programs that use the Event
Management APIs.

The Problem Management subsystem lets you subscribe to Event Management
events and specify actions for those events. One action you may wish to specify
is to issue an SNMP trap as a response to an event.

The ability to issue an SNMP trap in response to an event allows you to report
problem events occurring in your SP system to an existing SNMP network
manager, such as NetView for AIX. You may want to both perform a local
recovery action and send an SNMP trap to a remote network manager.

The Problem Management subsystem provides an SP SNMP proxy agent,
sp_configd. This agent is often referred to as a subagent, and it runs on the
Control Workstation and every SP processor node. It provides the following
functions:

 1. A Management Information Base (MIB).

 2. Support for SNMP GET and GET NEXT, but not support for SNMP SET. The
supported commands allow data in the MIB to be accessed by a network
manager, such as NetView for AIX.

 3. Creation and transmittal of SNMP traps to an installation-defined network
manager application, when the following events occur on the node on which
the SP proxy agent is running:

• A “cold start” trap is issued when the proxy agent sp_configd is
activated.

• An enterprise-specific trap is issued when an entry with an Alert=true
attribute is written to the AIX error log.

• An enterprise-specific trap is issued when a user-specified event is
detected within the Event Management services.

This chapter provides implementation specifics of incorporating the SP as part of
a larger network management infrastructure. In such a system, the SP presents
error event information in the form of SNMP traps to NetView for AIX, which then
displays and logs the trap.

6.1.1 Understanding Network Management
The set of standards for Network Management in an IP network is commonly
referred to as Simple Network Management Protocol (SNMP). This protocol
describes only the means by which management data is transported through the
network. See Appendix G, “SNMP-Related Request For Comments” on
page 253 for more information about SNMP RFCs and how to get copies of them.

Equally important are the standards that define the structure of the data being
transported, the Management Information Base (MIB).

174 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

In the following sections, we briefly explain these elements.

6.1.2 Understanding Simple Network Management Protocol (SNMP)
SNMP uses a client/server approach to management of resources, defining two
roles: the manager and the agent.

• The manager (client) is where the network operators manage the overall
network activity, using an application such as NetView for AIX.

• The agent (server) is responsible for reporting on and maintaining the data
pertaining to a device, when the manager requests it to do so.

SNMP version 1, the version of SNMP supported by Problem Management, only
defines a relationship between the manager and the agent, and there is no
concept of a manager-to-manager connection.

6.1.3 Understanding the Management Information Base (MIB)
Every agent supports a Management Information Base (MIB), which is best
described as a set of variables that represent the physical and logical resources
of the managed systems or agents. The MIB is not a database, in the sense of a
monolithic collection of data, but rather represents live information about the
system resources. The values of these variables are maintained by different
system functions such as the kernel, device drivers, and subsystems.

Figure 96 on page 176 shows an object identifier tree in a typical MIB structure.

Most SNMP agents available in the market place today support MIB-2 only. The
standard MIB-2 contains 171 objects that relate to aspects of the IP network
connectivity, and basic system information, such as system contact name,
location, and interface information.

Chapter 6. Problem Management SNMP Subagent 175

This soft copy for use by IBM employees only.

Figure 96. Object Identif ier Tree - MIB Structure

In order to monitor SP-specific variables, such as Event Management variables,
it is necessary to further extend the MIB with private extensions. These will be
specific to the SP and are located off the private branch of the object tree.

6.1.4 Understanding the SNMP Multiplexor (SMUX) Protocol
By extending the default MIB tree with the MIB extensions, the manager must be
able to access and modify these extended MIB variables, depending on the MIB
access attributes. Hence the agent must also be extended to extract the
information that the manager requests.

One method of achieving this is to install a modified SNMP agent, which is
capable of understanding the extended MIB. Alternatively, a subagent can be
implemented, using the standard SNMP agent interface that is provided. This
interface allows additional code to register a MIB extension and handle requests
for it. Such a subagent API is called the SNMP Multiplexor (SMUX) protocol,
which is used by the sp_configd subagent to communicate with the SNMP agent
running on the same node. The SP Problem Management subsystem
communicates with the SNMP manager, such as NetView for AIX, that is using
the SNMP protocol.

6.1.5 SP SNMP Multiplexor Agent
The sp_configd daemon is internally configured as an SMUX peer, or proxy
agent, of the snmpd daemon on the Control Workstation and on each node of the
SP.

This proxy agent is an example of a private MIB extension, written by IBM for the
problem management of the SP. As with all objects found under the ibmProd

176 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

branch of the tree, the SP subtree starts with an object ID of 1.3.6.1.4.1.2.6 and
the name iso.org.dod.internet.private.enterprises.ibm.ibmProd.

The SP proxy agent MIB has an object ID of 1.3.6.1.4.1.2.6.117 and the name
iso.org.dod.internet.private.enterprises.ibm.ibmProd.

The best method for determining the object ID of a particular variable is to use
the MIB browser function of NetView for AIX. This is described in 6.2.9.2,
“NetView for AIX MIB Browser” on page 196.

The SP MIB contains objects that relate to the SP configuration (ibmSPConfig),
SP error log entries (ibmSPErrlogVars), and SP events (ibmSPEMVariable).

Figure 97 shows an IBM private SP MIB.

Figure 97. IBM Private SP MIB

6.1.6 How Problem Management Uses SNMP
In order for the SP to be part of such a network management system, the
network managers must be notified when selected AIX error log entries are
written and Event Management events occur. SP-specific configuration data is
provided so that management applications can determine which nodes compose
the SP system. The administrator must decide what error log and event
management events will trigger manager notification.

One of the functions of the Problem Management subsystem is to interface to the
SNMP manager. As clients subscribe to Event Management events, the
subsystem is able to receive these events from the predefined resources, and
subsequently pass these events to the sp_configd subagent, which then
generates SNMP traps.

Chapter 6. Problem Management SNMP Subagent 177

This soft copy for use by IBM employees only.

The sp_configd component of the Problem Management subsystem is able to
alert or notify an SNMP manager when an alertable entry is posted in the AIX
error log.

The relationships between the various parts of a distributed management system
are illustrated in Figure 98.

Figure 98. Relationship between NetView for AIX and SNMP Agents

6.2 Installation and Configuration
It is necessary to configure the SNMP manager, which in this case is NetView for
AIX, to recognize SP trap and configuration information.

6.2.1 Configuring the Ports
This section describes the various SMUX and SNMP ports which are configured
automatically when PSSP 2.2 is installed.

SMUX port: The /etc/services file contains port assignments for required
services. The following entry must be present in the /etc/services file for the
SMUX protocol:

� �
smux 199/tcp # snmpd smux port

� �

Note:

 1. The SMUX port must be 199.

178 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

 2. If the /etc/services file is being served from a server, this entry must be
present in the server′s /etc/services file.

 3. The /etc/services file is modified during installation and does not require any
further customization.

SNMP Ports: During installation of AIX, the installation process adds the port
definitions to the /etc/services file.

� �
snmp 161/tcp # snmp request
snmp 161/udp # snmp request

 snmp-trap 162/tcp # snmp monitor
 snmp-trap 162/udp # snmp monitor

� �

Port 162/UDP is normally defined and named snmp-trap. This is the port where
NetView for AIX listens for incoming traps.

This file is modified automatically during installation, and does not require
further customization.

6.2.2 Configuring SNMP Agents
This section describes how to configure SNMP agents and SMUX peers.

6.2.2.1 Community Name
It is necessary to configure SNMP on the agents, which are residing on the
Control Workstation and on each of the nodes. Most SNMP agents and
managers default to using the community name (or password) public. This
community name provides read-only access to the MIB, and hence it is not
possible to change any of the read/write MIB variables using the SNMP SET
command.

� �
community public
community private 127.0.0.1 255.255.255.255 readWrite
community system 127.0.0.1 255.255.255.255 readWrite 1.17.2

� �

In most circumstances, this is sufficient and no changes need to be made to the
SNMP configuration. However, if you want to restrict access to the ibmSP MIB,
then it is necessary to restrict the public community name to MIB views under
the management leaf, and to create a new community name below the
enterprise leaf for the public community name. They must be explicitly listed in
order to avoid providing access to the ibmSP leaf using the public community
name.

The following customization of the /etc/snmpd.conf file must be performed on
every SP node and the Control Workstation.

Chapter 6. Problem Management SNMP Subagent 179

This soft copy for use by IBM employees only.

� �
Agent configuration (/etc/snmpd.conf)

logging file=/usr/tmp/snmpd.log enabled
logging size=0 level=0

community public 1.17.1
(a) community itso 9.12.1.71 255.255.255.255 readOnly 1.17.2

community private 127.0.0.1 255.255.255.255 readWrite
community system 127.0.0.1 255.255.255.255 readWrite 1.17.2

view 1.17 mgmt view
view 1.17.2 ibmSP

(b) trap public 9.12.1.71 1.2.3 fe

smux 1.3.6.1.4.1.2.3.1.2.1.2 gated_password

(c) smux 1.3.6.1.4.1.2.6.117 sp_configd_pw
smux 1.3.6.1.4.1.2.3.1.2.1.3 xmservd_pw

� �

Comments about the Agent Configuration File :

Point a. We used the community name, itso. This was configured both on the
manager, in /usr/OV/conf/ovsnmp.conf (as described later), and in the agent,
/etc/snmpd.conf. The community itso entry will allow the SNMP manager with IP
address 9.12.1.71 read-only access to the ibmSP MIB on the nodes that have the
configuration shown. Note, however, that ibmSP.MIB is a read-only MIB.

These entries are installation-specific and must be done by the user.

Point b. This trap destination statement must be in place on each of the SP
nodes and the Control Workstation, which points to the IP address of the
management station.

These entries are installation-specific and must be done by the user.

Point c. Specifies the SMUX association configuration for the sp_configd proxy
agent.

The following entry must be present in the snmpd.conf file, and is done
automatically during the installation procedure.

� �
smux 1.3.6.1.4.1.2.6.117 sp_configd_pw # sp_configd

� �

180 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

6.2.2.2 SMUX Peer Configuration
The SMUX peer configuration is held in the /etc/snmpd.peers file on every node
where the subagent will reside.

� �
sp_configd 1.3.6.1.4.1.2.6.117 sp_configd_pw

� �

sp_configd is the name of the process acting as an SMUX peer, and
1.3.6.1.4.1.2.6.117 is the unique object identifier of the SMUX peer.
sp_configd_pw is the password that the snmpd daemon requires from the SMUX
peer client to authenticate the SMUX association.

The /etc/snmpd.peers file is modified with these changes automatically during
installation.

6.2.3 Configuring the SNMP Manager
The SNMP manager must also be configured such that it can issue requests with
the correct community name. The manager configuration file is called
ovsnmp.conf and is located in the /usr/OV/conf directory on the NetView for AIX
host.

� �
Manager Configuration (/usr/OV/conf/ovsnmp.conf)

 9.12.1.*:public:*:8:3:300::itso:
 ..*.*:public::8:3:300:::

� �

The first entry in the file tells NetView to use the community name itso when
issuing requests to nodes on Network 9.12.1. For communicating with all other
nodes, the community name public will be used.

The manager can easily be configured by selecting the option SNMP
Configuration from the Options field on the menu bar of NetView for AIX. This
action updates the ovsnmp.conf file; it is the recommended way to update this
file, and should not be edited in any other way.

Figure 99 on page 182 shows an SNMP configuration.

Chapter 6. Problem Management SNMP Subagent 181

This soft copy for use by IBM employees only.

Figure 99. SNMP Configuration

If the configuration is incorrect, then numerous authentication failure traps
appear on the NetView for AIX events console, and in trapd.log.

� �
842997295 4 Tue Sep 17 16:54:55 1996 sp21en0.msc.itso.ibm.com A

IBM Incorrect Community Name (authenticationFailure Trap)

� �

The community name is installation-specific, and all modifications must be done
post-installation by the user.

6.2.4 Configuring the MIB
The SP MIB file /usr/lpp/ssp/config/snmp_proxy/ibmSPMIB.defs is appended to
the /etc/mib.defs file. It is compiled from the ibmSPMIB.my file.

The /usr/lpp/ssp/config/snmp_proxy/ibmSPMIB.my file must be copied from the
Control Workstation into the NetView manager directory as
/usr/OV/snmp_mibs/ibmSP.MIB.

The MIB must be loaded into the SNMP manager, NetView for AIX (see
Figure 100 on page 183), using Options →Load/Unload →SNMP... from the main
NetView window.

182 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 100. Loading a MIB

By selecting Load , the following panel is presented, where ibmSP.MIB is listed.
Select this MIB file, and click OK , as shown in Figure 101.

Figure 101. Loading the MIB from File

Chapter 6. Problem Management SNMP Subagent 183

This soft copy for use by IBM employees only.

6.2.5 Configure Subagent sp_configd
The sp_configd daemon is internally configured as an SMUX peer, or proxy
agent, of the snmpd daemon on the Control Workstation and on each node of the
SP. Figure 102 shows the relationship between snmpd and sp_configd.

Figure 102. snmp and sp_configd

The sp_configd daemon provides the following functions:

• It receives requests from the network monitors for data from the ibmSP MIB
(these requests are routed from the snmpd daemon to the sp_configd
daemon over the SMUX interface). The results are returned by sp_configd
via the SMUX interface and then sent back to the originating monitor by the
snmpd agent.

• It sends trap notifications about events occurring on the SP to all hosts listed
in the snmpd configuration file, /etc/snmpd.conf.

The snmpd should be active before the sp_configd daemon is started. The
snmpd is controlled by the System Resource Controller (SRC) and is activated
when the system is initialized, with the following command:

� �
startsrc -s snmpd� �

The AIX Object Data Manager (ODM) is updated with an src_entry for sp_configd,
so that the daemon can be controlled using the following SRC commands:

• startsrc

This starts a subsystem, a group of subsystems, or a subserver.

The src_entry invokes the startsrc command with the following parameters:

184 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
startsrc

-s sp_configd -a ″-t 600″ -p /usr/lpp/ssp/bin/spconfigd
-u 0 -i /dev/null -o /dev/null -e /dev/null -S -n 15 -F 15

per the ODM

subsysname = ″sp_configd″
synonym = ″″
cmdargs = ″-t600″
path = ″ /usr/lpp/ssp/bin/sp_configd″
uid = 0
auditid = 0
standin = ″ /dev/null″
standout = ″ /dev/null″
standerr = ″ /dev/null″
action = 2
multi = 0
contact = 2
svrkey = 0
svrmtype = 0
priority = 20
signorm = 15
sigforce = 15
display = 1
waittime = 20
grpname = ″″

� �
The -t field determines the amount of time, in seconds, for which the data is
to be cached by the daemon and refetched when a new request for the data
is received. The default value is 60 seconds, but this can be changed.

An entry is added to the AIX inittab file to start the daemon by issuing the
command:

� �
startsrc -s sp_configd

� �
Issuing startsrc causes the sp_configd daemon to generate a coldStart trap.
This should be displayed on the NetView events control desk as a trap.

� �
Thu Sep 12 13:33:56 1996 sp21en0.msc.itso.ibm.com A IBM Agent Up
with Possible Changes (coldStart Trap)

� �
• stopsrc

This command stops a subsystem such as sp_configd, a group of
subsystems, or a subserver:

� �
stopsrc -s sp_configd� �

• lssrc

This command is used to acquire the status of the subsystem, group of
subsystems, or subserver. The sp_configd daemon does not support the
long status form of the lssrc command. However, snmpd does support the
long status form of the lssrc command.

Chapter 6. Problem Management SNMP Subagent 185

This soft copy for use by IBM employees only.

� �
Logfile: /usr/tmp/snmpd.log
Tracing: ENABLED ACTIVE
Debug level: 0
Max Packet Size: 32768
Query Timeout: 60
SMUX Timeout: 15

COMMUNITY: itso
ADDRESS: 9.12.1.71
NETMASK: 255.255.255.255
PERMISSION: readWrite
VIEW: 1.17.2

TRAP DESTINATION
COMMUNITY ADDRESS
public 9.12.1.71

SMUX CLIENT: 1.3.6.1.4.1.2.6.117
PASSWORD: sp_configd_pw
ADDRESS: 127.0.0.1
NETMASK: 255.255.255.255

� �

The sp_configd daemon has several sessions with the Event Management
subsystem. These sessions are used to maintain the SP Event Management
variable instance data, and information from the last trap issued associated with
that event.

6.2.6 Customizing Traps
NetView for AIX events can be configured by selecting Options →Event
Configuration →Trap Customization: SNMP... from the menu bar. This opens the
Event Configuration window with a list of enterprise names and IDs. The ibmSP
enterprise is not listed and will have to be added.

Step 1 Add an ibmSP (1.3.6.1.4.1.2.6.117) enterprise, as shown in Figure 103.

Figure 103. Add the ibmSP Enterprise

Step 2 In order to configure the Problem Management subsystem traps,
select the ibmSP enterprise in the table and add all the appropriate
traps, as shown in Figure 104 on page 187.

186 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 104. Adding Predefined Traps

This will update the /usr/OV/conf/C/trapd.conf file.

This configuration file is used by the SNMP manager to activate the
traps received.

