ATM Configuration Examples

Harri Levanen
Jhongrack Choi, Paul Clark, Satomi Ohkita

International Technical Support Organization

http://www.redbooks.ibm.com
Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix D, “Special Notices” on page 471.

Second Edition (April 1999)

This edition applies to ???Insert Version, Release Number??? of ???Insert Program Name, Program Number ????-???? for use with the ???Insert Operating System ???

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.
2.4.3 8270 Nways Token-Ring Switch 55
2.4.4 8273 Ethernet RouteSwitch 57
2.4.5 8274 Nways LAN RouteSwitch 58
2.4.6 8277 Nways Ethernet RouteSwitch 59
2.4.7 8371 Multilayer Ethernet Switch 60
2.5 Wide Area Switches ... 61
2.5.1 2230 Nways ATM Switch ... 61
2.5.2 2220 Nways BroadBand Switch 61
2.5.3 2225 Nways MultiService Switch 62
2.6 IBM 2210 Nways Multiprotocol Router 62
2.7 IBM 2216 Multiaccess Connector 62
2.8 ATM Workstation Adapters .. 63
2.8.1 TURBOWAYS 25 Mbps ATM Adapter 63
2.8.2 TURBOWAYS 100 Mbps ATM Adapter 64
2.8.3 TURBOWAYS 155 Mbps ATM Adapter 64
2.8.4 Interphase adapters .. 65
2.9 Adapters for Various Operating Systems 65
2.9.1 OS/2 ... 65
2.9.2 Windows NT ... 66
2.9.3 Windows 95 ... 66
2.9.4 DOS/Windows V3.11 ... 67
2.9.5 AIX ... 67
2.9.6 Novell NetWare .. 68
2.9.7 OS/400 .. 68
2.9.8 OS/390 <---------- xxx ***** Review required ********..... 68

Part 2. Pre-PNNI .. 69

Chapter 3. An Example of a Pre-PNNI ATM Environment 71
3.1 Physical Hardware Inventory 71
3.2 Physical Topology ... 72
3.3 Logical Topology ... 72
3.4 Configuring the ATM Backbone 74
3.5 Configuring IBM 8260s as ATM Backbone (SSI) 74
3.5.1 Configuring IBM 8260_HUB1 for SSI Connection 75
3.5.2 Configuring IBM 8260_HUB2 (SSI) 78
3.6 Configuring IBM 8260s as ATM Backbone (NNI Connection) 81
3.6.1 Configuring IBM 8260_HUB1 (NNI) 81
3.6.2 Configuring IBM 8260_HUB2 (NNI) 83
3.7 Adding an IBM 8285 to the ATM Backbone 85
3.7.1 Connecting the 8285 to the 8260 via SSI 86
3.8 Adding the IBM 8210 MSS to the ATM Backbone 88
3.8.1 MSS Base Configuration ... 89
3.8.2 ARP Server Configuration 93
3.8.3 Setting the ESI using the MSS Configuration Program 94

Chapter 4. ATM Proxy Clients Configuration Examples 99
4.1 Configuring LECS Support ... 99
4.1.1 Configuring the LECS Instance on the MSS 99
4.1.2 Configuring the ATM Switches to Support Well Known Address . 101
4.2 Configuring ELANs on the IBM 8285 101
4.2.1 Connecting the MSS to the 8285 ELANs 106
4.3 Adding an IBM 8274 ... 112
Part 3. PNNI ... 189

Chapter 6. Migration from pre-PNNI to PNNI 191
6.1 PNNI Migration ... 191
 6.1.1 Pre-PNNI Configuration 191
 6.1.2 Migration Considerations 200
 6.1.3 Migration process .. 200
 6.1.4 Final configuration ... 205

Chapter 7. PNNI ... 217
7.1 PNNI Overview ... 217
 7.1.1 PNNI Reachability ... 217
7.2 Configuration Overview ... 218
7.3 Configuring a 2 peer group flat PNNI network 220
 7.3.1 Configuring PNNI between two 8265 switches in Peer group 1 220
 7.3.2 Configuring an IISP link between peer groups 1 and 2 234
 7.3.3 Remaining 8265 hubs .. 241
 7.3.4 8260_hub24 configuration 242
 7.3.5 Displaying the connectivity status of the network 245
7.4 Configuring PNNI Hierarchy 249
 7.4.1 Overview .. 250
 7.4.2 Migration Procedure 252
 7.4.3 Adding a WAN connection to another hub 263
Chapter 8. MSS configuration ... 273
 8.1 Configuration overview .. 273
 8.1.1 LECS. .. 273
 8.1.2 ELANs ... 273
 8.1.3 ARP server .. 273
 8.1.4 LECs .. 274
 8.1.5 Bridging. .. 274
 8.1.6 IPX .. 274
 8.1.7 MPOA. ... 274
 8.2 MSS1 Configuration ... 277
 8.2.1 ATM interface configuration .. 277
 8.2.2 LECS configuration .. 280
 8.2.3 ELAN Configuration ... 282
 8.2.4 LEC configuration for MSS1 ... 288
 8.2.5 System ... 293
 8.2.6 SNMP configuration .. 293
 8.2.7 IP Configuration ... 297
 8.2.8 CIP Configuration ... 300
 8.2.9 IPX configuration ... 301
 8.2.10 Bridge configuration .. 305
 8.2.11 MPOA configuration .. 311
 8.3 MSS2 Configuration ... 313
 8.3.1 Interface configuration .. 313
 8.3.2 LECS Configuration ... 314
 8.3.3 ELANs .. 315
 8.3.4 LES/BUS Definitions .. 316
 8.3.5 LEC ... 317
 8.3.6 System ... 318
 8.3.7 IP ... 319
 8.3.8 Classical IP ... 321
 8.3.9 Bridging ... 322
 8.3.10 MPOA ... 324
 8.4 MSS command line displays .. 325
 8.4.1 Displaying the status of LES/BUS pairs 325
 8.4.2 Displaying the status of the bridge .. 329
 8.4.3 MPOA displays ... 333
 8.4.4 IP protocol displays ... 335

Chapter 9. Web Interfaces ... 337
 9.1 Web interface for 8265 Control Point integrated web server 337
 9.1.1 Prepare to 8265 .. 337
 9.1.2 access to the 8265 ... 337
 9.1.3 some examples ... 340
 9.2 Web Interface for MSS Server .. 344
 9.2.1 Access to the MSS ... 345
 9.2.2 Some examples .. 348

Chapter 10. ATM Proxy Clients Configuration Examples 351
 10.1 Overview ... 351
 10.2 Configuring the 8271-712 .. 353
 10.3 8274 Configuration ... 360
 10.3.1 System Configuration .. 360
 10.3.2 ATM Port Configuration ... 361
10.3.3 Create a LANE service ... 364
10.3.4 Create a VLAN .. 368
10.3.5 Connectivity between the 8274 and the MSS 372
10.4 8270 and 2216 configurations with MPOA and NHRP 372
 10.4.1 8270 configuration ... 373
 10.4.2 Configuring 2216 .. 391
10.5 Monitoring connectivity between 8270 and 2216 using MPOA/NHRP . 402
 10.5.1 8270/2216 shortcuts with NHRP enable on 2216 and MPOA on 8270 403
 10.5.2 8270 Local shortcut ... 412
10.6 8371 ... 417
 10.6.1 Configuring the 8371 as an MPOA client 417
 10.6.2 Web Interface for the 8371 424
 10.6.3 8371 Local MPOA shortcut 428
 10.6.4 Connectivity between 8270 and 8371 using MPOA 432
10.7 osa ... 439
 10.7.1 Verification of the OSA ATM connections 452

Appendix A. Troubleshooting the ATM Environment 459
A.1 Troubleshooting the 8260/85 459
 A.1.1 Troubleshooting SSI Connections 459
 A.1.2 Troubleshooting the CIP Network 460
 A.1.3 Troubleshooting Your LANE Network 461
 A.1.4 Check the Physical (ATM) Connection 461
 A.1.5 Other Considerations .. 465

Appendix B. First Sample Appendix 467
Appendix C. Second Sample Appendix 469
Appendix D. Special Notices ... 471
Appendix E. Related Publications 473
E.1 International Technical Support Organization Publications 473
E.2 Redbooks on CD-ROMs .. 473
E.3 Other Publications ... 473

How to Get ITSO Redbooks .. 475
IBM Redbook Fax Order Form .. 476

Glossary ... 477

List of Abbreviations .. 479

Index ... 481

ITSO Redbook Evaluation .. 487
Figures

1. Physical and Logical Views of a Simple LAN Emulation Network 25
2. LAN Emulation Client Functional Layers . 28
3. LAN Emulation Components . 29
4. Physical Network Topology . 72
5. Logical Network Topology . 73
6. Physical View - ATM Backbone Using SSI . 74
7. Logical View of the Classical IP Subnet . 75
8. Setting the ATM Address on HUB1 . 75
9. Setting the ARP Server and IP Addresses on HUB1 . 76
10. Setting Port Parameters for UNI Connection on HUB176
11. Displaying the Connected ATM ESI Entries on HUB1 . 77
12. Setting Port Parameters for SSI Connection on HUB1 . 77
13. Displaying 8260_HUB1 Device Information . 78
14. Setting the ATM Address on HUB2 . 78
15. Setting the ARP Server and IP Address for HUB2 . 79
16. Setting the Port Parameters for SSI Connection on HUB2 79
17. Verifying IP Connectivity . 80
18. Displaying Device Information on HUB2 . 80
19. Physical View - ATM backbone Using NNI . 81
20. Configuring the Port for NNI on HUB1 . 81
21. Displaying the Port Configuration on HUB1 . 82
22. Creating the Logical Link on HUB1 . 82
23. Displaying the Logical Link on HUB1 . 83
24. Configure the ATM Address on HUB2 . 83
25. Configuring the Port for NNI on HUB2 . 84
26. Creating the Logical Link on HUB2 . 84
27. Verifying IP Connectivity . 85
28. Physical View of the 8285 Connection . 85
29. Logical View of the 8285 Classical IP Configuration . 86
30. Setting the ATM Address on the 8285 . 86
31. Setting the ARP Server and IP Addresses on the 8285 86
32. Setting Port Parameters for SSI Connection on the 8285 87
33. Verifying IP Connectivity from the 8285 . 87
34. Displaying Device Information on the 8285 . 88
35. Physical View of the 8210 Connection . 89
36. Interface Configuration . 90
37. IP Configuration . 91
38. SNMP Configuration . 92
39. ARP Server Configuration . 93
40. Reloading the MSS with the New Configuration . 93
41. Retrieving the MSS Configuration . 94
42. The Navigation Window of the MSS Configuration Program 94
43. The Slot Browser Window . 95
44. The Device Interfaces Window - General Parameters . 95
45. The Device Interfaces Window - ESI Parameters . 96
46. The Device Interfaces Window - Signalling Parameters 96
47. The IP Interfaces Window . 96
48. The CIP over ATM Window - ARP Server Address . 97
49. The CIP over ATM Window - Client Address Parameters 97
50. Configuring the General LECS Parameters . 100
1. Configuring LECS ... 100
2. Setting LECS ATM Address ... 101
3. Logical ELAN configuration for the 8285 102
4. Configuring and Starting a LES/BUS Function 102
5. Configuring and Starting a LEC on the 8285 103
6. The Console Screen to Check the LANE Registration 105
7. The Console Screen to Check the LANE Registration 106
8. Configuring the LEC ... 107
9. Assigning the LEC to an ELAN 108
10. Configuring LEC to Join LES Directly 108
11. Assigning IP Address to LEC 109
12. Configuring the LEC ... 109
13. Assigning the LEC to an ELAN 110
14. Configuring LEC to Join LES with WKA 111
15. Assigning IP Address to LEC 111
16. Physical View of 8274 Connection 112
17. Logical View of 8274 Connection 112
18. Configuring ELAN Name ... 113
19. Configuring LES/BUS .. 113
20. Configuring the LEC ... 114
21. Assigning the LEC to an ELAN 115
22. Configuring LEC to Join LES with WKA 115
23. Assigning IP Address to LEC 116
24. Logging into the 8274 Switch 117
25. Viewing ATM Port Configuration 118
26. Modifying the 8274 ATM Port Configuration to SVC 120
27. Viewing ATM Port Information 121
28. Create a Service on Port 4/1 123
29. Viewing ATM Services ... 124
30. Creating an Auto-Tracker VLAN 126
31. Viewing Auto-Tracker VLANs and Assignments 127
32. Verifying IP Connectivity .. 127
33. Physical View of 8281 Connection 128
34. Logical View of 8281 Connection 129
35. Configuring ELAN Name ... 129
36. Configuring LES/BUS .. 130
37. Configuring the LEC ... 131
38. Assigning the LEC to an ELAN 131
39. Configuring LEC to Join LES with WKA 132
40. Assigning IP Address to LEC 132
41. The IBM 8281 Configuration Window for Ethernet 133
42. The Bridge-wide Configuration Panel 134
43. The Bridge-wide ATM Configuration Panel 135
44. The Internal Protocol Configuration Panel 138
45. The Ethernet Port Configuration Panel 139
46. The Token-Ring Port Configuration Panel 140
47. The ATM Virtual Ethernet Port Configuration Panel 141
48. The ATM Virtual Token-Ring Port Configuration Panel 142
49. The ATM Port LAN Emulation Configuration Panel 143
50. The LAN Emulation Settings Panel 144
51. Physical View of 8271 Connection 144
52. Logical View of the 8271 Connection 145
53. Configuring ELAN Name ... 145
54. Configuring and Starting a LES/BUS Function 102
55. Configuring and Starting a LEC on the 8285 103
56. The Console Screen to Check the LANE Registration 105
57. The Console Screen to Check the LANE Registration 106
58. Configuring the LEC ... 107
59. Assigning the LEC to an ELAN 108
60. Configuring LEC to Join LES Directly 108
61. Assigning IP Address to LEC 109
62. Configuring the LEC ... 109
63. Assigning the LEC to an ELAN 110
64. Configuring LEC to Join LES with WKA 111
65. Assigning IP Address to LEC 111
66. Physical View of 8274 Connection 112
67. Logical View of 8274 Connection 112
68. Configuring ELAN Name ... 113
69. Configuring LES/BUS .. 113
70. Configuring the LEC ... 114
71. Assigning the LEC to an ELAN 115
72. Configuring LEC to Join LES with WKA 115
73. Assigning IP Address to LEC 116
74. Logging into the 8274 Switch 117
75. Viewing ATM Port Configuration 118
76. Modifying the 8274 ATM Port Configuration to SVC 120
77. Viewing ATM Port Information 121
78. Create a Service on Port 4/1 123
79. Viewing ATM Services ... 124
80. Creating an Auto-Tracker VLAN 126
81. Viewing Auto-Tracker VLANs and Assignments 127
82. Verifying IP Connectivity .. 127
83. Physical View of 8281 Connection 128
84. Logical View of 8281 Connection 129
85. Configuring ELAN Name ... 129
86. Configuring LES/BUS .. 130
87. Configuring the LEC ... 131
88. Assigning the LEC to an ELAN 131
89. Configuring LEC to Join LES with WKA 132
90. Assigning IP Address to LEC 132
91. The IBM 8281 Configuration Window for Ethernet 133
92. The Bridge-wide Configuration Panel 134
93. The Bridge-wide ATM Configuration Panel 135
94. The Internal Protocol Configuration Panel 138
95. The Ethernet Port Configuration Panel 139
96. The Token-Ring Port Configuration Panel 140
97. The ATM Virtual Ethernet Port Configuration Panel 141
98. The ATM Virtual Token-Ring Port Configuration Panel 142
99. The ATM Port LAN Emulation Configuration Panel 143
100. The LAN Emulation Settings Panel 144
101. Physical View of 8271 Connection 144
102. Logical View of the 8271 Connection 145
103. Configuring ELAN Name ... 145

x ATM Configuration Examples
104. Configuring LES/BUS .. 146
105. Configuring the LEC .. 147
106. Assigning the LEC to an ELAN 147
107. Configuring LEC to Join LES with WKA 148
108. Enabling and Configuring Bridging for a LEC 149
109. Configuring Transparent Bridging 150
110. Physical View of 8272 Connection 155
111. Logical View of the 8272 Connection 155
112. Configuring ELAN Name ... 156
113. Configuring LES/BUS ... 156
114. Configuring the LEC ... 157
115. Assigning the LEC to an ELAN 158
116. Configuring LEC to Join LES with WKA 158
117. Assigning IP Address to LEC 159
118. Enabling Bridging for a LEC 159
119. Configuring Source-Route Bridging 160
120. Navigation Window of the Configuration Program 165
121. Configuring the ATM Interface 165
122. ATM Interface Configuration 166
123. Define LEC Interfaces ... 166
124. LEC Interfaces .. 167
125. LEC Interfaces - ELAN ... 167
126. LEC Interfaces - LECS Auto-Configuration 168
127. Interfaces .. 169
128. Add IP Address .. 169
129. Classical IP over ATM Definitions 170
130. ARP Server .. 170
131. Runtime Selector .. 171
132. Maximum SDU Size .. 171
133. ARP Server Definition .. 172
134. ESI and Selector .. 172
135. PVC Definition .. 173
136. PVC Definitions on an ATM Switch 174
137. PVC Definitions on an ATM Switch 174
138. Static SVC Definition .. 175
139. Configuring the ATM Network Adapter for NT 177
140. Additional Parameters for the ATM Driver for NT 178
141. Advanced LAN Emulation Parameters 178
142. LAN Emulation Client Definition 179
143. Classical IP Parameters ... 179
144. Advanced CIP Configuration 180
145. Selecting the TURBOWAYS 100 Adapter -- LAN Emulation. 180
146. LAN Emulation Setup Parameters 181
147. Selecting the TURBOWAYS 100 Adapter -- Classical IP 182
148. Test Classical IP Setup Parameters 182
149. Novell NetWare AUTOEXEC.NCF File 183
150. TURBOWAYS Driver for AIX 184
151. TURBOWAYS LAN Emulation for AIX 184
152. Classical IP Configuration for AIX 185
153. CellView Main Screen .. 185
154. LAN Emulation Configuration for AIX 186
155. CIP Configuration for AIX 186
156. ATM Statistics for Interphase Adapter 187
157. Network Configuration 191
158. Show device for 8260_HUB1 (pre-PNNI) 192
159. Show port for the NNI connection 193
160. Show port for the SSI connection 193
161. Show logical_link all 194
162. PING command 194
163. Show device for 8285_HUB1 195
164. Show port for 8285_HUB1 196
165. PING at 8285_HUB1 196
166. Show device for 8260_HUB2 197
167. Show port for 8260_HUB2's NNI connection 198
168. Show port for 8260_HUB2's UNI connection 198
169. Show logical link for 8260_HUB2 199
170. Show atm_esi for 8260_HUB2 199
171. PING command at 8260_HUB2 199
172. Show tftp for Configuration upload 201
173. TFTP configuration for download the operational code 201
174. Download inband configuration 202
175. Show device screen 203
176. FPGA level .. 203
177. Show device screen 204
178. Final Configuration (PNNI) 205
179. Show device for 8285_HUB1 (PNNI) 206
180. Show port to see the PNNI interface 207
181. Show pnni node_0 to see the switch information 207
182. Show pnni neighbor to see the neighbor node IDs 208
183. Peer group members for 8285_HUB1 208
184. Show device for 8260_HUB1 (PNNI) 209
185. Port status of 15.2 for 8260_HUB1 210
186. Show port for PNNI connection on 8260_HUB1 211
187. Show the ATM address for 8260_HUB1 211
188. Shows two members in peer group1 212
189. Set reachable address for 8260_HUB1 212
190. Show reachable address for 8260_HUB1 212
191. Show device for 8260_HUB2 (PNNI) 213
192. Port status of 14.2 for 8260_HUB2 214
193. 8272's UNI connection to 8260_HUB2 215
194. node_0 information for 8260_HUB2 215
195. Peer group members for 8260_HUB2 215
196. Set reachable address for 8260_HUB2 216
197. Show reachable address for 8260_HUB2 216
198. PING command at 8260_HUB2 216
199. IISP Configuration diagram 219
200. PNNI between 8265_hub11 and 8260_hub13 221
201. SHOW DEVICE command before configuring 8265_8265_hub11 222
202. Setting the ATM address on 8265_hub11 223
203. Issuing COMMIT PNNI 223
204. Issuing command for not allowing the duplicate ATM address 223
205. terminal prompt setting 223
206. Setting CIP information 224
207. Setting LEC information 224
208. enabling the MODULEs 225
209. Enabling ports 226
262. Show PNNI Node_0 COMMAND for 8260_hub24. .. 260
263. Show PNNI neighbor command for 8260_hub24. .. 261
263. Show PNNI peer_group_members for 8260_hub24. 261
264. Set PNNI Node_0 leader_priority for 8265_hub23. 261
265. monitor 8265_hub23. .. 262
266. ... 262
267. Show PNNI peer_group_members command for 8265_hub23. 263
268. How the new switch (8260_hub25) is WAN connected to the existing network. 264
269. Setting the WAN module connected. ... 264
270. Setting the VOID port in 8265_hub23. ... 265
271. The Show Port command for the VOID port. .. 266
272. Set VPC_LINK command for the WAN link. ... 267
273. Show PNNI Neighbor command for 8265_hub23. 268
274. Show PNNI peer_group_members command for 8265_hub23. 268
275. Setting the VOID port in 8260_hub25. ... 269
276. Show Port command for the WAN link. ... 270
277. Show VPC_LINK command for the VPC link ... 271
278. Show PNNI neighbor command ... 271
279. Show PNNI peer_group_members command ... 272
280. Logical network ... 275
281. Address table ... 276
282. MSS routing and bridging. ... 277
283. Fig1 Navigation Window .. 277
284. Interface General screen. .. 278
285. Device Interface screen. .. 278
286. Setting the device interface signalling information 279
287. LECS General screen. .. 280
288. LECS policy assignment screen. ... 281
289. LECS synchronization screen. .. 281
290. Emulated LAN configuration. General. .. 282
291. Emulated LAN configuration. LES/BUS General. 283
292. Local les/bus general parameters for the et1 ELAN. 284
293. les/bus BCM general screen 1 .. 285
294. les/bus BCM general screen 2. .. 286
295. les/bus redundancy definitions. .. 286
296. ELAN name policy screen for ELAN et1. .. 287
297. LEC interfaces general screen showing client for ELAN et1. 288
298. LEC interfaces "ELANS" ... 289
299. LEC interfaces server screen. ... 290
300. LEC interface MISC screen. .. 291
301. LEC interface MISC screen. .. 292
302. system general screen .. 293
303. Add community. .. 294
304. Add IP address of server ... 295
305. change trap flags to all .. 296
306. Set IP address for LEC on et1 ... 297
307. Configure redundant gateway interface ... 298
308. Configure CIP .. 299
309. Enabling the IPX protocol from the IPX-general screen. 300
310. IPX interfaces screen. ... 301
311. Configuring the IPX network number and framing type. 302
312. Adding IP filters to the network .. 305
313. Bridging general screen ... 306
314. Bridging. Selecting the SRB parameters 306
315. Bridging. SRTB parameters .. 307
316. Bridging. Transparent bridge parameters 308
317. Bridging Interfaces screen. Transparent bridging 308
318. Bridging interface screen. Source-route bridging 309
319. Spanning Tree general screen .. 310
320. Spanning tree protocol Interfaces .. 311
321. MPOA general screen ... 311
322. MPOA interface configuration screen 312
323. MPOA interfaces screen ... 313
324. Assigning an ESI number in MSS2 314
325. LECS General screen for MSS2 .. 315
326. LECS DB Synchronization General 315
327. Local ELAN General in MSS2 .. 316
328. Local LES/BUS Configuration in MSS2 317
329. LEC Interface in MSS2 .. 318
330. System General in MSS2 ... 318
331. CIP address in MSS2 .. 319
332. Ethernet LEC’s IP address in MSS2 320
333. Redundant LEC Gateway in MSS2 320
334. Classical IP over ATM in MSS2 .. 321
335. Client address of CIP in MSS2 .. 322
336. Source Route Bridge in MSS2 ... 323
337. Source Routing Transparent Bridge in MSS2 323
338. Spanning Tree protocol General screen in MSS2 324
339. MPOA Server interface in MSS2 ... 325
340. Summary of the elans on MSS1 .. 325
341. Summary of the elans on MSS2 .. 326
342. Operational les/bus pair for elan et1 327
343. Operational les/bus pair for elan et1 328
344. Show lec for elan et1 .. 329
345. Show Registered-mac addresses command for et1 329
346. Bridge status for MSS1 .. 330
347. .. 330
348. List port command for the bridge in MSS1 330
349. List spanning-tree-protocol state command for MSS1 331
350. Configured spanning tree for MSS1 bridge 331
351. List bridge command for MSS2 .. 332
352. List port command for the mss2 bridge 332
353. List spanning-tree-protocol-state command for mss2 bridge 333
354. MPS configuration .. 333
355. .. 334
356. Discovery command .. 334
357. CONTROL-VCCs command ... 334
358. IMPOSITION-CACHE LIST command 334
359. SERVE-PURGE-CACHE-IP command 335
360. REDUNDANT default gateway command 335
361. set community for web access .. 337
362. Logon to the 8265_hub11 ... 338
363. Initial screen for 8265_hub11 ... 339
364. show slot 14 on 8265_hub11 ... 340
365. trace on 8265hub_11 ... 341
366. PNNI network on 8265_hub11 342
367. PNNI network with address information on 8265_hub11 ... 343
368. PNNI network on 8265_hub23 344
369. Initial screen on MSS1 ... 345
370. configuration and console screen ... 346
371. Operator Console screen ... 347
372. Show LEC entries on MSS1 ... 348
373. Show LEC entries with ... 349
374. show IP addresses on MSS1 ... 350
375. Physical Network Diagram ... 352
376. Logical network diagram ... 353
377. 8271 Main menu ... 354
378. Switch VLAN setup screen ... 354
379. 8271 Management setup ... 355
380. ATM Module Configuration ... 356
381. ATM LEC Setup ... 357
382. Switch management screen ... 358
383. ATM LEC status ... 359
384. Log into the 8274 switch ... 360
385. Change the basic system information ... 360
386. Change the system prompt ... 361
387. View ATM Port Configuration ... 361
388. Modify the 8274 ATM Port Configuration to SVC ... 362
389. Modify the 8274 ATM Port Configuration to SVC ... 363
390. View ATM port information ... 364
390. Create a LANE service on Port 5/2 ... 365
390. Create a LANE service on Port 5/2 ... 366
390. Create a LANE service on Port 5/2 ... 367
391. View ATM services ... 368
392. Create a VLAN ... 369
392. Create a VLAN ... 370
393. View CLANs and Assignments ... 371
394. Disable the Virtual Router for the Default VLAN ... 372
395. Verify IP connectivity ... 372
396. Logical overview of the 8270 and 2216 connectivity ... 373
397. Navigation windows ... 374
398. Add Token interface ... 375
399. General window ... 375
400. Assign ESI number ... 376
401. Signalling protocol ... 377
402. Assign MAC address on the Token ring interface ... 377
403. Configuring LEC ... 378
404. Configuring the ELAN ... 379
405. Configuring Servers ... 380
406. Configuring persistent data direct VCC mode ... 381
407. Configuring System General ... 381
408. TCP/IP Host services ... 382
409. Add community ... 383
410. Configure Trap server ... 383
411. Configuring Traps ... 384
412. Configuring MPOA Client ... 385
413. Configuring MPOA client shortcut ... 386
414.NHRP General .. 387
415.NHRP interface ... 387
416.Enabling Bridge .. 388
417.Configuring Source route Bridge 389
418.Configuring Bridge in Token ring interface 390
419.Configuring bridge in LEC-Token ring interface 390
420.Configuring Spanning tree 391
421.Navigation window .. 392
422.Slot browser .. 392
423.Configuring ESI .. 393
424.Configuring signalling 394
425.Configuring NHRP interface 395
426.Setting the MAC address 395
427.Configuring Ethernet interface 396
428.Configuring LEC ... 397
429.Configuring ELAN ... 398
430.System information ... 398
431.Adding IP address in the Ethernet interface 399
432.Adding IP address in the LEC-interface 400
433.Adding static router .. 401
434.NHRP general ... 401
435.NHRP interface .. 402
436.Logical diagram of MPOA and NHRP interoperability . 403
437.the DISPLAY command 404
438.the CONTROL-VCCs command 404
439.Show list of neighbor MPSs 405
440.Show list of VCCs ... 405
441.Show the detail of VCC 406
442.Show list of Ingress cache entries 407
443.Show the detail of ingress cache entry 408
444.Show list of egress cache entries 409
445.Show the detail of egress cache entry 409
446.the CACHE LIST command 410
447.the CACHE ENTRY command 410
448.the LANE_SHORTCUT command 410
449.Show statistics on MSS1 411
450.Show statistics on MSS1 411
451.Local shortcut within the same 8270 switch 412
452.Show list of VCCs ... 413
453.Show list of ingress cache entries 414
454.Show list of egress cache entries 415
455.Show statistics on MSS1 with MPOA client 416
456.Show statistics on MSS1 416
457.Logical view of the 8371 attached to the network .. 417
458.ATM configuration 418
459.assigning LEC as network 40 on network 38 418
460.Configuring LEC as network 40 419
461.Enabling interface network 38 and 40 420
462.Configuring MPOA .. 421
463.Configuring IP host service 422
464.Show bridge configuration 423
465.Showing the bridge port configuration 424
466.Initial WEB screen on the 8371 425
467. Configuration and console screen .. 426
468. Operator Console screen ... 427
469. Show Ethernet port (Port 7) on 8371 .. 428
470. 8371 shortcut between two IP subnets 429
471. Logical network diagram of the MPOA 8371 to 8270 connection 430
472. Show list of VCCs ... 431
473. Show list of ingress entries ... 432
474. Show list of egress entries .. 433
475. Show list of VCCs ... 434
476. Show list of ingress cache entries .. 435
477. Show list of egress cache entries .. 436
478. Show statistics on MSS1 with MPOA enabled 437
479. Logical attachment of OSA to the network 438
480. System addresses in LP4 ... 439
481. OSA/SF GUI logistics ... 440
482. OSA sf hosts ... 441
483. ATM Emulated Token Ring Settings: Port 0 on CHPID E0 442
484. Set Active MAC Address (ESI) ... 443
485. Configuration List for CHPID E0 ... 444
486. ATM LEC Platform Settings .. 445
487. ATM port definition at the switch .. 446
488. ATM LEC Platform Settings: LEC port 0 (Page 1 of 3) 447
489. ATM LEC Platform Settings: LEC port 0 (Page 2 of 3) 448
490. ATM LEC Platform Settings: LEC port 0 (Page 3 of 3) 449
491. ATM LEC Platform Settings: LEC port 1 (Page 1 of 3) 450
492. ATM LEC Platform Settings: LEC port 1 (Page 2 of 3) 451
493. ATM LEC Platform Settings: LEC port 1 (Page 3 of 3) 452
494. IOCDS definitions for CHPID E0 .. 453
495. TCP/IP Passthru Settings .. 454
496. TCP/IP Passthru OAT Entry Definition 455
497. MSS T 5 output for tr1 .. 456
498. MSS T 5 output for et1 .. 457
499. MSS ping capture .. 458
500. Sample Console Screen to Check the Physical Connection 459
501. Sample Console Screen to Check the LANE Registration 460
502. The Sample Console Screen to Check the Physical Connection ... 461
503. The Sample Console Screen to Check the LANE Registration 462
Tables

1. ... 40
2. OS/2 ... 65
3. Windows NT 3.5 ... 66
4. Windows 95 .. 66
5. DOS .. 67
6. Windows V3.11 ... 67
7. AIX .. 67
8. NetWare ... 68
9. ... 68
10. Address rule .. 219
11. IX Status Messages and Causes 460
Preface

This redbook positions the new xxx against the yyy...

This redbook will help you install, tailor and configure the new...

This redbook gives a broad understanding of a new architecture...

This redbook will help you design/create a solution to migrate...

Chapter 1 contains an introduction to and a summary of our conclusions / the tasks required ... This will be especially useful for ...

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization Raleigh Center.

Harri Levanen is a ??title?????? at the International Technical Support Organization, Raleigh Center. He/she writes extensively and teaches IBM classes worldwide on all areas of ????????. Before joining the ITSO ??? years ago, ??name???? worked in ???department, country?? as ???????

is a ???title??? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title??? in ???country???. He/she has ?? years of experience in ???? field. He/she has worked at IBM for ??? years. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she has worked at IBM for ??? years. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

is a ???title?? in ???country???. He/she has ?? years of experience in ???? field. He/she holds a degree in ???? from ?????. His/her areas of expertise include ??????? He/she has written extensively on ???????.

Thanks to the following people for their invaluable contributions to this project:

????????
International Technical Support Organization, Raleigh Center
Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your comments about this or other redbooks in one of the following ways:

- Fax the evaluation form found in “ITSO Redbook Evaluation” on page 487 to the fax number shown on the form.
- Use the online evaluation form found at http://www.redbooks.ibm.com/
- Send your comments in an internet note to redbook@us.ibm.com
Part 1. Overview
Chapter 1. ATM Overview

This chapter provides basic concepts of ATM Forum-compliant (FC) LAN Emulation and Classical IP.

1.1 Need for LAN Emulation

The primary benefit of LAN Emulation (LANE) or Emulated LANs (ELANs) is to allow Ethernet and token-ring networks to interface to ATM networks, thus utilizing the high-speed ATM links while still protecting the existing software and hardware investment. LANE is implemented within the data link control layer, which is below the device driver interface of end stations; hence the application programming interface is unchanged, thus protecting the software investment. The hardware investment is protected by means of bridging between LAN and ATM environments (enabling utilization of the existing adapters/wiring).

1.2 Emulated LAN Components

A typical ELAN consists of one or more LAN Emulation Clients (LECs), the Lan Emulation Configuration Server (LECS), the Lan Emulation Server (LES), and Broadcast and Unknown Server (LES/BUS). The LES, BUS, and LECS are collectively known as the LE Service Components. Each ELAN has a dedicated LES and BUS. The LECs get the address of the LES/BUS from the LECS or alternatively, may be preconfigured with their LES/BUS address; however, using LECS is preferred for address assignments to reduce administration overhead.

:figref refid=figlg02. shows a physical and logical view of a simple LAN Emulation network consisting of two ELANs.

Figure 1. Physical and Logical Views of a Simple LAN Emulation Network

Ethernet/IEEE802.3 and Token-Ring/IEEE802.5 can be emulated, but all endstations of an ELAN should be of the same type. The function that bridges between legacy LAN segments and ELANs is called a Proxy LEC.

Before going into LAN Emulation in more detail, the basics of ATM addressing and functions of the Interim Local Management Interface (ILMI) will be reviewed as they relate to LAN Emulation.
1.3 ATM Addresses

ATM uses 20-byte hierarchical addressing. The first 13 bytes of an ATM address are called the network prefix. End systems obtain the network prefix component of their addresses from their adjacent ATM switch. The next six bytes of the address are called the end system identifier (ESI). The final byte is called the selector. End systems form their addresses by appending their ESI and selector to the network prefix provided by the ATM switch. The selector is only significant within the end system; it is not used to route calls within the ATM network, but is used within end systems to uniquely identify called/calling parties.

The network prefix and ESI components of ATM addresses must register with an ATM switch before calls can be placed or received. If the address is not unique (that is, if it duplicates an address already registered with the switch), the switch will reject the registration. One way to guarantee a unique ATM address is to use the burned-in (universally administered) IEEE MAC address as the ESI.

1.3.1 ATM Addresses of LAN Emulation Components

In general, ATM addresses must be unique among LAN Emulation components. The only exception is a LES and BUS serving the same ELAN. They may share an ATM address, as is the case for the MSS Server. LAN Emulation components are configured for a particular ATM interface. The user may decide to use the burned-in MAC address as the ESI portion of the component's ATM address or select one of the locally administered ESIs defined for the ATM interface. Multiple LE components may share the same ESI if they have unique selector bytes. By default, the configuration interface assigns each LE component a unique selector byte value for the configured ESI; however, the user may override this assignment and explicitly configure a particular selector byte value.

An ATM interface parameter determines the number of selectors per ESI reserved for explicit assignment. The remainder are available for dynamic assignment by the ATM interface at runtime. LE components only use the selectors reserved for explicit assignment; by default, 200 of the 256 possible selectors per ESI are reserved for explicit assignment. Run-time selector assignment is beneficial when the user does not need to control the assigned selector, Classical IP clients are an example of this.

While ATM addresses must be unique among LE components, LE components may use the same ATM addresses as non-LE components such as Classical IP clients and servers.

1.4 Overview of ILMI Functions

The Interim Local Management Interface (ILMI) defines a set of SNMP-based procedures used to manage the user-to-network interface (UNI) between an ATM end system and an ATM switch. The following three ILMI functions are particularly relevant to LAN Emulation:

1. ATM address registration
2. Dynamic determination of UNI version being run on the switch
3. Acquisition of the LECS ATM address(es)
ILMI is the method of choice for locating the LECS. The ILMI MIB at the ATM switch includes a list of LECS ATM addresses that may be retrieved by the LECs. It is useful to have the LECS ATM address(es) configured at the ATM switches only, and not at the LECs. There are fewer switches than LECs.

1.5 LAN Emulation Components

An emulated LAN is comprised of the following components:

- One LAN Emulation configuration server (LECS)
- One LAN Emulation server (LES)
- One broadcast and unknown server (BUS)
- LAN Emulation clients (LECs), such as user workstations, bridges and routers.

