IBM TotalStorage 3494 Tape Library: A Practical Guide to Tape Drives and Tape Automation

Learn about the IBM System Storage TS1120 Tape Controller

Implement the IBM System Storage TS1120 Tape Drive

Protect your tape data with Tape Encryption
Note: Before using this information and the product it supports, read the information in “Notices” on page xi.

Seventh Edition (April 2007)

This edition applies to the versions of IBM Tape Drives and Tape Libraries that are current at the time of publishing.
Contents

Notices
Notices ... xi

Trademarks
Trademarks .. xii

Preface
Preface .. xiii

- The team that wrote this IBM Redbooks publication ... xiii
- Become a published author ... xiv
- Comments welcome .. xv

Summary of changes
Summary of changes .. xvii

- April 2007, Seventh Edition ... xvii

Chapter 1. Introduction to IBM tape solutions
Chapter 1. Introduction to IBM tape solutions .. 1

- 1.1 IBM TotalStorage 3592-J1A Tape Drive ... 2
- 1.2 IBM System Storage TS1120 Tape Drive ... 3
- 1.3 IBM TotalStorage Enterprise Tape Controller ... 4
- 1.4 IBM System Storage TS1120 Model C06 Controller ... 4
- 1.5 IBM System Storage 3952 Tape Frame Model F05 .. 5
- 1.6 IBM TotalStorage Enterprise Tape Library ... 6
- 1.7 IBM Virtual Tape Server .. 7
 - 1.7.1 VTS Models ... 8
 - 1.7.2 Virtual Tape Server development ... 8
- 1.8 IBM TotalStorage Peer-to-Peer VTS .. 9
 - 1.8.1 PtP terminology ... 10
 - 1.8.2 Modes of operation .. 11
 - 1.8.3 PtP Selective Dual Copy ... 12
 - 1.8.4 Upgrading to a PtP VTS .. 13
 - 1.8.5 Summary .. 14
- 1.9 Logical components .. 14

Chapter 2. Tape drives and controllers
Chapter 2. Tape drives and controllers ... 17

- 2.1 IBM System Storage Tape Drive 3592-J1A ... 18
 - 2.1.1 Technology enhancements .. 19
 - 2.1.2 Reliability and availability ... 20
 - 2.1.3 Host attachment and support .. 20
 - 2.1.4 IBM 3592 feature codes .. 21
 - 2.1.5 Recording format ... 22
 - 2.1.6 Servo tracks ... 25
 - 2.1.7 Data buffer ... 26
 - 2.1.8 Speed matching ... 26
 - 2.1.9 Cartridge memory (CM) .. 26
 - 2.1.10 High resolution tape directory ... 27
 - 2.1.11 Virtual backhitch (non-volatile caching) ... 27
 - 2.1.12 Capacity scaling ... 28
- 2.2 IBM System Storage TS1120 Model E05 Tape Drive ... 31
 - 2.2.1 Features for reliability, availability, and performance 32
 - 2.2.2 Capacity scaling ... 35
- 2.3 3592 cartridges and media ... 36
 - 2.3.1 Ordering Media ... 38
- 2.4 3592 WORM functionality ... 41
Chapter 3. IBM TotalStorage Enterprise Automated Tape Library 83
 3.1 IBM 3494 Library Manager ... 85
 3.1.1 User interfaces ... 85
 3.1.2 Databases .. 93
 3.1.3 Volume categories ... 93
 3.1.4 Library Manager scratch selection .. 94
 3.2 IBM 3494 basic tape library frames and models ... 96
 3.2.1 Common IBM 3494 components ... 97
 3.2.2 Model L22 Tape Library base frame .. 101
 3.2.3 Model Dxx drive unit frames ... 108
 3.3 VTS frames .. 109
 3.3.1 Virtual Tape Server frame ... 110
 3.3.2 Model CX1 Virtual Tape Frame ... 113
 3.4 Model HA1 High Availability Frames .. 113
 3.4.1 Model HA1 Library Frames ... 114
 3.4.2 Model HA1 components ... 115
 3.4.3 Failover scenarios .. 117
 3.4.4 Dual Active Accessors .. 118
 3.5 Tape library planning .. 118
 3.5.1 Tape library frames and placement ... 118
 3.5.2 Frame capacities ... 120
 3.5.3 Performance planning .. 121
 3.5.4 Installation planning .. 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A. Tape drives in silo compatible frames</td>
<td>419</td>
</tr>
<tr>
<td>Why use IBM tape drives in a StorageTek Silo</td>
<td>420</td>
</tr>
<tr>
<td>Overview of a StorageTek solution</td>
<td>420</td>
</tr>
<tr>
<td>Library storage module and library control unit</td>
<td>421</td>
</tr>
<tr>
<td>Library management unit</td>
<td>421</td>
</tr>
<tr>
<td>Software components</td>
<td>421</td>
</tr>
<tr>
<td>Automated cartridge system library software (ACSLs)</td>
<td>422</td>
</tr>
<tr>
<td>Hardware and software requirements</td>
<td>422</td>
</tr>
<tr>
<td>IBM TotalStorage Silo Compatible Tape Frame 3592 Model C20</td>
<td>423</td>
</tr>
<tr>
<td>IBM TotalStorage Silo Compatible Tape Drive Frame 3592 Model C20</td>
<td>423</td>
</tr>
<tr>
<td>Silo compatible components</td>
<td>424</td>
</tr>
<tr>
<td>C20 ACS wall panel requirements</td>
<td>424</td>
</tr>
<tr>
<td>ACS media coexistence</td>
<td>426</td>
</tr>
<tr>
<td>Operating environments</td>
<td>427</td>
</tr>
<tr>
<td>C20 Feature code definitions</td>
<td>427</td>
</tr>
<tr>
<td>Appendix B. Monitoring and reporting</td>
<td>443</td>
</tr>
<tr>
<td>Monitoring and reporting tools</td>
<td>444</td>
</tr>
<tr>
<td>General considerations about monitoring and reporting</td>
<td>444</td>
</tr>
<tr>
<td>Volume mount analyzer (VMA) reporting for tape utilization</td>
<td>444</td>
</tr>
<tr>
<td>Tape tools</td>
<td>447</td>
</tr>
<tr>
<td>Different monitoring and reporting scenarios</td>
<td>452</td>
</tr>
<tr>
<td>Problem determination scenarios</td>
<td>453</td>
</tr>
<tr>
<td>Native mounts are not handled in an adequate time</td>
<td>453</td>
</tr>
<tr>
<td>VTS logical scratch mounts are not handled in an adequate time</td>
<td>453</td>
</tr>
<tr>
<td>Write jobs are not processing adequately</td>
<td>454</td>
</tr>
<tr>
<td>VTS recalls are not fast enough</td>
<td>454</td>
</tr>
<tr>
<td>Ejecting cartridges takes too long</td>
<td>455</td>
</tr>
<tr>
<td>Appendix C. Library Manager volume categories</td>
<td>457</td>
</tr>
<tr>
<td>Appendix D. Basic tape library environment</td>
<td>467</td>
</tr>
<tr>
<td>Implementing BTLS</td>
<td>468</td>
</tr>
<tr>
<td>Control datasets</td>
<td>469</td>
</tr>
<tr>
<td>Installation tasks</td>
<td>470</td>
</tr>
<tr>
<td>Installation exits</td>
<td>477</td>
</tr>
<tr>
<td>Tape management system considerations</td>
<td>478</td>
</tr>
<tr>
<td>JES3 support for BTLS</td>
<td>478</td>
</tr>
<tr>
<td>BTLS Library Manager categories</td>
<td>479</td>
</tr>
<tr>
<td>Testing to verify the installation</td>
<td>480</td>
</tr>
<tr>
<td>Software customization</td>
<td>480</td>
</tr>
<tr>
<td>Backup and synchronization</td>
<td>481</td>
</tr>
<tr>
<td>DFSMShsm and BTLS</td>
<td>481</td>
</tr>
<tr>
<td>Controlling and operating considerations</td>
<td>482</td>
</tr>
<tr>
<td>Return to scratch processing</td>
<td>482</td>
</tr>
<tr>
<td>Cartridge insert processing</td>
<td>483</td>
</tr>
<tr>
<td>Cartridge eject processing</td>
<td>484</td>
</tr>
<tr>
<td>Media selection</td>
<td>485</td>
</tr>
<tr>
<td>Appendix E. JES3 examples and information</td>
<td>487</td>
</tr>
<tr>
<td>First configuration example</td>
<td>488</td>
</tr>
<tr>
<td>Library device group (LDG) definitions needed for example A</td>
<td>488</td>
</tr>
</tbody>
</table>
Device statement for example A .. 489
Setname statements for example A ... 489
High watermark setup name statements for example A 490
Second configuration example .. 490
LDG definitions needed for example B ... 491
Device statement needed for example B 492
SETNAME statements needed for example B 493
High watermark setup name statements for example B 493
Third configuration example ... 493
Library device group (LDG) definitions needed for example C 494
Device statement for example C .. 495
Setname statements for example C ... 495
High watermark setup name statements for example C 495
Processing changes ... 496
JES3/DFSMS processing ... 497
Selecting UNITNAMEs ... 498
New or modified datasets ... 498
Old datasets .. 498
DFSMS catalog processing ... 498
DFSMS VOLREF processing ... 498
Fetch messages .. 499
JES3 allocation and mounting ... 499
Appendix F. REXX utility to recover TCDB 501
Related publications ... 505
IBM Redbooks publications .. 505
Other publications ... 506
Online resources ... 507
How to get IBM Redbooks publications 508
Help from IBM .. 508
Index ... 509
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

<table>
<thead>
<tr>
<th>Redbooks (logo)®</th>
<th>ES/3090™</th>
<th>RACF®</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSeries™</td>
<td>ES/9000®</td>
<td>RAMAC®</td>
</tr>
<tr>
<td>i5/OS®</td>
<td>ESCON®</td>
<td>REXX™</td>
</tr>
<tr>
<td>pSeries®</td>
<td>FICON®</td>
<td>RMF™</td>
</tr>
<tr>
<td>xSeries®</td>
<td>Geographically Dispersed Parallel Sysplex™</td>
<td>RS/6000®</td>
</tr>
<tr>
<td>z/OS®</td>
<td>GDPS®</td>
<td>S/390®</td>
</tr>
<tr>
<td>z/VMS®</td>
<td>IBM®</td>
<td>System i™</td>
</tr>
<tr>
<td>z/VM®</td>
<td>IMS™</td>
<td>System p™</td>
</tr>
<tr>
<td>zSeries®</td>
<td>Lotus®</td>
<td>System x™</td>
</tr>
<tr>
<td>AIX®</td>
<td>Magstar®</td>
<td>System z™</td>
</tr>
<tr>
<td>AS/400®</td>
<td>MVS™</td>
<td>System Storage™</td>
</tr>
<tr>
<td>CUA®</td>
<td>MVS/ESA™</td>
<td>System/370™</td>
</tr>
<tr>
<td>DB2®</td>
<td>MVS/SP™</td>
<td>System/390®</td>
</tr>
<tr>
<td>DFSMS™</td>
<td>MVS/XA™</td>
<td>SLC™</td>
</tr>
<tr>
<td>DFSMS/MVS™</td>
<td>Operating System/2®</td>
<td>Tivoli®</td>
</tr>
<tr>
<td>DFSMSdss™</td>
<td>Operating System/400®</td>
<td>TotalStorage®</td>
</tr>
<tr>
<td>DFSMS/hsm™</td>
<td>OS/2®</td>
<td>Virtualization Engine™</td>
</tr>
<tr>
<td>DFSMS/SM™</td>
<td>OS/390®</td>
<td>VM/ESA®</td>
</tr>
<tr>
<td>DFSMS/MTM</td>
<td>OS/400®</td>
<td>VSE/ESA™</td>
</tr>
<tr>
<td>DFSORT™</td>
<td>Parallel Sysplex®</td>
<td>VTAM®</td>
</tr>
<tr>
<td>Enterprise Storage Server®</td>
<td>Redbooks®</td>
<td>1-2-3®</td>
</tr>
</tbody>
</table>

The following terms are trademarks of other companies:

Reader, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Java, JVM, Nearline, Powderhorn, RSM, Solaris, StorageTek, SLC, Ultra, Virtual Storage Manager, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Internet Explorer, Microsoft, Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

i386, Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
Preface

This IBM® Redbooks® publication is the seventh edition of the best selling IBM Magstar® Tape Products Family: A Practical Guide, which was first published in 1996. This book is the indispensable companion for a successful implementation of IBM TotalStorage® Enterprise Tape drives IBM 3590 and IBM 3592, and the IBM TotalStorage Enterprise Automated Tape Library 3494 in your environment. This book explains how to plan for and how to install the tape products and library in different enterprise platforms. It considers day-to-day operations and integration with other products and applications. It also provides information about data migration and operation considerations. This document was written for storage systems technical professionals, who implement IBM tape drives and libraries.

The present version of the book has been updated with the IBM System Storage™ TS1120 Tape Drive (3592-E05) and Controller (3592 Model C06), including their support for Tape Encryption and their support of the new 3599 tape media cartridge models. The new 3599 tape media cartridge models provide an uncompressed capacity of 700 GB for both Read/Write (R/W) and Write Once Read Many (WORM) cartridges.

The team that wrote this IBM Redbooks publication

This IBM Redbooks publication was produced by a team of specialists from around the world working at the International Technical Support Organization, San Jose Center.

Babette Haeusser is an IBM Certified IT Specialist at the International Technical Support Organization, San Jose Center. She writes extensively and teaches IBM classes worldwide on all areas of Enterprise Tape. Babette joined IBM in 1973 as an application programmer. In 1987, she became an MVS™ Systems Engineer and specialized on IBM Storage Hardware and Software, which she has supported in various job roles since then. Before joining the ITSO in early 2005, Babette worked in the Advanced Technical Sales Support EMEA. She led a team of specialists for Enterprise Storage; Babette focused on Enterprise Tape, including tape libraries and Virtual Tape Servers.

Katja Denefleh is a mainframe specialist in Germany. She has fourteen years of experience as a z/OS® systems programmer in several MVS environments. Her areas of expertise include mainframe infrastructure, disaster recovery concepts, and all aspects of Enterprise Tape Storage.

Pierre Hébert is an IBM Certified IT Specialist in Montreal, Canada. He has over 25 years of IT experience. His areas of expertise are high-end Storage Products, and he specializes in VTS and Peer-to-Peer VTS. Pierre teaches T3 classes for IBM. He participated in ESP and proof of concept projects in Canada and China. Before joining IBM in 1997, Pierre was an MVS System Programmer.

Yotta Koutsoupias is a Storage Systems Specialist with IBM Global Technology Services in Australia. She has 15 years of experience in the IT field and has been with IBM for seven years. Her area of expertise is mainframe storage, primarily DFSMS™ software and IBM Enterprise Tape.

Lynda Kunz is an I/T Architect specializing in mainframe tape technical strategy and architecture for Integrated Technology Delivery, Server Systems Operations in the United States. After 20 years as a Software Engineer designing for VTAM®, AOC/MVS, and LE.
Lynda joined the Integrated Technology Delivery, Server Systems Operations organization and began designing high-end tape solutions.

Paul Rizio is a Storage Systems Specialist in Australia with the IBM System and Technology Group. He has over 20 years of experience in the IT field. His area of expertise is storage, mainly based on the System z™ platform. He has experience in large tape and DASD migrations, with sound skills in the VTS and Peer-to-Peer environments, because Paul is a past author in this arena. His current job role requires him to provide technical solutions in tape and disk for high-end users, mainly in the financial sector.

Katja, Paul, Yotta, Babette, Pierre, and Lynda

Thanks to the following people for their contributions to this project:

Emma Jacobs, Leslie Parham, and Sangam Racherla
International Technical Support Organization, San Jose

Dave Accordino, Jennifer Bappert, Tom Bish, Erika Dawson, Jim Fisher, James Karp, Collette Morton, and Jeff Ziehm
IBM Tucson

Nick Hartl, JD Metzger, and Ron Oreshan
IBM Americas Group

Antoinette Kaschner, Horst Raab, and Patrick Wolf
IBM Germany

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbooks publication dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You will team with IBM technical professionals, IBM Business Partners, and/or clients.
Your efforts will help increase product acceptance and client satisfaction. As a bonus, you will develop a network of contacts in IBM development labs, and increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and apply online at:
ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our IBM Redbooks publications to be as helpful as possible. Send us your comments about this or other IBM Redbooks publications in one of the following ways:

► Use the online Contact us review redbook form found at:
 ibm.com/redbooks

► Send your comments in an e-mail to:
 redbook@us.ibm.com

► Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400
Summary of changes

This section describes the technical changes made in this edition of the book and in previous editions. This edition might also include minor corrections and editorial changes that are not identified.

Summary of Changes
for SG24-4632-06
for IBM TotalStorage 3494 Tape Library: A Practical Guide to Tape Drives and Tape Automation
as created or updated on April 19, 2007.

April 2007, Seventh Edition

This revision reflects the addition, deletion, or modification of new and changed information described below.

New information
- IBM System Storage TS1120 Tape Drive
- IBM System Storage TS1120 Tape Controller
- IBM System Storage 3952 Tape Frame
- Tape Encryption
- New tape media

Changed information
- Added information about products withdrawn from marketing
- Additional features and enhancements added to existing products
Chapter 1. Introduction to IBM tape solutions

For more than fifty years, tape has persisted as the media of choice when clients require inexpensive data storage. Significant advances have been made in nearly every aspect of the recording process: heads, media, channel electronics, and recording platforms. Historically, tape has had to bear the burden of legacy products; it had to remain compatible with previous generations. For example, nine-track compatibility restricted density advances solely to linear density. It took an order of magnitude of improvement in density as well as improvements in reliability to make the 18-track IBM 3480 drive a success. It took a similar order of magnitude of improvement to introduce the current tape products, which now write at 8 to 16 tracks at a time and are able to store in excess of 2 TB of compressed data per tape cartridge. Tape is an integral part of the storage hierarchy with many clients storing as much as fifteen times more data on tape than on disk. This chapter introduces the latest products of the IBM System Storage and IBM TotalStorage Enterprise Tape family.
1.1 IBM TotalStorage 3592-J1A Tape Drive

The IBM TotalStorage Enterprise Tape Drive 3592 is the first generation and the base product for a 3592 line of tape drives. It laid the foundation for high capacity and performance, and high reliability for storing your data (see Figure 1-1).

Here are several key features of the 3592 Tape Drive, which make it a true enterprise tape drive in both performance and reliability:

- 40 MB/s native streaming data rate
- Media designed for fast access and capacity
- Dual coat, advanced particle media
- Virtual back hitch or non-volatile caching: Optimum adaptive formats and algorithms designed for improved start/stop write synchronize performance
- High resolution tape directory support to help improve file search times
- 128 MB data buffer
- Streaming Lossless Data Compression (SLDC) algorithm
- Dual active FC-2 ports to support enterprise environments, which use dual paths for failover or load balancing
- High performance and robust dual microprocessor architecture. One microprocessor operates the host attachment interface (running what is essentially proven 3590 host attach microcode), while the other microprocessor focuses strictly on writing data to, and reading data from, tape. Each microprocessor is designed to reset the other to act as a fail-safe.
- A new cartridge design featuring 3590-style geometry to support both the existing storage cells and grippers of the 3494 and StorageTek™ libraries. The cartridge shell is thicker, and the cartridge assembly is strengthened between top and bottom. Together, these features help create a substantially stronger and more durable cartridge.
- Enhanced scaling and segmentation
- Write Once Read Many (WORM) functionality when operating on one of the two WORM cartridge types
1.2 IBM System Storage TS1120 Tape Drive

The IBM System Storage TS1120 Tape Drive Model E05 offers a design that is focused on high capacity and performance, and high reliability for storing your mission critical data. It is the second generation of the 3592 tape drive and shown in Figure 1-2.

Figure 1-2 The IBM System Storage TS1120 Tape Drive Model E05

Whether configured as a standalone drive or part of an automated tape library, the TS1120 offers both fast access to data and high capacity in a single drive, helping to reduce the complexity of your tape infrastructure. The TS1120 has the same form factor as its predecessor and is machine type 3592 model E05. The TS1120 is designed to meet the growing needs of both new and existing IBM tape clients across a wide range of environments. In addition to the functions and features of the 3592-J1A Tape Drive, the highlights of the 3592-E05 include:

- Higher performance, which can help reduce the number of tape drives required. The TS1120 provides a native data rate of up to 100 MBps.
- Larger native capacity compared to the 3592-J1A to help you reduce the number of cartridges required and floor space needs.
- Same form factor as the 3592-J1A, which allows you to install it in exactly the same library frames as the 3592 Model J1A: You can intermix both generation 3592-J1A and TS1120 tape drives within the same tape library frame.
- Additional performance and access improvements over the 3592-J1A, which include:
 - Dual-ported 4 Gbps native switched Fibre Channel interfaces
 - Six speed matching levels compared to four levels offered in the IBM 3592-J1A
 - New dual-stage 16-head actuator to support higher track density
 - Improved physical load/ready time of over 33% that improves time to data by up to five seconds
 - Read after write verification is performed during write operations
 - Large internal data buffer of 512 MB compared to 128 MB of the Model J1A
 - Non-volatile caching that reduces the impact of backhitching, which results in a 100% improvement in virtual backhitch performance
 - Improved error correction capabilities (ECC)
 - Offboard data string searching for searching the data content at maximum data rate
 - Enhanced logic to report Logical End-of-Tape (LEOT)
 - Increased native search speed of 10 m/second
 - Encryption capabilities designed to work with the new Encryption Key Manager component
1.3 IBM TotalStorage Enterprise Tape Controller

The IBM TotalStorage Enterprise Tape Controller 3592 Model J70 in Figure 1-3 is designed to offer Enterprise Systems Connection (ESCON®) and Fibre Channel Connection (FICON®) attachment of either 3592 or 3590 Tape Drives in a 3494 Tape Library, StorageTek ACS, and standalone environment.

![IBM TotalStorage Enterprise Tape Controller 3592 Model J70](image)

Figure 1-3 IBM TotalStorage Enterprise Tape Controller 3592 Model J70

The Model J70 is designed to support the performance and function of the 3592 Tape Drive, including the high capacity 700 GB, 500 GB, 300 GB, 60 GB fast access, and WORM tape formats.

In a z/OS or OS/390® environment, an individual 3592 tape cartridge can be scaled to fast-access format (20% of the total media capacity). The effect of capacity scaling to 20% of the total media capacity is to reduce the average locate time to a random record (from load point) to less than 30% of the normal locate time. You can share tape drives among FICON and ESCON hosts, which allows effective drive utilization and helps to reduce hardware switching and fabric infrastructure requirements.

The J70 controller is built from IBM components, including the IBM pSeries®, AIX® operating system, and PCI-X bus architecture. Redundant, hot-swappable power supplies and cooling components with automatic failover help to provide High Availability for the controller.

Support for encryption of data on a tape cartridge with TS1120 Tape Drives is available with microcode firmware 1.19.5.xx.

Note: IBM TotalStorage Enterprise Tape Controller 3592 Model J70 was withdrawn from marketing, effective September 29, 2006.

1.4 IBM System Storage TS1120 Model C06 Controller

The IBM System Storage TS1120 Model C06 Controller in Figure 1-4 is the next generation tape controller, replacing the 3592-J70 Controller.
The TS1120 Model C06 Controller is designed to exploit the performance and function of the TS1120 and 3592 Tape Drives, including the high capacity 700 GB, 500 GB, 300 GB, and 60 GB fast access, and WORM tape formats. It has a higher throughput than its predecessor, the 3592-J70. It supports either one to four dual-ported 4 Gbps FICON channel adapters, two to eight ESCON channel adaptors for attachment to 3592-J1A or TS1120 Tape Drives, or both. The IBM System Storage TS1120 Model C06 Tape Controller supports ESCON/FICON path group mixing, so there is no need to determine ESCON/FICON mix, thus reducing director port requirements. You can attach a mixture of up to sixteen TS1120 and 3592-J1A tape drives using a supported SAN Fabric switch. You can identify supported switches at: http://www.ibm.com/support/techdocs/atsmastr.nsf/webindex/FQ115356

The IBM System Storage TS1120 Model C06 Tape Controller supports tape drives installed in an IBM 3494 tape library but requires an external IBM System Storage 3952 Tape Frame Model F05, refer to 1.5, “IBM System Storage 3952 Tape Frame Model F05” on page 5 for further information. The TS1120 Model C06 Tape Controller offers the same availability characteristics as the 3592 J70, such as:

- Redundant power supplies
- Redundant cooling
- Mirrored drives
- Non-disruptive drive code updates and non-disruptive drive installation
- Attachment to the TS3000 System Console, which can provide enhanced remote support to help improve availability

New enhancements include:

- Support for encryption of data on a tape cartridge with TS1120 Tape Drives
- Up to 1.7 times the throughput of the 3592 Model J70 with 4-Gbps FICON attachment using 3592-E05 Tape drives
- Attachment of TS1120 Tape Drive 3592 Model E05 or the 3592 Model J1A Tape Drive

Note that the TS1120 Model C06 Tape Controller does not support attachment of 3590 Tape Drives.

1.5 IBM System Storage 3952 Tape Frame Model F05

The 3952 Tape Frame Model F05 was introduced as a multipurpose system supporting components of various tape offerings, including the TS1120 Model C06 Tape Controller. It provides 36U of usable space to contain components. The 3952 Tape Frame includes an integrated power supply and optional dual power. It also includes a stability kit, which is designed to prevent the unit from falling over when component drawers are pulled out for servicing.
A 3952 Tape Frame can support up to three TS1120 Model C06 Tape Controllers; however, you cannot install more than two 3592 Model J70 Controllers in a single frame. This frame is not linear with the 3494 library frames, which allows you flexibility in determining where to place this frame on your raised floor.

The frame is required in an IBM 3494 Tape Library, because the 3592 Model J70 Controller was initially modified to allow service access in an IBM 3494 Tape Library Dxx frame. The TS1120 Model C06 Tape Controller is an unmodified pSeries and cannot be serviced in an IBM 3494 Tape Library Dxx frame.

1.6 IBM TotalStorage Enterprise Tape Library

The IBM TotalStorage Enterprise 3494 Tape Library consists of individual frames that you can configure to help address a variety of client requirements. This flexible design enables organizations to install a solution that helps to address current capacity requirements and to add capacity when required. Configurations include a library base frame, drive frames, storage frames, and up to two IBM TotalStorage Virtual Tape Servers. See Figure 1-5.

![Figure 1-5 IBM TotalStorage Enterprise Tape Library 3494](image)

A High-Availability model and a dual active access feature are available. The modular linear approach to tape automation is the perfect vehicle for the latest technology in storage. Integration of the IBM System Storage TS1120 Tape Drive and media into the library provides scalability of over 10 petabytes of information storage. The 3494 library supports multiple generations of tape drives, tape controllers, and Virtual Tape Servers. The versatility of its design supports the increasing demands of today's storage growth. Figure 1-5 illustrates the modular flexibility of the library. In addition, you can share a tape library across multiple platforms, such as the IBM zSeries®, IBM pSeries, IBM iSeries™, and IBM xSeries® servers, as well as various non-IBM platforms. The IBM 3494 Tape Library has a small footprint, starting at 2.5 feet wide by 5 feet deep. This size allows the 3494 library to fit in many
environments and makes it suitable for vaults. The 3494 library can also provide a significant savings in floor space.

1.7 IBM Virtual Tape Server

The IBM System Storage Virtual Tape Server (VTS) is an enterprise tape solution that is designed to enhance performance and provide the capacity required for today's backup requirements. The VTS shown in Figure 1-6 is a hardware-based solution that addresses not only tape cartridge utilization, but also tape device utilization and hence overall tape subsystem costs. The VTS is transparent to the host software, which eases the migration to this new platform.

![Figure 1-6 IBM 3494 Virtual Tape Server](image)

The advent of high capacity tape drives, whose compressed capacity can be over 2 TB of data, creates the need to stack data on a single tape cartridge to fully utilize the tape media. The IBM System Storage Virtual Tape Server (VTS) is an effective way to store small files on tape media.

The VTS initially creates a virtual volume in a buffer known as the **Tape Volume Cache (TVC)**, a RAID-5 disk array. If the host needs to reference these virtual volumes again, they are accessed in most instances from the TVC, helping to eliminate many of the physical delays associated with tape I/O, and improving the performance of the tape process. The virtual volume is also written to an attached IBM System Storage TS1120 Tape Drive as a logical volume. A copy of the virtual volume remains in the cache, which can provide fast access to critical data. The VTS stacks files on tape media, thus effectively utilizing your tape media.

The use of a VTS to store data on tape can help reduce batch processing time and the total cost of ownership and management.

A VTS Peer-to-Peer (PtP) configuration can provide redundancy for greater disaster tolerance with features, such as remote dual copy for use with Geographically Dispersed Parallel Sysplex™ (GDPS®), disaster backup and recovery, and remote tape vault. Advanced Policy Management allows selective dual copy for noncritical data. You can install the Virtual Tape Server and the new configurations at extended distances. These enhancements address planned outages, such as maintenance and upgrades, as well as
unplanned outages by eliminating single points of failure. This data availability improvement further enhances the Virtual Tape Server as a Business Continuance solution.

The VTS design is based on the IBM Storage Enterprise Architecture (SEASCAPE) concept. Integrating built-in blocks of other product lines into the VTS exploits the rapid evolution of processors, disk, adapters, and tape. The result is an outstanding increase in performance, capacity, and functionality since its first availability.

1.7.1 VTS Models

Since the introduction of the first IBM Model B16 Virtual Tape Server, IBM has introduced three additional models:

- Model B18 Virtual Tape Server
- Model B10 Virtual Tape Server
- Model B20 Virtual Tape Server

Note: Effective 30 June 2006, IBM withdrew from marketing all remaining features of the 3494 Virtual Tape Server Model B18 and the 3494 Model B18 to B20 miscellaneous equipment specification (MES) upgrade.

Effective 31 December 2006, IBM withdrew from marketing the 3494 Models B10 and B20 and all remaining MES upgrades for the 3494 Model B10 and Model B20.

IBM intends to provide an upgrade conversion of IBM TotalStorage 3494 Model B20s to a TS7740 server. Upgraded Model B20s can only operate as a single server TS7700 and cannot be installed in a VTS Ptp configuration, but they can participate in a TS7700 Multi Cluster Grid configuration.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these Statements of General Direction is at the relying party’s sole risk and will not create liability or obligation to IBM.

In addition, a Ptp VTS configuration is available with the B10 and B20 models. By enhancing data backup and recovery capabilities, the Ptp VTS configuration provides an outstanding business continuity solution for tape clients. Additionally, the Ptp VTS configuration is designed to enhance data availability and to eliminate single points of failure. For an overview of the Ptp VTS, refer to *IBM TotalStorage Virtual Tape Server, SG24-2229.*

The Model B10 VTS and Model B20 VTS are based on the pSeries 660 architecture, which features more powerful processors and expanded input/output (I/O) capability. The Model B10 VTS is configured as a cost-effective solution for modest throughput requirements. Meanwhile, the Model B20 VTS establishes higher standards for throughput performance and for the number of managed virtual devices.

1.7.2 Virtual Tape Server development

The Model B20 VTS has a host data throughput bandwidth up to 40 times greater than the bandwidth of the original Model B16 VTS in 1997. Additional connectivity options are available with the introduction of FICON interfaces for the VTS Models B10 and B20.

The VTS product line has been continuously enhanced since it first became available. Performance features include:

- SCSI host attachment feature
- Import/export feature
- Extended performance Enterprise Systems Connection (ESCON) channels
1.8 IBM TotalStorage Peer-to-Peer VTS

The IBM TotalStorage PtP VTS is designed to eliminate all single points of failure and provide higher performance than the standalone IBM TotalStorage Enterprise Virtual Tape Server. IBM TotalStorage Peer-to-Peer VTS couples two IBM TotalStorage Enterprise VTSs into a single image with additional components and features. The two VTSs can be at the same site or geographically separated for disaster tolerance.

You can use the IBM Model B10 VTS or Model B20 VTS in PtP VTS configurations. In addition, with feature code (FC) FC4001-FC4004 (Advanced Policy Management), you can further tailor the PtP VTS configuration to suit individual site requirements. The PtP VTS gains control over either immediate or deferred logical volume copy modes. You can eliminate media errors as a single point of failure within each VTS with the ability to create dual copies of logical volumes on separate physical media.

A PtP VTS uses robust distributed servers, Virtual Tape Controllers (VTCs), to interconnect two Virtual Tape Servers (Model B10 or B20) using ESCON or FICON attachments. The VTC can be a Model AX0 housed in a Virtual Tape Frame 3494 Model CX0 or a feature on the Virtual Tape Frame 3494 Model CX1.

The combined libraries require the addition of one to four 3494 CX0 or CX1 frames, which respectively contain either two or four AX0 or VTC tape controllers each. In turn, each AX0 or VTC provides a total of four ESCON or FICON channel attachments. Two are attached to the host systems, and one is attached to each of the Model Bxx VTSs in the PtP configuration. The host systems no longer attach directly to the Model Bxx VTS. See Figure 1-7.
1.8.1 PtP terminology

This section introduces basic terminology that is unique to the PtP VTS. Terms, such as Composite Library, Distributed Library, Master VTS, I/O VTS, and UI Distributed Library, refer to parts of the logical library as shown in Figure 1-8. Terms, such as Immediate Copy, Deferred Copy, and VTS I/O preferencing refer to functions within the Library Manager. We explain these terms in 1.8.2, “Modes of operation” on page 11.

The terms that refer to the logical library are:

- **Composite Library:** The Composite Library is the logical image of the PtP VTS, which is presented to the host. The host sees one logical tape library with four, eight, or sixteen tape control units, which provides a maximum of 256 logical drives (with a Model B20). The Composite Library presents the same image to the zSeries host as a single VTS presents. The Composite Library is defined to the host in a similar way to the definition of a standalone VTS. Note that the host does not have any knowledge of the Model AX0 controllers or the VTC, and you do not need to define them to the host.

- **Distributed Library:** A Distributed Library (or distributed VTS) is a physical 3494 Tape Library in the PtP VTS complex, which includes a Model Bxx VTS with installed copy features. Two Distributed Libraries are required in a PtP configuration. The host has sufficient knowledge about the Distributed Libraries to allow appropriate console message handling of messages from the Library Manager of any single Distributed Library. On the host, the Distributed Libraries are only defined to SMS. They are defined using the
existing integrated storage management facility (ISMF) panels, and have no tape devices defined. The tape devices were defined for the Composite Library.

![Composite Library diagram](image)

Figure 1-8 PtP terminology

- **Master VTS**: The master VTS is one of the Model Bxx VTSs in a PtP configuration. The designation of a master VTS is necessary to serialize access to logical volumes within the PtP VTS.

- **I/O VTS**: The I/O VTS is the Model Bxx VTS that processes the host I/O commands, such as read and write commands, for a certain virtual volume. The Model AX0 controller determines the I/O VTS during mount processing (load balancing function). Both VTSs can operate as I/O VTSs for different sets of volumes, which is determined at mount time for a logical volume. Therefore, one VTS might be the I/O VTS for one mount of a logical volume, and the other VTS can be chosen as the I/O VTS for a subsequent mount of the same volume, assuming that the volume is no longer in cache.

- **UI Distributed Library**: The user interface (UI) Distributed Library allows you to insert logical volumes into a PtP VTS. The time and date of all Model AX0 controllers is synchronized with the date and time of the Library Manager of the UI Distributed Library. The UI Distributed Library is defined at installation time. The UI Distributed Library can be either of the Distributed Libraries, but typically it is the local library.

1.8.2 Modes of operation

PtP VTS allows you to select when to create the secondary copy of a virtual volume:

- Immediately during close processing (immediate copy mode)
- Asynchronously at a later time (deferred copy mode)
You configure the immediate or deferred copy mode of operation initially during setup of the Virtual Tape Controllers. This can be changed any time afterward, but only by an IBM SSR.

Note: With the addition of the Advanced Policy Management (APM) feature, you can tailor the copy mode further for a logical volume. You can create 1 to 32 pools of stacked media and create duplicate copies of your logical volumes (to the same or different stacked media pools).

The terms that refer to the functions within the Library Manager are:

- **Immediate copy:** This creates a copy of the logical volume in the other connected Virtual Tape Server prior to completion of a rewind/unload command. This mode provides the highest level of data protection.

- **Deferred copy:** This creates a copy of the logical volume in the companion-connected Virtual Tape Server as activity permits after receiving a rewind/unload command. This mode provides protection that is superior to most available backup schemes.

- **VTS I/O preferencing:** In remote PtP VTS configurations, you might want to direct the primary copies of virtual volumes from a host at one site to the distributed VTS at the same site or to a distributed VTS at the other site.

- **Dual copy:** With Advanced Policy Management enabled, you can assign DFSMS Management Classes to your logical volumes and create a backup copy. These constructs are then passed to the VTS for action according to the constructs defined at either the Library Manager or 3494 Tape Library Specialist.

- **Volume affinity/pooling:** With Advanced Policy Management enabled, you can assign DFSMS Storage Groups and pool your logical volumes onto separate physical volumes.

1.8.3 PtP Selective Dual Copy

PtP Selective Dual Copy allows users to control which VTS is used as the I/O VTS on an individual volume basis, and whether the data written is copied or not. This function is controlled through the Management Class storage construct by setting additional options on the definition panel for Management Classes on the Library Manager (see Figure 1-9). This is an expansion of the Advanced Policy Management functions.
1.8.4 Upgrading to a PtP VTS

The B10 and B20 Virtual Tape Server Models can be part of PtP configurations. If you had a B18 VTS and you wanted to migrate to a PtP VTS configuration, you needed to upgrade to a B20 VTS before beginning the PtP component and feature upgrade. However, the MES to upgrade a B18 to B20 was withdrawn from marketing on June 30, 2006; therefore, this is no longer a valid upgrade path. It might be necessary, however, to upgrade the specific features of any existing VTSs when migrating them into a single PtP complex. Figure 1-10 shows potential upgrade paths.

See your IBM Marketing Representative for details of specific configurations. See also *IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide*, SG24-6115, for details and migration guidelines.
1.8.5 Summary

The IBM TotalStorage Peer-to-Peer VTS, an extension of the IBM TotalStorage Virtual Tape Server (Model B10 or B20), builds on a proven base configuration to provide even greater benefits for tape processing and operations. By enhancing data backup and recovery capabilities, the PtP VTS is specifically designed to enhance data availability by providing dual volume copy, remote functionality, and automatic recovery and switchover capabilities. With a design that reduces single points of failure, including the physical media where logical volumes are stored, the PtP VTS improves system reliability, availability, and data access.

For more information about IBM TotalStorage Peer-to-Peer VTS, refer to the IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide, SG24-6115.

1.9 Logical components

All IBM virtual tape solutions are integrated within a 3494 Tape Library. They appear to the host as a 3494 with their own library name, their own set of tape volumes (each VTS can have up to 500,000 standard 400 MB volumes or enhanced capacity up to 4000 MB volumes per 3494), and their own set of tape drives. The host sees 32, 64, 128, or 256 virtual 3490E drives, attached by up to:

- Sixteen Enterprise System Connection (ESCON) paths
- Eight SCSI paths that transfer data concurrently

Up to a maximum of eight FICON channels are supported on a VTS Model B20 and four on a VTS Model B10. However, you cannot intermix these channel types with SCSI.
The IBM TotalStorage Enterprise Virtual Tape Server can be shared between zSeries servers and Open Systems servers by specifying up to four additional SCSI host attachment features. Each feature provides two SCSI buses and includes data compression compatible with the Enhanced High Performance Option (EHPO). Up to 64 virtual drives can be assigned to Open Systems.

Currently, you can integrate two VTS subsystems into a 3494 sharing the maximum number of 500,000 logical volumes equally and providing up to 256 virtual drives. The VTSs can coexist effectively in the same IBM 3494 Tape Library with native tape cartridges and drives.

With access to a virtual library with up to 500,000 logical volumes and up to 256 logical drives, the host can process significantly more tape workload in parallel without the expense of actually installing 256 physical tape drives. With so many virtual tape drives, you can dedicate drives to different hosts and platforms rather than manage a complex shared environment.
Chapter 2. Tape drives and controllers

This chapter describes the IBM System Storage TS1120, IBM TotalStorage Enterprise 3592, and 3590 Tape Drives, as well as the TS1120 Tape Controller Model C06, and J70 controller, which are part of the IBM System Storage family. You can install the tape drives standalone in a rack, within an IBM Enterprise 3494 Tape Library, or in a StorageTek Silo. This chapter also includes information about the IBM 3599 Tape Media Models that are available for the 3590 Models B, E, and H Tape Drives, and the new 3599 Tape Media Models available for the 3592 Model J1A and Model E05 tape drives.

The IBM System Storage TS1120 Model C06 Tape Controller and its predecessor, the IBM TotalStorage Enterprise Tape Drive Model J70, provide new levels of performance and attachment capabilities for S/390®, zSeries, and System z. This chapter describes the drives and controller technology, the attachment options, and the configuration options.

Note: The 3592-J70 Controller was withdrawn from marketing December 1, 2006.

For information about the hardware installation of the IBM 3590 and 3592 tape drives in the IBM 3494 tape library, refer to Chapter 3, “IBM TotalStorage Enterprise Automated Tape Library” on page 83. For information about the installation of the IBM 3590 and 3592 tape drives inside a StorageTek Silo, see Appendix A, “Tape drives in silo compatible frames” on page 419.
2.1 IBM System Storage Tape Drive 3592-J1A

The 3592 Model J1A is the first offering in the new 3592-J1A tape drive family designed for enterprise applications. Introduced in 2003, it is designed to provide unprecedented levels of cartridge capacity, performance, and reliability. The 3592-J1A surpasses the capabilities of its predecessors by providing up to five times the capacity, and two and a half times the data transfer rates of the IBM 3590 series. It is capable of storing 300 GB of native capacity and a native data rate of up to 40 MB/s. The 3592-J1A tape drive represents the next leap in technology in the same way that 3590 replaced the 3490 drive family. Figure 2-1 shows an IBM System Storage Tape Drive 3592 Model J1A.

Figure 2-1 IBM System Storage Tape Drive 3592 Model J1A

The 3592 Model J1A is significantly lighter and more compact than its predecessor, the 3590. The 3592 drive and canister weigh only 5.7 kg (12.6 lb.) as compared to the 3590’s weight of 40 kg (88 lb.), and the drive itself has a smaller form factor, which allows you to place two 3592 drives in canisters in the same 3494 automation space as one 3590 drive. Figure 2-2 demonstrates the potential benefits of the smaller scale 3592 drive in comparison to the 3590.

Figure 2-2 The 3590 and 3592 drive modules
In addition, the 3592 can be integrated into the IBM Enterprise Tape Library 3494 and StorageTek 9310 Powderhorn™ Tape Library, or can reside in a standalone rack.

For its high capacity capability, the 3592 uses the IBM System Storage Tape 3599 Media, which provides a native cartridge capacity of up to 300 GB. The 3599 media models include:

- Read/Write (R/W) 300 GB data cartridge
- R/W Economy 60 GB data cartridge
- Write Once Read Many (WORM) 300 GB data cartridge
- WORM Economy 60 GB data cartridge

2.1.1 Technology enhancements

The IBM System Storage Tape Drive 3592 offers a design focused on high capacity, excellent performance, and enhanced reliability for storing mission critical data. The key features of the 3592 include:

- 40 MB/s native streaming data rate
- 300 GB native cartridge capacity
- Virtual backhitch designed for improved write-synchronized performance (see 2.1.11, “Virtual backhitch (non-volatile caching)” on page 27)
- 128 MB data buffer
- A new cartridge design featuring 3590-style geometry to support both the existing storage cells and grippers of the 3494 and StorageTek libraries
- Enhanced pin retention, which prevents pin dislodgement when dropped or shipped
- An improved loader and threader design to allow the pin to be replaced into the cartridge without relying on tape tension from the reel in the tape drive
- Improved mechanical reliability specifications
- Dual active FC-2 ports for environments that use dual paths for failover or load balancing
- High performance and robust dual microprocessor architecture
- S/390, zSeries, and System z attachment through Enterprise Systems Connection (ESCON) and Fibre Channel Connection (FICON) using the existing A60 control unit, the J70 control unit, and the TS1120 Model C06 control unit
- WORM functionality when operating on one of the two WORM cartridge types: JW or JR
- Fast random access performance when operating on any of the two Short Length Cartridge (SLC™) types: JJ or JR
- Support of an enhanced capacity scaling and segmentation format when operating on the full length R/W cartridge type JA, enabling very fast locate and read times
- Streaming Lossless Data Compression (SLDC) algorithm
- Cartridge memory of 4 K designed for the 3592 to support advanced features
- Able to reformat second generation tape media to first generation with appropriate microcode

Note: 3592-J1A tape drives do not support drive level encryption.
2.1.2 Reliability and availability

The 3592-J1A drive incorporates and expands on the high reliability and functions of previous IBM drives developed over many years of experience. The 3592-J1A drive builds on proven technologies to both enhance as well as apply new techniques to ensure high reliability and availability.

Improved availability

Improved availability characteristics include:
- Single Field Replaceable Unit (FRU)
- Redundant, hot-pluggable power supplies
- Retention of Fibre Channel Worldwide Name ID during service action

Advanced technology

Advanced technology characteristics include:
- Robust loader mechanism
- Elimination of drive pneumatics and mechanical adjustments
- Straighter and shorter tape path for better tape tracking
- Speed matching to reduce backhitching (refer to Section 2.1.8, “Speed matching” on page 26 for further details)
- Channel calibration to optimize performance and data integrity

Enhanced service functions

Enhanced service functions include:
- Enhanced Statistical Analysis Recording System (SARS) recording is available.
- Diagnostic information is accessible through the drive, which maintains logs to assist engineering or service personnel.
- Additional temperature and voltage sensors improve error isolation.
- Drive status indicators and RAS functions exist on the library drive interface.
- Concurrent microcode update allows you to switch the new and old copy of drive code.
- Backup drive Vital Product Data (VPD card) is stored from the drive.
- Functional microcode updates are available through the Library Manager broadcast.
- The 3592 tape drive requires no preventive maintenance beyond the use of the cleaning cartridge. The 3592 media cartridges require proper handling, shipping, and care.

2.1.3 Host attachment and support

The 3592 drive provides as standard two switched fabric 2 Gbps Fibre Channel attachments for attachment to multiple servers or a single server with redundancy. The 3592 drive can attach to the 3592 Model J70 Controller or the TS1120 Model C06 Controller for attachment to ESCON or FICON channels on ES/3090™, ES/9000®, S/390, zSeries, or System z servers. See 2.7, “3592 Model J70 Tape Controller” on page 52 or see 2.8, “IBM System Storage TS1120 Tape Controller” on page 63. The 3592 tape drives (E05 or J1A) will attempt to connect at either 4 Gbps or 2 Gbps but will auto-negotiate down to 1 Gbps if the system or switch to which the tape drive is connected cannot support 4 Gbps or 2 Gbps.

For the latest information about applications and the levels that support 3592-J1A tape drives, refer to the Independent Software Vendor (ISV) matrixes at:

Information about host bus adapter (HBA) support for the 3592 drive is at:
http://knowledge.storage.ibm.com/HBA/HBASearchTool

2.1.4 IBM 3592 feature codes

This section lists the available feature codes for the 3592-J1A Tape Drives. Table 2-1 shows device attachment and installation feature codes for the 3592 Model J1A Tape Drive.

For feature codes related to the IBM 3494 Tape Library with IBM 3592-J1A tape drives installed, refer to 3.6, “Tape library configuration options” on page 130. For feature codes related to 3592 tape drives installed in Silo compatible frames, refer to “C20 Feature code definitions” on page 427.

For feature codes related to the Model J70 controller, refer to 2.7, “3592 Model J70 Tape Controller” on page 52.

For feature codes related to the TS1120 Model C06 Controller, refer to the 2.8, “IBM System Storage TS1120 Tape Controller” on page 63.

Table 2-1 Feature codes for 3592-J1A Tape Drives

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0500</td>
<td>Drive Microcode Update</td>
</tr>
<tr>
<td>4674</td>
<td>Field Install J1A Drive in Rack</td>
</tr>
<tr>
<td>4772</td>
<td>Remove J1A Drive from Rack</td>
</tr>
<tr>
<td>4802</td>
<td>Install Left Drive-Pair Cradle in Rack</td>
</tr>
<tr>
<td>4812</td>
<td>Install Right Drive-Pair Cradle in Rack</td>
</tr>
<tr>
<td>5907</td>
<td>7-Meter LC/SC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>5913</td>
<td>13-Meter LC/SC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>5922</td>
<td>22-Meter LC/SC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>5961</td>
<td>61-Meter LC/SC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>6005</td>
<td>5-Meter LC/LC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>6013</td>
<td>13-Meter LC/LC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>6025</td>
<td>25-Meter LC/LC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>6061</td>
<td>61-Meter LC/LC Fibre Channel Cable 50um shortwave multimode</td>
</tr>
<tr>
<td>8802</td>
<td>3592 Cleaning Cartridge</td>
</tr>
<tr>
<td>8820^</td>
<td>Twenty 3592 Data Cartridges</td>
</tr>
<tr>
<td>9000</td>
<td>zSeries ESCON/FICON Attachment</td>
</tr>
<tr>
<td>9200</td>
<td>Open Systems Device Drivers</td>
</tr>
<tr>
<td>9210</td>
<td>Hewlett-Packard UNIX® (HP-UX) attach</td>
</tr>
</tbody>
</table>

2.1.5 Recording format

The 3592-J1A tape drive uses an advanced interleaved bidirectional serpentine recording technique that writes eight data tracks at a time on a 3592 cartridge. The 3592 cartridge is a half-inch, advanced metal particle, dual layer tape, and the tape layout consists of five servo bands (which are pre-recorded on the tape) and four data bands where the data is written. The servo bands provide location information to control the positioning of the head as it writes and reads data within the data band. We explain this in detail in 2.1.6, “Servo tracks” on page 25.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9211</td>
<td>Sun Solaris™ attach</td>
</tr>
<tr>
<td>9212</td>
<td>Microsoft® Windows® attach</td>
</tr>
<tr>
<td>9213</td>
<td>Other non-IBM attach</td>
</tr>
<tr>
<td>9215</td>
<td>Other Linux® system attach</td>
</tr>
<tr>
<td>9216</td>
<td>zSeries Linux attach</td>
</tr>
<tr>
<td>9400</td>
<td>iSeries OS/400® attach</td>
</tr>
<tr>
<td>9590</td>
<td>No Data Cartridges - Rack</td>
</tr>
<tr>
<td>9600</td>
<td>pSeries AIX attach</td>
</tr>
</tbody>
</table>

a. For information about other 3592 type cartridges and how to order them, refer to Section 2.3.1, “Ordering Media” on page 38.

For a full description of the feature codes for the 3592, refer to the IBM System Storage Tape System 3592 Introduction and Planning Guide, GA32-0464.
As shown in Figure 2-3, the area between adjacent servo bands is a data band. There are four data bands, each with 128 data tracks, on the 3592 media. The data bands are numbered 2, 0, 1, and 3. Data band 2 is the nearest to the Tape Reference Edge and data band 3 is the farthest from the Tape Reference Edge. As Figure 2-4 shows, each data band is actually composed of eight data sub-bands, one for each of the eight write heads. Each sub-band is written by a given write-head position in a technique called a linear serpentine, which means that the tape moves back and forth longitudinally while the head is indexed up or down laterally at each pass. This makes it possible to write multiple distinct tracks in a given data sub-band.
Figure 2-4 Section of tape showing one data band and its surrounding servo bands

Figure 2-5 shows an even closer look at a data band. It demonstrates the serpentine method that is used to write data. The numbers on the right side indicate the tracks, which are written simultaneously on each data sub-band in a converging spiral in sixteen passes: eight down (tape outbound from cartridge) and eight back (tape inbound to cartridge), each at a different lateral offset. Given the eight-channel heads, eight tracks of the data are written simultaneously in this linear serpentine pattern, each track in separate data sub-bands. When a given data band is full, a coarse-actuator motor moves the head to another quarter of the tape. This process continues until all four data bands are filled.
2.1.6 Servo tracks

Servo tracks enable accurate positioning of the tape drive head over the data track, ensuring that the head does not stray onto an adjacent track. Servo tracks are necessary to support high-data densities on the tape where the tracks are very close together. The servo tracks are written at the time of cartridge manufacture, before the cartridge is usable for data storage and retrieval. Each tape write head has two servo heads, one for each of the two servo bands it spans. As shown in Figure 2-3 on page 23, five servo bands numbered 0 through 4 make up the servo tracking mechanism on the 3592-J1A tape. They are each located at specific distances from the tape reference edge1. Within the servo bands are servo stripes, groups of which make up servo bursts. Four servo bursts make up a servo frame; the first two bursts (as written in the forward tape-motion direction) contain five servo stripes, and the second two bursts contain four servo stripes.

Track following

Each pair of servo bursts is at an angle to each other, and the servo heads move so that they keep a constant value for the distance between the bursts by measuring the time taken between each burst (timing-based servo, sometimes abbreviated to TBS). In this way, the servo is able to follow a straight line within the servo band; any small deviation away from the correct path causes a variation (plus or minus) in the gap between the bursts (see Figure 2-6). Provided that the servo head element follows a straight line along the servo band, then the distance x shown in Figure 2-6 remains constant.
Figure 2-6 Timing-based servo track

Two servo bands are used simultaneously to provide two sources of servo information for increased accuracy. For this format, there are 16 positions within the servo used to reposition the eight-channel head in order to write eight forward and eight reverse wraps, within each of the four data bands. This makes up the total of 512 tracks ($8 \times [8+8] \times 4 = 512$). You can finely tune this timing-based servo technology, which is capable of supporting very high-track densities, because you can define more than eight positions within the same servo band, thus expanding the potential track densities. In addition to the significant advances in the tape coating process using the high-quality metal particle media, you can confidently fulfill the road map design for reformatting this same media at higher densities.

2.1.7 Data buffer

The drive has a large data buffer (128 MB) with read-ahead buffer management. This addresses the lowest band of data rates, effectively collecting more blocks of data together in the buffer before writing out at a higher speed to the drive. This means that the drive stops and starts less often, which in general improves the overall performance and reliability of the drive and tape.

2.1.8 Speed matching

For medium data rates when operating from a host that cannot sustain the maximum 3592-J1A data rate, the drive performs dynamic speed matching. The drive will adjust the native data rate of the drive as closely as possible to the net host data rate (after data compressibility has been factored out). The enhanced 3592-J1A drive will operate at one of four speeds in an attempt to match the effective host data rates. If the net host data rate is between two of the speed matching native data rates, the drive will calculate at which of the two data rates to operate. The effect of speed matching is to reduce the number of backhitches required. In some environments, the drive's backhitch is completely masked by the drive's data buffer, and thus the system throughput is not improved or reduced by speed matching.

2.1.9 Cartridge memory (CM)

Contained within the cartridge is the cartridge memory (CM), which is a passive, canticles silicon storage device (4,096 bytes) that is physically a part of the cartridge. The CM holds information about that specific cartridge, the media in the cartridge, and the data on the media. It is designed to support the high resolution tape directory feature (see “High
resolution tape directory” on page 27). The drive and the CM communicate through a non-contact passive radio frequency interface, which eliminates the need for physical connections to the cartridge for power or signals.

2.1.10 High resolution tape directory

The 3592-J1A drive maintains a tape directory structure with higher granularity of information about the physical position of data blocks and file marks on the media. This feature allows the 3592-J1A drive to have improved nominal and average access times for locate operations. Locate times are therefore uniform based on the position of the block or file mark on the tape independent of the uniformity of the block size or file mark distribution along the length of the tape. 3592-J1A locate and space performance therefore is targeted to be completely and singly dependent upon the longitudinal position on tape of the target block or file mark. You can specify this as:

- Locate time to any block or file mark on tape = longitudinal position/locate speed.
- A block located at physical end of tape (EOT), which is 580 m, on Jaguar tape requires < 82 seconds to retrieve. No block should exceed this locate time.
- A block closer to beginning of tape (BOT) takes a linear proportionately smaller time to retrieve.

2.1.11 Virtual backhitch (non-volatile caching)

The 3592-J1A stages write data through an intermediate DRAM buffer on its way to tape. This buffer is volatile in that it does not retain what is stored in it if power is lost. For streamed writes (or reads), this buffer yields considerably improved performance. When a drive prior to the 3592-J1A drive is performing a streamed write to tape and the buffer empties, or if a synchronizing command is received that forces the buffer to be written to tape, then the streamed writing will cease for lack of data. Any non-immediate write-type command, such as how file marks are typically written, is considered a synchronizing command. Non-immediate write-type commands require the drive to store data to tape before returning command complete (with good status) in response to that command. This by definition forces all the data in the volatile buffer to be written to tape.

When streaming writes cease, a drive prior to the 3592-J1A tape drive halts the tape and repositions it upstream of where the writing ended. This allows subsequently received data to be written immediately following the previously written data in order to eliminate the waste of the considerable length of tape from the point at which good status is returned to the host, to the point at which the host has subsequently sent enough data to resume writing. For example, if tape is streaming at 4.74 m/s when the buffered data falls below the threshold, an entire meter of tape can pass unwritten in about 210 milliseconds. Substantial lengths of unwritten tape can significantly reduce capacity. Here, typical tape drives use a backhitch to eliminate this capacity loss following a synchronizing write to tape.

Non-Volatile Caching (NVC) is a 3592-J1A feature that can help greatly improve write performance through backhitch reduction. This system temporarily reserves portions of physical tape for cache areas. Data received from the host is written to the volatile buffer as usual, and also to non-volatile tape cache areas with the exception that no backhitch is typically necessary when writing temporary copies to cache areas of tape. This temporary capacity loss is easily recouped. The data is written to temporary cache areas and is not released in the volatile buffer, but instead it accumulates. This accumulation typically continues until the buffer is nearly full. At this time, the accumulated data in the buffer is rewritten through a streamed write to the standard area of tape. When the rewrite is complete, the temporary cache areas of tape are released so that they can be overwritten. Writing temporary copies to the cache areas of tape without backhitching until the buffer is nearly full,
and then streaming a rewrite of the data to the standard area of tape can help significantly improve the average write throughput to tape.

As an example, if a synchronizing event occurs after every 256 KB of data, the best that a 3590 can average is about 0.4 MB/s; basically, 256 KB divided by the backhitch time plus some system overhead. The 3592-J1A can average about 2.9 MB/s under the same conditions; more than a factor of eight better in write throughput because of the backhitches that are eliminated by NVC writing. Aside from the potentially improved write throughput performance, the second effect of NVC writing is to recover the capacity lost by the standard writing technique. Data received between synchronization events fills containers of data to be written to tape called device blocks or datasets. The standard writing technique calls for padding out the last partially filled dataset. This padding on average typically amounts to half the size of the last dataset. Given the large dataset sizes of modern tape drives, this loss can be substantial.

For example, some systems write as little as 64 KB of data between synchronizations. The minimum dataset size of the 3592-J1A tape drive can hold about 400 KB of data. The 64 KB of data might compress to about 20 KB of data. If so, then the dataset containing this 20 KB of compressed data will be written with 380 KB of unused space, which amounts to a 95% capacity loss in that dataset. The streaming rewrite of the data that is accumulated in the buffer causes nearly all the datasets written to a standard area of tape to be written out fully, which we refer to as dataset packing. For example, NVC written data can allow in excess of 900 GB of 3:1 compressible data to be written to tape, even though the data being written is synchronized every 64 KB.

Writing in NVC mode is automatically invoked by the drive when the drive detects host writing behaviors that get better performance when in NVC writing mode. Similarly, NVC writing is discontinued when host commands are received that do not benefit from NVC writing, or when commands such as rewind are received. When the drive exits from NVC writing, the drive writes any packed datasets accumulated in its buffer before it begins executing the command that caused the drive to exit from NVC mode. NVC writing is designed to be transparent to host applications, because it is automatically invoked and exited. The only indicators that NVC writing occurs are the improved capacity and performance that can result from this new mode of writing.

Summary

In summary, the two components of non-volatile caching, backhitch reduction and dataset packing, are designed to provide major performance and capacity improvements over standard tape drive, such as 3590 or Linear Tape-Open (LTO), writing of synchronized data. Dataset packing improves overall tape capacity. Backhitch reduction decreases the frequency of mechanical repositions. Non-volatile caching provides an innovative approach to increasing both capacity and write performance in a way that is designed to be transparent to host applications.

2.1.12 Capacity scaling

The 3592-J1A drive supports scaling and segmentation modes on the 300 GB R/W (JA) cartridge to allow clients to trade off capacity for improved access times. While the 3592-J1A drive supports 256 settings of capacity, it uses two primary settings most of the time:

- 300 GB default mode
- 60 GB fast access mode (capacity scaled through a 0x35 setting to 20% capacity)

Capacity scaling of the tape medium is the action of modifying internal formatting indicators in the medium (and in the cartridge memory (CM) chip) so that the normal serpentine track format is altered to limit the recorded portion of the tape to a specified fraction of the linear
dimension of the medium (illustrated in Figure 2-8). The 3592 Model J1A tape drive allows an application to issue a command to scale an individual cartridge (Mode Select command). It pertains only to the currently loaded cartridge; capacity scaling is not persistent.

The result of capacity scaling a tape to a percentage value (for example, 20%) is that the maximum number of recordable gigabytes is reduced to 20% of the normal value, and the average time to locate a random record on a full tape starting from load point is (very roughly) 20% of the time to locate a random record from load point for a full, unscaled tape. To compare, the average time to locate a random record on an unscaled (serpentine) tape that has only been filled to 20% capacity is nearly the same as the average time to locate a random record on an unscaled tape that has been filled to 100%. Scaling cuts the access time proportionately, and it also introduces normal end-of-tape programmatic warnings when approaching the scaled capacity limit in the same way that those indicators are returned at end-of-tape when unscaled.

![Figure 2-7](image)

A 300 GB tape scaled by 20% to 60 GB

The details of how to set different capacities are:

- The 3592-J1A drive does not change current cartridge scaling unless a SCSI Mode Select command (CDB) specifying Mode Page X‘23’ (with appropriate non-default parameter settings) is received while the cartridge is positioned at the beginning of tape. The drive can sense and report the scaling state of the current medium through a Mode Sense command specifying Mode Page X‘23’. Default unscaled capacity is 300 GB.

- You can rescale a cartridge from any current value to any supported new value. Tape is logically erased by rescaling (the end of data mark is written at the beginning of the tape), but the tape is not physically erased like it is with the long erase command. Scaling or rescaling one cartridge does not cause rescaling of the next cartridge; you must issue an explicit command to scale or rescale each cartridge.

- The drive provides the option for setting scaling values of $N/256$ths of 300 GB, where N ranges from 0x16 (22 decimal equals about 26 GB) to 0xEB (236 decimal equals about 277 GB). Refer to Table 2-2 for a complete list of capacity scaling options.

- For scaling factors, N, greater than 0x4B (rounded, about a 88 GB size), the drive scales to the specified amount and creates a fast access 60 GB segment in the beginning of the scaled region.

- At all scaling factors, the drive supports early warning at the end of the scaled region (the appropriate unit attention message to inform the software that it should flush the buffers and close the volume), and the drive reports a physical end-of-tape check condition at the
end of the scaled region just as if the tape was unscaled and at the actual physical end-of-tape.

Performance segmentation

Performance segmentation provides fast access and greater capacity by allowing the tape to be divided into two segments. One segment is a fast access segment to be filled first, and the other segment is additional capacity to be filled after. The 0xE0 setting (refer to Table 2-2) in particular offers segmentation and a 60 wrap serpentine so that it is high performance in two ways. It has segmentation so it has high performance random access in the first segment (first 60 GB), as though it was a scaled cartridge, while still providing an additional 200 GB of capacity as shown in Figure 2-8.

The implications of performance scaling are:

- If host systems provide a means to limit the amount of data that a client places on the media, for example, with a percent utilization construct, the user gets much faster average access time to the first data; also, additional locates on the same volume improve significantly.
- With segmentation, there is a small (less than one percent) degradation in the data rate due to the increased number of wrap changes. Segmentation also reduces the nominal cartridge capacity to at most 275 GB.

![Segmented Tape Processing](image)

Figure 2-8 Segmented tape processing

Table 2-2 summarizes the capacity settings that yield segmentation.

<table>
<thead>
<tr>
<th>Capacity scaling setting</th>
<th>Capacity in GB</th>
<th>Number of wraps</th>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>300</td>
<td>64</td>
<td>NO</td>
</tr>
<tr>
<td>0x01 – 0x15</td>
<td>27</td>
<td>48</td>
<td>NO</td>
</tr>
<tr>
<td>0x16 – 0x1C</td>
<td>27 - 33</td>
<td>48</td>
<td>NO</td>
</tr>
<tr>
<td>0x1D – 0x4A</td>
<td>34 - 87</td>
<td>60</td>
<td>NO</td>
</tr>
<tr>
<td>0x4B – 0xE0</td>
<td>88 - 262</td>
<td>60</td>
<td>YES</td>
</tr>
<tr>
<td>0xE1 – 0xEB</td>
<td>264 - 275</td>
<td>64</td>
<td>YES</td>
</tr>
<tr>
<td>0xEC – 0xF0</td>
<td>281</td>
<td>60</td>
<td>NO</td>
</tr>
<tr>
<td>0xF1 – 0xFF</td>
<td>300</td>
<td>64</td>
<td>NO</td>
</tr>
</tbody>
</table>
Performance scaling and segmentation support

You implement performance scaling and segmentation functions in z/OS through the Data Class attributes in the integrated storage management facility (ISMF). For information about how to implement these functions, refer to “Defining the library through ISMF” on page 182.

Capacity scaling support

Refer to the following links for more information and support of capacity scaling:

- Cartridges pre-scaled for 60 GB fast access and 260 GB fast access and capacity are available for order with the 3599 Model 011. You can order and label these fast access pre-scaled cartridges for a specific VOLSER range. This allows an application that permits media pools to be defined by VOLSER range (refer to Table 2-5 on page 39) to exploit capacity scaling.
- For implementation of capacity scaling in z/OS, see Chapter 4, “Software implementation in z/OS” on page 145.
- For Open Systems, this functionality can exist at the application level or the device driver level. For more information about implementing capacity scaling, consult the readme files in the FTP directory pertaining to your device driver, which you can find at these Web sites:

 ftp://207.25.253.26/storage/devdrvr/

- For information about Independent Software Vendors (ISV) that support capacity scaling by command or with the pre-scaled cartridges, refer to the 3592 ISV Web site:

 http://www.storage.ibm.com/tape/conntrix/

2.2 IBM System Storage TS1120 Model E05 Tape Drive

The IBM System Storage TS1120 Tape Drive Model E05 is the second generation of the 3592 tape drives. It has the same machine type, 3592, with a new model type, E05. The TS1120 tape drive is designed for applications requiring high capacity and fast access to data across a wide range of environments. The TS1120 tape drive provides you with the ability to encrypt your data at the drive. The TS1120 tape drive features dual 4 Gb Fibre Channel interfaces, has a native data rate of up to 100 MB/s, and a native physical capacity of up to 500 GB on the JA cartridge or 700 GB on a JB cartridge. Similar to the previous 3592-J1A, the 3592-E05 includes an RS-422 library interface port for communication with the TS3500 Tape Library. There is support to attach the TS1120 tape drive to ESCON and FICON channels on System z through the following tape subsystems:

- TS1120 Model C06 Tape Controller
- IBM 3592-J70 Tape Controller
- TS7700 Virtualization Engine™
- B10 and B20 VTSs in J1A emulation mode only

Figure 2-9 shows the front view of the TS1120 Tape Drive.
The TS1120 can operate in one of three modes:

- **EEFMT2**: Enterprise Tape Format 2 with encryption enabled
- **EFMT2**: Enterprise Tape Format 2
- **EFMT1**: Enterprise Tape Format 1, also called J1A emulation mode

2.2.1 Features for reliability, availability, and performance

The TS1120 tape drive maintains the same form factor and reliability specification of the previous Model 3592-J1A as well as the features and technology enhancements that were introduced with the 3592 Model J1A. In addition, the 3592-E05 offers several enhancements over the J1A Model.

Features introduced with the 3592-J1A and incorporated into the 3592-E05 include:

- Digital speed matching
- Channel Calibration
- High resolution tape directory
- Recursive Accumulating Backhitchless Flush or non-volatile caching (NVC)
- Streaming Lossless Data Compression (SLDC)
- Capacity scaling
- Single Field Replaceable Unit (FRU)
- Error Detection and reporting
- Statistical Analysis and Reporting System (SARS)

To further improve performance and capacity, the TS1120 tape drive offers additional enhancements over the 3592 Model J1A. The following section describes these enhancements in detail. Table 2-3 on page 34 shows a comparison of the characteristics of the 3592-J1A and 3592-E05 tape drives.

Large internal buffer

The 3592-E05 has a 512 MB internal data buffer as compared to a 128 MB maximum buffer on the 3592-J1A. In addition to offering higher performance characteristics, the data buffer offers a Read Ahead feature of approximately 500 MB of compressed data from tape. When the drive processes a command to locate or read a block from tape, in parallel with returning the requested block or locate status to the host, the drive automatically continues to stream down the tape and read ahead until the buffer is full. This allows subsequent Locate or Read commands of relatively close proximity blocks to be fulfilled from the data buffer at higher speeds than requiring access to the tape.

Dual stage 16-head actuator

The 3592-E05 is designed to improve precision head alignment to help support higher track density. The 3592-E05 uses the Enterprise Format 2 (E2) recording technology (896 tracks, 16 channels), which increases the data capacity of all four cartridge types to 500 GB for types
JA and JW and 100 GB for types JR and JJ. When using the 3592 extended data cartridge, the capacity is 700 GB. The 3592-E05 can also read and write in Enterprise Format 1 (E1) when emulating the 3592-J1A (see “TS1120 with J1A emulation” on page 33 for more information).

Offboard Data String Searching

The TS1120 Model E05 can search the data content of host records for string matches. This function is called *Offboard Data String Searching*, because the data search can be performed offboard from the host. This feature allows the tape drive to search for records on a tape that contains a particular ASCII or EBCDIC character string (1 to 16 bytes in length) at a maximum data rate of 100 MB/s. It would take longer if the host performed this function, because the host server needs to read the data, buffer the data to disk, and then parse the actual data stream with host software routines. You can program the compare string search content and options using the Mode Select or Send Diagnostic command. For information about these commands and details of the programming fields, refer to *IBM System Storage TS1120 Tape Drive SCSI Reference*, GA32-0562.

Enhanced logic to report Logical End-of-Tape

The 3592-E05 uses enhanced logic to report Logical End-of-Tape (LEOT) which is based on a combination of capacity-based LEOT (CB-LEOT) and position-based LEOT (PB-LEOT) indicators. Position-based LEOT is reported based on reaching a physical position on the tape. With capacity-based LEOT, the 3592-E05 monitors the total accumulated number of physical datasets that are written to the volume and reports LEOT when 505 GB of uncompressed data has been recorded. In the event that the 3592-E05 is unable to record the number of datasets before reaching the PB-LEOT physical landmark, LEOT is reported immediately upon reaching this physical position. A minimum capacity buffer of 5 GB is guaranteed between LEOT reporting and physical end-of-tape beyond which no data can be recorded. The effect of this new LEOT function is to reduce the variation in the amount of data recorded before LEOT is issued, and, therefore, a more consistent capacity is recorded to the media for applications that use LEOT to stop the write process.

Encryption support

The IBM System Storage TS1120 Tape Drive has been enhanced to provide you the option of using drive-based data encryption (the option is now standard on all new TS1120 Tape Drives). A chargeable upgrade feature to enable your drives for encryption is available for existing installed TS1120 Tape Drives. You can encrypt all 3592 media, including WORM and extended cartridges. Based on the Data Class that you have defined, the TS1120 tape drive can write in either encrypted or unencrypted format.

Note: When using Tape Drive Encryption, all the TS1120 tape drives that are attached to a single 3592-J70 or TS1120 Model C06 Controller must be encryption-enabled.

TS1120 with J1A emulation

The TS1120 (3592-E05) has an emulation mode that enables it to emulate the previous 3592-J1A Model. The tape drives can be set to static J1A emulation mode by the IBM SSR or they can change from E05 native mode to J1A emulation mode and back dynamically depending on the mount request.

When attached to a VTS, J70, or TS1120 Model C06 Controller in heterogeneous frames containing J1A drives, the 3592-E05 drives automatically operate in J1A emulation mode in these subsystems, even when set to operate as native E05 drives. This mode is set by the ATAPE driver component resident in these subsystems and is automatic. In this mode, the 3592-E05 drives read and write only in E1 format at the J1A performance and capacity.
ratings. When removed from these subsystems, the drives automatically revert to native E05
operation and no action is necessary to restore normal mode.

In J1A emulation mode, the TS1120 Tape Drive:

- Cannot be enabled for Encryption.
- Can read and write in a format that is compatible with the 3592 Model J1A Tape Drive.
- Can read and append to cartridges written by the 3592 Model J1A Tape Drive.
- Can write cartridges in a 3592 Model J1A format that can be read and appended to by the
 3592 Model J1A Tape Drive.
- Cannot read cartridges written by the 3590 or 3490. Cartridges written by the TS1120 tape
drive cannot be read by the 3590 or 3490. Even though the cartridges are similar in size,
they contain different media, and thus are not interchangeable.
- Can be attached to the same 3592 Model J70 or TS1120 Model C06 Controller, TS7700
Virtualization Engine, or 3494 VTS Models B10 or B20 with 3592 Model J1A Tape Drives.
This is only supported when the TS1120 is running in J1A emulation mode. After you set
TS1120 drives to run in E05 native mode, intermix is not supported.

Table 2-3 Characteristics for 3592-E05 and 3592-J1A tape drives

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>3592-E05 Tape Drive</th>
<th>3592-J1A Tape Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display panel</td>
<td>Eight character alphanumeric LED display</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>Enterprise Tape Cartridge 3592</td>
<td></td>
</tr>
<tr>
<td>Host attachments</td>
<td>Fibre Channel attach; ESCON or FICON through C06 or J70 controllers</td>
<td></td>
</tr>
<tr>
<td>Data Capacity</td>
<td>500 GB uncompressed and up to 1.5 TB compressed on JA tape cartridge (with 3:1 compression) or 700 GB and up to 2.1 TB compressed on a JB tape cartridge (with 3:1 compression)</td>
<td>300 GB uncompressed and up to 900 GB compressed on JA tape cartridge (with 3:1 compression)</td>
</tr>
<tr>
<td>Number of data tracks</td>
<td>896</td>
<td>512</td>
</tr>
<tr>
<td>Number of servo regions</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Number of data tracks recorded/read simultaneously</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Main Data buffer size</td>
<td>512 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>Device data rate (native)</td>
<td>100 MB/s (50 MB/s for J1A emulation)</td>
<td>40 MB/s</td>
</tr>
<tr>
<td>Device data rate (3:1 compression sustained)</td>
<td>260 MB/s</td>
<td>120 MB/s</td>
</tr>
<tr>
<td>Data transfer rate (maximum instantaneous)</td>
<td>400 MB/s</td>
<td>200 MB/s</td>
</tr>
<tr>
<td>Tape speed R/W maximum</td>
<td>6.21 m/sec</td>
<td>4.74 m/sec</td>
</tr>
<tr>
<td>Load/ready</td>
<td>13 sec</td>
<td>19 sec</td>
</tr>
</tbody>
</table>
2.2.2 Capacity scaling

Capacity scaling is designed to allow the utilized length of the tape to be logically shortened, helping to improve data access times in trade-off for reduced capacity. The tapes can subsequently be scaled back to full capacity as needed. The 3592-E05 provides the same support for scaling on the JA cartridge as the 3592-J1A; however, the higher density E2 format used by the 3592-E05 results in a higher data capacity for scaled cartridges than the 3592-J1A. Additionally, the data capacity again increases when a JB cartridge is used.

Like the 3592-J1A, the 3592-E05 drive supports 256 settings of capacity; however, we recommend the following three primary settings for use, which are available as labeled and initialized part-numbered cartridges:

- Full capacity default mode, where the full capacity of the tape cartridge can be utilized
- Twenty percent scaled fast access mode (capacity scaling setting x'35'), where only the first 20% of the media on the tape cartridge is used (see Figure 2-10)
- Performance-segmented for 87% capacity (segmented format and capacity scaling setting x'E0')

![3592 Media Scaling](image)

Figure 2-10 3592 media scaling

Performance segmentation allows the 3592-E05 drive to divide the tape into longitudinal segments. Using this capability, you can segment the tape into two segments, one as a fast access segment to fill first, and the other segment for additional capacity after the first segment is full. With a segmented cartridge that still has only one physical partition and one end-of-volume (EOV) indicator, data can only be written to the slower access segment after the fast access segment has filled. After the fast access segment fills up, any data written continues onto the slower access segment. However, if an application wants to manage the data that is placed into each segment, the application needs to manually track and fill the fast access segment before it can place less frequently accessed data in the slower access...
segment. The percentage of capacity that is assigned to each segment is shown in Figure 2-11. For example, with the 3592-E05 and EFMT2 format, you can segment a JB cartridge into a 140 GB fast access segment and a 466 GB slower access segment.

![Segmented Tape Processing](image)

Figure 2-11 Performance segmentation using 3592-E05

Like the 3592-J1A, 256 settings of capacity are supported on the 3592-E05 drive, the following three primary settings are recommended for use and are available as labeled and initialized part numbers cartridges:

- Full capacity default mode - 500 GB
- Twenty percent scaled fast access mode (capacity scaling setting x’35’) - 100 GB
- Performance scaling for 87% capacity (segmented format and capacity scaling setting x’E0’)

2.3 3592 cartridges and media

Clients need to cost-effectively store more digital information than ever before, often in response to increasing regulatory and legal requirements. The 3592 tape drives are designed to help meet these needs with the IBM System Storage Tape Cartridge 3592. The 3592-J1A and 3592-E05 both use the 3592 Tape Cartridge which offers various capacity options depending on which drive and recording format you use or which cartridge model you order (DATA, WORM, Extended, or Economy).

The 3592-J1A uses Enterprise Format 1 (E1) recording technology, and a DATA cartridge, when formatted for E1, has a native capacity of 300 GB. The 3592-E05, when emulating the J1A, also uses the E1 format to provide a native capacity of 300 GB on a JA DATA cartridge. The 3592 JB cartridge cannot be used by a 3592-E05 tape drive when operating in emulation mode. When operating as a native E05, the 3592-E05 uses Enterprise 2 format (E2); therefore, a DATA cartridge formatted in E2 has a native capacity of 500 GB for a JA or JW tape cartridge or 700 GB for a JB or JX tape cartridge. The 3592-J1A cannot read or write on a JA tape cartridge using E2; therefore, tapes using E2 only work in the 3592-E05 drive. However, the 3592-J1A can reformat an E2 tape to an E1 tape. The 3592-J1A cannot use a 3592 JB or JW Extended DATA cartridge.

Together, these capabilities extend the range of client data workloads that 3592 tape drives support. The economy cartridge can help lower the cartridge cost for clients with lower capacity needs and provide faster access to data. The WORM cartridges provide nonerasable, nonrewritable storage media. Clients with regulatory or legal requirements to store electronic records for long periods of time can use the 3592 tape drives to provide cost-effective storage.

The new 3592 cartridges have a form factor similar to the 3590 tape cartridge. They are supported in the IBM System Storage Tape Library 3494, IBM System Storage TS3500 Tape Library, and StorageTek ACS automation environments.
The 3592 cartridge contains .5 inch tape media with a new dual-coat, advanced-particle media. The 3592 cartridge has improved areal density capabilities that differ from the tape media in any previously shipped cartridge. The 3592 cartridge is designed to have the strength and durability of an enterprise cartridge. The enhanced assembly strengthens critical points on the cartridge and helps make the 3592 cartridge less susceptible to damage (when dropped, for example).

The tape is pulled from the cartridge using a leader pin rather than a leader block as in the 3590, and a sliding door covers the area formerly occupied by the leader block in a 3590 cartridge. A locking mechanism prevents the media from unwinding when the cartridge is not located within a drive. A special mechanical design provision prevents the 3592 cartridge types from being loaded into 3590 or 3490 drives; if inadvertently loaded into a 3590, the cartridge present sensor does not change state and the drive does not attempt to load.

Media types

The 3592-J1A and 3592-E05 use four media cartridge types: JA, JJ, JW, and JR. Additionally, the 3592-E05 can use JB and JX media. All six cartridge types contain the same dual coat advanced particle media. Capacity on these media types depends on whether it is used by Model 3592-J1A or Model 3592-E05. Table 2-4 shows the six media types and capacity options available with the 3592 Tape Drives.

<table>
<thead>
<tr>
<th>Name</th>
<th>Media type</th>
<th>Length</th>
<th>Native capacity 3592-J1A (E1 format)</th>
<th>Native capacity 3592-E05 emulating J1A (E1 format)</th>
<th>Native capacity 3592-E05 (E2 format)</th>
<th>DFSMS media type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>JA</td>
<td>609m</td>
<td>300 GB</td>
<td>300 GB</td>
<td>500 GB</td>
<td>MEDIA5</td>
</tr>
<tr>
<td>ECONOMY</td>
<td>JJ</td>
<td>246m</td>
<td>60 GB</td>
<td>60 GB</td>
<td>100 GB</td>
<td>MEDIA7</td>
</tr>
<tr>
<td>WORM</td>
<td>JW</td>
<td>609m</td>
<td>300 GB</td>
<td>300 GB</td>
<td>500 GB</td>
<td>MEDIA6</td>
</tr>
<tr>
<td>ECONOMY WORM</td>
<td>JR</td>
<td>246m</td>
<td>60 GB</td>
<td>60 GB</td>
<td>100 GB</td>
<td>MEDIA8</td>
</tr>
<tr>
<td>DATA</td>
<td>JB</td>
<td>825</td>
<td>N/A</td>
<td>N/A</td>
<td>700 GB</td>
<td>MEDIA9</td>
</tr>
<tr>
<td>WORM</td>
<td>JX</td>
<td>825</td>
<td>N/A</td>
<td>N/A</td>
<td>700 GB</td>
<td>MEDIA10</td>
</tr>
</tbody>
</table>

Figure 2-12 shows the four media types. The WORM cartridges pictured on the left have a platinum color shell, and the R/W cartridges on the right have a black shell. The write protect tab, door, and label for the full length cartridges (both WORM and R/W) are dark blue. The write protect tab, door, and label for the economy cartridges (short length) are light blue.
Labels

The 3592 cartridges use a new media label to describe the cartridge type. Figure 2-13 shows a 3592 cartridge with a JA label. In tape libraries, the library vision system identifies the types of cartridges during an inventory operation. The vision system reads a volume serial number (VOLSER), which appears on the label on the edge of the cartridge. The VOLSER contains from one to six characters, which are left-aligned on the label. If fewer than six characters are used, spaces are added. The seventh and eighth characters indicate the media type.

Cleaning cartridges

There is one cleaning cartridge designed specifically for the 3592-J1A and 3592-E05 tape drives. As with the data cartridges, the 3592 cleaning cartridges are not interchangeable with any other model's cleaning cartridges (for example, the 3590 cleaning cartridge), so you must have both types of cleaning cartridges if you have both types of drives in your environment. The cleaning cartridge also contains a cartridge memory (CM) device, which automatically keeps track of the number of times that the cleaning cartridge has been used. You need to replace cleaning cartridges after 50 uses. Use the physical characteristics of the 3592 cleaning cartridge to distinguish it from the 3592 data cartridges. The product label on the top of the cartridge is white, with the word cleaning printed on it. In place of the write-protect switch, there is a unmovable light gray block. The cartridge door is also light gray. If you order cleaning cartridges with preattached labels, the first three characters of the volume serial number (VOLSER) are CLN.

2.3.1 Ordering Media

Order IBM System Storage Tape Cartridge 3592 media in the following ways:
The 3599 Tape Media Method, which provides the ability to order prelabeled, unlabeled, initialized, and bulk-packaged data cartridges in a wide variety of combinations. Model numbers and feature codes are used to identify the cartridge types, quantities, labeling and initialization options. Table 2-5 shows a few examples of ordering options and features for each cartridge type.

<table>
<thead>
<tr>
<th>3599 Model</th>
<th>Media ID/Feature code</th>
<th>Feature code for labeling, initialization, and quantity</th>
<th>Individual cartridge capacity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>011</td>
<td>JA/9030</td>
<td>1020</td>
<td>300 GB</td>
<td>20-pack 3592 Data cartridges, labeled and initialized in E1 format</td>
</tr>
<tr>
<td>011</td>
<td>JA/9081</td>
<td>1020</td>
<td>500 GB</td>
<td>20-pack 3592 Data cartridges, labeled and initialized in E2 format</td>
</tr>
<tr>
<td>012</td>
<td>JA/9030</td>
<td>2020</td>
<td>300 GB</td>
<td>20-pack 3592 Data cartridges, labeled, not initialized.</td>
</tr>
<tr>
<td>013</td>
<td>JA/9030</td>
<td>3020</td>
<td>300 GB</td>
<td>20-pack 3592 Data cartridges, not labeled or initialized</td>
</tr>
<tr>
<td>E11</td>
<td>JJ/9050</td>
<td>1020</td>
<td>60 GB</td>
<td>20-pack 3592 Economy cartridges, labeled and initialized in E1 format</td>
</tr>
<tr>
<td>E11</td>
<td>JJ/9081</td>
<td>1020</td>
<td>100 GB</td>
<td>20-pack 3592 Economy cartridges, labeled and initialized in E2 format</td>
</tr>
<tr>
<td>E12</td>
<td>JJ/9050</td>
<td>2020</td>
<td>60 GB</td>
<td>20-pack 3592 Economy cartridges, labeled, not initialized</td>
</tr>
<tr>
<td>E13</td>
<td>JJ/9050</td>
<td>3020</td>
<td>60 GB</td>
<td>20-pack 3592 Economy cartridges, not labeled or initialized</td>
</tr>
<tr>
<td>021</td>
<td>JW/9040</td>
<td>1020</td>
<td>300 GB</td>
<td>20-pack 3592 WORM cartridges, labeled and initialized in E1 format</td>
</tr>
<tr>
<td>021</td>
<td>JW/9081</td>
<td>1020</td>
<td>500 GB</td>
<td>20-pack 3592 WORM cartridges, labeled and initialized in E2 format</td>
</tr>
<tr>
<td>022</td>
<td>JW/9040</td>
<td>2020</td>
<td>300 GB</td>
<td>20-pack 3592 WORM cartridges, labeled, not initialized</td>
</tr>
<tr>
<td>023</td>
<td>JW/9040</td>
<td>3020</td>
<td>300 GB</td>
<td>20-pack 3592 WORM cartridges, not labeled or initialized</td>
</tr>
<tr>
<td>3599 Model</td>
<td>Media ID/ Feature code</td>
<td>Feature code for labeling, initialization, and quantity</td>
<td>Individual cartridge capacity</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E21</td>
<td>JR/9042</td>
<td>1020</td>
<td>60 GB</td>
<td>20-pack 3592 Economy WORM cartridges, labeled and initialized in E1 format</td>
</tr>
<tr>
<td>E21</td>
<td>JR/9081</td>
<td>1020</td>
<td>100 GB</td>
<td>20-pack 3592 Economy WORM cartridges, labeled and initialized in E2 format</td>
</tr>
<tr>
<td>E21</td>
<td>JR/9042</td>
<td>2020</td>
<td>60 GB</td>
<td>20-pack 3592 Economy WORM cartridges, labeled not initialized</td>
</tr>
<tr>
<td>E21</td>
<td>JR/9042</td>
<td>3020</td>
<td>60 GB</td>
<td>20-pack 3592 Economy WORM cartridges, not labeled or initialized</td>
</tr>
<tr>
<td>017</td>
<td>JA</td>
<td>7005</td>
<td>Cleaning, 50 uses</td>
<td>5-pack 3592 Cleaning cartridges, labeled</td>
</tr>
<tr>
<td>017</td>
<td>JA</td>
<td>7006</td>
<td>Cleaning, 50 uses</td>
<td>5-pack 3592 Cleaning cartridges without media identification labels</td>
</tr>
<tr>
<td>014</td>
<td>JB</td>
<td>4020</td>
<td>700 GB</td>
<td>20-pack 3592 Data cartridges, labeled and initialized in E2 format</td>
</tr>
<tr>
<td>015</td>
<td>JB</td>
<td>5020</td>
<td>700 GB</td>
<td>20-pack 3592 Data cartridges, labeled, not initialized</td>
</tr>
<tr>
<td>016</td>
<td>JB</td>
<td>6020</td>
<td>700 GB</td>
<td>20-pack 3592 Data cartridges, not labeled or initialized</td>
</tr>
<tr>
<td>024</td>
<td>JX</td>
<td>2420</td>
<td>700 GB</td>
<td>20-pack 3592 WORM cartridges, labeled and initialized in E2 format</td>
</tr>
<tr>
<td>025</td>
<td>JX</td>
<td>2520</td>
<td>700 GB</td>
<td>20-pack 3592 WORM cartridges, labeled, not initialized</td>
</tr>
<tr>
<td>026</td>
<td>JX</td>
<td>2620</td>
<td>700 GB</td>
<td>20-pack 3592 WORM cartridges, not labeled or initialized</td>
</tr>
</tbody>
</table>

Ordering using the IBM part number through an IBM authorized distributor, IBM authorized Business Partner, or IBM Marketing Representative. Table 2-6 lists the data cartridges and media supplies that you can order using part numbers.

For information about the closest distributor, refer to the following Web site:
http://www.ibm.com/storage/media
Table 2-6 Ordering media using part number examples

<table>
<thead>
<tr>
<th>Supply item</th>
<th>Capacity</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM System Storage Tape Cartridge 3592 - Data</td>
<td>300/500 GB</td>
<td>18P7534</td>
</tr>
<tr>
<td>IBM System Storage Tape Cartridge 3592 - Economy</td>
<td>60/100 GB</td>
<td>24R0316</td>
</tr>
<tr>
<td>IBM System Storage Tape Cartridge 3592 - WORM</td>
<td>300/500 GB</td>
<td>18P7538</td>
</tr>
<tr>
<td>IBM System Storage Tape Cartridge 3592 - Economy WORM</td>
<td>60/100 GB</td>
<td>24R0317</td>
</tr>
<tr>
<td>IBM System Storage Tape Cartridge 3592 - Cleaning</td>
<td>Cleaning, 50 uses</td>
<td>18P7535</td>
</tr>
<tr>
<td>IBM System Storage Tape Cartridge 3592 - Extended</td>
<td>700 GB</td>
<td>23R9830</td>
</tr>
<tr>
<td>IBM System Storage Tape Cartridge 3592 - Extended WORM</td>
<td>700 GB</td>
<td>23R9831</td>
</tr>
</tbody>
</table>

2.4 3592 WORM functionality

The IBM System Storage Tape Cartridge 3592 WORM data cartridges are designed to provide unalterable, nonrewritable tape media for long-term records retention. WORM characteristics include:

- WORM cartridges are available as 300 GB or 60 GB native capacity for E1 format (3592-J1A) and 700 GB, 500 GB, or 100 GB native capacity for E2 format (3592-E05).
- Nonreversible screws are used to secure the media housing.
- WORM and R/W cartridges can be intermixed within the same IBM System Storage Automated Tape Library 3494, IBM System Storage TS3500 Tape Library, or StorageTek Automated Cartridge System (ACS) solutions.
- When the drive senses that a cartridge is a WORM cartridge, the microcode prohibits changing or altering user data that is already written on the tape. The microcode keeps track of the last appendable point on the tape by using an overwrite-protection pointer stored in the cartridge memory (CM).
- Each WORM cartridge is identified using a Unique Cartridge Identifier (UCID).

Basic WORM

The 3592 tape drives support both the 3592 R/W cartridges as well as 3592 WORM cartridges. The WORM cartridge is geometrically identical to a R/W cartridge and uses the same rewritable media formulation. The servo format, which is mastered onto the tape at manufacturing, is different for WORM cartridge types, however. The WORM characteristic is not an inherent irreversible media characteristic (such as permanent WORM on optical media, CD-R, or ablative optical WORM), but instead because of the way that the 3592 drive's microcode handles a WORM cartridge. The drive microcode does not allow overwrite or erasure of previously written user data, such as records or file marks; however, the drive supports appending new data after existing data.

Unique cartridge identifier

Each IBM System Storage 3592 Tape WORM cartridge is identifiable through a unique cartridge identifier (UCID). The intent of the UCID is that it is constructed to guarantee that it
is unique worldwide. This identifier is derived from a concatenation of the four byte unique CM serial number of the CM chip in the 3592 WORM cartridge, and the eight byte unique tape serial number created from information mastered into the timing-based servo (TBS) at the time of cartridge manufacture. The parts of UCID that come from this serial number are written to a locked part of the CM. This additional level of security supports legal audit requirements. Furthermore, the UCID allows unique cartridge tracking and can be the differentiator to other WORM tape providers’ products.

Drive operation to prevent overwrite

A WORM drive handles a WORM cartridge differently than a R/W cartridge. In general, it responds to a subset of the SCSI commands that work on a R/W cartridge. For example, an Erase command is rejected with the appropriate error posted. Additionally, a WORM drive rejects certain command sequences of otherwise valid commands. For example, if a cartridge is not empty, a Rewind followed by a Write command is rejected with the appropriate error posted. In general, the WORM drive prevents overwrite. There are, however, exceptions to the WORM drive preventing overwrite that the WORM drive must support in order to be flexible and “application software transparent.” WORM permits overwrite for the following scenarios:

- Allow extending files
- Allow appending files
- Allow relabelling a new scratch tape: Overwrite the VOL1 record if there are no subsequent records on tape
- Rely on known header/trailer constructs
- Use Statistical Analysis and Reporting System (SARS) data that can be written and updated on WORM tapes, because the SARS data is not in the user area of the tape

Final destruction of WORM cartridges

You cannot reuse a WORM cartridge after you have written on it; therefore, when the WORM cartridge is no longer useful, you should destroy it. If the WORM cartridge has sensitive data on it, you should bulk erase the cartridge. Bulk erasing the cartridge erases everything on the tape, including the mastered servo pattern, and renders the tape useless. Be sure to bulk erase WORM cartridges before you dispose of them.

2.5 IBM TotalStorage Enterprise Tape Drive 3590

The initial 3590 tape drive offering, the 3590 B Model, was introduced in 1995. It provided a native cartridge capacity of 10 GB in a linear tape format and a native drive data rate of 9 MB/s. The 3590 B model was upgraded with a new head, deck modifications, and operating software in 1999. It was introduced as the E model. This E model provided a 20 GB native cartridge capacity, which was double the B model’s native cartridge capacity, and an increased native data rate of 14 MB/s, which was over 50% greater than the B model’s native data rate. The introduction of the 3590 Extended Length (XL) Cartridge in 2000 allowed the 3590 Model E to extend its native capacity to 40 GB, and the B model to extend its native capacity to 20 GB. The newest enterprise tape drive, the 3590H model, provides a native capacity of 60 GB on existing XL media and 30 GB on the standard length media, and the 3590H model provides a native data rate of 14 MB/s.

Note: IBM TotalStorage 3590 tape drive and its associated features were withdrawn from marketing effective September 29, 2006.

IBM Total Storage TS3500 does not support 3590 tape drive technology.
Figure 2-14 shows an IBM TotalStorage Enterprise Tape Drive Model E1A.

2.5.1 Technology

The IBM 3590 High Performance Tape Subsystem provides high capacity, performance, reliability, and a wide range of host connectivity. This technology exploits a fourth generation magneto resistive (MR) head, a 16 MB buffer, predictive failure analysis, and state-of-the-art electronic packaging.

While reading or writing 16 tracks at a time, the 3590 models use serpentine, interleaved, and longitudinal recording technology for a total of four, eight, or twelve round trips from the physical beginning to the physical end of the tape and back again. The tape R/W head indexes, or moves vertically, when it completes each round trip so that the recorded tracks are interleaved across the width of the tape.

The IBM 3590 tape drives use a metal particle medium in the tape cartridge that can store 10, 20, 30, 40, or 60 GB of uncompressed data, depending on the cartridge type and the drive model. The integrated control unit uses a compaction algorithm that can increase the storage capacity of these cartridges. Assuming a compression ratio of three to one (3:1), the cartridge capacity increases to 120 GB on E models and to 180 GB on H models when using an extended length cartridge.

High-speed data access

The 3590 longitudinal serpentine recording technique allows for high performance read operations.
The 3590 Model E tape drive makes eight round trip passes over the tape, compared to the Model H tape drive, which makes 12 passes. If a required block of data is, logically, one-eighth or one-twelfth of the way along the length of the tape, the read head only needs to index upward by one position to access this data, which requires no tape movement.

Unlike any previous tape products, the IBM Magstar 3590 tape subsystem uses a volume control region, inaccessible to user applications, to locate data on the tape. When a read request takes place, the tape drive uses a high-speed block search to position the tape directly at the required data block. This facility allows for access speeds that are significantly faster than previous generations of tape technology. The 3590 can search for data at up to 332 MB/s, compared to the 3490 rate of 10.6 MB/s.

Predictive failure analysis (PFA)
With PFA, both the tape cartridge and drive contain a history of performance and position, making more information available to hardware service personnel. You can set up your system to automatically transmit this information to an IBM Hardware Support Center, allowing the initiation of preventive maintenance actions. This can result in a reduction in incidents that affect user applications and data availability.

Here are several examples to help explain this feature:

- Keeping an ongoing history of the last 100 tape R/W operations performed on a particular tape cartridge: This history tracks the type of error, location by sector and block, drive ID, and cartridge volume. This history also tracks good mounts where no error occurred.
- Keeping an ongoing history of the last 100 tape R/W operations performed on a particular drive: This drive history can track the same data as the cartridge history and additional information for hardware isolation.
- If a particular tape sector shows a high error rate, PFA partitions off that sector and renders that sector unusable for future write operations.
- If a tape cartridge shows a high and increasing number of overall R/W errors, PFA sends a message alert to the operator to copy the contents of the cartridge to another cartridge and retire the current cartridge from use.
- PFA can isolate a high number of R/W errors to a particular drive and sends a message to the operator to call the maintenance provider to repair the drive.

Data integrity with the 3590 tape system
A unique feature of the IBM TotalStorage Enterprise 3590 Tape System is **striping** data horizontally and vertically (see Figure 2-15).
Chapter 2. Tape drives and controllers

Because of the way that the 3590 tape drive writes data onto the tape, we achieve RAID-like tape storage:

- Multiple write elements are used for improved performance.
- Data is spread across multiple tracks to achieve improved availability.
- Recovery bits are written for improved error recovery.

Service and Media Information Messages (SIMs and MIMs)

The Service Information Message (SIM) and Media Information Message (MIM) functions are the primary factors for improved product availability. They generate messages that are sent to the host console in a z/OS environment.

A **SIM** contains the machine type, machine serial number, and Field Replaceable Unit (FRU), which allows the dispatch of the appropriate service personnel with the replacement parts that are required to correct the machine fault. This procedure helps to improve service response time and helps to reduce the time required for machine repair.

A **MIM** identifies problems with the media (tape) and the volume number of the bad cartridge. This allows the client to perform maintenance within the tape library and to prevent unnecessary service calls when the fault is media.

Refer to *IBM TotalStorage Enterprise Tape System 3590 Introduction and Planning Guide*, GA32-0329, for detailed information about these messages.

Statistical Analysis and Reporting System (SARS)

SARS assists you in determining whether the media (tape) or the hardware in the drive causes the R/W errors. The 3590 tape drive microcode contains a volume SARS (VSARS) algorithm and a hardware SARS (HSARS) algorithm to analyze errors. SARS algorithms report messages through SIMs and MIMs.

For more information about SARS, refer to the *IBM TotalStorage Enterprise Tape System 3590 Introduction and Planning Guide*, GA32-0329, and the SARS documentation which you can find on the Web at:

2.5.2 Characteristics

Table 2-7 compares the drive capabilities and provides an overview of the characteristics of the IBM TotalStorage Enterprise tape drive Models H, E, and B.

<table>
<thead>
<tr>
<th></th>
<th>3590 Model H</th>
<th>3590 Model E</th>
<th>3590 Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display panel</td>
<td>Alphanumeric liquid crystal display</td>
<td>None</td>
<td>10-cartridge capacity Automatic Cartridge Facility (ACF)</td>
</tr>
<tr>
<td>Cartridge Loader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Models x1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Models x11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host attachment</td>
<td>FICON through 3590-A60</td>
<td>ESCON through 3590-A60</td>
<td>FICON through 3590-A60</td>
</tr>
<tr>
<td></td>
<td>SCSI direct attach</td>
<td>Fibre Channel attach</td>
<td>ESCON through 3590-A60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fibre Channel attach</td>
</tr>
<tr>
<td>Native device data rate</td>
<td>14 MB/s</td>
<td>9 MB/s</td>
<td></td>
</tr>
<tr>
<td>Sustained device data rate (3:1 compression)</td>
<td>34 MB/s with Ultra™ SCSI</td>
<td>42 MB/s with Fibre Channel</td>
<td>27 MB/s with Ultra SCSI</td>
</tr>
<tr>
<td>Maximum instantaneous data transfer rate</td>
<td>100 MB/s with FICON</td>
<td>17 MB/s with ESCON</td>
<td>100 MB/s with FICON</td>
</tr>
<tr>
<td></td>
<td>17 MB/s with ESCON</td>
<td>40 MB/s with Ultra SCSI</td>
<td>17 MB/s with ESCON</td>
</tr>
<tr>
<td></td>
<td>40 MB/s with Fibre Channel</td>
<td></td>
<td>40 MB/s with Fibre Channel</td>
</tr>
<tr>
<td>Tape R/W access speed</td>
<td>3.14 m/sec (124 inches/sec)</td>
<td>2.0 m/sec (79 inches/sec)</td>
<td></td>
</tr>
<tr>
<td>Search/rewind speed</td>
<td>5 m/sec (198 inches/sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data search rate</td>
<td>332 m/sec</td>
<td>166 m/sec</td>
<td></td>
</tr>
<tr>
<td>Full cartridge rewind time (at end of volume)</td>
<td>2 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>3590 High Performance Cartridge Tape (HPCT)</td>
<td>3590 Extended High Performance Cartridge Tape (EHPCT)</td>
<td></td>
</tr>
<tr>
<td>Maximum cartridge rewind time</td>
<td>60 seconds for 3590 High Performance Cartridge Tape</td>
<td>120 seconds for Extended High Performance Cartridge Tape</td>
<td></td>
</tr>
<tr>
<td>Tape length</td>
<td>300 m for 3590 High Performance Cartridge Tape (HPCT)</td>
<td>600 m for Extended High Performance Cartridge Tape (EHPCT)</td>
<td></td>
</tr>
<tr>
<td>Uncompressed data capacity HPCT</td>
<td>30 GB</td>
<td>20 GB</td>
<td>10 GB</td>
</tr>
<tr>
<td>Uncompressed data capacity EHPCT</td>
<td>60 GB</td>
<td>40 GB</td>
<td>20 GB</td>
</tr>
</tbody>
</table>

2.5.3 Attachment options

The 3590 B Models are SCSI drives and do not provide Fibre Channel connections. The Model E and H tape drives attach through Ultra SCSI and Fibre Channel attachments to the IBM System p™, System i™, or System x™ servers, and other Open Systems or midmarket servers, and to the Model J70 controller. The Model J70 controller provides FICON and ESCON channel connections to IBM System z servers.
Figure 2-16 presents an overview of these attachment possibilities. It does not include the number of combinations of possible attachments when attaching 3590 tape drives to a System z server.

Table 2-8 details the attachment options provided for the 3590 Models B, E, and H tape drives to the server platforms.

Table 2-8 IBM TotalStorage Enterprise tape drive attachment summary

<table>
<thead>
<tr>
<th>Server</th>
<th>3590 Model H</th>
<th>3590 Model E</th>
<th>3590 Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra SCSI</td>
<td>Ultra SCSI</td>
<td>Ultra SCSI</td>
<td></td>
</tr>
<tr>
<td>System z</td>
<td>Using J70</td>
<td>Using J70</td>
<td>Using J70</td>
</tr>
<tr>
<td>iSeries</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>pSeries</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>xSeries</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SUN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intel® Compatible</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Compaq Alpha</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IBM 3494 Virtual Tape Server (VTS)a</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a. 3590 Tape Drives, when attached to an IBM TotalStorage Virtual Tape Server, are exclusively used by the VTS and are not available to any other host.
For a detailed list of supported servers and adapters, go to:

For the latest information about applications and which application levels support 3590 tape drives, refer to the Independent Software Vendor (ISV) matrixes on:

2.5.4 Media considerations

The IBM TotalStorage Enterprise tape drives use cartridges of the same form factor as the IBM 3490 Tape Drives. This ensures automation hardware compatibility in an automated tape environment. The IBM TotalStorage Enterprise 3590 tape cartridges are incompatible with previous tape subsystems.

Cartridge types

All 3590 tape drive models support the use of the two existing cartridge types:

- **High Performance Cartridge Tape** (HPCT): An HPCT cartridge is also called a *J-cartridge*, because the media type is identified by a J as the seventh character of the external volume label that is used inside a 3494 Tape Library. In a system managed storage (SMS) environment, HPCT cartridges are also referred to as MEDIA3. The length of the tape is 300 meters. The capacity varies depending on the tape drive model as described in Table 2-7 on page 46.

- **Extended High Performance Cartridge Tape** (EHPCT): An EHPCT cartridge is also called a *K-cartridge*, because the media type is identified by a K as the seventh character of the external volume label that is used inside a 3494 Tape Library. In an SMS-managed environment, they are also referred to as MEDIA4. The length of the tape is 600 meters. The capacity varies depending on the tape drive model as described in Table 2-7 on page 46.

If you have different 3590 models installed, you can use cartridges on either of these drive models. The tape drives are *upward read compatible*, which means:

- Cartridges that were written on a Model B tape drive can be read on a Model E or Model H Tape Drive.
- Cartridges that were written on a Model E tape drive can also be read on a Model H Tape Drive.
- Cartridges that were written on a Model H tape drive can only be read on a Model H tape drive.
- Cartridges written with a specific recording technology (128, 256, or 384 tracks) can only be modified on a drive using the same technology with which the cartridge was written before.
- Cartridges that were returned to scratch and are then written from load point can be reused on any tape drive. In this case, the cartridge is internally relabeled.

For a detailed description of the required specifications for read compatibility in a z/OS environment, refer to 6.3, “Managing different 3590 models in a 3494 Tape Library” on page 256.
2.5.5 3590 feature codes

This section lists the available feature codes for the 3590 tape drives. Table 2-9 shows device attachment, installation, and media feature codes for the 3590 Models B11, B1A, E11, E1A, H11, and H1A. It also provides a description of the tape drive-related feature codes.

For feature codes related to the Model J70 tape controller, refer to Table 2-11, “Model J70 feature codes” on page 59. For feature codes related to the 3494 Tape Library with 3590 tape drives installed, see Chapter 3, “IBM TotalStorage Enterprise Automated Tape Library” on page 83.

Table 2-9 Feature codes for 3590 Tape Drives

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
<th>Hxx models</th>
<th>Exx models</th>
<th>Bxx models</th>
</tr>
</thead>
<tbody>
<tr>
<td>0500</td>
<td>Drive microcode update</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>1748</td>
<td>Custom quickship expedite</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>2003</td>
<td>3590 Model C12 or C14 attachment</td>
<td>H1A</td>
<td>E1A</td>
<td>B1A</td>
</tr>
<tr>
<td>2004</td>
<td>Field install silo attachment</td>
<td>H1A</td>
<td>E1A</td>
<td>B1A</td>
</tr>
<tr>
<td>2005</td>
<td>Remove silo attachment from 3494</td>
<td>H1A</td>
<td>E1A</td>
<td>B1A</td>
</tr>
<tr>
<td>2006</td>
<td>Remove silo attachment for A14</td>
<td>N/A</td>
<td>E1A</td>
<td>B1A</td>
</tr>
<tr>
<td>2200</td>
<td>Deckside enclosure</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>3510</td>
<td>Field install Fibre Channel attachment</td>
<td>H1x</td>
<td>E1x</td>
<td>N/A</td>
</tr>
<tr>
<td>8001</td>
<td>Cartridge magazine</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>8002</td>
<td>Cleaner cartridge</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>8130</td>
<td>30 High Performance Cartridge Tapes</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>8140</td>
<td>30 Extended High Performance Cartridge Tapes</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9000</td>
<td>ES/9000, ES/3090, S/390, or zSeries attachment</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9066</td>
<td>Pearl white cover (default color)</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9068</td>
<td>Raven black cover</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9070</td>
<td>128-track preformatted High Performance Cartridge Tape</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9071</td>
<td>256-track preformatted High Performance Cartridge Tape</td>
<td>H1x</td>
<td>E1x</td>
<td>N/A</td>
</tr>
<tr>
<td>9072</td>
<td>384-track preformatted High Performance Cartridge Tape</td>
<td>H1x</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9200</td>
<td>Open Systems device drivers</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9210</td>
<td>Hewlett-Packard (HP) UNIX attachment</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9211</td>
<td>SUN attachment</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9212</td>
<td>Windows or xSeries attachment</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9213</td>
<td>Other non-IBM attachment</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9221</td>
<td>First B11 or E11 plus rack shelf installed in a rack</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
</tbody>
</table>
2.6 Fibre channel connection (FICON) overview

The System z FICON architecture addresses the constraints in the existing ESCON architecture. It also improves utilization of the existing fiber infrastructure:

- The System z architecture only allows 256 channels.
- Some installations have processors that are at, or close to, the limit of 256 channels. Consolidating multiple ESCON channels onto a single FICON channel provides relief and allows the input/output (I/O) bandwidth for the server to continue to grow.
- The z/OS architecture allows a maximum of 1,024 addresses per channel. The FICON architecture supports up to 16,384 addresses on a channel. This is important for control units such as the IBM Enterprise Storage Server®, which provides large numbers of addresses.
- The data rate drops for ESCON distances in excess of 9 km.

 The fact that the FICON channel can span up to 100 kilometers before significant data rate drop takes effect enables enhanced distance connectivity. However, this implementation requires repeaters.
- You can obtain a higher data rate.

When compared with ESCON, FICON reduces protocol overhead. This capability, combined with technology advances, allows a Fibre Channel link to perform at up to 100 MB/s full duplex. In a normal operation, this gives a sustained throughput of 60 to 70 MB/s. This equates to approximately up to five concurrent ESCON bulk-data I/O operations. Or, it might yield up to eight concurrent ESCON transaction I/O operations (depending on the channel utilization of the ESCON channels), because ESCON provides 17 MB/s, half duplex.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
<th>Hxx models</th>
<th>Exx models</th>
<th>Bxx models</th>
</tr>
</thead>
<tbody>
<tr>
<td>9222</td>
<td>Second or fourth B11, E11, or H11 installed in a rack</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9223</td>
<td>Third B11 or E11 plus rack shelf installed in a rack</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9400</td>
<td>AS/400® or iSeries attachment</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9510</td>
<td>Fibre Channel attachment (plant install)</td>
<td>H1x</td>
<td>E1x</td>
<td>N/A</td>
</tr>
<tr>
<td>9590</td>
<td>No data cartridges</td>
<td>H11</td>
<td>E11</td>
<td>B11</td>
</tr>
<tr>
<td>9600</td>
<td>RS/6000®, pSeries, or RS/6000 SP attachment</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9702</td>
<td>Interposer, double-byte</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9790</td>
<td>Ultra SCSI attachment (plant install)</td>
<td>N/A</td>
<td>N/A</td>
<td>B1x</td>
</tr>
<tr>
<td>9798</td>
<td>Inline SCSI Terminator</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
<tr>
<td>9799</td>
<td>VHDCI cable/interposer</td>
<td>H1x</td>
<td>E1x</td>
<td>B1x</td>
</tr>
</tbody>
</table>

For a detailed description of the feature codes listed in Table 2-9 and the IBM 3599 models, refer to the IBM TotalStorage Enterprise Tape System 3590 Introduction and Planning Guide, GA32-0329.
A higher data rate means less fiber for a given rate.
In some countries or regions, fiber is very expensive. Therefore, FICON, by allowing aggregation of paths onto a single fiber, might be very cost-effective.

Utilization of fiber infrastructure is improved.
The same amount of fiber and repeaters might be used to carry significantly more traffic, offsetting a possible future cost of additional fiber and repeaters needed to carry more data.

You can obtain a greater distance with dark fiber.
In some countries or regions, clients typically use dark fiber without retransmission through repeaters. The use of FICON can provide a significantly greater distance of 10 km, or 20 km with a Request for Price Quotation (RPQ), compared to ESCON light emitting diode (LED) limits of 3 km for 62.5 micron fiber, or 2 km for 50 micron fiber.

FICON channels can use existing 9 micron single-mode fiber, or 50 or 62.5 micron multimode fiber. FICON can use any existing fiber in use by ESCON. Note that 50 and 62.5 micron fiber is only supported up to 550 meters, where 9 micron is supported up to 10 kilometers (or 20 kilometers with an RPQ).

FICON is the foundation for high-performance channels. The architecture and implementation allow for:

- Initial implementation to ESCON devices through the IBM 9032 Model 5 ESCON director acting as a bridge
- Point-to-point to I/O subsystems with System z FICON interfaces
- Switched point-to-point through a FICON director to I/O subsystems with System z FICON interfaces

Figure 2-17 presents an overview of the components of the fiber optic technology. It shows the dimension of a human hair compared to the diameter of the fiber. The bottom of Figure 2-17 shows the connectors used for multimode and single mode fiber as well as for ESCON attachment.
FICON attachment allows for longer distances between the host and the tape controller than ESCON without the performance drop known from ESCON attachments at larger distances.

2.7 3592 Model J70 Tape Controller

The Enterprise Tape Controller 3592 Model J70 is the follow-on to the highly successful Enterprise Tape Controller 3590 Model A60, and is designed for environments with ESCON or FICON attached servers. The 3592-J70 Controller is designed for installation in the same frames as the current 3590-A60 controller. These include the 3494 frames, 3952 Tape Frame Model F05, and standalone racks. The J70 (shown in Figure 2-18) is 445 mm (17.5 inches) wide, 603 mm (23.8 inches) deep, and 222 mm (8.7 inches) in height. It weighs 29 kg (63 lb.), and 39 kg (86 lb.) including mounting hardware.
As well as supporting the new 3592-J1A drives, the 3592-J70 is capable of attaching 3590 Tape Drives. It is a suitable replacement for users of 3590-A00, A50, and A60 controllers, who need the additional performance and attachment capabilities that the 3592-J70 Controller provides.

Enhancements incorporated into the 3592 Model J70 Tape Controller include:

- Support for an intermix of ESCON and FICON attachments
- Attachment of up to twelve 3592-J1A or 3590 B, E, and H tape drives
- Up to 1.5 times the throughput of the 3590-A60, with FICON attachment using the 3592-J1A tape drive
- Support for capacity scaling with the 3592 Model J1A Tape Drive
- Support for 3592 drive hot swap capabilities
- Dual-mirrored hard drive for redundancy
- Redundant, hot-swappable power supplies and cooling components with automatic failover
- Support for Tape Encryption with the TS1120 Tape Drive

Note: When using Tape Encryption in a library that has a mix of controller models, you need to upgrade the microcode firmware of your controllers if you intend to use tape cartridges from a common tape cartridge scratch pool.

The minimum level of microcode firmware is 1.19.5.x for the 3592-J70 Enterprise Tape Controller, 1.21.x.x for the TS1120 Tape Controller (3592-C06), and 1.16.1.11 for the 3590-A60 Enterprise Tape Controller.
54

Note: You cannot intermix 3592 and 3590 drive models behind a single 3592-J70 Controller.

You cannot intermix TS1120 tape drives running in Enterprise Tape Format 2 (EFMT2) and TS1120 tape drives running in Enterprise Tape Format 1 (EFMT1), which is also called J1A emulation mode, behind a single 3592-J70 Controller.

You cannot intermix TS1120 tape drives running in Enterprise Tape Format 2 (EFMT2) and TS1120 tape drives running in Enterprise Tape Format 2 with encryption enabled (EEFMT2) behind a single 3592-J70 Controller.

Figure 2-19 Illustrates the characteristics of the 3592 Model J70.

<table>
<thead>
<tr>
<th>IBM TotalStorage Enterprise Tape Controller 3592 Model J70 at a glance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
</tr>
<tr>
<td>Number of ESCON interfaces</td>
</tr>
<tr>
<td>Number of FICON interfaces</td>
</tr>
<tr>
<td>ESCON maximum channel link speed</td>
</tr>
<tr>
<td>FICON maximum channel link speed</td>
</tr>
<tr>
<td>ESCON maximum distance</td>
</tr>
<tr>
<td>(unrepeated, single link to controller)</td>
</tr>
<tr>
<td>(unrepeated, single link to controller)</td>
</tr>
<tr>
<td>Warranty</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (with media)</td>
</tr>
<tr>
<td>Relative humidity</td>
</tr>
<tr>
<td>Wet bulb maximum</td>
</tr>
<tr>
<td>Heat output</td>
</tr>
<tr>
<td>Power requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum drive attachment capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>3592 Model J1A</td>
</tr>
<tr>
<td>3590 Model E, H, FC Attached</td>
</tr>
<tr>
<td>3590 Model B, E, H Attached</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stand alone rack</th>
<th>3494 Library</th>
<th>Silo compatible frame</th>
<th>A14</th>
</tr>
</thead>
<tbody>
<tr>
<td>3592 Model J1A</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>NA</td>
</tr>
<tr>
<td>3590 Model E, H, FC</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3590 Model B, E, H Attached</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 2-19 Model J70 at a glance

2.7.1 Model characteristics

The 3592-J70 Controller is designed to offer ESCON and FICON attachment of either 3592 or 3590 tape drives in 3494 Tape Library, StorageTek ACS, and standalone environments.
The Model J70 is designed to exploit the performance and function of the 3592 Tape Drive, including the high capacity, fast access, and the WORM tape formats.

To assist in data migration to new more cost-effective technologies, you can install the 3592-J70 with its associated tape drives in the same IBM 3494 Tape Library with existing 3490 or 3590 models. You can intermix the 3592-J70 in the same 3494 Tape Library with the predecessor 3590 Model A60, A50, or A00 controllers, offering a unique and flexible growth opportunity. A 3952 Tape Frame Model F05 is now available for connection to the 3494 Tape Library or a StorageTek Silo, or as a standalone frame. Refer to “IBM 3494 basic tape library frames and models” on page 96 for more details about this new frame.

Note: IBM 3590 Models A14, C10, and C12 were withdrawn from marketing, effective 29 September 2006. The 3592-J70 Controller was withdrawn from marketing, effective 1 December 2006.

2.7.2 Attachment features

The IBM 3592-J70 Controller (like the Model A60) has a number of attachment options to the front end, that is, to the host, and to the back end, that is, to the drives:

- Host attachment:
 - ESCON
 - FICON
 - A mixture of both

- Drive attachment:
 - Fibre Channel:
 - Using a 2 Gbps switch with LC connectors
 - Using a 1 Gbps switch with SC connectors
 - SCSI (for 3590 drives only)

Host attachment

The J70 controller has been designed to provide greater throughput and connectivity than previous IBM controllers, offering up to eight ESCON attachments, or up to four FICON attachments, or an intermix of ESCON and FICON attachments.

The following feature codes are applied to the Model J70 to order either ESCON or FICON attachments or a mixture of the two. You must have at least one of these features:

- FC3413 dual ESCON attachment
 Each feature provides a dual-ported ESCON host adapter. Up to four of these features can be ordered, for a total of up to eight ESCON port attachments. Each port can support up to 64 logical paths.

- FC3434 2-Gbps FICON long wavelength attachment feature
 Each feature provides one FICON adapter that can support up to 128 logical paths (maximum of four features).

- FC3435 2-Gbps FICON short wavelength attachment feature
 Each feature provides one FICON adapter that can support up to 128 logical paths (maximum of four features).

Table 2-10 shows how you can intermix the attachments. Note that FICON columns show the number of FICON channels (which is equal to the number of FICON features), and the
ESCON columns show the number of ESCON channels (which is double the number of ESCON features).

Table 2-10 Permitted combinations of FICON and ESCON attachments

<table>
<thead>
<tr>
<th>3592-J70</th>
<th>3590-A60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON</td>
<td>ESCON</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Feature conversions are available to convert an installed FC3413 to FC3434 or FC3435, as well as to convert an installed FC3434 to FC3435, or FC3435 to FC3434.

Drive attachment

The 3592-J70 Controller can be ordered with a choice of one of the following:

- Two LC Fibre Channel adapters (FC3476)
- Two dual-ported SCSI adapters (FC3477)

The SCSI adapters are only required if you want to attach 3590 drives with SCSI adapters. Otherwise, for 3590 (E or H) Models with FC adapters, 3592-J1A drives, or TS1120 tape drives the FC adapter feature is required. In order to provide Fibre Channel connectivity between a maximum of 12 drives and the controller, you also need to configure an 2109 Model F16 switch. You can use a Model S16 switch to provide a valid configuration, and you will see that many of the available features refer to the use of the S16 switch, although it is no longer marketed by IBM. In general, the required cabling between the controller and the drives for a particular configuration will be supplied, provided that all the correct features have been specified, validating any orders with IBM representatives or partners who will use the IBM configuration tool. It is essential that the 2109 Model F16 or S16 switch has the appropriate number of Gigabit Interface Converter (GBIC) features configured to support the drives, because these are not automatically supplied. Detailed feature descriptions and information about the required features in specific configurations are described in the *IBM System Storage Tape System 3592 Introduction and Planning Guide*, GA32-0464.

We provide a general example of the drive attachment requirements that is designed to demonstrate how the configurations in different frames are built up. Figure 2-20 shows a simplified diagram of 12 3592-J1A drives within a 3494 library attached to a 3592-J70 Controller using a 2109-F16 switch. Eight of the drives are in the same frame as the controller and switch, and the other four are in the adjacent frame.
Sample configuration

Figure 2-21 on page 58 shows in more detail the connections between host, controller, switch, and drive. In order to deliver the correct licensed internal code and hardware to install this configuration, a number of features are required for the controller, the switch, and the frames in which they are housed.

Features on the 3592-J70 in our sample configuration include:

- FICON and ESCON features (either FC3434, FC3435, or FC3413)
 The number and type of these are dictated by throughput and connectivity requirements for the System z host.
- Fibre Channel adapter feature (FC3476)
 This provides the adapter hardware to attach the drives. For 3592 drives, the FC adapters are required because the 3592 drive has only FC connectivity. (The other option is FC3477 for SCSI adapters if 3590 drives are being used.)
- J1A drive attached to controller feature (FC9476)
 This is a mandatory feature on the controller to provide code support for the 3592-J1A drives. It is mandatory on both the J70 and the A60 controllers to support the new drives.
- Fibre drive attach LC switch feature (FC3484)
 This indicates that the configuration includes an F16 switch that has LC connectors. For an SC switch (the S16), FC3483 is required. This feature ensures the correct type of cables are shipped to attach the drives to the switch. In our example, LC connectors are required at both ends of the cables, because both the drive and the switch have LC connectors. The 3590 drives have SC connectors. Each of these different combinations trigger the shipment of different cables of the required length.
- Drive-to-switch cables (FC3059)
 In our configuration we need eight of these features, because one feature must be specified on the J70 for each 3592 tape drive attached to the Model J70 controller in the
rack that contains the Model J70. These features ensure shipment of the correct number of cables to use between the drives and the switch. Use FC9059 for 3590 drives.

Features on the 3494 in the sample configuration:

- LC Fibre Drive-attached controller feature (FC3474)
 This feature is required to install the 3592-J70 Controller in conjunction with the 2109-F16 switch into the 3494-D24 frame. A different feature is required for the 3590 drives in a D14 frame. Different features are required if the switch is an SC switch (that is, the Model S16).

- Adjacent frame 3592 with LC attachment feature (FC4075)
 This feature provides the hardware to support the attachment of the 3592-J1A drives housed in a 3494-D22 frame to the 3592-J70 Controller housed in the adjacent Model D24 frame, using the F16 switch. This feature ensures that the correct type of cables (in our example, LC/LC) are shipped to connect the four drives in this frame to the switch in the adjacent frame. The correct number is shipped based on the number of drives installed in this frame (in our example, four). This feature also applies if all twelve 3592 drives were to be attached to a Model A60 controller. However, if the switch used was a Model S16 (SCC attached), FC4065 would apply. If 3590 drives is being used, different features are used on the D12 frame.

![Figure 2-21: Example of the drive connection to the controller installed in a 3494](image)

Fibre Channel SAN switch

The 2109 SAN Fibre Switch Model F16 must be configured as a separate machine type in our example. Although the required cables are generated by other features in the configuration as we previously described, you must explicitly specify the required number of IBM Gigabit Interface Converters (GBICs) on the switch. Each Model F16 switch comes with eight shortwave GBICs as standard. This is sufficient to connect to the four FC attachments in the controller, leaving six to attach up to six 3592 or 3590 tape drives. You must order additional features (FC2210, additional shortwave transceiver) when you plan to attach more than six drives to the controller. The quantity of this feature should equal at least the number of tape
drives attached to the controller beyond six. So, in our example, order six FC2210s to attach 12 drives to the controller. The 2109 switch also has an optional feature (FC6203) for an additional redundant power supply, enabling dual power source configurations to minimize power outages. Do not specify the “non-rack install” feature (FC9205), because the switches are dedicated to the controller and are always housed in a frame or rack.