� �
Hardware_Errors_Arm {1.3.6.1.4.1.2.6.117} 6 10003 A 4 0 ″Status Events″
Trap: generic $G specific $S args ($#): $*
SDESC
Trap issued for SP hardware related events.
EDESC

� �
If the traps sent from sp_configd are not configured for NetView for
AIX, then the trapd daemon will receive traps that it will not be able
to understand. Typically, a questioned trap is displayed as shown in
the following screen. Therefore, it is important to configure these
traps in the trapd.conf file.

Chapter 6. Problem Management SNMP Subagent 187

This soft copy for use by IBM employees only.

� �
? Trap found with no known format in trapd.conf(4)

� �
In the case of the Event Management subsystem, the trap lists all of
the objects and their instance values, which for an Event Management
event are:

� � ibmSPEMEventID, ibmSPEMEventFlags, ibmSPEMEventTime,
 ibmSPEMEventLocation, ibmSPEMEventPartitionAddress,
 ibmSPEMEventVarsTableName, ibmSPEMEventVarsTableInstanceID,
 ibmSPEMEventVarName, ibmSPEMEventVarValueInstanceVector,
 ibmSPEMEventVarValuesTableInstanceID, ibmSPEMEventVarValue,
 ibmSPEMEventPredicate.� �

An administrator familiar with Event Management events (the
meaning of the objects is described in the ibmSP MIB) is able to
understand the event that occurred. For many events, the
administrator would want to automate a query to the SP trap
originator to get the current value of the variable named in the trap to
determine if the problem has been corrected by the local recovery
code back on the SP. It is preferred, however, to ensure that all
these traps are configured as in trapd.conf, to ensure operational
consistency and operational management.

The traps should be configured such that:

• Helpful messages are displayed on the event card about the SP
event.

• Windows pop up on the NetView console, or the Control
Workstation, to gain the attention of the operators.

• Commands are automatically executed, without operator
intervention.

• The category, status, and severity of the event will be reflected in
the event display.

Step 3 Apply the Event Customization.

For more information about event customization, refer to Examples of Using
NetView for AIX V3, GG24-4327.

With NetView for AIX V4, there is a further option for event configuration using
event rulesets. These are briefly discussed in Appendix A, “Overview of
NetView for AIX Ruleset Editor” on page 221, and more in-depth examples are
provided in Examples of Using NetView for AIX V4, SG24-4515.

6.2.7 Topological View of SP
The configuration of the SP is provided with the SP proxy agent MIB. This MIB,
ibmSP.MIB, contains SP-specifc SNMP configuration data, as shown in
Figure 105 on page 189. This enables SNMP managers to view the SP as a
network of SP processor nodes that will be attached to the Control Workstation.
Figure 105 on page 189 illustrates the Control Workstation sp21cw0 attached to
Network 9.12.1, which entails the SP nodes.

188 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 105. Topological Representation of the IBM SP

Topology is determined by the IPMAP application as usual. There is no
interpretation of the ibmSP MIB to determine the topology. The figure shows a
typical Netview submap that is determined by the Netview IPMAP application.
The Netview topology depends entirely upon where the Netview application is
installed. If Netview is installed on one of the nodes, the submap will show all
the host nodes at the highest level. However, if the Netview application is on an
external RS/6000, outside the SP environment, then the topology will differ, and
in fact be as represented in the diagram.

6.2.8 The ibmSP MIB
The ibmSP MIB is provided to define SP-specific information. It consists of three
groups of objects containing pertinent SP information:

 1. ibmSPConfig

 2. ibmSPErrlogVars

 3. ibmSPEMVariables

ibmSPConfig

The ibmSPConfig group of the ibmSP.MIB (see Figure 106 on
page 190) defines objects containing SP system configuration
information. The group is instantiated by every processor node in the
SP as well as on the Control Workstation.

Chapter 6. Problem Management SNMP Subagent 189

This soft copy for use by IBM employees only.

Figure 106. MIB Browser - ibmSPConfig

The ibmSPConfig group defines objects containing the following
information:

• The queried subagent node number

• The IP address of the system partition

• The hostname of the primary Control Workstation

• The operational state of the primary Control Workstation

• The hostname of the backup Control Workstation, if it exists

If your system does not have a backup Control Workstation, this
field will be null.

• The operational state of the backup Control Workstation

• The version number of the IBM Parallel System Support Programs
for AIX (IBM PSSP), running on the Control Workstation

• The table of SPNodeEntry

Each row in the table is indexed by the IP address of a system
partition combined with a node number, and contains the
following information about the node:

− The IP address of the system partition in which it resides

− The node number

190 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

− The number of the frame containing this node

− The lowest slot number in the frame occupied by the node

− A reliable hostname assigned to the node, which is the
hostname associated with the SP Ethernet

− The initial hostname assigned to the node, which is the
hostname that is assigned to the node during customization

− The name of the system partition in which the node resides

− The version number of the IBM Parallel System Support
Programs for AIX (IBM PSSP) running on the node

ibmSPErrlogVars

This group of objects is instantiated on each SP processor node and
on the Control Workstation. The group consists of a sequence of
objects (see figref refid=errlog.) containing information about the
last error log write that occurred on the reporting node.

Chapter 6. Problem Management SNMP Subagent 191

This soft copy for use by IBM employees only.

Figure 107. MIB Browser - ibmSPErrlogVars

ibmSPEMVariables

This group is instantiated on each SP processor node and on the
Control Workstation. It consists of objects representing Event
Management variables and contains up to three tables, as shown in
Figure 108 on page 193.

192 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Figure 108. MIB Browser - ibmSPEMVariables

 1. ibmSPEMNodeDepVarsTable

This is a table of objects that allows access to the definitions of
node-dependent Resource Variables, which are normally defined
with an Event Manager locator attribute.

The table only contains object instantiations for those variables
that have a locator value equalling the node number of the node
on which the SP proxy agent is running.

 2. ibmSPEMNodeIndepVarsTable

This is a table of objects that allows access to the definitions of
node-independent Resource Variables, which are normally
defined without an Event Manager locator attribute.

 3. ibmSPEMVarValuesTable

This is a table that allows access to the current values assigned
to the Event Management Resource Variables.

For each of the Event Management Resource Variables in the
ibmSPEMNodeDepVarsTable and ibmSPEMNodeIndepVarsTable
tables, there is information about the object instantiations, such as:

• The name of the Resource Variable

• A description of the Resource Variable

Chapter 6. Problem Management SNMP Subagent 193

This soft copy for use by IBM employees only.

• The variable type (Counter, Quantity or State)

• The data type (long, float, or structured byte string)

• The initial variable value

• An index into ibmSPEMVarValuesTable, which, when used in
combination with an instantiation vector, provides access to an
entry containing the current value of a variable instance

• The variable Resource Class

• The instantiation vector definition

• A description of each element in the instantiation vector

• The name used to read and write the variable in the PTX-shared
memory (this may be null)

• The default predicate for event notification (this may be null)

• A description of the event

• The locator value specified for the variable

• The resource order group

The ibmSPEMVarValuesTable table provides object instantiations for
the current values of variables from both ibmSPEMNodeDepVarsTable
and ibmSPEMNodeIndepVarsTable.

The portion of the ibmSPEMVariable group instantiated by the
sp_configd subagent depends on the type of SP node the subagent is
running on.

The ibmSPEMNodeDepVarsTable and ibmSPEMVarValuesTable tables
are instantiated on all the processor nodes and the Control
Workstation.

The ibmSPEMNodeIndepVarsTable table is instantiated only on the
Control Workstation.

6.2.9 Viewing the ibmSP MIB
The ibmSP MIB group objects can be viewed using the snmpinfo command, or, if
available, the NetView for AIX MIB Browser.

6.2.9.1 The snmpinfo Command
The AIX snmpinfo command may be used in place of a manager client, such as
NetView for AIX, to view the contents of the ibmSP MIB. This command is part of
the BOS fileset:

� �
bos.net.tcp.server 4.1.4.0

� �

This command may be used in place of an snmpget query from an SNMP
manager, such as NetView for AIX, to view the contents of the ibmSP MIB.

snmpinfo requires root authentication, and its usage can best be explained with
some examples:

• To dump the contents of the ibmSP MIB located on Node sp21n01 in verbose
mode, enter the command:

194 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
snmpinfo -c itso -m dump -v -h sp21n01 ibmSP

ibmSPhostnodenumber.0 = 1
ibmSPhostpartaddr.0 = 192.168.4.137
ibmSPCWScodeversion.0 = ″PSSP-2.2″
ibmSPprimaryCWSname.0 = ″sp21en0″
ibmSPprimaryCWSoperstatus.0 = 1
ibmSPbackupCWSname.0 = ″″
ibmSPbackupCWSoperstatus.0 = 2
ibmSPpartitionaddr.192.168.4.137.1 = 192.168.4.137
ibmSPpartitionaddr.192.168.4.137.5 = 192.168.4.137

� �
• To dump the contents of the ibmSPConfig group without the verbose mode

would result in the following:

� �
snmpinfo -c itso -m dump -h sp21n01 ibmSPConfig
--

1.3.6.1.4.1.2.6.117.1.1.0 = 1
1.3.6.1.4.1.2.6.117.1.2.0 = 192.168.4.137
1.3.6.1.4.1.2.6.117.1.3.0 = ″PSSP-2.2″
1.3.6.1.4.1.2.6.117.1.4.0 = ″sp21en0″
1.3.6.1.4.1.2.6.117.1.5.0 = 1
1.3.6.1.4.1.2.6.117.1.6.0 = ″″
1.3.6.1.4.1.2.6.117.1.7.0 = 2
1.3.6.1.4.1.2.6.117.1.8.1.1.192.168.4.137.1 = 192.168.4.137
1.3.6.1.4.1.2.6.117.1.8.1.1.192.168.4.137.5 = 192.168.4.137

� �
• To retrieve the values of a specific MIB variable, located on the local host,

such as ibmSPhostnodenumber, enter:

� �
snmpinfo -c itso -m get ibmSPhostnodenumber.0

1.3.6.1.4.1.2.6.117.1.1.0 = 0

� �
• To retrieve the value of the MIB variable following the

ibmSPhostnodenumber variable (in other words, the variable at
1.3.6.1.4.1.2.6.117.1.2.0), enter:

� �
snmpinfo -c itso -m next ibmSPhostnodenumber.0

1.3.6.1.4.1.2.6.117.1.2.0 = 192.168.4.137

� �

Only snmpinfo is available on the SP nodes and Control Workstation to query
MIBs. The snmpget command will not usually be available, except on the
NetView for AIX machine.

Chapter 6. Problem Management SNMP Subagent 195

This soft copy for use by IBM employees only.

6.2.9.2 NetView for AIX MIB Browser
If NetView for AIX is accessible, it is better to browse the MIB using the NetView
for AIX MIB Browser, as shown in Figure 109.

Figure 109. MIB Browser

The MIB Browser is used to query and set MIB values for both Internet-standard
and enterprise-specific MIB objects, and also to graph MIB values, including
specific instances.

The MIB Browser is used to display MIB values of a node by entering the name
or IP address of the node, and the community name of the agent that is running
on the selected node. Then, with the use of the Up and Down buttons, you can
walk the MIB tree. Continue this sequence of walking the MIB tree until you
reach the MIB object upon which the SNMP request is to be performed.

When selecting the MIB object, or specific instance of the object, a query can be
performed. If the community name is public, or if the agent′s community name
is configured in the SNMP Configuration dialog box, it is feasible to issue a Get
request query without having to specify a community name. The application
automatically displays the community name configured for the selected agent,
for example public, or the configured community name, such as itso, as soon as
you select an item from the MIB Object ID selection list. If the community name
is not valid, then the Messages area will indicate the success or failure of the
operation, as in the following example.

196 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �

Timed Out
A timeout can result from an invalid community name

� �

6.3 The AIX Error Log
In order for the RS/6000 SP to be part of an existing network management
system, the network managers must be notified of the AIX error log or Event
Management events that need to be centrally managed.

Therefore, there must be a way to create SNMP traps for SP AIX error log errors.

The RS/6000 SP uses both the BSD syslog and the AIX Error Logging facilities,
as well as a number of function-specific log files, to record error events on each
node.

Log management functions are built upon the Sysctl facility, which uses the SP
authentication services. Generating parallel AIX error log and BSD syslog
reports and performing general log viewing require that the user issue the kinit
command to be identified to the SP authentication services.

All other log management commands additionally require that the user be
defined as a principal in the /etc/logmgmt.acl file. All users defined in this file
must also be placed in the authentication database as a principal.

It is worth noting that most log management represents administrative tasks that
normally require root authority, and that a user defined in the logmgmt.acl file
will execute commands as the root user.

� �

#acl#
This sample acl file for log management commands contains a
commented line for a principal
_PRINCIPAL root.admin@MSC.ITSO.IBM.COM
The following principal is added to be able to trim SPdaemon.log
from cleanup.logs.ws
_PRINCIPAL rcmd.sp21en0

� �

The file contains entries for the user root as principal root.admin, and the
principal rcmd. This gives both principals authority to execute log management
commands.

6.3.1 SNMP Subagent (sp_configd) Monitor of AIX Error Log
The snmp_trap_gen error notification method and the sp_configd daemon create
SNMP traps when selected error types are recorded in the AIX error log.

This is similar to the NetView for AIX subagent, called trapgend, which also
converts AIX error log events into SNMP traps. Therefore, only one of these
methods should be used for monitoring the AIX error log.

Chapter 6. Problem Management SNMP Subagent 197

This soft copy for use by IBM employees only.

� �
errnotify:

en_pid = 0
en_name = ″snmp_trap_gen″
en_persistenceflg = 1
en_label = ″″
en_crcid = 0
en_class = ″″
en_type = ″″
en_alertflg = ″TRUE″
en_resource = ″″
en_rtype = ″″
en_rclass = ″″
en_symptom = ″″
en_method = ″ / usr/lpp/ssp/bin/snmp_trap_gen $1″

� �

The method, /usr/lpp/ssp/bin/snmp_trap_gen, and the daemon, sp_configd, both
run on the same processor node and Control Workstation composing the SP
system. In order for a trap to be created, error log entries on each node and
Control Workstation must contain an Alert=true attribute.

The following steps describe the flow of events for creating an SNMP trap for an
AIX error log event:

 1. An application or subsystem writes to the AIX error log facility.

 2. If the error log entry contains an en_alertflg = TRUE attribute, the
snmp_trap_gen error notification method runs.

 3. The snmp_trap_gen method uses the sequence number from the Error Log
entry as input to the errpt -a command to obtain full information about the
event.

 4. The snmp_trap_gen process places the event information in a FIFO file,
/var/rmp/errlog_entry.

 5. The sp_configd daemon reads the FIFO file, parses the information into
objects within the ibmSPErrlogVars group of the ibmSP MIB, and creates a
trap from the objects whose instantiations contain non-null values.

 6. The sp_configd sends the trap to the SNMP agent, snmpd, which in turn
sends the trap to network managers specified in the /etc/snmpd.conf file
existing on the node.

The following information is provided in SNMP traps from the AIX error log
events generated by sp_configd:

• The enterprise field contains the object identifier of the sp_configd subagent.

• The specific-trap field contains the error ID from the error log entry. This
value is the decimal notation of the AIX error ID.

• When the corresponding information exists in the error log entry, the
variable bindings field contains the following object values paired with their
IDs:

− Error label

− Error ID

− Error log entry timestamp

− Unique sequence number

198 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

− Machine ID parameter

− Error class

− Error type

− Resource name

− Resource class

− Resource type

− Location code of a device

− Vital product data

− Error description

− Probable causes

− User causes

− User actions

− Install causes

− Install actions

− Failure causes

− Failure actions

− Detail data

This information will be displayed by the events application in the Control Desk,
as shown in Figure 110 and Figure 111 on page 200.

Figure 110. NetView Subagent Event (Page 1)

Chapter 6. Problem Management SNMP Subagent 199

This soft copy for use by IBM employees only.

Figure 111. NetView Subagent Event (Page 2)

If, however, the AIX error log entry is not set to alertable, then these errors will
not be sent as SNMP traps. Therefore, the Error Record template for the entries
must have a specific Alert field set to the value true. This can easily be
achieved as root user:

 1. To determine what SP errors are provided, run errpt -t.

� �
28DB7CA6 HPS_FAULT9_ER PERM H Switch Adapter - Bus error
314A1C17 HPS_FAULT9_ER PERM H Switch Adapter - Bus error

� �
 2. Create a file that contains the two lines per error entry that you wish to be

designated as alertable:

� �
=28DB7CA6:
Alert=true

=314A1C17:
Alert=true

� �
Note that there must be a blank line between the different entry updates.

 3. From the command line, run the command:

� �
/bin/errupdate file

� �
 4. To verify that the alert status has been changed to true (or 1), issue the

following command to list all the alertable error templates:

� �
errpt -tF alert=1 | grep 28DB7CA6

� �
 5. If you wish to stop specific errors from alerting an SNMP manager, this can

be done by reversing step 2, as follows:

200 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
=28DB7CA6:
Alert=false

=314A1C17:
Alert=false

� �

6.3.2 Subsystem Logs

6.3.2.1 High Availability Subsystem Logs
The High Availability subsystem logs are located in /var/ha. For more
information, refer to Chapter 1, “Overview” on page 3.