Users connect to the ELAN via the LEC, which requests services through the LAN Emulation User-to-Network Interface (LUNI). The three components (LES, LECS, and BUS) may be distributed over different physical systems or may be grouped together in one system, but logically they are distinct functions. The LAN Emulation services may be implemented in ATM intermediate systems (for example, switches such as the 8260 and 8285) as part of the ATM network, or in one or more ATM end systems, such as the MSS for transport of control and data traffic.

1.5.1 LE Configuration Server (LECS) Overview

The LECS assigns the individual LECs to the different ELANs that can exist in the ATM network. During initialization, a LEC requests the ATM address of the LES for the ELAN to which it should be connected. LECs are not required to use a LECS; a LES's ATM address may be configured (that is, system-defined) in the LEC.

Using a LECS to assign LECs to the different ELANs allows for central configuration and administration of multiple ELANs in an ATM network. The LECS could make its decision to assign a LES, for example, based on a client's ATM or MAC address according to a defined policy, or simply based on a system-defined database.

To take advantage of an MSS server's flexibility in creating policy-based ELANs, it is recommended that a LEC be configured to use the LECS to obtain the ATM address of the LES, where possible.

1.5.2 LAN Emulation Server (LES)

The basic function of the LE server is to provide directory and address resolution services to the LECs of the emulated LAN. Each emulated LAN must have an LE server. An LE client registers the LAN address(es) it represents with the LE server. When an LE client wants to establish a direct connection with a destination LEC, it gets the destination's MAC address from the higher layer protocols and has to send a request to the LE server for the destination ATM address.

The LES will either respond directly (if the destination client has registered that address) or forward the request to other clients to find the destination.
An emulated token-ring LAN cannot have members that are emulating an Ethernet LAN (and vice versa). Thus, an instance of a LES is dedicated to a single type of LAN Emulation.

The problems of translational bridging between different LAN types is not addressed in the ATM Forum’s LAN Emulation; however, the MSS will do translational bridging between Ethernet and token-ring for NetBIOS and SNA protocols.

The LES may be physically internal to the ATM network or provided in an external device, but logically it is always an external function that simply uses the services provided by ATM to do its job.

1.5.3 Broadcast and Unknown Server (BUS)

The BUS has two main functions:

- Distribute multicast and broadcast frames to all LECs in the ELAN.
- Forward unicast frames to the appropriate destination.

The BUS is required because legacy applications on Ethernet and token-ring rely on broadcasts to find their partners. Since ATM is a point-to-point connection, BUS service is required to resolve broadcasts on the ATM network. To avoid creating a bottleneck at the BUS, the rate at which a LEC can send unicast frames to the BUS is limited.

1.5.4 LAN Emulation Client (LEC)

Each workstation connecting to the ELAN has to implement the LE layer (also called LE entity), which performs data forwarding and control functions such as address resolution, establishment of the various VCCs, etc. The LE layer functions could be implemented completely in software, in hardware on a specialized LAN Emulation ATM adapter, or in a combination of both. The layered structure of the LEC is shown in :figref refid=fig4915lg9.

![Figure 2. LAN Emulation Client Functional Layers](**** 4915lg9.xwd ****)

The LE layer provides the interface to existing higher-layer protocol support (such as IPX, IEEE 802.2 LLC, NetBIOS, etc.) and emulates the MAC-level interface of a real shared-media LAN (802.3/Ethernet or token-ring). This means that no changes are needed in existing LAN application software to use ATM services.
The LE layer implements the LUNI interface when communicating with other entities in the emulated LAN.

The primary function of the LE layer is to transfer LAN frames (arriving from higher layers) to their destination.

A separate instance of the LE layer is needed in each workstation for each different LAN or type of LAN to be supported. For example, if both token-ring and Ethernet LAN types are to be emulated within a single station, then two LE layers are required. In fact, they will probably just be different threads within the same copy of the same code but they are logically separate LE layers. Separate LE layers would also be used if one workstation needed to be part of two different ELANs both emulating the same LAN type (for example, token-ring). Each separate LE layer needs to have a different MAC address and must be attached to its own LE server, but it can share the same physical ATM connection (adapter).

1.5.5 LAN Emulation VC Connections

Data transfer in the LE system (consisting of control messages and encapsulated LAN frames) uses a number of different ATM VCCs as illustrated in :figref refid=fig5005h06.

1.5.5.1 Configuration and Control Connections

Control VCCs connect a LEC to the LECS and the LES, but they are never used for user data traffic. These connections may be permanent or switched and are established when a LEC connects to the ELAN.

Configuration Direct VCC

A bidirectional, point-to-point configuration direct VCC may be established between a LEC and the LECS to obtain configuration information (for example, the LES's ATM address).

Control Direct VCC

A bidirectional, point-to-point control direct VCC must be established (and kept active) between each LEC and the LES. This is used for the
exchange of control traffic (for example, address resolution) between the LEC and the LES.

Control Distribute VCC

The LES may optionally establish a unidirectional control distribute VCC to distribute control information (for example, query for an unregistered MAC address) to all LECs connected to the ELAN. This can be a point-to-point VCC to each LEC. If the ATM supports point-to-multipoint connections, then the LES might instead establish one point-to-multipoint VCC to all LECs. (The clients will be added or deleted as leaves on this point-to-multipoint tree as they enter or leave the ELAN.)

1.5.5.2 Data Connections

Data connections are direct VCCs from one LEC to another LEC and to the BUS. They are used to carry user data traffic and never carry control traffic (except for a flush message for cleanup).

Data Direct VCC

For unicast data transfer between end systems, data direct VCCs are set up through ATM signaling as bidirectional, point-to-point connections once the LEC has received the destination's ATM address from the LES. The LEC will send its first frame to the LES/BUS. The LES/BUS will resolve the destination LEC's ATM address and send the destination address to the originating LEC. The originating LEC will now set up a data direct VCC to the destination LEC and send the data on that newly created VCC.

Data direct VCCs stay in place until one of the partner LECs decides to end the connection based on installation options defining relevant timeouts, etc.

Multicast Send VCC

During initialization, a LEC has to establish a bidirectional, point-to-point multicast send VCC to the BUS (the BUS's ATM address is provided to the LEC by the LES) and must keep this VCC alive while connected to the ELAN. This VCC is used by the LEC to send broadcast and multicast data frames.

Multicast Forward VCC

When a LEC establishes its multicast send VCC to the BUS, the BUS learns about the new member of the ELAN. The BUS then will initiate signaling for the unidirectional multicast forward VCC to the LEC. This VCC can be either point-to-point or point-to-multipoint.

(A point-to-multipoint VCC is more effective for multicast operations.)

1.5.6 LE Service Operation

In operation, the LAN Emulation service performs the following functions:

Initialization

During initialization, the LEC discovers its own ATM address from the ATM switch, which is needed for the client to set up direct VCCs. It obtains the LES's ATM address from the LECS and establishes the control VCCs with
the LES and the BUS. The BUS address is provided to the LEC by the LES.

Address Registration

Clients use this function to provide address information to the LES. A client must either register all LAN destinations for which it is responsible, or join as a proxy. The LAN destinations may also be unregistered as the state of the clients changes. A LES may respond to address resolution requests if LECs register their LAN destinations (MAC addresses, or for source routing IEEE 802.5 LANs only, route descriptors) with the LES.

Address Resolution

This is the method used by an ATM client to associate a LAN destination with the ATM address of another client or the BUS. Address resolution allows clients to set up data direct VCCs to carry cells. This function includes mechanisms for learning the ATM address of a target station, mapping the MAC address to an ATM address, storing the mapping in a table, and managing the table.

For the LES, this function provides the means to support the use of direct VCCs by endstations. This includes a mechanism for mapping the MAC address of an end system to its ATM address, storing the information, and providing it to a requesting endstation.

Connection Management

In SVC environments, the LEC, the LES, and the BUS set up connections between each other using UNI signaling.

Data Transfer

To transmit a frame, the sending LE layer must do the following:

- Decide on which of its VCCs (to destination LEC or BUS) a frame is to be transmitted.
- Encapsulate the frame using AAL-5.

It must also decide when to establish and release data direct VCCs. To do this, it may need to access the LES for address resolution purposes.

1.5.6.1 Operation in Real Systems

In many practical LAN networks, ATM LAN Emulation is going to work very well. While LANs allow any-to-any data transport, typical LAN users connect to very few servers (such as communication servers, file servers, and print servers) at one time.

In this situation, the LE architecture described above can be extremely effective. After a short time, workstations will have established VCCs with all of the servers that they usually communicate with. Data transfer is then direct and very efficient. Timeouts can be set so that the switched VCCs are maintained during normal session usage.

Further details and an explanation of ATM Forum LAN Emulation is available in the ATM Forum Technical Committee’s LAN Emulation Over ATM technical specification.
1.5.7 LAN Emulation Summary

LAN Emulation provides a relatively efficient means of transporting existing LAN-based applications across an ATM network, providing them with the benefits of high-speed switched connections, and scalability. A LAN Emulation system consists of the following basic components:

1. LAN Emulation Clients (LECs), which reside on endstations or proxy-bridges switches. These provide the interface between traditional LAN traffic based on frames, and the ATM cell-based network.

2. A LAN Emulation Server (LES), which provides ATM-to-MAC address resolution.

3. A Broadcast and Unknown Server (BUS), which forwards all broadcast traffic to the LE clients.

4. A LAN Emulation Configuration Server (LECS), which assigns LES/BUS addresses to attaching LE clients. The LECS is optional, but if available, provides a central administration point for the assignment of policy-based ELANs.

1.6 Classical IP (CIP) Overview

Classical IP is a standardized solution by IETF for sending IP traffic over an ATM interface. With Classical IP the ATM infrastructure is made transparent to IP.

1.6.1 Classical IP Benefits

One of the main benefits of using CIP is being able to utilize the high-speed link provided by ATM. In addition, CIP requires fewer framing bytes than, for example, LANs that contain source and destination MAC addresses; thus, less bandwidth is used for overhead bytes and more for data. Also, CIP requires no broadcast traffic for the resolution of the ARP frames. The ARP frames are only processed by the ARP server and the endstations exchanging information, while other stations on the subnet are not affected. Non-broadcast traffic on a shared Ethernet or token-ring medium precludes other stations from using the media for discrete amounts of time. In CIP, independent channels are established between the hosts having the conversation.

In CIP, logically related stations are grouped together in a Logical IP Subnet (LIS), which eases the adds, deletes, moves, etc., using the ARP server.

While all members of a LIS should support the Classical IP model, the MS server can route between subnets that are CIP based and subnets that are LANE based.

Finally, the investments in a CIP solution are protected. The IETF work on IP over ATM such as, distributed ARP servers, Next Hop Resolution Protocol (NHRP), Multicast Address Resolution Service (MARS), resource ReSerVation protocol (RSVP), and other work that is being defined by the IETF will provide continual growth in functionality and performance.

1.6.2 Classical IP Components

The Logical IP Subnet (LIS) has the same properties of a normal IP network whether running over Ethernet, token-ring or frame relay. However, because ATM is a Non-Broadcast Multiple Access (NBMA) network, the existing broadcast
method for resolving addresses cannot be performed. ARP servers and ARP clients were developed to solve this problem. Within the CIP model, there are two forms of requests/replies: ATMARP requests/replies, and InATMARP requests/replies. InATMARP is used to determine the IP and ATM addresses of the entity at the other end of a VCC. ATMARP is used to request the ATM address associated with a specific IP address.

Each LIS has an ARP server. The server maintains the translation of IP addresses to ATM addresses. The server allows clients to register by accepting incoming VCCs and querying the clients for the appropriate mapping information (that is, IP and ATM addresses of the client) using InATMARP requests. The ARP server also responds to ATMARP requests for ATM addresses corresponding to IP addresses specified by the client. Finally, the ARP server updates its tables through aging ARP entries and managing incoming VCCs.

The ARP client is the entity that always places calls. A client, as it initializes, places a call to the ARP server, and through the exchange of InATMARP requests/replies, registers with the ARP server. When a client has traffic to transmit to another client on the LIS, it sends an ARP request, containing the target IP address to the ARP server. The server either sends back a reply that includes the target ATM address or a NAK (if no information available). The client then uses this ATM address to place a call to the target client. IP datagrams then traverse this VCC.

1.6.3 Timeouts and Refresh

Both clients and servers age their ARP table entries. Once the timer expires, these ARP entries are deleted. If traffic is flowing while an ARP entry gets aged out, that traffic will cease until a new ARP entry gets created. To avoid an interruption in service, MSS Server provides an automatic refresh option. This option allows the MSS client to transmit either an ARP to the ARP server or an InARP to the target client before the ARP entry expires. If the target replies, then the timer of the ARP entry is reset. If the target does not, then the entry is deleted. The ARP server automatically sends out an InATMARP message before aging an entry out of its table. The MSS CIP clients and ARP servers have a default aging period of 5 minutes and 20 minutes, respectively. These times are configurable for each LIS.

1.6.4 IP Addresses and CIP Components

IP addresses are key to IP routing. When configuring the MSS Server, the act of adding an IP address to the ATM interface automatically creates a CIP client. The user must then specify whether MSS is to act as the ARP server for the LIS. Thus, an MSS ARP server never exists without a paired client. The MSS Server supports up to 32 LISs per ATM interface.

Creation of an IP address on the MSS Server implies packet forwarding behavior. The MSS Server forwards packets between subnets even if no routing protocol (for example, OSPF) is configured. Furthermore, if a packet is sent to the MSS Server but the destination is not on the same subnet as the source, the MSS Server sends an ICMP redirect message to the originator, and forwards the packet to the proper host.
1.6.5 ATM Addresses of CIP Components

In general, ATM addresses must be unique among CIP components; however, on the MSS Server, client/server pairs share an ATM address. The ESI and selector portions of a CIP component's ATM address may be configured automatically or generated at runtime. The ESI defaults to the MAC address burned into the ATM interface hardware and, similar to LAN Emulation, the user may override the default by explicitly selecting one of the locally-administered ESIs defined for the ATM interface. If only a client is being created, then explicitly configuring the ESI is not recommended; however, if a client/server pair is being created, then at least the selector should be specified in order to provide the server with a fixed address (that can be configured at all the clients on the LIS).

1.6.6 CIP Channel Connections

Two types of connections are supported by CIP: Switched Virtual Circuits (SVCs), and Permanent Virtual Circuits (PVCs).

1.6.6.1 SVCs

SVCs require a signalling protocol to establish connections. SVCs may be generated automatically through the address resolution and call setup process of Classical IP, or it may be explicitly configured. Automatic SVCs are brought up and torn down by the ARP subsystem as required for sending IP traffic. A configured SVC is brought up during initialization and kept up indefinitely.

1.6.6.2 PVCs

PVCs do not require a signalling protocol, but do require configuration in both the ATM network and end systems. PVCs and configured SVCs do not require an ARP server. That is, a LIS can consist of hosts that are interconnected only by configured information. However, this is useful only in small networks as the amount of manual configuration can quickly become prohibitive in large networks. The attribute for both control channels (connections from client to server) and data channels (connections from one client to another) may be customized to specific user needs, for example, Quality of Service. Characteristics can be specified on a LIS-basis by configuring VCC traffic parameters such as Peak and Sustained rates.

For more information on ATM connections, refer to Internetworking over ATM An Introduction, SG24-4699.

1.7 Lan Emulation Version 2

Lan Emulation Version 2 is an enhancement to the original lan emulation standard and was released in July 1997. Some of the enhancements with LANE v2 are:-

- It allows LECs on different ELANs in the same box to use the same VCCs thus reducing the VCC requirement.
- Multiprotocol over ATM (MPOA) is supported. It allows MPOA servers and clients to discover each other on an elan.
• Enhanced quality of service support for lan emulation data direct VCCs. Applications can now access the QOS characteristics of the ATM network.

A full description of the new and updated LANE functions can be found in the MSS Release 2.1 redbook SG24-5231.

1.8 MPOA

MPOA Multiprotocol over ATM is an ATM forum standard for the virtual router model defined for ATM networks. It provides unprecedented scalability and flexibility by emulating the functions of the traditional router in a network. MPOA separates the logical functions of route calculation and data forwarding and splits them between MPOA servers and clients. It is based on standard networking technologies such as bridging, lan emulation and next hop resolution protocol (NHRP). It enables direct VCC connections across the ATM network between MPOA clients by-passing the routers.

The MPOA servers perform the route calculation function, address management and topology discovery. They then provide this information to MPOA clients. They are also seen as the routing engines from outside the MPOA segment. They keep connections with traditional routers that run traditional routing protocols such as RIP and OSPF.

The MPOA clients are the incoming and outgoing points of the virtual router. They monitor the data forwarded to the MPS router. The ingress MPOA client (the entry point) recognizes when the data rate has exceeded a pre-determined level and starts the process to establish a shortcut to the Egress (the exit point) MPOA client. The MPOA server does the route calculation and provides this to the MPOA clients. The MPOA clients then establish the shortcut.

A full detailed description of how MPOA works can be found in the MSS Release 2.1 redbook SG24-5231.
Chapter 2. Hardware Overview

ATM solutions provide high speed, multimedia, uninterrupted transmission, and enhanced bandwidth cost control. For more information, refer to www.networking.ibm.com.

As part of IBM's ATM strategy, there are campus products available to enable ATM backbones, switch-based ATM workgroups, and coexistence with current devices and applications.

This chapter gives a short introduction to the switch family of products, including ATM, LAN and WAN switches, an ATM LAN bridge and routers that can be directly connected to an ATM network.

In addition, this chapter contains information on the IBM 8210 (MSS) and its functionality and how servers and endstations can be attached to an ATM network.

2.1 ATM Switches

The heart of an ATM campus backbone is provided by one or more high-speed ATM switches. IBM has four ATM capable switches:

- 8260 Multiprotocol Hub
- 8265 Nways ATM Switch
- 8285 ATM Workgroup Switch
- 8274 Nways RouteSwitch

2.1.1 IBM 8260 Nways Multiprotocol Switching Hub

The 8260 supports the direct attachment of your servers and workstations and connects to other switches, giving scalability for any given campus network. The 8260 provides support for Ethernet, token-ring and FDDI LANs, as well as ATM.

Designed for multi-workgroup and campus backbone applications, the 8260 delivers the functions you need to build high-speed ATM networks while you continue to connect existing Ethernet, token-ring and FDDI networks.

With more than 70 modules available, the 8260 combines the functions of a shared-media, modular, intelligent hub with LAN and ATM switches in a single unit, providing a smooth migration path from today's to tomorrow's networks. The 8260 accepts a wide range of Ethernet, token-ring, FDDI, ATM and unique features such as MPEG-2 video distribution modules and can also accept any module from IBM's midrange 8250 Multiprotocol Intelligent Hub.

The 8260 offers the following functions:

- Ethernet, token-ring and FDDI connectivity
 - Up to 8 Ethernet, 17 token-ring or 4 FDDI networks in a single hub.
 - Up to 612 managed Ethernet ports in the 17-slot hub, with up to 128 independent workgroup segments using port-switching.
– Up to 340 managed token-ring ports in the 17-slot hub, with up to 176 independent segments using port-switching.
– Port-bank and module-switching for dynamic network reconfiguration to adjust to changing loads or to move users between networks without rewiring or expensive trips to the wiring closet.
– RMON support using the T-MAC and E-MAC daughter cards.
– RMON2 support using the HTMAC or HEMAC cards.

• High-Capacity LAN Switching
 – Up to 204 switched 10-Mbps Ethernet ports or 68 Fast Ethernet ports with full switching.
 – High-aggregate LAN switching through a packet channel running at over 2 Gbps.
 – Embedded RMON2 monitoring.
 – LAN-to-ATM switching.

• ATM for Workgroups
 – Separate switch and concentrator modules provide the ability to simultaneously support multiple speeds and balance between workgroup and backbone configuration.
 – Up to 168 25 Mbps ports, 56 100 Mbps ports or 42 155 Mbps ports for a wide range of configuration options including 622 Mbps links.
 – Ability to support both conventional LANs and ATM in the same device is less expensive and less complex than multiple-device alternatives.
 – ATM LAN Ethernet and token-ring switches with full-duplex operation and adaptive cut-through switching.
 – Video distribution over ATM.
 – Integrated multiprotocol switched server module with advanced LANE functions.

• Extensive Management
 – Distributed management system uses plug-in daughter cards to monitor network operations instead of separate management modules.
 – Daughter cards are independent monitoring agents, with their own processors and memory.
 – Daughter cards are switchable from network to network to allow monitoring of multiple LAN segments from a single access point.
 – Supports hub management and LAN configuration from a PC, a terminal or an SNMP manager.

For more technical details refer to 8260 Multiprotocol Intelligent Switching Hub, GG24-4370 and IBM 8260 as a Campus ATM Switch, SG24-5003.

2.1.2 8265 Nways ATM Switch Model 17S
The 8265 is a world class ATM switch with a unique architecture that combines the strengths of single stage switching and distributed buffer pools with ATM traffic management. In addition to the support of all ATM Class of Services (CBR, VBR, ABR and UBR), the 8265 provides advanced traffic management functions,
such as traffic shaping at VP level, statistics at connection level, traffic policing, or port mirroring. The 8265 also has one of the most sophisticated ATM Forum-compliant PNNI implementations in the industry, in addition to the high level of ATM signalling performance and robustness. The 8265 was built using the IBM 8260 chassis and ATM proven architecture, and therefore it leverages on the technology that was developed and deployed during the past years providing a performance increase. The 8265 provides a backward compatibility mode for 8260 ATM modules. The 8265 brings the following capabilities:

- Up to 12.8 Gbps full duplex aggregate throughput
- A new 25 Gbps ATM backplane
- Up to 56 OC3 or 14 OC12 port capacity (non-blocking)
- All ATM quality of services

8265 contains the following components:

- 1 17-slot chassis with the ATM backplane
- Control point/switch module
- 4-port OC3 (155 Mbps) multimode fiber module
- 1 port OC3 (155 Mbps) flexible module that can host up to 4 individual OC3 (155 Mbps) I/O cards (SMF, UTP/STP, MMF)
- 1-port OC12 (622 Mbps) MMF and SMF
- The 8265 also supports all the 8260 modules in its compatibility slots (Slots 1, 3, 5 and 7) Using CPSW F/C 6501. This facility is not available with CPSW2 F/C 6502.

8265 Microcode

- Version 3 microcode brings the PNNI capability with a single level of peer group. (node 0)
- Version 4 microcode provides the next level of PNNI peer group hierarchy. (node 1) This version of microcode is available in two forms. PNNI and IISP. There is also an enhanced WEB server. Improved serviceability with the new ATM Ping command. Integration of two LES/BUS pairs.

New CPSW module. (F/C 6502)

- A new CP/SW is also available now that has a faster processor (MPC860 50Mhz) and increased memory (64Mb DRAM) bringing increased performance.
- Has a built in power controller and does not need the RCTL (F/C 8000) in slot 18. This can be disabled if the customer wants to use two RCTL cards for redundancy with only one CPSW2.

A new version 4 chassis.

Wan connectivity is available using the WAN 2.5 module. This card allows the following feature cards to be installed on it.

- 4-port ATM E1/T1/J1
- 1-port ATM E3/T3
- 1-port ATM “full” SONET/SDH
An ESCON channel attachment card for direct connection to the Sys/390.

The table below illustrates some of the restrictions with the new CPSW2 and version 4 chassis. This CPSW is designed to operate with native 8265 modules in a version 4 chassis.

Table 1.

<table>
<thead>
<tr>
<th>CP/SW Chassis / Backplane compatibility table</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP/SW (F/C 6501)</td>
</tr>
<tr>
<td>17S chassis: previous level (EC P/N 13J8689)</td>
</tr>
<tr>
<td>8260 modules in slots 1,3,5,7</td>
</tr>
<tr>
<td>8265 modules in slots 1 through 8 and 12 through 17</td>
</tr>
<tr>
<td>CP/SW 2 (F/C 6502)</td>
</tr>
<tr>
<td>8260 modules not supported.</td>
</tr>
<tr>
<td>8265 modules in slots 1 through 8 and 13 through 17</td>
</tr>
</tbody>
</table>

The CPSW2 contains an internal power controller. Two CPSW2's provide the same backup capability as two previous RCTL cards. If the customer wishes you can disable the power controller function on the CPSW2 and use the RCTL cards instead. This way you could have one CPSW installed and redundant power using two RCTL cards.

2.1.3 8285 Nways ATM Workgroup Switch

The IBM 8285 Nways ATM Workgroup Switch is a low end ATM Workgroup Switch.

The IBM 8285 Nways ATM Workgroup Switch comprises two desktop or rack-mountable units:

- Base unit
- An optional expansion unit feature

The ATM Workgroup Switch Base Unit is a self-contained ATM switch and control point unit with 12 ATM ports (25.6 Mbps) and a slot for one of the optional 155 Mbps ATM I/O card features:

- Multimode fiber (FC 5500)
• Single-mode fiber (FC 5501)

The 155 Mbps I/O card can be linked to:
• A local server (such as an ATM-enabled RS/6000)
• An ATM network consisting of other ATM Workgroup Switches
• Other vendor products that are compliant with ATM Forum specifications for 155 Mbps links.

The expansion unit feature provides three slots to add IBM 8260 ATM modules that can provide up to 36 additional ATM ports. The ATM modules that are currently available include:
• ATM media modules (25, 100, and 155 Mbps)
• ATM LAN bridge modules

The slots are interconnected by the same type of ATM backplane found in the 8260 hub, and ports on ATM modules in the expansion unit can be switched to any other port in either the base unit or the expansion unit. The 8285 is a good entry-level product for customers who want to explore the possibilities of ATM. The 8285 inherits the powerful and well-proven architecture of the 8260 ATM hub, such as the Software Control Point Switch-on-a-Chip traffic management technologies common to the entire IBM ATM switch family.

2.1.4 8274 Nways ATM RouteSwitch

The IBM 8274 Nways ATM RouteSwitch provides an immediate performance boost or gives assistance to begin migrating to ATM (or both at once) by using a scalable, hot-swappable, modular approach. The Nways 8274 LAN RouteSwitch combines an innovative hardware architecture with a sophisticated feature set, inexpensive enough to use as a basic network building block. It provides you with the unique combination of LAN switching and ATM switching to the desktop and to the backbone.

With the 13.2 Gbps ATM cell switching backplane available in selected models, they currently include the Models W33, W53 and W93. In addition to selecting one of the models above, certain feature codes are required in order to perform ATM switching. Requirements include an MPM-II with 16 MB memory or an MPM-1G or MPM-1GW an FCSM (Frame to Cell Switching Module) and a CSM (Cell Switching Module). Also required is the Nways RouteSwitch Software Program at the minimum level of Version 3 Release 0.

Otherwise, model GRS supports the 22 Gbps ATM cell switching backplane. It required MPX with 32 MB of DRAM and 8MB of flash memory. It also required Nways RouteSwitch Software Program-GbE xxx Version 3 Release 4 or later.

2.2 8210 Nways Multiprotocol Switched Services (MSS) Server

The IBM 8210 Nways Multiprotocol Switched Services (MSS) Server is an IBM-developed technology, that implements multiprotocol, distributed routing in switched networks. There are three types of MSS Servers:
• Stand-alone IBM 8210
• MSS Server as a blade for the IBM 8260
• MSS Server as a blade for the IBM 8265

The stand-alone IBM 8210 has two slots for 155 Mbps ATM adapters, one of which can be chosen for FDDI connection. Two versions of the 155 Mbps adapter are available:
• One for single-mode fiber
• One for multimode fiber

The 8210 blade supports a single ATM interface and is connected to the ATM network via the 8260/8265 backplane.

2.2.1 MSS Server - Hardware

1. MSS Server 8210-003 and 1-slot MSS Server 3.0 Module for 8265 features
 Released with software version MSS Release 2.2
 • 233 MHz PowerPC 740
 • 64 MB EDO DRAM
 • PCMCIA flash card
 • PCMCIA modem card
 • 10 Mbps Ethernet attachment
 - Serial port, modem and Ethernet port can be used for management

2. MSS Server 8210-002 and 1-slot MSS Server module for 8260/8265
 Released with software version MSS Release 2.0
 • 166 MHz 603EV PowerPC processor
 • 64 MB EDO DRAM
 • 20 MB PCMCIA flash card
 • 10 Mbps Ethernet attachment
 - Serial port, modem and Ethernet port can be used for management
 • Built-in 1 MB flash to store firmware
 • Built-in 1.6 GB IDE hard drive

3. MSS Server 8210-001 and 2-slot MSS Server module for 8260
 Released with software version MSS Release 1.0
 • 100 MHz PowerPC 603e
 • 32 MB DRAM (upgradeable to 64 MB)
 • 12 MB flush
 • PCMCIA removable hard drive
 • PCMCIA modem slot

2.2.2 MSS Server Software Release 1.1

The MSS Server Release 1.1 contains four basic functions:
• LAN Emulation
• Classical IP
• Routing
• Bridging

For a more detailed explanation of these functions, please see *Understanding and Using the MSS Server*, SG24-4515.

Release 1.1 of the MSS Server contains these additional functions:

Super VLAN

Super VLAN is a collection of emulated LANs that allows you to build large ATM networks. A client on any of the emulated LANs can establish a direct link, a data-direct VCC, to any other client on the Super VLAN. In essence, the Super VLAN is emulating a standard VLAN, except that the LAN Emulation Server (LES) function is distributed throughout the ATM network. Reliability and performance of the LE services increase with the number of service entities. Resource utilization becomes less centralized, allowing for a much larger Super VLAN than a standard ELAN. Two additional functions are added to complete the function. Bridging BroadCast Manager (BBCM), and Dynamic Protocol VLANs (D-PVLAN) are added to control broadcast traffic, that would otherwise limit the effectiveness of a large emulated LAN. BBCM, like BroadCast Manager in a single emulated LAN, resolves layer 3 broadcasts into a layer 2 unicast frame. D-PVLAN on the other hand, keeps track of what protocols and what subnets are on each of the LES domains. When BBCM is unable to resolve a broadcast, D-PVLAN forwards only to those segments that would be interested. D-PVLAN partitions the Super VLAN into protocol-specific VLANs.

Virtual ATM interfaces:

Virtual ATM interfaces can actually improve performance in large, complicated networks and will aid multicast routing protocols, such as OSPF. Currently only 32 protocol addresses can be configured on any physical interface. This function eliminates this limitation. When more protocol interfaces are needed on a physical interface, additional virtual interfaces can be defined on the physical interface. To the protocol support in the MSS Server, a virtual ATM interface looks just like an additional adapter and 32 addresses can be assigned to each virtual interface.

BUS performance:

In LAN emulation, BUS performance determines the ability of ATM to forward frames for which a data-direct VCC has not been established. Release 1.1 increases the number of frames forwarded to over 100 000 packets per second in the standard BUS configuration.

FDDI-to-ATM connection:

Release 1.1 also adds support for FDDI that allows you to route IP, IPX and AppleTalk traffic between FDDI and ATM networks. Four types of FDDI adapters allow customers to use copper and optical fiber cables as well as the support of single and dual FDDI rings.

QoS:
One of the advantages of ATM is the ability to negotiate QoS. Release 1.1 provides the ability to define a QoS level for a LAN Emulation Client (LEC), an emulated LAN or an ATM interface. Customers can take advantage of this function now and know that IBM will provide compliance when the standard is finalized.

NHRP:

Release 1.1 also provides one of the main functions of the expected Multiprotocol over ATM (MPOA) standard, NHRP. This function allows NHRP clients to set up a data-direct VCC and forward IP data frames without traversing intermediate routers.

Enhanced routing and bridging:

Release 1.1 provides routing support for AppleTalk and bridging support for RFC 1483 bridge format frames.

Redundant ARP server:

In Release 1.0 two MSS Servers could act as redundant ARP servers. But, it was not possible to designate which one was primary and which was secondary. Nor was it possible to switch back from the secondary to the primary when the primary returned online. Release 1.1 adds control that allows you to configure which MSS Server will act as the Primary ARP server, and which will act as the Secondary ARP server. If both MSS Servers are active, the primary server will always be the one to service incoming calls.

Improved redundant default IP gateway:

This function allows endstations with manually configured default gateway IP addresses to continue passing traffic to other subnets after their primary gateway goes down. Without a backup gateway an end station with a manually configured default gateway address is unable to send packets to other subnets until either the gateway comes up or the user changes the default gateway address. For more information on Release 1.1 functions, please see *Using the MSS R1.1*, SG24-2115.

2.2.3 MSS Server Software Release 2.0

The following functions were added to the base and MSS 1.1 versions in October of 1997:

1. APPN routing
2. Distributed ARP server
3. RFC 1577+ client
4. RFC 1483 bridging using SVC
5. Routing enhancements
 - IP enhancements
 - IPX enhancements
 - Banyan Vines routing
6. ELAN enhancements
7. ATM interface enhancements (VCC multiplexing)
8. SR-TB duplicate MAC address support
9. Classical IP MIB
10. Dynamic reconfiguration (new interfaces)
11. Dynamic (selective) linking and loading (DLL)
12. MSS-specific functions
 - Zero-hop routing server
 Note: Enables zero-hop (IP) routing for legacy LAN devices
 - Multicast Address Resolution (RFC 2022)

2.2.4 MSS Server Software Release 2.0.1
The following functions supported with this release in December 1997
1. Bridging enhancements
 - SuperELAN Bridging (TB/SRB)
 - Multiple SuperELANs Running Separate Bridge Instances
 - Bridge Broadcast Management (BBCM) Enhancements
 - Dynamic Protocol Filtering (DPF) Enhancements
 - MAC Address VLANs
 - Sliding Window VLANs
 - Display VLAN Membership by MAC Address

2.2.5 MSS Server Software Release 2.1
The following functions supported with this release in June 1998
1. ELAN enhancements
 - LECS Access Controls
 - Enhanced QoS Support for ELANs
 - LANE V2 (LUNI V2)
 - BCM IPX Server Farm Detection
2. Classical IP enhancements
 - IP Multicast over ATM (MARS Client/Server, MCS)
 - Peer ARP-Server Redundancy
3. Routing enhancements
 - APPN and Banyan VINES routing on FDDI
 - APPN - Enterprise Extender (HPR over IP)
 - IP - MPOA Server (beta)
4. Data Link Switching (DLSw)
5. Bridging enhancements
 - Dynamic Protocol Filtering (DPF) Enhancements
 - Port-based VLANs
 - IP Multicast VLANs
2.2.6 MSS Server Software Release 2.2

The following functions supported with this release in March 1999.
1. Performance enhancements
2. Network Performance enhancements
 - Broadcast Unknown Server (BUS) Filters
 - Broadcast Unknown Server (BUS) Policing
3. LANE Redundancy enhancements
 - LES/BUS Peer Redundancy
 - LECS Database Synchronization
 - Persist Data Direct VCCs
4. MPOA enhancements
 - MPOA Server/Client for IPX
 - MPOA Server/Client MIB
5. Additional Dynamic Reconfiguration
6. Dynamic RFC 1483 PVC/SVC
7. Non-Zero VPI
8. CPU Performance Monitor

2.3 8281 Nways ATM LAN Bridge

The IBM 8281 ATM LAN Bridge is a multiport bridge, which can be used to provide connectivity between workstations attached to legacy LANs (such as token-ring and Ethernet) and workstations attached to ATM, using FC LAN Emulation. It can also provide connectivity between LAN-attached stations using the emulated LAN over ATM as the backbone.

The IBM 8281 comes either as a stand-alone bridge with:
- Two Ethernet (V.2 or IEEE 802.3) or token-ring (IEEE 802.5) ports (base)
- Two additional Ethernet (V.2 or IEEE 802.3) or token-ring (IEEE 802.5) ports (option)
- An ATM connection at 100 Mbps full-duplex (option)

Or as a blade for the IBM 8260 with:
- Four Ethernet (V.2 or IEEE 802.3) or token-ring (IEEE 802.5) ports
- A connection to the ATM network via the 8260 backplane

The following are the highlights of the IBM 8281 ATM LAN bridge:

Bridging for token-ring or Ethernet:
You can configure the LAN interface ports as either all Ethernet ports or all token-ring ports. You can start with either two or four LAN ports. The LAN ports provide RJ-45 connectors that can be used for either Ethernet or token-ring. As a bridge, the 8281 provides efficient transmission from token-ring to token-ring or from Ethernet to Ethernet. The bridge provides source-route bridging for token-ring and transparent bridging for Ethernet. It enables you to set filters to control the traffic flow. In addition, the LAN ports can function in either full-duplex or half-duplex mode.

A gateway to ATM:

You can add the ATM connection to the bridge whenever you need it. The 8281 connects to ATM with an optional, 100 Mbps multimode fiber interface. An ATM Forum-compliant standard, LAN Emulation, lets LAN workstations communicate with ATM workstations.

Access to the ATM backbone:

Using the bridge as a gateway, you can connect either Ethernet or token-ring LANs to other LANs of the same type over a high-capacity, ATM backbone. You can add the backbone to your network without changing any of your existing software applications or hardware on the LANs.

Standards-based link to higher capacity networks:

The 8281 interoperates with a wide range of other devices. It is fully compliant with Ethernet V2, IEEE 802.3 (Ethernet), IEEE 802.5 (token-ring), and the ATM Forum LAN Emulation over ATM: Version 1.0 Specification. The 8281 can be managed by an SNMP manager. The Configuration Utility Program provides a graphical interface for configuration and utility functions, such as microcode upgrade. This program and the 8281 SNMP agent can be accessed through an EIA 232 serial interface with a DB-25 connector on the front panel.