2.7.3 Feature codes

Table 2-11 lists the Model J70 feature codes that are available for device attachment and installation.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2714</td>
<td>Console Expansion</td>
</tr>
<tr>
<td>2715</td>
<td>Console Attachment</td>
</tr>
<tr>
<td>2720</td>
<td>IBM System Storage TS3000 System Console</td>
</tr>
<tr>
<td>3059</td>
<td>3592 Tape Drive-to-Switch Cables</td>
</tr>
<tr>
<td>3413</td>
<td>Dual ESCON Host Adapter</td>
</tr>
<tr>
<td>3434</td>
<td>2-Gbps FICON Long Wave Attachment</td>
</tr>
<tr>
<td>3435</td>
<td>2-Gbps FICON Short Wave Attachment</td>
</tr>
<tr>
<td>3465</td>
<td>SC Fibre Switch Controller in a Rack</td>
</tr>
<tr>
<td>3475</td>
<td>LC Fibre Switch Controller in a Rack</td>
</tr>
<tr>
<td>3476</td>
<td>Two LC Fibre Channel Drive Adapters</td>
</tr>
<tr>
<td>3477</td>
<td>Dual-Ported SCSI Drive Adapters</td>
</tr>
<tr>
<td>3483</td>
<td>Fibre Drive Attachment for Controller with 2109 S16</td>
</tr>
<tr>
<td>3484</td>
<td>Fibre Drive Attachment for Controller with 2109 F16</td>
</tr>
<tr>
<td>4065</td>
<td>Multiframe SCSI Rack Attach</td>
</tr>
<tr>
<td>4641</td>
<td>Install J70 Controller in a Rack</td>
</tr>
<tr>
<td>4860</td>
<td>Replace Controller with a 3592 Model J70</td>
</tr>
<tr>
<td>4865</td>
<td>Remove J70 Controller from a 3494 Model D14 or D24 Frame</td>
</tr>
<tr>
<td>4868</td>
<td>Field Install J70 in a 3590 Model A14 Frame</td>
</tr>
<tr>
<td>5245</td>
<td>Dual Path Attachment</td>
</tr>
<tr>
<td>5593</td>
<td>Router for EKM Attachment</td>
</tr>
<tr>
<td>5595</td>
<td>CU Encryption Configuration - Field-Installed</td>
</tr>
<tr>
<td>9000</td>
<td>Attach to S/390 or System z</td>
</tr>
<tr>
<td>9059</td>
<td>J70 to 3590 Drive Attachment</td>
</tr>
<tr>
<td>9060</td>
<td>Multiframe SCSI A14</td>
</tr>
<tr>
<td>9476</td>
<td>3592 Model J1A Drive Attached to Controller</td>
</tr>
</tbody>
</table>
2.7.4 Reliability and availability

The J70 Controller is built from IBM components, including the IBM pSeries, AIX operating system, and PCI-X bus architecture. Redundant, hot-swappable power supplies and cooling components with automatic failover help provide High Availability for the Controller. In addition, the J70 Controller provides support for the IBM TotalStorage Master Console (TSMC), which allows administrators to remotely monitor the J70 Controller for early problem detection, and to enable service notification, including automatic event-driven service notification to IBM. For more details about the application performance and capacity enhancements, refer to the IBM System Storage Tape System 3592 Introduction and Planning Guide, GA32-0464.
Call Home
The IBM 3592 Model J70 Controller supports the Call Home function. The Call Home function opens a service alert in the event that a problem occurs with the Model J70 controller. An IBM SSR can then respond to fix the problem.

The Call Home feature is now available through the IBM TS3000 System Console, which we explain in, “Call Home” on page 71. IBM 3494 Tape Libraries that were already configured and using the TotalStorage Master Console (TSMC) will still function, and they will only need to use the new features with any additional frame that is purchased.

2.7.5 Compatibility considerations for upgrade and migration

The IBM System Storage Tape 3592 Model J1A drive and 3592 Model J70 Controller can be used in various combinations with 3590 drives and the 3590-A60 controller. This is intended to provide the maximum configuration flexibility when upgrading in order to add to or replace existing 3590 installations.

The 3592 Model J70 (and the 3590 Model A60) can be used in combination with either 3592 or 3590 tape drives. However, you must be sure to obey the configuration rules in mixed environments:

- You cannot intermix SCSI (3590) and Fibre Channel (3590 or 3592) attached tape drives behind a single controller.
- The 3592 Model J1A drives cannot be attached to the same controller with 3590 tape drives, and you cannot intermix 3590 Models B, E, or H on the same controller.
- The 2109 Model F16 or S16 switch must be used exclusively by the 3592-J70 or 3590-A60 controller. The 2109 switch and attached 3592 or 3590 tape drives cannot be shared with Open Systems servers.
- The controller must have dedicated access to the 3592 and 3590 tape drives attached to the 2109 switch. You cannot attach the second Fibre Channel port on the tape drives to another 2109 switch or an Open Systems server.
- The 3592 drives are not supported for attachment to a 3590 Model A50 or A00 controller.

The 3592 tape cartridge has external dimensions (form factor) that allow it to be used within existing storage cells of libraries containing 3590 tapes. However, the 3592 tape drives must be installed in frames that are separate from any 3590 drives. The 3592 tape cartridges are incompatible with IBM 3590 tape drives, and likewise, you cannot use the 3590 tapes in the 3592 drives.

Compatibility considerations include:

- The 3592 tape drives cannot read cartridges written by 3590 or 3490 drives. Cartridges written by IBM 3592 drives cannot be read by the 3590 or 3490 drives. Even though the cartridges are similar in size, they contain different media and media format, and thus are not interchangeable.
- Although you can attach multiple systems to a 3592 drive, the systems cannot use the drive simultaneously. You can only vary the 3592 drive online to one system at a time.

The IBM System Storage Tape 3592 Model J1A drive and TS1120 tape drive can be attached to the same 3592 Model J70 Controller with the following restrictions:

- The TS1120 tape drive cannot be attached to the same 3592 Model J70 Controller with 3590 Tape Drives.
- TS1120 tape drives will operate in J1A emulation mode when attached to the same 3592 J70 Controller with 3592-J1A Tape Drives. This mode is set automatically by the
microcode. In this mode, the TS1120 tape drive will read and write only in J1A format at the J1A capacity and approximate performance ratings. This configuration requires J70 code level 1.19.1.xx and Library Manager 532.xx.

- Encryption-enabled TS1120 tape drives in a library cannot be attached to the same 3592 Model J70 with TS1120 tape drives that are not encryption-enabled or 3592-J1A drives.

2.7.6 Performance overview

The chart in this section compares the performance of the 3592-J70 and 3590-A60 controllers with twelve attached 3592-J1A tape drives. Figure 2-22 shows the throughput of a 3592-J70 Controller when data is highly compressible, and Figure 2-23 illustrates the performance advantage of the 3592-J1A tape drive over the 3590 tapes when data compresses only 1:1.

![Write Throughput highly compressible data](image)

Figure 2-22 J70 and A60 write throughput comparison
Summary

The J70 Controller has been designed to provide up to one and a half times the throughput of the A60. It has been designed to provide numerous functions to allow better performance for applications that require high data transfer rates, write many files to a tape cartridge, regularly synchronize records to the cartridge, or randomly retrieve records or files from a high capacity tape cartridge. This functionality is delivered by a combination of the J70 Controller microcode and OS/390 or z/OS operating system support. Figure 2-22 and Figure 2-23 illustrate the J70 Controller; when attached to the 3592-J1A tape drive, it offered significantly better performance than its predecessor.

Although designed to complement the high capacity and high performance of the 3592 Tape Drive, the J70 Controller is backward compatible with the 3590 Tape Drive. This compatibility enhances the flexibility of the J70 Controller to fit into various storage environments, including those with existing 3590 tape systems, which helps to protect prior investments in tape storage hardware.

2.8 IBM System Storage TS1120 Tape Controller

The IBM System Storage TS1120 Tape Controller (TS1120 Model C06 Controller) is the Removal of Hazardous Substances (RoHS) compliant replacement to the 3592-J70. The TS1120 Model C06 Controller is designed to attach to ESCON and FICON channels on System z servers or through a FICON/FC switch with appropriate levels of system software. The TS1120 Model C06 Controller (shown in Figure 2-24) is 442 mm (17.4 inches) wide, 573 mm (22.6 inches) deep, and 172 mm (6.8 inches) in height. It weighs 28.1 kg (62 lb.) and 39 kg (86 lb.) with mounting hardware.
The TS1120 Model C06 Controller is supported in the following configurations:

- **TS3500:** Attachment is the same as the 3592-J70 through the 3953 Tape Frame Model F05. You can intermix these controllers in the 3953-F05 expansion frames.
- **IBM 3494 Tape Library:** The TS1120 Model C06 Controller resides in an IBM 3952 Tape Frame Model F05, which is explained in more detail in the next section.
- **Silo:** The TS1120 Model C06 Controller resides in a rack or in a 3952-F05 frame (replaces 3590-C10 frame). This controller is then connected to the 3592 drives residing in a 3592-C20 frame.
- **Standalone:** The TS1120 Model C06 Controller resides in a rack or in a 3952-F05 frame. This controller is then connected to the 3592 drives residing in a rack.

Note: The TS1120 Model C06 Controller supports 3592-J1A and TS1120-E05 tape drives; it does not support 3590 tape drives.

The TS1120 Model C06 Controller within a 3952 Tape Controller Model F05 frame can go to different library models.

2.8.1 IBM TS1120 Model C06 Controller characteristics

The TS1120 Model C06 Controller is designed to offer ESCON and FICON attachment to 3592-J1A and 3592-E05 drives. It also provides 3494 Library Manager, StorageTek ACS, and standalone support through the 3952 Tape Frame. The TS1120 Model C06 Controller further exploits the performance and functions of the 3592 Tape Drives, including increased capacity to 500 GB when data is written with the 3592-E05 tape drive in E2 format or 700 GB when data is written with the 3592-E05 tape drive on extended media.

You can intermix 3592-J1A and 3592-E05 tape drives behind a single controller, but the 3592-E05 drives operate in 3592-J1A emulation mode.

Note: To support Tape Encryption, the TS1120 tape drive needs to run in E05 mode, not in J1A emulation mode. Therefore, if you want to use Tape Encryption, you cannot intermix 3592-J1A and TS1120 tape drives behind the same TS1120 Tape Controller.
Enhancements incorporated into the TS1120 Tape Controller include:

- Up to four 4 Gbps FICON attachments or 2 Gbps for 3592 Model J70 Controllers
- Up to eight ESCON attachments
- Support for an intermix of ESCON and FICON attachments
- Up to sixteen attached 3592-E05 (or 3592-J1A) tape drives (up to twelve in a standalone rack)
- Two 4 Gbps Fibre Channel adaptors for attaching 3592 tape drives or switches
- Support for 3592 drive hot swap capabilities
- Support for capacity scaling and segmentation with the 3592 tape drives
- Support for WORM capabilities with the 3592 tape drives
- Support for an outboard search interface for increased performance of certain applications. Currently DFSMShsm™ audit is the only application written to take advantage of this.
- Support for Tape Encryption

Note: For Encryption support, the minimum level of microcode firmware for the TS1120 Controller is 1.21.x.x.

Note: When using Tape Encryption in a library that has a mix of controller models, you will need to upgrade the microcode firmware of your controllers if you intend to use tape cartridges from a common tape cartridge scratch pool.

The minimum level of microcode firmware is 1.19.5.x for the 3592-J70 Enterprise Tape Controller, 1.21.x.x for the TS1120 Model C06 Controller (3592-C06), and 1.16.1.11 for the 3590 A60 Enterprise Tape Controller.

When using Tape Encryption, you can only attach TS1120 tape drives that are encryption-enabled to a single TS1120 Tape Controller.

When using a TS1120 Model C06 Controller with a 3494 tape library, the controller resides in a 3952 Tape Frame that is detached from the library. This extra frame is required, because the TS1120 Model C06 Controller is an unmodified System p processor. The drives and operator panels are on one side, and the cable connections are on the other side. The controller cannot be serviced in a 3494 tape library, because only one side is accessible. This differs from the 3592-J70 Controller that was modified so that the drives, operator panels, and cables were all on one side, which enabled access and service in a 3494 tape library.

There are two versions of the 3952 tape frame: the 3494 attachment frame and the silo attached frame. A maximum of three TS1120 Model C06 Controller can be installed in the 3494 attachment frame, as detailed in Table 2-12.

<table>
<thead>
<tr>
<th>Frame</th>
<th>Attachments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3952 Tape Frame Model F05 (3494 attachment)</td>
<td>One to three TS1120 Model C06 Controllers</td>
</tr>
<tr>
<td>3952 Tape Frame Model F05 (Silo attachment)</td>
<td>One to three TS1120 Model C06 Controllers</td>
</tr>
</tbody>
</table>

The TS1120 Model C06 Controller connects to the library through a 3494-D24 or 3494-D22 frame. The 3494-D24 frame or 3494-D22 frame contains the Fibre Channel switches that the
controller uses to communicate to the TS1120-E05 (or 3592-J1A) drives, the Ethernet router through which the controller communicates with the Library Manager, and up to 12 IBM TS1120-E05 (or 3592-J1A) tape drives. You can connect additional drives (up to a total of 16 per TS1120 Model C06 Controller) in an adjacent 3494-D22 frame or 3494-L22 frame with current feature codes. Table 2-13 lists the frame capacities for drives and controllers.

Table 2-13 3494 maximum frame capacities for drives and controllers

<table>
<thead>
<tr>
<th>Frame</th>
<th>Attachments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3494 Model L22</td>
<td>Up to four 3592 tape drives
Note:
1. If a Model D22 frame is installed with the adjacent frame FC4085, the maximum number of attached 3592 drives is four.
2. If a Model D22 frame is installed with the adjacent frame FC4086, the maximum number of attached 3592 drives is four.</td>
</tr>
<tr>
<td>3494 Model D22</td>
<td>Up to twelve 3592 tape drives
Note:
1. If a Model D22 frame is installed with the adjacent frame FC4085, the maximum number of attached 3592 drives is eight.
2. If a Model D22 frame is installed with the adjacent frame FC4086, the maximum number of attached 3592 drives is four.</td>
</tr>
<tr>
<td>3494 Model D24</td>
<td>One 3592 Model J70 or 3590 Model A60 controller, or TS1120 Model C06 Controller and up to eight 3592 tape drives.</td>
</tr>
<tr>
<td>3494 Model D14 b</td>
<td>One 3592 Model J70 or 3590 Model A60 controller or attachment through the outboard TS1120 Model C06 Controller, and up to four model H1A, four model E1A, or four model B1A 3590 tape drives.</td>
</tr>
</tbody>
</table>

a. The TS1120 Model C06 Controller is installed remotely from the tape library in an IBM 3952 frame.
b. This frame and controller combination is supported only for 3590 drive attachments.

2.8.2 Attachment Features

The IBM TS1120 Model C06 Controller (like the 3592-J70) has a number of attachment options at the front end (that is, to the host) and to the back-end (that is, to the drives):

- **Host attachment:**
 - ESCON
 - FICON
 - Mixture of both

- **Drive attachment:**
 - Fibre Channel:
 - Using a 4 Gbps switch with LC connectors
 - Using a 2 Gbps switch with SC connectors

Host attachment

The TS1120 Model C06 Controller has been designed to provide greater throughput and connectivity than previous IBM controllers, offering up to eight ESCON attachments, or up to
four FICON attachments. An intermix of ESCON and FICON attachments is also available in either short wavelength or long wavelength on the same controller. Table 2-14 shows how you can intermix the attachments.

Table 2-14 Permitted combinations of FICON and ESCON attachments

<table>
<thead>
<tr>
<th>TS1120 Model C06 Tape Controller</th>
<th>3592-J70 Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON (4 Gbps)</td>
<td>ESCON</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>ESCON (2 Gbps)</td>
<td>ESCON</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Apply the following feature codes to the TS1120 Model C06 Controller to order either ESCON or FICON attachments, or a mixture of the two. You must have at least one of these features:

- **FC3440** dual ESCON attachment

 Each feature provides dual-ported ESCON host adapters. You can order up to four of these features for a total of up to eight ESCON port attachments. Each port can support up to 64 logical paths and, using ESCON directors, can be up to 43 kilometers from the host system.

- **FC3441** 4-Gbps FICON short wavelength attachment

 Each feature provides one FICON adaptor with an LC duplex connector for attachment to a FICON host system long wave channel, utilizing a 50-micron multimode fibre cable. The total length of the cable cannot exceed 150 meters (492 ft.) and can connect up to 128 logical paths.

- **FC3442** 4-Gbps FICON long wavelength attachment

 Each feature provides one FICON adapter with an LC duplex connector for attachment to a FICON host system long wave channel utilizing a 9-micron multimode fibre cable. The total length cannot exceed four kilometers and can connect up to 128 logical paths.

- **FC3443** 4-Gbps FICON 10 km long wavelength attachment

 Each feature provides one FICON adapter with an LC duplex connector for attachment to a FICON host system long wave channel utilizing a 9-micron single mode fibre cable. The total length cannot exceed 10 kilometers and can connect up to 128 logical paths.

Drive attachment

The TS1120 Model C06 Controller is attached through FC3478 to up to sixteen 3592 tape drives. This feature installs two short wavelength 4 Gbps dual-ported Fibre Channel adapters with LC connectors. The following features are available depending on how you install the controller:

- **FC3488** 4 Gb Fibre Channel switch, maximum of two
- **FC4888 or FC4887** Fibre Channel switch mount kit, one for each controller
- **FC3492** external fabric support, maximum of one
- **FC3493 or FC9493** direct connect drive, maximum of one
- **FC3494** Fibre Channel switch rack mount, maximum of one
- **FC9885** field merge TS1120 Model C06 Controller into 3952 Tape Frame, maximum one
- **FC9886** plant install TS1120 Model C06 Controller into 3952 Tape Frame, maximum one
IBM TotalStorage 3494 Tape Library features

If you are going to install a TS1120 Model C06 Controller in a 3952-F05 attached to a 3494, then you must order the following features:

- FC3486 Switch Mount Kit: You must specify this feature on the 3494 model D22 or D24 frame that attaches to the TS1120 Model C06 Controller.
- FC3490 Redundant FC attachment: Add this for redundancy.
- FC4085 Adjacent Frame Fibre Channel 3592: You must specify this on the associated 3494 Model L22 or D22 frame that contains the other 3592 tapes drives that will be attached to the TS1120 Model C06 Controller.
- FC3061 3592 Drive-To-Switch cables: Specify one feature on the 3494 D24 frame for each 3592 tape drive attached to the switches.

Attaching the TS1120 Model C06 Controller to 3592 tapes drives in an IBM TotalStorage 3494 Tape Library can vary, because tape drive placement is independent of controller location. In fact, the TS1120 Model C06 Controller is outboard to the 3494 library. Figure 2-25 gives you some examples of how this can look.

Direct Connect

For limited configurations, the TS1120 Model C06 Controller can have four 3592-E05 (or 3592-J1A) tape drives attached using direct connect support (FC3493 or FC9493). This is only supported if the number of tape drives is four or less. The client is responsible for providing the cables from the TS1120 Model C06 Controller installed in a 3952 Tape Frame to the 3592 tape drives. Cables from the controller to the tape drives can be ordered with the tape drives or supplied by the client.
2.8.3 Feature codes

Table 2-15 lists the TS1120 Model C06 Controller feature codes that are available for device attachment and installation.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Machine type and model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0520</td>
<td>TS1120 (3592-C06) Controller, 3592 Model J70, 3494 Models Lxx</td>
<td>Functional Enhancement Field</td>
</tr>
<tr>
<td>2714</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Console Expansion</td>
</tr>
<tr>
<td>2715</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Console Attachment</td>
</tr>
<tr>
<td>2720</td>
<td>TS1120 (3592-C06) Controller</td>
<td>IBM System Storage TS3000 System Console</td>
</tr>
<tr>
<td>3062</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Drive-to-Switch Cables/Rack</td>
</tr>
<tr>
<td>3440</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Dual ESCON Attachment for C06</td>
</tr>
<tr>
<td>3441</td>
<td>TS1120 (3592-C06) Controller</td>
<td>FICON Short Wavelength Attachment</td>
</tr>
<tr>
<td>3442</td>
<td>TS1120 (3592-C06) Controller</td>
<td>FICON Long Wavelength Attachment</td>
</tr>
<tr>
<td>3443</td>
<td>TS1120 (3592-C06) Controller</td>
<td>FICON 10 km Long Wavelength Attachment</td>
</tr>
<tr>
<td>3478</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Two Dual-Ported Fibre Drive Adapters</td>
</tr>
<tr>
<td>3488</td>
<td>TS1120 (3592-C06) Controller</td>
<td>4 Gb Fibre Channel Switch</td>
</tr>
<tr>
<td>3492</td>
<td>TS1120 (3592-C06) Controller, 3952 Frame F05</td>
<td>External Fabric Support (Field install)</td>
</tr>
<tr>
<td>3493</td>
<td>TS1120 (3592-C06) Controller, 3952 Frame F05</td>
<td>Direct Connect Drives (Field install)</td>
</tr>
<tr>
<td>3494</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Fibre Channel switch Rack Mount Kit</td>
</tr>
<tr>
<td>3495</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Redundant Fibre Channel Attach</td>
</tr>
<tr>
<td>3516</td>
<td>3952-F05 Frame</td>
<td>Fibre Channel switch Mount Kit</td>
</tr>
<tr>
<td>3517</td>
<td>3952-F05 Frame</td>
<td>Redundant Fibre Channel Attach</td>
</tr>
<tr>
<td>4641</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Install Controller in Rack</td>
</tr>
<tr>
<td>4870</td>
<td>3952-F05 Frame</td>
<td>Replace Controller with TS1120 (C06) Controller</td>
</tr>
<tr>
<td>4887</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Reinstall 2 Gb Fibre Channel switch</td>
</tr>
<tr>
<td>4897</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Reinstall 4 Gb Fibre Channel switch</td>
</tr>
<tr>
<td>Feature code</td>
<td>Machine type and model</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5593</td>
<td>TS1120 (3592-C06) Controller, 3952-F05 Frame</td>
<td>Router for Enterprise Key Manager (EKM) Attach</td>
</tr>
<tr>
<td>5594</td>
<td>3952-F05 Frame</td>
<td>Attach Additional CU to Router</td>
</tr>
<tr>
<td>5595</td>
<td>TS1120 (3592-C06) Controller</td>
<td>CU Encryption Configuration (Field install)</td>
</tr>
<tr>
<td>5875</td>
<td>3952-F05 Frame</td>
<td>Field Merge 3592-J70 Controller</td>
</tr>
<tr>
<td>5877</td>
<td>3952-F05 Frame</td>
<td>Field Install 3592-J70 Controller</td>
</tr>
<tr>
<td>5878</td>
<td>3952-F05 Frame</td>
<td>Field Merge TS1120 (C06) Controller</td>
</tr>
<tr>
<td>5879</td>
<td>3952-F05 Frame</td>
<td>Field Install TS1120 (C06) Controller</td>
</tr>
<tr>
<td>5880</td>
<td>3952-F05 Frame</td>
<td>Field Install TS1120 (C06) Controller in a 3952-F05 Frame</td>
</tr>
<tr>
<td>7315</td>
<td>3952-F05 Frame</td>
<td>TS7640 Silo Compatible Controller Attachment</td>
</tr>
<tr>
<td>7316</td>
<td>3952-F05 Frame</td>
<td>Enterprise Tape Library Attachment (3494 Outbound Controller Frame)</td>
</tr>
<tr>
<td>9000</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Attach to S/390 or System z</td>
</tr>
<tr>
<td>9478</td>
<td>TS1120 (3592-C06) Controller</td>
<td>3592 Drive Attach to C06 Controller</td>
</tr>
<tr>
<td>9492</td>
<td>TS1120 (3592-C06) Controller, 3952-F05 Frame</td>
<td>External Fabric Support (Plant install)</td>
</tr>
<tr>
<td>9493</td>
<td>TS1120 (3592-C06) Controller, 3952-F05 Frame</td>
<td>Direct Connect Drives (Plant install)</td>
</tr>
<tr>
<td>9595</td>
<td>TS1120 (3592-C06) Controller</td>
<td>CU Encryption configuration</td>
</tr>
<tr>
<td>9885</td>
<td>TS1120 (3592-C06) Controller, 3952-F05 Frame</td>
<td>Field Merge C06 into 3952-F05</td>
</tr>
<tr>
<td>9886</td>
<td>TS1120 (3592-C06) Controller, 3952-F05 Frame</td>
<td>Plant Install C06 into 3952-F05</td>
</tr>
<tr>
<td>9887</td>
<td>TS1120 (3592-C06) Controller, 3952-F05 Frame</td>
<td>Field Merge C06 into 3953-F05</td>
</tr>
<tr>
<td>9888</td>
<td>TS1120 (3592-C06) Controller</td>
<td>Plant Install C06 into 3953-F05</td>
</tr>
<tr>
<td>9889</td>
<td>3952-F05 Frame</td>
<td>Plant Install C06 in 3952 for 3494</td>
</tr>
</tbody>
</table>

For a full description of the TS1120 Model C06 Controller features, refer to Introduction and Planning Guide 3592 Models J1A, E05, J70 and C06, GA32-0555.
2.8.4 Reliability and availability

The new IBM System Storage TS1120 Tape Controller, Model C06 is designed to provide performance and reliability for IBM System z clients. The TS1120 Model C06 Controller combined with the TS1120-E05 tape drive provides up to 1.7 times the throughput of the 3592-J70 Controller with 3592-J1A tape drives. This controller has many of the reliability and availability characteristics that the 3592 Model J70 offered, such as redundant power supplies with automatic failover, hot swap capabilities, and redundant cooling.

Call Home

The TS1120 Model C06 Controller supports the Call Home function by providing support for the IBM TS3000 System Console (TSSC) attachment (this was previously known as the IBM TotalStorage Master Console (TSMC)).

The Call Home function can report any error alerts for early detection of problems, might expedite microcode updates, reduce service times, and enhance local service. FC2720 TS3000 System Console replaces FC2713, Master Console for Service. Call Home functionality with features FC2714, FC2715, and FC2720 connected through Ethernet to the various ATL frames sends wellness monitoring data through the TSSC. Your IBM SSR can activate the Call Home function during the installation of the controller. The following environments support Call Home:

- TS1120 Model C06 Controller or 3592-J1A in a standalone frame or rack
- TS1120 Model C06 Controller or 3592-J1A in the 3494 Tape Library
- TS1120 Model C06 Controller or 3592-J1A in the 3952 Tape Frame
- TS1120 Model C06 Controller or 3592-J1A in the 3952-F05 Tape Frame
- TS1120 Model C06 Controller or 3592-J1A in a StorageTek Automated Cartridge System environment

2.8.5 Compatibility considerations for upgrade and migration

Use the IBM System Storage TS1120 Tape Controller and 3592 (either J1A or E05) tape drives in various combinations, which provides the flexibility to maximize your configuration when upgrading or adding to your existing tape installations. Be sure to obey the configuration rules in mixed environments:

- You cannot intermix SCSI-attached and Fibre Channel-attached tape drives on a single TS1120 Model C06 Tape Controller.
- TS1120 Model E05 and J1A tape drives can be attached to the same controller when TS1120-E05 drives emulate 3592-J1A drives\(^1\).
- You cannot attach TS1120-E05 tape drives to the same 3592-J70 Controller with 3590 tape drives. Also, you cannot intermix 3590 B, E, or H models on the same 3592-J70 Controller. The TS1120 Model C06 Controller does not support 3590 tape drives.
- The 4-Gbps or 2-Gbps Fibre Channel switch must be used exclusively by the TS1120 Tape Controller.
- The 4-Gbps Fibre Channel switch, 2-Gbps Fibre Channel switch, 2109 Model F16 switch, or 2109 Model S16 switch must be used exclusively by the 3592-J70 Controller.
- The 3592-J1A or TS1120-E05 and 3590 tape drives attached to the 4-Gbps or 2-Gbps Fibre Channel switch or 2109 switch can only be accessed by the 3592-J70 Controller.

\(^1\) To take advantage of the performance improvements of the TS1120 Model E05 drive or its Encryption capability, you must only attach native TS1120-E05 drives to the TS1120-C06 Controller.
TS1120 tape drives that are encryption-enabled are not supported under the same 3592-J70 or C06 Controller with TS1120 tape drives that are not encryption-enabled.

TS1120 tape drives that are encryption-enabled are not supported under the same 3592-J70 or C06 Controller with 3592-J1A Tape Drives.

Compatibility considerations include:

- The TS1120 Model C06 Controller must be installed in a 3952 Tape Frame Model F05 to control 3592 tape drives in a 3494 Tape Library. This frame is external the 3494 Tape Library and can hold up to three TS1120 Model C06 Controllers.
- Ensure that you have the correct features depending on where your tape drives are located within your 3494 Tape Library.

2.8.6 Performance overview

Figure 2-26, Figure 2-27 on page 73, Figure 2-28 on page 73, Figure 2-29 on page 74, and Figure 2-30 on page 74 show the performance of the TS1120 Model C06 Controller using the 2 Gbps and 4 Gbps Fibre Channel adapters, as well as a comparison between the 3592-J70 Controller and 3592-J1A tape drive.

![Figure 2-26](image)

Figure 2-26 TS1120 Model C06 Controller write streaming performance with 2 Gbps
Figure 2-27 TS1120 Model C06 Controller write streaming performance with 4 Gbps

Figure 2-28 Write Performance comparison
Summary
The TS1120 Model C06 Controller has been designed to provide 1.7 times the throughput of the 3592-J70. It has built on the success of the 3592-J70 while adding extra features and reliability. Although designed to complement the high capacity and high performance TS1120-E05 tape drive, the TS1120 Model C06 Controller can also use the existing 3592-J1A tape drive. You can utilize the TS1120 Model C06 Controller in an existing IBM TotalStorage 3494 Tape Library, therefore, protecting the investment made in this
infrastructure. The TS1120 Model C06 Controller can be used in concert with the 3592-J70 to further utilize your already implemented tape infrastructure.

2.9 The 3590 upgrade and coexistence considerations

When migrating from 3590B or 3590E to 3590H models, you change from 128-track or 256-track recording to 384 track recording. This enhances the physical cartridge capacity by a factor of 3 or 1.5.

Because you are upgrading to a new recording technology, there are migration considerations in moving from 128-track to 256-track or 384-track, or from 256-track to 384-track, just as there were when moving from 3490 to 3490E technology.

2.9.1 Installation requirements

All tape drives attached to the tape controller must be of the same model. All tape drives attached to a Virtual Tape Server (VTS) must be of the same model. If you have two VTS subsystems installed inside the same 3494 Tape Library, each of them can have different models installed.

In a Peer-to-Peer (PtP) VTS, the two distributed VTS systems can have different tape drives installed. We recommend that you do not do this for a long period of time because of the different performance characteristics of Model B, Model E, and Model H tape drives. However, this capability allows you to upgrade the distributed VTS systems one at a time.

Consult with your IBM SSR to plan outage requirements for tape equipment upgrades in your environment.

2.9.2 Hardware upgrade

When a 3590 Model B is upgraded to Model E or H, or when a Model E drive is upgraded to a Model H drive, the upgrade can include the upgrade to a new recording technology and the upgrade from Ultra SCSI to Fibre Channel. The IBM SSR must perform the following tasks, among others, to upgrade the hardware:

- Change the R/W head. The new head writes 16 tracks at a time, but the tracks are thinner on the E models compared to the B models, and thinner on the Model H drives compared to the E models.
- Upgrade the microcode levels.
- Depending on the current microcode level, upgrade the microcode levels of existing and not yet upgraded 3590 tape drives inside the same 3494 Tape Library. This allows the existing drives to recognize the 256-track or 384 track cartridge format and reinitialize the cartridges back to the required format. See 2.9.3, “Cartridge labeling and format” on page 76 for more details.

Consult your IBM SSR to plan outage requirements for tape equipment upgrades in your environment.
2.9.3 Cartridge labeling and format

When migrating from 3590B or 3590E to 3590H, or from model 3590E to model 3590H, the same considerations apply for cartridge reformatting. There are no client activities required to reformat the scratch cartridges that were previously written in 128-track mode. Labels can be automatically rewritten in the new format from the beginning of the tape.

The 3590 B models can reformat 384-track format cartridges to 128-track format, and 3590E models can reformat back to the 256-track format. This function can be useful in a scratch pool shared by B or E and H model drives. For Ultra 3590 models, Engineering Change (EC) F23079 (link D0IB-60B) and later ECs have the reformat function. For base 3590B models, EC D19328 (link D0IA-2FC) and later ECs have the reformat function.

For a cartridge mounted for writing or output in an S/390 or System z server, the initial volume control record (VCR) must be rerecorded in the same track width as the track width for the user data you will write on the cartridge. Therefore, when rewriting a tape in a format different from the currently written format, the VCR is rewritten when the first write command is issued. This occurs at the beginning of the volume. With MVS, this occurs during open processing in the rewriting of the user label. Table 2-16 shows the resulting increases in processing time prior to the start of the writing by the job.

<table>
<thead>
<tr>
<th>Tape formats</th>
<th>Time (seconds) for HPCT</th>
<th>Time (seconds) for EHPCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>256-track to 128-track</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>384-track to 128-track</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>128-track to 256-track</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>384-track to 256-track</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>128-track to 384-track</td>
<td>114</td>
<td>125</td>
</tr>
<tr>
<td>128-track to 384-track</td>
<td>114</td>
<td>125</td>
</tr>
</tbody>
</table>

The typical conversion occurs after a cartridge is loaded, the drive indicates that it is ready at load point, and any type of write command is received. No indication is given that a cartridge that was used with a different recording technology is present, unless a write, write file marks, or erase command is received from the host. It formats the tape to 256 tracks (3590E) or 384 tracks (3590H) on a write, write file marks, or erase command.

Restriction: A small percentage of 3590 cartridges, which can be reformatted to 128-track or 256-track format, might not be able to be reformatted to a 384 track due to the tighter tolerances required to support the 384-track format.

Cartridge information (not user data) is written by all 3590 tape drive models so that the other drive models can read it.

Important: Migrating might require software upgrades. Check the latest Preventive Service Planning (PSP) Bucket for required software maintenance. To find the relevant PSP bucket for your environment, go to: http://www.ibm.com/support

Select Search technical support and type psp for the search argument.
Both the E and the H models read the 128-track tapes. The drives respond with errors if an attempt is made to:

- Append to a cartridge with a different recording technology than was written before
- Read data from a cartridge that was written with a higher number of tracks than the drive can use

No indication is given that a 256-track or 384-track cartridge is present, unless any type of read or write command is received from the host. The B model drive with the prerequisite drive code level indicates that a 256-track or 384-track cartridge is formatted to a 128 track after any type of write command is issued by the host. The B model drive with older code levels indicates an error when a write command is attempted. The B model drive does not read the 256-track or 384-track tapes. Instead, it reports an error when a read command is attempted after a 256-track cartridge is loaded.

Note that the VCR rewrite and the associated delay listed in Table 2-16 do not occur when a volume is mounted for input on a read-compatible device.

2.9.4 VTS considerations

Consider the following points in regard to the Virtual Tape Server:

- If you upgrade the 3590 tape drive models in a VTS, the upgrade is transparent to the hosts. This upgrade does not introduce any software changes.

- No client activity is required for the upgrade to 3590H drives, which are part of a VTS.

- All 3590 tape drives used in a VTS configuration are upgraded at the same time to the new drive model.

- Cartridges that were not completely used before the migration are set to read-only to prevent reuse for writing after the migration.

- The stacked volumes follow a normal reclamation methodology. As a stacked volume is reclaimed and marked scratch, it is used in a 3590H drive and converted to the 384 track format.

- To speed up the reclamation process, you might want to temporarily set the reclamation threshold up to 60%. Do not use higher values to keep from disturbing normal VTS processing.

2.9.5 Coexistence of 3590 Model B, E, and H tape drives

The 3590 Model E and H support is provided as an emulation of the 3590B support, therefore, using the same device type of 3590 for all three models. This means that there is no distinction for the host among the different recording technologies of the different 3590 tape drive models.

The following scenarios with multiple 3590 device types require special attention:

- The 3590 tape drives are not installed inside of a 3494 Tape Library in z/OS environments.

- The 3590 tape drives are installed inside or outside of a 3494 Tape Library in VM/ESA® environments.

- The 3590 tape drives installed inside or outside of a 3494 Tape Library in VSE/ESA™ environments.

Only in SMS tape environments, the Recording Technology parameter of the Data Class allows you to specify to which 3590 model the allocation will be directed, without specifying
the actual device address for allocation. In non-SMS environments, the different 3590 models can only be distinguished by their unit addresses.

Restriction: The block identifiers will become 31-bit addresses implemented in the tape control unit microcode for the TotalStorage IBM Enterprise 3590 Tape Subsystem.

2.9.6 Managing multiple 3590 media types

Managing the use of both standard and extended length cartridges for 3590 subsystems is comparable to managing the use of Cartridge System Tape (CST) and Enhanced Capacity Cartridge System Tape (ECCST) cartridges with 3490E subsystems.

The 3494 library recognizes the media type for 3590 cartridges by the seventh-character “J” on external volume serial labels for the standard length cartridges, or “K” for extended length cartridges, or through volume-range specifications at the Library Manager Console. The default Library Manager category used in a z/OS environment for HPCT is X’0003’ and X’0004’ for EHPCT.

For Open Systems platforms, the application must manage the media type considerations. For example, you must decide whether a particular mount requires a standard or an extended length tape. With the 3494 library, using an exclusive library category for standard cartridges and another for extended length cartridges can enable the application to request a scratch mount of a specific media type by requesting a mount from a particular category.

The application can exploit the IBM 3494 knowledge of media type (by requesting volume data from the Library Manager) to ensure that it returns the tape to the appropriate scratch category after the data on it expires. System z server platforms have system and application facilities that assist with managing the multiple 3590 media types. With z/OS, when the tape management system returns a 3494-resident cartridge to scratch status, SMS tape support ensures its return to the appropriate scratch category for the media type.

Other System z server platforms rely on tape management software to designate the category destination for volumes returning to scratch. IBM 3494 Tape Library control interfaces allow media-type information about volumes to be requested from the library. Table 2-17 shows the media-type designations that are used.

<table>
<thead>
<tr>
<th>Platform</th>
<th>HPCT (“J”)</th>
<th>EHPCT (“K”)</th>
<th>Media tape selected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>MEDIA3</td>
<td>MEDIA4</td>
<td>ACS routines</td>
</tr>
<tr>
<td>VM/ESA</td>
<td>MAGS</td>
<td>MAGX</td>
<td>Tape management system interface</td>
</tr>
<tr>
<td>VSE/ESA</td>
<td>CST3</td>
<td>CST4</td>
<td>Tape management system interface</td>
</tr>
</tbody>
</table>

For a detailed listing of preassigned Library Manager volume categories that refer to these cartridge names, see Appendix C, “Library Manager volume categories” on page 457.

2.9.7 Migration from 3590B and 3590E to 3590H

Upgrading B or E drives to H drives requires planning, even though 3590 Models B, E, and H are all device-type 3590 (the same Unit Control Block (UCB) type in the MVS environment). The change from a 128-track or 256-track recording to a 384-track recording, which increases the physical cartridge capacity, requires both system and application planning and implementation. This section outlines considerations for this recording technology migration. It also provides references for obtaining further details.
Host software

Although the 3590 Model H is not a new UCB device type, this new device model requires software updates.

Begin the hardware upgrade by installing the software program temporary fixes (PTFs). Note that software maintenance installation requires an initial program load (IPL). See Chapter 4, “Software implementation in z/OS” on page 145 for general software requirements, and ensure that you have the required minimum level installation of software for the 3590H models. Install the PTFs for OS/390 or System z platform Model E support and for non-IBM library drives (standalone and silo-attached).

Check the PSP Bucket regularly for ongoing maintenance recommendations. To find the relevant PSP Bucket for your environment, see:

http://www.ibm.com/support

Select **Search technical support** and type `psp` for the search argument.

Hardware configuration definition (HCD)

There is no need to change the HCD. You might use the same device addresses with the 3590 Hxx models that were used with the Bxx or Exx models. To perform the migration, ensure that you complete the following procedure for each system or set of systems upgraded in a complex:

1. Vary the 3590 Model B or E drives offline.
2. Remove the 3590 B or E device addresses from the IODF and activate it.
3. Add the 3590H device addresses to the IODF and activate it.

 Note: Applying maintenance removes the requirement for the previous two steps (Remove/Add). Check the PSP Bucket.

4. Perform the upgrade.
5. Vary on the 3590H devices to MVS.
6. Enter the command `IODF ACTIVATE`.

If the hardware upgrade plan entails converting a B model to an E model or an H model, or E model tape drives to H model tape drives over time, remember that you must perform the previous steps each time that another subset of the drives is upgraded. One approach to avoid this repeated activation scenario is to redefine a new set of addresses to use when drives become 3590H models. The new addresses are used when varying on the drives after the upgrade.

SMS definitions

For 3590 Model H tape drives installed inside a 3494 Tape Library, the following considerations apply:

- As applicable, define or alter an existing Data Class definition to direct new tape allocations to 3590 Model H drives by specifying RECORDING TECHNOLOGY as 384.
- To enable reading of existing cartridges written in 128-track or 256-track mode on 3590 Model H tape drives, you need to update the TCDB. You must set the SPECIALATTRIBUTE(READCOMPATIBLE) for private tapes. You can do this either through IDCAMS ALTER, or DFSMSrmm™ if this is your tape management system.

Refer to 6.3, “Managing different 3590 models in a 3494 Tape Library” on page 256 for more details.
Ensure that SYS1.PARMLIB DEVSUPxx is set to VOLNSNS=YES to enable relabeling of scratch cartridges that were written using a different technology.

Refer to “DEVSUPxx member of SYS1.PARMLIB” on page 164 for more details.

Note: Make sure that you have APAR OW410005 and APAR OW51940 are installed. These APARs address a problem related to the IDCAMS update of the volume record to READCOMPATIBLE.

Silo-compatible frame considerations

For more information about 3590 tape drives installed on a silo, see Appendix A, “Tape drives in silo compatible frames” on page 419. You should also refer to the *IBM TotalStorage Silo-Compatible Tape Frame 3590 Introduction, Planning, and User's Guide*, GA32-0366.

For 3590 H or 3590 E tape drives used in 3490E emulation mode for DFSMShsm, there are major differences compared to the setup requirements for the B drives. DFSMShsm anticipates variances in the manufacture of tape cartridges. It attempts to preserve the ability to TAPECOPY or duplex its migration and backup tapes by writing to 97% of the tape’s capacity. DFSMShsm is aware of the physical cartridge capacity for tapes mounted on 3590 tape drive models H1X and E1X, but uses a constant value based on the logical tape device for tapes mounted on a 3590 B1X.

You can use the following DFSMShsm command to specify a percentage other than 97 to control the amount of data written to the tape:

```
SETSYS TAPEUTILIZATION
```

This command is typically used when a 3590 B1X emulates a 3490 and the logical tape device is not reflective of the physical cartridge capacity. Although it is possible to specify a value of 98 or 99 for tapes to mount on 3590 H1X or E1X drives to get slightly more data on each cartridge, we recommend generally that you use the default of 97% for those devices.

DFSMShsm does not allow mixed device types in an esoteric group. DFSMShsm considered the 3590 Model B as a UCB-type 3490E. Therefore, it is possible to define esoteric groups that manage mixed technology and media relationships. An example is the 3590s in 3490E emulation mode and STK 9490s with host software component (HSC). However, with support for 3590 Model H and 3590 Model E, DFSMShsm recognizes the actual underlying drive type as a 3590 model. It does not tolerate esoteric names that mix these 3590s (even in 3490E emulation mode) with devices that are actually type 3490E.

Other migration considerations

It is unnecessary to keep 3590 B model or E model drives during a migration period, because the 3590H models can read the cartridges written by the B or E drives.

The 3590H drives always write in 384-track mode. Therefore, on a 3590H drive, you cannot use DISP=MOD processing to extend a dataset on a previously written 128-track mode or 256-track mode cartridge. If you use DISP=MOD processing to extend existing tape datasets, you need to copy them to a new cartridge on a Model H drive.

Prior to the hardware upgrade, issue the following commands to display any empty and partially filled backup and migration tapes:

```
DFSMShsm LIST BVOL SELECT(NOTFULL)
LIST ML2 SELECT(NOTFULL)
```

Issue the following command for each partially filled tape:

```
DELVOL MARKFULL
```
You do not need to take any action for empty tapes.

For Tivoli® Systems Management, formerly *ADSTAR Distributed Storage Manager (ADSM)*, similar considerations apply. You must mark cartridges that were previously written in 128-track or 256-track mode as *read-only* before the hardware upgrade. You must also adjust the maximum or estimated capacity for a storage pool, which previously had 128-track or 256-track drives for the increased capacity with 384-track recording.

Migration can take place by directing new allocations to the 3590H drives and letting old datasets expire on cartridges written in 128-track or 256-track mode. There is no need to copy the datasets, unless the additional cartridge storage provided by the 3590 Model H tape drives is required immediately.
IBM TotalStorage Enterprise Automated Tape Library

This chapter provides detailed information about the IBM TotalStorage Enterprise Automated Tape Library (3494). The sample configuration in Figure 3-1 consists of a Model L12 Control Unit Frame, a Model D12 Drive Unit Frame, and a Model B10 Virtual Tape Server (VTS).

Figure 3-1 IBM TotalStorage Enterprise Automated Tape Library
This chapter explains and examines:

- The functions of the Library Manager, which is the focal point of the 3494 Tape Library and communicates with the attached host systems
- The 3494 Tape Library basic frames, models, and their components
- The IBM TotalStorage Enterprise Virtual Tape Server and Peer-to-Peer (PtP) Virtual Tape Server frames
- The 3494 High Availability Frames that allow for nondisruptive operation even in the case of a library component failure
- The IBM 3953 Tape Frame Model F05
- The IBM System Storage (TS3000) System Console (TSSC)
- All feature codes (FCs) of the IBM 3494 Tape Library
3.1 IBM 3494 Library Manager

The Library Manager, the operational focal point of the IBM 3494, provides the support to set up, maintain, configure, and operate the 3494 Tape Library. It consists of a controller (a personal computer (PC)), a display, a keyboard, and the Library Manager application.

This section describes the major functions and features of the IBM 3494 Library Manager.

3.1.1 User interfaces

The Library Manager graphical user interface (GUI) is provided by the Library Manager application, which runs on the Library Manager PC and is delivered as Licensed Internal Code (LIC). Backup, restoration, and maintenance of the application are the sole responsibility of an IBM Systems Service Representative (SSR).

The Library Manager provides four user interfaces:

- **Library Manager Console**: This is installed on the rear side of the IBM 3494 Model L12 frame. It allows you to monitor the 3494 Tape Library and to take actions.

- **IBM TotalStorage Enterprise Tape Library (ETL) Specialist**: A Web browser interface that allows you to monitor the 3494 Tape Library and to take specific actions for an installed VTS or Peer-to-Peer (PtP) VTS.

- **IBM System Storage TS3000 System Console**: This interface provides remote data monitoring of an attached 3494 library. This is explained in more detail in “IBM System Storage TS3000 System Console” on page 91.

- **Remote Library Manager Console**: This interface provides remote access to the Library Manager to issue commands or take actions.

In addition, host software commands allow you to retrieve information from the Library Manager or to send commands to the library.

Library Manager Console

The operator menu displays when the Library Manager is powered on. The operator menu panel consists of a title bar and an action bar as shown in the System Summary window in Figure 3-2.

![System Summary window](image-url)
The Library Manager has three levels of operational authority:

- General operator
- Systems administrator
- Service

The general operator has the authority to perform the basic day-to-day operations of the library, such as inquiring about the status of the library and inserting or removing cartridges from the library.

The systems administrator can perform all of the functions of the general operator and administrative tasks that require more detailed knowledge of, and training in the use of, the Library Manager and the 3494. An example of a systems administrator function is to perform the initial inventory of the contents of a library or to perform a re-inventory of the library's contents. The systems administrator has no access to the functions specific to the repair or maintenance of the library.

Service access allows all Library Manager functions, including changing the systems administrator password if it is forgotten and backing up or restoring the Library Manager database to the diskette drive in the Library Manager PC.

The systems administrator and service levels can be password-protected. The IBM SSR selects this option during the Library Manager installation teach process, or during a re-teach operation at any other time. See 3.5.5, “CE initial operations (teach and initial inventory)” on page 127 for more information.

TotalStorage Enterprise Tape Library Specialist

The IBM TotalStorage family includes several IBM storage interfaces, or specialists, which enable operators and administrators to manage storage devices from any location in an enterprise using Microsoft Internet Explorer® Version 5.0.

There are two specialists for the 3494:

- The **Enterprise Tape Library (ETL) Specialist** is a Web-based interface to the 3494 Library Manager. It allows you remote access to the Library Manager, VTS status, and operations. If Advanced Policy Management (APM) is implemented, the ETL Specialist also allows you to define and modify the constructs and volume pools.

- The **PtP VTS Specialist** communicates with the Virtual Tape Controllers (VTCs) to provide configuration details and status. We recommend that you have a PtP VTS Specialist in every PtP VTS installation. This is the only way to receive real-time information about the operation of the PtP VTS Composite Library.

The Enterprise Tape Library Specialist allows access to Library Manager information such as current library status and VTS statistics. This is done with the Web server on the Library Manager PC, which serves Hypertext Markup Language (HTML) pages to a remote Web browser over a user local area network (LAN) connection or through the Remote Service Access connection over a modem for service.

Figure 3-3 shows a sample Web page. Depending on the browser software you are using, the pages might vary slightly.
When you select the Library Manager options, you see a Web page like the example shown in Figure 3-4. It shows the status information from the Library Manager.

Note: The ETL Specialist does not provide an interface to all Library Manager functions, for example, setting the Cleaner Mask.
The capabilities of the IBM TotalStorage Enterprise Tape Library Specialist can simplify management of the VTS and allow management from remote locations. Recently enhanced capabilities are primarily related to the VTS APM functions. They include:

- **Secure interface**
 Access to panels that allow modifications is restricted and only allowed with a valid user ID and password.

- **Query to find the stacked volume containing a specified logical volume**
 This function was only available from the Library Manager Console. The function was enhanced to also show the second stacked volume in case of a spanned logical volume, and the same for the secondary copy of the logical volume if APM Selective Dual Copy was implemented.

- **Request a map of the logical volumes on a specific stacked volume**
 This function was available only from the Library Manager before. It was enhanced to allow you to download the Stacked Volume Map to your PC for further processing.

- **Eject or move one or more stacked volumes**
 The eject function was available only from the Library Manager before. It was enhanced to allow the ETL Specialist and the Library Manager to move stacked cartridges between physical pools when APM Physical Volume Pooling is implemented.

- **Manage volume pools**
 This function was implemented together with APM Physical Volume Pooling. It allows you to define policies for physical pools.

- **Manage Storage Group, Management Class, Storage Class, and Data Class definitions**
 This function was implemented together with APM. It allows you to define policies and constructs through the ETL Specialist.
Administer security

The ETL Specialist administrator can define and change user IDs and reset passwords using this function.

For more information about implementation of the ETL Specialist, refer to the *IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide*, GA32-0448, which also provides a planning template. For more information about the usage of the ETL Specialist, see the *IBM TotalStorage Automated Tape Library (3494) Operators Guide*, GA32-0449.

Remote Library Manager Console

The Remote Library Manager Console allows you to control or monitor the operations and status of the tape library from a remote location. The remote terminal can be located anywhere on the LAN. The remote terminal can control or monitor the status of up to eight Library Managers. You can monitor multiple Library Managers, but you can control only one at a time.

Connection to the Library Manager is password-controlled. The remote console logon password can be changed only from the Library Manager.

The Remote Library Manager Console feature includes the software that is needed to control or monitor any Library Manager that is attached to the LAN. The tape library must have one of the LAN attachment features: token-ring or Ethernet. The Remote Library Manager Console and the host system attachment can use the same LAN attachment feature of the tape library.

If the High Availability unit is installed in the IBM 3494, only one FC5226 is required for both Library Managers. The software provided is loaded on both Library Managers.

The client is responsible for supplying the remote terminal hardware and software. See the *IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide*, GA32-0448, for more information.

The Remote Library Manager Console provides the following functions:

- **Switching keystrokes mode**

 The keystrokes mode determines whether the remote console’s input and pointing device movements affect the remote console or one of the connected Library Managers. There are two keystrokes modes:

 - **Keystrokes remote mode**: All of the keyboard input on the remote console affects the Library Manager, except the remote console operating-system hot keys. The operating-system hot keys are:

 - Press Ctrl and Esc to display its task list.
 - Press Alt and Esc to show the windows and full displays in an ordered rotation.
 - Press Alt and Tab to show the system menus for the windows and the full display in an ordered rotation.

 - **Keystrokes local mode**: All of the keyboard input on the remote console affects the remote console only.

- **Changing session state**

 The session state is the current state of the session between the remote console and the Library Manager. It can be changed from both consoles. If both users try to change the state at the same time, the Library Manager takes precedence. The session can be changed between the following states:
- **Active**: The remote consoles control the Library Manager. The Library Manager keyboard and pointing device are not processed. The Library Manager can regain control when you press a hot-key combination to change the session state.

- **Monitor**: The remote console monitors the Library Manager Console, but the Library Manager user is in control of the keyboard and pointing device input.

- **Suspend**: The remote console session is stopped temporarily.

- **Terminate**: The remote console session is terminating.

Transferring files

The file-transfer utility allows you to transfer files from the Library Manager to the remote console. You are not allowed to transfer files to the Library Manager. Only the Remote Library Manager Console can initiate a file transfer.

Tip: Either the remote console or the Library Manager Console can be active at one point in time. When using the remote console, make sure that you terminate the session to re-enable usage of the Library Manager Console.

IBM TotalStorage Master Console

Note: The IBM TotalStorage Master Console (TSMC) was withdrawn from marketing on the 16th of June 2006. We have included the following information describing the TSMC as a reference point for existing users.

Note: TSMC has been replaced by the IBM System Storage TS3000 System Console (TSSC), which is described in detail in “IBM System Storage TS3000 System Console” on page 91.

The IBM TotalStorage Master Console (TSMC) is a PC running Linux that can connect to the VTS B10, VTS B20, VTS B18, 3590-A60, J70, VTC, and Library Manager subsystems through an Ethernet switch. The TSMC allows data transfer to and from each subsystem in order to perform Call Home, remote services, and configuration tasks including remote monitoring support.

The Call Home portion of the IBM TotalStorage Master Console (TSMC) is linked to the attached subsystems and has the capability to send and receive data to different IBM servers. This data is used for error notification, supporting repair actions, trace data offload, performance, and statistical analysis. The TSMC broadcasts both drive and functional microcode to the attached subsystems; see Figure 3-5. The TSMC offers the advantages of reduced telephone line charges, faster data offload, lower repair costs, improved serviceability, and better proactive maintenance.

The TSMC is equipped with a feature known as Call Home **heartbeat**. The heartbeat validates that the Call Home function is working and offloads statistical analysis information. Dual modem connections to the TSMC prevent blocking a Call Home alert while a support person is dialed in to the machine. A Virtual Private Network (VPN) connection allows specialist functions to be accessed through browsers on the TSMC, while maintaining security.

The inability of a machine to Call Home through TSMC is caught by the **wellness check**. This is a command sent from the TSMC to the Library Manager once per hour. The failure of the wellness check is logged on the TSMC and a Call Home is initiated by the TSMC. The TSMC waits 24 hours before sending another Call Home in response to failed wellness checks.

A tool contained in the TSMC GUI allows the transfer of microcode to all selected attached subsystems. This can be either 3592 drive code images or functional microcode images.
Note: Code loads through the non-TSMC method are still supported regardless of whether the machine is connected to the TSMC or not.

IBM System Storage TS3000 System Console

To enable improved serviceability, the TS3000 System Console (TSSC) connects the following components to a dedicated private local network:

- 3494 B18, B10, or B20 VTS
- Virtual Tape Controllers
- 3590-A60 Controller, TS1120 Model C06 Tape Controller, or 3592-J70 Controller
- Library Manager

This enables the same functionality as the TSSCs predecessor, the TSMC, such as the remote data monitoring of the subsystems attached to the TSSC. The new TS1120 Model C06 Controller can only be controlled by the TSSC. It is not supported in the TSMC.
FC2720 provides the enhanced TS3000 System Console, Ethernet switch, a cable, and the connectors for connecting one of the aforementioned components to an IBM-supplied modem to enable the remote enhanced service. This feature should be specified on the first unit in an installation connected to a TSSC. The Ethernet switch provides 14 additional connections for cables supplied with FC2714 or FC2715.

History table

With recent enhancements to the Library Manager functional microcode to support multiple and simultaneous user interfaces, the history table was created to prevent users from selecting duplicate functions concurrently. The history table:

- Controls multiple users from performing the same or similar actions at the same time
- Indicates in-progress and completed actions
- Can be used to coordinate remote users (Web Specialist and Library Manager operator)
- Notifies users of possible conflicts
- Retains the last 50 status lines

Figure 3-6 displays the History Table user interface.

![History Table user interface](image)

Figure 3-6 User interface: History Table results
3.1.2 Databases

The Library Manager database is built during the installation of the IBM 3494. It consists of several tables and system files that contain information about the library and its volumes. The database tables are:

- Cell table
- Cartridge table
- Device table
- Rotating category table

These tables hold information about the logical and physical coordinates of all library components, the cartridge location, cartridge status, and cartridge category. The system files hold information about the library serial number, machine type and model, device cleaning schedule, operational statistics, and service information.

Database mirroring is available if the optional second hard disk (FC5214) is installed and enabled. Database mirroring facilitates recovery if the primary Library Manager disk fails. An asynchronous Operating System/2® (OS/2®) task updates the second copy of the database each time that the primary database is updated. The secondary database is fully synchronized during the termination of the Library Manager. During Library Manager initialization, the primary and secondary databases are checked, and the Library Manager is initialized according to their status.

If a second copy or backup copy of the database does not exist, and the primary copy is lost, a lengthy library outage occurs. See 9.8.11, “Library Manager database recovery” on page 408 for more information about resynchronizing the Library Manager database with the host systems. We strongly recommend that you install and enable the second hard disk on all IBM 3494s.

When a second copy of the database exists, the primary hard disk only requires repair, and you only need to copy the secondary copy of the database back to the primary disk. Therefore, the duration of the outage is significantly reduced.

When the High Availability unit is installed, both Library Managers have the second hard disk feature installed, and there are four disks in the tape library. Although only two copies of the Library Manager database are kept at any one time, this configuration provides the maximum level of availability for the database.

3.1.3 Volume categories

The Library Manager uses volume categories to manage and group the volumes in the tape library. The volume category is a four-digit hexadecimal number: X'0000' to X'FFFF'.

There are two kinds of volume categories, one for hardware usage and one for software usage. The hardware usage volume categories represent the Customer Engineer (CE) cartridge, cleaner volume, volume to be ejected, and other hardware usages.

The software usage volume categories identify the host software platform that owns the volume. Different host software platforms use different volume categories. The category is assigned to the volume during insert processing by the appropriate host system. In general, System z server platforms use preassigned volume categories; however, Open Systems and midrange servers can select the volume categories to use.

Refer to Appendix C, “Library Manager volume categories” on page 457 for a complete list of Library Manager volume categories and their preassigned usage.
3.1.4 Library Manager scratch selection

In the IBM tape library architecture, true scratch mount orders from the host are nonspecific and identify only the drive and the Library Manager category from which to choose the volume (mount from category). When the Library Manager receives a mount from category order, it selects the volume to mount. This applies to real volumes as well as virtual volumes in the VTS.

Normally, this selection occurs in a first-in-first-out (FIFO) order. This way, the most recently inserted or expired volume is placed at the bottom of the list and the oldest volume in the list is chosen next.

There are two exceptions to this FIFO selection:

- The selection of the next scratch volume is in a VTS logical library.
 The Library Manager first checks the virtual drives to see whether there are more even or odd VOLSERs currently mounted. It chooses the next VOLSER, so that the best even-odd balance is maintained. The reason for this is to balance the number of active (mounted) volumes in the file systems of the VTS Tape Volume Cache (TVC). The TVC is divided into two file systems, one with even VOLSERs and one with odd VOLSERs. Each file system maintains its own independent category list and selection pointer.

- The Dual Active Accessor feature is enabled.
 The Library Manager attempts to provide cartridge drive affinity for true scratch mounts by choosing the next VOLSER that is in the same zone as the drive chosen by the host. This way, the accessor that is servicing this drive does not have to cross the zone boundary to select the cartridge. Any VOLSERs passed over by this selection are ineligible to be selected again until the selection has wrapped through the stack. Even if only one accessor in a Dual Active Accessor IBM 3494 is active, perhaps because of maintenance, the Library Manager still uses the cartridge drive affinity to select the next volume for a scratch mount.

These exceptions to the FIFO selection that is normally used might affect the age of scratch volumes in the scratch categories. These exceptions might be observed by operators as inconsistent, random, or unpredictable.

Figure 3-7 illustrates the Library Manager scratch selection process.
Figure 3-7 represents one scratch category. However, a single library can have many categories. The five-digit numbers represent category order numbers, not volume serial numbers. Note the following points:

- Volumes are arranged in sequence of category order number, not by VOLSER.
- The pointer to the next volume moves in ascending sequence.
- Volumes returned to scratch (reassigned to this category) are given a new, higher category order number.
- Volumes inserted into the library (and assigned to this category) are given a new, higher category order number.
- Category order numbers are virtually infinite.

The Library Manager scratch selection process can skip volumes for the following reasons:

- Volumes are skipped in the VTS scratch categories to maintain an even-odd balance of volumes currently mounted on virtual drives.
- Volumes are skipped in a Dual Active Accessor library to facilitate drive and zone affinity to the selected volume.
- Skipped volumes must wait for the pointer to come around again. The counter begins again at 0 after it passes the highest category order number or after the Library Manager restarts.
- If volumes are assigned to this category by insertion or return-to-scratch faster than they are selected for use, the pointer does not start over at the bottom of the order numbers.
Category order numbers are not reused. Volumes are placed in the category in the order in which they are received. They are assigned the next higher category order number. The category numbers that were used (not skipped) are removed from the database and never reused.

3.2 IBM 3494 basic tape library frames and models

The IBM 3494 is a self-contained and fully enclosed automated tape library. It is linear in design and can be installed on either a raised or solid floor. Its modular design allows you to install the 3494 Tape Library with the number of frames and the configuration required.

The minimum configuration consists of one IBM 3494 Model L12 or L22 frame, which contains all components for automated tape operation. Table 3-1 describes the base frames. This minimum configuration can be enhanced up to a 16-frame library that houses tape drives and cartridge storage cells. Or, this configuration can be enhanced up to an 18-frame library that includes two service bays of the High Availability Frames plus 16 frames with tape drives and cartridge storage cells. A 3952 Tape Frame Model F05 can also be added to the 3494 Tape Library to contain the TS1120 Tape Control Unit (3592-C06). Refer to “IBM System Storage TS1120 Tape Controller” on page 63 for more information about the 3592-C06 Tape Control unit.

You can tailor configurations to provide performance, capacity, or a combination of both. For details about the configuration options, refer to 3.6, “Tape library configuration options” on page 130.

The IBM 3494 options include a convenience input/output (I/O) station, RS-232 or LAN host attachment, high-capacity input/output facility, dual gripper, remote console, and second Library Manager disk drive. There is also a wide range of host attachment capabilities and the Enterprise Tape Library (ETL) Specialist to communicate with the Library Manager or the VTS through a Web browser interface.

Table 3-1 Base frames

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| L12 Frame (Model L12) | Contains the following:
 - Cartridge storage cells
 - Zero to two 3590 Model B1A, E1A, or H1A tape subsystems
 - Library Manager
 - Cartridge accessor
 - Optional convenience I/O station feature (if installed) |
| L22 Frame (Model L22) | Contains the following:
 - Cannot contain 3590 drives
 - Cartridge storage cells
 - Library Manager
 - Cartridge accessor
 - Optional convenience I/O station feature (if installed)
 - Can contain zero to four 3592 Model J1A or TS1120-E05 tape drives
 FC4800 is required to install the 3592-J1A or TS1120-E05 drives in a 3494 Tape Library. |
3.2.1 Common IBM 3494 components

There are certain components in the 3494 Tape Library that are commonly used independently of the IBM 3494 Frame model. The following sections describe these common components.

Cartridge accessor
The cartridge accessor identifies and moves cartridges among the storage cells, tape drives, convenience I/O station, and high-capacity I/O facility. The cartridge accessor consists of a carrier, which provides a mounting platform for the gripper, a picker, X and Y axis motors, and a vision system. The cartridge accessor moves through the library on a rail system.

The High Availability Frames provide a second cartridge accessor in the IBM 3494. Without the Dual Active Accessor feature installed, at any time, one accessor is active and the other is in standby mode in one of the two service bays of the High Availability Frames. With the Dual Active Accessor feature installed and enabled, both accessors are active at the same time. This allows improved library exchange performance. In either case, if one accessor fails, the remaining accessor takes over all exchange responsibility.

Cartridge gripper
The cartridge gripper holds the cartridges when they are moved among the storage cells, tape drives, convenience I/O station, and high-capacity I/O facility. The gripper is mounted on the picker. The picker provides 180-degree movement, enabling access to cartridges at the front and rear of the library. The optional dual gripper adds a second gripper to the accessor mechanism.

Figure 3-8 shows the barcode reader, picker, first gripper, and second gripper mounted below it.

![Figure 3-8 IBM 3494 gripper assembly](image)

If a single gripper is installed, the IBM 3494 has to move to the target drive, remove the unloaded tape, and return it to its storage cell, before picking the new cartridge. When the
dual gripper is installed, both grippers operate simultaneously. When a mount is requested, the IBM 3494 picks the requested cartridge and delivers it to the drive. If the drive contains an unloaded cartridge, the second gripper removes that cartridge from the drive, and the first gripper inserts the required tape. If two cartridges are requested to be picked up and delivered, the dual gripper does not pick two cartridges at a time.

The operation of the dual gripper, therefore, improves the mount performance of the IBM 3494. Maximum performance is achieved by using a floating home cell mode, which is available only with the dual gripper.

The dual gripper reduces the number of available cartridge cells by approximately 10% because the grippers cannot access the two top and bottom rows of cartridge storage cells.

The dual gripper is required on the High Availability Frames when a dual gripper is installed on the 3494 Model L22.

Vision system
The vision system of the IBM 3494 is a single barcode reader similar to those used in point-of-sale equipment (see Figure 3-8). The vision system verifies the cartridge VOLSER and media type when a cartridge is inserted into the library by reading the cartridge barcode label.

The vision system is used in the teach process to establish the actual physical location of each component and the physical coordinates for each cartridge storage cell. It is also used to audit a specific cell and for library inventory processing.

The vision system is not used to verify a cartridge's VOLSER before mounting.

Rail system
The rail system consists of two separate horizontal rails, one at the top and one at the bottom of the tape library. The cartridge accessor is carried through the tape library on these rails. As frames are added, the rail system is extended to enable the cartridge accessor to operate throughout the tape library.

Cartridge storage
The IBM 3494 can provide cartridge storage for 140 to 6240 tape cartridges, depending on the number of frames and the number of tape drives installed inside the 3494 Tape Library. Refer to 3.6, “Tape library configuration options” on page 130, for details about the number of cartridges available for each frame.

The cartridge storage cells are located on the rear wall and inside the front door of each unit. The storage cells are labeled to facilitate identifying the cartridge location. This identification consists of three characters. Figure 3-9 shows the cartridge storage labeling for the 3494 Model L22 door.
An odd wall number indicates the rear wall of a unit, and an even wall number indicates the door. For example, cartridge storage location 1A4 is in the rear wall of the 3494 Model L22, in the first column from the left, the fourth cell down. The cells hold the cartridges horizontally, with the top of the cartridge facing up. Each cell has an empty cell marker. This marker is a barcode label that the vision system can see when a cartridge is not present. The empty cell marker reduces the time required for inventory processing or cell audits, because the IBM 3494 does not have to physically check the cell to verify that it is empty.

Storage cells can be either regular cells or reserved cells. As the name suggests, regular cells are used for storing cartridges. You cannot store cartridges in the convenience I/O station or the high-capacity I/O facility. The reserved cells are used to hold CE cartridges and for error recovery. The library reserves certain cells within the library for functions that the operator does not actively control. In non-High Availability models, these locations are error recovery cell 1A1 (1A3 instead of 1A1 if the optional dual gripper feature is installed) and CE cartridge cell 1A20. If 3490E, 3590, and 3592 tape subsystems are present, CE cartridge cells 1A19 and 1A18 are also reserved.

In High Availability models, these locations are error recovery cells 1A1 and 1A2, or if the dual gripper feature is installed, these locations are error recovery cells 1A3 and 1A4. CE cartridge cells are in the service bays.

Figure 3-10 shows the various service cell locations.
Cartridge handling and placement

The 3494 Tape Library can operate in two modes regarding placement of cartridges in the storage cells. These modes are called **home cell modes** and depend on the tape library configuration. Special considerations might apply for overall mount performance.

Home cell modes

The tape library operates in either fixed or floating home cell mode. The home cell mode selection is made during the teach process as follows:

- **Fixed home cell**: This mode assigns each cartridge a fixed storage cell location when it enters the tape library. The cartridge is always returned to the same location after it is used.
- **Floating home cell**: In this mode, a cartridge is put into the most convenient storage cell location to minimize cartridge accessor movement and optimize performance.

In an IBM 3494, floating home cell mode is available only if the optional dual gripper (FC5215) is installed, or if DAA is installed and activated (FC5050). In this mode, the IBM 3494 accessor returns a used cartridge to the nearest cell, rather than to the original cell (as it does in fixed home cell mode, the default). Therefore, floating home cell mode reduces robotic movement and improves mount performance.

If a gripper fails, the operation of the second gripper is unaffected, so system availability is maintained. Floating home cell mode is enabled during the Library Manager teach and reteach processes, which are carried out by an IBM Systems Service Representative (SSR).
Cartridge placement on initial load
For performance reasons, consider clustering cartridges near the tape subsystems that will use them, in particular:

- During initial population of the library with cartridges
- When using inventory update to add cartridges
- When the library has the Dual Active Accessor feature

This applies particularly to environments with mixed device types inside the library and with a mixed library including both VTS and native tape drives. This also applies to environments where multiple host systems are attached to dedicated tape drives inside the 3494 Tape Library.

Note, however, that initial cartridge placement does not remain the same over time, when using floating home cell mode.

Safety operations
The tape library uses a safety interlock circuit, which controls the aisle power to the cartridge accessor. This circuit separates motion and electrical hazards in the tape library from the operator and service personnel. The circuit is also used to minimize the damage to a cartridge accessor if its position control system fails.

There are also nonelectrical elements of the safety system. For example, the safety labels are placed inside and outside the tape library to caution operator and service personnel.

3.2.2 Model L22 Tape Library base frame
The Model L22 frame contains all of the components that are required for tape automation:

- The Library Manager to communicate with the host and to control cartridge movement and storage within the 3494 Tape Library

 We describe the Library Manager in detail in 3.1, “IBM 3494 Library Manager” on page 85.

- The cartridge accessor to move the cartridge among drives, I/O stations, or storage cells.

- The accessor rails on which the cartridge accessor travels

- Depending on the configuration, up to 240 cartridge storage cells for storage of ½-inch cartridges

- Up to four TS1120-E05 or 3592-J1A tape drives attached to Open Systems or midmarket servers, or to a TS1120-C06, 3592 Model J70, or 3590 Model A60 controller installed in an adjacent Model D22 frame

- Convenience or high capacity I/O stations (optional)

Figure 3-11 shows the front of the Model L22 frame. On the left side, you see the side cover, which includes a window through which you can look into the 3494 Tape Library.
In the front of the Model L22 Frame, you can see the operator panel on the left side, next to the convenience I/O station. It is divided and can be installed to hold up to 10 or up to 30 cartridges. If the 10-cartridge I/O station is installed, you only see the top part. On the right side of the Model L22 Frame door, you see the door handle.
Figure 3-12 shows the following functional components of the IBM 3494 Model L22 Frame viewed from the front:

- Cartridge storage cells located on the interior side of the front doors and on the back walls of the IBM 3494 Tape Library.
- The 3592 tape subsystem can be either the TS1120-E05 or 3592-J1A Tape Drives.
- Rail System.
- Convenience I/O station, see “Convenience I/O station” on page 106.
- Operator panel, see “Operator panel” on page 104.

Figure 3-13 shows the functional components of the IBM 3494 Model L22 Frame viewed from the rear.

Host attachment can be achieved through Ultra-SCSI channel attachments to either Open Systems hosts or to an IBM controller installed in an adjacent IBM 3494 Model D22 frame. The host connection to the Library Manager depends on the host support. Some hosts require a separate connection to the Library Manager to pass library commands. This connection can be either an RS-232 or a LAN.

The IBM L22 frame contains zero to four IBM 3592 Model J1A or E05 tape drives and cartridge storage cells. This means that you can install the IBM 3494 Model L22 frame without any tape drives installed.

In an Enterprise Systems Connection (ESCON) or Fibre Channel Connection (FICON) environment, both tape data and tape library commands are sent through the tape drive host channels. Therefore, no additional connection is required between the host and the Library Manager.
Operator panel

The operator panel is located on the front door of the 3494 Model L22, to the left of the convenience I/O station if one is installed. Figure 3-14 shows the operator panel without the convenience I/O station. The controls enable most day-to-day library operations to be performed without using Library Manager.

![Operator panel diagram](image)

Figure 3-14 IBM 3494 operator panel (without convenience I/O station)

The operator panel controls are:

1. The Unit Emergency switch shuts down the IBM 3494. Use only in an emergency. Administrator-level Library Manager authority is required to recover.

Note: A single 3494 Model Lxx frame is the minimum configuration for a 3494 Tape Library.

The 3494 Model L10, Model L14, and Model L12 frames have been withdrawn from marketing.
2. Unit Power on/off is the normal way to shut down the IBM 3494. After the IBM 3494 powers off, wait at least 20 seconds before you power it back on.

3. Rack Power Ready, when lit, indicates that power is on to the 3492 Model L22.

4. System Power Ready, when lit, indicates that power is on to the tape subsystems within the IBM 3494.

5. Power Off Pending, when lit, indicates that the Power Off switch has been changed to the off position and the IBM 3494 is powering down.

6. Local/Remote enables the IBM 3494 to be powered on or off by any attached System i servers. If you want the operator panel to control the power, place the switch in the local position. If power is under the control of a remote System i server, place the switch in the remote position.

7. Auto changes the mode of the IBM 3494 from pause to auto. The LED indicator blinks while the mode of the IBM 3494 is in a transitional state. When the library is in manual mode, both LED indicators blink together. It is impossible to change the mode of the library from manual to auto by using the auto mode switch. Refer to 9.2.1, “Operational modes” on page 370 for more information about the modes. See 9.2.2, “Operational states” on page 371 for information about operational states of the IBM 3494.

8. Pause changes the mode of the IBM 3494 from auto to pause. The LED indicator blinks while the mode of the IBM 3494 is in a transitional state. When the library is in manual mode, both LED indicators blink together. It is impossible to change the mode of the library from manual to pause by using the pause mode switch. Refer to 9.2.1, “Operational modes” on page 370 for more information about modes. See 9.2.2, “Operational states” on page 371 for information about operational states of the IBM 3494.

9. Intervention Required is lit by the Library Manager when the IBM 3494 requires operator intervention. You use the Library Manager or Remote Library Manager Console to determine which operator intervention is needed. Library Manager also sends messages to all attached hosts. How these messages display varies from host to host.

Important: If the switch is set to the remote position and no System i servers are attached that can remotely control the IBM 3494, the IBM 3494 powers off.
Convenience I/O station

The convenience I/O station, if installed, allows you to add or remove cartridges from the IBM 3494 without interrupting automated operations. The station has a door that, when open, gives you access to 10 or 30 cartridge locations, depending on which feature is installed. Figure 3-15 shows a 30-cartridge convenience I/O station.

![Figure 3-15 Thirty-cartridge convenience I/O station](image)

The convenience I/O station doors are shaped in a way that makes it impossible to insert cartridges incorrectly with the wrong end visible. The doors only close if cartridges are inserted so that the vision system can read the external cartridge label.

The cell capacity of the library control unit frame (without the dual gripper installed) is:

- 240 if no convenience I/O station is installed
- 210 if the 10 cartridge capacity convenience I/O station is installed
- 160 if the 30 cartridge capacity convenience I/O station is installed

High-capacity input/output facilities

You can define two high-capacity cartridge handling facilities in an IBM 3494 as:

- High-capacity output
- High-capacity input/output

You can only define only one type of high-capacity facility at one point in time in the library. The high-capacity facility type and size are not specified through a feature code. They are defined when the tape library is installed, during the teach process.

Cartridge cells allocated to the high-capacity facility are not available for cartridge storage.
High-capacity output facility

The high-capacity output facility reserves a section of the cartridge storage area of the 3494 Model L22 front door for ejecting cartridges. Table 3-2 shows the cartridge capacity sizes of the facility.

Table 3-2 IBM 3494 high-capacity output facility cartridge capacity sizes

<table>
<thead>
<tr>
<th>Feature</th>
<th>Number of cartridges without dual gripper</th>
<th>Number of cartridges with dual gripper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without convenience I/O station</td>
<td>10, 20, 40, 80, 160</td>
<td>10, 20, 36, 72, 144</td>
</tr>
<tr>
<td>With 10 cartridge convenience I/O station</td>
<td>10, 20, 40, 80, 130</td>
<td>10, 20, 36, 72, 122</td>
</tr>
<tr>
<td>With 30 cartridge convenience I/O station</td>
<td>10, 20, 40, 80</td>
<td>10, 20, 36, 72</td>
</tr>
</tbody>
</table>

Note: If you do not define a high-capacity output facility, and you do not install a convenience I/O station, the library uses cartridge storage cell 2A1 as a default output facility (called the single cell output facility) when the dual gripper is not installed. Cell 2A3 serves the same purpose if the dual gripper is installed.

If you define a high-capacity output facility, the first and last cell locations depend on the facility size that you selected and whether you installed the dual gripper feature. See Table 3-3 for the cell locations of the various high-capacity output facility sizes.

Table 3-3 IBM 3494 high-capacity output facility cell locations

<table>
<thead>
<tr>
<th>Number of cartridges</th>
<th>Without dual gripper</th>
<th>With dual gripper</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2A1 - 2A10</td>
<td>2A3 - 2A13</td>
</tr>
<tr>
<td>20</td>
<td>2A1 - 2A20</td>
<td>2A3 - 2A23</td>
</tr>
<tr>
<td>36</td>
<td>N/A</td>
<td>2A3 - 2A38</td>
</tr>
<tr>
<td>40</td>
<td>2A1 - 2A40</td>
<td>N/A</td>
</tr>
<tr>
<td>72</td>
<td>N/A</td>
<td>2A3 - 2A38</td>
</tr>
<tr>
<td>80</td>
<td>2A1 - 2A40 2B1 - 2B40</td>
<td>N/A</td>
</tr>
<tr>
<td>122</td>
<td>N/A</td>
<td>2A3 - 2A38 2B3 - 2B38 2C16 - 2C38 2D16 - 2D38</td>
</tr>
<tr>
<td>130</td>
<td>2A1 - 2A40 2B1 - 2B40 2C16 - 2C40</td>
<td>N/A</td>
</tr>
<tr>
<td>144</td>
<td>N/A</td>
<td>2A3 - 2A38 2B3 - 2B38 2C16 - 2C38 2D16 - 2D38</td>
</tr>
<tr>
<td>160</td>
<td>2A1 - 2A40 2B1 - 2B40 2C16 - 2C40 2D16 - 2D40</td>
<td>N/A</td>
</tr>
</tbody>
</table>
High-capacity input/output facility
The high-capacity input/output facility reserves an area on an inside wall (drive side wall) of a frame other than the 3494 Model L22 so that both inserts (input) and ejects (output) can be performed.

You can configure a 3494 Model S10 or the former TotalStorage Enterprise Virtual Tape Server Model B16 control unit frame to use the upper storage racks (100 cells without the dual gripper feature) or the whole wall (200 cells without the dual gripper feature) as input/output cells.

You configure a 3494 Model D1x frame to use the available storage cells on the whole wall (50 to 135 cells depending on the model and the drive configuration).

Only a single wall can be configured at any time.

3.2.3 Model Dxx drive unit frames
The IBM TotalStorage Enterprise 3494 Model Dxx contains zero to six 3590 tape drives or zero to twelve 3592 tape drives, cartridge storage cells, and an accessor rail. The following types of drive unit frames are available:

- The 3494 Model D22 frame houses from zero to twelve 3592-J1A or TS1120-E05 tape drives for direct attachment to open or midmarket systems servers, to a VTS, or to a Model J70 or Model A60 controller (note: the 3590 Model A60 controller does not support TS1120 tape drives) installed in an adjacent Model D24 frame, or a TS1120-C06 installed in a 3952-F05 frame.

 You can install D22 frames that do not contain tape drives to provide additional cartridge storage cell capacity.

- The 3494 Model D24 frame houses from zero to eight 3592-J1A or TS1120-E05 tape drives and a Model J70 or Model A60 controller.

 You can install D24 frames that do not contain tape drives to provide additional cartridge storage cell capacity.

IBM TotalStorage Enterprise 3494 Model D22
You can attach the TotalStorage Enterprise 3494 Model D22 to any model of the library control unit. It provides an accessor rail, cartridge storage cells, and, optionally, housing for zero to twelve IBM 3592-J1A or 3592-E05 tape drives that can attach to one of the following items:

- All Open Systems and midmarket hosts that support Ultra SCSI-attached or Fibre Channel-attached 3592 tape drives inside a 3494 Tape Library. The supported platforms are:
 - Operating System/400® (OS/400)
 - AIX
 - Linux
 - SUN Solaris
 - Hewlett-Packard UNIX (HP-UX)
 - Microsoft Windows 2000 and Windows NT®
 - Tru64

 The library control unit requires additional features to provide (for library commands) host attachment in addition to the tape drive host attachment. For more details, refer to Chapter 8, “Software implementation: Open Systems environments” on page 313.
A 3592 Model J70 tape control unit, or if the drives are 3592-J1A tape drives, an IBM 3590 Model A60 control unit that is installed in an adjacent Model D24 frame.

An TS1120-C06 installed in a 3952-F05 frame.

An IBM TotalStorage Enterprise Virtual Tape Server.

The maximum number of cartridge storage cells in a single Model D22 frame is 400, if no tape drives are installed. Each tape drive installed inside a Model D22 frame reduces the number of available storage cells. Refer to 3.6, “Tape library configuration options” on page 130 for the exact number for every configuration.

IBM TotalStorage Enterprise 3494 Model D24

The IBM 3494 Model D24 frame provides an accessor rail, cartridge storage cells, and ESCON or FICON attachment of IBM 3592 tape systems for attachment to the following hosts:

- System z servers
- All ESA-capable S/370™ and S/390 systems that support ESCON channels

Attachment to the host is through the IBM 3592-J70, or 3590 Model A60 tape controller, which is installed in the Model D24 frame, or to the TS1120-C06 tape control unit, which is installed in a 3952-F05 frame. The D24 frame can hold zero to eight IBM 3592-J1A or 3592-E05 tape drives, according to the attachment specifications of the tape control unit as explained in 2.8.2, “Attachment Features” on page 66.

For attachment of twelve TS1120 or 3592-J1A tape drives to a single Model J70 control unit inside a 3494 Tape Library, you must meet the following requirements:

- One Model D24 drive unit frame housing the 3592 Model J70 control unit plus eight tape drives.
- One Model D22 drive unit frame installed adjacent to the Model D24 frame. The D22 frame can house the remaining four tape drives.

Depending on the number of tape drives installed inside the Model D24 frame, the number of cartridge storage cells will vary. With no drives and no tape drives installed, the maximum number of storage cells is 400. Refer to 3.6, “Tape library configuration options” on page 130 for the exact number for every configuration.

In an ESCON or FICON environment, both tape data and tape library commands are sent through the tape drive host channels. Therefore, the host-to-Library Manager connection is through the Model A60 control unit ESCON or FICON attachment to the host.

3.3 VTS frames

The minimum configuration of an IBM TotalStorage Virtual Tape Server is shown in Figure 3-1 on page 83. This configuration consists of:

- One 3494 Model L22 frame that contains all library relevant components.
- One 3494 Model D22 frame that can be located anywhere in the 3494 Tape Library and contains the 3592 tape drives dedicated to the VTS. Refer to “IBM TotalStorage Enterprise 3494 Model D22” on page 108 for a description of the D22 frame.
- One IBM 3494 Model Bxx Virtual Tape Server frame that can be located at a distance of up to 14 m (46 ft.) from the D22 frame. This frame contains the Virtual Tape Server controller and the Tape Volume Cache.
In addition, if a PtP VTS is installed, one to four Model CX1 Virtual Tape Frames are required to house the Virtual Tape Controllers (VTCs).

The IBM 3494 Models B10, B18, B20, and CX1 do not require tape automation. Therefore, they are not installed inside a 3494 Tape Library. Instead, they are located to the side of or at a distance from the actual tape library.

Note: You can learn more about the components of the VTS and PtP VTS, including implementation, operating, monitoring, and more in:

- *IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring,* SG24-2229
- *IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide,* SG24-6115

3.3.1 Virtual Tape Server frame

The IBM TotalStorage Enterprise Virtual Tape Servers were available in four models: IBM 3494 Model B16, IBM 3494 Model B18, IBM 3494 Model B10, and Model B20. They have all been withdrawn from marketing. The VTS Model B10 Frame is shown in Figure 3-1 on page 83 as the right-most frame.

A VTS is transparent to the host. From a host perspective, data is processed as though it resides on actual 3490E cartridges. All access of data is through the Tape Volume Cache, which is managed by the VTS on fault-tolerant RAID disks (up to 5.1 TB, assuming a three to one (3:1) compression). The cache can hold hundreds or even thousands of virtual volumes. If a requested volume is not present in the cache, the required IBM TotalStorage Enterprise 3590 cartridge is mounted, and the logical volume is moved back into the cache from a stacked volume. From 64 to 256 3490E devices and up to 250,000 virtual volumes are provided by a single VTS or PtP VTS.

Up to two IBM 3494 Model B10, B18, or B20 VTS systems can be integrated in one 3494 Tape Library. If a PtP VTS is installed, both VTS systems that make up the PtP VTS must be installed in different physical IBM 3494 Tape Libraries.

IBM TotalStorage Virtual Tape Server Model B10 (withdrawn)

The Model B10 VTS is packaged as a standalone unit that can be a maximum of 14 meters from the associated IBM TotalStorage Tape Drive Expansion Frame. The Model B10 VTS provides host connection of up to four Extended Performance ESCON Channels, up to four FICON channels, or up to eight SCSI bus attachments. Each Model B10 VTS provides a maximum of 64 virtual tape drives and up to 250,000 logical volumes. Each virtual volume can have a maximum capacity of 2.4 GB (assuming a 3:1 compression ratio). This provides a total VTS capacity of up to 1.3 TB of effective Tape Volume Cache (assuming a 3:1 compression ratio).

You can interconnect a Model B10 VTS with PtP VTS copy features with another Model B10 or B18 VTS and four IBM TotalStorage Virtual Tape Controllers Model AX0 in a PtP VTS configuration. This combination provides both remote and local PtP copy capability between two VTSs using ESCON connections.

The Model B10 VTS provides the following significant capabilities:

- Tape volume cache capacity up to 1.3 TB (with a 3:1 compression)
- An advanced RISC controller
- Up to four Extended Performance ESCON host channels
- Up to four FICON host channels
- Up to eight SCSI bus attachments
- Attach up to two VTSs per 3494
- Address a maximum of 64 virtual tape drives
- Include a maximum of 250,000 logical volumes per VTS
- Two VTSs with PtP VTS copy features interconnected to provide remote copy using ESCON attachments
- With the Advanced Function feature:
 - DFSMS Tape Volume Cache management
 - Export/import of logical volumes
- With the Advanced Policy Management feature:
 - Volume pooling
 - Selective dual copy
 - Tape volume cache management
 - Export/import of logical volumes
- Improved reliability, availability, and serviceability

3494 Model B16 Virtual Tape Server (withdrawn)

Note: Effective 31 December 1998, the IBM 3494 Model B16 Virtual Tape Server was withdrawn from marketing.

The 3494 Model B16 provides a hierarchical storage management system to attached ESCON hosts by integrating IBM TotalStorage Enterprise 3590 tape drives, fault tolerant RAID disk storage, and a RISC-based controller. It appears to host systems as two fully configured 3490E tape subsystems. The Model B16 contains 400 tape cartridge storage cells. The 3494 Model B16 must be integrated with a Model D12 and attached to a Model L10, Model L12, or Model L14.

IBM TotalStorage Virtual Tape Server Model B18 (withdrawn)

Note: Effective 30 November 2001, the IBM TotalStorage Virtual Tape Server Model B18 was withdrawn from marketing.

The IBM TotalStorage Virtual Tape Server Model B18 is packaged as a standalone unit that can be a maximum of 14 meters from the associated 3494 drive unit frame. The Model B18 VTS contains a RISC processor, host connection of up to eight Extended Performance ESCON Channels or up to four SCSI bus attachments, and over 5 TB of effective Tape Volume Cache (assuming a 3:1 compression ratio). Each Model B18 VTS provides a maximum of 128 virtual tape drives and up to 250,000 logical volumes. Each virtual volume can have a maximum capacity of 2.4 GB (assuming a 3:1 compression ratio).

You can interconnect a Model B18 VTS with the PtP VTS copy feature with another VTS B18 or VTS B20 and eight IBM TotalStorage Virtual Tape Controllers (Model AX0). Or you can interconnect a Model B18 VTS with the PtP VTS copy feature with another VTS B18 or VTS B10 and four AX0s in a PtP VTS configuration to provide both remote and local PtP copy capability between two VTSs using ESCON connections.
The Model B18 VTS provides the following significant capabilities:

- Tape volume cache capacity over 5 TB (with a 3:1 compression ratio)
- ESCON High Performance Option (EHPO)
- Up to eight Extended Performance ESCON host channels
- Up to four SCSI bus attachments
- Attach up to two VTSs for each 3494
- Address a maximum of 128 virtual tape drives
- Include a maximum of 250,000 logical volumes per VTS
- Two VTSs with PtP VTS copy features interconnected to provide remote copy using ESCON attachments
- With the Advanced Function feature:
 - DFSMS Tape Volume Cache management
 - Export/import of logical volumes
- With the Advanced Policy Management feature:
 - Volume pooling
 - Selective dual copy
 - Tape volume cache management
 - Export/import of logical volumes

IBM TotalStorage Virtual Tape Server Model B20 (withdrawn)

The Model B20 VTS is packaged as a standalone unit that can be a maximum of 14 meters from the associated IBM TotalStorage Enterprise Tape Drive Expansion Frame (Model D10). You can configure an Enterprise Tape Library with up to two VTSs. The Model B20 VTS provides a host connection of up to 16 Extended Performance ESCON Channels, up to eight FICON channels, or up to eight SCSI bus attachments, and over 5 TB of effective Tape Volume Cache (assuming a 3:1 compression ratio). Each Model B20 VTS provides a maximum of 256 virtual tape drives and up to 250,000 logical volumes. Each virtual volume can have a maximum capacity of 2.4 GB (assuming a 3:1 compression ratio).

You can interconnect a Model B20 VTS with PtP VTS copy features with another VTS B20 or VTS B18 and eight IBM TotalStorage Virtual Tape Controllers (Model AX0s) in a Peer-to-Peer VTS configuration to provide both remote and local PtP copy capability between two VTSs using ESCON connections.

The Model B20 VTS provides the following significant capabilities:

- Tape volume cache capacity over 5 TB (with a 3:1 compression ratio)
- An advanced RISC controller
- Up to 16 Extended Performance ESCON host channels
- Up to 8 FICON host channels
- Up to eight SCSI bus attachments
- Attachment of up to two VTSs for each 3494
- Address a maximum of 256 virtual tape drives
- Include a maximum of 250,000 logical volumes for each VTS
- Two VTSs with PtP VTS copy features interconnected to provide remote copy using ESCON attachments
With the Advanced Function feature:
- DFSMS Tape Volume Cache management
- Export/import of logical volumes

With the Advanced Policy Management feature:
- Volume pooling
- Selective dual copy
- Tape volume cache management
- Export/import of logical volumes

Improved reliability, availability, and serviceability

3.3.2 Model CX1 Virtual Tape Frame

The IBM TotalStorage Virtual Tape Frame (Model CX1) provides the housing and power for two or four IBM TotalStorage Virtual Tape Controllers (VTCs). There are two power control compartments, each with its own power cord to allow connection to two power sources.

Virtual Tape Controller (VTC)

The VTC provides interconnection between two Virtual Tape Servers with the PtP VTS base copy (FC4010) and also provides two ESCON or FICON host system attachments for the PtP VTS.

Each VTC independently operates as a distributed node within the Peer-to-Peer VTS and continues to operate during scheduled or unscheduled service of another VTC. There must be four or eight VTCs in the Peer-to-Peer VTS with each one attaching two VTSs. Each VTC also provides two ESCON host attachments, each with 64 paths using appropriate ESCON directors. Each VTC also provides 16 or 32 virtual addresses and transfers data between host channels and the VTSs. For a virtual mount on any of its 16 or 32 addresses, the VTC selects one of the two VTSs to support the requested volume processing activities.

Each VTC performs the following:
- Maintains synchronization of the dual copy of logical volumes
- Uses large block transfers of compressed logical volumes to create logical volume copies
- Balances workload between the VTSs
- Directs specific volume mounts to the VTSs with a cached copy of the requested virtual volume

3.4 Model HA1 High Availability Frames

The IBM TotalStorage Enterprise 3494 Model HA1 High Availability Frames consist of two service bay unit frames that are installed adjacent to both ends of the other 3494 Tape Library frames. The left most HA1 frame, next to the IBM 3494 Model L12 frame, provides a garage for the active accessor in case it fails. The right most HA1 frame provides a second accessor and a second Library Manager.

None of the HA1 frames provides cartridge storage cells or the ability to install additional drives. In the case of an accessor failure, the cartridge storage cells are not accessible by the surviving accessor.
3.4.1 Model HA1 Library Frames

Figure 3-16 shows the functional components of service bay A, the left most frame, as shown from the right front.

Cartridge storage cells are located in the interior side of the front door and on the back interior wall. They are for service use only.

Barrier door used by service personnel to separate the service bay from the main aisle of the IBM 3494. The barrier door allows for concurrent service of the accessor and the associated hardware.

Figure 3-16 Service bay A functional components (right front)

Figure 3-17 shows the functional components of service bay B from the left front.
The second accessor (not visible) is similar in function to the accessor of the 3494 Model Lxx. It can be controlled by either Library Manager.

The High Availability Frames must be configured the same as in the 3494 Model Lxx, with either one or two grippers.

3.4.2 Model HA1 components

When you install the High Availability Frames, the IBM 3494 configuration has two Library Managers and two cartridge accessors. Each Library Manager controls a cartridge accessor. In the event of a cartridge accessor or Library Manager failure, the IBM 3494 can continue operations after a short interruption. The High Availability Frames also allow concurrent maintenance of these components while the IBM 3494 operates.

The addition of the Dual Active Accessor feature allows higher library exchange performance, while preserving the high availability aspects of the Model HA1 unit. The Dual Active Accessor feature is a chargeable microcode feature of the IBM 3494.

Figure 3-18 shows the components of the High Availability Frames.
The HA1 components are:

- A second Library Manager, located in the right service frame.
- A second cartridge accessor.
- Communication links between the two Library Managers and a LAN hub if a VTS is integrated with the IBM 3494.
- Shared nonvolatile random access memory (NVRAM) holding the current state of the active and standby Library Manager. It is used when a Library Manager cannot communicate with the second Library Manager on either of the links to decide whether this Library Manager is active.
- Hardware switches to switch the operator panel from one Library Manager to the other, or to switch hosts or tape controllers to either Library Manager.
- Digital input/digital output (DI/DO) lines to communicate component commands and status between both Library Managers and the library components, such as the accessors.
- Two service frames (or bays) for storage of the inactive cartridge accessors, service diagnostics, or accessor repair. Service frames contain rail extenders (to allow the accessor to be stored within the frame) and a barrier door. The right service frame (when you look at the library from the front) contains the second Library Manager. A barrier door in the service frame is used to keep the functioning cartridge accessor from entering the service frame during service. Each service frame has its own AC power control compartment, which is different from the compartment of the 3494 Model L22.
A second unit emergency power off (EPO) switch as in the 3494 Model L22 to drop power to the entire library.

The active Library Manager controls the active accessor, receives host commands over the control paths, and controls the convenience I/O station. Either Library Manager can be the active Library Manager and either accessor can be the active accessor. If the remote accessor for an active Library Manager is the active accessor (that is, accessor B for Library Manager A or accessor A for Library Manager B), the active Library Manager sends the accessor commands to the standby Library Manager, and the standby Library Manager passes them on to the accessor.

There is only one operator panel, which is located on the 3494 Model L22 frame. It is controlled by the currently active Library Manager.

With the High Availability Frames installed, the database on the primary disk in the active Library Manager is mirrored onto the primary disk of the standby Library Manager. If the standby Library Manager becomes unavailable, the secondary database is mirrored onto the secondary disk of the active Library Manager.

Also, additional circuitry is installed that supports concurrent maintenance. Specifically, when an IBM SSR services an accessor in its service bay and the service frame's barrier door is in place, the IBM SSR can open and close the service bay door without affecting the power of the other active accessor in the aisle.

3.4.3 Failover scenarios

The Model HA1 provides a high level of availability in the event of a failure of these two critical components of the IBM 3494: the Library Manager and the Cartridge Accessor. The following section discusses the basic failover processing. For a detailed description of operational considerations related to the High Availability Frames, refer to 9.7, “Error handling and recovery summary” on page 405.

Library Manager failure

The standby Library Manager (LMB) knows that the active Library Manager (LMA) is functioning properly by monitoring activity on the communication links between the two Library Managers. If LMA fails, LMB takes over the control of the library. This operation is called the **Library Manager switchover**. The host paths are now controlled by LMB. The operator panel is switched to LMB.

To the hosts, it appears as though the Library Manager failed and went through a recovery/restart procedure. The active Library Manager command queue is not maintained on the standby Library Manager, so jobs might abend. When the switchover begins, the host marks the library offline. After the switchover is complete, the operator must vary the library online.

If possible, LMB continues to use accessor A through LMA. If LMA cannot execute the accessor commands, accessor B is activated.

After the switchover, the primary database is on the primary disk of LMB. It is mirrored onto the secondary disk of LMB. The copy from the primary database to the secondary database occurs concurrently with online Library Manager operations, such as mounts and inserts. The copy operation involves copying the primary database record-by-record to the secondary database and mirroring any changes to the primary database as the Library Manager processes host commands.
When LMA comes back up, the secondary copy of the LMB database is copied to the primary disk of LMA. The primary disk of LMA now becomes the secondary copy for the active Library Manager.

If the Dual Active Accessor feature is installed and enabled, the operation of the Library Managers remains the same. This happens because there is still only one Library Manager designated as active. The other Library Manager, although it controls the robotics of the second accessor, is still designated as standby.

Cartridge accessor
If accessor A fails, LMA sends accessor commands to LMB over the communication links. LMB then executes the commands, using accessor B. The first operation is to gently push accessor A into its service bay (left side of the library) so that accessor B can access all cartridges in the library. A special pusher bar is added to one of the accessors for this purpose. This operation is called the accessor switchover.

On completion, normal library function resumes using accessor B. LMA remains as the active Library Manager. Operation continues automatically after a short time. No operator involvement is required.

3.4.4 Dual Active Accessors

The Dual Active Accessor feature improves performance of the 3494 with an attached Model HA1. It takes full advantage of having two accessors active at the same time for performing commands. When the Dual Active Accessor feature is active, both accessors service mount requests at the same time. The high availability of an HA1 model is maintained, because each active accessor can pick up the activities of the other accessor.

To reduce interference between accessors, the library is divided into two zones. The boundary between the two zones is established at library initialization and might change over time as the Library Manager attempts to keep the accessors equally busy.

For a detailed description of the techniques used to place and select tapes to optimize the performance of Dual Active Accessors, refer to “Performance with the Dual Active Accessor feature” on page 123.

If the Dual Active Accessor feature is installed and enabled, each accessor services the mounts within two zones. The partition between these zones is on a frame boundary, and this boundary might be defined as dynamic or static. If an accessor fails, the remaining accessor pushes the failed accessor into its service bay and takes over the operation of both zones until the failed accessor is repaired and reactivated.

Refer to 9.9.2, “Dual Active Accessor recovery scenarios” on page 415 for a detailed description of operational considerations related to the Dual Active Accessor.

3.5 Tape library planning

This section covers considerations that you need to take into account when planning a 3494 Tape Library.

3.5.1 Tape library frames and placement

The IBM 3494 can have a maximum of 16 frames plus the two attached service bays of the High Availability unit. Allowable configurations are 1 to 16 frames without the High Availability
unit. When the High Availability unit is installed, configurations of 3, 4, 6, 8, 10, 12, and 16 frames are allowed, not counting the two service bays of the High Availability unit. With the Dual Active Accessor feature, you must install at least four frames in the IBM 3494.

All configurations must have one 3494 Model Lxx control unit frame. The subsystem can include up to 15 additional frames (in configurations as listed above).

An IBM 3494 can support up to two VTS subsystems. If one is a B16, the other must be a B10, B18, or B20 model. Each VTS requires a separate Dx2 frame to house 3592 or 3590 tape drives. The VTS frame is a standalone frame located within 14 meters of the attached D22. The B16 VTS frame is installed in the IBM 3494 and must be to the immediate left of the associated D22. Except for this one restriction, the frames associated with the VTS subsystems can be in any position in the IBM 3494.

If more than eight frames are attached to a 3494 library, one drive frame Model Dx2, or FC9002, FC9003, or FC9006 must be installed in the first eight frames.

Feature codes are available to specify the number and position of frames installed in an IBM 3494. See 3.6.1, “Specific features” on page 130 for a detailed description of the available feature codes.

There might be a case where you must change the configuration of frames in an installed IBM 3494. For example, you must move the frames to install a Virtual Tape Server or move the frames from one IBM 3494 to another. In this case, you need to process a Request for Price Quotation (RPQ) before you can reconfigure the library. The RPQ provides the proper cables.

Figure 3-19 shows examples of configurations that provide capacity, performance, or both.

![Figure 3-19 3494 capacity and performance configurations](image)

In planning the configuration of an IBM 3494, consider the relative ease with which you can add additional frames to the end of an existing library, compared to inserting additional
frames. Similarly, it is easier to add drives to drive frames that are not fully populated with drives than it is to remove S10 frames and replace them with Dxx frames, or to add additional drive frames when enough free storage slots are available.

3.5.2 Frame capacities

The IBM 3494 allows for expandable configurations. For example, it can hold from 160 to 6240 cartridges. The storage capacity is determined by the number of frames, installation of the optional convenience I/O station, installation of the optional dual gripper, the number and type of tape subsystems installed, and the definition of the high-capacity facility.

Table 3-4 shows the number of cartridge storage cells for each model of the IBM 3494. Selecting the high-capacity I/O facility reduces the cartridge capacity, depending on the options chosen.

Table 3-4 IBM 3494 configuration options and frame capacity

<table>
<thead>
<tr>
<th>Frame model</th>
<th>With dual gripper</th>
<th>Without dual gripper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lxx Frame</td>
<td>240 1, 2, 3, 4, 5, and 6</td>
<td>216 1, 3, 4, 5, and 6</td>
</tr>
<tr>
<td>S10 Frame with FC5400</td>
<td>400 2, 3</td>
<td>360 3</td>
</tr>
<tr>
<td>D10 Frame (without 3490E Model CxA or F1A)</td>
<td>400 2, 3</td>
<td>360 3</td>
</tr>
<tr>
<td>D10 Frame with FC5300 (with 3490E Model CxA of F1A)</td>
<td>300 2, 3</td>
<td>270 3</td>
</tr>
<tr>
<td>D22 Frame, or D12 Frame with FC5500</td>
<td>400 2, 3</td>
<td>360 3</td>
</tr>
<tr>
<td>3494 D22 Frame or 3494 D12 Frame (without tape drives) or 3494 D12 Frame with FC5302 (without 3590 x1A Tape Drive)</td>
<td>400 2, 3</td>
<td>360 3</td>
</tr>
<tr>
<td>3494 D22 Frame (with one to four 3592 Tape Drives) or 3494 D12 Frame with FC5302 (with one or two 3590 x1A Tape Drives)</td>
<td>335 2, 3</td>
<td>305 3</td>
</tr>
<tr>
<td>3494 D22 Frame (with five to eight 3592 Tape Drives) or 3494 D12 Frame with FC5302 (with RPQ), FC5502, or FC5503 (with three or four 3590 x1A Tape Drives)</td>
<td>290 2, 3</td>
<td>260 3</td>
</tr>
<tr>
<td>3494 D22 Frame (with nine to twelve 3592 Tape Drives) or 3494 D12 Frame with FC5302 (with RPQs), FC5502, or FC5503 (with RPQ and five or six 3590 x1A Tape Drives)</td>
<td>250 2, 3</td>
<td>230 3</td>
</tr>
<tr>
<td>3494 D24 Frame (without tape drives) or 3494 D14 Frame with FC5304 (without 3590 x1A Tape Drives)</td>
<td>400 2, 3</td>
<td>360 3</td>
</tr>
<tr>
<td>3494 D24 Frame (with one to four 3592 Tape Drives) or 3494 D14 Frame with FC5304 or FC5504 (with one or two 3590 x1A Tape Drives)</td>
<td>345 2, 3</td>
<td>305 3</td>
</tr>
</tbody>
</table>
Optional convenience I/O station features reduce the cartridge capacity by 30 cartridges (FC5210) or 80 cartridges (FC5230).

With FC5215 (Dual Gripper) installed, the convenience I/O station features reduce the cartridge capacity by 26 cartridges (FC5210) or 72 cartridges (FC5230).

Selecting the high-capacity I/O facility reduces the cartridge capacity, depending on the options chosen.

One cell is reserved for ejecting cartridges if you do not install a convenience I/O station feature and you do not define the high-capacity output facility.

A maximum of two cells is reserved for certain service representative functions. With the HA1 Frames installed, there are no cells reserved in the L Frame for service functions.

One cell is reserved for error-recovery operations in libraries without the HA1 Frames configuration. Two cells are reserved for error-recovery operations in libraries with the HA1 Frames configuration.

<table>
<thead>
<tr>
<th>Frame model</th>
<th>With dual gripper</th>
<th>Without dual gripper</th>
</tr>
</thead>
<tbody>
<tr>
<td>3494 D24 Frame (with five to eight 3592 Tape Drives) or 3494 D14 Frame, FC5304, or FC5504 (with RPQ and three or four 3590 x1A Tape Drives)</td>
<td>305(^2), 3(^3)</td>
<td>275(^3)</td>
</tr>
<tr>
<td>B18, B10, and B20 VTS, CX0, Cx1, VTC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA1 Frames (service bays)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1Optional convenience I/O station features reduce the cartridge capacity by 30 cartridges (FC5210) or 80 cartridges (FC5230).
2With FC5215 (Dual Gripper) installed, the convenience I/O station features reduce the cartridge capacity by 26 cartridges (FC5210) or 72 cartridges (FC5230).
3Selecting the high-capacity I/O facility reduces the cartridge capacity, depending on the options chosen.
4One cell is reserved for ejecting cartridges if you do not install a convenience I/O station feature and you do not define the high-capacity output facility.
5A maximum of two cells is reserved for certain service representative functions. With the HA1 Frames installed, there are no cells reserved in the L Frame for service functions.
6One cell is reserved for error-recovery operations in libraries without the HA1 Frames configuration. Two cells are reserved for error-recovery operations in libraries with the HA1 Frames configuration.

Note: Cartridge cells allocated to the high-capacity facility are not available for cartridge storage. See “Convenience I/O station” on page 106 for a description of the high-capacity facility and the size of the corresponding reserved area.

You can gather information about the number of cartridge storage cells required inside the tape library. You do this by analyzing tape usage data generated by analysis tools, tape management software reports, or discussions with storage administrators. There is no one method of gathering this data that applies to all hosts that you can attach to the IBM 3494. For methods available in z/OS, refer to “Monitoring and reporting tools” on page 444.

3.5.3 Performance planning

Expectations of performance play an important role in planning for your IBM 3494. This section tries to demystify some of the performance characteristics of an automated tape library. The discussion includes:

- Accessor exchange performance for:
 - Native drive libraries
 - Virtual Tape Server virtual drives
- Performance implications of the Dual Active Accessor feature
- Inventory performance
- Mount performance
- Drive subsystem performance

Accessor exchange performance

Library performance is the number of volumes that the tape library can exchange in a one-hour period. An exchange involves moving a volume to a tape drive, drive residence time, and removal of the volume from the drive. This section uses exchange as a metric for hourly
accessor performance. It uses.mount to describe the mechanical actions of the library as the host sees them, such as.specific.mount or scratch.mount.

The time to move a volume to a drive and remove the volume from the drive constitutes the library accessor capability. If the tape library has more tape drives, it can exchange more volumes concurrently. If the library is fitted with the Model HA1 and Dual Active Accessor feature, its hourly exchange rate might increase. Therefore, the factors that affect tape library performance are:

- Number of tape drives
- Drive residence time
- Library accessor exchange time affected by:
 - Number of active accessors (Dual Active Accessor feature)
 - Relative placement of drives and volumes within the library

For example, consider four drives with a 5-minute residence time. It is impossible to have more than 48 exchanges per hour. These values are obtained by multiplying the number of drives by the quotient of 1 hour (60 minutes) divided by the residence time in minutes:

\[(\text{number of drives}) \times (\frac{1\text{ hour}}{\text{drive residence time}})\]

The exchange capability provided by the tape library accessor is the quotient of one hour (3600 seconds) divided by the library accessor exchange time in seconds. If the library accessor exchange time is 15 seconds, the mount capability of the tape library accessor is 240, which far exceeds the availability of volumes to exchange. Current measurements indicate a maximum of 305 cartridge mounts or demounts per hour for the IBM 3494. Therefore, the key to determining tape library performance is often based on drive residence time, not necessarily on library accessor exchange time.

Figure 3-20 compares average volume residence time and the cartridge exchange capability provided by several configurations of the IBM 3494. The six solid lines in the graph show the maximum exchanges per hour possible for 2, 4, 8, 16, 32, and 66 tape drives with varying drive residence times. Analyses of client data show that average drive residence times typically range between 8 and 12 minutes. This range is indicated on the graph. The broken vertical lines are the maximum exchange rates that the IBM 3494 is capable of executing for several different-size tape libraries and with or without the dual gripper and Dual Active Accessor feature. The purpose of the graph is to show that you can use residence time and the number of drives to determine the accessor performance required in a library.
Performance with the Dual Active Accessor feature

Exchange performance of the IBM 3494 with the Dual Active Accessor feature depends on the degree of independence with which the accessors can operate. Given totally independent operation, Dual Active Accessor can accomplish more than twice the number of exchanges possible for a single accessor in the same library. Given a high degree of interference between the two accessors, Dual Active Accessor might provide only slightly better exchange performance than a single accessor.

The two accessors service the drives in the library frames that are within the accessor’s zone (see Figure 3-21). The two zones are established by a dynamic or fixed boundary. A high degree of independence occurs when there is an affinity between the cartridge location and the location of the selected drive. Therefore, the accessor servicing the target drive does not have to cross the boundary line into the other accessor’s zone to pick the cartridge.
With the Dual Active Accessor feature, cartridge-drive affinity can occur for both scratch and specific mounts. For scratch mounts, affinity is controlled by the Library Manager’s ability to select the volume to mount from the specified category. See 3.1.4, “Library Manager scratch selection” on page 94 for details about Library Manager scratch selection. This affinity always occurs when the scratch mount is a true scratch mount (mount from category) and not a specific mount from a private scratch pool. Affinity for scratch mounts is applied to the set of drives in the zone in which the accessor normally operates, not to individual drives.

For specific mounts, affinity occurs if:

- The operating system or tape application uses the drive-string priority list that the Library Manager, on request, sends to the host processor.
- There is at least one unallocated drive in each zone.

Currently, z/OS running JES2 is the only operating system that exploits this priority list. In these environments, with a single accessor, cartridge-drive affinity also occurs (only for specific mounts). However, the effect on exchange capability is not as dramatic as it is in a Dual Active Accessor library.

Table 3-5 summarizes the conditions under which the two types of cartridge-drive affinity occur.
A further natural cartridge-drive affinity occurs when the library is partitioned into sections by operating system or drive type. This way, all cartridges in each section are mounted only in the drives in that section.

Here are some Dual Active Accessor configuration scenarios that result in a high degree of cartridge-drive affinity and thus optimal Dual Active Accessor exchange performance:

- A z/OS environment where every host image has access to every library cartridge, and drives are balanced across the two library zones. For scratch mounts, the Library Manager always try to pick a scratch cartridge in the same zone as the target drive. See 3.1.4, “Library Manager scratch selection” on page 94 for details about Library Manager scratch selection. For specific mounts, the Library Manager sends to z/OS an ordered list of drives, based on the zone containing the cartridge to mount. If not all drives in the cartridge's zone are allocated, z/OS chooses a drive from the ordered list that results in at least cartridge-zone, if not cartridge-drive, affinity. This also assures optimal Dual Active Accessor exchange performance. Therefore, for applications with a high percentage of specific mounts, it is important to have sufficient drives so that cartridge-drive affinity can be achieved even in peak periods.

- A System i or System p server environment where applications use actual communal scratch pools for scratch mounts, and, if there are a significant number of specific mounts, the applications use the ordered list of drives to achieve cartridge-drive affinity. Note that neither the i5/OS® nor AIX operating systems use the ordered drive list for specific mounts.

- A mixed host environment where all cartridges and drives for one host are together in each library zone. The VTS drives and cartridges fall within this scenario.

- Any host environment where two drive types are geographically separated enough to be in the two zones. The two different cartridge types are also placed in the different zones. Fixing the zone boundary in the Library Manager might be advantageous for this scenario.

Here are some scenarios that do not result in a high degree of cartridge-drive affinity. Therefore, they show minimal performance benefit from the Dual Active Accessor feature:

- A System i or System p server environment where applications use private scratch pools, or where there are a significant number of specific mounts and the applications do not exploit the ordered drive list

- Any host environment with a high percentage of specific mounts in which it often occurs that all drives in a zone are allocated

Laboratory measurements have shown that much better Dual Active Accessor exchange performance occurs when the library is in floating home cell mode rather than fixed home cell mode, for either single or dual grippers. Therefore, we strongly recommend the operation of the Dual Active Accessor in floating home cell mode. For both the single accessor and the Dual Active Accessor libraries, the best exchange performance occurs with dual grippers and floating home cell mode.

Table 3-5 Cartridge-drive affinity for scratch and specific mounts

<table>
<thead>
<tr>
<th>Accessor</th>
<th>Single</th>
<th>Single</th>
<th>Dual</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount type</td>
<td>Scratch</td>
<td>Specific</td>
<td>Scratch</td>
<td>Specific</td>
</tr>
<tr>
<td>System z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>System i</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>System p</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Laboratory measurements have shown that much better Dual Active Accessor exchange performance occurs when the library is in floating home cell mode rather than fixed home cell mode, for either single or dual grippers. Therefore, we strongly recommend the operation of the Dual Active Accessor in floating home cell mode. For both the single accessor and the Dual Active Accessor libraries, the best exchange performance occurs with dual grippers and floating home cell mode.
Configuration planning is important for achieving optimal exchange performance for Dual Active Accessor. For sample IBM 3494 configurations, refer to the *IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide*, GA32-0448.

Follow these suggestions when planning the configuration of an IBM 3494 with the Dual Active Accessor feature to minimize accessor interference:

- Balance drive frames across both halves of the library, using expected mount activity as the determining factor. Best performance comes from evenly distributed mount activity. If you add the Dual Active Accessor feature to an existing 3494, it might be advisable to redistribute drives within existing or new drive frames.
- Try to place storage frames in the center of the configuration.
- Grouping 3490E drives at one end and 3590 tape drives at the other end helps to migrate cartridges to provide cartridge-drive affinity. Treat each VTS-owned drive frame as a separate drive type, because these are logically separate libraries sharing the accessors and slots with the native drives.
- If a host has access to only a subset of the tape subsystems in a library, attempt to keep all those subsystems in the same half of the library so that the volumes associated with the subsystems remain in the same zone. This consideration also applies to the situation where a library is partitioned between two z/OS hosts sharing all or a subset of the drives. If these drives are manually or automatically switched between the partitions, the volumes owned by the each partition lose the cartridge-drive affinity performance benefit that otherwise exists with the Dual Active Accessor feature. Be prepared to weigh the benefits of sharing drives against the benefits of increased exchange performance with the Dual Active Accessor feature.
- With the Dual Active Accessor feature installed, the library should use floating home cell mode even with single gripper accessors.
- On initial loading or inventory update, cluster cartridges around the subsystems that will mount them.
- Define the high capacity I/O near the drives that will write tapes that will be ejected.
- If you plan to grow the number of drive subsystems in the library over time, provide a balance of empty drive frames in both zones. You can use these D-frames for cartridge storage.

Clients can access many tape tools, including SMF94 reporting packages, on the Web at: ftp://ftp.software.ibm.com/storage/tapetool

You can find useful information about the tools and their usage in “Monitoring and reporting tools” on page 444.

Mount performance in the VTS

Usually, the mount performance of IBM TotalStorage Enterprise Virtual Tape Server is not tied to the accessor exchange performance of the physical library. Most virtual mounts, that is, all scratch and most specific, do not involve a physical exchange. Therefore, it is unlikely that one or even two VTS logical libraries installed in an IBM 3494 will tax the accessor system. The average time for a virtual mount, however, can be affected by a high demand for accessor movement in the native (nonvirtual) portion of a mixed library.

The VTS offers fast mount times for scratch mounts and specific mounts satisfied in the Tape Volume Cache. The remaining mounts (cache-miss mounts) are subject to possible queuing against the VTS tape drives, the individual stacked volumes, or the accessor resources. This queuing can extend the time for these mounts to complete to several minutes.
Inventory performance
The addition of the Dual Active Accessor feature improves the inventory performance of the IBM 3494. Inventory update processing for four frames of library storage was measured in the laboratory. Without the Dual Active Accessor feature, the inventory took 25 minutes. With the Dual Active Accessor feature, the inventory took 13 minutes, which calculates to 3 to 4 minutes per frame.

3.5.4 Installation planning
The following sections provide information to assist you in installation planning. It covers site preparation, CE initial operations, and environmental specifications.

Site preparation
You must include the following information in the floor plan for the installation of an IBM 3494. For additional detailed plan specifications, see the IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide, GA32-0448.

- The installation planning representative and client are responsible for:
 - Power outlet types, locations, and power ratings
 - Operator area (work area) for the Library Manager, convenience I/O station, and access doors
 - Locations of emergency power-off (EPO) switches
 - Frame locations
 - Service clearances
 - Total IBM 3494 area dimensions

- The client is also responsible for:
 - Cabling and wiring for connections to the host processor
 - Cabling for connection for the Remote Library Manager Console (FC5226). The Remote Library Manager Console also requires the token-ring adapter (FC5219) or the Ethernet adapter (FC5220) in the IBM 3494.
 - Cooling
 - Telephone lines for remote service support
 - Safety and security
 - Fire detection and suppression
 - Floor, raised or not raised, that meets the operational and structural requirements imposed by the IBM 3494. For a raised floor, we recommend that you install stringers between all corner posts and that you place a post under the areas where the 3494 leveling pads will sit.
 - Associated tape library cartridge storage for nonautomated tape library activities
 - Acoustical requirements

3.5.5 CE initial operations (teach and initial inventory)
After an IBM 3494 is first installed, a teach process must be performed. The teach process sets up and initializes the Library Manager database before the client uses it. An IBM SSR performs the teach operation from the Library Manager service menu.
For the teach operation, the IBM SSR specifies the following configuration information on the Library Manager windows:

- **Customer identifier**: Enter the customer’s name.
- **Library sequence number**: Enter a unique five-digit number for each logical library in the IBM 3494. A logical library is really a group of tape drives. All non-VTS drives are in one logical library. Each VTS within an IBM 3494 has its own library sequence number as well. The frame serial numbers of the L frame and any B frames are often used as the library sequence numbers, but this is not required.

Note: The library sequence number is also important for HCD, the integrated storage management facility (ISMF), and JES3 definitions. To allow easy identification of the library, we recommend that you use the last five digits of the IBM machine number of the Model Lxx frame or, if a VTS is installed, of the Model Bxx frame as the Library ID.

- **Default** media type: The options are:
 - 1 for CST cartridges (MEDIA1)
 - E for ECCST (MEDIA2)
 - J for 3590 HPCT (MEDIA3)
 - K for 3590 EHPCT (MEDIA4)
 - JA for 3592 ETC (MEDIA 5)
 - JW for 3592 EWTC (MEDIA 6)
 - JJ for 3592 EETC (MEDIA 7)
 - JR for 3592 EEWTC (MEDIA 8)
 - JB for 3592 EEETC (MEDIA 9)
 - JX for 3592 EEEWTC (MEDIA 10)
 - None in mixed 3490, 3590, and 3592 device type libraries

Use this default if a cartridge is inserted that is neither labeled with the seventh character identifying the media type nor defined to the Library Manager in a range of a given media type. You can specify none.

Support for the barcoded seventh character, default media type, and definitions of volume ranges to the Library Manager are three ways that the IBM 3494 can distinguish to which media type a volume belongs (see 9.4.5, “Setting VOLSER ranges for media types” on page 385). All three ways can be in use.

- **Password required**: Specify whether the Library Manager systems administrator level and service level functions are to be password-protected.
- **Adjacent frame inventory update**: Specify whether the IBM 3494 inventories only the frame whose operator door has been opened or the frames next to that frame as well.

At any time, you can enable or disable the inventory update through the operator menu of the Library Manager.

- **Library frames**: Specify the number and types of frames in the IBM 3494 configuration: control unit frame, drive unit frames, storage unit frames, and Virtual Tape Server.
- **High availability unit**: When installed, specify the dual accessors and service bays.
- **Dual Active Accessor**: When installed, specify enabled or disabled.
- **Tape subsystems**: Specify the number and type of tape drives installed in the control unit frame and each drive unit frame.
- **Device addresses**: Specify the client-defined tape drive addresses to simplify identifying the drive if a problem occurs.
- **Dual gripper**: Specify whether the dual gripper (FC5215) is installed.
High-capacity output facility: Specify the number of cells to reserve for the high-capacity output facility.

High-capacity input/output facility: Specify the number of cells to reserve for the high-capacity input/output facility.

Convenience I/O station: Specify whether the control unit frame contains the convenience I/O station (FC5210 or FC5230).

Plant of manufacture: Enter the prefix from the machine serial number.

Home cell mode: Specify the home cell mode as either fixed home cell mode or floating home cell mode. The floating home cell mode is allowed only when the dual gripper or Dual Active Accessor feature is installed.

The Library Manager database is then created with one cell table, one device table, and the system files.

Starting with the first component in the configuration and continuing until all components are taught, the cartridge accessor is directed to find one or more teach points on the components. The initial location for a teach point is established by the component type and location in the library. A sensor system is then used to center the cartridge accessor on a teach target. When the High Availability unit is installed, the teach process is repeated with the second cartridge accessor.

When all component positions are taught, the Library Manager reinitializes itself with the created database. The library can then proceed to the initial inventory operations.

A partial teach process is allowed if you add or remove features or frames, modify certain options, or an untaught component exists from a previously taught configuration. A partial teach does not create a new Library Manager database. It only updates the information for those components that changed.

After the library is taught, but before you can place it in the online operational state (see Chapter 9, “Operating the IBM TotalStorage 3494 Tape Library” on page 369), you must perform an initial inventory operation called Inventory New Storage to create entries in the database. The inventory operation uses the barcode reader to scan all cartridge storage cells of the library, looking for volumes with their VOLSER and media type labels. After all frames are inventoried, the database is completed, and the library is made available to enter the online operational state.

For libraries equipped with one or two VTS units, it is necessary to perform Insert Virtual Volumes. This insert is permanent, and you must plan this insert carefully. You must not insert more virtual volumes than are necessary. Even though the virtual volumes can be ejected one at a time, this is not desirable. It is simple to add more virtual volumes at any time. See IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring, SG24-2229.

The IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide, GA32-0448, provides information about the tasks that you must perform to continue the installation of the IBM 3494. The following chapters in this guide provide detailed information about installation verification and software implementation.
3.6 Tape library configuration options

This section provides information about IBM 3494 model conversions, chargeable and nonchargeable feature codes, media, language, and power feature codes. It also presents the RPQs that are available for the IBM 3494.

3.6.1 Specific features

You select specific features when ordering a 3494 from the plant (refer to Table 3-6). These features tell the plant which configuration you want and allow the plant to provide the right hardware for the installation of the 3494 frames and tape subsystems that will populate the tape library. Note that you must include the actual tape drives and control units (as well as their associated features) in the configuration and order them with their specific machine types, models, and feature numbers.