6.3.2.2 SNMP Agent and sp_configd Subagent Logs
The logs for the SNMP agent and subagent are held in the /var/tmp directory.

� �
p---rw---- 1 root system 0 Sep 09 10:02 em_trap.192.168.4.
137
p---rw---- 1 root system 0 Sep 09 15:30 em_trap.192.168.4.
138
p---rw---- 1 root system 0 Sep 09 10:02 errlog_entry
-rw-r--r-- 1 root system 2557 Sep 10 14:43 snmpd.log
-rw-r--r-- 1 root system 2443 Sep 11 13:43 sp_configd.log

� �

Pipes: The top three files are pipes that are used by sp_configd to hold the
information that it needs to pass to the SNMP manager. These files are binary
and cannot be viewed. When on the Control Workstation, there is one em_trap
pipe per system partition; when on a processor node, there is only one em_trap
pipe since a node cannot belong to more that one partition at the time. There is
only one errlog_entry on a node or Control Workstation.

It is worth noting the date of usage for problem determination purposes. As
described earlier, the pmand daemon writes into the em_trap pipe(s). The
snmp_trap_gen method writes into the errorlog_entry pipe. The event response
is supplied by the Event Management subsystem to this FIFO file or pipe. The
sp_configd daemon accesses this data from the pipe and creates an SNMP trap.
Hence, if this file is empty or untouched for a considerable period, then it is
feasible that pman is not writing to this pipe.

If sp_configd is started with the trace option on, then the error log
/var/tmp/sp_configd.log will provide more information when the subagent is
initialized.

� �
startsrc -s sp_configd -a ″-T″� �

This log will typically contain information about the interaction between subagent
initialization and registration.

Chapter 6. Problem Management SNMP Subagent 201

This soft copy for use by IBM employees only.

� �
sp_confi 10936 (root) sigterm signal received
sp_confi 10520 (root) sp_configd entered
sp_confi 10520 (root) time_in_cache value (-t) set to 600
sp_confi 42530 (root) child process opened errlog_entry FIFO for reading
sp_confi 42530 (root) child process opened

/var/tmp/em_trap.192.168.4.137
FIFO for reading

sp_confi 42530 (root) em_init: em connection with file
descriptor 8 opened for partition
192.168.4.137

sp_confi 42530 (root) em_init: em connection with file
descriptor 9 opened for partition
192.168.4.137

sp_confi 42530 (root) em_init: em monitor connection with file
descriptor 10 opened for partition
192.168.4.137

sp_confi 42530 (root) em_init: em monitor connection with file
descriptor 11 opened for partition
192.168.4.137

sp_confi 42530 (root) start_smux: SMUX open -
1.3.6.1.4.1.2.6.117 ″sp_configd″

sp_confi 42530 (root) start_smux: SMUX register -
readOnly 1.3.6.1.4.1.2.6.117.1 in=-

sp_confi 42530 (root) start_smux: SMUX register -
readOnly 1.3.6.1.4.1.2.6.117.2 in=-

sp_confi 42530 (root) start_smux: SMUX register -
readOnly 1.3.6.1.4.1.2.6.117.3 in=-

sp_confi 42530 (root) SMUX register: readOnly
1.3.6.1.4.1.2.6.117.1 out=0

sp_confi 42530 (root) SMUX register: readOnly
1.3.6.1.4.1.2.6.117.2 out=0

sp_confi 42530 (root) SMUX register: readOnly
1.3.6.1.4.1.2.6.117.3 out=0

sp_confi 42530 (root) Cold start trap issued
sp_confi 42530 (root) doit_em: registered resource

variable query response received for
partition 192.168.4.137 containing 366
variables

sp_confi 42530 (root) doit_em: issuing ha_em_send_command to
obtain the current nodes
of 159 variables from the EM
residing in partition 192.168.4.137

sp_confi 42530 (root) doit_em: issuing ha_em_send_command to
obtain the current node
values of 207 variables from the EM
residing in partition 192.168.4.137

sp_confi 42530 (root) doit_em: registered resource variable
query response received for partition
192.168.4.138 containing 366 variables

sp_confi 42530 (root) doit_em: issuing ha_em_send_command to obtain
the current node-independent
values of 207 variables from the
EM residing in partition 192.168.4.138

� �

If the trace option -t is not set, then sp_configd will just log that it received a
sigterm:

202 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
9/11 14:00:33 sp_confi 10936 (root) sigterm signal received

� �

6.3.2.3 SNMP Log
If there is an entry in the snmpd.log of the form shown below, then there is a
problem between snmpd and sp_configd.

� �
lost peer (SMUX 127.0.0.1+4346+2)

� �

It is possible to use the Problem Management subsystem to monitor logs for
particular strings or keywords that are suspicious.

The Problem Management subsystem can be configured such that it can
subscribe to the Event Management subsystem for a particular event. The event
(in this case, to monitor a pman user_state Resource Variable) will contain a
number. This number is determined by the Problem Management Resource
Monitor that evaluates the expression. In this case, the keyword is lost in the
/var/adm/snmpd.log file, and the expression is:

� �
/usr/bin/cat /var/tmp/snmpd.log | /usr/bin/grep lost | wc� �

So the file /var/tmp/snmpd.log, which is the key log file, may contain the string
lost. Search for this string and count the number of occurrences of this string.
This number will be used in the predicate.

The steps to implement this simple string monitoring are:

Step 1. Decide on an unused user_state Resource Variable supplied by the
Problem Management subsystem, and create a pman resource
monitor.

� �TargetType=NODE_RANGE
Target=7
Rvar=IBM.PSSP.pm.User_state9
Command=″ / usr/bin/cat /var/tmp/snmpd.log | /usr/bin/grep lost | wc″
SampInt=10

� �
The Resource Variable IBM.PSSP.pm.User_state9 contains a value.
This variable is used in the pman subscription.

Step 2 To ensure that this Resource Variable is loaded correctly in the SDR,
check the entry in the SDR:

� �SDRGetObjects pmanrmdConfig

 7 NODE_RANGE 7 IBM.PSSP.pm.User_state9 ″ ″ /usr/bin/cat
 /var/tmp/snmpd.log | /usr/bin/grep lost | wc″″ 10

� �

Chapter 6. Problem Management SNMP Subagent 203

This soft copy for use by IBM employees only.

Step 3 The pman Resource Monitor must be stopped and restarted. Note
that there is no refresh function of this subsystem.

� �
stopsrc -s pmanrm
startsrc -s pmanrm

� �

Step 4 The pman client has to register for an event when some predicate is
applied to the Resource Variable IBM.PSSP.pm.User_state9 by the
Event Management subsystem.

This is a standard pman definition, as described earlier:

� �pmandef -s private_directory_changed \
-e ′ IBM.PSSP.pm.User_state9:NodeNum=7:X@0!=X@P0′ \
-c ″wall SNMPD lost connection - string lost found in /var/tmp/snmpd.log″ \
-n 7

� �
The node must be the same as the target node specified in the pman
Resource Monitor load. For this case, it is Node 7.

To monitor this user state on another node, use the following
command:

� �pmandef -s private_directory_changed9 \
-e ′ IBM.PSSP.pm.User_state9:NodeNum=9:X@0!=X@P0′ \
-c ″wall Say this is Node 9″ \
-n 9� �

If this user_state variable is not defined on Node 9, you will get the
error message:

� �Warning: Node range ″9″ contains nonexistent nodes.
Problem occurred while adding subscription records to SDR.� �

Step 5 Test the scenario:

Add the string lost to the log file in question (/var/tmp/snmpd.log).
The pman client will be notified of this change by the Event
Management subsystem and a wall message will be issued on Node
7:

� �
SNMPD lost connection - string lost found in /var/tmp/snmpd.log

� �

The pman client will not reissue this message until there is another
lost string added to this same file, /var/tmp/snmpd.log.

This can be a good and simple way to monitor logs for key strings. While the
example is somewhat simplistic, it is quite possible to expand and tailor these
definitions, so that pman can automatically issue some recovery scripts if this
condition is consecutively met. The recovery scripts are entirely
installation-dependent.

204 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

6.4 Monitoring SP Resources: The Mechanics
The mechanics for monitoring SP resources are almost identical for all
resources, that is, for hardware, software, and applications.

Step 1 Decide which resource is of interest.

A resource is an entity in the system that is observed. Examples of
resources include hardware entities such as processors, disk drives,
memory, adapters, and software entities such as databases,
processes, and file systems. An overview of resources follows. For
further information, refer to Chapter 2, “Resource Monitors” on
page 27.

• Hardware
 1. CPUs
 2. Memory
 3. Disk subsystems
 4. Adapters

• Software
 1. System software

− AIX subsystems
− SP subsystems

 2. Application software
− Databases
− OLTP

• Other System Resources
 1. File system space
 2. Network

Step 2 Choose a condition.

Choose the condition that you wish to be notified of. The condition
comprises Resource Variable, predicate arm, and rearm.

Chapter 6. Problem Management SNMP Subagent 205

This soft copy for use by IBM employees only.

Figure 112. Condition

The Event Manager will apply this condition and generate the event if
the condition is met.

Figure 113. PMAN Subsystem

206 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Step 3 Identify interested nodes.

Determine nodes that are interested in this event and need to
subscribe to it.

The subscription is done using:

• Pmandef commands that are provided by the Problem
Management subsystem for subscribing to Event Management
events and associating actions for events. For more details, see
Chapter 3, “Problem Management Subsystem” on page 71.

Also, specify a trapID in the configuration information for an Event
Management event.

• Event Perspectives, which are described in Chapter 5, “SP
Perspectives GUI” on page 137.

Step 4 When the condition is true, Event Management will notify all
subscribers of that event. The Event Management
subsystem-supplied event response and the user-specified event
configuration information are written into a FIFO file by the pmand
command.

Step 5 The SNMP subagent sp_configd reads the data from the FIFO pipe
and creates an SNMP trap from it.

The sp_configd daemon sends the trap to the SNMP managers
specified in the /etc/snmpd.conf file on the node.

6.4.1 Basic Example - Monitoring Server Key Switch
Consider Node 1 to be a server that is rebooted every weekend. For a
successful reboot, it is essential that the key position is in the normal state.

Our aim is to monitor the Hardware Resource
IBM.PSSP.SP_HW.Node.keyModeSwitch, and if this key changes from normal to
anything else, then an SNMP trap must be sent. This scheme is shown in
Figure 114 on page 208.

Chapter 6. Problem Management SNMP Subagent 207

This soft copy for use by IBM employees only.

Figure 114. Registration for Event

Step 1 Identify the Resource Variable.

To ensure that the key is in the correct state, it is possible to monitor
the resource variable IBM.PSSP.SP_HW.Node.keyModeSwitch, which
is monitored by the Resource Monitor IBM.PSSP.hmrmd.

Step 2 Determine what condition exists.

The pman client must subscribe to the Event Management subsystem
to be notified when there is a condition change. In this example, the
condition change is a key change from normal to service or secure.

208 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The Event Management subsystem holds the condition in the SDR:

� �SDRgetObjects EM_Condition

keyNotNormal IBM.PSSP.SP_HW.Node.keyModeSwitch X!=0 X==0
NodeNum ″Key mode switch on a node was switched out of the Normal
position.″

� �
The pman client will subscribe to this event, and when the event
occurs, an SNMP trap is issued.

� �
pmandef -s key_mode_test
-e ′ IBM.PSSP.SP_HW.Node.keyModeSwitch:NodeNum=1:X!=0′
-t 10003
-n 1

� �
Step 3 Determine what nodes subscribe to the event.

In this example, pman on Node 1 subscribes to the event, so that
when the key is set to service or secure (X!=0), then pman will be
notified by the Event Management subsystem, and can send a trap to
NetView for AIX via sp_configd.

However, if pman on Node 1 dies, none of the subscribed events will
be received. You will not be notified if the key setting is changed.
Therefore, you cannot simply rely on pman on the local node to
monitor a critical event, because that may affect the availability of this
resource. It is better if an external pman client also monitors the
event, thereby improving availability.

This can be overcome by requesting Problem Management
subsystems on other nodes to additionally subscribe to the same
event, so that if this condition is met on Node 1 (the key is set to
service or secure, not to normal), then all subscribers on the other
nodes will be informed. Thus the definition is:

� �
pmandef -s key_mode_test
-e ′ IBM.PSSP.SP_HW.Node.keyModeSwitch:NodeNum=1:X!=0′
-t 10003
-n 5,6,7

� �
To ensure that pman accepted this subscription, run the following:

Chapter 6. Problem Management SNMP Subagent 209

This soft copy for use by IBM employees only.

� �
lssrc -ls pman (on Node 6 - node that subscribed for this event)

Subsystem Group PID Status
pman pman 13144 active

 pmand started at: Tue Sep 10 14:52:28 1996
 pmand last refreshed at:
 Tracing is off
 ===
 Events for which registrations are as yet unacknowledged:
 ===
 ===
 Events for which actions are currently being taken:
 ===
 ===
 Events currently ready to be acted on by this daemon:
 ===
 ------------------ key_mode_test ----------------
 Currently ACTIVE
 Client root root.admin@MSC.ITSO.IBM.COM at sp21en0.msc.itso.ibm.
 com
 Resource Variable: IBM.PSSP.SP_HW.Node.keyModeSwitch
 Instance: NodeNum=1
 Predicate: X!=0
 SNMP Trapid: 10003

� �
This pmand configuration is held in the SDR:

� �
pmEventid -1
pmNodenumber 6
pmTargetType NODE_RANGE
pmTarget 5,6,7
pmRvar IBM.PSSP.SP_HW.Node.keyModeSwitch
pmIvec NodeNum==1
pmPred X!=0
pmCommand ″ ″
pmCommandTimeout 0
pmHandle key_mode_test
pmTrapid 10003
pmPPSlog 0
pmThrottle ″″
pmRearmPred ″ ″
pmRearmTrapid -1
pmRearmPPSlog 0
pmRearmCommand ″ ″
pmRearmCommandTimeout 0
pmUsername, root
pmPrincipal root.admin@MSC.ITSO.IBM.COM
pmHost sp21en0.msc.ibm.com
pmActivated 1
pmText ″ ″
pmRearmText ″ ″
pmUserLabel ″ ″

� �
Nodes 5, 6, and 7 have subscribed to the same event that may occur
on Node 1. If it does, then a trap is associated with it and forwarded
to the SNMP manager.

Step 4 The event is issued.

When the condition is true, Event Management notifies all
subscribers, that is, Nodes 5, 6, and 7.

Step 5 The subagent forwards the event.

The subagent, sp_configd, on Nodes 5, 6 and 7, will receive this event
information from the pipe in /var/tmp. The events are converted to

210 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

SNMP traps for forwarding to the SNMP manager, as defined in the
snmpd configuration file.

Figure 115 shows the event that should also be displayed by the
NetView for AIX MIB Browser:

Figure 115. Event Description

Note: The Event Management Event Time MIB variable is the
elapsed time between the activation of the SP proxy subagent and the
occurrence of the event.

The output in Figure 115 does not correspond to the output from the
snmpinfo command shown in the previous screen.

To determine if the Event Management subsystem raised the event, it
is now appropriate to check the contents of the ibmSPEvent group
object, using snmpinfo command on the Control Workstation.

� �
snmpinfo -m dump -v -h sp21n06 ibmSPEMEvent

� �
If the event was indeed triggered, then the ibmSPEVent MIB is
updated with the information about this event on that node.

Chapter 6. Problem Management SNMP Subagent 211

This soft copy for use by IBM employees only.

� �
ibmSPEMEventID.0 = 10003
ibmSPEMEventFlags.0 = 0
ibmSPEMEventTime.0 = 8 days, 2 hours, 48 minutes, 53.32 seconds (70133332
ibmSPEMEventLocation.0 = 0
ibmSPEMEventPartitionAddress.0 = 192.168.4.137
ibmSPEMEventVarsTableName.0 = ″ibmSPEMNodeIndepVarsTable″
ibmSPEMEventVarsTableInstanceID.0 = ″192.168.4.137.73.66.77.46.80.83.83.8
ibmSPEMEventVarName.0 = ″IBM.PSSP.SP_HW.Node.keyModeSwitch″
ibmSPEMEventVarValueInstanceVector.0 = ″NodeNum=1″
ibmSPEMEventVarValuesTableInstanceID.0 = ″″
ibmSPEMEventVarValue.0 = ″2″
ibmSPEMEventPredicate.0 = ″X!=0″

� �
Step 6 Configure the SNMP manager.

NetView for AIX will receive three traps, all concerning the same
event. Node 1 has a problem with a resource, but only one action is
required to amend the situation.

Figure 116. Ruleset Logic

This is feasible using the NetView for AIX ruleset editor (see
Figure 116). Traps are captured by trapd and processed against the
ruleset editor. In this case, the traps will follow the logic defined in
the ruleset editor.

There will be one forward to the NetView events application, and one
action. This action will be executed on the Control Workstation, since
all the hardware commands must be issued from there.

Step 7 Define the trap.

The trap ID of 10003 needs to be configured, using the Options →Event
Configuration →Trap Customization from the menu bar (see Figure 117

212 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

on page 213). This is described more specifically in 6.2.6,
“Customizing Traps” on page 186.