For more technical details about the IBM 8281 refer to Chapter 6 in *Campus ATM LAN Emulation and Classical IP Implementation Guide*, SG24-5005.

*** This product has now been withdrawn from marketing. The information here on the 8281 is for reference only. ***

2.4 LAN Switches

The IBM LAN Switch family includes several products.

The IBM 8271 and the 8272 provide LAN switching to traditional Ethernet and token-ring LAN environments.

The IBM 8273 provides powerful, transparent Ethernet switching at wire speed, while at the same time providing extensive VLAN support. The IBM 8274 extends the 8273 architecture with a chassis design that allows for several media type blades to be inserted. These blade types can be token-ring, Ethernet, fast Ethernet, FDDI, and ATM.
2.4.1 8271 Nways Ethernet LAN Switch

The IBM 8271 Nways Ethernet LAN Switches provide LAN switching technology for an Ethernet environment. The 8271 employs cut-through switching technology that provides the benefits of dedicated-media, high-speed switching to serve emerging, high-demand desktop applications. However, should your operating environment demand more error isolation between segments, the 8271 can be configured to alternate automatically between cut-through and store-and-forward switching based on user-specified thresholds. This IBM-patented technique is called adaptive cut-through mode.

These models available:

- Stand-alone IBM 8271 Model 001
- Stand-alone IBM 8271 Model 108
- Stand-alone IBM 8271 Model 216
- Stand-alone IBM 8271 Model 524
- Stand-alone IBM 8271 Model 612
- Stand-alone IBM 8271 Model 624
- Stand-alone IBM 8271 Model 712
- Stand-alone IBM 8271 Model E12/E24
- Stand-alone IBM 8271 Model F12/F24
- IBM 8271 module for the IBM 8260 (2-slot version)
- IBM 8271 module for the IBM 8260 (3-slot version)

Model Highlights 8271-001

- Transports Ethernet frames among up to eight Ethernet LAN segments, each connected to one 10BaseT port on the IBM 8271. A single AUI port is also provided, for use instead of one 10Base2, 10Base5 or fiber segment backbone.
- Supports both shared and dedicated LAN segments on any of the ports.
- Bandwidth to a single LAN station on a dedicated LAN segment can be doubled from 10 Mbps to 20 Mbps by using the full-duplex capabilities of the 8271 and full-duplex Ethernet adapters.
- Provides multiport, transparent connection between ports (transparent switching).
- The virtual switch capability of the 8271 allows a single physical switch to be divided into multiple switching domains (virtual switches).

Model Highlights 8271-108

- Provides all features described for Model 001
- Provides an EtherProbe network monitor port to monitor all switch network traffic.
- Can be configured to block the forwarding of small, incomplete frames or runts using runt-free mode, thus enhancing network operations.
- EtherPiping, provides the capability for two 8271s to communicate by connecting together up to four full-duplex Ethernet ports.
• Includes one Universal Feature Slot, that supports optional Universal Feature Cards for additional connectivity.

Model Highlights 8271-216
• Includes all the features described for Model 108
• Provides 16 fixed Ethernet ports as well as two Universal Feature Slots.

Model Highlights 2-slot version 8271-module
• Includes all the features described for Model 108
• Provides 8 fixed Ethernet ports as well as two Universal Feature Slots.

Model Highlights 3-slot version 8271-module
• Includes all the features described for Model 108
• Provides 16 fixed Ethernet ports as well as four Universal Feature Slots.

Universal Feature Cards (UFCs):

Each Universal Feature Slot supports one optional Universal Feature Card, such as:

- One-port FDDI 100 Mbps SAS UTP
- One-port FDDI 100 Mbps SAS fiber
- One-port FDDI 100 Mbps DAS fiber
- One-port ATM (155 Mbps SONET) multimode fiber
- One-port 100BASE-TX UTP-5
- One-port 100BASE-FX multimode fiber
- Four-port 10BASE-T
- Three-port 10BASE-FL multimode fiber

FDDI 100 Mbps UFCs:

These UFCs provide additional, 100 Mbps uplink alternatives, allow interconnection of IBM 8271 Nways LAN Switches through dual-attachment concentrators (DACs) or stations (DAS) to an FDDI backbone and provide bridge access from the Ethernet ports to high-speed stations on the FDDI backbone. They are compatible with industry and international FDDI standards (ISO 9314/ANSI X3T9.5) and support FDDI station management (SMT 7.3). They perform IP fragmentation (RFC 1188) and have an SNMP agent that supports MIB II (RFC 1213) and the FDDI MIB (RFC 1512). Another application is high-speed connectivity between LAN switches and servers. For redundancy the DAS UFC supports dual-homing.

ATM 155 Mbps multimode fiber UFC:

As new applications require more and more bandwidth in the backbone, the one-port, 155 Mbps ATM UFC, with its fully ATM Forum-compliant SONET interface, can switch data to an industry-standard ATM backbone switch such as the IBM 8260 Nways MultiProtocol Switching Hub, over multimode optical fiber cables to get to another switch or file server. The ATM UFC will support ATM Forum-compliant LAN Emulation (LANE) that will let you run all of your applications without any change to your software.
The ATM 155 Mbps multimode fiber UFC, supported in the IBM 8271 LAN Switch and the 8271 LAN Switch Module for the 8260, switches Ethernet and Fast Ethernet frames between LAN segments connected to the LAN switch and an ATM network. The UFC provides an industry-standard LAN Emulation Client (LEC) that is fully compliant with ATM Forum specifications. The UFC also allows LAN traffic to be switched between LAN workstations or segments attached to a LAN switch and other devices with compatible ATM LANE applications. The ATM UFC provides one ATM interface that complies with UNI 3.0 and 3.1 ATM Forum specifications. It's designed with an SC connector for attachment over multimode fiber media.

100BASE-TX UFC and 100BASE-FX UFC:

These UFCs provide additional, 100 Mbps Ethernet ports for the 8271 that can be configured similarly to the fixed 10BASE-T, RJ-45 ports. Connect these UFC ports to a shared, 100 Mbps Ethernet segment via a compatible 100 Mbps repeater for a half-duplex connection, or directly to a dedicated, compatible 100 Mbps Ethernet adapter, such as the IBM 100/10 PCI Ethernet Adapter, for full-duplex communication.

Fully compliant with IEEE 802.3u specifications, the 100BASE-TX UFC supports connections via unshielded twisted-pair, UTP-5 cabling. The 100BASE-FX UFC supports connections via multimode fiber media. You can connect each of these UFC ports to another 8271 or high-speed server using a dedicated, full-duplex 100 Mbps connection. You can also include UFC ports in any virtual switch, which you can then configure with address filters. You cannot mix UFC ports with fixed 10BASE-T ports to form a multilink EtherPipe connection to another 8271. But you can include the 100BASE ports in any virtual switch that you can then configure with address filters. You cannot configure the EtherProbe port on the 8271 Model 108 to monitor the 100BASE-TX or the 100BASE-FX UFC port.

4-port 10BASE-T UFC and 3-port 10BASE-FL UFC:

These UFCs provide additional 10 Mbps Ethernet ports that you can configure identically to the fixed Ethernet ports. Each or all of these UFC ports can be configured (in combination with any of the fixed ports) to be used in multilink EtherPipe connections and configured to be included in virtual switches. These UFC ports support address filters, BootP, TFTP, Telnet or SNMP sessions and can be monitored by the EtherProbe port.

The 4-Port 10BASE-T UFC provides four 10BASE-T MDI-X ports with RJ-45 connectors. Any of these four UFC ports can be configured similarly to any of the fixed 10BASE-T ports to provide either shared (half-duplex), 10 Mbps Ethernet connections or dedicated (full-duplex), 20 Mbps connections.

The 3-Port 10BASE-FL UFC provides three 10BASE-FL multimode fiber connections via ST connectors. Any of these three UFC ports can be configured similarly to any of the fixed 10BASE-T ports to provide either shared (half-duplex), 10 Mbps Ethernet connections or dedicated (full-duplex), 20 Mbps connections at distances up to 2 km (6600 ft). Shared connections are established by connecting a port on
the UFC to a port on a compatible Ethernet repeater or hub such as the IBM 8224 Ethernet Stackable Hub or the 8260 Nways Multiprotocol Switching Hub. Dedicated connections are established by connecting these ports directly to a compatible Ethernet adapter.

Model 524, 612, 624 and 712 and are based on higher performance Application Specific Integrated Circuits (ASICs). In addition, the new uplink modules offered on the new 8271 models are not interchangeable with earlier 8271 models and vice versa. Each of the new models can be configured to support a variety of backbone and server link options, including Fast Ethernet 100BASE-TX, Ethernet 100BASE-FX, and Asynchronous Transfer Mode (ATM). Each model provides full-duplex transmission on selected ports to increase performance and throughput.

Model highlights 8271-524:
- 24 10BASE-T ports
- 1 100BASE-TX (uplink) port
- Full-duplex capability on all ports

Model highlights 8271-612:
- 12 10BASE-T ports
- 1 100BASE-TX (uplink) port
- Full-duplex capability on all ports

Model highlights 8271-624:
- 24 10BASE-T ports
- 1 100BASE-TX (uplink) port
- Full-duplex capability on all ports

Model highlights 8271-712:
- 12 10/100BASE-TX auto-sensing ports
- Full-duplex capability on all ports

Optional features:
- 100BASE-TX uplink module
- 100BASE-FX uplink module
- ATM uplink module

Model E12/E24 and F12/F24 are support most current technologies including Gigabit Ethernet and ATM. E and F models can be interconnected to form a stack that offers excellent performance, switch density and management features.

Model highlights 8271-E12/E24
- 1 Gbps internal backbone
- 12/24 10BASE-T ports
- Two 10/100Base-Tx Ports
- 1Gbps Matrix Port for Stacking
• 1 Expansion Slot for uplink modules

Model highlights 8271-F12/F24:
• 2.1 Gbps internal backbone
• 12/24 10/100BASE-T ports
• Two 10/100Base-Tx Ports
• 1Gbps Matrix Port for Stacking
• 1 Expansion Slot for uplink Modules

Optional features:
• Fast Ethernet fiber module
• 1000BASE-SX uplink module (** xxx when)
• ATM uplink (xxx when?)

All Models:
• Control software in firmware (microcode)
• Built-in RS-232 port for local console
• Built-in 100-120/200-240 V AC, auto-ranging power supply
• High-performance application-specific integrated circuits (ASICs)
• Intelligent flow management, to minimize packet loss under heavy network loads
• V24 management port (9-way male D-type) for local and remote out-of-band management
• Cut-through (default), fragment-free, and lower latency in cut-through mode
• Store-and-forward function
• Simple Network Management Protocol (SNMP) management, running over Unacknowledged Datagram Protocol/Internet Protocol (UDP/IP) and I Packet eXchange (IPX) protocol
• WEB based management for E12/24 and F12/24.
• Local management: RS-232 port, VT100 screens, and Telnet (up to three sessions)

2.4.2 8272 Nways Token-Ring LAN Switch
The IBM 8272 Nways Token-Ring LAN Switches provide LAN switching technology for a token-ring environment. The 8272 employs cut-through switching technology that provides the benefits of dedicated-media, high-speed switching to serve emerging, high-demand desktop applications. This switching technique delivers extremely low latency or delay. However, should your operating environment demand more error isolation between segments, the 8272 can be configured to alternate automatically between cut-through and store-and-forward switching based on user-specified thresholds. This IBM-patented technique is called adaptive cut-through mode.

There are four models available:
• Stand-alone IBM 8272 Model 108
• Stand-alone IBM 8272 Model 216
• IBM 8272 module for the IBM 8260 (2-slot version)
• IBM 8272 module for the IBM 8260 (3-slot version)

Model highlights 8272-108:
• Transports token-ring frames among up to eight shared or dedicated
token-ring LAN segments using twisted pair media (UTP/STP) using RJ-45
connectors, operating at 4 or 16 Mbps.
• Can double the bandwidth available to a single LAN station on a dedicated
LAN segment from the usual 16 Mbps to 32 Mbps by using native full-duplex
capabilities and full-duplex adapters.
• Includes one Universal Feature slot, that supports optional Universal Feature
Cards for additional connectivity.
• Automatic configuration to the optimum operating level.
• Full-duplex (bidirectional) communication.
• Token-piping, provides the capability for two 8272s to communicate by
connecting together up to four full-duplex token-ring ports.
• Source-route switching and internal source-route bridging in source-routing
environments.
• The virtual switch capability of the 8272 allows a single physical switch to be
divided into multiple switching domains (virtual switches).
• Alternates automatically between cut-through and store-and-forward switching
based on user-specified thresholds (adaptive cut-through token-ring
switching).

Model highlights 8272-216:
• Includes all features of the Model 108.
• Provides 16 fixed token-ring ports as well as two Universal Feature Slots.

Model highlights 2-slot version 8272 module:
• Includes all features of the Model 108.
• Provides 8 fixed token-ring ports as well as two Universal Feature Slots.

Model highlights 3-slot version 8272 module:
• Includes all features of the Model 108.
• Provides 8 fixed token-ring ports as well as four Universal Feature Slots.

Universal Feature Cards (UFCs):
Each Universal Feature Slot supports one optional Universal Feature Card, such as:
• One-port FDDI 100 Mbps SAS UTP
• One-port FDDI 100 Mbps SAS fiber
• One-port FDDI 100 Mbps DAS fiber
• One-port ATM (155 Mbps SONET) multimode fiber
• Four-port token-ring UTP/STP
- Two-port token-ring fiber

FDDI 100 Mbps UFCs:
These UFCs provide additional, 100 Mbps uplink alternatives, allow connection of IBM 8270 and 8272 Nways token-ring LAN switches through dual-attachment concentrators (DACs) or stations (DAS) to an FDDI backbone and provide bridge access from the token-ring ports to high-speed stations on the FDDI backbone. They are compatible with industry and international FDDI standards (ISO 9314/ANSI X3T9.5) and support FDDI station management (SMT 7.3). They have an SNMP agent that supports MIB II (RFC 1213) and the FDDI MIB (RFC 1512). Another application is high-speed connectivity between LAN switches and servers. For redundancy the DAS UFC supports dual-homing.

ATM 155 Mbps multimode fiber UFC:
As new applications require more and more bandwidth in the backbone, the one-port, 155 Mbps ATM UFC, with its fully ATM Forum-compliant SONET interface, can switch data to an industry-standard ATM backbone switch such as the IBM 8260 Nways Multiprotocol Switching Hub, over multimode optical fiber cables. The ATM UFC will support ATM Forum-compliant LAN Emulation (LANE) that will let you run all of your applications without any change to your software. The LAN Switch Module for the 8260 switches token-ring frames between the LAN segments connected to the switch and an ATM network. The UFC provides an industry-standard LAN Emulation Client (LEC) that is fully compliant with ATM Forum specifications. It also allows LAN traffic to be switched between LAN workstations or segments attached to a LAN switch and other devices with compatible ATM LANE applications.

The ATM UFC provides one ATM interface that complies with UNI 3.0 and 3.1 ATM Forum specifications. It is designed with an SC connector for attachment over multimode fiber media.

4-port token-ring UTP/STP UFC:
These UFCs provide additional token-ring ports, increasing the maximum number of ports per switch. These ports can be configured similarly to the fixed token-ring ports. Each or all of these UFC ports can be configured (in combination with any of the fixed ports) to be used in multilink TokenPipe connections and to be included in virtual switches. These UFC ports will support address filters, BootP, TFTP and Telnet or SNMP sessions. The 4-port UFC provides four token-ring ports that support token-ring, twisted-pair (UTP/STP) media via RJ-45 connectors. You can configure any of these ports to provide either shared (half-duplex), 4 or 16 Mbps token-ring connections or dedicated (full-duplex), 32 Mbps connections.

2-port token-ring fiber UFC:
The 2-port token-ring fiber UFC provides two token-ring, multimode fiber connections via ST connectors. Similar in capability to the 8272’s token-ring UTP/STP ports, each port on this UFC is a switch port that can be connected to one of the following LAN components:
2.4.3 8270 Nways Token-Ring Switch

The IBM 8270 Nways Token-Ring Switch is a modular high-speed switch solution. It has the same features and functionality as the IBM 8272. The IBM 8270 Model 800 is a chassis with one power supply and the token-ring processor card and 8270 Model 600 is with one power supply and built-in processor. The 8270 has no fixed ports and offers six or eight UFC slots depending on Model.

With the 8270 you can build larger switched networks with a larger number of high-speed uplinks. To help ensure continuous operation, you may install an optional redundant power supply.

Versatility means you can configure the modular LAN switch for any of the following functions:

- Add between 4 and 31 ports to your network configuration, more ports per switch than any other model.
- Install uplink UFCs to connect native protocols to high-speed links like ATM or the 8265 Nways Multiprotocol Switching Hub.

The following models are available:

- Model 600
 - 6 slots
 - Built in processor
- Model 800
 - 8 slots
 - Token ring Processor card
 - Redundant Power supply (Optional)

The UFCs include the following:

- Two-port token-ring/enhanced fiber
- Four-port token-ring/enhanced UTP/STP
- One-port ATM Token-ring II MMF
- MSS Client MMF
- MSS Client SMF
- MSS Domain Client

2-port token-ring/enhanced fiber:
Provides two token-ring, multimode fiber connections via ST connectors. Each port is a switch port that can be connected to a shared token-ring segment via a fiber RI or RO port on a token-ring concentrator or hub that forms the segment, or connected to a token-ring fiber port on another switch.

4-port token-ring/enhanced UTP/STP:

Provides four token-ring ports that support twisted-pair (UTP/STP) media via RJ-45 connectors. Any of these ports can be configured to provide either shared (half-duplex), 4 or 16 Mbps token-ring connections or dedicated (full-duplex), 32 Mbps connections.

These two UFCs, designed specifically for the 8270 for token-ring, provide the same functions and features as the 4-port token-ring UTP/STP UFC and the 2-port token-ring fiber UFC provided for the 8272.

1-port ATM Token-Ring II MMF:

With a fully ATM Forum-compliant SONET interface, the UFC can switch data to another server or to an industry-standard ATM backbone switch, such as an IBM 8265 Nways Multiprotocol Switching Hub. Supports ATM Forum-compliant LAN Emulation so you can run applications without any change to your software.

MSS Client MMF

MSS client provides layer-2 and layer-3 forwarding. layer-2 forwarding by hardware while layer-3 is done by software. so MSS client improves the utilization of the ATM backbone and reduce the MSS Server load. MSS Client MMF supports Multimode fiber via SC connector. UFCs for MMF and SMF each occupy tow slots in an 8270. all other UFCs occupy one slot each.

MSS Client SMF

Provides Single-mode fiber via SC connectors. The function is same as MSS Client MMF.

MSS Domain Client

MSS Domain Client provides layer-2 and layer-3 forwarding. It has logical LAN interfaces, but it does not have a physical ATM interface. The main difference between the MSS Domain Client and the MSS Client is the lack of an ATM interface on the Domain Client. Not cabling required.

NOTE

- The MSS Client and MSS Domain client should be placed in a slot number lower than the token-ring UFCs.
- The MSS Domain Client has no ATM port, but it can coexist with ATM UFC
- The combined number of MSS Client UFCs, MSS Domain Client UFCs and ATM UFCs in a single switch must not be greater than two.
2.4.4 8273 Ethernet RouteSwitch

The IBM 8273 Nways Ethernet RouteSwitch is the most powerful, versatile LAN switch of its size. The IBM 8273 uses advanced hardware architecture to provide high-speed switching between a fixed number of Ethernet ports and two uplinks for high-speed server and backbone access. It supports very large numbers of hubs and segments throughout your network by connecting multiple 8273s together over FDDI, CDDI, 100BASE-TX, 100BASE-FX or ATM backbone links.

It provides powerful, transparent switching at wire speed with automatic any-to-any translation, internal IP and IPX routing, comprehensive LAN-to-ATM internetworking, LAN Emulation, multiprotocol encapsulation over ATM and Classical IP over ATM, as well as shared Ethernet networking over shared LANs, FDDI, ATM and WAN networks and RMON. Available in two models, this switch is an ideal mid-range solution.

The following models are available:

- Model 10E
 - 12 Ethernet 10BASE-T
 - 2 slots for uplink modules
- Model 10U
 - 8 universal slots for any mix of Ethernet adapter boards
 - 2 slots for uplink modules

The following uplink modules are available:

- To servers:
 - 100BASE-TX
 - CDDI
 - 155 Mbps ATM (OC3)
- To backbones:
 - 100BASE-FX
 - FDDI DAS
 - 155 Mbps ATM (OC3)
- To WANs:
 - Frame Relay WAN
 - WAN ATM (DS3 or E3)

The IBM 8273 Ethernet RouteSwitch provides powerful, inexpensive, transparent switching at wire speed with any-to-any translation including:

- Ethernet-to-Ethernet
- Ethernet-to-FDDI
- Ethernet-to-CDDI
- Ethernet-to-ATM
- Fast Ethernet-to-ATM
- Ethernet-to-Fast Ethernet
• Fast Ethernet-to-FDDI
• Ethernet-to-WAN Frame Relay

*** This product has now been withdrawn from marketing. The information here on the 8273 is for reference only ***

2.4.5 8274 Nways LAN RouteSwitch

The IBM 8274 switch has an intelligent hardware design that supports high data rates and a sophisticated feature set. The 8274 offers a unique, dual quality of providing powerful and complete LAN switching with ATM speed for the desktop and the backbone. It integrates a comprehensive, flexible, virtual LAN (VLAN) architecture.

There are four models available:
• IBM 8274 Model W33
• IBM 8274 Model W53
• IBM 8274 Model W93
• IBM 8274 Model GRS

Model highlights 8274-W33,W53,W93:
• The 8274-Wx3 can be configured with one or two management processor Modules (MPM). The 3-slot 8274 support one or two switching modules, 5-slot 8274 support up to three switching modules and the 9-slot 8274 support up to eight switching modules, according to the number of MPMs. The additional MPM can be used for redundancy requirements.
• The 8274-Wx3 serves as a powerful platform for a broad range of switching module options that support Ethernet, Fast Ethernet, Gigabit Ethernet, token-ring, FDDI and ATM on twisted-pair, coaxial and optical fiber cabling at wire speed with automatic any-to-any translation.
• Most of the modules provide the capacity for 13.2 Gbps cell matrix for frame-to-cell and cell-to-cell switching with the ATM interfaces. Any Ethernet, token-ring and FDDI can all be switched within the same unit and can be switched directly to ATM interfaces.

Model highlights 8274-GRS:
• The 8274-GRS can be configured with one or two new management processor Modules (MPX). This 9-slot 8274 support up to eight switching modules, according to the number of MPXs. The additional MPX can be used for redundancy requirements.
• The 8274-GRS support Ethernet, Fast Ethernet, Gigabit Ethernet, token-ring and ATM.
• The MPX and associated switching modules all connect through the 22Gbps switching fabric in the 8274-GRS chassis.

The 8274 includes a broad range of model types and switching modules, that make the 8274 uniquely versatile. All 8274 models provide:
• Policy-based VLANs
• IP and IPX routing
• FDDI trunking (Only 8374-Wx3)
• ATM private and switched virtual circuits
• ATM LAN Emulation
• Multiprotocol Encapsulation over ATM
• Classical IP over ATM
• Graphical network management on a broad set of standard management platforms

Each model offers a management bus you can use to configure, diagnose and manage all system elements. They also contain architecture for taking full advantage of frame-to-frame and frame-to-cell switching, which means a high-speed pipeline bus that uses hardware-controlled switching to keep throughput high and latency low.

The 8274 has also dual, redundant, hot-swappable power supplies, redundant management processors, redundant cooling fans and a temperature alarm, that make it highly reliable. Its software and configuration are stored in non-volatile flash memory.

The 8274 supports ASCII (DEC VT100) console management, software and configuration downloads over the network, a powerful protocol toolkit (FTP, SLIP, Telnet, Zmodem), port mirroring and RMON.

2.4.6 8277 Nways Ethernet RouteSwitch

IBM 8277 uses advanced hardware architecture to provide high-speed switching between a fixed number of Ethernet ports, and an uplink for high-speed server and backbone access. It supports a very large numbers of hubs and segments throughout your network by connecting multiple 8277s together over 100BASE-TX, 100BASE-FX or ATM backbone links.

Available in one model is called 524, this 8277 is ideal for small-to-mid-size range solution. 8277-BPS (Backup Power Supply) provides backup power for 8277-524 in the event of a failure of the primary power supply in the 8277.

8277-524 support 24-10/100 auto-sensing ports and one optional expansion slot. Following modules are available for it:

• 1-port ATM uplink
• 1-port ATM uplink with Redundant Ports
• 2-port 100BASE-FX
• 2-port 100BASE-TX

The 8277 provides:

• Policy-based VLANs
• IP and IPX routing
• ATM private and switched virtual circuits
• ATM LAN Emulation
• Multiprotocol Encapsulation over ATM
• Classical IP over ATM
• Next Hop Resolution Protocols (NHRP)
• Remote Network Monitoring (RMON)
• Graphical network management on a broad set of standard management platforms

2.4.7 8371 Multilayer Ethernet Switch

The 8371 is a flexible, high performance and cost effective product designed to meet the growing needs of Ethernet workgroups through its advanced non-blocking switch architecture, Layer-3 switching capabilities, and self learning IP routing capability.

There are three models available:
• Stand-alone IBM 8371 model A16
• IBM 8371 10/100 Base-TX module for IBM 8265(2-slot)
• IBM 8371 100 Base-FX module for IBM 8265(2-slot)

Model highlights stand-alone A16:
• It provides 16-port 10/100Base-TX autosensing.
• It supports 2 optional feature slots that can be filled with the following expansion cards:
 - 2-port 155Mbps MMF expansion card
 - 8-port 10/100Base-TX expansion card
 - 8-port 100Base-FX MMF expansion card
• A maximum of one 2-port 155Mbps ATM module can be used with each 8371-A16. The 2-port 155Mbps ATM port can provide load-sharing and redundant links to the ATM network.

Model highlights 10/100 Base-TX and 100 Base-FX for IBM 8265:
• It provides 16-port 10/100Base-TX autosensing or 16-port 100 Base-FX with 622Mbps attachment to the 8265 backplane.
• It supports 1 optional feature slot that can be filled with the following expansion cards:
 - 8-port 10/100Base-TX expansion card
 - 8-port 100Base-FX MMF expansion card

In conjunction with the MSS server in the ATM network, the 8371 provides local, wirespeed IP and IPX routing between FastEthernet ports on the same module and MPOA virtual one-hop routing over the ATM backbone network.

The 8371 provides:
• Self Learning IP Routing
• MultiProtocol over ATM (MPOA) client for IP and IPX
• LAN Emulation Client (LANE 1.0 and LANE 2.0)
• Protocol based VLANs for IP, IPX and NetBIOS
• RMON

The 8371 supports ASCII (DEC VT100) console management, Web base management, software and configuration downloads over the network.

2.5 Wide Area Switches

The wide area switches listed in this section are for documentation purposes. These devices are listed in this redbook because they are capable of attaching to an ATM network. No specific configurations will be included for these device types.

2.5.1 2230 Nways ATM Switch

The IBM 2230 Nways ATM Switch is a scalable switch designed for Quality of Service (QoS) and high performance (internal switch port speed of 640 Mbps) across all ATM operations. This switch supports a mixture of data, video and voice traffic, allowing you to efficiently share network resources.

The IBM 2230 Nways ATM switch provides:

• High-performance, multiservice, ATM switching
• A non-blocking, scalable switch fabric
• Speed of up to 640 Mbps for a total capacity of 2.5 or 5 Gbps

For more information on the IBM 2230 Nways ATM switch please refer to IBM Nways 2219, 2225, 2230 WAN Switches: Services and Technology, SG24-4777.

*** This product has now been withdrawn from marketing. The information here on the 2230 is for reference only ***

2.5.2 2220 Nways BroadBand Switch

The IBM 2220 Nways BroadBand Switch is a family of networking products. The 2220 is a fast-packet and ATM cell switch based on IBM's Networking BroadBand Services (NBBS) architecture. This architecture was designed specifically to meet the challenges of broadband, multiservice transport networks. The Nways Switch family brings the following advantages to broadband backbone transport networks: ease of network migration through support of existing and new equipment, existing and new wide area links, and a modular scalable hardware architecture and switch design; integration of applications with different quality-of-service (QOS) requirements (voice, video, data and image) into a consolidated network and guaranteeing the QOS while maximizing link utilization; bandwidth optimization through unique algorithms for reservation and traffic
policing schemes; and continuous network availability through a distributed architecture, redundancy, and nondisruptive system operations features.

For for information on the IBM 2220 Nways switch please refer to IBM 2220 Nways BroadBand Switch: Concepts and Products, SG24-2589.

2.5.3 2225 Nways MultiService Switch

The IBM 2225 Nways Multiservice Switch is a flexible, cost-effective multiservice WAN platform based on ATM cell switching for interworking with frame relay, SMDS, and ISDN. The 2225 uses a full implementation of interworking standards to let different technologies at either end of a connection communicate seamlessly.

For more information on the IBM 2225 Nways Multiservice Switch, please refer to IBM Nways 2219, 2225, 2230 WAN Switches: Services and Technology, SG24-4777

*** This product has now been withdrawn from marketing. The information here on the 2225 is for reference only ***

2.6 IBM 2210 Nways Multiprotocol Router

The IBM 2210 Nways Multiprotocol Router provides the practicality of a low-cost, entry node with the power and versatility of a full-function, multiprotocol bridge/router. The IBM 2210 provides cost-effective connectivity for small workgroups or remote offices requiring interoperability in any size network. By offering a choice of configuration options, these models can satisfy a wide range of connectivity requirements.

IBM 2210 Nways Multiprotocol Router provides:

- Full SNMP management
- APPN support
- Comprehensive DLSw support for SNA and NetBIOS
- Multiprotocol support (IP, IPX, AppleTalk, Banyan VINES, DECNet, OSI)
- Support for all major network types including frame relay, ISDN, leased line services, X.25, and V.25bis connections
- ATM workgroup connections to the WAN via the new 2210 25 Mbps ATM adapter

For more information on the 2210, please refer to IBM 2210 Nways Multiprotocol Routing Network, SG24-4446.

2.7 IBM 2216 Multiaccess Connector

For improved access to business-critical SNA and IP host applications, plus campus and LAN connections, the IBM 2216 is the box of choice, considering its connectivity options. Whether devices accessing the host are connected with leased lines, frame relay, ISDN, ATM, X.25, or LANs, the 2216 Multiaccess Connector Model 400 can connect you.
IBM 2216 Multiaccess Connector provides:

- Access to SNA and TCP/IP host applications from LANs, WANs, and ATM
- ATM
 - LAN Emulation
 - Classical IP - RFC 1577
 - IPX - RFC 1483
 - PVC and SVC
 - Interim Local Management Interface (ILMI)
- IBM's Multiprotocol Access Services software, guaranteeing compatibility with 2210 and campus MSS solutions, and providing a rich set of additional multiprotocol functions
- Multiprotocol services software for 2210 and MSS compatibility
- Industry-leading price/performance for ESCON host application access
- APPN and IP routing from the channel to any other 2216 interface
- DLUR and BAN/BNN support in APPN to connect downstream SNA devices to VTAM SNA applications
- Full range of IP routing support including filtering and routing algorithms
- Data Link Switching (DLSw) to connect downstream SNA devices to VTAM SNA applications
- ESCON Channel Support

For more information on the 2216, please refer to *IBM Nways 2216 Multiaccess Connector*, SG24-4957.

2.8 ATM Workstation Adapters

This section examines the ATM adapters, IBM TURBOWAYS ATM adapters as well as the Interphase ATM adapters, used to build ATM networks compliant with FC LAN emulation or Classical IP (RFC 1577) networks. For more information on these adapters go to www.networking.ibm.com/tbo/tboprod.html.

The IBM family of TURBOWAYS ATM adapters consists of the following:

2.8.1 TURBOWAYS 25 Mbps ATM Adapter

The TURBOWAYS 25 ATM adapters are an affordable way to bring high-bandwidth ATM connectivity to the desktop, with adapters available for ISA, Micro Channel, Sbus, and PCI computers.

And by including Forum-compliant LAN Emulation and Classical IP with the adapters, they are cost-effective upgrades to your existing Ethernet or token-ring infrastructure, providing a 25 Mbps, full-duplex connection to the ATM network.

The adapters use low-cost, unshielded twisted-pair (UTP) cable, category 3, 4, or 5, or shielded twisted-pair (STP) cable for distances up to 100 meters (328 feet), also capitalizing on the wiring already installed.

It is available for the following bus platforms:
The adapters support the following standards:
- ATM Forum UNI Specifications V3.0 and 3.1 for switched virtual circuits
- AAL-5 adaptation layer interface
- NDIS 2.01 network device interface specification (not for SBus)
- PVC support (SBus only)

2.8.2 TURBOWAYS 100 Mbps ATM Adapter

The TURBOWAYS 100 ATM adapter operates at a speed of 100 Mbps full-duplex over multimode fiber. This adapter, designed for use in RISC System/6000 or personal computers with Micro Channel architecture, offers high-performance throughput for applications that require high bandwidth.

The adapter uses an onboard i960 processor and a specialized ATM chip set to minimize access to the host processor and increase performance. The adapter supports up to 1024 virtual circuits.

This adapter is only available for Micro Channel bus platforms.

The adapters support the following standards:
- ATM Forum UNI Specification V3.0 for SVCs (including PVC)
- AAL-5 adaptation layer interface
- Open data link interface
- NetWare device driver specification (PS/2 only)

2.8.3 TURBOWAYS 155 Mbps ATM Adapter

The TURBOWAYS 155 ATM adapter is a high-performance adapter that provides dedicated bandwidth of 155 Mbps over multimode fiber or copper wiring, offering higher throughput than is available with current LAN technology. Through the use of an onboard processor and the specialized chip set, access to the host processor is minimized, resulting in increased performance for your ATM client or server. Also included is SNMP subagent support for TCP/IP network management compatibility.

The TURBOWAYS 155 adapter is available for Micro Channel and Sbus platforms, with the following cabling systems:
- Multimode fiber
- UTP5
- STP (Micro Channel only)

The adapters support the following standards:
- ATM Forum UNI Specification V3.0 AAL-5 adaptation layer interface
- Open data link interface
• NetWare device driver specification
• OC/3

2.8.4 Interphase adapters
IBM is also offering complementary products by Interphase Corporation to round out its ATM adapter family. The Interphase adapters use either multimode fiber or UTP category 5 wiring. There are three adapters, available for PCI-bus, EISA-bus, and GIO-bus computers:

• 5515 PCI adapters
• 4915 GIO adapters
• 4815 EISA adapters

All three support ATM Forum-compliant LAN Emulation and Classical IP.

The PCI and EISA Interphase adapters support NetWare, Windows NT Version 3.5 (and higher) and the GIO adapter supports IRIX Version 5.3. All three adapters support symmetrical multiprocessors (SMPs), as well as the following standards:

• ATM Forum UNI Specification V3.0 and V3.1 for SVCs (including PVC)
• AAL-5 adaptation layer interface
• Open data link interface
• NetWare device driver specification
• OC/3

2.9 Adapters for Various Operating Systems
The following section shows which ATM adapters and drivers are available for the different operating systems.

2.9.1 OS/2
This table shows for which ATM adapters the OS/2 drivers are available. It also shows which protocols are enabled and the environment under which these protocols run.

Table 2. OS/2

***** 2126t1.xwd *****
2.9.2 Windows NT

This table shows for which ATM adapters the Windows NT drivers are available. It also shows which protocols are enabled and the environment under which these protocols run.

Table 3. Windows NT 3.5

***** 2126t2.xwd *****

2.9.3 Windows 95

This table shows for which ATM adapters the Windows 95 drivers are available. It also shows which protocols are enabled and the environment under which these protocols run.

Table 4. Windows 95

***** 2126t3.xwd *****
2.9.4 DOS/Windows V3.11
This table shows for which ATM adapters the DOS and Windows drivers are available. It also shows which protocols are enabled and the environment under which these protocols run.

Table 5. DOS

2.9.5 AIX
This table shows for which ATM adapters the AIX drivers are available. It also shows which protocols are enabled and the environment under which these protocols run.

Table 6. Windows V3.11

Table 7. AIX
2.9.6 Novell NetWare

This table shows for which ATM adapters the NetWare drivers are available. It also shows which protocols are enabled and the environment under which these protocols run.

Table 8. NetWare

2.9.7 OS/400

This table shows for which ATM adapters the OS/400 drivers are available. It also shows which protocols are enabled and the environment under which these protocols run. (To support the ATM adapter, needs communication controller like as the AS/400 feature number #2809 or #2810)

Table 9.

<table>
<thead>
<tr>
<th>ATM Adapter</th>
<th>Protocols enabled</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/400 Feature number</td>
<td>TCP/IP</td>
<td>IBM LAN Emulation</td>
</tr>
<tr>
<td>#2811 (25Mbps UTP-3 Adapter)</td>
<td>APPC/APPN</td>
<td>FC LAN Emulation</td>
</tr>
<tr>
<td>#2812 (45Mbps DS-3 Adapter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2815 (155Mbps UTP-5 Adapter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2816 (155Mbps MMF Adapter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2818 (155Mbps SMF Adapter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2819 (34Mbps E3 Adapter)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9.8 OS/390

S/390 delivers a multipurpose and integrated open systems network interface as name OSA-2. OSA-2 features can be added and upgraded as desired.