Note: For a complete list and description of the IBM 3494 models and feature codes, refer to the *IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide*, GA32-0448, or you can also reference the 3494 announcement letters.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Maximum quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC9002</td>
<td>7 (see note 7)</td>
<td>Storage Unit Attach (2-8 frames)</td>
</tr>
<tr>
<td>FC9003</td>
<td>7 (see note 7)</td>
<td>Drive Unit Attach (2-8 frames)</td>
</tr>
<tr>
<td>FC9004</td>
<td>4 (see note 6)</td>
<td>Storage Unit Attach (9-16 frames)</td>
</tr>
<tr>
<td>FC9005</td>
<td>4 (see note 6)</td>
<td>Drive Unit Attach (9-16 frames)</td>
</tr>
<tr>
<td>FC9006</td>
<td>1 (see notes 8 and 13)</td>
<td>VTS Attachment < 9 frames</td>
</tr>
<tr>
<td>FC9007</td>
<td>1 (see notes 8 and 13)</td>
<td>VTS Attachment < 9 frames</td>
</tr>
<tr>
<td>FC9010</td>
<td>1 (see note 9)</td>
<td>Attach to a VTS</td>
</tr>
<tr>
<td>FC9011</td>
<td>1</td>
<td>Additional Drive Support</td>
</tr>
<tr>
<td>FC9012</td>
<td>1</td>
<td>Attach Additional Drives</td>
</tr>
<tr>
<td>FC9015</td>
<td>1 (see note 30)</td>
<td>Attached to Control Unit</td>
</tr>
<tr>
<td>FC9020</td>
<td>2 (see notes 20 and 21)</td>
<td>B20, B10, or B18 VTS Attachment</td>
</tr>
<tr>
<td>FC9021</td>
<td>2</td>
<td>Virtual Drives Enhancement</td>
</tr>
<tr>
<td>FC9040</td>
<td>1 (see note 12)</td>
<td>High Availability Attachment</td>
</tr>
<tr>
<td>FC9041</td>
<td>1 (see note 14)</td>
<td>High Availability Direct Attachment (withdrawn)</td>
</tr>
<tr>
<td>FC9045</td>
<td>1</td>
<td>Enhanced Library Manager (withdrawn)</td>
</tr>
<tr>
<td>FC9046</td>
<td>1</td>
<td>PCI Library Manager (withdrawn)</td>
</tr>
<tr>
<td>FC9047</td>
<td>1</td>
<td>LAN PCI Library Manager (Plant)</td>
</tr>
<tr>
<td>FC9060</td>
<td>15 (see note 22)</td>
<td>Attach A60 to 3494 Concentrator</td>
</tr>
<tr>
<td>FC9061</td>
<td>15 (see note 22)</td>
<td>Attach A60 to 3494 RS-422</td>
</tr>
<tr>
<td>FC9062</td>
<td>1</td>
<td>Adjacent Frame Drives: Plant Installation</td>
</tr>
<tr>
<td>Feature code</td>
<td>Maximum quantity</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC9104</td>
<td>1 (see note 10)</td>
<td>System i OS/i5 Attach</td>
</tr>
<tr>
<td>FC9106</td>
<td>1 (see note 10)</td>
<td>System p AIX Attach</td>
</tr>
<tr>
<td>FC9109</td>
<td>1 (see note 10)</td>
<td>Attach to S/390 or System z</td>
</tr>
<tr>
<td>FC9184</td>
<td>1 per Lxx Frame of HA1 Frame</td>
<td>Ethernet-Attached Serial Hub (EASH) Enablement</td>
</tr>
<tr>
<td>FC9200</td>
<td>1</td>
<td>Open Systems Device Drivers</td>
</tr>
<tr>
<td>FC9201</td>
<td>N/A</td>
<td>VTS Open Systems Device Drivers</td>
</tr>
<tr>
<td>FC9203</td>
<td>32</td>
<td>Virtual Storage Extended LAN Device Driver (withdrawn)</td>
</tr>
<tr>
<td>FC9204</td>
<td>32</td>
<td>Sun Device Driver (withdrawn)</td>
</tr>
<tr>
<td>FC9210</td>
<td>32</td>
<td>HP-UX Attachment</td>
</tr>
<tr>
<td>FC9211</td>
<td>32</td>
<td>Sun Solaris Attach</td>
</tr>
<tr>
<td>FC9212</td>
<td>32</td>
<td>Microsoft Windows Attach</td>
</tr>
<tr>
<td>FC9215</td>
<td>1</td>
<td>Other Linux System Attach</td>
</tr>
<tr>
<td>FC9216</td>
<td>1</td>
<td>System z Linux Attach</td>
</tr>
<tr>
<td>FC9217</td>
<td>1</td>
<td>VTS attached to 3953 Library Manager</td>
</tr>
<tr>
<td>FC9492</td>
<td>1</td>
<td>External Fabric Support: Plant Installation</td>
</tr>
<tr>
<td>FC9493</td>
<td>1</td>
<td>Direct Connect Drives: Plant Installation</td>
</tr>
<tr>
<td>FC9510</td>
<td>6 (see note 26)</td>
<td>Plant Install Fibre Drive</td>
</tr>
<tr>
<td>FC9511</td>
<td>4</td>
<td>Plant Install Fibre Drive</td>
</tr>
<tr>
<td>FC9540</td>
<td>1 (see note 11)</td>
<td>No Data Cartridge</td>
</tr>
<tr>
<td>FC9601</td>
<td>1 (see note 2)</td>
<td>3490E Model CxA/F1A Plant Installation</td>
</tr>
<tr>
<td>FC9602</td>
<td>2 (see note 15)</td>
<td>3490E Model F1A Plant Installation</td>
</tr>
<tr>
<td>FC9630</td>
<td>x (see notes 1, 3, and 4)</td>
<td>Field Merge Drives</td>
</tr>
<tr>
<td>FC9631</td>
<td>x (see notes 1, 3, and 4)</td>
<td>3590 Model B1A Drive Plant Installation</td>
</tr>
<tr>
<td>FC9632</td>
<td>2 (see note 15)</td>
<td>3490E Model F1A Attachment Hardware for Field Merge</td>
</tr>
<tr>
<td>FC9663</td>
<td>x (see note 1, 3, and 4)</td>
<td>3590 Model E1A Drive Plant Installation (withdrawn)</td>
</tr>
<tr>
<td>FC9665</td>
<td>1 (see note 19)</td>
<td>3590 Model A60 Attachment Hardware for Field Merge (withdrawn)</td>
</tr>
<tr>
<td>FC9666</td>
<td>1 (see note 19)</td>
<td>3590 Model A60 Controller Plant Installation</td>
</tr>
<tr>
<td>FC9669</td>
<td>x (see note 27)</td>
<td>3590 H1A SCSI Tape Drive Plant Installation (withdrawn)</td>
</tr>
<tr>
<td>FC9670</td>
<td>x (see note 27)</td>
<td>3590 H1A Fibre Channel Tape Drive Plant Installation (withdrawn)</td>
</tr>
<tr>
<td>FC9671</td>
<td>x (see note 27)</td>
<td>Field Merge 3590 Model H1A Tape Drive (withdrawn)</td>
</tr>
<tr>
<td>FC9673</td>
<td>x (see note 28)</td>
<td>Plant Install 3592 Model J1A Tape Drive (withdrawn)</td>
</tr>
<tr>
<td>Feature code</td>
<td>Maximum quantity</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC9674</td>
<td>x (see note 28)</td>
<td>Field Merge 3592 Model J1A Tape Drive</td>
</tr>
<tr>
<td>FC9676</td>
<td>x (see note 28)</td>
<td>Plant Install 3592 Model E05 Tape Drive</td>
</tr>
<tr>
<td>FC9678</td>
<td>x (see note 28)</td>
<td>Field Merge 3592 Model E05</td>
</tr>
<tr>
<td>FC9690</td>
<td>4 (see note 23)</td>
<td>Field Merge AX0</td>
</tr>
<tr>
<td>FC9691</td>
<td>x (see note 23)</td>
<td>Plant Installation AX0</td>
</tr>
<tr>
<td>FC9700</td>
<td>N/A</td>
<td>FICON Cable From Plant</td>
</tr>
<tr>
<td>FC9702</td>
<td>4</td>
<td>Interposer, Double-Byte Wide</td>
</tr>
<tr>
<td>FC9775</td>
<td>16</td>
<td>62.5-Micron MT-RJ to ESCON 2 meter ESCON Jumper Cable</td>
</tr>
<tr>
<td>FC9780</td>
<td>1 (see note 24)</td>
<td>Extended Media Support</td>
</tr>
<tr>
<td>FC9798</td>
<td>4</td>
<td>Inline SCSI Terminator (withdrawn)</td>
</tr>
<tr>
<td>FC9799</td>
<td>4</td>
<td>VHDCI Cable/Interposer</td>
</tr>
<tr>
<td>FC9865</td>
<td>1</td>
<td>Field Merge J70 in a 3494 Model D14/D24 Frame (withdrawn)</td>
</tr>
<tr>
<td>FC9866</td>
<td>1</td>
<td>Plant Install J70 in a 3494 Model D14/D24 Frame (withdrawn)</td>
</tr>
<tr>
<td>FC9986</td>
<td>1 (see note 17)</td>
<td>Chicago Power Cable</td>
</tr>
</tbody>
</table>

Notes:

1. A maximum of two FC9630, FC9631, FC9663, MES 4630, or MES 4663 is permitted on a 3494-L12 frame or a 3494-L14 frame.
2. A maximum of one FC9601 or MES 4630 is permitted on a 3494-D10 frame.
3. A maximum of six FC9630, FC9631, FC9663, MES 4630, or MES 4663 is permitted on a 3494-D12 frame. When attached to a 3494-B16 VTS, the 3494-D12 frame must contain three, four, five, or six 3590-B1A tape drives. When attached to a 3494-B18 VTS, the 3494-D12 frame must contain three, four, five, or six 3590-B1A tape drives, 3590-E1A tape drives, or 3590-H1A tape drives. When attached to a 3494-B18 VTS with FC5236, the 3494-D12 frame must contain four, five, or six 3590-B1A tape drives, 3590-E1A tape drives, or 3590-H1A tape drives.
4. A maximum of four FC9630, FC9631, FC9663, MES 4630, or MES 4663 is permitted on a 3494-D14 frame.
5. A maximum of one FC9635, FC9636, or MES 4635 is permitted on a 3494-L14 frame or a 3494-D14 frame.
6. You can expand the library to 16 frames by adding any combination of FC9004, FC9005, and one FC9007 for each library. When you install the 3494-HA1 option, you can expand the library to 18 frames, including the service bays, by the addition of any combination of FC9004, FC9005, and one FC9007 for each library.
7. You can configure a maximum of seven FC5300, FC5302, FC5304, FC5400, FC9002, FC9003, and one FC9006 in any combination. When you install the 3494-HA1 option, you can expand the library to five through 10 frames, including the service bays, by the addition of FC9002, FC9003, and one FC9007.
8. To add a 3494-B16 VTS to a library, you must specify a maximum of one FC9006 or FC9007 for the 3494-Lxx frame to track the number of frames installed in the library and to provide any necessary hardware.

9. This feature indicates that the 3590-x1A tape drives inside the 3494-D12 frame or the 3592 tape drives inside the 3494-D22 frame will be used in a VTS.

10. You must specify a minimum quantity of one FC9104, FC9106, or FC9109.

11. You must specify either FC9540, FC8410, FC8420, FC8510, FC8520, or FC8610 for each frame.

12. Within the 3494-Lxx frame, a maximum of one FC9040 is required if you install the 3494-HA1 option. FC9040 can also be an MES. FC9040 includes the Enhanced Library Manager when the existing Library Manager is not an Enhanced Library Manager.

13. The 3494-B16 VTS attachment requires FC5214, FC5228, and FC5229.

14. If ordered on the 3494-HA1 option, it indicates LAN or SCSI attachment and you must order it on all library frames.

15. A maximum of two FC9602, FC9632, or MES4632 is permitted on a 3494-L10 frame or a 3494-D10 frame.

16. A maximum of one FC9655, FC9656, MES4655, or MES4650 is permitted on a 3494-L14 frame or a 3494-D14 frame.

17. There is a maximum of one FC9986 per model except for the 3494-S10 frame, which cannot have any, and the 3494-HA1 option, which requires two.

18. There is a maximum of one FC9633, FC9634, or FC4634.

19. A maximum of one FC9665, FC9666, MES 4665, or MES 4660 is permitted on a 3494-D14 frame.

20. FC9020 must be on the 3494-Lxx frame for each attached 3494-B18, 3494-B10, or 3494-B20 VTS.

21. There is a maximum of two FC9006, FC9007, and FC9020.

22. The maximum of 15 FC9060 or FC9061 applies only to the 3494-Lxx frame. A maximum of one FC9060 or FC9061 applies only to 3494-D14 frames that contain the 3590-A60 controller.

23. You can order only a quantity of two or four (with a maximum of four) FC9690, FC9691, or MES 4690 on a 3494-CX0 frame. A maximum of one FC9691 is permitted on a 3494-AX0 VTC.

24. FC9780 must be on the 3494-Lxx frame if 3590 K-type (EHPCT) cartridges exist in the IBM 3494 Tape Library. FC9780 must also be on the 3494-D12 frames and the 3494-D14 frames that contain 3590-x1A tape drives with Extended Media Support.

25. There is a maximum of one FC9645, FC9646, or FC4646.

26. The maximum of six FC9510 applies to any 3494-D12 frame that contains Fibre Channel-attached 3590-E1A tape drives or 3590-H1A tape drives. For 3494-L12 frames that contain Fibre Channel-attached 3590-E1A tape drives or 3590-H1A tape drives, the maximum of FC9510 is two.

27. There is a maximum of six FC9630, FC9631, FC9663, FC9669, FC9670, FC9671, FC4630, FC4663, FC4670, or FC4671 on a 3494-D12 frame. This maximum is four for the 3494-D14 frame and two for the 3494-L12 frame.

28. There is a maximum of four FC4673, FC4674, FC4675, FC9673, FC9674, FC9676, or FC9678 in a 3494-D22 frame when FC4065, FC4075, or FC4085 is installed. Otherwise, the maximum is twelve. This maximum is eight in a 3494-D24 frame and four for the 3494-L22 frame.
30. This feature indicates that you plan to use the 3592 tape drives inside the 3494-D22 frame for fibre attachment to the TS1120 Model C06 Controller.

3.6.2 Field MES features

Table 3-7 shows the field MES features for adding tape drives, controllers, or VTS controllers to, or removing them from, frames in the 3494.

Note: For a complete list and description of the IBM 3494 models and feature codes, refer to the IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide, GA32-0448, or you can also reference the 3494 announcement letters.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC4062</td>
<td>FC4062 on an L12, L14, or D12 frame provides the hardware needed to attach 3590 tape drives to the 3590 Model A60 Controller in an adjacent D14 frame. The adjacent D14 frame must have four 3590 tape drives installed and attached to the 3590 Model A60 Controller. You must specify FC4060 (Adjacent Frame Support) on the adjacent D14 frame. If you install another controller in the L14 frame, it will not function.</td>
</tr>
<tr>
<td>FC4074</td>
<td>FC4074 allows for a Fibre Channel cable from each tape drive to the 2109 Model F16 switch in a 3494-D14 frame with the 3590-A60 controller or the 3592-J70 Controller to be included based on the number of tape drives installed in the frame.</td>
</tr>
<tr>
<td>FC4630</td>
<td>FC4630 provides the hardware needed to allow the field installation of one 3490E Model C1A or C2A in an L10 frame or D10 frame or one 3590 Model B1A or E1A tape subsystem in an L12, L14, D12, or D14 frame. If you order FC4630 for an L14 frame or D14 frame, one of the following must have been installed previously or you must order it: FC4635 FC9635 FC9636 FC4655 FC9655 FC9656 FC4665 FC9665 FC9666</td>
</tr>
<tr>
<td>FC4632</td>
<td>FC4632 provides the hardware needed to allow the field installation of one 3490E Model F1A tape drive. Order FC4632 for the L10 frame or D10 frame (maximum of two). A prerequisite on the L10 frame or D10 frame is FC9602 or FC9632.</td>
</tr>
<tr>
<td>FC4633</td>
<td>FC4633 provides the hardware needed to replace a 3490E Model C1A or C2A tape drive in a D10 frame with a 3490E Model F1A tape drive. There is a maximum quantity of one.</td>
</tr>
<tr>
<td>FC4646</td>
<td>FC4646 allows the field installation of a 3490E Model F1A FC3500 controller in an L10 frame or D10 frame. There is a maximum quantity of one for FC4646.</td>
</tr>
<tr>
<td>FC4660</td>
<td>FC4660 provides the hardware needed to replace a 3590 Model A00 or A50 controller with a 3590 Model A60 controller in a D14 frame.</td>
</tr>
<tr>
<td>Feature code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC4663</td>
<td>FC4663 is required to replace a 3590 Model B1A tape drive with a 3590 Model E1A tape drive in a currently installed 3494 frame. The Model B1A and E1A tape drives cannot be attached to the same VTS or the same 3590 Model A50 or A60 controller; therefore, both types of drives cannot be installed together in the L14 frame or D14 frame.</td>
</tr>
<tr>
<td>FC4665</td>
<td>FC4665 provides the hardware needed to allow the field installation of one 3590 Model A60 controller in a D14 frame. If you order FC4665 for a D14 frame, you must also order FC4630.</td>
</tr>
<tr>
<td>FC4670</td>
<td>FC4670 provides the mounting changes needed to replace a 3590-B1A or 3590-E1A tape drive with a 3590-H1A tape drive in a currently installed D12 frame, D14 frame, or L12 frame. The maximum number of features is six for the D12, four for the D14, and two for the L12.</td>
</tr>
<tr>
<td>FC4671</td>
<td>FC4671 is required on a D12 frame, D14 frame, or L12 frame in order to add a 3590 Model H1A tape drive to a D12 frame, D14 frame, or L12 frame. There is a maximum of six FC9630, FC9631, FC9663, FC9669, FC9670, FC9671, FC4630, FC4663, FC4670, or FC4671 on a D12 frame. This maximum is four for the D14 frame and two for the L12 frame.</td>
</tr>
<tr>
<td>FC4673</td>
<td>FC4673 is required to replace a 3592-J1A tape drive with a 3592-E05 tape drive in a currently installed 3494-D22 frame. The maximum is eight for the 3494-D22 frame if FC4065 or FC4075 is installed. Otherwise, the maximum is twelve. These maximums apply to the sum of FC4673, FC4674, FC4675, FC9673, FC9674, FC9676, and FC9678 in any 3494-D22 frame. FC4673 is not available if FC9010 is installed.</td>
</tr>
<tr>
<td>FC4674</td>
<td>FC4674 installs a 3592 Model J1A tape drive in a currently installed 3494 Model D22. A cradle with an available canister slot must already be present in the rack to accept the drive canister. The maximum is eight for the D22 frame if FC4065 or FC4075 is installed. Otherwise, the maximum is twelve. These maximums apply to the sum of FC4674 and FC9673 in any D22 frame.</td>
</tr>
<tr>
<td>FC4675</td>
<td>FC4675 installs a 3592-E05 tape drive in a currently installed 3494-D22 frame. A cradle with an available canister slot must already be present in the rack to accept the drive canister. The maximum is eight for the 3494-D22 frame if FC4065 or FC4075 is installed. Otherwise, the maximum is twelve. These maximums apply to the sum of FC4673, FC4674, FC4675, FC9673, FC9674, FC9676, and FC9678 in any 3494-D22 frame.</td>
</tr>
<tr>
<td>FC4690</td>
<td>FC4690 provides the hardware needed to allow the field installation of one AX0 in a CX0.</td>
</tr>
<tr>
<td>FC4691</td>
<td>FC4691 provides the hardware needed to allow the field installation of one AX0 in a CX1. The maximum is two.</td>
</tr>
<tr>
<td>FC4700</td>
<td>FC4700 removes a 3490E Model F1A FC3000 or FC3500 controller from an L10 frame or D10 frame.</td>
</tr>
<tr>
<td>FC4701</td>
<td>FC4701 removes a 3490E Model F1A tape drive from an L10 frame or D10 frame.</td>
</tr>
<tr>
<td>Feature code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC4704</td>
<td>FC4704 provides for installation of a Fibre Channel cable from each tape drive to the 2109 Model F16 SAN switch in the 3494-D14 frame with the 3590-A60 controller or the 3592 tape drive for inclusion based on the number of tape drives installed in this frame.</td>
</tr>
<tr>
<td>FC4730</td>
<td>FC4730 removes a 3590 tape drive from an L12, L14, D12, or D14 frame.</td>
</tr>
<tr>
<td>FC4734</td>
<td>FC4734 removes the 3490E Model F1A FC3000 or FC3500 controller mounting hardware from an L10 frame or a D10 frame.</td>
</tr>
<tr>
<td>FC4735</td>
<td>FC4735 removes a 3590 Model A00 controller from an L14 frame or a D14 frame.</td>
</tr>
<tr>
<td>FC4755</td>
<td>FC4755 removes a 3590 Model A50 controller from an L14 frame or a D14 frame.</td>
</tr>
<tr>
<td>FC4765</td>
<td>FC4765 removes a 3590 Model A60 controller from a D14 frame.</td>
</tr>
<tr>
<td>FC4772</td>
<td>FC4772 removes a 3592 Model J1A tape drive from a L22 frame.</td>
</tr>
<tr>
<td>FC4800</td>
<td>FC4800 provides the hardware needed to allow the field installation of two drive-pair cradles for accepting 3592 Model J1A tape drives in a 3494.</td>
</tr>
<tr>
<td>FC4801</td>
<td>FC4801 removes two drive-pair cradles used for accepting 3592 Model J1A tape drives in a 3494.</td>
</tr>
<tr>
<td>FC4803</td>
<td>FC4803 reinstallss two drive-pair cradles for accepting 3592 Model J1A tape drives in a 3494. It is equivalent to FC4800, except the assumption is that the majority of the hardware is already available from a previous installation.</td>
</tr>
<tr>
<td>FC4855</td>
<td>FC4855 provides the hardware needed to allow the field installation of a 3592 Model J70 Controller in a currently installed D14 or D24 frame.</td>
</tr>
<tr>
<td>FC4860</td>
<td>FC4860 provides the hardware needed to allow the field replacement of a currently installed controller with a 3592 Model J70 Controller in a D14 or D24 frame.</td>
</tr>
<tr>
<td>FC4865</td>
<td>FC4865 removes a 3592 Model J70 Controller from a D14 or D24 frame.</td>
</tr>
<tr>
<td>FC5238</td>
<td>FC5238 provides two fibre cards to support operation of 3592 tape drives in a 3494-B20 VTS. You can only order this feature as a field MES for a 3494-B20 VTS.</td>
</tr>
<tr>
<td>FC5264</td>
<td>FC5264 provides 64 additional virtual tape drives. FC5264 is only available for 3494-B18 VTS to 3494-B20 VTS conversions in which the 3494-B18 VTS has 128 virtual tape drives (one FC5264) and the 3494-B20 VTS has 256 virtual tape drives (two FC5264s).</td>
</tr>
</tbody>
</table>
| FC5265 | FC5265 provides 64 additional virtual tape drives for the 3494-B20 VTS. You can order this feature in a quantity of zero, two, or four for each VTS. FC5265 is not available if FC5264 is installed. In a PIP VTS configuration:
 - Zero FC5265s allow 128 virtual devices with eight VTCs.
 - Two FC5265s allow 128 virtual devices with four VTCs.
 - Four FC5265s allow 256 virtual devices with eight VTCs. |
3.6.3 3494 Feature code summary

The following section explains various feature codes available for the IBM 3494 Tape Library. You can order these features from the plant, or you can field-install them.

Note: For a complete list and description of the IBM 3494 models and feature codes, refer to the *IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide*, GA32-0448, or you can also reference the 3494 announcement letters.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC5593</td>
<td>Router for EKM Attachment. Install one of feature 5593 on the 3494 Library Manager (Model L10, L12, L14, and L22) to support up to seven 3592 tape controllers. Feature 5246, Dual Path Concentrator, is required on the Library Manager, before you can install FC5593. You can install a second Router for EKM Attachment feature on the 3494 Library Manager to support up to fourteen 3592 tape controllers. FC5593 provides two routers for redundant connections between the Encryption Key Manager and the tape control unit. This feature code also provides Ethernet cables from the routers to the control unit.</td>
</tr>
</tbody>
</table>

Table 3-8 IBM 3494 Tape Library special features

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Maximum quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC0201</td>
<td>8</td>
<td>9 micron LC/LC 31 meter (100 ft.)</td>
</tr>
<tr>
<td>FC0202</td>
<td>8</td>
<td>9 micron LC/LC 31 meter (100 ft.)</td>
</tr>
<tr>
<td>FC0203</td>
<td>8</td>
<td>50 micron LC/LC 31 meter (100 ft.)</td>
</tr>
<tr>
<td>FC0204</td>
<td>8</td>
<td>50 micron LC/LC 31 meter (100 ft.)</td>
</tr>
<tr>
<td>FC0205</td>
<td>8</td>
<td>62.5 micron LC/LC 31 meter (100 ft.)</td>
</tr>
<tr>
<td>FC0206</td>
<td>8</td>
<td>62.5 micron LC/LC 31 meter (100 ft.)</td>
</tr>
<tr>
<td>FC0520</td>
<td>N/A</td>
<td>Library Functional Enhancement (Field Install) (see note 30)</td>
</tr>
<tr>
<td>FC0521</td>
<td>N/A</td>
<td>Microcode Update for VTS/VTC (Field Install) (see note 34)</td>
</tr>
<tr>
<td>FC1001</td>
<td>4 per CX1</td>
<td>ESCON Virtual Tape Controller (Plant Install)</td>
</tr>
<tr>
<td>FC1011</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: LW LW (Plant Install)</td>
</tr>
<tr>
<td>FC1012</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: SW SW (Plant Install)</td>
</tr>
<tr>
<td>FC1013</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: LW SW (Plant Install)</td>
</tr>
<tr>
<td>FC1014</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: SW SW and VTC to VTS: LW LW (Plant Install)</td>
</tr>
<tr>
<td>FC1015</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: SW SW and VTC to VTS: SW SW (Plant Install)</td>
</tr>
<tr>
<td>Feature code</td>
<td>Maximum quantity</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>FC1016</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: LW SW (Plant Install)</td>
</tr>
<tr>
<td>FC1017</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: LW LW (Plant Install)</td>
</tr>
<tr>
<td>FC1018</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: SW SW (Plant Install)</td>
</tr>
<tr>
<td>FC1019</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: LW SW (Plant Install)</td>
</tr>
<tr>
<td>FC1020</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: SW SW (Plant Install)</td>
</tr>
<tr>
<td>FC1021</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: SW LW (Plant Install)</td>
</tr>
<tr>
<td>FC1022</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: SW LW (Plant Install)</td>
</tr>
<tr>
<td>FC1023</td>
<td>16 per CX1, 4 per VTC</td>
<td>Convert Longwave (LW) to Shortwave (SW) Adapter (return LW adapter)</td>
</tr>
<tr>
<td>FC1024</td>
<td>16 per CX1, 4 per VTC</td>
<td>Convert Shortwave (SW) to Longwave (LW) Adapter (return SW adapter)</td>
</tr>
<tr>
<td>FC1025</td>
<td>8 per CX1, 2 per VTC</td>
<td>Reposition Longwave (LW) and Shortwave (SW) Adapter</td>
</tr>
<tr>
<td>FC1026</td>
<td>4 per CX1</td>
<td>8-VTC to 4-VTC PtP VTS Conversion</td>
</tr>
<tr>
<td>FC1101</td>
<td>4 per CX1</td>
<td>ESCON Virtual Tape Controller (Field Install)</td>
</tr>
<tr>
<td>FC1111</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: LW LW (Field Install)</td>
</tr>
<tr>
<td>FC1112</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: SW SW (Field Install)</td>
</tr>
<tr>
<td>FC1113</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: LW SW (Field Install)</td>
</tr>
<tr>
<td>FC1114</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: SW SW (Field Install)</td>
</tr>
<tr>
<td>FC1115</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: SW SW and VTC to VTS: SW SW (Field Install)</td>
</tr>
<tr>
<td>FC1116</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: SW SW and VTC to VTS: LW SW (Field Install)</td>
</tr>
<tr>
<td>FC1117</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: LW LW (Field Install)</td>
</tr>
<tr>
<td>FC1118</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: SW SW (Field Install)</td>
</tr>
<tr>
<td>FC1119</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: SW SW (Field Install)</td>
</tr>
<tr>
<td>FC1120</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW LW and VTC to VTS: SW LW (Field Install)</td>
</tr>
<tr>
<td>Feature code</td>
<td>Maximum quantity</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC1121</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: SW SW and VTC to VTS: SW LW (Field Install)</td>
</tr>
<tr>
<td>FC1122</td>
<td>4 per CX1</td>
<td>FICON Virtual Tape Controller with Host to VTC: LW SW and VTC to VTS: SW LW (Field Install)</td>
</tr>
<tr>
<td>FC1901</td>
<td>1</td>
<td>Dual AC Power</td>
</tr>
<tr>
<td>FC2710</td>
<td>1 (see note 1)</td>
<td>Remote Support Facility (Withdrawn as of 31 December 2004)</td>
</tr>
<tr>
<td>FC2711</td>
<td>1 (see note 1)</td>
<td>Remote Support Switch (Withdrawn as of 31 December 2004)</td>
</tr>
<tr>
<td>FC2712</td>
<td>1 (see note 1)</td>
<td>Remote Support Attachment (Withdrawn as of 31 December 2004)</td>
</tr>
<tr>
<td>FC2713</td>
<td>1 (see note 1)</td>
<td>Master Console for Service (Withdrawal from Marketing announced 9 May 2006)</td>
</tr>
<tr>
<td>FC2714</td>
<td>1 (see note 1)</td>
<td>Console Expansion</td>
</tr>
<tr>
<td>FC2715</td>
<td>1 (see note 1)</td>
<td>Console Attachment</td>
</tr>
<tr>
<td>FC2716</td>
<td>1</td>
<td>Console Additional Modem</td>
</tr>
<tr>
<td>FC2717</td>
<td>1</td>
<td>Console A60 Enablement</td>
</tr>
<tr>
<td>FC2720</td>
<td>1 (see note 1)</td>
<td>TS3000 System Console</td>
</tr>
<tr>
<td>FC3000</td>
<td>1 (B10); 1 (B20)</td>
<td>FICON Enablement</td>
</tr>
<tr>
<td>FC3060</td>
<td>4 through 12 (see note 32)</td>
<td>3592 Drive-to-Switch Cables</td>
</tr>
<tr>
<td>FC3061</td>
<td>16</td>
<td>3592 Drive-to-Switch Cables</td>
</tr>
<tr>
<td>FC3200</td>
<td>1 (B18 only)</td>
<td>ESCON High Performance Option (withdrawn)</td>
</tr>
<tr>
<td>FC3302</td>
<td>1 (B18 only)</td>
<td>Additional Enhanced ESCON Channel Attachment (withdrawn)</td>
</tr>
<tr>
<td>FC3400</td>
<td>1</td>
<td>Extended High Performance Option</td>
</tr>
<tr>
<td>FC3412</td>
<td>2 (B10); 4 (B20)</td>
<td>Extended Performance ESCON Channels</td>
</tr>
<tr>
<td>FC3415</td>
<td>4 (B10); 8 (B20)</td>
<td>FICON Channels (long-wave)</td>
</tr>
<tr>
<td>FC3416</td>
<td>4 (B10); 8 (B20)</td>
<td>FICON Channels (short-wave)</td>
</tr>
<tr>
<td>FC3418</td>
<td>1 (B10); 4 (B20)</td>
<td>Activate Additional ESCON Channels</td>
</tr>
<tr>
<td>FC3422</td>
<td>2 (B10); 4 (B20)</td>
<td>Activate Additional ESCON Channels</td>
</tr>
<tr>
<td>FC3464</td>
<td>1</td>
<td>SC Fibre Drive Attached Controller</td>
</tr>
<tr>
<td>FC3474</td>
<td>1</td>
<td>LC Fibre Drive Attached Controller</td>
</tr>
<tr>
<td>FC3486</td>
<td>1</td>
<td>Fibre Channel switch Mount Kit</td>
</tr>
<tr>
<td>FC3487</td>
<td>2</td>
<td>2 Gb Fibre Channel switch (Withdrawn as of 29 September 2006)</td>
</tr>
<tr>
<td>FC3488</td>
<td>2</td>
<td>4 Gb Fibre Channel switch</td>
</tr>
<tr>
<td>Feature code</td>
<td>Maximum quantity</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC3490</td>
<td>1</td>
<td>Redundant Fibre Channel Attach</td>
</tr>
<tr>
<td>FC3491</td>
<td>1</td>
<td>External Fabric Support - Field (J70)</td>
</tr>
<tr>
<td>FC3492</td>
<td>1</td>
<td>External Fabric Support - Field (C06)</td>
</tr>
<tr>
<td>FC3493</td>
<td>1</td>
<td>Direct Connect Drives - Field</td>
</tr>
<tr>
<td>FC3511</td>
<td>6 (see note 20)</td>
<td>Install Fibre Channel Drive</td>
</tr>
<tr>
<td>FC3701</td>
<td>4 (see note 12)</td>
<td>36 GB Disk Storage Capacity for Tape Volume Cache, Model B16 (withdrawn)</td>
</tr>
<tr>
<td>FC3702</td>
<td>4 (B18) see note 13</td>
<td>Disk Storage Capacity (withdrawn)</td>
</tr>
<tr>
<td>FC3703</td>
<td>1 (B18) see note 19</td>
<td>72 GB Disk Storage (withdrawn)</td>
</tr>
<tr>
<td>FC3704</td>
<td>1 (B10)</td>
<td>144/216 GB Disk Storage</td>
</tr>
<tr>
<td>FC3705</td>
<td>1 (B10); 4 (B20)</td>
<td>288/432 GB Disk Storage</td>
</tr>
<tr>
<td>FC4000</td>
<td>1 (see note 29)</td>
<td>Advanced Function</td>
</tr>
<tr>
<td>FC4001</td>
<td>1</td>
<td>Advanced Policy Management up to 250 GB</td>
</tr>
<tr>
<td>FC4002</td>
<td>1</td>
<td>Advanced Policy Management up to 500 GB</td>
</tr>
<tr>
<td>FC4003</td>
<td>1</td>
<td>Advanced Policy Management up to 1000 GB</td>
</tr>
<tr>
<td>FC4004</td>
<td>1</td>
<td>Advanced Policy Management up to 2000 GB</td>
</tr>
<tr>
<td>FC4010</td>
<td>1 (see note 27)</td>
<td>PtP Copy Base</td>
</tr>
<tr>
<td>FC4011</td>
<td>1 (see note 27)</td>
<td>PtP Copy Increment 1</td>
</tr>
<tr>
<td>FC4012</td>
<td>1 (see note 27)</td>
<td>PtP Copy Increment 2</td>
</tr>
<tr>
<td>FC4013</td>
<td>1 (see note 27)</td>
<td>PtP Copy Increment 3</td>
</tr>
<tr>
<td>FC4020</td>
<td>1</td>
<td>High Capacity Cache</td>
</tr>
<tr>
<td>FC4021</td>
<td>3</td>
<td>Expanded Storage Capability</td>
</tr>
<tr>
<td>FC4036</td>
<td>5 (see note 33)</td>
<td>Logical Volume Expansion</td>
</tr>
<tr>
<td>FC4060</td>
<td>1</td>
<td>Adjacent Frame Support</td>
</tr>
<tr>
<td>FC4064</td>
<td>1</td>
<td>Multiframe Fibre Drives</td>
</tr>
<tr>
<td>FC4065</td>
<td>4</td>
<td>Adjacent Frame 3592 Drive Connection for SC-Duplex Switch Port</td>
</tr>
<tr>
<td>FC4075</td>
<td>4</td>
<td>Adjacent Frame 3592 Drive Connection for LC-Duplex Switch Port</td>
</tr>
<tr>
<td>FC4084</td>
<td>2</td>
<td>Adjacent Frame 2 Gb (3590)</td>
</tr>
<tr>
<td>FC4085</td>
<td>2</td>
<td>Adjacent Frame 2 Gb (3592)</td>
</tr>
<tr>
<td>FC4086</td>
<td>2</td>
<td>Adjacent Frame x22 to D22 (3592)</td>
</tr>
<tr>
<td>FC5001</td>
<td>8 (see note 24)</td>
<td>4.5-Meter SCSI Cable</td>
</tr>
<tr>
<td>FC5002</td>
<td>8 (see note 24)</td>
<td>10-Meter SCSI Cable</td>
</tr>
<tr>
<td>FC5003</td>
<td>8 (see note 24)</td>
<td>20-Meter SCSI Cable</td>
</tr>
<tr>
<td>Feature code</td>
<td>Maximum quantity</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC5004</td>
<td>8 (see note 24)</td>
<td>10-Meter SCSI VHDCI Cable</td>
</tr>
<tr>
<td>FC5045</td>
<td>1 (see note 17)</td>
<td>Enhanced Library Manager (withdrawn)</td>
</tr>
<tr>
<td>FC5046</td>
<td>1 (see note 25)</td>
<td>PCI Library Manager (withdrawn as of 29 October 2004)</td>
</tr>
<tr>
<td>FC5047</td>
<td>8 (see note 25)</td>
<td>LAN PCI Library Manager (Field)</td>
</tr>
<tr>
<td>FC5050</td>
<td>1 (see note 16)</td>
<td>Dual Active Accessors</td>
</tr>
<tr>
<td>FC5184</td>
<td>1 per Lxx or Dxx frame</td>
<td>Ethernet-Attached Serial Hub (EASH)</td>
</tr>
<tr>
<td>FC5210</td>
<td>1 (see note 11)</td>
<td>10-Cartridge Convenience I/O Station</td>
</tr>
<tr>
<td>FC5211</td>
<td>8 (see note 2)</td>
<td>System i Host Attachment</td>
</tr>
<tr>
<td>FC5212</td>
<td>8 (see note 2)</td>
<td>RS/6000 Host Attachment (withdrawn)</td>
</tr>
<tr>
<td>FC5213</td>
<td>8 (see notes 2 and 5)</td>
<td>Extended Length RS-232 Host Attachment for System i</td>
</tr>
<tr>
<td>FC5214</td>
<td>1 (see notes 10 and 29)</td>
<td>Second Disk Drive for Library Manager</td>
</tr>
<tr>
<td>FC5215</td>
<td>1 (see note 9)</td>
<td>Dual Gripper</td>
</tr>
<tr>
<td>FC5216</td>
<td>1</td>
<td>Remote Power Sequence for System i</td>
</tr>
<tr>
<td>FC5217</td>
<td>8</td>
<td>RS-232 15 m (50 ft.) Extension Cable</td>
</tr>
<tr>
<td>FC5219</td>
<td>1 (see notes 6, 9, and 29)</td>
<td>Token-Ring Adapter</td>
</tr>
<tr>
<td>FC5220</td>
<td>1 (see notes 6 and 9)</td>
<td>Ethernet Adapter</td>
</tr>
<tr>
<td>FC5222</td>
<td>1</td>
<td>Additional 32 LAN Host Attachments</td>
</tr>
<tr>
<td>FC5224</td>
<td>16 (see note 3)</td>
<td>AIX Parallel Channel Tape Attachment/6000 (withdrawn)</td>
</tr>
<tr>
<td>FC5225</td>
<td>1</td>
<td>Base Tape Control Unit Attachment</td>
</tr>
<tr>
<td>FC5226</td>
<td>1</td>
<td>Remote Library Manager Console</td>
</tr>
<tr>
<td>FC5227</td>
<td>1 (see notes 9 and 21)</td>
<td>32 Port Attachment</td>
</tr>
<tr>
<td>FC5228</td>
<td>2 (see note 8)</td>
<td>Tape Control Unit Expansion</td>
</tr>
<tr>
<td>FC5229</td>
<td>1 (see notes 6, 8, and 9)</td>
<td>Expansion Attachment Card</td>
</tr>
<tr>
<td>FC5230</td>
<td>1 (see note 11)</td>
<td>30-Cartridge Convenience I/O Station</td>
</tr>
<tr>
<td>FC5232</td>
<td>1 (see notes 14 and 18)</td>
<td>Attachment Concentrator</td>
</tr>
<tr>
<td>FC5233</td>
<td>1</td>
<td>SCSI Extender</td>
</tr>
<tr>
<td>FC5234</td>
<td>1</td>
<td>18-Meter SCSI Cables (withdrawn)</td>
</tr>
<tr>
<td>FC5235</td>
<td>2 (see note 22)</td>
<td>20-Meter SCSI Drive Cables</td>
</tr>
<tr>
<td>FC5236</td>
<td>1</td>
<td>Performance Accelerator</td>
</tr>
<tr>
<td>FC5237</td>
<td>1 (B18)</td>
<td>Additional VTS Drives</td>
</tr>
<tr>
<td>Feature code</td>
<td>Maximum quantity</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FC5238</td>
<td>1 (B10), 1 (B20), see note 31</td>
<td>3592 Drive Attached to VTS</td>
</tr>
<tr>
<td>FC5244</td>
<td>1 (B18)</td>
<td>Mirrored VTS Boot Disk</td>
</tr>
<tr>
<td>FC5245</td>
<td>1 (see note 26)</td>
<td>Dual Path Attachment</td>
</tr>
<tr>
<td>FC5246</td>
<td>1</td>
<td>Dual Path Concentrator</td>
</tr>
<tr>
<td>FC5250</td>
<td>1 (B20)</td>
<td>FICON Performance Accelerator</td>
</tr>
<tr>
<td>FC5264</td>
<td>1 (B18)</td>
<td>64 Additional Virtual Drives (see note 35)</td>
</tr>
<tr>
<td>FC5265</td>
<td>4 (B20)</td>
<td>Incremental Virtual Drives</td>
</tr>
<tr>
<td>FC5266</td>
<td>1</td>
<td>Outbound TS1120 (C06) Controller (installed in 3952-F05 frame) attach to 3494-D24 frame</td>
</tr>
<tr>
<td>FC5273</td>
<td>1</td>
<td>SCSI converter</td>
</tr>
<tr>
<td>FC5300</td>
<td>7 (see notes 4 and 7)</td>
<td>Additional Drive Unit Frame (similar to D10 Frame) (withdrawn)</td>
</tr>
<tr>
<td>FC5302</td>
<td>7 (see notes 4 and 7)</td>
<td>Additional Drive Unit Frame (similar to D12 Frame)</td>
</tr>
<tr>
<td>FC5304</td>
<td>7 (see notes 4 and 7)</td>
<td>Additional Drive Unit Frame (similar to D14 Frame)</td>
</tr>
<tr>
<td>FC5400</td>
<td>7 (see notes 4 and 7)</td>
<td>Additional Storage Unit Frame (similar to S10 Frame) (withdrawn)</td>
</tr>
<tr>
<td>FC5500</td>
<td>1 (see notes 4, 7, and 15)</td>
<td>Additional Storage Unit (similar to D12 frame without 3590 Model B1As)</td>
</tr>
<tr>
<td>FC5502</td>
<td>1 (see notes 4, 7, and 15)</td>
<td>Drive Unit for B18</td>
</tr>
<tr>
<td>FC5503</td>
<td>1 (see notes 4, 7, and 15)</td>
<td>SCSI Drive Unit</td>
</tr>
<tr>
<td>FC5504</td>
<td>1 (see notes 4, 7, and 15)</td>
<td>ESCON Drive Unit</td>
</tr>
<tr>
<td>FC5593</td>
<td>2</td>
<td>Router for EKM Attach</td>
</tr>
<tr>
<td>FC8002</td>
<td>10 (see note 29)</td>
<td>One 3590 Cleaning Cartridge (withdrawn)</td>
</tr>
<tr>
<td>FC8005</td>
<td>10 (see note 29)</td>
<td>One 3490E Cleaning Cartridge (withdrawn)</td>
</tr>
<tr>
<td>FC8410</td>
<td>1</td>
<td>210 Cartridges (3490E Data Cartridges) (withdrawn)</td>
</tr>
<tr>
<td>FC8420</td>
<td>1</td>
<td>420 Cartridges (3490E Data Cartridges) (withdrawn)</td>
</tr>
<tr>
<td>FC8510</td>
<td>2 (see note 29)</td>
<td>210 Cartridges (3590 Data Cartridges)</td>
</tr>
<tr>
<td>FC8520</td>
<td>1</td>
<td>420 Cartridges (3590 Data Cartridges) (withdrawn)</td>
</tr>
<tr>
<td>FC8610</td>
<td>2 (see note 29)</td>
<td>210 Cartridges (3590 Extended Length Cartridges)</td>
</tr>
</tbody>
</table>
1. Each 3494-Lxx Frame, 3494-B10 or 3494-B20 VTS, or TS1120 Model C06 Controller must specify one of FC2713, FC2714, FC2715, FC2718, or FC2720. VTCs associated with a 3494-B10 or 3494-B20 VTS in a PtP VTS must have one of these features installed. A 3494-B18 VTS or 3494-AX0 VTC associated with a 3494-B18 VTS in a PtP VTS can optionally have one of these features installed.

2. Any combination of FC5211, FC5212, and FC5213 can total no more than eight with FC5229. If you use the LAN attachment, you can attach up to 32 host processors with the appropriate drive switching equipment.

3. Licensing is required for each attached System p. In addition, up to eight System p features are available to permit AIX ESCON tape attachments.

4. A maximum 3494 tape library configuration consists of 16 frames: one 3494-Lxx frame and any combination of up to 15 additional frames, not including service bays.

5. Four attachments are standard (up to eight attachments with FC5229).

6. You can select an Expansion attachment card and either Token-Ring or Ethernet.

7. You can configure a maximum of 15 FC5300, FC5302, FC5304, FC5400, FC5500, FC5502, FC5503, FC5504, FC9002, FC9003, FC9004, FC9005, FC9006, and FC9007.

8. A 3494-B16 VTS installed in the library requires FC5228 and FC5229.

9. If FC5215, FC5219, FC5220, or FC5227 exist in the Library Manager, then you also need to order them for the 3494-HA1 option.

10. If a 3494-B16, 3494-B18, 3494-B10, or 3494-B20 VTS or a 3494-HA1 option is in the library, then FC5214 is required on the 3494-Lxx frame. FC5214 does not apply to 3494-Lxx frames manufactured after October 1999.

11. You can select either FC5210 or FC5230.

12. FC3701 provides for 36 GB of usable storage capacity for the tape volume cache in a 3494-B16 VTS. You must order a quantity of two or four.

13. You must order FC3702 in a quantity of one, two, three, or four for the 3494-B18 VTS or when converting a 3494-B16 VTS to a 3494-B18 VTS. Ordering FC5236 for an existing 3494-B18 VTS requires a quantity of two or four FC3702.

14. You must order FC5232 for the 3494-Lxx frame when a 3494-B18, 3494-B10, or 3494-B20 VTS or FC9060 is present.

15. You must order FC5500, FC5502, FC5503, or FC5504 for the 3494-Lxx frame when converting a 3494-B16 VTS to a 3494-B18 VTS.

16. FC5050 is available only when the library includes the 3494-HA1 option. This feature is available only for systems with at least four frames, not including service bays and 3494-B18, 3494-B10, or 3494-B20 VTSs.

17. If the 3494-HA1 option is installed and you order FC5045, you must order FC5045 for both the 3494-Lxx frame and the 3494-HA1 option.

Feature code | Maximum quantity | Description

FC8802	5	One 3592 Cleaning Cartridge
FC8820	25 sets	Twenty 3592 Data Cartridges (withdrawn as of 29 September 2006)
FC9491	1	External Fabric Support - Plant (J70)
FC9492	1	External Fabric Support - Plant (C06)
FC9493	1	Direct Connect Drives - Plant
18. If the 3494-Lxx frame was shipped before August 1998, FC9020, FC9040, FC5045, FC5046, or FC5047 is a prerequisite.

19. FC3703 is not available for a 3494-B18 VTS with FC5236.

20. The maximum of six FC3511 applies to any 3494-D12 frame that contains Fibre Channel-attached 3590-E1A tape drives. For 3494-L12 frames that contain Fibre Channel-attached 3590-E1A tape drives, the maximum of FC3511 is two.

21. If the 3494-Lxx frame was shipped before September 1997, FC9020, FC9040, FC5045, FC5046, or FC5047 is a prerequisite.

22. The maximum of two FC5235 applies only to the 3494-B20 VTS. For the 3494-B10 VTS, the maximum is one.

23. You must order FC5264 in a quantity of two for the 3494-B20 VTS. For the 3494-B18 VTS, the maximum is one.

24. The maximum of eight FC5001, FC5002, FC5003, or FC5004 applies only to 3494-B10 and 3494-B20 VTSs. For 3494-B18 VTSs, the maximum is four.

25. If you have the 3494-HA1 option installed and you order FC5046 or FC5047, we strongly recommend that you order FC5046 or FC5047 for both the 3494-Lxx frame and the 3494-HA1 option for performance purposes. However, the intermix of a FC5045 400 MHz processor speed Library Manager and a FC5046 or FC5047 1.2 GHz processor speed Library Manager is supported.

26. Ordering FC5245 also requires FC5246 on the 3494 Lxx frame.

27. Withdrawn for the 3494-B18 VTS.

28. Withdrawn for 3494-B18 VTSs with FC4010.

30. You must order FC0520 against Library Managers installed in 3494-Lxx frames (and the 3494-HA1 option if applicable) shipped prior to 28 October 2005, and also against any installed 3590-A60 controllers or 3592-J70 Controllers shipped prior to 28 October 2005, in order to support the 3592-E05 tape drive or the 4 Gb Fibre Channel switch.

31. For the 3494-B10 VTS, FC5238 is plant only. For the 3494-B20 VTS, this feature is either plant or field.

32. Each 3592 tape drive ordered for the VTS requires one FC3060. You must order a minimum of four tape drives for the VTS.

33. For the 3494-B20 VTS, you can perform the second through fifth installations of FC4036 concurrently.

34. FC0521 is required to support the 3592-E05 tape drive or the 4 Gb Fibre Channel switch in VTSs shipped before 28 October 2005.

35. FC5264 is only allowed for a 3494-B20 VTS for model conversions where the 3494-B18 VTS has FC5264 and the 3494-B20 VTS is ordered with 256 devices (that is, two FC5264s). You are not allowed to order FC5264 against a 3494-B18 VTS in a PtP VTS configuration.
Software implementation in z/OS

This chapter discusses how to implement and run IBM TotalStorage Tape subsystems in z/OS and OS/390. It covers software requirements, implementation, customization, and platform-specific considerations for operation and monitoring.

This chapter only provides information about the system-managed tape environment. If you want to use an IBM 3494 Tape Library in a z/OS environment without system-managed tape, you must have Basic Tape Library Support (BTLS). For reference purposes, you can obtain information about BTLS in Appendix D, “Basic tape library environment” on page 467.

The new functions and the VTS support are only integrated in the system-managed tape environment. If you have BTLS, and you want to migrate to system-managed tape, refer to BTLS V1R1 User's Guide and Reference, SC26-7016.

For information about using IBM TotalStorage Enterprise 3590 or IBM TotalStorage Enterprise Tape Drive 3592 Model J1A or IBM System Storage TS1120 Tape Drive Model E05 in a StorageTek Silo, refer to Appendix A, “Tape drives in silo compatible frames” on page 419.
4.1 z/OS and OS/390 software support

For software support information regarding the implementation of the IBM TotalStorage Enterprise Drive 3590 and IBM System Storage 3592 Tape Drive, refer to the most current Product Support Planning (PSP) Bucket. To find the relevant PSP bucket for your environment, go to:

http://www.ibm.com/support

Select Search technical support and type psp for the search argument.

4.2 z/OS software environments

This section describes the software environment for system-managed tape. System-managed tape allows you to manage tape volumes and IBM 3494 Tape Libraries through a set of policies that determines the type of service to give to the datasets on the volume.

The automatic class selection (ACS) routines process every new tape allocation in the system managed storage (SMS) address space. The production ACS routines are stored in the active control dataset (ACDS). These routines allocate to each volume a set of classes that reflects your installation’s policies for the data on that volume. The ACS routines also direct the volume to a storage group.

The storage class routine determines whether a request is SMS-managed. If no storage class is assigned, the request is not SMS-managed, and allocation for non-specific mounts is made outside the IBM 3494.

For SMS-managed requests, the storage group routine assigns the request to a storage group. The assigned storage group determines which IBM 3494s to use. A tape storage group is associated with one to eight tape libraries and the tape volumes stored inside the libraries. All volumes of a multivolume dataset must be contained within a single library and a single storage group as well.

Figure 4-1 shows the process flow of the automatic class selection routines.
Here are some examples of what system-managed tape allows you to do:

- Direct all of your off-site backup volume allocations to an IBM 3494 Tape Library in an off-site, protected location for disaster recovery.
- Ensure that all volumes for a particular application use the same kind of drives in an intermixed library.
- Migrate easily to a new drive generation.
- Encrypt selected data.

The ACS routines are invoked for every new allocation. Tape allocations are passed to the object access method (OAM), which uses its library control system (LCS) component to communicate with the Library Manager.

Figure 4-2 shows an overview of the system-managed tape environment.
The basics of system-managed tape are:

- OAM and LCS
- Storage management subsystem (SMS address space)
- Tape configuration database (TCDB)
- Integrated storage management facility (ISMF)
- Tape management system
- Additional z/OS commands

Note: The discussion in this chapter addresses the most common situation in which you have system-managed tape in an automated tape library (ATL) environment, such as an IBM 3494 Tape Library.

Nevertheless, you can also have system-managed tape in a manual tape library (MTL) environment. In this situation, users can define one or more manual tape libraries with each library consisting of a set of standalone drives and volumes. Read about this support in *z/OS DFSMS Object Access Method Planning, Installation, and Storage Administration Guide for Tape Libraries*, SC35-0427.

OAM and LCS

To use system-managed tape, the OAM address space must be active. Its LCS component is the interface between z/OS and the library manager in the 3494.

The OAM has three components: object storage and retrieval (OSR), OAM storage management component (OSMC), and LCS. We discuss only the use of LCS, because the other components of OAM are not necessary in a system-managed tape environment. For more information about these components, refer to *z/OS DFSMS Object Access Method Planning, Installation, and Storage Administration Guide for Object Support*, SC35-0426.
LCS is the internal interface from z/OS to the Library Manager. All information about physical movement (mount and demount requests) goes through LCS to the selected library. z/OS commands, the ISMF interface, and some tape management systems also use this interface. Library functions, such as entering cartridges and inventories, communicate through this interface with the TCDB and with the tape management systems.

Some programming interfaces and installation exits belong to the OAM LCS component:

- The programming interface provided by the LCS External Services macro (CBRXLCS) to support functions such as:
 - Query the name and type of the tape library in which a volume resides
 - Change volume attributes
 - Change current operating modes of a Peer-to-Peer (PtP) VTS library

 Note: For a complete list of the functions that you can perform when invoking the LCS External Services programming interface through the CBRXLCS macro, refer to “Chapter 6” of *z/OS DFSMS Object Access Method Planning, Installation, and Storage Administration Guide for Tape Libraries*, SC35-0427.

- Installation exits CBRUXENT, CBRUXEJC, CBRUXCUA, and CBRUXVNL to manage entry, exit, change use attribute, and volume-not-in-library handling. Use of these exits is optional and depends on how your tape management system supports the IBM 3494 Tape Library.

Tape configuration database

For system-managed tape, information about volumes is stored in the TCDB, which is an integrated catalog facility (ICF) catalog of type volcat. The TCDB consists of one or more volume catalogs.

A *volume catalog* contains entries for tape volumes and tape libraries but does not contain entries for individual datasets. You must define at least one general volume catalog and any number of specific volume catalogs. Storing the information for any particular range of volume serial numbers in a specific volume catalog aids performance in accessing the TCDB and might ease the use of TCDBs across systems and applications.

Note: Even though Access Method Services (IDCAMS) commands can change the content in a TCDB, we recommend highly that you use ISMF to perform functions against a tape library. Changes through IDCAMS commands in the TCDB are not transferred to the Library Manager in the IBM 3494 Tape Library. Therefore, discrepancies can occur. Use the IDCAMS CREATE, ALTER, and DELETE commands only to recover from volume catalog errors.

If you run SMSplex (more than one z/OS image uses the same SMS), the TCDB must be shared in this SMSplex. Therefore, it is possible to allow access to a volume by more than one system in the SMSplex.
Integrated storage management facility
The user communicates with an IBM 3494 Tape Library mainly through ISMF. Panel driven and easy to use, ISMF allows you to work with the tape libraries and library-resident volumes and alter the TCDB entries. The typical tasks that you can perform with ISMF are:

- Define and redefine tape libraries
- Display tape library attributes
- Alter tape library definitions
- Copy tape library definitions
- Delete tape library definitions
- List tape libraries and volumes
- Display tape volumes
- Audit tape volumes and libraries
- Alter tape volumes and libraries
- Eject tape volumes

Tape management system
Depending on the management system that you use, some functionalities for a highly improved system-managed tape are available. This chapter refers only to DFSMSrmm, which is the IBM tape management system and an optional feature of z/OS. DFSMSrmm records all tape dataset and volume information, and provides utilities to perform expiration processing and vaulting. It retains information about volumes regardless of whether they are in a library, part of system-managed tape, on-site, or off-site.

DFSMSrmm interacts through OAM directly with the OAM LCS interface. Ejects, change location, and other commands referring to a physical location movement immediately create an action in the library. The easiest way to have consistency between the DFSMSrmm control dataset (CDS) and the TCDB is to use Removable Media Manager (RMM) panels or the RMM TSO subcommands for movement processing instead of ISMF.

Entering a physical cartridge into the library can cause actions in DFSMSrmm (depending on the customization of RMM). Also, the output from housekeeping runs are transferred directly through OAM LCS to the Library Manager inventory (scratch update).

Independent software vendor (ISV) tape management systems also provide the OAM installation-wide exits that support the IBM 3494 Tape Libraries. If you use an ISV product, we recommend that you contact the vendor to find out which release provides this support. Also, ask for the necessary customization to exploit as much benefit as possible from the OAM Installation Exits (for example, automatic scratch update after housekeeping).

Specific commands for tape libraries
The specific commands that you use for tape libraries are:

- LIBRARY: To re-enable exits, eject volumes, query and set cartridge loaders, and display the status of tape drives. Also, LIBRARY commands drive the import and export of logical volumes in an VTS.
- DISPLAY SMS: Use this command to display library information or data about a volume.
- VARY SMS,LIBRARY: Use this command to vary libraries online and offline.
- MODIFY OAM: Use this command to audit volumes.

For more information about these commands, see 9.6.2, “MVS operator commands” on page 401.
4.3 Software implementation and customization

This section explains the necessary steps to implement system-managed tape in your environment. Implementing and activating SMS is not part of this section. To learn more about those tasks, refer to *z/OS DFSMS: Implementing System Managed Storage*, SC26-7407.

Follow these steps to implement system-managed tape:

1. Set up the HCD.
2. Update SYS1.PARMLIB.
3. Define the security profiles.
4. Allocate the TCDB.
5. Prepare and start OAM.
6. Customize OAM.
7. Update and customize your tape management system.
8. Define the library through ISMF.
9. Define the DFSMS constructs through ISMF.
10. Perform a pre-ACS installation exit (optional).
11. Write ACS routines.
12. Activate the SMS configuration and restart OAM.
13. Set up JES3 support (only where applicable).
14. Perform DFSMShsm customization (only where applicable).
15. Verify your installation.

4.3.1 SET UP HCD

HCD is used to define the tape drives that belong to an IBM 3494 Tape Library to the input/output (I/O) definition file. The LIBRARY-ID and LIBPORT-ID are not mandatory but recommended.

This section explains how to define an IBM TotalStorage Enterprise Tape Controller 3590 Model A60 control unit with 10 tape drives attached to it as well as the IBM TotalStorage Enterprise Tape Controller 3592 Model J70 with 12 drives attached to it. Figure 4-3 shows the first HCD panel. If you have a different level of z/OS installed, the example panels that we show in this section might differ slightly.

Follow these steps:

1. From the HCD primary display (Figure 4-3), enter the name of the IODF file that you want to update and select option 1.

 If this is not an IODF work file, you will be prompted to create one. The name of the IODF file is in the format *hlq.IODFcc.yyyyyyyy*.

 Note the following explanation:
 - *hlq* is a high-level qualifier of up to eight characters.
 - *cc* is any two hexadecimal characters.
 - *yyyyyyy* is up to eight optional characters.
2. To define the control unit, select option 4 on the Define, Modify, or View Configuration Data panel (see Figure 4-4).

3. Press PF11 (Add) on the Control Unit List panel (Figure 4-5).
Figure 4-5 HCD display: Control Unit List panel
4. When the Add Control Unit panel displays (Figure 4-6), enter the responses that match your environment. You might want to update this panel with the machine’s serial number and a description. If you are uncertain about any of the required responses, press PF1 for help. Fields that have a plus sign next to them return prompts when you press PF4. We do not have a switch in our configuration. Press Enter.

--- Add Control Unit ---

CBDCU10

Specify or revise the following values.

Control unit number 0700 +

Control unit type 3590 +

Serial number

Description

Connected to switches +

Ports

If connected to a switch, select whether to have CHPIDs/link addresses, and unit address range proposed.

Auto-assign 2
 1. Yes
 2. No

F1=Help F2=Split F3=Exit F4=Prompt F5=Reset F9=Swap
F12=Cancel

Figure 4-6 HCD display: Add Control Unit panel
5. On the Select Processor/Control Unit panel (Figure 4-7), select the processor to which you will attach the control unit. Type an \textit{\textbf{s}} next to its entry and press Enter. If you will attach the control unit to multiple processors, type a \textit{\textbf{g}} next to each processor that you want attached to the control unit.

\begin{figure}[h!]
\centering
\includegraphics[width=\textwidth]{Figure4-7.png}
\caption{HCD display: Select Processor/Control Unit panel}
\end{figure}
6. The Add Control Unit panel displays (see Figure 4-8). For each processor to which you will attach the control unit, add the channel path ID (CHIPID), the base unit address, and the number of units. Press Enter.

```
-------------------------- Add Control Unit --------------------------

Specify or revise the following values.

Control unit number . : 0700     Type . . . . . . : 3590
Processor ID . . . . . : PROC1     This is the main processor

Channel path IDs . . . . 38 39  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __
Link address . . . . . . .  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __

Unit address . . . . . . 00  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __
Number of units . . . . 4  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __
Logical address . . . .  + (same as CUADD)

Protocol . . . . . . . .  + (D,S or S4)
I/O concurrency level . 2  + (1, 2 or 3)

F1=Help     F2=Split    F4=Prompt   F5=Reset    F9=Swap    F12=Cancel
```

Figure 4-8 HCD display: Add Control Unit panel

This completes the definition of the control unit.

Note: There is no difference in the HCD definitions for the control units and devices between the attachment to a Fibre Channel Connection (FICON) and Enterprise Systems Connection (ESCON) channel, as long as you do not implement any FICON cascading. You specify channel type (ESCON or FICON) in the channel definitions, which we do not include here.

Table 4-1 summarizes the major HCD panel fields for the control unit definitions. You use the same panels to define 3490E control units, 3590-A60 tape controllers, and the new 3592 Model J70 Tape Controller.

Note: The IBM System Storage TS1120 Tape Controller and the IBM TotalStorage Enterprise Tape Controller 3592 Model J70 uses the same definition as the 3590 Model A60 controller, but the total number of drives can be up to 16 (TS1120) or 12 (J70).

| Table 4-1 HCD configuration options for 3490, 3590, and 3592 control units |
|--------------------------|--------------------------|--------------------------|
| **Model** | **3590-A60** | **3592-J70** | **3592-C06** | **3490-F1A (FC3000)** |
| Control unit type | 3590 | 3590 | 3490-C2A |
| Unit address | 0 | 0 | 0 |
| Number of units | 10 | 12/16 | 4 |
a. The FC3000 Controller with attached 3490E-F1A devices is defined as a 3490-C2A controller in the HCD dialog.
b. When attached to a TS1120 Tape Control Unit, up to 16 tape drives are supported.

Next you must define the devices that attach to this controller.

7. Press F3, save your responses, and exit from the Control Unit Definition menu.

8. Go to the Add Device panel (Figure 4-9). To do this, choose either of the following options:
 - Select option 1 and then option 5 from the main panel (Figure 4-4 on page 152).
 - Type an s next to the control unit that you defined on the Control Unit List panel (Figure 4-5 on page 153).

9. On the Add Device panel, add the device number, number of devices, device type, and connected control unit. Press Enter.

```
----------------------------- Add Device -----------------------------
CBOPDV10

Specify or revise the following values.

Device number ............ 0700  (0000 - FFFF)
Number of devices ........ 12___
Device type ............... 3590_________ +

Serial number ............. __________
Description ............... ________________________________

Connected to CUs ........ 0700  ____  ____  ____  ____  ____  ____  ____  +

F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset    F9=Swap
F12=Cancel
```

Figure 4-9 HCD display: Add Device panel

Restriction: You cannot use Device number 0000. As documented in APAR OW56336, a restriction exists on the use of device address 0000 for all SMS-managed tape libraries, because software uses 0000 to indicate a null entry in library-related tables and control blocks.
10. The Device/Processor Definition panel (Figure 4-10) displays. Type an s next to the processor that will use the devices. Press Enter.

```
------------------- Device / Processor Definition -------------------
CBDPDV11           Row 1 of 1
Command ==> ____________________________________ Scroll ==> PAGE

Select processors to change device/processor definitions, then press Enter.

Device number . . : 0700       Number of devices . : 12
Device type . . : 3590
/ Processor ID   UA +  Time-Out  STADET  Preferred Explicit Device
s_ PROC1          __    No        Yes     __        No
************************** Bottom of data ***************************

F1=Help       F2=Split      F3=Exit       F4=Prompt     F5=Reset
F6=Previous   F7=Backward   F8=Forward    F9=Swap      F12=Cancel
F22=Command
```

Figure 4-10 HCD display: Device/Processor Definition panel

11. The Define Device/Processor panel displays (Figure 4-11). This panel describes the processor's view of the device. Press Enter.

```
------------------------ Define Device / Processor -------------------
CBDPDV12

Specify or revise the following values.

Device number . : 0700       Number of devices . . . . : 12
Device type . . : 3590
Processor ID . . : PROC1        This is the main processor
Unit address . . . . . . . . . . . . 00  + (Only necessary when different from
the last 2 digits of device number
Time-Out . . . . . . . . . . . . No   (Yes or No)
STADET . . . . . . . . . . . . . Yes  (Yes or No)
Preferred CHPID . . . . . . . . __  +
Explicit device candidate list . No   (Yes or No)

F1=Help     F2=Split    F4=Prompt   F5=Reset    F9=Swap    F12=Cancel
```

Figure 4-11 HCD display: Define Device/Processor panel
12. The Define Device to Operating System Configuration panel (Figure 4-12) displays. Type an s next to the operating system or systems that will use the IBM 3494 Tape Library. Press Enter.

--- Define Device to Operating System Configuration -------
CBOPDVOS Row 1 of 5
Command ===> _____________________________ Scroll ===> PAGE

Select OSs to connect or disconnect devices, then press Enter.

Device number : 0700 Number of devices : 12
Device type .. : 3590

/ Config. ID Type Description Defined
 s AB MVS MVS operating system Defined
 _ AC MVS MVS operating system Defined
 _ MVSFP1 MVS
 _ OPSYS01 MVS MVS operating system Defined
 _ OPSYS02 VM VM operating system

Figure 4-12 HCD display: Define Device to Operating System Configuration panel
13. The Define Device Parameters/Features panel (Figure 4-13) displays. On this panel, link the operating system to the tape subsystem that you plan to install.

```
137x713
Figure 4-13   HCD display: Define Device Parameters/Features panel
```

You can accept all of the default parameters, except the following parameters:

- **OFFLINE** depends on your environment. It specifies whether z/OS is to consider the device online or offline at IPL. If YES, the device is considered offline at IPL. If NO (the default), the device is considered online at IPL. We recommend that you specify YES and use the COMMNDxx member of PARMLIB to vary drives online. This method is also necessary if you want to use Automatic Tape Switching (ATS STAR or IEFAUTOS).

- **DYNAMIC** specifies whether you allow dynamic activation through an activate command. Always specify YES.

- **LOCANY** specifies whether the unit control block (UCB) can reside in 31-bit storage. Always specify YES.

- **LIBRARY** specifies whether to indicate that the device belongs to an automated tape library. Specify YES.

- **AUTOSWITCH** defines the devices as automatically switchable. Specify YES to indicate that the device is automatically switchable. For tape drives to be automatically switchable, they must be shared by systems in a Parallel Sysplex.

- **LIBRARY-ID** and **LIBPORT-ID** are optional parameters.

LIBRARY-ID is the unique identification number of a tape library. It specifies the hardware ID associated with the tape library that you define. The IBM Systems Services Representative (SSR) defines it at the time of the library installation. The value is returned by the control unit in response to a Read Device Characteristics command. See 4.3.8, “Defining the library through ISMF” on page 182 for the method to identify the LIBRARY-ID to DFSMS.
In terms of the z/OS operating system, LIBPORT-ID reflects the order in which the tape control units connect to the Library Manager and provides the tape drive pool ID, which is transparent and only used by allocation.

For each logical library (LIBRARY-ID) in the 3494, the LIBPORT numbers always start with 01, and increase as you move away from the L frame. Therefore, the first 3490, 3590, or 3592 tape drives in the frame have a LIBPORT of 01, and as you move out, each frame increments by 1. There is one exception to this rule. Each IBM 3490E Model F1A tape drive has its own LIBPORT-ID. That is, the devices do not share LIBPORTS.

Also, each SCSI-attached drive (non-VTS, non-ESCON) counts as one LIBPORT, even though you do not define it through HCD.

Note: You can refer to the Library Manager configuration panels to match the information for the LIBPORT-ID assigned to the drives.

For the VTS, it is much simpler. Each VTS has its own LIBRARY-ID, so the LIBPORTs start at 01 again. The lowest order logical drives attached to the first control unit (with a CUADD or logical address of 0) are given 01 as a LIBPORT. Each group of 16 is then increased by an increment of 1.

These parameters allow HCD to provide the library configuration information that is normally obtained from the device at IPL time. For devices that are available during IPL, the HCD information is redundant.

Note:
- If you do not use LIBRARY-ID and LIBPORT-ID, devices that are unavailable during IPL cannot be varied online without reactivating the IODF.
- The LIBRARY-ID coded in HCD and later in ISMF must match exactly the LIBRARY-ID specified during the library installation. Otherwise, the library cannot be varied online to the z/OS.

In an existing installation, you can use the new DEVSERV QTAPE system command to see the LIBRARY-ID and LIBPORT-ID. Refer to 9.6.2, “MVS operator commands” on page 401 for the syntax of the z/OS DEVSERV QTAPE operator command. The LIBRARY-ID also shows on the Library Manager display (see 9.4.1, “Finding out the LIBRARY-ID given during the teach process” on page 379).

- **SHARABLE** specifies whether you want to share the defined device between multiple processors. Specify YES. For tape drives, the OFFLINE parameter must be set to YES for using sharable tape devices.

- **COMPACT** specifies whether to indicate that compaction is available for tape devices. Compaction is standard on 3490, 3490E, and all 3590 and 3592 tape drives. Specify YES.

Press Enter.

14. The Assign/Unassign Device to Esoteric panel displays. You do not have to define IBM 3494 Tape Library resident devices to an esoteric in system-managed tape. Use esoteric device names when the number of physical installed drives is less than the number of devices defined to the HCD to prevent allocations going to offline devices in the tape library. You must handle the esoteric device names in your SMS ACS routines and assign them to an appropriate tape storage group. Your IBM 3494 Tape Library and drives should now be defined, and a production IODF is built and then activated.
Table 4-2 summarizes the major HCD panel fields for IBM 3590, IBM 3592, and IBM 3490E tape device definitions.

<table>
<thead>
<tr>
<th>Model</th>
<th>3590-B1A</th>
<th>3590-E1A</th>
<th>3590-H1A</th>
<th>3592-J1A</th>
<th>3592-E05</th>
<th>3490E-F1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of devices</td>
<td>10</td>
<td>12 or 16(^{c})</td>
<td>4</td>
<td>14</td>
<td>12 or 16(^{c})</td>
<td>12 or 16(^{c})</td>
</tr>
<tr>
<td>Device type</td>
<td>3590</td>
<td>3590</td>
<td>3490</td>
<td>3590</td>
<td>3590</td>
<td>3490</td>
</tr>
<tr>
<td>Number of LIBPORT-IDs</td>
<td>1(^{a})</td>
<td>1(^{a})</td>
<td>1 to 2(^{b})</td>
<td>1(^{a})</td>
<td>1(^{a})</td>
<td>1 to 2(^{b})</td>
</tr>
</tbody>
</table>

a. Specify one LIBPORT-ID. Each tape unit attached to the control unit has the same LIBPORT-ID assigned.
b. Specify one LIBPORT-ID per F1A tape unit. Each physical installed F1A tape unit attached to the FC3000 control unit has its own LIBPORT-ID assigned.
c. When attached to a TS1120 Tape Controller, up to 16 TS1120 drives are supported; otherwise, only 12 drives can be attached to a single controller.

Note: IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring, SG24-2229, describes the HCD definitions for a VTS.

4.3.2 Updating SYS1.PARMLIB

You need to update and verify the following parmlib members:

- **SCHEDxx**: Add the OAM initialization module CBROAM to the system program property table (PPT).
- **IGDSMSxx**: Add the OAMPROC and OAMTASK optional parameters if you want the OAM address space to start automatically as part of the SMS initialization. If you use a vendor’s tape management system, it might require that the OAM address space is started after the tape management system initialization. In this case, do not start the OAM automatically. Check with the vendor of the tape management system product.
- **IEFSSNxx**: Add or update the OAM1 entry with the name of the initialization module (CBRINIT) executed at IPL.
- **CONSOLxx**: Update the CONSOLxx member referenced by IEASYSxx if you want to receive library messages at a specific console. You must also define this console name during ISMF library definition to SMS.
- **DEVSUPxx**: Device support options for the relabeling processing in an intermixed environment. If you share your library with other attached hosts, you can specify volume category codes in this member to provide a unique range of tapes for each attached system. That is, you can specify MEDIA1 to MEDIA4 plus the new volume categories added to the IBM 3494 Tape Library partitioning for 3592 support:
 - MEDIA5=xxxx
 - MEDIA6=xxxx
 - MEDIA7=xxxx
 - MEDIA8=xxxx
 - MEDIA9=xxxx
 - MEDIA10=xxxx
 - where xxxx is a 4-digit hexadecimal category code.
- **COMMNDxx**: Add the VARY XXXX,ONLINE command if you want to bring some tape drives online after IPL.
- **GRSCNFxx (optional):** If you plan to share the tape library among two or more systems in an SMS complex, a global resource serialization ring can be created to include all sharing systems. This allows OAM to serialize the cartridge entry process.

- **LOADxx (optional):** Update columns 64 through 71 of the SYSCAT statement with the high-level qualifier of your TCDB if you do not want to use the default (SYS1).

 Note: The LOADxx member can reside in SYS1.PARMLIB or SYSn.IPLPARM. When used, SYSn.IPLPARM must reside on the IODF volume. If you perform an IPL on your system using the SYSCATLG member of SYS1.NUCLEUS, the respective update is done there.

- **COFVLFx (optional):** Add the volume catalogs to the IGGCAS class definitions where you have other ICF catalogs.

- **ALLOCxx (optional):** Add policies for tape automation.

- **IECIOSSxx (optional):** Set values for Missing Interrupt Handler (MIH).

SCHEDxx member of SYS1.PARMLIB
You use SCHEDxx to define programs requiring special attributes to include in the program property table (PPT):

```plaintext
PPT  PGMNAME(CBROAM)  /* OAM ADDRESS SPACE
      KEY(5)           /* USE DFP PROTECT KEY
      NOSWAP           /* NONSWAPPABLE
      SYST             /* PROGRAM IS SYSTEM TASK--WILL NOT BE TIMED
```

You must add the OAM module. If you already use OAM for object support, you might not need to change this member. We recommend that you review the definition.

IGDSMSxx member of SYS1.PARMLIB
IGDSMSxx contains the definitions for SMS. It is updated with information about OAM. If you already use OAM for object support, you might not need to change this member. We recommend that you review the definition:

```plaintext
OAMPROC(OAM)
OAMTASK(ATLOAM)
DB2SSID(NONE)
```

OAMPROC specifies the name of the procedure that is to start the OAM address space when SMS is initialized. You must specify this keyword if you want to start the OAM address space during IPL. The procedure name can be from one to eight characters.

OAMTASK is optional. Use it if you prefer to use an identifier other than the procedure name when starting the OAM address space.

DB2SSID(NONE) is also optional. Use it if your installation is not using OAM to store objects but uses OAM for tape library management only.

IEFSSNxx member of SYS1.PARMLIB
You use IEFSSNxx to define the primary and secondary subsystems to create at system initialization:

```plaintext
SUBSYS  SUBNAME(OAM1) INITRTN(CBRINIT) INITPARM('MSG=EM')
```

OAM1 is the name by which the subsystem is known, and CBRINIT is the name of the OAM initialization program. It is mandatory to specify the CBRINIT keyword. The MSG parameter is
optional. It allows you to control the format of OAM messages. EM represents mixed-case (for example, Mixed Case) English and EU represents uppercase (for example, UPPERCASE) English. If MSG is omitted, EU is the default.

CONSOL.xx member of SYS1.PARMLIB
You update the CONSOL.xx member only if you want to receive library messages at a specific console:

```
CONSOLE DEVMNU(device number)
  NAME(library console name)
  UNIT(terminal type)
  AUTH(SYS,IO)
 (...)
```

You must also define this console name during ISMF library definition to SMS (see 4.3.8, “Defining the library through ISMF” on page 182). The library console name is the name that is used when you define the IBM 3494 Tape Library to SMS through the ISMF panels. We recommend that the console is authorized for SYS and IO, which allow an operator to issue z/OS MODIFY and VARY commands.

DEVSUP.xx member of SYS1.PARMLIB
DEVSUP.xx controls installation-wide default tape device characteristics:

```
COMPACT = YES,
VOLNSNS = YES,
MEDIA1 = xxxx,
MEDIA2 = xxxx,
MEDIA3 = xxxx,
MEDIA4 = xxxx,
MEDIA5 = xxxx,
MEDIA6 = xxxx,
MEDIA7 = xxxx,
MEDIA8 = xxxx,
MEDIA9 = xxxx,
MEDIA10 = xxxx,
ERROR = xxxx,
PRIVATE = xxxx
```

- **COMPACT = YES**: With COMPACT set to YES, the installation uses the compaction feature. With COMPACT set to NO by default, the installation does not use the compaction feature of the tape drive. The Job Control Language (JCL) parameter (TRTCH) and DATACLAS override this setting. The DATACLAS cannot override the JCL parameter if specified.

- **VOLNSNS = YES**: This is only necessary if you have different generations of one device type installed, such as a mix of 3590-Bxx, 3590-Exx, and 3590-Hxx, or a mix of 3592-J1A and TS1120 tape drives. It allows cartridges to be relabeled from a device, which cannot read the actual label (for example, EFMT2 relabeled to EFMT1 or 256 tracks relabeled to 128 tracks). The relabel process to a higher format (for example, EFMT1 to EMFT2 or 128 tracks to 256 tracks) is always possible, regardless of what you specify in this parameter.

To partition the tape library into logically independent libraries, the following parameters are available. Use these parameters only if you plan to share the library among other systems. Use the DEVSUP.xx parameters to specify volume category codes for library partitioning:

- **MEDIA1 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3490 CST scratch volume category code. The default value is 0001.

- **MEDIA2 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3490 ECCST scratch volume category code. The default value is 0002.
- **MEDIA3 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3590 high performance cartridge tape scratch volume category code. The default value is 0003.

- **MEDIA4 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3590 high performance extended length cartridge tape scratch volume category code. The default value is 0004.

- **MEDIA5 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3592 Enterprise Tape Cartridge (300 GB) scratch volume category code. The default value is 0005.

- **MEDIA6 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3592 Enterprise WORM Tape Cartridge (300 GB) scratch volume category code. The default value is 0006.

- **MEDIA7 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3592 Enterprise Economy Tape Cartridge (60 GB) scratch volume category code. The default value is 0007.

- **MEDIA8 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3592 Enterprise Economy WORM Tape Cartridge (60 GB) scratch volume category code. The default value is 0008.

- **MEDIA9 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3592 Enterprise Data Extended Tape Cartridge (700 GB) scratch volume category code. The default value is 0009.

- **MEDIA10 = xxxx**: Specifies a 2-byte hexadecimal value to use as the 3592 Enterprise Data Extended WORM Tape Cartridge (700 GB) scratch volume category code. The default value is 0010.

- **ERROR = xxxx**: Specifies a 2-byte hexadecimal value to use as the error volume category code. The default value is 000E.

- **PRIVATE = xxxx**: Specifies a 2-byte hexadecimal value to use as the private volume category code. The default value is 000F.

Note: The variable xxxx must be a four-character hexadecimal value within the 0010 to FEFF range (specification of the appropriate default category is also allowed 0001-000F; however, for library partitioning, it is best to use non-default categories). To avoid conflicting volume categories with platforms other than z/OS, only use the 0010 through 007F range, or use the second digit of the four-character field; for example, 0201, 0202, 0301, and so on. This is significant in large installations where the library might be partitioned and connected to many z/OS hosts.

Do not use categories that are reserved for other platforms. Refer to Appendix C, “Library Manager volume categories” on page 457 for the volume categories that other platforms use.

You might need to update member IEASYSxx to point to a new DEVSUPxx member.

If a syntax error occurs because of a missing comma in DEVSUPxx, no error message is issued, and your partitioning efforts will yield unpredictable results.

Note that updating DEVSUPxx can require an IPL, which you might want to schedule in advance.
COMMNDxx member of SYS1.PARMLIB

When defining the tape drives to the HCD, the specification of OFFLINE on the Define Device Parameters/Features panel (Figure 4-13 on page 160) controls whether the devices are brought online automatically at IPL time:

```
COM='VARY dddd,ONLINE'
```

It is a common practice to not bring tape drives online at IPL time, but rather to vary them online with the COMMNDxx member.

If you define the drives in the HCD to come online at IPL and no cartridge is mounted in the drive, the drive will not be ready and will remain OFFLINE. We recommend that you add VARY statements for all drives that need to be online to a particular system after that system runs the IPL.

GRSCNFxx member of SYS1.PARMLIB (optional)

If you plan to share the tape library among two or more systems in an SMS complex, a global resource serialization ring can be created to include all sharing systems. This allows OAM to serialize the cartridge entry process. The global resource serialization (GRS) configuration is defined in member GRSCNFxx of SYS1.PARMLIB. You can learn more about this in *z/OS MVS Initialization and Tuning Reference*, SA22-7592.

OAM sends a SYSTEMS level enqueue around the global resource serialization ring, so there is no need to include the QNAME or RNAME in the system inclusion RNL. The QNAME and RNAME are provided here for documentation purposes:

```
QNAME-SYSZCBR
RNAME-CARTRIDGE_ENTRY_libname
```

SYSZCBR is the major resource name given to OAM, and CARTRIDGE_ENTRY_libname is the minor resource name. The libname is the friendly SMS name given to the library when it is defined to SMS through the ISMF panels.

If you do not use GRS to control resource serialization in a multisystem environment, review the documentation and make the appropriate changes to ensure that the use of CBRUXENT is correctly serialized. You can obtain relevant information in *z/OS DFSMS Object Access Method Planning, Installation, and Storage Administration Guide for Tape Libraries*, SC35-0427.

LOADxx member of SYS1.PARMLIB (optional)

Update columns 64 through 71 of the SYSCAT statement with the high-level qualifier of your TCDB; if you do not want to use the default (SYS1). Use:

```
1 10 20                                          64
SYSCAT   CATRES    SYS1.MASTER.CATALOG             USERHLQ1
```

USERHLQ1 is any name that is not used as an alias entry in the master catalog.

Updating LOADxx may require an IPL, which you may want to schedule in advance.

COFVLFxx member of SYS1.PARMLIB (optional)

Add the volume catalogs to the IGGCAS class definitions as shown here:

```
/*                                                                   */
CLASS NAME(IGGCAS)                  /* CATALOG in Data space    */
   EMAJ(ICFCAT.USERCAT)          /* User Catalog              */
   EMAJ(SYS1.VOLCAT.VGENERAL)    /* SMT general VOLCAT        */
   EMAJ(SYS1.VOLCAT.VT)          /* SMT specific VOLCAT       */
```
MAXVIRT(256) /* MAXVIRT = 256 4K blocks */
/* = 1Mb (minimum value) */

Because a volcat can have many updates against volume entries, use the virtual lookaside facility (VLF) function with caution. The F CATALOG,REPORT,VLF command displays the hit rates for each catalog defined for VLF use. If hit rates are below 50% for a catalog, we recommend that you do not use VLF for that catalog.

ALLOCxx member of SYS1.PARMLIB (optional)
When you introduce automation, you must review the settings of the ALLOCxx member. By default, most of the parameters cause WTOR messages. You must automate the parameters to achieve real lights-out operation. We explain the parameters that affect tape handling in the following sections.

VOLUME_ENQ POLICY (WTOR/CANCEL/WAIT)
This parameter specifies the installation policy for enqueuing on volumes when an allocation request has to wait for a volume or a series of volumes.

- **WTOR**: The installation policy is to issue the message and let the operator make the decision about the allocation request. The system displays one of the following messages on the operator's console:
 - IEF690I - The following volumes are unavailable to jobname...
 - IEF235D - Jobname is waiting for volumes.

 To cancel wait, reply no. In addition, the system issues message IEF369D (invalid reply) in response to an invalid reply to IEF235D.

- **CANCEL**: The installation policy is to cancel a job that needs an unavailable volume.

- **WAIT**: The installation policy is to let a job that needs an unavailable volume wait until the volume is available.

- **CAUTION**: When you use WAIT for the default, tape volumes might encounter deadlocks with other jobs in the system.

- **Default**: WTOR

VOLUME_MNT POLICY (WTOR/CANCEL)
This parameter specifies the installation policy for mounting a volume when an allocation request requires a volume to be mounted.

- **WTOR**: The installation policy is to issue the message and let the operator make the decision about the volume mount. The system displays one or more of the following messages on the operator's console:
 - IEF233A - Mount volume ser.
 - IEF233D - Mount volume ser or respond to IEF455D message.
 - IEF455D - Mount ser on device for jobname or reply no.

 In addition, the system issues message IEF369D (invalid reply) in response to an invalid reply to IEF455D.

- **CANCEL**: The installation policy is to cancel a job that needs a volume mounted.

- **Default**: WTOR

SPEC_WAIT POLICY (WTOR/WAITHOLD/WAITNOH/CANCEL)
This parameter specifies the installation policy to follow when an allocation request must wait for a specific volume or unit.
WTOR: The installation policy is to issue the message and let the operator make the decision about the wait request. The system displays one or more of the following messages on the operator's console:

- IEF238D - Reply device name, wait, or cancel.
- IEF244I - Unable to allocate nnn units. At least nnn allocated or offline units are needed.
- IEF433D - Wait requested, reply hold or nohold.
- IEF488I - Must wait for a unit, or volume on unit.

In addition, the system issues one or more of the following messages in response to an invalid reply to the preceding messages:

- IEF434D - Invalid reply (to message IEF433D). Reply hold or nohold.
- IEF490I - Invalid reply (to message IEF238D) for one of the following reasons:
 - Device is not accessible (no paths available, boxed, or cannot be assigned).
 - Required system-managed volume is not available.
 - Required volume is not available.
 - Replied device is not eligible.
 - Device is found in an offline library.
 - Coupling facility error.

WAITHOLD: The installation policy is for the system not to release any of the devices that have been allocated to this job before it waits for the required units or volumes.

Note: Use of WAITHOLD can result in deadlock, particularly when the device is in use by a job that is going to wait. The system does not release any indirect access storage devices (DASDs) that have been allocated to the job before it waits for the required units and volumes.

To avoid this problem, do not specify WAITHOLD. When devices for a job are held during a wait, and a device that was eligible for allocation to the job becomes ineligible for allocation (because of its use by a system utility, for example), the job can fail, because it does not have enough devices to complete successfully. Message IEF700I in the job log identifies this failure. Refer to message IEF700I for information about how to respond to this failure.

WAITNOH: The installation policy is to let the job wait while not holding the obtained resources. The system releases those devices that have been allocated to this job but cannot be shared with other jobs. For an example of the WAITHOLD option compared to the WAITNOH options, consider Job A that owns an automatically switchable device and is waiting for a printer. Job B owns the printer that Job A needs and is waiting for the automatically switchable device that Job A owns.

If the reply is WAITHOLD for each job, the two jobs wait until one job is canceled. This deadlock can be even more complex, depending on the number of jobs waiting.

If the reply is WAITNOH for each job, allocation responds on a first-come, first-served basis. After the first job finishes using a resource, the resource is available to the second job.

CANCEL: The installation policy is to cancel the allocation request. If a TSO/E user issued the allocation request, the user receives an error message. If a batch job or started task issued the request, the system cancels the job or task.
Default: WTOR

MAXNWAIT(\textit{nnn}): Specifies the number of WAITNOH decisions that are allowed for the specific volume or unit allocation request before the default specified on the POLICYNW parameter takes effect. The WAITNOH decisions that are counted are those that are specified either through the default on the POLICY parameter or through an installation exit. WAITNOH decisions made by the operator are not included in the MAXNWAIT count. The value range is 1 to 255.

Default: 5

\textit{POLICYNW(CANCEL|WTOR)}

This parameter specifies how the system should handle the allocation request under the following circumstances:

- Either WAITHOLD or WAITNOH is specified on the POLICY parameter, and the system does not allow the job to wait for resources.
- The system is to either cancel the allocation request (CANCEL) or issue a WTOR. When you select CANCEL, the system cancels the allocation request depending on how the request was issued. If a TSO/E user issued the allocation request, the user receives an error message. If a batch job or started task issued the request, the system cancels the job or task.

The default is WTOR.

Figure 4-14 shows a sample ALLOCxx member in an unattended environment. Figure 4-14 shows only those parameters that affect tape allocation.

```
VOLUME_ENQ   POLICY(CANCEL) /*Always cancel job*/
VOLUME_MNT   POLICY(WTOR)   /*Always issue the WTOR*/
SPEC_WAIT    POLICY(WAITNOH) /*Wait while not holding resources*/
              MAXNWAIT(7)  /*7 "wait nohold" decisions allowed*/
              POLICYNW(CANCEL) /*Cancel if wait is not allowed*/
ALLC_OFFLN   POLICY(WAITNOH) /*Wait while not holding resources*/
              MAXNWAIT(7)  /*7 "wait nohold" decisions allowed*/
              POLICYNW(CANCEL) /*Cancel if wait is not allowed*/
```

Figure 4-14 Sample ALLOCxx member

\textit{IECIOxx member of SYS1.PARMLIB (optional)}

Update or set the values for the Missing Interrupt Handler (MIH).

The IBM 3590 and 3592 return the recommended MIH timeout values to the host operating system in Read Configuration Data. Therefore, it is unnecessary to specify MIH timeout values for IBM 3590 and 3592 devices. The device-supplied values handle all MIH timeouts.
The VTS emulates 3490E devices and does not automatically upload the MIH timeout values to the host operating system in Read Configuration Data. Therefore, you must specify MIH timeout values for IBM 3490E devices.

If you currently specify your own MIH timeout values for non-3590 or non-3592 tape devices, we recommend that you review your procedures to see whether to use a timeout value other than the IBM-supplied default of three minutes. If so, specify the timeout for each device. You specify MIH timeout values only by class (for example, all tapes) or on an individual device basis. Specification of an MIH timeout value for the entire tape class negates the 3590 or the 3592 device’s recommended values. It adversely affects MIH recovery processing on 3590 or 3592 devices. You can specify the MIH values either in PARMLIB member IECIOSxx or with the OS/390 operator command SETIOS.

Figure 4-15 shows how to specify MIH values for:

- IBM 3480 devices (addresses 800 through 807)
- IBM 3490E drives using CST cartridges (addresses 900 through 907)
- IBM 3490E drives with ECCST cartridges (addresses 9E0 through 9EF)
- VTS virtual drives (A40 through A5F) at 25 minutes

This is a starting point. Under certain conditions, you might experience missing interrupts at 25 minutes. If you experience missing interrupts, increase the time to 45 minutes.

For information about the MIH values for 3590 in 3490E emulation mode, refer to Table 2-8 on page 47.

4.3.3 Defining security profiles

You must prevent unauthorized users from modifying or using information in the system-managed tape environment. In this section, we explain how to use the Resource Access Control Facility (RACF®) to establish authorization levels for protecting these functions, datasets, and commands. There are five areas of protection that you might want to implement.

ISMF

You can use RACF to limit access to individual ISMF applications, such as TAPE LIBRARY CONFIGURATION or STORAGE CLASS DEFINITION. You can also protect ISMF line operators, such as AUDIT.

For example, you can protect the EJECT line operator as shown here:

```
RDEFINE PROGRAM DGTFEJO1 UACC(NONE) +
  ADDMEM('loadlib'/volser/NOPADCHK)
PERMIT DGTFEJO1 CLASS(PROGRAM) ACCESS(READ) ID(userid)
```

See the *z/OS DFSMSdfp Storage Administration Reference*, SC26-7402, for a complete list of all profiles and command-to-program tables.
SMS constructs
You can restrict the use of SMS storage and management classes to certain users in a system-managed tape environment.

STGADMIN
To control the ability to perform functions associated with storage management, define profiles in the FACILITY class, whose profile names begin with STGADMIN. For tape library operations, the following profiles are important:

- Control the ability to activate an SMS configuration:

  ```plaintext
  RDEFINE FACILITY STGADMIN.IGD.ACTIVATE.CONFIGURATION UACC(NONE)
  PERMIT STGADMIN.IGD.ACTIVATE.CONFIGURATION CLASS(FACILITY)
  ACCESS(READ) ID(userid)
  ```

- Control the ability to DEFINE, DELETE, or ALTER library and volume entries in a tape library (TCDB updates):

  ```plaintext
  RDEFINE FACILITY STGADMIN.IGG.LIBRARY UACC(NONE)
  PERMIT STGADMIN.IGG.LIBRARY CLASS(FACILITY)
  ACCESS(READ) ID(userid)
  ```

For a complete list of RACF profiles protecting storage administration functions, refer to the z/OS DFSMSdfp Storage Administration Reference, SC26-7402.

DFSMSrmm
By defining RACF profiles, you authorize DFSMSrmm users to various levels of access:

- Access to information in the DFSMSrmm control dataset:

  ```plaintext
  REDFINE FACILITY STGADMIN.EDG.MASTER UACC(NONE)
  PERMIT STGADMIN.EDG.MASTER CLASS(FACILITY)
  ACCESS(CONTROL) ID(userid)
  ```

- Use of the INIT and ERASE function:

  ```plaintext
  REDFINE FACILITY STGADMIN.EDG.OPERATOR UACC(NONE)
  PERMIT STGADMIN.EDG.OPERATOR CLASS(FACILITY)
  ACCESS(UPDATE) ID(userid)
  ```

- Changing of information recorded by DFSMSrmm during O/C/EOV processing:

  ```plaintext
  REDFINE FACILITY STGADMIN.EDG.FORCE UACC(NONE)
  PERMIT STGADMIN.EDG.FORCE CLASS(FACILITY)
  ACCESS(UPDATE) ID(userid)
  ```

For a complete list of RACF profiles protecting DFSMSrmm resources, refer to the z/OS DFSMSrmm Implementation and Customization Guide, SC26-7405.

z/OS operator commands
An installation can audit the use of commands and limit the use of commands by the operator and the console. You can restrict access to z/OS commands, such as LIBRARY or VARY SMS, which affect the operation of your IBM 3494 Tape Library:

- Access to the z/OS LIBRARY command:

  ```plaintext
  REDFINE OPERCMDS MVS.LIBRARY UACC(NONE)
  PERMIT MVS.LIBRARY CLASS(OPERCMDS) ACCESS(UPDATE) ID(userid)
  ```

- Access to the z/OS VARY SMS command:

  ```plaintext
  REDFINE OPERCMDS MVS.VARY.SMS UACC(NONE)
  PERMIT MVS.VARY.SMS CLASS(OPERCMDS) ACCESS(UPDATE) ID(userid)
  ```
Stacked volume

As long as a 3494 has installed native drives with the same device capabilities, there is a slight chance that stacked volumes from a VTS can be corrupted. A user with Bypass Label Processing (BLP) processing rights still can mount them on a native drive.

With the RACF facility class TAPEVOL, you can restrict any access from any user. Stacked volumes are not needed by any z/OS application directly, so this is an additional protection. In our example, all volumes beginning with any character, and on the second character “P”, are restricted by native usage:

```
SETR CLASSACT(TAPEVOL) GENERIC(TAPEVOL) GENCMD(TAPEVOL)
RDEFINE TAPEVOL %P* UACC(NONE)
```

Refer to z/OS Security Server RACF Command Language Reference, SA22-7687, and z/OS V1R3.0 MVS Planning: Operations, SA22-7601, for a complete list of RACF profiles to protect z/OS commands for more information.

4.3.4 Allocating the tape configuration database

The TCDB consists of one or more volume catalogs that contains information about the tape libraries and tape volumes. Two types of entries are maintained: library records and volume records.

Each library record contains information related to an IBM 3494 Tape Library or a VTS library. Each volume record contains information related to a system-managed tape volume.

The library record is also contained in the SMS control dataset. Table 4-3 shows the contents of the TCDB library and the volume record.

<table>
<thead>
<tr>
<th>Library record</th>
<th>Volume record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library name</td>
<td>Volume serial number</td>
</tr>
<tr>
<td>LIBRARY-ID</td>
<td>Volume use attribute</td>
</tr>
<tr>
<td>Library description</td>
<td>Volume error attribute</td>
</tr>
<tr>
<td>Library device type</td>
<td>Write protection status</td>
</tr>
<tr>
<td>Number of slots</td>
<td>Checkpoint volume indicator</td>
</tr>
<tr>
<td>Number of empty slots</td>
<td>Tape device selection information</td>
</tr>
<tr>
<td>Number of scratch volumes</td>
<td>Library name</td>
</tr>
<tr>
<td>Scratch volume message threshold</td>
<td>Storage group name</td>
</tr>
<tr>
<td>Library Console Name</td>
<td>Volume location code</td>
</tr>
<tr>
<td></td>
<td>Shelf location</td>
</tr>
<tr>
<td></td>
<td>Volume owner information</td>
</tr>
<tr>
<td></td>
<td>Volume record creation date</td>
</tr>
<tr>
<td></td>
<td>Last entry or eject date</td>
</tr>
<tr>
<td></td>
<td>Last mounted date</td>
</tr>
<tr>
<td></td>
<td>Last written date</td>
</tr>
<tr>
<td></td>
<td>Volume expiration date</td>
</tr>
</tbody>
</table>

You must allocate the TCDB before you can define an IBM 3494 Tape Library to the system. Define one general volcat in a system-managed tape SMSplex.

Figure 4-16 shows a sample job to allocate the TCDB.
Figure 4-16 Creating a general SYS1.VOLCAT.VGENERAL

In a multihost environment, allocate a general volcat on a shared volume and use the
IDCAMS IMPORT CONNECT command on all other z/OS systems in the SMSplex to define
the volcat to the respective master catalogs.

The volume catalogs are defined with SHAREOPTIONS(3,4), so the TCDB can be fully
shared among two or more systems. For exclusive control of the catalog's volume, a task in
any accessing system issues the RESERVE macro. If multiple systems share the library (and
therefore, share the TCDB), we recommend strongly that you use GRS or another means to
serialize access to tape drives. Figure 4-17 shows a sample job to connect the TCDB to a
shared system.

Figure 4-17 Import connect TCDB

Optionally, you can define one or more specific volcats. For example, consider
SYS1.VOLCAT.Vx, where x represents the first character of the tape volume serial numbers
to be stored in this specific volume catalog. It must have a valid character value (A to Z and
0 to 9). A specific volume catalog might be appropriate due to:

- Performance considerations
- Multisystem considerations
- The application’s use of confined tape ranges

Figure 4-18 shows a sample job that defines a specific volcat. This volcat contains all of the
system-managed tape volume entries starting with the character T.

Note: Instead of SYS1, you can use a different high-level qualifier. To do so, you must
update the LOADxx member in PARMLIB. Select the HLQ name carefully. There is no
documented easy way to rename the VGENERAL after you define and use it.
Figure 4-18 Creating a specific SYS1.VOLCAT.VT

Notes:
It is important that you remember that:

➤ Library records cannot be stored in a specific volume catalog.
➤ In a multihost environment, the same considerations apply as for a general volcat.

Sizing the tape configuration database
To estimate the size of the TCDB, calculate 275 bytes for each volume entry. Therefore, for 10,000 volumes, 2.75 MB or about three cylinders of 3390 disk space are required. For 100,000 volumes, about 32 cylinders are required. Because there are typically a small number of library records in the configuration, their role in the calculation should be minor. With z/OS V1R5, factor in 2,000 bytes for each library record.

When estimating, allow room for growth so that secondary extents are not created.

4.3.5 Preparing and starting OAM
To allow communication with your 3494 Tape Library, you must start the OAM address space. The start procedure from OAM must be added to one of your procedure libraries. You can use CBRAPROC in SYS1.SAMPLIB to create the OAM procedure in PROCLIB (see Figure 4-19).

Figure 4-19 OAM procedure example

If you already use OAM for object access, you might not have to change this member. However, we recommend that you review the definition.

The RESTART parameter is important to tape library users. It allows you to indicate whether you want the OAM address space to automatically restart on an SCDS activation. A restart from OAM through an SCDS activation performs these tasks:

➤ Transfers to OAM relevant SMS definitions and constructs to the OAM address space
Sets all the defined libraries to the defined state in SMS, regardless of their current operational state

Therefore, if your SCDS changes rarely affect the tape library-related constructs, you might want to specify RESTART=NO, and the OAM address space stays up during an SCDS activation. If you added information that affects OAM, you can subsequently issue the command:

F OAM,RESTART

Note: A manual restart of OAM differs slightly from a restart that is scheduled through SMS-SCDS activation. If a library is set offline for some reason (such as maintenance), a manual restart does not set it online again. A restart caused by SMS-SCDS activation sets the specific library online.

First start of OAM and considerations

When you start OAM the first time, no library or tape-records are available. OAM asks for the SMS-activation, because there is no information available for tape processing. After you introduce the IBM 3494 Tape Library through ISMF and restart OAM, the library comes online for the first time.

If you updated the IGDSMSxx member accordingly, OAM starts automatically during IPL.

4.3.6 Customizing OAM

Through the CBRXLCS general use programming interface, an application program can:

- Change the use attribute of a cartridge (CUA®)
- Eject a cartridge from the library (EJC)
- Query whether a cartridge is present in a library (QVR)
- Test a cartridge's eligibility to be mounted (TVE)

OAM provides four installation-wide exits that take control at various processing points. They promote and verify changes:

- **Cartridge entry exit (CBRUXENT)**
 The cartridge entry installation exit routine is called during cartridge entry processing to approve or disapprove entry of a cartridge into the library and to determine the TCDB volume record contents for each volume entered into the library. If you need to code this exit routine, you can use SYS1.SAMPLIB member CBRSPUXE as a model.

- **Cartridge eject exit (CBRUXEJC)**
 The cartridge eject installation exit routine is called to approve or disapprove ejecting a cartridge from a library. It also determines the TCDB volume disposition and contents for each volume to eject. If you need to code this exit routine, you can use SYS1.SAMPLIB member CBRSPUXJ as a model.

- **Change use attribute exit (CBRUXCUA)**
 The change use attribute installation exit routine is called when the use attribute of a volume is to be changed (S → S, S → P, P → P, or P → S). The exit is called to approve or disapprove of the change and is called before the TCDB volume record and the LM database record are updated. If you need to code this exit routine, use SYS1.SAMPLIB member CBRSPUXC as a model.

- **Cartridge not in library exit (CBRUXVNL)**
 The volume not in library installation exit routine is invoked when there is a request to process tape volumes that do not reside in a library but must reside for processing to
continue. This exit routine is invoked to give you the opportunity to insert a volume into an IBM 3494 Tape Library to prevent job failures. If you need to code this exit routine, you can use SYS1.SAMPLIB member CBRSPUXV as a model.

These installation exits are provided by DFSMSrmm. If your installation does not use DFSMSrmm and your tape management vendor has not supplied an exit, OAM provides a sample exit in SAMPLIB that you can customize to fit your needs.

The OAM installation exits have been changed to support the EFMT2 and EEFMT2 recording technology and the new media types:

- **Change use attribute (CBRUXCUA) installation exit:** Tape recording technology fields and media type fields have been updated with EFMT1, EMFT2 and EEMFT2 for MEDIA5, MEDIA6, MEDIA7, MEDIA8, MEDIA9, and MEDIA10.
- **The UXCVWORM indicator is set to on if the volume is a WORM media type.** The tape management system is alerted that the CUA function is performed for a WORM volume when invoking the CBRUXCUA installation exit.
- **Cartridge entry (CBRUXENT) installation exit:** Tape recording technology fields and media type fields have been updated with EFMT1, EMFT2 and EEMFT2 for MEDIA5, MEDIA6, MEDIA7, MEDIA8, MEDIA9, and MEDIA10.
- **Cartridge eject (CBRUXEJC) installation exit:** Tape recording technology fields and media type fields have been updated with EFMT1, EMFT2 and EEMFT2 for MEDIA5, MEDIA6, MEDIA7, MEDIA8, MEDIA9, and MEDIA10.
- **Volume not in library (CBRUXVNL) installation exit:** Tape recording technology fields and media type fields have been updated with EFMT1, EMFT2 and EEMFT2 for MEDIA5, MEDIA6, MEDIA7, MEDIA8, MEDIA9, and MEDIA10.

Note: MEDIA9 and MEDIA10 media types are support by z/OS V1R5 and above, and TS1120 tape drives. These media types are the extended length 3592 tape cartridges.

Use of the installation-wide exits is optional. However, if you use a tape management system, you need the exits to invoke your tape management system. For example, if the CBRXLCS eject interface or an operator command is issued to eject a cartridge from a library, the CBRUXEJC exit notifies DFSMSrmm that the cartridge has been ejected from the library so that DFSMSrmm can update its location.

If the tape management system does not use the CBRUXCUA or CBRUXEJC exit, changes made at the z/OS console through the LIBRARY command or through the ISMF volume application are not forwarded to the tape management system. Cartridges can end up in unpredictable states.

If you use DFSMSrmm as your tape management system, the exits are fully provided by DFSMSrmm. They are installed in SYS1.LINKLIB during SMP/E installation of DFSMSrmm. No customization is needed at all.

To obtain information about recording technology and media type for volume AN4441, issue the command:

```
DISPLAY SMS,VOLUME(AN4441)
```

If you use any other tape management system, contact your software vendor. Most of them support some or all OAM exits.
For detailed information about the exit routines, refer to DFSMS/MVS OAM PISA for Tape Libraries, SC35-0427.

4.3.7 Updating and customizing your tape management system

System-managed tape and the library manager do not manage the contents of the cartridges. System-managed tape manages the physical characteristics of the cartridge and assigns appropriate drives and media at allocation time. The Library Manager manages the physical location of the cartridge within the library. DFSMSrmm manages your installation’s tape volumes and the datasets on those volumes. DFSMSrmm is fully integrated into system-managed tape and uses the CBRXLCS general use programming interface: entry, eject, change use attributes, and volume not in library exits.

DFSMSrmm can automatically perform insert, scratch, and movement processing. Its partition support allows for easy control of cartridge entry where the library is partitioned between two or more systems. For a discussion about partitioning a tape library, refer to 6.2, “Partitioning tape libraries among multiple z/OS systems” on page 254.

This section provides the required customization steps as well as additional information about:

- Tape initialization
- Scratch pooling
- Duplicate volume serial numbers

To implement an IBM 3494 Tape Library with DFSMSrmm, you must define cartridge entry rules for cartridge entry processing with DFSMSrmm. This step is required. The following additional steps are not mandatory but extremely useful in live production:

- Define library-resident cartridges to DFSMSrmm:
 - New cartridges
 - Existing DFSMSrmm-managed cartridges
- Define procedures to eject cartridges.
- Define procedures to ensure database synchronization with the TCDB.

Defining cartridge entry rules for entry processing with DFSMSrmm

When cartridges are inserted into an IBM 3494 Tape Library, their barcodes are validated. If acceptable, the cartridge is placed into the insert category.

The Library Manager then sends a message to all attached hosts. When OAM receives this message, it checks with DFSMSrmm through the entry exit (CBRUXENT) to see whether DFSMSrmm approves or disapproves. This process is controlled by REJECT statements in the EDGRMMxx member of PARMLIB. You can use the REJECT parameter to control entry into the library and to use the cartridge for input processing only.

In the example RMM REJECT statements in Figure 4-20, cartridges starting with DD3 are not allowed in the library. Cartridges starting with CC12 are used for input processing only. REJECT ANYUSE(*) is used to prevent any cartridges not known to DFSMSrmm from being added to the TCDB. If both OUTPUT and ANYUSE are specified, ANYUSE overrides OUTPUT. Therefore, in the final example, all tapes starting with PR (with the exception of

Note: With the introduction of Advanced Policy Management (APM) for VTS, the exits have changed to support this new function. However, if you do not use APM, changing your existing exits is unnecessary.
those starting with PRD) are available for input processing only. When a cartridge matches the REJECT ANYUSE statement, a return code of 12 is set in the CBRUXENT exit, which tells OAM to leave this cartridge to be processed by another host.

If a cartridge is not rejected, the entry processing is approved, and a TCDB entry for the volume and an RMM Entry (if not already available) are created. Depending on the settings for cartridge entry processing (ISMF), the cartridge is handled as private or scratch.

If the cartridge is handled as scratch, the Library Manager gives this cartridge the appropriate MEDIAAx category value that is specified in DEVSUPxx. For more information about categories, see Appendix C, “Library Manager volume categories” on page 457.

<table>
<thead>
<tr>
<th>REJECT ANYUSE(DD3*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REJECT OUTPUT(CC12*)</td>
</tr>
<tr>
<td>REJECT ANYUSE(*)</td>
</tr>
<tr>
<td>REJECT ANYUSE(PRD*), OUTPUT(PR*)</td>
</tr>
</tbody>
</table>

Figure 4-20 RMM REJECT statements in EDGRMMxx

Important: Missing EDGRMM entries can cause you many problems if you share a library among different z/OS users. We strongly recommend that you do not implement new sharing partners without reviewing the EDGRMM member of all users of this library.

Defining library resident cartridges to DFSMSrmm
You can perform this step for new and existing cartridges.

New cartridges
If the EDGRMxx PARMLIB member is correctly specified and activated, there is no need to specify the new cartridges in DFSMSrmm. The entry process also creates TCDB and DFSMSrmm entries.

Existing DFSMSrmm-managed cartridges
We recommend that you define your private volumes to DFSMSrmm before you enter them in the IBM 3494 Tape Library by using the DFSMSrmm ADDVOLUME command. However, the location is automatically updated during insert processing.

Cartridges that are already defined to DFSMSrmm are accepted into the library, according to the insert policies that you defined, and their LOCATION is updated in DFSMSrmm. If you want the home location of a cartridge to be in a library, use the CHANGEVOLUME command with the LOCATION subparameter. You can do this by issuing multiple commands or by using the DFSMSrmm CLIST function to build a list of the cartridges in the library using the DFSMSrmm SEARCHVOLUME command.

You can use the CHANGEVOLUME command to specify a storage group name for private volumes so that DFSMSrmm can provide the storage group name during cartridge entry processing. Although a blank storage group name is valid in system-managed tape environments, group your private volumes according to the policies specified in the ACS routines.

Note: To use the EFMT2 recording technology, you must specify the MEDIATYPE(MEDIA5, MEDIA6, MEDIA7, MEDIA8, MEDIA9, or MEDIA10) operand of the CHANGEVOLUME TSO subcommand.
The DFSMSrmm ADDVOLUME, CHANGEVOLUME, and SEARCHVOLUME commands have been expanded for RECORD FORMAT to include the EEFMT2, TS1120 Tape Encryption. See *IBM System Storage TS1120 Tape Encryption Planning, Implementation, and Usage Guide*, SG24-7320, for more information about TS1120 Tape Encryption.

Defining procedures to eject cartridges

If volumes are ejected from the library through the z/OS LIBRARY command or the ISMF volume application, the eject exit, CBRUXEJC, is called to inform DFSMSrmm and update the storage location accordingly.

You need to add an additional step or job to the DFSMSrmm housekeeping run to eject from the library cartridges that were assigned new destinations as part of vital record processing. This additional step or job uses the CHANGEVOLUME EJECT command. The cartridge can be sent to either the bulk output station or the convenience station. You can use SEARCHVOLUME to build a list of volumes to eject (RMM EJECT sample step in Figure 4-21).

```bash
//SEARCH EXEC PGM=IKJEFT01
//SYSTSIN DD *
RMM SEARCHVOLUME VOLUME(*) OWNER(*) LOCATION(ATL) DESTINATION(*) -
   INTRANSIT(NO) LIMIT(*) -
   CLIST('RMM CV ',' EJECT')
EX EXEC.RMM.CLIST
```

Figure 4-21 RMM EJECT sample step

Note: DFSMSrmm sets the INTRANSIT(YES) flag for ejected volumes as soon as EJECT occurs. You must then issue the CONFIRMMOVE command just as you do without an IBM 3494 Tape Library.

Tape initialization

For volumes in an automated tape library data server, you have the option to use DFSMSdfp™ OPEN processing as an alternative to using DFSMSrmm EDGINERS or IEHINITT to label scratch volumes.

Note: Initialization for either stacked or logical volumes is not required with the VTS. Stacked and logical volumes are initialized transparently to the user and host at the time of the first use. Also, initialization for native 3590 or 3592 drives is not required. In an environment with a mixed 3590 or 3592, it is not even useful. Scratch cartridges are initialized from the drive if a label is detected that does not match the external label or has a different recording format.

If the automated tape library data server is fully functional (vision system working) and the VOL1 label for a scratch volume does not match the external label, DFSMSdfp rewrites the VOL1 label with the correct VOLSER.

DFSMSrmm turns off the initialization action to defer the labeling to OPEN processing under DFSMSdfp control if you request the initialization before entering a scratch volume into the automated tape library data server. DFSMSrmm automatically replies to the messages.
issued at open time that are due to label changes allowed and supported by DFSMSrmm. DFSMSrmm automatically replies to label messages when:

- A label change is allowed by DFSMSrmm.
- The volume is not rejected by DFSMSrmm.
- DFSMSrmm is not running in record mode.

DFSMSrmm does not reply when the wrong volume is mounted, unless the volume is in a library and the mounted volume’s barcode matches.

If you want to use DFSMSrmm instead of DFSMSdfp to initialize new tapes in a library, follow the steps in this procedure:

1. Perform one of the following actions:
 - Enter the undefined volumes into the IBM 3494 while DFSMSrmm is active.
 - Define the volumes as scratch to DFSMSrmm with LOCATION(\textit{atlname}) and enter the volumes into the IBM 3494 with DFSMSrmm active.

2. Volumes should now be defined to DFSMSrmm with scratch status. They should be known to be in the library.

3. Use the RMM \texttt{CV VOLSER INIT(Y)} command to set the initialization action for each volume. Use the following command to build the commands:
 \begin{verbatim}
 RMM SV VOL(*) STATUS(SCRATCH) LOC(\textit{atlname})
 \end{verbatim}

4. Run EDGINERS in automatic mode.

 In the sample DFSMSrmm EDGINERS (Figure 4-22), an automatic run of EDGINERS is scheduled to find and initialize up to 99 volumes residing in an automated tape library data server called \textit{MYATL}. All tape cartridges are labeled as appropriate for the drive type on which they are mounted and for their current media characteristics.

5. DFSMSrmm temporarily sets the TCDB status to private for the tapes to initialize, because no specific mounts (because they are required for labeling a cartridge) are allowed for scratch tapes inside a library.

 \begin{quote}
 \textbf{Note:} The automatic synchronization between DFSMSrmm and the TCDB works only if DFSMSrmm runs in \textit{PROTECT} mode.
 \end{quote}

EDGINERS determines whether a volume in a system-managed tape library can be mounted on the current system. If the volume cannot be mounted, possibly because it is defined in a TCDB on another system, DFSMSrmm skips that volume.

The control statement description is as follows:

- Tape DD and SYSIN DD are not required for a system-managed tape environment.
- PARM values request initialization of 99 cartridges in library \textit{MYATL}. There is no verification performed. Verification causes each cartridge to be mounted twice: once for initialization and once for verification.

DFSMSrmm ensures that volumes in a system-managed tape library to be initialized or erased are in the private category, because the automated tape library data server does not support specific mounts of scratch volumes. You must define a volume in a system-managed tape library to DFSMSrmm before you can initialize or erase it. Any volume that is not defined to DFSMSrmm is requested to be mounted on the drive allocated by the TAPE DD statement in the JCL for EDGINERS as long as the drive is not in a system-managed library.
During demount processing, DFSMSrmm ensures that errors detected on volumes mounted in an automated tape library are reflected in the TCDB. For example, DFSMSrmm ensures that the TCDB contains information about write-protected, wrong volume, and wrong label type errors. DFSMSrmm skips the volume rather than asking the operator to correct the error.

//STEP1 EXEC PGM=EDGINERS,
// PARM='COUNT(99),LOCATION(MYATL),INITIALIZE,NOVERIFY'
//SYSPRINT DD SYSOUT=A

Figure 4-22 Sample DFSMSrmm EDGINERS

Scratch pooling
The system-managed tape does not support multiple scratch pools of a single media type in its current release. The libraries can contain different types of scratch cartridges (Table 4-4):

Table 4-4 Media type descriptions

<table>
<thead>
<tr>
<th>Media type</th>
<th>Name</th>
<th>Device type</th>
<th>Recording format</th>
<th>WORM or R/W</th>
<th>Cartridge capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA1</td>
<td>Cartridge System Tape (CST)</td>
<td>3490 or VTS</td>
<td>32-track</td>
<td>R/W</td>
<td>400 MB</td>
</tr>
<tr>
<td>MEDIA2</td>
<td>Enhanced Capacity Cartridge System Tape (ECCST)</td>
<td>3490 or VTS</td>
<td>32-track</td>
<td>R/W</td>
<td>800 MB</td>
</tr>
<tr>
<td>MEDIA3</td>
<td>IBM 3590 High Performance Cartridge Tape (HPCT)</td>
<td>3590</td>
<td>128-track</td>
<td>R/W</td>
<td>10 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>256-track</td>
<td>R/W</td>
<td>20 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>384-track</td>
<td>R/W</td>
<td>30 GB</td>
</tr>
<tr>
<td>MEDIA4</td>
<td>IBM 3590 Extended High Performance Cartridge Tape (EHPCT)</td>
<td>3590</td>
<td>128-track</td>
<td>R/W</td>
<td>20 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>256-track</td>
<td>R/W</td>
<td>40 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>384-track</td>
<td>R/W</td>
<td>60 GB</td>
</tr>
<tr>
<td>MEDIA5</td>
<td>IBM 3592 Enterprise Tape Cartridge (ETC)</td>
<td>3592</td>
<td>EFMT1</td>
<td>R/W</td>
<td>300 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFMT2</td>
<td>R/W</td>
<td>500 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EEFMT2</td>
<td>R/W</td>
<td>500 GB</td>
</tr>
<tr>
<td>MEDIA6</td>
<td>IBM 3592 Enterprise Tape WORM Cartridge (ETWC)</td>
<td>3592</td>
<td>EFMT1</td>
<td>WORM</td>
<td>300 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFMT2</td>
<td>WORM</td>
<td>500 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EEFMT2</td>
<td>WORM</td>
<td>500 GB</td>
</tr>
<tr>
<td>MEDIA7</td>
<td>IBM 3592 Enterprise Tape Economy Cartridge (ETEC)</td>
<td>3592</td>
<td>EFMT1</td>
<td>R/W</td>
<td>60 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFMT2</td>
<td>R/W</td>
<td>100 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EEFMT2</td>
<td>R/W</td>
<td>100 GB</td>
</tr>
<tr>
<td>MEDIA8</td>
<td>IBM 3592 Enterprise Tape Economy WORM Cartridge (ETEWC)</td>
<td>3592</td>
<td>EFMT1</td>
<td>WORM</td>
<td>60 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFMT2</td>
<td>WORM</td>
<td>100 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EEFMT2</td>
<td>WORM</td>
<td>100 GB</td>
</tr>
<tr>
<td>MEDIA9</td>
<td>IBM 3592 Extended Tape Cartridge (EETC)</td>
<td>3592</td>
<td>EFMT1</td>
<td>R/W</td>
<td>500 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFMT2</td>
<td>R/W</td>
<td>700 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EEFMT2</td>
<td>R/W</td>
<td>700 GB</td>
</tr>
<tr>
<td>MEDIA10</td>
<td>IBM Extended Tape WORM Cartridge (EETWC)</td>
<td>3592</td>
<td>EFMT1</td>
<td>WORM</td>
<td>500 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFMT2</td>
<td>WORM</td>
<td>700 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EEFMT2</td>
<td>WORM</td>
<td>700 GB</td>
</tr>
</tbody>
</table>
The scratch cartridges are selected according to DATACLAS definitions for non-specific allocations. If you have two or more systems attached to a library, and you do not want to have a common pool for scratch volumes, you must partition the library as explained in 6.2, “Partitioning tape libraries among multiple z/OS systems” on page 254. For detailed coverage of sharing and partitioning, see the Guide to Sharing and Partitioning IBM Tape Library Data, SG24-4409.

Both the DFSMSrmm control database and the TCDB maintain the RECORDINGFORMAT information. Regardless of the tape management software that you use, you must record the recording format of each tape volume.

Many installations have tape volume serial number standards that match the media format to tape VOLSER. However, if you use different 3590 models in one installation, this practice does not work when managing a single scratch pool.

Note: For specific details about the changes in DFSMSrmm for the new IBM TotalStorage Enterprise Tape Media Models support, refer to the DFSMS Software Support for IBM TotalStorage Enterprise Tape System 3592, SC26-7514-01.

Duplicate volume serial numbers
For system-managed tape, all VOLSERs in the same SMSplex must be unique across tape, DASD, and optical environments. DFSMSrmm does not support duplicate VOLSERs and cannot manage volumes that are not defined to it. You must use DFSMSrmm IGNORE support to process duplicate tapes.

Within the IBM 3494 Tape Library, all volumes, including native, stacked, and logical, must be unique. You have to use distinct volume serial number ranges for the three volume types.

4.3.8 Defining the library through ISMF
You define your IBM 3494 Tape Library to the system through the ISMF library application.

Note: The ISMF definition dialog works only if OAM is active.

For details about defining your library, refer to the z/OS DFSMSdfp Storage Administration Reference, SC26-7402.

When you define your library, you specify:

- **LIBRARY-ID**: Enter the five-character hardware ID associated with the IBM 3494 Tape Library.
- **Console name**: Type the optional z/OS console name if you defined one in SYS1.PARMLIB member CONSOLxx.
- **Entry default Data Class**: This is the name of the Data Class that you want as the default for tape cartridges entered into the IBM 3494 Tape Library that you define.
- **Entry default use attribute**: This is the use attribute for cartridges that are entered into the library (scratch or private).
- **Eject default**: This is the default action for the TCDB volume record when a tape cartridge is ejected from the library (PURGE or KEEP).
- **Scratch threshold**: Enter the threshold below which a message is issued to the operator requesting that scratch volumes of the specified media type are entered into the library.
Chapter 4. Software implementation in z/OS

- **Initial online status:** This status specifies whether the IBM 3494 Tape Library is online, offline, or unconnected to the systems or system groups in the SMSplex each time that the SCDS is activated. We recommend that you specify online to ensure that the library is accessible after activation of an updated SCDS.

 Note: When you connect a 3494 Tape Library to a system group rather than to a system, you lose the ability to vary that library online or offline to the individual system in the group. We recommend strongly that you connect the 3494 Tape Library to individual systems only.

Defining the library (example)
This section shows you an example of how to define a library:

1. Choose option 10 (Library Management) on the ISMF PRIMARY OPTION MENU display. Then, the Library Management Selection Menu appears.

2. Choose option 3 (Tape Library). The TAPE LIBRARY APPLICATION SELECTION panel appears as shown in Figure 4-23.

3. In the **Library Name** field, enter the SMS friendly name for your tape library. This name relates your tape library to your SMS tape storage group, which you define later. There is a minor restriction when you name the library, which is that the first character of a library name must not be V or one of the DFSMSrmm-defined locations (LOCAL, REMOTE, DISTANT).

4. Choose option 3 (Define) to display the TAPE LIBRARY DEFINE panel as shown in Figure 4-24 and Figure 4-25.
Note: Deleting a tape library from this window has no effect on the TCDB. Instead, the library definition is removed only from the specified SCDS. To delete a tape library from the TCDB, use the IDCAMS DELETE command.

5. Specify the following information for the tape library:
– **Description**: This is a 120-byte field that allows you to enter a description of the library definition for use by the installation. There are no restrictions on its content.

– **LIBRARY-ID**: Specify the hardware ID associated with the tape library you define. One physical 3494 library has more than one LIBRARY-ID if it holds native drives and VTS subsystems. All LIBRARY-IDs have to be defined to ISMF. A valid value is entered as five hexadecimal digits. To learn how to find the correct LIBRARY-ID, see 9.4.1, “Finding out the LIBRARY-ID given during the teach process” on page 379.

– **Console name**: Specify the name of the z/OS console associated with the tape library defined in the CONSOLxx PARMLIB member.

– **Entry default Data Class**: Specify the name of the Data Class that you want as the default for tape cartridges that are entered into this tape library.

– **Entry default use attribute**: Specify the default cartridge use attribute for the cartridges that are entered into this library:
 - Private: Use these tape cartridges to satisfy specific cartridge requests.
 - Scratch: Use these tape cartridges to satisfy nonspecific cartridge requests.

– **Eject default**: Specify the default action for the TCDB cartridge record when a tape cartridge is ejected from this library:
 - PURGE: The cartridge record is deleted from the TCDB.
 - KEEP: The cartridge record is kept in the TCDB.

– **Scratch threshold**: Specify the minimum acceptable number of scratch cartridges for each media type in this library. There are eight recognized media types (see Table 4-4 on page 181).

Note: When the number of scratch cartridges in the library falls below the scratch cartridge threshold for that media type, an operator action message displays requesting that scratch cartridges of the required media type are entered into the library. When the number of scratch cartridges exceeds twice the scratch cartridge threshold for that media type, the message disappears. In the case of the VTS, the above numbers apply to the number of logical cartridges (CST or ECCST) available inside the VTS.

– **Initial online status**: Specify whether the library you define will be online (YES), offline (NO), or unconnected (blank) to each system in the SMSplex defined by this SCDS each time that it is activated. YES is equivalent to VARY SMS,LIBRARY(libname),ONLINE. We recommend that you set the initial state to online.

After you enter all of this information, an entry containing the information is added to the TCDB.

Note: Only one SCDS can be activated at any time. Activating another SCDS or reactivating the current SCDS while OAM is running causes OAM to restart. During this restart, all libraries are set to either online or offline according to the attributes defined in the SCDS that caused the restart. After the restart completes, display all libraries to verify that they are set to the desired operational status. Use care when you restart OAM with actions pending that have not been accepted by the Library Manager, for example, mass ejects. They might get discarded during the restart.
4.3.9 Defining SMS constructs through ISMF

To direct allocations to system-managed tape, you have to define SMS constructs through ISMF. In the Data Classes, you specify the media type, the recording technology, and whether to use hardware compaction when allocating a system-managed tape dataset.