Figure 117. Trap Configuration Window

This updates the /usr/OV/conf/C/trapd.conf file, which is used by the
trapd daemon of the Control Desk (see Figure 118).

Figure 118. NetView Control Desk - Events Application

Step 8 Construct the ruleset.

The ruleset editor is a capability of NetView for AIX. Rulesets can be
used in conjunction with IBM POWERparallel System Support
Programs components to effectively monitor SP resources.

The ruleset editor is available by selecting Tools →Ruleset Editor from
the NetView for AIX menu bar.

Chapter 6. Problem Management SNMP Subagent 213

This soft copy for use by IBM employees only.

Figure 119. Ruleset Editor

 1. The first node will set the behavior for the ruleset that we are
constructing (see Figure 119). If you set it to pass, all events will
be forwarded to the registered application. However, you want to
block events, because you only want to see threshold events that
pass the filter rule. Click Block (see Figure 120).

Figure 120. Block Event Behavior

 2. The next step is to identify the hardware event. This is
accomplished by dragging the trap-setting node into the
workspace and selecting the following settings in the
accompanying dialog box:

214 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

� �
Enterprise Name ibmSP 1.3.6.1.4.1.2.6.117
Event Name Hardware_Errors_Arm
Specific 10003

� �
Having selected these settings, as in Figure 121, the node should
be attached to the Event Stream Node by selecting Edit →Connect
Two Nodes .

Figure 121. Trap Settings

Chapter 6. Problem Management SNMP Subagent 215

This soft copy for use by IBM employees only.

 3. The Threshold decision node was used to check for repeated
occurrences of the same specific trap, 10003. Figure 122 on
page 216 shows the Threshold dialog and the settings that were
used in this example.

Figure 122. Thresholds Setup Window

Note that if the Type field is set to At , then when the threshold
condition is reached, you only forward the nth trap to the next
node, where n is the value specified for Count. Count is the
number of traps required to reach the threshold condition. In this
case, it is the number of events we expect to receive from the

216 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

pman clients that have registered for this event. Only the third
trap will be forwarded within the time period.

The time period filed is used to specify, along with Time Unit, the
length of time in which the number of traps specified in Count
must be received to reach the threshold condition.

When the threshold has been met, no more traps will be
forwarded until the time period has expired. At that point, the
timer is reset. So it is important to set a realistic time period.

By default, the threshold will depend on the trap IDs of the traps
passed into this node. To perform thresholding on another trap
attribute, select this button and then choose an attribute from the
list, such as Origin for the same IP address.

We are simply working on the trap ID, as we are checking for the
same trap from different pman clients.

 4. A Forward node is connected to the Thresholds node, which wil l
cause a Single event to be displayed in the NetView Events
Display.

 5. It is also possible to attach an Action node to the Thresholds node
as shown in Figure 123.

Figure 123. Action Node

The command to be executed can use the environment variable
$NVATTR_9. This passes the source node that is causing the
problem to the shell script.

Step 9 Create a dynamic workspace.

From the Control Desk, create the dynamic workspace to show events
that satisfy a specified correlation rule, as shown in Figure 124 on
page 218.

Chapter 6. Problem Management SNMP Subagent 217

This soft copy for use by IBM employees only.

Figure 124. Dynamic Workspace

The dynamic workspace is opened with all available events that
match the update criteria you specify. New events are added to the
workspace if they match the update criteria.

For more information on creating dynamic workspaces, refer to
NetView for AIX User′s Guide for Beginners V4, SC31-8158.

Now, we have to create this event and see whether this scenario
works.

Step 10 Test the scenario.

• On the Control Workstation, change the setting of the key from
normal to service for Node 1.

� �spmon -key service -t node01� �
• The Resource Variable has changed value from normal to service.

Therefore, Event Management will create an event, and all
subscribers, which in this case means pman clients on Nodes 5, 6
and 7, will be notified.

• On each of the subscribed nodes, the pmand daemon writes the
event response supplied by the Event Manager daemon to a FIFO
file in /var/tmp, such as em_trap.192.168.4.137. The sp_configd
daemon reads the data from this pipe, and sends an SNMP trap
to the SNMP manager defined in the snmpd.conf file.

• A trap from each SNMP subagent on Nodes 5, 6, and 7 will be
sent to the SNMP manager on the SNMP-trap port 162.

218 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

In NetView for AIX, the trapd daemon receives the SNMP traps
from the remote agents and processes the event based on
records in the /usr/OV/conf/C/trapd.conf file, and displayed on the
NetView for AIX events application.

Because the ruleset editor is applied, only one event is displayed
instead of three.

When many traps are received containing notifications of Problem
Management events, a likely action is to issue an SNMP GET
request for the current value of the variable referenced within the
trap from the trap originator (the MIB contains a description of
how to do that). If the value is above the threshold specified in
the trap, notify operators on the Control Workstation and NetView
console.

Note: The hardware.sc function, which is invoked with the source node input
parameter, is described in the comments part of the diagram. It notifies both SP
and Netview (network) operators that there is a potential hardware problem, with
a pop-up window or e-mail. The operators are able to take action from the
Control Workstation, as Kerberos access may be required.

Chapter 6. Problem Management SNMP Subagent 219

This soft copy for use by IBM employees only.

220 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix A. Overview of NetView for AIX Ruleset Editor

The ruleset editor is used to define rules for the processing of incoming traps.
You can check traps against other traps, specific values, or object database
values in order to determine what to do with them. By definition, the first node
in every rule is either the event stream or the traps forwarded from the trapd
daemon to the correlation daemon, nvcorrd.

Subsequent nodes are placed into a rule by dragging them from the template
that is displayed below the ruleset drawing board, and then completing a dialog
box to specify the values to be used in that node. Two types of nodes are
available for rule construction:

• Decision nodes

A decision node contains a test that determines whether processing of this
trap should continue. Some attribute of the trap is tested against other
traps, specific values, or something else.

There are nine types of decision nodes.

• Action nodes

An action node contains an action to be executed. Example: forwarding the
trap information to applications, or setting database values.

There are eleven types of action nodes.

In addition to these nodes, you can configure the default processing option for
the rule by double-clicking the icon that represents the incoming event stream.

When a trap is received, it is processed through all the active rules. When a
trap enters a decision node, the test made by that node determines whether the
correlation process should stop processing that trap, or pass it on to the next
node in the rule. If the value of the decision or comparison defined in that node
is true, then processing continues to the next node in the rule. The only decision
to be made is whether to stop or continue.

When a trap enters an action node, the action specified in that node is passed to
the actionsvr daemon, along with the relevant parameters from the trap. After a
trap is processed by an action node, it always continues to the next node. Rule
processing continues based on the action′s return code.

If the default processing option for the rule is Block, then the trap is discarded.
If the default processing option for the rule is Pass, and the trap has not been
marked by any nodes, then the trap is forwarded to all interested applications.

A rule is activated if it is specified when a dynamic workspace is created, or if it
is included in the ruleset automation file, /usr/OV/conf/C/ESE.automation, which
is used by the actionsvr daemon during daemon initialization.

For more information, refer to NetView for AIX Administrator′s Guide Version 4,
SC31-8168, or to Examples Using NetView for AIX Version 4, SG24-4515, which
describes the process of correlating events and creating and editing rulesets.

 Copyright IBM Corp. 1997 221

This soft copy for use by IBM employees only.

Figure 125. NetView for AIX Ruleset Editor

222 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix B. Makefile for the Resource Monitor Examples

This is the Makefile for the Resource Monitor examples:

#
Sample Makefile for the Resource Monitor Examples
#
some C-Compiler settings
#
CC=xlc
CLFAGS= -O
LFLAGS= -lha_rr
#
some more definitions
#
RMAPI_SMP = rmapi_smp
RMAPI_MSG = $(RMAPI_SMP).msg
RMAPI_CAT = $(RMAPI_SMP).cat
#
#List of objects for the 3 examples
#
OBJ1=rmapi_smpcmd.o
OBJ2=rmapi_smpdae.o
OBJ3=rmapi_smpsig.o

all: rmapi_smpdae rmapi_smpsig rmapi_smpcmd

rmapi_smpcmd: $(OBJ1)
$(CC) -o $@ $(LFLAGS) $(OBJ1)

rmapi_smpdae: $(OBJ2)
$(CC) -o $@ $(LFLAGS) $(OBJ2)

rmapi_smpsig: $(OBJ3)
$(CC) -o $@ $(LFLAGS) $(OBJ3)

install:
#
load the SDR
#

sh ./rmapi_smp.loadsdr pwd
#
create the Message Catalog file
#

runcat $(RMAPI_SMP) $(RMAPI_MSG)
#
copy it to the appropriate directory
#

@if [[-d /lib/nls/msg/$(LANG)]] ; then \
cp $(RMAPI_CAT) /lib/nls/msg/$(LANG); \
chmod a+r /lib/nls/msg/$(LANG)/$(RMAPI_CAT); \

else \
echo ″couldn′ t find </lib/nls/msg/$(LANG)> directory″; \
exit 1; \

fi
@echo ″″ ;
@echo ″Stop and Restart your Event Management subsystem !!!″ ;

 Copyright IBM Corp. 1997 223

This soft copy for use by IBM employees only.

@echo ″″ ;
#
deinst:

sh ./rmapi_smp.unloadsdr
@echo ″″ ;
@echo ″Stop and Restart your Event Management subsystem !!!″ ;
@echo ″″ ;

#
clean:

rm -f *.o rmapi_smpcmd rmapi_smpsig rmapi_smpdae

224 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix C. User Response Time

When the resources you monitor appear normal but the user response time is
too slow, it may not be clear where the cause of the problem is located. It could
be in the operating system, the applications, the network, or in a combination of
these and other places.

Perhaps you have neglected to monitor some critical resource. Perhaps there is
some interaction that is timing- or load-dependent. Perhaps the system or
application has a defect that causes the performance problem. Sometimes these
and other problems occur in unfortunate combinations.

Although not all system problems can be avoided, there are ways to be aware of
possible impending trouble.

C.1 Avoiding Surprises by Monitoring User Response Times
Determine what response times are required by the people or applications that
use your system before performance problems occur on that system. Make sure
there are quantitative goals. Methods of measuring the performance of the
system must be available to determine if these goals are being met. If possible,
use mechanisms that show the locations of problems.

Work with users to understand what they need, and know what the system can
provide. (There is often a trade-off between what users want and what they can
afford.) Take the time to ascertain their performance goals, so that, when you
are in the middle of a performance crisis, you do not waste time arguing about
what kind of performance is expected.

Once the performance requirements are defined, it should be possible to create
Resource Monitors that test the performance of the system. These monitors
allow a variety of SP and other system monitoring tools to be used to monitor
performance and alert administrators and operators of possible problems. A
warning that system performance is deteriorating may enable operators and
support staff to react before performance falls below the required level.

You might be able to use the Problem Management subsystem to automate
some of the tasks associated with maintaining the desired performance level. In
cases where the performance problem is well understood and
performance-improving tasks are easy to automate, the new tools provided with
PSSP 2.2 may allow you to reduce your administrative workload.

Carefully consider what to do when performance falls below a desired threshold.
The PSSP tools allow scripts to execute when certain conditions occur. You
might be tempted to turn on additional monitors when performance gets bad.
However, this approach often causes performance to degrade further. A better
plan would be to use a number of different performance levels, each with an
appropriate response.

If you set a threshold at a level that is less than desired, but better than
required, you can then turn on additional monitoring even if you know it will
degrade response time slightly. You might also try to add resources to improve
the situation.

 Copyright IBM Corp. 1997 225

This soft copy for use by IBM employees only.

If your system reaches the point where your performance requirements are no
longer being met, you can turn off the extra monitors. All resources can then be
provided to the users. Monitors often consume a significant amount of
resources, and can cause other problems with a system.

If you have decided to automate some tasks, you must be certain that the
resources that were allocated, or the configuration changes that were made, are
reclaimed or set to default values when the performance level improves. This
can be difficult, since some applications or subsystems are not able to release
resources without some type of restart. An example of this is swap space.
Once disk space is allocated to the swap space, it cannot be reclaimed until the
system is restarted.

By setting an event threshold at the expected level of performance, you can
disable any extra monitors and reclaim resources when the system is again
operating normally.

Remember that the tests needed to verify user or application response times
consume resources. Tracking an HTTP server′s response time by occasionally
fetching an HTML document probably consumes few resources. However,
verifying the response times of an airline reservation system may require much
more effort.

A sample Response Time Monitor is shown in the next section. It monitors the
response time of an HTTP server and provides information to a Resource
Monitor that passes the response times on to the Event Management subsystem.

C.2 Sample Response Time Monitor: HTTP Client
The current implementation of the Event Monitor forces the Resource Monitor to
execute on a node or on the Control Workstation in an SP system. This
constraint causes the Response Time Monitor to consist of at least two
processes: one process running on a processor in the SP system, and the other
running on the client system.

The program httprtB is a server that provides clients such as httprtA with
information about the time it takes to fetch HTTP objects. The httprtB program
runs on a workstation where the response time measurement is to be observed.
The Resource Monitor httprtA is discussed in Chapter 4, “Application Program
Interfaces (APIs)” on page 97.

For example, if your SP is a WWW server, you could have httprtB running on a
few remote workstations and monitor the response times the users are
experiencing.

C.2.1 httprtB, an HTTP Response Time Server
Let us take a look at how this server works. Appendix H, “How to Get the
Examples in This Book” on page 257 tells you how to access the source code for
this program.

This server is designed to run as a daemon on a workstation. It might seem a
bit backwards, but httprtB is a server program located on a machine that is a
client of your server. It waits for requests for connections from a client (your
server), and when a valid request is made, httprtB forks, using fork(), a new
process used to service that client.

226 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

The client then asks for an HTTP object to be retrieved, and the time and
resulting status are returned to the client. The client can make multiple requests
for HTTP object fetches. To terminate the session, the client simply closes its
connection. This causes the child process that was forked to exit, using exit(),
thereby freeing up any resources the child allocated.

The child process that is handling the client has a timeout, so if it does not hear
from the client it closes the connection and frees up resources. This timeout is
set on the command line when httprtB is started.

After opening a log file, using open(), signal handlers are installed for SIGCHLD
and SIGQUIT. The command line is parsed to determine the client′s timeout
value and which machine is allowed to make connections to this server.

listener = socket(AF_INET, SOCK_STREAM, 0);
if (listener < 0) {
WriteLog(″could not create listener socket, errno = %d\n″ , errno);
exit(2);

}

memset((char *) &listenerSockAddr, 0, sizeof(listenerSockAddr));
listenerSockAddr.sin_family = AF_INET;
listenerSockAddr.sin_len = sizeof(listenerSockAddr);
listenerSockAddr.sin_port = htons(HTTPRT_PORT_NUMBER);
listenerSockAddr.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(listener, (struct sockaddr *) &listenerSockAddr,
sizeof(listenerSockAddr)) < 0) {

WriteLog(″could not bind() listener socket, errno = %d\n″ , errno);
exit(2);

}

listen(listener, 5);

while (! quitFlag) {
int client;
struct sockaddr_in clientSocketAddr;
int clientSocketAddrLen = sizeof(clientSocketAddr);

client = accept(listener, (struct sockaddr *) &clientSocketAddr,
&clientSocketAddrLen);

if (client < 0) {
if (errno != EINTR) {
WriteLog(″error from accept(), errno = %d\n″ , errno);

}
} else {
/* OK, got a potential client. Are we allowed to talk */
AcceptClient(client, clientSocketAddr, clientSocketAddrLen,

timeout, allowedHostP, listener);
}

}

Figure 126. Interesting Part of httprtB ′s main() Function

The interesting parts of main() are shown in Figure 126. First, using listen(), a
socket is created for use in listening for client requests. This socket is
registered at a particular IP port with the bind() routine. The httprtB server is

Appendix C. User Response Time 227

This soft copy for use by IBM employees only.

willing to service requests on any port in case this machine has multiple network
interfaces. The port number can be changed by editing the file httprt.h. After
the socket is ready, the listen routine indicates that httprtB is ready to receive
requests from clients.

The while() loop simply waits for a request, (by default, accept() blocks till a
request is received), then passes that request to AcceptClient() for processing.
Let us look at AcceptClient() to see what is done with the requests.

void
AcceptClient(int client,

struct sockaddr_in clientSocketAddr,
const int clientSocketAddrLen,
int timeout,
struct hostent *allowedHostP,
int listener)

{
long **addrPP;
int i;
int matched;
int child;

addrPP = (long **) allowedHostP->h_addr_list;
for (i = matched = 0 ; addrPP[i] != 0 ; i++) {
if (memcmp (addrPP[i], &clientSocketAddr.sin_addr.s_addr,

sizeof(clientSocketAddr.sin_addr.s_addr)) == 0) {
matched = 1;
break; /* no need to look further */

}
}

if (matched) {
child = fork();
switch (child) {
case 0: /* child */
close(listener);
WriteLog(″starting new child\n″) ;
BeChild(client, timeout);
/*NOTREACHED*/
break;

case -1: /* error */
close(client); /* no need to leave this laying around */
WriteLog(″fork() failed with errno = %d\n″ , errno);
break;

default: /* parent */
close(client);
WriteLog(″accepted client 0x%08x\n″ ,

(int) clientSocketAddr.sin_addr.s_addr);
break;

}
} else {
close(client); /* no need to keep this socket! */
WriteLog(″rejected client 0x%08x\n″ ,

(int) clientSocketAddr.sin_addr.s_addr);
}

}

Figure 127. Function AcceptClient() in httprtB

228 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

First, the request is checked to see if it came from the expected client. This is
done by looping through the list of addresses registered for the client host. This
list was retrieved by the gethostbyname() routine in main(). Since a machine
can have multiple interfaces, we should check all possibilities since we cannot
always predict how a packet will be routed between two machines.