- One port 155Mbps MMF-ATM Adapter
- One port 155Mbps SMF-ATM Adapter.
Part 2. Pre-PNNI

Kakimoto Tatsuhiko, The same crazy man.
Chapter 3. An Example of a Pre-PNNI ATM Environment

This section presents the network topology for both physical and logical definitions for a sample ATM network showing the ATM communication devices that will deliver the LAN Emulation and Classical IP services.

3.1 Physical Hardware Inventory

The following hardware inventory represents the communication devices used for our ATM network. (See ATM Overview on page --- for a functional overview of the hardware.)

- 8210 Model 001 x (2)
 - 2 x 155 Mbps ATM ports (each box)
- 8260 Nways Multiprotocol Switching Hub
 - Model A17
 - 2 x 3-port 155 Mbps switch module
 - 4-port 100 Mbps switch module
 - ATM switch/control point module (CPSW)
 - Token-ring access module
 - DMM
- 8271 Nways Ethernet LAN Switch
 - Model 108
 - 8 x 10BASE-T ports (copper)
 - 1 x 155 Mbps ATM port (SONET) UFC
- 8272 Nways Token-Ring LAN Switch
 - Model 108
 - 8 token-ring ports (copper)
 - 1 x 155 Mbps ATM port (SONET) UFC
- 8274 Nways LAN RouteSwitch
 - Model 513
 - 12 x 10BASE-T ports (copper)
 - 1 x 155 Mbps ATM switching module (2 ports)
- 8281 Nways ATM LAN Bridge
 - 1 x 100 Mbps ATM port (multimode fiber)
 - 2 LAN ports (Ethernet/token-ring)
- 8285 Nways ATM Workgroup Switch
 - Base chassis
 - 12 x 25 Mbps ATM ports
 - 1 x 155 Mbps ATM port (multimode fiber)
- ATM adapters
3.2 Physical Topology

A view of the physical network topology is shown in :figref refid=figch3phys.. The view shows the core of the ATM network, which is comprised of two 8260s and an 8285. In addition to the ATM switches a number of edge and ATM devices are shown such as the 8272. The diagram also shows the IP addresses used in the configuration of the network.

![Physical Network Topology](image)

The network will be built by first describing the steps necessary to interconnect the ATM switches followed by the ATM clients, bridges, and switches. ATM switch configuration examples of SSI and NNI connection will be shown.

3.3 Logical Topology

A view of the logical network topology is shown in :figref refid=figch3logi.. This view shows the final network that will be created. It shows that four ATM ELANs will be created on the MSS along with a Logical IP Subnet (LIS). In addition, the figure shows the two ELANs that will be created on the 8285. Various clients and endstations will be configured to join these logical ELANs and LIS areas.
The ATM services enabled in the environment are as follows:

- Classical IP has been shown by creating a LIS (Logical IP subnet) that is routed via the MSS.
 - The LIS is used by CIP clients with 192.168.21.0 (class C mask) addresses.
 - Each CIP client will configure a default gateway of 192.168.21.10. The 192.168.21.10 addresses represent the virtual router arm of the MSS.

- An ARP server function has been provided for the LIS.
 - The MSS is providing the ARP server function for the 192.168.21.0 subnet.
 - The RS/6000 is providing an alternative ARP server function.

- IP routing is enabled for each LEC defined in the MSS.
 - Transparent bridging will allow the IP traffic across ELANs 8274eth1 and 8281eth3.
 - Traffic will be routed via the MSS to the appropriate destination (ELAN or LIS).

- Translational bridging will be configured for connecting ELANs 8281eth2 and 8285tr4 for non-IP traffic.
3.4 Configuring the ATM Backbone

The network diagram in Physical Network Topology on page ---, shows that the ATM backbone consists of two IBM 8260 ATM switches and one IBM 8285 Workgroup Switch. A Classical IP (CIP) server (an RS/6000) is attached via 100 Mbps to one of the switches. It provides ARP server function for the logical IP subnet (LIS). Every device is in the same LIS, 192.168.21.0.

The communication between ATM switches can be achieved via SSI, NNI or PNNI protocols. This chapter shows examples of SSI and NNI configurations. The management station communicates over a UNI connection to the 8260_HUB1.

Initially, the IBM 8260s, 8260_HUB1 and 8260_HUB2, are in the same cluster and connect via SSI. Next, the 2 8260s are configured as two separate clusters using NNI communication. Then an IBM 8285 is added to one of the clusters and connected via SSI. At the end of this chapter, the IBM 8210 MSS is added to provide the ARP server function for this LIS.

3.5 Configuring IBM 8260s as ATM Backbone (SSI)

In this section, we create an ATM backbone consisting of two 8260s in one cluster connected via SSI. :figref refid=figphys1. illustrates the physical network layout.

In an SSI configuration, the first 11 bytes of the ATM prefix must be the same for both switches. The 12th byte represents the ATM cluster number (ACN) and must be the same for each switch, because they are part of the same cluster. The 13th byte represents the hub number (HN) and must be unique within the cluster.
The 8260’s are identified as 8260_HUB1 and 8260_HUB2. The command prompts for each hub are modified to easily identify them. This is done by issuing the `set device name` command and then entering the device name.

3.5.1 Configuring IBM 8260_HUB1 for SSI Connection

The ATM network is created by configuring an ATM address for the 8260. The cluster number will be 01 and the hub number 01. The command shown in :figref refid=fig5f1a. is used to set the ATM address.

```
8260_HUB1> set device atm_address
Enter ATM address : 39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00
This call will reset the ATM subsystem.
Are you sure ? (Y/N) Y
```

This command resets the ATM subsystem, so be sure that you have issued the `save all` command beforehand to save any changes.

In order to provide IP connectivity between the switches, the ARP server and the ATM IP addresses need to be configured. :figref refid=fig5f1b. shows how we configure the ARP server and the ATM IP address of the switch.
Figure 9. Setting the ARP Server and IP Addresses on HUB1

Note:

1. The 13-byte ATM prefix 39.99.99.99.99.99.99.00.00.99.99.01.01 matches this 8260's ATM 13-byte address. This is because the AIX device is connected to this ATM cluster and will acquire its ATM prefix from 8260_HUB1. The ESI and the Selector byte must be obtained from the ARP server configuration on the AIX machine before being able to configure this parameter.

2. IP address assigned to this ATM switch.

The ATM port that the ARP server is connected to is configured for UNI. Using the set module and set port command sets, as shown in :figref refid=figfigured., the module is changed from isolated to connected, and the port is enabled for UNI. The ARP server is physically connected to the switch and the status changes to UP-OKAY.

Figure 10. Setting Port Parameters for UNI Connection on HUB1

In order to display the ATM ESI addresses of devices connected to the switch, we issue the command show atm.esi as shown in :figref refid=fig5f1c..
Figure 11. Displaying the Connected ATM ESI Entries on HUB1

The ATM_ESI value of 08.00.5A.99.0A.B3 represents the management station connected to port 12.2. This value matches the ESI portion of the ARP server ATM address in Figure 9.

The 8260_HUB1 port 13.1 is connected to the 8260_HUB2 port 8.1. The command shown in :figref refid=fig5f1d. is used to set port 13.1 for an SSI connection with a speed of 100 Mbps.

Figure 12. Setting Port Parameters for SSI Connection on HUB1

Figure 12 shows the port is up, but not in service because the 8260_HUB2 port is not configured yet.

The configuration of 8260_HUB1 is now complete. The device information can be displayed by issuing the show device command as shown in :figref refid=fig1f1e.
3.5.2 Configuring IBM 8260_HUB2 (SSI)

Next added is the 8260_HUB2. The ATM address is set by issuing the command `set device atm_address` as shown in :figref refid=fig5f12a.. The cluster number is set to 01, matching the cluster number value configured in 8260_HUB1. The hub number is set to 02, being unique within the cluster.

```
8260_HUB2> set device atm_address
Enter ATM address : 39.99.99.99.99.99.99.00.00.99.99.01.01.02.40.00.82.60.01.02.00
This call will reset the ATM subsystem.
Are you sure? (Y/N) Y
```
To provide IP connectivity between the switches, the ARP server address and the ATM IP address are required. :figref refid=fig5f12b. shows how we configured the ARP server address and the ATM IP address.

```
8260_HUB2> set device arp_server  
   Enter ATM address : 39.99.99.99.99.99.99.00.00.99.99.01.01.08.00.5a.99.0a.b3.00
   ATM Address set

8260_HUB2> set device ip_address  
   Enter network: atm
   Enter parameter : 192.168.21.61
   Enter subnet mask: ff.ff.ff.00
   IP address and mask set
```

Figure 15. Setting the ARP Server and IP Address for HUB2

Note:

1. The ARP server ATM address must be the same value configured in 8260_HUB1.
2. The IP address is unique within the logical IP subnet.

In :figref refid=fig5f12c., port 8.1 is configured as an SSI connection at 100 Mbps. This port is used to connect to 8260_HUB1.

```
8260_HUB2> set module 8 connected
   Module set

8260_HUB2> set port 8.1 enable ssi 100000
   Port set

8260_HUB2> show port 8.1 verbose

   Type  Mode      Status
   ---------------------------------------------------------------
    8.01: SSI enabled  UP-OKAY

   SSI Bandwidth : 100000 kbps
   Connector      : MIC
   Media          : fiber
   Port speed     : 100000 kbps
   Remote device is active
   IX status      : IX OK
```

Figure 16. Setting the Port Parameters for SSI Connection on HUB2

The status of this port is UP-OKAY because both ports, on the 8260_HUB1 and 8260_HUB2, are configured and enabled for a 100 Mbps SSI connection.

To verify connectivity from 8260_HUB2 across the ATM backbone to the 8260_HUB1 and the ARP server, a ping command is issued from the prompt.
Figure 17. Verifying IP Connectivity

Note:

1. Test connectivity to 8260_HUB1.
2. Test connectivity to the AIX management station (ARP server).

The `show device` command is used to display the device information.

Figure 18. Displaying Device Information on HUB2

Note:

1. Displays the ATM address of this ATM subsystem.
2. Displays the IP address and subnet for this ATM subsystem.
3. A default gateway is not defined because there is only one LIS at this time, thus no need for a default gateway at this point.
Displays the ATM address of the ARP server.

3.6 Configuring IBM 8260s as ATM Backbone (NNI Connection)

In 3.5, “Configuring IBM 8260s as ATM Backbone (SSI)” on page 74, a simple ATM backbone comprised of two 8260 ATM switches communicating via SSI protocol was illustrated.

Next we changed the SSI connection to an NNI connection. Each switch will be part of a separate cluster as identified by the ATM addresses shown in :figref refid=figphys2.. This figure represents the physical network topology.

Figure 19. Physical View - ATM backbone Using NNI

To configure a connection between the ATM switches, you must:
1. Configure the ATM ports that are providing the connection between the two clusters, as NNI ports.
2. Configure a logical link over the NNI connection for each ATM switch.
3. Configure the appropriate ATM addresses.

3.6.1 Configuring IBM 8260_HUB1 (NNI)

The following figures illustrate how to configure NNI on 8260_HUB1 port 13.1.

8260_HUB1> set port 13.1 disable 1
Port set

8260_HUB1> set port 13.1 enable nni 2
Port set

Figure 20. Configuring the Port for NNI on HUB1

Note:

1 If the port to be configured for NNI is already configured as either UNI or SSI, then you must disable the port first. Otherwise the set port 13.1 enable nni command will be rejected.

2 Defines slot 13, port 1 as an NNI port.
To show the status of the port use the following command.

```
8260_HUB2> show port 13.1 verbose
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.01: NNI enabled</td>
<td>UP-OKAY 1</td>
<td></td>
</tr>
</tbody>
</table>

- Connector : MIC
- Media : fiber
- Port speed : 100000 kbps
- Remote device is active
- IX status : IX OK
- Logical links indexes: none. 2

Figure 21. Displaying the Port Configuration on HUB1

Note:
1. NNI is enabled.
2. Indicates that no logical links have been configured.

The command in :figref refid=fig5f21c. is used to configure a logical link connection. A logical link must be established at both switches.

```
8260_HUB1> set logical_link 13.1
```

| Enter Virtual Path Identifier: 3 1 |
| Enter ATM Cluster Network: 02 2 |
| Enter parameter: network_side 3 |
| Enter signalling type: 3.1 4 |
| Enter traffic type: any 5 |
| Enter bandwidth in kbps: 85 6 |

Logical link set

Figure 22. Creating the Logical Link on HUB1

Note:
1. VPI (Virtual Path Identifier) is used to identify the logical link. The value is from 0-15, and 3 is selected. You must assign the same VPI at each end of the logical link. If you assign more than one logical link for a port, you must assign a different VPI for each logical link.
2. ACN (ATM Cluster Network) - When connecting two ATM clusters in the same subnetwork, this is the cluster number of the remote boundary ATM switch. In this case, 02 represents 8260_HUB2.
3. Role - This parameter defines the Q.2931 role that is assumed by the boundary ATM switching subsystems. Network_side means that the 8260 assigns ATM labels for this logical link. user_side means that the 8260 does not assign labels. Note that one side must always be configured as the network_side and the other side as the user_side. This 8260 is configured as network_side.
4. UNI version - This parameter defines the version of UNI signalling protocol (3.0 or 3.1) used on this logical link. This parameter must match both ends of the link. 3.1 is configured.
Traffic type - This parameter allows you to define the type of connections supported by the NNI link using this logical link, any connection is selected.

Bandwidth - The maximum bandwidth (in kbps) available is 85% of the port speed, which is 85 for our 100 Mbps port.

In :figref refid=figdh1lnk, the logical links are displayed. It is important to understand that although the status appears as up, it only represents this end of the link. At this point, the 8260_HUB2 switch has not been configured yet.

Figure 23. Displaying the Logical Link on HUB1

3.6.2 Configuring IBM 8260_HUB2 (NNI)

To complete the topology, the 8260_HUB2 is configured for NNI as follows:
1. Configure the ATM address as a separate cluster (02).
2. Configure the port for NNI.
3. Create a logical link over the NNI connection.

A new cluster, 02, is created in the network by configuring the 8260_HUB2 ATM address, as shown in :figref refid=fig5f22a..

Note:
1 The cluster number (12th byte) is set to 02, representing cluster 02.
The hub number (13th byte) is 01.
Note:

1. If the port to be configured for NNI is already configured as either UNI or SSI, then you must disable the port first. Otherwise the `set port 8.1 enable nni` command will be rejected.

2. Defines slot 8, port 1 as an NNI port.

The commands shown in :figref refid=fig5f22c., are used to configure and show the logical link configuration.

![Figure 25. Configuring the Port for NNI on HUB2](image)

Figure 25. Configuring the Port for NNI on HUB2

Note:

1. This value of 3 matches the VPI value configured on 8260_HUB1.

2. Enter the number of the adjoining cluster, in this case 01.

3. Each end of the logical link must be different. 8260_HUB1 was set to `network_side`, so this end is set to `user_side`.

4. Signalling type must match the value configured for 8260_HUB1, 3.1.
These parameters allow you to define the type of connections supported by the NNI link using this logical link and the bandwidth allocation. We allow any connection and 85 Mbps.

To verify connectivity from 8260_HUB2 across the ATM NNI backbone to the 8260_HUB1 and the AIX management station, a ping command is issued from the command prompt.

```
8260_HUB2> ping 192.168.21.60 1
Starting ping (hit CTRL-C to stop) ...
Ping 192.168.21.60: 1 packets sent, 1 received
Ping 192.168.21.60: 2 packets sent, 2 received

8260_HUB2> ping 192.168.21.12 2
Starting ping (hit CTRL-C to stop) ...
Ping 192.168.21.12: 1 packets sent, 1 received
Ping 192.168.21.12: 2 packets sent, 2 received
```

Figure 27. Verifying IP Connectivity

Note:

1. Test connectivity to 8260_HUB1.
2. Test connectivity to the AIX management station (ARP server).

3.7 Adding an IBM 8285 to the ATM Backbone

In this section, the IBM 8285 is added to the existing ATM backbone, consisting of two IBM 8260s in two different clusters. The 8285 is added to cluster 01 and connected via its 155 Mbps port to one of 8260_HUB1’s 155 Mbps ports.

```
**** phys3.xwd ****
```

Figure 28. Physical View of the 8285 Connection

In order to configure the 8285 into cluster one an SSI connection will be used, therefore the ATM network address portion will be the same as 8260HUB1 and the 8285 will be assigned an ESI of 400082850102 with a selector byte value of 00.

:figref refid=figlog2a. shows the logical representation for the 8285 connection using Classical IP network along with the devices previously added.
3.7.1 Connecting the 8285 to the 8260 via SSI

The 8285 is added to the existing ATM network cluster 01, by assigning an ATM address. The cluster number will be the same as for the 8260_HUB1, 01. The hub number must be unique within the cluster, and will be set to 02. The following figures illustrate the configuration of the 8285. The ATM address is set by issuing the command shown in :\ref{fig:5f31a}.

![8285> set device atm_address
Enter ATM address : 39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00
This call will reset the ATM subsystem.
Are you sure ? (Y/N) Y](log2a.xwd)

To provide IP connectivity to the 8260s, the ARP server address and the ATM network IP address are configured. To set the ATM ARP server and ATM network IP address, we use the commands shown below:

![8285> set device arp_server
Enter ATM address : 39.99.99.99.99.99.99.00.00.99.99.01.01.08.00.5a.99.0a.b3.00
ATM Address set](log2a.xwd)

![8285> set device ip_address
Enter network: atm
Enter parameter : 192.168.21.85
Enter subnet mask: ff.ff.ff.00
IP address and mask set](log2a.xwd)

Note:

1. The ARP server ATM address must be the same value configured in 8260_HUB1 and 8260_HUB2.
2. The IP address is unique within the logical IP subnet.
We configure port 1.13 for an SSI connection with 100 Mbps allocation as shown in :figref refid=fig5f31c.. This port is used to connect to the 8260_HUB1. The port on the 8260_HUB1 is already configured for a 100 Mbps SSI connection.

![Figure 32. Setting Port Parameters for SSI Connection on the 8285](image)

The status of this port is **UP-OKAY** because both ports, on the 8260_HUB1 and 8285, are configured and enabled for a 100 Mbps SSI connection. The status of the port on the 8260_HUB1 is also **UP-OKAY**.

To verify connectivity from the 8285 across the ATM backbone to 8260_HUB1, 8260_HUB2 and the ARP server, a ping command is issued from the prompt.

![Figure 33. Verifying IP Connectivity from the 8285](image)

Note:

1. Test connectivity to 8260_HUB1 from 8285.
2. Test connectivity to 8260_HUB2 from 8285.
3. Test connectivity to the ARP server from 8285.

The command in :figref refid=fig5f32e. is used to display the 8285 device information.
3.8 Adding the IBM 8210 MSS to the ATM Backbone

The IBM 8210 is added to the backbone. In the first step, the 8210 will be configured to provide the ARP server function for the LIS, replacing the AIX management station. Later the MSS will be configured to provide LES/BUS, routing and bridging functionality for our ELANS. This section shows the MSS's base configuration, as well as configuring the MSS as an ARP server for the 192.168.21.0 LIS.

Note:

A default gateway is not defined because there is only one LIS at this time.

Figure 34. Displaying Device Information on the 8285

```
8285> show device
8285 Nways ATM Workgroup Switch  
Name : 8285  
Location :  

For assistance contact :  

Manufacture id: VIM  
Part Number: 51H4119 EC Level: E59245  
Serial Number: 4343  
Boot EEPROM version: v.1.3.0  
Flash EEPROM version: v.1.3.0  
Flash EEPROM backup version: v.1.3.0  
Last Restart : 10:34:09 Mon 8 Sep 97 (Restart Count: 5)  

A-8285  
-------------------------------------------------------------------  
ATM address: 39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00  
> Subnet atm: Up  
IP address: 192.168.21.85. Subnet mask: FF.FF.FF.00  
  *  
  *  
Default Gateway : OK  
-------------------------------------------------------------------  
IP address: 0.0.0.0  
ARP Server:  
-------------------------------------------------------------------  
ATM address: 39.99.99.99.99.99.99.00.00.99.99.01.01.08.00.5a.99.0a.b3.00  
Dynamic RAM size is 8 MB. Migration: off. Diagnostics: enabled.  
8285>
```
There are three ways to configure an MSS:

- **Multiprotocol Switched Services Configuration Program**
 The MSS Configuration Program is used to create configurations for the MSS. It operates under Windows 3.1, Windows 95, Windows/NT, OS/2 and AIX. It provides the following:
 - Retrieves the active configuration from the MSS (not OS/2).
 - Creates configurations without any connection to the MSS.
 - Stores and organizes configurations in database files on hard disk.
 - Creates ASCII or binary configuration files.
 - Requires SNMP connectivity to send configurations to the MSS.

- **Any Web browser**
 You can access the MSS configuration via a SLIP connection or in-band network connection using a Web browser.

- **Any terminal program**
 You can access the MSS command line configuration via a serial connection using a terminal program.

The base and ARP server configuration is done via the command line configuration using a terminal program. The active configuration is then downloaded from the MSS. Any further configuration will be done with the MSS Configuration Program.

3.8.1 MSS Base Configuration

Using a terminal program and command line interface, the IP and SNMP parameters are configured. The settings for the terminal program are:

- 8, none, 1
- VT100 emulation
- 19200 bps

Starting with an unconfigured MSS, the following screens show the base configuration.
Figure 36. Interface Configuration

Note:

1. Before any configuration is done the `list device` command shows you which interfaces are installed.

2. To configure the ATM interface, `network 0` is entered and then `interface`.

3. This command is used to configure a user-defined ESI, here `40.00.82.10.00.00`.

4. The default for the UNI version is `3.0`, and the interface is set to `AUTO`.

This is the base interface configuration. All other parameters can be left at their default values.

The IP configuration for the ATM interface is shown in :figref refid=fig5fms2..
An Example of a Pre-PNNI ATM Environment

Figure 37. IP Configuration

An IP address is added for the ATM interface. For the ARP server, the IP address is 192.168.21.10.

To allow network management stations and the MSS Configuration Program access, the SNMP parameters must be configured. The SNMP configuration is shown in :figref refid=fig5mss3..
Figure 38. SNMP Configuration

Note:

1. This is where you add your community name.
2. This is where you define the access to the community.
3. This is where you define the IP address and subnet mask.
4. This is where you enable the traps.
3.8.2 ARP Server Configuration

To provide IP connectivity CIP must be configured on the MSS. The MSS is also able to provide ARP server functionality. The ARP server is configured for the 192.168.21.0 IP subnet. \figref{fig5fmss4} shows the ARP server configuration.

```plaintext
Config (only)>protocol arp
ARP user configuration
ARP config>add atm-arp-client-configuration
Interface Number [0]? Protocol [IP]?
Client IP Address [0.0.0.0]? 192.168.21.10
This client is also a server? [No]: y
Refresh timeout (in minutes) [20]?
Enable auto-refresh? [Yes]:
Refresh by InAtmArp? [Yes]:
  ( 1) Use burned in ESI
  ( 2) 400082100000
Select ESI [1]? 2
Use internally assigned selector? [Yes]: n
Selector Only, Range 00..FF [00]?
Validate PCR for best effort VCCs? [No]:
Maximum Reserved Bandwidth for incoming VCCs (Kbps) [0]?
Use Best Effort Service for Control VCCs? [Yes]:
Peak Cell Rate of outbound control VCCs (Kbps) [0]?
Sustained Cell Rate of outbound control VCCs (Kbps) [0]?
Use Best Effort Service for Data VCCs? [Yes]:
Peak Cell Rate of outbound Data VCCs (Kbps) [0]?
Sustained Cell Rate of outbound Data VCCs (Kbps) [0]?
Max SDU size (bytes) [9188]?
Use Best Effort Service for Data VCCs? [Yes]:
Peak Cell Rate of outbound Data VCCs (Kbps) [0]?
Sustained Cell Rate of outbound Data VCCs (Kbps) [0]?
Max SDU size (bytes) [9188]?
ARP config>list atm

ATM Arp Clients:

If: 0 Prot: 0 Addr: 192.168.21.10 ESI: 40.00.82.10.00.00 Sel: 00
Server: yes Refresh T/O: 20 AutoRefr: yes By InArp: yes Validate PCR: no
Use Best Effort: yes/yes (Control/Data) Max B/W(kbps): 0
Cell Rate(kbps): Peak: 0/0 Sustained: 0/0
Max SDU(bytes): 9188
ARP config>exit
```

\figref{fig5fmss4}. ARP Server Configuration

Most of the parameters are left at their default values; however, the ESI is changed from Use burned-in ESI to the ESI defined before, 400082100000, and the selector byte is set from internally assigned to the first available 00.

The base and ARP server configuration is complete. Reload the MSS to make this configuration the active configuration. The command to reload the MSS is shown in \figref{fig5fmss5}.

```plaintext
Config (only)>reload
Are you sure you want to reload the gateway? (Yes or [No]): y
The configuration has been changed, save it? (Yes or [No]): y
Config Save: Using bank A and config number 2
```

\figref{fig5fmss5}. Reloading the MSS with the New Configuration
3.8.3 Setting the ESI using the MSS Configuration Program

After the MSS is reloaded and the configuration is active, the configuration is downloaded to the MSS Configuration Program on the AIX network management station.

To download the configuration from the MSS, select **Configure...Communications...Single Router** in the Navigation Window of the MSS Configuration Program. The Communicate... screen shows up.

![Image](5fret.xwd)

Figure 41. Retrieving the MSS Configuration

On this panel enter the **IP Address or name** of the MSS, here 192.168.21.10, and the **Community**, here **public**. Then select the **Retrieve configuration** button and select **OK**. The active configuration of the MSS will be downloaded.

![Image](5f3a.xwd)

:figref refid=fig5f3a. through :figref refid=fig5f3e2. show the results of our initial configuration.

The Navigation Window shown in :figref refid=fig5f3a., allows selection of configuration parameters that can be viewed or modified.

![Image](5f3a.xwd)

Figure 42. The Navigation Window of the MSS Configuration Program

The screen in :figref refid=fig5f3b. shows the adapters installed in the MSS. But it is also the first configuration you have to do, when you do out-of-band
configuration, so the Configuration program knows how many and what adapters you have installed.

Figure 43. The Slot Browser Window

The following panels show the interface configuration of the ATM port. In :figref refid=fig5f3c1. you can see and configure the General parameters for each ATM interface. You can also enable or disable an installed interface.

Figure 44. The Device Interfaces Window - General Parameters

The panel in :figref refid=fig5f3c2. allows you to enable and configure Locally Administered ESIs
To set the signalling protocol to the value you want, select the **Signalling** tab and the panel shown in :figref refid=fig5f3c3. appears.

You can assign IP addresses to each interface. (See :figref refid=fig5f3d..)
To configure the MSS for CIP select **Classical IP over ATM** under Protocol in the Navigation Window. On the panel shown in :figref refid=fig5f3e1. you can set the ARP server address for the client you are creating or set the **Client is also an ARP Server** button.

Figure 48. The CIP over ATM Window - ARP Server Address

To select the ESI and selector byte for the client/server, select the **Client Addr** tab as shown in :figref refid=fig5f3e2..

Figure 49. The CIP over ATM Window - Client Address Parameters

By completing the previous steps it we have set the ATM ESI to a locally administered address. This will make the setup of future clients much easier by referencing a known address rather than having to remember a burned in address.
Chapter 4. ATM Proxy Clients Configuration Examples

As shown in the network design documented in Physical Topology on page ---, Proxy LAN Emulation clients will be added to the ATM backbone. A proxy LEC is located in network devices like LAN switches and ATM LAN bridges to provide connectivity from legacy LANs to the emulated LAN or between legacy LANs over the ATM backbone.

This chapter will show how to add an 8274, 8281, 8272 and an 8271 to the ATM backbone, create an ELAN for each of the devices and connect these ELANs via routing and/or bridging. We create both token-ring and Ethernet ELANs and describe how to configure these ELANs on the MSS, with the MSS Configuration Program, and how to configure the LEC on each network device.

The next section will begin by creating a LECS instance on the MSS, followed by configuring the ATM switches to support the Well Known Address (WKA).

4.1 Configuring LECS Support

Any ATM LEC can be configured in one of four ways to locate its LES ATM address to join the appropriate ELAN:

1. Directly configure the LES ATM address.
2. Request from a LECS by hard coding the LECS address.
3. Request from a LECS by using the WKA.
4. Utilize ILMI to acquire the LECS ATM address.

In the following configurations, the various options will be explored. For example, the 8274 is configured to use the ATM Forum-compliant well known address of 4700790000000000000000000000A03E0, whereas the 8281 is configured directly with the ATM address of the LES. Each LEC will support one or more of these options. The method selected depends on which options are supported on a given machine.

4.1.1 Configuring the LECS Instance on the MSS

The LECS function is provided by the MSS. Once configured and enabled, the LECS of the MSS knows the ATM addresses of each LES/BUS function created on the MSS and the appropriate ELAN. You can define various policies for how to assign a LES address to a specific LEC. To configure and enable the LECS function on the MSS select General under LAN Emulation...LECS in the Navigation Window of the MSS Configuration Program.
Figure 50. Configuring the General LECS Parameters

Figure 50 shows the LECS General configuration window. Make sure the Create LECS instance and Enable LECS buttons are marked. LECS ATM Device is the ATM device on which the LECS should be created. We have only installed one adapter, so 0 is selected. More options would be available if more devices were installed. Then you configure the LECS End System Identifier and Selector:

- **LECS ESI**

 The options include, Use Burned-In Address or any locally administered ESI defined in the Interface Configuration; we entered a locally administered address of **400082100000**.

- **LECS Selector (hex)**

 Create by clicking on **Generate** to select the next available Selector for this address; here 00 is assigned.

All other parameters can be left at their default values.

The next step is to create LECS assignment policies, that are used as criteria to assign a LEC to an ELAN and to the associated LES. We configure the assignment policy by selecting **LECS Assignment Policies** under **LAN Emulation...LECS** in the Navigation Window of the MSS Configuration Program.

Figure 51. Configuring LECS

***** ch61a.xwd *****

***** ch61b.xwd *****
Six assignment policies can be created with equal or different priorities. The assignment policies are:

- By ATM address
- By MAC address
- By Route descriptor
- By LAN type
- By Max. Frame Size
- By ELAN name

Each assignment policy has an associated priority. Lower numbers indicate higher priority. Policies with equal priority are considered at the same time and are ANDed together.

Select the Policy from the drop-down window and accept the default priority (10) or assign your own priority by typing it in the Priority field. The example shows, By ELAN Name, selected using the default priority.

After this the LECS configuration is done. Upload the configuration file and reload the MSS.

4.1.2 Configuring the ATM Switches to Support Well Known Address

For the following configuration examples all ATM backbone switches, the 8260_HUB1, 8260_HUB2 and 8285 must be configured to translate the well known address to the ATM address of the LECS in the last step. Figure refid=figc5sci. shows how to configure the LECS address to be substituted for the WKA on the 8260_HUB1.

```
8260_HUB1> set lan_emul configuration_server active_wka
Enter ATM address : 39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.10.00.00.00
Entry set.

8260_HUB1> show lan_emul configuration_server
Index ATM address
------------------------------------------------------------------------
1 WKA active 39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.10.00.00.00
```

Figure 52. Setting LECS ATM Address

This configuration is the same for the 8260_HUB2 and 8285 and must be done for both of them, to provide WKA support for every device connected to any ATM backbone switch in our network.

4.2 Configuring ELANs on the IBM 8285

The IBM 8285 Control Point can provide ATM Forum-compliant LAN Emulation server (LES/BUS) and client (LEC) functions. To enable these functions on the 8285, it is necessary to configure and enable LAN Emulation.

It supports up to two LES/BUSes simultaneously with any combination of ELAN types. In addition, it supports both TR and ETH LECs simultaneously, but you cannot define two LECs with the same ELAN type.
The base configuration of the IBM 8285 has already been done in Adding an IBM 8285 to the ATM Backbone on page ---. This section will only describe how to configure and start the LES/BUS and LEC functions on an IBM 8285.

![log2.xwd](image)

Figure 53. Logical ELAN configuration for the 8285

One token-ring and one Ethernet ELAN will be created on the 8285, 8285tr4 and 8285eth4. :figref refid=figfig62a. shows how to configure and start the LES/BUS function on the IBM 8285.

![log2.xwd](image)

Figure 54. Configuring and Starting a LES/BUS Function

1 This command is used to configure and start the LES/BUS. You can configure the following parameters:

- **Server ID**

 Specify the designated LES/BUS identifier to issue the command. The valid options are 1 or 2.

- **Start/Stop**

 Start or stop the designated LES/BUS. When the command is to stop the server, the following parameters are not needed.

- **ELAN type**

 Specify the ELAN type of the designated LES/BUS. The valid options are ETH (Ethernet LANE) or TR (token-ring LANE). When the ELAN type of the LES/BUS is Ethernet, it always supports both Ethernet types, 802.3 and DIX/Ethernet V2; you cannot make it support only one type.
- Maximum number of clients
 Specify the maximum number of LECs supported by the designated LES/BUS. The maximum number is 128 and is the sum of both LES/BUSes when two LES/BUSes are configured.

- Maximum SDU size
 Specify the maximum AAL-5 service data unit (SDU) size supported by the designated LES/BUS. The SDU is the information part of an AAL-5 protocol data unit (PDU). The possible values are 1516, 4544, 9234 and 18190 (default, 1516) regardless of the ELAN type.

Here we configured an Ethernet ELAN, so we started Server number 1 as an Ethernet (eth) LES/BUS with a maximum of 64 clients and default SDU size.

2 This ELAN name is 8285eth4.

3 The integrated LES/BUS #1 is started.

4 This command is used to configure and start the integrated LES/BUS. Here we configured a token-ring ELAN, so we started server number 2 as a token-ring (tr) LES/BUS with a maximum of 64 clients and 4544 as the maximum SDU size, the default for token-ring ELANs.

5 This ELAN name is 8285tr4.

6 The integrated LES/BUS #2 is started.

To provide an additional node management interface and to test, if the LES/BUS is functional, we configure and start one integrated LEC for each ELAN. The following screen shows how to do this.