You do not have to specify new Storage Classes. You can use existing classes. The Storage Class is used only to indicate that this is an allocation to a system-managed tape library. However, we recommend that you create new Storage Classes for tape, so that you can select Storage Groups on the basis of the Storage Class assignment and keep the ACS routines simple.

As for system-managed DASD allocations, the management class is optional.
System-managed tape uses only the expiration attributes and retention limit parameters. If you use a tape management system, specify a retention limit of NOLIMIT.

You need to define a tape Storage Group and specify which IBM 3494 Tape Libraries belong to that Storage Group. You also define the Storage Group status.

Although a blank Storage Group is allowed for system-managed tape volumes, we strongly recommend that you assign a Storage Group to private volumes when they are entered into the IBM 3494 Tape Library. The blank Storage Group is always enabled for all attached systems. You can specify the Storage Group during definition of an existing private volume to DFSMSrmm or during cartridge insert processing.

For information about VTS and Advanced Policy Management, refer to the following publications:

- *IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring*, SG24-2229
- *IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide*, SG24-6115

Compared to the implementation of DFSMS for DASD, system-managed tape has the following differences:

- Tape datasets do not have to be cataloged. If they are cataloged, this is done at step termination time.
- System-managed tape is the management of tape cartridges, not tape datasets. No dataset-related information is stored in the TCDB.
- A DASD (type POOL) Storage Group comprises one or more DASD volumes.
 A tape (type TAPE) Storage Group comprises one or more tape libraries. Cartridge information is stored in the TCDB, not in the SMS ACDS.
- Tape volumes are not preassigned to Storage Groups. They are assigned a Storage Group when their status changes to private. Scratch volumes do not have a Storage Group assigned.
- A blank Storage Group is allowed for system-managed tape.

In the following sections, we discuss the SMS constructs and their role in system-managed tape support.
Defining Data Classes

A **Data Class** provides the tape device selection information or tape datasets. The attributes that you can specify are:

- The type of media to use
- Whether the data is to be compacted
- The maximum volume count that your dataset can span
- Recording technology (18 track, 36 track, 128 track, 256 track, 384 track, EFMT1, EFMT2, or EEFMT2)

Note: Tape Encryption can be requested through the Data Class construct. The Recording Technology specified in the Data Class determines whether a cartridge is written in native TS1120 format (EFMT2) or in encrypted format (EEFMT2).

Use ISMF displays to define your Data Classes:

1. Choose option **4 (Data Class)** on the ISMF PRIMARY OPTION MENU display. The DATA CLASS APPLICATION SELECTION panel appears.
2. On the DATA CLASS APPLICATION SELECTION panel, specify the SCDS name and the name of the Data Class that you are about to define.
3. Choose option **3 (Define)** to create a new Data Class or option **4 (Alter)** to change an existing Data Class on the display. Figure 4-26 shows the panel where you specify the Data Class name.

4. Now the first page of the DATA CLASS DEFINE or ALTER panel displays as shown in Figure 4-27. The panels are the same for both Data Class Define and Data Class Alter. In our example, we chose DATA CLASS ALTER.
Specify the following information for the Data Class definition in the current SCDS:

- **Retpd or Expdt**: Specify how long the datasets in this Data Class remain valid (Figure 4-34 on page 196).
- **Volume Count**: Specify the maximum number of cartridges that you expect to use to store a dataset in this Data Class.

Note: Coding a small value in the volume count parameter can cause job abends. This is especially true if you migrate from a native 3590 or 3592 environment to a VTS solution without changing your JCL. This occurs because the cartridge capacity is significantly different between a 3590 or a 3592 and a 3490E.

5. Figure 4-28 shows the second page of the Data Class definition process. You use this display to specify compaction.
Chapter 4. Software implementation in z/OS

Figure 4-28 DATA CLASS ALTER panel (page 2 of 5)

- **Compaction**: Specify whether to use data compaction for datasets assigned to this Data Class. Improved Data Recording Capability (IDRC) uses a binary arithmetic compression algorithm and is used by 3490E tape drives; the Ziv-Lempel algorithm (IBMLZ1) is used by 3590 tape drives. A modified and more efficient Ziv-Lempel algorithm, the Stream Lossless Data Compression (SLDC), is used by 3592 tape drives. We recommend that you always set the compaction to **Y**, especially when you use a VTS. The compaction attribute overrides the system default that is located in PARMLIB member DEVSUPxx, but is overridden by JCL specification TRTCH. The valid Data Class values for the compaction attribute are **Y**, **N**, **T** (TCOM), **G** (GEN), or blank. TCOM and GEN do not apply to tape.

6. On the third page of the Data Class definition (Figure 4-29), you provide the Media Type and Recording Technology.
– **Media type**: Specify the tape cartridge type used for datasets associated with this Data Class. If this field is not specified (field is blank), then the library that has the most scratch cartridges is selected. This field is optional if only one media type is used within a 3494 library.

However, the definition is mandatory to allow selection of a media pool for nonspecific mounts if multiple media types are present (see Table 4-4 on page 181).

Note:

- Logical volumes in a VTS are 3490 volumes and, therefore, MEDIA1 with 400 MB of uncompressed capacity or MEDIA2 with 800 MB. Larger logical volumes are supported with VTS Release 7.4, which provides support for 1000, 2000, and 4000 MB logical volumes.
- MEDIA3 and MEDIA4 are invalid in a TS3500 Tape Library, because the library only supports 3592 media types.
- Support for MEDIA9 and MEDIA10 requires release z/OS V1R5 or later.

If you use a VTS, you must verify the type of logical volumes that you defined on the Library Manager and select MEDIA accordingly (MEDIA1 or MEDIA2 only). Refer to IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring, SG24-2229:

– **Recording Technology**: Specify the number of tracks on tape cartridges used for datasets associated with this Data Class. This field is optional unless MEDIA TYPE is specified. MEDIA2 is recorded only in 36-track mode, and MEDIA3/MEDIA4 is either 128-track, 256-track, or 384-track mode. Refer to 2.9, “The 3590 upgrade and coexistence considerations” on page 75, which shows media and recording technology compatibility. If you are using MEDIA5 to MEDIA8, you must specify the EFMT1 or EFMT2 option for using the 3592 media.

– **Performance Scaling**: The 3592 tape drives allow you to record the data on just the initial one-fifth (20%) of the media when performance is your major consideration. If you want fast access to the Media5 3592 ETC data cartridge (this is the only cartridge
that supports Performance Scaling), the option **Performance Scaling=y** allows you to keep the data on the initial 60 GB (for EFMT1) or 100 GB (for EFMT2) with MEDIA5 or 140 GB (for EFFMT2) with MEDIA9 at the beginning of the media. This function is dynamic. If the tape is returned to scratch and later reused, the cartridge is reformatted to its scaled or full capacity as indicated through the assigned Data Class.

- **Performance Segmentation**: Performance segmentation, if selected, divides the tape into two segments, one as a fast access segment to be filled first and the other as additional capacity to be filled after. Performance segmentation is only available on MEDIA5 cartridges. With the 3592 Model E05 and EFMT2, the MEDIA5 cartridge can be segmented into a 100 GB fast access segment and a 333 GB slower access segment. With the 3592 Model J1A and EFMT1 (or the 3592 Model E05 and EFMT1), the MEDIA5 cartridge can be segmented into a 60 GB fast access segment and a 200 GB slower access segment. With the TS1120 Tape Drive, the MEDIA9 cartridge can be segmented into 140 GB fast access segment and a 466 GB slower access segment.

Note: Performance scaling and performance segmentation are mutually exclusive functions. You can define either one for a cartridge but not both.

7. Press PF8 after you have entered or updated the Recording Technology. On the following panel, you specify whether to encrypt the data. If you plan to encrypt the data in this Data Class, you need to enter the Key Labels and the Encoding for the Key Labels as shown in Figure 4-30.

![DATA CLASS ALTER panel (page 4 of 5)](image)

If you change existing Data Classes, verify your Data Class ACS routine to make sure that you assign the correct constructs. If you create new Data Classes, update your Data Class ACS routine to assign the new constructs to those tape datasets that you want to encrypt.

To activate the new SMS definitions:
1. Translate the Data Class ACS routine.
2. Validate the ACS routines.
3. Activate the SMS Control Dataset (SCDS).

In addition to using a Data Class construct or instead of using a Data Class construct, you can also request Tape Encryption through job control language (JCL) as shown in Example 4-1.

Example 4-1 Sample JCL to write an encrypted cartridge

```jcl
//C02STRW1   JOB  CONSOLE,
//        MSGCLASS=H,MSGLEVEL=(1,1),CLASS=B,
//        TIME=1440,REGION=2M
//JOBPARM SYSAFF=*
//*
//* ENC KEY MASTER JOB
//*
//CREATE1 EXEC PGM=IEBDG
//SYSIN DD *
//SEQ001 DD DSN=TAPE.C02M5CX2.PC5.NOPPOOL.C02STRS1.MASTER,
//        KEYLABL1='TAPE_SOL_TST_SHR_PVT_1024_LBL_02',
//        KEYENCD1=L,
//        KEYLABL2='TAPE_SOL_TST_SHR_PVT_2048_LBL_03',
//        KEYENCD2=H,
//        LABEL=(1,SL),UNIT=C02M5CX2,DISP=(,CATLG),
//        DCB=(DSORG=PS,RECFM=FB,LRECL=2048,BLKSIZE=6144)
//SYSIN DD *
   DSD OUTPUT=(SEQ001)
   FD NAME=A,STARTLOC=1,LENGTH=10,FORMAT=ZD,INDEX=1
   FD NAME=B,STARTLOC=11,LENGTH=13,PICTURE=13,'PRIMER RECORD'
CREATE QUANTITY=25,FILL='Z',NAME=(A,B)
END
//*
```

The job log for the job in Example 4-1 lists the keys that were used. See Figure 4-31.
Chapter 4. Software implementation in z/OS

4. In the fifth page of the Data Class definition (Figure 4-32), nothing applies to tape datasets. We provide this display for your convenience.

Note: The JCL data definition (DD) statements overwrite encryption specifications in the Data Class. If only one KEYLAB1 statement and only one KEYENC1 is coded in the JCL, a second key label and key code with the same information are generated on the cartridge automatically. Whenever the first standard label (SL) on a cartridge contains encrypted data, all following SL file data after that is encrypted. Knowing this, you do not need any further JCL or Data Classes to write encrypted data to the same cartridge. This is how you prepare cartridges for encryption purposes, by writing a small file with 'LABEL=(1,SL)' to a cartridge.
Defining Storage Classes

A dataset is system-managed only when a Storage Class is assigned to it. For tape datasets, specialized performance and availability services are not required (see Figure 4-33).

Note: Remember that the Data Class ACS routine is driven for both system-managed and non-system-managed datasets. Currently, Data Class definitions are not used by APM.
You can define the Storage Class with defaults, because none of the attributes applies to system-managed tape. The one and only purpose of STORCLAS is to drive the ACS routines and assign a STORGROUP with connected tape libraries to the dataset that is allocated.

If you do not want a dataset to be system-managed, such as a dataset that belongs to a job with special requirements, you can assign a null (blank) Storage Class by ACS routine filtering.

If you have a VTS subsystem installed and use native 3490 drives within the library, we recommend that you use the STORCLAS as a means to distinguish between native and emulated drives. The STORCLAS then allows you to influence allocation by using simple ACS routines. If you want to migrate a given subset of tape data to VTS, you only have to define another STORGROUP for the respective STORCLAS.

If you want to hold virtual volumes longer in cache than others, specify an IART value of 0. To choose volumes that are unlikely to be recalled for migration first, assign a Storage Class with an IART value of 100 or greater. See Table 4-5. Using IART requires FC4000, Advanced Function.

Table 4-5 Cache preference group summary

<table>
<thead>
<tr>
<th>Cache group preference</th>
<th>IART</th>
<th>Management technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 seconds or more</td>
<td>Preferred removal of cache, largest first</td>
</tr>
<tr>
<td>1</td>
<td>Fewer than 100 seconds</td>
<td>Removal of volumes after group 0, least recently used first</td>
</tr>
</tbody>
</table>

With the introduction of Advanced Policy Management (sometimes referred to as Outboard Policy Management (OPM)) for VTS, cache management has been moved outboard.
Defining Management Classes

Because no Management Class attributes are available for tape cartridges, defining Management Classes is optional and not recommended. Follow these steps:

1. Choose option 3 (Management Class) on the ISMF PRIMARY OPTION MENU display. The MANAGEMENT CLASS APPLICATION SELECTION panel displays.

2. On the MANAGEMENT CLASS APPLICATION SELECTION panel, specify the name for Management Class Name.

3. Choose option 3 (Define) on the panel. The MANAGEMENT CLASS DEFINE panel (Figure 4-34) displays.

![Figure 4-34 MANAGEMENT CLASS DEFINE panel (page 1 of 5)](image)

The SCDS Name and Management Class Name are output fields that you specified in the MANAGEMENT CLASS APPLICATION SELECTION panel:

- **Expiration Attributes**: The attributes are required values that indicate when a dataset becomes eligible for expiration. They have no impact on tape data.

- **Retention Limit**: This is a required value that limits the use of retention period (RETPD) and expiration date (EXPDT) values. RETPD and EXPDT are:
 - Explicitly specified in JCL
 - Derived from Data Class definitions

If the value of a user-specified RETPD or EXPDT is within the Retention Limit value, it is saved for the dataset. If values specified by users or the Expiration Attributes values exceed the Retention Limit value, the retention limit is saved. If the retention limit is 0,
any user-specified or Data Class values are ignored, and the expiration attributes of the Management Class are used.

We recommend that you use the tape management system to control the retention policy. Do not assign a Management Class or define a Management Class retention limit of NOLIMIT.

Note: If you use DFSMSrm, you can use the Management Class name to select vital record specifications (VRSs) for the cartridge.

With the introduction of Advanced Policy Management and Outboard Policy Management for VTS, you can use the Management Class to create a selective dual copy for virtual volumes and to control the PtP VTS copy modes for logical volumes (see 1.8.3, “PtP Selective Dual Copy” on page 12). You do not define these functions in the SMS Management Class directly, but the assigned Management Class value transfers to the Library Manager.

If there is a matching construct (the same name) defined in the OPM, the defined values for dual copy or PtP copy mode are used. The control of the PtP copy mode is based on single volume. That way, you can control the copy mode (some workloads are handled in IMMED mode, some workloads in DEFERRED mode) for different workloads, unless you assign a Management Class and introduce the OPM.

Note: For more information about Management Classes, APM, and OPM, refer to *IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring*, SG24-2229.

Defining Storage Groups

The Storage Group type TAPE is provided to classify tape cartridges in DFSMS. A *tape Storage Group* consists of tape libraries and the tape cartridges associated with them. A tape Storage Group can contain one to eight tape libraries specified by their library name. One tape library can contain more than one tape Storage Group. Figure 4-35 shows the relationships among libraries and Storage Groups with four Storage Groups defined.
Figure 4-35 Relationships among libraries and Storage Groups

With the Storage Groups defined as shown in Figure 4-35, the following actions occur:

- Dataset XYZ is assigned STORGR01 and written on a volume residing in the left tape library.
- Dataset 123 is assigned STORGR02 and written on a volume residing in the right tape library.
- Dataset 999 is assigned STORGR03, which is associated with both tape libraries, and is written in either tape library depending on the availability of tape drives and the number of available scratch volumes.
- Dataset ABC is assigned STORGR04 and written on a volume residing in the right tape library.

To define a Storage Group, you must complete the following steps:

1. Choose option 6 (Storage Group) on the ISMF PRIMARY OPTION MENU display. The STORAGE GROUP APPLICATION SELECTION panel (Figure 4-36) displays.
2. On the STORAGE GROUP APPLICATION SELECTION panel, specify the Storage Group Name and a Storage Group Type (TAPE, in our case).

3. Choose option 2 (Define). The TAPE STORAGE GROUP DEFINE panel (Figure 4-37) displays.

Figure 4-37 TAPE STORAGE GROUP DEFINE panel
The parameter explanations are:

- **Description**: This is a 120-byte field that allows you to enter a description of the tape storage group that you create. There are no restrictions on its content.

- **Library Names**: Use this field to specify the name of the tape library or libraries to which the cartridges will be assigned. A value must appear in this field to generate a new list. An asterisk character (*) or the last value used displays in this field.

- **DEFINE SMS Storage Group Status**: Use this field to indicate that the SMS STORAGE GROUP STATUS DEFINE panel displays after you press Enter. You can enable up to 32 systems to the storage group. Additional systems are on page 2 of 2.

4. Choose **Y** for the DEFINE SMS Storage Group Status field. Then, the SMS STORAGE GROUP STATUS DEFINE panel (Figure 4-38) displays.

```
Panel  Utilities  Scroll  Help
------------------------------------------------------------------------------
SMS STORAGE GROUP STATUS DEFINE
Command ===> 
SCDS Name . . . . : SMS.SCDS
Storage Group Name : SGTAPE
Storage Group Type : TAPE
To DEFINE Storage Group System/ Sys Group Status, Specify: ( Possible SMS SG
 Sys Group Status, Specify:
 System/Sys Group Name Status System/Sys Group Name Status
---------- ------ ---------- ------
 MVS1     ===> ENABLE MVS2     ===> ENABLE - Tape SG Type
 *SYSPLX1 ===> NOTCON, ENABLE
                   ===> DISALL, DISNEW
                   ===> QUIALL, QUINEW
                   ===>             * SYS GROUP = sysplex
                   ===>               minus Systems in the
                   ===>                         Sysplex explicitly
                   ===>                                    defined in the SCDS
Use ENTER to Perform Verification; Use DOWN Command to View next Panel;
Use HELP Command for Help; Use END Command to Save and Exit; CANCEL to Exit.
```

Figure 4-38 SMS STORAGE GROUP STATUS DEFINE panel

- **System/Sys Group Name**: The column lists the names of systems known to SMS through the base configuration definition.

- **SMS SG Status**: Use this field to define or alter the relationship between the Storage Group and each system in the same SMSplex. Typically, you specify ENABLE for all systems that are going to use the IBM 3494. A Storage Group can share up to 32 systems. Each system must be physically connected to the storage devices in its Storage Group. To change the status of a system, type one of the described values.

Note: When a private cartridge is entered into the library, and the cartridge entry exit (CBRUXENT) does not supply a Storage Group name, OAM sets the Storage Group name to blank. The blank Storage Group name is enabled on all systems within the SMSplex. For considerations about sharing and partitioning tape Storage Groups among systems in an SMSplex, see the Guide to Sharing and Partitioning IBM Tape Library Data, SG24-4409.
Use care when you must connect multiple libraries to the same Storage Group. The algorithm used to select a library and drive takes into account the following information at the time of allocation:

- A list of tape device pools is built for all tape libraries that belong to the Storage Group. A device pool is a collection of tape drives attached to one controller that is part of a system-managed tape library.
- Based on SMS DATACLAS attributes for MEDIA for this allocation, drives that cannot satisfy the request are removed from the list.
- The preferred tape device pools belong to tape libraries that are above their scratch volume threshold.
- Drives with an active cartridge loader of the appropriate media type get a high priority.
- The ordered list of tape device pools is used to select the tape drive, randomizing the library selection.

Not considered in the allocation process are:

- Number of available drives inside the library, as long as there are enough drives to satisfy the total number of concurrent allocation requests
- Number of available scratch cartridges, as long as the library is above the defined threshold
- Busy condition of the control unit or the accessor
- Busy condition of the VTS subsystem or its components

Note: With the introduction of APM, the Storage Group name is passed to the Library Manager. If a matching construct in OPM is coded, physical volume pooling is available. That means that specific logical volumes reside only on specific pools of physical volumes. For more information, refer to *IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring*, SG24-2229.

4.3.10 Pre-ACS installation exit

The pre-ACS routine exit (IGDACSXT) enables a tape management system to influence ACS routine construct selection. You can use this exit, for example, to direct allocation requests into or outside of a tape library by using the tape management system software functions.

Through this interface, your tape management system can set four new read-only variables, and then you can use these variables in ACS routine processing:

- Pool name (&MSPOOL)
- Policy name (&MSPOLICY)
- Destination name (&MSPDEST)
- User parameter information (&MSPARM)

The tape management system can use these variables to direct new allocations to a particular tape library and to coordinate vaulting runs for backups or off-site storage. Prior to invoking the ACS routines, the exit is called through dynamic exit services. This provides an opportunity for the tape management system to set the read-only variables.

Clients use their tape management system as a repository for movement rules of tape datasets to vaults or backup centers.

For environments with multiple system-managed tape libraries and complex vaulting requirements, you need to match the allocation to a particular library or VTS to the vaulting...
requirements of the datasets that are allocated. Because this information is already available within the tape management system, this exit provides a way to make this information accessible to the ACS routines.

Note: DFSMSrmm does not use this exit. An equivalent interface exists (EDGUX100).

For more information regarding this pre-ACS routine exit, refer to z/OS DFSMS Installation Exits, SC26-7396.

4.3.11 Writing ACS routines

To direct new tape allocations to an IBM 3494 Tape Library, you have to update your ACS routines. For system-managed DASD, new datasets that have an assigned storage class are allocated to system-managed devices.

Refer to z/OS DFSMS: Implementing System Managed Storage, SC26-7407, for more information about the implementation and the activation of SMS. We cover only those steps necessary to implement system-managed tape.

You can use ACS routines to direct a new dataset to a Storage Group according to the ACS variables and SMS constructs that you created. An active configuration must have only one set of ACS routines. To update ACS routines, follow these steps:

1. Choose option 7 (Automatic Class Selection), from the ISMF PRIMARY OPTION MENU panel. The ACS APPLICATION SELECTION panel displays.

2. On this panel, select option 1 (Edit) and press Enter to update the ACS routines.

Table 4-6 through Table 4-9 present sample attributes for Data Classes, Storage Groups, Management Classes, and Storage Classes used in the ACS routine examples in the following section.

Table 4-6 Sample Data Class attributes

<table>
<thead>
<tr>
<th>Data Class name</th>
<th>Compaction</th>
<th>Media type</th>
<th>Recording technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCTAPEX</td>
<td>No</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>DCTAPSM</td>
<td>Yes</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>DCTAPLR</td>
<td>Yes</td>
<td>3</td>
<td>128</td>
</tr>
<tr>
<td>DCTAP5E</td>
<td>Yes</td>
<td>3</td>
<td>256</td>
</tr>
<tr>
<td>DCTAP5H</td>
<td>Yes</td>
<td>5</td>
<td>E1</td>
</tr>
<tr>
<td>DCTPA5SEX</td>
<td>Yes</td>
<td>4</td>
<td>256</td>
</tr>
</tbody>
</table>

Table 4-7 Sample Storage Group attribute

<table>
<thead>
<tr>
<th>Storage Group name</th>
<th>Library name</th>
<th>Accessible system</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGTAPLCL</td>
<td>LIBLCL</td>
<td>MVS1, MVS2</td>
</tr>
<tr>
<td>SGTAPRMT</td>
<td>LIBRMT</td>
<td>MVS1, MVS2</td>
</tr>
</tbody>
</table>
Table 4-8 Sample Management Class attribute

<table>
<thead>
<tr>
<th>Management Class name</th>
<th>Retention limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCTAPE</td>
<td>NOLIMIT</td>
</tr>
</tbody>
</table>

Table 4-9 Sample Storage Class attributes

<table>
<thead>
<tr>
<th>Storage Class name</th>
<th>Availability</th>
<th>Accessibility</th>
<th>Guaranteed space</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTAPLCL</td>
<td>NOPREF</td>
<td>NOPREF</td>
<td>NO</td>
</tr>
<tr>
<td>SCTAPRMT</td>
<td>NOPREF</td>
<td>NOPREF</td>
<td>NO</td>
</tr>
</tbody>
</table>

For the ACS routines, we make the following assumptions:

- 3490E, 3590, and 3592 subsystems are configured in an IBM 3494.
- MEDIA1, MEDIA2 (36 track), MEDIA3, and MEDIA4 ((128, 256, and 384-track Read/Write (R/W)) and MEDIA5 to 8 (EFMT1) are possible.
- Tape mount management (TMM) methodology is not included.
- DASD DFSMS is not described.
- The libraries contain DFSMShsm-owned data.
- The extended length cartridge is introduced.
- The libraries are in different buildings: local (LCL) and remote (RMT).

Data Class ACS routine

The Data Class ACS routine (see Example 4-2 and Example 4-3) is driven for both system-managed and nonsystem-managed datasets. Specify NON-IDRC on datasets used by applications that invoke the READ BACKWARDS commands or datasets that are shipped to facilities that do not have IDRC-capable drives.

Note: The following examples are extremely simple. They only provide basic information about how to code ACS routines. The ACS routines in your environment will contain many more definitions for tape support. With the introduction of APM, you must redo the ACS routines.

Example 4-2 Sample Data Class ACS routine (page 1 of 2)

```plaintext
PROC DATACLAS
  /********************************************************/  
  /* DEFINE TAPE DATASETS FILTERING CATEGORY */               
  /********************************************************/  
  FILTLIST CSTTAPE INCLUDE('3490',348%,'3590-1','CART','LIBLCL')
  FILTLIST LARGE_TAPE INCLUDE(GSNATE.*.DBSAV*, **.*TAG*.**, ADA%.SAVE.**)
  FILTLIST VITALREC INCLUDE(**.LEGAL.**)  
  FILTLIST EXCHANGE INCLUDE(PORTABLE.**,CITI.**,SWISSBK.CORP.**)  
  FILTLIST HSM INCLUDE(*.HMIGTAPE.DATASET, *.BACKTAPE.DATASET)  
  FILTLIST HSMCOPY INCLUDE(*.COPY.HMIGTAPE.DATASET, *.COPY.BACKTAPE.DATASET)  
  FILTLIST DUMPATL INCLUDE(*.DMP.*.V*.D*.T*)  
    EXCLUDE(*.DMP.OUTLIB.V*.D*.T*)
```
Example 4-3 Sample Data Class ACS routine (page 2 of 2)

WHEN (&UNIT = &CSTTAPE)
 DO
 SELECT
 WHEN (&DSN = &LARGE_TAPE | &DSN = DFSMShsm | &DSN = &HSMCOPY)
 DO
 SET &DATACLAS = 'DCTAP5H' /* 3592 tapes for large datasets*/
 EXIT
 END
 WHEN (&DSN = &DUMPATL | &DSN = &ABARS)
 DO
 SET &DATACLAS = 'DCTAPSM' /* Abars on 3490, with compaction */
 EXIT
 END
 WHEN (&PGM = &PGMATL)
 DO
 SET &DATACLAS = 'DCTAPLR' /* Route */
 EXIT
 END
 WHEN (&DSN = &EXCHANGE)
 DO
 SET &DATACLAS = 'DCTAPEX' /* tapes to exchange get NO Compaction */
 EXIT
 END
 END
 END
END
END

/FILTER PGMATL INCLUDE('ADROSSU',I%%GENER)
/FILTList ABARS INCLUDE(outputdatasetprefix.%%C%%V%%)
/FILTList TAPEDC INCLUDE(DCTAP*)
/FILTList TAPESC INCLUDE(SCTAP%%)

/* SELECT DATA CLASS FOR DATASET GOOD FOR ATL */
/* **/

SELECT
WHEN (&DATACLAS = &TAPEDC && &UNIT = &CSTTAPE)
 DO
 SET &DATACLAS = &DATACLAS /* Allow users to specify */
 EXIT /* Data Class for tape */
 END
WHEN (&UNIT = 'LIBLCL')
 DO
 SET &DATACLAS = DCTAPLR /* Allow users to specify */
 /* unit for atls */
 WRITE 'DC: DEFAULT DC ASSIGNED DUE TO ATL UNIT SPECIFICATION'
 EXIT
 END
END

Example 4-3 Sample Data Class ACS routine (page 2 of 2)
Storage Class ACS routine

If you do not want datasets to be system-managed, you can assign a null (blank) Storage Class to them by using ACS routine filtering. Because the disposition processing for tape datasets is not changed with system-managed tape, the DISP parameter affects the entry point to the ACS routines. Example 4-4 and Example 4-5 show a sample Storage Class routine.

Example 4-4 Sample Storage Class ACS routine (page 1 of 2)

PROC STORCLAS
 /**
 /* DEFINE TAPE DATASETS FILTERING CATEGORY */
 /**

 /* ALL FILTERLISTS COPIED FROM DATACLAS ROUTINE TO */
 /* ENSURE CONSISTENCY */

 FILTLIST CSTTAPE INCLUDE('3490',348%, '3590', 'CART', 'LIBLCL')

 FILTLIST LARGE_TAPE INCLUDE(GSNATE.*, DBSAV*, **.*TAG*.**, I0000.**.SARTAPE.T*)

 FILTLIST VITALREC INCLUDE(**.LEGAL.**)

 FILTLIST EXCHANGE INCLUDE(PORTABLE.**, CINT.**, SWISSBNK.CORP.**)

 FILTLIST HSM INCLUDE(*.HMIGTAPE.DATASET, *.BACKTAPE.DATASET)

 FILTLIST HSMCOPY INCLUDE(*.COPY.HMIGTAPE.DATASET, *.COPY.BACKTAPE.DATASET)

 FILTLIST DUMPATL INCLUDE(*.DMP.*.V*.D*.T*)
 EXCLUDE(*.DMP.OUTLIB.V*.D*.T*)

 FILTLIST PGMATL INCLUDE('ADRDSSU', I%%GENER)

 FILTLIST ABARS INCLUDE(outputdatasetprefix.%.C%%V%%%%)

 FILTLIST TAPEDC INCLUDE(DCTAP*)
 FILTLIST TAPESC INCLUDE(STAP%%)

Example 4-5 Sample Storage Class ACS routine (page 2 of 2)

 /**
 /* SELECT STORAGE CLASS FOR DATASET GOOD FOR 3494 */
 /**

 SELECT

 WHEN (&DSN = &HSMCOPY | &DSN = &DUMPATL) DO /* this data is kept in the remoteLib*/
 SET &STORCLAS = 'SCTAPRMT'
 EXIT
END
MANAGEMENT CLASS ACS routine

You can use the Management Class ACS routine (Example 4-6) to assign a MGMTCLAS to each tape allocated under system-managed tape. For detailed coverage of how MGMTCLAS works with system-managed tape; see Figure 4-34 on page 196.

Example 4-6 Sample Management Class ACS routine

PROC MGMTCLAS

/*****************************/
/* DEFINE TAPE DATASETS FILTERING CATEGORY */
/*****************************/

/*****************************/
/* SELECT MGMT CLASS FOR DATASET GOOD FOR 3494 */
/*****************************/

SELECT

WHEN (&DATACLAS = DCTAP*) DO

SET &MGMTCLAS = 'MCTAPE'
EXIT
END

/*****************************/
/* We do not intend to manage anything else */
/*****************************/

OTHERWISE

DO

SET &MGMTCLAS = ' '
EXIT
END

/*****************************/
/* End of storage Class PROC for dataset */

WHEN (&DSN = DFSMshsm)

DO

SET &STORCLAS = 'SCTAPLCL' /* this data is kept in the locallib */
EXIT
END

WHEN (&DATACLAS = DCTAP*) /* this data is kept in the locallib */

DO

SET &STORCLAS = 'SCTAPLCL'
EXIT
END

/*****************************/
/* ABARS OUTSIDE Tape Library */
/*****************************/

WHEN (&DSN = &ABARS)

DO

SET &STORCLAS = ' '
EXIT
END

/*****************************/
/* We do not intend to manage anything else */
/*****************************/

OTHERWISE

DO

SET &STORCLAS = ' '
EXIT
END

/*****************************/
/* End of Dataset selection */
/*****************************/
Storage Group ACS routine

The Storage Group ACS routine (Example 4-7) determines the tape cartridge group and the library name group for a dataset. If the user requests z/OS to catalog the dataset, unlike DASD, the dataset is cataloged at disposition time, rather than at allocation time.

Example 4-7 Sample Storage Group ACS routine

```plaintext
PROC STORGRP

/*********************/
/* DEFINE TAPE DATASETS FILTERING CATEGORY */
/*********************/

/* Since all filtering is done in the SC routine, no */
/* additional code is needed */
/*********************/

/* DETERMINE STORAGE GROUP FOR DATASET GOOD FOR ATL */
/*********************/

SELECT

WHEN (&STORCLAS = 'SCTAPLCL')
  DO
    SET &STORGRP = 'SGTAPLCL' /this storage group contains the locallib*/
    EXIT
  END

WHEN (&STORCLAS = 'SCTAPRMT')
  DO
    SET &STORGRP = 'SGTAPRMT' /this storage group contains the remotelib*/
    EXIT
  END

END    /* END OF DATASET SELECTION */
END    /* END 5G PROC */
```

Translating and validating ACS routines

After updating the ACS routines, you translate them into an executable form. A successful translation places the ACS routine object in the SCDS that you specified.

After translation successfully completes and syntax checking is performed, you validate your routines against the constructs and defined libraries. You can validate an entire SCDS or a specific set of constructs within an SCDS. Follow these steps:

1. Select option 3 from the ACS APPLICATION SELECTION panel.
2. In the SCDS Name field, specify the name of your SCDS.

3. Enter an asterisk character (*) in the ACS Routine Type field to indicate that you want to validate the entire SCDS.

The validation process reports any logical errors. If it is unsuccessful, it prevents the configuration from activating.

Testing ACS routines

You can write and execute test cases using option 4 in the ACS APPLICATION SELECTION panel. The input test cases are saved in a partitioned dataset. You can edit the contents of the partitioned dataset directly without going through the panels. Just add the variables as you use them in the ACS routines. See Example 4-8.

Example 4-8 ACS test sample member

<table>
<thead>
<tr>
<th>DESCRIPTION1:</th>
<th>TESTCASE FOR HSM DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSN:</td>
<td>HSM.HMIGTAPE.DATASET</td>
</tr>
<tr>
<td>ACSENVIR:</td>
<td>ALLOC</td>
</tr>
<tr>
<td>PGM:</td>
<td>ARCCTL</td>
</tr>
<tr>
<td>UNIT:</td>
<td>3490</td>
</tr>
<tr>
<td>LABEL:</td>
<td>SL</td>
</tr>
<tr>
<td>FILENUM:</td>
<td>1</td>
</tr>
</tbody>
</table>

We recommend that you prepare a set of test cases for all applications that are system-managed on either DASD or tape. Using this kit of test cases, you can verify the logic of your ACS routines after introducing changes and updates. In this way, you can detect errors before you activate a new configuration and run into any trouble that might affect your production environment. Refer to 4.3.17, “Testing ACS logic with NaviQuest” on page 225 for additional information about testing ACS routines.

The ACS TESTING RESULTS panel in Figure 4-39 shows the result of checking the specified input against the SCDS.
4.3.12 Activating the SMS configuration and restarting OAM

You must activate the SMS configuration before you can start to use your IBM 3494 Tape Library. Activating an SCDS validates its contents and copies the contents into the ACDS specified in IGDSMS.xx. If the SCDS is invalid, activation fails.

Note: If you activate another SCDS or reactivate the current SCDS while OAM is running, OAM restarts if the Restart parameter in the Started Task is set to YES. During this reinitialization, all IBM 3494 Tape Libraries are set to either offline or online according to the tape library definition in the active SCDS.

If you defined the IBM 3494 Tape Library as *online* during library definition, it is brought online as part of the OAM address space initialization. Otherwise, vary the IBM 3494 Tape Library online using this z/OS operator command:

```
VARY SMS,LIBRARY(libname),ONLINE
```

During the restart, OAM requests information about volumes left in the INSERT category (FF00) as soon as the IBM 3494 Tape Library comes online. If the TCDB does not contain a volume record for a volume processed, and the volume is not rejected in the EDGRMMxx member, the volume record is created according to information from:

- DFSMSrmm provided through the CBRUXENT installation-wide exit
- The Library Manager for the media type
- The default Data Class specified in the ISMF library definition

Note: Before you activate the SCDS or vary the 3494 Tape Library online, make sure the tape management system is active and customized. Refer to 4.3.7, “Updating and customizing your tape management system” on page 177.

<table>
<thead>
<tr>
<th>CDS NAME</th>
<th>SMS.SCDS0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS ROUTINE TYPES</td>
<td>DC SC MC SG</td>
</tr>
<tr>
<td>ACS TEST LIBRARY</td>
<td>SMS.TESTCASES.DATA</td>
</tr>
</tbody>
</table>

ACS TESTING RESULTS

MEMBER	**EXIT CODE**	**RESULTS**
NONLIB1 | 0 | DC = NULL VALUE ASSIGNED
 | 0 | SC = NULL VALUE ASSIGNED
 | | NOTE: MC AND SG NOT EXECUTED WHEN ACS READ/WRITE VARIABLE STORCLS = ''
TAPE1 | 0 | DC = DCTAPLR
 | 0 | SC = SCTAPLCL
 | 0 | MC = MCTAPE
 | 0 | SG = SGTAPLCL
TAPE2 | 0 | DC = DCTAPSM
 | 0 | SC = SCTAPRMT
 | 0 | MC = MCTAPE
 | 0 | SG = SGTAPRMT

Figure 4-39 ISMF display: ACS TESTING RESULTS panel
4.3.13 JES3 support for system-managed tape

This section describes JES3 IBM 3494 Tape Library support with DFSMS. The primary purpose of this support is to maintain JES3 resource allocation and share tape allocations. For detailed information, see the z/OS JES3 Initialization and Tuning Reference, SA22-7550.

DFSMS has support that provides JES3 allocation with the appropriate information to select an IBM 3494 Tape Library device; the support is provided by referencing device strings with a common name among systems within a JES3 complex.

The following steps are necessary to set up an IBM 3494 Tape Library in a JES3 environment:

1. Define library device groups (LDG). Prepare the naming conventions in advance. Clarify all the names for the library device groups that you need.
2. Include the esoteric names from step 1 in HCD and activate the new EDT.
3. Update the JES3 Inish Deck:
 a. Define all devices in the IBM 3494 Tape Libraries through DEVICE statements.
 b. Set JES3 device names through the SETNAME statement.
 c. Define which device names are subsets of other device names through the HWSNAME statement.

All IBM 3494 Tape Library units can be shared between processors in a JES3 complex. They must also be shared among systems within the same SMSplex.

Note: Tape drives in the IBM 3494 Tape Library cannot be used by JES3 dynamic support programs (DSPs).

Define all devices in the libraries through DEVICE statements. All IBM 3494 Tape Library tape drives within a complex should be either JES3-managed or non-JES3 managed. Do not mix managed and nominated devices. Mixing can prevent the non-managed devices from use for new dataset allocations and reduce device eligibility for existing datasets. Allocation failures or delays in job setup result.

Neither JES3 or DFSMS verifies that a complete and accurate set of initialization statements is defined to the system. Incomplete or inaccurate IBM 3494 Tape Library definitions can result in jobs failing to be allocated.

This section provided one easy example for an intermixed environment. To give you detailed information about installations with more complexity, we introduce three more examples in Appendix E, “JES3 examples and information” on page 487.

Library device groups

Library device groups (LDGs) isolate the IBM 3494 Tape Library drives from other tape drives in the complex. They allow JES3 main device scheduler (MDS) allocation to select an appropriate set of library-resident tape drives.

The DFSMS JES3 support requires that LDGs are defined to JES3 for SETNAME groups and HWSNAME names in the JES3 initialization statements. During converter/interpreter (C/I) processing for a job, the LDG names are passed to JES3 by DFSMS for use by MDS in selecting library tape drives for the job. Unlike a JES2 environment, a JES3 operating environment requires the specification of esoteric unit names for the devices within a library. These unit names are used in the required JES3 initialization statements.
Each device within a library must have exactly four special esoteric names associated with it. These are:

- The **complex-wide name** is always LDGW3495. It allows you to address every device and device type in every library.
- The **library-specific name** is an eight character string composed of LDG prefixing the five digit library identification number. It allows you to address every device and device type in that specific library.
- The **complex-wide device type**, shown in Table 4-10, defines the different device types that are used. It contains a prefix of LDG and a device type identifier. It allows you to address a specific device type in every tape library.

Table 4-10 Library device groups: Complex-wide device type specifications

<table>
<thead>
<tr>
<th>Device type</th>
<th>Complex-wide device type definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3490</td>
<td>LDG3490</td>
</tr>
<tr>
<td>3490E</td>
<td>LDG3490E</td>
</tr>
<tr>
<td>3590-B1A</td>
<td>LDG3591</td>
</tr>
<tr>
<td>3590-E1A</td>
<td>LDG359E</td>
</tr>
<tr>
<td>3590-H1A</td>
<td>LDG359H</td>
</tr>
<tr>
<td>3592-J1A</td>
<td>LDG359J</td>
</tr>
<tr>
<td>3592-E05</td>
<td>LDG359K</td>
</tr>
<tr>
<td>3592-E05 encryption-enabled</td>
<td>LDG359L</td>
</tr>
</tbody>
</table>

- **A library-specific device type name**, an eight character string, starts with a different prefix for each device type, followed by the five digit library device number. See Table 4-11.

Table 4-11 Library device groups: Library-specific device types

<table>
<thead>
<tr>
<th>Device type</th>
<th>Library-specific device type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3490</td>
<td>LDD + library number</td>
<td>All 3490 in lib xx</td>
</tr>
<tr>
<td>3490E</td>
<td>LDE + library number</td>
<td>All 3490E in lib xx</td>
</tr>
<tr>
<td>3590B</td>
<td>LDB + library number</td>
<td>All 3590 Model B1A in lib xx</td>
</tr>
<tr>
<td>3590E</td>
<td>LDC + library number</td>
<td>All 3590 Model E1A in lib xx</td>
</tr>
<tr>
<td>3590H</td>
<td>LDF + library number</td>
<td>All 3590 Model H1A in lib xx</td>
</tr>
<tr>
<td>3592-J1A</td>
<td>LDJ + library number</td>
<td>All 3592 Model J1A in lib xx</td>
</tr>
<tr>
<td>3592-E05</td>
<td>LDK + library number</td>
<td>All 3592 Model E05 in lib xx</td>
</tr>
</tbody>
</table>
It also allows you to address a specific device type in a specific tape library. In an PtP VTS environment installed in two physical libraries, there is still only one library-specific device name. The LIBRARY-ID of the Composite Library is used.

Updating the JES3 INISH deck

To allow JES3 to allocate the appropriate device, you must code these definitions:

- Device statements
- Setname statements
- High water mark setup statements

We describe these statements in detail in the following sections.

Device statement: Defining I/O devices for IBM 3494 Tape Libraries

Use the DEVICE format to define a device so that JES3 can use it. A device statement (see Figure 4-40) must be defined for each string of IBM 3494 Tape Library drives in the complex. XTYPE specifies a one to eight character name, given by the user. There is no default or specific naming convention for this statement. This name is used in other JES3 init statements to group the devices together for some JES3 processes (for example, allocation). Therefore, it is necessary that all the devices with the same XTYPE belong to:

- The same library
- The same device type

The letters CA in the XTYPE definition tell us that this is a CARTRIDGE device.

```
/* Devices 3592-E05 and 3592-E05 encryption enabled in a Library.....................*/

DEVICE,XTYPE=(LB1359K,CA),XUNIT=(0230,*ALL,,OFF),numdev=8
DEVICE,XTYPE=(LB1359L,CA),XUNIT=(0240,*ALL,,OFF),numdev=8,
```

Figure 4-40 DEVICE statement sample

Note: You cannot use 3494 Tape Library tape drives as support units by JES3 DSPs. Therefore, do not specify DTYPE, JUNIT, and JNAME parameters on the DEVICE statements. There is no checking during initialization to prevent 3494 Tape Library drives from being defined as support units, and there is no checking to prevent the drives from being allocated to a DSP if they are defined. Any attempt to call a tape DSP by requesting a 3494 Tape Library fails, because the DSP is unable to allocate a 3494 Tape Library drive.

SETNAME statement

Use the SETNAME statement for proper allocation in a JES3 environment. For tape devices, SETNAME tells JES3 which tape device belongs to which library. SETNAME does this by specifying the relationships between the XTYPE values (coded in the DEVICE statement) and the LDG names (see Figure 4-41). You must define a SETNAME statement for each unique XTYPE in the device statements.
The rules for SETNAME statements are:

- Each SETNAME statement has one entry from each LDG category.
- The complex-wide library name must be included in all statements.
- A library-specific name must be included for XTYPEs within the referenced library.
- The complex-wide device type name must be included for all XTYPEs of the corresponding device type in the complex.
- A library-specific device type name must be included for the XTYPE associated with the devices within the library.

```
SETNAME, XTYPE=LB13592E,
   NAMES=(LDGW3495, LDGF4001, LDG359L, LDLF4001)
```

<table>
<thead>
<tr>
<th>Complex</th>
<th>Library</th>
<th>Complex</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide</td>
<td>Specific</td>
<td>Wide</td>
<td>Specific</td>
</tr>
<tr>
<td>Library</td>
<td>Library</td>
<td>Device</td>
<td>Device</td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td>Name</td>
<td>Name</td>
</tr>
</tbody>
</table>

Figure 4-41 SETNAME rules

Note: Do not specify esoteric and generic unit names such as 3590, 3592, SYS3480R, and SYS348XR. Also, never use esoteric names, such as TAPE and CART.

High watermark setup names

Use the HWSNAME statement to define which device names are subsets of other device names. You must specify all applicable varieties. Therefore, HWSNAME coding is not easily understood. To clarify the subject, we introduce only the rules and coding and discuss the details in the configuration examples.

```
HWSNAME, TYPE=(groupname, {altname})
```

Note the following explanations:

- **groupname:** Specifies a device type valid for a high watermark setup.
- **altname:** Specifies a list of valid user-supplied or IBM-supplied device names. These are alternate units for use in device selection.

Consider the following example:

```
HWSNAME, TYPE=(LDGW3495, LDGF4001, LDG359J, LDG359K, LDG359L,
            LDJF4001, LDKF4001, LDLF4006)
```

The rules for LDG HWSNAME statements are:

- The complex-wide library name, LDGW3495, must include all other LDG names as alternates.
- The library-specific name must include all LDG names for the corresponding library as alternates. When all tape devices of a type within the complex are within a single IBM 3494 Tape Library, the complex device type name must also be included as an alternate name.
- The complex-device type name must include all library-specific device type names. When all devices of one type in the complex are within a single IBM 3494 Tape Library, the complex-device type name is equivalent to that library name. In this case, the library name should also be specified as an alternate.
The library-specific device type name must be included. Alternate names can be specified as follows:

- When all drives within the IBM 3494 Tape Library have the same device type, the library-specific device type name is equivalent to the library name. In this case, the library-specific name should be specified as an alternate.
- When these are the only drives of this type in the complex, the complex-device type name is equivalent to the library-specific device type name.

Make sure that all valid alternate names are specified.

Configuration example A: Intermix of different native device types

Figure 4-42 shows a JES3 complex with two IBM 3494 Tape Libraries attached to it. Library 1 has a LIBRARY-ID of F4001 and a mix of 3592-J1A and 3592-E05 tape drives installed. Library 2 has a LIBRARY-ID of F4006 and only TS1120 Models E05 encryption-enabled drives are installed.

![Figure 4-42 JES3 configuration example A](image)

LDG definitions necessary for this example

Table 4-12 shows all the LDG definitions needed in HCD. There is a total of nine esoterics to define.
Table 4-12 LDG definitions for configuration example A

<table>
<thead>
<tr>
<th>LDG definition</th>
<th>Value of LDG</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex-wide name</td>
<td>LDGW3495</td>
<td>Standard name, appears once</td>
</tr>
<tr>
<td>Library-specific name</td>
<td>LDGF4001</td>
<td>One definition for each library</td>
</tr>
<tr>
<td></td>
<td>LDGF4006</td>
<td></td>
</tr>
<tr>
<td>Complex-wide device</td>
<td>LDG359J</td>
<td>Represents the 3592-J1A devices</td>
</tr>
<tr>
<td>type</td>
<td>LDG359K</td>
<td>Represents the 3592-E05 devices</td>
</tr>
<tr>
<td></td>
<td>LDG359L</td>
<td>Represents the 3592-E05 devices that are encryption-enabled</td>
</tr>
<tr>
<td>Library-specific type</td>
<td>LDJF4001</td>
<td>One definition for each device type in each library:</td>
</tr>
<tr>
<td></td>
<td>LDKF4001</td>
<td>Represents the 3592-J1A in library F4001</td>
</tr>
<tr>
<td></td>
<td>LDF4006</td>
<td>Represents the 3592-E05 in library F4001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Represents the 3592-E05 encryption-enabled in library F4006</td>
</tr>
</tbody>
</table>

Device statements needed for this configuration

In our examples, we use a naming convention for XTYPE that contains the library (LB1 or LB2) in the first three digits and then the device type (see Figure 4-43). A naming convention for XTYPE is not mandatory, but it helps with the use of the JES3 INISH deck.

```
/* Devices 3592 J1A and 3592 E05 in Library 1 .........................*/
DEVICE,XTYPE=(LB1359J,CA),XUNIT=(1000,*ALL,,OFF),numdev=4
DEVICE,XTYPE=(LB1359K,CA),XUNIT=(1100,*ALL,,OFF),numdev=12,

/* Devices 3592 E05 Encryption-enabled in Library 2 ....................*/
DEVICE,XTYPE=(LB2359L,CA),XUNIT=(2000,*ALL,,OFF),numdev=12
```

Figure 4-43 Configuration example A: Device type definition sample

SETNAME statements needed for this configuration

Figure 4-44 includes all the SETNAME statements for example A.

```
SETNAME,XTYPE=(LB1359J,CA),NAMES=(LDGW3495,LDGF4001,LDG359J,LDF4001)
SETNAME,XTYPE=(LB1359K,CA),NAMES=(LDGW3495,LDGF4001,LDG359K,LDF4001)
SETNAME,XTYPE=(LB1359L,CA),NAMES=(LDGW3495,LDGF4006,LDG359L,LDF4006)
```

Figure 4-44 Configuration example A: SETNAME definition sample

You need three SETNAME statements, because you have:
- One library with two different device types = two SETNAME statements
- One library with one device type = one SETNAME statement
HWSNAME statement needed for this configuration

The HWSNAME definition is tricky and needs your attention, which is why we explain every statement that is shown in Figure 4-45. If you are inexperienced in JES3, read carefully through the explanation.

```
HWSNAME, TYPE=(LDGW3495, LDGF4001, LDGF4006, LDJF4001, LDKF4001, LDLF4006, LDG359J, LDG359K, LDG359L) 1
HWSNAME, TYPE=(LDGF4001, LDJF4001, LDKF4001, LDG359J, LDG359K) 2
HWSNAME, TYPE=(LDGF4006, LDLF4006, LDG359L) 3
HWSNAME, TYPE=(LDJF4001, LDG359J) 4
HWSNAME, TYPE=(LDKF4001, LDG359K) 5
HWSNAME, TYPE=(LDLF4006, LDG359L) 6
HWSNAME, TYPE=(LDG359J, LDJF4001) 7, 8
HWSNAME, TYPE=(LDG359K, LDKF4001) 9, 10
HWSNAME, TYPE=(LDG359L, LDLF4006, LDGF4006) 11
```

Figure 4-45 **HWSNAME definition sample**

The following numbers, which correspond to those in Figure 4-45, explain the statements in the sample:

1. All LDG definitions are a subset of the complex-wide name.
2. All 3592-J1As in library F4001 (LDJF4001) and all 3592-E05s in library F4001 (LDLF4001) are a subset of library F4001. All 3592-J1As and 3592-E05s are a subset of library F4001, because the other library only has 3592-E05 encryption-enabled tape drives installed.
3. All 3592-E05 encryption-enabled drives in library F4006 (LDLF4006) are a subset of library F4006. We also need to specify the 3592-E05 encryption-enabled drives (LDG359L), because no 3592-E05 encryption-enabled tape drives are installed in the other library.
4. All 3592-J1A tape drives (LDG359J) are a subset of the 3592-J1A tape drives in library F4001, because no other 3592-J1A drives are installed.
5. All 3592-E05 tape drives (LDG359K) are a subset of the 3592-E05 tape drives in library F4001, because there are no other 3592-E05 non-encryption-enabled drives installed.
6. All 3592-E05 encryption-enabled tape drives (LDG359L) are a subset of 3592-E05 encryption-enabled tape drives in library F4006, because no other 3592-E05 encryption-enabled tape drives are installed.
7. All 3592-J1A tape drives in library F4001 (LDJF4001) are a subset of the 3592-J1A, because no other 3592-J1A tape drives are installed.
8. LDGF4001 is *not* a subset of 3592-J1A, because 3592-E05s are also installed.
9. LDGF4001 is *not* a subset of 3592-E05, because 3592-J1As are also installed.
10. All 3592-E05s in library F4001 (LDCF4001) are a subset of 3592-E05, because no other 3592-E05s are installed.
11. All 3592-E05 encryption-enabled tape drives in library F4006 (LDFF4006) are a subset of 3592-E05 encryption-enabled, because no other 3592-E05 encryption-enabled tape drives are installed. LDGF4006 (the entire library with the ID F4006) is a subset of 3592-E05 encryption-enabled, because only 3592-E05 encryption-enabled tape drives are installed in this library.

4.3.14 DFSMShsm customization

The most significant change resulting from support of system-managed tape units and tape volumes is the transition of device selection capabilities. See **z/OS DFSMShsm**
Implementation and Customization Guide, SC35-0418, for detailed information about how to customize DFSMShsm for system-managed tape.

The following DFSMShsm functions can use tape library devices when writing output to tape:

- Migration
- Backup
- Spill
- Backup of the DFSMShsm CDSs and journal
- Recycle for migration and backup tapes
- Full volume dump
- ABARS
- Tape copy for migration and backup tapes
- Duplex tape for migration and backup tapes

Note: HSM can use the IBM 3592 Extended WORM, IBM TotalStorage Enterprise Tape Cartridge 3592 WORM, and Economy WORM, but because these cartridges cannot be overwritten, it defeats the purpose of the recycle function of HSM. We do not recommend that you use WORM cartridges to hold HSM data.

Allocation

With system-managed tape, DFSMShsm has no decisive role for unit allocation. If the ACS routines direct a DFSMShsm allocation request to a library, the DFSMShsm unit names have no affect on allocation. However, the names are passed to the ACS routines. See the DFSMShsm unit parameters in Table 4-13 for a complete list of all parameters that have unit options. For SMS-managed output tape selection, DFSMShsm performs a non-specific allocation; it then finds an acceptable output tape for the already allocated drive. If you use a 3590-1 generic that contains mixed devices, see APAR OW57282 for information about disabling the 3590-1 mixed device checking and the corresponding ARC0030I failure message. If the tape is not system-managed, the unit name retains the controls.

Note: If you are using the &UNIT variable in your ACS routines to select HSM datasets as candidates for the library, you must explicitly specify a unit name in the respective HSM parameters.

Table 4-13 DFSMShsm unit parameter

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABACKUP</td>
<td>UNIT(tape-unitname)</td>
</tr>
<tr>
<td>ADDVOL</td>
<td>UNIT(tape-unitname)</td>
</tr>
<tr>
<td>ARECOVER</td>
<td>UNIT(tape-unitname) TARGETUNIT(tape-unitname)</td>
</tr>
</tbody>
</table>
The Data Class MEDIA TYPE and RECORDING TECHNOLOGY parameters are honored. They are used to select the allocation of a library device. They override parameter settings in the ARCCMDxx member of PARMLIB. TAPEHARDWARECOMPACT only relates to 3480 output and is superseded by the Data Class. If no Data Class is assigned to a DFSMShsm-generated tape inside a library, compaction is the default.

When you want to implement DFSMShsm functions in a tape library, you must determine which functions should use it. Then, set up the ACS routines to assign a Storage Class, a Data Class for IDRC and recording format, and a Storage Group for tape.

To use tape hardware encryption, you must modify your SMS Data Class definitions to request encryption from the encryption-enabled tape drives. With the support for the encryption-enabled TS1120 tape drive, hardware encryption joins software (or host-based) encryption as another means of encrypting your installation’s dump data. As a result, the method for requesting encryption now depends on whether you plan to use hardware encryption or host-based encryption, as follows:

- To request hardware encryption for a dump class, specify it in the SMS Data Class for the dump data.
- To request host-based encryption for a dump class, use the DFSMShsm DEFINE DUMPCODE(ENCRYPT) command. With ENCRYPT, include the RSA or KEYPASSWORD subparameters (or NONE) to specify the type of host-based encryption.

If your dump classes are currently defined to use host-based encryption (and possibly host-based compression before encryption), we recommend that you remove the host-based encryption requests from any dump classes for which you plan to use tape hardware encryption. See IBM System Storage TS1120 Tape Encryption Planning, Implementation, and Usage Guide (SG24-7320) for more information.

To define the tape environment (global scratch pool or DFSMShsm-specific scratch pool), make the required updates to the following DFSMShsm commands:

- **SETSYS SELECTVOLUME(SCRATCH):** For performance reasons, use a global scratch pool for a DFSMShsm function that uses the library. If you use a DFSMShsm specific scratch pool, you must assign a private category to the scratch tape volumes for DFSMShsm to use when they are added to the tape library.
SETSYS TAPEDELETION (SCRATCHTAPE): This option tells DFSMShsm to return recycled migration and backup tapes, along with expired dump tapes, to a global scratch pool.

SETSYS PARTIALTAPE (MARKFULL|REUSE): Migration and backup tapes that are partially filled during tape output processing are marked full if you specify the MARKFULL option. This enables a scratch tape to be selected the next time the same function begins. When the total tape-media use and low recycle overhead are more important (and for all IBM 3494s), specify PARTIALTAPE (REUSE). Specifying a REUSE environment fully uses the tapes and reduces the amount of recycle processing.

We recommend that you use PARTIALTAPE (MARKFULL) for VTS logical volumes. It enables the VTS to use “fast ready” allocation in the Tape Volume Cache. MARKFULL is also a requirement if you use TAPECOPY to make off-site copies of HSM media.

Dataset names

Output device selection is based on the dataset name given to the ACS routines. The dataset name here is the name of the single-file dataset on tape. It is related to the DFSMShsm function that performs the output (for example, MIGRATE or BACKUP). This dataset name has no relation to the original DASD level 0 user’s dataset name. Because the 3592-E05 can write in either of two recording formats (EFMT1 or EFMT2) to MEDIA5, MEDIA6, MEDIA7, and MEDIA8 tapes, you must modify your installation’s ACS routines to select the recording format to use on blank media (through the Data Class assigned to the tape) if you want the 3592 Model E05 drives to use EFMT1.

Here is a list of the dataset names used for tape allocation with BACKUP, MIGRATION, DUMP, DUPLEX, and TAPECOPY:

- `backup_prefix.BACKTAPE.DATASET` (backup)
- `migration_prefix.HMIGTAPE.DATASET` (migration)
- `backup_prefix.DMP.dclass.VVolSER.Dyyddd.Tssmmhh` (dump)
- `backup_prefix.COPY.BACKTAPE.DATASET` (tapecopy, duplex of backup)
- `migration_prefix.COPY.HMIGTAPE.DATASET` (tapecopy, duplex of migration)

Here is a list of the dataset names used for tape allocation with control dataset backups:

- `uid.BCDS.BACKUP.Vnnnnnnn (DATAMOVER=HSM)`
- `uid.MCDS.BACKUP.Vnnnnnnn (DATAMOVER=HSM)`
- `uid.OCDS.BACKUP.Vnnnnnnn (DATAMOVER=HSM)`
- `uid.JRNL.BACKUP.Vnnnnnnn (DATAMOVER=HSM)`
- `uid.BCDS.BACKUP.Dnnnnnnn (DATAMOVER=DSS)`
- `uid.MCDS.BACKUP.Dnnnnnnn (DATAMOVER=DSS)`
- `uid.OCDS.BACKUP.Dnnnnnnn (DATAMOVER=DSS)`
- `uid.JRNL.BACKUP.Dnnnnnnn (DATAMOVER=DSS)`

If you use multicluster control datasets (supported for both MCDS and BCDS if the control dataset size increases beyond one volume), the dataset name changes for the backup copies as follows:

- `uid.BCDS.BACKUP.DSy.Dnnnnnnn (DATAMOVER=DSS)`
- `uid.MCDS.BACKUP.DSy.Dnnnnnnn (DATAMOVER=DSS)`
- `uid.OCDS.BACKUP.DSy.Dnnnnnnn (DATAMOVER=DSS)`
- `uid.JRNL.BACKUP.DSy.Dnnnnnnn (DATAMOVER=DSS)`

Each low level qualifier must be preceded by DS_y where y is a number from 1 to 4, representing the number of volumes in the multicluster CDS.
Here is a list of the dataset names used for tape allocation with ABARS:

- outputdatasetprefix.C.CccVnnnn (control file)
- outputdatasetprefix.D.CccVnnnn (data file)
- outputdatasetprefix.I.CccVnnnn (instruction file)
- outputdatasetprefix.O.CccVnnnn (internal data file)

If you request PARTIALTAPE(REUSE), the tape volume selected after allocation of a unit is one that can be mounted on the allocated unit. The use of the specific scratch pool with DFSMShsm is still supported with system-managed tape.

When input datasets are allocated for DFSMShsm, the situation is more strictly controlled. A tape unit within the proper library is always selected for a library-resident volume. It is not possible to use a tape unit in one library for tapes that reside in another library.

4.3.15 Library parameters

These parameters and options are related to, or are used with, tape library operations:

- SETSYS TAPEUTILIZATION(LIBRARYBACKUP PERCENTFULL(pct))
- SETSYS TAPEUTILIZATION(LIBRARYMIGRATION PERCENTFULL(pct))
- SETSYS TAPESPANSIZE(nnn)
- SETSYS DUPELEX(backup(Y|N))
- SETSYS DUPELEX(MIGRATION(Y|N))
- DEFINE ABARSTAPES(STACK|NOSTACK)
- DEFINE DUMPCLASS(dclass STACK(nn))
- BACKVOL SG(sgname) VOLUMES(VOLSER) DUMP(dclass STACK(nn))

SETSYS TAPEUTILIZATION PERCENTFULL(pct)

DFSMShsm writes to 97% of the capacity of MEDIA5, MEDIA6, MEDIA7, and MEDIA8 tapes unless otherwise specified. You can specify other percentages through the SETSYS TAPEUTILIZATION command, depending on the particular needs of the installation. DFSMShsm uses the reported cartridge type on the physical device to determine the tape's capacity. The LIBRARYMIGRATION and LIBRARYBACKUP parameters apply to system-managed tape library tapes only.

If you copy the contents of one tape to another with the TAPECOPY command or use the concurrent creation option, DUPLEX, minor inconsistencies can exist in the length of cartridge-type tapes. Because the TAPECOPY command copies the entire contents of one tape to another, enough media must be available to copy the entire source tape to its target. Therefore, when you copy tapes with the TAPECOPY command, use the default options (the equivalent of specifying the TAPEUTILIZATION command with the PERCENTFULL option of 97%).

DFSMShsm marks the end of the volume when tapes are 97% full. When you use the DUPLEX option, we recommend that you use the 97% value to ensure that you can write the same amount of data to both tapes. During duplexing, the NOLIMIT parameter of TAPEUTILIZATION is converted to the default of 97%.

If you use virtual tapes in an IBM VTS system for your backup or migration volumes, and if the backups or migration (and any duplexing) in IBM libraries are done exclusively to a VTS by this instance of DFSMShsm, we recommend that you specify the PERCENTFULL(pct) option for the LIBRARYBACKUP and LIBRARYMIGRATION parameters with a value of 118%. Specifying PERCENTFULL(118) allows DFSMShsm to fill a virtual 3490 tape to its logical capacity, rather than assuming the presence of inter-record gaps and other tape formatting blocks that are not actually written to a virtual tape.
SETSYS TAPESPANSIZE

Set this parameter to get a balance between the amount of tape that remains unused and the number of cases where a dataset goes to two volumes. The value is best described as the smallest size data that you are willing to allow to span multiple tapes. Knowing the statistical distribution of the dataset sizes can help you set this value.

If your installation has an excessive number of spanning datasets, consider specifying a larger value in the SETSYS TAPESPANSIZE command. A larger absolute value is needed to represent the same amount of unused capacity on a percentage basis when the tape has a larger total capacity. For example, to allow 2% unused tape for a MEDIA5 tape on a 3592 Model E05 device (no performance scaling), specify a TAPESPANSIZE of 9999 MB. All size calculations for scaled tapes are based upon the scaled size and not the unscaled size.

DFSMShsm calculates the estimated size based on the IDRC effect and gaps for 3490, and position information reported by the tape subsystem if a 3590 or a 3592. If the dataset is larger than SPANSIZE, it is written on the tape. Otherwise, DFSMShsm compares the dataset size with the remaining media space. If the small dataset is calculated to fit entirely on the current tape, DFSMShsm begins to write. If it is calculated not to fit, DFSMShsm issues an FEOV to change tapes.

The tape volumes created by DFSMShsm migration and backup functions can contain datasets that span from one tape volume to another. Each case of a dataset spanning volumes in this manner is said to create a connected group. Every succeeding connection from the second volume to a third one, and so on, extends the size of the connected volume group. An FEOV between datasets reduces the occurrence of datasets spanning tape volumes.

If you specify SETSYS TAPEUTILIZATION(NOLIMIT), no action is taken to reduce dataset tape volume spanning. We recommend that you avoid NOLIMIT for several reasons, many of which relate to recycle.

SETSYS DUPLEX

You can use this function to create concurrent copies of either backup or migration tapes. The resulting structure and dataset names are exactly the same as though you used TAPECOPY to copy the tape asynchronously. Using ACS routines, it is simple to route duplicate output to a different library that might be located in an off-site location.

For duplexed tapes, ensure that the Data Class selects the same media type and recording technology for the original and the alternate copy. Not doing so can result in failure when the duplex tape is mounted for output, or when using the alternate copy after a tape replace. If the original and alternate tapes need different media or machine types, see APARs OW52309, OA04821, and OA11603 for more information.

DEFINE ABARSTAPES(STACK|NOSTACK)

If you use a native 3590 with ABARS output tapes, use this parameter to force ABARS to use a single tape for its four types of output files created during ABACKUP.

DEFINE DUMPCLASS (dclass STACK(nn)) or BACKVOL SG(sgname)|VOLUMES(VOLSER) DUMP(dclass STACK(nn))

Using the STACK keyword with the AUTODUMP definitions allows DFSMShsm to use the capacity of 3590 or 3592 cartridges. Multiple volume dumps are written to a single tape. The value of 20 causes DFSMShsm to write dump copies of 20 DASD volumes to a single 256 track cartridge. Using a value of 50 causes DFSMShsm to write dump copies of 50 DASD
volumes, which exploits the capacity of 3592 media, thus, maximizing tape usage. Use the value 10 for 128 track media.

You can increase or decrease the value, depending on the average disk capacity used and the number of tape drives available. If you have 50 source DASDs, choosing STACK(50) single threads all dumps to a single tape drive and results in a connected set of tapes. Using STACK(10) instead allows five drives to dump 10 volumes each. Recovery is faster in the second case, because you can only recover one volume from a tape at a time.

Enhanced list functions

When only a subset of DFSMShsm migration or backup tapes is in a library, it is important to know which tapes are connected to which tapes. All tapes that are connected to other tapes must all be together in a single library.

The LIST TTOC command has several parameters to help in this situation:

- **SELECT(CONNECTED)**
- **SELECT(NOTCONNECTED)**
- **SELECT(CONNECTED(VOLSER))**

The SELECT parameter indicates that all connected groups are listed or that all unconnected volumes are listed. You can use the SELECT parameter to request only a listing of the volumes that are connected to a known volume. When a connected group is listed, the listing also indicates where inconsistencies exist, for example, if one of the volumes is within a library and other volumes are outside of the same library.

The LIST TTOC SELECT(LIBINOLIB) command can list only original backup or migration volumes that are in libraries, or it can list volumes that are outside all libraries.

The LIST TTOC SELECT(LIB(ALT)INOLIB(ALT)) command can list information about original volumes whose alternate tape is or is not in a library.

The LIST TTOC SELECT(FULLNOTFULL|EMPTY) command can list migration and backup tape volumes with full, partially full, or empty status.

The LIST TTOC SELECT(ALTERNATEVOLUME) command can list tape volumes that are marked full and have an alternate volume. This provides you the capability to identify the full backup and migration tape volumes that have an alternate tape. LIST TTOC SELECT(NOALTERNATEVOLUME) lists all volumes that are full but have no alternate volume, and therefore, you need to be copy these volumes.

You can also use the LIST TTOC command to display tapes of a particular recording technology. LIST TTOC SELECT(EFMT1) or LIST TTOC SELECT(EFMT2) lists all volumes recorded in EFMT1 or EFMT2 format respectively.

The library dependency parameter is also available when listing dump volumes.

Using RECYCLE to move DFSMShsm data

To move your DFSMShsm backup and ML2 data to a library, use the RECYCLE command. To direct the recycled data to a library, use the SETSYS RECYCLEOUTPUT command and direct future migrations and backups to the library.

Using RECYCLE SELECT (INCLUDE(RANGE(nn:nn)) or RECYCLE SELECT (EXCLUDE(RANGE(nn:nn))) for RECYCLE input can help you select and migrate data to and from an IBM 3494 or a VTS. Its immediate purpose is to enable you to set up volume ranges for different media types and different emulation types, such as VTS logical volumes and 3490-emulated cartridges.
There are no special dataset names for RECYCLEOUTPUT, although you must code your ACS routines. See 4.3.14, “DFSMShsm customization” on page 216 for a discussion about DFSMShsm.

You can direct the data to a 3590 or 3592 tape subsystem by assigning a new Data Class that specifies:

- The desired media type
- The desired recording technology
- Whether you want performance scaling or not
- Compaction set to YES or not

DFSMShsm takes full advantage of the capacity of the 3590 or 3592 tape cartridge.

Recycling to a library containing high capacity cartridges entails moving more data for each cartridge when using the same thresholds as you used for the previous cartridges. This can extend the RECYCLE time, even though fewer tape mounts occur. Therefore, a single cartridge can take longer to become subject to recycling. If your recycling window is limited, review your recycle thresholds carefully.

To reduce unnecessary recycling of migration tapes, especially on high capacity media, consider implementing Fast Subsequent Migration. The Fast Subsequent Migration function allows an unchanged dataset that is recalled from a single ML2 tape (for input processing only) to reconnect to that ML2 tape. This eliminates unnecessary data movement and tape mounts during premigration. It also reduces the need to recycle the tape. Reconnection can take place during individual dataset migration or during volume migration.

Without Fast Subsequent Migration when a dataset that has been migrated to ML2 tape is recalled, the migration copy of the dataset remains on the tape. DFSMShsm CDS records recognize that copy as an invalid copy. When the dataset that is recalled is remigrated in the normal manner, it is copied to a new tape. Eventually, tapes with invalid datasets are recycled, and only the still-valid data is consolidated onto new tapes. You enable Fast Subsequent Migration by specifying the RECONNECT subparameter of the SETSYS TAPEMIGRATION command. For more information about this parameter, see DFSMShsm Storage Administration Reference, SC35-0422.

RECYCLEINPUTDEALLOCFREQUENCY(BACKUP(bfreq) MIGRATION(mfreq)) is an optional parameter. You use it to periodically deallocate an input unit during recycle processing. This is particularly true in a tape environment where contention for tape drives can be a consideration. This dynamically changeable parameter prevents DFSMShsm from possibly keeping an input unit allocated for hours.

BACKUP(bfreq) and MIGRATION(mfreq) specify that, during recycle processing of backup or migration volumes, deallocation of an input unit occurs after the specified number of input-connected sets representing single-file-format cartridges are processed. Specifying 0 retains the input unit until recycle processing completes. For example, to deallocate the input unit every 20 input backup-connected sets, specify:

```
SETSYS RECYCLEINPUTDEALLOCFREQUENCY(BACKUP(20))
```

Use the following statement to deallocate the input unit after each input migration connected set is processed:

```
SETSYS RECYCLEINPUTDEALLOCFREQUENCY(MIGRATION(1))
```

Always use a value of 1 if the command processes physically incompatible cartridges that claim to be the same, such as true 3490 compared to emulated 3490.
An alternative way of moving ML2 and user tape data to a new media or tape library is to use ABARS. BACKUP MOVE in combination with ARECOVER REPLACE can move data into an IBM 3494 Tape Library or a VTS. ABARS has the advantage that you can specify dataset name patterns that are moved into a device.

Inserting existing DFSMShsm-owned volumes into the library

Because DFSMShsm CDSs keep only VOLSER information about owned volumes, they do not care whether the volumes are in the library. Therefore, you can move existing owned volumes into the library. However, some DFSMShsm-owned volumes are multivolume datasets, and all the volumes of a set must reside in the same library and in the same Storage Group. To identify connected volumes, use the LIST command shown in DFSMShsm LIST:

```
LIST TTOC SELECT(CONNECTED(TH0300)) ODS(LIST)
```

A sample result is shown here:

```
-DHFSMS-CONTROL DASET-TAP VOLUME TTOC-LISTING - AT 09:45:23 ON 03/03/03
VOLSER UNIT VOL REUSE VALID PCT VOL RACF PREV SUCC
NAME TYPE CAPACITY BLKS VALID STATUS VOL VOL
TH0300 3590-1 ML2 04130300 01344806 33 PART NO *NONE* *NONE*
```

When you enter the selected DFSMShsm-owned tape volumes, assign them the attribute of private and Storage Groups.

Consider using SETSYS TAPESPANSIZE and SETSYS TAPEUTILIZATION to reduce the number of connected volumes. TAPESPANSIZE determines whether a dataset is small or large. A dataset smaller than the value specified must fit on the tape being processed.

If DFSMShsm calculates that the dataset will span to another tape, it issues an FEOV and starts writing the whole dataset to a new tape. A large dataset is allowed to span volumes. Do not specify TAPEUTILIZATION(NOLIMIT), because that prevents TAPESPANSIZE from taking effect. SETSYS TAPEUTILIZATION(PERCENTFULL(97)) is a good value.

4.3.16 Verifying the installation

In this section, we discuss the software areas for you to consider testing as part of your library and system-managed tape implementation project. Table 4-14 lists the testing tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vary library drives online and offline.</td>
<td></td>
</tr>
<tr>
<td>Allocate a standard SMS dataset in the 3494.</td>
<td></td>
</tr>
<tr>
<td>Allocate an SMS multivolume dataset in the 3494.</td>
<td></td>
</tr>
<tr>
<td>Allocate several SMS datasets as multifile (LABEL=) in the IBM 3494.</td>
<td></td>
</tr>
<tr>
<td>Allocate an SMS dataset and reuse it with DISP=MOD.</td>
<td></td>
</tr>
<tr>
<td>Allocate an SMS dataset with various legal UNIT=AFF processing.</td>
<td></td>
</tr>
<tr>
<td>Allocate various SMS datasets according to your ACS routines. Make a list, identify what results you expect in advance, and compare.</td>
<td></td>
</tr>
<tr>
<td>Allocate a non-SMS dataset outside the library.</td>
<td></td>
</tr>
</tbody>
</table>
Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocate non-SMS multivolume datasets outside the library.</td>
<td></td>
</tr>
<tr>
<td>Reuse with DISP=MOD one of the first datasets of a multifile tape.</td>
<td>This is impossible.</td>
</tr>
<tr>
<td>Allocate non-SMS datasets in the IBM 3494.</td>
<td>This is impossible.</td>
</tr>
<tr>
<td>Allocate an SMS dataset outside of the IBM 3494.</td>
<td>This is impossible.</td>
</tr>
<tr>
<td>Allocate an SMS-managed dataset and a non-SMS-managed dataset with UNIT=AFF.</td>
<td>This is impossible.</td>
</tr>
<tr>
<td>Initialize cartridges using IEHINITT, EDGINERS (DFSMSrmm), or a utility supplied by the vendor of your tape management system.</td>
<td>Refer to “Tape initialization” on page 179.</td>
</tr>
<tr>
<td>Watch for whether automatic relabeling processing occurs.</td>
<td>This is only applicable at migration time.</td>
</tr>
<tr>
<td>Test-drive sharing for drives in the IBM 3494.</td>
<td>This is only applicable if you introduced ATS STAR or a vendor product.</td>
</tr>
<tr>
<td>Check if enqueue-processing against TCDB and other control datasets (RMM, HSM, and so forth) occurs correctly in a multiple systems environment.</td>
<td>RESERVE if no GRS is introduced, or if the enqueue is not converted. This is only applicable in new environments.</td>
</tr>
<tr>
<td>Test the standalone procedure with the IBM 3494.</td>
<td>This is inapplicable for cartridge VTS.</td>
</tr>
<tr>
<td>Test the vaulting procedures.</td>
<td></td>
</tr>
</tbody>
</table>

4.3.17 Testing ACS logic with NaviQuest

When you select ISMF Option 7.4, you see the ACS TEST SELECTION display (Figure 4-46). The input from the test cases is saved in a dataset. For an example, see Figure 4-49 on page 228.
In addition to basic ISMF functions, NaviQuest provides several functions to ease and automate the creation and comparison of test cases for the entire SMS environment. A special function that NaviQuest delivers is to set up test cases based on volume mount analyzer (VMA) data taken from your site. Because this function is closely related to the implementation of a library, we discuss it briefly here. For more information, see the NaviQuest Demonstration and Hands-On Usage Guide, SG24-4720.

To access NaviQuest if it is installed in your environment, select option 11 from the ISMF Primary Menu. Then you see the NaviQuest PRIMARY OPTION MENU display (Figure 4-47).
Select option 1 (GENERATE TEST CASES). Next, you see a menu to select the type of test case data for NaviQuest to use. To build test cases from VMA data, select option 4.

The display shown in Figure 4-48 appears, where you can choose:

- Number of test cases to create
- Member name prefix for the resulting members
- Selection filter to apply against the input data

Note: The input to this process is not raw SMF data but VMA-extracted SMF data. See “Volume mount analyzer (VMA) reporting for tape utilization” on page 444 for more information.

```
BULK GENERATION OF TEST CASES FROM VMA EXTRACT FILE
COMMAND ===>

TO GENERATE TEST CASE LIBRARY, SPECIFY:
DATA SET NAME CONTAINING VMAXTRT DATA
  ===> 'NAVIQ1.GFTAXTR.DATA'

NUMBER OF TEST CASES  ===> 10  (1 to 9999, blank)
MEMBER NAME PREFIX     ===> HSM  (1 to 4 alphabets)
PROGRAM NAME TO FILTER ON ===> ARCCTL

TEST CASE PDS      ===> 'DFRES1.TCASE1.CNTL'
REPLACE EXISTING PREFIX ===> Y (Y or N)

Note: Before running this function you must have run GFTAXTR from your saved SMF type 14,15,21, and type 30 records.

USE ENTER TO PERFORM GENERATION;
USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT.
```

Figure 4-48 Test case generation from VMA

The output written to the specified dataset has the same format as output without NaviQuest. However, NaviQuest generates more detailed information and enables you to test with real-life data instead of a randomly generated subset of examples. We show two test cases: one for DFSMShsm data (Figure 4-49) and one for DFSMSdss data (Figure 4-50).
The result of checking the specified input against the SCDS that you are about to test looks similar to the display shown in Figure 4-51. DSS0017 and HSM0001 are the member names created by Naviquest. You see the classes, which are to be assigned to the dataset names, specified, and you can check if this is what you intend.
However, you cannot see the dataset names and other input criteria on the list. That is why you go back to NaviQuest and select option 3 (GENERATE ACS XREF) to generate the ACS CROSS REFERENCE REPORT (Figure 4-52).
The input is the ACS test output listing dataset, and the output is a new listing dataset as shown in Figure 4-53. You can specify which columns you want NaviQuest to add. If you are not using the program name in your ACS routines to make decisions, you might not need it on the output listing.

```
ACS TESTING RESULTS
CDS NAME : SMS.SCDS0
ACS ROUTINE TYPES: DC SC MC SG
ACS TEST LIBRARY : SMS.TESTCASES.DATA

ACS TEST MEMBER EXIT CODE RESULTS DSNAME PROGRAM
--------- ----------  ----------- ------------------- -------
DSS0017 0 DC = DCTAPLR GSMVSE.DATA.SAVDAY ADRDSSU
0 SC = SCTAPLCL
0 MC = MCTAPE
0 SG = SGTAPLCL
HSM0000 0 DC = DCTAPLR HSM.BACKTAPE.DATASET ARCCTL
0 SC = SCTAPLCL
0 MC = MCTAPE
0 SG = SGTAPLCL
HSM0001 0 DC = DCTAPLR HSM.COPY.BACKTAPE.DATASET ARCCTL
0 SC = SCTAPRM
0 MC = MCTAPE
0 SG = SGTAPRMT
```

Figure 4-53 ACS TESTING RESULTS display

The obvious results are:

- HSM and DSS datasets are assigned Data Class DCTAPLR, which comprises 36-track, MEDIA2 cartridges.
- DSS save and HSM backup datasets are directed to Storage Group SGTAPLCL, which is the local tape library.
- HSM TAPECOPY datasets are directed to Storage Group SGTAPRMT, which is the remote tape library.
Tape Encryption

In this chapter, we discuss basic encryption and cryptographic terms and concepts. We introduce you to the IBM Tape Drive Encryption solution, including the IBM Encryption Key Manager. We focus on Tape Drive Encryption in a System z environment.

We also outline the hardware and microcode firmware that you need to upgrade in order to implement tape drive encryption.

For more information about the IBM Tape Drive Encryption solution, see the IBM System Storage TS1120 Tape Encryption Planning, Implementation, and Usage Guide, SG24-7320.
5.1 Tape Encryption concepts

IBM has enhanced the IBM System Storage TS1120 Tape Drive to provide you with the option to use drive-based data encryption, which is now standard on all new TS1120 Tape Drives. A chargeable upgrade feature to enable your drives for encryption is available for installed TS1120 Tape Drives. You can encrypt all 3592 media, including WORM and extended cartridges. You need the new IBM Encryption Key Manager component for the Java™ Platform (Encryption Key Manager) that supports the generation and communication of encryption keys for the tape drives across your enterprise. You can easily exchange encrypted tapes with business partners or data centers that have the necessary key information to decrypt the data key.

The IBM Tape Encryption solution utilizing the IBM System Storage TS1120 Tape Drive offers a cost-effective solution for tape data encryption by offloading encryption tasks from the servers, leveraging existing tape infrastructure incorporated in standard IBM Tape Libraries, and eliminating the need for unique appliance hardware. While other encryption solutions require hardware appliances or processor power for software encryption, tape encryption is done with very little impact to the performance of the IBM System Storage Tape Drive TS1120.

5.1.1 Introduction to Encryption

The TS1120-based encryption and associated Encryption Key Manager (EKM) component are supported in a wide variety of operating system environments, including z/OS, i5/OS, AIX, Hewlett-Packard, Sun, Linux, and Windows. The three methods of encryption are:

- **Application-Managed**: The TS1120 Tape Drive supports Application-Managed Encryption for Open Systems environments. The application controls the encryption process and generates and provides keys to the TS1120 tape drive through the Atape device driver. Tivoli Storage Manager has been enhanced to support this capability. Currently, Application-Managed Encryption support is only available on IBM Tivoli Storage Manager.

- **Library-Managed**: Encryption by volume and drive policy is supported with the TS1120 Tape Drive. The user sets up and controls the encryption process through the library interface. This method of encryption is supported for the IBM TS3500 Tape Library or the IBM 3584 Tape Library in Open Systems environments. It is not supported for the IBM 3494 Tape Library. The Encryption Key Manager component is required for this support. Library-Managed Encryption is available for AIX, i5/OS, Linux, Linux on System z Fibre Channel Protocol (FCP) connected tape drives, HP, Sun, and Windows.

- **System-Managed**: With System-Managed Encryption, the encryption policy is passed between the server and the drives. This is the way that System z encrypts data, and it requires the Encryption Key Manager program. DFSMS supports the Encryption Key Manager component. System-Managed Encryption is also available for AIX servers. This support requires a new AIX tape device driver, as well as the Encryption Key Manager program. System-Managed Encryption is available for z/OS and AIX host systems. Sun Solaris is also supported through the IBM Tape device driver.

The Encryption Key Manager (EKM) is a software program designed to complement IBM encryption-enabled tape drives in generating, protecting, storing, and maintaining encryption keys that are used to encrypt information being written to and decrypt information being read from 3592 tape media. The Encryption Key Manager operates on multiple platforms and is designed to be a shared resource deployed in multiple locations within an enterprise serving IBM encryption-enabled tape drives, regardless of where those drives reside.

The Encryption Key Manager (EKM) component uses standard key repositories on supported platforms. You must install this software on a supported server and interface with the tape
drive to support Tape Encryption in a System-Managed Encryption or Library-Managed Encryption implementation.

Encryption Key management

During encryption, you use a single data key to encrypt the data and, later on, to decrypt the data. Each encryption method uses a key manager and a keystore to manage and store the keys that are used to encrypt the data key.

When a scratch cartridge is loaded, for System-Managed Encryption and Library-Managed Encryption, the drive communicates with the key manager, which provides the key to encrypt the data. When data is appended, it must be encrypted with the same key used by the existing data on the cartridge.

The data key must stay with the data and cannot be stored unencrypted. The data key is stored in the Cartridge Memory (CM) of the cartridge at the beginning of the tape in an encrypted format and in several places on the tape cartridge.

The data key is encrypted with another set of keys, known as Key Encrypting Keys (KEK). The KEKs are also provided by the Encryption Key Manager and are referenced by key labels that you define. You can share these labels with authorized external users of the data cartridge.

How Tape Encryption works

Encryption, implemented in the tape drive, encrypts the data before it is written to the cartridge. The tape drive first compresses the data to be written and then encrypts it. To encrypt the data, the tape drive needs an encryption key. This key is provided by the Encryption Key Manager, and it is provided in an encrypted form to make the Tape Encryption solution secure. See Figure 5-1.

The IBM Tape Drive Encryption solution encrypts the data in the drive using the 256-bit Advanced Encryption Standard (AES) algorithm, rather than receiving previously encrypted data. There are several advantages to this approach. By encrypting data in the drive, the drive can offer the most efficient data compression. The drive first compresses the data, then encrypts it, thus providing more efficient data storage and media usage. Encrypting in the drive eliminates the need for any additional machines or appliances in the environment. The
TS1120 Tape Drive can also process unencrypted workloads, further simplifying your IT environment.

For an encrypted tape cartridge, the cartridge stores both the encrypted user data and the critical key management-related information needed to interact with the Encryption Key Manager when decrypting data on the cartridge. A mix of data written in encrypted and unencrypted formats is not supported on the same tape cartridge. Whether the data on a cartridge is written in encrypted format or in the clear is determined during OPEN processing, when the first file sequence on the tape is written. If the first file written to a tape is in encrypted format, then all subsequent files written to the same tape cartridge must be written in encrypted format. All files written to a single cartridge in encrypted format are encrypted using the same data key. The exception to this is the volume label structure for the first file sequence, which is encrypted using a key known to all encryption-enabled TS1120 drives, which means it is effectively in the clear.

Data exchange with business partners or other platforms
It is common practice to share tapes with other organizations for joint development, contracting services, or other purposes. To facilitate this, EKM can store two sets of wrapped encryption keys on the tape. A wrapped encryption key contains the data key plus identifying information that allows the EKM to locate the key. This allows another organization to read that specific tape without your providing them any shared secret information or compromising the security of your certificates and keys. You do this by adding the public part of the other organization's public/private certificate and keys to your EKM keystore using a second alias (or key label).

When the tape is written, the encryption key is stored on the tape in several places and protected by two sets of public/private keys, yours and the other organization's. The other organization is then able to use their EKM and their private key to unwrap the data key that allows them to read that specific tape. To reiterate, your EKM must have the certificate and public key of the partner organization added to your keystore to allow you to exchange encrypted data with them. The other organization must have the associated private key in the keystore used by the other organization's EKM to decrypt the data key. This gives you the flexibility to make a specific tape readable by both your organization and another organization.

5.1.2 Encryption on z/OS
In a System z environment, you implement encryption capability through TS1120 Tape Drive hardware, microcode additions and changes to the Library Manager and tape controller, and a new software component called the Encryption Key Manager (EKM).

z/OS DFSMS provides device allocation and media management in the 3494 and TS3500 tape libraries. You need this full support for automated or manual tape library environments for encryption-enabled TS1120 tape drives. This full support is required when encryption-enabled TS1120 tape drives are installed in an IBM tape library environment. Encryption-enabled TS1120 tape drives can coexist in the same library with TS1120 drives that are not encryption-enabled, as well as 3590 Model B1x, 3590 Model E1x, 3590 Model H1x, and 3592 Model J1A drives.

The z/OS DFSMS support for tape subsystem encryption allows you to specify by Data Class that data is to be encrypted when stored by encryption-capable TS1120 tape drives. In addition to this, the key label-related information that is used to encrypt the data key (of a tape cartridge) can be specified through the DD statement (JCL, dynamic allocation, and TSO ALLOCATE), Data Class, or Encryption Key Manager component for the Java platform (EKM) defaults. The communication path to the Encryption Key Manager (EKM) is across
TCP/IP with the choice to go either in-band or out-of-band for the key management flow. With out-of-band key management, the communication path to the Encryption Key Manager is handled by the control unit going directly to the Encryption Key Manager. For in-band key management, the communication path to the Encryption Key Manager is handled across Enterprise Systems Connection (ESCON)/Fibre Channel Connection (FICON) with a z/OS proxy interface, which handles the key exchange (across TCP/IP) with the Encryption Key Manager.

In-band and out-of-band

With System-Managed Encryption, the encryption policy is passed between the server and the drives. System-Managed Encryption is the vehicle used for z/OS environments and requires the Encryption Key Manager program.

System-Managed Encryption on z/OS has two configuration options:

- **In-band** is where the tape drive requests that the Encryption Key Manager component travel over the ESCON/FICON channels to the server proxy that is TCP/IP-connected to the EKM. In-band is the preferred method for z/OS.

- **Out-of-band** is where the tape controller establishes the communication to the EKM server over TCP/IP connections between the tape controller and the EKM server. ESCON/FICON System z environments utilizing out-of-band support for encryption require a router to allow the tape controller to communicate with the Encryption Key Manager. FC5593 (Router for EKM Attach) provides dual routers to allow redundant connections between the tape controller and the EKM. See Figure 5-2.

![Figure 5-2 z/OS in-band and out-of-band centralized key management](image)

The in-band z/OS proxy allows you to exchange key management information with a tape drive over existing ESCON/FICON, instead of requiring the deployment of a secondary IP network. The reliability and physical security of the existing I/O attachments are major reasons that clients might choose to use the in-band key management path to the Encryption Key Manager. The z/OS proxy interface communicates with the tape drive (through the control unit) in the current data path and then uses a TCP/IP connection to communicate with the Encryption Key Manager. Because in-band is managed by the I/O supervisor (IOS), it also allows you to display and alter EKM primary and secondary server addresses from the...
operator console. With out-of-band, the EKM server addresses are only visible on the Library Manager console. One other consideration is that with out-of-band, any z/OS image using a drive also has to use the EKM for which that drive was set up. With in-band, you can potentially have each z/OS image point to a different EKM, with each pointing to a different keystore. This allows images sharing drives to use different keystores. You might find this useful if you need to support a client or application where each client requires its own keystore for security or regulatory needs.

For z/OS tape encryption, both methods allow you to configure whether to encrypt the data based on Data Class definitions. You can specify the key labels through Data Class or through the DD statement (JCL, dynamic allocation, or TSO ALLOCATE). You can also use the Encryption Key Manager-assigned defaults if the key labels are not provided through z/OS. For tapes that will be encrypted or decrypted, you must define and keep track of the key information that you use. DFSMSrmm also tracks the key labels that were used for a given cartridge.

5.1.3 Encryption on an Open Systems platform

Encryption in an Open Systems environment is not supported with the IBM TotalStorage 3494 Tape Library. Encryption for Open Systems platforms is supported with the IBM TS3500 Tape Library.

5.2 Encryption Key Manager

IBM Encryption Key Manager component for the Java Platform (Encryption Key Manager) is a software program designed to generate, protect, store, and maintain encryption keys that are used to encrypt information being written to and decrypt information being read from 3592 tape media. The IBM Tape Encryption solution provides an enterprise key management solution with common software for Open Systems and mainframe environments that allows sharing of a common keystore across platforms. Integration with z/OS policy, key management, and security capabilities provides a proven, highly secure infrastructure for encryption key management.

The Encryption Key Manager (EKM) component uses standard key repositories on supported platforms. You must install this software on a supported server and interface with the tape drive to support Tape Encryption in a System-Managed Encryption or Library-Managed Encryption implementation.

5.2.1 Overview

For an encrypted tape cartridge, the cartridge stores not only the encrypted user data, but also critical key management-related information needed to interact with the EKM. The EKM communicates over TCP/IP connections with the tape drive (in-band or out-of-band) to provide the key information required by the tape drive to encrypt or decrypt the data. This TCP/IP connection needs to be secure, and you can achieve this security either by physical security or with IP security protocols, such as VPN. The method for securing this TCP/IP connection relies on existing system capabilities and is outside the scope of the key management system. The EKM is a common platform application written in Java that runs under the Java Virtual Machine (JVM™). The EKM interfaces with an existing keystore, which under z/OS can be one of the hardware-based keystores (JCE4758KS (JCECCAKS) or JCE4758RACFKS (JCECCARACFKS)) that works with the Integrated Cryptographic Service Facility (ICSF), or it can be one of the software-based keystores (JCEKS or JCERACFKS). If the EKM resides outside of the z/OS environment, then you can use the JCEKS and
System-Managed and Library-Managed Encryption processes

Figure 5-3 illustrates the flow of encrypted data to tape, communication of the keys to the tape drive, and how the keys are stored on the tape media. In this example, we assume that a certificate from a business partner has been imported into this keystore, and it only has a public key associated with it. This public key is the key that is used to encrypt the data. The business partner has the corresponding private key needed to decrypt the data.

The server sends a write request to the drive. The drive is encryption-capable, and the host requests that the data is encrypted. As part of the initial write, the drive obtains two Key Encrypting Key (KEK) labels from the host or a proxy, which are aliases for two Rivest-Shamir-Adleman (RSA) KEKs.

When an encryption-capable tape drive needs a key to perform an encrypted write, the EKM generates a data key. The data key (DK) that is used to encrypt the data on a tape cartridge is itself encrypted (using the public key of the public/private key pair) with either one or two key encrypting keys (KEK) stored in the keystores. The KEKs are maintained by the EKM through an existing keystore and are pointed to by the appropriate KEK label, also referred to as the key label. The drive requests that the EKM send it a data key (DK) and to encrypt the DK using the public KEKs aliased by the two KEK labels.

The EKM can reside on that same z/OS system, on another z/OS system, or even on another platform server. The drive request for the data key and the passing of key management-related information can be in-band between the drive and the Encryption Key Manager (through the control unit and host across ESCON/FICON) or it can be out-of-band (through the control unit across TCP/IP). EKM only has a TCP/IP interface, so in-band
communication to the EKM is handled by the z/OS proxy interface. The z/OS proxy interface receives the request from the drive across ESCON/FICON and then interfaces with the established EKM for that system across TCP/IP. The z/OS proxy then communicates back to the drive (through the control unit across ESCON/FICON), providing the key management-related information that the drive needs. With z/OS, we recommend that the communication path to the EKM is in-band across ESCON/FICON under the same system that initiated the read or write request.

The EKM validates that the drive is in its list of valid drives. After validation, the EKM obtains a random DK from crypto services. EKM then retrieves the public halves of the KEKs aliased by the two KEK labels. The EKM then requests that crypto services create two encrypted instances of the DK using the public halves of the KEKs creating two Externally Encrypted Data Keys (EEDKs). The encoding mode (label or hash) provides instructions that the EKM uses to build the EEDKs that are stored on the tape cartridge.

There are two modes for creating the EEDK:

- CLEAR or LABEL: In this mode, the key label is stored as part of the EEDK structure on the tape cartridge.
- HASH: In this mode, a hash of the public key referenced by the key label is stored as part of the EEDK structure on the tape cartridge.

Storing the hash value rather than the key label allows for greater flexibility when you export tape cartridges to another location, especially if that location might use a different key label (than the originating site) to refer to the same key.

When sharing business partner KEKs, we recommend using the HASH mode. This lets each party use any KEK label when importing a certificate into that party’s keystore. The alternative is to use the CLEAR or LABEL mode and then have each party agree on a KEK label.

The EEDKs are passed from the EKM to the drive in a secure manner and stored on the tape cartridge. The drive stores the EEDKs at several locations on the tape and in the Cartridge Memory. The EKM also sends the DK to the drive in a secure manner. It is the separately secured DK that the drive uses to encrypt the data.

On subsequent mounts of the cartridge, the drive passes the EEDKs to the EKM so that the EKM can extract the data key that was used. The EKM then passes that data key back to the drive in another encrypted form that the drive can decrypt. Remember that all data on a single cartridge must be encrypted using the same key. This passing of the EEDKs to the EKM is the process to ensure that the same key is used.

The role of DFSMS and policy management is to indicate to the drive, during OPEN processing (file sequence 1, DISP=NEW) that the mounted tape volume is to be encrypted (as indicated through the SMS Data Class policy and the specification of EEFMT2 for the recording format). OPEN processing also passes to the drive critical key management-related information, such as the key encrypting key (KEK) labels and the encoding mechanism (label or public key hash) specified through Data Class or through the DD statement (JCL, dynamic allocation, or TSO ALLOCATE). The values specified through the DD statement override any Data Class specification. If the key management-related information is not specified through the DD statement or Data Class, Encryption Key Manager-established defaults are used that can be specified on both a global and a drive level. See “Defining Data Classes” on page 187 for more information about how to specify which Data Classes contain information to encrypt.

Decryption System-Managed and Library-Managed Encryption

Figure 5-4 illustrates how the keys are retrieved from the media, communicated to the EKM, the data key sent from the EKM to the drive, and the data decrypted. In this example, we
decrypt data that was encrypted at another site, as outlined in Figure 5-3. The tape has two EEDKs stored in its cartridge memory. We call these EEDK1 and EEDK2. EEDK1 was stored with the CLEAR (or LABEL) mode selected, and EEDK2 was stored with the HASH mode selected.

An encrypted tape is mounted for a read or a write append. The two EEDKs are read from the tape. The drive asks the EKM to decrypt the DK from the EEDKs. The EKM validates that the tape drive is in its list of valid drives. After validation, the EKM requests that the keystore provide the private halves of each KEK that was used to create the EEDKs. The KEK label associated with EEDK1 cannot be found in the keystore, but the HASH of the public key for EEDK2 is found in the keystore.

The EKM asks crypto services to decrypt the DK from EEDK2 using the private half of the KEK associated with EEDK2. The EKM then sends the DK to the drive in a secure manner. The drive either decrypts the data for a read operation, or it uses the DK to encrypt data for a write-append.

Management interfaces

You need to configure whether to use a direct TCP/IP connection between the storage devices and the Encryption Key Manager (out-of-band) or to use the in-band proxy. Under z/OS, you define the in-band proxy by using the IECIOSxx PARMLIB member (or the SETIOS EKM command). For z/OS tapes, you can configure whether to encrypt based on Data Class definitions. Also for z/OS, you can specify the key labels through Data Class or
through the DD statement (JCL, dynamic allocation, or TSO ALLOCATE). In addition to this, you can also use Encryption Key Manager-assigned defaults if the key labels are not provided through z/OS. For tape cartridges that will be encrypted or decrypted, you must define and track the key information that you use. For information about key management and the role of the Encryption Key Manager (EKM), refer to IBM System Storage Tape Encryption Key Manager, Introduction, Planning, and User Guide, GA76-0418.

Key label specifications

When you write the first file sequence on a tape and request encryption, you can specify up to two Key Encrypting Key (KEK) labels, enabling the data key to be encrypted with two keys. You can use one of the keys for local (on-site) usage, and you can use the second key for export (off-site) purposes.

You can indicate key label specifications by:
- Data Class (using new integrated storage management facility (ISMF) panel fields)
- DD statement (JCL or dynamic allocation, using new keywords: KEYLABL1, KEYENCD1 and KEYLABL2, KEYENCD2)
- TSO ALLOCATE command (using new keywords: KEYLABL1, KEYENCD1 and KEYLABL2, KEYENCD2)

5.2.2 EKM configuration planning checklist

When planning your EKM configuration, you need to:
- Know the recipients for your encrypted tape cartridges.

 For each recipient to have access to an encrypted tape, an associated X.509 certificate must exist.
- Know the tape drives that will be used.

 For each tape drive used to read or write to an encrypted tape cartridge, you need to determine the drive serial number as input into the EKM drive table. However, if you use the EKM acceptunknown function, this is handled automatically for you.
- Are there an existing keys and certificates that you can use?

 If there are existing keys and certificates that you can use, then you can import/create keys/certificates into the keystore.
- Determine the keystore type that will be employed.

 The keystore holds the public/private keys and certificates used by the EKM in assisting the tape drives in generating, protecting, and retrieving symmetric encryption keys.

 Depending on the keystore chosen, a keystore can be shared between EKM servers (RACF, Sysplex, and so forth).

 If EKM servers run on separate systems, then you likely will use separate keystores.

Note: For EKM servers used to handle requests from the same set of tape drives, the information in the associated keystores must be kept the same.

This allows any of the EKM servers that are contacted to have access to the necessary information to support the requests it receives from the tape drives for EKM server keystore information.
5.2.3 Advice on working with keys and certificates

You must have your encryption keys and certificates to get access to your encrypted data. Remember:

- Do not lose your public/private keys and certificates. You will not be able to decrypt your data without them and your data will be lost.
- Protect your public/private keys and certificates.
- Make sure you back up your public/private keys and certificates.

Important: Although IBM has services that can help you to recover data from a damaged tape cartridge, if the data on the damaged tape cartridge is encrypted, the data returned to you will be encrypted data. So if you lose your keys, you have lost your data.

Acting on the advice

Maintenance, backup, and restoration of key and certificate information depends on the key ring and keystore implementation that you use. Here are suggestions that you might want to follow to be sure that you can get access to your keys:

- Create copies of the keystores that the EKM will use.
- Retain a PKCS #12 format file for each key and certificate combination and store it in a secure location (for example, on read-only media in a locked cabinet).
- Retain a copy of the PKCS #12 format and the keystore at your disaster recovery (DR) sites.

These suggestions allow you to recreate keystores if absolutely necessary. See *IBM System Storage TS1120 Tape Encryption, Planning, Implementation, and Usage Guide*, SG24-7320, for more information about key management.

5.3 Encryption planning and implementation

In a System z environment, you implement encryption capability through TS1120 Tape Drive hardware, microcode additions and changes to the Tape Library Manager and Tape Controller, and a new software component called the Encryption Key Manager (EKM).

5.3.1 Ordering information

The main drive hardware and microcode additions and changes for TS1120 Tape Drive encryption are:

- A no charge encryption-enabled feature number for new TS1120 Tape Drives.
- An optional chargeable encryption feature number upgrade, which can contain refurbished parts, for installed TS1120 Tape Drives.
- Microcode firmware upgrades to your TS1120 Tape Controller or 3592-J70 Enterprise Tape Controller. When using a common tape cartridge scratch pool, you will also require microcode firmware upgrades to your 3590-A60 Enterprise Tape Controller.
- Library Manager microcode firmware upgrade.
- A router for out-of-band key management support and Encryption Key Manager connectivity for tape controllers, tape frames, and the tape subsystem.
In addition to encryption-capable TS1120 tape drives, you might need to upgrade the microcode firmware of your tape control unit and your Library Manager. If you decide to use out-of-band System-Managed Encryption, you also need a router.

TS1120 Tape Drive Encryption support

Encryption capability is standard on all IBM System Storage TS1120 Tape Drives (Machine Type 3592, Model E05) ordered after 8 September 2006. For IBM System Storage TS1120 tape drives ordered prior to 8 September 2006, a chargeable upgrade, FC5592, is available to enable the drive for encryption. The encryption capability includes drive hardware as well as microcode additions and changes.

You can use the IBM Tape Cartridge 3592 Extended with a native physical capacity of 700 GB Data (JB) or WORM (JX), or the IBM TotalStorage Enterprise Tape Cartridge 3592 with a native physical capacity of up to 500 GB Data (JA) or WORM (JW), or the IBM TotalStorage Enterprise Economy Tape Cartridge with a native physical capacity of up to 100 GB native Data (JJ) or WORM (JR) to hold your encrypted data.

Under z/OS, with system-managed tape support, TS1120 tape drives that are encryption-enabled are not supported under the same 3592-J70 or 3592-C06 Controller with TS1120 tape drives that are not encryption-enabled. By attaching the drives to different tape controllers, a mix of TS1120 tape drives that are encryption-enabled and not encryption-enabled along with 3592-J1A and 3590 drives can exist in the same tape library. Additionally, an IBM TS1120 Tape Drive that is encryption-enabled can write, on separate media, either encryption or non-encryption format based on your needs.

Note: Tape drives attached to the same tape control unit must all write in the same format. For example, if you attach both TS1120 tape drives and 3592-J1A tape drives to the same controller, the TS1120 tape drive operates in 3592-J1A emulation mode.

With encryption-enabled tape drives, the access time to data on the tape drive increases. Also, the tape drive unload time increases. These increases are due to the time needed to retrieve, read, and write the encryption key.

IBM tape controller encryption support

In a System z environment, you can attach your TS1120 encryption-enabled drives to either an IBM TS1120 Tape Controller Model C06 or a 3592-J70 Tape Controller. To utilize encryption support, all the tape drives attached to the same controller must be encryption-enabled.

To configure and activate the encryption capability of the tape control unit (CU) and attached tape drives, you need to order CU Encryption Configuration/Plant or Field (FC9595 or FC5595 respectively) for your Tape Controller Model J70 or C06. Also, order CU Encryption Configuration/Field (FC5595) whenever an encryption configuration change is required on
the tape controller or attached tape drives. You must install the CU Encryption Configuration features regardless of whether you implement in-band or out-of-band support.

Note: When you install the CU Encryption Configuration features, it is not necessary to order the Encryption Configuration/Plant or Field (FC9592 or FC5592 respectively) on the TS1120 tape drives attached to the controller. Unless you install the TS1120 tape drives in a client rack, the minimum level of Library Manager microcode also ships when you order FC9595 or the first time that you order FC5595 for the control unit.

Support for the TS1120 Encryption function installed in any IBM controller attachment requires a minimum level of microcode firmware for all of your controllers where you intend to use tape cartridges from a common tape cartridge scratch pool. The microcode firmware levels that you need are:

- 1.19.5.x for any 3592-J70 Enterprise Tape Controller
- 1.21.x.x for any TS1120 Tape Controller (3592-C06)
- 1.16.1.11 for any 3590-A60 Enterprise Tape Controller

Note: The 3590-A60 Enterprise Tape Controller does not support the attachment of a TS1120 Tape Drive. If you mix 3590-A60 tape controllers in a library with other tape controllers that have attached encryption-enabled drives and use a common tape cartridge scratch pool, you need to update the microcode firmware of your 3590-A60 to 1.16.1.11.

3494 Tape Library Manager Encryption support

TS1120 Encryption support for tape drives in an Enterprise Tape Library 3494 requires a minimum level of microcode firmware in the Library Manager of LM534.xx. The level of microcode firmware required ships the first time that you order FC5595 or FC9595 and if the 3592 Tape Controller is not located in a client-owned rack (FC4641).

Router for out-of-band support

If you are using out-of-band support, you must install one of FC5593 on the 3494 Library Manager (Model L10, L12, L14, and L22) to support up to seven 3592 Tape Controllers. FC5246, Dual Path Concentrator, is required on the Library Manager before you can install FC5593. You can install a second Router for EKM Attach feature on the 3494 Library Manager to support up to fourteen 3592 Tape Controllers.

Note: The 3494 Tape Library supports up to fifteen tape controllers. However, the maximum quantity of two FC5593s in the 3494 Library Manager supports up to fourteen 3592 Tape Controllers.

5.3.3 General software requirements

Tape Encryption is supported by z/OS V1R4 and above. You also need IBM Software Developer Kit (SDK) for Java 2.

z/OS support for Tape Encryption

The TS1120 Tape Drive with encryption enabled is supported for attachment to ESCON and FICON channels on System z servers.
z/OS support of System-Managed Encryption requires:

- z/OS and z/OS.e V1R5 or later
- z/OS V1R4 with z/OS V1R4 z900 Exploitation Support feature
- z/OS.e V1R4 with z/OS.e V1R4 z900 Coexistence Update feature
- An Encryption Key Manager component available to the z/OS system

For z/OS V1R6 and V1R7, refer to enabling APAR OA15685. For z/OS V1R8, refer to enabling APAR OA17562. An enabling APAR is also available for z/OS V1R4 and V1R5. For additional information about the support that is provided, refer to the 3592 PSP Bucket.

Note: You can use the encryption-enabled TS1120 tape drive on systems that run z/OS V1R4 and above. However, you must use z/OS V1R5 and above to use media types MEDIA9 and MEDIA10.

For details about supported software versions and release levels for the IBM TS1120 Tape Drive, as well as hardware support information, refer to the following Web site:

Other mainframe platform support for Tape Encryption

Currently, Tape Encryption on System z servers is supported in z/OS environments only. IBM intends to support System-Managed Encryption with the TS1120 on the following platforms:

- z/VM® V5.1 and V5.2 support of the TS1120 Tape Drive with encryption. This includes transparent support for VM guests. The z/VM support will require the Encryption Key Manager component running on an operating system other than z/VM that is using an out-of-band connection.
- z/TPF V1.1 support of the TS1120 Tape Drive with encryption. The z/TPF support will require the Encryption Key Manager component running on an operating system other than z/TPF that is using an out-of-band connection.
- z/VSE™ V3.1 support of the TS1120 Tape Drive with encryption. It is also the intent of IBM to support z/VSE V4.1 (when made available) using System-Managed Encryption with the TS1120. The z/VSE support will require the Encryption Key Manager component running on an operating system other than z/VSE that is using an out-of-band connection.

Note: All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these Statements of General Direction is at the relying party’s sole risk and will not create liability or obligation to IBM.

Encryption Key Manager on z/OS

If you run the Encryption Key Manager on the z/OS system, then you must install one of the following IBM SDKs for Java 2:

- IBM SDK for z/OS, Java 2 Technology Edition, V1.4, 5655-I56 (at the SDK1.4.2 SR6 or later level)
- IBM 31-bit SDK for z/OS, Java 2 Technology Edition, V5.0, 5655-I98 (at the SDK5 SR3 or later level)

For details about supported software versions and release levels for the IBM TS1120 Tape Drive, as well as hardware support information, refer to the following Web site:

5.3.4 Linux on System z

Tape Encryption is not available for Linux on System z with the IBM TotalStorage 3494 Tape Library. Tape Encryption is available for Linux on System z servers connected to the IBM TS3500 Tape Library.

5.3.5 Media support for encryption-enabled TS1120 tape drives

Encryption-enabled TS1120 tape drives read and write in the new recording format EEFMT2 (Enterprise Encrypted Format 2), as well as EFMT1 (Enterprise Format 1, also known as J1A Emulation) and EFMT2 (Enterprise Format 2). EEFMT2 records data in an encrypted format. EEFMT2 provides the same capacity as EFMT2. The encryption-enabled IBM System Storage TS1120 tape drive uses the following IBM System Storage family of tape media (MEDIA5, MEDIA6, MEDIA7, MEDIA8, MEDIA9, and MEDIA10). For details about each media type, refer to Table 4-4 on page 181.

Support for the encryption-enabled IBM TS1120 Tape Drive is provided at z/OS V1R4 or later releases; however, support for MEDIA9 and MEDIA10 requires z/OS V1R5 or later releases.

Note: For detailed information about planning and installing TS1120 Tape Encryption, see *IBM System Storage TS1120 Tape Encryption, Planning, Implementation, and Usage Guide*, SG24-7320.

5.4 Other Considerations

This section provides additional topics to consider when implementing Tape Encryption.

5.4.1 Disaster recovery considerations

If you plan to use a disaster recovery (DR) site, EKM provides a number of options to enable that site to read and write encrypted tapes. These are:

- Create a duplicate EKM at the DR site with the same information as your local EKM (configuration file, tape drive table, and keystore). Then, this EKM is in place and capable of taking over for one of your existing production EKMs to read and write encrypted tapes.

- Create a backup copy of the three EKM data files to be able to recover as needed. If you create a current copy of the three data elements needed by EKM (configuration file, tape drive table, and keystore), then you can start an EKM at any time to act as a duplicate at the DR site. If your DR site uses different tape drives than your primary site uses, the configuration file and tape drive table must contain the correct information for the DR site.

Note: Remember not to use the EKM to encrypt the three EKM data files (configuration file, tape drive table, and keystore), because you are not able to decrypt them without a functioning EKM.

- Use the second Externally Encrypted Data Key (EEDK) on each tape cartridge to encrypt tape cartridges so that a private key, which is unique to the DR site, is one of the entities that can read the encrypted tape. You can also choose to write an alternate certificate for the DR site, which consists of using the certificate of the DR site to write your existing tapes in exactly the same way that you provide this capability to another organization.

 In other words, in addition to storing your data encryption key on your tapes, wrapped using your organization’s public/private key, the data key is also stored on the same tapes wrapped using the DR site’s public key (certificate). This allows a functioning EKM at that
Consider setting the EKM variable `drive.acceptUnknownDrives` in the configuration file to `true`. See *IBM System Storage TS1120 Tape Encryption Planning, Implementation, and Usage Guide*, SG24-7320, for more information about this variable.

5.4.2 Performance considerations

Unlike software encryption or encryption appliances, the TS1120 encryption solution can encrypt data with minimal performance impact and without requiring additional equipment in your computing environment. You might be concerned that encryption will impact the performance of your applications or backup processing. Extensive testing shows there is little degradation to performance with encryption-enabled drives. The data rate claims of the drive remain unchanged.

With encryption enabled, when writing from load point, the access time to the first write from the beginning of tape will increase. This is due to the time needed to retrieve, read, and write the encryption key. In z/OS, this added time is detected in OPEN processing, the time between the mount message and the IEC705I “Tape On” message. The tape drive unload time has a similar increase.

If your EKM is on a z/OS platform, insure that it has a WLM job priority similar to other system services, such as VTAM or TCP/IP. You do not want situations where the EKM has to wait for CP cycles to return keys to access and return keystore information, because this can delay processing across your enterprise.

Using Virtual IP Addressing (VIPA) in your z/OS setup can contribute to both better performance and redundancy when running with a z/OS-based EKM. Refer to the *IBM System Storage TS1120 Tape Encryption Planning, Implementation, and Usage Guide*, SG24-7320 for more information about this topic.

With z/OS, you might also see a longer delay when using in-band if your primary key manager is unavailable. In this case, the IOS Proxy Retry Logic first attempts to communicate with the primary key manager. The IOS proxy interface might retry several times before switching over to the secondary key manager. While the retries occur, the job might appear hung.

Before cancelling a job, ensure that you allow enough time for the retry attempts that might occur on the primary and also the secondary key manager. Typically, each attempt might take around three minutes with two retry attempts on the primary before attempting to connect to the secondary.

Similar logic is in place with the secondary. After the proxy interface has switched to the secondary, it will always attempt to communicate with the primary on subsequent communications; however, in this case, only one (shortened) attempt is made to communicate with the primary before going back to the secondary. If the IOS proxy interface cannot communicate with the primary key manager, even though the job might have been successful, message IOS627E is issued in the joblog and in the system log alerting you to a potential problem with the primary key manager.
Running z/OS production systems

Running and improving a tape environment in z/OS is an ongoing task. This chapter provides a collection of useful tasks and information. These tasks include:

- Data migration considerations
- Partitioning tape libraries among multiple z/OS users
- Managing different device models in a z/OS environment
- Tape device selection criteria
- Cartridge processing and interaction with object access method (OAM) exits
- Integrated storage management facility (ISMF) ALTER command
- Tape configuration database (TCDB) considerations and resynchronization of RMM-CDS
- Exploitation of new capabilities

This chapter has been updated with the considerations that apply when using IBM TotalStorage Enterprise Tape Model 3592 drives and WORM media.
6.1 Data migration

The following sections discuss the necessary steps to plan and perform data migration. There are several strategies to migrate the data from one hardware platform to another one, and to introduce new drives or media. Plan the migration phases carefully in advance, and allow time for some side steps regarding education, disaster recovery adjustments, and documentation (refer to 6.9, “Exploitation of new capabilities” on page 283).

This section assumes that before you install your new hardware, you have analyzed your data in general. This knowledge of your environment (how much data, the type of data, how many business hours, and so forth) is essential to the input for the data migration steps.

Note: We do not include migration considerations to a Virtual Tape Server (VTS) or Peer-to-Peer (PtP) VTS in this chapter. Refer to *IBM TotalStorage Virtual Tape Server Planning, Implementing, and Monitoring*, SG24-2229, and *IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide*, SG24-6115. These books were updated recently and contain all the necessary and detailed information.

6.1.1 Scenarios for planning a data migration

Data migration is necessary when you introduce new hardware or media. Depending on the change in your environment, you must perform different migration tasks. Table 6-1 lists migration scenarios. Each scenario considers the following factors:

- **Redirection of new data:** Do I have to review and change my automatic class selection (ACS) routines?
- **Movement of physical cartridge:** Do I have to carry my cartridge to a new location to place into new hardware?
- **Copy existing data:** Do I have to copy all my existing data on this media or in this library to a different media or library?
- **Time aspects:** If you must meet the end of the lease period. For example, time-consuming tasks (copying data) are sometimes a key aspect in the planning. For physical movement, plan the outage carefully. However, you can finish the actual transition phase on a weekend.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Redirecting new data</th>
<th>Movement of physical cartridges</th>
<th>Copy existing data</th>
<th>Time aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Replacement library without changing the media or 359x models</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B) Replacement library with changing drive models (no old drive models left?)</td>
<td>No</td>
<td>Yes</td>
<td>No/Yes</td>
<td>No</td>
</tr>
<tr>
<td>C) Replacement library with changing media</td>
<td>Yes</td>
<td>No/Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>D) Changing drives or media in existing library</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes/No</td>
</tr>
<tr>
<td>E) Replacement of hardware not containing 3590</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The following section offers a detailed explanation for each of the scenarios in Table 6-1.

Scenarios A and B
The physical movement of the cartridge to the new environment is the easiest way. However, physical movement requires special considerations (see 6.1.3, “Moving native cartridges to another library” on page 253). After the movement, the old hardware is ready for removal. To redirect the new traffic to the new library, you must add the new library to the appropriate Storage Class. You do not need to perform any data migration.

In scenario B, you must follow the instructions in “Special migration considerations for applications and products” on page 250 for applications, such as Hierarchical Storage Manager (HSM) or OAM to avoid problems.

Scenario C
Introducing new media (regardless of whether you are also upgrading the drive models) depends on your new library to determine whether you want to move the old cartridges to the new library. If there are enough free slots, you can move them, which frees the old hardware quickly. This might be helpful if the capture of lease end is an important issue. If this is not the case, the best way is to put the new media in the new library and change the ACS routines to direct to the new hardware. Follow this with data migration. Refer to 6.1.2, “Planning data migration details” on page 249.

Scenarios D and E
Moving physical cartridges is unnecessary or inapplicable. Redirection of the new datasets through ACS routines is the first step. Data migration needs the most attention. Refer to the following sections for more information.

6.1.2 Planning data migration details

Depending on the structure of your company, data migration can be a task outside of your department. Involve all parties early in the installation planning process, so they can plan the migration part in advance.

Discuss and review the following details:

- How do you plan to redirect new data? Change ACS routines, change Job Control Language (JCL), and so forth?
- How fast must you redirect the new data? Which data should you redirect first?
- Are there special migration considerations for applications or products?
- How much existing data must you move? How will you move it (moving cartridges or copying data)?
- What is the time schedule for migration? Is there a lease end for old hardware?
- Is additional software required for migration?

The following sections look closely at these steps.

Redirecting new datasets
You redirect a new dataset through changes in the ACS routines. Introducing new hardware or hardware attachments might create a case for you not to redirect your whole workload in one big step. Instead, you might want to change parts of the workload in a specific time scale.
The advantage of redirecting smaller parts of workload at a time are:

- Less risk
- Time for education and the learning phase
- Opportunity to check the installation regarding performance and automation

Do not move user-specific data first. In a z/OS environment, dumps and traces, SMF data, and syslogs are good examples of what to move first. Even if they are critical for the z/OS operations, they contain no user data.

You might want to use NaviQuest for creating SMS test cases for the new environment. Refer to 4.3.17, “Testing ACS logic with NaviQuest” on page 225.

Special migration considerations for applications and products

If you change the device type or the media size, certain applications need specific attention to avoid problems. The following list contains information regarding whether the application can exploit the new capacity of tape drives and media. It also offers considerations for migration time.

- **DB2® or IMS™ logs**: These logs do not change their behavior. However, if you need to write them directly to tape, you do not benefit from their higher capacity.

 You can copy existing datasets with standard z/OS procedures. This does not exploit their capacity, unless you introduce multilabel volumes. We do not recommend this for DB2 or IMS.

- **HSM/ITSM/OAM**: All of these products exploit the full capacity of a tape. No extra tasks are required in HSM and OAM. For ITSM, you need to adjust the MAX or Estimated capacity to exploit the full capacity for the storage pool. The introduction of XL cartridges increases the recall times in all of these systems (doubled media length).

 You must set all existing tapes in filling status to full, before you introduce the new drives. If not, the programs try to fill the tapes and receive a label error due to different recording technologies, which results in discontinued processing (refer to 6.3, “Managing different 3590 models in a 3494 Tape Library” on page 256). Recycle for HSM, Movevol for OAM, or XXX for ITSM transfers the data from full cartridges to new media tapes or the new scratch tapes, which are labeled on the higher capacity. Converting to an XL cartridge is possible if you set Return to scratch to NO in DFSMSrmm for the old cartridges before you start the migration.

- **Output directly from jobs, DFDSS backups**: You can change these backups and the DFDSS backups to use multilabel processing. If you migrate to a VTS later, multilabel processing restricts the possibilities of serializing your jobs. Then, you cannot exploit the full benefits of the virtual drives. This can impact your batch window. However, if you want to fill your cartridge with an acceptable amount of data, multilabel is the only way to do so.

 You can copy existing datasets using standard z/OS software. If you do not use multilabel processing, the same number of VOLSERS is needed. You cannot exploit capacity.

- **Output management systems**: Typically, these systems have the capability to exploit higher capacity. Refer to your specific software customization.

 Most output management systems have their own databases that keep track of which output resides on which cartridge and where. Therefore, you cannot copy the data with standard z/OS software. Most vendor systems provide utilities to upgrade to a higher device.

Special products

There are some products from third-party vendors that do not use the tape standard support of tape labels or tape marks. Some of them do not support multivolume processing. If you use
such products, migration to a different media type is only possible if the media has more capacity than the old one. Migration from a 3590 media to a VTS reduces the capacity of a single volume. Multivolume processing and correct tape mark processing are necessary in this case. Therefore, copying data from the original source might be impossible.

Make a list of the software writing datasets on tape, and check whether some data needs specific treatment.

Compressed data

Volume mount analyzer (VMA), the tape tools, or other monitoring and sizing tools cannot distinguish between compressed and uncompressed data. In a z/OS environment, you can use compression tools, such as FLAM, or use compression components in applications, such as DB2 compression or DFDSS or HSM-ML2 compression.

The information regarding MB or GB traffic shows you the amount of compressed data. The calculation of the tape utilization might be wrong, because the assumption of three to one (3:1) is incorrect. Instead, use one to one (1:1).

Consider using compressed data if you monitor or size your environment in regard to:

- Throughput
- Necessary cartridges and slots
- Necessary cache in VTS
- Necessary stacked volumes in VTS

Existing data: Moving, copying, and expiring

Copying existing data is a difficult task and consumes significant personnel resources. Therefore, investigate how much of the data that you really need to copy. Use EXPDIST (see “Tape tools” on page 447) to obtain detailed information about your expiration dates. Check the removal dates (lease end and amount of time for removal and shipping) and review the number of VOLSERS already expiring to that date. Find out whether there is any issue in moving cartridges that do not expired until this date and keeping in them in the new library.

Make a list of the volumes and data that you must copy and the copy mechanism that you intend to use for the process. Using a copy tool can make the migration easier (refer to “Additional software for data migration: Copy tool” on page 252) and provides a lot of additional functionality (for example, keeping the original tape management system entries). There are still many time-consuming migration tasks left. Do not underestimate the necessary effort for this task.

Time schedules and staffing requirements

Even if migration is not a project, using a project plan schedule can help you to finish the migration in time. Allow at least two weeks (depending on your environment and equipment) before lease end for the complete deinstallation of the drives, controllers, and frames of a 3494 and packaging for shipment. You need this time to empty the frames, disconnect from the host attachments, deinstall the hardware, and prepare for shipping.

Consider that preparing the copy tasks and checking the results of the copy jobs are time-consuming. Checking the results is essential, because of a possible data loss.

Remember that the migration tasks run in addition to your daily business or the daily business of your storage administrator. Consider carefully how much time you can spend each day for this task.
Additional software for data migration: Copy tool

You might want to consider using a product designed to copy data from one media to another. These products are designed to do much of the work for you. Here are reasons why you might want to choose a copy tool:

- Interaction with the tape management system can keep the original creation date, the original owner, and the original expiration date. Standard z/OS software does not keep this information in a copy process. You must manually intervene to keep the expiration date.
- Bulk processing is possible. You can copy similar data, such as SMF, from one job or all the datasets from one tape, regardless of the names on it.
- The copy tool might support multilabel, multivolume, and multilabel-multivolume files.
- The copy tool might support automatic cleanup (expiration of the source volumes).