If the client is allowed to access this server, AcceptClient() will create a new
process to service the client requests and return, using return, to main() to wait
for more session requests. The fork() routine creates a new process that is
almost an identical copy of the current function. The return code from fork() is
used to determine whether the current process is the parent or the child. If -1 is
returned, an error occurred.

If the process is the parent or an error occurred, the client socket is closed,
using close(), to free up the resource. The function then returns after logging
what happened. If the process is the child, the socket that used to listen is no
longer needed, so it is closed. Then a message is sent to the log and the
function BeChild() is called. BeChild() never returns control.

Note that the last few lines in AcceptClient() clean up the client socket and log
rejected sessions.

Appendix C. User Response Time 229

This soft copy for use by IBM employees only.

void
BeChild(int client, int clientTimeout) {
int timeout; /* timeout for a client request to complete */
char url[MAX_URL_LEN]; /* url client wants */
char temp[MAX_URL_LEN]; /* used to read a line from client */
int delay; /* time it took in seconds */
int status; /* status from server or local status */
char results[32]; /* place to make results look nice */
struct sigaction thisSignal; /* used to register signal handlers */

thisSignal.sa_handler = SIG_IGN;
sigemptyset(&thisSignal.sa_mask);
thisSignal.sa_flags = 0;
if (sigaction(SIGCHLD, &thisSignal, 0) == -1) {
WriteLog(″problem ignoring SIGCHLD\n″) ;
exit(2);

}

thisSignal.sa_handler = (void (*)()) TimeoutHandler;
sigemptyset(&thisSignal.sa_mask);
sigaddset(&thisSignal.sa_mask, SIGALRM);
thisSignal.sa_flags = 0;
if (sigaction(SIGALRM, &thisSignal, 0) == -1) {
WriteLog(″problem installing SIGALARM handler\n″) ;
exit(2);

}

timeoutFlag = 0;
alarm(clientTimeout);
while (GetALine(client, temp, sizeof (temp)) > 0) {
alarm(0); /* OK this time */
if (sscanf(temp, ″%d %s″,&timeout, url) == 2) {
TimedFetch(timeout, url, &delay, &status);

} else {
delay = 0;
status = HTTPRT_ERROR_REQUEST;

}
sprintf(results, ″%d %d\n″ , delay, status);
write(client, results, strlen(results));
fsync(client);

timeoutFlag = 0;
alarm(clientTimeout);

}

Figure 128. Processing Loop After Client is Accepted in httprtB

The first thing BeChild() does is set up new signal handlers for SIGALRM and
SIGCHLD. The SIGALRM handler sets the global variable volatile int
timeoutFlag to 1 to indicate that a timeout has occurred.

The function GetALine() is similar to fgets(). It gets a line from the client and
returns -1 if there is an error or a timeout occurs. The call to GetALine() is
surrounded by alarm(clientTimeout) and alarm(0) to enable and disable the
timeout alarm.

230 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

After the client request is received, it is parsed to find out what the client wants.
Requests are in the form “timeout URL.” If the request appears to be properly
formed, it is passed on to TimedFetch() for processing.

The results from TimedFetch() are formatted and sent back to the client. The
fsync() function is used to force the information back to the client in case any
buffering delayed the transmission. The client timeout is then enabled and
BeChild() waits for the next request.

When the while() loop ends, BeChild() figures out what happened, writes that
information to the log, and exits the process. BeChild() never returns control.

The TimedFetch() function performs the bulk of the work. This routine and GetIt()
would be kept if the server were converted to use a different communication
mechanism, such as a DCE.

The first part (not shown) of TimedFetch divides the URL into httpServerName and
httpPath. These are used as shown in Figure 129.

/* httpServerName & httpPath were parsed from URL above */

hostEntP = gethostbyname(httpServerName);
if (hostEntP == NULL) {
*statusP = HTTPRT_ERROR_BAD_HOST;
return;

}
serverAddr.sin_family = hostEntP->h_addrtype;
serverAddr.sin_port = httpPort; /* alread in network byte order */
memcpy(&serverAddr.sin_addr.s_addr,

hostEntP->h_addr_list[0],
hostEntP->h_length);

GetIt(timeout, httpPath, (struct sockaddr *) &serverAddr,
delayP, statusP);

return;
}

Figure 129. Interesting Part of Function FetchIt()

httpServerName is used to get the network address of the HTTP server. This
address and the path are given to GetIt() to do the work of requesting and
retrieving the HTTP object.

Appendix C. User Response Time 231

This soft copy for use by IBM employees only.

void
GetIt(int timeout, char *pathP, struct sockaddr *serverP,

int *delayP, int *statusP)
{
int serverSocket;
time_t startTime, endTime;
int rc;
int ch;
FILE *httpServer;
char junk[1024];
char httpBuffer[MAX_URL_LEN];

if (alarm(timeout) != 0) { /* someone else is using the alarm!! */
WriteLog(″Program error!, trying to use active alarm\n″) ;
exit(2);

}

startTime = time(NULL);

serverSocket = socket(serverP->sa_family, SOCK_STREAM, 0);
if (serverSocket < 0) {
*statusP = HTTPRT_ERROR_SOCKET_CREATE;
goto Leave;

}

/* connect to server */
if (connect(serverSocket, serverP, sizeof(struct sockaddr)) < 0) {
*statusP = HTTPRT_ERROR_HTTP_SERVER_CONNECT;
goto Leave;

}

if (pathP[0] != ′ \0′) {
rc = sprintf(httpBuffer,

″GET %s HTTP/1.0\nAccept: */*\nPragma: no-cache\n\n″ ,
pathP);

} else {
rc = sprintf(httpBuffer,

″GET / HTTP/1.0\nAccept: */*\nPragma: no-cache\n\n″) ;
}

Figure 130. First Half of GetIt() Preparing to Get HTTP Object

After saving the current time, GetIt() makes a connection to the HTTP server.
This path is used to create the request to send to the HTTP server. An empty
path is legal, so we must check for that case and add the leading “/” character.

If any problems are encountered, the status value is set and the function ends.

232 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

if (write(serverSocket, httpBuffer, strlen(httpBuffer)) !=
strlen(httpBuffer)) {

*statusP = HTTPRT_ERROR_SENDING;
goto Leave;

}

/* eat results */
if (read(serverSocket, httpBuffer, 12) != 12) {
*statusP = HTTPRT_ERROR_RECEIVING;
goto Leave;

}
rc = sscanf(httpBuffer,

″HTTP/1.0 %d ″ ,
statusP);

if (rc != 1) {
*statusP = HTTPRT_ERROR_RECEIVING;
goto Leave;

}
/* just eat characters */
while ((rc = read(serverSocket, junk, sizeof(junk))) > 0) {
/* this space intentionally left blank */

}

Leave:
if (serverSocket >= 0) { /* if it was ever created */
close(serverSocket);

}
endTime = time(NULL);
alarm(0); /* shut off alarm */
*delayP = (endTime - startTime);
return;

}

Figure 131. Bottom Half of GetIt() Where HTTP Object is Retrieved

The bottom half of GetIt(), shown in Figure 131, sends the request to the HTTP
server and waits for the reply. The HTTP status code is parsed so it can be
returned, then the HTTP object is consumed.

If the socket was successfully created, it is closed, the timeout is disabled, and
the time required to handle the request is calculated.

The complete program is available. See Appendix H, “How to Get the Examples
in This Book” on page 257 for details.

C.2.2 How to Improve httprtB
As presented in C.2, “Sample Response Time Monitor: HTTP Client” on
page 226, httprtB is a simple and crude daemon. Possible improvements
include:

• Use of the inetd routine

• Better and more flexible security and authentication

• Integration of httprtA and httprtB

• Use of a different communication mechanism, such as DCE

Appendix C. User Response Time 233

This soft copy for use by IBM employees only.

If you are planning to use this Response Time Monitor on many machines, you
might want to consider using inetd to start the daemon only when it is needed.
The inetd routine is designed to start network servers on demand, thereby
reducing the amount of resources that are wasted running server programs that
are never used. This change would require removing code in main() and
changing the way I/O is handled. Servers compatible with inetd communicate
over stdin and stdout.

The httprtB server was not created as an inetd program, so you can run it, as a
normal user, on remote workstations to try things out. The configuration of inetd
requires root authority.

The use of DCE would provide a nicer communication abstraction and could
provide a better security model. In this example, DCE was not used to reduce
the number of prerequisites. DCE provides functions that are designed for these
types of distributed applications and services.

234 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix D. Essence of the Event Management and Problem
Management Subsystems

This appendix offers information about the Event Management and Problem
Management subsystems that is essential for creating your own monitor. The
Problem Management subsystem is constructed by the Problem Management
daemon (pmand) and the Problem Management Resource Monitor daemon
(pmanrmd). These are client subsystems of the Event Management subsystem.

D.1 Event Management Subsystem SDR Class
When you use the Problem Management subsystem, you do not need to know
what is going on between the Event Management subsystem and the Problem
Management subsystem. But you do have to know what kind of information is
provided by the Event Management subsystem. Therefore, you must be familiar
with the Event Management subsystem SDR classes.

To see all Event Management subsystem SDR classes, use the following
command:

� �
SDRListClasses | grep EM_� �

There are six Event Management subsystem SDR classes:

• EM_Resource_Monitor
• EM_Resource_Class
• EM_Resource_Variable
• EM_Instance_Vector
• EM_Structured_Byte_String
• EM_Condition

The following sections explain each class.

D.2 Event Management Resource Monitor Class
This SDR class contains information about Resource Monitors that may supply
Resource Variables to the Event Management daemon.

You can find out about it by using the following command:

� �
SDRGetObjects EM_Resource_Monitor� �

D.2.1 What Can You Get?
The following is a default implementation:

 Copyright IBM Corp. 1997 235

This soft copy for use by IBM employees only.

Table 5. Event Management Resource Monitor Class (1 of 3)

rmName rmPath rmArguments

IBM.PSSP.harmld
IBM.PSSP.harmpd
IBM.PSSP.hmrmd
IBM.PSSP.pmanrmd
Membership
Response
aixos

/usr/ lpp/ssp/bin/haemRM/harmld
/usr/ lpp/ssp/bin/haemRM/harmpd
/usr/ lpp/ssp/bin/haemRM/hmrmd
/usr/ lpp/ssp/bin/pmand

-f

IBM.PSSP.hmrmd

Table 6. Event Management Resource Monitor Class (2 of 3)

rmMessage_file rmMessage_set rmConnect_type

harm_des.cat
harm_des.cat
hmrmd_des.cat
harm_des.cat
harm_des.cat
harm_des.cat
harm_des.cat

1
2
1
3
4
5
6

server
server
server
client
internal
internal
internal

Notes:

 1. rmMessage_file is a message catalog name.
 2. rmMessage_set is a set number in the catalog specified by the rmMessage_file.

Table 7. Event Management Resource Monitor Class (3 of 3)

rmPTX_prefix rmPTX_description rmPTX_asnno

IBM/PSSP.harmld
0
0
0
0
0

1,2
0
0
0
0
0

2
0
0
0
0
0

This shows you that Resource Monitor rmName is started by command rmPath
with argument rmArguments. This monitor uses message catalog
/usr/ l ib/nls/msg/$LANG/rmMessage_file Its message set number is
rmMessage_set. It is connected to the Event Management daemon as
rmConnect_type.

D.2.2 Why Is It Useful?
This information is useful when you want to learn about a particular Resource
Variable.

To find a message, follow these instructions:

 1. From rmName, find the monitor name that monitors your Resource Variable.

 2. The corresponding rmMessage_file is a message catalog name that you look
for.

 3. The corresponding rmMessage_set is a set number in the catalog specified
by the rmMessage_file.

236 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

 4. You can find the message number of your Resource Variable in
EM_Resouce_Variable SDR class. Refer to Table 10 on page 240.

 5. Use the dspcat command, as follows:

� �
dspcat rmMessage_file rmMessage_set rvDescription� �

The catalog name is rmMessage_file, the set number is rmMessage_set, and
the message number is rvDescription in EM_Resouce_Variable SDR class.

D.3 Event Management Resource Class Class
This class contains information about the Resource Class that is specified in the
set of Resource Variable definitions.

You can learn about it by using the following command:

� �
SDRGetObjects EM_Resource_Class� �

D.3.1 What Can You Get?
The following is a default implementation:

Table 8. Event Management Resource Class Class

rcClass rcResource_monitor rcObservation_interval rcReporting_interval

IBM.PSSP.CSS
IBM.PSSP.HARMLD
IBM.PSSP.LL
IBM.PSSP.Membership
IBM.PSSP.PRCRS
IBM.PSSP.Prog
IBM.PSSP.Response
IBM.PSSP.SP_HW
IBM.PSSP.VSD
IBM.PSSP.aixos.CPU
IBM.PSSP.aixos.Disk
IBM.PSSP.aixos.FS
IBM.PSSP.aixos.LAN
IBM.PSSP.aixos.Mem
IBM.PSSP.aixos.PagSp
IBM.PSSP.aixos.Proc
IBM.PSSP.pm

IBM.PSSP.harmld
IBM.PSSP.harmld
IBM.PSSP.harmld
Membership
IBM.PSSP.harmld
IBM.PSSP.harmpd
Response
IBM.PSSP.hmrmd
IBM.PSSP.harmld
aixos
aixos
aixos
aixos
aixos
aixos
aixos
IBM.PSSP.pmanrmd

5
30
250
0
5
0
0
0
10
15
30
60
40
15
30
60
0

5
30
250
0
5
0
0
0
10
0
0
0
0
0
0
0
0

This shows you that Resource Monitor rcResource_monitor supplies Resource
Variable in Resource Class rcClass. This variable is monitored in
rcObservation_interval seconds and is reported in rcReporting_interval seconds.

The value of rcObservation_interval must be greater than or equal to the value of
rcReporting_interval.

The value of rcReporting_interval may be 0 if the design of the Resource Monitor
fixes the interval between variable updates. It may also be 0 if the Resource
Monitor is incorporated into a subsystem and the subsystem updates the
variable as part of its normal execution.

Appendix D. Essence of the Event Management and Problem Management Subsystems 237

This soft copy for use by IBM employees only.

D.3.2 Why Is It Useful?
This is the first file you have to look up when you begin to create your own
monitor. The purpose of creating your own monitor is to monitor a particular
Resource Variable. But to do this, you must choose one of 300 available
variables. Selecting a Resource Class lowers the number of variables that you
have to consider, making this task more manageable. Refer to Table 10 on
page 240.

If you want to know the description of the variable you have chosen, you have to
know which Resource Monitor monitors this Resource Variable. You can get this
information from the SDR. The Resource Class rcClass is monitored by
Resource Monitor rcResource_monitor.

Once you know which Resource Monitor monitors your Resource Variable, refer
to Table 5 on page 236 and Table 6 on page 236.

D.4 Event Management Instance Vector Class
This class contains information about the Instance Vector class that is specified
as Resource Class, and its Instance Vector.

You can learn about it by using the following command:

� �
SDRGetObjects EM_Instance_Vector� �

D.4.1 What Can You Get?
The following is the default implementation:

238 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Table 9. Event Management Instance Vector Class

ivResource_name ivElement_name ivElement_description

IBM.PSSP.CSS
IBM.PSSP.HARMLD
IBM.PSSP.LL.SCHEDD
IBM.PSSP.LL.SCHEDD
IBM.PSSP.LL.STARTD
IBM.PSSP.LL.STARTD
IBM.PSSP.Membership.LANAdapter
IBM.PSSP.Membership.LANAdapter
IBM.PSSP.Membership.LANAdapter
IBM.PSSP.Membership.Node
IBM.PSSP.PRCRS
IBM.PSSP.Prog
IBM.PSSP.Prog
IBM.PSSP.Prog
IBM.PSSP.Response.Host
IBM.PSSP.Response.Switch
IBM.PSSP.SP_HW.Frame
IBM.PSSP.SP_HW.Node
IBM.PSSP.SP_HW.Switch
IBM.PSSP.VSD
IBM.PSSP.VSD
IBM.PSSP.VSDdrv
IBM.PSSP.aixos.CPU
IBM.PSSP.aixos.Disk
IBM.PSSP.aixos.Disk
IBM.PSSP.aixos.FS
IBM.PSSP.aixos.FS
IBM.PSSP.aixos.FS
IBM.PSSP.aixos.LAN
IBM.PSSP.aixos.LAN
IBM.PSSP.aixos.Mem.Kmem
IBM.PSSP.aixos.Mem.Kmem
IBM.PSSP.aixos.Mem.Real
IBM.PSSP.aixos.Mem.Virt
IBM.PSSP.aixos.PagSp
IBM.PSSP.aixos.Proc
IBM.PSSP.aixos.VG
IBM.PSSP.aixos.VG
IBM.PSSP.aixos.cpu
IBM.PSSP.aixos.cpu
IBM.PSSP.aixos.pagsp
IBM.PSSP.aixos.pagsp
IBM.PSSP.pm

NodeNum
NodeNum
NodeNum
SCHEDD
STARTD
NodeNum
NodeNum
AdapterType
AdapterNum
NodeNum
NodeNum
ProgName
UserName
NodeNum
NodeNum
NodeNum
FrameNum
NodeNum
SwitchNum
NodeNum
VSD
NodeNum
NodeNum
NodeNum
Name
NodeNum
VG
LV
Adapter
NodeNum
Type
NodeNum
NodeNum
NodeNum
NodeNum
NodeNum
NodeNum
VG
CPU
NodeNum
NodeNum
Name
NodeNum

30
30
30
33
32
30
3
4
5
6
30
3
4
5
3
4
248
249
250
30
31
30
42
45
46
47
48
49
53
52
55
54
56
57
60
61
50
51
44
43
58
59
3

Note:

ivElement_description is a particular message number in the set specified by rmMessage_set. Refer to
Table 6 on page 236.