```
8285> set device lan_emulation_client eth no_lecs_with_les: 1
Enter address : 39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.02
Some parameters are missing. Client state unchanged.
8285> set device lan_emulation_client eth ip_address: 3
ip_address: 192.168.30.1
subnet_mask: ff.ff.ff.00
Some parameters are missing. Client state unchanged.
8285> set device lan_emulation_client eth mac_address: 4
mac_address: 400082850001
Client starting.
8285> set device lan_emulation_client eth eth_type:DIX 6
Client starting.
```

Figure 55. Configuring and Starting a LEC on the 8285

The set device lan_emulation_client command has several parameters to configure the LEC. The main parameter is the ELAN type of the LEC, either token-ring (tr) or Ethernet (eth). You have to use this parameter every time to configure the right LEC. In the following, we refer to the command line screen to explain the additional parameters.

1 You can either decide to configure the LEC to go directly to the LES/BUS (no_lecs_with_les) or get the LES/BUS address from a LECS (no_les_with_lecs). Then you have to type in the LES/BUS's or LECS's
ATM-address. Here we choose no_lecs_with_les and configured the ATM address of the integrated LES/BUS.

2 The LEC in the IBM 8285 doesn't start until you define the necessary parameters and this message is displayed. But the parameters you define are reflected.

3 To assign an IP address to this LEC we specify ip_address in the command line and enter the IP address and subnet mask when prompted, here 192.168.30.1 and 255.255.255.0.

4 To specify a locally administered MAC address (LAA) for the LEC specify mac_address in the command line to enter the LAA, here 400082850001.

5 The LEC in the IBM 8285 starts automatically.

6 You may change the Ethernet type of the LEC in the IBM 8285 because the default is 802.3 and many devices use DIX as the default.

7 The integrated Ethernet LAN Emulation client is started.

The default gateway is not defined, because the MSS is not configured to join the 8285 ELANs. But the LECs configured on the MSS will become the default gateways for the integrated LECs. You configure the default gateway for each LEC by issuing the set device lan_emulation_client command for the tr and eth LEC with the parameter default_gateway on the command line and then entering the default gateway IP address, here 192.168.29.10 (tr) and 192.168.30.10 (eth).

.figref refid=figfig62c. shows the command used to check the status of the LES/BUS, the number of clients that joined and the LECs.
Figure 56. The Console Screen to Check the LANE Registration

This screen shows:

1. The integrated LES/BUS is running and operational.

2. The number of clients registered with the IBM 8285 integrated LES are shown on this line; here only the integrated LEC has registered.

3. The clients registered with the IBM 8285 integrated LES are shown on these lines. This information only appears when you specify either of the servers using the server ID.
This command can be used to check the status of each LEC on the IBM 8285, especially if they are registered with an external LES.

The status of each integrated LEC is here. The rest of the screen shows the configuration of each LEC.

4.2.1 Connecting the MSS to the 8285 ELANs

To be able to route and/or bridge between the ELANs created on the 8285 in 4.2, "Configuring ELANs on the IBM 8285" on page 101, we must create and configure two LECs on the MSS that join the appropriate ELAN of the 8285, 8285tr4 or 8285eth4.

4.2.1.1 Creating a LEC for the 8285tr4 ELAN

To enable IP routing for an ELAN, even if it is not created on this MSS, you must first create a LEC for this ELAN and then assign an IP address to it. To create a LEC select **LEC Interfaces** under **Devices...LAN Emulation** in the Navigation Window of the MSS Configuration Program and this will bring up the LEC Interfaces screen.
By selecting **General** you can configure the following parameters:

- **Architecture**
 Select either ATM Forum for FC LAN Emulation, or IBM for IBM LAN Emulation; **ATM Forum** is selected.

- **ATM Device**
 This is the ATM device where the LEC will reside. Only one adapter is installed, so 0 is selected. If more than one ATM adapter is installed, there will be more options.

- **LEC End System Identifier and Selector**
 - **LEC ESI**
 Selections include, Use Burned-In Address or any locally administered ESI defined in the Interface Configuration, here **400082100000**.

 - **ATM LEC Address Selector (hex)**
 Created by clicking on **Generate** to select the next available Selector for this address, here **02**.

- **LEC Local Unicast MAC Address**
 Used as a MAC address in the ELAN. If you want to enable bridging between ELANs this address has to be unique. **400082100001** is defined.

To assign the LEC to the correct ELAN, select **ELAN**. The following screen is displayed.
In Figure 59 select the **ELAN name** that the LEC should join, either by typing the name in or selecting the correct ELAN from the drop-down window. This ELAN was not configured on the MSS, so enter the ELAN name. Also, configure the correct **ELAN Type** and **Max Frame Size** parameters for this ELAN, by selecting them from the drop-down windows. **Token-Ring** and **4544** are selected.

In 4.1, “Configuring LECS Support” on page 99 four ways for a LEC to find its LES are described. For this LEC, the LES/BUS address is configured, because the LECS on the MSS is not aware of this ELAN. To configure this, select **Servers** and the following screen is displayed.

The LEC is created that will join the ELAN created on the 8285. To enable IP routing for this ELAN, simply assign an IP address to this LEC. This is done by selecting **Interfaces** under **Protocols...IP** in the Navigation Window of the MSS Configuration Program. The IP interfaces screen is displayed.
Figure 61. Assigning IP Address to LEC

On this screen just click on **IP Addresses** next to the LEC interface you want to configure and type in an IP address and a subnet mask for this LEC interface, here 192.168.29.10 and 255.255.255.0. By clicking on **Add** the IP address is assigned.

4.2.1.2 Creating the LEC to join the 8285eth4 ELAN

To enable IP routing for an ELAN, even if it is not created on this MSS, you must create a LEC for this ELAN and then assign an IP address to it. To create a LEC select **LEC interfaces** under **Devices...LAN Emulation** in the Navigation Window of the MSS Configuration Program and the LEC Interfaces screen is displayed.

Figure 62. Configuring the LEC

By selecting **General** you can configure the following parameters:

- Architecture
 - We selected **ATM Forum**.
- ATM Device
 - 0 is selected because only one adapter is installed.
- LEC End System Identifier and Selector:
 - LEC ESI
A locally administered address, **400082100000**, was defined.

- ATM LEC Address Selector (hex)

 Created by clicking on Generate to select the next available selector for this address, here **03**.

- LEC Local Unicast MAC Address

 Used as a MAC address in the ELAN. If you want to enable bridging between ELANs this has to be unique, so **400082100002** was defined.

To assign the LEC to the correct ELAN, select **ELAN**. The following screen displays.

![Assigning the LEC to an ELAN](ch62b2.xwd)

Figure 63. Assigning the LEC to an ELAN

On this screen you select the **ELAN name** that the LEC should join, either by typing the name in or selecting the correct ELAN from the drop-down window. This ELAN was not created on the MSS so you must type in the name of the ELAN and configure the correct **ELAN Type** and **Max Frame Size** parameters for this ELAN by selecting them from the drop-down windows, here **Ethernet** and **1516**.

In 4.1, “Configuring LECS Support” on page 99 we described four ways for a LEC to find its LES. For this LEC, we have to configure the LES/BUS address directly, because the LECS in the MSS does not know this ELAN. To configure this, select **Servers** and the following screen is displayed.
Figure 64. Configuring LEC to Join LES with WKA

To have the LEC join the ELAN directly, unmark the LECS AutoConfiguration button and type in the LE Server ATM Address, here 39.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.02.

All other parameters can be left at default values, so just click on Add to save this LEC entry.

Now we have created a LEC that will join the ELAN on the 8285. To enable IP routing for this ELAN we simply assign an IP address to this LEC. We do this by selecting Interfaces under Protocols...IP in the Navigation Window of the MSS Configuration Program. The IP interfaces screen is displayed.

Figure 65. Assigning IP Address to LEC

On this screen just click on IP Addresses next to the LEC interface you want to configure and type in an IP address and a subnet mask for the LEC interface, here 192.168.30.10 and 255.25.255.0. By clicking on Add the IP address is assigned.

Now the configuration is done. Just upload the configuration file and reload the MSS.
4.3 Adding an IBM 8274

The IBM 8274 Model 513 is added to the ATM Backbone via a 155 Mbps ATM Switched Module (ASM) port, configured as an ATM uplink. First, created will be an Ethernet ELAN, called 8274eth1, on the MSS. Then we'll create a LEC on the MSS with IP routing enabled. In our case, the IP address used is 192.168.25.10. Next a LEC on the 8274 ASM port will be configured to join the 8274eth1 ELAN. The LANE configuration on the 8274 will be configured to use the well known address to acquire the ATM address of the LECS. This LEC will also be in the 192.168.25.0 IP subnet.

figref refid=figphys5. illustrates the physical topology, representing the existing network plus the new 8274 connection.

Figure 66. Physical View of 8274 Connection

The 8274 is connected to the 8260_HUB1 at 155 Mbps. A fiber cable connects the 8274 ASM port 4/1 to 8260_HUB1 port 14.1.

figref refid=figlog3. illustrates the logical topology of the ELAN, LEC on the MSS, and the LEC on the 8274. The IP addresses are also noted for reference.

Figure 67. Logical View of 8274 Connection
4.3.1 Configuring the IBM 8210

To provide connectivity of the IBM 8274 to the ATM backbone, we will create the 8274eth1 ELAN, a LAN Emulation Server (LES) for this ELAN and a LAN Emulation Client (LEC) on the MSS to enable IP routing between ELANs and LISs.

4.3.1.1 Creating the 8274eth1 ELAN

We configured the ELAN and LES/BUS function by selecting ELANs under Devices...LAN Emulation in the Navigation Window of the MSS Configuration Program and the Emulated LANs Configuration screen is displayed.

To create the ELAN select ELAN Details and General. Ensure that the Enable ELAN button is marked. In the ELAN Name field fill in the name of the ELAN you want to create, here 8274eth1. Select the ELAN Type. Here we selected Ethernet, and the Max Frame Size will automatically change to the default value for Ethernet, 1516.

To create the LES/BUS functionality select Local LES/BUS and General.

Figure 68. Configuring ELAN Name

To create the ELAN select ELAN Details and General. Ensure that the Enable ELAN button is marked. In the ELAN Name field fill in the name of the ELAN you want to create, here 8274eth1. Select the ELAN Type. Here we selected Ethernet, and the Max Frame Size will automatically change to the default value for Ethernet, 1516.

To create the LES/BUS functionality select Local LES/BUS and General.

Figure 69. Configuring LES/BUS

On this screen make sure Create Local LES/BUS and Enable LES/BUS instance are marked. Select the LES/BUS ATM Device, on which the LES/BUS instance should be created. If you have two ATM devices installed you can choose
between 0 and 1. Here we have only one ATM device installed so we selected 0. In the LES/BUS End System Identifier and Selector section we configured the LES/BUS's ESI and Selector. In the LES/BUS End System Identifier pull-down menu you can choose between Use Burned-In Address and any locally administered ESI defined in the Interface Configuration. We selected a locally administered address of \texttt{400082100000}. To configure the LES/BUS Selector (hex) click on \texttt{Generate}, to select the next available selector for this address, here \texttt{04}.

All other parameters can be left at default values, so just click on \texttt{Add} to save this ELAN entry.

\begin{quote}
\textbf{Note!}

If you want to enable the BCM for this ELAN, you must first set the Fast BUS mode operation on the Local LES/BUS and General-2 menu to System.
\end{quote}

\subsection*{4.3.1.2 Creating a LEC for the 8274eth1 ELAN}

To enable IP routing for an ELAN you must first create a LEC for this ELAN and then assign an IP address to it. To create a LEC select \texttt{LEC interfaces} under \texttt{Devices...LAN Emulation} in the Navigation Window of the MSS Configuration Program and the LEC Interfaces screen is displayed.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{ch63b1.xwd}
\caption{Configuring the LEC}
\end{figure}

By selecting \texttt{General} you can configure the following parameters:

- \texttt{ATM Device}

 Here we can only select \texttt{0}.

- \texttt{LEC End System Identifier and Selector}:

 - \texttt{LEC ESI}

 We selected the locally administered address, \texttt{400082100000}.

 - \texttt{ATM LEC Address Selector (hex)}

 Created by clicking on \texttt{Generate} to select the next available Selector for this address, here \texttt{05}.

- \texttt{LEC Local Unicast MAC Address}
Used as a MAC address in the ELAN. If you want to enable bridging between ELANs this has to be unique. Here the address 400082100003 is defined.

To assign the LEC to the correct ELAN, select **ELAN**. The following screen is displayed.

![Figure 71. Assigning the LEC to an ELAN](ch63b2.xwd)

On this screen you can enter the specific **ELAN name** that the LEC should join.

Note!

When you assign the first LEC to an ELAN you must click on **Create ELAN Assignment Policies** and select the ELAN name to create the initial assignment policy values.

For this LEC we chose to request the address from a LECS by using the WKA. To configure this, select Servers and the following screen is displayed.

![Figure 72. Configuring LEC to Join LES with WKA](ch63b3.xwd)

Click on the **LECS AutoConfiguration** button.

All other parameters can be left at default values, then click on **Add** to save this LEC entry.
Now we have created an ELAN with LES/BUS and a LEC that will join this ELAN. To enable IP routing for this ELAN we now assign an IP address to this LEC.

This is done by selecting **Interfaces** under **Protocols...IP** in the Navigation Window of the MSS Configuration Program. The IP interfaces screen is displayed.

![Figure 73. Assigning IP Address to LEC](ch63c.xwd)

On this screen click on **IP Addresses** next to the LEC interface you want to configure and type in an IP address and a subnet mask for the LEC interface, here 192.168.25.10 and 255.255.255.0. By clicking on **Add** the IP address is assigned.

Now the configuration is done. Just upload the configuration file and reload the MSS.

4.3.2 Configuring the IBM 8274

Using a terminal program with the command line interface, we log into the 8274 with the default logon id **admin** with password **switch** as shown in :figref refid=figc5sca. The settings for the terminal program are : 8, none, 1; VT100 emulation, 9600bps.
4.3.2.1 ATM Port Configuration

In order to create a LANE service, the physical port needs to be defined as an SVC type. The ATM port configuration can be viewed by typing `vap` at the command prompt as shown in Figure 74.

![Figure 74. Logging into the 8274 Switch](image-url)
The ATM port configuration is changed to SVC using the `map slot/port` command set as shown in :figref refid=figc5sce..
8274/VLAN/Auto-Tracker >map 4/1

Slot 4 Port 1 Configuration

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Description (30 chars max)</td>
<td>ATM PORT</td>
<td></td>
</tr>
<tr>
<td>2) Conn Type { PVC(1), SVC(2) }</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>3) Max VCCs (1-1023)</td>
<td>1023</td>
<td></td>
</tr>
<tr>
<td>4) Max VCI bits (1..10)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5) UNI Type { Pub(1), Priv(2) }</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>6) Tx Segment Size (4096-131072)</td>
<td>8192</td>
<td></td>
</tr>
<tr>
<td>7) Rx Segment Size (4096-131072)</td>
<td>8192</td>
<td></td>
</tr>
<tr>
<td>8) Tx Buffer Size (1800-8192)</td>
<td>4600</td>
<td></td>
</tr>
<tr>
<td>9) Rx Buffer Size (1800-8192)</td>
<td>4600</td>
<td></td>
</tr>
<tr>
<td>10) P1 Scramble {(False(1),True(2))}</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>11) Timing Mode {(Loop(1),Local(2))}</td>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>12) Loopback Config { NoLoop(1), DiagLoop(2), LineLoop(3) }</td>
<td>NoLoop</td>
<td></td>
</tr>
<tr>
<td>13) Phy media { SONET(1), SDH(2) }</td>
<td>SONET</td>
<td></td>
</tr>
</tbody>
</table>

Enter (option=value/save/cancel) : 2=2

Slot 4 Port 1 Configuration

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Description (30 chars max)</td>
<td>ATM PORT</td>
<td></td>
</tr>
<tr>
<td>2) Conn Type { PVC(1), SVC(2) }</td>
<td>SVC</td>
<td></td>
</tr>
<tr>
<td>30) Sig version { 3.0(1) 3.1(2) }</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>31) Signaling VCI (0..1023)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>32) ILMI Enable {(False(1),True(2))}</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>33) ESI (12 hex-chars)</td>
<td>0020da6fa8e0</td>
<td></td>
</tr>
<tr>
<td>34) IIMI VCI (0..1023)</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3) Max VCCs (1-1023)</td>
<td>1023</td>
</tr>
<tr>
<td>4) Max VCI bits (1..10)</td>
<td>10</td>
</tr>
<tr>
<td>5) UNI Type { Pub(1), Priv(2) }</td>
<td>Private</td>
</tr>
<tr>
<td>6) Tx Segment Size (4096-131072)</td>
<td>8192</td>
</tr>
<tr>
<td>7) Rx Segment Size (4096-131072)</td>
<td>8192</td>
</tr>
<tr>
<td>8) Tx Buffer Size (1800-8192)</td>
<td>4600</td>
</tr>
<tr>
<td>9) Rx Buffer Size (1800-8192)</td>
<td>4600</td>
</tr>
<tr>
<td>10) P1 Scramble {(False(1),True(2))}</td>
<td>True</td>
</tr>
<tr>
<td>11) Timing Mode {(Loop(1),Local(2))}</td>
<td>Local</td>
</tr>
<tr>
<td>12) Loopback Config { NoLoop(1), DiagLoop(2), LineLoop(3) }</td>
<td>NoLoop</td>
</tr>
<tr>
<td>13) Phy media { SONET(1), SDH(2) }</td>
<td>SONET</td>
</tr>
</tbody>
</table>
Enter (option=value/save/cancel) : 33=400082740000

Slot 4 Port 1 Configuration

1) Description (30 chars max) : ATM PORT
2) Conn Type { PVC(1), SVC(2) } : SVC
30) Sig version { 3.0(1) 3.1(2) } : 3.0
31) Signaling VCI (0..1023) : 5
32) ILMI Enable { (False(1),True(2) } : True
33) ESI (12 hex-chars) : 40008274000002.
34) ILMI VCI (0..1023) : 16
3) Max VCCs (1-1023) : 1023
4) Max VCI bits (1..10) : 10
5) UNI Type { Pub(1), Priv(2) } : Private
6) Tx Segment Size (4096-131072) : 8192
7) Rx Segment Size (4096-131072) : 8192
8) Tx Buffer Size (1800-8192) : 4600
9) Rx Buffer Size (1800-8192) : 4600
10) Pl Scramble { (False(1),True(2) } : True
11) Timing Mode { (Loop(1),Local(2) } : Local
12) Loopback Config { NoLoop(1), DiagLoop(2),
LineLoop(3) } : NoLoop
13) Phy media { SONET(1),SDH(2) } : SONET

Enter (option=value/save/cancel) : save

Reset all services on slot 4 port 1 (n)? : y
Resetting port, please wait...

Figure 76. Modifying the 8274 ATM Port Configuration to SVC

--- Note: ---

1. Change connection type to SVC.
2. Change the burned-in ESI address to an LAA of 400082740000.
3. Modifying the port will reset the port.

To view ATM port information, type `vap` at the command prompt as shown in :figref refid=figc5sch.. The 13-byte ATM network prefix of 39 99 99 99 99 99 00 00 99 99 01 01 is displayed. This address was learned from the 8260 ATM switch 8260_HUB1 that this 8274 is physically connected to.
4.3.2.2 Creating a LANE Service

The command `vap` on the 8274 also shows the ATM network prefix assigned by the ATM switch.

Note:

The command `vap` on the 8274 also shows the ATM network prefix assigned by the ATM switch.

4.3.2.2 Creating a LANE Service

:figref refid=figc5scf. shows how to create a LANE service. We use the `cas slot/port` command set to create a service.
8274/VLAN/Auto-Tracker >cas 4/1

Slot 4 Port 1 Service 2 Configuration

1) Description (30 chars max): PTOP Bridging Service 2
2) Service type { LAN Emulation (1),
Trunking (4),
Classical IP(5),
PTOP Bridging(6),
VLAN cluster(7) } : PTOP Bridging
10) Encaps Type { Private(1),
RFC1483(2) } : Private
3) Connection Type { PVC(1),
SVC(2) } : PVC
4) PTOP Group : none
5) PTOP connection : none
6) Admin Status { disable(1),
enable(2) } : Enable

Enter (option=value/save/cancel) : 2=1

Slot 4 Port 1 Service 2 Configuration

1) Description (30 chars max): LAN Emulation Service 2
2) Service type { LAN Emulation (1),
Trunking (4),
Classical IP(5),
PTOP Bridging(6),
VLAN cluster(7) } : LAN Emulation
21) LAN type { 802.3 (1),
802.5 (2) } : 802.3
22) Change LANE Cfg { NO (1),
YES (2) } : NO
3) Connection Type { PVC(1),
SVC(2) } : SVC
30) SEL for the ATM address : 02
4) LAN Emulated Group : none
5) LECS Address (40-char-hex) : 4700790000000000000000000000A03E00000100
6) Admin Status { disable(1),
enable(2) } : Enable
Enter (option=value/save/cancel) : 22=2

Slot 4 Port 1 Service 2 LANE Configuration Parameters

1) Proxy { NO (1), YES (2) } : YES
2) Max Frame Size { 1516 (1), 4544 (2), 9234 (3), 18190 (4) } : 4544
3) Use translation options { NO (1), YES (2) } : Yes (use Swch menu to set)
4) Use Fwd Delay time { NO (1), YES (2) } : NO
5) Use LE Cfg Server (LECS) { NO (1), YES (2) } : YES
6) Use Default LECS address { NO (1), YES (2) } : YES
7) Control Time-out (in seconds) : 120
8) Max Unknown Frame Count : 1
9) Max Unknown Frame Time (in seconds) : 1
10) VCC Time-out Period (in minutes) : 20
11) Max Retry Count : 1
12) Aging Time (in seconds) : 300
13) Expected LE_ARP Resp Time (in seconds) : 1
14) Flush Time-out (in seconds) : 4
15) Path Switching Delay (in seconds) : 6
16) ELAN name (32 chars max) : 8274eth1

Enter (option=value/save/cancel) : save

Creating service, please wait...

Enabling service...

Figure 78. Create a Service on Port 4/1
To view the services defined on the 8274 RouteSwitch, the `vas` command is entered at the command prompt. Figure 79. displays the services. In particular we see slot 4, port 1 service 2 configured for LAN Emulation.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Port</th>
<th>Num</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>PTOP Bridging Service 1</td>
<td>PTOP Priv</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>LAN Emulation Service 2</td>
<td>LANE</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>PTOP Bridging Service 1</td>
<td>PTOP Priv</td>
</tr>
</tbody>
</table>

The connection to the LES/BUS function on the MSS is successful, as indicated by the Oper Status of LANE Op. and the dynamically allocated Conn VCI's of 102, 103, 104, 105.

4.3.2.3 Creating a VLAN
A new VLAN will be created as it is not recommended to use the default VLAN for application data traffic.

The new VLAN will be created with the following attributes:
1. VLAN number 2 - part of Group 1
2. Network address rule
- Protocol IP, 192.168.25.0 class C subnet

3. Port address rule
 - ATM port 4/1 using the LANE service

5. Default RIP (Silent)

6. Default framing type (Ethernet II)

To move to the VLAN/Auto-Tracker sub-menu type `at` at the command prompt. This modifies the command prompt to `8274/VLAN/Auto-Tracker`. We then type `cratvl` at the command prompt to create a VLAN, as shown in \figref{figc5scb}.

```
8274/ > at
8274/VLAN/Auto-Tracker > cratvl
Enter the VLAN Group id for this VLAN ( 1) :
Enter the VLAN Id for this VLAN ( 2) :
Enter the new VLAN's description: VLAN 2 IP Subnet
Enter Admin status for this vlan (e)nable/(d)isable (d): e
Select rule type:
  1. Port Rule
  2. MAC Address Rule
  3. Protocol Rule
  4. Network Address Rule
  5. User Defined Rule
Enter rule type (1): 4
Set rule Admin Status to (e)nable/(d)isable (d): e

Select the Network Protocol:
  1. IP
  2. IPX
Enter protocol type: 1
Enter the IP Address: 192.168.25.0
Enter the IP Mask (255.255.255.0):
Configure more rules for this vlan y/n (n): y

Select rule type:
  1. Port Rule
  2. MAC Address Rule
  3. Protocol Rule
  4. Network Address Rule
  5. User Defined Rule
Enter rule type (1): 1
Set rule Admin Status to (e)nable/(d)isable (d): e
```
Enter the list of ports in Slot/Interface format: 4/1
4/1 has the following services configured:

<table>
<thead>
<tr>
<th>Index</th>
<th>Service Type/Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Brg/1</td>
</tr>
<tr>
<td>2.</td>
<td>Lne/1</td>
</tr>
</tbody>
</table>

Enter the index of the service/instance to add: 2
1. Description = VLAN 2 IP Subnet
2. Admin Status = Enabled
3. Rule Definition
 Rule Num | Rule Type | Rule Status
 1 | Net Addr | Rule Status
 2 | Port Rule | Enabled
 3 | Port Rule | Enabled

Available options:
1. Set VLAN Admin Status
2. Set VLAN Description
3. Add more rules
4. Delete a rule
5. Set rule Admin Status
6. Quit

Option = 6

VLAN 1: 2 created successfully
Enable IP? (y):
 IP Address : 192.168.25.2
 IP Subnet Mask (0xffffff00) :
 IP Broadcast Address (192.168.25.255) :
 Description (30 chars max) : IP Virtual router arm
 IP RIP mode (Deaf(d), Silent(s), Active(a), Inactive(i)) (s) :
 Default framing type (Ethernet II(e), fddi(f), token ring(t), Ethernet 802.3(8), source route token ring(s)) (e)

Created router port for vlan 1: 2
Enable IPX? (y): n

Figure 80. Creating an Auto-Tracker VLAN

Viewing VLAN Information
:figref refid=figc5scc. displays the status of the VLAN followed by the Virtual Interface VLAN Membership.
In order to verify that we have connectivity between the 8274 and the MSS, we type `ping 192.168.25.10` from the command prompt as shown in Figure 81.

Note:

1. Virtual IP router arm is a member of VLAN 2.

2. LANE service on virtual interface 4/1 is assigned to both the default VLAN and VLAN 2. This port rule ensures the VLAN is always up and operational; otherwise, the VLAN will ONLY become operational after a device is assigned to VLAN 2. The virtual router will not activate the VLAN on its own.

Verifying Connectivity

In order to verify that we have connectivity between the 8274 and the MSS, we type `ping 192.168.25.10` from the command prompt as shown in Figure 82.

In order for an end device connected to the 8274 with an IP address of 192.168.25.3 to communicate with a device on a separate subnet, that is 192.168.21.0, it must configure a default gateway of 192.168.25.10 (the MSS).
This is because we have not configured a routing protocol (that is OSPF or RIP) between the 8274 and the MSS to exchange routing tables.

Tip

To view the routing table of the 8274, type `ipr` at the command prompt.

In order to use the 8274 IP router arm as the default gateway, we could configure the MSS to send RIP updates to the 8274eth1 ELAN. The 8274 is set up by default to listen for RIP updates. This configuration will update the IP routing table on the 8274 with the IP routing table entries found on the MSS.

4.4 Adding an IBM 8281

The next device to be added to the ATM backbone is an IBM 8281 via a 100 Mbps ATM port. First created will be an Ethernet ELAN, called 8281eth2, on the MSS. Also created is a LEC on the MSS with IP routing enabled and the IP address will be 192.168.24.10. Then we will connect the IBM 8281 to an IBM 8260 100 Mbps ATM port and configure the LEC on the IBM 8281's ATM port to join the 8281eth2 ELAN. This LEC will also be assigned the IP address of 192.168.24.81.

:figref refid=figphys6. illustrates the physical topology, representing the existing network plus the new 8281 connection. :figref refid=figlog4. illustrates the logical topology.

```
***** phys6.xwd *****
```

Figure 83. Physical View of 8281 Connection
To provide connectivity of the IBM 8281 to the ATM backbone, we will create the 8281eth2 ELAN, a LAN Emulation Server (LES) for this ELAN, as well as a Broadcast Unknown Server (BUS) on the MSS. We also configure a LAN Emulation Client (LEC) on the MSS to enable IP routing between ELANs and LISs.

We configured the ELAN and LES/BUS function by selecting ELANs under Devices...LAN Emulation in the Navigation Window of the MSS Configuration Program and the Emulated LANs Configuration screen is displayed.

To create the ELAN select ELAN Details and General. Make sure the Enable ELAN button is marked. In the ELAN Name field fill in the Name of the ELAN you want to create; here 8281eth2 is entered. Select the ELAN Type, either Token-Ring or Ethernet; here we selected Ethernet. The Max Frame Size will automatically change to the default value for either token-ring or Ethernet, here 1516.

To create the LES/BUS functionality select Local LES/BUS and General-1.
Figure 86. Configuring LES/BUS

On this screen ensure Create Local LES/BUS and Enable LES/BUS Instance are selected. Select the LES/BUS ATM Device, on which the LES/BUS instance should be created. Here we selected 0.

We selected 400082100000 as the locally administered address. To configure the LES/BUS Selector (hex) click on Generate, to select the next available selector for this address, here 06.

All other parameters can be left at default values, click on Add to save this ELAN entry.

--- Note! ---

If you want to enable the BCM for this ELAN, you must first set the Fast BUS mode operation on the Local LES/BUS and General-2 menu to System.

4.4.0.1 Creating a LEC for the 8281eth2 ELAN

To enable IP routing for an ELAN you must first create a LEC for this ELAN and then simply assign an IP address to it. To create a LEC, select LEC Interfaces under Devices...LAN Emulation in the Navigation Window of the MSS Configuration Program, and the LEC Interfaces window is displayed.
Figure 87. Configuring the LEC

By selecting General you can configure the following parameters:

- Architecture

 ATM Forum was selected.
- ATM Device

 Select 0.
- LEC End System Identifier and Selector:
 - LEC ESI

 We selected the locally administered ESI value of 400082100000.
 - ATM LEC Address Selector (hex)

 Created by clicking on **Generate** to select the next available selector for this address, here 07.
- LEC Local Unicast MAC Address

 Used as a MAC address in the ELAN. If you want to enable bridging between ELANs this has to be unique. In this case, 400082100004 was defined.

To assign the LEC to the correct ELAN, select **ELAN**. The following screen will be displayed:

***** ch64b1.xwd *****
The ELAN name assigned was 8281eth2 and the LEC defined to use the WKA.

![Figure 89. Configuring LEC to Join LES with WKA](ch64b3.xwd)

Click on the LECS AutoConfiguration button.

All other parameters can be left at default values, then click on Add to save this LEC entry.

Now we have created an ELAN with LES/BUS and a LEC that will join this ELAN. To enable IP routing for this ELAN an IP address is assigned to this LEC. This is done by selecting Interfaces under Protocols...IP in the Navigation Window of the MSS Configuration Program. The IP interfaces screen will be displayed:

![Figure 90. Assigning IP Address to LEC](ch64c.xwd)

On this screen click on IP Addresses next to the LEC interface that was just created and type in an IP address and a subnet mask for the LEC interface, here 192.168.24.10 and 255.255.255.0. By clicking on Add the IP address is assigned.

Now the configuration is done. Upload the configuration file and reload the MSS.

4.4.1 Configuring the IBM 8281

The 8281 will be connected to the backbone via its 100 Mbps port. A fiber cable connects the 8281 100 Mbps port to the 8260_HUB1. We are going to configure the 8281's ATM, LAN Emulation, IP and SNMP parameters, as well as the port
configuration parameters. The 8281 will be configured as an Ethernet transparent bridge.

We will also configure an additional IBM 8281, for network management purposes. This 8281 will be configured as a token-ring source-route bridge to provide connectivity from the ATM network management station to the token-ring ports of the 8260s.

All this is done with the Configuration Utility Program.

4.4.1.1 The Configuration Utility Program
The Configuration Utility Program is a DOS/Windows-based application, that enables a user to modify the 8281’s configuration parameters.

To use the Configuration Utility Program to manage the 8281, the workstation running this program must be able to communicate with the 8281 using any of the following connections:

1. Direct attachment to the serial port on the 8281. In this case the workstation must be configured to use TCP/IP over the SLIP interface.
2. LAN attachment. In this case the workstation must be configured to use TCP/IP over a LAN (token-ring or Ethernet) interface to communicate with the IBM 8281.
3. ATM attachment. In this case the workstation must be configured to use TCP/IP over an emulated LAN to communicate with the 8281 via the ATM interface.

4.4.1.2 Creating a Configuration for the IBM 8281
The following sections describe the steps required to create the new configuration profile for the IBM 8281.

Bridge Type Configuration
From the main menu of the Configuration Utility program double-click on the profile template for the type of bridge you want to configure. On the Bridge Type Selection panel activate the radio button for Token Ring or Ethernet. That defines the IBM 8281 as being configured for either token-ring or Ethernet. When you select OK on this panel, the bridge configuration window will be displayed as shown in :figref refid=fig6f42b..

Figure 91: The IBM 8281 Configuration Window for Ethernet
The panel in Figure 91 shows the Ethernet (Enet) IBM 8281 configuration window (all ports are indicated as Ethernet). If the IBM 8281 had been configured for token-ring, all ports would be indicated as token-ring.

On this panel is a button for bridge-wide configuration and an icon for each of the possible four LAN ports and the ATM port. Double-click on them to configure the relevant parameters.

Bridge-Wide Configuration

The Bridge-wide configuration panel is divided into two sections; see :figref refid=fig6f42c..

Figure 92. The Bridge-wide Configuration Panel

In the upper section, the following parameters must be entered:

- **Bridge name**

 This parameter identifies the IBM 8281 and is used to distinguish the IBM 8281 from other bridges in the network. Every IBM 8281 in the network must have a unique name; for this 8281 we used the name 8281Brdg1.

 The token-ring 8281 will have a name of 8281Brdg2

- **Maximum frame size**

 This parameter is selected by choosing among a list of values displayed in a pull-down list. This parameter has different ranges for token-ring and for Ethernet. The token-ring default is 4399 with a range of 516-17749; the Ethernet default is 1500 with a range of 64-1500.

 For both 8281s we leave this parameter at default, **1500** for the Ethernet and **4399** for the token-ring 8281.

 In the lower section of the panel are the following two groups of configuration parameters:

 Note!

 No port can be configured to handle larger frame sizes than the maximum value that is specified in this parameter. This parameter sets the limit of the frame size for any single port on the IBM 8281. Frames larger than the maximum transmission unit (MTU) size will be discarded.
1. Bridge configuration
 • Ethernet configuration:
 – Spanning tree
 – Transparent bridging
 – Permanent static database
 – ATM physical port
 • Token-ring configuration:
 – Spanning tree
 – Source routing
 – ATM physical port

2. SNMP configuration
 • Description
 • Communities
 • Trap management
 • Internet protocol

Default values may be used for these parameters, unless a specific circumstance exists in your network that requires one or more of them to be changed. We also used the default values for both 8281s in our configuration.

4.4.1.3 ATM Physical Port Parameters - Token-Ring and Ethernet:
The ATM Physical Port button on the Bridge-wide Configuration panel allows you to display the Bridge-wide ATM Configuration panel, as shown in Figure. The panel allows you to specify the following parameters:

- ILMI Virtual Path Identifier (VPI)
The default is 0.
- ILMI Virtual Channel Identifier (VCI)
The default is 16.
We connect the 8281 to an 8260, so we leave these parameters at their defaults.

- **ATM address terminal portion**

 This parameter allows you to specify the Endsystem Identifier (ESID) portion of your IBM 8281’s ATM address:

 - **Universal**

 If the universal ATM address terminal portion is specified for this parameter, the IBM 8281 derives the terminal portion of its ATM address from its own universally administered base MAC address. This address has the form X’XX-XX-XX-XX-XX-X0’, in which the Xs represent any hexadecimal numbers. It is in canonical format, with the least significant bit (LSB) of each byte first.

 - **Local**

 If the local ATM address terminal portion is specified for this parameter, the IBM 8281 derives the terminal portion of its ATM address from the locally administered MAC address, that you must provide.

 The 13-byte ATM network prefix is always provided to UNI-attached stations as a result of the ILMI address registration process. Note that the IBM 8281 will always use 0 as the value for the selector byte.

- **Generic Flow Control**

 This parameter can have a value of Off or On. If this parameter is On, the IBM 8281 will use the generic flow control (GFC) bits in the ATM header for flow control. These are the first 4 bits in the ATM cell header. In this case, the ATM switch that the IBM 8281 is attached to must support generic flow control.

- **Operation and Maintenance Flow 5**

 This parameter can have a value of Off or On. If this parameter is On, the IBM 8281 will use the Operation and Maintenance/Flow 5 for flow control. Depending on the switch to which the IBM 8281 is attached, both generic flow control and Operation and Maintenance/Flow 5 may be used.

Default values may be used for these parameters, unless a specific circumstance exists in your network that requires one or more of them to be changed. We used the default values for both 8281s in our configuration.

Note!

The ILMI VPI and the ILMI VCI should be left at their default values unless you have a specific need to change them. ILMI VP/VC values of 0/16 are the only VP/VC ILMI values that work with the IBM 8260 ATM control point and switch. Do not change the default values for these parameters, if you are connected to an IBM 8260.

SNMP Parameters - Token-Ring and Ethernet:

These panels allow the specification of the following SNMP parameters:

- **SNMP Description Parameters.**

 This panel allows you to specify the following parameters:

 - Bridge contact
Bridge location

SNMP Communities Parameters

The SNMP community configuration parameters establish the community names for the hosts that can access the SNMP agent in the IBM 8281.

The following four level of functions are identified in the SNMP Community View panel:

1. Monitor view

 SNMP managers with this view can read and view the MIB variables that represent the values of running and stored parameters.

2. Run-time control view

 SNMP managers with this view can both read and change certain running parameters and can read the stored parameters.

3. Configuration view

 SNMP managers with this view can read and modify the configuration parameters such as the community name.

4. Security views

 SNMP managers that are allowed read and write access to all the MIB objects supported by the IBM 8281. They can also change the values of all the other views.

These community names and IP addresses act as passwords to allow you to change the values of the other community names and IP addresses.

Each of the view panels allows you to identify the authorized SNMP managers via the following parameters:

- Community name

 A community name acts as a security password that lets the agent know that it should accept the request from the manager.

- IP address

 This is the IP address of the host that can use this community name to access the SNMP agent in the IBM 8281.

- IP address mask

 This is the IP subnetwork mask of the host that can use this community name to access the SNMP agent in the IBM 8281.

We configured the Community Name as **public** and for the IP address the addresses of our Network Management Station, **192.168.21.12**.

Trap Management Parameters

If an exception event occurs in the IBM 8281, such as when a link fails, the SNMP agent in the IBM 8281 sends an immediate, unsolicited notification of the occurrence to a management station in the form of an SNMP trap.

For more information about these traps, please refer to *IBM ATM LAN Bridge, Planning and Software User's Guide*, GA27-4070.

Internet Protocol (IP) Parameters

This group of parameters allows the IBM 8281 to use IP to communicate with the SNMP manager. When you click on the Internet Protocol (IP) button in the
Bridge-wide Configuration panel, the panel shown in :figref refid=fig6f42g. will be displayed.

Figure 94. The Internal Protocol Configuration Panel

This panel allows you to define the following parameters:

• Bridge IP address
 This is the unique IP address of the SNMP agent in the IBM 8281, here 192.168.24.81 for the Ethernet 8281.

• Bridge network mask
 This is the subnet mask for the IBM 8281, here 255.255.255.0 for the bridge.

• Bridge default gateway
 This is the IP address of the default gateway used by the IBM 8281, here 192.168.24.10 for the Ethernet 8281.

 This is the IP address of the MSS's LEC for the appropriate ELAN. The ELAN for the token-ring 8281 has not yet been created, but we went ahead and entered the value.

 Note!

 During the startup procedure, the IP address of the IBM 8281 will be associated with the MAC address of one of the 8281's ports. This is the MAC address of the first available port.

Port Configuration Parameters (Token-Ring and Ethernet)

When the bridge-wide configuration is finished and saved, the menu window that shows icons of the ports reappears. By clicking on the icon for the port or by clicking on port and configuration from the menu bar, you bring up the port configuration panel as shown in :figref refid=fig6f42h.
The Ethernet Port Configuration Panel

This panel allows you to specify the following parameters for both token-ring and Ethernet:

- **Port name**

 The identifying name of the port, expressed as 0 to 32 alphanumeric characters.

- **MAC address to use**

 This parameter allows you to choose either Universal or Local.

 If you choose local, you must provide the value of the MAC address. If you choose Universal, the universally administrated MAC address that is assigned to this port at the factory will be used.

- **Spanning tree initial port state**

 Choices are Enabled and Disabled. If you choose Disabled, the port does not participate in the spanning tree.

Port Parameters for Ethernet

- **Maximum frame size**

 This parameter specifies the size in bytes of the largest frame that is permitted to cross this port. This value cannot be larger than the maximum frame size configured at the bridge level. Note that the value of this parameter is different for Ethernet than for token-ring. The Ethernet default is 1500 and the range is 64-1500.

- **Physical connector type**

 This parameter allows you to choose which connector type (RJ-45 or AUI) is used for port 2 and port 4. Note that for ports 1 and 3, the only allowed type is RJ-45.

We left all parameters at their default values, so every port will use the RJ-45 connector with spanning-tree enabled and run half-duplex.

Port Parameters for Token-Ring

The Token-Ring Port Configuration panel as shown in :figref refid=fig6f42i., allows you to configure the following parameters.
Figure 96. The Token-Ring Port Configuration Panel

- **MAC address format**
 This parameter informs the IBM 8281 whether the MAC address provided is in
 canonical or non-canonical format. In non-canonical format, the most
 significant bit is first within each byte. This format is used for token-ring
 networks. In canonical format, the least significant bit is first within each byte.
 This format is used for Ethernet.

- **Early token release**
 This parameter tells the IBM 8281 whether or not to use early token release on
 the token-ring connected to this port.

- **Active monitor participant**
 This parameter determines whether the 8281 will participate in active monitor
 contention on the token-ring connected to this port.

- **Ring number**
 The parameter is used to identify the segment number of the token-ring LAN
 attached to this port. When you configure a ring number, be sure that all the
 other bridges on the network are configured with the same ring number for this
 ring. If two or more bridges are configured with different ring numbers for the
 same ring, traffic will not be forwarded as expected. The IBM 8281 does not
 inform you if you have made this configuration error.

- **Maximum frame size**
 This parameter specifies the size in bytes of the largest frame that is permitted
 to cross this port. This value cannot be larger than the maximum frame size
 configured at the bridge level, and the range is 516-17749.

4.4.1.4 ATM Virtual Port Configuration - Token-Ring and Ethernet
Double-clicking on the ATM port icon will show :figref refid=fig6f42j..
Figure 97. The ATM Virtual Ethernet Port Configuration Panel

This panel allows you to specify the following parameters for both token-ring and Ethernet:

- **Port name**
 The identifying name of the port, expressed as 0 to 32 alphanumeric characters.

- **MAC address to use**
 This parameter allows you to choose either Universal and Local. If you choose local, you must provide the value of the MAC address. If you choose Universal, the universally administrated MAC address that is assigned to this port at the factory will be used.

- **Spanning tree initial port state**
 Choices are Enabled and Disabled. If you choose Disabled, the port does not participate in the spanning tree.

4.4.1.5 **ATM Virtual Port Parameters for Ethernet**

- **Maximum frame size**
 This parameter specifies the size in bytes of the largest frame that is permitted to cross this port. This value cannot be larger than the maximum frame size configured at the bridge level. Note that the value of this parameter is different for Ethernet than for token-ring. The Ethernet default is 1500 and the range is 64-1500.

4.4.1.6 **ATM Port Parameters for Token-Ring**

The ATM virtual token-ring port configuration panel as shown in :figref refid=fig61f42m., allows you to configure the following parameters.
Figure 98. The ATM Virtual Token-Ring Port Configuration Panel

- **MAC address format**
 This parameter informs the IBM 8281 whether the MAC address provided is in canonical or non-canonical format. In non-canonical format, the most significant bit is first within each byte. This format is used for token-ring networks. In canonical format, the least significant bit is first within each byte. This format is used for Ethernet.

- **Ring number**
 The parameter is used to identify the segment number of the token-ring LAN attached to this port. When you configure a ring number, be sure that all the other bridges on the network are configured with the same ring number for this ring. If two or more bridges are configured with different ring numbers for the same ring, traffic will not be forwarded as expected. The IBM 8281 does not inform you if you have made this configuration error.

- **Maximum frame size**
 This parameter specifies the size in bytes of the largest frame that is permitted to cross this port. This value cannot be larger than the maximum frame size configured at the bridge level, and the range is 516-17749.

Additional Choices for Token-Ring and Ethernet

On both token-ring and Ethernet panels is a link to the Bridge-wide ATM Configuration panel, as well as configuration panels for the Virtual Token-Ring/Ethernet Port Spanning Tree and Port Source-Route/Transparent bridging filter configuration (source route filters/transparent bridging filters).

By clicking on the **LAN Emulation...** button, the ATM Port LAN Emulation panel as shown in :figref refid=fig6f42k. shows up.
These parameters are required to enable the ATM bridge to communicate with the LAN Emulation server.

- Complete server address

 This value consists of a 13-byte local network prefix and a 7-byte terminal portion of the 20-byte ATM network address of the LAN Emulation server. Its value is determined by the values entered in the, Use same network prefix as bridge or specify another? and the Terminal portion parameters that follow.

 - Use same network prefix as bridge or specify another?

 The choices are Bridge and Specify, and the default value is Bridge.

 If the ATM LAN Emulation server and the ATM bridge are on the same ATM switch, you should choose Bridge. In this case, the ATM switch tells the ATM bridge what the network prefix is, using the Interim Local Management Interface (ILMI) address register. The ATM bridge will use that network prefix to address the LAN Emulation server.

 If you choose Specify, you must provide the complete ATM address of the LAN Emulation server. In this parameter, you must enter a 13-byte hexadecimal value for the network prefix of the LES.

 - Terminal portion

 This is the 7-byte ESI of the LAN Emulation server.

For both bridges, the Specify setting was used, even though they are connected to the same switch that each LES is connected to. The advantage of specifying the ATM address of the LES is realized if and when you move the 8281 or MSS to another switch, in which case there is no need to re-configure the 8281. So, the network prefix will be: \[39:99:99:99:99:99:99:00:00:99:99:01:01\].

The Terminal portion, for example, the ESI of the LES, will be different according to the ELAN the bridges will be in. The ESI of the 8281eth2 ELAN's LES is \[40:00:82:10:00:00:06\]. The ELAN, and so the LES for the token-ring 8281, has not been created yet, so the configuration of the ESI for this bridge will be done later.

By clicking on the **LAN Emulation Settings**... button, the LAN Emulation panel in \[:\text{:figref refid=fig6f42l.}\] is displayed.
Figure 100. The LAN Emulation Settings Panel

This dialog defines many of the LAN emulation settings that apply to the LAN Emulation Client (LEC).

Default values may also be used for these parameters, unless a specific circumstance exists in your network that requires one or more of them to be changed. We also used the default values in our configuration.

4.5 Adding an IBM 8271

This section will show how to add an IBM 8271 Model 108 to the ATM backbone via an ATM uplink UFC. First we will create an Ethernet ELAN, called 8271eth3, on the MSS. We will also create a LEC on the MSS with no IP routing enabled and connect it via transparent-bridging to an additional LEC in the 8274eth1 ELAN. Then we will connect the IBM 8271 to an IBM 8260 155 Mbps ATM port and configure one LEC on this ATM uplink to join the 8271eth3 ELAN. To provide IP connectivity to the other IP subnets, the 8271eth3 ELAN will be in the same IP subnet as the 8274eth1 ELAN, 192.168.25.0. :figref refid=figphys7. shows the physical layout of our network with the addition of the 8271.

Figure 101. Physical View of 8271 Connection

To provide connectivity of the IBM 8271 to the ATM backbone, we will create the 8271eth3 ELAN on the MSS. We also configure a LEC on the MSS to enable
bridging and no IP routing to this ELAN. The figure shows how the 8271 LEC will connect logically to the newly configured ELAN and its relation to the rest of the network.

Figure 102. Logical View of the 8271 Connection

4.5.0.1 Creating the 8271eth3 ELAN

We configured the ELAN and LES/BUS function by selecting ELANs under Devices...LAN Emulation in the Navigation Window of the MSS Configuration Program and the Emulated LANs Configuration screen displays.

Figure 103. Configuring ELAN Name

To create the ELAN select ELAN Details and General. Ensure the Enable ELAN button is marked. In the ELAN Name field, enter the name of the ELAN you want to create, here 8271eth3. Select Ethernet for the ELAN Type. The Max Frame Size will automatically change to the default value for Ethernet, 1516.

To create the LES/BUS functionality select Local LES/BUS and General-1.
Figure 104. Configuring LES/BUS

On this screen, make sure Create Local LES/BUS and Enable LES/BUS Instance are marked. Select the LES/BUS ATM Device on which the LES/BUS instance should be created. If you have two ATM devices installed you can choose between 0 and 1. Here we have only one ATM device installed, so we select 0.

In the LES/BUS End System Identifier and Selector section we configured the LES/BUS’s ESI and Selector.

We used the locally administered ESI 400082100000.

To configure the LES/BUS Selector (hex), click on Generate, to select the next available Selector for this address, here 08.

All other parameters can be left at their default values. Click on Add to save this ELAN entry.

Note!

If you want to enable the BCM for this ELAN, you must first set the Fast BUS mode operation on the Local LES/BUS and General-2 menu to System.

4.5.0.2 Creating a LEC for the 8271eth3 ELAN
To enable bridging for an ELAN you must first create a LEC for this ELAN and then configure and enable bridging to and from it. To create a LEC select LEC interfaces under Devices...LAN Emulation in the Navigation Window of the MSS Configuration Program and the LEC Interfaces screen displays.
Figure 105. Configuring the LEC

By selecting **General** you can configure the following parameters:

- **Architecture**
 - Here **ATM Forum** was selected.

- **ATM Device**
 - Here we can only select 0.

- **LEC End System Identifier and Selector**
 - **LEC ESI**
 - **400082100000** was selected as the locally administered address.
 - **ATM LEC Address Selector (hex)**
 - Created by clicking on **Generate** to select the next available Selector for this address, here 09.

- **LEC Local Unicast MAC Address**
 - Used as a MAC address in the ELAN. If you want to enable bridging between ELANs this has to be unique. **400082100005** was defined.

To assign the LEC to the correct ELAN, select **ELAN**. The following screen displays.

***** ch65b1.xwd *****
On this screen you select the **ELAN name** that the LEC should join, either by typing the name in or by selecting the correct ELAN from the pull-down menu.

Note!

When you assign the first LEC to this ELAN you have to click on **Create ELAN Assignment Policies** and select the ELAN name to create the assignment policy.

If the ELAN was created on this MSS the ELAN Type and Max Frame Size parameters automatically adjust to the correct values for this ELAN. If not, you have to select the correct parameters for this specific ELAN.

In 4.1, “Configuring LECS Support” on page 99 we described four ways for a LEC to find its LES. For this LEC we chose to request the address from a LECS by using the well known address. To configure this, select Servers and the following screen displays.

Mark the **LECS AutoConfiguration** button.

All other parameters can be left at default values. Click on **Add** to save this LEC entry.

Now we have created an ELAN with LES/BUS and a LEC that will join this ELAN.

4.5.0.3 Configuring Transparent Bridging

To configure and enable transparent-bridging for this ELAN we first create a bridging LEC in the 8274eth1, enable and configure transparent bridging for both LECs, then enable bridging and configure the global parameters for transparent-bridging on the MSS.

Note!

You have to configure an additional LEC in the 8274eth1 ELAN; otherwise, IP will not be bridged, but routed. And the 8271eth3 ELAN has no router arm, so there will be no IP connectivity between these ELANS.
The LEC we are going to create for the 8274eth1 ELAN must not have an IP address; otherwise, IP will also be routed instead of bridged. We created this LEC as shown in 4.3.1.2, “Creating a LEC for the 8274eth1 ELAN” on page 114, but didn’t configure any IP address for this LEC. To configure bridging for each of the two LECs first select **Interfaces** under **Bridging** in the Navigation Window of the MSS Configuration Program.

Figure 108. Enabling and Configuring Bridging for a LEC

Here we enable bridging for both LECs by clicking the **Enable** button for each LEC. Also click on **Configure** next to one LEC enabled for bridging and select **General**. Here you can select what kind of bridging you want to enable:

- **TB**: Transparent Bridging
- **SRB**: Source-Route Bridging
- **SRT**: Source-Route Transparent Bridging
- **SR-TB**: Source-Route Translational Bridging
- **No Bridging**

You can choose between the different kinds of bridging the LEC interface supports. Here it is only, TB, and No Bridging, so we select **TB**. Do this for the 8271eth3 LEC and the 8274eth1 bridging LEC.

After this we have to make sure bridging is enabled and the Filtering database has the correct size. You do this by selecting **General** under **Bridging** in the Navigation Window of the MSS Configuration Program.
4.5.1 Configuring the IBM 8271

First we configured the IBM 8271’s IP and SNMP parameters. The IP address is 192.168.25.5, and the default gateway will be 192.168.25.10. The trap receivers are the management stations. The rest of the configuration is left at default values.

To install the ATM uplink UFC, the microcode-level of the IBM 8271 must be at least 3.1. We were at microcode-level 3.5.2. After installing, we connected the ATM uplink to a 155 Mbps port on the 8260, which is configured and enabled as a UNI port.

To configure the ATM uplink and LEC from the console screen choose Non-Ethernet Ports Menu... from the Main Menu.
The following screen displays and we choose the port where the ATM Fiber UFC is installed, here port 1-1. This port number might differ from your configuration.