Table 6-2 shows the tape copy products of which we are aware. You can choose one of these products, or perhaps you have your own tool, which performs a similar function. However, you must take your own environment into consideration when evaluating these products. Options to consider when evaluating a tape copy product are:

- Interaction with your tape management system
- Automation level of the process
- The speed and efficiency of the copy operation
- Flexibility in using the product for other functions, such as duplicate tape creation
- Ease of use
- Ability to create a pull list for any manual tape mounts
- Ability to handle multivolume datasets
- Ability to handle volume size changes, whether from smaller to larger or larger to smaller
- Functionality to review the list of datasets before submission
- Audit trail of datasets already copied
- Flexibility in filtering the datasets by wildcards or other criteria, such as expiration date or creation date
- Failure management, such as input volume media failures, during the copy operation

Table 6-2 Tape copy product examples

<table>
<thead>
<tr>
<th>Product name</th>
<th>Vendor name</th>
<th>Web address for more information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape copy Tool/DFSMRmm</td>
<td>International Business Machines</td>
<td>Contact your IBM Marketing Representative for more information about this service offering.</td>
</tr>
<tr>
<td>Beta55</td>
<td>Beta Systems Software AG</td>
<td>http://www.betasystems.com</td>
</tr>
</tbody>
</table>
6.1.3 Moving native cartridges to another library

To move an existing cartridge to another library, you must install the second library as explained in Chapter 4, “Software implementation in z/OS” on page 145. Because you have the library in SMS online and can bring the drives online to the system, you can start moving the cartridges.

You can use the procedures that the system provides, such as Eject and Enter controlled, through the tape management systems (TMS), ISMF and OAM, or you can choose manual operations. The procedure that you choose depends on your environment and the service level agreements that you have. Consider the following points:

- Library length and productive workload influence eject times. In a busy 14-frame wide library, ejecting 30 cartridges takes approximately 20 to 25 minutes.
- Your business and service level agreements: Outage for an application can be a problem.
- Convenience I/O station is installed.
- High/capacity I/O facility is available.
- Whether the new library is already in production.
- The library stand is in the same building or in different data centers.
- For a manual move, you need to manipulate the TMS database and TCDB. Careful preparation is necessary.

Depending on these conditions, you must evaluate the best choice for your environment. Table 6-3 summarizes the advantages and disadvantages of system-controlled and manual methods of moving cartridges.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Vendor name</th>
<th>Web address for more information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TelTape</td>
<td>Cartagena Software Ltd.</td>
<td>http://www.cartagena.com</td>
</tr>
</tbody>
</table>

6.1.3 Moving native cartridges to another library

To move an existing cartridge to another library, you must install the second library as explained in Chapter 4, “Software implementation in z/OS” on page 145. Because you have the library in SMS online and can bring the drives online to the system, you can start moving the cartridges.

You can use the procedures that the system provides, such as Eject and Enter controlled, through the tape management systems (TMS), ISMF and OAM, or you can choose manual operations. The procedure that you choose depends on your environment and the service level agreements that you have. Consider the following points:

- Library length and productive workload influence eject times. In a busy 14-frame wide library, ejecting 30 cartridges takes approximately 20 to 25 minutes.
- Your business and service level agreements: Outage for an application can be a problem.
- Convenience I/O station is installed.
- High/capacity I/O facility is available.
- Whether the new library is already in production.
- The library stand is in the same building or in different data centers.
- For a manual move, you need to manipulate the TMS database and TCDB. Careful preparation is necessary.

Depending on these conditions, you must evaluate the best choice for your environment. Table 6-3 summarizes the advantages and disadvantages of system-controlled and manual methods of moving cartridges.

<table>
<thead>
<tr>
<th>Consideration</th>
<th>System-controlled moving</th>
<th>Manual moving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outage time</td>
<td>Middle to long</td>
<td>Short to middle</td>
</tr>
<tr>
<td>Need manipulation on tape management and TCDB</td>
<td>None</td>
<td>High (home location Storage Class)</td>
</tr>
<tr>
<td>Risk of data loss</td>
<td>None, only if you drop a cartridge</td>
<td>Middle, manipulation of TMS is always a risk</td>
</tr>
<tr>
<td>Risk of losing cartridge</td>
<td>No difference</td>
<td>No difference</td>
</tr>
<tr>
<td>Risk of forgetting cartridges</td>
<td>None, ejects can be created by procedures or TMS</td>
<td>High, if cartridges must be picked out manually from the frame. Middle if all cartridges are transferred</td>
</tr>
</tbody>
</table>
6.2 Partitioning tape libraries among multiple z/OS systems

Partitioning a tape library gives you the chance to use the library resources with different users. Each attached partition can be either an MVS platform or a non-MVS platform. There can be single MVS platforms or MVS platforms that consist of one or more systems or sysplexes, or both, connected to a shared TCDB. If systems share the TCDB, they are referred to as a TCDBplex. Each TCDB can contain configuration information about the library and some subset of the volumes in the library. Therefore, you can view partitioning as dividing a physical library into multiple logical libraries, with each logical library (TCDBplex) represented by one TCDB.

Inside a sysplex, the tape devices can be shared through ATS STAR (or previously through IEFAUTOS) without manual intervention. If you have a TCDBplex containing more than one sysplex or single systems, the common use of tape devices is not possible without additional tools or manual intervention. This is also true if multiple users (multiple TCDBplex or single MVS platforms) want to use the same devices.

Inside a TCDBplex, the cartridges are shared. Partitioning a library among multiple TCDBplexes requires separation of the scratch pools. That is, each TCDBplex must have a separate Library Manager category for each scratch media type (CST, ECCST, high performance cartridge tape, and extended high performance cartridge tape). For logical completeness, make the error and private volume categories also unique to each TCDBplex.

To change the default category assignments, you can specify the categories in PARMLIB member DEVSUPxx. DEVSUPxx eliminates the need for a user modification that was used in earlier releases of DFSMSdfp to assign volume categories. The category specification parameters enable the installation to change the default category assignments associated with a system or sysplex, or both. The installation must ensure that all systems or sysplexes, or both, that are associated with the same TCDB (TCDBplex), use the same category assignments. For a discussion of the partitioning-related DEVSUPxx parameters, see 4.3.2, “Updating SYS1.PARMLIB” on page 162.

6.2.1 Setting volume categories

In a partitioned library, we recommend that the installation use DEVSUPxx to change the default categories associated with each TCDBplex. Therefore, no TCDBplex uses the default categories, so there are no volumes in those categories. If the DEVSUPxx parameters are inadvertently removed from one system, scratch mount requests are directed to the empty default categories, and the mount requests fail.

If there is a TCDBplex that uses the default categories, volumes can be mounted by the system where the DEVSUPxx parameters were removed. If a scratch volume from a default category is mounted on the system where the parameters were removed, it is not used because there is no tape volume record in the TCDB. The volume is assigned to the error category, with resultant disruption in library operations in the TCDBplex that owns the default categories.

6.2.2 Volume categories and DFSMSrmm

In DFSMSrmm, the REJECT ANYUSE command in PARMLIB member EDGRMMxx allows an installation to specify volume serial numbers that are not to be used in this TCDBplex. When you enter a volume into a system-managed tape library, all connected systems get this information and if the volume matches a specified REJECT ANYUSE(prefix), EDGLCSUX sets a return code of 12 to pass to OAM. OAM passes the return code to the Library Manager. It does not create a volume entry in the TCDB or an entry in DFSMSrmm. If no connected
system passes a return code of 0, the volume is left in the INSERT category in the Library Manager database.

Important: The REJECT ANYUSE command is mandatory for volumes that are not allowed. Even if you predefine the volumes in one of the connected z/OS systems with the DFSMSrmm ADDVOLUME subcommand, it does not prevent other systems from taking the inserted volumes to the TCDB if a REJECT ANYUSE is not coded.

Refer also to 4.3.7, “Updating and customizing your tape management system” on page 177.

If you have another tape management system and need to partition your tape library, ask your vendor for the exit code of module CBRUXENT to approve or disapprove entry of cartridges into the TCDB.

We assume that you have two TCDBplexes: PLEX1 and PLEX2. PLEX1 includes systems SYS1A and SYS1B. PLEX2 includes systems SYS2A, SYS2B, and SYS2C. All five systems are attached to the same IBM 3494 Tape Libraries (see Figure 6-1).

Note the following points:

- Scratch mounts from systems in PLEX1 get volumes from Library Manager categories X’0011’, X’0012’, X’0013’, X’0014’, or X’0015’ assigned as specified in the DEVSUPxx members of SYS1.PARMLIB, depending on the requested media type in the Data Class.

- Scratch mounts from systems in PLEX2 get volumes from Library Manager categories X’0021’, X’0022’, X’0023’, X’0024’, or X’0025’ assigned as specified in the DEVSUPxx members of SYS1.PARMLIB, depending on the requested media type in the Data Class.
The setting for the private category is optional, because specific mount requests use the TCDB volume entry information. The Library Manager private category is not used for specific mount requests. To reflect the host category assignment on the Library Manager, we recommend that you always specify a category for private volumes on all hosts.

For details regarding partitioning and sharing, refer to the Guide to Sharing and Partitioning IBM Tape Library Data, SG24-4409.

6.3 Managing different 3590 models in a 3494 Tape Library

Sometimes new drive models are installed for migration purposes. After the migration, only the new drive model is left in a library. However, a mix of different drive models can exist for a longer period of time. Depending on your purpose, you need to consider your options.

If you have different 3590 models installed (for example, 3590, 3590E, or 3590H), one of the following implementation steps applies:

- To direct new tape allocations to a specific drive model, you need to define a Data Class. Specify Recording Technology with the appropriate value for each model. Also, update the ACS routines for new tape allocations accordingly to assign the new Data Class.

 Refer to the Data Class definition (shown in Figure 4-27 on page 188) for a detailed description of the Data Class.

- To allow scratch cartridges to be relabeled as a down-level drive, include the VOLNSNS=YES definition in the SYS1.PARMLIB member DEVSUPxx.

 Refer to “DEVSUPxx member of SYS1.PARMLIB” on page 164 for a detailed description of DEVSUPxx, and refer to 2.9, “The 3590 upgrade and coexistence considerations” on page 75 for more information about media compatibility.

- To allow a private cartridge written with 128 or 256 tracks to be mounted for a read operation on a drive with higher track capability, set the TCDB volume entry definition of SPECIALATTRIBUTE(READCOMPATIBLE). You can verify the TCDB Special Attribute field using the ISMF Mountable Tape Volume List shown in Figure 6-2.
In addition to browsing through ISMF panels, you can list the information in the TCDB, using the LISTC command. To verify volume entries, specify the VOLUMEENTRIES parameter as shown in the LISTC command in Figure 6-3. This example lists all tape volume entries whose names begin with the letters V1 in the ATLLIB1 tape library.
The default of this parameter is SPECIALATTRIBUTE(NONE), (SPEC-ATTRIBUTE ----NONE in the display above). There is a high probability that you need to update it in your system. You can do this either through IDCAMS ALTER VOLENTRY or using DFSMSrmm, if this is your tape management system. The IDCAMS command for volume 123456 looks like this example:

```
ALTER V123456 VOLUMEENTRY SPECIALATTRIBUTE(READCOMPATIBLE)
```

HSM and OAM with OSMC considerations

If you want to use the new drives with HSM or OAM with OSMC, you must set all volumes that are in filling state at the moment to FULL. Otherwise, HSM and OSMC mount the tapes to fill them up on the new drives. Then, they discover the downlevel label and issue an error message.

To overcome this, you need to perform the following steps for HSM and OAM:

- **For HSM:**
 - Find out the volumes which are in filling status. Enter:
    ```
    LIST TTOC SELECT(ML2 NOTFULL) ODS(SMS.LIST.TTOC2)
    
    You can also specify BACKUP or BOTH instead of ML2.
    
    - Set the volumes to 100% full. Enter:
      ```
 HSEND DELVOL VOLSER MIGRATON(MARKFULL)

 You receive a ARCO2601 Migration Volume VOLSER entry marked FULL.

 Clients, who currently use MEDIA5 tapes both with and without the Performance Scaling option, might want to reclaim the performance-scaled tapes for full capacity use and start using MEDIA7 tapes for high performance functions. For example, perhaps the installation uses MEDIA5 60 GB for ML2 and MEDIA5 300 GB for backup and dump. ML2 migration and recycle output can be redirected to MEDIA7 and all of
the MEDIA5 ML2 tapes can be either specifically recycled by VOLSER, or marked full and recycled generically. The released MEDIA5 tapes can then be used to their full capacity for backup and dump processing. All HSMs in an HSMplex must have the DFSMShsm full support PTFs installed if any HSM in the HSMplex has access to MEDIA6, MEDIA7, or MEDIA8 tapes. This prevents accidentally mounting WORM tapes for DFSMShsm functions and avoids including MEDIA7 tapes with MEDIA5 tapes for recycle reuse capacity calculations.

For OAM:

a. Find out which volumes are in filling status. The OAM/OSMC system programmer must perform this task. The OAM/OSMC system programmer can give you a volume table, extracted from DB2, which shows the volume and filling state.

b. Set the volumes in filling state to FULL. Enter:

 F OAM,UPDATE,VOL,volumeserialnumber,FULL,Y

c. Set the volume to read-only. Enter:

 F OAM,UPDATE,VOL,volumeserialnumber,WRITABLE,N

Perform these actions before you change the ACS routines to direct HSM or OAM/OSMC traffic to the new drive models.

6.4 Tape device selection criteria

With DFSMS/MVS™ support for tape libraries, there are two or three databases or catalogs that contain information about tape volumes and the datasets on the volumes. The z/OS system catalog retains its role as the dataset catalog. It is not mandatory that you catalog tape datasets in the z/OS catalog.

To see how the information in these databases is used when a job reads or writes a dataset on a tape volume, you need to consider the three most common cases:

- Reading an old cataloged dataset
- Reading an old uncataloged dataset
- Writing a new dataset and cataloging it

This section explains these cases, the process of tape device selection, and how the Library Manager manages the order for scratch volumes from the host.

6.4.1 Reading a dataset

The procedure that z/OS allocation uses to locate and read a dataset is shown in Figure 6-4 and explained in the following steps (the numbers correspond to those in the figure):

1. Find the VOLSER:
 - If a dataset is cataloged, the dataset name is found in the z/OS dataset catalog. The VOLSER is extracted from the catalog entry. This is shown in Figure 6-4.
 - When the dataset is not cataloged, its VOLSER must be indicated through JCL or parameters in a dynamic allocation request. Searching the z/OS dataset catalog is bypassed.

2. The TCDB is searched to find the volume entry for the volume. If the volume entry is found, and it indicates that the volume is within a library (and not in SHELF), the library name, Storage Group, recording format (128, 256, or 384), and device type are extracted from the TCDB entry. They are used in allocating a tape unit for reading the dataset.
3. If the volume entry is not found in the TCDB, and the volume that is not in the library installation exit (CBRUXVNL) does not prompt the operator to enter the volume into the library, allocation is directed to a device that is outside the library.

4. Allocation or OPEN requests that the volume is mounted on the selected unit. For a discussion of device selection, refer to 6.4.3, “Device and library selection in a 3494 environment” on page 262. In the case of a library, this request is transformed into a channel command, which requests the Library Manager to mount the volume.

5. The Library Manager searches its database to find the storage cell ID where the cartridge is stored. The Library Manager constantly keeps its database up-to-date and records the fact that the volume has been moved to the tape unit.

Note: If a volume entry is found in the TCDB and the LOCATION indicates LIBRARY, allocation always goes inside a tape library. When a foreign tape comes to your system with a VOLSER that already is in a tape library, since DFSMS 1.4.0 and later, we recommend this way to read it on a tape device outside the library:

\[\text{STORCLAS=DUPT@SMS, DISP=OLD, VOL=SER=xxxxxx (specific mount) UNIT=uuuu (non-system-managed tape devices)} \]

SMS checks against the TCDB are bypassed and the UNIT parameter is honored, which drives the allocation to a non-system-managed tape device.

Prior to DFSMS 1.4, you must use Bypass Label Processing (BLP) in your JCL. Remove the existing volume entry from the TCDB. After you read the foreign tape, add the volume entry to the TCDB using IDCAMS commands.
6. When the dataset is opened, the correctness of the tape volume selection is verified with information from the volume and dataset labels on the tape. Next, the user’s right to access the tape volume and the dataset is verified with RACF through SAF. The volume and the dataset usage is reflected in the TCDB and DFSMSrmm database by updating the relevant records there.

7. When the dataset is closed after it is used, and the volume is demounted, the Library Manager receives a request to move the volume from the tape unit to a storage cell in a library.

6.4.2 Writing a new dataset

We show the procedure to write a new dataset in Figure 6-5 and explain the procedure in the following steps (the numbers correspond to those in the figure):

1. From the dataset name and other information given in JCL or a dynamic allocation request and the Data Class, the SMS ACS routines derive a Storage Class and a Storage Group for the dataset. These determine the allocation to a suitable unit in a tape library.

3. OPEN requests that the Library Manager mount a scratch volume.

4. The Library Manager selects a volume from the scratch category and mounts it on the tape unit.

Figure 6-5 Process flow to write a dataset

5. If no Storage Class is derived from SMS, the dataset is written on a device outside the tape library.

6. The dataset is opened. Again, the user's right to access the volume is checked, based on the volume serial number, which now becomes known to z/OS.

7. The TCDB, RACF database, and DFSMSrmm CDS are accessed to verify authorization. The volume must be known to DFSMSrmm, and it must be a scratch volume. The CDS is updated to indicate the new dataset on the tape volume, to record the SMS classes assigned, and to indicate the changed status (scratch or private). The update to the TCDB also indicates which Storage Group is selected for the volume and the changed status.

8. The Library Manager database is updated to indicate the changed category of the volume (from scratch to private).

9. If cataloging is requested for the dataset, it is performed at disposition time. The z/OS dataset catalog is updated to indicate the dataset name and its volume serial.

6.4.3 Device and library selection in a 3494 environment

Device selection within a library or across libraries in the same Storage Group is determined by weighing how well each device meets the needs of the request being processed and then selecting the device that best meets those needs. For specific mount requests, the device selection is limited to the drives in the library where the volume resides. Each device is looked at from various viewpoints.

The higher the viewpoint is in the priority list, the higher the assigned weight for the device is. The weights given for each viewpoint are added together. The device with the highest sum is selected for allocation.

Note: Device selection does not consider the following conditions:

- Number of available drives
- Busy condition of control unit or library accessor

6.5 Cartridge processing

In the following sections, we describe the interaction between z/OS OAM exits and actions regarding the cartridge:

- Insert
- Eject
- Return to scratch

For additional information about the OAM exits, refer to 4.3.6, “Customizing OAM” on page 175.

6.5.1 Cartridge insert processing

When a volume is entered into an IBM automated or manual tape library, the cartridge entry installation exit (CBRUXENT) is invoked to approve or deny an enter request, and to set or verify the recording technology to associate with the volume.

If a volume TCDB record does not exist for the entry of a private MEDIA5, MEDIA6, MEDIA7, or MEDIA8 volume, and there is no applicable recording technology provided by the library's entry default Data Class, EFMT1 is passed to the exit; UNKNOWN might be passed for a scratch volume. If the exit returns with a recording technology for a MEDIA5, MEDIA6,
MEDIA7, or MEDIA8 volume, and it is not EFMT1, EFMT2, or EEFMT2 (UNKNOWN is also allowed for a scratch volume), the specification is considered invalid, and the exit is disabled.

If a volume TCDB record does not exist for the entry of a private MEDIA9 or MEDIA10 volume, and there is no applicable recording technology provided by the library’s entry default Data Class, EFMT2 is passed to the exit; UNKNOWN might be passed for a scratch volume. If the exit returns with a recording technology for a MEDIA9 or MEDIA10 volume and it is not EFMT2 or EEFMT2 (UNKNOWN is also allowed for a scratch volume), the specification is considered invalid and the exit is disabled.

If a TCDB volume record exists and the volume’s recording technology or media type is not supported on the system processing the volume, the volume is left in the Library Manager insert category to be processed by a system with appropriate support. The cartridge entry installation exit (CBRUXENT) is passed through register 1, the pointer to a parameter list mapped by CBRUXEPL.

If CBRXLCS FUNC=MCE is used to enter a volume into an MTL and its existing TCDB record has EEFMT2 recording technology or an unsupported media type (MEDIA9 or MEDIA10, V1R4 system) and the software does not support the recording technology or the media type, the request fails with existing return code LCSFAIL (12) and existing reason code LCSVNSUP (310). If the CBRUXENT exit returns a unsupported recording technology or media type, the entry of the volume also fails.

Table 6-4 CBRUXENT return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Perform the cartridge entry as requested. No changes are made to the parameter list (CBRUXEPL). Use what existed at the time the installation exit was called. Perform the entry as requested.</td>
</tr>
<tr>
<td>4</td>
<td>Perform the cartridge entry and note that one or more fields in the parameter list (CBRUXEPL) has changed.</td>
</tr>
<tr>
<td>8</td>
<td>Do not allow this cartridge to be entered. For an automated tape library data server, OAM schedules the cartridge to be ejected.</td>
</tr>
<tr>
<td>12</td>
<td>Ignore the cartridge entry request. For an automated tape library data server, OAM leaves the cartridge in the library (volume left in the insert category).</td>
</tr>
<tr>
<td>16</td>
<td>Reject the cartridge entry request. The cartridge will be ejected from the tape library.</td>
</tr>
</tbody>
</table>

Note: If an invalid return code is passed back, OAM discontinues cartridge entry processing.

After OAM is told not to invoke the installation exit again (return code 16), or cartridge entry processing is discontinued, the only way to reactivate the exit is to stop and restart OAM, or to issue the LIBRARY RESET,CBRUXENT command.

The cartridge entry exit has two major purposes. The first purpose is to verify and change information on cartridges as they are inserted into the library. The information is transferred through the CBRUXENT. With the introduction of Advanced Policy Management (APM) for a VTS installation, the parameter list has extended significantly. For a detailed list of parameters of this exit, refer to z/OS V1R8 DFSMS Object Access Method Planning, Installation, and Storage Administration Guide for Tape Libraries, SC35-0427.
The second purpose in an environment where a library is shared among multiple hosts is to ensure that the current host has access to its cartridges only. If more than one SMSPlex and tape management system share a library, the entry exit must be common across members of a SMSPlex. If practical, use the same exit across all members of all SMSPlexes. Code the entry exit so that the return code set causes a tape to be accepted into or ejected from the library. If any non-SMS hosts use the library, ignore their volumes. If a cartridge remains unclaimed by the attached hosts, it remains in the library manager INSERT category. If there is no TCDB entry for a cartridge, it cannot be ejected from the library through ISMF, the LIBRARY command, or the CBRXLCS macro.

6.5.2 Cartridge eject processing

Cartridges are ejected from the library when the Library Manager changes the category to an EJECT category. There are two EJECT categories:

- FF10 for the convenience I/O station
- FF11 for the high capacity output facility

When the cartridge is ejected from the library, the cartridge record in the TCDB can be kept or purged. This is controlled by the EJECT DEFAULT on the ISMF LIBRARY DEFINE panel or on the parameter used when ejecting the volume.

The installation-wide exit CBRUXEJC approves or disapproves of a cartridge being ejected from the library.

6.5.3 Cartridge return to SCRATCH

Cartridges are returned to SCRATCH status in the library by having their Library Manager category changed from specific to one of the scratch media categories. The category is changed by the OAM macro CBRUXLCS or the ISMF mountable-tape volume list ALTER command. The installation-wide change use attribute exit, CBRUXCUA, is called to approve or disapprove the change requested.

DFSMSrmm uses the change use attribute exit. Therefore, if a volume is changed through ISMF and the change is approved by the DFSMSrmm database, DFSMSrmm is updated to reflect the change in the TCDB. Not all tape management systems use the change of use exit. Therefore, you must use care in handling the unit from which updates are controlled. We recommend that you do not use ISMF for anything other than displaying information in any installation where the tape management system does not use all the OAM exits.

6.6 ISMF ALTER command

ISMF enables you to alter the use attribute, Storage Group, shelf location, and owner information of a single tape volume or a volume list through the use of the ALTER line operator or the ISMF ALTER command. These commands are used from the MOUNTABLE TAPE VOLUME LIST panel (see Figure 6-22 on page 279).

ISMF is an important part of the altering scheme when used in conjunction with the ALTER command, because it allows you to start with an entire tape volume list. Then, by using sorting and filtering capabilities, you can reduce that list to a subset of volumes, for example, all the volumes in a single Storage Group. Use the ALTER command against the subset list to change information for all of the volumes on the list at the same time. You can also use the ALTER command to take the volume out of the error category in the Library Manager inventory.
When you invoke the ALTER command on the MOUNTABLE TAPE VOLUME LIST panel, the use attribute, Storage Group, Shelf Location, and Owner Information values are altered for all volumes in the list (see Figure 6-6).

```
Panel Utilities Help
-----------------------------------------------
MOUNTABLE TAPE VOLUME ALTER ENTRY PANEL
Command ==> 

Number of Volumes to be Altered: 10

Specify New Values for the Following Fields (Blank means no change):
Use Attribute . . (P - Private, S - Scratch, or blank)
Storage Group . .
Shelf Location . .
Owner Information ==> 

Use ENTER to Perform ALTER;
Use HELP Command for Help; Use END Command to Exit.
```

Figure 6-6 ALTER command from the MOUNTABLE TAPE VOLUME ALTER panel
When you enter the ALTER line operator from the MOUNTABLE TAPE VOLUME LIST panel, the next MOUNTABLE TAPE VOLUME ALTER ENTRY panel (Figure 6-7) displays to enable you to enter the new values for the specific volume requested. The panel examples in Figure 6-7 through Figure 6-10 provide more information regarding the ALTER function for a specific tape volume.

Figure 6-7 Next MOUNTABLE TAPE VOLUME ALTER ENTRY panel
When the volume was entered into the library, if no values were specified for Storage Group name, Shelf Location, or Owner Information, the Old Value fields on this panel are blank. The tape volume record reflects blanks in these fields in the TCDB. You then add the values for Owner Information, Storage Group, and Shelf Location into the New Value fields and press Enter. The fields are updated in the TCDB, and the next time that the volume is displayed, the new information appears in the Old Value fields. The New Value fields are primed with the same information (see Figure 6-8).

![Figure 6-8 Both old value fields and new value fields are assigned to the volume](image-url)
If you type blanks over the New Value for Storage Group, Shelf Location, or Owner Information, the corresponding field in the tape volume record is set to blank. Then, the New Value fields appear blank the next time that you display the record (see Figure 6-9).

```
Panel Utilities Help
-------------------------------------------------------------------------------------------------------------------------------
Command ===>
Tape Volume: VOL101

Specify New Values for the Following Fields: (leave as-is if no change)

Use Attribute: Old Value : PRIVATE
                New Value . : P        (P - Private or S - Scratch)

Storage Group: Old Value :
                New Value .

Shelf Location: Old Value : BASEMENT1
                New Value . : BASEMENT1

Owner Information:
    Old Value: CENTER
    New Value . : CENTER

Use ENTER to Perform ALTER;
Use HELP Command for Help; Use END Command to Exit.
```

Figure 6-9 New Value blanked out for Storage Group
Note that both the Old Value and New Value fields for Storage Group are now blank. To add a Storage Group again, indicate the new value for Storage Group in the New Value field and press Enter (see Figure 6-10).

![Figure 6-10](image-url)
Figure 6-10 New Storage Group assigned to blank Storage Group

ISMF validates the New Value input for the use attribute to allow only P or S. The New Value input for Storage Group is validated on the same selection entry panel. However, blanks are acceptable in this field.

ISMF does not validate the existence of the Storage Group in the active configuration. However, if the tape volume is library-resident, OAM provides the validation to ensure:

- The volume’s Storage Group is defined in the current ACDS as a tape Storage Group.
- The volume’s library is defined in the specified Storage Group.
- The volume’s library is defined in the current ACDS as a valid tape library.

Note: If the tape volume is shelf-resident, only the first check is made.

If OAM detects an error in any of these conditions, neither the use attribute nor the Storage Group is changed. However, shelf location and owner information can be altered even though a storage error is detected.

When an error occurs during the ALTER function, a message is stored in the message history for the entry. You can issue the message line operator to obtain the error information.
When you press Enter to perform the alter operation, the CONFIRM ALTER REQUEST panel (Figure 6-11) displays. It shows the number of volumes to be altered. Change N to Y and press Enter to confirm the alter request.

![CONFIRM ALTER REQUEST panel](image)

Figure 6-11 CONFIRM ALTER REQUEST panel

6.6.1 Changing the use attribute from private to scratch

You can use the ALTER command to specify a new value of *scratch* for the use attribute when any of the volumes on the list are private with an expiration date that has not yet passed. When you do this, the PRIVATE TO SCRATCH CONFIRMATION panel (Figure 6-12) displays for each volume whose expiration date has not yet passed.

Note: When you install DFSMSrmm, any attempt to alter the use attribute from private to scratch is rejected unless DFSMSrmm already shows the volume as scratch. The change-of-use attribute installation exit (CBRUXCUA) is invoked whenever there is an attempt to change the use attribute for a tape volume. It can override the request or change the values. Refer to 4.3.6, “Customizing OAM” on page 175, for more information about this installation-wide exit. If your tape management system does not support CBRUXCUA, we recommend that you do not use ISMF to change the status of library-resident volumes.
If the response is the forward slash (/) on either confirmation panel, OAM changes the following items:

- The use attribute is changed to S in the TCDB.
- The Storage Group name is set to *SCRTCH* in the TCDB.
- The expiration date in the TCDB is blanked out.
- The volume error status is reset to NO ERROR in the TCDB.
- The Library Manager category of the cartridge is changed from private to scratch.

6.6.2 Changing the use attribute from scratch to private

When you use the ALTER line operator or the ALTER command to change the use attribute for tape volumes to private, the following fields in the TCDB are updated:

- The use attribute is changed to P in the TCDB.
- The volume error status is reset to NO ERROR in the TCDB.
- The category of the cartridge or cartridges is changed from scratch to private.

The changes to the TCDB volume record occur immediately. When the line operator or command is complete, you return to the MOUNTABLE TAPE VOLUME LIST panel with the appropriate success or failure message. If the volume or volumes are successfully changed, use the ISMF REFRESH command to display the new values in the tape volume record.

Note: When you install DFSMSrmm, its CDS is updated to reflect these changes.
6.6.3 Using ISMF ALTER to change the volume category

Sometimes (especially in consolidation phases, outsourcing, or migration tasks), it is necessary to change the MEDIA categories in DEVSUPxx to support new numbering conventions or consolidate systems. If you must change the MEDIAx value, there should be no movement from the cartridge. We explain the easiest way to do this in the following steps:

1. Change DEVSUPxx MEDIAx to the new value.
2. Perform an IPL on the system. After the IPL, no scratch volumes are left, because there are no volumes in the new scratch category.
3. Go to ISMF. Create a list of all the volumes that you influenced through the MEDIA change. Choose by volume prefix and Storage Class "SCTRCH".
4. Enter ALTER on the command line. The message MOUNTABLE TAPE VOLUME ALTER ENTRY PANEL appears on the panel. Do not make any changes on that panel. Press Enter.
5. On the confirmation panel that displays, press Enter.

The system alters one volume after the other. Therefore, the process can take several minutes, depending on the number of volumes. No information is really altered in the z/OS, but the new scratch category is transferred to the Library Manager. After the ALTER is processed, you should have the same number of scratch cartridges that you had before the IPL.

For more detailed information about the panels, see DFSMS/MVS V1R4 DFSMSdss Storage Administration Guide, SC26-4930.

6.7 TCDB considerations

Your IBM 3494 Tape Library installation depends heavily on the availability of your TCDB. An extended outage of a TCDB can be extremely disruptive, because tape date stored in the IBM 3494 cannot be retrieved without access to the TCDB. TCDB tasks as outlined in Table 6-5 include functions to detect and correct out-of-sync conditions.

<table>
<thead>
<tr>
<th>Task</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule job to save TCDB</td>
<td>See 6.7.1, “TCDB backup” on page 273.</td>
</tr>
<tr>
<td>Restore or rebuild TCDB after destruction</td>
<td>See 6.7.2, “TCDB recovery using ICFRU” on page 273.</td>
</tr>
<tr>
<td>Move TCDB to a different volume</td>
<td>See 6.7.4, “Moving a TCDB to a different volume” on page 276.</td>
</tr>
<tr>
<td>List information in the TCDB</td>
<td>See 6.7.5, “Listing information in the TCDB” on page 278.</td>
</tr>
<tr>
<td>Verify consistency among TCDB and tape management system</td>
<td>See 6.8, “Resynchronizing RMM CDS” on page 282.</td>
</tr>
<tr>
<td>Verify the location of the tape volumes in your tape libraries</td>
<td>See 6.7.6, “Library Manager database and TCDB synchronization” on page 278.</td>
</tr>
</tbody>
</table>
6.7.1 TCDB backup

Your most important task is to make sure that the TCDB is included in the backup job or job stream for catalogs. We suggest that you run IDCAMS EXPORT for the backup. You can use other programs, such as DFSMShsm or DFDSs, to back up your TCDB. However, if you want to use ICFRU for recovery too, then IDCAMS is the backup program to use.

If you use general and specific volcat and use DFSMSdfs for backup, backup of all the volcats at the same time is required for consistency reasons. If you use IDCAMS EXPORT, this is not required, but can reduce your outage. For example, there might be a disaster with a direct access storage device (DASD) where the volcats reside, and you can only sample the right SMF data one time.

Note: We recommend that you place at least one backup of all TCDBs on DASD. If you lose the TCDB, and the backup is on a tape in an library environment (including native and VTS), you must perform some manual reconstruction to access the library with the backup tape. Performing a backup on DASD is the easiest way to avoid this manual intervention.

6.7.2 TCDB recovery using ICFRU

For TCDB recovery, you can use ICFRU or a similar product that uses SMF records to perform forward recovery against a point-in-time backup copy. ICFRU relies on the fact that catalog management routines log each catalog change to SMF. These SMF records contain images of catalog records that can be combined with the catalog records from an IDCAMS EXPORT copy of a catalog. The combined catalog records are reloaded through IDCAMS IMPORT, so that the catalog is recovered to the point of failure.

ICFRU requires that you record all SMF type 61, 65, and 66 records. Ensure that SMF parameters specify recording for these record types for all jobs. Check the SMFPRMxx member in SYS1.PARMLIB.

To perform a full TCDB recovery, complete the following steps:

1. Deny access to the TCDB from all systems except the system you use for recovery.
2. Stop tape activity and vary the tape library offline.
3. Save a copy of the damaged TCDB for future use (for example, for diagnostics).
4. Cause the TCDB to be closed in the recovery system.
5. Record the date and time when it is confirmed that the TCDB is closed on all systems. This is the stop date and time, which is needed as input for the ICFRRSV program.
6. Switch and dump the SMF dataset on all systems that had access to the TCDB. The SMF records for the TCDB are needed for forward recovery of the TCDB.
7. Identify an EXPORT backup copy of the TCDB. This is the EXPIN dataset for ICFRRAP.
8. Establish a start date and time for forward recovery. This needed as input for the ICFRRSV program. You can obtain the date and time from message IDC0594I in the export job creating your backup copy of the TCDB.
9. Identify the SMF data needed for forward recovery. The concatenation of all SMF datasets is the SMFIN DD statement for ICFRRSV.
10. Execute the ICFRRSV program, using the start and stop times and dates determined in the previous steps. ICFRRSV collects all SMF TCDB records and writes them to an output file.
11. Using DFSORT™ or a similar facility, sort the SMF output from ICFRRSV.
12. Execute the ICFRRAP program, using the output from the sort as input, with the EXPORT copy identified.
13. Use IDCAMS to delete the TCDB for RECOVERY.
14. Import the EXPORT copy produced by ICFRRAP.
15. Back up the TCDB to start a new recovery cycle.
16. Vary the tape library online.

The procedure shown in Figure 6-13 is similar to a normal ICF catalog recovery. For a complete description of a TCDB recovery, refer to the *ICF Catalog Backup and Recovery: A Practical Guide*, SG24-5644.

Figure 6-13 Using ICFRU to recover a TCDB
6.7.3 TCDB recovery using REXX

An alternate approach to using ICFRU is to obtain the Library Manager database and use this data as input to a tool that creates IDCAMS volume entry information.

A REXX™ program was developed to create the IDCAMS CREATE VOLUMEENTRY COMMANDS from the 3494 Library Manager database list. See Appendix F, “REXX utility to recover TCDB” on page 501.

Recover your TCDB using the REXX utility as we describe in the following steps:

1. Obtain the 3494 Library Manager database list:
 a. On the 3494 Library Manager, use the Database menu and select List database.
 b. For the output column, select Volser, Category, and Media type.
 c. Insert a formatted disk into drive A: (the output file is in a text format).

 Note: You perform this in library offline mode. The library does not have to be in service mode to perform this function.

2. Upload the file to your host system.

3. Modify the REXX program.

 Note: This program was designed for VM. However, you can make small modifications to execute on MVS. In addition to these changes, you must enter your tape category code, which is defined in DEVSUPxx PARMLIB member and library name. This program reads input file name ‘TCDBRECV INF FILE A’. If you use another name, you are required to make a small change to the source program. Enter the following code:

   ```
   'EXECIO * DISKR TCDBRECV INF FILE A TCDBRECV OUT FILE A'
   ```

4. Execute the REXX program.

5. Allocate a new VOLUME CATALOG (TCDB) as shown in Figure 6-14.

```
//TCDBALLOC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
   DEFINE UCAT(NAME(TEST.VOLCAT.VGENERAL) -
            VOLCATALOG -
            VOLUME(VOL001) -
            CYLINDER(10 1))
/*
```

Figure 6-14 Allocating a new volume catalog

6. Create the library entry.

Creating a library definition outside of ISMF is only for recovery purposes. Therefore, this example shows only certain parameters. However, in several cases, more than the required parameters are necessary. The best preparation for this recovery is to prepare a job with all the library information in advance. The list output from the IDCAMS TCDB List library entry is the best source.
Figure 6-15 TCDB recovery with REXX: Creating a library entry

7. Create the volume entries as shown in Figure 6-15.

Figure 6-16 TDCB recovery with REXX: Creating volume entries

6.7.4 Moving a TCDB to a different volume

Follow these steps to move TCDB (SYS1.VOLCAT.VGENERAL) to a different volume:

1. Stop all tape activity and vary the IBM 3494 Tape Library offline using the command shown here:

 V SMS,LIB(libname),OFFLINE /* this is the command on one system*/

 The library must be offline to all the systems that share the TCDB you want to move.

2. Restrict access to a catalog when you perform maintenance procedures that involve redefining the catalog (Figure 6-17). If you do not restrict access to the catalog by locking it, terminating user sessions, or using another method, users might be able to update the catalog during maintenance and create a data integrity exposure.

 //LOCKCAT EXEC PGM=IDCAMS
 //SYSPRINT DD SYSOUT=A
 //SYSSIN DD *
 ALTER SYS1.VOLCAT.VGENERAL LOCK /*

 Figure 6-17 Moving the TCDB: Locking the TCDB

3. Verify whether the integrity and structure of the volcat helps you to determine and solve problems in the actual TDCB before you move it.
Chapter 6. Running z/OS production systems

4. Export the TCDB with the EXPORT command (see Figure 6-19).

5. Import the TCDB to the different volume (see Figure 6-20). If you want the attributes of the catalog to change, define the catalog with the desired attributes on newvol. Then, import the original catalog into the newly defined catalog. If the import is successful, the old, exported catalog is deleted.

6. Vary the IBM 3494 Tape Library online. You must vary the library online again to all systems in the SMSPlex. Enter the following command:

V SMS,LIB(libname),ONLINE
6.7.5 Listing information in the TCDB

In addition to browsing through ISMF panels, you can list the information in the TCDB by using the LISTC command. To see the library entry only, use the LIBRARYENTRIES parameter. When you want to see volume entries, specify the VOLUMEENTRIES parameter as shown in Figure 6-21. This example lists all tape volume entries whose names begin with the letters \texttt{VA} in the ATLLIB1 tape library.

Figure 6-21 LISTC command for library entry

6.7.6 Library Manager database and TCDB synchronization

Because system-managed tape uses three repositories (library manager database, TCDB, and tape management system database), out-of-sync conditions are possible.

The manual way to search for single misplaced volumes in the library is to check and verify storage cell addresses from the Library Manager's Search Database for Volume. However, you should use the AUDIT command to search for misplaced volumes without stopping auto mode.

The AUDIT command helps you verify the physical location of tape volumes within the library. It verifies whether a library volume resides in the location listed for that volume in the Library Manager inventory. The Library Manager maintains the library location of the cartridges in its inventory. The volume records in the TCDB identify the libraries where the volumes reside. If the TCDB records do not match the Library Manager inventory when you perform an audit, you must correct the TCDB records, the inventory, or both.

The AUDIT function does not perform any corrective actions. Messages are issued, and the volume error status field in each tape volume record is updated. However, the purpose of the audit is for verification only. The AUDIT command requires storage administrator authority.
The AUDIT function provides three levels of auditing:

- Single volume audit (invoked by the AUDIT line operator)
- Volume list audit (invoked by the AUDIT command)
- Library audit (invoked by the AUDIT line operator)

AUDIT can be invoked as an ISMF line operator on the MOUNTABLE TAPE VOLUME LIST panel (single volume audit) or from the TAPE LIBRARY LIST panel (library audit).

AUDIT can also be invoked as an ISMF command to audit all eligible volumes on the MOUNTABLE TAPE VOLUME LIST panel (volume list audit). ISMF is an important part of the audit scheme, because it allows you to start with an entire tape volume list. Then, using sorting and filtering capabilities, you reduce that list to a subset of volumes, for example, all volumes in a single Storage Group. At that point, you can use the AUDIT command to request an audit of all volumes in that subset list.

You might want to use the following criteria when filtering a volume list:

- Fully or partially qualified VOLSER
- Fully or partially qualified Storage Group name
- Fully or partially qualified library name
- Other criteria that uses ISMF VIEW, SORT, and HIDE

Before you schedule an audit request for a library, ensure that the library meets the following criteria:

- The library must be defined in the SMS configuration.
- The library must be online, operational, and not pending offline.
- The library must not be in manual mode, and the vision system must be operative.

Enter the AUDIT line operator next to the row of the suspected VOLSER on the MOUNTABLE TAPE VOLUME LIST panel as shown in Figure 6-22.

Panel List Utilities Scroll Help
--
 Command ===>
 Enter Line Operators Below: Data Columns 3-7 of 20

<table>
<thead>
<tr>
<th>LINE OPERATOR</th>
<th>VOLUME SERIAL</th>
<th>USE ATTR</th>
<th>ERROR STATUS</th>
<th>CHECKPT VOLUME</th>
<th>LIBRARY NAME</th>
<th>STORAGE GRP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOL01 PRIVATE</td>
<td>I/O ERROR</td>
<td>NO</td>
<td>---</td>
<td>SHELF</td>
<td>TAPE1</td>
<td></td>
</tr>
<tr>
<td>VOL02 SCRATCH</td>
<td>UNEXPIRED SCRATCH</td>
<td>---</td>
<td>SHELF</td>
<td>SCRTCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL101 SCRATCH</td>
<td>NO ERROR</td>
<td>NO</td>
<td>---</td>
<td>SHELF</td>
<td>SCRTCH</td>
<td></td>
</tr>
<tr>
<td>VOL102 SCRATCH</td>
<td>PASSWORD CONFLICT</td>
<td>NO</td>
<td>LIB1</td>
<td>SCRTCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL103 SCRATCH</td>
<td>SECURITY CONFLICT</td>
<td>NO</td>
<td>LIB2</td>
<td>SCRTCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL104 PRIVATE</td>
<td>SCRATCH IN USE</td>
<td>---</td>
<td>LIB2</td>
<td>TAPE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL105 PRIVATE</td>
<td>VOLSER MISMATCH</td>
<td>NO</td>
<td>LIB1</td>
<td>TAPE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL106 SCRATCH</td>
<td>CHECKPOINT CONFLICT</td>
<td>YES</td>
<td>LIB2</td>
<td>SCRTCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL107 SCRATCH</td>
<td>WRITE CONFLICT</td>
<td>YES</td>
<td>LIB1</td>
<td>SCRTCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUDIT</td>
<td>VOL108 PRIVATE</td>
<td>VOLUME MISPLACED</td>
<td>NO</td>
<td>LIB1</td>
<td>TAPE1</td>
<td></td>
</tr>
<tr>
<td>VOL109 PRIVATE</td>
<td>NO ERROR</td>
<td>NO</td>
<td>LIB1</td>
<td>TAPE1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-22 AUDIT line operator command from ISMF
The library vision system on a library verifies the external label on the volume at the physical location specified in the Library Manager database. The cartridge is neither mounted nor read. Only the external label is verified.

The following actions are performed when an audit is requested against volumes in a library:

1. The system verifies that the tape volume has an entry in the Library Manager.
2. The vision system verifies that the tape volume is in its assigned location in the library.
3. The vision system verifies that the external cartridge label of the tape volume is present and readable.
4. The system verifies that the tape is accessible in the library.

To perform a volume list audit from the MOUNTABLE TAPE VOLUME LIST panel, use the AUDIT command on the command line of the ISMF panel.

To perform a library audit from the TAPE LIBRARY LIST panel, use the AUDIT line operator next to the tape library name. When you specify a library audit, all VOLSERS assigned to that library by the host are audited.

Because a library audit and a volume list audit can take a long time to complete, a confirmation panel displays whenever you request these audits. This panel gives you the opportunity to confirm or cancel the audit request. To confirm, type Y and then press Enter. See Figure 6-23 for the CONFIRM AUDIT REQUEST panel.

Note: In an environment with multiple systems at different DFSMS/MVS software levels, but that share a common TCDB, perform library audits on the system with the highest software level of DFSMS/MVS. A library audit on a lower DFSMS/MVS software level does not include higher release level volumes if they are media types unknown to the lower level software.
When the AUDIT is complete, a message indicating its success or failure is sent to your user ID. Refresh the list and check the VOLUME ERROR STATUS column for the following errors:

- EXTERNAL LABEL ERR
- INACCESSIBLE
- NOT IN LIBRARY
- NOT IN SLOT

Refer to the help index for an explanation of the volume error states. During the audit process, if the vision system detects an unexpected volume in the specified cell address, it searches the Library Manager's database. If there is an entry in the database for the unexpected VOLSER, the database is updated to reflect its current cell location. If the unexpected volume is identified as a misplaced volume, all hosts are notified, and the TCDB is updated. If the vision system detects an empty cell, you might need to run the inventory process.

6.7.7 TCDB manual update

If any discrepancies are identified between the TCDB and the tape management system or Library Manager database, you might need to fix those VOLUMEENTRIES in the TCDB by using IDCAMS commands. Remember that you can change the contents of the tape management system database to synchronize the tape repositories.
LIBRARYENTRIES can be changed as well to recover from catalog errors. The LIBRARYENTRY record entry is contained in the SMS control dataset. Therefore, use the ISMF panels for normal tape library alter functions.

The following IDCAMS commands are available for tape library support:

- **ALTER LIBRARYENTRY**: Alters all tape library entry fields, except for the library name
- **ALTER VOLUMEENTRY**: Alters all tape volume entry fields, except for the tape VOLSER
- **CREATE LIBRARYENTRY**: Creates a tape library entry
- **CREATE VOLUMEENTRY**: Creates a tape volume entry
- **DELETE**: Deletes tape library and tape volume entries

Figure 6-24 shows how to alter the LIBRARYNAME of the tape volume entry for VOLSER GRKB01.

```plaintext
//ALTERVOL JOB  ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD   SYSOUT=A
//SYSIN    DD   *
ALTER VGRKB01 -
  VOLUMEENTRY -
  LIBRARYNAME(ATL01)
```

Figure 6-24 TCDB alter volume entry

Figure 6-25 shows an example of how to create a volume entry.

```plaintext
//ALTERVOL JOB  ...
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT  DD SYSOUT=*  
//SYSIN     DD   *
CREATE VOLUMEENTRY -
  (NAME(VUK0000) -    
   LIBRARYNAME(LIIBMETB) -
   STORAGEGROUP(*SCRTCH*) -
   USEATTRIBUTE(SCRATCH) -
   MEDIATYPE(MEDIA5) -
   RECORDING(EFMT1) -
   COMPACT(YES) -
   NOWRITEPROTECT -
   LOCATION(LIBRARY))
```

Figure 6-25 TCDB creating a volume entry example for a scratch volume

Refer to z/OS DFSMS Access Method Services for Catalogs, SC26-7394, for the syntax of the IDCAMS command.

6.8 Resynchronizing RMM CDS

You might need to use the TCDB and Library Manager entries to update the RMM database. You do this using an EDGUTIL RMM utility.

You can use EDGUTIL with a verify option to find out whether there are differences between the information sources. Or you can use it with the MEND option, which processes the same way as the verify option but also fixes existing problems. The MEND option works only on an inactive CDS.
With the introduction of Release 2.10, there is an enhancement in that process. Before Release 2.10, only the TCDB was used (see Figure 6-26). Now, you can ask the Library Manager as an additional source (see Figure 6-27). Release 2.10 also introduced stacked volume support.

Refer to DFSMSrmm Primer, SG24-5983, and z/OS DFSMSrmm Implementation and Customization Guide, SC26-7405. For a vendor tape management system, use the functions that are provided with the system-managed tape support.

6.9 Exploitation of new capabilities

Installing new hardware with new functionality or implementing system-managed tape for the first time are major changes to your actual production environment. To facilitate the migration process and avoid typical beginner problems, consider the following points of interest in education and readiness.

6.9.1 Education and learning phase

New hardware (the first 3494, VTS, or PtP VTS) or new software (first system-managed tape solution, ETL Specialist or ETL Expert, VMA reports, and so forth) impact your data, production jobs, and the people who handle the new environment. Plan operator training sessions and hands-on-training sessions for the 3494 and ETL Specialist. Offer SMS base knowledge, VTS knowledge, or even PtP VTS basics for operators and storage administrators. Discuss these topics in advance to ensure that the staff, depending on their jobs, can properly handle the new environment. Remember to conduct education in an adequate time frame prior to the production date. Do not educate the staff months in advance or even a half year after going into production. The education level of the people handling and running the machine has a major influence on the availability of your production environment.

If the introduction of new hardware or software influences your installation dependent routines (such as vary online or offline units, ejecting cartridges, and so forth), place the changed information together and provide this information to all involved colleagues. Even hands-on training cannot provide the experience that is necessary to handle the environment without mistakes. Therefore, we recommend that you plan a learning phase in the first phase.

Important: We recommend that you use the MEND option only under the guidance of a qualified IBM Systems Services Representative (SSR).
of migration (without user-critical data). The learning phase gives your operator and administrator the chance to gain experience with the new technology.

6.9.2 Achieving production readiness

As a result of running your business, you might have established many of your own environment-dependent processes. These might have grown over the years to reach a high level of sophisticated production readiness. Consider these topics:

- Message alerting and automation procedures
- Regular reports to management, trend analyses
- Planned service windows for maintenance and microcode upgrades
- Disaster recovery considerations
- Documentation of all environment-dependent processes

It is necessary to review all of these processes and find new capabilities to establish the same level of quality (or even better) in a short time frame for your new environment.

Messaging alerting and automation procedures

Even if a 3494 and a VTS do not need much automation (normally a message also needs manual intervention), you must perform alarm and escalation planning. Decide whether and which messages you want to see on operator consoles, alarming boards, or pagers. Maybe you want to create automatic e-mails for a particular reason. You can set up these procedures in the testing phase and in the first step of the migration phase.

Reports and trends

Think of weekly or monthly reports to make trend analyses. For ETL Expert or specific VMA reports, refer to “Volume mount analyzer (VMA) reporting for tape utilization” on page 444. Watch out for instruments and products that you already use and if the new technology supports them. Be sure to update performance and trend analyses for management.

Planning service windows

A new machine might not need a service window directly. However, the interval between microcode releases becomes shorter and shorter every year. The drive, controllers, Library Manager, and the AX0 controller in the PIP VTS might have microcode. Planning the introduction of the microcode and regularly maintaining it improves and stabilizes your environment.

Disaster recovery considerations

Every change in your environment can affect your disaster recovery location site (if you have one) or at least your processes in a disaster. Some of the impact can be minor. But some might have a dramatic effect, for example, changing from 3590E to 3590H drives. You might need additional hardware at your second location or trucks to bring cartridges from one place to the other. If you have a contract with a provider for a disaster recovery location, talk to them during the decision process about the new hardware.

Writing documentation

Reviewing all your existing documentation to implement the changes for the new environment is extremely important. Make sure that you take this opportunity to ensure completeness of the documentation. You need to have the documentation (handling, explanations, short introduction, and so forth) ready at the start of your production period.
Software implementation: Other System z platforms

This chapter explains how to implement and run the IBM TotalStorage Tape Environment in zSeries server environments other than z/OS. It discusses software requirements, implementation, customization, and platform-specific considerations about operations and monitoring.

This chapter examines the following platforms:
- z/VM native support
- VSE/ESA 2.7 native support
- z/VSE 3.1 native support
- z/VSE as a guest under z/VM
- Linux on System z
7.1 General support information

Not all operating systems support all IBM Tape Libraries and Virtual Tape Server Solutions. Table 7-1 show a summary of supported tape solutions for non-z/OS environments.

Table 7-1 Supported tape solutions for non-z/OS platforms in System z environments

<table>
<thead>
<tr>
<th>Platform/Tape System</th>
<th>IBM 3494 Tape Library</th>
<th>IBM 3494 VTS</th>
<th>IBM 3494 PtP VTS</th>
<th>3592 drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VM native</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSE/ESA 2.7</td>
<td>Yes</td>
<td>Yes¹</td>
<td>Yes¹</td>
<td>Yes¹</td>
</tr>
<tr>
<td>z/VSE 3.1 native</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes¹</td>
</tr>
<tr>
<td>z/VSE 3.1 under z/VM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes¹</td>
<td>Yes¹</td>
</tr>
<tr>
<td>Linux on System z native</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Linux on System z under z/VM</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

1. With restrictions, see 7.1.1, “Other z/Series platforms and VTS support” on page 286.

7.1.1 Other z/Series platforms and VTS support

Even if z/VM and z/VSE can use the VTS or PtP VTS, there are restrictions that you must consider.

Restrictions in all VTS environments

Neither z/VM nor z/VSE are able to provide SMS constructs to the Library Manager. Therefore, the functions provided by APM for VTS or PtP VTS cannot be used in these platforms. However, there is a way to use dedicated physical pools in a VTS environment. During insert processing of virtual volumes, you can define a default construct to the volume range. We do not recommend for z/OS, but it is the only solution to provide physical pooling for non-z/OS platforms. Refer also to IBM TotalStorage Virtual Tape Server: Planning, Implementing, and Monitoring, SG24-2229, and IBM TotalStorage Peer-to-Peer Virtual Tape Server: Planning and Implementation Guide, SG24-6115.

Restriction: APM functions are not supported by non-z/OS platforms.

In the following sections, we describe the implementations for these platforms.

Restrictions in a PtP VTS environment

As you can see from Table 7-2, PtP VTS is supported in a z/VM or in a z/VSE under z/VM environment. In both operating systems, there is no difference from the host point of view between a PtP VTS and a standalone VTS. Neither z/VM or z/VSE under z/VM knows about the Composite Library nor can monitor the total environment. Also, both systems are unable to handle unsolicited messages and actions, for example, requirements for intervention and hardware messages. To run a PtP VTS, you must have a z/OS system connected to the same PtP VTS that is connected to your z/VM or z/VSE under z/VM.

Remember that the PtP VTS is unsupported in native z/VSE environments.
7.1.2 Linux on System z and tape libraries

Linux on System z does not provide any tape library support. All backup and restore activities must be provided by a different host system with either z/VM or z/OS.

7.2 Considerations of partitioning or sharing

If you want to use your library for different hosts or different platforms, you must introduce logical partitioning. Each host has its own cartridges or logical volumes and shared or dedicated tape drives but uses common components, such as the Library Manager and Accessor.

7.2.1 Basic information about partitioning

Each host needs a dedicated scratch volume category. This ensures that volumes are only used by a specific host, and not by other hosts using the same library. Each time that a volume is used, the assigned category in the Library Manager database is set to PRIVATE, and with the “return to scratch” process from the tape management system, the volume will be assigned to the dedicated scratch category again.

Volume categories for z/VM

For z/VM, you can specify 16 scratch volume categories: SCRTCH0 to SCRTCHF. They result in the Library Manager volume categories, X’0080’ to X’008F’, for example:

```
SCRTCH0 = X’0080’
```

Private volumes that contain data or are assigned to a specific user Library Manager volume category are X’FFFF’.

The default scratch pool is defined in DFSMS/VM™ in DGTVCNTL DATA. If you do not specify a scratch category, z/VM uses X’0080’.

Defining Volume Categories in z/VSE

For z/VSE, you can specify 32 scratch volume categories: SCRTCH00 to SCRTCH31. They result in the Library Manger volume categories: X’00A0’ to X’00BF’, for example:

```
SCRTCH00 = X’00A0’.
```

Private volumes that contain data or are assigned to a specific user Library Manager volume category are X’FFFF’.

The default scratch pool is defined in the Library Control Device Driver (LCDD) with an LCDD control statement or in TLS in the define library procedure. If there is no scratch category specified, z/VSE uses scratch category X’00A0’.

7.2.2 Basic information about sharing in a z/VM environment

You share volumes in a DFSMS/VM environment by using an installation exit and a control file that lists the volumes that are accessible by a single system and by all systems.
Sharing drives with different z/VM hosts or guests
On z/VM systems, the tape drives are dedicated to a processor when the drive is attached to a user by using the ATTACH command rather than when the drive is brought online by using the VARY command. This implementation allows multiple processors to share access to tape drives that are cabled to each processor by attaching and detaching the drives as required.

7.2.3 Basic information about sharing volumes in a z/VSE environment
You can only share volumes in a z/VSE environment if the tape management system's volume catalog is shared among the attached hosts. You can only do this if you use a shared DASD environment and the tape management system allows the usage of different hosts. IBM does not provide a tape management system product for z/VSE.

Considerations for drive sharing in a z/VSE under z/VM environment
When z/VSE is running as a guest system under z/VM, you can share tape drives and volumes using the DFSMS/VM RMS. A z/VSE guest can share drives with other VSE/ESA guests on the same VM host or on other VM hosts. You do not need shared DASD. In fact, VSE/ESA guests can also share drives with VM native users. If the natural state of the drives is free, any guest on any physically attached host can ATTACH, which establishes assignment.

If you use the new Tape Library Support (TLS) for a z/VSE system running under z/VM, drive sharing is no longer possible. The TLS support is unable to provide the detachment and attachment functions for the drive.

Considerations for drive sharing in a native z/VSE environment
The TLS support in z/VSE does not allow drive sharing among multiple z/VSE systems running in native mode.

7.2.4 Sharing cross platform hosts
Sharing means using a common set of volumes, and therefore, a common tape control database. Different System z operating systems are unable to share a common tape control database or tape management system. Therefore, there is no sharing between z/OS systems and other System z hosts.

7.3 z/VM native support
In this section, we briefly describe the support for the IBM 3494 in a z/VM native environment. We give you a basic introduction to the support provided for the library. We explain how to customize the DFSMS/VM Removable Media Services (RMS) service machine and introduce general considerations for using a 3494 with native VM.

In this section, we also provide information about third-party vendor tape management systems. We include test cases for verifying your installation and considerations for data migration. Additionally, we discuss information about drive allocation and how hardware errors are reported.

7.3.1 Software requirements for z/VM
Support is provided for z/VM 3.1.0, 4.4.0, and 5.1.0 with DFSMS/VM Function Level (FL) 221.
Support for IBM 3592 Tape Drives is provided with CP APAR VM63325 and DFSMS/VM APAR VM63353. Support of the IBM 3592 enhanced media support, including WORM media and the economy length cartridge, is provided with CP APAR VM63461 and DFSMS/VM APAR VM63460.

Support for the VTS is provided with z/VM Version 3 Release 1 or later. APAR VM62710 is required for native z/VM support with Fibre Channel Connection (FICON).

7.3.2 Basic functionality

DFSMS/VM FL221 is the only means for a z/VM system to communicate with an IBM 3494 Tape Library. DFSMS/VM FL221 is part of z/VM.

The RMS function of DFSMS/VM FL221 provides IBM 3494 Tape Library support in VM/ESA environments. The RMS support code runs in a service virtual machine called the *removable media services master* (the default name is RMSMASTR). Based on requests from a user's virtual machine (the mount requester is typically your tape management system), RMSMASTR provides the following services:

- Mounts a specific volume or a volume from a scratch category to a library tape device
- Demounts a volume currently mounted on a specific device
- Queries information about the IBM 3494 Tape Library resources, including volumes, devices, categories, and overall inventory
- Associates a specific scratch pool with a library tape device and resets that association
- Assigns a category to a specific volume

In practice, using a volume inside the tape library requires the sequence of steps shown in Figure 7-1.

![Figure 7-1: z/VM using DFSMS/VM](image)

The process shown in Figure 7-1 (the numbers correspond to the numbers in the figure) is:

1. **Request for library function**: A user sends a request (such as mount a volume) for a library function to RMSMASTR.
2. **Tape drive assigned:** RMSMASTR uses the 3490 device specified on the request or attempts to find an available device if one is not specified. If a specific device is requested and that device is unavailable, the request fails. If a specific device is not requested, and no available device can be found, the request fails.

3. **Library command issued:** If the specified device is available (or if one is free for a non-device-specific request), the device is attached to RMSMASTR. The library control command is issued to the Library Manager through the device path.

4. **Status returned:** A status is returned to RMSMASTR when the command completes.

5. **Device attached:** If a free device is used and no mount request is issued, the device is detached. If it is a mount request, the device is detached from RMSMASTR with the LEAVE option to avoid rewind and unload. It is then attached to the requester.

6. **Data transfer:** The requester of the tape library device does its own data transfer. RMSMASTR is not involved.

Access to the IBM 3494 Tape Library is provided by an interface that includes both RMS commands, DFSMSRM for interactive control, and callable services library (CSL) routines for program control. You can call RMS CSL routines (FSMRMxxx) from a program that is written in any of these programming languages:

- REXX
- C
- Assembler
- COBOL (IBM COBOL II and OS/VS COBOL program products)
- PL/I
- VS FORTRAN
- VS Pascal

RMS functions do not include tape management system services, such as maintaining a removable media inventory, performing tape label verification, performing authorization access checks at the volume level, or managing and selecting tape drives. RMS functions are designed to interface with a tape management system. For systems without a tape management system, you can add tape management system-type functions by tailoring installation-wide exits.

7.3.3 Library Manager interface

The interface to the IBM 3494 Tape Library is through RMSMASTR, which provides removable media services to requesting virtual machines. The requesting virtual machine communicates with RMSMASTR by use of RMS commands or the CSL programming interface.

These are the available functions and RMS commands:

- **Assign volumes** (either one volume or a list of volumes) to categories, DFSMSRM SET VOLCAT.
- **Assign a particular category of volumes** to a tape drive, DFSMSRM SET DEVCAT. You typically use the SET DEVCAT command to assign a category of scratch volumes to a tape drive equipped with an ICL or Automatic Cartridge Facility (ACF), because scratch performance is increased by preloading the scratch tapes into the ICL or ACF. In an IBM 3494, which has neither ICL nor ACF, the command still works. The tape drive simply becomes reserved for use by only that category. By default, at the end of this command, the tape drive is not attached to any user. However, a command option can attach the tape drive to the command issuer or another user ID.
7.3.4 Controlling datasets

RMS maintains data about the tape drive configuration in its internal storage. It recreates the data, if necessary, by rereading the RMCONFIG DATA file.

DFSMS/VM can use RMS bulk processing files to define the category in which to place volumes when they are entered into the IBM 3494 Tape Library. There is one bulk processing file for every IBM 3494 Tape Library known to the RMS machine.

You can use the files for either automatic-insert or on-request bulk processing. An automatic-insert file name is of the form RMBxxxxx DATA, where xxxx is a number unique to the installed IBM 3494 Tape Library. The name is placed in the Shared File System VMSYS:DFSMS.CONTROL directory for access by RMSMASTR. An on-request bulk processing file can have any name and be in any directory accessible to RMSMASTR and the requesting user.

RMS does not keep a record of the volumes in the IBM 3494 Tape Library. RMS is provided as an interface to an IBM 3494 Tape Library and not for the management of volumes within a library. The Library Manager stores the information for the volumes in the IBM 3494 Tape Library. A tape management system provides management of volumes for VM/ESA users. It keeps an inventory of volumes and their location (for example, the library name or off-site location where a volume is stored).

7.3.5 Customizing the DFSMS/VM RMS service machine

In this section, we provide the steps that are required to customize RMS to provide support for an IBM 3494 Tape Library. If you already use DFSMS/VM for minidisk and space management, part of the customization is already complete.

CP directory entry and PROFILE EXEC

The RMS service machine requires a CP directory entry (see Figure 7-2). The user ID of RMSMASTR must be the same as the ID defined in DFSMS_MASTER_VM. See “DGTVCNTL DATA” on page 292.
The PROFILE EXEC for the RMS service machine is placed on its A disk during the installation of DFSMS/VM. In the CP directory entry, modify the device type, starting cylinder, and device ID of the disk.

RMSMASTR ATL authorization

To authorize RMSMASTR to interact with the IBM 3494 Tape Library, add the STDEVOPT control card to its CP directory entry as shown in the following statement:

```
STDEVOPT LIBRARY CTL
```

DFSMS/VM control files

There are three control files:

- DGTVCNTL DATA
- RMCCONFIG DATA
- RMBnnnnn DATA

These files are all in the shared file system VMSYS:DFSMS.CONTROL directory. The use of the RMBnnnnn DATA file is optional.

DGTVCNTL DATA

The DGTVCNTL DATA file is where you define:

- DFSMS RMS machine name
- IBM 3494 Tape Library name and LIBRARY-ID
- Name of the APPC resource to use
- Name of the DFSMS work directory
- Default scratch pool
- Severity level of messages written to the RMS console
- Severity level of messages written to the RMS machine log file
- Whether library requests are queued in the Library Manager
- Whether write protection is enabled when a tape is mounted

Figure 7-2 Sample RMS service machine CP directory entry

 USER RMSMASTR password 32M 32M BG
 ACCOUNT 12345678
 MACHINE XA
 STDEVOPT LIBRARY CTL
 IPL CMS
 IUCV ALLOW
 IUCV *IDENT RESANY GLOBAL REVOKE
 OPTION MAXCONN 400 QUICKDSP ACCT
 SHARE RELATIVE 1300
 CONSOLE 009 3215 T DFSMS
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 MDISK 0191 3390 scyl 001 RMSDISK MR
 LINK DFSMS 0185 0192 RR
 LINK MAINT 0190 0190 RR
 LINK MAINT 019E 019E RR

As shown in the following example, the **DFSMS_MASTER_VM** parameter defines the name of the RMS machine. The name is one to eight characters long and must be unique. The default name provided is RMSMASTR.

```
DFSMS_MASTER_VM RMSMASTR
```

The **RM_AUTO_LIBRARY** parameter defines the name and sequence number (the five digits of the IBM 3494 Tape Library's serial number) of every IBM 3494 Tape Library you use.

In the following example, the “friendly” name of the IBM 3494 Tape Library is **MARVIN**, the library sequence number is **12345**, and messages relating to RMS processing will be sent to the user ID **OPER**:

```
RM_AUTO_LIBRARY MARVIN 12345 OPER
```

To find the library sequence number on the Library Manager, refer to 9.4.1, “Finding out the LIBRARY-ID given during the teach process” on page 379.

As shown in the following example, the **GLOBAL_RESOURCE_ID** parameter defines the name of the global APPC resource by which DFSMS/VM is to be known. The name must be unique. If it is not, DFSMS/VM does not start. There is no default, but the sample name used is **DFSMS001**.

```
GLOBAL_RESOURCE_ID DFSMS001      * Global APPC Resource
```

The **WORK_DIRECTORY** parameter, shown in the following example, defines the name of the work directory that DFSMS will use. The first five characters must be **DFSMS**. The file pool must be enrolled and running before DFSMS can start.

```
WORK_DIRECTORY VMSYSU:DFSMS.WORK
```

The **RM_DEFAULT_SCRATCH_POOL** parameter, shown in the following example, is optional. It defines the default scratch pool to use for the scratch category.

```
RM_DEFAULT_SCRATCH_POOL SCRATCH0
```

The **RM_ACCOUNTING** parameter, shown in the following example, is optional. It defines whether RMS provides accounting information. The default is that accounting is turned off (**N**).

```
RM_ACCOUNTING N
```


The **RM_LOG_TO_CONSOLE** parameter defines the severity of the messages to send to the RMS machine. The message severity levels are:

- **0**: No messages are logged.
- **1**: Severe messages are logged.
- **2**: Severe and error messages are logged.
- **3**: Severe, error, and warning messages are logged.
- **4**: Severe, error, warning, and informational messages are logged.

RM_LOG_TO_CONSOLE and **RM_LOG_TO_FILE** are paired parameters. You cannot code **0** for both. We recommend that you code **4** at least one time to aid in problem determination. The following example shows a sample **RM_LOG_TO_CONSOLE** parameter:

```
RM_LOG_TO_CONSOLE 3  * Messages logged to console
```

The **RM_LOG_TO_FILE** parameter defines the severity of messages to write to the RMS machine's log file and the name of the directory that will contain the log file. Because DFSMS holds this file open, you use XEDIT with the NOLOCK option in order to browse it. The
message severity levels are the same as they are for the RM_LOG_TO_CONSOLE parameter. Here is a sample of an RM_LOG_TO_FILE parameter:

```
RM_LOG_TO_FILE 4 DFSMS.WORK  * Messages logged to file
```

The RM_REQUEST_QUEUING parameter defines whether requests sent to the Library Manager are queued if the IBM 3494 Tape Library is in pause mode. Y is the default and the recommended value as shown in the following example:

```
RM_REQUEST_QUEUING Y
```

The RM_WRITE_PROTECT parameter defines the default write protect mount if it is not specified on the mount request. Acceptable values are READONLY and READWRITE. The default and recommended value is READONLY, which sets logical write protection on in the tape control unit. See the following example:

```
RM_WRITE_PROTECT READONLY
```

RMCONFIG DATA

RMS maintains data about the tape drive configuration in its internal storage by rereading the RMCONFIG DATA file. Figure 7-3 shows an example of an RMSCONFIG DATA file.
DFSMS/VM can use RMS bulk processing files to define the category in which to place volumes when they are entered into the IBM 3494 Tape Library. There is one bulk processing file for every IBM 3494 Tape Library known to the RMS machine. The files are used for either automatic-insert or on-request bulk processing.

An automatic-insert file name is of the form RMBnnnnn DATA, where nnnnn is a library sequence number that is defined in the RM_AUTO_LIBRARY parameter. The file is located in VMSYSU:DFSMS.WORK or a directory that is defined by the RM_WORK_DIRECTORY parameter. Notification of insert processing is sent to the user ID specified in RM_AUTO_LIBRARY.
An on-request bulk processing file can have any name and be in any directory accessible to RMSMASTR and the requesting user. On-request bulk processing is initiated through either the DFSMS SET VOLCAT BULK command or a CSL call to RMS.

Figure 7-4 shows an example of an RMS bulk configuration file when the host is notified that cartridges are in the Library Manager INSERT category. RMS sets the cartridges defined in RMBnnnnnn to the defined category. Volumes that are not defined in the RMBnnnnnn DATA file are ignored, and insert processing can be completed on other hosts. In this example, we set cartridges with VOLSERS in ranges 000001 through 000849 and VM0000 through VM0099 to the VOLUME SPECIFIC or private category. We also set cartridges with VOLSERS in the UN0000 to UN0099 range to the EJECT category. This enables you to stop cartridges from being entered into the IBM 3494 Tape Library. We recommend that you assign all volumes to the VOLUME SPECIFIC category. Then, the tape management system can assign a cartridge’s true Library Manager category.

| 000001-000849 VOL INSERT | VM0000-VM0099 VOL INSERT | UN0000-UN0099 EJECT INSERT |

Figure 7-4 Sample RMBxxxxxxx DATA file

RMS does not keep a record of the volumes in the IBM 3494 Tape Library. RMS is provided as an interface to an IBM 3494 Tape Library and not for the management of volumes within a library. The Library Manager stores the information for the volumes in the IBM 3494 Tape Library. A tape management system provides management of volumes for VM/ESA users, keeping an inventory of volumes and their location (for example, the library name or off-site location in which a volume is stored).

RMS security

RMS functions can be protected by using RACF/VM. Simply set up RMS so that it uses the RACROUTE interface. You authorize users through the use of the STGADMIN or a user-defined group.

7.3.6 Considerations for using a 3494 Tape Library in a VM/ESA environment

Consider these points when you use the IBM 3494 Tape Library in a VM/ESA environment:

- RMS does not check that the internal label of a volume matches the external label.
- An installation-wide exit, FSMRMSHR, provides the facility to check that a request is for a volume or category that the requester is allowed to use. Use this exit when you share the library with more than one system.
- Automatic-insert processing does not immediately occur when a volume is placed into the input station, because RMSMASTR cannot receive unsolicited interruptions of cartridge insertion without an attached tape drive. RMSMASTR periodically queries the insert category to find out whether there are volumes in it.

Automatic insert processing occurs when the insert category is not empty and:

- RMSMASTR is initially started.
- RMSMASTR is restarted.
- RMSMASTR receives a valid MOUNT command.
- RMSMASTR receives a valid SET DEVCAT command.

In the last two cases, automatic insert processing is totally independent of the actual command issued, but the command must be valid.
Automatic insert processing uses a different tape device address, which RMSMASTR selects. If an unused tape device address is not available when insert processing starts, the process does not continue. Because insert processing most likely starts before the MOUNT (or SET DEVCAT) finishes with its tape device, another device must be available for this insert processing. If a device is not free, you can move volumes from the insert category to the category of choice by using the SET VOLCAT BULK command.

Note: You can disable automatic insert processing simply by not having an automatic-insert file of the name RMBxxxxx DATA. You might want to disable automatic insert processing on a particular VM/ESA system when you share your IBM 3494 Tape Library with multiple VM/ESA systems.

- It is impossible to create an SMSplex between a VM/ESA system and a z/OS system.
- RMS does not provide tape management functions. Several software vendor products provide VM tape management functions. However, it is possible to use the Programmable Operator (PROP) facility of VM to intercept commands to the operator interface originating from a tape management system. PROP can then redirect the commands to RMS for processing.

You can find additional information in *Lights Out! Advanced Tape Automation Using VM/ESA*, GG24-4347.

7.3.7 Tape management systems

Table 7-2 shows the third-party tape management systems (of which we are aware) that provide support for the IBM 3494 in the z/VM environment. Other products might exist, or new products might have been announced since the publication of this book.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Vendor name</th>
<th>Web address for more information</th>
</tr>
</thead>
</table>

7.3.8 Cartridge processing

In the following sections, we describe the interaction among z/VM, the tape management system that you installed, and the actions regarding cartridges:

- Insert
- Eject
- Return to scratch

Cartridge insert processing

If you have z/VM and have implemented bulk insert processing, cartridges entered into the library have their Library Manager categories set automatically. To complete insert
processing, run the tape management system procedure to synchronize its database with the Library Manager database.

Cartridge eject processing
Ejecting cartridges is the responsibility of the tape management system. The tape management system vendor provides a mechanism to send the appropriate commands to the Library Manager to move cartridges from storage cells to the I/O stations. This mechanism is usually included as part of existing vaulting procedures.

Return to scratch
The Library Manager category indicates whether a cartridge is private or scratch. The Library Manager automatically updates a cartridge to a private category when it is used. It is the responsibility of the tape management system to instruct the Library Manager to change a cartridge category back to scratch. This is normally carried out as part of the tape management system return-to-scratch processing, which is invoked with either an operator command or a batch job.

7.3.9 Testing procedures

Table 7-3 lists the testing tasks to prove that the tape management system and the library are communicating and that you can successfully read and write data to library-resident drives. IBM does not provide a tape management system for z/VM, so we cannot provide detailed information about how to carry out these tests. You can use these tests to develop operational procedures, which need to complete before the library is used for production work.

<table>
<thead>
<tr>
<th>Task</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check that automatic insert processing works as expected.</td>
<td>N/A</td>
</tr>
<tr>
<td>Check that the Library Manager category and tape management system catalog synchronize correctly.</td>
<td>Do this either by a command or a batch job.</td>
</tr>
<tr>
<td>Check the tape management system vaulting procedures. They eject the cartridges from the library.</td>
<td>N/A</td>
</tr>
<tr>
<td>Check that the tape management system operator commands work as expected with the library.</td>
<td>Operator commands might not exist for your tape management system.</td>
</tr>
<tr>
<td>Allocate a standard dataset in the IBM 3494.</td>
<td>N/A</td>
</tr>
<tr>
<td>Allocate a multivolume dataset in the IBM 3494.</td>
<td>N/A</td>
</tr>
<tr>
<td>Allocate several datasets as multifile on one cartridge in the 3494.</td>
<td>N/A</td>
</tr>
<tr>
<td>Modify a previously written dataset.</td>
<td>N/A</td>
</tr>
<tr>
<td>Initialize a new cartridge (if using new media).</td>
<td>N/A</td>
</tr>
<tr>
<td>Re-initialize an already initialized cartridge (if the drive model changed).</td>
<td>N/A</td>
</tr>
</tbody>
</table>
7.3.10 Data migration considerations

In a z/VM environment, the tape management system controls tape allocation. Therefore, the details of a migration project differ, depending on which tape management system you installed. When migrating to a library, you must consider:

- Which categories of tape data are involved?
- Are there cartridges that are not managed by the tape management system?
- Must the data be read by a different tape technology at another location?
- Is managing multiple tape formats and recording technologies involved?
- What is the data migration sequence?
- How do you plan to verify that data is successfully migrated?
- How do you plan to manage the library resource if it is shared with another platform?

7.3.11 Drive allocation and selection

With tape drives that emulate another device type, the unit type becomes ambiguous when there are actual drives of the same type that are host-attached. For example, any IBM TotalStorage Enterprise 3590 tape drive that is in 3490E emulation mode has the same unit type as an actual 3490E drive. A 3590 Model H or Model E that is in 3590 emulation mode has the same unit type as an actual 3590 Model B (in 3590 mode). This is also true for a 3592 model defined as a 3590 model in the Hardware Configuration Definition (HCD).

Application software maintains the relationships between pieces of media and the subset of drives on which they can be mounted. In turn, the software must influence the selection of an appropriate tape drive.

Note: The operating system does not manage device allocation.

7.3.12 Media capacity exploitation

z/VM commands and functions for writing tape data can fully use 3590 and 3592 media capacity. Specifying the largest possible block size when issuing CMS commands ensures optimum use of media capacity and promotes the best exploitation of 3590 and 3592 performance.

7.3.13 SIM and MIM presentation

Service Information Messages (SIMs) and Media Information Messages (MIMs) report hardware-related problems to the operating system. Refer to the Statistical Analysis and Reporting System User Guide, which you can find at this Web site:

http://www-1.ibm.com/support/docview.wss?uid=ssg1S7000247

SIMs and MIMs are reported as HCP6359I and HCP6357I messages and appear in the EREP reports.

7.3.14 Related documentation

Before you install an IBM 3494 Tape Library, we recommend that you refer to the following documents:

- DFSMS/VM Function Level 221 Removable Media Services User's Guide and Reference, SC35-0141
- IBM TotalStorage Enterprise Tape System 3590 Introduction and Planning Guide, GA32-0329
7.4 VSE/ESA native support (VSE 2.7.x)

In this section, we briefly describe the support for the IBM 3494 in a native VSE/ESA environment using the library control device driver (LCDD) for VSE/ESA. We give you a basic introduction about providing library support.

VSE/ESA 2.7 is withdrawn from marketing and support ended on 28 February 2007, but it is still used in many client sites.

Restriction: VSE/ESA 2.7 does not support the 3592 drives or the PtP VTS.

For all information that is not release dependent, such as information about third-party vendor tape management systems, test cases, or data migration, refer to “z/VSE native environments with Tape Library Support” on page 303.

7.4.1 Software requirements for VSE/ESA

We strongly recommend that you review the following Preventive Software Planning (PSP) Bucket: Upgrade 3494DEVICE, Subset 3494VSE/ESA.

You can find PSP Buckets using this Web site:
https://techsupport.services.ibm.com/server/390.psp390

Inside the PSP Bucket, you see all necessary APARs and PTFs to exploit the full functionality of the new environment. The PSP Bucket also lists the latest fixes.

7.4.2 Basic functionality

Unlike the IBM 3494 Tape Library support of VSE/ESA as a VM/ESA guest machine, VSE/ESA native support requires the LAN attachment feature of the IBM 3494 to communicate with the Library Manager. A token ring or Ethernet is used for the LAN. In this environment, the VSE/ESA host uses tape drives inside the tape library in the usual way through ESCON or parallel channels. The VSE/ESA program uses this channel path for normal tape device operations.

For library control, the LCDD for VSE/ESA is required. LCDD runs an application program in a VSE/ESA partition and communicates with the Library Manager by using VTAM APPC (LU6.2) through a LAN. The LBSERV macro application programming interface (API) is provided in VSE/ESA to communicate with the Library Manager through the LCDD. See Figure 7-5 for an overview.
There are five interfaces to the LCDD:
- LIBSERV attention routines (ARs)
- LIBSERV JCL statements
- LBSERV API
- MSG operator command
- Batch program LCABAT

The LCDD interfaces enable mounting cartridges, managing the inventory, and retrieving IBM 3494 information. For mount services, specific volume (private) mounts and 32 scratch pools (SCRTCH00 to SCRTCH31) are supported. Users can set a default scratch pool by specifying an LCDD control statement.

Automatic insert processing is optional and can be specified by an LCDD control statement with a target category. Users can also dynamically change the automatic insert processing through an MSG operator command. In addition to this, disposition of inserted volumes is handled by the tape management system product through the LBSERV API, or by LCABAT batch jobs that specify a list of volumes.

You can handle ejecting or changing the category of cartridges on an individual volume basis or by specifying the file name of a list of volumes to process.

Query functions return status information about IBM 3494 tape units, cartridges, and the IBM 3494 Library Manager. Library member files of a VSE/ESA Librarian facility are created when inventory lists are requested. The library member files can be used, in turn, as volume lists for other processing requests. An inventory list for the entire IBM 3494 serves as a point-in-time host backup of the IBM 3494 status of tape processing. This list is potentially useful for
recovery purposes, because VSE/ESA does not have a permanent tape inventory dataset, such as DFSMS/MVS and BTLS systems.

When jobs running on VSE/ESA use the 3494, typically the tape management system product gets control at dataset OPEN time and requests the tape mount through the LBSERV API.

A tape management system might help this operation, but IBM does not provide a tape management system for VSE/ESA. Ask the software vendors, who offer tape management systems, which systems support VSE/ESA products.

Note: With VSE/ESA 2.7 and APAR DY45905, an LCDD enhancement is provided. It introduces the support and the usage of more than one subsystem with non-unique subsystem serial numbers.

7.4.3 Library Manager interface

Communication between the host and the Library Manager is through a different physical path (LAN) from the path used for the data (ESCON or parallel channel). The LBSERV API handles interaction between the user application and the LCDD. Commands can be sent to the LCDD through the VSE/ESA operator command, MSG.

A batch interface that uses the LCABAT batch program is provided.

LIBSERV ARs provide an additional interactive interface for library control. LIBSERV JCL statements allow library control functions in job steps.

7.4.4 Control datasets

The VSE/ESA librarian facility is used. Volume lists for the complete IBM 3494 inventory or specified categories can be maintained in VSE/ESA librarian files. The volume lists are created only by user request. However, they are not updated automatically by the LCDD.

The tape units and library names are held in the LCDD initialization deck.

7.4.5 Considerations

Consider these points when you use the LCDD for VSE/ESA:

- LCDD for VSE/ESA is included in the VSE base code. One of the LAN adapter features is required for the IBM 3494. The choice is Ethernet (FC5220) or token ring (FC5219).
- LCDD requires the following network hardware (or equivalent) and software to attach a native VSE/ESA system to a 3494:
 - ACF/VTAM
 - IBM 3174 establishment controller
 - IBM 3745, 3720, or 3725 communication controller
 - IBM 9221 with a token-ring communications subsystem
- Volumes can be mounted in any of the scratch categories.
- All volumes in a library are potentially accessible by VSE/ESA. In a shared environment, the tape management system on the VSE system must provide protection to prevent erroneous access of another system's volumes.
- IBM does not provide a tape management system for VSE/ESA.
Any other vendor’s tape management system must be able to use the LBSERV API of the LCDD.
Do not use the batch program interface, LCABAT, to mount a volume.

7.5 z/VSE native environments with Tape Library Support

z/VSE supports the IBM 3494 natively through its Tape Library Support (TLS). The LCDD support is still available; however, new functionality, such as the 3592 drive support, is only implemented in TLS.

7.5.1 Software requirements for z/VSE

We strongly recommend that you review the following Preventive Software Planning (PSP) Bucket: Upgrade 3494DEVICE, Subset 3584VSE/ESA.

You can find PSP Buckets at this Web site:
https://techsupport.services.ibm.com/server/390.psp390

Inside the PSP Bucket are all necessary APARs and PTFs to exploit the full functionality of the new environment. The PSP Bucket lists the latest fixes also.

Native z/VSE 3.1 and later releases support the attachment of 3592 tape drives. Also, a standalone VTS environment is supported, but there is no support for PtP VTS.

z/VSE provides support for PtP VTS only as a guest under VM.

7.5.2 Basic functionality

TLS allows support for the tape library through the /390 channel command interface commands; therefore, you no longer need the cross-partition communication capability (XPCC)/APPC communication protocol that was required with the old interface. The external interfaces (LIBSERV JCL and LIBSERV macro) remain unchanged.

Define library support
First, you must define the type of support that you use by specifying the SYS ATL statement. You can define:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS</td>
<td>Tape Library Support, which provides full support</td>
</tr>
<tr>
<td>VSE</td>
<td>LCDD, which does not support 3592 drives</td>
</tr>
<tr>
<td>VM</td>
<td>VM Guest Support</td>
</tr>
</tbody>
</table>

For native support under VSE, select TLS.

Define tape libraries
You must define your tape library or libraries. Use a batch job as shown in Example 7-1.

Example 7-1 Define libraries

```plaintext
* $ $ JOB JNM=TLSDEF,CLASS=0,DISP=D
* $ $ LST CLASS=A
// JOB TLSDEF
// EXEC LIBR,PARM='MSHP'
  ACCESS S=IJSYSRS.SYSLIB
  CATALOG TLSDEF.PROC REPLACE=YES
  LIBRARY_ID TAPELIB1 SCRDEF=SCRATCH00 INSERT=SCRATCH00   --- default library
```
LIBSERV
The communication from the host to the Library Manager is through the LIBSERV JCL or macro interface. Example 7-2 shows a sample job using LIBSERV to mount volume 123456 for write on device address 480 and, in a second step, to release the drive again.

Example 7-2 Sample LIBSERV JCL

$ JOB JNM=BACKUP,CLASS=0,DISP=D
$ JOB BACKUP
// ASSGN SYS005,480
// LIBSERV MOUNT,UNIT=480,VOL=123456/W
// EXEC LIBR
BACKUP S=IJJSYRS.SYSLIB TAPE=480
/*
// LIBSERV RELEASE,UNIT=480
/&
$ E0J

LIBSERV provides the following functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query all libraries for a volume</td>
<td>LIBSERV AQUERY,VOL=123456</td>
</tr>
<tr>
<td>Mount from category</td>
<td>LIBSERV CMOUNT,UNIT=480,SRCCAT=SCRATCH01</td>
</tr>
<tr>
<td>Query count of volumes</td>
<td>LIBSERV CQUERY,LIB=TAPELIB1,SRCCAT=SCRATCH01</td>
</tr>
<tr>
<td>Query device</td>
<td>LIBSERV DQUERY,UNIT=480</td>
</tr>
<tr>
<td>Query inventory of library</td>
<td>LIBSERV IQUERY,LIB=TAPELIB1,SRCCAT=SCRATCH01</td>
</tr>
<tr>
<td>Query library</td>
<td>LIBSERV LQUERY,LIB=TAPELIB1</td>
</tr>
<tr>
<td>Manage inventory</td>
<td>LIBSERV MINVENT,MEMNAME=ALL,TGTCAT=SCRATCH01</td>
</tr>
<tr>
<td>Change category</td>
<td>LIBSERV SETVCAT,VOL=123456,TGTCAT=SCRATCH01</td>
</tr>
<tr>
<td>Query library for a volume</td>
<td>LIBSERV SQQUERY,VOL=123456,LIB=TAPELIB1</td>
</tr>
</tbody>
</table>

For additional information, refer to the z/VSE System Administration Guide, SC33-8224, and the z/VSE System Macros Reference, SC33-8230.

7.5.3 Migration from LCDD to TLS

Because all macros and commands remain unchanged, the migration is extremely easy. You must switch the statement in the SYS ATL statement from VSE to TLS and execute an IPL. If you encounter any problems, you change the statement again, and process another IPL. However, the migrations that we processed so far were without problems.

After the migration, you can eliminate the no longer necessary XPPC/APPC statement in a second step.

7.5.4 Tape management systems

Table 7-4 shows the third-party tape management systems (of which we are aware) that provide support for the IBM 3494 in the VSE environment. Other products might exist, or new products might have been announced since the publication of this book.
7.5.5 Cartridge processing

In the following sections, we describe the interaction among VSE/ESA, the tape management system that you installed, and the actions regarding cartridges:

- Insert
- Eject
- Return to scratch

Cartridge insert processing

If you work in a native VSE/ESA environment, it is the responsibility of the tape management system to complete insert processing after new cartridges are entered into the library.

Cartridge eject processing

Ejecting cartridges is the responsibility of the tape management system. The tape management system vendor provides a mechanism, which is usually included as part of existing vaulting procedures. This mechanism sends the appropriate commands to the Library Manager to move cartridges from storage cells to the I/O stations.

Return to scratch

The Library Manager category indicates whether a cartridge is private or scratch. The Library Manager automatically updates a cartridge to a private category when it is used. It is the responsibility of the tape management system to instruct the Library Manager to change a cartridge category back to scratch. This is normally carried out as part of the tape management system return to scratch processing, which is invoked with either an operator command or a batch job.

7.5.6 Testing procedures

Table 7-5 lists the testing tasks to prove that the tape management system and the library communicate and that you can successfully read and write data to library-resident drives. IBM does not provide a tape management system for VSE, so we cannot give you detailed information about how to carry out these tests. Also, use these tests to develop operational procedures that you need to complete before the library is used for production work.

Table 7-5 VSE/ESA testing procedures

<table>
<thead>
<tr>
<th>Task</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check that automatic insert processing works as expected.</td>
<td>N/A</td>
</tr>
<tr>
<td>Check that the Library Manager category and tape management system catalog synchronize correctly.</td>
<td>Do this either by command or by batch job.</td>
</tr>
</tbody>
</table>
7.5.7 Data migration considerations

In a VSE/ESA environment, tape allocation is controlled through the tape management system. The details of a migration project, therefore, differ depending on which tape management system you install. When migrating to a library, consider:

- Which categories of tape data are involved?
- Are there cartridges which are not managed by the tape management system?
- Does the data have to be read by a different tape technology at another location?
- Is managing multiple tape formats and recording technologies involved?
- What is the data migration sequence?
- How do you plan to verify that data was successfully migrated?
- How do you plan to manage the library resource if it is shared with another platform?

7.5.8 Drive allocation and selection

With tape drives that emulate another device type, the unit type becomes ambiguous when there are actual drives of the same type that are host-attached. For example, any 3590 tape drive that is in 3490E emulation mode has the same unit type as an actual 3490E drive. A 3590 Model H or Model E that is in 3590 emulation mode has the same unit type as an actual 3590 Model B (in 3590 mode). Application software maintains the relationships between pieces of media and the subset of drives on which they can be mounted. In turn, the software must influence the selection of an appropriate tape drive.

Use of the generic device type, in the ASSGN JCL statement, eliminates distinction between an emulated and actual 3490E and a 3590. If 3590 Model H, Model E, and Model B are added in 3490E emulation mode, the ASSGN JCL statements specify that the 3490 H or E cannot work properly. The same applies if either Model H, Model E, or Model B is added when actual 3490E drives are present. If Model H, Model E, and Model B are added in 3590 mode, then ASSGN JCL statements specify that the 3590 cannot work properly.

The same considerations are true for 3592 tape drives defined in HCD as model 3590.

7.5.9 Media capacity exploitation

Typically, applications use the physical end-of-volume to determine that a tape is full. Applications fully use capacity of media, regardless of emulation mode or track density.
7.5.10 SIM and MIM presentation

SIMs and MIMs report hardware-related problems to the operating system. Refer to the Statistical Analysis and Reporting System User Guide, which you can download from this Web site:

http://www-1.ibm.com/support/docview.wss?uid=ssg1S7000247

SIM and MIM are presented in VSE/ESA through OP64I, OP65I, and OP20 messages, as well as EREP reports.

7.5.11 Related documentation

Refer to the IBM VSE/ESA home pages on the Internet for general information:

Refer also to:

- *IBM TotalStorage Enterprise Tape System 3590 Introduction and Planning Guide*, GA32-0329
- *IBM TotalStorage 3592 Tape System Introduction and Planning Guide*, GA32-0464
- *IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide*, GA32-0448

7.6 General information about VSE/ESA or z/VSE under z/VM

You can implement tape library support for VSE under z/VM in different ways. Also, the choice of tape management has an impact on the implementation. Therefore, we describe several options.

Table 7-6 shows an overview of which interfaces are needed for different releases and which restrictions you must consider.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Needed software interfaces</th>
<th>Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSE/ESA 2.7</td>
<td>VSE Guest Server (VGS) and RMSMASTR</td>
<td>None</td>
</tr>
<tr>
<td>z/VSE 3.1</td>
<td>VGS and RMSMASTR</td>
<td>None</td>
</tr>
<tr>
<td>z/VSE 3.1</td>
<td>TLS</td>
<td>Devices must be defined static to the VSE and cannot be shared with other hosts.(^{a})</td>
</tr>
<tr>
<td>z/VSE or VSE/ESA with Dynam/T</td>
<td>none(^{b})</td>
<td>None</td>
</tr>
</tbody>
</table>

a. See section “z/VSE native environments with Tape Library Support” on page 303.
b. See section “VSE/ESA and z/VSE under z/VM using Dynam/T” on page 308.

7.6.1 Software requirements for z/VSE and z/VM

z/VSE provides support for PtP VTS only as a guest under VM. Guest support under VM/ESA or z/VM with VGS for the VTS is provided with all of these products:

- z/VSE V3.1
We strongly recommend that you review the following Preventive Software Planning (PSP) Buckets. See “Software requirements for z/VM” on page 288 and “Software requirements for z/VSE” on page 303.

7.6.2 Tape management systems for all implementations

Table 7-7 shows the third-party tape management systems (of which we are aware) that provide support for the IBM 3494 in the VSE environment under VM. Other products might exist or new products might have been announced since the publication of this book.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Vendor name</th>
<th>Web address for more information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIM-EPIC</td>
<td>CSI International</td>
<td>http://bimoyle.com/</td>
</tr>
</tbody>
</table>

7.6.3 z/VSE under z/VM using TLS

With z/VSE 3.1, you can also use TLS under z/VM. However, the TLS does not support the Attach or Detach process. Therefore, with TLS, you cannot share the tape devices with other VSE instances or z/VM. For a native environment, this is a restriction. For a VTS, which provides up to 128 virtual devices, you might consider defining dedicated devices to your environment. You must measure the easy implementation against the benefit of sharing devices.

7.6.4 VSE/ESA and z/VSE under z/VM using Dynam/T

Dynam/T uses its own interface, instead of VGS or TLS. Therefore, it uses none of these interfaces. Figure 7-6 show the information flow with Dynam/T.
In this section, we describe VSE/ESA support of the IBM 3494 Tape Library when VSE/ESA or z/VSE runs as a guest of z/VM. We introduce the required software releases, information about VSE Guest Server support, and TLS, as well as considerations and information about the tape management system that you might want to use.

For information about data migration considerations and testing procedures, refer to “Testing procedures” on page 305 and “Data migration considerations” on page 306 in the z/VSE native section.

For information about the needed software support, refer to Chapter 4, “Software implementation in z/OS” on page 145.

7.7 Basis functionality

When a z/VSE guest machine uses a tape drive in the tape library, the tape drive must be attached to that machine, and the tape volume must be mounted on the drive. Because z/VSE as a virtual machine cannot communicate with the Library Manager to request a tape mount, RMSMASTR must attach the tape drive and mount the volume. z/VSE cannot use RMSMASTR directly, because RMS functions run only in CMS mode. Therefore, the z/VSE guest typically uses the CMS service machine called the VSE Guest Server to communicate with RMSMASTR. Some vendor tape management support scenarios do not use the VGS but communicate directly with RMSMASTER through CSL calls.

z/VSE communicates with the VGS through an API provided by the LBSERV macro of VSE/ESA. The library control API uses VSE’s XPCC to invoke APPC/VM to communicate with the VGS.
RMSMASTR handles all requests to the Library Manager. z/VSE uses tape drives inside the library in the same way that it uses drives outside the library. This operation is the same operation in z/VSE native support. To enable z/VSE guest support on z/VM, PTFs to both z/VSE and z/VM provide an API in z/VSE and the VGS.

Note: The VGS provides the only way to communicate between RMSMASTR and the VSE/ESA guest machine. There is no direct interface from the VGS to the IBM 3494 Tape Library and the tape drive inside the library.

Figure 7-7 shows the z/VSE guest support for the IBM 3494 Tape Library. Although we show only a single z/VSE guest machine here, multiple z/VSE guests can share one VGS machine.

![Diagram of z/VSE as z/VM guest using the VSE Guest Server](image)

Figure 7-7 z/VSE as z/VM guest using the VSE Guest Server

The VGS supports a full set of library functions, including inventory functions, which entail reading and updating inventory lists that reside on z/VSE as librarian members. Because the interactions required for processing the inventory functions are elaborate and may be long-running, a secondary VGS for inventory support is required to exploit these functions on the CMS side. In addition, a librarian server runs in a VSE/ESA partition. Figure 7-8 shows the flow of an inventory request as follows (the numbers correspond to those in the figure):

1. The inventory request is sent using the LBSERV macro API from the VSE/ESA guest to the VGS.
2. The VGS presents the inventory request to the inventory support server machine.
3. The inventory support server requests that the librarian server on VSE/ESA read a librarian-managed file in the VSE/ESA librarian files and gets the result.
4. The inventory support server sends the request to RMSMASTR.
5. RMSMASTR sends the request to the Library Manager and gets the result.
6. RMSMASTR returns the result (inventory list for query and result for changing volume category) to the inventory support server.
7. The inventory support server sends the result to the librarian server on VSE/ESA, and the librarian server writes a new copy of the librarian file.
8. The inventory support server notifies the VGS that processing is complete.
9. The VGS replies to the LBSERV macro request.

Figure 7-8 VSE Guest Server: Flow of an inventory request

7.7.2 Library Manager interface

You use the VSE/ESA LBSERV macro to access volumes in an IBM 3494 Tape Library. LBSERV can request a mount, query a specific volume’s location, release a drive, cancel a previous request, and eject a volume from the IBM 3494 Tape Library. The LBSERV macro is used under program control, and LIBSERV attention routines (ARs) and JCL statements are available external interfaces. Other functions, such as insert and category management, are performed through existing DFSMS/VM RMS library control interfaces.

The LBSERV macro accepts requests from VSE application programs, as well as LIBSERV ARs and JCL statements, and sends them to the VGS. The VGS, in turn, passes them on to the IBM 3494 Tape Library through DFSMS/VM RMS.

The VGS supports the following types of requests for library control:
- Query a volume, checking a single library
- Query a volume, checking all attached libraries
- Query a category count
- Query status of the IBM 3494 Tape Library
- Query status of a drive
- Mount a volume
- Mount from a category
- Release a drive
- Cancel a mount
- Eject a volume
- Set a volume category
- Query the inventory
- Manage the inventory

Note: The VGS uses the inventory support server as a secondary VGS when processing the above query and manage inventory requests.

An interface for explicit demount is intentionally not provided. The IBM 3494 Tape Library automatically queues demount operations at rewind and unload time.

The VGS is given privilege class B to perform these functions and to attach and detach tape drives to and from VSE/ESA.

7.7.3 Control datasets

The VGS keeps a file (on a CMS minidisk) of in-process and completed work. The VGS keeps a file, LIBCONFIG LIST, that contains the VSE/ESA library names and the corresponding DFSMS/VM library names. This file is optional when you only install one IBM 3494 Tape Library.

The inventory support server (as a secondary VGS) uses a LIBRCMS SRV_NAMES file in its 191 minidisks to handle library control for multiple VSE/ESA guests.

The librarian server on VSE/ESA uses the VSE/ESA librarian files for inventory processing, such as query and manage.

As with the VM/ESA native environment (see 7.4, “VSE/ESA native support (VSE 2.7.x)” on page 300), the tape management system is responsible for keeping an inventory of volumes in the IBM 3494 Tape Library belonging to VSE/ESA.

Note: The VGS customization exit, FSMR MVGC, is highly important and just as critical to the system as these control datasets.

7.7.4 Considerations

Consider these points when you introduce z/VSE as a guest under VM:
- Multiple VSE/ESA guests can share one VGS machine.
- A VGS machine can manage more than one IBM 3494 Tape Library.
- VSE/ESA guests have access to the same set of scratch pools that RMS uses.
- VSE/ESA can eject volumes from the library by direct command and can change the category of volumes in the insert category. However, a z/VSE guest lacks the capability to be automatically notified that new volumes are inserted. Also, there is no IBM-provided mechanism to check whether new volumes are inserted.
- IBM-supplied tape management system products are not available for VSE/ESA.
- z/VSE with the LCDD can run as a guest of VM/ESA. DFSMS/VM is not required in this environment.
Chapter 8. Software implementation: Open Systems environments

This chapter discusses the implementation of the IBM 3590 and IBM 3592 tape drives, as well as the implementation of the IBM 3494 Tape Library.

This chapter describes the installation requirements and implementation considerations for the following environments:

- IBM System i and iSeries servers
- IBM System p and pSeries servers running AIX
- Sun Servers running Solaris
- Hewlett-Packard servers running HP-UX
- Linux servers

This chapter also discusses specific considerations for implementing and using IBM Tivoli Storage Manager (ITSM) with the IBM 3494 Tape Library.
8.1 Operating system and ISV support

Prior to the installation, we recommend that you check for the most recent tape support information regarding the Open Systems environment that you plan to implement, as well as for any independent software vendor (ISV) applications that you plan to implement. Check the following Web sites for support information:

- IBM 3494 Tape Library
- IBM 3590 tape drive and controller:
 - Operating system support
 - Host bus adapter (HBA) support
 http://knowledge.storage.ibm.com/HBA/HBASearchTool
 - Independent Software Vendor (ISV) applications support
- IBM 3592 Tape Drive and Controller:
 - Operating system support
 - HBA support
 http://knowledge.storage.ibm.com/HBA/HBASearchTool
 - ISV support

IBM tape products are supported in general with IBM (OEM Brocade), Cisco, Inrange/CNT, and McData switches. For detailed information, check the support matrix at:

8.2 General installation information

When installing an IBM 3494 Tape Library or either the 3590 or 3592 tape drives, the appropriate host adapters and device drivers are required. The IBM 3590 Tape Drive provides Ultra SCSI and Fibre Channel (FC) attachment for Open Systems hosts. The IBM 3592 Tape Drive provides FC attachment only. The IBM 3494 Tape Library provides LAN or serial connection.

In this chapter, we discuss how to install the necessary device drivers for the IBM tape drives, as well as for the IBM 3494 Tape Library. For additional detailed information for the device drivers' installation, you can refer to the publication *IBM TotalStorage Tape Device Drivers Installation and User's Guide*, GC35-0154, which you can download from:

For the latest levels of device and library drivers, you can refer to the following URL:

There are differences in the installation of an IBM 3590 compared to an IBM 3592 tape drive; still, there is one device driver that supports both tape drives. However, you must install two different drivers when using these tape drives and the IBM 3494 Tape Library.
In the IBM 3494 Tape Library, the communication between the tape drives and the attached servers goes over SCSI or FC (the IBM 3592 only supports FC). On the other side, the communication between the servers and the library goes over LAN (Ethernet or token-ring) or over serial connections (RS-232) (refer to Figure 8-1). The current state of the art is using FC connections to attach the tape drives and the servers while using LAN (Ethernet) connections between the servers and the library (as illustrated in Figure 8-1).

![IBM 3494 Enterprise Tape Library connections](image)

For detailed discussion when installing the IBM 3494 in a SAN environment, as well as additional detailed considerations about FC host bus adapter (HBA) installation, refer to the following books:

- *Implementing IBM Tape in Linux and Windows*, SG24-6268
- *Implementing IBM Tape with UNIX Systems*, SG24-6502

The device drivers allow the operating system and the application software to manage the tape devices and the library medium changers. The tape devices and medium changers are managed using a special device file name used to address each tape operation (mount, demount, write, and read).

This special device file name is specific for each Open Systems platform. Table 8-1 shows the most commonly used names for AIX, Sun Solaris, and HP-UX.
Example 8-1 Special device file names used with UNIX operating systems

<table>
<thead>
<tr>
<th>Medium changer</th>
<th>AIX</th>
<th>Solaris</th>
<th>HP-UX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape device</td>
<td>rmt[0-255]</td>
<td>0-255]st</td>
<td>[0-255]m</td>
</tr>
<tr>
<td></td>
<td>rmt[0-255].1</td>
<td>[0-255]stb</td>
<td>[0-255]mb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0-255]stc</td>
<td>[0-255]mbb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0-255]str</td>
<td>[0-255]mrd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0-255]sttr</td>
<td>[0-255]mnb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0-255]stcb</td>
<td>[0-255]mnb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0-255]stcr</td>
<td>[0-255]mnb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0-255]stcbn</td>
<td>[0-255]mnb</td>
</tr>
</tbody>
</table>

a. Adding .1 to the device name, means that it is a No Rewind on Close device. Some backup applications write a file mark on the volume at the end of each backup. When the next backup occurs, the backup application appends data to the volume based on the position of the file mark. If a device automatically rewinds the tape, the file mark position is lost and the next backup overwrites the data. This option is used by some application software, such as Legato NetWorker.

b. A b stands for Berkeley Software Distribution (BSD) compatibility. The BSD device special file modifies close behavior for non-rewind devices. If the device is opened for no rewind on close, in non-BSD mode, if the last command before closing the device was a read, then the tape is positioned after the file mark immediately following the last block read. If the device is opened for no rewind on close, in BSD mode, if the last command before closing the device was a read, the tape is left positioned exactly where it was following the last block read. If the device is opened for rewind on close, the BSD mode is irrelevant.

c. A c stands for Compression: the compression device special file determines whether the tape device will use built-in hardware compression while storing data on the tape.

d. An n stands for No rewind on close: the no rewind on close device special file does not rewind the tape during a close operation. Otherwise, the tape is rewound when the device is closed.

e. The TGT is the SCSI target ID, and LUN is the Logical Unit Number associated with the device.

In the following sections, we give detailed examples of installing the drivers in AIX, SUN Solaris, and HP-UX environments.

8.3 IBM 3494 Tape Library preparation

Before installing the drivers, you need to configure the servers to properly communicate with the tape library.

The steps are:

1. For security reasons, the IBM 3494 Tape Library can only communicate with the configured servers. Configure this on the 3494 Library Manager Operator panel. Go to Commands → LAN Options → Add LAN Host. Type the Host IP Address and the Host Name (see Figure 8-2) of the server that you want to configure so that it can send commands to the Library Manager. The Host Alias is optional, but we recommend the use of the host alias, which is also used later on the library device driver. Click OK.
2. Next, you also need to provide the library LAN information (IP address of the library). Go to Commands → LAN Options → LM LAN information and type the Library IP Address (see Figure 8-3), which you will need later. Click OK.

After physically installing and connecting the tape drives and the library (FC cables, LAN connections, and so forth) and the servers, the next step is the installation of the device drivers.
The following sections provide examples of how to install the drivers for the AIX, SUN Solaris, and HP-UX environments.

8.4 AIX

In this section, we discuss how to install the drivers when you work with AIX servers. The first step is to download the latest tape device driver (called Atape) and the latest library device driver (Automated Tape Library Device Driver (atldd)) from the FTP server:

8.4.1 Tape device driver installation

You must have root authority to proceed with the installation of the driver.

The steps are:

1. Use lslpp to determine if the Atape.driver is installed and to determine the version as shown in Example 8-2.

Example 8-2 Checking if Atape.driver is installed on AIX

```
# lslpp -I Atape.driver
Fileset                      Level  State      Description
----------------------------------------------------------------------------
Path: /usr/lib/objrepos
Atape.driver               6.1.8.0  COMMITTED  IBM AIX Enhanced Tape and Medium Changer Device Driver
```

2. If you have downloaded the driver to your local system, use this command:

 installp -acXd /directory/filename Atape.driver

For other methods of installing, refer to IBM TotalStorage Tape Device Drivers Installation and User's Guide, GC35-0154.

3. Assuming that you have downloaded the file Atape.8.1.9.0 to the directory /home/itso/, use this command string:

 installp -acXd /home/itso/Atape.8.1.9.0 Atape.driver

 This will install and commit the Atape driver in your system. Example 8-3 is an example of the installp command output.

Example 8-3 AIX Atape installation output

```
# installp -acXd /tmp/Atape.8.4.1.0.bin Atape.driver
+-----------------------------------------------------------------------------+
Pre-installation Verification...done
Verifying selections...done
Verifying requisites...done
Results...

SUCCESES
--------
Filesets listed in this section passed pre-installation verification and will be installed.

Selected Filesets
---------------
```
Atape.driver 8.4.1.0 # IBM AIX Enhanced Tape and Me...

<< End of Success Section >>

FILESET STATISTICS

 1 Selected to be installed, of which:
 1 Passed pre-installation verification

 1 Total to be installed

0503-409 installp: bosboot verification starting...
installp: bosboot verification completed.
+---+
Installing Software...
+---+
installp: APPLYING software for:
 Atape.driver 8.4.1.0

. << Copyright notice for Atape >>

IBM AIX Enhanced Tape and Medium Changer Device Driver

(C) COPYRIGHT International Business Machines Corp. 1993 1997
All Rights Reserved
Licensed Materials - Property of IBM

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

. << End of copyright notice for Atape >>. . . .

Checking for existing Atape devices...
Installing AIX Version 5.2 Atape.driver...
Adding device prototype...
Adding odm and smit entries...
Adding catalogs...
Adding trace template...
Adding error template...
5 entries added.
0 entries deleted.
0 entries updated.
Adding utility programs...
Finished processing all filesets. (Total time: 11 secs).

0503-409 installp: bosboot verification starting...
installp: bosboot verification completed.
0503-408 installp: bosboot process starting...

bosboot: Boot image is 18316 512 byte blocks.
0503-292 This update will not fully take effect until after a
system reboot.

* * * ATTENTION * * *
System boot image has been updated. You should reboot the
system as soon as possible to properly integrate the changes
and to avoid disruption of current functionality.
installp: bosboot process completed.

Installation Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Level</th>
<th>Part</th>
<th>Event</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atape.driver</td>
<td>8.4.1.0</td>
<td>USR</td>
<td>APPLY</td>
<td>SUCCESS</td>
</tr>
</tbody>
</table>

Configuring the tape devices

After the driver software is installed and the tape drives are connected to the server, the device can be configured and made available for use. You cannot access the devices until this step is completed.

Configure a tape device by using either of the following procedures:

1. Enter the following command without parameters:
   ```
cfgmgr
   ```
 This command configures all devices automatically (including any new tape or media changer device).

2. Power off your system and reboot to configure all devices automatically during the startup, and make available any new tape or medium changer in the system.

Verifying the Atape driver installation

To verify the installation and configuration of the Atape device driver, use the following commands:

- `lsdev -Cc tape`
- `lsattr -El device_name`
- `lscfg -vl device_name`

The different outputs from these commands are illustrated in Example 8-4 (for the `lsattr` command) and in Example 8-5 (for the `lscfg` command).

Example 8-4 Details of 3592 drive

<table>
<thead>
<tr>
<th><code>lsattr -El rmt3</code></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>alt_pathing</td>
<td>no</td>
</tr>
<tr>
<td>block_size</td>
<td>0</td>
</tr>
<tr>
<td>compress</td>
<td>yes</td>
</tr>
<tr>
<td>dev_status</td>
<td>N/A</td>
</tr>
<tr>
<td>devtype</td>
<td>03592J1A</td>
</tr>
<tr>
<td>drive_port</td>
<td>0</td>
</tr>
<tr>
<td>location</td>
<td></td>
</tr>
<tr>
<td>logging</td>
<td>no</td>
</tr>
<tr>
<td>lun_id</td>
<td>0x0</td>
</tr>
<tr>
<td>max_log_size</td>
<td>500</td>
</tr>
<tr>
<td>mode</td>
<td>yes</td>
</tr>
<tr>
<td>mtdevice</td>
<td></td>
</tr>
<tr>
<td>new_name</td>
<td></td>
</tr>
<tr>
<td>node_name</td>
<td>0x5005076300010811</td>
</tr>
<tr>
<td>primary_device</td>
<td>rmt3</td>
</tr>
<tr>
<td>retain_reserve</td>
<td>no</td>
</tr>
<tr>
<td>rew_immediate</td>
<td>no</td>
</tr>
<tr>
<td>scsi_id</td>
<td>0x10db1</td>
</tr>
<tr>
<td>space_mode</td>
<td>SCSI</td>
</tr>
<tr>
<td>trailer_labels</td>
<td>no</td>
</tr>
</tbody>
</table>
Example 8-4 shows that because this is a FC-attached tape drive, `scsi_id` is the port ID of the SAN switch. Also, `ww_name` shows the WWN of the FC tape drive.

Example 8-5 lscfg of 3592 drive

```
    lscfg -vl rmt3
    rmt3      P1-I1/Q1-W5005076300410811-L0  IBM 3592 Tape Drive (FCP)
    Manufacturer...............IBM
    Machine Type and Model.....03592J1A
    Serial Number...............000001300280
    Device Specific.(FW)........0488
    Loadable Microcode Level....A170029E
```

Example 8-5 (lscfg) shows:

- The serial number and firmware level of the drive
- 3592J1A under Machine Type and Model indicates this is an 3592 drive

Configuring the IBM tape device parameters

You can change the default operating parameters for the tape drive and device drivers using SMIT.

From the SMIT menu, select **Devices → Tape Drive → Change/Show Characteristics of a Tape Drive**. Select the `device(rmtx)` that you want to change from the list. Output similar to Example 8-6 will be displayed.

Example 8-6 SMIT characteristics of a 3592 tape drive

```
    Change / Show Characteristics of a Tape Drive
    Type or select values in entry fields.
    Press Enter AFTER making all desired changes.

    Tape Drive                                          rmt3
    Tape Drive type                                     3592
    Tape Drive interface                                fcp
    Description                                         IBM 3592 Tape Drive (>)
    Status                                              Available
    Location                                            20-58-01-PRI
    Parent adapter                                      fscsi0
    Connection address                                  2
    SCSI ID                                             0x10db1
    Logical Unit ID                                     0x0
    World Wide Name                                     0x5005076300410811
    New Logical Name                                    []
    Enable Alternate Pathing Support                    yes +
    Block Size (0=Variable Length)                      [0] +#
    Use DEVICE BUFFERS during writes                    yes +
    Use Hardware Compression on Tape                    yes +
    Activate volume information logging                 no +
    Maximum size of log file (in # of entries)         [500] +#
    Backward Space/Forward Space Record Mode            SCSI +
    Use Immediate Bit in Rewind Commands                no +
    Trailer Label Processing                            no +
```
Change any updateable device options required and press Enter. Check for the output message `rmtx Changed`. The default for hardware compression on the tape is `yes` for every Linear Tape-Open (LTO) Ultrium and 3592 device, which is the normal recommended setting for performance reasons (however, this might vary with particular applications). `Blocksize=0` means that the device uses variable block size; some application software might override this value.

8.4.2 SAN failover

In this section, we discuss how to configure alternate paths to address the failover and load balancing requirements of the installation. For more information about dynamic load balancing, you can also refer to Chapter 5, “Alternate Pathing Support” in the *IBM TotalStorage Tape Device Drivers Installation and User’s Guide*, GC35-0154, publication.

Path failover and load balancing

The Atape device driver for AIX supports alternate drive pathing that configures multiple physical paths to the same device within the device driver and provides two basic functions:

- Automatic failover to an alternate physical path when a permanent error occurs on one path
- Dynamic load balancing for devices using multiple HBAs

Automatic failover

The automatic failover support provides error recovery on an alternate path when a permanent error occurs on one path. This is transparent to the running application.

For example, consider a simple multipath connection consisting of two HBAs in an AIX host, connected over a SAN to a 3590 or 3592 drive (see Figure 8-4). This simple configuration provides two physical paths to the same drive providing redundancy if one path from an HBA to the drive fails. When the AIX server is booted or `cfgmgr` is run, each HBA detects the drive and two logical devices will be configured (for example, `rmt0` and `rmt1`). Each logical device is a physical path to the one tape drive. An application can open and use only one logical device at a time, either `rmt0` or `rmt1`.

When the alternate pathing support is enabled on both `rmt0` and `rmt1`, the device driver configures them internally as a single device with multiple paths. The application can still open and use only one logical device at a time (either `rmt0` or `rmt1`). If an application opens `rmt0` and a permanent path error occurs, the driver initiates failover error recovery automatically on the alternate path (`rmt1`), and the current operations continue on the alternate path without interrupting the application.

Without the Atape alternate pathing support, if an application opens `rmt0` and a permanent path error occurs (for example, because of an HBA or cable failure), the application fails. It is possible to initiate manual failover by changing the device path to the alternate path (`rmt1`), but this is a manual operation and you must resubmit the last failing job. Sometimes, manual failover can require operator intervention to reset the drive, because a SCSI reservation can still exist on the failing HBA path.
Dynamic load balancing

The dynamic load balancing support optimizes resources for devices that have physical connections to multiple HBAs in the same machine. When an application or job opens a device that has multiple HBA paths configured, the device driver determines which path has the HBA with the lowest usage and assigns that path to the application or job. When another application or job opens a different device with multiple HBA paths, the device driver again determines the path with the lowest HBA usage and assigns that path to the second application or job. The device driver will update the usage on the HBA assigned to the application when the device is closed. Dynamic load balancing will use all HBAs whenever possible and balance the load between them to optimize the resources in the machine.

For example (refer to Figure 8-5), consider a server with two HBAs: HBA1 and HBA2; and with four tape drives attached. Each tape drive is connected to both HBA1 and HBA2. The server sees rmt0 to rmt3 through HBA1 and rmt4 to rmt7 through HBA2. The device files rmt0 and rmt4 point to the same physical tape drive (similarly, for rmt1 and rmt5, rmt2 and rmt6, rmt3 and rmt7). Initially, there are no tape drives in use. The application is assigned the first four tape drives (rmt0 - rmt3). When the first job (Job 1) opens a tape drive (rmt0), the device driver will use HBA1. When the application starts a second job, which opens rmt1, the device driver will use HBA2. A third job is assigned to HBA1 (with rmt2), and a fourth job is assigned to HBA2 (with rmt7). There are two jobs using HBA1 and two jobs using HBA2. If the first job finishes and closes the device, there is now one job using HBA1, and two jobs using HBA2. When the next job opens a tape drive (rmt0), it is assigned to HBA1, so again there are two jobs using HBA1 and two jobs using HBA2. Likewise, if the second job finishes and closes the device, HBA2 has one job using it, and the next job that opens a tape drive (rmt1) is assigned to HBA2.

The dynamic load balancing support is independent from the automatic failover support. Regardless of the path assigned initially for load balancing, if that path fails, the automatic failover support will attempt recovery on the next available path.
Note that dynamic load balancing works on opened tape drives and not on the load of the tape drive. The device driver tries to balance the usages of drives opened over several HBAs, but it is not possible to balance the workload or throughput of the HBAs. Therefore, the throughput of one HBA can be significantly different than the other HBAs.

Also, if a failover happens, then all open devices are switched to the next available HBA regardless of the dynamic load balancing. The next time that the driver opens the devices, it will then try to balance, because failover is more critical than load balancing, and failover must be resolved quickly to avoid application impacts.

Configuring and unconfiguring alternate data pathing support
Alternate path support is not enabled automatically when you install the device driver. You must configure it initially on each logical device after installation. When alternate pathing support is enabled for a logical device, it remains set until the device is deleted or the support is unconfigured. The alternate pathing setting is retained even if the system is rebooted.

To enable or disable the support on a single logical device, use SMIT Devices → Tape Drive → Change/Show Characteristics of a Tape Drive. Select the logical device to change, such as `rmt0`, `rmt1`, and so on, then select Yes for Enable Alternate Pathing Support (see Example 8-7).

Example 8-7 Enable alternate pathing support with SMIT

<table>
<thead>
<tr>
<th>Entry Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape Drive</td>
</tr>
<tr>
<td>Tape Drive type</td>
</tr>
<tr>
<td>Tape Drive interface</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>
You can also enable or disable the support using the `chdev` command:

```
chdev -l device_name -a alt_pathing=yes
```

Example 8-8 shows you an output of the `chdev` command.

Example 8-8 Enable alternate pathing support on command line

```
chdev -l rmt0 -a alt_pathing=yes
rmt0 changed
```

When the device driver configures a logical device with alternate pathing support enabled, the first device configured always becomes the primary path. On FC-attached devices, `-PRI` is appended to the location field of the device. When a second logical device is configured with alternate pathing support enabled for the same physical device, it configures as an alternate path. The device driver supports up to 16 physical paths for a single device.

On FC-attached devices, `-ALT` is appended to the location field of the device. A third logical device is also configured as an alternate path with `-ALT` appended, and so on. For example, if an `rmt0` is configured first, then an `rmt1`, and an `rmt2`, the `lsdev` `-Cc` tape command output will look as shown in Example 8-9 (assuming the function has been enabled for each rmt device).

Example 8-9 Alternate data path: Configured FC tape devices

```
# lsdev -Cc tape
rmt0 Available 30-68-01-PRI IBM 3590 (FCP)
rmt1 Available 20-58-01-ALT IBM 3590 (FCP)
rmt2 Available 10-70-01-ALT IBM 3590 (FCP)
```

You can see by the location code which HBA connection is associated with the primary and alternate paths. In Example 8-9, `rmt0` is the primary device, connected to the HBA in location `30-68-01`. You also see that the three HBAs are on three separate PCI buses to distribute the I/O workload among them, therefore improving the performance.

Different types of PCI buses have different performance specifications (see Table 8-1). It does make sense to put one 2 Gbps HBA in a 32/33 PCI Bus; however, it does not make sense to put more than one 2 Gbps HBA in a 64/33 PCI Bus, because the throughput will be saturated.

Table 8-1 PCI buses performance specifications

<table>
<thead>
<tr>
<th>Width</th>
<th>Speed</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 bit</td>
<td>33 MHz</td>
<td>132 MB/s</td>
</tr>
<tr>
<td>64 bit</td>
<td>33 MHz</td>
<td>264 MB/s</td>
</tr>
</tbody>
</table>
The labeling of a logical device as either a primary or alternate path is for information only, in order to:

- Be able to identify the actual number of physical devices configured on the system and the specific logical devices associated with them. There will be only one logical device labeled as the primary path for each physical device. However, there might be many (multiple) logical devices labeled as alternate paths.

- Provide information about which logical devices configured on the system have alternate pathing support enabled. You can display the primary and alternate path configuration for all devices with the `lsdev` command. There might be two or more logical devices configured for a single physical device, but the first device configured is identified as the primary device. All other logical devices configured after the first device are identified as alternate devices. To see this, run the `lsdev -Cc tape` command and look at the location field in the data. By running `lsdev -Cc tape | grep P`, for example, you can easily determine how many physical devices are configured with alternate pathing support.

8.4.3 IBM 3494 Tape Library device driver installation

The 3494 device driver consists of an Automated Tape Library Device Driver (`atldd`), an application daemon (`lmcpd`) that communicates with the 3494 Library Manager, and a utility program (`mtlib`), which provides a command line interface to the library.

You can start executing the command:

```bash
installp -acXd /directory/filename atldd.driver
```

This installs and commits the 3494 Enterprise Library Driver (`atldd`) on your system.

After the software is installed, the `/etc/ibmatl.conf` file must be edited to define the tape libraries to the `lmcpd`. The format of the file is:

<table>
<thead>
<tr>
<th>Symbolic name</th>
<th>Connection type</th>
<th>Identifier</th>
<th>Alternate LAN Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used to identify each library.</td>
<td>Used to define the IP address of the Library Manager.</td>
<td>Used to specify a name by which the Library Manager identifies the host machine. We suggest that you use the same identifier name that you used on the Library Manager (the host alias as illustrated in Figure 8-2).</td>
<td>Used to specify an alternate IP address for a 3494 High Availability LAN-attached configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to define the library name:

```bash
lib3494 9.xxx.xx.177 itsolib 9.xxx.xx.178
```

This stanza defines the `lib3494` High Availability library connected through TCP/IP to the workstation. The IP addresses of the dual Library Managers are `9.xxx.xx.177` and `9.xxx.xx.178` (see discussion related to Figure 8-3 on page 317).
MTLIB command line interface

You can issue the MTLIB command from either the AIX prompt or within a shell script. The MTLIB command is easy to use. It enables you to obtain status information about the library, drives, and cartridges. Using MTLIB, you can mount and demount cartridges, and you can perform insert and eject functions by changing the cartridge's Library Manager category.

The structure of the MTLIB command is simplistic, so every action that the library must perform to complete a task must be coded.

You can use the MTLIB command to quickly automate existing backup procedures if an application, such as Tivoli Storage Manager, RTAPI, or LibrarySmart, is not used. Before you can mount a cartridge, you must first change its Library Manager category to an AIX scratch or specific category. Native AIX can use any category, but be careful when you share the library.

The example in Figure 8-6 assumes that volume AIX001 was already in the library, so we just inserted volume AIX002. Then, we made two TAR backups and we ejected AIX001 so that it can be kept in an off-site vault.

```bash
mtlib -l /dev/lmcp0 -C -VAIX001 -t1000
mtlib -l /dev/lmcp0 -m -f /dev/rmt0 -VAIX001
mtlib -l /dev/lmcp0 -m -f /dev/rmt1 -VAIX002
tar -cvf /dev/rmt0 ./
tar -cvf /dev/rmt1 ./
mtlib -l /dev/lmcp0 -d -f /dev/rmt0 -VAIX001
mtlib -l /dev/lmcp0 -d -f /dev/rmt1 -VAIX002
mtlib -l /dev/lmcp0 -C -VAIX001 -tFF10
mtlib -l /dev/lmcp0 -qL
mtlib -l /dev/lmcp0 -m -f /dev/rmt0 -VAIX002
tar -tvf /dev/rmt1
tar -tvf /dev/rmt0
mtlib -l /dev/lmcp0 -d -f /dev/rmt0 -VAIX002
```

Figure 8-6 Using MTLIB to automate TAR backup

The following list explains the commands shown in Figure 8-6:

- **mtlib -l /dev/lmcp0 -C -VAIX001 -t1000**
 - This command changes the cartridge AIX001 Library Manager category to x'1000', which is not reserved by any other hosts or for any Library Manager function.