D.4.2 Why Is It Useful?
This information is useful when you want to know what kind of Instance Vectors
the -e option of the pmandef command needs. Follow these instructions:

 1. In ivResource_name, find the Resource Class that your Resource Variable
belongs to.

 2. ivElement_name is the Instance Vector that you need when you use the
pmandef command with the -e option.

Appendix D. Essence of the Event Management and Problem Management Subsystems 239

This soft copy for use by IBM employees only.

D.5 Event Management Resource Variable Class
This class contains information about the Resource Variable class.

You can get this information by using the following command:

� �
SDRGetObjects EM_Resource_Variable | more� �

You must use this command with the more operand because it shows more than
300 Resource Variables.

If you are interested in a particular Resource Class, such as IBM.PSSP.pm, use
the following command:

� �
SDRGetObjects EM_Resource_Variable rvClass==IBM.PSSP.pm� �

D.5.1 What Can You Get?
The following is a default implementation:

Table 10. Event Management Resource Variable Class

Class sample 1 sample 2

rvName
rvDescript ion
rvValue_type
rvData_type
rvInit ial_value
rvClass
rvPTX_name
rvPTX_description
rvPTX_min
rvPTX_max
rvPredicate
rvEvent_description
rvLocator
rvDynamic_instance
rvIndex_vector

IBM.PSSP.pm.Errlog
1
State
SBS

IBM.PSSP.pm

NodeNum
0

IBM.PSSP.pm.User_state1
2
State
SBS

IBM.PSSP.pm

NodeNum
0

D.5.2 Why Is It Useful?
To help you choose one of the 300 available Resource Variables, refer to
Table 10.

If you pick a Resource Variable and want to know its description, use
rvDescription. Refer to Table 6 on page 236.

Creating your own monitor also means that you have to find proper options for
the pmandef command. You can use rvName with the -e option for a Resource
Variable. If rvData_type is SBS, you may need to look up Event Management
Structured Byte String SDR class with the -e option for a predicate.

240 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

D.6 Event Management Structured Byte String Class
This class contains information about the Instance Vector for a particular
Resource Variable.

You can learn about it by using the following command:

� �
SDRGetObjects EM_Structured_Byte_String� �

D.6.1 What Can You Get?
The following is a default implementation:

Table 11. Event Management Structured Byte String Class

sbsVariable_name sbsField_name sbsField_type sbsField_SN sbsField_init_val

IBM.PSSP.Prog.pcount
IBM.PSSP.Prog.pcount
IBM.PSSP.Prog.pcount

IBM.PSSP.Prog.xpcount
IBM.PSSP.Prog.xpcount
IBM.PSSP.Prog.xpcount

IBM.PSSP.SP_HW.Node.lcd1

IBM.PSSP.SP_HW.Node.lcd2

IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog
IBM.PSSP.pm.Errlog

IBM.PSSP.pm.User_state1

CurPIDCount
PrevPIDCount
CurPIDList

CurPIDCount
PrevPIDCount
CurPIDList

STRING

STRING

sequenceNumber
errorID
errorClass
errorType
alertFlagsValue
resourceName
resourceType
resourceClass
errorLabel

STRING

long
long
cstring

long
long
cstring

cstring

cstring

cstring
cstring
cstring
cstring
cstring
cstring
cstring
cstring
cstring

cstring

0
1
2

0
1
2

0

0

0
1
2
3
4
5
6
7
8

0

Note:

*1 is sbsField_init_val.

This shows you that Resource Variable sbsVariable_name uses a Structured Byte
String. Field Serial Number sbsField_SN is named sbsField_name and its
variable type is sbsField_type. Its initial value is sbsFiled_init_val.

D.6.2 Why Is It Useful?
If you monitor a Resource Variable that uses data type Structured Byte String,
you need to know the contents of Structured Byte String, and you need to specify
Predicate in the pmandef command with the -e option. X@0 represents
sbsField_name with sbsField_SN equal to 0. X@1 represents sbsField_name with
sbsField_SN equal to 1, and so on.

Appendix D. Essence of the Event Management and Problem Management Subsystems 241

This soft copy for use by IBM employees only.

D.7 Problem Management Daemon (pmand)

D.7.1 SDR Class
There is one SDR class for pmand, pmandConfig.

You can learn about it by using the following command:

� �
SDRGetObjects pmandConfig� �

The following is a list of the members of this class:

• pmEventid
• pmNodenumber
• pmTargetType
• pmTarget
• pmRvar
• pmIvec
• pmPred
• pmCommand
• pmCommandTimeout
• pmHandle
• pmTrapid
• pmPPSlog
• pmThrottle
• pmRearmPred
• pmRearmTrapid
• pmRearmPPSlog
• pmRearmCommand
• pmRearmCommandTimeout
• pmUsername
• pmPrincipal
• pmHost
• pmActivated
• pmText
• pmRearmText
• pmUserLabel

D.7.2 Commands
pmanctrl Controls the Problem Management subsystem.

Usage: pmanctrl {-a|-s|-k|-d|-c|-t|-o|-r|-h}
-a Add Problem Management subsystem to this partition.
-s Start Problem Management subsystem in this partition.
-k Stop Problem Management subsystem in this partition.
-d Delete Problem Management subsystem from this partition.
-c Remove Problem Management subsystem from all partitions

(but do not remove SDR objects).
-t Start Problem Management subsystem trace in this partition.
-o Stop Problem Management subsystem trace in this partition.
-r Refresh the Problem Management subsystem on all nodes in this

partition. (This option currently does nothing.)
-h Display this usage statement.

242 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

pmandef Defines events and resulting actions to Problem Management.

To subscribe to an event and associate a set of actions with that
event, use the following:

Usage: pmandef -s HandleName -e ResourceVariable:InstanceVector:Predicate
[-r RearmPredicate]
[-c EventCommand] [-C RearmCommand]
[-t EventTrapid] [-T RearmTrapid]
[-l EventLogText] [-L RearmLogText]
[-x EventCmdTimeout] [-X RearmCmdTimeout]
[-U UserName] [-m Label]
[-h { Host1[,Host2,...] | - | local } | -N NodeGroup | -n NodeRange]

To deactivate or activate a Problem Management subscription, use
the following:

Usage: pmandef {-d|-a} {HandleName | all}
[-h { Host1[,Host2,...] | - | local } | -N NodeGroup | -n NodeRange]

To query or remove a Problem Management subscription, use the
following:

Usage: pmandef {-q|-u} {HandleName | all}

pmanquery Queries the System Data Repository (SDR) for a description of a
Problem Management subscription.

Usage: pmanquery -n {HandleName | all} [-k {Kerberos_principal | all}]
[-q|-a|-d|-t]

D.8 Problem Management Resource Monitor Daemon (pmanrmd)
The pmand daemon provides sophisticated Resource Variables to monitor your
SP system, but you may want to monitor your unique resources. That is what
pmanrmd is used for. You can create up to 16 of your own Resource Variables

D.8.1 SDR Class for pmanrmd
There is one SDR class for pmanrmd, pmanrmdConfig.

You can learn about it by using the following command:

� �
SDRGetObjects pmanrmdConfig� �

The following is a list of the members of this class:

pmrmNodenumber The node number of the host on which pmanrmd is to
instantiate the Resource Variable being defined.

pmrmTargetType Either NODE_LIST, NODE_RANGE, or NODE_GROUP.

pmrmTarget This specifies the set of nodes on which the daemons are to be
configured. It can be a list of hostnames, a node range as
specified on the hostlist command, or the name of a node
group. A predefined NODE_LIST, CWS, is provided. It refers to
the Control Workstation.

pmrmRvar This specifies the fully-qualified Resource Variable name in the
resource class user_state.

Appendix D. Essence of the Event Management and Problem Management Subsystems 243

This soft copy for use by IBM employees only.

pmrmCommand This command provides the Resource Variable value,
consisting of its stdout.

pmrmSampInt This specifies the sampling interval in seconds.

D.8.2 Configuration File
The following is a sample configuration file:

/spdata/sys1/pman/pmanrmd.conf

D.8.3 Resource Variables
Sixteen user-configurable Resource Variables are provided:

IBM.PSSP.pm.User_statenn, where nn=1-16

D.8.4 Commands
pmanrmdloadSDR

This command reads a pmanrmd configuration file and loads the
information into the System Data Repository (SDR).

Usage:
pmanrmdloadSDR filename

pmanrminput

Usage:
pmanrminput [-h host] [-a argument] -g group_name
pmanrminput [-h host] [-a argument] -s subsystem_name
pmanrminput [-h host] [-a argument] -p subsystem_pid

244 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix E. The IBM.PSSP.Prog.pcount Resource Variable

IBM.PSSP.Prog.pcount represents processes running a specified program on
behalf of a specified user. The Resource Variable′s Instance Vector specifies the
program name (ProgName), user name (UserName), and node number
(NodeNum) of interest. The Resource Variable′s value is a structured byte string
that includes:

• A count of the current number of processes running the program for the user
(field serial number 0: long data type)

• A count of the previously known number of processes that had been running
the program for the user (field serial number 1: long data type)

• A comma-separated list of the process identifiers (PIDs) of the processes
currently running the program for the user (field serial number 2: character
string data type)

For example, assume the six processes shown in the following ps output are
running the biod program on Node 5:

� �
ps -ef | grep -v grep | grep biod

root 7786 8040 0 20:53:34 - 0:00 /usr/sbin/biod 6
root 8040 5624 0 20:53:34 - 0:00 /usr/sbin/biod 6
root 8300 8040 0 20:53:34 - 0:00 /usr/sbin/biod 6
root 8558 8040 0 20:53:34 - 0:00 /usr/sbin/biod 6
root 8816 8040 0 20:53:34 - 0:00 /usr/sbin/biod 6
root 9074 8040 0 20:53:34 - 0:00 /usr/sbin/biod 6

#
� �

The value of the IBM.PSSP.Prog.pcount instance represented by the Instance
Vector ProgName=biod;UserName=root;NodeNum=5 would include a current
process count of 6 and a current process list of 7786,8040,8300,8558,8816,9074.
The value of the previous process count would depend on the history of
processes running the biod program on Node 5.

A change in the value of an IBM.PSSP.Prog.pcount instance either indicates that
fewer processes are running the program represented by the Resource Variable
instance or more processes are running the program. Which condition is
indicated can be determined by comparing the value of the current process
count with the value of the previous process count.

To be informed whenever the set of processes running the biod program for the
root user changes on Node 5, you could register for an event specified as
follows:

� �
Resource Variable Name: IBM.PSSP.Prog.pcount
Instance Vector: ProgName=biod;UserName=root;NodeNum=5
Predicate: X@0 != X@1

� �

To be informed only when no processes are running the biod program for the
root user on Node 5, you could register for an event specified as follows:

 Copyright IBM Corp. 1997 245

This soft copy for use by IBM employees only.

� �
Resource Variable Name: IBM.PSSP.Prog.pcount
Instance Vector: ProgName=biod;UserName=root;NodeNum=5
Predicate: X@0 == 0

� �

E.1 Limitations
The IBM.PSSP.Prog.pcount Resource Variable is designed to be used to monitor
programs that are expected to have long lifetimes. If it is used to monitor a
program that runs for only a few seconds, it is possible that not all processes
that run the program will be detected.

E.1.1 Instance Vector Wildcarding
Neither the ProgName nor the UserName Instance Vector element may be
wildcarded.

The NodeNum Instance Vector element may be wildcarded.

E.2 Related Resource Variable IBM.PSSP.Prog.xpcount
There is another Resource Variable closely related to IBM.PSSP.Prog.pcount. It
is named IBM.PSSP.Prog.xpcount. These two Resource Variables differ in the
following way:

• The pcount Resource Variable represents all processes running a specified
program, regardless of why the processes are running the program.

• The xpcount Resource Variable represents only those processes that are
running a specified program as a result of having called one of the exec()
routines.

A typical process runs a program because it called an exec() routine specifying
the program. However, a process may be running a program because it
inherited it from its parent process, and it never called an exec() routine to
execute another program. Some daemons, including biod, do this.

For example, the ps output that follows shows that only the process whose PID is
8040 called an exec() routine to run the biod program. All the other processes
running biod do not have the SEXECED process flag (200000) set; they inherited
the biod program from their parent process—the process with PID 8040.

� �
ps -e -o ″flag,pid,ppid,comm″ | grep biod

40001 7786 8040 biod
 240001 8040 5624 biod

40001 8300 8040 biod
40001 8558 8040 biod
40001 8816 8040 biod
40001 9074 8040 biod

#
� �

Use the IBM.PSSP.Prog.pcount Resource Variable to monitor processes that
inherit programs.

246 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Use the IBM.PSSP.Prog.xpcount Resource Variable to monitor only processes
that explicitly call an exec() routine to run a program.

Using IBM.PSSP.Prog.pcount to monitor certain programs can cause problems.
For example, if a program creates child processes that run other programs,
registering for an event using pcount may generate unintended events.

Consider the inetd program as an example. Its purpose is to spawn other
service daemons on request. As part of the process, inetd calls fork() to create
a child process. That child process starts out running the inetd program, but
quickly calls an exec() routine to run the appropriate daemon (such as telnetd).
Therefore, for brief periods of time, more than one process will be running the
inetd program.

If you use pcount to monitor inetd, events might be generated showing these
child processes running inetd for small periods of time. To avoid such false
events, it would be better to use xpcount to monitor inetd.

As you can see, you should know how a program operates before deciding how
to monitor it. In most cases, it is probably appropriate to use the xpcount
Resource Variable to monitor a program. However, if the program to be
monitored is inherited by long-running processes that do not call an exec()
routine, pcount might be more appropriate.

Appendix E. The IBM.PSSP.Prog.pcount Resource Variable 247

This soft copy for use by IBM employees only.

248 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix F. The IBM.PSSP.Prog.xpcount Resource Variable

IBM.PSSP.Prog.xpcount represents processes running a specified program on
behalf of a specified user. The Resource Variable′s Instance Vector specifies the
program name (ProgName), user name (UserName), and node number
(NodeNum) of interest. The Resource Variable′s value is a structured byte string
that includes:

• A count of the current number of processes running the program for the user
(field serial number 0: long data type)

• A count of the previously known number of processes that had been running
the program for the user (field serial number 1: long data type)

• A comma-separated list of the process identifiers (PIDs) of the processes
currently running the program for the user (field serial number 2: character
string data type)

For example, assume the process shown in the following ps output is running
the inetd program on Node 5:

� �
ps -ef | grep -v grep | grep inetd

root 7218 5624 0 Jul 18 - 0:00 /usr/sbin/inetd
#

� �

The value of the IBM.PSSP.Prog.xpcount instance represented by the Instance
Vector ProgName=inetd;UserName=root;NodeNum=5 would include a current
process count of 1 and a current process list of 7218. The value of the previous
process count would depend on the history of processes running the inetd
program on Node 5.

A change in the value of an IBM.PSSP.Prog.xpcount instance either indicates
that fewer processes are running the program represented by the Resource
Variable instance, or more processes are running the program. Which condition
changed the value can be determined by comparing the value of the current
process count with the value of the previous process count.

To be informed whenever the set of processes running the inetd program for the
root user changes on Node 5, you could register for an event specified as
follows:

� �
Resource Variable Name: IBM.PSSP.Prog.xpcount
Instance Vector: ProgName=inetd;UserName=root;NodeNum=5
Predicate: X@0 != X@1

� �

To be informed only when no processes are running the inetd program for the
root user on Node 5, you could register for an event specified as follows:

� �
Resource Variable Name: IBM.PSSP.Prog.xpcount
Instance Vector: ProgName=inetd;UserName=root;NodeNum=5
Predicate: X@0 == 0

� �

 Copyright IBM Corp. 1997 249

This soft copy for use by IBM employees only.

F.1 Limitations
The IBM.PSSP.Prog.xpcount Resource Variable is designed to be used to
monitor programs that are expected to have long lifetimes. If it is used to
monitor a program that runs for only a few seconds, not all processes that run
the program may be detected.