```
Make a selection
1-1___________ATM_Fiber
```

Use cursor key to move around. Press <ENTER> to choose item.
Press <ESC> to cancel and default to previous screen

The following screen shows the ATM Port Menu. Here you can choose between configuring the ATM physical port, Configure ATM Port Parameters..., or the LEC, Configure LAN Emulation Client (LEC)...
You can leave the ATM port parameters at their default values and configure the IBM 8271's LEC, by choosing the appropriate Menu entry.

The Configure LAN Emulation Client (LEC) menu shows up, as follows.

```
ATM Port Menu                           Slot 1
 Port is UP

ATM Port Configuration
 Configure ATM Port Parameters...

Configure LAN Emulation Client (LEC)...

ATM Port Status/Statistics
 ATM Product Information...

ATM Port Status/Statistics...

LAN Emulation Client (LEC) Status/Statistics...

Return To Previous Menu

Return to the previous menu.
Use cursor keys to choose item. Press <ENTER> to confirm choice.
Press <CTRL><N> to return to Main Menu.
```

Select **Quick Config** to configure a LEC for the IBM 8271. Enter a LEC Index (between 101 and 132): appears on the bottom of the screen. Enter the first available LEC index; for our example it’s 101.

```
ATM Port Menu                           Slot 1
 Port is UP

ATM Port Configuration
 Configure ATM Port Parameters...

Configure LAN Emulation Client (LEC)...

ATM Port Status/Statistics
 ATM Product Information...

ATM Port Status/Statistics...

LAN Emulation Client (LEC) Status/Statistics...

Return To Previous Menu

Return to the previous menu.
Use cursor keys to choose item. Press <ENTER> to confirm choice.
Press <CTRL><N> to return to Main Menu.

Select **Quick Config** to configure a LEC for the IBM 8271. Enter a LEC Index (between 101 and 132): appears on the bottom of the screen. Enter the first available LEC index; for our example it’s 101.
```
On the screen that appears you define all the values needed to enable the LEC and allow it to join an ELAN.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name</td>
<td>default</td>
</tr>
<tr>
<td>ELAN Name</td>
<td>8271eth3</td>
</tr>
<tr>
<td>LES Address</td>
<td>Get from LECS (Automatic)</td>
</tr>
<tr>
<td>ESI</td>
<td>400082710000</td>
</tr>
</tbody>
</table>

For Quick Config, specify the Domain Name that the LEC is assigned to. Optionally, configure the other parameters as necessary for your LECS/LES/BUS implementation.

Save and Return Cancel and Return

Assign the LEC to a domain. Select this to choose a domain from a list. Use cursor keys to choose item. Press <ENTER> to confirm choice. Press <CTRL><N> to return to Main Menu.

Note:

1 Domain Name - The virtual switch for which the LEC is defined, here default.

2 ELAN Name - The name of the ELAN the LEC will join, here 8271eth3.

3 LES Address - Define either the LES's ATM address, or the LEC will obtain the LES address from a LECS; we define Get from LECS (Automatic).

4 ESI - The End System Identifier of the LEC, either burned-in or locally-administered. We define 400082710000 (locally administered).

After configuring these values, choose Save and Return to save them.

Back on the Configure LAN Emulation Client (LEC) menu you must enable the LEC you configured, by choosing Enable and typing the LEC's Index.
If the status of the LEC is up, then the LEC has joined its LE and is operational.

Note!

If the LEC will not join its LES and the configuration is correct, reset the LEC in the Configure LAN Emulation Client (LEC) menu. If the status of the LEC is still down, try to reset the port in the Configure ATM Port Parameters menu.

4.6 Adding an IBM 8272 to the Backbone

Next added to the ATM backbone will be an IBM 8272 Model 108 via an ATM Uplink UFC. First we will create a token-ring ELAN, called 8272tr3, on the MSS. We will also create a LEC on the MSS with IP routing enabled and connect it via source-route bridging to the LEC in the 8285tr4 ELAN. The IP address of the LEC will be 192.168.27.10 and the segment numbers 721, for the 8272tr3 ELAN, and 851, for the 8285tr4 ELAN. The IP address assigned to the 8272 LEC will be 192.168.27.5.

We will connect the IBM 8272 to an IBM 8260 155 Mbps ATM port and configure one LEC on this ATM uplink to join the 8272tr3 ELAN. This LEC will also be in the 192.168.27.0 IP subnet.
Figure 110. Physical View of 8272 Connection

Figure refid=figch3logj. shows the logical connectivity of the IBM 8272 to the ATM backbone, we will create the 8272tr3 ELAN, on the MSS. We also configure a LAN Emulation Client (LEC) on the MSS to enable IP routing between ELANs and LISs.

Figure 111. Logical View of the 8272 Connection

The base configuration has already been shown in MSS Base Configuration on page ---, so we will just describe the ELAN and LEC configuration.

4.6.0.1 Creating the 8272tr3 ELAN
We configured the ELAN and LES/BUS function by selecting ELANs under Devices...LAN Emulation in the Navigation Window of the MSS Configuration Program and the Emulated LANs Configuration screen displays.
Figure 112. Configuring ELAN Name

To create the ELAN select **ELAN Details** and **General**. Make sure the Enable ELAN button is clicked. In the ELAN Name field fill in the name of the ELAN you want to create, here **8272tr3**. Select the **ELAN Type** either **Token-Ring** or **Ethernet**. Here we selected **Token-Ring**. The Max Frame Size will automatically change to the default value for token-ring, 4544.

To create the LES/BUS functionality select **Local LES/BUS** and **General-1**.

Figure 113. Configuring LES/BUS

Mark the Create Local LES/BUS and Enable LES/BUS instances.

Select **0** for the LES/BUS ATM Device.

Enter the locally administered address of **400082100000**.

To configure the LES/BUS Selector (hex), click on **Generate**, to select the next available Selector for this address, here **0B**.

All other parameters can be left at their default values. Click on **Add** to save this ELAN entry.
4.6.0.2 Creating a LEC for the 8272tr3 ELAN
To enable IP routing for an ELAN you must first create a LEC for this ELAN and then simply assign an IP address to it. To create a LEC select LEC interfaces under Devices...LAN Emulation in the Navigation Window of the MSS Configuration Program and the LEC Interfaces screen displays.

By selecting General you can configure the following parameters:
- Architecture
 Selected ATM Forum.
- ATM Device
 Select 0.
- LEC End System Identifier and Selector
 - LEC ESI
 Enter the locally administered address of 400082100000.
 - ATM LEC Address Selector (hex)
 Created by clicking on Generate to select the next available Selector for this address, here 0C.
- LEC Local Unicast MAC Address Used as a MAC address in the ELAN, if you want to enable bridging between ELANs this has to be unique. So we define 400082100007.

To assign the LEC to the correct ELAN, select ELAN. The following screen will display.

Note!
If you want to enable the BCM for this ELAN, you must first set the Fast BUS mode operation on the Local LES/BUS and General-2 menu to System.

Figure 114. Configuring the LEC

***** ch66b1.xwd *****
On this screen, select the **ELAN name** that the LEC should join, either by typing the name in or by selecting the correct ELAN from the pull-down menu, here 8272tr3 was entered with an ELAN type of Token Ring.

In 4.1, “Configuring LECS Support” on page 99 we described four ways for a LEC to find its LES. For this LEC, we chose to request the address from a LECS by using the well-known address. To configure this, select Servers and the following screen appears:

Now we have created an ELAN with LES/BUS and a LEC that will join this ELAN. To enable IP routing for this ELAN, assign an IP address to this LEC. We do this by selecting **Interfaces** under **Protocols...IP** in the Navigation Window of the MSS Configuration Program and the IP interfaces screen displays.
Figure 117. Assigning IP Address to LEC

On this screen click on **IP Addresses** next to the LEC interface we just created and type in an IP address and a subnet mask for the LEC interface. By clicking on **Add** the IP address is assigned.

4.6.0.3 Configuring Source-Route Bridging

To configure and enable source-route bridging between ELANs we enable and configure source-route bridging for both LECs, then enable bridging and configure the global parameters for source-route bridging on the MSS.

Note!

All IP traffic from and to this ELAN will be routed. Only non-IP traffic will be bridged.

To configure bridging for each of the two LECs first select **Interfaces** under **Bridging** in the Navigation Window of the MSS Configuration Program.

Figure 118. Enabling Bridging for a LEC

Here we enable bridging for both LECs by clicking the **Enable** button for each LEC. Then click on **Configure** next to one LEC enabled for bridging and select **General**. Here you can select what kind of bridging you want to enable:

- TB: Transparent Bridging
• SRB: Source-Route Bridging
• SRT: Source-Route Transparent Bridging
• SR-TB: Source-Route Translation Bridging
• No Bridging

You can choose between the different kinds of bridging the LEC interface supports. Here we select SRB. Do this for the 8272tr3 LEC and the 8285tr4 LEC.

Next you must also assign a segment number for this ELAN; we assigned 723 for the 8272tr3 ELAN and 854 for the 8285tr4 ELAN.

After this you have to make sure bridging is enabled and the parameters for source-route bridging are defined. This is done by selecting General under Bridging in the Navigation Window of the MSS Configuration Program.

Select General and make sure Enable Bridging is marked.

Select SRB to configure source-route bridging.

Figure 119. Configuring Source-Route Bridging

Here you can configure:

• Bridge number
 Type in the number of the bridge, here 1 (default).
• Maximum ARE hop count
 Gives the maximum hop count for All Route Explorer frames, here 14 (default).
• Maximum STE hop count
 Gives the maximum hop count for Spanning Tree explorer frames, here 14 (default).
• Internal virtual segment
 Gives the segment number of the internal virtual segment. Only used if you have more than one port configured, here FFF.
• LF bit interpretation
 The largest frame bit interpretation can be set to Extended or Basic. This sets the number of bits in the Routing Information Field (RIF), which determine...
the largest frame size that can be sent over the bridge, here Extended (default).
• Enable FA-GA
 Enables the mapping between functional and group addresses, here enabled (default).

The configuration is done. Upload the configuration file and reload the MSS.

4.6.1 Configuring the IBM 8272
First we configured the IBM 8272’s IP and SNMP parameters. The IP address is 192.168.27.2, and the default gateway will be 192.168.25.10. The trap receivers are the management stations. The rest of the configuration is left at default values.

To install the ATM uplink UFC the microcode level of the IBM 8272 must be at least 3.1. We installed 3.11. After installing we connected the ATM uplink to a 155 Mbps port on the 8260, which is configured and enabled as a UNI port.

To configure the ATM uplink and LEC choose Non-Token-Ring Ports Menu... from the Main Menu.

The following screen displays and you need to select the port where the ATM Fiber UFC is installed. You do this by choosing Select UFC and then entering the port number of the ATM UFC, here 1-1. This port number might differ from your configuration.

The following screen shows the ATM Port Menu. Here you can choose between configuring the ATM physical port, Configure ATM Port Parameters..., or the LEC, Configure LAN Emulation Client (LEC)....
You can leave the ATM port parameters at their default values and configure the IBM 8272's LEC, by choosing the appropriate menu entry.

The Configure LAN Emulation Client (LEC) menu shows up, as follows.

Select Quick Config to configure a LEC for the IBM 8272. Enter a LEC Index (between 101 and 132): appears at the bottom of the screen. Enter the first available LEC index; for our example it's 101.
On the screen that appears you define all the values needed to enable the LEC to join an ELAN.

Quick Config LAN Emulation Client (LEC)

Domain Name	default 1
ELAN Name	8272tr3 2
LES Address	Get from LECS (Automatic) 3
ESI	400082720000 (Locally administered) 4

For Quick Config, specify the Domain Name that the LEC is assigned to. Optionally, configure the other parameters as necessary for your LECS/LES/BUS implementation.

Note:

1. **Domain Name** - The virtual switch for which the LEC is defined, here default.
2. **ELAN Name** - The name of the ELAN the LEC will join, here 8272tr3.
3. **LES Address** - You can define either the LES's ATM address or the LEC will obtain the LES address from a LECS; we define Get from LECS (Automatic).
4. **ESI** - The End-System-Identifier of the LEC is either burned-in or locally-administered; we defined 400082720000 (locally administered).

After configuring these values choose **Save and Return** to save them.

Back on the **Configure LAN Emulation Client (LEC)** menu you must enable the LEC you configured, by choosing **Enable** and typing the LEC's index.
If the status of the LEC is up, the LEC has joined its LES and is operational.

Note!

If the LEC will not join its LES and the configuration is correct, reset the LEC in the Configure LAN Emulation Client (LEC) menu. If the status of the LEC is still down try to reset the port in the Configure ATM Port Parameters menu.

4.7 Adding an IBM 2210/2216 to the Backbone

This section briefly describes the configuration steps to connect the 2210 to the ATM backbone.

:figref refid=fig21fnav shows the Navigation Window of the 2216 configuration program. To configure ATM, start by selecting **Slots**. This allows you to add the adapters as they are physically installed in the 2216. The ATM adapter must be added in the configuration program before the interface parameters or LE clients can be configured.

Note: This step is not necessary for the 2210.
Next, select **Interfaces** from the Navigation Window. This will allow you to configure any of the interfaces already added under the **Slots** section.

Select the interface that you want to configure and you will see a screen like the one shown in :figref refid=fig21finte..

:figref refid=fig21finte.

:figref refid=fig21finte.

Figure 120. Navigation Window of the Configuration Program

Next, select **Interfaces** from the Navigation Window. This will allow you to configure any of the interfaces already added under the **Slots** section.

Select the interface that you want to configure and you will see a screen like the one shown in :figref refid=fig21finte..

:figref refid=fig21finte.

:figref refid=fig21finte.

Figure 121. Configuring the ATM Interface

:figref refid=fig21finte. reveals the three submenus available after clicking on **ESI**, **Signalling** and **VCC Tracing**, respectively.

:figref refid=fig21finte. reveals the three submenus available after clicking on **ESI**, **Signalling** and **VCC Tracing**, respectively.
4.7.1 Configuring LE Clients

To configure an LE client you need to first select **LEC Interfaces** in the Navigation Window, as shown in :figref refid=fig21flec..

Figure 122. ATM Interface Configuration

Figure 123. Define LEC Interfaces

The configuration steps discussed in this section need to be repeated for each LE client that you want to define.

To define an LE client, the following steps need to be performed:

1. Define LE client addresses.

 After selecting **LEC Interfaces** from the Navigation Window, :figref refid=fig21flec. will appear.
During LE client definition, indicate the ATM interface it is associated with, the ESI and SEL used to construct the LE client's ATM address, and the MAC address associated with the LE client. To simplify problem determination, a locally administered ESI is recommended. Use a SEL that is generated by the configurator. Make sure the MAC address is unique.

Notes:

LE clients can be ATM Forum or IBM compliant. The 2210 and 2216 code provides support for ATM Forum-compliant LE services only.

When the LE client is added, a logical interface number will be generated. This interface number (I/F) is required when configuring higher layer functions such as IP or bridging for this LEC.

To change the MAC address from the default burned-in address, you need to type over the text in the box.

1. Define the ELAN name and type.

After selecting ELAN in Figure 124, :figref refid=figle29. will appear.

It is mandatory that you specify the ELAN type (token-ring or Ethernet) and maximum frame size. The ELAN name is optional. We advise that you define the same name on the LE client as on the LECS and LES.
2. Define the LE servers.

 LE clients either obtain their LES address from the LECS, or use a hard-coded LES ATM address. The LECS can be hard-coded or, using ILMI, learned from the adjacent ATM switch.

3. Define the higher layer functions.

 In addition to the basic LE client configuration steps listed earlier, configuration of higher layer (bridging or routing) functions is required before the LE client can be used.

 This completes the configuration of the 2210 and 2216 LAN emulation components.

4.8 Classical IP

 The following sections explain in detail how to define Classical IP for the 2210 and 2216 devices.

4.8.1 LIS Client Using Dynamic SVCs

 In this section, we used the 2216 configuration program for the screen captures. The 2210 configuration program has very similar windows and the same procedures used here can be directly applied to the 2210. The only major difference is that the 2216 can have two ATM interfaces configured, whereas the 2210 can only have one.

 If you are configuring the 2216, you initially need to configure slots to add adapters as they are physically installed. You then need to configure the ATM interface. If you are configuring the 2210, you need to initially configure the ATM interface as for the 2216.

 To start the Classical IP configuration select Interfaces in the Navigation Window as shown in :figref refid=figcp00.
As a result of selecting Interfaces, :figref refid=figcp01. appears. Click on IP Addresses on the interface that you want to use for this LIS client. Add a unique IP address that is consistent with the range of IP addresses associated with the LIS. Make sure that all LIS clients within the same LIS use the same subnet mask.

Once an IP address is added to an ATM interface, Classical IP definitions are required. To configure Classical IP, select Classical IP Over ATM in the Navigation Window as depicted in :figref refid=figcp02..
After clicking on Classical IP Over ATM, \ref{figcp03} will appear. The configuration of the LIS client's specific parameters can start after you have selected the proper IP address (the address defined in Figure 128).

When defining a LIS client, do not enable Client is also an ARP Server. Instead, enter the 20-byte ATM address of the ARP server.

Using default values in the remaining configurator screens completes the LIS client configuration. Two screens, however, are worth mentioning.

\ref{figcp04} shows that for a LIS client the configurator assumes that the selector is assigned at runtime. This setting is adequate, unless using predefined SVCs between two clients (see \ref{lcnarp}). In this case, you have to make sure that on at least one of the clients, a preconfigured selector is used.

\ref{figcp05} shows the maximum SDU that is used by the LIS clients. Make sure that all LIS clients within the same LIS use the same value. Also make sure that this value is less than the maximum size allowed on the ATM interface.
4.8.2 Configuring an ARP Server

ARP server and LIS client (see 4.8.1, “LIS Client Using Dynamic SVCs” on page 168) configurations are defined using the same configuration screens. For an ARP server you also have to define an IP address (+subnet mask) first and associate this address with a specific ATM interface (see Figure 127, Figure 128, and Figure 129).

:figref refid=figcp07. will appear after clicking on Configure for the IP address of the ATM interface to which you want to add the ARP server.
4.8.3 LIS Client Using PVCs

When defining a LIS client, you have the option to provide connectivity using SVCs or PVCs. The use of SVCs is more flexible and is recommended. However, in situations where your ATM switches do not support SVCs, or no ARP server is available for your LIS, PVC connections can be considered. PVCs can also be considered if UNI incompatibilities exist.
Note: PVCs can be used in conjunction with SVCs as well.

Defining a PVC to a remote LIS client requires two things:

- Definition of a LIS client
- Definition of a PVC

The LIS client definitions have been discussed in 4.8.1, “LIS Client Using Dynamic SVCs” on page 168 and are not repeated. They are required at both ends of the PVC. The LIS client definitions define the throughput characteristics of the VCCs.

The PVC definition requires similar configuration at both ends. PVC definitions are entered during the definition of the LIS client. You can define multiple PVCs per LIS client (identified by its IP address).

The parameters that can be entered become available after selecting **ARP Entries** during the configuration of Classical IP over ATM. :figref refid=figcp10. appears once you have selected **ARP Entries**.

Figure 135. PVC Definition

Make sure that the virtual path identifier (VPI) and virtual channel identifier (VCI) match the definitions on the adjacent switch (see :hdref refid=spvc.). When you enable **Specify Destination Address**, enter the IP address of the remote LIS client. We recommend that you disable this option and let the 2210 or 2216 learn the IP address of the other end dynamically. This, however, requires InATMARP support at the other end. InATMARP is supported on the 2210 and 2216.

4.8.3.1 Defining PVCs on the ATM Switch

:figref refid=figspvc. shows the set pvc command used to define a PVC between two devices, port 16.01 and port 1.01. The PVC is verified using the show pvc command.

The same VPI but different VCI numbers are used at the ends of the PVC. In this case we use one device attached to port 16.01 on an IBM 8260 and the other device attached to port 1.01 on an IBM 8285. The 8260 is hub number 1 in our network and the 8285 is hub number 3. These values may be replaced with those relevant for your configuration.
4.8.4 LIS Client Using Static SVCs

The 2216 and the 2210 provide an interesting option of being able to configure LIS clients that are using SVCs for their LIS-to-LIS client connections but do not require the presence of an ARP server. Similar to using PVCs, this approach has the advantage that no ARP server is needed. In addition, because the LIS-to-LIS client connections are established using SVCs, no ATM switch definitions are required to enable the VCCs.

Note: Static SVCs can be used in conjunction with dynamic SVCs and PVCs.

4.8.4.1 Active and Passive LIS Client

Predefined SVCs require that, for each client-to-client connection, one client's ATM address is defined on the partner client. This results in definitions that are not symmetrical; one (active) client defines the ATM address of the other end and is responsible for VCC establishment and one (passive) client awaits VCC establishment. After the connection has been established, full-duplex IP transport between both clients is possible.

Note: If the SVC has been defined at both ends, depending on timing, two VCCs can be established which are each used for traffic in one direction.
4.8.4.2 Definitions Required
Defining a static SVC to a remote LIS client requires two things:

- Definition of a LIS client
- Definition of an SVC

The LIS client definitions have been discussed in 4.8.1, “LIS Client Using Dynamic SVCs” on page 168 and are not repeated. They are required at both ends of the SVC. The LIS client definitions define the throughput characteristics of the VCCs.

The SVC definitions need to be entered at one end only. This end is referred to as the active LIS client because it is responsible for VCC establishment. Definitions are added during the definition of the LIS client. You can define multiple static SVCs per LIS client (identified by its IP address).

The parameters that can be entered become available after selecting ARP Entries during the configuration of Classical IP over ATM. :figref refid=figcp11.

Figure 138. Static SVC Definition

When Specify Destination Address has been enabled, the IP address of the remote LIS client needs to be entered. We recommend that you disable this option and let the 2210 or 2216 learn the IP address of the other end dynamically. This, however, requires InATMARP support at the other end. InATMARP is supported on the 2210 and 2216.

The Address field must match the ATM address of the remote LIS client. To make sure that the ATM address of the passive LIS client is fixed, we recommend that you specify a locally administered ESI and a preconfigured selector during its configuration. During the definition of the active LIS client you can specify the use of a runtime selector.

Using the point-to-point (PtP) concept, more complex network structures can be built. Therefore, be aware that within each LIS:

- Every LIS client requires only a single IP address and a single LIS client definition.
• For each PtP connection, at least one end must be assigned as the active client. This active client is responsible for VCC establishment and requires an ARP entry.
• Clients can be active for one PtP connection, while being passive for another.
Chapter 5. ATM Native Client Configuration Examples

This chapter describes the configuration steps required to connect the ATM native clients to an ATM network. The clients covered include:

- Windows 95/NT
- OS/2
- Novell NetWare
- AIX

5.1 Configuring Windows 95/NT Clients

For the Windows 95/NT clients we used the TURBOWAYS 25 Mbps ATM ISA adapter. After the ATM card was installed in the PC the driver was downloaded from www.raleigh.ibm.com/nes/nesatm.htm

Additional information pertaining to the TURBOWAYS adapter can be found at www.networking.ibm.com/tbo/tboprod.html

The NT workstation was connected to the 8285 as shown in Physical Network Topology on page ---.

From the NT control panel double-click on the Network icon to reveal:

![Figure 139. Configuring the ATM Network Adapter for NT](image)

The README file contained with the driver package explains step-by-step how to install the adapter. There are two drivers that can be installed, one for Classical
IP and one for LAN Emulation. The two drivers cannot be installed simultaneously.

To configure the TURBOWAYS 25 ATM adapter for Forum Compliant LAN Emulation we performed the procedure shown below. Here we connected the PC to the 8274tr4 ELAN.

- Select Properties (see :figref refid=figntatmc4.).
- Select Token Ring for the LAN type.
- Enter the ATM address of the LES on the 8285 in the field LAN Emulation Server ATM Address.

 If you are connecting to a device with LECS functionality such as the MSS then you can select Automatic Configuration Mode to use the WKA for the LES.

- Enter 400007500001 in the network address field to provide a value for the ESI address of the PC.
- Enter the ELAN name of 8285tr4.

***** ntatmc4.xwd *****

Figure 140. Additional Parameters for the ATM Driver for NT

Additional parameters can be modified by clicking on the Advanced button (see :figref refid=figntatmc3.). We left these values at their defaults.

***** ntatmc3.xwd *****

Figure 141. Advanced LAN Emulation Parameters
After clicking on **Next**, Figure 141 appears. Here you can set the UNI version to Auto Detect.

Figure 142. LAN Emulation Client Definition

The PC must be rebooted before the LAN Emulation Services can be accessed.

5.1.1 Classical IP Configuration

The Classical IP driver is installed the same way as the LAN Emulation driver. The options we selected here are shown in :figref refid=figntatmc5.

Figure 143. Classical IP Parameters

In this scenario we used the MSS as a CIP ARP server and assigned an IP address of 192.168.21.7 to the PC. By clicking on **Advanced** (see :figref refid=figntatmc6.) the UNI version can be set.
Figure 144. Advanced CIP Configuration

The PC must be rebooted before the CIP configuration will work.

5.2 Configuring the OS/2 ATM Adapter

This section explains how to configure the ATM TURBOWAYS 100 Mbps adapter for OS/2 for the following ATM functions:

- Classical IP
- Forum-Compliant LAN Emulation

Assuming that the device drivers have been installed and the communications applications (PCOMM, LAN Requester, and TCP/IP) preconfigured, the following steps will show you how to add the network adapter interface and protocol. Always follow ATM client configuration with a connectivity test.

To add an ATM adapter network interface, start MPTS by typing MPTS in an OS/2 window or double-clicking the MPTS icon on the desktop. At the main MPTS dialog box click on Configure. At the LAPS Configure panel, click LAN Adapters and Protocols then Configure. On the LAPS Configuration panel under Network Adapters scroll down and select TURBOWAYS 100 OS/2 LAN Emulation and click Add.

Figure 145. Selecting the TURBOWAYS 100 Adapter -- LAN Emulation
The adapter will then appear in the current configuration section of the LAPS Configuration panel. Next, under the Protocols section of the LAPS Configuration panel you need to select the protocol (for example, TCP/IP) and click Add for each protocol you wish to use over LANE.

After specifying the TURBOWAYS 100 Mbps configuration parameters, go the LAPS Configuration panel, select TURBOWAYS 100 OS/2 LAN Emulation adapter under the current configuration section and click Edit.

Figure 146. LAN Emulation Setup Parameters

There are a number of parameters that you can specify, and we focus on a few:

- Locally administered adapter address
- Automatic configuration mode - YES

Note

When automatic configuration mode is set to YES, you do not have to hard code the LES address. The LECS address will be obtained from ILMI or the well known address process.

- LAN type - for example, 802.3
- Emulated LAN name - enter ELAN name
- Maximum frame size - 1516 for Ethernet and 4544 for token-ring

Exit MPTS and reboot the PC.

The configuration for Classical IP is almost identical. At the LAPS Configure panel, click LAN Adapters and Protocols then Configure. On the LAPS Configuration panel under Network Adapters scroll down and select TURBOWAYS 100 OS/2 Classical IP Adapter and click Add.
5.3 Configuring the Novell Server

The following screen capture is the autoexec.ncf file from our Novell NetWare server. The server is running V4.01 of NetWare and you can see that the server has an Ethernet card, as well as, the ATM adapter defined. The file loads and binds the TURBOWAYS 155 adapter in slot four to IPX with the Ethernet frame type of 802.2 and IP with the ethernet_snap frame type. The server's name is, PCSRV320 and the IPX network number is two. The driver used is the ATMENFC.LAN, which is used to connect to an ATM Forum-compliant ELAN.
5.4 Configuring a RISC System/6000 Workstation

The TURBOWAYS 100 ATM Adapter operates at a speed of 100 Mbps full-duplex in a RISC System/6000. The adapter uses an onboard i960 processor and a specialized ATM chip set and supports up to 1024 virtual circuits. The TURBOWAYS adapter is also available for 155 Mbps connection allowing TCP/IP Network Management compatibility.

The adapters for RISC systems are listed at www.raleigh.ibm.com/tbo/tboprod.html. The examples below show the configuration panels for a RISC System/6000 workstation for the following:

- LAN Emulation client
- Classical IP client

There are currently two ATM adapters available for providing ATM connectivity to a RISC System/6000 running AIX. These are as follows:

- TURBOWAYS ATM 100/155 Mbps
- Interphase ATM 155 Mbps

Both of these adapters provide LAN Emulation and Classical IP functions.

5.4.1 TURBOWAYS 100 Mbps Adapter for LAN Emulation

The ATM adapter `atm0` was automatically detected after installing the adapter and re-booting AIX. The ATM network card configuration is shown in :figref refid=figaixltx1..