- **mtlib -l /dev/lmcp0 -m -f /dev/rmt0 -VAIX001**
 - This command mounts cartridge AIX001 onto device rmt0.

- **mtlib -l /dev/lmcp0 -m -f /dev/rmt0 -VAIX002**
 - This command mounts cartridge AIX002 onto device rmt1.

- **tar -cvf /dev/rmt0 * tar -cvf /dev/rmt0**
 - This is the TAR command used to perform normal backup. It is normally used to back up the whole file system from which the MTLIB command is run.

- **mtlib -l /dev/lmcp0 -d -f /dev/rmt0 -VAIX001**
 - This command demounts cartridge AIX001 from device rmt0. In a script, this command is not issued until the TAR command has completed.

- **mtlib -l /dev/lmcp0 -d -f /dev/rmt1 -VAIX002**
This command demounts cartridge AIX002 from device rmt1. In a script, this command is not issued until the TAR command has completed.

- `mtlib -l /dev/lmcp0 -C -VAIX001 -tFF10`

 This command changes the Library Manager category of cartridge AIX001 to FF10. Setting the Library Manager category instructs the Library Manager to eject the cartridge from the library through the convenience I/O station (see Appendix C, “Library Manager volume categories” on page 457, for a full list of Library Manager volume categories).

- `mtlib -l /dev/lmcp0 -qL`

 This command requests status information about the library from the Library Manager (see Figure 8-7 for the response to this command).

- `mtlib -l /dev/lmcp0 -m -f /dev/rmt0 -VAIX002`

 This command remounts cartridge AIX002 to device rmt0.

- `tar -tvf /dev/rmt0`

 This is the TAR command to list the files on the cartridge. It can be used to ensure that all files are backed up as needed.

- `mtlib -l /dev/lmcp0 -d -f /dev/rmt0 -VAIX002`

 This command demounts the cartridge from rmt0.

The example in Figure 8-7 shows the response to an MTLIB query library command.
Performing Query Library Data using /dev/lmcp0

Library Data:

state............Automated Operational State
 Dual Write Disabled
input stations....1
output stations....1
input/output status...All input stations empty
 All output stations empty
machine type........3494
sequence number.....12345
number of cells......207
available cells......0
subsystems.........1
convenience capacity..20
accessor config.....01
accessor 0 status....Accessor available
 Gripper 0 available
 Gripper 0 vision operational
 Gripper 1 not installed
 Gripper 1 vision not operational
accessor 1 status....00
accessor 2 status....00
accessor 3 status....00
accessor 4 status....00
accessor 5 status....00
accessor 6 status....00
accessor 7 status....00
comp avail status....Primary Library Manager installed.
 Primary Library Manager available.
 Primary hard drive installed.
 Primary hard drive available.
 Secondary hard drive installed.
 Secondary hard drive available.
 Convenience input station installed.
 Convenience input station available.
 Convenience output station installed.
 Convenience output station available.

Figure 8-7 Response to MTLIB query library command

For more detailed information about the installation procedures for the required drivers, refer to the publication *IBM TotalStorage Tape Device Drivers Installation and User’s Guide*, GC35-0154.

Operational considerations

The MTLIB command is supplied with the tape library device driver as described earlier. It provides the operational interface in an AIX environment.

Return to scratch

Use the MTLIB command to change cartridges in the Library Manager category back to a scratch category:

```
mtlib -l /dev/lmcp0 -C -VAIX001 -txxx
```

Here `xxxx` is the scratch category that you have chosen.
Applications can have insert processing support added to them. For example, the IBM Tivoli Storage Manager's CHECKIN processing changes the Library Manager category of a cartridge from INSERT to the ITSM scratch category.

Cartridge insert processing

After cartridges are entered into the tape library, use the MTLIB command to change the Library Manager category from INSERT to your chosen AIX scratch and private categories:

```
mtlib -l /dev/lmcp0 -C -VAIX001 -t0090
```

Here 0090 is the Library Manager category you chose for your AIX scratch cartridges.

ITSM CHECKIN processing changes the Library Manager category from INSERT to an ITSM category.

Cartridge eject processing

Use the MTLIB command to change a cartridge's Library Manager category to an I/O station category:

```
mtlib -l /dev/lmcp0 -C -VAIX001 -tFF10
```

Here FF10 is the Library Manager category for the convenience I/O station.

You can add eject processing support to applications. For example, ITSM CHECKOUT processing changes the Library Manager category of a cartridge to an I/O station's Library Manager category.

8.5 SUN Solaris

In this section, we explain how the drivers are installed when working in a Sun Solaris environment. The first step is to download the latest tape device driver (called *IBMtape*) and the latest library device driver (called *lmcpc*) from the FTP server at:

8.5.1 Tape device driver installation

This section explains the tape device driver installation. For more information on the tape device drivers installation, you can refer to the publication *IBM TotalStorage Tape Device Drivers Installation and User's Guide*, GC35-0154.

Important: A reboot of the host system is required to complete the installation, so you need to schedule this operation accordingly.

The *IBMtape* device driver attempts to claim and operate only the supported IBM tape devices. However, Solaris includes its own SCSI tape device driver, named *st*, which will automatically claim any SCSI-compliant tape drive it detects, including devices that *IBMtape* also recognizes.

In order to avoid conflicts between *IBMtape* and *st*, you must prevent the *st* driver from claiming and attempting to operate *IBMtape*-owned devices. Similarly, other supplier's SCSI tape device drivers that you have installed must be prevented from claiming *IBMtape*-owned devices.
Use the following steps to perform the installation. In our example, we detail the installation for a Solaris system without any previous tape subsystem configured.

This example assumes we have downloaded a package file named IBMtape.4.0.9.0.bin into the /export/home/pkgadd/IBMtape directory:

1. Log on to the target system as root.
2. Ensure that all user and tape drive activity on the system has halted.
3. Use `pkgadd` to install the driver:
   ```bash
   pkgadd -d /export/home/pkgadd/IBMtape/IBMtape.4.0.9.0.bin
   ```
4. You should see the output shown in Example 8-10.

Example 8-10 IBMtape install output on Solaris

```plaintext
The following packages are available:
1  IBMtape     IBM 32-bit and 64-bit Tape & Medium Changer Device Driver 4.0.9.0
(sparc) 4.0.9.0

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: y
ERROR: Entry does not match available menu selection. Enter the number
of the menu item you wish to select, or the token which is associated
with the menu item, or a partial string which uniquely identifies the
token for the menu item. Enter ?? to reprint the menu.

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

Processing package instance <IBMtape> from </export/home/pkgadd/IBMtape/IBMtape.4.0.9.0>

IBM 32-bit and 64-bit Tape & Medium Changer Device Driver 4.0.9.0
(sparc) 4.0.9.0

IBM Tape & Medium Changer Device Driver for Sun Solaris 7, 8 and 9
Version 4.0.9.0

Contains Licensed Internal Code
Licensed Materials - Property of IBM

(C) Copyright 1994-2003. IBM Corporation
All Rights Reserved
 Portions (C) 1994 Sun Microsystems

US Government Users Restricted Rights -
Use, duplication, or disclosure restricted
by GSA ADP Schedule Contract with IBM

(R) IBM is a registered trademark of IBM Corporation
(R) Solaris is a registered trademark of Sun Microsystems

Using </opt> as the package base directory.
## Processing package information.
## Processing system information.
## Verifying disk space requirements.
## Checking for conflicts with packages already installed.
## Checking for setuid/setgid programs.

This package contains scripts which will be executed with super-user
permission during the process of installing this package.
```
Do you want to continue with the installation of <IBMtape> [y,n,?] y

Installing IBM 32-bit and 64-bit Tape & Medium Changer Device Driver 4.0.9.0 as <IBMtape>

Installing part 1 of 1.
/opt/IBMtape/IBMtape.conf
/opt/IBMtape/diags_info
/opt/IBMtape/tapelist
/opt/IBMtape/tapeutil
/opt/IBMtape/tapeutil.c
/opt/IBMtape/tmd
/opt/IBMtape/tmd.conf
/usr/include/sys/oldtape.h
/usr/include/sys/smc.h
/usr/include/sys/st.h
/usr/include/sys/svc.h
/usr/kernel/drv/IBMtape
/usr/kernel/drv/sparcv9/IBMtape
[verifying class <none>]
Executing postinstall script.
The /usr/kernel/drv/IBMtape.conf file already exists.
It will be preserved as the current configuration file
for the IBM Tape & Medium Changer Device Driver.
Stopping any running instances of tape monitor daemon...
Installing the /etc/tmd.conf file.
Creating the directory of /var/opt/IBMtape.
Adding control node entry to /usr/kernel/drv/IBMtape.conf.
Adding new tmd entry to /etc/inittab...
Loading IBM Tape & Medium Changer Device Driver.
Starting IBMtape Monitor Daemon (tmd)...

Installation of <IBMtape> was successful.

*** IMPORTANT NOTICE ***
This machine must now be rebooted in order to ensure
sane operation. Execute
 shutdown -y -i6 -g0
and wait for the "Console Login:" prompt.

Before using the tape devices and the library, configure the device driver parameters we
describe in the following section.

Configuring tape devices
Edit the file /usr/kernel/drv/IBMtape.conf and make sure that all the required target and LUN
definitions for the drives and medium changer are in place. Also, edit the file
/kernel/drv/st.conf to make sure all the required target and LUN definitions used for IBMtape
are commented for the Solaris standard tape device driver.

We recommend that you use persistent binding, which is described in Implementing IBM Tape with Unix Systems, SG24-6502, so that you can identify or nominate the SCSI ID to
use. This can help you to create the IBMtape.conf file, because you simply add stanzas for every SCSI (target) ID.

Example 8-11 shows three Fibre Channel tape drives with persistent binding.

Example 8-11 Persistent binding of three native FC drives

```bash
#Binding
hba1-SCSI-target-id-8-fibre-channel-name="5005076300410801";
hsa1-SCSI-target-id-9-fibre-channel-name="5005076300410802";
hsa1-SCSI-target-id-10-fibre-channel-name="5005076300410803";
```

Because of persistent binding, we know that the tape drives will use SCSI IDs 8 to 10. Therefore, IBMtape.conf needs entries for target IDs 8 to 10 (see Example 8-12).

Example 8-12 IBMtape.conf for three FC drives

```bash
name="IBMtape" class="scsi"
target=8 lun=0
..............
name="IBMtape" class="scsi"
target=9 lun=0
.............
name="IBMtape" class="scsi"
target=10 lun=0
.............
```

Tip: The persistent binding and the IBMtape.conf entries must be sequential and contiguous so that the tape special file names will also be in sequence.

To prevent the Solaris standard tape driver from claiming the devices, comment out the target ID and LUN for the IBM tape devices from the file /kernel/drv/st.conf.

Example 8-13 /kernel/drv/st.conf example with three native FC drives

```bash
..............
#name="st" class="scsi"
#       target=8 lun=0;
#name="st" class="scsi"
#       target=9 lun=0;
#name="st" class="scsi"
#       target=10 lun=0;
..............
```

After editing these files, reboot the system to enable the changes. We show one common method to perform a reboot here, but use your normal installation procedures:

```bash
reboot -- -r
```

Verifying the IBMtape driver installation

To verify the installation and configuration of the IBMtape device driver, use the command in Example 8-14. This example relates to native Fibre Channel drives using the persistent binding setting used in Example 8-11.

Example 8-14 Verifying Solaris device configuration

```bash
ls -l /dev/rmt/*stbn
lrwxrwxrwx 1 root root 58 Mar 24 17:33 /dev/rmt/0stbn ->
../devices/pci01f,4000/fibre-channel02/IBMtape08,0:stbn
```
Example 8-14 shows:

0stbn Because this device has a SCSI ID of 8 and a LUN of 0 (8,0), it is most likely that this device special file represents the device with a WWN of 500507630010801 from the persistent binding setting in Example 8-11, which is the first tape drive.

2stbn Similarly, this is the device special file name for the second tape drive.

4stbn Is the device special file name for the third tape drive?

In the newer versions of IBMtape device drivers, there is a useful tool called tapelist for identifying the relationship between the device special file and the physical device that it represents.

Example 8-15 Tape entries in the server using the tapelist tool

<table>
<thead>
<tr>
<th>Inst #</th>
<th>Special File</th>
<th>Device</th>
<th>Serial No</th>
<th>TGT/LUN Ucode</th>
<th>World Wide NN</th>
<th>World Wide PN</th>
<th>Device Physical Path</th>
<th>Path Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3682</td>
<td>/dev/rmt/10st</td>
<td>03592J1A</td>
<td>000001300280</td>
<td>8/0</td>
<td>04B8</td>
<td>500507630010811</td>
<td>/devices/pci@1f,4000/fibre-channel02/IBMtape08,0:st</td>
<td>N/A</td>
</tr>
<tr>
<td>3683</td>
<td>/dev/rmt/13smc</td>
<td>03584L22</td>
<td>000001310008</td>
<td>8/1</td>
<td>404e</td>
<td></td>
<td>/devices/pci@1f,4000/fibre-channel02/IBMtape08,1:smc</td>
<td>N/A</td>
</tr>
<tr>
<td>3715</td>
<td>/dev/rmt/12st</td>
<td>03592J1A</td>
<td>000001300178</td>
<td>9/0</td>
<td>04B8</td>
<td>5005076300010812</td>
<td>/devices/pci@1f,4000/fibre-channel02/IBMtape09,0:st</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Example 8-15 shows that device special file /dev/rmt/10st represents a 3592J1A tape drive with assigned SCSI target ID of 8 and LUN of 0, the serial number of 1300280, and the WWNN is 500507630010811.

Note: The plan is for the tapelist tool to be available with the IBMtape device driver.

IBMtape is listed correctly as the owner of these devices. For performance reasons, we recommend that you use a special device file name that has compression turned on.

8.5.2 IBM 3494 Tape Library device driver installation

The Sun Solaris Tape Library Driver (lmcpc) is the software for attaching the IBM TotalStorage 3494 Enterprise Automated Tape Library to a Sun server. The software consists of a daemon that communicates directly with the Library Manager of the IBM 3494 through RS-232 or LAN, a utility program that provides a command line interface to the daemon, and a C object module that can be linked with user applications to provide a communication interface with the daemon. This software is known as a driver throughout this document, because it provides the necessary software and interfaces for the library. However, the
product does not consist of a device driver in the true sense of the term. That is, it is not an extension of the operating system kernel, such as a SCSI tape device driver.

The Library Manager control point daemon (lmcpd) is provided in the package. The lmcpd is a process that always runs on the system. It provides direct communication with the 3494 Library Manager.

You start by executing the following command:

```
/usr/sbin/pkgadd -d //directory/filename lmcpd-acXd
```

This installs and commits the 3494 Enterprise Library Driver on your system.

After the software is installed, you must edit the `/etc/ibmatl.conf` file to define the tape libraries to the lmcpd. The format of the file is:

```
Symbolic name Connection type Identifier Alternate LAN Connection
```

<table>
<thead>
<tr>
<th>Symbolic name</th>
<th>Connection type</th>
<th>Identifier</th>
<th>Alternate LAN Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used to identify each library.</td>
<td>Used to define the IP address of the Library Manager.</td>
<td>Used to specify a name by which the Library Manager identifies the host machine. We suggest that you use the same identifier name that you used on the Library Manager (the host alias as illustrated in Figure 8-2).</td>
<td>Used to specify an alternate IP address for a 3494 High Availability LAN-attached configuration.</td>
</tr>
</tbody>
</table>

The following examples show how to define the library name:

```
lib3494 9.xxx.xx.177 itsolib 9.xxx.xx.178
```

This stanza defines the lib3494 High Availability library connected through TCP/IP to the workstation. The IP addresses of the dual Library Managers are 9.xxx.xx.177 and 9.xxx.xx.178 (see discussion related to Figure 8-3 on page 317).

MTLIB command line interface

You can issue the MTLIB command from either the Solaris prompt or within a shell script. The MTLIB command is easy to use. It enables you to obtain status information about the library, drives, and cartridges. Using MTLIB, you can mount and demount cartridges, and perform insert and eject functions by changing the cartridge's Library Manager category. For more information, see “MTLIB command line interface” on page 327.

Operational considerations

The Sun Solaris operational interfaces and return-to-scratch, insert, and eject processing are similar to those of AIX. See “Operational considerations” on page 329.

8.6 HP-UX

In this section, we explain how the drivers are installed when working in an HP-UX environment. The first step is to download the latest tape device driver (called Atape) and the latest library device driver (called atldd) from the FTP server from:

```
```
To find the right driver, go to the subdirectory that matches your HP-UX OS level and system architecture (either Precision or PCI). In our example, we have an HP PCI bus system with HP-UX V11.0, therefore, we need to go to the 11.0_PCI directory. The IBM tape device driver has the format atdd.1.x.x.x.bin.

We recommend that you also download the tapeutil utility from the same location. This file is called tapeutil.hpux.x.x.x.x.bin and is packaged separately, unlike for Solaris or AIX. You use tapeutil for tape and medium changer commands, such as mount, dismount, move media, write and read files.

Be sure to check the readme for updated information on fixes and prerequisites.

8.6.1 Tape device driver install

This section explains the tape device driver installation. For more information about the tape device drivers installation, you can refer to the publications IBM Ultrium Device Drivers: Installation and User’s Guide, GA32-0430, for LTO tape drives and libraries and IBM TotalStorage Tape Device Drivers Installation and User’s Guide, GC35-0154, for 3592 tapes.

Note: A reboot of the host system is required to complete the installation, so you must schedule this operation accordingly.

By default, the atdd device driver automatically configures all supported IBM tape drives that are attached and powered on when the system starts.

You must have root authority to proceed with the installation of the driver. We assume the driver atdd.1.9.0.1.bin has been downloaded to the directory /bavaria/atdd. This is the procedure:

1. Copy the installation file to the software depot using the command:

 swcopy -p -s /bavaria/atdd.1.9.0.1.bin atdd

 swcopy -s /bavaria/atdd.1.9.0.1.bin atdd

 The first command performs a preview copy only. Repeat without the -p option to actually execute the copy. The output you will see from swcopy is shown in Example 8-16.

 Example 8-16 Output of swcopy

```
# swcopy -s /bavaria/atdd.1.9.0.1.bin atdd
======= 03/26/03 13:47:51 PST BEGIN swcopy SESSION (non-interactive)

* Session started for user "root@easter".

* Beginning Selection
* Target connection succeeded for "easter:/var/spool/sw".
* Source: /bavaria/atdd.1.9.0.1.bin
* Targets: easter:/var/spool/sw
* Software selections:
  atdd.driver,r=1.9.0.1
* Selection succeeded.

* Beginning Analysis
* Session selections have been saved in the file
  
  "/.sw/sessions/swcopy.last".
* "easter:/var/spool/sw": 1 filesets have the selected revision already installed.
```

By default, the atdd device driver automatically configures all supported IBM tape drives that are attached and powered on when the system starts.

You must have root authority to proceed with the installation of the driver. We assume the driver atdd.1.9.0.1.bin has been downloaded to the directory /bavaria/atdd. This is the procedure:

1. Copy the installation file to the software depot using the command:

 swcopy -p -s /bavaria/atdd.1.9.0.1.bin atdd

 swcopy -s /bavaria/atdd.1.9.0.1.bin atdd

 The first command performs a preview copy only. Repeat without the -p option to actually execute the copy. The output you will see from swcopy is shown in Example 8-16.

 Example 8-16 Output of swcopy

```
# swcopy -s /bavaria/atdd.1.9.0.1.bin atdd
======= 03/26/03 13:47:51 PST BEGIN swcopy SESSION (non-interactive)

* Session started for user "root@easter".

* Beginning Selection
* Target connection succeeded for "easter:/var/spool/sw".
* Source: /bavaria/atdd.1.9.0.1.bin
* Targets: easter:/var/spool/sw
* Software selections:
  atdd.driver,r=1.9.0.1
* Selection succeeded.

* Beginning Analysis
* Session selections have been saved in the file
  
  "/.sw/sessions/swcopy.last".
* "easter:/var/spool/sw": 1 filesets have the selected revision already installed.
```
* Analysis succeeded.

NOTE: More information may be found in the agent logfile (location is easter:/var/spool/sw/swagent.log).

======== 03/26/03 13:47:52 PST END swcopy SESSION (non-interactive)

Verify that the Atdd software has been copied in the depot:

```
swlist -d atdd
```

You should see these messages:

```
atdd          1.9.0.1        GES IBM Magstar and Ultrium tape device driver
        atdd.driver                  Advanced Tape Device Driver
```

2. Use the `swlist` command to view the product's readme file:

```
swlist -d -a readme atdd | more
```

3. The following command installs Atdd from the depot to the default root file system.

```
swinstall atdd
```

The output is shown in Example 8-17.

Example 8-17 swinstall

```
swinstall atdd
```

```
-------- 03/26/03 13:53:23 PST BEGIN swinstall SESSION (non-interactive)

  * Session started for user "root@easter".
  
  * Beginning Selection
  
  * Target connection succeeded for "easter:/".
  
  * Source connection succeeded for "easter:/var/spool/sw".

ERROR: Installation of software requiring a reboot is, by default, not allowed from the command line. You must specify "-x autoreboot=true" on the command line to change the default for this session.

ERROR: Cannot continue the "swinstall" task.

  * Selection had errors.

-------- 03/26/03 13:53:29 PST END swinstall SESSION (non-interactive)
```

If you receive an error message saying that a reboot of the system is needed (as shown in Example 8-17), reissue the `swinstall` command with the `autoreboot` option:

```
swinstall -x autoreboot=true atdd
```

Note: If an earlier version of atdd is installed, the existing version is replaced. This is true even if the version installed is more recent than the version you install.

During the installation, you will see the messages shown in Example 8-18.

Example 8-18 Installing atdd on HP-UX

```
# swinstall -x autoreboot=true atdd
```

```
-------- 03/26/03 13:56:30 PST BEGIN swinstall SESSION (non-interactive)

  * Session started for user "root@easter".
  
  * Beginning Selection
  
  * Target connection succeeded for "easter:/".
```
4. To verify the installation, use the command:

```bash
swverify atdd
```

The output you see is shown in Example 8-19.

Example 8-19 Verifying the correct install with swlist atdd

```bash
# swlist atdd
# Initializing...
# Contacting target "easter"...
#
# Target:  easter:/
#
# atdd          1.9.0.1        GES IBM Magstar and Ultrium tape device driver
atdd.driver                  Advanced Tape Device Driver
```

8.6.2 Verifying the Atdd driver installation

To verify that you have installed the Atdd device driver correctly, you can use the following commands:

- `ioscan -fnkC tape` shows detected (claimed) tape drives.
- `ls -la /dev/rmt` shows the special file name.
Example 8-20 shows the device special files (/dev/rmt/1m and /dev/rmt/2m) for each tape drive. Both are connected to the same FC HBA with the location code 0/0/12/0.121.

Example 8-20 ioscan -fnkC tape output

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>H/W Path</th>
<th>Driver</th>
<th>S/W State</th>
<th>H/W Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tape</td>
<td>1</td>
<td>0/0/12/0.121</td>
<td>atdd</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>IBM 3592</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/1m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/1mb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/1mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/2mb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/2mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/c27t0d0BEST</td>
<td>/dev/rmt/c27t0d0BESTn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/c27t0d0BEST</td>
<td>/dev/rmt/c27t0d0BESTnb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tape</td>
<td>2</td>
<td>0/0/12/0.121</td>
<td>atdd</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>IBM 3592</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/2mb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/2mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/c29t0d0BEST</td>
<td>/dev/rmt/c29t0d0BESTn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rmt/c29t0d0BEST</td>
<td>/dev/rmt/c29t0d0BESTnb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can now use the tapeutil utility to test the library. If you downloaded the tapeutil installation file as described in 8.6, “HP-UX” on page 335, you can then install the package with the following commands:

swcopy /bavaria/tapeutil.hpux.4.0.0.0.bin tapeutil
swinstall tapeutil

Then go to 8.7, “Testing the tapes with tapeutil” on page 341 to learn how to use tapeutil.

Open the device, issue inquiry commands read and write, and move media across the library to check the driver functionality.

8.6.3 Configuring tape devices

This section describes the procedure that you can follow to change the default configuration parameters for the tape devices, such as compression, block size, or buffering.

You can examine the current configuration using the atdd_cfg program located in /opt/OMImag/bin directory. Every tape device is associated with a specific instance. To get the instances used in your environment, you first need to know the H/W Path (SCSI path) to the device. Use the H/W Path column of the ioscan command shown in Example 8-20 to determine the SCSI path of your device. In our case, the two drives are configured at addresses 0/0.0.0 and 0/0.1.0. Issue the command shown in Example 8-21.

Example 8-21 atdd_cfg command to get the instance number

```
/opt/OMImag/bin/atdd_cfg -g INSTANCE 0/0.0.0
INSTANCE: 1
```
```
/opt/OMImag/bin/atdd_cfg -g INSTANCE 0/0.1.0
INSTANCE: 2
```

Our two devices correspond to instances number 1 and 2. Having the instance number of the device, you can query the device parameters (see Example 8-22).

Example 8-22 Querying the device parameters

```
/opt/OMImag/bin/atdd_cfg -g DENSITY <instance>
/opt/OMImag/bin/atdd_cfg -g SILI <instance>
/opt/OMImag/bin/atdd_cfg -g DEVICES
/opt/OMImag/bin/atdd_cfg -g BLOCKSIZE <instance>
/opt/OMImag/bin/atdd_cfg -g COMPRESSION <instance>
/opt/OMImag/bin/atdd_cfg -g BUFFERING <instance>
/opt/OMImag/bin/atdd_cfg -g IMMEDIATE <instance>
/opt/OMImag/bin/atdd_cfg -g TRAILER <instance>
```
If needed, change the device parameters as in Example 8-23.

Example 8-23 Changing the device parameters

```
/opt/OMImag/bin/atdd_cfg -g ERRNO_LEOT <instance>

If needed, change the device parameters as in Example 8-23.
```

Example 8-23 Changing the device parameters

```
/opt/OMImag/bin/atdd_cfg -s DENSITY <density> <instance>
/opt/OMImag/bin/atdd_cfg -s SILI <sili> <instance>
/opt/OMImag/bin/atdd_cfg -s BLOCKSIZE <block size> <instance>
/opt/OMImag/bin/atdd_cfg -s COMPRESSION <compression> <instance>
/opt/OMImag/bin/atdd_cfg -s BUFFERING <buffering> <instance>
/opt/OMImag/bin/atdd_cfg -s IMMEDIATE <immediate> <instance>
/opt/OMImag/bin/atdd_cfg -s TRAILER <trailer> <instance>
/opt/OMImag/bin/atdd_cfg -s ERRNO_LEOT <errno_leot> <instance>
```

Any changes made here will be lost when you reboot the server. To make the changes permanent, modify the appropriate entries in the file /etc/rc.config.d/atdd.cfg.

A sample file, atdd.cfg.ex is provided. Modify it as desired and then copy to atdd.cfg. In Example 8-24 we change the compression by changing it from off (0) to on (1) for the device ATDD_HWPATH[0].

Example 8-24 Example of the atdd.cfg device configuration file

```
# HW Path for Tape drive 1
ATDD_HWPATH[0]=0/7/0/0.0.0
ATDD_COMPRESSION[0]=1
# HW Path for Tape drive 2
ATDD_HWPATH[1]=0/7/0/0.1.0
# HW Path for Medium Changer
ATDD_HWPATH[2]=0/7/0/0.6.0
```

For performance reasons, we generally recommend that you enable compression unless otherwise instructed by your software application provider.

8.6.4 IBM 3494 library device driver installation

The HP-UX Tape Library Driver (lmcp) is the software for attaching the IBM TotalStorage 3494 Enterprise Automated Tape Library to an HP server. The software consists of a daemon that communicates directly with the Library Manager of the 3494 Tape Library through RS-232 or LAN connections, a utility program that provides a command line interface to the daemon, and a C object module that can be linked with user applications to provide a communication interface with the daemon.

This software is known as a driver throughout this document because it provides the necessary software and interface for tape library. However, the product does not consist of a device driver in the true sense of the term. That is, it is not an extension of the operating system kernel such as a SCSI tape device driver.

The Library Manager control point daemon (lmcpd) is provided in the package. The lmcpd is a process that always runs on the system. It provides direct communication with the 3494 Library Manager.

You start downloading the lmcpd from:

```
```

Issue the command to copy the downloaded file to the software copy:
swcopy -s /directory/filename lmcpd

Then you execute the command:
swinstall lmcpd

This installs and commits the 3494 Enterprise Library Driver on your system.

After the software is installed, you must edit the /etc/ibmatl.conf file to define the tape libraries to the lmcpd. The format of the file is:

Symbolic name Connection type **Identifier** Alternate LAN Connection

Symbolic name Used to identify each library.

Connection type Used to define the IP address of the Library Manager.

Identifier Used to specify a name by which the Library Manager identifies the host machine. We suggest that you use the same identifier name that you used on the Library Manager (the host alias as illustrated in Figure 8-2 on page 317).

Alternate LAN connection Used to specify an alternate IP address for a 3494 High Availability LAN attached configuration.

The following example shows how to define the library name:

lib3494 9.xxx.xx.177 itsolib 9.xxx.xx.178

This stanza defines the lib3494 High Availability library connected through TCP/IP to the workstation. The IP addresses of the dual Library Managers are 9.xxx.xx.177 and 9.xxx.xx.178 (see discussion related to Figure 8-3 on page 317).

MTLIB command line interface

The MTLIB command is easy to use. It enables you to obtain status information about the library, drives, and cartridges. Using MTLIB, you can mount and demount cartridges, and perform insert and eject functions by changing the cartridge's Library Manager category. For more information about it, see “MTLIB command line interface” on page 327.

Operational considerations

The HP-UX operational interfaces and return-to-scratch, insert, and eject processing are similar to those of AIX. See “Operational considerations” on page 329.

8.7 Testing the tapes with tapeutil

The tapeutil tape utility is installed with the IBM tape device drivers on Solaris and AIX, or as a separate package for HP-UX. This utility tests the functions of the tape device and the device driver. It also performs basic tape and medium changer operations. The tape utility program provides two versions: one with an interactive menu and the other one for UNIX command line entry.

Start the tapeutil interactive menu by typing `tapeutil` without any parameters. On AIX, this displays the menu shown in Figure 8-8. For Solaris and HP-UX, it has a slightly different format.
A list of general subcommands, medium changer subcommands, and tape subcommands displays. You must open a device before using these commands and operations. To open a device:

1. Select option **1:Open a Device** from General Commands.

2. Enter the name of the device special file. Use any special file that exists for the device using your OS conventions, for example, /dev/rmt0, /dev/rmt0.1, /dev/rmt1.smc, or /dev/smc0. See Table 8-1 on page 316 for the device special file names.

3. Enter the Read/Write, Read Only, Write Only, or Append mode to open a device. These modes apply to the tape devices only, not for the medium changer.

After you open a device, select a command by using the appropriate number for the command from the menu. Some commands require additional information after they are selected from the menu.

You can also use the `tapeutil` command line interface by entering commands in the format:

```
tapeutil -f DeviceName Subcommand [Subcommand ...]
```

You can obtain detailed `tapeutil` reference information in the *IBM Ultrium Device Drivers Installation and User’s Guide*, GA32-0430.

8.8 Linux

In this section, we explain how the drivers are installed when working in a Linux environment. The first step is to download the latest tape device driver (called **IBMtape**) and the latest library device driver (called **IBMatl**) from the FTP server:

```
```
8.8.1 Tape device driver installation

Move to the directory for your corresponding Linux distribution and version. The driver comes in an RPM package in the form IBMtape-x.x.x-y.y.y.i386.rpm.bin where x.x.x is the version of the driver, and y.y.y is the version of the Linux kernel that it supports.

You also need to download from the same directory the tapeutil program, which includes the IBMtapeconfig tool, to access the Ultrium devices through the IBM tape device driver. The package is called IBMtapeutil.x.x.x.i386.tar.bin.

Example 8-25 shows the installation of the IBM tape device driver and tapeutil program. You can obtain more information about the installation procedure in the IBM Ultrium Device Drivers: Installation and User’s Guide, GA32-0430.

Example 8-25 Installing IBM tape driver and library utilities on Linux

[root@saab tmp]# ls -l
...
-rw-r--r-- 1 root root 283839 Apr 16 08:42 IBMtape-1.4.11-2.4.21-9.0.1.EL.i386.rpm.bin
-rw-r--r-- 1 root root 307200 Apr 16 08:42 IBMtapeutil.1.2.2.i386.tar.bin
...
[root@saab tmp]# rpm -i IBMtape-1.4.11-2.4.21-9.0.1.EL.i386.rpm.bin
Installing IBMtape
Warning: loading /lib/modules/2.4.21-9.0.1.ELsmp/kernel/drivers/scsi/IBMtape.o will taint the kernel:
non-GPL license - USE
R LICENSE AGREEMENT FOR IBM DEVICE DRIVERS
 See http://www.tux.org/lkml/#export-tainted for information about tainted modules
Module IBMtape loaded, with warnings
IBMtape loaded
[root@saab tmp]# tar xvf IBMtapeutil.1.2.2.i386.tar.bin
IBMtapeutil
IBMtapeutil.1.2.2/IBMtapeutil
IBMtapeutil.1.2.2/IBMtapeutil.h
IBMtapeutil.1.2.2/IBMtapeutil.c
IBMtapeutil.1.2.2/IBMtapeconfig
IBMtapeutil.1.2.2/makefile
IBMtapeutil.1.2.2/IBMtapeutil.ReadMe
[root@saab tmp]# cd IBMtapeutil.1.2.2
[root@saab IBMtapeutil.1.2.2]# make
make: `IBMtapeutil' is up to date.
[root@saab IBMtapeutil.1.2.2]# make install
 cp -f IBMtapeutil /usr/bin/.
cp -f IBMtapeconfig /usr/bin/.

In Example 8-26, we execute IBMtapeconfig to check if the tape devices are accessible to our system and to create the device files that provide access through the IBM driver.

Example 8-26 Creating Linux device special files with IBMtapeconfig

[root@saab tmp]# IBMtapeconfig
Creating IBMtape special files
major number: 254
Attached devices: 0 1
mknod -m 0666 /dev/IBMtape0 c 254 0
mknod -m 0666 /dev/IBMtape0n c 254 64
mknod -m 0666 /dev/IBMtape1 c 254 1
You can see that `IBMtapeconfig` creates device entries for the tape drives. The drives are represented by `/dev/IBMtapeX` for the rewinding behavior, and `/dev/IBMtapeXn` for the non-rewinding behavior.

The IBM Tape device drivers are installed in addition to the native Linux device drivers. Only the devices created through `IBMtapeconfig` will use the IBM drivers. The standard Linux devices remain unchanged.

The `mt` command allows you to check if the installation was successful (see Example 8-27).

Example 8-27 Checking the IBM Tape driver with mt

```
[root@diomede IBMtapeutil.1.0.5]# mt -f /dev/IBMtape0 status
SCSI 2 tape drive:
File number=-1, block number=1203, partition=0.
Tape block size 0 bytes. Density code 0x40 (unknown to this mt).
Soft error count since last status=0
General status bits on (1000000):
  ONLINE
```

Now we are ready to use the tape devices through the IBM driver. Even if you plan to use the IBM tape devices with the native Linux drivers, we recommend installing the IBM drivers to allow microcode updates of the tape and library devices. If you are using a Linux kernel version that is not supported by the IBM drivers, we recommend installing a supported kernel as an alternative boot kernel for this purpose.

8.8.2 IBMtapeutil

`IBMtapeutil` provides a comprehensive collection of tape and library commands. The `IBMtapeutil` utilities exist in a separate `tar` package from the device driver. The package needs to be downloaded and installed from the IBM Web site:

```
```

Get the package from the appropriate Linux version subdirectory. The package will have the name `IBMtapeutil.x.x.x.tar.bin`. Unpack the package into a directory and from that directory run `make install`. In the following sections, we show examples of the invocation and outputs of `IBMtapeutil`.

Example 8-28 shows the initial invocation display for `IBMtapeutil`.

Example 8-28 Start display of IBMtapeutil

```
[root@saab root]# IBMtapeutil
IBMtapeutil for Linux, Version 1.2.6, Feb. 12, 2004
====================================================================
  1. Tape
  2. Changer
  3. Quit
====================================================================

Enter your choice:
```

Example 8-29 shows the general SCSI commands as well as the tape specific commands that are available through `IBMtapeutil`.
Example 8-29 Tape command selection display of IBMtapeutil for Linux

General Commands:
1. Open a Device
2. Close a Device
3. Inquiry
4. Test Unit Ready
5. Reserve Device
6. Release Device
7. Request Sense
8. Log Sense Page
9. Mode Sense Page
10. Switch Tape/Changer Device
11. Create Special Files
12. Query Driver Version
13. Query Device Path
14. Display All Paths
15. Enable A Path
16. Disable A Path

Tape Commands:
20. Rewind
21. Forward Space Filemarks
22. Backward Space Filemarks
23. Forward Space Records
24. Backward Space Records
25. FSFM
26. BSFM
27. Space to End of Data
28. Read and Write Tests
29. Write Filemarks
30. Read or Write Files
31. Erase
32. Reset Drive
33. Set Block Size
34. Retension Tape
35. Query/Set Tape Position
36. Query Tape Status
37. Load Tape
38. Unload Tape
39. Lock Tape Drive Door
40. Unlock Tape Drive Door
41. Take Tape Offline
42. Enable/Disable Compression
43. Flush Drive's Buffer
44. Self Test
45. Display Message

IBMtape Commands:
46. Query Sense
47. Query Inquiry
48. Query/Set Tape Parameters
49. Query/Set Tape Position
50. Query/Set MT/ST Mode
51. Report Density Support
52. Locate Tape Position
53. Read Tape Position
54. Query Mtdevice Number
55. Synchronize Buffers
56. List Tape Filemarks

Service Aid Commands:
70. Dump Device
71. Force Dump
72. Load Ucode
73. Reset Drive

Enter Selection:

Example 8-30 is an example of how to use IBMtapeutil, which shows how a SCSI inquiry command can be sent to the tape device.

Example 8-30 Sending a SCSI inquiry command to an LTO tape drive with tapeutil

Enter Selection: 1

Enter device name (\<enter\> for /dev/IBMtape0): /dev/IBMtape1
Select mode (\<enter\> or 1=Read/Write, 2=Read Only, 3=Write Only, 4=Append): 1

Opening device...
Hit \<enter\> to continue...
(\...

Enter Selection for /dev/IBMtape1: 3

Enter page code in hex or \<enter\> for standard inquiry:
Issuing inquiry...

Inquiry Data:
Peripheral Qualifier-------------------0x00
Peripheral Device Type-----------------0x01
Removal Medium Bit------------------1
Device Type Modifier------------------0x00
ISO version---------------------------0x00
ECMA version--------------------------0x00
ANSI version--------------------------0x03
Asynchronous Event Notification Bit---0
Terminate I/O Process Message Bit-----0
Response Data Format-----------------0x02
Additional Length---------------------0x33
Medium Changer Mode------------------0x00
Relative Addressing Bit---------------0
32 Bit Wide Data Transfers Bit--------0
16 Bit Wide Data Transfers Bit--------0
Synchronous Data Transfers Bit--------0
Linked Commands Bit--------------------0
Command Queueing Bit------------------0
Soft Reset Bit------------------------0
Vendor ID-----------------------------IBM
Product ID----------------------------03592J1A
Product Revision Level----------------04B8

vendor1, Length 20

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0000 - 3133 3030 3030 3031 3330 3036 3337 2030
0010 - 0100 4081 ...

vendor2, Length 31

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0000 - 0000 0000 0000 0000 0000 0000 0000 0000
0010 - 0000 0000 0000 0000 0000 0000 0000 00

Hit <enter> to continue...

(..)

Enter Selection for /dev/IBMtape1: 2

Device closed...

Hit <enter> to continue...

Example 8-31 shows that a similar set of commands is available to interact with the tape library (option **2. Changer** from the start display in Example 8-28 on page 344).

Example 8-31 Library command selection display of IBMtapeutil for Linux

------------------------------- General Commands: ------------------------------
1. Open a Device 9. Mode Sense Pag
2. Close a Device 10. Switch Tape/Changer Devic
3. Inquiry 11. Create Special Files
4. Test Unit Ready 12. Query Driver Version
5. Reserve Device 13. Query Device Path
7. Request Sense 15. Enable A Path
8. Log Sense Page 16. Disable A Path
Q. Quit IBMtapeutil
8.8.3 Creating a library device table

Operating system device names might not necessarily reflect the order in which the devices are physically installed in the library. Therefore, check your drive configuration carefully. We recommend creating a table such as Table 8-2.

<table>
<thead>
<tr>
<th>Device name</th>
<th>serial number/WWN</th>
<th>Tape drive in the library</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBMtape20</td>
<td>1110067680</td>
<td>Drive 1</td>
</tr>
<tr>
<td>IBMtape21</td>
<td>1110068317</td>
<td>Drive 2</td>
</tr>
<tr>
<td>IBMtape22</td>
<td>1110067231</td>
<td>Drive 3</td>
</tr>
<tr>
<td>IBMtape23</td>
<td>1110059779</td>
<td>Drive 4</td>
</tr>
<tr>
<td>IBMtape24</td>
<td>1110067604</td>
<td>Drive 5</td>
</tr>
<tr>
<td>IBMtape25</td>
<td>1110064661</td>
<td>Drive 6</td>
</tr>
</tbody>
</table>

See “tapeutil inqpage command” on page 347 for a way to create this table.

Remember that rebooting the server or executing the IBMtapeconfig command refreshes the list. Also, check the Implementing IBM Tape in Unix, SG24-6502, to understand how the operating system assigns device special file names and the ways to keep it persistent across reboots.

tapeutil inqpage command

Another method of verifying devices is to issue a tapeutil inquiry on log sense page 0x80.

```
tapeutil -f /dev/IBMtapeX inqpage 80
```

This command will return a serial number of the device represented by the specified device special file. Compare the number to the number written on the drives or to the number returned by the tapeutil devids command (see Example 8-32).

Example 8-32 Verify device by tapeutil inqpage command

```
[root@saab root]# tapeutil -f /dev/IBMtape20 inqpage 80
Issuing inquiry for page 0x80...

Inquiry Page 0x80, Length 14
  0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
```
Example 8-32 shows that /dev/IBMtape20 is a tape drive with the serial number 1110067680.

8.8.4 Linux on System z

Only Fibre Channel connectivity to 35xx drives and libraries is supported when connecting to Linux in the System z platform. Since 20 February 2003 (in conjunction with the latest SLES 8 Linux distribution from SuSE), System z platform supports full fabric attachment of SCSI devices to Linux images using the Fibre Channel Protocol (FCP).

In this section, we describe the requirements to enable Fibre Channel connectivity to a native FC tape library only. This section assumes that the correct Fibre Channel Connections (FICON) adapters have been installed and the firmware has been loaded to enable the Fibre Channel Protocol on the FICON device (see Figure 8-9 for a typical connectivity setup). For additional FCP connectivity information, refer to:

http://www-1.ibm.com/servers/eserver/zseries/connectivity/

The Fibre Channel topology supported for the System z (z800 and z900) models is fabric only. Neither point-to-point connection nor arbitrated loops are supported by the current System z Fibre Channel Protocol. See Getting Started with zSeries Fibre Channel Protocol, REDP0205, for more details about the supported configurations for Fibre Channel device attachment on System z models.

The Linux Fibre Channel adapter device driver zfcp.o is available in the kernel rpm package from your Linux distributor that supports the System z Fibre Channel Protocol. By default, zfcp.o is not loaded into the running kernel. There are three ways that you can load zfcp.o to see the tape devices on your system:

- Create an /etc/zfcp.conf file and make a ramdisk to statically attach tape devices into your system. You can use this method only if you have a persistent mapping in a SAN environment. Every time you reboot the system, the zfcp will be automatically loaded and the tape devices can be seen from the system.

- Modify the /etc/modules.conf file to add the zfcp module parameters; then run the depmod -A and modprobe zfcp commands. Do not use this choice together with option 1; otherwise, it causes conflicts. The zfcp map in /etc/modules.conf always takes higher priority than the map in /etc/zfcp.conf.

- Run the modprobe zfcp command first, then dynamically add a tape device into the system after you physically attach a Fibre Channel tape device to the switch.

We describe these options in more detail in the following sections.
Using the /etc/zfcp.conf file

First you need add the device map into this file. The following is an example of zfcp.conf:

```
0xf1c0 0x1:0x500507630402733 0x0:0x0000000000000000;
0xf1c1 0x1:0x500507630402733 0x0:0x0001000000000000
```

The zfcp device driver uses the map module parameter to recognize a physically attached tape device. The format of map is:

```
map="<devno><port scsi-id>:<wwpn><unit-scsi-lun>:<fcp-lun>";
```

Where:

- **devno** The device number of the HBA (16 bits, see /proc/subchannels). It is 0xf1c0 or 0xf1c1 in the above example.
- **port scsi-id** Linux internal SCSI ID assigned to the Fibre Channel port of the SCSI target device (32-bit, must not be 0, must be a unique one-to-one mapping for each Worldwide Port Name). It is 0x1 in the above example.
- **wwpn** Worldwide Port Name identifying the Fibre Channel port of the SCSI target device (64-bit). It is 0x500507630402733 in the above example.
- **unit scsi-lun** Linux internal SCSI Logical Unit Number (32-bit). It is 0x0 in the above example.
- **fcp-lun** Logical Unit Number associated with the SCSI target device (64-bit). In the above example, 0x0000000000000000 is the Logical Unit Number 0, and 0x0001000000000000 is the Logical Unit Number 1.

For tape attachment, we recommend that each LUN is associated with a unique devno. If you use the same devno numbers for several logical units, ensure that each `<unit-scsi-lun>` is unique.
After you create /etc/zfcp.conf is created, run the following commands:

```bash
>mk_initrd
>zipl
```

Reboot the system. After it boots up, your tape device shows in the /proc/scsi/scsi file.

Modifying the /etc/modules.conf file

You can add tape device mapping into /etc/modules.conf if you do not want to use /etc/zfcp.conf. The following example demonstrates the zfcp configuration in /etc/modules.conf:

```bash
options zfcp map="\n0xf1c0 0x1:0x5005076300402733 0x0:0x0000000000000000;\n0xf1c1 0x1:0x5005076300402733 0x0:0x0001000000000000"
```

The map arguments are the same as the ones listed in for the /etc/zfcp.conf file.

After modifying /etc/modules.conf, save and close it. Then, run the following commands:

```bash
>depmod -A
>modprobe zfcp
```

This will install the zfcp device driver and all of its prerequisite kernel modules.

Now, you can check the file /proc/scsi/scsi to see if all of the attached tape devices are shown in this file. If not, then check the Fibre Channel connections (fibre cables), if the devices are powered on, and so on.

Finally, run the following commands to install zfcp:

```bash
>rmmod zfcp
>modprobe zfcp
```

Dynamically attaching a tape device

If you physically attach a tape device to the switch and zfcp is already loaded, you do not need to reboot the Linux system to add this entry in the /proc/scsi/scsi file. The zfcp device driver provides an add_map proc system entry under the directory /proc/scsi/zfcp to allow you to dynamically add the device into the system. For example, to add two LUNs from the above example into the system, you can issue the following commands:

```bash
>echo "0xf1c0 0x1:0x5005076300402733 0x0:0x0000000000000000;\
0xf1c1 0x1:0x5005076300402733 0x0:0x0001000000000000">/proc/scsi/zfcp/add_map
>echo "scsi add-single-device 0 0 10"/proc/scsi/scsi
>echo "scsi add-single-device 1 0 11"/proc/scsi/scsi
```

The scsi add-single-device takes four parameters that correspond to the four parameters scsi, channel, id, and lun in the /proc/scsi/scsi file. The value of scsi is 0 for the first devno, 1 for the second devno (if it is different from the first devno), and so forth. The value of channel can start from 0 for each different SCSI value. The value of id is the one you use for <unit scsi-lun> in the above mapping. The value of lun is the LUN of the target device, for example, the last number in the above mapping.

Currently, the zfcp device driver does not support dynamically removing the attached devices. If you need to remove the tape devices from the system, do rmmod zfcp. Then you can delete the entry in /etc/modules.conf and reload zfcp, or reload zfcp first and dynamically add the devices you want.

After you have done all the mapping, if you can see all of the attached tape devices in /proc/scsi/scsi, then you have successfully attached those devices to your system.
8.8.5 IBM 3494 Tape Library device driver installation

The Linux Tape Library Driver (ibmatl) is the software for attaching the IBM TotalStorage Enterprise Tape Library 3494 to a Linux server. Use the tape library driver in conjunction with the IBM SCSI Tape and Medium Changer Device Driver for Linux to provide support for 3590 and 3592 tape systems with the Fibre Channel Attachment installed in an IBM 3494.

The software consists of a daemon that communicates directly with the Library Manager of the IBM 3494 Tape Library using Ethernet or token-ring LAN connections, a utility program that provides a command line interface to the daemon, and a C object module that can be linked with user applications to provide a communication interface with the daemon.

This software is known as a driver throughout this document, because it provides the necessary software and interfaces for the IBM 3494. However, the product does not include a device driver in the true sense of the term, that is, it is not an extension of the operating system kernel, such as a tape device driver.

You start downloading the 3494 device driver package from:

The IBM Tape Library driver for Linux (ibmatl) is supplied in both a tar file and an rpm package. You must have root authority to proceed with the installation of the driver.

Note: In the following explanations, you see file names with xxxx or x.x.x.x in them. The xxxx or x.x.x.x refer to the version of the driver, which changes as IBM releases new driver levels. Use the actual driver version numbers as you perform the procedures. Replace the string *os* with s390 or i386™, depending on whether you are an s390 or an Intel PC client, respectively.

There are two packages available for driver installation. IBM recommends that you use the rpm package, if possible, rather than the tar file. If you choose the rpm package, use the following command (os is either s390 or i386):

```bash
 rpm -ivv ibmatl.x.x.x.x.os.rpm
```

If you choose the tar file, issue the following commands to extract the files from the archive into the ibmatl.x.x.x.x.os directory:

```bash
 tar -xvf ibmatl.x.x.x.x.os.tar
```

Then, execute the following command to change to the new directory:

```bash
 cd ibmatl.x.x.x.x.os.
```

And finally, execute:

```bash
 ./install
```

This will install the atldd program.

After the software is installed, edit the /etc/ibmatl.conf file to define the tape libraries to the lmcpd. The format of the file is:

<table>
<thead>
<tr>
<th>Symbolic name</th>
<th>Connection type</th>
<th>Identifier</th>
<th>Alternate LAN Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolic name</td>
<td>Used to identify each library.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection type</td>
<td>Used to define the IP address of the Library Manager.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td>Used to specify a name by which the Library Manager identifies the host machine. We suggest that you use the same identifier name that</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
you used on the Library Manager (the host alias as illustrated in Figure 8-2).

Alternate LAN connection

Used to specify an alternate IP address for a 3494 High Availability LAN-attached configuration.

The following example shows how to define the library name:

```
lib3494 9.xxx.xx.177 itsolib 9.xxx.xx.178
```

This stanza defines the `lib3494` High Availability library connected through TCP/IP to the workstation. The IP addresses of the dual Library Managers are `9.xxx.xx.177` and `9.xxx.xx.178` (see discussion related to Figure 8-3 on page 317).

MTLIB command line interface

The MTLIB command is easy to use. It enables you to obtain status information about the library, drives, and cartridges. Using MTLIB, you can mount and demount cartridges and perform insert and eject functions by changing the cartridge's Library Manager category. For more information about MTLIB, see “MTLIB command line interface” on page 327.

Operational considerations

The Linux operational interfaces and return-to-scratch, insert, and eject processing are similar to those of AIX. See “Operational considerations” on page 329.

8.9 Microsoft Windows NT, Windows 2000, and Windows 2003

In this section, we explain how the drivers are installed when working in a Microsoft environment. In our discussion, we illustrate a Windows 2000 example.

The first step is to download the latest tape device driver (called **IBMtape** or **IBMMag**) and the latest library device driver (called **IBMatl**) from the FTP server:

```
```

8.9.1 Installing the IBM tape device drivers in Windows 2000

If the IBM tape is physically attached, then Windows 2000 will attempt to automatically install the drivers upon boot. The driver installation wizard will appear and requests details regarding the location of the drivers and information files.

If the driver installation wizard does not appear, you can perform a hardware scan from the Device Manager (as shown in Figure 8-10) to detect the added devices and initiate the device driver install wizard.
Extracting the drivers

The IBM Tape Device Driver will be downloaded as a zipped package. Unzip the package; in our example we used the directory D:\IBMdrv\IBMUltrium\5078. The content is shown in Figure 8-11.

Installing the tape device driver

You need to install the drivers for each tape device.

The steps are:

1. Right-click My Computer on the Windows desktop and select Manage. Open Device Manager (see Figure 8-12) and expand Other Devices to display the tape drives (they might be listed under Tape drives as in our example).
2. But checking the Device Properties (see Figure 8-13) in fact shows that the drivers are not configured yet. Select Properties for the first drive and install the driver using the same process as for the Medium Changer. Click Driver tab, and then click Update Driver (see Figure 8-13).

3. You get the Upgrade Device Driver window (see Figure 8-14), prompting you to search for a driver or to display a known list of drivers for installation. Click Search, and then click Next.
4. In the next window for locating the driver files, check the box **Specify a location** and then click **Next** (see Figure 8-15).

5. The path to the location of the drivers is presented as in Figure 8-16. Specify the directory where you extracted the downloaded driver .zip file.
6. The wizard locates a device driver as shown in Figure 8-17. If this is the driver version that you want to install, click Next; otherwise, select the box labelled Install one of the other drivers and click Next. Typically, the latest driver version is installed unless there is a specific reason not to do so, such as for ISV application support issues.

7. After clicking Next, the Device Driver Wizard proceeds to install the device driver and informs you when the installation is complete as Figure 8-18 shows.
8. We recommend that you reboot the system to ensure a clean installation of the drivers.

RSM users

Levels of the Win/2000 Device Driver 5.0.4.9 through 5.0.5.8 permit multiple opens on a single tape drive. This change was made to enable the use of RSM™ on Win/2000. For those levels of the device drivers, system administrators are responsible to ensure that a single tape drive is never accessed by more than one application at a time to prevent potential data loss.

With the introduction of driver level 5.0.5.9 and thereafter, two versions of the device driver are made available: one that prohibits multiple opens on a single tape drive that has the text string for IBM Tivoli Storage Manager and one that allows multiple opens on a single tape drive that does not have text strings. We recommend that you use the drivers “for IBM Tivoli Storage Manager” whether or not you are a Tivoli user, so that you can prevent a tape drive from being accessed by more than one process and potentially causing data to be corrupted or lost. However, if you are using RSM, you need to use the other driver and take steps to ensure that multiple opens to a tape drive do not occur.

To select the driver:

1. If you are using driver version 5.0.5.9 or later, the Driver Files Search Results display prompts you to choose between drivers during installation (see Figure 8-19). This display presents you with a default driver choice and a check box labeled **Install one of the other drivers**. Select this check box and click **Next**.
If using RSM, select Install one of the other drivers.

2. Then, choose the driver from the list that best suits your needs (Figure 8-20).

3. After clicking Next, the Device Driver Wizard proceeds to install the device driver and informs you when the installation is complete as Figure 8-21 shows.
8.9.2 Verifying the IBM tape device driver installation

You can initially verify the device driver installation for the medium changer and tape devices through Device Manager. The steps are:

1. To view any installed tape devices and medium changers, right-click My Computer on the desktop, then select Manage → Device Manager (see Figure 8-22).

2. Now right-click each of the devices and select Properties. If properly configured, the windows show Manufacturer as IBM Corporation (see Figure 8-23), Driver provider as IBM Corporation, and Driver version as the version you have installed (see Figure 8-24).
3. The driver level for the device is shown in the Driver tab in Figure 8-24. Note that the driver is not digitally certified by Microsoft at this time, but is still supported by IBM.

4. If you click Driver Details, you then get the detailed information for the drivers as shown in Figure 8-25.
5. You can now use the NTUTIL utility to test the library. This utility allows you to open the device, issue inquiry commands, read and write, and move media within the library to ensure the devices function and operate correctly with the installed driver.

8.9.3 Testing the library with NTUTIL

NTUTIL is a utility that comes packaged with the tape device drivers. Use it to perform several functions, including:

- Read and write operations
- Microcode updates
- Forcing driver dumps
- Sending and obtaining status of SCSI commands, and retrieving sense data from commands that encounter errors

In our example, we used NTUTIL to test basic operations as a way of verifying correct installation of the IBM 3494 Tape Library and drives.

Note that you must stop the Removable Storage Manager (RSM) service in Windows before you can use NTUTIL. NTUTIL will not have visibility of the devices until RSM releases them. Alternatively, you can simply disable the IBM 3494 Tape Library in RSM.

NTUTIL can run in either interactive or batch mode. Interactive mode presents you with a menu of commands that you can use to manage the library and drives. Batch mode passes on a series of commands from a user-generated file to the utility.

You have unpacked NTUTIL along with the device drivers. Install it at any location, but you typically install it in the c:\winnt\system32 directory. Because this directory is in the system path, you can run NTUTIL from any command line. When NTUTIL is invoked without arguments, it starts in interactive mode.
There are two modes that NTUTIL can run in: base mode and library mode. The default mode is base mode. The library mode just applies to the SCSI Library and not to the IBM 3494 Tape Library.

Example 8-33 shows the main menu, which presents the option to run the utility in interactive (manual) or batch mode.

Example 8-33 NTUTIL main menu

NTutil - Copyright (c) 1997-2004 IBM Corporation

Main Menu:
Microsoft Windows 2000 version
==========
1: Manual test
2: Batch test
9: Exit ntutil

Enter selection:

Selecting option **1: Manual test** provides the following menu for interactive commands (see Example 8-34).

Example 8-34 NTUTIL manual test menu (base mode)

Test tool version 5.0.7.5
Variable settings
================================ BASE MODE ==
tape-special-file-name: tape0
gp->fd0=FFFFFFFF gp->fd1=FFFFFFFF block size=1024 block count=1
hex block id = 0000000000000000
return_error_when_fail 1 exit_on_unexpected_result 0 trace_flag 0

manual test menu:
===
1: set device special file 2: display symbols
3: set block size R/W (now !0 fixed) 4: set return error when fail
5: set exit on unexpected result 6: set/reset trace
7: set media parms (block size) 8: Library Mode
20: open 21: close
22: read 23: write
24: read and display block 25: flush (buffer->media)
26: read block id 27: erase
28: locate block id 29: display block data
30: write filemark(s) 31: rewind
32: forward space filemark(s) 33: unload
34: reverse space filemark(s) 35: load
36: forward space record(s) 37: return error
38: reverse space record(s) 39: test unit ready
43: set media parms (block size) 44: set dev parms(compression)
46: get device information 47: restore data
48: get medium information 49: inquiry
50: poll registered devices 53: space EOD
54: display message 55: system command
80: Force Dump 81: Read Dump
82: Update MicroCode 83: Log Sense
84: Get Last Sense 85: Get Version
86: Associative/Persistent WProtect 87: Read/Write Test
88: List registered devices 89: Get MTDevice Info

99: return to main menu

Note that option 8 says Library Mode. This indicates that NTUTIL runs in base mode.

To view the installed library and drive, select option 88: List registered devices. The bus, target ID, and LUN ID for each device are also shown here. Example 8-35 shows a list of the configured devices.

Example 8-35 Registered devices on a SAN

total elapsed time in seconds = 0.00

Example 8-36 Selecting a device special file

total elapsed time in seconds = 6.00

Example 8-37 Performing an open call on a selected device special file

total elapsed time in seconds = 1.00

After the tape is mounted (through mtlib), you can perform a Read/Write (R/W) test (option 87: Read/Write Test) on the cartridge (see Example 8-38). Note that this overwrites any date on the tape (NTUTIL does not interact with any applications, so it is unaware whether the tape has valid data); therefore, be careful about which tape you choose for this operation.

Example 8-38 Read/write test

This will rewind and write on tape! Are you sure?? Y or N
The tape has been successfully written as shown in Example 8-38. We can now unload the cartridge by selecting option **33: unload** (see Example 8-39).

Example 8-39 Unload

```
enter selection: 33
analyze() called with rc 0 err 0 (ERROR_SUCCESS) data 0
Total elapsed time in seconds = 23.00
Return to continue:
```

To display information about the drive, use option **49: inquiry** (see Example 8-40).

Example 8-40 Inquiry

```
enter selection: 49
Drive = 0, Library = 1: 0
Device Path SCSI data:
  PortNumber 2, PathId 0
  TargetId 2, Lun 1
INQUIRY data:
  devtype(0):           01, rmb(1):           80
  ASO/ECMA/ANSI(2):     03, resp_data_fmt(3): 02
  additional_length(4): 33, reserved(5):      00
  SCSI_3(6):            10, flags(7):         00
  vendor_id (8-15): IBM
  product_id (16-31): 03592J1A
  Microcode Revision Level (32-35): 04C4
  vendor specific (bytes 36-55):
    31 33 30 30 30 30 30 31 33 30 30 31 37 38 20 30 01 00 40 81
analyze() called with rc 1 err 0 (ERROR_SUCCESS) data 0
Total elapsed time in seconds = 8.00
Return to continue:
```

You can also run NTUTIL in batch mode. For more information about NTUTIL, refer to the *IBM Ultrium Device Drivers: Installation and User's Guide*, GA32-0430. This guide is installed with the packaged device drivers. The manual *IBM TotalStorage Ultrium Device Drivers Programming Reference*, GC35-0483, has information about issuing commands to tape device drivers and manipulating tape application programming interfaces (APIs).

8.9.4 Configuring tape and medium changer devices

You can alter certain default operating parameters for the medium changer and tape devices using NTUTIL through **Set** commands that allow you to change these parameters:

- Drive Compression - default: (0=off)
- Block size - default: (0=variable)
- Block ID
To activate (on) or deactivate (off) drive compression, open NTUTIL, select option 20: open, then select option 44: set dev parms (compression). A value of 0 indicates compression is off and any other value indicates on (see Example 8-41).

Example 8-41 Activating compression

```
enter selection: 44
Compression off = 0, on = 1: 1
execute set_device_parameters compression = ON
analyze() called with rc 0 err 0 (ERROR_SUCCESS) data 0
Total elapsed time in seconds = 4.00
Return to continue:
```

You can also alter the drive block size similarly with option 43: set media parms (block size). This is 0 (variable) by default. You can override this value by certain backup applications.

8.9.5 IBM 3494 library device driver installation

The Windows Automated Tape Library Service is software that provides attachment for the IBM 3494 Enterprise Tape Library to workstations running Microsoft Windows NT 4.0, Microsoft Windows 2000, or Microsoft Windows 2003. The software consists of a tape library service that communicates directly with the Library Manager of the IBM 3494 through LAN, which is a utility program that provides a command line interface to the service. This utility program also provides a static library and DLL, which you can use to provide a communication interface with the service. The IBM Automated Tape Library service is provided in the installation package.

Download the package from:

The installation file is named ibmatl.x.x.x.x.exe or ibmatl64.x.x.x.x.exe (for example, ibmatl.4.0.3.0.exe). When you execute this file, you see windows indicating the image is being unpacked. Follow the instructions on the window.

After you install the software, you must edit the `c:\winnt\ibmatl.conf` file to define the tape libraries to the `lmcpd`. The format of the file is:

<table>
<thead>
<tr>
<th>Symbolic name</th>
<th>Connection type</th>
<th>Identifier</th>
<th>Alternate LAN Connection</th>
</tr>
</thead>
</table>

- **Symbolic name**: Used to identify each library.
- **Connection type**: Used to define the IP address of the Library Manager.
- **Identifier**: Used to specify a name by which the Library Manager identifies the host machine. We suggest that you use the same identifier name that you used on the Library Manager (the host alias as illustrated in Figure 8-2).
- **Alternate LAN connection**: Used to specify an alternate IP address for a 3494 High Availability LAN-attached configuration.

The following example shows how to define the library name:

```
lib3494 9.xxx.xx.177 itsolib 9.xxx.xx.178
```

This stanza defines the `lib3494` High Availability library connected through TCP/IP to the workstation. The IP addresses of the dual Library Managers are `9.xxx.xx.177` and `9.xxx.xx.178` (see discussion related to Figure 8-3 on page 317).
Because this program starts as a Windows service, check that the IBM Automated Tape Library service is started (see Figure 8-26). Set the **Startup type** to **Automatic** to ensure that the service is started after every reboot.

![IBM Automated Tape Library Properties](image)

Figure 8-26 IBM Automated Tape Library Properties

MTLIB command line interface
The MTLIB command is easy to use. It enables you to obtain status information about the library, drives, and cartridges. Using MTLIB, you can mount and demount cartridges, and perform insert and eject functions by changing the cartridge’s Library Manager category. For more information about MTLIB, see “MTLIB command line interface” on page 327.

8.10 i5/OS

The System i servers support the attachment of both Ultra SCSI and Fibre Channel IBM 3590 and IBM 3592 Tape Drives, as well as the IBM 3494 Tape Library. For implementation of IBM tape with System i servers, refer to *Implementing IBM in i5/OS*, SG24-7440, which will be available in autumn of 2007.

8.11 IBM Tivoli Storage Manager considerations

This section discusses the major implementation steps for IBM Tivoli Storage Manager. Note that the steps, as well as the ITSM commands, are the same across all Open Systems platforms.

For Tivoli Storage Manager to use the IBM 3494 Tape Library, follow these steps:

1. Define the tape library.
2. Define the library-resident drives.
3. Define the storage pool device class.
4. Define the storage pool.
5. Define the tape volumes in the storage pool.
6. Check in the volumes to the storage pool.
7. Change the Management Class to use the new storage pool.

Although the ITSM commands are the same for the various platforms, the parameters vary. The example in the following sections refers to an implementation in an AIX environment.

8.11.1 Defining the tape library and tape drives to IBM Tivoli Storage Manager

To define the library and type of library to IBM Tivoli Storage Manager, use the DEFINE LIBRARY command as shown here. We used the abbreviated versions of the parameters.

```
DEF LIBR LIB3494 LIBT=349X SCRATCHCAT=301 PRIVATCAT=300 DEVI=/dev/lmcp0
```

LIB3494 is the library name. This name can also be the name used for the LMCP. The IBM Tivoli Storage Manager Library Manager categories are 012d and 012c for scratch and private volumes, respectively. In IBM Tivoli Storage Manager, the category numbers are in decimal, and in the Library Manager, they are in hex. You can change the Tivoli Storage Manager scratch and private default Library Manager categories in the DEFINE LIBRARY command (except for those reserved for the Library Manager) as shown this in the example.

Next, you use the DEFINE DRIVE command to define the devices inside the library.

```
DEF DR LIB3494 ATLDR1 DEVI=/dev/rmt1
```

In this example, we define the tape drive that is accessed through the AIX special drive to IBM Tivoli Storage Manager:

```
/dev/rmt1
```

The drive is known to IBM Tivoli Storage Manager as ATLDR1. It resides in the library called LIB3494.

Before you define the storage pool, you must define the type of devices within the storage pool using the DEFINE DEVCLASS command. You cannot mix 3592, 3590, and 3490E drives in the same device class, nor in the same storage pool. We show the command to define a device class for the 3590 tape drives in our IBM 3494 Tape Library in the following example. For other parameters, we use the default values.

```
DEF DEV ATLDEVCL DEVT=3590 LIBR=LIB3494
```

Use the DEFINE STGPOOL command to define a storage pool that the IBM 3494 Tape Library uses:

```
DEF STG ATLPOOL ATLDEVCL
```

The storage pool is called ATLPOOL. The class of device with that pool is defined by the ATLDEVCL device class. For other parameters, we use the defaults.

Using the DEFINE VOLUME command as shown in the following example, you can manually define the volumes that IBM Tivoli Storage Manager will have in a storage pool:

```
DEF V ATLPOOL ADSM01 ACC=READW
```

Alternatively, you can use the MAXSCRATCH parameter of STGPOOL to allow IBM Tivoli Storage Manager to get its own scratch volumes from the Library Manager IBM Tivoli Storage Manager scratch category.
We defined the cartridge with a VOLSER number of ADSM01 that belongs to a storage pool called ATLPOOL.

Before IBM Tivoli Storage Manager can use the volumes, you must label the volumes. IBM Tivoli Storage Manager provides a program (DSMLABEL) to do this. DSMLABEL with the \texttt{-search} parameter labels all cartridges in the INSERT category. Use care so that only the cartridges to be used by IBM Tivoli Storage Manager are in this category. Here is an example of a DSMLABEL command:

\begin{verbatim}
dsmlabel -drive=/dev/rmt1 -drive=/dev/rmt2
 -library=/dev/lmcp0 -search -keep
\end{verbatim}

If the \texttt{-keep} parameter is not specified, the cartridge is placed in the convenience I/O station after it is labeled.

After the cartridges are labeled, the Library Manager category is assigned to them by issuing the CHECKIN LIBVOLUME command to eject volumes from an IBM 3494 Tape Library. Here is an example of a CHECKIN LIBVOLUME command:

\begin{verbatim}
CHECKI LIB PAINLESS ADSM01 STAT=SCR CHECKL=NO DEVT=3590
\end{verbatim}

We assign cartridges with a VOLSER number of ADSM01 to the IBM Tivoli Storage Manager Library Manager scratch category. By specifying CHECKL=NO, we tell IBM Tivoli Storage Manager that we do not want the label to be checked. If all volumes in the Library Manager insert category are to be in IBM Tivoli Storage Manager, we use the SEARCH=YES parameter and do not specify a VOLSER number. Be careful when using this parameter if you share the IBM 3494 Tape Library with other hosts.
Operating the IBM TotalStorage 3494 Tape Library

This chapter discusses the operation of the IBM 3494. It includes information about generic tape library operating procedures and operations in a z/OS environment.

This chapter does not include details about the operation of the tape drives, because the library performs all cartridge mount and demount operations. Operational knowledge of the tape drive is required only for error recovery (see 9.7, “Error handling and recovery summary” on page 405) or manual mode operation (see 9.4.10, “Handling manual mode operation” on page 391).
9.1 Library operation overview

During normal library operation, there is no need for any operator involvement with the exception of adding or removing cartridges from the library enclosure. The library attempts to recover from errors without operator intervention. It requires operator intervention only if it is unable to recover. The cleaning of the tape drives is carried out automatically on the basis of the rules that you defined through the Library Manager.

The Library Manager application has detailed help. You can access the help by pressing the PF1 key or using the Help menu. For ease of use, we recommend that you use the operator panel on the IBM 3494 (rather than the Library Manager) to change the operational mode and power status.

The Library Manager application provides two menus: the operator menu and the service menu. The service menu provides additional options under the operator menus. This includes the service menu that the IBM Systems Services Representative (SSR) uses to maintain and repair the library. The service menu can be password-protected if that option is chosen during the library teaching process.

You can make selections from the action bar of the operator or service menu with choices from the menus, or by using active radio buttons, check boxes, and buttons. Although you can use either the keyboard or the pointing device to make your choices, the pointing device is the preferred method for ease of use.

You can obtain more operating information in the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

9.2 Operational modes and states

At any point in time, the current operational status of the tape library is defined by a combination of:

- An operational mode
- An operational state
- One or more informational states

Operational modes describe accessor movement. Operational states describe the status of the Library Manager or library power. Informational states describe any error or abnormal library condition. The following sections provide detailed information about operational modes, operational states, and informational states.

9.2.1 Operational modes

The IBM 3494 can be in any of three operational modes, but only one at a time. The library must complete mode transition before the mode can be changed again. The three operational modes are:

- Auto
- Pause
- Manual

The operational mode of the library is changed through the Mode menu on the Library Manager or the auto and pause buttons on the IBM 3494 operator panel.
Auto mode

In auto mode, the library is under the control of the Library Manager. The accessor moves
under the control of the Library Manager to carry out mount, demount, and cartridge
movement requests. To be in auto mode, all safety circuits must be complete. From auto
mode, you can go to pause or manual mode. If you select manual mode, the library goes into
pause mode before it enters manual mode.

Pause mode

Pause mode is intended to allow the operator to access the interior of the IBM 3494. While
the library is in pause mode, the mount and demount commands that require accessor
movement are queued until the library returns to auto mode. The Library Manager responds
to host requests for status information. From pause mode, you can change the library
operational mode to either auto or manual.

Manual mode

Manual mode is intended to allow 100% library availability. It enables the library to be
operated manually under the control of the Library Manager in the event of an accessor
failure or during preventive maintenance. From manual mode, you can go to pause or auto
mode. If you select auto mode, the library goes into pause mode before it enters auto mode.
During manual mode operation, the Library Manager receives requests from the attached
host and displays the action (mount or demount), VOLSER, storage cell location, and drive
address on the Library Manager console and tape drive message panels.

9.2.2 Operational states

The operational states are:

- Library Manager initialization
- Initialization complete
- Offline
- Online
- Shutdown pending
- Library Manager switchover in progress (only the IBM 3494 with Model HA1 installed)
- Accessor switchover in progress (only the IBM 3494 with Model HA1 installed)
- Dual Active Accessor enabled/disabled (only the IBM 3494 with Dual Active Accessor
 feature)
- Dual Active Accessor transitioning (only the IBM 3494 with Dual Active Accessor feature)

Library Manager initialization

During Library Manager initialization, the Library Manager application is loaded. The
interfaces to the tape subsystems and hosts are powered on and tested. And, the Library
Manager database is verified.

Initialization complete

After the Library Manager successfully completes initialization, the library becomes
operational. You can set the operational mode and state (online or offline) through the Library
Manager upon initialization complete. If they are not set, a timeout occurs, and the library
enters the default mode and state. If any library components are not available upon
initialization complete, the operation mode and state are set to match the current component
The library does not exit initialization complete if it has not been taught or inventoried.

Offline
The Library Manager is offline. It does not respond to any host requests, although it accepts commands entered through the Library Manager.

Online
The Library Manager is online and accepts commands from host requests. This is the normal operational state of the Library Manager.

Shutdown pending
The Library Manager is in the process of terminating the Library Manager application, after power is removed from the library. After shutdown is complete, you can initialize the Library Manager application by pressing Ctrl+Alt+Delete on the IBM 3494 operator panel, the Library Manager enters shutdown pending before the power is removed. When you select shutdown by using the Mode menu, the Library Manager enters into this state.

Library Manager switchover in progress
This operational state is available only on an IBM 3494 with the High Availability unit installed. In the dual Library Manager configuration, this state occurs when the active and standby Library Managers switch roles on a failure or on request by the operator. The Library Manager is in this state until the switchover completes. The switchover can take several minutes to complete.

Accessor switchover in progress
This operational state is available only on an IBM 3494 with the High Availability unit installed. In the dual accessor environment, this state occurs when the active and standby accessors switch roles on a failure or on request by the operator. This switchover can take several minutes to complete.

Dual Active Accessor enabled/disabled
These operational states are possible only on an IBM 3494 with the High Availability unit and Dual Active Accessor feature installed. The Dual Active Accessor environment can be enabled by the operator and disabled by a failure of one accessor or on request by the operator.

Dual Active Accessor transitioning
This operational state is possible only on an IBM 3494 with the High Availability unit and Dual Active Accessor feature installed. In the dual accessor environment, this state is initiated by failure of one accessor or on request by the operator. Transitioning can take several minutes to complete.

9.2.3 Informational states

The informational states are:
- Degraded operation
- Safety enclosure interlock open
- Barcode reader or vision system nonoperational
- Intervention required
- Library Manager Check 1 condition
- All storage cells full
- Out of cleaner volumes
- Dual write disabled
- Dual Library Manager status (only the IBM 3494 with Model HA1 installed)
- Accessor status (only the IBM 3494 with Model HA1 installed)

Degraded operation
The library is degraded when any component (with the exception of tape subsystems) fails and is unavailable. Some level of library operation is available even in the degraded state. To resolve the degraded state, the failing component has to be repaired and made available by an IBM SSR.

With the IBM 3494, the following components can be marked unavailable. The library continues operation but indicates to the hosts that it is in a degraded mode:
- One gripper in a dual gripper, single accessor configuration
- Up to three grippers in a dual gripper, dual accessor configuration (when the High Availability unit is installed)
- Second disk drive in a dual disk drive configuration
- Barcode scanner
- One accessor in a dual accessor configuration (when the High Availability unit is installed)
- Components of the dual Library Manager configuration (when the High Availability unit is installed)
- Convenience input/output (I/O) station

Safety enclosure interlock open
This state indicates that one or more of the door interlocks is open. If all doors are fully closed, it is likely that a component within the safety circuit has failed. The library does not enter auto mode while in this state.

This state does not apply to an IBM 3494 when a service bay door of the High Availability unit is open in service mode.

Barcode reader or vision system nonoperational
On the IBM 3494, this state is entered if the barcode reader fails. During this time, the library continues to operate, but you cannot enter or remove cartridges from the library.

Intervention required
This state occurs when the library requires an operator to take action. On the IBM 3494, the attention light on the operator panel blinks to signal the operator. After the operator clears the intervention and, if required, confirms that they have done so, this state ends.

Refer to 9.4.7, “Handling an intervention-required condition” on page 387 for details about operator responses and console message automation possibilities.

Library Manager Check 1 condition
The library enters this state if it is unable to continue because of an unrecoverable error. In this state, all host commands and requests are lost. The Library Manager attempts to restart the Library Manager after a Check 1 condition. However, this restart does not occur if the number of Check 1 conditions exceeds three in 10 minutes.
All storage cells full
This state is entered when cartridges are present in the convenience I/O station and no empty storage cells are available in the library.

Out of cleaner volumes
This state indicates that cleaner volumes are not present in the library and a clean operation was requested by the Library Manager. In a mixed tape drive system (3490E/3590), either type of cleaner cartridge may be missing.

Dual write disabled
This state indicates that a secondary copy of the Library Manager database is not available. Either the dual write option was not selected or the second Library Manager hard disk failed (or was not installed) in an IBM 3494.

Dual Library Manager status
This informational state is available only on an IBM 3494 with the High Availability unit installed. It includes the status of the connection links between the two Library Managers, the state of the secondary database, and whether the standby Library Manager is capable of taking control.

Accessor status
This informational state is available only on an IBM 3494 with the High Availability unit installed. In a dual accessor environment, this state indicates the status of the accessors, which accessor is active, and whether the standby accessor is capable of taking control.

9.3 Library Manager
The following sections explain how a Library Manager startup works. They examine the different possibilities of library inventories and basics about cartridge labels and barcodes. They also cover information about drive cleaning and cleaner volumes.

9.3.1 Library Manager startup
The Library Manager is automatically started when the library is powered on by way of the operator panel on the IBM 3494. While the Library Manager is starting, it is in Library Manager initialization status. At this time, the Library Manager database is initialized, and a validity check is carried out on the primary and backup databases. If any errors are found with the secondary database, Library Manager initialization continues. Then the library enters the dual-write-disabled informational state. If errors exist with the primary database, the Check 1 informational state is entered.

On an IBM 3494 with the High Availability unit installed, the two Library Managers must decide which of four possible databases to choose as the primary database and which as the secondary database. Many combinations are possible. Each depends on the status of the Library Managers, the databases, and the communication links between the Library Managers.

A comparison of the databases is performed by the Library Managers. Under normal conditions (Library Managers, communication links, and databases all available after a normal termination of both Library Managers), one Library Manager is the active Library Manager. Its primary disk contains the primary database. The second Library Manager is the standby Library Manager. Its primary disk contains the secondary database.
Other conditions (such as Library Managers unable to communicate, desynchronized databases, Library Manager failure) are handled so that one Library Manager starts with the right database. If this is not possible, the library enters the Check 1 state.

9.3.2 Library inventory

An inventory of the library is carried out during the installation of the IBM 3494. After the IBM 3494 is installed, you can choose to re-inventory the library. The IBM 3494 also has the option to inventory only parts of the library.

Installation inventory

When the library is first installed, an inventory of the library is carried out after the teach process has completed. At this time, the Library Manager database is initialized. If volumes are present in the library, the records are added to the Library Manager database. This initial inventory is started by selecting Inventory new storage from the Library Manager Commands menu. Until the inventory is complete, the Library Manager is offline, and all attached hosts are unable to use the library.

The IBM 3494 takes approximately four minutes to inventory one frame. After the inventory of the hardware is complete, the Library Manager can be put online. Before any host can use the library, the host and Library Manager databases must be synchronized. At this point, all cartridges within the library are in the Library Manager INSERT category (see Appendix C, “Library Manager volume categories” on page 457). This synchronization (referred to as insert processing) causes the Library Manager database to be updated to match the host tape management system database. Each volume has a volume category assigned, indicating which host owns the volume, and whether the volume is a specific or nonspecific cartridge. Insert processing varies among the different platforms. Refer to the following appropriate platform chapters for more detailed information:

➤ Chapter 6, “Running z/OS production systems” on page 247
➤ Chapter 7, “Software implementation: Other System z platforms” on page 285
➤ Chapter 8, “Software implementation: Open Systems environments” on page 313

Re-inventory complete system

By selecting Re-inventory storage from the Library Manager Commands menu, you can re-inventory the contents of the library. To select this option, you need the administrator password if password protection is enabled. The re-inventory processes cause the existing Library Manager volume database to be deleted, a new database initialized, and records added for all the cartridges within the library. All cartridges are placed in the Library Manager INSERT category (see Appendix C, “Library Manager volume categories” on page 457). Therefore, the Library Manager database must be resynchronized with the host tape library databases. Insert processing differs among the different platforms. Refer to the following appropriate platform chapters for more detailed information:

➤ Chapter 6, “Running z/OS production systems” on page 247
➤ Chapter 7, “Software implementation: Other System z platforms” on page 285
➤ Chapter 8, “Software implementation: Open Systems environments” on page 313

During the re-inventory of a complete system, all other library actions (mounts, demounts, and so forth) are queued until re-inventory has finished.

We recommend that you do not re-inventory a library on a regular basis. Perform re-inventory only if problems exist with the Library Manager database that cannot be rectified by host software commands.
IBM 3494 inventory update

Inventory update is available on the IBM 3494 only. It is enabled from the Library Manager Commands menu. If enabled, the IBM 3494 inventories a single frame or adjacent frames after the door is opened.

Note: With the High Availability unit, the IBM 3494 does not inventory a service bay frame when the door of a service bay is opened in service mode.

The choice of a single frame or adjacent frames is selected as part of the teach process. Inventory update has two major purposes. If a cartridge is lost within the library, doing an inventory update identifies where the cartridge is and updates the Library Manager database to reflect its new location. If you insert large numbers of cartridges into the library, you can place them in empty storage cells throughout the library. When the doors are closed and the library is placed in auto mode, the Library Manager database is updated with new cartridges. These new cartridges are now in the Library Manager INSERT category. The Library Manager and host databases must be synchronized to ensure that the cartridge is placed in the correct Library Manager category.

After an inventory update, if the IBM 3494 finds that cartridges are removed from the library since the last update, it places those cartridges in a category called “Manually Ejected” (X’FFFA’). The host system can upload that category and use the “Purge Volume” category (X’FFFB’) to delete the database entries in the Library Manager.

See Appendix C, “Library Manager volume categories” on page 457 for more information about the Library Manager categories.

During an inventory update, some operations are held until the update has completed. Operations that are held are:

- Audit
- Eject
- Mounts involving volumes in the rack or racks to be inventoried

9.3.3 Cartridge labels and barcodes

The tape library uses the external label to identify cartridges in the tape library during the inventory process. It uses the media type label to determine the type of the cartridge. Any cartridges without a media type label are added to the Library Manager database as the default media type that is specified in the teach process.

An IBM 3590 drive cannot read from, or write to, a 3592 tape cartridge. Similarly, IBM TotalStorage Enterprise 3590 cartridges cannot be used on IBM 3592-J1A or TS1120 tape drives. IBM tape cartridges are designed with different cartridge casing color schemes to avoid the situation where an operator might mount an incompatible cartridge in an IBM tape drive.

To ensure that the operator can identify the correct tape volume and mount it on an IBM tape drive, a human-readable label is used. You must label all cartridges with a six-character VOLSER on the external label. A VOLSER can be from one to six characters, with blanks padded on the right for a VOLSER with fewer than six characters. The character set supported for the external labels is:

- Uppercase alphabet: A to Z
- Numerics: 0 to 9
- Blank (or space), trailing only
If you automate your tape operations, the same considerations apply. However, in this case, the library must ensure that:

- The correct type of cartridge is mounted on a compatible IBM tape drive.
- The correct type of cleaning cartridge is mounted in the drive when a cleaning operation is needed.
- The correct tape volume is mounted when requested.

Therefore, a machine-readable label, a barcode, is required in addition to the human-readable external volume identification label.

To enable the IBM 3494 to recognize different cartridge types, an additional, single-character, media-type label is used. When a cartridge is inserted in a tape library, its media type is recorded from the label. This ensures that the correct cartridge types are mounted on compatible IBM tape drives within the library. Also, when using IBM system-managed tape, scratch thresholds can be set according to media type.

The five types of IBM tape cartridges are:

- The CST cartridge has a monotone gray casing.
- The ECCST cartridge has a two-tone gray and white casing.
- The 3590 tape cartridge has a monotone black casing with blue inserts and a blue leader block.
- The 3590 XL tape cartridge has a monotone black casing with green inserts and a green leader block.
- Each 3592 data cartridge is identified by a unique label consisting of eight digits; the normal six-digit Volume Serial Number (VOLSER), followed by a two-digit media type identifier ("Jx" for 3592 Tape Cartridges).

With the exception of CSTs, we recommend strongly that you place media type E, J, K, and Jx labels on all cartridges within the 3494 Tape Library. This recommendation applies to all environments and all platforms. This type of labeling minimizes the possibility of mounting incompatible cartridge types in the tape drives.

Currently, barcode labels supplied by two label manufacturers conform to the common standard of IBM tape libraries and StorageTek (STK) Silos:

- Engineered Data Products (EDP) Tri-Optic
- Wright Line Tri-Code

The barcode used by the external labels is Automation Identification Manufacturers Uniform Symbol Description Version 3. This is also known as Code 39. The barcode area contains the same characters as the human-readable area surrounded by start and stop characters. The start and stop characters of the external labels are:

- Wright Line Tri-Code uses an asterisk (*).
- EDP Tri-Optic uses a dollar sign ($).

If an external label contains the asterisk (*) or the dollar sign character ($) character as part of the VOLSER, the barcode reader might or might not recognize it correctly. This can result in a potentially incorrectly read number.

An RPQ for the vision system is available upon request to handle other barcode labels, such as Comparex or GRAU.

We recommend that you order new, initialized cartridges with the specified barcode labels attached. Most suppliers deliver them to your specifications within about six weeks. However,
you must confirm when the supplier can deliver them before you order them. You can intermix these labels (and cartridges) in your tape library.

We recommend that you do not print your own labels. It is unlikely that you can achieve the same quality as the labels available for purchase.

The IBM TotalStorage Enterprise Tape Drive 3592 uses six media cartridge types: JA, JB, JJ, JR, JW, and JX. All media cartridge types contain the same dual coat, advanced particle media. The media is housed in a 3592 cartridge shell, which is designed for automation with a form factor (shape) similar to the 3590 tape cartridges that allow it to be used in the IBM TotalStorage Enterprise Tape Library 3494 and StorageTek Automated Cartridge System (ACS) solutions. The only externally visible difference among the four cartridge types is the color combinations of the housing, leader pin door (gate), and write-protect switch.

Service volume label definition

Service volumes (CE cartridges) are shipped with the tape library. Service volumes have a unique external VOLSER label that distinguishes them from any other type of volumes. The pattern of a CE cartridge VOLSER is shown in Table 9-1.

<table>
<thead>
<tr>
<th>Character position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Must be CE</td>
</tr>
<tr>
<td>3</td>
<td>Must be a blank</td>
</tr>
<tr>
<td>4-6</td>
<td>A three-digit number</td>
</tr>
</tbody>
</table>

For example, **CE_001** is a valid VOLSER for a service volume.

Normally, an embedded blank in a VOLSER is illegal. It results in the volume being flagged as having an unreadable external label. The blank is used for the service volume labels to ensure that they are unique and do not conflict with other client volume labels. Service volumes are restricted to certain reserved storage cell locations, which are predetermined.

Cleaner volume

The tape drives need to be cleaned on a regular basis, and cleaning requires special cleaning cartridges. To ensure that the operator can identify a cleaning cartridge, external labels are placed on these cartridges by the manufacturer. The IBM 3480 and 3490 models use a single type of cleaning cartridge. However, the 3590 tape drive requires a 3590 cleaning cartridge, and the 3592 tape drive requires a 3592 cleaning cartridge.

Within a library, cleaning cartridges are identified by a particular set of volume serial masks, typically CLN***. The 3590 cleaning cartridges must be further identified by the media type label (J after the VOLSER). Otherwise, in response to a cleaning request, they can be mounted in an IBM 3490 drive.

The cleaner volumes in the tape library also need an external label. From the Library Manager console, you must define one or more masks that identifies which VOLSERs identify cleaning volumes. The cleaner volume masks can be defined whenever you make one of the following selections from the Library Manager console:

- Inventory New Storage, and none of the components in the tape library configuration has been inventoried
- Re-inventory Complete System
- Cleaner Masks
A dialog box is displayed on the Library Manager console with 10 cleaner masks. When the masks are presented for the first time, the first mask is set to a default value of CLN***. The other nine masks are set to blanks. The asterisk (*) character can be used in the mask and is interpreted as a wildcard character. After the cleaner volume masks are set, any VOLSER labels that match any of the masks are considered to represent cleaner volumes.

Note: Check the cleaner mask after the described inventory process to see if you need to make changes.

You can eject cleaner volumes by using a Library Manager command (see 9.4.3, “Ejecting cartridges” on page 383). This action causes the use count to be reset to zero. If the cartridges are not completely used, the statistics on the cleaner cartridge are inaccurate when the cleaner cartridges are reinserted.

9.3.4 Tape device cleaning
The accessor performs all drive cleaning operations under the control of the Library Manager. Drive cleaning is scheduled by either time or drive mount. These options are mutually exclusive. You can select them through the Cleaning Schedule option of the Library Manager Commands menu.

We recommend that you base drive cleaning on a drive request. Use time-based cleaning only if drive usage is extremely low. For 3590 tape drives, use a value of 999 mounts to perform cleaning based on a drive request rather than a library-initiated request.

9.4 Library Manager operations
The following sections describe operational procedures for the IBM 3494. For each of the following topics, you can obtain additional information in the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

With the introduction of Enterprise Tape Library (ETL) Specialist Version 2.1, most information and action tasks are now available without direct access to the Library Manager console. Refer to “TotalStorage Enterprise Tape Library Specialist” on page 86. You might want to use the Library Manager console if you are unable to use the ETL Specialist for some reason. ETL Specialist might not be available if you are already on the Library Manager and inserting cartridges to the 3494. Therefore, we still keep the Library Manager information in this book.

The following sections focus on the Library Manager console for the most frequent actions. They do not discuss customization activities in Advanced Policy Management (APM) for a Virtual Tape Server (VTS). For a detailed description of the implementation and handling of APM, see IBM TotalStorage Virtual Tape Server Planning, Implementing and Monitoring, SG24-2229.

9.4.1 Finding out the LIBRARY-ID given during the teach process
During the installation, a five-digit LIBRARY-ID is given to any IBM 3494. Also, each VTS or Peer-to-Peer (P2P) VTS has its own LIBRARY-ID. The LIBRARY-IDs are also coded in the hardware configuration definition (HCD) and in the z/OS system (if one is attached). To find out which LIBRARY-ID is given to a specific library, use the Library Manager or the ETL Specialist.
On the Library Manager, you can view the LIBRARY-ID by following these steps:

1. Select the Status menu on the main menu.
2. Select **Operational status**.
3. Scroll until you see **Library sequence numbers** as shown in Figure 9-1.

![Figure 9-1 Library Manager Operational Status menu]

Note: Using the Enterprise Tape Library Specialist is another way to determine the Library ID. Refer to "TotalStorage Enterprise Tape Library Specialist" on page 86 for more information about the ETL Specialist.

9.4.2 Inserting cartridges

The following section explains ways to insert cartridges into a library:

- Convenience I/O station insert
- High capacity I/O facility insert
- Empty cell insert
- VTS logical volumes insert

When the cartridges are inserted into the library, if the barcode is readable and the VOLSER is unique, a record of the volume is added to the Library Manager database. The cartridge is placed in the Library Manager INSERT category. All attached hosts are notified.
In the IBM 3494, a VOLSER range function is used to help determine a VOLSER's media type when the cartridge is inserted into the tape library. For more information about the VOLSER range, refer to 9.4.5, “Setting VOLSER ranges for media types” on page 385.

Consider the case when a cartridge is placed in the convenience I/O station, high capacity I/O facility, or an empty cell within the IBM 3494, and the VOLSER already exists within the Library Manager database. In this case, the cell that the volume currently occupies within the library is checked. If the cell is empty, the new cartridge is placed in the cell. If the cartridge is placed in an empty cell within an IBM 3494, the database record is updated. If a cartridge with the same VOLSER is in the cell, the new cartridge is left in the input station and an operator intervention is flagged. If the cartridge is placed in an empty 3494 cell, it is then placed in the convenience I/O station, and an operator intervention is flagged.

Convenience I/O station insert

A cartridge is placed in the convenience I/O station for insertion into the IBM 3494. When the door is closed, the Library Manager senses the presence of a cartridge and locks the door. The Library Manager then instructs the accessor to remove a cartridge from the convenience I/O station and place it in a storage cell. At this time, the barcode is read, and the VOLSER and media type are checked. If the barcode is unreadable or a cartridge with a duplicate VOLSER is in the library, the cartridge is returned to the convenience I/O station and an operator intervention is flagged.

If the barcode is readable and the VOLSER is unique, a record of the volume is added to the Library Manager database. The cartridge is placed in the Library Manager INSERT category. All attached hosts are notified.

If the IBM 3494 unlabeled tape facility is used to enter unlabeled cartridges into the tape library through the convenience I/O station, it is impossible to verify the VOLSER or media type. If a duplicate VOLSER is specified, the cartridge is left in the convenience I/O station cells or external high capacity I/O station. Then, operator intervention is flagged. For more information about unlabeled tape support, refer to 9.4.8, “Handling unlabeled tapes” on page 388.

High capacity I/O facility insert

To insert a large number of cartridges into the IBM 3494, you can use the high capacity I/O facility. This facility must be predefined in the teach operation. The VOLSER and media type are verified. If a problem exists with the barcode, the cartridge is left in the high capacity I/O facility cells or external high capacity I/O station. Then, operator intervention is flagged.

Empty cell insert

The inventory update function enables you to insert large numbers of cartridges into the library. Inserting cartridges this way is disruptive to library operations. Therefore, it is usually carried out at the same time as a high capacity output operation.

To insert the cartridges, you:

- Enable inventory update
- Place the library in pause mode
- Open one or more doors

Place the cartridges in any empty storage cells, with the doors closed, and put the library into auto mode. When the High Availability unit is installed, do not place a cartridge into a cell of the service bays.

The Library Manager then performs an inventory update. The accessor scans all storage cells in the frames and selected adjacent frames, wherever the doors were opened. Any new cartridges have their barcodes validated. Unlabeled cartridges cannot be added to the library.
in this way. If the VOLSER and media type are valid, the Library Manager database is updated, and the cartridge is placed in the INSERT category. The inventory of each frame takes a maximum of four minutes.

For detailed information about inventory update, see “IBM 3494 inventory update” on page 376.

Inserting native cartridges in a 3494 with an attached VTS
If you have a 3494 with a VTS installed, the 3494 takes a new physical cartridge and updates the Library Manager database with the position of the cartridge. However, the process to notify attached hosts or to introduce the cartridge to a physical stacked pool does not start immediately. The operator must select **Commands → System Management → Manage Insert Volumes → Select volumes → Take Action** on the MANAGE INSERT VOLUMES panel to start this process.

Important
If you enter stacked volumes, the volume range must be predefined in **VOLSER Ranges for Media Types** (see 9.4.5, “Setting VOLSER ranges for media types” on page 385) as a stacked volume for a VTS. If you do not do this, and you select **Manage Insert Volumes → Take Action**, the volumes are presented to each attached host for insert processing in the tape configuration database (TCDB) and tape management system. Depending on your tape management system and your customization (EDGRMMxx - REJECT statements), the volumes might be introduced into your system and used as scratch cartridges.

Inserting VTS stacked cartridges
The cartridges are added to the appropriate stacked pool when you perform the following actions:

1. Define the correct VOLSER ranges for media types.
2. Insert the cartridges.
3. Select **Commands → System Management → Manage Insert Volumes → Select volumes → Take Action**.

Inserting VTS logical volumes
This window allows the insertion of logical volumes into a VTS. You can insert up to a total of 500,000 virtual volumes into a 3494. VOLSERs must be unique within a physical library. A logical volume’s VOLSER cannot match another logical or physical volume’s VOLSER. If it does, the volume is not inserted. Select **Commands → System Management → Insert Logical Volumes**.

For more information, see *IBM TotalStorage Virtual Tape Server Planning, Implementing, and Monitoring*, SG24-2229.

In a z/OS environment, each logical volume inserted by this panel creates a TCDB and a RMM-CDS entry. Make sure that your TCDB, RMM-CDS, and especially your RMM-journal are big enough to hold these new entries. If not, RMM collapses and the entries cannot be handled. To avoid this problem, enter only a specific number of virtual volumes (for example, 3,000 volumes for each insert processing) and then run the EDGBKUP utility. It is also possible to allocate a bigger RMM-journal.
9.4.3 Ejecting cartridges

To eject cartridges from the IBM 3494, enter the appropriate eject commands from the host system that owns the cartridges. You can eject a specified cartridge to either the convenience I/O station or the high capacity I/O facility.

For more information about the specific task in the host system, see 9.6, “z/OS with system-managed tape” on page 400, and Appendix D, “Basic tape library environment” on page 467.

You can eject only two types of cartridges using the Library Manager console:
- A cleaning cartridge
- A VTS stacked volume in an IBM 3494

Ejecting a cleaner cartridge

A cleaner cartridge is automatically ejected if the end-of-life time (depends on the clean mode) is reached. Ejecting a clean cartridge is, therefore, typically unnecessary. If it is necessary (for example, due to an error), refer to IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

Ejecting a VTS stacked volume

You can allow a stacked volume to be ejected from the library. When a stacked volume eject is initiated, the VTS copies any active data off the stacked volume onto other stacked volumes. When all data is removed, the VTS initiates the eject of the now empty stacked volume. This process can take a long time. Select Commands → System Management → Eject a VTS stacked Volume.

For more information, see IBM TotalStorage Virtual Tape Server Planning, Implementing, and Monitoring, SG24-2229.

9.4.4 Searching the Library Manager database for volumes

You can use the Library Manager database to gather information about the cartridges in the tape library and obtain the volume category, storage cell location, exception condition, and other cartridge information. Select the Database menu from the Library Manager console to view selected volumes in the tape library.

On the Search Database for Volumes window (see Figure 9-2), you can search the volume database for specific volumes on the basis of search criteria. The more search criteria you use, the more restrictive the search is.
You can include the following options in the search criteria:

- **VOLSER**: Enter the VOLSER used in the search. The identifier consists of one to six alphanumeric characters that match the external label. You can include a wildcard character, where a question mark (?) or underscore (_) indicates one character and an asterisk (*) or percentage symbol (%) indicates multiple characters.

- **Category**: Enter the category used in the search. A category is a logical grouping of volumes for specific use. The categories are 0000 to FFFF. They must contain four hexadecimal characters and cannot contain wildcard characters. All categories beginning with ‘FF’ are predefined for use or reserved for Library Manager use. See Appendix C, “Library Manager volume categories” on page 457 for a comprehensive list of Library Manager volume categories.

- **Device**: Either enter or select the tape drive address used in the search to see whether the volume is mounted or being mounted on the drive. You can obtain a valid tape drive address by clicking the drop-down arrow. Single-character and multiple-character wildcards are valid.

- **Media Type**: Select the correct media types for the type of tape drives installed in the tape library:
 - 1: CST
 - E: ECCST
 - J: 3590 Tape Cartridge (HPCT)
 - K: 3590 Enhanced Capacity Tape Cartridge (EHPCT)
 - JA: 3592 Enterprise Tape Cartridge (ETC)
 - JJ: 3592 Enterprise Economy Tape Cartridge (EEETC)
 - JW: 3592 Enterprise Worm Tape Cartridge (EWTCE)
 - JR: 3592 Enterprise Economy Worm Tape Cartridge (EEWTC)
 - JB: 3592 Enterprise Extended Tape Cartridge (EEETC)
– **JX:** 3592 Enterprise Extended Worm Tape Cartridge (EEEWTC)

Flags: You can include the following flag selections in the search criteria:

– **Misplaced:** The cartridge location is unknown. A volume serial number specified in a library request is not in the tape library where expected.

– **Unreadable:** The vision system cannot read the barcode of the external cartridge label.

– **Mounted:** The cartridge is mounted or being mounted on a tape drive.

– **Inaccessible:** The cartridge accessor cannot access the cartridge. A requested VOLSER is in the tape library but cannot be accessed by the cartridge accessor because of a problem with either the cartridge or the cell that contains the cartridge.

– **Manual mode:** An operator handles the cartridge during manual mode processing.

These flags are used for problem determination procedures that determine whether the tape library contains volumes for which some action must be taken.

The following options are possible values for each flag:

– **Yes:** Search for volumes to which this flag applies.

– **No:** Search for volumes to which this flag does not apply.

– **Ignore:** Search for volumes without regard for this flag.

The search results are displayed in a list. The list can contain up to 100 records at one time. If more than 100 records are found, click **Next 100** and **Prev 100** to display the additional records. Each record contains the following information:

– **VOLSER:** The volume serial number of the cartridge

– **M.T.:** The media type of the cartridge

– **Cat.:** The category, which is represented by four hexadecimal characters that identify the group of volumes or a predefined category

– **Cat. Order:** The position of the cartridge in the category

– **Flags:** The status of the flags

– **Device:** The tape drive address if the cartridge is mounted

– **Cell:** The storage cell that contains the cartridge

– **Home:** The cartridge home cell location

– **Mounts:** The total number of times the cartridge was mounted

9.4.5 Setting VOLSER ranges for media types

The VOLSER range for media types function allows the entry of up to 50 or 256 VOLSER ranges and associated media types on the Library Manager. Use it:

– To determine whether the cartridge is used as a native cartridge or stacked volume in a VTS

– When it is used as a stacked volume to which VTS belongs

– To help determine a VOLSER’s media type when it is inserted into the tape library

VOLSER ranges are used only for physical volumes. The available media types are CST, ECCST, and 3590 (HPCT and EHPCT).

The VOLSER entry fields can contain up to six alphanumeric characters. The two VOLSERs must be entered in the same format. Corresponding characters in each VOLSER must both be either alphabetic or numeric. For example, AAA998 and AAB004 are of the same form, but AA9998 and AAB004 are not.
Here, we explain how to determine the VOLSERs that fall within a range. The VOLSER's range is increased in increments. The alphabetic characters are increased alphabetically, and the numeric characters are increased in numerical increments. For example, VOLSER range ABC000 through ABD999 might result in a range of 2,000 VOLSERs (ABC000 to ABC999 and ABD000 to ABD999).

When a range is added or modified, the Library Manager automatically combines overlapping ranges with the same media type and checks for range conflicts.

When you modify a VOLSER range, the media type for existing volumes in the tape library is unchanged. Volumes that are inserted subsequently reflect the new set of ranges and associated media type.

The media type of the inserted volume is determined by using the following rules:

- The media type label read by the vision system is used.
- The VOLSER ranges are used to determine a media type if the vision system cannot read the media type label. If the VOLSER being inserted appears within one of the VOLSER ranges, the range's associated media types are used.
- The Library Manager uses the default media type defined during the teach process to determine the media type if the inserted VOLSER does not fall into one of the VOLSER ranges.
- The VOLSER is ejected if there is no default media type.

Select Commands → System Management → Volser Range for Mediatype.

For a detailed and full description of all the fields, refer to the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

The input to this panel comes from the Storage Administrator in your environment. However, we recommend that you:

- Check whether the range is already defined.
- Check whether the range is modified so that the same media type applies.
- File the original request to keep track of the changes.

Important: If you run an environment with a VTS, but without an HA1 feature or second Library Manager disk, manual recording of your changes is the only source to recreate your environment in case of a disaster. In this case, be careful with the documents.

9.4.6 Setting Virtual Tape Server management policies

This window allows you to set the inhibit reclaim schedule and the free storage threshold. Inhibit reclaim schedule defines when the VTS must not perform reclaim operations.

The free storage threshold percentage is used to provide a warning when a VTS is running out of available free storage. The reclaim threshold controls the percentage of active data that remains on the stacked volumes before they become eligible for reclaim processing. The default setting is 10%. We recommend that you use caution when executing changes to this value in an established VTS. Raising the threshold can cause intense reclaim activity to occur. Use the Library Manager display, Active Data Distribution, to predict the results of a change in this value.

You can find information about reclamation through VTSSTATS. Select Commands → System Management → Set VTS Management Policies.
9.4.7 Handling an intervention-required condition

Certain conditions in the tape library require short-term operator intervention to resolve them. These conditions do not stop the Library Manager from accepting commands. However, they might delay the execution of certain queued operations.

When one or more intervention-required conditions exists, the tape library is in the intervention required state. Each intervention-required condition is reported to the attached hosts by an unsolicited attention message with an associated unsolicited unit check. The requirement to clear intervention situations can be handled manually by an operator. You can also apply automation software or operational procedures for faster and more efficient management of potential library problems. In a system-managed tape environment, additional information messages are sent to the system console.

For full details about the intervention messages and required responses, see the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

Manual response to library intervention

Library Manager keeps track of the outstanding intervention-required conditions. You can display these conditions on the Library Manager console. An operator can indicate which conditions have been resolved.

Follow these steps to resolve each condition:

1. Using the Commands menu, select **Operator intervention** on the Library Manager console.

 The Operator Intervention window displays on the Library Manager console. It shows a list of the intervention-required conditions. If there are no intervention-required conditions, the window is blank.

2. Resolve the intervention-required condition.

 Determine which condition to resolve. Perform the necessary action. Reply that the condition was resolved by highlighting the condition and clicking **OK**.

 Some conditions, such as when the convenience I/O station is full, are automatically cleared after you resolve them. However, they cannot be cleared until you resolve the condition. You can click **Help** to display the operator actions for the intervention-required conditions.

3. Repeat step 2 until all of the conditions are resolved.

 When you reply that all outstanding conditions are resolved, the window closes. You can close the window and resolve certain conditions later by clicking **Cancel**.

Automated responses for intervention conditions

If **Send Interventions to Host Consoles** is enabled on the Operator Intervention display (under the Commands menu), a broadcast message of the operator intervention text is sent to all attached hosts. We recommend this setting for libraries managed under DFSMS/MVS system-managed tape. The message includes a portion of the intervention-required text displayed at the Library Manager console. The information contained in the message enables capture of these messages for automation procedures to determine the severity of the intervention condition and who needs to handle it.
When an intervention condition is detected in the library, all control unit paths in the affected library send the text message to any attached hosts. This can result in multiple messages received by the same host for the same condition. Although no software support is needed to receive the messages, the DFSMS support software for the Import/Export functions includes a degree of filtering for duplicate messages to the same host. We recommend that you install the PTFs.

The host console message has the following format:

CBR3750I MESSAGE FROM LIBRARY <library-name>: <70 characters of text>

We explain the message format here in more detail:

- `<library-name>` identifies the library for which the condition is reported
- `<70 characters of text>` contains two subfields: Identifier and Intervention text:
 - `<identifier>`: Six character unique identifier for each intervention, such as OPxxxx where xxxx is the intervention number.
 - `<intervention text>`: The first 63 characters of the Library Manager console intervention required message. Certain intervention descriptions are longer than 63 characters.

Enough of the description is provided to allow a client to determine:

- The severity of the intervention
- Who needs to take action
- Where to get more information about the intervention

The full message is always available at the Library Manager console.

There are over one hundred of these messages. You can learn about these messages in the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

9.4.8 Handling unlabeled tapes

Each cartridge in the tape library must have proper external labels. The vision system identifies the VOLSER and type of cartridge during an inventory operation by reading the external labels. The IBM 3494 provides an unlabeled tape facility to allow occasional insertion of cartridges without proper external labels through the convenience I/O station. After you insert the cartridges through the unlabeled tape facility, you can use them in the same manner as you use regular, properly labeled cartridges. However, there might be operations that require the external label to be read:

- If the cartridges are moved during manual mode operations to another location, these unlabeled cartridges are ejected because they are not found in their proper locations.
- If the tape library is reinventoried, these cartridges are ejected because the Library Manager database is deleted and their external labels cannot be read during re-inventory.
- If two unlabeled cartridges are swapped during manual or pause mode, the tape library is unaware of the post-inventory exchange. Inventory update is automatically performed after manual or pause mode. It verifies only that all unlabeled cartridges are in cells that previously contained unlabeled cartridges. Therefore, when asked to mount one of the exchanged cartridges, the tape library mounts the wrong one.

We strongly recommend that you leave unlabeled cartridges in the tape library for as short a time as necessary to satisfy their requirements.

If you want to use unlabeled tapes, you must have the convenience I/O station.

To insert unlabeled cartridges, follow these steps:
1. Ensure that the convenience I/O station is empty.
2. Enter the VOLSERs and the cartridge type of all cartridges to be inserted in the spaces on the Insert Unlabeled Cartridges window (Figure 9-3).

![Figure 9-3 IBM 3494 Library Manager Insert Unlabeled Cartridges window](image)

3. Place the cartridges in the convenience I/O station in the same sequence represented on the window. Close the convenience I/O station door.
4. Click OK.

9.4.9 Handling a standalone device setup

You can perform standalone operations to a tape device inside an IBM 3494 if you use the Setup Stand-alone Device window (Figure 9-4). This allows you to mount or demount cartridges with specific VOLSERs in the Library Manager database.
You can also mount cartridges in the convenience I/O station. This is known as the *transient mount* or the *mount from input station* function. Its purpose is to allow you to mount cartridges that do not reside in the IBM 3494 nor have proper external labels. These cartridges are chosen directly from the convenience I/O station, loaded into the tape drive by the cartridge accessor, and then returned to the convenience I/O station. You must install the convenience I/O station feature to take advantage of this function.

You can also mount the cartridge of a predefined sequential set of a specified category. This is known as the *automatic cartridge loader mode*. Although the tape drives in the IBM 3494 do not have automated cartridge loaders, the IBM 3494 allows for automatic mounting of the next cartridge of a predefined sequential set in a specified tape drive in the tape library. The IBM 3494 supports the assignment of cartridges to a special category, the assignment of a specified drive for restricted use with the special category, and the ending of the restricted usage of a tape drive.

The setup standalone device function of the IBM 3494 works only when you are running standalone utilities or IPL your standalone program. For example, in MVS environments, all of the above functions are useful only when the MVS operating system is unavailable. Therefore, you cannot use the standalone device for MVS jobs.

To set up the standalone device function, select **Setup Stand-Alone Device** from the Library Manager Commands menu.

To set up a standalone device, follow these steps:

1. Enter a device address in the Enter device field to specify the tape device in the IBM 3494.
2. Enter a VOLSER in the VOLSER field to identify the tape volume to mount.
3. Select **Mount a single volume** to mount a specified volume onto the requested device.
 When you select this operation, you must also select either **Do not change volume category** or **Change at mount**.

To set up a standalone device with transient mount, follow these steps:
1. Enter a device address in the Enter device field to specify the tape device in the IBM 3494.
2. Enter a VOLSER into the VOLSER field to identify the tape volume to mount.
3. Select **Mount from Input Station** to mount transient cartridges located in the convenience I/O station directly onto the requested device and then return them to the convenience I/O station after unloading.

To set up a standalone device with automatic cartridge loader mode, follow these steps:
1. Enter a device address in the Enter device field to specify the tape device in the IBM 3494.
2. Enter a VOLSER in the VOLSER field to identify the tape volume to mount.
3. Select **Assign category to a device** to assign a category to a tape device.
 When you select this operation, you must select one of the three Change volume category options.
4. Enter a category to assign to a device in the Category to assign to device field.
5. **Select volumes in category order** to mount volumes in their category order.

See the *IBM TotalStorage Automated Tape Library (3494) Operators Guide*, GA32-0449, for more detailed information.

9.4.10 Handling manual mode operation

If the cartridge accessor is unavailable, library operation can continue with the operator taking the place of the cartridge accessor. With an IBM 3494 with the High Availability unit installed, this condition occurs only when both cartridge accessors are unavailable.

To enter manual mode, select the **Mode** menu from the Library Manager menu. Then, select **Manual mode**. The Library Manager attempts to move the cartridge accessor to its parking position. If a cartridge accessor cannot be moved out of the way automatically, the operator or the IBM SSR might be required to move the failed cartridge accessor into its parking position. When the tape library enters manual mode, the commands for the operator to perform are displayed on the Library Manager console (Figure 9-5).
The Library Manager console provides information about the type of command, VOLSER, the cell number of the volume located, and tape drive addresses. The mount commands are also displayed on the tape drive message display.

When the operator opens the frame doors to start performing manual operations, the first task is to remove any cartridge from the gripper and place it in the convenience I/O station.

When volumes are used in manual mode, their Library Manager database indicator is set to manual mode. This indicator is also used to direct error recovery when the tape library is returned to the auto mode.

The main operations processed by the operator in manual mode are mount and demount. To execute a mount operation, the operator reads the information provided on the Library Manager console, locates the volume, and loads it into the specified tape drive. To assist the operator, the VOLSER to be mounted and its location are displayed on the message display of the appropriate tape drive. Therefore, the operator can perform the mount operation without the Library Manager console. If a mount operation is successful, a confirmation is provided by the tape subsystem.

No explicit operator response is required. Unless the operator has a problem in performing the mount operation, loading the volume in the tape drive completes the operation. If the operator has a problem during the mount, they must specify the action by using cursor keys on the Library Manager console, and then press the PF4=Error key. Pressing that key shows the Error Processing display on the Library Manager console (Figure 9-6).
Select the error description that best fits the error situation and press the Enter key.

<table>
<thead>
<tr>
<th>Action</th>
<th>VOLSER</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount</td>
<td>SSG332</td>
<td>Rack 2 D 22</td>
<td>Device 3F5</td>
</tr>
</tbody>
</table>

Error Description . . .
- Rack Cell Empty
- Rack Cell In Use
- Wrong VOLSER
- Device In Use
- No Cartridge In Device
- Cartridge Not Found
- Other Error

F1=Help F3=HideScreen F12=Cancel

Figure 9-6 IBM 3494 Library Manager manual mode Error Processing display

On the console, the operator selects the error description to report the error.

If a cartridge is loaded into a tape drive that has not requested the mount, the cartridge is unloaded. There is no host attention indicator for the mistaken mount.

To execute a demount operation, the tape drive automatically rewinds and unloads the cartridge volume. The operator then removes the cartridge from that drive. The cartridges demounted from the drives are either placed in the high capacity output cells or removed from the tape library to a client-provided cart.

An Audit operation is not allowed in manual mode. Any queued audit operations fail as they are fetched from the operations queue. Any audit commands received after the tape library has entered manual mode fail immediately.

9.4.11 Looking for physical bottlenecks

You might need to gather information about what is happening in the library, regarding both the physical movement in a library as well as detailed VTS-related information (where applicable). This information is available on an hourly basis. At the end of the hour, the Library Manager sends the statistics to all attached hosts. z/OS system-managed tape and Basic Tape Library Support (BTLS) provide the support for these statistics. An SMF type 94 record reports the activity of all devices in the tape library.

You can display information about physical movements directly on the Library Manager console.

Note: You can also view the performance statistics from the ETL Specialist.
The Performance Statistics window displays the activity involving physical volumes in the library. Commands involving VTS logical volumes are not part of these statistics:

- The number of physical mounts for the previous seven days
- The number of physical mounts for the previous 24 hours
- The number of physical mounts per hour for the previous 24 hours
- The average physical mount time for the previous 24 hours
- The number of physical ejects for the previous 24 hours
- The number of physical inserts for the previous 24 hours
- The number of physical audits for the previous 24 hours
- The peak number of physical mounts per hour for the previous 24 hours
- The time when peak physical mounts per hour occurred
- The number of physical mounts during the last hour
- The number of physical demounts during the last hour
- The number of physical ejects during the last hour
- The number of physical inserts during the last hour

If mounts or demounts are not performed in an adequate time, check whether the total number of physical movements (mounts and demounts together) reached the limits of your installed IBM 3494. Refer to 3.5.3, “Performance planning” on page 121.

9.4.12 Handling the Simple Network Management Protocol (SNMP)

The Library Manager contains limited SNMP support. SNMP is a standard TCP/IP protocol that sends alerts (called SNMP traps) over a TCP/IP LAN network to one or more SNMP monitoring stations. These monitoring stations can alert operations staff of problems or operator interventions that occur at the library. Monitoring is independent of the host system that controls the IBM 3494 and the location of the IBM 3494.

The Library Manager code offers the ability to monitor the following Library Manager events:

- OPINT: Operator Interventions
- UNSOL: Unsolicited Attention Messages
- SERVC: Service Request Messages
- CHCK1: Library Manager Check 1 Conditions
- TESTM: Test SNMP Trap Message

For a detailed description of these events, see the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

Selecting SNMP trap types

To select the types of Library Manager trap events to monitor, follow these steps:

1. Select Commands from the main menu.
2. Select SNMP Options from the menu.
3. Select Select SNMP Trap Types from the submenu.
4. Select the trap types to monitor from the dialog box that lists all Library Manager trap types (see Figure 9-7).
5. Click OK.
Configuring SNMP trap destinations

When you have selected the Library Manager trap types, you must configure the Library Manager to send SNMP traps to the correct monitoring stations:

1. Select **Commands** from the main menu.
2. Select **SNMP Options** from the menu.
3. Select **Change SNMP trap Destinations** from the submenu.

You can configure The Library Manager to send SNMP traps to a maximum of five trap destinations. The procedure for configuring the SNMP trap destinations depends on the version of OS/2 (2.11 or 4.0) running on the Library Manager. To determine which version of OS/2 you have, choose **About** from the Help menu. We show the configuration procedures for both versions of OS/2 in the following sections.
OS/2 Version 2.11

Figure 9-8 shows the OS/2 2.11 version of the Change SNMP Trap Destinations window.

To add a destination, follow these steps:

1. Add the SNMP trap destination in the New Trap Destination field.
2. Click **Add**.
3. To activate the changes, select **Activate Changes**.

To delete a destination, complete these tasks:

1. Highlight the SNMP trap destination in the list box that you want to delete.
2. Click **Delete**.
3. To activate the changes, select **Activate Changes**.

If the SNMP daemon is running when you select Activate Changes, the Library Manager ends it and restarts it with the new changes.
OS/2 Version 4.0

For OS/2 Version 4.0, use the SNMP HRMCNFIG program to configure SNMP trap destinations. Select Change SNMP Trap Destinations from the SNMP options menu to start this program.

Figure 9-9 shows the SNMP Configuration window.

![SNMP Configuration window for OS/2 Version 4.0](image)

Figure 9-9 SNMP Configuration window for OS/2 Version 4.0

To add a destination, complete these steps:
1. Select Trap destination.
2. Select UDP in the Protocol field.
3. Enter the monitor station name and IP address in the appropriate fields.
4. Click Add.
5. Click OK.

To delete a destination, you must:
1. Highlight the SNMP trap destination in the list box that you want to delete.
2. Click Delete.
3. Click OK.

Note: HRMCNFIG is an external process to the Library Manager. You must wait until that process completes before Library Manager SNMP support is enabled. Wait until the Change SNMP Trap Destinations field becomes selectable again (no shadow). After it becomes selectable, you can use all SNMP features.
Starting SNMP
After you select trap types and configure trap destinations, you can enable Library Manager SNMP support:

1. Select **Commands** from the main menu.
2. Select **SNMP Options** from the menu.
3. Select **Start SNMP** from the submenu.

These actions start the SNMP daemon. To ensure that the daemon is running, press Ctrl+Esc to display a window list, and verify that SNMPD is listed.

Stopping SNMP
To stop SNMP, follow these steps:

1. Select **Commands** from the main menu.
2. Select **SNMP Options** from the menu.
3. Select **Stop SNMP** from the submenu.

Library Manager SNMP traps are not generated if the SNMP daemon is not running.

Sending TESTM messages
After you configure SNMP, you can send a test SNMP trap to ensure that you configured SNMP correctly. The TESTM trap allows a test message to be sent to the SNMP monitor stations.

To send a TESTM message, follow these steps:

1. Select **Commands** from the main menu.
2. Select **SNMP Options** from the menu.
3. Select **Send TESTM Trap** from the submenu.
4. Enter the test message text in the TESTM SNMP Trap Message window (Figure 9-10).

![TESTM SNMP Trap Message window](image)

Figure 9-10 TESTM SNMP Test Message window

SNMP requirements
To use SNMP on the IBM 3494, you must have the following requirements. Either LAN attachment FC5219 or FC5220 must be installed on the 3494 to connect it to the client’s LAN.

- SNMP alert monitoring software must be running on a workstation on the LAN to which the 3494 is connected.
- The SNMP alert monitoring software must be customized to handle the SNMP traps sent by the 3494 Library Manager.
SNMP troubleshooting
Most problems that you encounter are related to site network configuration. To ensure that SNMP works correctly, follow these steps:

1. Make sure that the SNMPD process is running.
2. Make sure that you can ping the monitor station from a service window. If you cannot ping the monitor station, there is a network configuration problem that you must correct.
3. Generate a TESTM trap message and check the SNMPD window to see whether it was sent. Press Ctrl+Esc to display the window list. Highlight the SNMPD process. You see the TESTM trap message in the window. If there are any errors, the daemon is not starting correctly.

9.5 Standalone dump and restore
The following sections describe standalone dump and restore procedures using the tape devices within an IBM 3494.

9.5.1 MVS standalone dump to IBM 3494
To carry out a standalone dump to an IBM 3494, use the IBM 3494 standalone device support, so that normal library operation is unaffected.

To carry out a standalone dump to an IBM 3494 resident drive, follow these steps:

1. Vary the drive to be used for the standalone dump offline to all attached hosts.
2. Set up the standalone device support through the Library Manager Commands menu. Select the drive varied offline in step 1. Enter the first of the preformatted standalone dump tapes in the convenience I/O station.
3. Start the standalone dump procedure on the failed MVS system, using the device address of the drive varied offline in step 1.
4. If further tapes are requested, use the Stand-alone Device panel to mount and demount new tapes.
5. After the standalone dump is complete, exit the standalone device support and vary the drive back online to attached hosts.

9.5.2 MVS standalone restore from a tape library
The Stand-Alone Services program is available with DFDSS V2.5 and DFSMSdss. The Stand-Alone Services RESTORE command is supported by tape devices within the IBM 3494. The RESTORE command enables you to restore your dump tapes by using tape devices inside the tape library.

The Stand-Alone Services program runs independently of a system environment either as a true standalone system or under a VM system. The program operates in extended control (EC) mode and requires 2 MB of real storage. The Stand-Alone Services program operates on an IBM System/370™ (S/370) processor in either MVS/ESA™ mode, MVS/XP™ mode, or S/370 mode. It also runs on an IBM System/390® processor in either S/390 mode or S/370 mode. The Stand-Alone Services program can run on a processor that is in BASIC or LPAR mode. Or, you can run the Stand-Alone Services program in a virtual machine under VM. The drives that you use for Stand-Alone Services must remain offline to other systems.
To restore from the dump tapes, the Stand-Alone Services program uses only tapes inside the tape library and the TAPEVOLSER parameter of the RESTORE command to mount specified dump tape volumes using the cartridge accessor:

```
RESTORE FRMDV(TAPE) FRMADR(FDD) TOADR(791) -
   NOVERIFY TAPEVOL((BCD101) (BCD102))
```

Device address FDD is a tape drive in an IBM 3494. The tape volumes with VOLSERs BCD101 and BCD102 contain the dump dataset to restore. Volume BCD101 is the first volume in the sequence and BCD102 is the second. Device address 791 is a direct access storage device (DASD). The NOVERIFY parameter of the RESTORE command prompts the operator for permission to write on the device at address 791. Refer to z/OS DFSMSdss Storage Administration Reference, SC35-0424, for more information.

You can use the following devices to IPL the Stand-Alone Services program:

- **DASD:**
 - IBM RAMAC® or ESS DASD Family
 - IBM 9345 Storage Subsystem
 - IBM 3390 or 3380

- **Tape:**
 - IBM 3590, 3490E, 3490 (including standalone VTS-emulated drives), and 3480 tape subsystems
 - IBM 3430, 3424, 3422, and 3420 (Models 3, 4, 5, 6, 7, and 8)

- **Tape libraries:**
 - IBM 3494
 - IBM TotalStorage Virtual Tape Server (standalone VTS, because PtP VTS does not support standalone RESTORE processing)

- **Card readers:**
 - IBM 3525
 - IBM 3505
 - Virtual card reader under VM

Refer to Chapter 5, “Stand-Alone Services Hardware Requirements” in z/OS DFSMSdss Storage Administration Reference, SC35-0424 for more information.

9.6 z/OS with system-managed tape

This section explains the operational aspects of operating a tape library in a z/OS and system-managed tape environment. This section is not intended to replace the full description of operational procedures in the product documentation.