F.1.1 Instance Vector Wildcarding
Neither the ProgName nor the UserName Instance Vector element may be
wildcarded.

The NodeNum Instance Vector element may be wildcarded.

F.2 Related Resource Variable IBM.PSSP.Prog.pcount
There is another Resource Variable closely related to IBM.PSSP.Prog.xpcount. It
is named IBM.PSSP.Prog.pcount. These Resource Variables differ in the
following way:

• The pcount Resource Variable represents all processes running a specified
program, regardless of why the processes are running the program.

• The xpcount Resource Variable represents only those processes that are
running a specified program as a result of having called one of the exec()
routines.

A typical process runs a program because it called an exec() routine specifying
the program. However, a process may be running a program because it
inherited it from its parent process, and it never called an exec() routine to
execute another program. Some daemons, including biod, do this.

For example, the ps output that follows shows that only the process whose PID is
8040 called an exec() routine to run the biod program. All the other processes
running biod do not have the SEXECED process flag (200000) set; they inherited
the biod program from their parent process—the process with PID 8040.

� �
ps -e -o ″flag,pid,ppid,comm″ | grep biod

40001 7786 8040 biod
 240001 8040 5624 biod

40001 8300 8040 biod
40001 8558 8040 biod
40001 8816 8040 biod
40001 9074 8040 biod

#
� �

Use the IBM.PSSP.Prog.pcount Resource Variable to monitor processes that
inherit programs.

Use the IBM.PSSP.Prog.xpcount Resource Variable only to monitor processes
that explicitly call an exec() routine to run a program.

Using IBM.PSSP.Prog.pcount to monitor certain programs may cause problems.
For example, if a program creates child processes that run other programs,
registering for an event using pcount may generate unintended events.

250 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Consider the inetd program as an example. Its purpose is to spawn other
service daemons on request. As part of the process, inetd calls fork() to create
a child process. That child process starts out running the inetd program, but
quickly calls an exec() routine to run the appropriate daemon (such as telnetd).
Therefore, for brief periods of time, more than one process will be running the
inetd program.

If you use pcount to monitor inetd, events might be generated showing these
child processes running inetd for small periods of time. To avoid these false
events, it would be better to use xpcount to monitor inetd.

As you can see, you should know how a program operates before you decide
how to monitor it.

In most cases, it is probably appropriate to use the xpcount Resource Variable to
monitor a program. However, if the program to be monitored is inherited by
long-running processes that do not call an exec() routine, pcount might be more
appropriate.

Appendix F. The IBM.PSSP.Prog.xpcount Resource Variable 251

This soft copy for use by IBM employees only.

252 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix G. SNMP-Related Request For Comments

RFC1910 “User-Based Security Model for SNMPv2”
G. Waters

RFC1909 “An Administrative Infrastructure for SNMPv2”
K. McCloghrie

RFC1907 “Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose and
S. Waldbusser
(Obsoletes RFC 1450)

RFC1906 “Transport Mappings for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose and
S. Waldbusser
(Obsoletes RFC 1449)

RFC1905 “Protocol Operations for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose and
S. Waldbusser
(Obsoletes RFC 1448)

RFC1904 “Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose and
S. Waldbusser
(Obsoletes RFC 1444)

RFC1903 “Textual Conventions for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose and
S. Waldbusser
(Obsoletes RFC 1443)

RFC1901 “Introduction to Community-Based SNMPv2”
SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose and
S. Waldbusser

RFC1503 “Algorithms for Automating Administration in SNMPv2 Managers”
K. McCloghrie and M. Rose

RFC1461 “SNMP MIB Extension for Multiprotocol Interconnect over X.25”
D. Throop

RFC1450 “Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
J. Case, K. McCloghrie, M. Rose, and S. Waldbusser
(Obsoleted by RFC 1907)

RFC1449 “Transport Mappings for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
J. Case, K. McCloghrie, M. Rose, and S. Waldbusser
(Obsoleted by RFC 1906)

 Copyright IBM Corp. 1997 253

This soft copy for use by IBM employees only.

RFC1448 “Protocol Operations for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
J. Case, K. McCloghrie, M. Rose, and S. Waldbusser
(Obsoleted by RFC 1905)

RFC1447 “Party MIB for Version 2 of the Simple Network Management Protocol
(SNMPv2)”
K. McCloghrie and J. Galvin

RFC1446 “Security Protocols for Version 2 of the Simple Network Management
Protocol (SNMPv2)”
J. Galvin and K. McCloghrie

RFC1445 “Administrative Model for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
J. Galvin and K. McCloghrie

RFC1444 “Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
J. Case, K. McCloghrie, M. Rose, and S. Waldbusser

RFC1443 “Textual Conventions for Version 2 of the Simple Network
Management Protocol (SNMPv2)”
J. Case, K. McCloghrie, M. Rose, and S. Waldbusser

RFC1442 “Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPv2)”
J. Case, K. McCloghrie, M. Rose, and S. Waldbusser

RFC1420 “SNMP over IPX”
S. Bostock

RFC1419 “SNMP over AppleTalk”
G. Minshall and M. Ritter

RFC1418 “SNMP over OSI”
M. Rose

RFC1382 “SNMP MIB Extension for the X.25 Packet Layer”
D. Throop

RFC1381 “SNMP MIB Extension for X.25 LAPB”
D. Throop and F. Baker

RFC1352 “SNMP Security Protocols”
J. Galvin, K. McCloghrie, and J. Davin

RFC1351 “SNMP Administrative Model”
J. Davin, J. Galvin, and K. McCloghrie

RFC1303 “A Convention for Describing SNMP-Based Agents”
K. McCloghrie and M. Rose

RFC1298 “SNMP over IPX”
R. Wormley and S. Bostock
(Obsoleted by RFC 1420)

RFC1283 “SNMP over OSI”
M. Rose
(Obsoleted by RFC 1418)

RFC1270 “SNMP Communications Services”
F. Kastenholz

254 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

RFC1228 “SNMP-DPI: Simple Network Management Protocol Distributed
Program Interface”
G. Carpenter and B. Wijnen
(Obsoleted by RFC 1592)

RFC1227 “SNMP MUX Protocol and MIB”
M.T. Rose

RFC1215 “Convention for Defining Traps for Use with the SNMP”
M.T. Rose

RFC1187 “Bulk Table Retrieval with the SNMP”
M.T. Rose, K. McCloghrie, and J.R. Davin

This memo reports an interesting family of algorithms for bulk table
retrieval using the Simple Network Management Protocol (SNMP). It
describes an Experimental Protocol for the Internet community, and
requests discussion and suggestions for improvements.

It does not specify a standard for the Internet community. Refer to
the current edition of the IAB Official Protocol Standards for the
standardization state and status of this protocol.

RFC1161 “SNMP over OSI”
M.T. Rose
(Obsoleted by RFC 1418)

This memo defines an experimental means for running the Simple
Network Management Protocol (SNMP) over OSI transports.

It does not specify a standard for the Internet community.

RFC1157 “Simple Network Management Protocol (SNMP)”
J.D. Case, M. Fedor, M.L. Schoffstall, and C. Davin
(Obsoletes RFC 1098)

This RFC is a re-release of RFC 1098, with a changed “Status of this
Memo” section plus a few minor typographical corrections. It defines
a simple protocol by which management information for a network
element may be inspected or altered by logically remote users.
[STANDARDS-TRACK]

RFC1098 “Simple Network Management Protocol (SNMP)”
J.D. Case, M. Fedor, M.L. Schoffstall, and C. Davin
(Obsoletes RFC 1067) (Obsoleted by RF1157)

This RFC is a re-release of RFC 1067, with a changed “Status of this
Memo” section. It defines a simple protocol by which management
information for a network element may be inspected or altered by
logically remote users. Together with companion memos that
describe the structure of management information along with the
initial management information base, this document provides a
simple, workable architecture and system for managing TCP/IP-based
internets and, in particular, the Internet.

RFC1089 “SNMP over Ethernet”
M.L. Schoffstall, C. Davin, M. Fedor, and J.D. Case

This memo describes an experimental method by which the Simple
Network Management Protocol (SNMP) can be used over Ethernet

Appendix G. SNMP-Related Request For Comments 255

This soft copy for use by IBM employees only.

MAC layer framing instead of the Internet UDP/IP protocol stack. This
specification is useful for LAN-based network elements that support
no higher layer protocols beyond the MAC sublayer.

G.1 How to Get RFCs
There are many sites in the Internet where you can get these RFCs. Here are
some pointers:

• ftp://ds.internic.net/rfc

• ftp://nis.nfs.net/internet/documents/rfc

• ftp://src.doc.ic.ac.uk/computing/internet/rfc

• ftp://wuarchive.wustl.edu/doc/rfc

256 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix H. How to Get the Examples in This Book

The examples in this publication are available on a diskette that is included with
paper copies of the book, at an FTP site, and via the World Wide Web.

H.1 Diskette Version
The files are stored in tar format. The examples will extract to the location
./SPmonitoring/..., where ... includes directories like src, bin, and lib. The
recommended location for the examples is /usr/local/SPmonitoring.

To extract the examples from the diskette and place them in the recommended
location, use these commands after inserting the diskette into the drive on the
RS/6000:

� �
#
mkdir /usr/local
cd /usr/local
tar xvf /dev/rfd0
#� �

Figure 132. Installing Examples from Diskette to the Recommended Location

H.2 FTP Site
The files are available for anonymous FTP from www.redbooks.ibm.com. To
retrieve the files using FTP, you must have access to the Internet. If you do, use
the following procedure:

� �
#
mkdir /usr/local
cd /usr/local
ftp www.redbooks.ibm.com
ftp> bin
ftp> cd /redbooks/SG244873
ftp> get SPmonitoring.tar.Z
ftp> quit
#
uncompress SPmonitoring.tar.Z
tar xvf SPmonitoring.tar
rm SPmonitoring.tar
#� �

Figure 133. Installing Examples to the Recommended Location Using FTP

 Copyright IBM Corp. 1997 257

This soft copy for use by IBM employees only.

H.3 WWW Site
The examples can also be downloaded using the World Wide Web. The URL
www.redbooks.ibm.com provides details on the procedure.

 Note:

These examples have been tested on pre-release versions of POWERparallel
System Support Programs Version 2.2. They may not be suitable for use in a
particular environment, and are not supported by IBM in any way. IBM is not
responsible for your use of these examples.

258 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix I. Special Notices

This publication is intended to help IBM customers, Business Partners, IBM
System Engineers and other RS/6000 SP specialists who are involved in
POWERparallel System Support Programs Version 2.2 projects, including
education of RS/6000 SP professionals responsible for installing, configuring, and
administering PSSP Version 2 Release 2. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by POWERparallel System Support Programs. See the PUBLICATIONS
section of the IBM Programming Announcement for POWERparallel System
Support Programs for more information about what publications are considered
to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

 Copyright IBM Corp. 1997 259

This soft copy for use by IBM employees only.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

Other trademarks are trademarks of their respective companies.

AIX AIX/ESA
AS/400 BookManager
ES/9000 IBM
LoadLeveler NetView
OS/2 POWERparallel
PROFS RS/6000
SP System/390

260 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Appendix J. Rel ated Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

J.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 263.

• RS/6000 SP PSSP 2.2 Technical Presentation, SG24-4868

• RS/6000 SP High Availability Infrastructure, SG24-4838

• Examples of Using NetView for AIX, V4, SG24-4515

J.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

J.3 Other Publications
These publications are also relevant as further information sources:

• RS/6000 SP: Administration Guide, GC23-3897

• RS/6000 SP: Installation and Migration Guide, GC23-3898

• RS/6000 SP: Diagnosis and Messages Guide, GC23-3899

• RS/6000 SP: Command and Technical Reference, GC23-3900

• RS/6000 SP: System Planning Guide, GC23-3902

• Examples of Using NetView for AIX, GG24-4327

• RS/6000 SP: Event Management Programming Guide and Reference,
SC23-3996

• RS/6000 SP: Group Services Programming Guide and Reference, SC28-1675

• NetView for AIX User′s Guide for Beginners V4, SC31-8158 (available in
softcopy only)

• NetView for AIX Administrator′s Guide V4, SC31-8168 (available in softcopy
only)

 Copyright IBM Corp. 1997 261

This soft copy for use by IBM employees only.

262 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://www.redbooks.ibm.com

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1997 263

This soft copy for use by IBM employees only.

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
(+45) 48 14 2207 (long distance charge) Outside North America

264 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How to Get ITSO Redbooks 265

This soft copy for use by IBM employees only.

266 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

List of Abbreviations

ACL Access Control List

AIX Advanced Interactive
Executive

AMG Adapter Membership Group

ANS Abstract Notation Syntax

APA All Points Addressable

API Application Programming
Interface

BIS Boot-Install Server

BSD Berkeley Software
Distribution

BUMP Bring-Up Microprocessor

CP Crown Prince

CPU Central Processing Unit

CSS Communication Subsystem

CWS Control Workstation

EM Event Management

EMAPI Event Management
Application Programming
Interface

EMCDB Event Management
Configuration Database

EMD Event Manager Daemon

EPROM Erasable Programmable Read
Only Memory

FIFO First In - First Out

GB Gigabytes

GL Group Leader

GS Group Services

GSAPI Group Services Application
Programming Interface

hb heart beat

HPS High Performance Switch

hrd host respond daemon

HSD Hashed Shared Disk

IBM International Business
Machines Corporation

IP Internet Protocol

ISB Intermediate Switch Board

ISC Intermediate Switch Chip

ITSO International Technical
Support Organization

JFS Journal File System

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitter Diode

LRU Least Recently Used

LSC Link Switch Chip

LVM Logical Volume Manager

MB Megabytes

MIB Management Information
Base

MPI Message Passing Interface

MPL Message Passing Library

MPP Massively Parallel Processors

NIM Network Installation Manager

NSB Node Switch Board

NSC Node Switch Chip

OID Object ID

ODM Object Data Manager

PE Parallel Environment

PID Process ID

PROFS Professional Office System

PSSP Parallel System Support
Program

PTC Prepare to Commit

PTPE Performance Toolbox Parallel
Extensions

PTX/6000 Performance Toolbox/6000

RAM Random Access Memory

RCP Remote Copy Protocol

RM Resource Monitor

RMAPI Resource Monitor Application
Programming Interface

RPQ Request for Product
Quotation

RSI Remote Statistics Interface

RVSD Recoverable Virtual Shared
Disk

SBS Structured Byte String

SDR System Data Repository

SMP Symmetric Mult iprocessors

SNMP System Network Management
Protocol

SPDM SP Data Manager

 Copyright IBM Corp. 1997 267

This soft copy for use by IBM employees only.