```plaintext
set Time Zone = EST5EDT
set Daylight Savings Time Offset = 1:00:00
set Start Of Daylight Savings Time = (APRIL SUNDAY FIRST 2:00:00 AM)
set End of Daylight Savings Time = (OCTOBER SUNDAY LAST 2:00:00 AM)
set Default Time Server Type = SINGLE
set Bindery Context = O=IBM
  file server name PCSRV320
  ipx internal net A76ACA43
  search add c:\atm155
  LOAD TCP/IP
  ;LOAD APPLETALK ROUTING=NO
  ;LOAD ADSP
  mount all
  ;LOAD C:\NW410\LAN\IBMEANWS SLOT=2 FRAME=802.3 NAME=ETH1
  ;BIND IPX TO ETH1 NET=2
  LOAD ATMENFC.LAN LARA=39999999999999999999 LALA=99010140008210000002 FRAME=ETHERNET_802.2 NAME=ATMIPX SLOT=4
  LOAD ATMENFC.LAN LARA=39999999999999999999 LALA=99010140008210000002 FRAME=ETHERNET_SNAP NAME=ATMIP SLOT=4
```

Figure 149. Novell NetWare AUTOEXEC.NCF File
5.4.2 LAN Emulation Configuration for the TURBOWAYS Adapter

Using the SMIT menus you can define the LAN Emulation parameters for the ATM card. (See :figref refid=figaixltx2..)

The ESI can be entered in the Local LE Client's LAN MAC address field. In this example we are connecting the ATM client to the 8272tr3 ELAN using the MSS server (ILMI).

5.4.3 CIP Configuration for the TURBOWAYS Adapter

The Classical IP parameters can be entered using the smit panel shown in :figref refid=figaixltx4.. The CIP address for the AIX device was set to 192.168.21.12 and the connection type set to **svc_c**, which means that this device is set up as a client. The AIX adapter can also be configured as a CIP server.
The ATM server address entered is the ATM address of the ARP server defined on the MSS.

5.4.4 Interphase 155 Mbps Adapter

The Interphase adapter provides a full-duplex, 155 Mbps ATM network connection for PCI broad platform compatibility for multimode fiber, single-mode fiber, and UTP copper media, and uses ATM Forum UNI 3.0/3.1 signalling. The card supports up to 2,048 user configurable virtual channel identifiers.

The driver is installed using smit and can be configured using either the smit menus or the supplied configuration tool called CellView.

5.4.5 Interphase 155 Mbps Adapter for LAN Emulation

The CellView application can be started from the AIX command line, and is located in the directory /usr/bin. The initial screen is shown in :figref refid=figaixltw1..

The configuration screen shown in :figref refid=figaixltw2. can be found by clicking on Setup.
Figure 154. LAN Emulation Configuration for AIX

The adapter allows up to 4 LECs to be defined. In this example we are connecting to the 8281tr2 ELAN, and will use the WKA to resolve the LES ATM address. The ESI address of the adapter can be entered in the MAC address field.

The CIP configuration can be located by clicking on the 1577 button. In the example shown in :figref refid=figaixltw3. the IP address of the client is set to 192.168.21.70. The ARP server IP address and ATM address where configured to point to the MSS.

5.4.6 Interphase 155 Mbps Adapter for Classical IP

Figure 155. CIP Configuration for AIX

By selecting Stats from the CellView main screen you can view the ATM traffic and SVC/PVC connection values reported by the driver. This is useful for diagnostics and connectivity issues (see :figref refid=figaixltw5.).
Figure 156. ATM Statistics for Interphase Adapter
Part 3. PNNI
Chapter 6. Migration from pre-PNNI to PNNI

6.1 PNNI Migration

We are now going to migrate a network running non-PNNI protocols to PNNI. For this we have used a network very similar to the one shown on pages xxx and xxx of chapters 3 and 4. That is an 8260 and 8285 in one cluster connected together using the SSI protocol and an 8260 in a second cluster connected to the first using NNI. The diagram below shows the network. The differences with this network are that the NNI link between the clusters is 155Mbps and the ARP server is located in the MSS. The TFTP server is token-ring attached through an 8272 switch.

6.1.1 Pre-PNNI Configuration

The following displays show the configuration of the network before the upgrade to PNNI.

6.1.1.1 8260_HUB1 Configuration in cluster 1
1. Show device command

```
8260_HUB1> show device
8260 ATM Control Point and Switch Module
Name : 8260_HUB1
Location :
For assistance contact :
Manufacture id: VIME
Part Number: 58G9605 EC Level: C38846
Boot EEPROM version: v.2.5.4
Flash EEPROM version: v.2.5.4
Flash EEPROM backup version: V.2.5.2
Last Restart : 15:48:36 Tue 11 May 1999 (Restart Count: 1)
A-CPSW
-----------------------------------------------------------------------------
ATM address: 39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00
> Subnet atm: Up
IP address: 192.168.21.60. Subnet mask: FF.FF.FF.00
> Subnet lan emulation ethernet/802.3
Not Started
Name :"
MAC Address: 000000000000
IP address: 0.0.0.0. Subnet mask: 00.00.00.00
ATM address :39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00
Config LES addr:none
Actual LES addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Config LECS addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Actual LECS addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
LEC Identifier: 0. Maximum Transmission Unit: 0
> Subnet lan emulation token ring
Not Started
Name :"
MAC Address: 000000000000
IP address: 0.0.0.0. Subnet mask: 00.00.00.00
ATM address :39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.01
Config LES addr:none
Actual LES addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Config LECS addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Actual LECS addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
LEC Identifier: 0. Maximum Transmission Unit: 0
Default Gateway : OK
---------------------------------------------------------------
IP address: 192.168.21.12
ARP Server:
---------------------------------------------------------------
ATM address: 39.99.99.99.99.99.99.00.00.99.99.02.01.40.00.82.10.00.00.0A
Device configured for SSI port capability. No LES can start.
Dynamic RAM size is 16 MB. Migration: off. Diagnostics: enabled.
Device defined as secondary.
```

Figure 158. Show device for 8260_HUB1(pre-PNNI)
2. Show port command for the NNI connection

```
8260_HUB1> show port 15.2 verbose

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.02:NNI</td>
<td>enabled</td>
<td>UP-OKAY</td>
</tr>
<tr>
<td>VPI.VCI range</td>
<td>: 15.1023 (4.10 bits)</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>: SC DUPLEX</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>: multimode fiber</td>
<td></td>
</tr>
<tr>
<td>Port speed</td>
<td>: 155000 kbps</td>
<td></td>
</tr>
<tr>
<td>Remote device is active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX status</td>
<td>: IX OK</td>
<td></td>
</tr>
<tr>
<td>Logical links indexes:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Frame format</td>
<td>: SONET STS-3c</td>
<td></td>
</tr>
<tr>
<td>Scrambling mode</td>
<td>: frame and cell</td>
<td></td>
</tr>
<tr>
<td>Clock mode</td>
<td>: internal.</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 159. Show port for the NNI connection

3. Show port command for the SSI connection to the 8285_HUB1

```
8260_HUB1> show port 17.1 verbose

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.01:SSI</td>
<td>enabled</td>
<td>UP-OKAY</td>
</tr>
<tr>
<td>SSI Bandwidth</td>
<td>: 155000 kbps</td>
<td></td>
</tr>
<tr>
<td>VPI.VCI range</td>
<td>: 15.1023 (4.10 bits)</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>: SC DUPLEX</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>: multimode fiber</td>
<td></td>
</tr>
<tr>
<td>Port speed</td>
<td>: 155000 kbps</td>
<td></td>
</tr>
<tr>
<td>Remote device is active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX status</td>
<td>: IX OK</td>
<td></td>
</tr>
<tr>
<td>Scrambling mode</td>
<td>: frame and cell</td>
<td></td>
</tr>
<tr>
<td>Clock mode</td>
<td>: internal.</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 160. Show port for the SSI connection

4. Show logical link command displays the logical connection between the clusters.
Figure 161. *Show logical_link all*

5. Connectivity exists between the switches as shown the PING command.

Figure 162. *PING command*

6.1.1.2 8285_HUB1 in cluster 1

1. Show device command
2. Show port command for the SSI connection to the 8260_HUB1

Figure 163. Show device for 8285_HUB1
Figure 164. Show port for 8285_HUB1

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSI</td>
<td>enabled</td>
</tr>
<tr>
<td>SSI Bandwidth</td>
<td>: 155000 kbps</td>
<td></td>
</tr>
<tr>
<td>VPI.VCI range</td>
<td>: 15.1023 (4.10 bits)</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>: SC DUPLEX</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>: multimode fiber</td>
<td></td>
</tr>
<tr>
<td>Port speed</td>
<td>: 155000 kbps</td>
<td></td>
</tr>
<tr>
<td>Remote device is active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX status</td>
<td>: IX OK</td>
<td></td>
</tr>
<tr>
<td>Scrambling mode</td>
<td>: frame and cell</td>
<td></td>
</tr>
<tr>
<td>Clock mode</td>
<td>: internal.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 165. PING at 8285_HUB1

6.1.1.3 8260_HUB2 in cluster 2

1. Show device command
<table>
<thead>
<tr>
<th>Device details</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device: 8260_HUB2</td>
<td>Name: 8260_HUB2</td>
</tr>
<tr>
<td>Location</td>
<td>For assistance contact:</td>
</tr>
<tr>
<td>Manufacturer ID: VIME</td>
<td>Type: ATM Control Point and Switch Module</td>
</tr>
<tr>
<td>Part Number: 10J2001</td>
<td>EC Level: E28230</td>
</tr>
<tr>
<td>Boot EEPROM version: v.2.5.4</td>
<td>Flash EEPROM version: v.2.5.4</td>
</tr>
<tr>
<td>Flash EEPROM backup version: V.2.5.2</td>
<td>Last Restart: 05:26:41 Sun 21 Feb 1999 (Restart Count: 1)</td>
</tr>
<tr>
<td>ATM address: 39.99.99.99.99.99.99.00.00.99.99.02.01.40.00.82.60.02.01.00</td>
<td>A-CPSW</td>
</tr>
<tr>
<td>> Subnet atm: Up</td>
<td>IP address: 192.168.21.61. Subnet mask: FF.FF.FF.00</td>
</tr>
<tr>
<td>> Subnet lan emulation ethernet/802.3</td>
<td>Not Started</td>
</tr>
<tr>
<td>Name:</td>
<td>Name:</td>
</tr>
<tr>
<td>MAC Address: 000000000000</td>
<td></td>
</tr>
<tr>
<td>IP address: 0.0.0.0. Subnet mask: 00.00.00.00</td>
<td>MAC Address: 000000000000</td>
</tr>
<tr>
<td>ATM address: 39.99.99.99.99.99.99.00.00.99.99.02.01.04.00.82.60.02.01.00</td>
<td>IP address: 0.0.0.0. Subnet mask: 00.00.00.00</td>
</tr>
<tr>
<td>Config LES addr: none</td>
<td>ATM address: 39.99.99.99.99.99.99.00.00.99.99.02.01.01.00.82.10.01.0A</td>
</tr>
<tr>
<td>Actual LES addr: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00</td>
<td>Config LES addr: none</td>
</tr>
<tr>
<td>BUS ATM address: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00</td>
<td>Actual LES addr: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00</td>
</tr>
<tr>
<td>Config LECS add: none</td>
<td>LEC Identifier: 0. Maximum Transmission Unit: 0</td>
</tr>
<tr>
<td>Actual LECS add: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00</td>
<td>Not Started</td>
</tr>
<tr>
<td>LEC Identifier: 0. Maximum Transmission Unit: 0</td>
<td>Name:</td>
</tr>
<tr>
<td>Default Gateway: OK</td>
<td>MAC Address: 000000000000</td>
</tr>
<tr>
<td>IP address: 192.168.21.12</td>
<td>IP address: 0.0.0.0. Subnet mask: 00.00.00.00</td>
</tr>
<tr>
<td>ARP Server:</td>
<td>ATM address: 39.99.99.99.99.99.99.00.00.99.99.02.01.40.00.82.10.00.01.0A</td>
</tr>
<tr>
<td>Device configured for SSI port capability. No LES can start.</td>
<td>Dynamic RAM size: 16 MB. Migration: off. Diagnostics: enabled.</td>
</tr>
</tbody>
</table>
| **Device defined as primary**.
2. Show port command for the NNI connection

```
8260_HUB2> show port 14.2 verbose

  Type  Mode     Status
  ---------------------------------------------------------------
  14.02: NNI enabled  UP-OKAY

  VPI.VCI range   : 15.1023 (4.10 bits)
  Connector      : SC DUPLEX
  Media          : multimode fiber
  Port speed     : 155000 kbps
  Remote device is active
  IX status      : IX OK
  Logical links indexes: 1

  Frame format    : SONET STS-3c
  Scrambling mode: frame and cell
  Clock mode     : internal.
```

Figure 167. Show port for 8260_HUB2's NNI connection

3. Show port command for the UNI connection to the 8272 switch

```
8260_HUB2> show port 14.1 verbose

  Type  Mode     Status
  ---------------------------------------------------------------
  14.01: UNI enabled  UP-OKAY

  Signalling Version  : with ILMI
  Flow Control       : Off
  VPI.VCI range      : 15.1023 (4.10 bits)
  Connector          : SC DUPLEX
  Media              : multimode fiber
  Port speed         : 155000 kbps
  Remote device is active
  IX status          : IX OK

  Frame format       : SONET STS-3c
  Scrambling mode    : frame and cell
  Clock mode         : internal
```

Figure 168. Show port for 8260_HUB2's UNI connection

4. Show logical link command
5. The show ATM_ESI command is used to see which devices have registered with the switch

```plaintext
8260_HUB2> show logical_link all
Port Vpi Acn Side Mode Sig Traf Bwidth Status Index
-------------------------------------------------------------------------------
14.02  0  01 netw enab 3.1 NRB 0 UP 1
63 entries empty.
```

Figure 169. Show logical link for 8260_HUB2

6. Connectivity with the other switches exists as shown below

```plaintext
8260_HUB2> show atm_esi all
Port ATM_ESI Type
-------------------------------------------------------------------------------
5.01 40.00.82.10.00.01 dynamic.
14.1 40.00.82.72.00.00 dynamic
```

Figure 170. Show atm_esi for 8260_HUB2

```plaintext
8260_HUB2> ping 192.168.21.60
Starting ping (hit CTRL-C to stop) ...  
Pong 192.168.21.60: 1 packets sent, 1 received
Pong 192.168.21.60: 2 packets sent, 2 received
Pong 192.168.21.60: 3 packets sent, 3 received
Pong 192.168.21.60: 4 packets sent, 4 received
```

Figure 171. PING command at 8260_HUB2
6.1.2 Migration Considerations

The Release Notes and Installation Instructions for the microcode give detailed step-by-step instructions on how to upgrade the switch microcode to PNNI. If you are not familiar with the process read these instructions thoroughly before starting. One example of the download and activation is given in this chapter for reference.

Some of the points you should be aware of are listed here.

• Check the FPGA code level on all the blades in the switches being upgraded to ensure it is at a level compatible with PNNI code. Better still install the latest level from the IBM networking WEB site (www.networking.ibm.com).

• Backup all the switch configurations before you start. (If you have to abort the process and re-load the old version 2 code the configurations will NOT migrate backwards!)

• Download the boot and operational code to all the switches involved.

• Make the new code active starting with the switch furthest away in the network.

• The switch ATM address will be migrated to the PNNI node_0 address with a default level identifier of 96 bits.

• All SSI ports are converted to PNNI ports and the ports will be enabled. All other port parameters are retained.

• All NNI ports will convert to IISP ports. The ports will start DISABLED. All other port parameters are retained. (If you are activating the code using a session through the same ports that you are converting you will lose connectivity to the switch when the new code is made active. Check this out before you start. XXX our experience showed that the ports were all ENABLED but both NETWORK-SIDE. This allows you to get the connectivity by changing one of them to USER-SIDE. xxx)

• There are major differences between the way PNNI and SSI code operates. When the code is upgraded all PVC's will be cleared. All logical link and Static Routes will be deleted. These must be re-entered after using the SET REACHABLE ADDRESS command which replaces the set logical link and set static route commands. Make sure you have written down all your logical links, static routes and PVC’s before you start!

• UNI ports are not changed.

6.1.3 Migration process

The current Non-PNNI version will upgrade to PNNI. You can see the current code level on Non-PNNI section. The tftp server is located in behind of 8272 which ELAN joined to MSS as IP address 11.1.1.99.

1. Make sure you can reach the TFTP server
2. Save the current configuration to TFTP server.

Setup TFTP file type as “configuration” and upload to TFTP server. You should check the status OKAY from the last transfer result at SHOW TFTP and in the TFTP server if successfully uploaded.

```
8260_HUB1> show tftp
TFTP Parameters:
Server IP address    : 11.1.1.99.
File Name            : d:\temp\60hub1.cfg.
File type            : Configuration.
Last Transfer Date   : 12 May 99.
Last Transfer Result : This file has not been transferred yet.
```

Figure 172. Show tftp for Configuration upload

3. Download inband the FPGA picocode, if necessary. You can see the result at "Show module <n> verbose"

4. Download inband the CPSW operational code
 a. Setup TFTP parameter

```
8260_HUB1> set server_ip_address 11.1.1.99
TFTP Server set

8260_HUB1> set tftp file_type operational
File type set

8260_HUB1> set tftp file_name
Enter file name: d:\temp\60opv322.ope
File name set

8260_HUB1> show tftp
TFTP Parameters:
Server IP address    : 11.1.1.99.
File Name            : d:\temp\60opv322.ope.
File type            : Operational.
Last Transfer Date   : 12 May 1999.
Last Transfer Result : This file has not been transferred yet.
```

Figure 173. TFTP configuration for download the operational code

Note:

1. Server_ip_address
 - IP address of TFTP server in the format n.n.n.n.
2. File_type
The file types what you going to download currently. If you are going to download operational code, you can choose "operational".

3 File_name

Specified the path name of the file to be transferred via TFTP protocol. The path name allows 128 alphanumerical characters.

4 Transfer result

It shows the transfer status. You should check here after download or upload.

b. Download the operational code from TFTP server by entering the command.

DOWNLOAD INBAND

Wait for successful termination of the download operation. The message "Download successful" displayed, and the transfer status displayed at the "last transfer result" line.

```
8285_HUB1> download inband
You are about to download a new version.
Are you sure ? (Y/N) Y
Number of characters expected: (Typing Ctrl+C terminates the transfer)
Download successful.
8285_HUB1> show tftp
TFTP Parameters:
  Server IP address    : 11.1.1.99.
  File Name            : d:\temp\60opv322.ope.
  File type            : Operational.
  Last Transfer Date   : 12 May 99.
  Last Transfer Result : OKAY...
```

Figure 174. Download inband configuration

Note:

1. You can start download by confirm to "Y"
2. If success the downloading, will be updated to "OKAY"

5. Download inband the CPSW boot code as step 4.

6. After finishing download the operation and boot code, you can see the code status at "SHOW DEVICE"
Figure 175. Show device screen

Note:

1. **Boot code**
 - Updated to v.3.2.2

2. **Operation code**
 - Updated to backup EEPROM. Will update to Flash EEPROM by issuing "swap microcode"

7. Save all information by entering command

 SAVE ALL

8. Activate the new version of FPGA picocode by entering the command. (if necessary)

 SWAP FPGA_PICOCODE

 As the switch re-starts the TELNET session (if used) will be broken.

9. Verify the new version of picocode by entering the command.

Figure 176. FPGA level

Note:

1. The current FPGA level for 8260(8285_HUB1 will **C32**)

8285_HUB1> **show device**
8285 Nways ATM Workgroup Switch
Name : 8285_HUB1
Location :
For assistance contact :
Manufacturer id: VIM
Part Number: 51H4119 EC Level: E59245
Serial Number: 2110
Boot EEPROM version: **v.3.2.2**
Flash EEPROM version: v.1.5.2
Flash EEPROM backup version: **v.3.2.2**
Last Restart : 13:53:31 Tue 11 May 99 (Restart Count: 1)

8260_HUB1> **show module 9 verbose**
Slot Install Connect Operation General Information

 9 Y Y Y 8260 ATM Control Point and Switch Module: Active
status: connected / hardware okay
 enable / Normal
P/N:58G9605 EC level:C38846 Manufacture:VIME
Operational FPGA version : **B52**
Backup FPGA version : B51

2126new-PNNI-migration.fm
10. Activate the new version of microcode by entering the command.

 SWAP MICROCODE and confirm with **Y**

11. Verify the code level by entering the command "Show device"

```
8285_HUB1> show device
8285 Nways ATM Workgroup Switch
Name : 8285_HUB1
Location :
For assistance contact :
Manufacture id: VIM
Part Number: 51H4119 EC Level: E59245
Serial Number: 2110
Boot EEPROM version: *v.3.2.2* 1
Flash EEPROM version: *v.3.2.2* 2
Flash EEPROM backup version: v.1.5.2
Last Restart : 13:53:31 Tue 11 May 99 (Restart Count: 1)
```

Figure 177. Show device screen

Note:

1. Boot code
 - updated to v.3.2.2

2. Operation code
 - updated to EEPROM correctly. Previous code will remain in backup EEPROM.
6.1.4 Final configuration

6.1.4.1 8285_HUB1 Configuration in Peer group 1
We can verify the PNNI configuration after migrate by the following commands.

1. Show device
Show device for 8285_HUB1(PNNI)

```
8285_HUB1> show device
8285 Nways ATM Workgroup Switch
Name : 8285_HUB1
Location :

For assistance contact :

Manufacture id: VIM
Part Number: 51H4119 EC Level: E59245
Serial Number: 2110
Boot EEPROM version: v.3.2.2
Flash EEPROM version: v.3.2.2
Flash EEPROM backup version: v.1.5.2
Last Restart : 08:44:41 Wed 12 May 1999 (Restart Count: 2)

> Subnet atm: Up
IP address: 192.168.21.85. Subnet mask: FF.FF.FF.00

> Subnet lan emulation ethernet/802.3
Not Started
Config ELAN Name :"
Actual ELAN Name :"
MAC Address: 000000000000
IP address : 0.0.0.0. Subnet mask: 00.00.00.00
Config LES addr:None
Actual LES addr:None
Base ATM address:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Config LECS add:None
Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
LEC Identifier: 0. Maximum Transmission Unit: 0

> Subnet lan emulation token ring
Not Started
Config ELAN Name :"
Actual ELAN Name :"
MAC Address: 000000000000
IP address : 0.0.0.0. Subnet mask: 00.00.00.00
Config LES addr:None
Actual LES addr:None
Base ATM address:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Config LECS add:None
Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
LEC Identifier: 0. Maximum Transmission Unit: 0
Default Gateway : OK

IP address: 192.168.21.12
ARP Server:
```
Dynamic RAM size is 16 MB. Migration: off. Diagnostics: enabled. Duplicate ATM addresses are allowed.

Figure 179. Show device for 8285_HUB1(PNNI)
2. Show port for the PNNI connection

```
8285_HUB1> show port 1.13 verbose

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNNI enabled</td>
<td>UP</td>
<td></td>
</tr>
</tbody>
</table>

ILMI status : UP
ILMI vci     : 0.16
NNI Bandwidth: 155000 kbps
RS Bandwidth : unlimited
Signalling vci: 0.5
Routing vci  : 0.18
Administrative weight: 5040
VPI, VCI range: 15.1023 (4.10 bits)
Connector    : SC DUPLEX
Media        : multimode fiber
Port speed   : 155000 kbps
Remote device is active
Frame format : SONET STS-3c
Scrambling mode : frame and cell
Clock mode   : internal
```

Figure 180. Show port to see the PNNI interface

Note:

1. The SSI interface automatically updated to PNNI

3. The ATM address is now displayed using the "show pnni node_0" command.

```
8285_HUB1> show pnni node_0

--------------------- Node 0 ---------------------
ATM addr : 39.99.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00
Level Identifier : 96 (24 half-bytes and 0 bits)
Node Id  : 60.A0.39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00
Unrestricted Transit.
```

Figure 181. Show pnni node_0 to see the switch information

Note:

1. ATM address remains as Non-PNNI.
2. Level Identifier is peer group identification.
4. You can display which switches (within the peer group) this switch physically connects to using the Show PNNI Neighbor command.

```
8285_HUB1> show pnni neighbor
------- Neighbors of Node 0-------
60.A0.39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00:Full
   Port  1.13 vpi=0
```

Figure 182. Show pnni neighbor to see the neighbor node IDs

5. The "show pnni peer_group_members" will display all the switches which the peer group as listed.

```
8285_HUB1> show pnni peer_group_members
------- Peer Group of Node 0-------
60.A0.39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00 connected
60.A0.39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00 connected
2 Members.
```

Figure 183. Peer group members for 8285_HUB1

Note:

1. This line will display if 8260_HUB1 is active the PNNI.

6.1.4.2 8260_HUB1 configuration in peer group1

1. Show device
Show Device for 8260_HUB1

8260_HUB1

Name: 8260_HUB1

Location:

For assistance contact:

Manufacture id: VIME

Part Number: 5809605 EC Level: C38846

Boot EEPROM version: v.3.2.2

Flash EEPROM version: v.3.2.2

Flash EEPROM backup version: v.2.5.4

Last Restart: 10:07:37 Wed 12 May 1999 (Restart Count: 2)

A-CPSW

- **Subnet atm:** Up
 - **IP address:** 192.168.21.60. **Subnet mask:** FF.FF.FF.00

- **Subnet lan emulation ethernet/802.3**
 - **Not Started**
 - **Config ELAN Name:** ""
 - **Actual ELAN Name:** ""
 - **MAC Address:** 000000000000
 - **IP address:** 0.0.0.0. **Subnet mask:** 00.00.00.00
 - **ATM address:** 39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00
 - **Config LES addr:** none
 - **Actual LES addr:** 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 - **BUS ATM address:** 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 - **Config LECS add:** none
 - **Actual LECS add:** 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 - **LEC Identifier:** 0. **Maximum Transmission Unit:** 0

- **Subnet lan emulation token ring**
 - **Not Started**
 - **Config ELAN Name:** ""
 - **Actual ELAN Name:** ""
 - **MAC Address:** 000000000000
 - **IP address:** 0.0.0.0. **Subnet mask:** 00.00.00.00
 - **ATM address:** 39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.01
 - **Config LES addr:** none
 - **Actual LES addr:** 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 - **BUS ATM address:** 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 - **Config LECS add:** none
 - **Actual LECS add:** 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 - **LEC Identifier:** 0. **Maximum Transmission Unit:** 0

Default Gateway: OK

IP address: 192.168.21.12

ARP Server:

ATM address: 39.99.99.99.99.99.99.00.00.99.99.02.01.40.00.82.10.00.01.0A

Device configured for PNNI port capability. No LES can start.

Dynamic RAM size is 16 MB. Migration: off. Diagnostics: enabled.

Device defined as secondary.

Duplicate ATM addresses are allowed.

Figure 184. Show device for 8260_HUB1(PNNI)
2. Show port 15.2 command to check the IISP interface which from NNI.

```
8260_HUB1> show port 15.2 verbose
Type  Mode     Status
------------------------------------------------------------------------------
15.02:IISP enabled  UP
Signalling Version   : 3.1
No ILMI
NNI Bandwidth       : 155000 kbps
RB Bandwidth        : unlimited
Signalling role      : network
Signalling vci       : 0.5
Administrative weight: 5040
VPI.VCI range        : 15.1023 (4.10 bits)
Connector           : SC DUPLEX
Media               : multimode fiber
Port speed           : 155000 kbps
Remote device is active
- Frame format       : SONET STS-3c
- Scrambling mode    : frame and cell
- Clock mode         : internal

8260_HUB1> set port 15.2 disable
15.02:Port set

8260_HUB1> set port 15.2 enable iisp user
15.02:Port set

8260_HUB1> show port 15.2 verbose
Type  Mode     Status
------------------------------------------------------------------------------
15.02:IISP enabled  UP
Signalling Version   : 3.1
No ILMI
NNI Bandwidth       : 155000 kbps
RB Bandwidth        : unlimited
Signalling role      : user
Signalling vci       : 0.5
Administrative weight: 5040
VPI.VCI range        : 15.1023 (4.10 bits)
Connector           : SC DUPLEX
Media               : multimode fiber
Port speed           : 155000 kbps
Remote device is active
```

Figure 185. Port status of 15.2 for 8260_HUB1

Note:

1. Signalling role
 Reset to "network" while migration.

2. Signalling role
 Need to change to "user". Otherwise signalling role on 8260_HUB2 still remain as "network".
3. Show port for PNNI connection.

```
8260_HUB1> show port 17.1 verbose
Type      Mode      Status
---------------------------------------------------------------
17.01: PNNI enabled UP

IIMI status : UP
IIMI vci     : 0.16
NNI Bandwidth: 155000 kbps
RB Bandwidth: unlimited
Signalling vci: 0.5
Routing vci : 0.18
Administrative weight: 5040
VPI.VCI range : 15.1023 (4.10 bits)
Connector     : SC DUPLEX
Media         : multimode fiber
Port speed    : 155000 kbps
Remote device is active
Frame format  : SONET STS-3c
Scrambling mode: frame and cell
Clock mode    : internal
```

Figure 186. Show port for PNNI connection on 8260_HUB1

Note:

1. SSI automatically updated to PNNI.

4. "SHOW PNNI NODE_0" command

```
8260_HUB1> show pnni node_0
--------------------- Node 0 ---------------------
ATM addr : 39.99.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00
Level Identifier : 96 (24 half-bytes and 0 bits)
Node Id  : 60.A0.39.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00
Unrestricted Transit.
```

Figure 187. Show the ATM address for 8260_HUB1

Note:

1. ATM address remains as Non-PNNI.
2. Level Identifier is peer group identification.
5. "SHOW PNNI PEER_GROUP_MEMBERS" command

```
T8260_HUB1> show pnni peer_group_members
--------- Peer Group of Node 0 ---------
60.A0.39.99.99.99.99.99.99.00.00.99.99.01.01.40.00.82.60.01.01.00 connected
60.A0.39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00 connected
2 Members.
```

Figure 188. Shows two members in peer group1

6. SET REACHABLE_ADDRESS command

Following the migration all the static route and logical link information will be deleted. This has to be re-entered using the Set Reachable Address command. Here we show the entry for 8260_HUB1. This one entry enables all the hubs in cluster 1 to reach cluster 2.

```
8260_HUB1> set reachable_address 15.2 96
Entry set.
8260_HUB1> save all
```

Figure 189. Set reachable address for 8260_HUB1

Note:

1. Reachable address to reach the peer group 2

7. SHOW REACHABLE_ADDRESS ALL command

```
8260_HUB1> show reachable_address all
Port Len Address                                         Active Idx VPI
----------------------------------------------------------
15.02 96 39.99.99.99.99.99.99.00.00.99.99.02. . . . . Y 1 -
```

Figure 190. Show reachable address for 8260_HUB1

6.1.4.3 8260_HUB2 configuration in peer group2

1. Show device for 8260_HUB2 in peer group2
Figure 191. Show device for 8260_HUB2(PNNI)
2. Show port 14.2 command to check the IISP interface which from NNI.