The operational interfaces to system-managed tape are provided by:

- The integrated storage management facility (ISMF) library and volume applications
- The MVS LIBRARY command
- The DFSMS DISPLAY and VARY commands

These three interfaces, in conjunction with the installation tape management system, provide full operation of the library.
9.6.1 Differences to operator interfaces if units are installed in a 3494

The tape library has operator interfaces that are different from those of other standalone tape devices:

- Two levels of tape unit offline
 When the tape unit is part of a tape library, the tape unit online or offline state depends on the Library Manager.
 The tape units of a library can individually be taken offline and online. The command to VARY units ONLINE or OFFLINE is the same in a DFSMS and non-DFSMS tape environment, as long as the library is online. Varying a tape unit online can be ineffective if the library is not online.

- Mount and demount messages
 The mount and demount messages no longer appear on the operator console. However, they are issued internally and logged in the hardcopy log.
 If there is an error situation where the operator decides to operate the tape library in manual mode, the mount and demount messages are displayed on the Library Manager and on the drive displays.
 The mount message also indicates the requested media, displaying MEDIA1, MEDIA2, MEDIA3, MEDIA4, MEDIA5, MEDIA6, MEDIA7, MEDIA8, MEDIA9, or MEDIA10 accordingly.

- Automated DDR swap
 The DDR swap process, an error retry that is rather complicated, is now automated. If the error is the type that the tape unit can unload the cartridge, a robot moves the cartridge to another tape unit within the same library, if one is available. The system selects the unit, and the operator cannot change the selection.

9.6.2 MVS operator commands

The following MVS operator commands support the tape library:

- **LIBRARY EJECT, VOLSER{,PURGE|KEEP|LOCATION}{,BULK}**
 Use this command to request the ejection of a volume from a tape library. The variations available in this command are:
 - Eject to the convenience I/O station (no additional specification).
 - Eject to the bulk output station (BULK or B).
 - Remove the volume record from the TCDB (PURGE or P).
 - Keep the volume record in the TCDB and update it to indicate that the cartridge has been ejected (KEEP or K). If the record contains information in the SHELF location field, it is unchanged. If the SHELF location field is empty, the operator must enter information about the new location as a reply to WTOR. The reply can be up to 32 characters long.
 - Keep the volume record in the TCDB and update it, including updating the SHELF location even if there is information in this field (LOCATION or L). The operator has to enter the new information as a reply to WTOR.

If none of the variations (PURGE, KEEP, or LOCATION) is indicated in the command, a default decides whether the record is kept or purged. You can set this default up separately for each library through the ISMF Library Definition panel.
This command is available for the operator to eject single cartridges. Mass ejection of cartridges is usually performed through program interfaces, such as ISMF, a tape management system, or a batch job.

- **LIBRARY SETCL, device-number, media-type**

 This command allows you to set the media type of the scratch volume that will be loaded into the ICL of the specified tape drive. You must issue the command on the system on which the drive is online. The other hosts are notified when the drive is varied online on the system.

 If the media assignment by this command is different from the current assignment, the ICL is emptied, and the proper cartridges are loaded.

- **VARY SMS,LIBRARY(libname),OFFLINE**

 This command acts on the full library. It stops tape library actions and gradually makes all of the tape units within this library unavailable. The units are varied offline for library reasons, which means that they are inaccessible because the whole library is offline.

 This simple form is a single-system form. The status of the library remains unaffected in other MVS systems.

 Note: The VARY unit command is completely separate from the Library Manager action.

- **VARY SMS,LIBRARY(libname),ONLINE**

 This command is required to bring the library back to operation after it has been offline.

 The library does not necessarily go offline as a result of an error in some component of the library. Therefore, certain message explanations for error situations request the operator to first vary the library offline and then back online. This usually clears all error indications and returns the library back to operation. Of course, this is only the MVS part of error recovery. You must clear the hardware, software, or operational error within the library before you bring the library back to work with MVS.

- **VARY SMS,LIBRARY(libname,sysname,...),ON/OFF and VARY SMS,LIBRARY(libname,ALL),ON/OFF**

 These extended forms of the VARY command can affect more than one system. The first form affects one or more named MVS systems. The second form performs the VARY action on all systems within the SMSplex.

 The VARY SMS command allows the short forms ON and OFF as abbreviations for ONLINE and OFFLINE, respectively.

- **DISPLAY SMS,OAM**

 This command gives a single line of information about all tape libraries (if present), their tape units, storage cells, and scratch cartridges.

 This is the view of the single system where the command was executed. The number of unallocated, online drives is given under the heading AVL DRV (available drives).

 If both optical libraries and tape libraries are defined in the SMS configuration, two multiline WTOs are displayed. The first multiline display produced by the library control system (LCS) is the display of optical library information. The second multiline display contains tape library information.
DISPLAY SMS,LIBRARY(libname|ALL),STATUS

The library status display shows the SMS view of either one library or all libraries. The result contains one line of information for each library. This is a multihost view, which basically indicates whether the library is online, offline, or pending offline.

STATUS is the default parameter.

DISPLAY SMS,LIBRARY(ALL),DETAIL

The DETAIL display, although a single system view, gives slightly more information. The display is similar to the result of DISPLAY SMS,OAM, but each library gets its own line of information.

DISPLAY SMS,LIBRARY(libname),DETAIL

This command provides details about the status of a single library. It is the only command that displays the library state (auto, pause, or manual mode). Reasons for the mode and indications of inoperative parts of the library are given on additional status lines. Examples of special situations are:

- Safety enclosure interlock open
- Vision system not operational
- Convenience output station full
- Out of cleaner volumes

DISPLAY SMS,STORGRP(grpname|ALL)

There are no new parameters in the Storage Group display command, because the optical library request formats are adequate here.

This display command is a general form of a request and gives the total SMS multihost view of the situation. The result is a display of the status of either all Storage Groups (DASD, optical, and tape) or a single Storage Group. There is no format to display one category only.

DISPLAY SMS,STORGRP(grpname|ALL),DETAIL

The DETAIL display is not much more detailed than the general display. Only the library names of this Storage Group are indicated. This display is, in fact, more restricted than the general display. It gives the view of only one system, the view of its OAM, as the header line indicates.

The LISTVOL parameter of DISPLAY SMS,STORGRP is not used for tape Storage Groups. Although you can view a volume list through ISMF, a similar listing on the console is too long to be meaningful.

DISPLAY SMS,VOLUME(VOLSER)

This command displays all information that is stored about the volume in the TCDB (the volcat) and some nonpermanent state information, such as "volume mounted on library-resident drive."

DS QT,devnum,1,RDC

This command displays identification, status, and diagnostic information about tape devices. You can use the command to display the LIBRARY-ID and the LIBPORT-ID that are stored for a device in an IBM 3494.

Here is the sample output of a DS QT system command:

```plaintext
DS QT,1699,1,RDC
IEE459I 12.30.05 DEVSERV QTAPE 970
UNIT DTYPE DSTATUS CUTYPE DEVTYPE CU-SERIAL DEV-SERIAL ACL LIBID
1699 3490L ON-NRD 3490A20 3490B40 0177-10619 0177-10619 I 10007
READ DEVICE CHARACTERISTIC
3490203490400000 1FF88080000000000 0000000000000000 0000000000000000
```
This command displays information about the device type, media type, and the cartridge volume serial number. It is particularly useful when more than one type of 3590 Model (B/E/H) tape volume exists together. \textit{devnum} is the device address in hexadecimal. \textit{nnn} is the number of devices to query.

Here is the sample output of a DS QT system command:

```
IEE459I 11.32.31 DEVSERV QMEDIUM 608
UNIT RDTYPE EDTYPE EXVLSR INVLRSR RMEDIA EMEDIA
0940 3590-E 3590-1 003700          3
UNIT, the device address
RDTYPE, the real device type (physical)
EDTYPE, emulated device type
EXVLSR, external volume label
INVLRSR, internal volume label
RMEDIA, real media type
EMEDIA, emulated media type
```

The \texttt{VARY unit,ONLINE|OFFLINE} command is no different than it was before; however, there are new situations when the affected unit is attached to a library.

When the library is offline, you cannot use the tape units. This is internally indicated in a new status, \textit{offline for library reasons}, which is separate from the normal \textit{unit offline} status. A unit can be offline for both library and single-unit reasons.

A unit, which is offline for library reasons only, cannot be taken online with \texttt{VARY unit,ONLINE}. Only \texttt{VARY SMS,LIBRARY(...),ONLINE} helps.

You can bring a unit online that was individually varied offline and was offline for library reasons by varying it online individually and varying its library online. The order of these activities is unimportant, but both are necessary.

Currently, no display directly gives the reason that the unit is offline, nor is there a display that gives the name of the library to which this unit belongs.

The \texttt{DISPLAY U} command displays the status of the requested unit. If the unit is part of a tape library (either manual or automated), device type 348X is replaced by 348L. An IBM 3490E is shown as 349L, and a 3590 as 359L.

For a manual tape library, this might create a situation where it is no longer possible to see from the console response whether a particular tape unit supports IDRC, because this information is overlaid by the L indicating that the unit belongs to a library.

The output of DEVSERV is not changed in this way.

The MOUNT and UNLOAD commands are still available. The processing of MOUNT has been modified to accommodate automated tape libraries and the requirement to verify that the correct volume has been mounted.
9.6.3 System-managed tape automation considerations

The last versions of this book described error messages and made recommendations about library handling. For most error handling situations, an automatic solution through an automation tool (for example, Tivoli) is impossible, because manual intervention is required.

The previous editions of this book also examined some of the common messages and codes. Due to the new functions and other changes in the latest releases, the number of messages increased rapidly. Therefore, there are too many messages to cover here in this book.

To learn about the latest messages and codes, refer to the following Web site:

Also refer to the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449, which is an excellent source for messages and actions regarding library handling.

9.7 Error handling and recovery summary

The Library Manager, in conjunction with the built-in hardware error recovery routines, attempts to recover from all library component failures. If the recovery is successful, the operation continues. If the recovery fails, the Library Manager sets the appropriate operational mode, operational status, and information states that reflect the impact of the failure.

Hosts are informed of failures only if a host-requested operation has failed or a library component has become unavailable. How this notification is implemented depends on the way that the host is connected to the library. If the host supports a single data and command path, the error condition is flagged through the channel. If the host requires a second connection to pass library commands (RS-232 or LAN), the error conditions are flagged to the attached host through that connection. The way in which the errors are presented to the operator at the host varies. These messages are accompanied by the operator intervention window on the Library Manager.

The Library Manager logs all errors in an error log. You can access this log through the Library Manager Service menu. Then, contact an IBM SSR to analyze it.

The following sections discuss library hardware failures and suggest recovery actions. For additional information about error recovery, see the IBM TotalStorage Automated Tape Library (3494) Operators Guide, GA32-0449.

System Summary window

The System Summary window (Figure 9-11), which appears when the Library Manager is powered on, provides an overview of important information relating to Library Manager status and component availability or failure.
The fields on the System Summary window can have the following values:

- The Library Manager field shows whether the Library Manager is Online Pending, Online, Offline Pending, or Offline to the attached tape control units.

- The Standby Library Manager field shows the status of the standby Library Manager.
 - *Enabled* indicates that the standby Library Manager is functional.
 - *Disabled* indicates that the standby Library Manager is not functional and causes the overall system to report *Degraded*.
 - *Degraded* indicates that the standby Library Manager has lost one of its communication links with the active Library Manager.
 - *Not Taught* indicates that the accessor has not completed a successful teach, making it unusable.

- The Active Accessor field shows which accessor is the active accessor.
 - An *A* indicates that accessor A is active.
 - An *B* indicates that accessor B is active.
 - *Both* indicates that the Dual Active Accessor feature is installed. See 9.9.2, “Dual Active Accessor recovery scenarios” on page 415 for more information about the Dual Active Accessor.
 - *None* indicates that there is currently not an active accessor (both are unavailable).

- The Standby Accessor field shows the status of the standby accessor.
 - *Available* indicates that the standby accessor can be used if an accessor switch occurs.
 - *Service Mode* indicates that the accessor is unavailable while it is serviced.
 - *Not Available* indicates that the accessor has components marked unavailable that currently make it unusable.
 - *Not installed* indicates that the second accessor is not installed.

9.8 Failure scenarios without HA1

This section describes the operational impact of failures when you do not install the HA1 feature, the recovery actions initiated by the Library Manager, and the recovery actions the operator must take.
9.8.1 Library Manager failure

In a single Library Manager configuration, if the Library Manager fails, all library operation stops. As long as the Library Manager is unavailable, it is impossible to operate the library in manual mode.

9.8.2 Accessor failure

If an accessor fails in a single-accessor configuration, the library goes into pause mode, and all attached hosts are notified of the error. In the IBM 3494, all mount and demount operations are queued. You can run the library in manual mode while the IBM SSR repairs the accessor. If the accessor inhibits access to any part of the library, operational procedures exist to move it. The accessor can be gently pushed to the end of the library.

9.8.3 Gripper failure

If the gripper in a single accessor single gripper configuration fails, the library enters pause mode, and all attached hosts are notified of the error. During the repair action, you can run the library in manual mode.

If one gripper fails in a dual-gripper, single-accessor configuration, the 3494 continues to function in a Degraded state. In this case, if the library was operating in floating home cell mode, it operates in fixed home cell mode. When the failure is corrected, it automatically returns to operating in floating home cell mode.

An IBM 3494 can have up to four grippers installed when the High Availability unit and the dual gripper feature are installed. If all grippers of the active accessor fail, a switchover to the standby accessor is initiated. The repair action of a gripper on the standby accessor is nondisruptive.

9.8.4 Barcode reader or vision system failure

The IBM 3494 has a single barcode reader. If the reader fails, all attached hosts are informed. Library operation continues, but all insert, eject, audit, and inventory operations are suspended. If the High Availability unit is installed, there are two barcode readers, one on each accessor. The IBM 3494 continues to run in degraded mode. No automatic accessor switchover takes place. Switchover can be done manually by the operator to enable insert, eject, audit, and inventory operations.

9.8.5 Convenience I/O failure

In an IBM 3494, if the convenience I/O station fails, eject operations are redirected to the high capacity output facility. If the high capacity output facility is not defined in the configuration, the eject operations remain queued until the convenience I/O station becomes available.

Insert operations can use any empty cell.

9.8.6 Library Manager secondary hard disk failure

If the Library Manager secondary hard disk fails, normal library operation continues, but all hosts are informed that the library is in degraded mode. After the secondary hard disk is repaired, database dual write can be re-enabled, and the secondary copy of the Library Manager database can be built.
9.8.7 RS-232 or LAN host connection failure

If an RS-232 or LAN path between the library and a host fails, the host cannot use the library until the path is reestablished.

9.8.8 Tape subsystem communication failure

If the communication path between a tape subsystem and the Library Manager fails, the tape subsystem is unavailable.

9.8.9 Tape control unit failure

If a tape control unit fails, the drives supported by that controller are no longer accessible down that path. All hosts are informed of the error. Normal library operation continues while there is at least one available control unit, assuming that the hosts still have access to the tape drives.

9.8.10 Primary Library Manager hard disk failure

A non-HA1 Library Manager comes standard with one primary hard disk and the option to specify a secondary hard disk. The primary hard disk contains the operating system and library database. The purpose of the secondary hard disk is to maintain a copy of the database that is on the primary hard disk. The secondary disk does not have a copy of the operating system.

When the Library Manager has the secondary hard drive feature installed and the primary disk experiences an error, the secondary disk preserves only the database from the primary disk. It does not allow you to continue running. The IBM SSR must replace the failed hard disk and load the operating system as well as the Library Manager code on it. Then, the database can be copied from the secondary disk, and normal operations can resume.

In an IBM 3494 configuration without the HA1 and the dual disk drive feature, all library operations cease, and the library is unusable. After the failed hard disk is replaced, the IBM SSR must carry out a library teach operation. The IBM 3494 must be inventoried, and the Library Manager database must be synchronized with the host tape databases. See 9.8.11, “Library Manager database recovery” on page 408. Because an extended outage is possible, we recommend that you install at least the dual disk drive feature.

9.8.11 Library Manager database recovery

If the Library Manager database cannot be recovered from a secondary copy, you must perform certain actions before you can restart the automated operations.

Important: This procedure only works if no VTS is installed. Some of the information, necessary for the VTS (such as Volume Ranges for Media types, the logical volume ranges, reclaim thresholds, and all the necessary information for APM) cannot be restored with a teach or inventory process. Also, you cannot restore security information (users and passwords) for the usage of the ETL Specialist with this procedure. You must provide all of this information again manually.

If no VTS is installed, use the following steps to recreate your library database to a usable level:

1. Carry out the library teach process.
2. Carry out the library inventory process.
3. Resynchronize the Library Manager database with all attached hosts.

Library teach process
This step recovers information about the tape library system, such as the tape library configuration, default media type, and device cleaning schedule.

Library inventory process
This step recovers information about volumes, such as VOLSER, media type, volume location, and storage cell status. This step does not recover volume category information or information about the nonexternal label volumes that were inserted using the unlabeled tape facility. During the inventory process, the Library Manager ejects the non-external label volumes. Therefore, to recover the information about these volumes, use the unlabeled tape facility to insert them again.

After the library inventory, the volume category of each volume in the Library Manager database is assigned to the INSERT category. The Library Manager sends the volume information to all attached hosts.

Resynchronizing the Library Manager database
This step recovers the volume category information. There is no general procedure to recover the volume category information. The recovery procedure depends on the software platform:

- **z/OS with system-manage tape**
 In a system-managed tape environment, the TCDB and DFSMSrmm control dataset (if DFSMSrmm is installed) contain the volume category information. It is always synchronized with the Library Manager database. When the library is varied online from a host system, the system receives information about the volumes in the INSERT category. Then, OAM automatically sends commands to the Library Manager to assign the volume category according to the TCDB and DFSMSrmm control dataset.

- **z/OS with BTLS**
 In a BTLS environment, BTLS has no volume category information. It records only which volume resides in which tape library.

 If you have a procedure or a tape management system to manage tape dataset and volume retention, you can obtain the private or scratch volume category information. Then, use the IDCAMS LIBRARY SETCATEGORY command to assign the Library Manager volume category. Alternatively, your tape management system might support the IDCAMS LIBRARY SETCEXIT. This automatically resynchronizes the tape management system and the Library Manager database by way of the IDCLI04 exit.

 BTLS supports eight scratch categories. If you use multiple scratch volume pools, you must also develop a procedure to manage the scratch categories.

- **VM/ESA and VSE/ESA**
 In a VM/ESA or VSE/ESA environment, the tape management system is responsible for resynchronizing its database with the Library Manager database. Typically, operational procedures are followed to issue the command or start the job provided by the tape management system to synchronize the two databases. The information in the tape management system database is never changed. Only the Library Manager database is updated.

- **AIX**
 The tape management system is responsible for updating the Library Manager database for the volumes that it controls. If you are using ITSM, use the ITSM volume history file and CHECKIN the volumes using the appropriate volume category.
If you have cartridges inside the 3494 Tape Library that you automated through the MTLIB command, set their Library Manager category by using this MTLIB command:

```
mtlib -l /dev/lmcp0 -C -VAIX001 -t
```

Here `xxxx` is the Library Manager category that you use.

9.9 Operating and monitoring the High Availability unit

When you install the High Availability unit (HA1), the IBM 3494 configuration has two Library Managers and two cartridge accessors. Each Library Manager controls a cartridge accessor. The addition of the second Library Manager and accessor in the 3494 subsystem improves the subsystem's availability and a client's ability to access its data.

In the event of a cartridge accessor or Library Manager failure, the IBM 3494 can continue operations after a short interruption. The system can continue to operate as the failed component is serviced. This feature also minimizes library downtime for installing Library Manager code patches.

Figure 9-12 shows a diagram of the HA1 components.

![Figure 9-12 HA1 components](image)

Under normal operation, that is, no elements have failed or are degraded, the active Library Manager is Library Manager A (LMA), and the standby Library Manager runs on Library Manager B (LMB). The active accessor, Accessor A, is controlled from LMA. LMA receives host commands over the serial interfaces (RS-422) from direct-attached hosts and serially attached control units. LMA controls the operator panel and convenience I/O station. The accessor manager on LMA knows that the standby accessor, Accessor B, is safely parked in
its service bay. The accessor manager in LMA performs move operations using Accessor A. The active database on LMA is continually backed up onto LMB across the primary link.

The Dual Active Accessor (DAA) feature is a performance enhancement follow-on to the HA1 feature. With DAA installed and enabled, both Accessor A and Accessor B are active, and typically, LMA is the active Library Manager and LMB is the standby Library Manager. The accessor manager in LMA performs move operations using Accessor A and passes move operation commands for Accessor B to LMB across the primary link.

The IBM 3494 is designed to operate in degraded mode when any one of its components fail. If a switchover to the standby Library Manager has occurred because of a failure, there is no technical reason to switch back to the original Library Manager. However, the client's policies and needs must dictate this decision. We recommend that you periodically switch between Library Managers to verify that the standby Library Manager is functional.

9.9.1 HA1 recovery scenarios

This section describes the failures that the HA1 recovers and the operational impact of the failure and recovery.

Two conditions cause a Library Manager switchover:

- Library Manager failure due to a catastrophic failure or unrecoverable code-detected error
- Switchover on demand

Note: A complete failure of a Library Manager causes its accessor to become unavailable.

Standby Library Manager failure

If a Standby Library Manager failure occurs due to a catastrophic failure, for example, a loss of power or an unrecoverable code-detected error, the Library Manager receives a Library Manager Check 1 condition.

When a standby Library Manager fails, the attached hosts are sent an operational state change message: CBR3758E Library **library-name** operation degraded.

The status of three fields of the System Summary Window for the active Library Manager changes:

- **Overall system:** Degraded
- **Standby LM:** Disabled
- **Standby Accessor:** Not Available

When you resolve the failure on the standby Library Manager, and you power on the standby Library Manager, the standby accessor becomes **Available** as soon as the base Library Manager code has loaded.

After the standby Library Manager is initialized, the Library Manager database is initialized, and the database is copied from the active Library Manager. You can monitor the progress of the database copy on the active Library Manager by selecting **Operational Status** from the Status menu.

The Database Dual write field displays **Copying to remote** nn%. When the database copy completes successfully, the standby Library Manager is enabled and the overall system field changes to OK.
Active Library Manager failure
This section discusses active Library Manager failure due to a catastrophic failure or an unrecoverable code-detected error. When the active Library Manager fails, the attached hosts receives the operational state change message “CBR3002E Library library-name no longer usable.”

The impact of an active Library Manager failure is:

- Jobs that have their tapes mounted continue to run. Jobs that have requested tape mounts that have not completed, fail. If all the tapes needed to complete the job are mounted, the job runs to completion. At the end of the job, the tapes rewind and unload. Any demount commands fail with an initial status indicating that LMA is offline.
- The active Library Manager maintains the only copy of the command queue, and during a switchover, the command queue is lost.
- If a new mount request arrives during switchover, it fails with an initial status indicating that the Library Manager is offline.

During normal operations, the Standby Library Manager window (Figure 9-13) displays.

![Image](image.png)

Figure 9-13 Standby Library Manager window

During Library Manager switchover, the window shown in Figure 9-13 is replaced by the Library Manager switching window (Figure 9-14).
When the standby Library Manager becomes active, the window (Figure 9-14) is no longer displayed. The System Summary window displays indicating transition to auto mode. The accessor is also switched, because it becomes unavailable when the Library Manager to which it is attached fails.

During Library Manager switchover, there is no host interaction. Switchover can take several minutes. We recommend that the operator monitor the switchover process on the Library Manager.

When the switchover has completed, the System Summary window shows:

- **Overall System**: Degraded
- **Standby LM**: Disabled
- **Standby Accessor**: Not Available

The attached hosts receive an operational state change message (see “Standby Library Manager failure” on page 411).

In this scenario, this message is an indication to the host operator that the library is available. The operator needs to vary the library online and restart any jobs that have failed. When you have resolved the failure on the standby Library Manager (LMA) and powered it on, the standby accessor (Accessor A) becomes *Available* as soon as the base Library Manager code is loaded.

After LMA is initialized, the Library Manager database on LMA is initialized, and the database is copied from the active Library Manager (LMB) to the standby Library Manager (LMA). The database copy can take a long time depending on how big the database is and how busy the library is during the copy process. The database copy also uses a lot of the Library Manager resources. Therefore, we recommend that you do *not* attempt any other Library Manager actions during this process.

Note: With the VTS advanced functions installed from a host perspective, the library remains online and operational during the switchover. When a Library Manager switchover occurs, an operational state change bit is sent to the host (Library Manager switchover in progress), causing the message “CBR3783E Library Manager switchover in library <library-name> in progress.”

After the switchover completes, you see a new message “CBR3784I Library Manager switchover in library <library-name> is now complete.” The Check 1 bit that caused the library to go offline and issued CBR3002E is no longer set.
Library Manager switchover on demand
This is an operator-initiated function. It causes the active Library Manager to become the standby Library Manager and the standby Library Manager to become the active Library Manager.

This process, which is less disruptive than a Library Manager switchover due to Library Manager failure, involves the following operator actions:

- The library must be placed in a paused offline state. All drives in the library must be taken offline, and the library must be quiesced.
- The switchover is initiated by the operator selecting Switch Active Library to Standby from the Mode menu.
- When the switchover is complete, the active Library Manager is in paused and offline mode. The operator must vary the Library Manager to auto and online from the Mode menu.

When the operator performs Library Manager switchover manually, no Library Manager database copy is done, because the Library Manager keeps the two copies of the database in sync and knows that they are identical.

Standby accessor failure
When the standby accessor fails, the System Summary window shows:

- Overall System: Degraded
- Standby LM: Enabled
- Standby Accessor: Not Available

The attached hosts receive an operational state change message (see “Standby Library Manager failure” on page 411). The library continues to function but in degraded mode.

Active accessor failure
When the active accessor fails, the System Summary window shows:

- Overall System: Degraded
- Standby LM: Enabled
- Standby Accessor: Not Available

The attached hosts receive an operational state change message, which can be accompanied by one or more messages indicating that operator intervention is required, such as removing a cartridge from the gripper of the failed accessor. Here are examples of these messages:

CBR3758E Library library-name operation degraded.
CBR3762E Library library-name intervention required.
CBR3776I Volume VOLSER inaccessible in library library-name.

Accessor switchover takes about two minutes. During this time, the following actions occur:

- The library automatically goes into a temporary pause mode.
- The standby accessor (Accessor B), which becomes the active accessor, comes out of its service bay and pushes the failed accessor (Accessor A) into Accessor A’s service bay.

When accessor switchover is completed, the library automatically goes into auto online mode, and normal operations resume.
Accessor switchover on demand
This is an operator-initiated function that causes the active accessor to become the standby accessor and the standby accessor to become the active accessor. Accessor switchover is initiated by selecting Switch Accessor to Standby on the Mode menu.

Accessor switchover takes approximately two minutes. During this time, the following actions occur:

- The library automatically goes into temporary pause mode.
- The active accessor (assume Accessor B) goes to its service bay.
- Accessor A comes out of its service bay and calibrates itself on both ends of the library.
- If a volume was in the gripper of Accessor A, the volume is placed in the recovery cell.
- The volume is scanned and its home cell is checked.
- If this volume's home cell is empty, the volume is taken from the recovery cell and placed in its home cell.

When accessor switchover completes, the library automatically goes into auto online mode, and normal operations resume. We recommend that you periodically switch between accessors to verify that the standby accessor is functional.

HA1 and gripper failure
If you lose one gripper in a dual gripper accessor, the Library Manager sends an operational state change message to all attached hosts, informing the hosts that the 3494 subsystem is now operating in degraded mode. The accessor does not switch to the standby accessor. The accessor can be switched by the operator from the Library Manager menu. If the accessor is switched, the 3494 subsystem is still considered to be operating in degraded mode until the failing gripper on the standby accessor is repaired.

If the accessor does not have the dual gripper feature installed, and the gripper experiences a failure, the active Library Manager sends an operational state change message to all attached hosts, informing the hosts that the 3494 is operating in degraded mode. The active Library Manager then parks the disabled accessor in its service bay and sends commands to the standby Library Manager over internal links. The standby Library Manager then executes the commands, using its accessor. Control of the 3494 does not switch to the standby Library Manager.

HA1 and secondary Library Manager disk drive
With the HA1, both Library Managers have the operating system and the database on their primary disks. Both primary disks are kept in synchronization over the internal LAN. The secondary disks are not used if both Library Managers are functional. With the HA1 installed, a failure of the primary hard drive causes a switchover to the standby Library Manager, and normal operations continue.

In an HA1 configuration, both Library Managers must have the secondary hard disk feature installed. The secondary disks are not used if both Library Managers are functional. If one of the Library Managers experiences a problem, the active Library Manager uses both of its own disks. The active Library Manager's primary hard disk contains the operating system and database, and the secondary hard disk becomes the backup disk.

9.9.2 Dual Active Accessor recovery scenarios
This section describes failure scenarios with the Dual Active Accessor (DAA) feature installed and enabled, and the operational impacts of the failure and recovery. The conditions that cause a Library Manager switchover are discussed in 9.9.1, “HA1 recovery scenarios” on page 411.
Standby Library Manager failure with the DAA feature

A standby Library Manager failure with the DAA feature installed does not cause any host messages to be issued unless the failure is severe enough to cause the failure of the accessor “owned” by it. Refer to “Accessor failure with DAA feature” on page 417 for details about accessor failure.

The System Summary window shows:
- **Overall System**: Degraded
- **Standby LM**: Disabled
- **Standby Accessor**: Available/not available

When the failure on the standby Library Manager is resolved, and the standby Library Manager is restarted, the Library Manager database is initialized, and the database is copied from the active Library Manager.

When the database copy has completed successfully, the standby Library Manager is enabled and the Overall system field changes to **OK**.

Active Library Manager failure with DAA

When the active Library Manager fails, the standby Library Manager switches from standby to active. There can be a time delay before the attached hosts receive any operational state change messages:

- **CBR3002E** Library *library-name* no longer usable.
- **CBR3729I** Library Manager for library *library-name* offline.
- **CBR3763E** Library *library-name* Library Manager check 1 condition.

On a z/OS host, you can issue the D SMS,LIB(*library-name*),DETAIL command. The resulting display shows that the library is offline and degraded, has a Check 1 condition, and indicates whether one of the accessors is placed offline.

The System Summary window shows:
- **Overall System**: Degraded
- **Standby LM**: Disabled
- **Standby Accessor**: Available/Not Available

The impact of the active Library Manager failing is described in “Active Library Manager failure” on page 412.

When the Library Manager switchover has completed, put the library in *auto online* mode and vary the library online to the attached hosts.

After the failed Library Manager is repaired and powered on, the Library Manager database is initialized. The database is copied from the active Library Manager (LMB) to the standby Library Manager (LMA). The progress of the database copy can be monitored as explained in “Standby Library Manager failure” on page 411.

The database copy can take a long time, depending on how big the database is and how busy the library is during the copy process. The database copy also uses many of the Library Manager resources. We recommend that you do not attempt any other Library Manager actions during this process.

Library Manager switchover on demand with DAA feature

This procedure does not differ from the Library Manager switchover on demand without DAA (refer to “Library Manager switchover on demand” on page 414 for details).
Accessor failure with DAA feature

When an accessor fails with the DAA feature installed and enabled, the System Summary window shows:

- **Overall System**: Degraded
- **Standby LM**: Enabled
- **Standby Accessor**: Not Available
- **Active Accessor**: A/B

The attached hosts receive an operational state change message and one or more informational messages:

CBR3758E Library library-name operation degraded.
CBR1110I Operation degraded due to unavailable hardware resource.

The library automatically goes into a temporary pause mode, and the active accessor pushes the failed accessor into its service bay. Then, the library automatically switches to auto online mode and normal operations resume.

After the failed accessor is repaired, follow these steps to recover the accessor and enable the DAA Feature:

1. From the Service menu, select **Activate DAA**.
2. On the window, ensure that the accessor that you want to recover is selected.
3. Click **OK**.

The active accessor goes to its service bay. The recovered accessor calibrates on both ends of the library. Normal operations resume with both accessors active.
Tape drives in silo compatible frames

This appendix provides an overview of the technique to install IBM tape drives in StorageTek Automated Cartridge Systems (ACS) Silo Frames.

The IBM TotalStorage Silo Compatible Tape Drive Frame 3592 Model C20 (3592 Model C20) in Figure A-1 on page 423 supports the IBM 3592-J1A Tape Drive and the TS1120-E05 Tape Drive attached to the StorageTek 9310 PowderHorn Tape Library. This attachment can be either Enterprise Systems Connection (ESCON) or Fibre Channel Connection (FICON) (for System z) through an externally attached TS1120 Tape Controller Model C06 or 3592 Model J70 Tape Controller.

This appendix is not detailed or complete enough to guide you through an actual installation.

For more information, see your IBM Marketing Representative.
Why use IBM tape drives in a StorageTek Silo

Some installations have used StorageTek (STK) Silos for many years. These clients have a great deal of experience with the involved hardware and software. They have automation and handling procedures in place and perhaps use the feature provided by STK. Normally, they are satisfied with the environment they have already installed.

Here are reasons why you might want to install IBM System Storage tape drives in an STK silo:

- You need a high performance, high capacity drive and cartridge.
- The IBM TotalStorage Enterprise Tape Drive 3592 Model J1A and the IBM System Storage TS1120 Model E05 Tape Drive are designed to provide high capacity and performance for storing mission critical data.
- Offering significant advancements in capacity and data transfer rates, the 3592-J1A and TS1120-E05 tape drives help address storage requirements that are often filled by two types of drives that provide fast access for data access, and those that provide high capacity for backups.
- Supports up to twenty IBM System Storage TS1120 Tape Drive Model E05s or IBM TotalStorage Enterprise Tape Drive 3592 Model J1As.
- The 3592 product line has had significant improvement over the years. With the introduction of the TS1120-E05 tape drive, a single tape cartridge can hold up to 700 GB of uncompressed data, with a native data rate of 100 MB per second. With the attachment capabilities of TS1120-C06 Controller, through the external 3952-F05 tape frame you can use ESCON, or FICON or a combination of the two to attach the TS1120-E05 tape drives in environments where channel attachment is constrained and yet still deliver high throughput.
- You need a higher bandwidth in the attachment.
 With the introduction of Fibre Connection (FICON), an extremely high performance channel is available. Refer to “Performance overview” on page 62 for information about the FICON throughput rates.
- You need more cartridges in a single environment than an IBM 3494 can provide.
 The capacity of a single StorageTek Silo (depending on the attachment of drives) can be up to 5,500 cartridges. However, STK provides the ability to combine silos into one automatic cartridge system (ACS). Therefore, the total number of cartridges available in a single ACS is more than an IBM 3494 can provide.

Overview of a StorageTek solution

The StorageTek solution is based on hardware and software:

- Library storage module (LSM) and library control unit (LCU)
- Library management unit (LMU)
- Host software component (HSC)
- Control datasets
- Library station component and client software component
- Automated cartridge system library software (ACSLS)
Library storage module and library control unit

The LSM, commonly referred to as a silo, is a twelve-sided housing unit that encloses the robotics arm, vision system, tape gripper, and storage capacity for approximately 6,000 cartridges. The storage capacity depends on the number of installed drive walls and installed drives. Therefore, a number of 5,200 to 5,500 available slots is not unusual.

The LCU controls the robotics motion and interfaces to the drives through the LCU-to-drive path. The LCU is directly attached to the LSM, and each LSM has its own associated LCU.

LSM can be combined with additional passthru, so an ACS can contain more than one LSM.

Library management unit

The LMU provides an interface between the HSC or ACSLS, and the LCUs, attached to each LSM. One LMU is required for each ACS. The attachment to the HSC can be done by a 3174 connection or TCP/IP.

Note: LMU handles only control information (movements, database updates, acknowledgements, and so forth). The user data (data that is written onto tape) is handled by the attachment that you choose (ESCON, FICON, Fibre Channel, or SCSI).

Software components

For the System z HSC, the library station and client software component are possible. HSC is required, where the others are optional.

HSC and the control datasets

STK HSC is the mandatory z/OS application software that controls the automated mounting and demounting of cartridges for the library-attached transports. After it intercepts a mount or demount message, HSC issues cartridge movement requests to the LMU. The LMU then communicates with the LCU, causing the robot in the silo to perform the requested function. In addition to controlling the automated mounting and demounting of cartridges, HSC performs the following functions among others:

- HSC attempts to influence drive allocation by manipulating the eligible device list (EDL).
- It ensures that the correct media is mounted in the correct transport. This function is provided through the use of different control statements, user exits, or both.
- HSC provides operator commands to control and monitor library functions.
- It provides exit points for user-defined customization of the library operation.
- HSC provides enhancements for device separation.

The library can be attached to a maximum of 16 CPUs (hosts). If more attached hosts are necessary, you must install the library station and client software component. HSC can manage up to 16 silos in a single ACS, and you can define up to 256 ACSs. You must install HSC on each of the attached hosts.

Note: HSC is a started task.

Control datasets

Control datasets are where all information about the StorageTek environment is placed.
You define the following base information through an HCS-owned process (LIBGEN) to the control datasets:

- Number of ACSs and LSMs
- Placement of drive walls and actual installed drive
- Passthru
- Attached HSC hosts

Permanent updated information includes:

- Inserted cartridge and position in the ACS are kept.
- There is additional information about these cartridges, such as Status, Entry Date, last used, and so forth.
- For Virtual Storage Manager™ (VSM), a lot of other information applies here. Compared to a VTS, this is the outboard database of the VTS.

There are three kinds of control datasets:

- Primary (the active dataset)
- Secondary (a copy of the primary control dataset)
- Standby (used in case of a failure from primary or secondary)

A primary control dataset is mandatory. The secondary and standby are optional, but for disaster recovery reasons, we highly recommend them.

Library control software (LCS) and client software component (CSC)

If you must attach more than 16 systems, or the systems cannot run an HSC on their own; you can use the LCS and CSC. LCS must be installed as a second component on one of the HSC hosts. The CSC is installed on every client to which you want to connect.

CSCs have no actual attachment to the LMU and cannot perform mounts or demounts by themselves. They also have no access to the control dataset. Therefore, every action (mount, demount, updating the CDS with information about the status of cartridges, and so forth), requires communication to an HSC. You can provide attachment to the HSC through TCP/IP, APPC LU6.2, and XCF (if a z/OS client is located in the same sysplex).

You can prepare more hosts to be the LCS host, but only one host is the active host. If a failure of the active host occurs, the prepared standby host covers the failure.

Automated cartridge system library software (ACSLs)

If you have no HSC installed, or you do not want the HSC to be the “focal point,” ACSLS is an alternative. The ACSLS runs on UNIX platforms (for instance AIX or Solaris), providing functions comparable to HSC. The ACSLS server communicates with the LMU and keeps the necessary information (similar to the control dataset).

Hardware and software requirements

The hardware requirements to install the IBM TS1120-C06 Controller and TS1120-E05 tape drives in an StorageTek Silo are provided in Chapter 2, “Tape drives and controllers” on page 17.

We describe the software requirements to support the drives in the following relevant detailed platform chapters:

- Chapter 6, “Running z/OS production systems” on page 247
IBM TotalStorage Silo Compatible Tape Drive Frame 3592 Model C20

The IBM TotalStorage Silo Compatible Tape Drive Frame 3592 Model C20 supports the IBM TotalStorage Enterprise Tape Drive 3592 Model J1A and the TS1120 Model E05 Tape Drive. The TS1120-E05 tape drive is designed to provide higher levels of performance, reliability, and capacity than the 3592-J1A for StorageTek Automated Cartridge Systems (ACS), while helping to reduce the requirement for additional automation hardware (see Figure A-1). Due to the smaller size of the 3592 drive (when compared with the 3590 family of drives), the Model C20 frame holds up to 20 drives, which is over three times the number of drives allowed in any preceding silo compatible frame.

You can attach the Model C20 to a StorageTek 9310 PowderHorn Tape Library. It can coexist with the other tape technologies and media in the same ACS. The frame provides a redundant line cord and power supplies, which can help improve availability.

Alternatively, you can also attach the TS1120-E05 or 3592 tape drives in the 3592-C20 to ESCON or FICON hosts through an externally attached TS1120 Tape Controller Model C06 in an IBM 3952 Tape Frame Model F05.

Upgrading to the TS1120-E05 tape drive

Upgrading provides:

- Up to 700 GB data capacity per tape cartridge uncompressed
- Device data rate (native) of 100 Mb per second
- Data transfer rate of 400 Mb per second (maximum instantaneous rate)

We describe this tape drive and its enhancements fully in 2.2, “IBM System Storage TS1120 Model E05 Tape Drive” on page 31.
Silo compatible components

The Silo Compatible Tape Drive Frames consist of the following models:

- **The 3592 Model C20 frame**: This frame can contain one to twenty IBM TotalStorage Enterprise tape drives 3592 Model J1A or TS1120-E05 tape drives. You can connect up to four 3592-C20 frames per ACS.

- **The 3592 Model F05 frame**: This frame can contain from one to three IBM TS1120 Model C06 Tape Controllers. Each controller can attach up to sixteen 3592-J1A or TS1120-E05 tape drives in a 3592 Model C20. A SAN switch for each controller is also contained within this frame.

- **The 3590 Model C10 frame**: This frame can contain one or two IBM TotalStorage Enterprise Tape Controllers 3592 Model J70 or Model A60 or one of each. A maximum of twelve drives can attach to each controller.

Note: Effective 29 September 2006, the 3590 Model C10 frame and the 3590 Model C12 frame were withdrawn from marketing.

The TS1120 Tape Controller Model C06 and the IBM TotalStorage Enterprise Tape Controller 3592 Model J70 attach TS1120-E05 or 3592 Model J1A to ESCON and FICON channels on IBM System z servers. Both ESCON and FICON attachments are supported on the controllers, allowing drives to be shared between ESCON and FICON servers. The 3592 Model J70 provides up to eight ESCON channel attachments and up to four FICON channel attachments, or a mixture of both. Redundant Fibre Channel switch attachment is available for the TS1120-C06 to attach 3592-J1A or TS1120-E05 tape drives.

C20 ACS wall panel requirements

The 3592 Model C20 is attached to a StorageTek Automated Cartridge System (ACS) and can hold up to twenty 3592 tape drives. The drive population of the C20 frame requires some consideration. Two basic drive wall configurations exist.

4/10 drive wall

The original silo wall panel can accommodate either four or ten 3592 drives:

- You can have up to 10 drives in the C20 (see Figure A-2).
- Left side of the frame positions are 0...9 (starting at the top).
- Left Half-Filled Frame Feature (FC4840) requires the silo air box cover. See Figure A-2.
20 Drive Wall

Figure A-3 illustrates a fully populated 3592 Model C20:

- Required for more than 10 drives
- Lose 150 storage cells from the 4/10 wall
- Air box cover included with the wall
- Install hardware for a drive pair level
- Install J1A or E05 tape drives

Note: When there are fewer than twenty drives installed in a 3592 Model C20, ensure that you describe the drive address positions accurately in LIBGEN, with the proper syntax for unused drive locations. With Open Systems attachment, ensure drive designations refer to the proper position in the drive panel.
Figure A-4 shows a multi-host attachment configuration with one TS1120-C06 Controller with FICON and ESCON adapters. We also show a redundant Fibre Channel switch between the TS1120-C06 and the tape drives.

ACS media coexistence

StorageTek's Host Software Component (HSC) manages mixed media and model types within a StorageTek ACS complex:

- You can handle 3592 media by 9310 and 4410 LSM/pass-through ports.
- A new cleaning cartridge is required.
- HSC requires standard 3480/3590 style VOLSER labels.
- The 3592 (J1A or E05) tape drives can coexist with varying combinations of StorageTek tape models, based on the level of HSC or ACSLS that is used. The 3592 drives in the same ACS with StorageTek tape drives are configured as follows:
 - HSC 2.x, 4.x, and NCS 5.x. The 3592 drives are defined to HSC or NCS as an STK drive model. You can intermix the 3592s in the same ACS with any other STK device models.
 - ACSLS. The 3592 tape drives are identified to StorageTek ACSLS as an STK drive model. The ACSLS client application must maintain the drive to media relationship.
Operating environments

The Model C20 frame supports multiplatform attachment to IBM System z, zSeries (S/390), IBM System p, IBM pSeries (RS/6000, SP), IBM System x, and xSeries servers. The Model C20 frame also supports selected Open Systems servers, such as products from Sun Microsystems and Hewlett-Packard, and Intel-based systems running Microsoft Windows operating systems.

System z, zSeries, and S/390

Supported operating systems are:

- FICON and ESCON host attachment
- StorageTek HSC
- Nearline™ Control Software (NCS) 4.0 (includes HSC's Library Station)
- HSC 4.0, Library Station 4.0, and Client System Component (CSC) 4.0

Open Systems support

Supported environments are:

- FC-2 attachment
- Supported environments:
 - IBM System p, pSeries, IBM System x, and xSeries servers
 - Sun Solaris and HP-UX servers
 - Microsoft Windows NT and Windows 2000 servers
- Automated Cartridge System Library Software (ACSLS) 6.0 or higher
- Applications must maintain drive to media relationship

Note: System z and Open Systems drives can coexist in the same C20 frame.

Obtain an update of the Open Systems device drivers to ensure support for the attachment of the 3592-J1A and TS1120-E05 tape drives to various servers. Clients, who have already installed the Open Systems device drivers, can download new device drivers through anonymous FTP from:

C20 Feature code definitions

The 3592 Model C20 is attached to a StorageTek Automated Cartridge System (ACS) and can hold up to twenty 3592-J1A or TS1120-E05 tape drives.

Table A-1 describes the device attachment feature codes for the 3592 Model C20.
Table A-1 3592 Model C20 device attachment features

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20</td>
<td>FC4830</td>
<td>Install 3592 Model C20 Drive Shelf Pair</td>
</tr>
<tr>
<td></td>
<td>FC4831</td>
<td>Field Install 3592 Model J1A Tape Drive in 3592 Model C20</td>
</tr>
<tr>
<td></td>
<td>FC4832</td>
<td>Remove 3592 Tape Drive from 3592 Model C20</td>
</tr>
<tr>
<td></td>
<td>FC4833</td>
<td>Field Install 3592 Model E05 Tape Drive in 3592 Model C20</td>
</tr>
<tr>
<td></td>
<td>FC4835</td>
<td>Replace 3592 Model J1A with Model E05 Tape Drive in 3592 Model C20</td>
</tr>
<tr>
<td></td>
<td>FC4840</td>
<td>Install 10–Drive Air Box Cover</td>
</tr>
<tr>
<td></td>
<td>FC9675</td>
<td>Plant Install 3592 Model J1A Tape Drive in 3592 Model C20</td>
</tr>
<tr>
<td></td>
<td>FC9679</td>
<td>Plant Install 3592 Model E05 Tape Drive in 3592 Model C20</td>
</tr>
<tr>
<td></td>
<td>FC9951</td>
<td>110 VAC Power Cord and Plug, US/Canada</td>
</tr>
<tr>
<td></td>
<td>FC9952</td>
<td>110 VAC Power Cord and Plug, Chicago</td>
</tr>
<tr>
<td></td>
<td>FC9986</td>
<td>220 VAC Chicago Power Cord and Plug</td>
</tr>
</tbody>
</table>

Note: The appropriate default 3592 Model C20 power cords are attached at the plant based on the order destination country code. FC9951, FC9952, and FC9986 replace the default power cords.

FC4830 (Install 3592 Model C20 Drive Shelf Pair)
This feature installs the redundant power supplies and hardware on a horizontal drive shelf for mounting up to two 3592 tape drives. Up to two 3592 tape drive canisters, either Model J1A (FC4831 or FC9675) or Model E05 (FC4833, FC4835, or FC9679) can be installed in each 3592 Model C20 Drive Shelf Pair. If FC4840 is installed, only one 3592 tape drive canister can be installed for each shelf pair.

Maximum: 10. Plant or field installation.

FC4831 (Field Install 3592 Model J1A Tape Drive in 3592 Model C20)
This feature provides the hardware and instructions for field merge or field installation of one 3592 Model J1A tape drive canister in a C20 Drive Shelf Pair in the 3592 Model C20. Two tape drive canisters can be installed in each C20 Drive Shelf Pair (FC4830).

Maximum: 20, if FC4840 is not installed, or a maximum of 10 if FC4840 is installed. Field installation only.

Prerequisite: An available C20 Drive Shelf Pair (FC4830) according to the following:
- The number of drives installed (FC4831, FC9675, FC4833, FC4835, or FC9679) can be no greater than twice the number of C20 Drive Shelf Pair features (FC4830), if the Air Box Cover (FC4840) is not installed.
- The number of drives installed (FC4831, FC9675, FC4833, FC4835, or FC9679) can be no greater than the number of C20 Drive Shelf Pair features (FC4830), if the Air Box Cover (FC4840) is installed.
Appendix A. Tape drives in silo compatible frames

FC4832 (Remove 3592 Tape Drive from 3592 Model C20)
This feature removes a 3592 tape drive canister that is installed in a C20 Drive Shelf Pair in a 3592 Model C20. This feature does not remove a C20 Drive Shelf Pair, associated power supplies, or other associated hardware. Maximum: None. Field installation only.

Corequisite: One FC4831, FC9675, FC4833, FC4835, or FC9679 must be removed with this feature.

FC4833 (Field Install the 3592 Model E05 in a Model C20 Frame)
This feature provides the hardware and instructions for field merge or field installation of one 3592 Model E05 tape drive canister in a C20 Drive Shelf Pair in the 3592 Model C20. Two tape drive canisters can be installed in each C20 Drive Shelf Pair feature (FC4830).

Maximum: 20, if the Air Box Drive Cover (FC4840) is not installed, or a maximum of 10 if FC4840 is installed.

Prerequisite: An available C20 Drive Shelf Pair feature (FC4830) according to the following:
- The number of drives installed (FC4831, FC9675, FC4833, FC4835, or FC9679) can be no greater than twice the number of C20 Drive Shelf Pair features (FC4830), if the Air Box Drive Cover (FC4840) is not installed.
- The number of drives installed (FC4831, FC9675, FC4833, FC4835, or FC9679) can be no greater than the number of C20 Drive Shelf Pair features (FC4830), if the Air Box Drive Cover (FC4840) is installed.

FC4835 (Replace Model J1A Tape Drive with a Model E05)
This feature is required to provide the mounting changes to replace a 3592 Model J1A tape drive with a Model E05 tape drive in a currently installed Model C20 frame.

Maximum: The sum of features FC4831, FC4833, FC4835, FC9675, and FC9679 can be a maximum of twenty.

FC4840 (Air Box Cover)
This feature provides a 10 Drive Air Box Cover for a StorageTek PowderHorn 9310 Tape Library. If the StorageTek LSM has the 4 Drive or 10 Drive wall panel, then this 10 Drive Air Box Cover must be installed to allow up to 10 tape drives to be installed in the left column of the C20. Maximum: One. Plant or field installation.

FC9675 (Plant Install 3592 Model J1A Tape Drive in 3592 Model C20)
This feature notifies the plant to plant install a new 3592 Model J1A tape drive into a new 3592 Model C20 coming from the plant. Plant installation only. FC9675 must also appear on the 3592-J1A tape drive order.

FC9679 (Plant Install 3592 Model E05 Tape Drive in 3592 Model C20)
This feature notifies the plant to plant install a new 3592 Model E05 tape drive into a new 3592 Model C20 coming from the plant. This code must appear on the 3592 tape drive order and also on the 3592 Model C20 order. Plant installation only. FC9675 must also appear on the 3592-E05 tape drive order.

FC9951 (110 VAC Power Cord and Plug, US/Canada)
This feature provides two 4.3 meter (14 ft.) 110 V power cords with a non-watertight Twist-Lock plug.
FC9952 (110 VAC Power Cord and Plug, Chicago)
This feature provides two 1.8 meter (6 ft.) 110 V power cords with a non-watertight Twist-Lock plug.

FC9986 (6 ft. 220 VAC Chicago Power Cord and Plug)
This feature provides two 1.8 meter (6 ft.) 220 V power cords with a watertight plug.

Table A-2 provides the attachment feature codes for the 3592 Model F05 tape frame.

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3952-F05</td>
<td>FC1903</td>
<td>Dual AC Power</td>
</tr>
<tr>
<td></td>
<td>FC3492</td>
<td>External Fabric Support (Field)</td>
</tr>
<tr>
<td></td>
<td>FC3493</td>
<td>Direct Connect Drives (Field)</td>
</tr>
<tr>
<td></td>
<td>FC3516</td>
<td>FC Switch Mount Kit</td>
</tr>
<tr>
<td></td>
<td>FC3517</td>
<td>Redundant FC Attach</td>
</tr>
<tr>
<td></td>
<td>FC5875</td>
<td>Field Merge 3592-J70</td>
</tr>
<tr>
<td></td>
<td>FC5877</td>
<td>Field Install 3592-J70</td>
</tr>
<tr>
<td></td>
<td>FC5878</td>
<td>Field Merge 3592-C06</td>
</tr>
<tr>
<td></td>
<td>FC5879</td>
<td>Plant Install 3592-C06</td>
</tr>
<tr>
<td></td>
<td>FC5880</td>
<td>Field Install 3592-C06</td>
</tr>
<tr>
<td></td>
<td>FC7315</td>
<td>TS7640 Silo Compatible Controller Attachment</td>
</tr>
<tr>
<td></td>
<td>FC7316</td>
<td>Enterprise Tape Library Attachment (3494 Outbound Controller Frame)</td>
</tr>
<tr>
<td></td>
<td>FC9492</td>
<td>External Fabric Support (Plant)</td>
</tr>
<tr>
<td></td>
<td>FC9493</td>
<td>Direct Connect Drives (Plant)</td>
</tr>
<tr>
<td></td>
<td>FC9954</td>
<td>NEMA L6-30 Power Cord</td>
</tr>
<tr>
<td></td>
<td>FC9955</td>
<td>RS 3750 DP Power Cord</td>
</tr>
<tr>
<td></td>
<td>FC9956</td>
<td>IEC 309 Power Cord</td>
</tr>
<tr>
<td></td>
<td>FC9957</td>
<td>PDL 4.3 Power Cord</td>
</tr>
<tr>
<td></td>
<td>FC9958</td>
<td>Korean 4.3 Meter Power Cord</td>
</tr>
<tr>
<td></td>
<td>FC9986</td>
<td>220 V Chicago Power Cord</td>
</tr>
</tbody>
</table>

FC3492 (External Fabric Support - Field)
This feature indicates that you will connect 3592 tape drives to the TS1120 Tape Controller through an external client-supplied Fibre Channel SAN. The client is responsible for providing the cables from the TS1120 Tape Controller installed in a 3952 Model F05 frame to a client-supplied Fibre Channel switch. (You can order cables from the switch to the 3592 tape drives with the 3592 tape drives, or the client can supply them.)

Maximum: One.
Prerequisites: FC7315 or FC7316 on the 3952 F05 frame. This feature is mutually exclusive of FC3493, FC9493, and FC9492.

FC3493 (Direct Connect Drives - Field)
This feature on the 3952 Model F05 frame indicates that 3592 tape drives will be directly connected to a TS1120 Tape Controller. Either FC3493 (Direct Connect Drives/Field) or FC9493 (Direct Connect Drives/Plant) must be specified on the TS1120 Tape Controller. The client is responsible for providing the cables from the TS1120 Tape Controller installed in a 3952 Model F05 frame to a client-supplied Fibre Channel switch. (Cables from the switch to the 3592 tape drives can be ordered with the 3592 tape drives or supplied by the client.)

Maximum: One.

Prerequisites: Must specify FC7315 or FC7316 on the 3952 Model F05 frame. This feature is mutually exclusive with FC9492, FC9493, and FC3492.

FC3516 (FC Switch Mount Kit)
One of these features is required for each TS1120 Tape Controller that supports attachment of 3592 tape drives with a 2 Gb or 4 Gb Fibre Channel switch in a 3952 Model F05 Silo Compatible Frame. (Intermixing 2 Gb and 4 Gb switches is not supported.) This feature includes the required mounting hardware and instructions for installing a 2 Gb or 4 Gb Fibre Channel switch in the Model F05, including the associated Ethernet hub and cabling between the TS1120 Tape Controller and the switch and drives in that Model F05. Up to twelve 3592 tape drives in the C20 frame can be attached to the TS1120 Tape Controller.

Maximum: Three.

Prerequisites: FC7315 is required. FC4887, FC3488, or FC4897 is required on the TS1120 Tape Controller. One of FC4831, FC9675, FC4833, FC4835, or FC9679 must be installed on each 3592 Model C20 frame for each attached 3592 tape drive. Fibre Channel cables from the 3592 tape drives to the 2 Gb or 4 Gb Fibre Channel switch should be ordered with FC6013, FC6025, or FC6061 with each tape drive in the 3592 Model C20 Silo Compatible Frame.

Maximum: Two switches, TS1120 Tape Controller FC3488 or FC4897, can be mounted in one F05 frame.

Prerequisite: FC3516 when the Redundant Fibre Channel Attach feature FC3517 is also specified.

FC3517 (Redundant FC Attach)
This feature provides the mounting hardware and instructions for installing a second 2 Gb or 4 Gb Fibre Channel switch in the 3952 Model F05 frame. Plant or field-installed.

Maximum: Three.

Prerequisites: One FC3516 must be installed on the 3952 Model F05 frame for each FC3517. One FC3517 is required on this frame for each TS1120 Tape Controller that supports a second 2 Gb or 4 Gb Fibre Channel switch. A second FC4887, FC3488, or FC4897 is required on the TS1120 Tape Controller. One of the following: FC4831, FC9675, FC4833, FC4835, or FC9679 must be installed on each 3592 Model C20 frame for each attached 3592 tape drive.
Fibre Channel Cables from the 3592 tape drives to the 2 Gb or 4 Gb Fibre Channel switch should be ordered with FC6013, FC6025, or FC6061 with each tape drive in the 3592 Model C20 Silo Compatible Frame.

A second cable is required on each tape drive to attach to the redundant switch.

FC4870 (Replace Controller with C06)
This feature is required to provide the mounting changes to replace a 3592 Model J70 Controller with a TS1120 Tape Controller in a currently installed 3952 Model F05 frame.

Maximum: Three.

FC5875 (Field Merge 3592-J70)
This feature provides mounting hardware and notifies the plant that a client-supplied 3592 Model J70 Controller will be installed into a 3952 Model F05 frame coming from the plant as part of the final client installation.

Maximum: Two of FC5875 or FC5877

FC5877 (Field Install 3592 Model J70)
This feature provides mounting hardware to field install a client-supplied 3592 Model J70 Controller.

Maximum: Two FC5875s or FC5877s with SILO Attachment FC7315, or a maximum of four if ordered with the 3494 Attachment FC7316.

FC5878 (Field Merge 3592-C06)
This feature provides mounting hardware and notifies the plant that a client-supplied TS1120 Tape Controller will be installed into a 3952 Model F05 frame coming from the plant as part of the final client installation.

Prerequisites: This feature must appear on the 3952 Model F05 and FC9885 must appear on the TS1120 Tape Controller order.

Maximum: Three, if ordered with the SILO Attachment FC7315, or a maximum of four if ordered with the 3494 Attachment FC7316.

FC5879 (Plant Install 3952-C06)
This feature code provides the mounting hardware and plant installs a TS1120 Tape Controller into a new 3952 Model F05 frame.

Prerequisites: This feature must appear on the 3952 Model F05 frame and FC9876 must appear on the TS1120 Tape Controller order.

Maximum: Three if ordered with the SILO Attachment FC7315, or a maximum of four if ordered with the 3494 Attachment FC7316.

FC5880 (Field Install 3952-C06)
This feature provides mounting hardware to field install a client-supplied TS1120 Tape Controller.

Maximum: Three, if ordered with the SILO Attachment FC7315, or a maximum of four if ordered with the 3494 Attachment FC7316.
Prerequisites: This feature must appear on the 3952 Model F05 and FC9885 must appear on the TS1120 Tape Controller order.

FC7315 (TS7640 Silo Compatible Controller Attachment)
This feature identifies this 3952 tape frame as a TS7640 Silo Compatible Controller Attachment.

Maximum: One. This feature is mutually exclusive with FC7310, FC7311, FC7312, FC7313, FC7314, and FC7316.

Prerequisites: FC1903 is required with FC7315.

FC7316 (Tape Library Attachment 3494 Outbound Controller Frame)
This feature identifies this 3952 tape frame as the 3494 Outbound Controller Frame.

Maximum: One. This feature is mutually exclusive with FC7310, FC7311, FC7312, FC7313, FC7314, and FC7315.

FC9492 (External Fabric Support - Plant)
This feature on the 3952 Model F05 frame indicates that 3592 tape drives will be connected to a TS1120 Tape Controller through an external client-supplied Fibre Channel switch or directly to the controller.

Maximum: One.

Prerequisites: FC7315 on the 3952 Model F05 frame. This feature is mutually exclusive with FC3493, FC9393, and FC9492.

FC9493 (Direct Connect Drives - Plant)
This feature on the 3952 Model F05 frame indicates that 3592 tape drives will be connected to a TS1120 Tape Controller through an external client-supplied Fibre Channel switch or directly to the controller. The cables are provided to direct connect the 3592 tape drives in a rack to the TS1120 Tape Controller by specifying FC3062 when the external fabric feature FC3493 or FC9493 is specified.

Maximum: One.

Prerequisites: Must specify FC7315 or FC7316 on the 3952 Model F05 frame. This feature is mutually exclusive of FC3492, FC3493, and FC9492.

FC9954 (NEMA L6-30 Power Cord)
One 4.3 meter (14 ft.) 200-208/240V ac, 24 amp, non-watertight power cord. Suggested for use in the USA, Canada, Latin America, and Japan.

FC9955 (RS 3750 DP Power Cord)
One RussellStoll 3750 DP 4.3 m (14 ft.) 200-208/240V ac, 24 amp watertight power cord. Suggested for use in the USA (highly recommended in Chicago, Illinois, to conform with local requirements), Canada, Latin America, and Japan.

FC9956 (IEC 309 Power Cord)
One 4.3 meter (14 ft.) power cord. Provides an IEC-309, p + n + g power cord rated at 230 V ac/24 amp. Suggested for use in Europe, the Middle East, and Africa.
FC9957 (PDL 4.3 Meter Power Cord)
PDL 4.3 - One 4.3 meter (14 ft.) 230-240 V ac, 24 amp power cord. Suggested for use in Australia and New Zealand.

FC9958 (Korean 4.3 Meter Power Cord)
One Korean 4.3 meter (14 ft.) 220 V ac, 24 amp power cord. Suggested for use in South Korea.

FC9986 (Chicago Power Cord)
This feature installs a Chicago 220 V ac watertight power cord and plug instead of the default 220 V ac cord.

Maximum: One. Plant or field installation.

Table A-3 on page 435 provides the IBM TS1120 Model C06 Controller attachment features.
Table A-3 TS1120 Model C06 Controller attachment features

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS1120-C06 Controller</td>
<td>FC0520</td>
<td>Microcode Firmware Upgrade</td>
</tr>
<tr>
<td></td>
<td>FC2714</td>
<td>Console Expansion</td>
</tr>
<tr>
<td></td>
<td>FC2715</td>
<td>Console Attachment</td>
</tr>
<tr>
<td></td>
<td>FC2720</td>
<td>TS3000 System Console</td>
</tr>
<tr>
<td></td>
<td>FC3062</td>
<td>Drive-to-Switch Cables/Rack</td>
</tr>
<tr>
<td></td>
<td>FC3440</td>
<td>Dual ESCON Host Adapter</td>
</tr>
<tr>
<td></td>
<td>FC3441</td>
<td>FICON Attachment-Long Wavelength</td>
</tr>
<tr>
<td></td>
<td>FC3442</td>
<td>FICON Attachment-Short Wavelength</td>
</tr>
<tr>
<td></td>
<td>FC3443</td>
<td>FICON Long Wave 10 km Attachment (FC3443)</td>
</tr>
<tr>
<td></td>
<td>FC3478</td>
<td>Two Dual-Ported Fibre Adapters</td>
</tr>
<tr>
<td></td>
<td>FC3488</td>
<td>4 Gb Fibre Channel switch</td>
</tr>
<tr>
<td></td>
<td>FC3492</td>
<td>External Fabric Support - Field</td>
</tr>
<tr>
<td></td>
<td>FC3493</td>
<td>Direct Connect Drives - Field</td>
</tr>
<tr>
<td></td>
<td>FC3494</td>
<td>Fibre Channel switch Rack Mount Kit</td>
</tr>
<tr>
<td></td>
<td>FC3495</td>
<td>Redundant Fibre Channel Attach</td>
</tr>
<tr>
<td></td>
<td>FC4641</td>
<td>Install Controller in Rack</td>
</tr>
<tr>
<td></td>
<td>FC4887</td>
<td>Reinstall 2 Gb Fibre Channel switch</td>
</tr>
<tr>
<td></td>
<td>FC4887</td>
<td>Reinstall 4 Gb Fibre Channel switch</td>
</tr>
<tr>
<td></td>
<td>FC9000</td>
<td>System z, ES/9000, S/390, or zSeries Attachment</td>
</tr>
<tr>
<td></td>
<td>FC9478</td>
<td>3592 Tape Drive Attachment</td>
</tr>
<tr>
<td></td>
<td>FC9492</td>
<td>External Fabric Support</td>
</tr>
<tr>
<td></td>
<td>FC9493</td>
<td>Direct Connect Drives</td>
</tr>
<tr>
<td></td>
<td>FC9885</td>
<td>Field Merge C06 in 3952-F05</td>
</tr>
<tr>
<td></td>
<td>FC9886</td>
<td>Plant Install C06 in 3952-F05</td>
</tr>
<tr>
<td></td>
<td>FC9887</td>
<td>Field Merge C06 in 3953-F05</td>
</tr>
<tr>
<td></td>
<td>FC9888</td>
<td>Plant Install C06 in 3953-F05</td>
</tr>
<tr>
<td>Switch</td>
<td>FC3488</td>
<td>4 Gb Fibre Channel switch</td>
</tr>
<tr>
<td></td>
<td>FC3494</td>
<td>Fibre Channel switch Rack Mount Kit</td>
</tr>
<tr>
<td></td>
<td>FC3495</td>
<td>Redundant Fibre Channel Rack Attach</td>
</tr>
<tr>
<td></td>
<td>FC4887</td>
<td>Reinstall 4 Gb Fibre Channel switch</td>
</tr>
<tr>
<td>External Fabric</td>
<td>FC3492</td>
<td>External Fabric Support/Field</td>
</tr>
<tr>
<td></td>
<td>FC9492</td>
<td>External Fabric Support/Plant</td>
</tr>
</tbody>
</table>

Appendix A. Tape drives in silo compatible frames 435
FC0520 (Microcode Firmware Upgrade)
This feature provides an update to the microcode of an installed controller and the attached tape drives to provide the latest level of functional microcode firmware support. Newer microcode levels might be required when adding new functions.

FC2714 (Console Expansion)
This feature provides an attachment cable for connecting one of the above units, and an Ethernet switch for expanding the number of units that can be attached to the TS3000 System Console (FC2720), or Master Console For Service (FC2713). Up to 14 additional connections are provided by this feature for connecting FC2715 or another FC2714. FC2714 can attach to any existing FC2713, FC2718, FC2720, or FC2721 console.

A minimum of one FC2714, FC2715, or FC2720 is required. A maximum of one FC2714, FC2715, or FC2720 attaches the unit to the TS3000 System Console. A maximum of one other Console Expansion feature (FC2714) can be connected to the Ethernet switch provided by this FC2714. A maximum of two of FC2714 can be included in a single TS3000 System Console facility (providing a total maximum of 43 unit connections). Plant or field installable.

FC2715 (Console Attachment)
This feature provides a cable to attach one of the above units to the Ethernet switch provided by the TS3000 System Console (FC2720), Master Console For Service (FC2713), or Console Expansion (FC2714). A maximum of 40 of FC2715 can be included in a single TS3000 System Console facility.

A minimum of one FC2714, FC2715, or FC2720 is required. A maximum of one FC2714, FC2715, or FC2720 attaches the unit to the TS3000 System Console. Plant or field installable.

FC2720 (TS3000 System Console)
This feature provides the enhanced TS3000 System Console, an Ethernet switch, and a cable and connectors for connection of one of the above units to an IBM-supplied modem to enable remote enhanced service. This feature should be specified on the first unit in an installation connected to a TS3000 System Console facility. The Ethernet switch provides 14 additional connections for cables supplied with FC2714 or FC2715.

A minimum of one FC2714, FC2715, or FC2720 is required. A maximum of one FC2714 can be connected to FC2720. FC2720 is plant or field installable.

FC3062 (Drive-to-Switch Cables/Rack)
This feature provides a single Fibre Channel cable between a 3592 tape drive and a 2 Gb or 4 Gb switch in a standalone rack for connection to a TS1120 Tape Controller installed in the standalone rack. One of these features should be specified for each 3592 tape drive to be attached to the TS1120 Tape Controller in the rack.

Prerequisites: FC3478 (Two Dual-Ported Fibre Adapters) and FC4641 (Install Model C06 in a Rack).

FC3440 (Dual ESCON Host Adapter)
This feature provides an ESCON adapter for attachment of 3592 tape drives through the TS1120 Tape Controller to two ESCON host system channels. Each port on the ESCON adapter can support up to 64 logical channels and, using ESCON Directors, can be up to 43 kilometers from the host system.
FC3441 (FICON Short Wave Attachment)
This feature provides one short wavelength FICON adapter, with an LC Duplex Connector for the attachment of 3592 tape drives through the TS1120 Tape Controller to a FICON host system long wavelength channel utilizing a 9 micron, single-mode fibre cable. The total cable length cannot exceed 10 km. Each FICON attachment can support up to 128 logical channels. A feature conversion is available to convert FC3440 to FC3441.

Maximum: Four. One of FC3440, FC3441, or FC3442 is required on each TS1120 Tape Controller. Permitted combinations of FC3440, FC3441, and FC3442 are shown in Table 2-14 on page 67. Plant or Field Installation.

FC3442 (FICON Attachment Long Wavelength)
This feature provides one long wavelength FICON adapter, with an LC Duplex connector, for the attachment of 3592 tape drives through the TS1120 Tape Controller to a FICON host system long wave channel utilizing a 50-micron multimode fibre cable. The total cable length cannot exceed 4 km (13,123 feet). Each FICON attachment can support up to 128 logical channels. A feature conversion is available to convert FC3440 to FC3442.

Maximum: Four.

Minimum: One of FC3440, FC3441, or FC3442 is required on each TS1120 Tape Controller. Permitted combinations of FC3440, FC3441, and FC3442 are shown in Table 2-14 on page 67. Plant or field installation.

FC3443 (FICON 4 Gb 10 km Long Wavelength Attachment)
This feature provides one long wavelength FICON adapter, with an LC Duplex connector, for the attachment of 3592 tape drives through the TS1120 Tape Controller to a FICON host system long wave channel utilizing a 9-micron single-mode fibre cable. The total cable length cannot exceed 10 km. Each FICON attachment can support up to 128 logical channels. A feature conversion is available to convert FC3443 to FC3441 or FC3442.

Maximum: Four.

Minimum: One FC3440, FC3441, FC3442, or FC3443 is required on each TS1120 Tape Controller. Plant or field installation.

FC3478 (Two Dual-Ported Fibre Channel Adapters)
This feature installs two short wavelength 4 Gbps Dual-Ported Fibre Channel adapters with LC connectors in a TS1120 Tape Controller for attaching up to sixteen 3592 tape drives when attached through a 4 Gb Fibre Channel switch. Total cable length from the adapters to the switch cannot exceed 500 meters (1640 ft.). Plant installed.

Maximum: One.

Minimum: One.

FC3488 (4 Gb Fibre Channel switch)
This feature provides a 4 Gb Fibre Channel switch with 20 LC Short wave ports for attachment of up to sixteen 3592 tape drives to a TS1120 Tape Controller. Hardware errors detected on the switch are managed by the controller. The 4 Gb Fibre Channel switch has dual power connection for attachment to separate power supplies. Intermix of the 2 Gb and 4 Gb Fibre Channel Switches is not supported within the TS1120 Tape Controller.
Prerequisites: FC3476 or FC3478 on the TS1120 Tape Controller. This feature is mutually exclusive with FC3492, FC3493, FC4887, FC9492, and FC9493 for the TS1120 Tape Controller.

FC3493 (Direct Connect Drives - Field)
This feature on the controller indicates that 3592 tape drives will be connected to the TS1120 Tape Controller through an external client-supplied Fibre Channel switch or directly to the controller. Direct connect drives require either this feature or FC9493 (External Fabric Support - Plant) specified on the TS1120 Tape Controller with one to four FC3062s.

The cables are provided to direct connect the 3592 tape drives in a rack to the TS1120 Tape Controller by specifying FC3062 when the external fabric FC3493 or FC9493 is specified.

Maximum: One.

Prerequisite: FC3478. This feature is mutually exclusive with FC3488, FC4897, and FC9493.

FC3494 (Fibre Channel switch Rack Mount Kit)
This feature provides the required hardware to support attachment of 3592 tape drives through a 2 Gb or 4 Gb Fibre Channel switch (FC3487, FC3488, FC4887, or FC4897) for connection to a 3592 Model C06 Controller in a rack. It includes the mounting hardware and instructions for installing the 2 Gb or 4 Gb Fibre Channel switch in the rack. Fibre Channel cables from the 3592 tape drives to the switch in the rack with the Model C06 are included by specifying FC3062 (one or two for each tape drive). For the multi-rack attachment of 3592 tape drives in other racks to the switch, the cables should be ordered with the drives. The cables are provided to direct connect the 3592 tape drives in a rack to the TS1120 Tape Controller by specifying FC3062 when the external fabric FC3493 or FC9493 is specified.

Maximum: One.

Prerequisites: FC4641 plus FC3488, FC4887, or FC4897 must be installed on the TS1120 Tape Controller.

FC4641 (Install Controller in Rack)
This optional feature provides the rack mounting hardware to install a TS1120 Tape Controller in a rack. Plant or field-installed.

Maximum: One.

This feature is mutually exclusive with FC9875, FC9876, FC9885, and FC9886.

FC4887 (Reinstall 2 Gb Fibre Channel switch)
This feature is the same as feature FC3487 but allows the client to provide a 2 Gb Fibre Channel switch feature (FC3487) that was removed from a 3592 Controller or a 3953 Model F05 and reinstall it for attachment to this 3592 Tape Controller. Intermix of the 2 Gb and 4 Gb Fibre Channel switches is not supported within the 3592 Tape Controller. This feature code is mutually exclusive of FC3488, FC3492, FC3493, FC4897, FC9492, and FC9493 on the TS1120 Tape Controller.

Maximum: Two.

Prerequisites: FC3476 or FC3478 on the TS1120 Tape Controller.
FC4897 (Reinstall 4 Gb Fibre Channel switch)
This feature is the same as FC3488 but allows the client to provide a 4 Gb Fibre Channel switch feature, FC3488, that was removed from a 3592 Controller in a 3952 Model F05 frame or 3953 Model F05 frame and reinstall it for attachment to this TS1120 Tape Controller. Plant or field-installed.

Maximum: Two.

Prerequisite: FC3478. This feature is mutually exclusive with FC3492 and FC9491.

FC9478 (3592 Tape Drive Attached to Model C06)
This feature is required on all 3952 Model F05 frames that will have a 3592 tape drive attached.

Minimum: One.

Maximum: One.

FC9492 (External Fabric Support - Plant)
This feature on the controller indicates that 3592 tape drives will be connected to the 3952 Model F05 frame through an external client-supplied Fibre Channel switch or directly to the controller.

Maximum: One.

Prerequisite: FC3478. This feature is mutually exclusive with FC3488, FC4897, and FC9493. The client is responsible for providing the cables from the 3952 Model F05 frame installed in a 3952 or 3953 Model F05 frame to a client-supplied Fibre Channel switch. Cables from the switch or controller to the 3592 tape drives can be ordered with the 3592 tape drives or supplied by the client.

FC9493 (Direct Connect Drives - Plant)
This feature on the controller indicates that 3592 tape drives will be connected to the 3952 Model F05 frame through an external client-supplied Fibre Channel switch or directly to the controller. Direct connect drives require either this feature or FC3493 (Direct Connect Drives - Field) specified on the TS1120 Tape Controller with one to four FC3062s. Plant installed. This feature is mutually exclusive with FC3488, FC4897, and FC9492.

Maximum: One.

Prerequisite: FC3478.

FC9885 (Field Merge 3592-C06 into 3952-F05)
This feature specifies the attachment of a new TS1120 Tape Controller to an installed 3952 Model F05 frame. Field-installed. This feature is mutually exclusive with FC4641, FC9875, FC9876, and FC9886.

Maximum: One.

Corequisites: One field install/field merge TS1120 Tape Controller feature (FC5878) must be ordered on the 3952 Model F05 frame.

FC9886 (Plant Install 3592-C06 into 3952-F05)
This feature specifies the plant attachment of a new TS1120 Tape Controller to a new 3952 Model F05 frame from the plant. This feature must appear on both the TS1120 Tape
Controller and the 3952 Model F05 orders. This feature is mutually exclusive with FC4641, FC9875, FC9876, and FC9885.

Maximum: One.

Corequisites: One plant install TS1120 Tape Controller FC5879 must be ordered on the 3952 Model F05 frame.

FC9887 (Field Merge 3592-C06 in 3953-F05)
This feature specifies that a TS1120 Tape Controller will be field-merged or field-installed into a 3952 Model F05 frame.

Maximum: One.

Corequisites: One Field Install/Field Merge cartridge accessor feature (FC5878) must be ordered on the 3952 Model F05 frame.

FC9888 (Plant Install 3592-C06 in 3953-F05)
This feature specifies the plant attachment of a new TS1120 Tape Controller to a 3952 Model F05 frame.

Maximum: One.

Corequisites: One Plant Install TS1120 Tape Controller (FC5879) must be ordered on the 3952 Model F05 frame.

FC3488 (4 Gb Fibre Channel switch)
This feature provides a 4 Gb Fibre Channel switch with 20 LC short wave ports for attachment of up to sixteen 3592 tape drives to a TS1120 Tape Controller. Hardware errors detected on the switch are managed by the TS1120 Tape Controller. The 4 Gb Fibre Channel switch has dual power connection for attachment to separate power supplies. Plant or field-installed.

Maximum: Two.

Prerequisite: FC3478. This feature is mutually exclusive with FC3492 and FC9491.

FC3494 (Fibre Channel switch Rack Mount Kit)
This feature provides the required hardware to support attachment of 3592 tape drives through a 4 Gb Fibre Channel switch (FC3488 or FC4897) for connection to a TS1120 Tape Controller in a rack. It includes the mounting hardware and instructions for installing the 4 Gb Fibre Channel switch in the rack, including associated Ethernet cabling between the TS1120 Tape Controller and the switch. Fibre Channel cables from the 3592 tape drives to the switch in the rack with the TS1120 Tape Controller are included by specifying FC3062 (one or two for each tape drive). For the multi-rack attachment of 3592 tape drives in other racks to the switch, order the cables with the drives. Plant or field-installed.

Maximum: One.

Prerequisites: FC4641 plus FC3488 or FC4897.

FC3495 (Redundant FC Rack Attatch)
This feature provides the mounting hardware and instructions for installing a second 4 Gb Fibre Channel switch in the rack. Plant or field-installed.
Maximum: One.

Prerequisites: FC3494 and a second FC3488 or FC4897.

FC4897 (Reinstall 4 Gb Fibre Channel switch)
This feature is the same as FC3488 but allows the client to provide a 4 Gb Fibre Channel switch feature FC3488 that was removed from a 3592 Controller in a 3952 Model F05 frame or 3953 Model F05 frame and reinstall it for attachment to this TS1120 Tape Controller. Plant or field-installed. This feature is mutually exclusive with FC3492 and FC9491.

Maximum: Two.

Prerequisite: FC3478.

FC3492 (External Fabric Support - Field)
This feature on the controller indicates that 3592 tape drives will be connected to the TS1120 Tape Controller through an external client-supplied Fibre Channel switch or directly to the controller. Field-installed.

Maximum: One.

Prerequisite: FC3478. This feature is mutually exclusive with FC3488, FC4897, and FC9491. The client is responsible for providing the cables from the TS1120 Tape Controller installed in a 3952 Model F05 frame to a client-supplied Fibre Channel switch. Cables from the switch or controller to the 3592 tape drives can be ordered with the 3592 tape drives or supplied by the client.

FC9492 (External Fabric Support - Plant)
This feature on the controller indicates that 3592 tape drives will be connected to the 3952 Model F05 frame through an external client-supplied Fibre Channel switch or directly to the controller.

Maximum: One.

Prerequisite: FC3478. This feature is mutually exclusive with FC3488, FC4897, and FC9493. The client is responsible for providing the cables from the 3952 Model F05 frame installed in a 3952 or 3953 Model F05 frame to a client-supplied Fibre Channel switch. Cables from the switch or controller to the 3592 tape drives can be ordered with the 3592 tape drives or supplied by the client.
Monitoring and reporting

This appendix briefly describes the available products and tools for monitoring and reporting, as well general considerations about these topics. It provides details about the Enterprise Tape Library (ETL) Specialist and a subset of the tape tools:

- MOUNTMON
- TAPEWISE
- VTSSTATS
- ST@S3494

This appendix does not provide detailed information about all tools and reports. For detailed information, refer to the appropriate sources listed throughout this appendix.
Monitoring and reporting tools

This section explains where to find and how to use the tape tools. It gives a brief overview about the ETL Specialist. The ETL Specialist is described in Chapter 3, “IBM TotalStorage Enterprise Automated Tape Library” on page 83.

General considerations about monitoring and reporting

As long as you have additional capacity in your environment, monitoring and reporting are not a priority. However, today most companies define their environment in terms of “rightsizing” and “downsizing.”

The extension of a tape library takes more planning and time, including outage time, than installing a new DASD device. Therefore, having knowledge about how well your environment operates is the key. This knowledge shows you potential areas of concern and helps you develop the options that you can deploy to ensure your tape environment meets your needs.

Changes in your tape operational environment, such as new workloads, and production processing time frames can cause your tape hardware needs to change. IBM provides you with tools that can help you monitor the utilization of your tape library, as well as provide information to assist you in troubleshooting and problem determination. These tools can help you avoid problems by giving you early warning when you need to reorganize your job scheduling or upgrade your current tape environment.

Volume mount analyzer (VMA) reporting for tape utilization

The volume mount analyzer is a program that helps you analyze your current tape environment. You use the volume mount analyzer to study tape mount activity and monitor tape media use. This program was originally introduced to gather information for preparing tape mount management (TMM).

Note: VMA is no longer supported. We recommend that you use Tapewise to monitor your tape environment.

Volume mount analyzer is a good source to provide a lot of information about your tape environment. It uses SMF records for input. Therefore, this information is available for every I/O device installed, regardless of the vendor.

This program is useful for determining maintenance windows for hardware and microcode. It also helps you determine whether new applications or users can find enough available drives in a specific tape library at the time that they need them. In an environment with multiple z/OS users using the same IBM 3494 Tape Libraries, you can create a focal point to get exact information about the total workload transferred to the IBM 3494.

Another good option is to use the information from VMA if you want to migrate to a new tape library or to new drives and media. This allows continuous tracking and monitoring of your workload and to see a trend of your data growth. It enables you to recognize bottlenecks and to perform the appropriate sizing of upgrades.

Note that there are restrictions regarding VTS.
Installation and customization

VMA is a no-charge feature from DFSMS, which ships with the base code. VMA requires no additional installation. The input for VMA is the SMF type 14, 15, 21, and 30 records. If the SMF record is not already enabled, add it to SMFPRMxx in SYS1.PARMLIB.

Creating an extractor file

In the SMF records (especially types 14 and 15), all I/O devices are reported, not only tapes. If VMA reports directly access this data, the jobs are impacted by many records that are never used.

As a result, VMA creates an extractor file. This file contains only the records written by tape devices and stores them in a compact format.

Creating VMA reports

VMA introduces many types of selection criteria. This criteria can include device types, device ranges, system ID in the SMF record, dataset name-patterns, HSM or NONHSM, and more. They help you create a report exactly as you need it. You can concatenate extractor files if necessary.

The following examples show how to control VMA reports:

- To report all datasets smaller than 200 MB and sort by size:

  ```
  REPORT(DATASET) MAXSIZE(200) DSORT(SIZE)
  ```

- To report the HSM usage:

  ```
  REPORT(TOP,USAGE) USAGE(HSM)
  ```

- To get the GB distribution per hour:

  ```
  REPORT(TOP)
  ```

- To get device usage per hour only for a specific device range:

  ```
  REPORT(USAGE) UADR(INCLUDE(400*,401*))
  ```

- To report a specific dataset pattern:

  ```
  DATASET(INCLUDE(HSM.**,SAVE.DAY.**))
  ```

Remember that you can combine the filter techniques of VMA. This can make VMA quite a powerful tool.

Restrictions with VTS

A workload that is directed to a VTS shows you 3490E traffic and the virtual drive view. There is no way to obtain information about:

- The usage of the physical installed 3590 models
- The backend traffic regarding reclaim
- Recall times
- The physical mounts and demounts in the 3494

This information is only provided in SMF94, which is not used by VMA.

Note: For information about the total exchanges (mounts and demounts) from an IBM 3494, use the ETL Specialist. If it is not installed, use the Library Manager.
Implementation considerations for multiple System z users

This section provides hints and tips to create an environment for monitoring and troubleshooting in a multiple z/OS and 3494 Tape Library environment.

If you monitor your environment or look for bottlenecks, you might have two views regarding the installed tape environment:

- **The platform view:**
 - How many workloads are necessary to create the system or sysplex?
 - How many drives are needed in a time frame from the system or sysplex?
 - Which workload is done (HSM, DFDSS, and so forth)?
 - What is the trend of this workload (increasing?)

- **The installed I/O devices and tape library view:**
 - How many workloads are directed in total to a library in:
 - One day?
 - One hour?
 - In the batch window?
 - How many drives are used in which time frame?
 - How many exchanges (mounts and demounts) are handled?

To answer these questions, regular VMA reports are needed. Sometimes, you also need to compare data for detailed troubleshooting. The following implementation is an example of getting this information on a daily basis:

1. Run the extractor on each system or sysplex and store it in a generation dataset (GD) limit for 30 days.
2. Run the necessary VMA reports on a daily basis, scheduled through your scheduling system:
 - Total workload from this system or sysplex (all tape devices or all libraries)
 - Workload to a specific library from this system or sysplex
3. Store the output (either in an output management system or on a direct access storage device (DASD)).
4. Create a focal point on one system. Then, transfer SMF type 14, 15, 21, and 30 records (not extracted through VMA) to this system.
5. Merge SMF type 14, 15, 21, and 30 records from all the systems in your environment.
6. Run an extractor of the SMF record file created in step 5, and store it in a Generation Data Group dataset (GDGD) limit for 30 days.
7. Run the necessary VMA reports on a daily base scheduled through your scheduling system. They should be based on the total workload from all of the system/sysplex to each specific library.
8. Store the output (in an output management system or on DASD).

The advantages of this implementation are that you:
- Have detailed information from a platform and hardware view
- Have comparison data
- Have data from three weekends and month-end processing
- Have the necessary date for IBM sizing tools available
- Can always run additional VMA reports, without reading SMF raw data again
Tape tools

Tape tools are highly sophisticated tools. This section gives you an overview of different tools, the benefits they offer, the input source they need, and the output they deliver. Tape tools are available on the following client site:

Additional tools (see “Additional tools” on page 452) are available only for IBM Business Partners or IBM employees.

For questions or suggestions regarding tape tools, send an e-mail to:

mailto:TAPETOOLS@us.ibm.com

Tape tools for multiplatform systems

VTSLOGRP is the only monitoring tool for shared VTS among multisystem platforms. It uses the input of the Library Manager and SMF records to show the virtual drive activity, the physical drive activities, and information about the Tape Volume Cache (TVC), such as cache hits and misses.

VTSLOGRP does not support PtP VTS.

Table B-1 lists the PC-based tape tools.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Major use</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTSLOGRP</td>
<td>Multiplatform VTS monitoring tool, run on the 3494 Library Manager (PC-based)</td>
</tr>
<tr>
<td>VTSGRAPH</td>
<td>Creates Freelance presentations, based on VTSLOGR and VTSSTATS</td>
</tr>
</tbody>
</table>

Tape tools for z/OS

There are many tape tools on the FTP server that are usable in a z/OS environment. Table B-2 and Table B-3 provide information about their major uses, benefits, necessary input, and the output they create.

Some tape tools have an expiration mechanism to remind you to obtain the latest version. We recommend that you download the newest version every six months to avoid expiration and to be sure you have the latest version of the tool.

The UPDATES.TXT files contains all the updates made on the tape tools on the FTP server.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Major use</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST@S3494</td>
<td>Reports 3494 activity.</td>
<td>Shows the number of mounts, mount times, enters, and ejects.</td>
</tr>
<tr>
<td>Tools for 3494 and VTS</td>
<td>Tool</td>
<td>Major use</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>VTSCAN94</td>
<td>Shows the VTS and 3494 serial numbers.</td>
<td>Shows the LIBRARY-IDs of the VTS and 3494.</td>
</tr>
<tr>
<td>MOUNTMON</td>
<td>Monitors mount pending and volume allocations.</td>
<td>Determines accurate mount times and concurrent drive allocations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tools for VTS only</th>
<th>Tool</th>
<th>Major use</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADBLKSZ</td>
<td>Identifies small VTS block sizes.</td>
<td>Improves VTS performance, make jobs run fast.</td>
<td></td>
</tr>
<tr>
<td>EXPORT</td>
<td>Quantifies VTS export/import processing times.</td>
<td>Determines the times of export/import in advance. Check if export/import is viable.</td>
<td></td>
</tr>
<tr>
<td>VTSSTATS</td>
<td>VTS performance reporting.</td>
<td>Shows how VTS is performing.</td>
<td></td>
</tr>
<tr>
<td>VOLREUSE</td>
<td>Shows volume reuse activity.</td>
<td>Identifies the dataset for VTS cache management.</td>
<td></td>
</tr>
<tr>
<td>TAPECOMP</td>
<td>Shows the actual derived tape compression ratios.</td>
<td>Gets information about the reached compression ratio.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tools for migration or decisions where to go</th>
<th>Tool</th>
<th>Major use</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOLLRPT</td>
<td>Reports the number of TMM migrated datasets.</td>
<td>Identifies the size of TMM data if considering VTS.</td>
<td></td>
</tr>
<tr>
<td>FINDLRG</td>
<td>Identifies multi-volume tape datasets.</td>
<td>Creates a filter list to separate 3590 workload for Batchmagic.</td>
<td></td>
</tr>
<tr>
<td>FSRTMM</td>
<td>Quantifies TMM usage.</td>
<td>Identifies TMM activity. Redirecting to VTS saves CPU cycles.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tools for the tape management system</th>
<th>Tool</th>
<th>Major use</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHKDUPS</td>
<td>Identifies duplicate VOLSERs.</td>
<td>Finds duplicate VOLSERs.</td>
<td></td>
</tr>
<tr>
<td>ORPHANS</td>
<td>Identifies orphan datasets in Tape Management Catalog.</td>
<td>Cleans up the tool.</td>
<td></td>
</tr>
<tr>
<td>CRTDIST</td>
<td>Shows the volume created over time.</td>
<td>Shows client use patterns of volumes.</td>
<td></td>
</tr>
<tr>
<td>EXPDIST</td>
<td>Quantifies the number of volumes expiring in (n) days from now.</td>
<td>Determines the rate of return to scratch.</td>
<td></td>
</tr>
<tr>
<td>OFFSITE</td>
<td>Identifies the datasets sent off-site.</td>
<td>Creates a filter list to separate off-site workload.</td>
<td></td>
</tr>
<tr>
<td>Tool</td>
<td>Major use</td>
<td>Benefit</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>VOLLIST</td>
<td>Shows all active VOLSERs from the tape management catalog. Also gets volume counts by group, size, and media.</td>
<td>Takes a picture of the user data naming convention. Sees how many volumes are allocated to different applications.</td>
<td></td>
</tr>
</tbody>
</table>

Job environment and job improvement tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Major use</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOSTATS</td>
<td>Reports job elapsed times.</td>
<td>Shows run-time improvements.</td>
</tr>
<tr>
<td>TAPEWISE</td>
<td>Identifies tape usage improvement opportunities.</td>
<td>Helps to improve the tape usage. Shows the wrong allocation types.</td>
</tr>
</tbody>
</table>

Helping hands

<table>
<thead>
<tr>
<th>Tool</th>
<th>Major use</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMFILTER</td>
<td>IFASMFDP exit or E15 exit</td>
<td>Filters SMF records to keep tape activity only.</td>
</tr>
<tr>
<td>GRPDSN</td>
<td>Generic dsname lists</td>
<td>Speeds up the process of making dsname lists generic, which makes tape study more accurate.</td>
</tr>
</tbody>
</table>

Table B-3 Tape tools: Necessary input, given output, and prerequisites

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Input</th>
<th>Output</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST@S3494</td>
<td>SMF94 record</td>
<td>Activity reports</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Input</th>
<th>Output</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTSCAN94</td>
<td>SMF94</td>
<td>The LIBRARY-IDs from the 3494 and PIP VTS (Distributed and Composite)</td>
<td>None</td>
</tr>
<tr>
<td>MOUNTMON</td>
<td>Is an active task, samples tape UCB.</td>
<td>The number of mounts, mount times, tape allocation, and so forth.</td>
<td>None</td>
</tr>
</tbody>
</table>

Tools for 3494 only

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Input</th>
<th>Output</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADBLKSZ</td>
<td>Logrec MDR TMS: CA1, TLMS, RMM, ZARA</td>
<td>VOLSER, Jobname, Dsname for VTS Volumes with small block sizes</td>
<td>None</td>
</tr>
<tr>
<td>EXPORT</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>Number of off-site volumes, MBs, and amount of time for export/import process</td>
<td>None</td>
</tr>
<tr>
<td>VTSSTATS</td>
<td>SMF94</td>
<td>Physical drive usage, virtual drive usage and TVC (cache) statistics; reclaim statistics</td>
<td>None</td>
</tr>
<tr>
<td>VOLREUSE</td>
<td>SMF type 14,15, 21, and 30 records</td>
<td>Reuse distribution</td>
<td>None</td>
</tr>
</tbody>
</table>
The following sections describe three of these products:

- **MOUNTMON**
- **TAPEWISE**
- **VTSSTATS**

Tools for migration or decisions where to go

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Input</th>
<th>Output</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOLLRPT</td>
<td>DFHSM MCDS file</td>
<td>Number of files and GB</td>
<td>None</td>
</tr>
<tr>
<td>FINDLRG</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>Dataset length distribution, used as input for Batchmagic</td>
<td>None</td>
</tr>
<tr>
<td>FSRTMM</td>
<td>HSM FRS records</td>
<td>Report showing ML0-ML2 and ML2-ML0 activity</td>
<td>SAS a</td>
</tr>
</tbody>
</table>

Tools for Tape Management System

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Input</th>
<th>Output</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHKDUPS</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>List of duplicate VOLSERs</td>
<td>None</td>
</tr>
<tr>
<td>ORPHANS</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>List file shows all multi-occurrence GDG datasets that have not been created in the last nn days</td>
<td>None</td>
</tr>
<tr>
<td>CRTDIST</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>Distribution of create dates</td>
<td>None</td>
</tr>
<tr>
<td>EXPDIST</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>Volume count distribution by media</td>
<td>None</td>
</tr>
<tr>
<td>OFFSITE</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>Report and a disk file filter list of off-site dataset names</td>
<td>None</td>
</tr>
<tr>
<td>VOLLIST</td>
<td>CA1, TLSM, RMM, ZARA</td>
<td>Dsname, VOLSER, create date, volume sequence; group names and counts by media type</td>
<td>None</td>
</tr>
</tbody>
</table>

Job environment and job improvement tools

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Input</th>
<th>Output</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOSTATS</td>
<td>SMF30 records</td>
<td>Job step detail reporting</td>
<td>None</td>
</tr>
<tr>
<td>TAPEWISE</td>
<td>SMF type 14, 15, 21, 30, and 40 records</td>
<td>UNIT_AFF, early close, Unit=(TAPE,2) multimounts, users of allocations, and so forth</td>
<td>None</td>
</tr>
</tbody>
</table>

Helping hands

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Input</th>
<th>Output</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMFILTER</td>
<td>SMF data</td>
<td>Records for tape activity plus optional TMM activity</td>
<td>None</td>
</tr>
<tr>
<td>GRPDSN</td>
<td>Dsname list</td>
<td>Generic dsname list</td>
<td>None</td>
</tr>
</tbody>
</table>

a. FSRTMM will be changed in the near future so that SAS is no longer a prerequisite.
MOUNTMON
Use MOUNTMON to answer the following questions:
▶ How many tape mounts are we doing in general or per device type?
▶ How many scratch mounts and how many specific mounts?
▶ How long does it take to mount a tape?
▶ How long are tapes allocated?
▶ How many drives are used at any time?
▶ Which jobs are allocated to many drives?

MOUNTMON is the most accurate source of concurrent drive usage reports. For details about MOUNTMON, refer to the presentation that is available on the FTP server at:

TAPEWISE
Tape Usage Analyzer (TAPEWISE) is based on SMF type 14, 15, 21, 30, and (40) records. It gives you information about how many drives are used and how many mounts are done. It also gives you an idea about the following items:
▶ Who is using too many drives?
▶ Are media errors occurring?
▶ How long are allocation delays?
▶ Does remounting of the same VOLSERs occur?
▶ Are there allocations without open?
▶ Which is being used: UNIT=AFFF or UNIT=(TAPE,2)?
▶ Long allocation of tapes, but only a little amount of data is transferred?
▶ What datasets are recalled in a VTS?

For details about TAPEWISE, see the presentation available on the FTP server at:

VTSSSTATS
VTSSSTATS is based on SMF94 records. It summarizes the VTS activity on an hourly and daily basis. It gives you a complete and detailed look at the workloads running on your VTS for all attached users. It is used for:
▶ Monitoring VTS drive and Tape Volume Cache (TVC) activities
▶ Determining whether content management (cache management) is necessary
▶ Performing trend analysis to see when an upgrade is needed (TVC sizes, physical drive attachment, and so forth)
▶ Monitoring the stacked volume environment
▶ Watching out for bottlenecks (throttling or small block sizes)

ST@S3494
ST@S3494 is also based on the SMF94 records. It provides an overview of the entire physical library for all the attached users. It provides:
▶ Physical mounts (every mount regardless of native traffic or mounts for VTS backend processing)
▶ Number of enters and ejects
▶ Average and maximum residency times
For each logical library:
- The number of drives and number of mounts of physical drives
- The average and maximum mount time of physical drives

Use ST@S3494 to provide trend analysis to see whether physical limits of your library are reached and upgrades are needed.

Additional tools
Certain tools are not available through the client site. Table B-4 provides an overview of the tools that IBM uses.

<table>
<thead>
<tr>
<th>Table B-4</th>
<th>Additional tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool</td>
<td>Major use</td>
</tr>
<tr>
<td>Batchmagic</td>
<td>Analysis and projection of tape environments. Analyzes the tape usage today and creates simulations, for example, by introducing new technology. To produce a valid simulation, at least 30 days of SMF data input and TMC backups are necessary.</td>
</tr>
<tr>
<td>Tapemagic</td>
<td>PC-based tool for VTS sizing.</td>
</tr>
<tr>
<td>PERF3494</td>
<td>Dual Active Accessor Performance Projection (Lotus® 1-2-3®)</td>
</tr>
<tr>
<td>EXIMCALC</td>
<td>VTS Import/Export Time Estimator (Lotus 1-2-3)</td>
</tr>
<tr>
<td>3494SLOT</td>
<td>Calculates available slots based on configuration (Lotus 1-2-3)</td>
</tr>
</tbody>
</table>

For more information, see the following site:
ftp://vtstools@service2.boulder.ibm.com

Different monitoring and reporting scenarios

There are two views for reporting:
- The view from your operating system platform (which workload, which amount of data is processed in this platform)
 In a z/OS platform, you can report the workload from a single system or sysplex with SMF sentence 14, 15, 21, and 30, and review it with VMA (see “Volume mount analyzer (VMA) reporting for tape utilization” on page 444). Other platforms do not provide this information.
- The view of the tape library system or VTS (what is processed in that library system or VTS)
 The SMF94 record contains all this information. The records are written in the Library Manager and are transferred automatically to an attached z/OS system. This record contains the workload for all attached users. If you process a report with tape tools on the z/OS system, such as ST@S3494 and VTSSTATS, you receive information about the workloads that the library or VTS handled, in addition to the z/OS system, where the job runs.
 If no z/OS system is attached, you can use VTSLOGRP for VTS monitoring. To monitor the 3494, you need the ETL Specialist.
 If you share your library or VTS among different users or platforms, you must consider that VMA reports are not sufficient to get a complete picture of the workload in a library.
When you share your library or VTS among different platforms, the ELT Expert is the best choice to gain a full picture of your environment. Even if you use ST@S3494 to provide all the library information and VTSSTATS or VTSLOGRP to get the information from the VTS, you must have access to the platform that you established for your monitoring (z/OS or the PC).

With the ETL Specialist, all authorized people can view the monitoring and performance data without z/OS access or z/OS knowledge.

Problem determination scenarios

This section provides example problem determination scenarios. It is not intended as a complete list, but it serves as a pointer to probable causes for common problems.

Native mounts are not handled in an adequate time

Possible reasons for this are:

- Library degraded
- To much physical movement in the library
- Scratch Cartridges are relabeled, because of an intermix of different device types

You might want to look at the following areas to resolve the problem:

- Library Manager Main Menu, Intervention required
 - z/OS: D SMS,LIB(XXX),DETAIL command
- Library Manager statistics ((Library Manager console or Enterprise Tape Library (ETL))
 - ST@S3494
- Check with your IBM Marketing Representative. They can see the actual “reached load point” time of the cartridge. Check the TAPE ON message in the syslog. If there is a big difference, relabeling is the possible reason.

Some possible solutions are:

- Repair the hardware.
- Reduce physical movement:
 - Check the home cell mode and positioning of cartridges.
 - Check movements for VTS reclaims (Threshold setting).
 - Reduce your APM pools.
 - There are too many users accessing the library.
 - Introduce a second gripper.
 - Introduce the DAA feature (if a library has more than four frames).
- This only applies to scratch cartridges. If it happens, check with your IBM Marketing Representative. They can see the actual time of load point reached on the cartridge. Compare this to the moment you receive the TAPE ON message in your system. If there is a big difference, this is an indicator that a relabelling has occurred.

VTS logical scratch mounts are not handled in an adequate time

A possible reason for this is that the Fast ready scratch attribute is not set for this logical volume category.

You might want to look at the Library Manager to resolve this problem. Select **Commands → System Management → Set VTS Category Attributes.**
The solution is to set Fast ready for the specific volume range.

Write jobs are not processing adequately

Possible reasons for this are:
- No units (native or VTS) are available.
- Bottlenecks are in the channels.
- Control unit is busy.
- Bad traffic.
- Too much recall back-end processing.

You might want to look at the following areas to resolve the problem:
- z/OS library command DD LIBRARY
- RMF™ reports for channel
- RMF reports for control units
- Small block size processing (BDBLKSZ tape tool and VMA)
- VTSSTATS and ETL Specialist

You cannot monitor Fibre Channel Connection (FICON) using FICON directors in the intersection between the Director and Unit with z/OS tools.

Some possible solutions are:
- Add more units, spread your jobs to different time slices, and look for allocation without open.
- Add more channels and introduce FICON.
- Add or upgrade to an A60 controller.
- For bad traffic, try to migrate to VTS. Even if the traffic is not perfect, it performs better than in native drives. Try to increase the block size.
- Manage your cache with IART or APM.

VTS recalls are not fast enough

Possible reasons for this are:
- Hardware is degraded.
- Not enough physical drives are installed.
- Too high a migration threshold for stacked volumes.
- Too many physical pools are introduced with APM.
- Bad or no cache management.

You might want to look at the following areas to resolve the problem:
- z/OS display commands, ETL Specialist
- ETL Specialist
- ETL Specialist and VTSSTATS
- APM and physical movement of cartridges in ETL Specialist or ST@3494
- VTSSTATS

Some possible solutions are:
1. Repair the hardware.
2. Install more physical drives.
3. Reduce a migration threshold. You might need more cartridges.
4. Reduce pooling.
5. Manage your cache with IART or APM.

Ejecting cartridges takes too long

Possible reasons for this are:
- Hardware is degraded.
- Too much physical traffic is in the library.

You might want to look at the following areas to resolve the problem:
- z/OS Display commands, ETL Specialist
- ST@3494 or ETL Specialist

Some possible solutions are:
- Repair the hardware.
- Look for a better time frame for eject (less movement in 3494).
Library Manager volume categories

Table C-1 lists all default Library Manager volume categories, the platforms on which they are used, and their definitions.

Note: z/OS users can define any category up to X’FEFF’ with the DEVSUP.xx member SYS1.PARMLIB. The appropriate member must be pointed to by IEASYSxx. See the DEVSUP discussion in 4.3.2, “Updating SYS1.PARMLIB” on page 162.

<table>
<thead>
<tr>
<th>Category (in hexadecimal)</th>
<th>Used by</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 Null Category</td>
<td></td>
<td>This pseudo-category is used in certain library commands to specify that the category, which is already associated with the volume is to be used by default or that no category is specified. Use of the null category does not affect the volume’s order within the category to which it is assigned. No volumes are associated with this category.</td>
</tr>
<tr>
<td>0001 DFSMS/MVS</td>
<td>Indicates scratch MEDIA1. MEDIA1 is a standard-capacity cartridge system tape.</td>
<td></td>
</tr>
<tr>
<td>0002 DFSMS/MVS</td>
<td>Indicates scratch MEDIA2. MEDIA2 is an enhanced-capacity cartridge system tape.</td>
<td></td>
</tr>
<tr>
<td>0003 DFSMS/MVS</td>
<td>Indicates scratch MEDIA3. MEDIA3 is the IBM TotalStorage Enterprise 3590 High Performance Tape Cartridge.</td>
<td></td>
</tr>
<tr>
<td>0004 DFSMS/MVS</td>
<td>Indicates scratch MEDIA4. MEDIA4 is the IBM TotalStorage Enterprise 3590 Extended High Performance Tape Cartridge.</td>
<td></td>
</tr>
<tr>
<td>0005 DFSMS/MVS</td>
<td>Indicates scratch MEDIA5. MEDIA5 is the IBM TotalStorage Enterprise Tape Cartridge 3592 DATA.</td>
<td></td>
</tr>
<tr>
<td>Category (in hexadecimal)</td>
<td>Used by</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>0006 DFSMS/MVS</td>
<td></td>
<td>Indicates scratch MEDIA6. MEDIA6 is the IBM TotalStorage Enterprise Tape Cartridge 3592 WORM.</td>
</tr>
<tr>
<td>0007 DFSMS/MVS</td>
<td></td>
<td>Indicates scratch MEDIA7. MEDIA7 is the IBM TotalStorage Enterprise Tape Cartridge 3592 ECONOMY.</td>
</tr>
<tr>
<td>0008 DFSMS/MVS</td>
<td></td>
<td>Indicates scratch MEDIA8. MEDIA8 is the IBM TotalStorage Enterprise Tape Cartridge 3592 ECONOMY WORM.</td>
</tr>
<tr>
<td>0009 DFSMS/MVS</td>
<td></td>
<td>Indicates scratch MEDIA9. MEDIA9 is the IBM TotalStorage Enterprise Tape Cartridge 3592 Extended.</td>
</tr>
<tr>
<td>000A DFSMS/MVS</td>
<td></td>
<td>Indicates scratch MEDIA10. MEDIA10 is the IBM TotalStorage Enterprise Tape Cartridge 3592 Extended WORM.</td>
</tr>
<tr>
<td>000B to 000D DFSMS/MVS</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>000E DFSMS/MVS</td>
<td></td>
<td>Indicates an error volume. Volumes in this category are scratch volumes for which the software detected an error during processing.</td>
</tr>
<tr>
<td>000F DFSMS/MVS</td>
<td></td>
<td>Indicates a private volume. Volumes in this category contain user data or are assigned to a user.</td>
</tr>
<tr>
<td>0010 to 007F DFSMS/MVS</td>
<td></td>
<td>Reserved. These volume categories can be used for library partitioning.</td>
</tr>
<tr>
<td>0080 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH0.</td>
</tr>
<tr>
<td>0081 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH1.</td>
</tr>
<tr>
<td>0082 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH2.</td>
</tr>
<tr>
<td>0083 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH3.</td>
</tr>
<tr>
<td>0084 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH4.</td>
</tr>
<tr>
<td>0085 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH5.</td>
</tr>
<tr>
<td>0086 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH6.</td>
</tr>
<tr>
<td>0087 DFSMS/VM including VSE Guest</td>
<td></td>
<td>Indicates that the volume belongs to the VM category SCRATCH7.</td>
</tr>
<tr>
<td>Category (in hexadecimal)</td>
<td>Used by</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>0088 DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCH8.</td>
<td></td>
</tr>
<tr>
<td>0089 DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCH9.</td>
<td></td>
</tr>
<tr>
<td>008A DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCHA.</td>
<td></td>
</tr>
<tr>
<td>008B DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCHB.</td>
<td></td>
</tr>
<tr>
<td>008C DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCHC.</td>
<td></td>
</tr>
<tr>
<td>008D DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCHD.</td>
<td></td>
</tr>
<tr>
<td>008E DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCHE.</td>
<td></td>
</tr>
<tr>
<td>008F DFSMS/VM including VSE Guest</td>
<td>Indicates that the volume belongs to the VM category SCRATCHF.</td>
<td></td>
</tr>
<tr>
<td>0090 to 009F</td>
<td>N/A</td>
<td>Currently not assigned.</td>
</tr>
<tr>
<td>00A0 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH00.</td>
<td></td>
</tr>
<tr>
<td>00A1 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH01.</td>
<td></td>
</tr>
<tr>
<td>00A2 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH02.</td>
<td></td>
</tr>
<tr>
<td>00A3 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH03.</td>
<td></td>
</tr>
<tr>
<td>00A4 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH04.</td>
<td></td>
</tr>
<tr>
<td>00A5 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH05.</td>
<td></td>
</tr>
<tr>
<td>00A6 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH06.</td>
<td></td>
</tr>
<tr>
<td>00A7 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH07.</td>
<td></td>
</tr>
<tr>
<td>00A8 Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH08.</td>
<td></td>
</tr>
<tr>
<td>Category (in hexadecimal)</td>
<td>Used by</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>00A9</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH09.</td>
</tr>
<tr>
<td>00AA</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH10.</td>
</tr>
<tr>
<td>00AB</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH11.</td>
</tr>
<tr>
<td>00AC</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH12.</td>
</tr>
<tr>
<td>00AD</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH13.</td>
</tr>
<tr>
<td>00AE</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH14.</td>
</tr>
<tr>
<td>00AF</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH15.</td>
</tr>
<tr>
<td>00B0</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH16.</td>
</tr>
<tr>
<td>00B1</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH17.</td>
</tr>
<tr>
<td>00B2</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH18.</td>
</tr>
<tr>
<td>00B3</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH19.</td>
</tr>
<tr>
<td>00B4</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH20.</td>
</tr>
<tr>
<td>00B5</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH21.</td>
</tr>
<tr>
<td>00B6</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH22.</td>
</tr>
<tr>
<td>00B7</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH23.</td>
</tr>
<tr>
<td>00B8</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH24.</td>
</tr>
<tr>
<td>00B9</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH25.</td>
</tr>
<tr>
<td>00BA</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH26.</td>
</tr>
<tr>
<td>00BB</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH27.</td>
</tr>
<tr>
<td>00BC</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH28.</td>
</tr>
<tr>
<td>Category (in hexadecimal)</td>
<td>Used by</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>00BD</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH29.</td>
</tr>
<tr>
<td>00BE</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH30.</td>
</tr>
<tr>
<td>00BF</td>
<td>Native VSE/ESA</td>
<td>Indicates that the volume belongs to the VSE category SCRATCH31.</td>
</tr>
<tr>
<td>00C0 to 00FF</td>
<td>N/A</td>
<td>Currently not used.</td>
</tr>
<tr>
<td>0100</td>
<td>i5/OS (MLDD)</td>
<td>Indicates that the volume has been assigned to category *SHARE400. Volumes in this category can be shared with all attached System i, iSeries and AS/400 systems.</td>
</tr>
<tr>
<td>0101</td>
<td>i5/OS (MLDD)</td>
<td>Indicates that the volume has been assigned to category *NOSHARE. Volumes in this category can be accessed only by the i5/OS system that assigned it to the category.</td>
</tr>
<tr>
<td>0102 to 012B</td>
<td>N/A</td>
<td>No assignment to a specific host system. These categories can be dynamically assigned by the Library Manager on request of a host.</td>
</tr>
<tr>
<td>012C</td>
<td>ITSM for AIX</td>
<td>Indicates a private volume. Volumes in this category are managed by ITSM.</td>
</tr>
<tr>
<td>012D</td>
<td>ITSM for AIX</td>
<td>Indicates an IBM 3490 scratch volume. Volumes in this category are managed by ITSM.</td>
</tr>
<tr>
<td>012E</td>
<td>ITSM for AIX</td>
<td>Indicates an IBM 3590 scratch volume. Volumes in this category are managed by ITSM.</td>
</tr>
<tr>
<td>012F to 0FF1</td>
<td>N/A</td>
<td>No assignment to a specific host system. These categories can be dynamically assigned by the Library Manager on request of a host.</td>
</tr>
<tr>
<td>0FF2</td>
<td>Basic Tape Library Support (BTLS)</td>
<td>Indicates a scratch volume. Volumes in this category belong to the optional scratch pool SCRTCH2.</td>
</tr>
<tr>
<td>0FF3</td>
<td>BTLS</td>
<td>Indicates a scratch volume. Volumes in this category belong to the optional scratch pool SCRTCH3.</td>
</tr>
<tr>
<td>0FF4</td>
<td>BTLS</td>
<td>Indicates a scratch volume. Volumes in this category belong to the optional scratch pool SCRTCH4.</td>
</tr>
<tr>
<td>0FF5</td>
<td>BTLS</td>
<td>Indicates a scratch volume. Volumes in this category belong to the optional scratch pool SCRTCH5.</td>
</tr>
<tr>
<td>0FF6</td>
<td>BTLS</td>
<td>Indicates a scratch volume. Volumes in this category belong to the optional scratch pool SCRTCH6.</td>
</tr>
<tr>
<td>0FF7</td>
<td>BTLS</td>
<td>Indicates a scratch volume. Volumes in this category belong to the optional scratch pool SCRTCH7.</td>
</tr>
<tr>
<td>0FF8</td>
<td>BTLS</td>
<td>Indicates a scratch volume. Volumes in this category belong to the optional scratch pool SCRTCH8.</td>
</tr>
<tr>
<td>0FF9 to 0FFE</td>
<td>N/A</td>
<td>No assignment to a specific host system. These categories can be dynamically assigned by the Library Manager on request of a host.</td>
</tr>
<tr>
<td>Category (in hexadecimal)</td>
<td>Used by</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>0FFF BTLS</td>
<td></td>
<td>Indicates a scratch volume. Volumes in this category belong to the default scratch pool used by BTLS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: If you are planning to migrate to DFSMS/MVS, you should use this default scratch category only.</td>
</tr>
<tr>
<td>1000 to F00D N/A</td>
<td></td>
<td>No assignment to a specific host system. These categories can be dynamically assigned by the Library Manager on request of a host.</td>
</tr>
<tr>
<td>F00E BTLS</td>
<td></td>
<td>Indicates a volume in error. Volumes are assigned to the error category during demount if the volume serial specified for demount does not match the external label of the volume being demounted.</td>
</tr>
<tr>
<td>F00F to FEFF N/A</td>
<td></td>
<td>No assignment to a specific host system. These categories can be dynamically assigned by the Library Manager on request of a host.</td>
</tr>
<tr>
<td>FF00</td>
<td>All</td>
<td>Insert category. When a tape volume is added to an automated tape library, the library reads the external label on the volume, creates an inventory entry for the volume and assigns the volume to the insert category. This category can be updated by operator interaction through Librarian Workstation Support.</td>
</tr>
<tr>
<td>FF01 Virtual Tape Server (VTS)</td>
<td></td>
<td>Stacked Volume Insert category for a Virtual Tape Server. A volume is set to this category when its volume serial number is in the range specified for stacked volumes for any VTS library partition.</td>
</tr>
<tr>
<td>FF02 Virtual Tape Server</td>
<td></td>
<td>Stacked Volume Scratch category 0 for a Virtual Tape Server. This category is reserved for future use for scratch stacked volumes.</td>
</tr>
<tr>
<td>FF03 Virtual Tape Server</td>
<td></td>
<td>Stacked Volume Scratch category 1 for a Virtual Tape Server. This category is used by the VTS for its scratch stacked volumes. This category is not used if LIC is 527 or higher.</td>
</tr>
<tr>
<td>FF04 Virtual Tape Server</td>
<td></td>
<td>Stacked Volume Private category for a Virtual Tape Server. This category is used by the VTS for its private stacked volumes. If LIC level is 527 or higher, this category includes both scratch and private volumes.</td>
</tr>
<tr>
<td>FF05 Virtual Tape Server</td>
<td></td>
<td>Stacked Volume Disaster Recovery category for a Virtual Tape Server. A volume is set to this category when its volume serial number is in the range specified for stacked volumes for any VTS library partition and the Library Manager is in disaster recovery mode.</td>
</tr>
<tr>
<td>FF06 Virtual Tape Server</td>
<td></td>
<td>This category is used by the VTS as a temporary category for disaster recovery. After a stacked volume in category FF05 is processed, it is put into this category. This category used be the PFE tool called “movedata” as a temporary category.</td>
</tr>
<tr>
<td>FF07 Virtual Tape Server</td>
<td></td>
<td>This category is reserved for future hardware functions.</td>
</tr>
<tr>
<td>Category (in hexadecimal)</td>
<td>Used by</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>FF08</td>
<td>Virtual Tape Server</td>
<td>This category is used by the VTS to indicate that a Read-Only-Recovery Stacked Volume with active data that cannot be recovered.</td>
</tr>
<tr>
<td>FF09 to FF0F</td>
<td>N/A</td>
<td>Reserved for future hardware functions.</td>
</tr>
</tbody>
</table>
| FF10 | Library Manager | Convenience Eject category
When a tape volume is assigned to the convenience-eject category, it becomes eject pending and the Library Manager queues the tape volume to be moved to a convenience output station. When the volume is delivered to an output station, it is deleted from the Library Manager’s inventory.
Note: Logical volumes cannot be ejected from the library. They can be deleted or exported. |
| FF11 | Library Manager | Bulk Eject category
Set when the Library Manager accepts an eject request. The volume becomes eject pending and is queued to be moved to the high capacity output station. When the cartridge accessor delivers the volume to the output rack, it is deleted from the Library Manager’s inventory.
Note: Logical volumes cannot be ejected from the library. They can be deleted or exported. |
| FF12 | Virtual Tape Server | Export Pending category
A logical volume to be exported is assigned to this category at the beginning of a Virtual Tape Server export operation. Logical volumes in this category are considered in use. Any attempt by a host to mount, audit, or change the category of a volume fails.
Engineering note: If the library export operation is cancelled or fails, any volumes assigned to this category are reassigned to the category they were in prior to the export operation. |
| FF13 | Virtual Tape Server | Exported category
Set when the Virtual Tape Server has exported the logical volume. The attached hosts are notified when volumes are assigned to this category. Any attempt by a host to mount, audit, or change the category of a volume fails, except a Library Set Volume Category order assigning the volume to the purge-volume category. |
| FF14 | Virtual Tape Server | Import category
Stacked volumes that contain logical volumes to import into the Virtual Tape Server are assigned to this category by an operator at the Library Manager, after they are entered into the library through the convenience I/O station and placed in the Unassigned category. |
<table>
<thead>
<tr>
<th>Category (in hexadecimal)</th>
<th>Used by</th>
<th>Definition</th>
</tr>
</thead>
</table>
| FF15 | Virtual Tape Server | Import Pending category
Logical volumes to be imported from a stacked volume are added to the Library Manager inventory and assigned to this category when the Virtual Tape Server starts importing them. At completion, successfully imported volumes are assigned to the insert category (FF00). The attached hosts are then notified of volumes assigned to the insert category. Any host attempt to use a volume assigned to this category will fail.
Engineering note: If the library import operation is cancelled or fails, any volumes assigned to this category are deleted from the library inventory. |
| FF16 | Virtual Tape Server | Unassigned category
Volumes are assigned to this category by the Library Manager whenever volumes are added to the library through the convenience I/O station and the library contains one or more VTS subsystems that has the Import/Export functions installed and enabled. Manual intervention is required to assign the cartridges to the proper category. For exported stacked volumes, this is the import category (FF14). |
| FF17 | Virtual Tape Server | Export Hold category
Physical volumes are assigned to this category on completion of processing for an export stacked volume. |
| FF18 & FF19 | N/A | Reserved for library
These categories are reserved for future hardware functions. |
| FF20 | PtP Virtual Tape Server | Corrupted Token Volume category
In a Peer-to-Peer VTS, volumes are assigned to this category by an AX0 controller when it has determined that the tokens associated with the volume have been corrupted. This is to prevent the volume from being selected by a category mount request. |
| FF21 to FFF5 | N/A | Reserved for library
These categories are reserved for future hardware functions. |
| FFF4 | Library Manager | 3592 Cleaner Volume
Cleaner volumes for 3592 type devices in the library are assigned to this category automatically. |
| FFF5 | Library Manager | 3592 Service Volume
Volumes are assigned to this category by the Library Manager when it detects that a volume has a unique service cartridge VOLSER and a media type compatible with a 3592 device. |
| FFF6 | Library Manager | 3590 Service Volume category
Volumes are assigned to this category by the Library Manager when it detects that a volume has a unique service cartridge VOLSER and a media type compatible with a 3590 device. |
| FFF7 and FFF8 | N/A | Reserved for library
These categories are reserved for internal library functions. |
<table>
<thead>
<tr>
<th>Category (in hexadecimal)</th>
<th>Used by</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFF9</td>
<td>Library Manager</td>
<td>3490 Service Volume category Volumes are assigned to this category by the Library Manager when it detects that a volume has a unique service cartridge VOLSER and a media type compatible with a 3490 device.</td>
</tr>
<tr>
<td>FFFA</td>
<td>Library Manager</td>
<td>Manually ejected category Volumes are assigned to this category when they are removed from the library under the control of an operator, not the control program. Volumes in this category are no longer available for any other operations, except purge volume category assignment.</td>
</tr>
<tr>
<td>FFFB</td>
<td>Library Manager</td>
<td>Purge Volume category When this category is specified in a Perform Library Function command with the Library Set Volume Category order and the volume is either in the misplaced state, is assigned to the exported category, or is assigned to the manually ejected category, the specified VOLSER’s record is deleted from the inventory. No volumes are associated with this category.</td>
</tr>
<tr>
<td>FFFC</td>
<td>Library Manager</td>
<td>Unexpected Volume category This category is reserved for future use.</td>
</tr>
<tr>
<td>FFFD</td>
<td>Library Manager</td>
<td>3590 Cleaner Volume category Cleaner volumes for 3590 type devices in the library are assigned to this category automatically.</td>
</tr>
<tr>
<td>FFFE</td>
<td>Library Manager</td>
<td>3490 Cleaner Volume category Cleaner volumes for 3490 type devices in the library are assigned to this category automatically.</td>
</tr>
<tr>
<td>FFFF</td>
<td>Library Manager</td>
<td>VOLSER Specific category This category is for general use by programming except that any Library Mount request to this category must be for a specific VOLSER and not based on the category only.</td>
</tr>
</tbody>
</table>
Basic tape library environment

This appendix reviews the fundamental factors to consider when implementing Basic Tape Library Support (BTLS). First, it explains the logic of BTLS and the basic BTLS installation tasks. Then, it addresses tape management system and JES3 considerations in a BTLS environment. It also covers installation verification and software customization topics.

For more information about BTLS, see *BTLS V1R1 User’s Guide and Reference*, SC26-7016.
Implementing BTLS

Installation of the BTLS software changes the following components:

- Message display
- Allocation
- Dynamic device reconfiguration (DDR)
- IDCAMS LIBRARY command
- Tape library attention messages
- Tape library statistics SMF type 94 record

Message display is the z/OS function that sends messages to the tape drive message displays. BTLS modifies these messages to send mount and demount commands to the Library Manager. Mount causes a cartridge to be mounted on a drive. Demount causes a cartridge to be demounted from a drive and returned to the storage cells.

Allocation has been changed to use the BTLS rules as defined in the records in the master catalog. These rules are defined through the IDCAMS LIBRARY command. Allocation can be controlled by an esoteric or job name, a procedure name, and a user exit. BTLS modifies the list of eligible devices to include all library-resident or library-nonresident devices before device allocation.

DDR controls the swapping of cartridges after an I/O error. BTLS changes DDR to ensure that the swap goes to the same device type in the same library. DDR swaps within a library no longer require operator intervention.

BTLS provides an IDCAMS LIBRARY command for the control and definition of the IBM 3494 Tape Library. The command enables functions, such as:

- Change cartridge status from private to scratch.
- Define library devices.
- Define allocation rules.
- Obtain lists of cartridges from the Library Manager.
- Issue commands to the IBM 3494 Tape Library, such as mount and demount and load or unload ICLs.