SPMI System Performance
Measurement Interface

SRC System Resource Controller

SSI Single System Image

TS Topology Services

TCP/IP Transmission Control Protocol
/ Internet Protocol

UDP User Datagram Protocol

VSD Virtual Shared Disk

VSM Visual System Management

268 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

Index

A
abbreviations 267
acronyms 267
Adapter Membership group 5

algori thm 6
prepare to commit 6

AIX error log 72, 84, 174, 197
aixos 73
Alert attr ibute 174
AMG

See Adapter Membership group
See Topology Services

API
See Application Program Interfaces

Application Program Interfaces
configuration of Resource Monitor 128
example of use 98
example Resource Monitor 119
example Resource Monitor httprtA 119
helpful hints 97
LPP requirements 97

ASN 48, 49
availabi l i ty 27

B
bibliography 261
bos.net.tcp.server 194
BSD syslog 72, 84

C
commands

dspcat 75
errpt 200
errupdate 200
haemcfg 51, 53
haemctr l 54
haemloadcfg 52
haemrcpcdb 51
hagsgr 15
hagsmg 12
hagsreap 10
lssrc 185
Perspectives 138
pmanctr l 90
pmandef 75, 83, 90
pmanquery 83, 86, 90
pmanrmdloadSDR 80, 90, 92
pmanrminput 77, 82, 90
runcat 42
SDR_test 156
SDRArchive 156
SDRCreateObjects 52

commands (continued)
SDRDeleteObjects 92, 156
SDRGetObjects 9, 73, 92, 143, 149, 156, 161
SDRListClasses 46, 156
SDRListFiles 156
SDRRetrieveFile 156
SDRWhoHasLock 156
snmpget 194
snmpinfo 194
sp_configd 197
spevent 138
sphardware 138
spmon 218
startsrc 184
stopsrc 185
su 78
xmpeek 37

condition
components of 152
default predefined conditions 170

condition name 168
condition value 169
control desk 199, 213
core dump file 10
Counter 18, 67
CP

See crown prince
See Topology Services

CPU_Idle_Monitor 87, 160
crown prince 5
cssMembership 15
CurPIDCount 162
CurPIDList 162

D
daemons

haemd 15, 22
hagsd 8, 9, 12, 13
hagsglsmd 15
hatsd 7, 9
hbd 66
hrd 65
pmand 63, 72
pmanrmd 72
sendmail 165
sp_configd 174, 176, 201

directories
/spdata /sys1 /ha /cfg 51, 56
/usr / l ib /nls /msg 75
/usr / lpp /bin 138
/usr / lpp /ssp /config /snmp_proxy 182
/usr / lpp /ssp /samples 27
/usr /OV /conf 181
/usr /OV /conf /C 187

 Copyright IBM Corp. 1997 269

This soft copy for use by IBM employees only.

directories (continued)
/var /adm /sulog 78
/var /ha 201
/var /ha / lck /hags . t id .<syspar_name> 12
/var /ha / log 10, 21
/var /ha /soc /hats 7
/var / rmp 198
/var / tmp 201

downstream_neighbor 6
Dynamic Data Supplier (DDS) 36
dynamic workspace 217

E
EM_Condition 46, 169
EM_Instance_Vector 46, 75, 80
EM_Resource_Class 39, 46, 52, 73
EM_Resource_Monitor 47, 52, 74
EM_Resource_Variable 33, 47, 52, 73, 81
EM_Structured_Byte_String 47, 81
EMAPI 17, 65, 174

See also ?
EMCDB 51, 52, 53, 59

See also Event Management Configuration
Database

enMembership 4, 15
errnoti fy 198
error stack 159
errpt 200
errupdate 200
event 31, 58, 59
event definit ion

authorizations needed 139, 156
components of 153
CPU_Idle_Monitor 160
creating 139, 141
definition page 141
deleting 139, 156
Event Definition name 142
managing 137
modifying 139, 156
name 142, 154
realMemLowEvent 142
rearm-command 147
rearm-event 147
registering 139, 144
response options 145
select resources 144
storage 154
target nodes 147
unregistering 139, 144
varFullEvent 146
viewing 139

Event Definitions pane 141, 146
event generation 57
Event Management

client programs 29
daemon 21
Event Management 28, 68

Event Management (continued)
generation 57
haemd daemon 15
instantiation vector 18
notif ication 58
overview 16
predicate 17
predicates 61
registration 58
subsystem 19
wildcarding 58

Event Management Configuration Database
accepting join requests 57
in the group 57
out of the group 57
peer count 56
peer daemon status 57
rejecting join requests 57
version number 56

Event Management daemon 29
Event Manager API example 98
Event Notification Log 146
Event Perspective

invoking 138, 140
predefined condition 142
terminology considerations 152
tool bar 140
using 139

event registration 58
events 137, 139
example applications

configuration of Resource Monitor 128
constructing EMAPI clients 98
example Resource Monitor 119
example Resource Monitor httprtA 119
getemv 111
helpful hints 97
how to get examples 257
ideas on designing and writing 233
LPP requirements 97
lsemv 101
measuring response time of httpd 226
monemv 115

example event definitions
monitoring a daemon 165
monitoring CPU usage 160
monitoring fi le system size 148
monitoring memory usage 140

example programs
configuration of Resource Monitor 128
constructing EMAPI clients 98
example Resource Monitor 119
example Resource Monitor httprtA 119
getemv 111
helpful hints 97
how to get examples 257
ideas on designing and writing 233
LPP requirements 97

270 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

example programs (continued)
lsemv 101
measuring response time 226
monemv 115

expression 139, 144, 147, 151, 152, 154, 161, 165, 168
See also predicate

extensibil i ty 67

F
FIFO 201
file changed monitor 94
fi le system monitor 93
files

/etc / logmgmt.acl 197
/etc /services 179
/etc /snmpd.conf 179
/etc /snmpd.peers 181
/etc /sysctl.pman.acl 156
/usr /OV /conf /ovsnmp.conf 180
/var /ha / log /gs.defau l t .<syspar_name> 9
/var /ha /soc /em.c ls rv .<syspar_name> 22
/var /ha /soc /e m . R M . < r m n a m e > . < s y s p a r _ n a m e > 22
/var /ha /soc /em. rmsrv .<syspa r_name> 22
/var /ha /soc /hagsd .<syspa r_name> 9
.klogin 84
.kshrc 158
.startup_script 138
$HOME / .$USER&Events 146
errlog_entry 198
harm_des.cat 75
ibmSPMIB.defs 182
ibmSPMIB.my 182
pmanrmd.conf 78
rmapi_smp 42
rmapi_smp.cat 42
rmapi_smp.msg 42
snmp_trap_gen 198
snmp.log 203
sp_configd.log 201
sysctl.pman.acl 83
trapd.conf 187
trapd.log 182

G
getemv 111
GL

See group leader
See Topology Services

group leader 5
Group Services

connection with Topology Services 7
core dump file 10
cssMembership 15
csstMembership 65
daemon 8
domain 10
enMembership 15, 65

Group Services (continued)
failure leave 14
group state value 14
ha_em_peers 15
hagsd 8, 9
hagsglsmd 15
hagsglsmd daemon 15
hagsgr command 15
hagsmg 12
hb_init 10
HostMembership 15, 65
log file space 10
log files 9
MetaGroup 12
name server 10
name server protocol 10
namespace 10
nomination messages 11
overview 8
provider 14
subscriber 14
SwitchGroupie 15
voting protocol 15

Group Services API
Group Services domain
group state value 14
GSAPI 10

See also Group Services API

H
ha_em_end_session() 102
ha_em_peers 15
ha_em_receive_response() 106
ha_em_restart_session() 107
ha_em_send_command() 105
ha_em_start_session() 102
haemcfg 51, 52, 53
haemctr l 54
haemloadcfg 52
haemrcpcdb 51
hagsd 8, 9
hagsglsmd 15
hagsgr 15
hagsmg 12
hagsreap 10
handling SIGPIPE 102
hardmon 22
harm_des.cat 75
harmld 63
harmpd 63
hatsd 7, 9
hb_init 10
hbd 66

See also heartbeat
HDS 137
heartbeat 3

daemon 66

Index 271

This soft copy for use by IBM employees only.

High Availabil ity Cluster Multiprocessing 28
High Availabil i ty Infrastructure
hmrmd 63
host responds

daemon 65
host_response 65
HostMembership 4, 15
hostResponds 167
hrd 65

See also host responds
httprtA 119

I
IBM.PSSP.aixos.CPU 73, 161
IBM.PSSP.aixos.FS 151
IBM.PSSP.harmld 64
IBM.PSSP.harmpd 64
IBM.PSSP.hmrmd 64
IBM.PSSP.Membership.LANAdapter.state 65
IBM.PSSP.Membership.Node.state 65
IBM.PSSP.pm 80
IBM.PSSP.pmanrmd 64, 80
IBM.PSSP.Prog.pcount 162
IBM.PSSP.Prog.xpcount 162
IBM.PSSP.Response.Host.state 65
IBM.PSSP.Response.Switch.state 65
IBM.PSSP.SP_HW.Node.keyModeSwitch 208
ibmProd 177
ibmSP.MIB 180
ibmSPConfig 177
ibmSPEMVariable 177
ibmSPErrlogVars 177
inherited process 163
Instance Vector 44, 58, 68

name-value pair 44
instantiation vector 18
Internet 256
invoking

Event Perspective 140
Hardware Perspective 138
Perspectives 138

K
Kerberos principal 141, 156
keyNotNormal 167

L
leave, failure 14
LoadLeveler 64
lsemv 101
lssrc 185

M
Makefi le 98

Management Information Base
GET 174
GET NEXT 174
ibmProd 177
ibmSP description 189
ibmSP viewing 194
ibmSP.MIB 180
ibmSPConfig 177, 189
ibmSPEMNodeDepVarsTable 193
ibmSPEMNodeIndepVarsTable 193
ibmSPEMVariable 177
ibmSPEMVariables 192
ibmSPEMVarValuesTable 193
ibmSPErrlogVars 177, 191
MIB-2 175
NetView for AIX browser 196
SET 174
snmpget command 194
snmpinfo command 194
understanding 175

membership 14
MetaGroup 12
MIB 174

See also Management Information Base
modif ier 62
monemv 115
monitors

resource monitors for response times 225
response time 226
user response time 225

N
name server 10
namespace 10
NetView for AIX

control desk 199, 213
customizing traps 186
dynamic workspace 217
MIB browser 196
monitoring server key wwitch 207
monitoring SP resources 205
SNMP subagent (sp_configd) 173
trap-setting 214

network
NFS daemons 14
NMG

See Node Membership group
See Topology Services

Node Membership group 4, 5
nodeEnvProblem 167
nodeNotReachable 167
nodePowerDown 167
nodePowerLED 167
nodeSerialLinkOpen 167
nomination messages 11
notif ication 58, 59

272 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

O
observation 30, 57
observation interval 43, 58

P
pageSpaceLow 167
PATH variable 138
pcount 165
peer count 56
peer daemon status 57
Perspectives 59

error message help 158
error stack 159
event definit ion 139
help 159
invoking 138
Launch Pad 138, 139
monitoring a daemon 165
monitoring CPU usage 160
monitoring fi le system size 148
monitoring memory usage 140
monitoring the health of your system 167
overview 137
tasks performed by 137
terminology 152

Perspectives GUI
See Perspectives

Phoenix 3
pipe 201
pman 71

See also Problem Management subsystem
pmanctr l 85, 86, 90, 91, 92
pmand 63, 72

See also Problem Management daemon
pmandConfig 86, 91
pmandef 75, 76, 81, 82, 83, 90, 91
pmanquery 83, 86, 90, 91
pmanrmd 72

See also Problem Management Resource Monitor
daemon

pmanrmd.conf 78
pmanrmdConfig 77, 78, 92
pmanrmdloadSDR 80, 90, 92
pmanrminput 77, 82, 90, 92
pmHandle 152
predicate 17, 48, 51, 57, 58, 59, 61

default 68
modif ier 62

PrevPIDCount 162
Problem Management 71
Problem Management daemon 77, 91

Commands 91
Problem Management Resource Monitor daemon 77,

92
Commands 92

Problem Management subsystem 71
automating performance correcting tasks 225

Problem Management subsystem (continued)
create your own monitor 72
file changed monitor 94
fi le system monitor 93
pmanctr l 90
pmandConfig 86, 91
pmandef 75, 83, 90
pmanquery 83, 86, 90
pmanrmd.conf 78
pmanrmdloadSDR 80, 90, 92
pmanrminput 82, 90
pmHandle 152
Problem Management subsystem 154
process monitor 94
server monitor 94
sysctl.pman.acl 83
unsubscribe 87

process monitor 94
provider 14
proxy agent 174, 176
proxy client 67, 68, 69
proxy clients 19
PSSP Log 146, 154
PTX/6000 36
PTX/6000 Manager 36

Q
Quantity 18

R
realMemLow 167
realMemLowEvent 142
rearm expression 147, 151, 152, 154, 165
rearm predicate 152
rearm-command 147, 161
rearm-event 147
recovery 28
relational expression 61
Reliable Messaging 4
Reliable Messaging library 7
report ing interval 43, 58
resource 168
resource attributes 38
Resource Class 43

rcClass 43, 44
rcObservation_interval 43, 44
rcReporting_interval 43, 44
rcResource_monitor 43, 44

Resource Monitor 27, 28, 29
aixos 66
client 31
client type 30, 63
extensibil i ty 67
harmld 63
harmpd 63
hmrmd 63
membership 65

Index 273

This soft copy for use by IBM employees only.

Resource Monitor (continued)
modes 30
objectives 29
pmand 63
pull mode 30
push mode 30
response 65
rmArguments 48
rmConnect_type 48, 49
rmMessage_fi le 48, 49
rmMessage_set 48, 49
rmName 48, 49
rmPath 48, 49
rmPTX_asnno 48
rmPTX_description 48, 49
rmPTX_prefix 48, 49
rvPTX_asnno 49
server 31
server type 30, 63

Resource Monitor API
Resource Variable 30, 31, 67, 68, 144, 149, 150, 151,

160, 161, 162, 165, 166, 171
attr ibutes 38
Counter 18, 31
definit ion 48
dynamically instantiated 165
EM_Resource_Variable 33
IBM.PSSP.aixos.CPU 73, 161
IBM.PSSP.aixos.FS 151
IBM.PSSP.pm 80
IBM.PSSP.pm.User_state [1-16] 77
IBM.PSSP.pmanrmd 80
IBM.PSSP.Prog.pcount 162
IBM.PSSP.Prog.xpcount 162
IBM.PSSP.SP_HW.Node.keyModeSwitch 208
Instance Vector 44
messages 38, 67
observation interval 43
pcount 162, 166, 245
predicates 61
Quantity 18, 31, 67
report ing interval 43
rvClass 39, 41
rvData_type 39, 41
rvDescript ion 39, 40
rvDynamic_instance 40, 41
rvEvent_description 40
rvIndex_vector 40
rvInit ial_value 39
rvInit ial_value. 41
rvLocator 40
rvName 39, 40
rvPredicate 40
rvPRX_max 41
rvPTX_description 39, 41
rvPTX_min 41
rvPTX_name 39, 41
rvValue_type 39, 40

Resource Variable (continued)
SBS 62
State 18, 31
types 31
user-configurable 72, 77
vendor name 39
xpcount 162, 166, 245, 246, 249

Resource Variable definition 48, 51
Resource Variable type

float 33
long 33
Structured Byte String 33

resources
See system resources

response time
example of resource monitor to measure 226
monitoring 225
responding to performance problems 225
setting goals 225
ways to improve example 233

RFCs 253
RMAPI 22, 27, 67

See also Resource Monitor API
rmapi_smp.cat 42
rmapi_smp.msg 42
routing maps 4
runcat 42

S
SBS

See Structured Byte String
SDR 143, 146, 152, 156
SDR classes

EM_Condition 46, 143, 169
EM_Instance_Vector 46
EM_Resource_Class 39, 46, 52, 161
EM_Resource_Monitor 41, 52
EM_Resource_Variable 43, 46, 52, 149
EM_Structured_Byte_String 46
pmandConfig 86, 91

SDR Syspar 51
SDR_test 156
SDRArchive 156
SDRCreateObjects 40, 43, 49, 52
SDRDeleteObjects 92, 156
SDRGetObjects 42, 45, 58, 73, 92, 143, 149, 150, 153,

156, 161
SDRListClasses 156
SDRListFiles 156
SDRListObjects 46
SDRRetrieveFile 156
SDRWhoHasLock 156
sendmail 165
server monitor 94
SEXECED process flag 163
shared memory 35, 36, 38
shared memory segment 7

274 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

signal handler for SIGPIPE 102
SIGPIPE handler 102
Simple Network Management Protocol

agent 175
client 175
manager 175
server 175
snmp.log 203
snmpget command 194
snmpinfo command 194

singleton 5
SMUX

See SNMP Multiplexor
SNMP 173, 175

See also Simple Network Management Protocol
SNMP Agent (sp_configd)

community name 179
configure 184
overview 173
snmp_trap_gen 197
sp_configd.log 201
subagent 176

SNMP Multiplexor
peers 179
ports 179
understanding 176

SNMP trap 72, 84, 146, 161, 174, 179
SNMP trap 10001 78
SNMP trap 10003 212
SNMP trap 1006 160
SNMP Traps 146
snmp.log 203
snmpget 194
snmpinfo 194
SP monitoring

monitoring a daemon 165
monitoring CPU usage 160
monitoring fi le system size 148
monitoring memory usage 140
monitoring the health of your system 167
monitoring user response time 225
resource monitors for response times 225

SP Perspectives
See Perspectives

SP Perspectives GUI
See Perspectives

sp_configd 176, 197, 201
SP_ports 22
spevent 138
sphardware 138
SPMI 36

See also System Performance Measurement
Interface

spmon 218
staging area 51
startsrc 184
State 18

stopsrc 185
Structured Byte String

byte string 34
character string 34
float 34
long 34
serial number 34

su 78
subscriber 14
Summary of RMAPI example program 132
switch_response 65
SwitchGroupie 15
switchNotReachable 167
switchResponds 167
sysctl.pman.acl 83
Syspar_ports 9, 22
Syspars pane 141
System Membership Groups 4
system partit ion 67
System Performance Measurement Interface 36, 39,

48
system resources 28, 29, 30

T
tmpFull 168
topology 3, 4
Topology Services 3

/var /ha /soc /hats directory 7
algori thm 6
connection with Group Services 7
crown prince 5
daemon 7
dependency 5
domain 5
downstream_neighbor 6
group leader 5
hatsd 7, 9
heartbeats 3
NMG 5
Node Membership 4
Node Membership Group 5
Reliable Messaging 4
routing maps 4
shared memory segment 7
singleton 5, 6
System Membership Groups 4
topology 3, 4
Topology Manager 3
UNIX Domain Sockets 7
upstream_neighbor 6

U
UDS

See Unix Domain Sockets
Unix Domain Sockets 7

used by Topology Services 7

Index 275

This soft copy for use by IBM employees only.

upstream_neighbor 6
user response time

See response time
users

setting performance goals for 225
user response time 225

util.c 98
util.h 98

V
varFullEvent 146
variable value 168
voting protocol 15
VSD 137
VSM 137

X
xmpeek 37
xpcount 165

276 RS/6000 SP Monitoring: Keeping It Alive

This soft copy for use by IBM employees only.

ITSO Redbook Evaluation

RS/6000 SP Monitoring: Keeping It Alive
SG24-4873-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redeval@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Sat isfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 277

IBML

This soft copy for use by IBM employees only.

Printed in U.S.A.

SG24-4873-00