Through the IDCAMS LIBRARY commands, a set of rules by which BTLS controls tape allocations is defined in the master catalog. BTLS also maintains a catalog of library-resident volumes to satisfy specific mount requests. BTLS can support up to eight tape libraries. Table D-1 lists the IDCAMS LIBRARY commands.
Table D-1 BTLS LIBRARY commands

<table>
<thead>
<tr>
<th>LIBRARY</th>
<th>AUDIT</th>
<th>UNIT(unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTS</td>
<td>VOLSER(volser)</td>
<td></td>
</tr>
<tr>
<td>DEFINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td>VOLSER(volser)</td>
<td></td>
</tr>
<tr>
<td>DEMOUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVICES</td>
<td>LIBNAME(libname)</td>
<td></td>
</tr>
<tr>
<td>INVENTORY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOBNAMES</td>
<td>LIBNAME(libname)</td>
<td></td>
</tr>
<tr>
<td>LISTVOL</td>
<td>LIBNAME(libname)</td>
<td></td>
</tr>
<tr>
<td>MOUNT</td>
<td>UNIT(unit)</td>
<td></td>
</tr>
<tr>
<td>OPTIONS</td>
<td>VOLSER(volser)</td>
<td></td>
</tr>
<tr>
<td>REPORT</td>
<td>LIBNAME(libname)</td>
<td></td>
</tr>
<tr>
<td>RESETAACL</td>
<td>UNIT(unit)</td>
<td></td>
</tr>
<tr>
<td>RESETDEVICE</td>
<td>UNIT(unit)</td>
<td></td>
</tr>
<tr>
<td>SETACL</td>
<td>UNIT(unit)</td>
<td></td>
</tr>
<tr>
<td>SETCATEGORY</td>
<td>CATEGORY(category)</td>
<td></td>
</tr>
<tr>
<td>SETCEXIT</td>
<td>UNIT(unit)</td>
<td></td>
</tr>
<tr>
<td>SETDEVICE</td>
<td>CATEGORY(category)</td>
<td></td>
</tr>
<tr>
<td>THRESHOLD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The IBM 3494 Tape Library reports the completion of a mount or demount and error conditions to the host through attention messages. It also provides support to read the messages and report relevant ones to the system operator.

Control datasets

BTLS uses catalog records to define a library configuration and allocation rules. Each volume in an IBM 3494 Tape Library is also defined by a catalog record that names the library in which the volume resides. You need to allocate a user catalog for the BTLS volume entries. Table D-2 shows the catalog records that BTLS uses.
Table D-2 BTLS catalog records

<table>
<thead>
<tr>
<th>Catalog Record Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>SYS1.BTLS.LIB.LIBn Defines the device addresses in library LIBn</td>
</tr>
<tr>
<td>Options</td>
<td>SYS1.BTLS.LIB.OPT Defines the options used by an allocation</td>
</tr>
<tr>
<td>Jobname</td>
<td>SYS1.BTLS.JOBn Defines the job names that should use a library scratch allocation</td>
</tr>
<tr>
<td>Volume</td>
<td>BTLS.BTLS.VOL.vvvvv Indicates the library containing volume vvvvv</td>
</tr>
</tbody>
</table>

Catalog records whose names start with SYS1 are cataloged in the master catalog. The volume catalog records are cataloged in the BTLS user catalog.

Figure D-1 shows the BTLS catalog record structure.

Figure D-1 BTLS catalog record structure

Installation tasks

This section describes the BTLS installation tasks. For more information about installation tasks and details of the IDCAMS command, LIBRARY, see the BTLS V1R1 User's Guide and Reference, SC26-7016.

The following procedure shows you the installation tasks:
1. Define the IDCAMS command LIBRARY as a TSO command. Do this using the Job Control Language (JCL) shown in Figure D-2.
Appendix D. Basic tape library environment

Figure D-2 Sample JCL to define the IDCAMS command LIBRARY

2. Authorize the IDCAMS command LIBRARY by adding it to IKJTSO00 in SYS1.PARMLIB. After updating IKJTSO00, the PARMLIB UPDATE(00) command authorizes the IDCAMS command LIBRARY.

3. Define the library devices.

 Use the IDCAMS command LIBRARY DEVICES to define the device addresses for a library. A 3490 control unit can contain up to 16 tape drives. Even if any of the control units in an IBM 3494 Tape Library has fewer than 16 drives, all 16 possible addresses still must be defined in the host system. It is necessary to include uninstalled devices in the IDCAMS command LIBRARY DEVICES. If invalid addresses are specified, the results are unpredictable.

 Figure D-3 shows a sample job to define library devices. Library LIB1 (default) is defined as containing devices 180-18F and 190-19F. One BTLS system supports up to eight libraries, which must be called LIBn, where n is 1 to 8.

Figure D-3 Sample JCL to define library devices

Recording technology (128, 256, or 384 track, or EFMT1 tracks) information is not kept in a BTLS environment. Therefore, with mixed device types and mixed media types in an IBM 3494 Tape Library, we recommend that you define multiple logical libraries, such as LIB1 for the IBM TotalStorage Enterprise 3590B tape drives, LIB2 for the 3590E drives, and LIB3 for the 3590H drives, to facilitate the conversion to DFSMS tape and control use of the device and media types. The following example shows a command to define two logical libraries:

LIBRARY DEVICES (17017F) LIBNAME(LIB1)
LIBRARY DEVICES (18018F) LIBNAME(LIB2)
4. Create an esoteric device group name.

Create an esoteric device group name for the library devices to facilitate allocation to the IBM 3494 Tape Library. The esoteric device group name does not have to match the library name (for example, LIB1). However, the address range of the esoteric device group name must match the library device definitions. This ensures that allocation recovery messages include only the appropriate set of tape drives.

5. Create SYS1.PARMLIB member BTLPRM00.

Define the defaults used by BTLS in SYS1.PARMLIB member BTLPRM00. Each parameter statement must begin in column 1. The following definitions are supported:

- **THRESHOLD(count)** establishes a low threshold value for scratch volumes. When the number of scratch volumes falls below the count, the operator receives a warning message.

 The threshold value established at initial program load (IPL) by the THRESHOLD parameter is replaced when the IDCAMS command LIBRARY THRESHOLD is executed. If more than one threshold value is required, use the IDCAMS command LIBRARY THRESHOLD after IPL. The command supports multiple libraries and multiple scratch categories. The LIBRARY REPORT command can be used to display the threshold values that have been established.

- **SCRTCHn** establishes a default category for scratch mounts. Unless specified, scratch mounts use volumes assigned to the SCRTCH1 volume category (X'0FFF'). When more than one host shares a library, a different scratch volume category is used by each host. The BTLPRM00 PARMLIB member for each host names the scratch volume category that host will use for scratch mounts.

- **AUTODEMOUNT** indicates that library volumes should be automatically demounted if they become mounted on unallocated devices. When AUTODEMOUNT is specified and BTLS detects a mount completion for an unallocated device, the volume is unloaded and demounted automatically.

 In a BTLS library, a volume can become mounted on an unallocated device when a job is canceled or abends during mount pending. Because the mount is not completed before the job terminates, a demount is not sent to the library. Even though the job is terminated, the mount is eventually completed in the library. If the device is not yet allocated to another job, the volume stays mounted.

 The purpose of AUTODEMOUNT is to solve the following two problems created by volumes mounted on unallocated drives:

 - If another job allocates the drive and needs a private volume mounted, the job demounts but keeps the previously mounted volume. The demount causes a scratch volume to be assigned to the private category even though it was never used.
 - If another job allocates a different tape drive and needs a volume that is already mounted on an unallocated drive, the mount fails with the message ERA=64 "volume in use."

Note: BTLS offers support for four-digit device numbers. Support is provided with JDZ11BS. For releases prior to JDZ11BS, support is provided by OW12877. Library devices must be restricted to the four-digit address range, 0000 through 0FFF. All other devices, including tape drives, can use any of the four-digit addresses in the 0000 through FFFF range. BTLS commands and messages use only the three significant digits 000 through FFF and assume that the fourth digit is always zero.
LIBAFFINITY indicates that BTLS should break affinity when an invalid UNIT=AFF condition is detected. If LIBAFFINITY is not used, invalid affinity is reported by message BTLS104I, and the job is terminated.

To validate affinity, BTLS compares the allocation requirements of the target DD(DD1) and the UNIT=AFF DD(DD2). The following conditions are valid:

- Both DD1 and DD2 require drives in the same library.
- Both DD1 and DD2 require nonlibrary drives.
- Either DD1 or DD2 can use *any* drive. BTLS allows *any* drive when Option I is used (Table D-3 on page 476) to control scratch allocation and for any SCRTCH request that specifies UNIT=AFF.

When an invalid condition is detected, and the LIBAFFINITY option is in effect, BTLS breaks the invalid affinity. The following example shows how BTLS breaks affinity:

```plaintext
//DD1  DD  VOL=SER=VOL001,UNIT=TAPE
//     DD  VOL=SER=VOL002,UNIT=AFF=DD1
//     DD  VOL=SER=VOL003,UNIT=AFF=DD1
//     DD  VOL=SER=VOL004,UNIT=AFF=DD1
```

When the above JCL is executed, BTLS directs the allocation for DD1 to LIB1. It detects an error because VOL002 is not in LIB1 yet specifies affinity with DD1. When the LIBAFFINITY option is in effect, BTLS causes the JCL to allocate as if it were written as follows:

```plaintext
//DD1  DD  VOL=SER=VOL001,UNIT=TAPE
//     DD  VOL=SER=VOL002,UNIT=TAPE
//     DD  VOL=SER=VOL003,UNIT=AFF=DD2
//     DD  VOL=SER=VOL004,UNIT=AFF=DD1
```

For LIBAFFINITY to successfully break affinity, the set of devices determined by the UNIT parameter of the target DD must include devices that also satisfy the requirements of the broken DD.

If the sample JCL was coded as in the following example, the allocation for VOL002 fails because UNIT=LIB1DEV5S names an esoteric unit that does not include any devices in LIB2 (and VOL002 is defined to BTLS as a LIB2 volume):

```plaintext
//DD1  DD  VOL=SER=VOL001,UNIT=LIB1DEV5S
//     DD  VOL=SER=VOL002,UNIT=AFF=LIB1
//     DD  VOL=SER=VOL003,UNIT=AFF=LIB1
//     DD  VOL=SER=VOL004,UNIT=AFF=LIB1
```

Note: LIBAFFINITY is not supported when MVS/SP™ 5.2 is installed.

EXPDT98000 | EXPD option allows a duplicate of a BTLS library volume to be mounted on a drive outside the library.

BTLS does not check that there is an internal label on the cartridge, so NL and Bypass Label Processing (BLP) tapes are supported. The IBM 3494 Tape Library requires every volume to have an external VOLSER number that is unique to that library. However, because all volume records are stored in the BTLS catalog, each VOLSER number that BTLS manages must be unique.

When the EXPDT98000 option is used and a DD statement includes EXPDT=98000, BTLS does not validate or interfere with the allocation. Therefore, you can allocate a
drive outside the library for a VOLSER number that is defined to BTLS as a library volume.

Here is an example of the BTLPRMxx parameters.

```
THRESHOLD(50) /* Minimum scratch threshold warning to ops
AUTODEMOUNT /* Demount cartridges from unallocated drives
SCRTCH3      /* if no scratch pool is specified use SCRTCH3
```

6. Define a user catalog for BTLS volume records.

Define a user catalog named BTLS that will be used by BTLS to define ‘BTLS.BTLS.VOL.VOLSER’ catalog records. The catalog must be an ICF catalog. It can be defined as shared if library volumes are to be shared by more than one host. If this catalog is to be shared by more than one host, the catalog must reside on a shared DASD volume and be connected to the master catalogs of the other hosts.

Note: The name of the catalog cannot be changed to a user-defined name.

Here is a sample command to define the user catalog:

```
DEFINE UCAT (NAME(BTLS) MEGABYTES(1 1) ICFCATALOG -
             VOLUME(COMCAT) SHAREOPTIONS(3 4))
```

7. Install the BTLS allocation interface.

For releases earlier than MVS/SP 5.1, ensure that APAR OY63009 is installed (OY63009 is included with MVS/SP 5.1). OY63009 provides the interface used by BTLS to control tape allocations.

OY63009 is not used with MVS/SP 5.2. Instead BTLS uses the tape allocation subsystem interface. When MVS/SP 5.2 is installed, add the following command to SYS1.PARMLIB member IEACMD00:

```
SETSSI ADD,SUBNAME=BTLS,INITRTN=AOMALSSI
```

You can also issue the SETSSI command from the operator's console. The SETSSI command activates the BTLS tape allocation SSI so that BTLS can begin to control tape allocations. When the command executes, the following messages should be received at the operator console:

```
BTLS401I START OF BTLS INITIALIZATION
BTLS402I BTLS INITIALIZATION COMPLETE
```

8. Obtain an inventory list from the library.

After inventory processing is completed at the IBM 3494 Tape Library, use the IDCAMS command LIBRARY INVENTORY to obtain a list of the volumes in the INSERT category in the IBM 3494 Tape Library. The volume list is printed in the dataset of the LIBOUT DD statement.

Figure D-4 shows the sample JCL to obtain a list of the volumes in the INSERT category.
Appendix D. Basic tape library environment

Determine which VOLSER number to assign to the private category and which to assign to the scratch category. Then, issue the following command to assign each volume to the appropriate category:

```
LIBRARY SETCATEGORY
```

Figure D-5 shows a sample JCL where all volumes specified in the LIBIN DD dataset are assigned to the SCRTCH category.

```
//LIBJOB JOB
// EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=* 
//LIBIN DD DSN=dsname, DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB)
//SYSIN DD *
LIBRARY SETCATEGORY UNIT(180) CATEGORY(SCRTCH)
/*
```

Figure D-5 Sample JCL to assign volumes to the scratch category

With mixed media types in an IBM 3494 Tape Library, we recommend that you assign different volume categories for each media type to facilitate the conversion to DFSMS tape and control the use of the media types.

If you plan to use multiple scratch pools, you must decide how you will control scratch selection. The selection can be done by assigning a device to a specific scratch pool or using the message display exit IGXMSGEX.

BTLS can support a maximum of eight scratch pools, which must be called SCRTCH1 to SCRTCH8. SCRTCH1 is an alias for SCRTCH when only one media type is used. BTLS determines which scratch pool to use by first checking the UCB to see whether a specific scratch pool has been assigned to the device. If a scratch pool has not been assigned, BTLS uses the default scratch pool unless ISGMSGEX passes BTLS a scratch pool name from the mount message (see “Message display” on page 478). Note that DFSMSrmm and other tape management systems can use the mount message to pass BTLS the scratch pool name.

To assign a scratch pool to a specific device, use the LIBRARY SETDEVICE command as shown here:

```
LIBRARY SETDEVICE UNIT(700) CATEGORY(SCRTCH3)
LIBRARY SETDEVICE UNIT(701) CATEGORY(SCRTCH7)
```

10. Create volume records.
Use the IDCAMS command LIBRARY DEFINE to create a volume record for each volume. Figure D-6 shows the sample JCL to create volume records for the volumes. All volumes specified in the LIBIN DD dataset are cataloged as residing in library LIB1 (default).

```
//LIBJOB JOB
//     EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=* 
//LIBIN DD DSN=dsname,DISP=SHR 
//SYSIN DD *
LIBRARY DEFINE
/*
```

Figure D-6 Sample JCL to create volume records

For a specific volume request (private volume), if the volume is not defined in this catalog entry as a library volume, the volume is assumed to reside outside the library, and only nonlibrary devices are used to satisfy the allocation.

11. Create operator procedure.

Create a procedure to be used by the operator to issue the IBM 3494 Tape Library mounts and demounts. The procedure should invoke the IDCAMS LIBRARY command.

12. Define options for scratch allocation.

Before you set the BTLS options, first decide how you want BTLS to act. BTLS can influence allocation in the following ways:

- **Esoteric**
- **Job name, procedure name**
- **All allocations to library devices**
- **No allocations to library devices**

Table D-3 shows the combinations for the options.

Table D-3 BTLS library options

<table>
<thead>
<tr>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td></td>
<td></td>
<td>Scratch allocation is based on JOBNAME. When this option is used, only job names or procedure names defined with LIBRARY JOBNAME are directed to the 3494 Tape Library for scratch allocation.</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>All scratch allocations should go to a library device.</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td>All scratch allocations should go to a nonlibrary device, that is, a normal manual tape device.</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td>All scratch allocations are controlled by esoteric name.</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>Enables BTLS allocation support.</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>Disables BTLS allocation support.</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td>Traces BTLS allocation support for diagnostic purposes.</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>Enables DDR support.</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>Disables DDR support.</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td>Traces DDR support for diagnostic purposes.</td>
</tr>
</tbody>
</table>
If you decide to control allocation by job name or procedure name, a maximum of 50 names (or masks) can be specified per library. If fewer than eight characters are defined as a name, then BTLS uses this as a mask and matches these characters with the start of job or procedure name. If you decide to control allocation by an esoteric name, the esoteric unit can only contain library-resident drives. Sending all allocations to library-resident drives can be used if nonlibrary devices are not installed or are no longer used. Sending all allocations to nonlibrary devices can be used during installation or for problem analysis.

The LIBRARY OPTIONS command is used to indicate how BTLS should control allocation. The LIBRARY OPTIONS command is also used to change the BTLS defaults set in BTLSPRM00 or to display the BTLS options currently set. The sample LIBRARY OPTIONS command tells BTLS to base allocation on job or procedure name and that its allocation assist and DDR support are enabled.

LIBRARY OPTIONS(JEE)

For further control over allocation when you use JOBNAME, you can use the allocation installation exit, AOMABEXT. For example, if you want a workload to go to any IBM 3494 Tape Library, you must code the exit to pass the addresses of all eligible library-resident drives.

An example of the LIBRARY JOBNAMES command is shown here:

LIBRARY JOBNAMES(PRODAHSM GO2LIB1) LIBNAME(LIB1)
LIBRARY JOBNAMES(TESTJOB2 GO2LIB2) LIBNAME(LIB2)

In this example, PRODAHSM is directed to LIB1. TESTJOB2 goes to LIB2. Any job or procedure starting with GO2LIB1 goes to LIB1. And, any job or procedure starting with GO2LIB2 goes to LIB2.

If you later decide to add to or change the list of names BTLS is to use, you must include in the command the names that you want BTLS to continue to control. The original BTLS record is overwritten each time you issue the LIBRARY JOBNAMES command.

13. Secure the IDCAMS command, LIBRARY.

If you want to control use of the IDCAMS command LIBRARY, define IDCLI01 to RACF as a resource name within the RACF resource class PROGRAM. This definition allows only authorized users to send requests to the IBM 3494 tape libraries. A sample command to define IDCLI01 to RACF is shown here:

RDEFINE PROGRAM IDCLI01 UACC(NONE)
PERMIT IDCLI01 CLASS(PROGRAM) - ID(op) ACCESS(READ)

14. Create an internal volume label.

Use IEHINITT to label any cartridges that require internal volume labels.

Enter M to reply to the console message IEC701D for each volume. When volumes are demounted by IEHINITT, they are assigned to the private category. Use the LIBRARY SETCATEGORY command to assign the volumes to the appropriate category.

Installation exits

Installation exits are provided to enable you to extend or replace the BTLS replaceable module. The exits are optional. For sharing and partitioning an IBM 3494 Tape Library in a BTLS environment, you do not have to customize the system by using the installation exits.

For details about the installation exits discussed below, see the *BTLS V1R1 User’s Guide and Reference*, SC26-7016.
Set volume category
The set volume category installation exit, IDCLI04, is called by IDCLI01 when the SETCEXIT command is specified. Use the installation exit to specify the VOLSER number and category to be sent to the IBM 3494 Tape Library as a SETCATEGORY request. Some tape management system vendors use this exit to drive their own programs in support of the IBM 3494 Tape Library functions.

Message display
You can use the message display installation exit (IGXMSGEX) to select a BTLS scratch category that satisfies a library scratch mount. If one of the supported scratch categories is specified to the message display installation exit, that scratch category is used to override the scratch category that is otherwise used.

Allocation
You can use the allocation installation exit, AOMABEXT, to control library allocation. It can influence an allocation in one of the following ways:

- Do nothing.
- The allocation should be directed to a device in the specified library.
- The allocation should be directed to a device in any library.
- The allocation should exclude all library devices.

Tape management system considerations
Tape management systems cannot interface with a BTLS system. When you install a tape management system, you must define the volumes to both the tape management system and the BTLS system. To have both control datasets match, if the tape management system changes a volume’s status from private to scratch, you must use the LIBRARY SETCATEGORY command or the SETCEXIT (set volume category exit) to update the Library Manager volume category for the volume.

JES3 support for BTLS
There is no interface to allow the automatic update of BTLS records during the housekeeping functions of DFSMSrmm. Therefore, you must update the BTLS catalog accordingly using the IDCAMS LIBRARY command:

- The tape subsystems in the IBM 3494 Tape Library must not be defined in the JES3 initialization deck and, therefore, are not managed by JES3.
- z/OS performs all IBM 3494 Tape Library tape device allocations with the allocation assist function of BTLS. BTLS is responsible for communication with the Library Manager in the IBM 3494 Tape Library.
- BTLS functions in the JES3 environment are identical to the BTLS functions in the JES2 environment.
- JES3 DSPs or JES3 tape commands for tape drives inside an IBM 3494 Tape Library are unsupported.

JES3 can continue to manage tape devices outside the IBM 3494 Tape Library as long as those devices do not belong to the same generic or esoteric unit types as tape devices inside the IBM 3494 Tape Library. For example, you must not have JES3-managed 3490E devices outside the IBM 3494 Tape Library while IBM 3490E devices are inside the IBM 3494 Tape Library. You can have JES3-managed IBM 3480 and 3490 base devices (non-3490E) outside the IBM 3494 Tape Library while the devices inside the IBM 3494 Tape Library are all IBM 3490Es.
IBM 3490 base devices (non-3490E) are identical to IBM 3480 devices as far as z/OS JES3 is concerned. Therefore, you cannot have IBM 3490 base devices (non-3490Es) inside the IBM 3494 Tape Library and JES3-managed IBM 3480 or 3490 base (non-3490E) devices outside the library.

BTLS Library Manager categories

When volumes are added to the IBM 3494 Tape Library, they are placed in the Library Manager INSERT category. BTLS does not support automatic insert processing.

To tell BTLS which cartridges it will manage in the library, you must first ask the Library Manager which cartridges are in the INSERT category. Then, update the Library Manager to reflect their true status as scratch or private. If multiple scratch pools are used, each pool is assigned to a different Library Manager category.

Table D-4 lists the Library Manager volume categories used by BTLS.

Table D-4 BTLS Library Manager volume categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Use</th>
<th>Library Manager code</th>
<th>Category description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>I</td>
<td>FF00</td>
<td>Volumes inserted in the library that have not yet been assigned to another category.</td>
</tr>
<tr>
<td>EJECT</td>
<td>S</td>
<td>FF10</td>
<td>Convenience I/O eject.</td>
</tr>
<tr>
<td>XEJECT</td>
<td>S</td>
<td>FF10</td>
<td>Same as EJECT. X indicates that, in addition to ejecting the volume from the library, the catalog record from the volume should be deleted.</td>
</tr>
<tr>
<td>EJECTB</td>
<td>S</td>
<td>FF11</td>
<td>Bulk I/O eject.</td>
</tr>
<tr>
<td>XEJECTB</td>
<td>S</td>
<td>FF11</td>
<td>Same as EJECTB. X indicates that, in addition to ejecting the volume from the library, the catalog record from the volume should be deleted.</td>
</tr>
<tr>
<td>SCRATCH</td>
<td>IASDT</td>
<td>0FFF</td>
<td>Default scratch volume category.</td>
</tr>
<tr>
<td>SCRATCH1</td>
<td>IASDT</td>
<td>0FFF</td>
<td>Default scratch volume category (alias name for SCRATCH).</td>
</tr>
<tr>
<td>SCRATCH2</td>
<td>IASDT</td>
<td>0FF2</td>
<td>Alternate scratch volume category.</td>
</tr>
<tr>
<td>SCRATCH3</td>
<td>IASDT</td>
<td>0FF3</td>
<td>Alternate scratch volume category.</td>
</tr>
<tr>
<td>SCRATCH4</td>
<td>IASDT</td>
<td>0FF4</td>
<td>Alternate scratch volume category.</td>
</tr>
<tr>
<td>SCRATCH5</td>
<td>IASDT</td>
<td>0FF5</td>
<td>Alternate scratch volume category.</td>
</tr>
<tr>
<td>SCRATCH6</td>
<td>IASDT</td>
<td>0FF6</td>
<td>Alternate scratch volume category.</td>
</tr>
<tr>
<td>SCRATCH7</td>
<td>IASDT</td>
<td>0FF7</td>
<td>Alternate scratch volume category.</td>
</tr>
<tr>
<td>SCRATCH8</td>
<td>IASDT</td>
<td>0FF8</td>
<td>Alternate scratch volume category.</td>
</tr>
<tr>
<td>PRIVATE</td>
<td>IS</td>
<td>FFFF</td>
<td>Private volume category.</td>
</tr>
<tr>
<td>ERROR</td>
<td>I</td>
<td>F00E</td>
<td>Error volume category. Volumes are assigned to the error category during demount if the VOLSER number specified for demount does not match the external label of the volume being demounted.</td>
</tr>
</tbody>
</table>
Testing to verify the installation

Because migration to and from BTLS is similar to that in system-managed tape in many ways, this section limits its discussion to mainly what is different.

All testing tasks apply to BTLS, although the results are slightly different in many cases:

- Insert processing is not handled automatically. Use LIBRARY INVENTORY commands to define cartridges to BTLS after they are inserted.
- Eject processing is invoked by a LIBRARY SETCATEGORY EJECT/XEJECT command. No console or integrated storage management facility (ISMF) interface is available. Some tape management systems drive this command through the BTLS command interface exit (IDCLI04).
- Allocation is driven by BTLS, using either esoteric units or job names to select a library drive. You have to test the definitions. Make sure you have the right datasets in the library.
- You can use IEHINITT to label tapes inside a library.
- The specifications of the SYS1.PARMLIB ALLOCnn member apply to BTLS.

Software customization

Because migration to and from BTLS is similar to that in system-managed tape in many ways, this section limits its discussion to mainly what is different.

<table>
<thead>
<tr>
<th>Name</th>
<th>Usea</th>
<th>Library Manager codeb</th>
<th>Category description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEANER</td>
<td>I</td>
<td>FFFE</td>
<td>Cleaner cartridge</td>
</tr>
<tr>
<td>SERVICE</td>
<td></td>
<td>FFF6</td>
<td>3590 Service volume. This category is reported by the COUNTS command but is not valid with any other LIBRARY command (such as SETACL or INVENTORY).</td>
</tr>
<tr>
<td>SERVICE</td>
<td></td>
<td>FFF9</td>
<td>3490 Service volume. This category is reported by the COUNTS command but is not valid with any other LIBRARY command (such as SETACL or INVENTORY).</td>
</tr>
<tr>
<td>EJCTM</td>
<td>I</td>
<td>FFFA</td>
<td>Manually ejected volume. Volumes in this category still have an entry in the Library Manager database. You can delete the entry from the Library Manager database by specifying the PURGE category in a SETCATEGORY command.</td>
</tr>
<tr>
<td>PURGE</td>
<td>S</td>
<td>FFFB</td>
<td>Purge volume. The PURGE category name is used to remove the Library Manager database record for a volume that is either manually ejected or misplaced.</td>
</tr>
</tbody>
</table>

a. Describes which LIBRARY command can read or change the Library Manager category:
 - I = INVENTORY
 - A = SETACL
 - S = SETCATEGORY
 - D = SETDEVICE
 - T = Threshold

b. The hexadecimal Library Manager volume category code
Backup and synchronization

The repositories of BTLS are the system master catalog and the BTLS user catalog. As with system-managed tape, protect the catalogs using standard ICFCATALOG backup and recovery procedures, such as ICFRU.

If you have a catalog recovery tool, you can use it to recover the catalog from a backup and accumulated SMF records.

If the BTLS user catalog fails, you can obtain the list of the volumes by using the LIBRARY INVENTORY command and then define the volumes to the new BTLS user catalog by using the LIBRARY DEFINE command. In this way, you can recover the BTLS user catalog definitions of volumes in the library.

To detect anomalies and to generate reports, BTLS provides the following functions:

- **LIBRARY AUDIT**: Use the robotic system to verify that volumes are physically present in the library.
- **LIBRARY COUNTS**: Obtain a count of all volumes in each category in a library.
- **LIBRARY INVENTORY**: Obtain a list of VOLSERs for all of the volumes by category.

When you use the LIBRARY INVENTORY command to obtain the list of volumes, the Library Manager returns a complete list of its inventory in response to this request. BTLS assigns its private volumes to Library Manager volume category X'FFFF'. DFSMS/VM and VSE/ESA also use the same Library Manager volume category. In addition, AIX and the Control Path Server can use the user-specified Library Manager volume category.

After you obtain the list of the private category volumes, you must be careful to select BTLS volumes. Therefore, we recommend that you use a different range of volume serial numbers for each system.

- **LIBRARY LISTVOL**: List the volumes that are cataloged for a library.
- **LIBRARY REPORT**: Create a report of all devices defined for a library.

Most of these commands use datasets as either input or output. You can easily reuse them if you need to go through an entire set of commands to achieve a certain result.

To update or correct BTLS information, use these commands:

- **LIBRARY DEFINE**: Define either volume or library record.
- **LIBRARY DELETE**: Delete either volume or library records.
- **LIBRARY SETCATEGORY**: Assign a volume to the category specified.
- **LIBRARY SETDEVICE**: Associate a scratch category with a device.

Automation considerations are different from system-managed tape. Because neither OAM nor SMS is used, CBR* or IGD* library messages are not issued at the z/OS console. Refer to the *BTLS V1R1 User's Guide and Reference*, SC26-7016, for a complete update about all BTLS messages.

DFSMShsm and BTLS

Because DFSMShsm runs as a started task, you must specify DFSMShsm procedure names in the LIBRARY JOBNAMES command when you want to use the library in BTLS with OPTIONS(Jxx). When you use ABARS in BTLS, you must also specify the ABARS procedure name.
Since BTLS also honors esoteric names, you can control the DFSMSHsm function level granularity to exploit the library, if the esoteric option is specified.

Because the SETSYS LIBRARYMIGRATION and LIBRARYBACKUP parameters are valid only for system-managed tape libraries, DFSMSHsm uses the same characteristics as it does for nonlibrary tapes. However, a tape drive within the proper library is always selected for a library-resident volume. The DFSMSHsm unit name affects device allocation. Read compatibility works automatically on input device allocations of DFSMSHsm-owned volumes. The unit name can be a generic or esoteric name.

Note: Special circumstances apply if you use a generic device name in the SETSYS unit-type statements and do not have 3490E devices installed. When you vary the 3490E library devices online, all HSM input allocations are directed to the new 3490E units, because z/OS device preferencing tries to use non-ICL devices in preference to ICL-capable devices for specific mounts.

DFHSM forces data compaction (IDRC or IBMLZ1) for the 3490E and 3590 when it is used as the output device. SETSYS TAPEHWC or SETSYS NOTAPEHWC effectively controls IDRC only for the 3490 base models. The DFHSM default for the 3490 base models is NOTAPEHWC.

The TAPECOPY command provides a way of copying migration level 2 and backup single file tape volumes. When you use 3480, 3480X, 3490, and 3590 generic unit names for input volumes for TAPECOPY, you must consider device compatibility. The original volumes and the alternate volumes that are created must use the same recording technology and media type. DFHSM verifies device compatibility automatically.

During TAPECOPY processing, if MEDIA1 is mounted when MEDIA2 is needed, or alternatively, the process fails. To avoid this situation, the SETSYS TAPEOUTPUTPROMPT(TAPECOPY(YES)) command forces a message to the operator indicating which media type should be mounted. By defining two scratch media categories with the LIBRARY SETCATEGORY command, SCRTCH for MEDIA1 and SCRTCH2 for MEDIA2, the z/OS operator can mount the correct media type for the request.

Controlling and operating considerations

The operational interface to BTLS is provided by the IDCAMS LIBRARY command. The LIBRARY command performs operations needed to manage tape volumes that reside in a tape library.

You can run the IDCAMS LIBRARY command as either a TSO command or with JCL. Refer to the *BTLS V1R1 User’s Guide and Reference*, SC26-7016, for more information about the IDCAMS LIBRARY command.

Return to scratch processing

In a BTLS environment, when the volume resident in the tape library is used by host tape processing, the Library Manager category of the volume is automatically updated to the private category. For a scratch mount request, the Library Manager selects only the volume assigned to the scratch category. Therefore, when the data on the private category volume is no longer usable, the Library Manager volume category must be updated to the scratch category to recycle the volume to be used by a scratch mount request.
The only way to return the volume category to scratch in a BTLS environment is to use the LIBRARY SETCATEGORY command. The command assigns a volume to the category specified by the CATEGORY parameter with the appropriate BTLS scratch category name. Figure D-5 shows a sample JCL to assign volumes to the scratch category.

```
//LIBJOB   JOB ...
  //STEP1 EXEC PGM=IDCAMS
  //SYSPRINT DD SYSOUT=*  
  //LIBIN DD DSN=ASSIGN.VOLUMES.TO.SCRTCH,DISP=SHR
  //SYSIN   DD *
    LIBRARY SETCATEGORY UNIT(xxx) CATEGORY(SCRTCH)
/*
```

Figure D-7 Sample JCL to assign volumes to scratch category

In this example, all of the volumes listed in the LIBIN dataset are assigned to category SCRTCH.

Note: UNIT(xxx) specifies one of the tape drive addresses installed in the tape library.

BTLS has no function to manage the retention of the tape dataset residing in the BTLS-managed volumes. Therefore, you must develop a procedure or use the tape management system to manage the tape dataset retention period.

Cartridge insert processing

When the cartridges are inserted into the tape library, the Library Manager creates the volume records for each cartridge, assigns INSERT category as the volume category, and sends the volume information to all connected host systems. BTLS has no functional interface to receive the volume information from the Library Manager and automatically set up the volume status.

You must complete the following steps, using the LIBRARY command:

1. Obtain a list of the volumes in the INSERT category. Use the LIBRARY INVENTORY command with the CATEGORY(INSERT) parameter to obtain the list.
2. Assign volumes to the scratch or private category. Use the LIBRARY SETCATEGORY command and the volume list obtained in step 1 to assign an appropriate volume category to the volume records in the Library Manager.
3. Create BTLS volume catalog records. Use the LIBRARY DEFINE command and the volume list from step 1 to create BTLS volume catalog records in the BTLS user catalog. For specific volume requests, BTLS uses the volume catalog records to control allocation.

Figure D-8 shows a sample JCL for INSERT processing.
In this example, an inventory list is obtained for all volumes in the INSERT category through the LIBRARY INVENTORY command. The volume serial number list is created in dataset INSERT.VOLUMES.LIST. The LIBRARY SETCATEGORY command causes the volumes to be placed in the scratch category in the Library Manager. The LIBRARY DEFINE command causes the volumes to be defined in the BTLS user catalog as residing in LIB1.

Note: UNIT(xxx) specifies one of the tape drive addresses installed in the tape library.

Cartridge eject processing

The Library Manager ejects the volumes in the EJECT categories from inside the tape library to the convenience I/O station or the high capacity output cells. The EJECT categories are the **convenience eject category** and the **bulk eject category**. The volume in the convenience eject category is ejected to the convenience I/O station. The volume in the bulk eject category is ejected to the high capacity output cell.

You can only use the Library Manager to eject cleaning cartridges without the host eject command. The data cartridges cannot be ejected through Library Manager console commands. Host interaction is needed.

In a BTLS environment, you can use the LIBRARY SETCATEGORY command to assign the eject category to the volume that you want to eject from the tape library (see Figure D-9).

In Figure D-9, all of the volumes listed in the LIBIN dataset are assigned to the convenience eject category. The BTLS volume catalog records for the volumes should also be deleted.

Note: UNIT(xxx) specifies one of the tape drive addresses installed in the tape library.
Media selection

For a scratch mount request, BTLS volume selection is based on the scratch category assigned to the allocated tape drive. It is not based on the volume media type. To select by media type, assign a different scratch category to each media-type volume.

The system default scratch category name is SCRTCH1 (alias name for SCRTCH). BTLS supports eight scratch categories, SCRTCH1 through SCRTCH8. The system default can be changed by specifying a scratch category name in SYS1.PARMLIB member BTLSPRMxx. For example, if you specify SCRTCH2 in BTLSPRMxx, SCRTCH2 becomes the system default scratch category.

Use the IDCAMS LIBRARY SETDEVICE command to indicate that a tape drive use a scratch category name other than the system default.

The category used to satisfy a scratch mount request issued to a particular tape drive is determined as follows:

- If the LIBRARY SETDEVICE command is used to associate a category name with the tape drive, the category name specified in the SETDEVICE command is used.
- If the LIBRARY RESETDEVICE command is used to restore the default state of the device (or the SETDEVICE command has never been issued to the device), the system default category name is used.
JES3 examples and information

This appendix presents configuration examples and other JES3 considerations. It describes the following scenarios:

- Two libraries with an intermix of 3592-J1A, 3592-E05, and 3592-E05 encryption-enabled drives and standalone Virtual Tape Server (VTS) installed
- Three libraries with an intermix of 3592-J1A, 3592-E05, and 3592-E05 encryption-enabled drives, a standalone VTS, and a Peer-to-Peer (PtP) VTS installed
- Two libraries with a mix of 3490E, 3590E, 3590H, and standalone VTS installed

With these examples, we intend to provide all the necessary information to install any possible configuration in a 3494 Tape Library. For more basic information about the products in these scenarios, refer to the following publications:

- z/OS JES3 Initialization and Tuning Guide, SA22-7549
- z/OS JES3 Initialization and Tuning Reference, SA22-7550
- IBM TotalStorage Virtual Tape Server Planning, Implementing, and Monitoring, SG24-2229
- IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide, SG24-6115
First configuration example

This 3494 JES3 configuration example (Figure E-1) shows a JES3 configuration with two IBM 3494 Tape Libraries attached to it. Library 1 has a LIBRARY-ID of F4001 and a mix of 3592-J1A and 3592-E05 tape drives, and a standalone VTS installed with a VTS LIBRARY-ID of 13001. Library 2 has a LIBRARY-ID of F4006 and a mix of 3592-J1A, 3592-E05, and 3592-E05 encryption-enabled tape drives installed. Figure E-1 does not show the actual needed configuration regarding the number of frames and the backend drives for the VTS.

Library device group (LDG) definitions needed for example A

Table E-1 shows all the LDG definitions you need in the hardware configuration definition (HCD). There is a total of 11 esoterics to define.

<table>
<thead>
<tr>
<th>LDG definition</th>
<th>Value for LDG</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex-wide name</td>
<td>LDGW3495</td>
<td>Standard name that appears once</td>
</tr>
<tr>
<td>Library-specific name</td>
<td>LDGF4001, LDGF4006, LDG13001</td>
<td>One definition for each library</td>
</tr>
</tbody>
</table>
Device statement for example A

Figure E-2 shows you all the device statements for example A. No different online or offline values are specified for different attached systems. They are coded with *ALL.

<table>
<thead>
<tr>
<th>LDG definition</th>
<th>Value for LDG</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex-wide device type</td>
<td>LDG359J</td>
<td>One definition for each installed device type.</td>
</tr>
<tr>
<td></td>
<td>LDG359K</td>
<td>Represents the 3592-J1A devices</td>
</tr>
<tr>
<td></td>
<td>LDG359L</td>
<td>Represent the 3592-E05 devices</td>
</tr>
<tr>
<td>Library-specific device type</td>
<td>LDJF4001</td>
<td>One definition for each device type in each library.</td>
</tr>
<tr>
<td></td>
<td>LDEF12001</td>
<td>Represents the 3592-J1A in library F4001</td>
</tr>
<tr>
<td></td>
<td>LDKF4001</td>
<td>Represents the VTS Drives in library F4001</td>
</tr>
<tr>
<td></td>
<td>LDJF4006</td>
<td>Represents the 3592-E05 in library F4001</td>
</tr>
<tr>
<td></td>
<td>LDKF4006</td>
<td>Represents the 3592-J1A in library F4001</td>
</tr>
<tr>
<td></td>
<td>LDLF4006</td>
<td>Represents the 3592-E05 encryption-enabled in library F4006</td>
</tr>
</tbody>
</table>

Setname statements for example A

Figure E-3 includes all the SETNAME statements for example A. There is a SETNAME statement for the 3490E native devices and for the 3490E emulated devices in a VTS.

<table>
<thead>
<tr>
<th>Setname statement values for example A</th>
<th>Value for LDG</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETNAME,XTYPE=LB1359J,NAMES=(LDGW3495,LDGF4001,LDG359J,LDJF4001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETNAME,XTYPE=LB1359K,NAMES=(LDGW3495,LDGF4001,LDG359K,LDJF4001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETNAME,XTYPE=LB1VTSA1,NAMES=(LDGW3495,LDG3490E,LDEF4006,LDE13001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETNAME,XTYPE=LB2359J,NAMES=(LDGW3495,LDGF4006,LDG359J,LDJF4006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETNAME,XTYPE=LB2359K,NAMES=(LDGW3495,LDGF4006,LDG359K,LDKF4006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETNAME,XTYPE=LB2359L,NAMES=(LDGW3495,LDGF4006,LDG359L,LDLF4006)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure E-2 DEVICE statement for example A

Figure E-3 SETNAME statement values for example A
High watermark setup name statements for example A

Figure E-4 shows the high watermark setup name (HWSNAME) statements.

Footnotes for Figure E-4:
1. LDG359L is a subset, because no other 3592-E05 encryption-enabled drives are installed.
2. LDLF4006 is a valid substitution of LDG359L, because no other 3592-E05 encryption-enabled drives are installed.

Second configuration example

Figure E-5 shows a JES3 configuration with three 3494 tape libraries attached to it. Library 1 has a LIBRARY-ID of F4001 and a mix of 3592-J1A and 3592-E05 tape drives, and a half of a PtP VTS (Distributed Library) installed. Library 2 has a LIBRARY-ID of F4006 and a mix of 3592-E05 and 3592-E05 encryption-enabled tape drives and the second Distributed Library of the PtP VTS is installed. The PtP VTS has a Composite LIBRARY-ID of 47110.

Library 3 has LIBRARY-ID 22051 with 3592-E05 and 3592-E05 encryption-enabled tape drives and a standalone VTS installed with a VTS LIBRARY-ID of 13001. Figure E-5 does not show the actual configuration needed in regard to the number of frames and the number of backend drives for the VTS and PtP VTS configurations.
Figure E-5 Second configuration example

LDG definitions needed for example B

Table E-2 shows all the LDG definitions needed in the HCD. There is a total of 17 esoterics to define.

Table E-2 LDG definitions for the second configuration example

<table>
<thead>
<tr>
<th>LDG definition</th>
<th>Value for LDG</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex-wide name</td>
<td>LDGW3495</td>
<td>Standard name that appears once</td>
</tr>
<tr>
<td>Library-specific name</td>
<td>LDGF4001 LDGF4006 LDG22051 LDG13001 LDG47110</td>
<td>One definition for each library and for each VTS. For a PtP VTS, only the Composite ID is specified.</td>
</tr>
<tr>
<td>Complex-wide device type</td>
<td>LDG3490E LDG359J LDG359K LDG359L</td>
<td>One definition for each installed device type: Represents the devices in PtP VTS Represents the 3592-J1A Represents the 3592-E05 Represents the 3592-E05 encryption-enabled</td>
</tr>
</tbody>
</table>
Device statement needed for example B

Figure E-6 shows all device statements for the given example.

<table>
<thead>
<tr>
<th>LDG definition</th>
<th>Value for LDG</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library-specific device type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDKF4001</td>
<td>Represents the 3592-E05 in library F4001</td>
<td></td>
</tr>
<tr>
<td>LDE13001</td>
<td>Represents the VTS in library 22051</td>
<td></td>
</tr>
<tr>
<td>LDE47110</td>
<td>Represents the PtP VTS in both library</td>
<td></td>
</tr>
<tr>
<td>LDKF4006</td>
<td>Represents the 3592-E05 in library F4006</td>
<td></td>
</tr>
<tr>
<td>LDLF4006</td>
<td>Represents the 3592-E05 encryption-enabled in library F4006</td>
<td></td>
</tr>
<tr>
<td>LDE22051</td>
<td>Represents the 3490E VTS in library 22051</td>
<td></td>
</tr>
<tr>
<td>LDK22051</td>
<td>Represents the 3592-E05 in library 22051</td>
<td></td>
</tr>
<tr>
<td>LDL22051</td>
<td>Represents the 3592-E05 encryption-enabled in library 22051</td>
<td></td>
</tr>
</tbody>
</table>

Restriction: If you code NUMDEV in a PtP VTS environment, the workload balancing from the AX-0 controllers is not working. Therefore, you must specify each device as a single statement and specify ADDRSORT=NO to prevent JES3 from sorting them. For more information, refer to IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide, SG24-6115.
SETNAME statements needed for example B

Figure E-7 includes the necessary SETNAME statements.

Figure E-7 SETNAME statement values for example B

High watermark setup name statements for example B

Figure E-8 shows the high watermark setup name (HWSNAME) statements.

Figure E-8 High watermark setup statements for example B

Footnotes for Figure E-8:

1. All Library HWS names include only the specific drive-library LDG names. No device is installed only in a single library; therefore, no device-specific LDG name is a valid subset of any library.

2. The LDG3490E contains the 3490E VTS emulated drives.

Third configuration example

The 3494 JES3 configuration example (Figure E-9) shows a JES3 configuration with two 3494 tape libraries attached to it. Library 1 has a LIBRARY-ID of F4001 and a mix of 3490E, 3590E, and a standalone VTS installed with a VTS LIBRARY-ID of 13001. Library 2 has a LIBRARY-ID of F4006 and a mix of 3490E, 3590E, and 3590H installed. Figure E-9 does not show the actual configuration needed in regard to the number of frames and the number of backend drives for the VTS.
Library device group (LDG) definitions needed for example C

Table E-3 shows all the LDG definitions you need in the hardware configuration definition (HCD). There is a total of 11 esoterics to define.

Table E-3 LDG definitions for the third configuration example

<table>
<thead>
<tr>
<th>LDG definition</th>
<th>Value for LDG</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex-wide name</td>
<td>LDGW3495</td>
<td>Standard name that appears once</td>
</tr>
<tr>
<td>Library-specific name</td>
<td>LDGF4001, LDGF4006, LDG13001</td>
<td>One definition for each library</td>
</tr>
</tbody>
</table>
| Complex-wide device type | LDG3490E, LDG359E, LDG359H | One definition for each installed device type:
 | Represents the 3590E devices
 | Represents the 3590-E1A devices
 | Represents the 3590H devices |
| Library-specific device type | LDEF4001, LDEF4006, LDLFF4006 | One definition for each device type in each library:
 | Represents the 3490E in library F4001
 | Represents the VTS Drives in library F4001
 | Represents the 3590E in library F4001
 | Represents the 3490E in library F4006
 | Represents the 3590E in library F4006
 | Represents the 3590H in library F4006

Device statement for example C

Figure E-10 shows you all the device statements for example C. No different online or offline values are specified for different attached systems. They are coded with ALL.

```
*/  Devices 3490E, 3590E and VTS in Library 1 .................../*
DEVICE,XTYPE=(LB13490E,CA),XUNIT=(1000,*ALL,,OFF),numdev=2
DEVICE,XTYPE=(LB13590E,CA),XUNIT=(1100,*ALL,,OFF),numdev=8
DEVICE,XTYPE=(LB1VTSA1,CA),XUNIT=(1200,*ALL,,OFF),numdev=256

*/  Devices 3490E, 3590E and 3590H in Library 2 ................./*
DEVICE,XTYPE=(LB23490E,CA),XUNIT=(2000,*ALL,,OFF),numdev=2
DEVICE,XTYPE=(LB23590E,CA),XUNIT=(2100,*ALL,,OFF),numdev=8
DEVICE,XTYPE=(LB23590H,CA),XUNIT=(2200,*ALL,,OFF),numdev=8
```

Figure E-10 DEVICE statement for example C

Setname statements for example C

Figure E-11 includes all the SETNAME statements for example C. There is a SETNAME statement for the 3490E native devices and for the 3490E emulated devices in a VTS.

```
SETNAME,XTYPE=LB13490E,NAMES=(LDGW3495,LDGF4001,LDG3490E,LDEF4001)
SETNAME,XTYPE=LB13490E,NAMES=(LDGW3495,LDGF4001,LDG3490E,LDEF4001)
SETNAME,XTYPE=LB1VTSA1,NAMES=(LDGW3495,LDG13001,LDGF4001,LDG3490E,LDEF4001,LDE13001)
SETNAME,XTYPE=LB23490E,NAMES=(LDGW3495,LDGF4006,LDG3490E,LDEF4006)
SETNAME,XTYPE=LB23590E,NAMES=(LDGW3495,LDGF4006,LDG359E,LDCF4006)
SETNAME,XTYPE=LB23490H,NAMES=(LDGW3495,LDGF4006,LDG359H,LDF4006)
```

Figure E-11 SETNAME statement values for example C

High watermark setup name statements for example C

Figure E-12 shows the high watermark setup name (HWSNAME) statements.

```
HWSNAME,TYPE=(LDGW3495,LDGF4001,LDGF4006,LDG13001,LDG3490E,LDG359E,LDG359H,LDEF4001,
  LDEF4006,LDEG13001,LDCF4001,LDCF4006,LDF4006)
HWSNAME,TYPE=(LDG4001,LDCF4001)
HWSNAME,TYPE=(LDGF4006,LDG359H,LDEF4006,LDCF4006,LDF4006)1
HWSNAME,TYPE=(LDG13001,LDE13001)
HWSNAME,TYPE=(LDG3490E,LDEF4001,LDCF4006,LDE13001))
HWSNAME,TYPE=(LDG359E,LDCF4001,LDCF4006)
HWSNAME,TYPE=(LDG359H,LDF4006)2
HWSNAME,TYPE=(LDF4006,LDG359H)
HWSNAME,TYPE=(LDE13001,LDG13001)
```

Figure E-12 High watermark setup statements for example C

Footnotes for Figure E-4:
1. LDG359H is a subset, because no other 3590Hs are installed.
2. LDFF4006 is a valid substitution of LDG359H, because no other 3590Hs are installed.
Processing changes

Although no JCL changes are required, a few processing restrictions and limitations are associated with using the IBM 3494 Tape Library in a JES3 environment:

- JES3 spool access facility (SPAF) calls are not used.
- Two calls, one from the prescan phase and the other from the locate processing phase, are made to the new DFSMS/MVS support module, as shown in Figure E-13.
- The main device scheduler (MDS) processing phases, system select and system verify, do not occur for tape datasets.
- The MDS verify phase is bypassed for IBM 3494 Tape Library mounts, and mount processing is deferred until job execution.

Figure E-13 shows the JES3 processing phases for C/I and MDS. The processing phases shown include the support for system-managed direct access storage device (DASD) datasets.

The fundamental differences between IBM 3494 Tape Library deferred mounting and tape mounts for nonlibrary drives are:

- Mounts for nonlibrary drives by JES3 are only for the first use of a drive. Mounts for the same unit are issued by z/OS for the job. All mounts for IBM 3494 Tape Library drives are issued by z/OS.
- If all mounts within a job are deferred because there are no nonlibrary tape mounts, that job is not included in the setup depth parameter (SDEPTH).
- MDS mount messages are suppressed for the IBM 3494 Tape Library.
JES3/DFSMS processing

DFSMS is called by the z/OS interpreter to:
- Update the scheduler work area (SWA) for DFSMS tape requests
- Call automatic class selection (ACS) exits for construct defaults

DFSMS/MVS system-managed tape devices are not selected by using the UNIT parameter in the JCL. For each DD request requiring an IBM 3494 Tape Library unit, a list of device pool names is passed and from that list, an LDG name is assigned to the DD request. This results in an LDG name passed to JES3 MDS for that request. Device pool names are never known externally.
Selecting UNITNAMEs

For a DD request, the LDG selection is based on the following conditions:

- When all devices in the complex are eligible to satisfy the request, the complex-wide LDG name is used.
- When the list of names contains names of all devices of one device type in the complex, the corresponding complex-device type name (for example, LDG3490E) must be used.
- When the list of names contains all subsystems in one IBM 3494 Tape Library, the library-specific LDG name (in our examples, LDGF4001, LDGF4001, and so forth) is used.
- When the list contains only subsystems for a specific device type, within one IBM 3494 Tape Library, the LDG device-type library name (in our example, LDEF4001, and so on) is used.

New or modified datasets

For new datasets, ACS directs the allocation by providing Storage Group, Storage Class, and Data Class. When the Storage Group specified by ACS is defined in the active DFSMS configuration as a tape Storage Group, the request is allocated to an IBM 3494 Tape Library tape drive.

DFSMS-managed DISP=MOD datasets are assumed to be new update locate processing. If a catalog locate determines that the dataset is old by the VOLSER specified, then a new LDG name is determined based on the rules for old datasets.

Old datasets

Old dataset allocations are directed to a specific IBM 3494 Tape Library when the volumes containing the dataset are located within that IBM 3494 Tape Library. For old datasets, the list is restricted to the IBM 3494 Tape Library that contains the volumes.

DFSMS catalog processing

JES3 catalog processing determines all of the catalogs required by a job, and divides them into two categories:

- DFSMS-managed user catalogs
- JES3-managed user catalogs

DFSMS catalog services, a subsystem interface call to catalog locate processing, are used for normal locate requests. DFSMS catalog services are invoked during locate processing. It invokes SVC 26 for all existing datasets when DFSMS is active. Locates are required for all existing datasets to determine whether they are DFSMS-managed, even if VOL=SER= is present on the DD statement. If the request is for an old dataset, catalog services determine whether it is for a library volume. For multivolume requests that are system-managed, a check is made to determine whether all volumes are in the same library.

DFSMS VOLREF processing

DFSMS VOLREF services are invoked during locate processing if VOL=REF= is present on a DD statement for each dataset that contains a volume reference to a cataloged dataset. DFSMS VOLREF services determine whether the dataset referenced by a VOL=REF= parameter is DFSMS-managed. Note that VOL=REF= now maps to the same Storage Group for a DFSMS-managed dataset, but not necessarily to the same volume. DFSMS VOLREF services also collect information about the job's resource requirements.
The IBM 3494 Tape Library supports the following features:

- Identifies the DDs that are IBM 3494 Tape Library-managed mountable entries
- Obtains the associated device pool names list
- Selects the LDG that best matches the names list
- Provides the LDG name to JES3 for setup
- Indicates to JES3 that the mount is deferred until execution

Fetch messages

As IBM 3494 Tape Library cartridges are mounted and demounted by the library accessor, fetch messages to an operator are unnecessary and can be confusing. With this support, all fetch messages (IAT5110) for IBM 3494 Tape Library requests are changed to be the non-action informational USES form of the message. These messages are routed to the same console destination as other USES fetch messages. The routing of the message is based on the UNITNAME.

JES3 allocation and mounting

JES3 MDS controls the fetching, allocation, and mounting of the tape volumes requested in the JCL for each job executed on a processor. The scope of MDS tape device support is complex-wide, unlike z/OS job resource allocation, whose scope is limited to one processor. Another difference between JES3 MDS allocation and z/OS allocation is that MDS considers the resource requirements for all the steps in a job for all processors in a loosely coupled complex. z/OS allocation considers job resource requirements one step at a time in the executing processor.

MDS processing also determines which processors are eligible to execute a job based on resource availability and connectivity in the complex.

z/OS allocation interfaces with JES3 MDS during step allocation and dynamic allocation to get the JES3 device allocation information and to inform MDS of resource deallocations. z/OS allocation is enhanced by reducing the allocation path for mountable volumes. JES3 supplies the device address for the IBM 3494 Tape Library allocation request through an SSI request to JES3 during step initiation when the job is executing under the initiator. This support is unchanged from previous releases.

DFSMS/MVS and z/OS provide all the IBM 3494 Tape Library support except the interfaces to JES3 for MDS allocation and processor selection.

JES3 MDS continues to select tape units for the IBM 3494 Tape Library. MDS no longer uses the UNIT parameter for allocation of tape requests for IBM 3494 Tape Library requests. DFSMS/MVS determines the appropriate LDG name for JES3 setup, from the Storage Group and Data Class assigned to the dataset, and replaces the UNITNAME from the JCL with that LDG name. Because this is done after the ACS routine, the JCL-specified UNITNAME is available to the ACS routine. This capability is used to disallow JCL-specified LDG names. If LDG names are permitted to be used in the JCL, the associated datasets must be in a DFSMS tape environment. Otherwise, the allocation fails, because an LDG name restricts allocation to IBM 3494 Tape Library drives that can be used only for system-managed volumes.

Note: An LDG name specified as a UNITNAME in JCL can be used only to filter requests within the ACS routine. Because DFSMS/MVS replaces the externally specified UNITNAME, it cannot be used to direct allocation to a specific library or library device type.
All components within z/OS and DFSMS/MVS request tape mounting and demounting inside an IBM 3494 Tape Library. They call a DFP service, library automation communication services (LACS), instead of issuing a WTO. This is done by z/OS allocation, so all mounts are deferred until job execution. The IBM 3494 Tape Library LACS support is called at that time.

MDS allocates an available drive from the available unit addresses for LDGW3495. It passes that device address to z/OS allocation through the JES3 allocation SSI. At dataset OPEN time, LACS are used to mount and verify a scratch tape. When the job finishes with the tape, either CLOSE or deallocation issues a demount request through LACS. This removes the tape from the drive. MDS does normal breakdown processing and does not need to communicate with the IBM 3494 Tape Library.
REXX utility to recover TCDB

The following code shows the REXX program to create IDCAMS Volume Entry commands:

```rexx
******************************************************************************
/* REXX***************************************************************************/
/* IBM INTERNAL USE ONLY */
/* */
/* TCDB RECOVERY TOOL V1.0 */
/* */
/* DESCRIPTION: REXX program for making the IDCAMS CREATE VOLUME */
/* ENTRY COMMAND FROM 3494 LIBRARY MANAGER DB LIST. */
/* In case of crashing the volcat(TCDB), */
/* you can recreate VOLUME ENTRY by this program and */
/* IDCAMS. */
/* */
/* Before executing this exec., you are required to */
/* prepare the input FILE WHICH CONTAINS LM DB FILE. */
/* (FILE NAME IS TCDBRECV INFILE A) */
/* The output is written to TCDBRECV OUTFILE A. */
/* */
/* NOTE1 : This program assumes that; */
/* Recording technique of Media type 1 is 36TRACK. */
/* Recording technique of Media type E is 36TRACK. */
/* Recording technique of Media type J is 128TRACK. */
/* Recording technique of Media type K is 128TRACK. */
/* */
/* NOTE2 : ENTER YOUR SCRATCH/Private CATEGORY CODE. */
/* ENTER YOUR LIBRARY NAME. */
/* */
/* Creation Date: 1999/07/14 By K.Uchiyama (IBM Japan) */
/* Last Update : 2003/03/11 by K. Denefleh */
/* Last Update : yyyy/mm/dd */
******************************************************************************

/* Enter your scratch category code */
scratch1 = 0001
scratch2 = 0002
scratch3 = 0003
scratch4 = 0004
```
/* Enter your private category code */
private1 = 000F
private2 = PPPP

/* Enter your error category code */
error1 = 000E

/* Enter your LIBRARY name */
atllib1 = LIBATL1 /* for 3494ATL */
vtslib1 = LIBVTS1 /* for 3494VTS */
vtslib2 = LIBVTS2 /* for 3494VTS */

/* Open the file and queue the all records. */
execio * diskr tcdbRECV INFILE A (FINIS"

if rc <> 0 then do
 say '***Error: Could not read the input file ***'
 exit 16
end

/* Delete the header information in the queue. */
/* If 'VOLSER' is found, call the subroutine and stop the process. */
i = 0 /* for debugging */
j = 0 /* for debugging */
done1 = 'no'
do while done1 = 'no'
pull stackitem
 i = i + 1 /* for debugging */
 if index(stackitem,'VOLSER') <> 0 then do
 call sub1
 done1 = 'yes'
 end
 else nop
end /* end do while */

/* Delete the useless information and then make the CREATE command. */
done2 = 'no'
do while done2 = 'no'
parse pull stackitem
 i = i + 1 /* for debugging */
 select
 when substr(stackitem,1,6) = '------' then nop
when substr(stackitem,1,6) = ' ' then nop
when substr(stackitem,n2,2) = 'FF' then nop
when substr(stackitem,1,5) = 'Total' then done2 = 'yes'
otherwise

volume = substr(stackitem,n1,6)
category = substr(stackitem,n2,4)
mediatype = substr(stackitem,n3,10)
mediatype = space(mediatype,0) /* omit space */
call sub2

if uattr = '??????' then do
say 'warning: Error or unexpected Category code was detected.'
say ' VOLSER= 'volume
say ' Category code = 'category
say ' Volume Entry was not created.'
say '
end
else do
entry1 = " CREATE VOLENTRY (NAME(V"volume") - "
entry2 = " LIBNAME("libname") -"
entry3 = " MEDIATYPE("media") -"
entry4 = " UATTR("uattr") -"
entry5 = " RECORDING("recording") LOCATION(LIBRARY))"
queue entry1
queue entry2
queue entry3
queue entry4
queue entry5

j = j + 1 /* for debugging */
end /* end else */
end /* end select */
end /* end do while */

/***/
/* */
/* Write the queued entries to file. */
/* */
/***/
say 'message: The number of input records = 'i /* for debugging */
say 'message: The number of created vol entries = 'j /* for debugging */
"execio * diskw tcbdRECV OUTFILE A (FINIS"
if rc < > 0 then do
 say '***Error: Could not write to the output file ***'
 exit 16
end
exit 0

/* SUBROUTINE 1***/
/* Find the word position. */
/***/
sub1:
 n1 = index(stackitem,'VOLSER')
 n2 = index(stackitem,'CATEGORY')
 n3 = index(stackitem,'MEDIA TYPE')
 n4 = index(stackitem,'MOUNT DATE')
 return

/* SUBROUTINE 2***/
/* Set the mediatype, libname, RECORDING technique AND USER ATTRIBUTE. */
/* Attention: */
/* Mediatype and recording technology have NO 1:1 dependency. */
/* LM can not provide the correct recording technology. */
/* Setting the recording to 128TRACK can only cause problems, if */
/* you have a mixed environment installed, and a volser which is */
/* written in recording technology > 128 is mounted on 3590B model. */
/* However, setting a higher recording technology will cause */
/* problems as long as drive models with the lower technology. */
/* are installed. In a mixed environment use the lowest. */
/* value of the recording technology. In non-mixed environment */
/* use the correct recording technology for your drives: */
/* 3590B = 128 */
/* 3590E = 256 */
/* 3590H = 384 */
/* Adjust the REXX to fit your environment. */

/***/
sub2:
 select
 when substr(mediatype,1,1) = 1 then media = 'MEDIA1'
 when substr(mediatype,1,1) = E then media = 'MEDIA2'
 when substr(mediatype,1,1) = J then media = 'MEDIA3'
 when substr(mediatype,1,1) = K then media = 'MEDIA4'
 otherwise media = '??????'
 end
 select
 when substr(mediatype,1,1) = 1 then recording = '36TRACK'
 when substr(mediatype,1,1) = E then recording = '36TRACK'
 when substr(mediatype,1,1) = J then recording = '128TRACK'
 when substr(mediatype,1,1) = K then recording = '128TRACK'
 otherwise recording = 'xxxTRACK'
 end
 select
 when substr(mediatype,1,1) = '1' then libname = atlib1
 when substr(mediatype,3,1) = '1' then libname = vtslib1
 when substr(mediatype,3,1) = '2' then libname = vtslib2
 otherwise libname = '??????'
 end
 select
 when category = scratch1 then uattr = 'SCRATCH'
 when category = scratch2 then uattr = 'SCRATCH'
 when category = scratch3 then uattr = 'SCRATCH'
 when category = scratch4 then uattr = 'SCRATCH'
 when category = private1 then uattr = 'PRIVATE'
 when category = private2 then uattr = 'PRIVATE'
 when category = error1 then uattr = '??????'
 otherwise uattr = '??????'
 end
 return
The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM Redbooks publications” on page 508. Note that some of the documents referenced here might be available in softcopy only:

- **Lights Out! Advanced Tape Automation Using VM/ESA**, GG24-4347
- **NaviQuest Demonstration and Hands-On Usage Guide**, SG24-4720
- **Backup Recovery Media Services: A Practical Approach**, SG24-4840
- **ICF Catalog Backup and Recovery: A Practical Guide**, SG24-5644
- **DFSMs/Smrmm Primer**, SG24-5983
- **IBM TotalStorage Peer-to-Peer Virtual Tape Server Planning and Implementation Guide**, SG24-6115
- **IBM eServer iSeries in Storage Area Networks: Implementing Fibre Channel Disk and Tape with iSeries**, SG24-6220
- **Continuous Availability S/390 Technology Guide**, SG24-2086
- **Continuous Availability Systems Design Guide**, SG24-2085
- **DFSMs Release 10 Technical Update**, SG24-6120
- **Enterprise Systems Connection (ESCON) Implementation Guide**, SG24-4662
- **Guide to Sharing and Partitioning IBM Tape Library Dataservers**, SG24-4409
- **IBM eServer zSeries Connectivity Handbook**, SG24-5444
- **IBM Fiber Saver (2029) Implementation Guide**, SG24-5608
- **IBM TotalStorage Tape Products Family: A Practical Guide**, SG24-4632
- **DFSMs/MVS V1R5 Technical Guide**, SG24-4892
- **IBM TotalStorage Virtual Tape Server: Planning, Implementing, and Monitoring**, SG24-2229
- **IBM TotalStorage Enterprise Tape: A Practical Guide**, SG24-4632
- **Introduction to IBM S/390 FICON**, SG24-5176
- **FICON Native Implementation and Reference Guide**, SG24-6266
- **IBM TS3500 Tape Library with System z Attachment: A Practical Guide to TS1120 Tape Drives and TS3500 Tape Automation**, SG24-6789
- **IBM System Storage TS1120 Tape Encryption Planning, Implementation, and Usage Guide**, SG24-7320
- **Implementing IBM in i5/OS**, SG24-7440
Other publications

These publications are also relevant as further information sources:

- **IBM TotalStorage Enterprise Tape System 3590 Introduction and Planning Guide**, GA32-0329
- **IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and Planning Guide**, GA32-0448
- **IBM TotalStorage Automated Tape Library (3494) Operators Guide**, GA32-0449
- **IBM TotalStorage Tape Device Drivers Installation and User's Guide**, GC35-0154
- **z/OS JES3 Initialization and Tuning Guide**, SA22-7549
- **z/OS JES3 Initialization and Tuning Reference**, SA22-7550
- **z/OS V1R3.0 MVS Planning: Operations**, SA22-7601
- **z/OS Security Server RACF Command Language Reference**, SA22-7687
- **DFSMS/MVS V1R5 OAM PISA for Object Support**, SC26-4918
- **DFSMS/MVS V1R4 DFSMSdss Storage Administration Guide**, SC26-4930
- **BTLS V1R1 User's Guide and Reference**, SC26-7016
- **z/OS V1R3.0 DFSMS Access Method Services for Catalogs**, SC26-7394
- **z/OS V1R3 DFSMS Installation Exits**, SC26-7396
- **IBM TotalStorage 3494 Tape Library Introduction and Planning Guide**, GA32-0279
- **z/OS DFSMSdfp Storage Administration Reference**, SC26-7402
- **Implementing System Managed Storage**, SC26-7407
- **z/OS DF SMSsh sm Storage Administration Guide**, SC35-0421
- **z/OS DF SMSsh sm Implementation and Customization Guide**, SC35-0418
- **z/OS DFSMSrmm Guide and Reference**, SC26-7404
- **z/OS DFSMSrmm Implementation and Customization Guide**, SC26-7405
- **z/OS DFSMSdss Storage Administration Reference**, SC35-0424
- **z/OS DFSMSdss Storage Administration Guide**, LY35-0116
- **IBM TotalStorage 3584 Tape Library Introduction and Planning Guide**, GA32-0469
- **IBM TotalStorage 3584 Tape Library Operator Guide**, GA32-0468
- **IBM TotalStorage 3953 Tape Frame Model F05 and Library Manager Model L05 Introduction and Planning Guide**, GA32-0472
- **IBM TotalStorage 3953 Tape Frame Model F05 and Library Manager Model L05 Operator Guide**, GA32-0473
- **IBM TotalStorage 3494 Tape Library Introduction and Planning Guide**, GA32-0279
> IBM TotalStorage 3494 Tape Library Operator's Guide, GA32-0280
> 3490E Installation Planning and Operator's Guide, GA32-0378
> z/OS Hardware Configuration Definition User's Guide, SC33-7988
> z/OS MVS Initialization and Tuning Reference, SA22-7592
> DFSMS/VM Function Level 221 Removable Media Services User's Guide and Reference, SC35-0141
> IBM TotalStorage Virtual Tape Server Performance. This white paper can be found under “White Papers” at:
 http://www.ibm.com/support/techdocs
> IBM TotalStorage Enterprise Automated Tape Library (3494) Systems Assurance Product Review (SAPR) Guide, SA01-005-05, which is available from your IBM Marketing Representative or can be found at:
 http://w3-1.ibm.com/support/assure/assur30i.nsf/PubAllNum/SA185?OpenDocument
> z/OS DFSMS Software Support for IBM System Storage TS1120 Tape Drive (3592) SC26-7514

Online resources
These Web sites and URLs are also relevant as further information sources:
> Statistical Analysis and Reporting System User Guide
 http://www-1.ibm.com/support/docview.wss?uid=ssg1S7000247
> IBM Magstar Tape Drives: AIX High Availability SAN Failover for 3590
> Computer Associates
 http://www.ca.com
> Unicom System, Inc.
 http://www.unicomsi.com
> Innovation Data Processing
 http://www.innovationdp.com
> OpenTech Systems
 http://www.opentechsystems.com
> VSE/ESA
 http://www-1.ibm.com/servers/eserver/zseries/os/vse
> PG Software
 http://www.pfeilschifter-gmbh.de/english/index.htm
> I/O connectivity
> Enterprise Tape Drive
Search for bookshelves

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers, Hints and Tips, draft publications and Additional materials, as well as order hardcopy IBM Redbooks publications or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
Index

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/modules.conf</td>
<td>350</td>
</tr>
</tbody>
</table>

Numerics

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3490 Model F tape drive</td>
<td>54</td>
</tr>
<tr>
<td>3494 Automated Tape Library</td>
<td>6</td>
</tr>
<tr>
<td>3494 Library Manager</td>
<td>85</td>
</tr>
<tr>
<td>3494 tape library</td>
<td></td>
</tr>
<tr>
<td>drivers installation</td>
<td>316</td>
</tr>
<tr>
<td>J70 controller support</td>
<td>52</td>
</tr>
<tr>
<td>3494 tape library components</td>
<td>97</td>
</tr>
<tr>
<td>3494 tape library in VM/ESA</td>
<td>296</td>
</tr>
<tr>
<td>3590</td>
<td>75</td>
</tr>
<tr>
<td>3580 feature codes</td>
<td>49</td>
</tr>
<tr>
<td>3580 media</td>
<td>78</td>
</tr>
<tr>
<td>3590 Model B, E, and H tape drive coexistence</td>
<td>77</td>
</tr>
<tr>
<td>3590 tape</td>
<td></td>
</tr>
<tr>
<td>data integrity</td>
<td>44</td>
</tr>
<tr>
<td>drive</td>
<td>42</td>
</tr>
<tr>
<td>3590 upgrade and coexistence</td>
<td>75</td>
</tr>
<tr>
<td>3590 upgrade and coexistence</td>
<td>77</td>
</tr>
<tr>
<td>3592</td>
<td>303</td>
</tr>
<tr>
<td>3592 Model J1A tape drive</td>
<td>18</td>
</tr>
<tr>
<td>3592 tape media</td>
<td>36</td>
</tr>
<tr>
<td>capacity scaling</td>
<td>28, 35</td>
</tr>
<tr>
<td>description</td>
<td>2</td>
</tr>
<tr>
<td>device driver installation for AIX</td>
<td>318</td>
</tr>
<tr>
<td>device driver installation for HP-UX</td>
<td>336</td>
</tr>
<tr>
<td>device driver installation for Linux</td>
<td>343</td>
</tr>
<tr>
<td>device driver installation for Solaris</td>
<td>330</td>
</tr>
<tr>
<td>device driver installation for Windows</td>
<td>352</td>
</tr>
<tr>
<td>host attachment</td>
<td>20</td>
</tr>
<tr>
<td>recording format</td>
<td>22</td>
</tr>
<tr>
<td>servo tracks</td>
<td>25</td>
</tr>
<tr>
<td>virtual backhitch</td>
<td>27</td>
</tr>
<tr>
<td>WORM functionality</td>
<td>41</td>
</tr>
<tr>
<td>3592 Model J70 controller</td>
<td></td>
</tr>
<tr>
<td>characteristics</td>
<td>52, 54</td>
</tr>
<tr>
<td>description</td>
<td>4</td>
</tr>
<tr>
<td>feature codes</td>
<td>59</td>
</tr>
<tr>
<td>host attachment</td>
<td>55</td>
</tr>
<tr>
<td>3592-E05</td>
<td>3</td>
</tr>
<tr>
<td>3592-J1A drive</td>
<td>20, 26–28, 53</td>
</tr>
<tr>
<td>code support</td>
<td>57</td>
</tr>
<tr>
<td>simplified diagram</td>
<td>56</td>
</tr>
<tr>
<td>3592-J1A tape</td>
<td></td>
</tr>
<tr>
<td>drive</td>
<td>3, 18, 21</td>
</tr>
<tr>
<td>3592-J70 controller</td>
<td>4, 52, 54</td>
</tr>
<tr>
<td>3592</td>
<td>xvii, 5–6, 34, 52, 55, 60, 64, 96, 108–109, 142, 420, 423, 430–432</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRASTAPES(STACKINOSTACK)</td>
<td>220</td>
</tr>
<tr>
<td>accessor</td>
<td>94, 96, 370–371, 415</td>
</tr>
<tr>
<td>boundary line</td>
<td>123</td>
</tr>
<tr>
<td>exchange performance</td>
<td>121</td>
</tr>
<tr>
<td>failure</td>
<td>407</td>
</tr>
<tr>
<td>status</td>
<td>374</td>
</tr>
<tr>
<td>switchover</td>
<td>118, 372</td>
</tr>
<tr>
<td>switchover in progress</td>
<td>372</td>
</tr>
<tr>
<td>switchover on demand</td>
<td>415</td>
</tr>
<tr>
<td>accessors</td>
<td>97, 115–116, 118, 372, 374</td>
</tr>
<tr>
<td>ACDS (active control data set)</td>
<td>146</td>
</tr>
<tr>
<td>ACS (automatic class selection)</td>
<td>146</td>
</tr>
<tr>
<td>ACS logic testing with NaviQuest</td>
<td>225</td>
</tr>
<tr>
<td>ACS routine</td>
<td>78, 146–147, 191, 194, 202, 249, 256, 499</td>
</tr>
<tr>
<td>example</td>
<td>202</td>
</tr>
<tr>
<td>filter requests</td>
<td>499</td>
</tr>
<tr>
<td>object</td>
<td>207</td>
</tr>
<tr>
<td>processing</td>
<td>201</td>
</tr>
<tr>
<td>ACS routines</td>
<td>186, 219</td>
</tr>
<tr>
<td>DATACLAS</td>
<td>203</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>206</td>
</tr>
<tr>
<td>samples</td>
<td>202</td>
</tr>
<tr>
<td>STORGROUP</td>
<td>207</td>
</tr>
<tr>
<td>STROCLAS</td>
<td>205</td>
</tr>
<tr>
<td>testing</td>
<td>208</td>
</tr>
<tr>
<td>translate, validate</td>
<td>207</td>
</tr>
<tr>
<td>validate</td>
<td>207</td>
</tr>
<tr>
<td>activating SMS configuration</td>
<td>209</td>
</tr>
<tr>
<td>active accessor</td>
<td>101, 113, 117, 406–407</td>
</tr>
<tr>
<td>active accessor failure</td>
<td>414</td>
</tr>
<tr>
<td>active control data set (ACDS)</td>
<td>146, 186, 269</td>
</tr>
<tr>
<td>active library manager</td>
<td>117</td>
</tr>
<tr>
<td>active library manager failure</td>
<td>412</td>
</tr>
<tr>
<td>adjacent frame</td>
<td></td>
</tr>
<tr>
<td>FC 4085</td>
<td>66</td>
</tr>
<tr>
<td>FC 4086</td>
<td>66</td>
</tr>
<tr>
<td>fibre channel</td>
<td></td>
</tr>
<tr>
<td>3592</td>
<td>68</td>
</tr>
<tr>
<td>adjacent frame inventory update</td>
<td>128</td>
</tr>
<tr>
<td>ADSTAR Distributed Storage Manager (ADSM)</td>
<td>81</td>
</tr>
<tr>
<td>Advanced Policy Management (APM)</td>
<td>7, 9, 12, 86, 111, 177, 186, 263, 379, 453–454</td>
</tr>
<tr>
<td>AIX</td>
<td>315</td>
</tr>
<tr>
<td>drive blocksize</td>
<td>322</td>
</tr>
<tr>
<td>drive compression</td>
<td>322</td>
</tr>
<tr>
<td>drive configuration</td>
<td>321</td>
</tr>
<tr>
<td>verifying Atape</td>
<td>320</td>
</tr>
<tr>
<td>AIX commands</td>
<td></td>
</tr>
<tr>
<td>lslpp</td>
<td>318</td>
</tr>
<tr>
<td>all storage cells full</td>
<td>374</td>
</tr>
<tr>
<td>allocation</td>
<td></td>
</tr>
<tr>
<td>criteria</td>
<td>201, 259, 262</td>
</tr>
<tr>
<td>device selection</td>
<td>262</td>
</tr>
<tr>
<td>library manager scratch selection</td>
<td>94</td>
</tr>
<tr>
<td>library selection</td>
<td>262</td>
</tr>
<tr>
<td>reading a data set</td>
<td>259</td>
</tr>
<tr>
<td>writing a data set</td>
<td>261</td>
</tr>
</tbody>
</table>
allocation request 167–168
ALLOCxx 163
ALLOCxx member of SYS1.PARMLIB 167
alternate drive pathing 322
APAR
 OW16279 157
 OY63009 474
API 364
application programming interface (API) 309
Atdd
 installation verification 338
atdd.cfg 340
attaching 3592 Tape Drive
 Model C20 Frame 431
audit 278
Auto mode 278, 371, 373
auto mode 371
Automated Cartridge System (ACS) 36, 41, 378
Automated cartridge system library software (ACSLS) 420, 422
automated tape library 83
 performance characteristics 121
 system-managed tape 148
automated tape library (ATL) 3, 83, 87, 148, 160, 404, 462
automatic cartridge loader mode 390
automatic class selection (ACS) 146, 202, 248, 497–498
Automatic Tape Switching (ATS) 160, 225
automatic-insert file name 291
availability unit 89, 93, 372–373
 IBM 3494 407
 service bays 119
B
B18 VTS 13, 110, 130
B20 VTS 13–14, 31, 91, 110
 additional virtual tape drives 136
 Tape Drives 136
backhitch 2, 19, 26–27
backup tape 80, 217, 219, 273
BACKVOL SG 220–221
barcode 372–373
barcode reader failure 407
barcode reader or vision system nonoperational 373
barcodes 376
barrier door 116
basic tape library support (BTLS) 145, 393, 467
Berkeley Software Distribution (BSD) 316
block ID 364
block size 365
BLOCKSIZE 339
bottleneck 393
BTLS
 allocation 478
 catalog 469
 control data sets 469
 default category for scratch 472
 define library devices 471
demount 472
esoteric device group name 472
exits 477
IDCLI04 exit 409
installation 470
inventory list 474
JES3 478
LIBRARY command 468
master catalog entries 470
message display 468, 478
recovery considerations 481
scratch allocations 476
scratch threshold 472
set volume category 475, 478
synchronize with tape management 409
tape management system considerations 478
user catalog 470
volume records 474–475
BTLS library
 volume 473
BTLS volume
 catalog record 483–484
 entry 469
 record 469
 selection 485
BTLSPRMxx 485
C
C20 Drive Shelf
 Pair 428–429
 Pair feature 428–429
cache-miss mounts 126
Call Home support 3592 61
callable services library (CSL) 290
capacity I/O
 facility 380–381
 facility cell 381
 station 101
capacity scaling 28, 35
cartridge
 cleaning 378
eject processing 330
 insert processing 330
cartridge accessor 96–97, 118, 129, 385, 390, 463
 switchover 117
tape drive 390
cartridge eject exit (CBRUXEJC) 175
cartridge eject processing 484
cartridge entry exit (CBRUXENT) 175
cartridge gripper 97
cartridge handling and placement 100
cartridge insert processing 483
cartridge is provided (CP) 289, 291
cartridge label 38, 376
cartridge memory 26
cartridge not in library exit (CBRUXVNL) 175
cartridge placement on initial load 101
cartridge storage 98
 error recovery cell 98
 rack column 98
 rack row 98
wall number 98
Cartridge System Tape (CST) 78
cartridge type 19, 32, 125, 377, 389
data capacity 32
only externally visible difference 378
cartridge types 48
cartridge-drive affinity 94, 124
high degree 125
cartridges (CE) 378
catalog record 273, 469–470
CBR3750I message format 388
CBRUXCUA 149, 175
CBRUXEJC 149, 175
CBRUXENT 149, 175
CBRUXVNL 149, 175
CBRXCLS programming interface 175
CE cartridge
 cell 99
 cell 1A20 99
Change the use attribute (CUA) 175–176
change-use attribute exit (CBRUXCUA) 175
characteristics 18
Check 1 condition 373, 411
CHECKIN processing 330
cleaner volume 378
cleaning cartridge 20–21, 38, 142, 377–378, 426
 physical characteristics 38
cleaning the cartridge 378
Client System Component (CSC) 422, 427
Code 39 377
COFVLFx 163
COFVLFx member of SYS1.PARMLIB 166
commands
 ADDVOLUME 178
 CHANGEVOLUME 178
 IDCAMS LIBRARY 468
 LIBRARY EJECT 401
 MOUNT 296
 MSG 302
 SET DEVCAT 296
 SET VOLCAT BULK 296
COMMMNDxx 162
COMMMNDxx member of SYS1.PARMLIB 166
complete list 29, 68, 93, 130, 149, 170, 453, 481
complex-wide device type 211
complex-wide name 211
composite library 10
compression 316, 365
 3592 SLDC 2, 19, 189
compression ratio 43, 110–111, 448, 450
configuration
 component 103
 frames 118
configuring tape and medium changer devices 320, 332
configuring tape devices 339
CONSOLxx 162
CONSOLxx member of SYS1.PARMLIB 164
Control data
 set 146, 150, 247, 262, 302, 312, 420–421
 control data set 421, 469
 BTLS 469
 VGS 312
VSE/ESA native support 302
Control data set (CDS) 312, 421–422
control unit
 HCD definitions 156
 control unit (CU) 50, 83, 96, 130, 151–152, 235, 262, 406, 410, 454, 471
 control unit frame Model L12 103
 convenience I/O failure 407
 convenience I/O station 96–97, 106, 253, 328, 330, 380–381, 390, 463, 484
 insert 381
 operator panel 104
 preformatted stand-alone dump tapes 399
Customer Engineer (CE) 93, 99, 160
CX0 Frame 133

D
D10 Frame 120, 132
C2A tape drive 134
D12 Frame
 x1A Tape Drives 133
D12 frame 58, 120, 132
D14 Frame
 Model A60 Controller 134
 Model F16 SAN Switch 136
 Model F16 Switch 134
D14 frame 58, 120, 132
D22 frame 58, 65, 101, 103, 108
 Tape Drives 133–134
D24 frame 58–59, 108–109
DAA feature 415–416, 453
 Accessor failure 416
 failure scenarios 415
data band 22, 24
data cartridge 19, 21, 33, 38, 131, 190, 233, 377, 484
 authorized external users 233
Data Class 255–256, 498
 data sets 188
 first page 187
 key labels 239
 statements overwrite encryption specifications 193
data class 31, 77, 148, 182, 185–188, 218, 234, 236, 255–256, 498–499
 Recording Technology parameter 77
 requested media type 255
data class ACS routine 203
data integrity with IBM 3590 tape 44
data key
 drive request 237
data key (DK) 232–233
Data migration
 Scenarios 248
data migration 55, 247–248, 288, 299
data set 28, 81, 146, 149, 177, 249–250, 259, 445, 448, 496, 498
 data compaction 189
 DD statement 498
 migration copy 223
data set name 219
data sets, old 498
database in library manager 93
database mirroring 93
DATACLASS
 compaction 189
 media type 190
DD statement 234, 236, 473–474, 498
default media type 128
default value 164, 367, 379
defferred copy 12
declare
 DFSMS constructs 182
 library ID 185
 logical volumes 11
 management class 196
 security profiles 170
 storage class 194
 storage group 197
DEFINE ABARSTAPES(STACK|NOSTACK) 221
DEFINE command
 ABARSTAPES 220
 DUMPCLASS 220
degraded operation 373
demount 392
device configuration 364
device driver 31, 314–315, 427
digital certification 360
 same device 322
 verifying 320
zSeries 348
Device Manager 352, 359
device selection 262
device special file
 creating in Linux 343
DEVICE statement 212, 215
 IBM 3494 tape libraries 212
 JNAME parameters 212
unique XTYPE 212
Device statement 210, 212, 489, 492
cmd displays information 404
different generations 164
different prefix 211
DEVSUPxx 162, 457
DEVSUPxx PARMLIB member
partitioning 164, 254
 volume category 164, 254
DFSMs 1.4 260
DFSMs catalog processing 498
DFSMs catalog services 498
DFSMs constructs 182
DFSMs tape
 environment 499
 request 497
DFSm VOLREF processing 498
DFSMs/MVS
 library manager interface 148
 partitioning 254
DFSMdss dump 221
DFSMshsm
 ABARSTAPES(STACK|NOSTACK) 220
 allocation 219
 connected volumes 221
 customization 216
 data set names 219
 disaster backup 221
 DUMPCLASS STACK(nn) 220
duplex tape 221
 DUPLEX(BACKUP(Y|N) 220
 DUPLEX(MIGRATION(Y|N) 220
 IDRC attribute 220
 moving tape data 222
 offsite copy 221
 PARTIALTAPE(MARKFULL|REUSE) 219
 RECYCLE 222
 RECYCLEINPUTDEALLOCFCREQUENCY 223
 RIDF 223
 TAPESPANSIZE(nnn) 220
 TAPEUTILIZATION 220
 unit selection 217
DFSMs mmm 171, 176–177, 252
 ADDVOLUME 178
 cartridge entry rules for entry processing 177
 CHANGEVOLUME 178
 define cartridges 178
 library resident cartridges 178
 partitioning 254
 tape initialization 179
direct access
 storage device 153, 182, 273, 400, 446, 496
disaster recovery
temporary category 462
disaster recovery (DR) 147, 245, 462
display library information 402
DISPLAY SMS 150, 176, 402–403
 LISTVOL parameter 403
distributed library 10
drive 365
 compression 316, 365
 no rewind device 316
 properties 359
 SCSI inquiry 345
 Windows 2000 configuration 364
Drive attachment 47, 55
 drive model 31, 43, 248–249, 256, 298, 306, 504
 drive unit frame
 Model D12 108
 Model D14 109
 Model D1x 108
 Driver Details tab 360
drives
 blocksize 339
 configuring with AIX 321
 device special names 315
 DSP 210, 212, 215, 478
 Dual Active Accessor 118, 128
 enabled/disabled 372
optimal exchange performance 126
recovery scenarios 415
transitioning 372
Dual Active Accessor (DAA) 371, 411
dual copy 12
dual gripper 96–97, 373, 407
dual gripper high availability unit 98
dual library manager status 374
dual write disabled 374
dump and restore 399
DUMPCLASS STACK(nn) 220
duplex tape 221
DUPLEX(BACKUP(Y|N) 220
DUPLEX(MIGRATION(Y|N) 220
duplicate volser 381, 450
duplicate volume serial numbers 182
Dxx frame 120, 141
dynamic device attachment 350
Dynamic device reconfiguration (DDR) 468
dynamic support programs
See DSP
E
E05 Encryption-enabled
 drive 490
tape drive 216, 490
E05 Tape Drive
 J1A Tape Drive 135
E05 tape drive 32, 34, 132, 135, 144, 214, 216, 420, 424, 490
EEDKs 238–239
EHPCT (Extended High Performance Cartridge Tape) 48
eject cartridge 179
EKM server
 address 236
 key store information 240
eligible device list (EDL) 421
emergency power-off (EPO) 127
emergency switch 104
empty cell insert 381
Encryption Key
 management 235–236
 Manager 232
 Manager component 3, 232, 234
 Manager component travel 235
 Manager program 232, 235
Encryption Key Manager
 component 3, 232, 236
 program 232
Encryption Key Manager (EKM) 231–232
Encryption-enabled 490
encryption-enabled 490–491
Enhanced Capacity Cartridge System Tape (ECCST) 78
Enterprise Economy Tape Cartridge (EETC) 165, 384
Enterprise Economy WORM Tape Cartridge (EEWTC) 128, 165, 384
Enterprise Extended Tape Cartridge (EEETC) 384
Enterprise Tape
 Cartridge 165, 384
 Controller 17, 53, 241, 243
 Library 85–87, 378–379, 443
 Library Attachment 70, 430
 Library Specialist 88, 96, 380
Enterprise Tape Library (ETL) Specialist 86
Enterprise WORM Tape Cartridge (EWTC) 128, 384
error handling 405
error recovery 405
error recovery cell 98
ESCON channel 9, 50, 56, 109–110, 156
 adapter 5
 attachment 424
 channel utilization 50
 connection 46
ESCON High Performance Option (EHPO) 112, 139
ESCON host
 attachment 113
esoteric HCD 161
etc/modules.conf file 348, 350
Ethernet switch 90, 92, 436
 library manager subsystems 90
Ethernet-Attached Serial Hub (EASH) 141
ETL Specialist 88–89, 283, 379, 393, 444, 454
 performance statistics 393
example, UPPERCASE (EU) 164
exits
BTLS 477–478
CBRXCUA 149
CBRXJEJC 149
CBRUXENT 149
CBRUXVNL 149
IGXMSGEX 478
 message display 478
extended control (EC) 399
Extended High Performance Cartridge Tape (EHPCT) 46, 48, 128, 133
External Fabric
 Support 67, 69–70, 131, 140, 430, 433
 Support/Field 435
 Support/plANT 435
external label 179, 280–281, 296, 376–377, 462, 479
Externally Encrypted Data Keys (EEDK) 238, 245
 extractor file 445
F
F05 frame 64, 69, 108–109, 424, 430
failure
 accessor failure 407
 convenience I/O 407
 library manager failure 407
FC 2714 139, 435–436
FC 2715 71, 92, 139, 435–436
FC 2720 139, 435–436
FC 4630 134
FC 4675 135
FC 5217 141
FC 5228 141, 143
<table>
<thead>
<tr>
<th>Feature Code</th>
<th>21–22, 39, 49, 56, 84, 106, 119, 427–428</th>
</tr>
</thead>
<tbody>
<tr>
<td>feature code</td>
<td>complete list 68</td>
</tr>
<tr>
<td></td>
<td>detailed description 50</td>
</tr>
<tr>
<td></td>
<td>full description 22</td>
</tr>
<tr>
<td></td>
<td>L22 frame 66</td>
</tr>
<tr>
<td>feature code summary</td>
<td>130</td>
</tr>
<tr>
<td>feature codes</td>
<td>3592 Model J70 controller 59</td>
</tr>
<tr>
<td></td>
<td>fetch messages 499</td>
</tr>
<tr>
<td>Fibre Cable</td>
<td>60, 67, 350</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>adapter feature 57</td>
</tr>
<tr>
<td></td>
<td>attachment 46, 49, 314, 351</td>
</tr>
<tr>
<td></td>
<td>attachment planning 20</td>
</tr>
<tr>
<td></td>
<td>Cable 134, 136, 317, 432, 440</td>
</tr>
<tr>
<td></td>
<td>connection 46, 315, 350</td>
</tr>
<tr>
<td></td>
<td>connectivity 348</td>
</tr>
<tr>
<td></td>
<td>device attachment 348</td>
</tr>
<tr>
<td></td>
<td>Drive 140</td>
</tr>
<tr>
<td></td>
<td>IBM 3590 366</td>
</tr>
<tr>
<td></td>
<td>link 50</td>
</tr>
<tr>
<td></td>
<td>port 349</td>
</tr>
<tr>
<td>Protocol</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Switch 58, 61, 67, 69, 144, 426, 430</td>
</tr>
<tr>
<td></td>
<td>Switch feature 438, 441</td>
</tr>
<tr>
<td></td>
<td>Switch feature FC3488 439</td>
</tr>
<tr>
<td></td>
<td>Switch Mount Kit 67, 69, 139</td>
</tr>
<tr>
<td></td>
<td>Switch Rack Mount Kit 69, 435</td>
</tr>
<tr>
<td></td>
<td>tape device 348</td>
</tr>
<tr>
<td></td>
<td>topology 348</td>
</tr>
<tr>
<td>Fibre Channel (FC)</td>
<td>20, 314–315, 421, 424</td>
</tr>
<tr>
<td>FICON</td>
<td>50, 289</td>
</tr>
<tr>
<td>FICON attachment</td>
<td>9, 21, 52–53, 109, 424</td>
</tr>
<tr>
<td>FICON Cable (FC)</td>
<td>92, 96</td>
</tr>
<tr>
<td>FICON channel</td>
<td>14, 20, 31, 110, 112, 235, 243, 424</td>
</tr>
<tr>
<td>FICON host</td>
<td>channel 111–112</td>
</tr>
<tr>
<td></td>
<td>system attachment 113</td>
</tr>
<tr>
<td></td>
<td>system long wave channel 67, 437</td>
</tr>
<tr>
<td></td>
<td>system long-wavelength channel 437</td>
</tr>
<tr>
<td>field installation</td>
<td>134–135, 428–429</td>
</tr>
<tr>
<td>Field Replaceable Unit (FRU)</td>
<td>20, 32</td>
</tr>
<tr>
<td>first step</td>
<td>249, 284, 318, 330</td>
</tr>
<tr>
<td>first-in-first-out (FIFO)</td>
<td>94</td>
</tr>
<tr>
<td>fixed home cell</td>
<td>100</td>
</tr>
<tr>
<td>floating home cell</td>
<td>100</td>
</tr>
<tr>
<td>frame inventory update</td>
<td>128</td>
</tr>
<tr>
<td>free storage threshold</td>
<td>386</td>
</tr>
<tr>
<td>FTP server</td>
<td>318, 330, 447, 451</td>
</tr>
<tr>
<td></td>
<td>many tape tools 447</td>
</tr>
<tr>
<td></td>
<td>tape tools 447</td>
</tr>
</tbody>
</table>

G

GB data

<table>
<thead>
<tr>
<th>cartridge</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB fast access</td>
<td>mode 28</td>
</tr>
<tr>
<td></td>
<td>segment 36, 191</td>
</tr>
<tr>
<td></td>
<td>general VOLCAT 172</td>
</tr>
<tr>
<td>generation data (GD)</td>
<td>446</td>
</tr>
<tr>
<td>Geographically Dispersed Parallel Sysplex (GDPS)</td>
<td>7</td>
</tr>
<tr>
<td>Gigabit Interface Convertor (GBIC)</td>
<td>56</td>
</tr>
<tr>
<td>global resource serialization (GRS)</td>
<td>163, 166</td>
</tr>
<tr>
<td>graphical user interface (GUI)</td>
<td>85, 90</td>
</tr>
<tr>
<td>gripper failure</td>
<td>407</td>
</tr>
<tr>
<td>gripper failure and HA1</td>
<td>415</td>
</tr>
<tr>
<td>GRSCNFxx</td>
<td>163</td>
</tr>
<tr>
<td>GRSCNFxx member of SYS1.PARMLIB</td>
<td>166</td>
</tr>
</tbody>
</table>

H

HA1 115

active accessor	117
active library manager	117
barrier door	114, 116
database	117
Dual Active Accessor	116
service bay	113, 116
service frame	116
standby accessor	115, 117
standby library manager	115, 117
state of library manager	116
switchover	117
HA1 and gripper failure	415
HA1 and secondary library manager disk drive	415
HA1 Option	132, 143
HA1 recovery scenarios	411
hard disk failure	407
hardware configuration definition (HCD)	79, 151–152, 379, 488, 494
hardware SARS (HSARS)	45
HBAs	322–324

HCD

3490 device definitions	162
3590 device definitions	162
add control unit	152
define device parameters	160
device parameters	160
esoteric	161
libport ID	160
library ID	160

**HCD (hardware configuration definition) | 79 |

Hierarchical Storage Manager (HSM) 249

high availability unit	410
dual gripper	98
functional description	113
high capacity I/O facility insert	381
High Performance Cartridge Tape (HPCT)	46, 48, 128
high watermark setup names	213
high-capacity I/O	129
high-capacity input/output facility	96, 129
facility reserve	108
high-capacity input/output facility	108
high-capacity output facility	107
high-speed data access	43
home cell mode	100
fixed	129
floating	129
Host attachment	20, 46, 96, 103, 251
host attachment
 J70 controller 55
Host bus adapter (HBA) 21, 314–315
host software
 command 85
 platform 93
 routine 33
host software component
 STK 9490s 80
Host software component (HSC) 80, 420, 426
host system 9, 30, 67, 84, 93, 275, 287, 330, 336, 376, 383, 394, 436, 461, 471
 appropriate eject commands 383
 library manager database 93
 specific task 383
HPCT (High Performance Cartridge Tape) 48
HP-UX
 atdd.cfg 340
 special file names 315
 tapeutil 336, 339, 341
 verify Atdd installation 338
HP-UX commands
 ioscan 339
 swcopy 339
 swinstall 339
 swverify 338
HSARS (hardware SARS) 45
HWSNAME 213

I/O station
 category 330
I/O VTS 11
IBM 3490 Model F tape drive 54
IBM 3490E
 device 170, 478
 drive 170
 Model F1A tape drive 161
 critical components 117
 empty cell 381
 Exchange performance 97, 115
 inventory list 301
 inventory performance 127
 library manager 334, 351
 non-SMS data sets 225
 operational focal point 85
 operational procedures 379
 operational states 105
 operator panel 370, 374
 several different configurations 122
 stand-alone procedure 225
 tape device 389–390
 tape devices 399
 tape drive 390, 400
 tape drives 377, 390
 tape subsystems 105, 120
 vision system 98–99
IBM 3494 inventory update 376

IBM 3494 Library Manager 85
 basic differences 496
 bulk processing file 291, 295
 correct installation 361
 I/O devices 212
 INSERT category 474, 479
 JES3-managed 3490E devices 478
 Library Manager 351
 mixed media types 471, 475
 Tape drives 151, 210
 tape drives 471–472
 tape subsystems 478
 tape units 499
 user communicates 150
 z/VSE guest support 310
IBM 3494 tape library
 back walls 103
 tape drives 17
IBM 3590 17–18, 162, 169, 313–314, 376, 400
 hardware installation 17
 major HCD panel fields 162
IBM 3590 Magstar in an STK Silo 420
IBM 3592-J1A 3, 108–109, 419
IBM System Storage Tape Drive
 3592-J1A 18
 TS1120 232
IBM tape solutions 7, 231
IBM Tivoli Storage Manager
 major implementation steps 366
IBM Tivoli Storage Manager (ITSM) 232, 313, 366
IBM TotalStorage Enterprise 3590 tape drive 42
IBM TotalStorage Enterprise Automated Tape Library 83
IBM TotalStorage ETL Expert 444
IBM TotalStorage Peer-to-Peer VTS 9
IBMtape
 verification 333
IBMtape.conf 332–333
IBMtapeconfig 343–344
IBMtapeutil 344
SCSI inquiry 345
IDCAMS command
 Library 471, 476
 LIBRARY 2 474
 LIBRARY Device 471
IDCAMS command LIBRARY 470–472
 2 473
 Device 471
 Inventory 474
 Threshold 472
IDCAMS commands
 ALTER 276, 281
 CREATE 281
 DELETE 281
 EXPORT 277
 IMPORT 277
 IMPORT CONNECT 173
 LIBRARY 468
IECIOSxx 163
member of SYS1.PARMLIB 169
IEFSSNxx 162
member of SYS1.PARMLIB 163
IGDACSXT 201
IGDSMSxx 162
member of SYS1.PARMLIB 163
immediate copy 12
implementation
DFSM斯mm 177
OAMPROC 163
SYS1.PARMLIB 162
Implementation Guide 13–14, 110, 186, 248, 286, 487, 492
Improved Data Recording Capability (IDRC) 189
include device (ID) 445
informational state 370, 372
inhibit reclaim schedule 386
initial program load (IPL) 79, 160–161, 272, 292, 304, 472
initialization complete 371
input/output definition file (IODF) 151–152
inquiry 364
insert category
VGS 312
VM/ESA 296
insert logical volumes 11
Insert processing 93, 178, 186, 295–296, 375, 382, 479–480
attached host 382
sample JCL 483
insert processing 375
VM/ESA 296
VSE/ESA native support 302
Insert Volume 382
installation
BTLS 470
hardware considerations 83
initial inventory 127
partial teach process 127
site preparation 127
teach process 127
Installation exit 149–150, 260, 262–263, 270, 287, 477
installation exits 477
installation inventory 375
installation policy 167–168
installation verification 224
installed VTS
specific actions 85
installed, only (I/O) 96–97
integrated catalog facility (ICF) 149
Integrated Cryptographic Service Facility (ICSF) 236
Integrated storage management facility (ISMF) 148, 247
integrated storage management facility (ISMF) 150
intervention required 105, 373
intervention-required condition 387
automated response 387
manual response 387
inventory
new storage 129
VGS 310
VSE/ESA native support 302
inventory list for BTLS 474
inventory performance 127
Inventory update 101, 126, 376
detailed information 382
IP address 316–317, 397
iSeries server 105, 313
ISMF 170
ISMF (integrated storage management facility) 150
ISMF panel 164, 166, 257, 278

J
J-cartridge 48
J1A tape drive 18, 21–22, 131–132, 216, 242
3592 tape media 36
C06 Controller 72
capacity scaling 28, 35
descriptions 18
description 2
host attachment 20
performance advantage 62
recording format 22
same 3592 J70 controller 61
servo tracks 25
virtual backhitch 27
WORM functionality 41
J70 controller 4, 17, 20, 34, 65, 91, 134, 144
descriptions 52, 54
description 4
feature codes 59
host attachment 55
JA and JW (J) 19, 33
JA, JB (J) 378, 384
Java Virtual Machine (JVM) 236
JES3
allocation and mounting 499
BTLS support 478
device pool 210
DSP 210
initialization deck 210
system managed tape 210
tape DSP 478
JES3 INISH deck 211–212
JES3/DFSMS processing 497
Job Control Language (JCL) 164, 192, 249, 259, 470, 496–497

K
K-cartridge 48
KB 28
KEK label 237–238
Key Encrypting Keys (KEK) 233, 237
key label 191, 193, 233–234, 236–237
key store 233–234
associated private key 234
keystrokes local mode 89
keystrokes remote mode 89

L
L10 Frame 133–135
 3490E Model F1A tape drive 135
 FC 3500 Controller 135
L12 Frame 85, 96, 132
L14 Frame 132
 Model A00 Controller 136
 Model A50 Controller 136
LAN host connection failure 408
LBSERV API 301–302
 tape management system product 301
LC connector 55, 57, 437
 short-wavelength 4-Gbps Dual Ported Fibre Channel
 adapters 437
LC connectors 55
LCDD 287, 300
 (library control device driver) 300
LDG 210, 213
 LDD 213
 LDE 213
LDG (library device group) 210
LDG definition 211, 214, 488, 491
LDG name 210, 213, 493, 497
lib xx 211–212
 Encryption-enabled 3592 Model E05 212
libport ID 160
library
 definition in ISMF 183
 name 200
 Windows 2000 configuration 364
LIBRARY Audit 279–280, 481
LIBRARY command 103, 108, 171, 176, 264, 290,
 328–329, 344, 405, 480
library control device driver (LCDD) 300
Library control software (LCS) 422
Library Control System
 See LCS
library control unit 421
Library device
 group 210, 488, 494
library device 172, 211, 295, 344, 468, 471
 esoteric device group name 472
 Live entry 295
Library Device Group
 See LDG
Library device group (LDG) 210
library device group (LDG) 210
LIBRARY EJECT command 401
library F4001 215–216, 489, 492
 VTS Drives 489, 494
library F4006 215–216, 489, 492
library ID 128, 160
 where to find 185
library ld 128, 172, 182, 292, 379–380, 488, 490
library inventory 375
 process 409
Library management unit (LMU) 420

Library Manager 125, 304
 controller communicates 66
 feature 5593 243
 library sequence number 293
 volume data 78
 volume-range specifications 78
library manager 10, 20, 62, 84, 86, 149–150, 185, 234,
 236, 254, 260, 266–267, 298, 316, 326, 370–371, 445,
 447, 457, 479–480
 accessor B 117
 basis information 374
 Check 1 condition 373
 Cleaning Schedule option 379
 communication links 374
 connection links 374
 console 85
 database 93
 database entries 376
 Database menu 383
 database recovery 408
 direct communication 335, 340
 drive address 371
 Error Processing display 392–393
 feature 5593 137
 first 63 characters 388
 following selections 378
 host category assignment 256
 initialization 371
 Inventory new storage 375
 IP address 326, 335
 management classes 12
 media types 385
 Mode menu 370, 372
 normal operational state 372
 normal termination 374
 operational status menu 380
 operator intervention window 387, 405
 operator menu 85, 128
 operator panel 116
 recovery 407
 re-enable usage 90
 Re-inventory storage 375
 resynchronizing the database 409
 scratch category 482, 484
 scratch selection 94
 Second Disk Drive 141
 secondary hard disk failure 407
 select Operator intervention 387
 select Setup Stand-Alone Device 390
 service level 86
 stand-alone device support 399
 startup 374
 status information 87
 storage cell addresses 278
 switchover 117, 372
 switchover in progress 372
 switchover on demand 414
 switchover process 413
 System Summary 88
 systems administrator 86
Library Name
 first character 183
library name 172, 183, 259, 275, 279–280, 291, 296, 326, 335, 341, 352, 403, 472, 501
tape library entry fields 282
library parameters 220
library performance 121
library record 172, 174, 481
small number 174
library sequence number
 See library ID
LIBRARY SETCATEGORY
 command 477–478
 EJECT/XEJECT command 480
Unit 475, 483
LIBRARY SETDEVICE
 command 475, 485
Unit 475
library storage module 421
Library storage module (LSM) 420
library teach process 409
LIBRARY-ID 151, 160, 403
library-specific device type name 211, 213–214
library-specific name 211, 213–214
Linux 232, 285–286, 313, 315
 /etc/modules.conf 348, 350
 /etc/zfcp.conf 348–349
creating Ultrium device files 343
device map 349
device mapping 350
dynamic device attachment 350
IBMtapeutil 344
installing tapeutil 343
microcode updates 344
modprobe zfcp 348
mt 344
 zSeries device driver 348
LIST command 224
list functions 222
LM A 117, 410, 412–413
 accessor manager 410
 active database 411
LM B 117, 410, 413
lmcpd 326, 335
LOADdx 163
LOADdx member of SYS1.PARMLIB 166
local area network (LAN) 89, 300, 302, 394, 398
locate data 44
logical components 14
logical device 320, 322, 324
Logical End-of-Tape (LEOT) 3, 33
Logical Unit
 Number 332–333
Logical volume 7, 9, 88, 110, 113, 150, 179, 287, 380, 382, 463
 logical volume
dual copies 9
dual copy 113
 Peer-to-Peer VTS copy modes 197
 secondary copy 88
LTO
 API 364
 compression 365
device configuration 364
device inquiry 364
 read/write test 363
test basic operations 361
LTO drive
 blocksize 322
 compression 322
LUN 316
Lxx Frame 104, 120, 133

M
m/sec 34, 46
magneto resistive (MR) 43
Magstar 3494 Model L12 103
Magstar 3590
capacity 221
exploitation 221
main device scheduler (MDS) 210, 496
Main Menu 342, 345, 380, 394
main menu
 Select Commands 394–395
 Status menu 380
management class 12, 88, 171, 186, 196–197, 367
management class ACS routine 206
manual mode 105, 279, 369, 371
manual mode operation 391
manual tape library
 system-managed tape 148
manual tape library (MTL) 148, 263, 404
master VTS 11
MB/sec 18–19, 325
MEDIA 6 190
Media Information Message (MIM) 45, 299
media selection 485
MEDIA TYPE 217
Media type
 appropriate scratch category 78
 IBM 3494 knowledge 78
media type 37, 98, 128, 176, 251, 254, 376–377, 382, 384, 450, 464, 471, 475, 501
 correct volser ranges 382
different volume categories 475
scratch cartridge threshold 185
Volser Ranges 382
Volume Ranges 408
volume ranges 222
media type, default 128
MEDIA1 164, 189
MEDIA2 164, 189
MEDIA3 48, 164–165, 189
MEDIA4 48, 165, 189
MEDIA5 165
MEDIA6 165
MEDIA7 165
MEDIA8 165
message display
exit IGXMSGEX 475
installation exit 478
MGMTCLAS 196
retention limit 196
microcode 344
microcode firmware 53, 65, 231, 241
minimum level 53, 65
Micron MT-RJ 60
Microsoft
digital certification 360
migration consideration 75, 80
migration from 3590B and 3590E to 3590H 78
MIH (Missing Interrupt Handler) 169
MIH timeout
value 169
MIM (Media Information Message) 45, 299
misplaced volume 278
Missing Interrupt Handler (MIH) 163, 169
Missing Interrupt Handler values
See MIH
Model B 17, 46–47, 75, 299, 306
Coexistence 77
different performance characteristics 75
Model B18
Virtual Tape Server 8
Model B1A 96, 131, 211
Model B1As
D12 Frame 142
Model B20 110
Virtual Tape Server 8
VTS 8–9, 110
Model C20 419, 423
C20 Drive Shelf Pair 428–429
device attachment feature 428
device attachment feature codes 427
Drive Shelf 428
Drive Shelf Pair 428
frame 423, 427
Model E05 Tape Drive 428–429
Model J1A Tape Drive 428–429
order 429
Silo Compatible Frame 431
Tape Drive 428–429
TS1120-E05 tape drives 424
Model E05 132, 191, 211, 420, 428
device 221
Model J1A Tape Drive 429
Tape Drive 31, 132, 428–429

Tape Drive canister 429
Model F05 423, 431
Fibre Channel Switch 431, 433
frame 431–432
order 440
Tape Frame 430
Model F05 frame 424, 430
Model H 46–47, 299, 306
drive 48, 75
tape drive 17, 44
Model HA1 113, 115, 371, 373
Model J1A 3, 5, 17–18, 96, 131, 145, 191, 420, 423
additional enhancements 32
Model L12
frame 104
Model L12 control unit frame 101
Model L22 66, 68, 96, 101
mount 392
from input station 390
MOUNTMON 451
moving tape data DFSMShsm 222
mt 344
MTLIB command 327, 329, 410
MVS operator commands 401

N
native capacity 3, 18, 36
native cartridge in 3494 with VTS 382
native E05
drive 33
operation 34
Native VSE/ESA 459–460
NaviQuest 230
testing ACS logic 225
Nearline Control Software (NCS) 426–427
no rewind on close 316
non volatile caching (NVC) 3, 27
nonelectrical element 101
non-MVS platform 254
nonvolatile random access memory (NVRAM) 116
NTUTIL 361, 364
base mode 363
basic functions 361
device inquiry 364
dismount cartridge 364
enable compression 365
interactive mode 361
library mode 363
list registered devices. 363
manual test 362
operating modes 361
read/write test 363
set block size 365
test basic operations 361
view installed devices 363
NVC writing 28
second effect 28
NVRAM (nonvolatile random access memory) 116
IBM TotalStorage 3494 Tape Library: A Practical Guide to Tape Drives and Tape Automation

O
OAM 148
 CBRXCLS programming interface 175
 customizing 175
 initialization parameters 162
 preparing, starting 174
 SMS 147
 SYS1.PARMLIB 162
OAM restart 209
OAM storage management component (OSMC) 148
OAMPROC 163
object access
 method 147–148, 247, 402–403
Object Access Method
 See OAM
object storage and retrieval (OSR) 148
offline 372
offsite copy 221
old data sets 498
Old Value 266–267
online 372
on-request bulk processing file name 291
operating system 93, 108, 124, 139–160, 232, 244, 286, 314–315, 390, 408
Operating System/2 (OS/2) 93
operational considerations 329
operational mode 370–371
 detailed information 370
operational state 105, 129, 175, 329, 370–372
 change bit 413
 change message 411, 416
operator intervention 105, 322, 370, 381, 468
operator menu in library manager 85
operator panel 65, 102–104, 370, 372, 410
 attention light 373
 auto switch 105
 emergency switch 104
 intervention required 105
 PAUSE switch 105
Operators Guide 89, 370, 379
OS/390 operator commands
 LIBRARY EJECT 401
OS/390 software support 146
OSMC (OAM storage management component) 148
OSR (object storage and retrieval) 148
out of cleaner volumes 374
Outboard Policy Management 195

P
PARTIALTAPE(MARKFULL|REUSE) 219
partitioning
 DEVSUPx PARMLIB member 164, 254
 DFSMS/MVS 254
 DFSMSrmm 254
 setting volume categories 164, 254
pause mode 371
PAUSE switch 105
Peer-to-Peer
 VTS 7, 9
 VTS Selective Dual Copy 12
Peer-to-Peer (PTP) 7–8, 84, 86, 248, 283, 379, 400, 487, 490
Peer-to-Peer VTS 9, 75, 112–113
 logical image 10
 logical volumes 11
performance
 accessor exchange 121
 accessor mount time 122
 drive residence time 122
 drive sharing 126
 fixed home cell 125
 floating home cell 125
 inventory 127
 of the 3592 Model J70 62
partitioning 126
Performance accelerator feature (PAF) 9
Performance overview 72
personal computer (PC) 85
PFA (predictive failure analysis) 44
physical bottleneck 393
planning
 installation 127
 raised floor 127
 site preparation 127
Planning Guide 20, 22, 89, 126, 299, 307
pre-ACS routine exit (IGDACSXT) 201
predictive failure analysis (PFA) 43–44
Preventive Service Planning (PSP) 76
Preventive Software Planning (PSP) 300, 303
primary disc 93, 117, 374, 408
primary library manager hard disk failure 408
private category 180, 218, 256, 296, 298, 330, 472, 475
private volume 178, 186, 256, 287, 367, 458, 461, 472, 476
 storage group name 178
 procedure name 163, 468, 476
Product Support Planning (PSP) 146
program properties table (PPT) 162–163
Programmable Operator facility
 See PROP
PROP 296
PSP bucket 76, 79, 244, 300, 303
PfP VTS 8–9, 86, 110, 283–284, 447, 449, 490–491
 AX0 controller 284
 B18 VTS 143–144
 public/private key 234, 240–241

R
R/W cartridge 38, 41
RACF (Resource Access Control Facility) 170
RACF profiles 171
rack column 98
rack row 98
rail system 98
read/write test 363
recording format
 3592- J1A 22
RECORDING TECHNOLOGY 217
recording technology 32, 36, 176, 178, 250, 504
exit returns 262–263
SLDC 189
recovery
bar code reader 407
convenience I/O 407
gripper failure 407
LAN connection 408
library manager 407
RS-232 connection 408
tape control unit 408
TCDB 273
vision system 407
recovery of errors 405
RECYCLE 222
ranges of tapes 222
RECYCLEINPUTDEALLOCFREQUENCY
See RIDF
Redbooks Web site 508
Contact us xv
Redundant Fibre Channel
Rack 435
regular cell 99
re-inventory complete system 375
remote AS/400 105
Remote Library Manager Console 89
remote service support telephone line 127
Removable Media Manager (RMM) 150
removable media services master 289
Removable Storage Manager (RSM) 361
Removal of Hazardous Substances (ROHS) 63
Request for Price Quotation (RPQ) 119–120
required media type
scratch cartridges 185
reserved cell 99
Resource Access Control Facility (RACF) 170
restarting OAM 209
restore 399
retention limit 186, 196
return to scratch 329
return to scratch processing 482
RIDF 223
Rivest-Shamir-Adleman (RSA) 218, 237
RMS
command 290
function 290
internal label 296
RMS function 289
RMSMASTR 296
RS-232 115
failure 408
RS-422 115
RSM 361
RSM user 357, 359

S
safety enclosure interlock open 373
safety operation 101
same SMSplex 182, 200, 210
sample JCL 473–474
SARS (Statistical Analysis and Reporting System) 45
SCDS 182, 207
SCDS Name 184, 187
scheduler work area (SWA) 497
SCHEDxx 162
SCHEDxx member of SYS1.PARMLIB 163
scratch category 94–95, 261, 272, 287, 289, 302, 329–330, 409, 475, 478
scratch pool 53, 65, 218, 220, 254, 289, 301, 474–475
same set 312
scratch pooling 181
scratch threshold
BTLS 472
MEDIA1 182
MEDIA2 182
MEDIA3 182
scratch volume 94, 179, 254, 259, 261, 272, 287, 290, 367, 402, 409, 458, 472
category 472
category code 164
common pool 182
media type 402
threshold 201
VOL1 label 179
volume entry example 282
scratch volume selection 94
SCSI
commands 361
inquiry 345
secondary hard disk failure 407
secondary library manager disk drive and HA1 415
security profile 170
STGADMIN.IGD.ACTIVATE_CONFIGURATION 171
STGADMIN.IGG.LIBRARY 171
sense data 361
service bay 96–97, 118, 373, 376, 381, 411, 415
functional components 114
service frame 116
Service Information Message (SIM) 45, 299
service volume label definition 378
servo tracks
3592 Model J1A 25
set commands 364
SETNAME statement 212
JES3 device names 210
setName statement 210, 212–213, 495
DEVICE statement 489, 493
Figure E-10 DEVICE statement 489, 493
SETSYS command
DUPLEX 220
PARTIALTAPE 219
TAPEUTILIZATION 220
SETSYS DUPLEX 221
SETSYS Duplex 220
SETSYS TAPESPANSIZE 221
SETSYS TAPEUTILIZATION 80, 220–221
command 220
PERCENTFULL 220, 224
SETSYS TAPEUTILIZATION PERCENTFULL(pct) 220
SETUP HCD 151
Short Length Cartridge (SLC) 19
LOADxx 166
LOADxx member 166
SCHEDxx 162–163
SCHEDxx member 163
TCDB high-level qualifier 166
updates for library 162
WTOR messages 167
SYS1.VOLCAT.VGEN ERAL 166, 173, 276–277
SYSIN DD 180, 276
SYSPRINT DD SYSOUT 173, 192, 275–276
system summary 405
System z
environment 231, 234, 286
FCP connected tape drive 232
server 47, 243, 245
system-managed storage (SMS) 48, 146, 276–277, 416, 453
system-managed tape 145–147, 260, 278, 377, 387, 480–481
automation considerations 405
JES3 210
software environment 146
z/OS 393
system-managed tape environment 145, 148, 178

T
tape allocation 79, 146, 169, 256, 299, 306, 449, 468, 474
tape cartridge 1, 4–5, 34–35, 98, 176, 180, 182, 185, 233–234, 238, 376–377, 420, 423
EEDK structure 238
full capacity 35
GB data capacity 423
metal particle medium 43
several places 233
tape configuration database (TCDB) 149, 172
tape control unit failure 408
Tape Controller 6, 9, 17, 31, 91, 109–110, 156, 234, 241, 419, 423
tape controller
Encryption Key Manager connectivity 241
redundant connections 235
tape data 103, 109, 150, 191, 299, 306, 409, 483
given subset 195
MGMT CLASS PROC 207
movement rules 201
common use 254
default configuration parameters 339
diagnostic information 403
Tape drive
2nd generation 31
4 Gbps Fibre channel adaptors 65
available feature codes 49
compaction feature 164
D24 frame 68
Feature codes 21
Fibre Channel cables 431, 438
high performance 63
multi-rack attachment 438, 440
same 3592 Model J70 controller 61
same 3592-J70 controller 71
same controller 61
second Fibre Channel port 61
Tape Library 49
appropriate set 472
category name 485
default operating parameters 321
device class 367
device entries 344
encryption keys 232
Fibre Channel cable 134, 136
IBM 3494 Model L22 frame 103
incompatible cartridge types 377
key features 2
multiple generations 6
new capacity 250
Operational knowledge 369
restricted usage 390
same set 240
second generation 3
Show Characteristics 321, 324
TS1120 Encryption support 243
virtual 15
z/OS proxy interface communicates 235
Tape Encryption 53, 64–65, 179, 218, 231–232
Other mainframe platform support 244
Process flow summary 233
z/OS support 243
Tape Frame 5–6, 64–65, 241, 420, 423
Stand-alone support 64
TS1120 Tape Controllers 65
tape initialization 179
Tape Library
certain components 97
dedicated tape drives 101
DFSMS/MVS support 259
electrical hazards 101
Fibre Channel-attached 3592 tape drives 108
focal point 84
JES3 configuration 488, 493
Managing different 3590 models 256
minimum configuration 104
single Model J70 control unit 109
Storage Administration Guide 263
Tape Drives 4
Tape library
tape drive 309
tape drives 300
Certain conditions 387
current operational status 370
DFSMS/MVS OAM PISA 177
enough available drives 444
UI distributed library 11
Ultra SCSI 46–47, 108, 314, 366
Ul trium device driver
 Driver Details tab 360
 IBMtapeconfig 343
 installing 353
 NTUTIL 361
 properties 359
 tapeutil 343
uncompressed capacity 190
Unit Control Block (UCB) 78, 80
UNITNAME 210, 214, 498
unlabeled tape 388
Usage Guide 179, 218, 231, 239, 241, 246
use attribute 149, 172, 264–265
user interface (UI) 11, 85, 92

V
validate ACS routines 207
VCR 44
verifying the Atape driver installation 320
verifying the IBMtape driver installation 333
verifying the installation 224
VGS
 considerations 312
 control data sets 312
 insert category 312
 inventory support server 310
 library manager interface 311
view of the tape library system (VTS) 444–445
virtual backhitch 2, 19, 27
virtual drive
 activity 447
 usage 449
 view 445
virtual lookaside facility (VLF) 167
virtual machine
 Stand-Alone Services program 399
virtual machine (VM) 289–290, 399
Virtual Private Network (VPN) 90
Virtual Tape Server (VTS) 6–7, 77, 110, 113, 379, 382
virtual volume 7, 11, 94, 110–111, 195, 197, 286, 382
 inserting 286
 primary copies 12
 secondary copy 11
 selective dual copy 197
 specific amount 382
vision system 38, 97–99, 279–280, 372–373, 421
vision system failure 407
vl rmt3 321
VM/ESA
 considerations 296
 insert category 296
 insert processing 296
 library manager interface 290
VMA test cases 227
VOLCAT 172
 import connect 173
 specific 173
 TCDB 149
volcat 149, 258, 273, 403, 501
volser 31, 38, 94–95, 179, 251, 258, 371, 376, 465, 498, 502
 VOL1 label 179
volser number 368, 473, 475
VOLSER range 31, 381, 385
volser range
 ABC000 386
volser ranges for media types 385
volser
 demount cartridges 389
 media type 176
volume catalog 149
 See volcat
volume catalogue 149, 163, 275
volume category 93, 162, 254–255, 287, 375, 383, 457–458, 472, 475
 defining 457
 DEVSUPxx PARMLIB member 164, 254
 hardware usage 93
 library manager 93
 partitioning 164, 254
Volume Control Region
 See VCR
volume entry
 many updates 167
volume mount analyzer 444
Volume mount analyzer (VMA) 226–227, 251, 283, 444–445
volume record 80, 172, 175, 278, 401, 473–474
 IDCAMS update 80
volume SARS (VSARS) 45
volume serial numbers 182
VSARS (volume SARS) 45
VSE Guest 458–459
 Server 309–310
 Server support 309
 support 310
VSE/ESA
 considerations 302
 control data sets 302
 LBSERV macro 311
 librarian facility 302
 library manager interface 302, 311
 LIBSERV 311
 MSG command 302
 native support 300
 operator command 302
VTS 190, 289
 I/O preferencing 12
 introduction 7
 logical volume 382
 Peer-to-Peer Selective Dual Copy 12
 stacked cartridge 382
VTS (Virtual Tape Server) 77
VTS subsystem 15, 75, 119, 185, 464
VTSs 9, 11, 110–111
VTSSSTATS 451

W
wall number 98
watermark setup
 name statement 490, 493
Windows 2000
 compression 365
 Device Manager 352, 359
 drive block size 365
 Driver Details tab 360
 Driver Installation Wizard 352
 install Ultrium driver 353
 LTO configuration 364
 RSM 361
 test basic LTO operations 361
WORM
 3592 support 2
 description 41
WORM cartridge 37, 41–42, 217
 Final destruction 42
Write Once Read Many (WORM) 2, 4, 19, 33, 165, 176
Write Once Read Many, see WORM
WTOR messages 167

Z
 operator commands 171
 partitioning tape libraries among multiple systems
 254
 software environment 146
 software implementation 145
 software support 146
 tape tools 447
 with system-managed tape 400
z/OS allocation 259, 499–500
z/OS environment 45, 48, 125, 145, 235, 244, 247, 250, 447
 read compatibility 48
z/OS knowledge 453
z/OS system 173, 237, 244, 297, 379, 452
z/OS V1R4 242–243
z/OS.e V1R4 244
z/VSE support 244
z/VSE tape management (Z/VM) 285–286
zSeries
 connectivity information 348
 device driver 348
 zfcp.conf 349
IBM TotalStorage 3494 Tape Library: A Practical Guide to Tape Drives and Tape Automation

This IBM Redbooks publication is the seventh edition of the best selling Tape Library Practical Guide, which was first published in 1996. This book is the indispensable companion for a successful implementation of IBM TotalStorage Enterprise Tape drives IBM 3590, IBM TotalStorage 3592 Tape Drives and Controllers, IBM System Storage TS1120 Tape Drives and Controller, and the IBM TotalStorage Enterprise Tape Library 3494 in your environment. This book explains how to plan for and how to install the tape products and library in the different enterprise platforms. It considers day-to-day operations and integration with other products and applications. It also provides information about data migration and operation considerations. This document was written for storage systems technical professionals who are implementing IBM tape drives and libraries.

The present version of the book has been updated with the IBM System Storage TS1120 Tape Drive Model E05, the TS1120 Tape Controller Model C06, and the new IBM System Storage 3952 Tape Frame Model F05 as well as Tape Encryption for System z hosts, which is provided with the latest TS1120 Tape Drive and Tape Controller.

Learn about the IBM System Storage TS1120 Tape Controller
Implement the IBM System Storage TS1120 Tape Drive
Protect your tape data with Tape Encryption

For more information: ibm.com/redbooks