```
8260_HUB2> show port 14.2 verbose

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.02</td>
<td>IISP</td>
<td>enabled</td>
</tr>
</tbody>
</table>

Signalling Version : 3.1
No ILMI
NNI Bandwidth : 155000 kbps
RB Bandwidth : unlimited
Signalling role : network
Signalling vci : 0.5
Administrative weight: 5040
VPI.VCI range : 15.1023 (4.10 bits)
Connector : SC DUPLEX
Media : multimode fiber
Port speed : 155000 kbps
Remote device is active
Frame format : SONET STS-3c
Scrambling mode : frame and cell
Clock mode : internal
```

Figure 192. Port status of 14.2 for 8260_HUB2

Note:

- NNI automatically updated to IISP.

3. Show port command for 8272's UNI connection. this remains unchanged after the migration.
4. "SHOW PNNI NODE_0" command

```plaintext
8260_HUB2> show pnni node_0
--------------------- Node  0 ---------------------
ATM addr : 39.99.99.99.99.99.99.99.00.00.99.99.02.01.40.00.82.60.02.01.00
Level Identifier : 96 (24 half-bytes and 0 bits)
Node Id  : 60.A0.39.99.99.99.99.99.00.00.99.99.02.01.40.00.82.60.02.01.00
Unrestricted Transit.
```

Figure 194. node_0 information for 8260_HUB2

Note:

1. ATM address remains as Non-PNNI.
2. Level Identifier is peer group identification.

5. "SHOW PNNI PEER_GROUP_MEMBERS" command

```plaintext
8260_HUB2> show pnni peer_group_members
------ Peer Group of Node 0------
60.A0.39.99.99.99.99.99.00.00.99.99.02.01.40.00.82.60.02.01.00 connected
1 Members.
```

Figure 195. Peer group members for 8260_HUB2
6. SET REACHABLE_ADDRESS command

```
8260_HUB2> set reachable_address 14.2 96
Entry set.
8260_HUB2> save all
```

Figure 196. Set reachable address for 8260_HUB2

Note:

1. Add to reach peer group 1

7. SHOW REACHABLE_ADDRESS ALL command

```
8260_HUB2> show reachable_address all
Port Len Address                                             Active Idx VPI
-------------------------------------------------------------------------------
5.01 152 39.99.99.99.99.99.99.00.00.99.99.02.01.40.00.82.10.00.01 Y Dyn  0
5.01 152 47.00.79.00.00.00.00.00.00.00.00.00.00.00.A0.3E.00.00.01 Y Dyn  0
14.01 152 39.99.99.99.99.99.99.00.00.99.99.02.01.42.00.82.72.00.00 Y Dyn  0
```

Figure 197. Show reachable address for 8260_HUB2

8. Connectivity with the other switches exists as shown below

```
8260_HUB2> ping 192.168.21.60
Starting ping (hit CTRL-C to stop) ...
Ping 192.168.21.60: 1 packets sent, 1 received
Ping 192.168.21.60: 2 packets sent, 2 received
Ping 192.168.21.60: 3 packets sent, 3 received
Ping 192.168.21.60: 4 packets sent, 4 received
8260_HUB2>
8260_HUB2> ping 192.168.21.85
Starting ping (hit CTRL-C to stop) ...
Ping 192.168.21.85: 1 packets sent, 1 received
Ping 192.168.21.85: 2 packets sent, 2 received
Ping 192.168.21.85: 3 packets sent, 3 received
Ping 192.168.21.85: 4 packets sent, 4 received
```

Figure 198. PING command at 8260_HUB2
Chapter 7. PNNI

7.1 PNNI Overview

PNNI (Private Network-to-Network Interface) is an ATM forum standard that supports routing and signalling to establish connections in private ATM networks. IBM has integrated PNNI into its control point switches. The hierarchical nature of PNNI provides smooth scalability of growth from small to large ATM networks. It includes protocols for distributing the network topology information amongst the ATM switches. Switches then use this information to select the optimum path through the network.

PNNI supports a mechanism that allows groups of switches to be clustered together. (These clusters are known as peer groups.) Clusters of switches can then be further clustered in a hierarchical fashion and so on.

At the bottom level (node 0) these clusters are a group of physical ATM switches. At the next level (node 1) the lower level peer groups are represented by a logical group node. Thus the next level (node 1) is a group of logical group nodes. Within the peer group at the lowest level (node 0) a leader called the peer group leader is chosen from amongst the switches to represent that group at the next highest level (node 1). This group leader creates the logical group note that represents the peer group. The same process continues within the logical group nodes at node 1 to elect a leader to represent them at the next highest level, node 2 and so on.

7.1.1 PNNI Reachability

Within a PNNI peer group, reachability information is propagated throughout the peer group and there is no need for static definitions. Reachability information is NOT propagated outside the peer group, ie across IISP links. Where IISP links are used to interconnect peer groups static reachability information has to be defined using the SET REACHABLE_ADDRESS command.

7.1.1.1 PNNI Reachability in a Hierarchical Network

Where you have a "hierarchical" peer group network and the peer groups are interconnected with PNNI links, the peer group "leader" will advertise the reachability information from within its peer group to all other peer groups within the hierarchy. There is no need to manually configure reachability information.

However the last statement is only true for ATM switches running version 4 code that will "understand" any reachability information propagated across the peer group hierarchy. If you have a network that contains switches running version 3 code (and the 8260 and 8285 can only run version 3 pnni code) this reachability information will not be understood by them. Where you have this situation the static reachability definitions required for interconnecting the peer groups with IISP links are still required. This is the only way the version 3 code switches will learn what is outside their peer group. This in itself may introduce another problem because any static routes defined must not conflict with the "learned routes" the version 4 switches want to use that have been propagated across the peer group hierarchy. The solution to this is to make sure the static definitions have a shorter length than the learned routes from the peer group hierarchy.
ie If the Node_0 peer group is using the default length of 96 bits, make sure any static route definitions are no longer than 95 bits. This way the version 4 code switches will use the “learned route” from across the peer group hierarchy because they give a longer address match leaving the version 3 code machines to use the statically defined routes.

7.1.1.2 LECS address propagation
Where you have a LECS running in an MSS the LECS well known address (x47.00.79........) will be advertised by the MSS to the switch. This will be propagated throughout the peer group the MSS resides in. The static LECS definitions that can be defined in the switches are not necessary. (using the SET LAN_EMULATION CONFIGURATION_SERVER command) Where you have peer groups interconnected with the peer group hierarchy these addresses will be propagated to the other peer groups automatically. If you have more than one LECS running in your network, clients now have the ability to find all these LECS automatically without defining them manually in the switches. Within a peer group clients will be routed to the "local" LECS first before going to "remote" LECS.

This works with switches running version 4 code. If you have switches running version 3 code they will not understand the reachability information received across the “hierarchy” for any “remote” LECS. Here static reachability information has to be defined for the LECS “well known” address (using the SET REACHABLE_ADDRESS command) in order that clients attached to version 3 switches can find LECS in other peer groups.

In this situation manually defining the addresses of the LECS in the version 3 switches (using the SET LAN_EMULATION CONFIGURATION_SERVER command) may not work. As the version 3 switches do not understand reachability information propagated across the peer group hierarchy they will not find a path to a “remote” LECS unless the SET REACHABLE_ADDRESS definitions have been made for the x47.00.79...... address on the appropriate ports of the PNNI border nodes.

7.2 Configuration Overview
We are now going to configure a two peer group PNNI network consisting of 6 8265 hubs and an 8260 hub. Initially these switches will be configured as two peer groups interconnected with IISP links. We will then migrate this configuration to two peer groups interconnected with PNNI hierarchy, showing how you configure peer group leadership. Finally we will add a Wan connection to another 8265 in Peer group 2.

A diagram of the configuration follows.
The address rule which used in this lab summarized as the following table. The 20 bytes address consists of 12 bytes prefix and the rest address in the table.

<table>
<thead>
<tr>
<th>LEC IP</th>
<th>10.3.1.11</th>
<th>10.3.1.12</th>
<th>10.3.1.13</th>
<th>10.3.1.21</th>
<th>10.3.1.22</th>
<th>10.3.1.23</th>
<th>10.3.1.24</th>
<th>10.3.1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>40008265011</td>
<td>40008265012</td>
<td>40008265011</td>
<td>40008265012</td>
<td>40008265011</td>
<td>40008265012</td>
<td>40008265011</td>
<td>40008265012</td>
</tr>
<tr>
<td>MSS-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The address rule which used in this lab summarized as the following table. The addresses address consists of 12 byte prefix 39.99.99.99.99.99.99.00.00.11.11.

<table>
<thead>
<tr>
<th>Peer #1</th>
<th>Peer #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer #1</td>
<td>Peer #2</td>
</tr>
</tbody>
</table>

Figure 199. IISP Configuration diagram
7.3 Configuring a 2 peer group flat PNNI network

We will configure the network shown in figure 1 in stages. First we will configure the two hubs 8265_hub11 and 8260_hub13 in peer group 1. The aim here is to show how to configure two hubs with PNNI connectivity within a peer group.

Next we will configure hub 8265_hub21 in peer group 2 with an IISP link to peer group 1. This will show how to connect two peer groups together with an IISP link.

We will then show the configuration steps for 8260_hub24 in peer group 2.

7.3.1 Configuring PNNI between two 8265 switches in Peer group 1

In this section, we will show the configuration of two switches, 8265_hub11 and 8260_hub13. For clarity, a diagram of these two switches, taken from Figure 199 on page 219 follows.

We will show the detailed steps to configure both switches. This could be used to configure just two switches within a peer group.
7.3.1.1 Configuring 8265_hub11

The following Show Device command shows the state of the hub before any configuration information is entered. Each hub comes with the same default ATM address which needs changing before the hub is connected to the network.
8265ATM show device

8265 ATM Control Point and Switch Module
Name: 8265ATM
Location:
For assistance contact:
Manufacture id: 930
Part Number: OZL3457
EC Level: F12519
Boot EEPROM version: v.4.1.2
Flash EEPROM version: v.4.1.2 (PNNI)
Flash EEPROM backup version: v.4.0.1 (PNNI)
Last Restart: 10:02:48 Wed 26 May 1999 (Restart Count: 0)

A-CPSW

<table>
<thead>
<tr>
<th>Subnet ethernet:</th>
</tr>
</thead>
</table>
| IP address: 0.0.0.0. Subnet mask: 00.00.00.00
MAC Address: 0006291F93B4 (BIA)
Subnet atm: |
| IP address: 0.0.0.0. Subnet mask: 00.00.00.00
Subnet lan emulation ethernet/802.3 |
| Not Started
Config ELAN Name: ""
Actual ELAN Name: ""
MAC Address: 0006291F13B4
IP address: 0.0.0.0. Subnet mask: 00.00.00.00
Config LES addr: none
Actual LES addr: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
BUS ATM address: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Config LECS addr: none
Actual LECS addr: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
LEC Identifier: 0. Maximum Transmission Unit: 0
Subnet lan emulation token ring |
| Not Started
Config ELAN Name: ""
Actual ELAN Name: ""
MAC Address: 0006297713B4
IP address: 0.0.0.0. Subnet mask: 00.00.00.00
Config LES addr: none
Actual LES addr: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
BUS ATM address: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Config LECS addr: none
Actual LECS addr: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
LEC Identifier: 0. Maximum Transmission Unit: 0
Default Gateway: |
| IP address: 0.0.0.0
ARP Server: |
| ATM address: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Device configured for PNNI port capability.
Device configured for Lan Emulation Servers.
Dynamic RAM size is 32 MB. Migration: off. Diagnostics: enabled.
Device defined as primary.
Memory profile: Mixed (32_P_M)
Duplicate ATM addresses are allowed.
Accounting is disabled.

Figure 201. SHOW DEVICE command before configuring 8265 8265_hub11
We will start by configuring this hub's ATM address. The peer group number will be 01 and the hub number 11. The command used is **Set PNNI Node_0 atm_address**

```
8265ATM> set pnni node:0 atm_address:
Enter atm_address : 39.99.99.99.99.99.99.00.00.11.11.82.65.00.00.01.11.00
Set request executed.
Issue COMMIT PNNI to activate if this is your final 'SET PNNI' entry.
Issue UNCOMMIT PNNI to cancel, removes all 'set pnni' since last COMMIT PNNI..
```

Figure 202. Setting the ATM address on 8265_hub11

Version 3 and 4 code allows you to enter the ATM address configuration commands before making them active. Use the **Commit PNNI** command to make the already entered commands active.

```
8265ATM> commit pnni
COMMIT execution will first SAVE pnni configuration updates then RESET Hub..
Are you sure ? (Y/N) Y
```

Figure 203. Issuing COMMIT PNNI

By default you can allow duplicate ATM addresses within the switch. We are going to turn this off. In doing so this command will reset the switch. Make sure you do not have any unsaved changes before issuing it.

```
8265ATM> set device duplicate_atm_addresses:not_allowed
This call will reset the ATM subsystem.
Are you sure ? (Y/N) Y
```

Figure 204. Issuing command for not allowing the duplicate ATM address

The **Set terminal prompt** command is used to set the command line prompt. Use this to give each hub a different command line prompt. It’s very helpful to see this as confirmation that you are connected to the correct hub when using network access.

```
8265ATM> set terminal prompt 8265_hub11>
8265_hub11>
```

Figure 205. terminal prompt setting
We will now set the classical IP client IP address, subnet mask and ARP server address. (The ARP server is running in MSS1. Refer to figure 1)

```
8265_hub11> set device ip_address atm 192.168.1.11 ff.ff.ff.00
8265_hub11> set device arp_server
Enter atm_address :
39.99.99.99.99.99.99.00.00.00.11.11.82.10.00.00.00.01.0a.01.11.82.10.00.00.00.01.0a
ATM Address set
```

Figure 206. Setting CIP information

The next screen shows the LAN Emulation Client settings. We are going to set the token-ring client to join an ELAN called mgmt. The default gateway will also be set to the default gateway for this elan. The first command shows a number of the parameters being entered together. Most of the parameters can be entered individually. The client will only start when it has all the required parameters entered. The `Set Device Lan_emulation_client tr no_les_with_lecs:none` command is used to tell the client to request a LECS address from the switch.

```
8265_hub11> set device lan_emulation_client tr ip_address:10.3.1.11 subnet_mask:ff.ff.ff.00 mac_address:400082650111 emulated_lan_name
Enter Emulated LAN Name: mgmt
Client starting.
8265_hub11> set device lan_emulation_client tr no_les_with_lecs:none
Client starting.
8265_hub11> set device default_gateway 10.3.1.1
Default gateway set.
```

Figure 207. Setting LEC information
We will now enable modules and ports to give us connectivity outside this switch.

First we will enable modules 7 and 14. Module 7 is our MSS server and module 14 a 4-port 155meg MMF blade.

```
8265_hub11> set module 7 14 connected
Slot 7:Module set
Slot 14:Module set
8265_hub11> show module all
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Install</th>
<th>Connect</th>
<th>Operation</th>
<th>General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>8265 A-MSS 3 (FC5403) Module</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>8265 ATM Control Point and Switch Module:Active</td>
</tr>
<tr>
<td>10</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>< Extension ></td>
</tr>
<tr>
<td>11</td>
<td>n</td>
<td>p</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>8265 ATM 4 ports 155 Mbps Module</td>
</tr>
<tr>
<td>15</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Y</td>
<td>n</td>
<td>Y</td>
<td>Active Controller Module</td>
</tr>
<tr>
<td>19</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 208. enabling the MODULEs

NOTE:

1. This is an MSS blade.
2. The adjacent 8265 hub will connect to port 14.1
To enabling the port, issues the command **Set port** command.

We will use the default parameters for the port. These are shown below with the **Show port** command.

```
8265_hub11> set port 7.1 enable uni
7.01:Port set
8265_hub11> set port 14.1 enable pnni
14.01:Port set
8265_hub11> show port 14.1 verbose
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01:</td>
<td>PNNI enabled</td>
<td>no activity</td>
</tr>
</tbody>
</table>

- ILMI status : DOWN:Not in service
- ILMI vci : 0.16
- RB Bandwidth : unlimited
- Police admin. : off
- Signalling vci : 0.5
- Routing vci : 0.18
- Aggregation token : 0
- RB Admin weight : 5040
- NRB Admin weight : 5040
- VPI range admin. : 0-15 (4 bits)
- VCI range admin. : 0-1023 (10 bits)
- Connector : SC DUPLEX
- Media : multimode fiber
- Port speed : 155000 kbps
- Connection shaping : Off.
- Remote device is inactive
- Frame format : SONET STS-3c
- Scrambling mode : frame and cell
- Clock mode : internal

Figure 209. Enabling ports

NOTE:

⚠️ At the moment this link is down. The status will change to UP-OKAY when a connection is established.
A show device command shows the status of the hub.

```
8265_hub11> show device
8265 ATM Control Point and Switch Module
Name : 8265ATM
Location :
For assistance contact :
Manufacture id: 930
Part Number: 02L3457 EC Level: F12519
Boot EEPROM version: v.4.1.2
Flash EEPROM version: v.4.1.2 (PNNI)
Flash EEPROM backup version: v.4.0.1 (PNNI)
Last Restart : 10:05:22 Wed 26 May 1999 (Restart Count: 2)

A-CPSW

> Subnet ethernet:
  IP address: 0.0.0.0. Subnet mask: 00.00.00.00
  MAC Address: 0006291F93B4 (BIA)
> Subnet atm: Up
  IP address: 192.168.1.11. Subnet mask: FF.FF.FF.00
> Subnet lan emulation ethernet/802.3
  Not Started
  Config ELAN Name :"
  Actual ELAN Name :"
  MAC Address: 0006291F13B4
  IP address : 0.0.0.0. Subnet mask: 00.00.00.00
  ATM address :39.99.99.99.99.99.99.00.11.11.01.11.82.65.00.00.01.11.00
  Config LES addr:none
  Actual LES addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  BUS ATM address:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  Config LECS add:none
  Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  LEC Identifier: 0. Maximum Transmission Unit: 0
> Subnet lan emulation token ring
  Up
  Config ELAN Name :"mgmt"
  Actual ELAN Name :"mgmt"
  MAC Address: 400082650111
  IP address : 10.3.1.11. Subnet mask: FF.FF.FF.00
  ATM address :39.99.99.99.99.99.99.00.11.11.01.11.82.65.00.00.01.11.01
  Config LES addr:none
  Actual LES addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  BUS ATM address:39.99.99.99.99.99.99.00.11.11.01.11.82.10.00.00.00.00.04
  Config LECS add:none
  Actual LECS add:C5.00.79.00.00.00.00.00.00.00.00.00.00.00.A0.3E.00.00.01.00
  LEC Identifier: 1. Maximum Transmission Unit: 4490

Default Gateway : OK

IP address: 10.3.1.1
ARP Server:

ATM address: 39.99.99.99.99.99.99.00.11.11.01.11.82.10.00.00.00.01.0A

Device configured for PNNI port capability.
Device configured for Lan Emulation Servers.
Dynamic RAM size is 32 MB. Migration: off. Diagnostics: enabled.
Device defined as primary.
Memory profile: Mixed (32_P_M)
Duplicate ATM addresses are not allowed.
Accounting is disabled.
```
NOTE:

1. Shows the code level of the switch.
2. The CIP client has successfully contacted the ARP server.
3. The token-ring LEC has joined the elan.
4. The address of the default gateway.
5. The address of the ARP server.

You can display the atm node_0 address, peer group and node IDs using the Show PNNI Node_0 command.

8265_hub11> show pnni node:0

NODE 0 CONFIG PARAMS (IN ACTIVE CONFIG REPOSITORY):
leadership priority: 0
level id: 96
peer group id: 60.399999999999990000111101
node id: 60.a0.39999999999999000011110111.826500000111.00
node's atm addr: 39.999999999999000011110111.826500000111.00
nodal representation: simple
node's transit capab: unrestricted
additional branching: supported

NODE 0 OPERATIONAL:
is not peer group leader
is not a border node

Figure 211. SHOW PNNI node:0

NOTE:

6. By default the level ID is set to 96 bits. Covering the first 12 bytes of the ATM address.
7. The node ID is set to the atm address of the hub. The first byte "60" is the length of 96 bits in hex. The "a0" is a separator byte.

To display summary address, enter Show PNNI summary_address

8265_hub11> show pnni summary_address
------ Internal Summary Addresses of Node 0------
Entry 1: Prefix Length=104, default, used:
39.99.99.99.99.99.99.00.00.11.11.01.11.
50 summary addresses still available for configuration.

Figure 212. SHOW PNNI SUMMARY_ADDRESS
To display a list of neighbor node this switch has direct connectivity to use the Show PNNI Neighbor command. As this is the only switch configured so far, there are none.

```
8265_hub11> show pnni neighbor
Node 0 contained in peer group identified by level id 96 has no neighbors
```

Figure 213. SHOW PNNI NEIGHBOR

The Show PNNI Peer_group_members command will list all the hubs that have joined this peer group. As the display shows, this hub is the only one.

```
8265_hub11> show pnni peer_group_members
VERTX THIS UP CONN IS NOE_ID
NUMBER SWITCH LINK CTED PGL THEN ATM_ADDR
 0 yes no yes no 60.a0.39999999999999000011110111.826500000111.00
 39.999999999999000011110111.826500000111.00
Peer group contains 1 member(s)
```

Figure 214. SHOW PNNI PEER_GROUP_MEMBERS

This concludes the basic configuration for 8265_hub11. We will now continue with the configuration steps for 8260_hub13.

7.3.1.2 Configuring 8260_hub13 in peer group 1

The basic configuration procedures are the same as we have just made for 8265_hub11. The differences being the hub atm address, the CIP and ELAN client IP and MAC address. The displays for these commands will not be duplicated here.
We will next enable the modules we are using.

```plaintext
8260_hub13> **set module 14 16 connected**
Slot 14:Module set
Slot 16:Module set

8260_hub13> **show module all**
Slot Install Connect Operation General Information

<table>
<thead>
<tr>
<th>Slot</th>
<th>Install</th>
<th>Connect</th>
<th>Operation</th>
<th>General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Y</td>
<td>Y</td>
<td>n</td>
<td>8265 ATM Control Point and Switch Module:Active</td>
</tr>
<tr>
<td>10</td>
<td>Y</td>
<td>n</td>
<td>n</td>
<td>&lt; Extension &gt;</td>
</tr>
<tr>
<td>11</td>
<td>n</td>
<td>p</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>8265 ATM 4 ports 155 Mbps Module</td>
</tr>
<tr>
<td>15</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>8265 ATM 4 ports 155 Mbps Module</td>
</tr>
<tr>
<td>17</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Y</td>
<td>n</td>
<td>Y</td>
<td>Active Controller Module</td>
</tr>
<tr>
<td>19</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-</td>
</tr>
</tbody>
</table>
```

Figure 215. Enabling modules
Next we will enable the port that connects to 8265_hub11 using PNNI protocols.

Again we will take the default parameters.

```
8260_hub13> set port 16.4 enable pnni
16.04:Port set
8260_hub13> show port 16.4 verbose

Type       Mode     Status
------------------------------------------------------------------------
16.04:PNNI enabled  UP
ILMI status  : UP
ILMI vci     : 0.16
RB Bandwidth : unlimited
Police admin. : off
Police oper. : off
Signalling vci: 0.5
Routing vci  : 0.18
Aggregation token: 0
RB Admin weight: 5040
NRB Admin weight: 5040
VPI range admin. : 0–15 (4 bits)
VCI range admin. : 0–1023 (10 bits)
VPI range oper. : 0–15 (4 bits)
VCI range oper. : 0–1024 (10 bits)
Connector     : SC DUPLEX
Media         : multimode fiber
Port speed    : 155000 kbps
Connection shaping : Off.
Remote device is active
Frame format  : SONET STS-3c
Scrambling mode: frame and cell
Clock mode    : internal
```

Figure 216. Enabling ports
The *Show device* command for 8260_hub13.

```
8260_hub13> show device

8265 ATM Control Point and Switch Module
Name: 8265ATM
Location:
For assistance contact:
Manufacture id: 930
Part Number: 02L3099 EC Level: F12445
Boot EEPROM version: v.4.1.2
Flash EEPROM version: v.4.1.2 (PNNI)
Flash EEPROM backup version: v.4.0.1 (PNNI)
Last Restart: 10:23:20 Wed 26 May 1999 (Restart Count: 2)

A-CPSW

> Subnet ethernet:
  IP address: 0.0.0.0. Subnet mask: 00.00.00.00
  MAC Address: 0006291F85DB (BIA)
> Subnet atm: Up
  IP address: 192.168.1.13. Subnet mask: FF.FF.00
> Subnet lan emulation ethernet/802.3
  Not Started
  Config ELAN Name:""
  Actual ELAN Name:""
  MAC Address: 0006291F05DB
  IP address : 0.0.0.0. Subnet mask: 00.00.00.00
  ATM address :39.99.99.99.99.99.99.00.00.11.11.01.13.82.65.00.00.01.13.00
  Config LES addr:none
  Actual LES addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  BUS ATM address:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  Config LECS add:none
  Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  LEC Identifier: 0. Maximum Transmission Unit: 0
> Subnet lan emulation token ring
  Up
  Config ELAN Name:"mgmt"
  Actual ELAN Name:"mgmt"
  MAC Address: 400082650113
  IP address : 10.3.1.13. Subnet mask: FF.FF.00
  ATM address :39.99.99.99.99.99.99.00.00.11.11.01.13.82.65.00.00.01.13.01
  Config LES addr:none
  Actual LES addr:39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.04
  BUS ATM address:39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.04
  Config LECS add:none
  Actual LECS add:C5.00.79.00.00.00.00.00.00.00.00.00.00.00.A0.3E.00.00.01.00
  LEC Identifier: 3. Maximum Transmission Unit: 4490

Default Gateway: OK

IP address: 10.3.1.1

ARP Server:

ATM address: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.0A

Device configured for PNNI port capability.
Dynamic RAM size is 32 MB. Migration: off. Diagnostics: enabled.
Device defined as primary.
Memory profile: P2P (32_P_P)
Duplicate ATM addresses are not allowed.
Accounting is disabled.
```

Figure 217. SHOW DEVICE for 8260_hub13
The following display shows the hub PNNI configuration parameters.

8260_hub13> show pnni node:0

NODE 0 CONFIG PARAMS (IN ACTIVE CONFIG REPOSITORY):
 leadership priority: 0
 level id: 96
 peer group id: 60.a0.39999999999999.0000111101
 node id: 60.a0.39999999999999.0000111101.8265000000.13.00
 node's atm addr: 39.9999999999990000111101.8265000000.13.00
 nodal representation: simple
 node's transit capab: unrestricted
 additional branching: supported

NODE 0 OPERATIONAL:
 is not peer group leader
 is not a border node
 peer group containing this node has 2 members (includes this node)

Figure 218. SHOW PNNI node:0

To display summary address, enter the following command:

8260_hub13> show pnni summary_address

------ Internal Summary Addresses of Node 0------
Entry 1: Prefix Length=104, default, used:
 50 summary addresses still available for configuration

Figure 219. SHOW PNNI SUMMARY_ADDRESS

If we now enter the Show PNNI Neighbor command in this hub it shows that 8265_hub11 is directly attached to it.

8260_hub13> show pnni neighbor

NEIGHBORS OF NODE 0 CONTAINED IN PEER GROUP IDENTIFIED BY LEVEL ID 96:
 neighbor_1 node id: 60.a0.39999999999999.0000111101.8265000000.13.00
 neighbor atm addr: 39.9999999999990000111101.8265000000.13.00
 state: Full
 slot.phys-port: 16.04

Figure 220. SHOW PNNI NEIGHBOR
The **Show PNNI Peer_group_members** command now shows two hubs in this peer group. This hub and its neighbor, 8265_hub11.

```
8260_hub13> show pnni peer_group_members
VERTX THIS UP CONN IS NODE_ID
NUMER SWITCH LINK CTED PGL THEN ATM_ADDR
  0 yes no yes no 60.a0.39999999999999000011110113.826500000113.00
          39.999999999999000011110113.826500000113.00
  10 no no yes no 60.a0.39999999999999000011110111.826500000111.00
          39.999999999999000011110111.826500000111.00
Peer group contains 2 member(s)
```

Figure 221. SHOW PNNI PEER_GROUP_MEMBERS

7.3.2 Configuring an IISP link between peer groups 1 and 2

We are going to configure an IISP link between 8265_hub11 and 8265_hub21 which are in different peer groups. To configure an IISP connection between the ATM switch, you must:

1. Configure the appropriate ATM address. Each switch’s peer group identifier is different.

2. Configure the interconnecting ports between the switches for IISP connectivity.

3. Configure the reachable address information in the switch at each end of the IISP link. No reachability information is propagated across an IISP link. Each peer group has to be told the atm addresses it can reach at the other end of each IISP link. This is done using the **Set Reachable Address** command which has to be defined in the switch that has the IISP link.

The following diagram shows the link we are going to configure.
Figure 22. IISP link between the two peer groups

7.3.2.1 Configuring IISP 8265_hub11 in peer group 1
We have already done most of the configuration for 8265_hub11. What we will show here is the extra steps now required to configure the IISP port and the reachability information.

We show the set port command for this link on the next screen. Again we are taking the default parameters. When setting IISP links one end has to be defined as "network" and the other end "user". In our example 8265_hub11 is the network end and 8265_hub21 in peer group 2 the user end.
Figure 223. Enabling the IISP port

8265_hub11> set port 16.1 enable iisp network
16.01:Port set
8265_hub11> show port 16.1 verbose

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.01:IIISP enabled</td>
<td>no activity</td>
<td></td>
</tr>
<tr>
<td>Signalling Version</td>
<td>: 3.1</td>
<td></td>
</tr>
<tr>
<td>RB Bandwidth</td>
<td>: unlimited</td>
<td></td>
</tr>
<tr>
<td>Police admin.</td>
<td>: off</td>
<td></td>
</tr>
<tr>
<td>Signalling role</td>
<td>: network</td>
<td></td>
</tr>
<tr>
<td>Signalling vci</td>
<td>: 0.5</td>
<td></td>
</tr>
<tr>
<td>RB Admin weight</td>
<td>: 5040</td>
<td></td>
</tr>
<tr>
<td>NRB Admin weight</td>
<td>: 5040</td>
<td></td>
</tr>
<tr>
<td>VPI range admin.</td>
<td>: 0-15 (4 bits)</td>
<td></td>
</tr>
<tr>
<td>VCI range admin.</td>
<td>: 0-1023 (10 bits)</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>: SC DUPLEX</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>: multimode fiber</td>
<td></td>
</tr>
<tr>
<td>Port speed</td>
<td>: 155000 kbps</td>
<td></td>
</tr>
<tr>
<td>Connection shaping</td>
<td>: Off.</td>
<td></td>
</tr>
<tr>
<td>Remote device is inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame format</td>
<td>: SONET STS-3c</td>
<td></td>
</tr>
<tr>
<td>Scrambling mode</td>
<td>: frame and cell</td>
<td></td>
</tr>
<tr>
<td>Clock mode</td>
<td>: internal</td>
<td></td>
</tr>
</tbody>
</table>

Figure 224. Setting reachable_address to another peer group

The following screen shows the reachability information being set in 8265_hub11.

```
8265_hub11> show reachable_address all
Port  Len Address                                    Active Idx VPI Scope
--------------------------------------------------------------------------------
 7.01 152 3999.9999.9999.9900.0011.1101.1100.2035.9905.27 Y Dyn 0  15
 7.01 152 3999.9999.9999.9900.0011.1182.1000.0000.01 Y Dyn 0  15
 7.01 152 4700.7900.0000.0000.0000.0000.0000.A03E.0000.01 Y Dyn 0  15
 7.01 152 C500.7900.0000.0000.0000.0000.0000.A03E.0000.01 Y Dyn 0  15
8265_hub11> set reachable_address 16.1 96 39.99.99.99.99.99.99.00.00.11.11.02
Entry set.
8265_hub11> set reachable_address 16.1 8 47
Entry set.
8265_hub11> show reachable_address all
Port  Len Address                                    Active Idx VPI Scope
--------------------------------------------------------------------------------
 16.01 96 3999.9999.9999.9900.0011.1102. . . . N  1 -  1
 16.01 8 47 . . . . . . . . . . . . . . N  2 -  1
 7.01 152 3999.9999.9999.9900.0011.1101.1100.2035.9905.27 Y Dyn 0  15
 7.01 152 3999.9999.9999.9900.0011.1182.1000.0000.01 Y Dyn 0  15
 7.01 152 4700.7900.0000.0000.0000.0000.0000.A03E.0000.01 Y Dyn 0  15
 7.01 152 C500.7900.0000.0000.0000.0000.0000.A03E.0000.01 Y Dyn 0  15
8265_hub11> save all
```

NOTE:
This entry is to tell switches in peer group 1 that peer group 2 exists through port 16.1. That is ATM addresses beginning with 39.99.99.99.99.99.99.00.00.11.11.02 (96 bits) can be reached through port 16.1.

In our configuration we have two MSS servers each with a LECS. So that switches in peer group 1 can reach the LECS in MSS2 if a failure occurs in MSS1 we need to tell peer group 1 that the LECS well known address can be reached through port 16.1.

At this point both these connections are down as we have not configured the other hub yet.

7.3.2.2 Configuring 8265_hub21 in peer group 2

Now we are going to configure 8265_hub21 which is in peer group 2. First, we will configure the ATM address.

```
8265ATM> set pnni node:0
Enter parameter: atm_address:
Enter atm_address : 39.99.99.99.99.99.99.00.00.11.11.02.21.82.65.00.00.02.21.00
Set request executed.
Issue COMMIT PNNI to activate if this is your final 'SET PNNI' entry. Issue UNCOMMIT PNNI to cancel, removes all 'set pnni' since last COMMIT PNNI.

8265ATM> commit pnni
COMMIT execution will first SAVE pnni configuration updates then RESET Hub.. Are you sure ? (Y/N) Y

8265ATM> set device duplicate_atm_addresses:not_allowed
This call will reset the ATM subsystem. Are you sure ? (Y/N) Y.
```

Figure 225. ATM address setting

We will now set the enable the port for IISP. Note this end is defined with the parameter "user".
Figure 226. Enabling ports

NOTE:

1 The signalling role is User.

We will now set the reachability information needed to enable switches in peer group 2 to find the addresses in peer group 1.

Figure 227. Reachable address setting
NOTE:

1. This entry informs switches in peer group 2 of the addresses in peer group 1 that can be reached through port 16.1

2. As with the reachability information defined in 8265_hub11, this entry allows switches in peer group 2 to find the LECS well known address being advertised by MSS1 in peer group 1.

Now we display the device status using the SHOW DEVICE command.
8265_hub21> show device
8265 ATM Control Point and Switch Module
Name : 8265ATM
Location :
For assistance contact :
Manufacture id: 930
Part Number: 02L3457 EC Level: F12519
Boot EEPROM version: v.4.1.2
Flash EEPROM version: v.4.1.2 (PNNI)
Flash EEPROM backup version: v.4.0.1 (PNNI)
Last Restart : 12:38:48 Wed 26 May 1999 (Restart Count: 10)

A-CPSW

> Subnet ethernet:
 IP address: 0.0.0.0. Subnet mask: 00.00.00.00
 MAC Address: 0006291F8948 (BIA)
> Subnet atm: Up
 IP address: 192.168.1.21. Subnet mask: FF.FF.FF.00
> Subnet lan emulation ethernet/802.3
 Not Started
 Config ELAN Name :"
 Actual ELAN Name :"
 MAC Address: 0006291F0948
 IP address : 0.0.0.0. Subnet mask: 00.00.00.00
 ATM address :39.99.99.99.99.99.00.00.11.11.02.21.82.65.00.00.02.21.00
 Config LES addr: none
 Actual LES addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 BUS ATM address:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 Config LECS add: none
 Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
 LEC Identifier: 0. Maximum Transmission Unit: 0
> Subnet lan emulation token ring
 Up
 Config ELAN Name :"mgmt"
 Actual ELAN Name :"mgmt"
 MAC Address: 400082650221
 IP address : 10.3.1.21. Subnet mask: FF.FF.FF.00
 ATM address :39.99.99.99.99.99.00.00.11.11.02.21.82.65.00.00.02.21.01
 Config LES addr: none
 Actual LES addr:39.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.04
 BUS ATM address:39.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.04
 Config LECS add: none
 Actual LECS add:47.00.79.00.00.00.00.00.00.00.00.00.00.00.A0.3E.00.00.01.00
 LEC Identifier: 8. Maximum Transmission Unit: 4490
Default Gateway : OK
--
 IP address: 10.3.1.1
ARP Server:
--
 ATM address: 39.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.0A
Device configured for PNNI port capability.
Device configured for Lan Emulation Servers.
Dynamic RAM size is 32 MB. Migration: off. Diagnostics: enabled.
Device defined as primary.
Memory profile: Mixed (32_P_M)
Duplicate ATM addresses are not allowed.
Accounting is disabled.

Figure 228. SHOW DEVICE
To display the atm PNNI Node_0 parameters for this switch use the **Show PNNI Node_0** command

```
8265_hub21> show pnni node:0

NODE 0 CONFIG PARAMS (IN ACTIVE CONFIG REPOSITORY):
leadership priority:      0
level id:                 96
peer group id             60.399999999999990000111102
node id:                  60.a0.39999999999999000011111021.826500000221.00
node's atm addr:          39.999999999999000011110221.826500000221.00
nodal representation:     simple
node's transit capab:     unrestricted
additional branching:     supported

NODE 0 OPERATIONAL:
is not peer group leader
is not a border node
peer group containing this node has 1 members (includes this node)
```

Figure 229. Show PNNI Node_0

To display summary address

```
8265_hub21> show pnni summary_address

------- Internal Summary Addresses of Node 0-------
Entry 1: Prefix Length=104, default, used:
50 summary addresses still available for configuration
```

Figure 230. SHOW PNNI SUMMARY_ADDRESS

To complete the configuration of this switch there are three other PNNI ports that need enabling. (Ports 14.3, 14.4 and 16.1. Please refer to the diagram in figure 1) As this has been shown before we will not duplicate it here.

7.3.3 Remaining 8265 hubs

We have shown detailed steps for configuring hubs 8265_hub11, 8260_hub13 and 8265_hub21.

Hubs 8265_hub12 and 8265_hub22, which contain the other IISP link between the peer groups are configured the same way as hubs 8265_hub11 and 8265_hub21, apart from the different address information. (atm, IP and MAC address) 8265_hub23 is configured the same way as 8260_hub13.
7.3.4 8260_hub24 configuration

Now we are going to configure 8260_hub24 which is in peer group 2. First, we will configure the ATM address.

```
8260ATM> set pnni node_0 atm_address:
Enter ATM address : 39.99.99.99.99.99.99.00.00.11.11.02.24.82.60.00.00.02.24.00
To activate issue COMMIT after your last 'set pnni...' entry.
To cancel all changes since previous COMMIT, issue UNCOMMIT.
8260ATM> commit pnni
COMMIT execution will first SAVE pnni configuration updates then RESET Hub..
Are you sure ? (Y/N) Y
```

```
8260ATM> set device duplicate_atm_addresses:not_allowed
This call will reset the ATM subsystem.
Are you sure ? (Y/N)
```

![Figure 231. ATM address setting on 8260_hub24](image1)

To set terminal prompt on 8260_hub24, use set terminal command.

We have set the prompt to "8260_hub24> ".

```
8260ATM> set terminal prompt 8260_hub24>
8260_hub24>
```

![Figure 232. terminal prompt setting on 8260_hub24](image2)

We will now set the classical IP client IP address, subnet mask and ARP server address.

```
8260_hub24> set device arp_server ip_address atm 192.168.1.24 ff.ff.ff.00
IP address and mask set
8260_hub24> set device arp_server
Enter atm_address :
39.99.99.99.99.99.99.00.00.11.11.82.10.00.00.00.01.0a.01.11.82.10.00.00.00.01.0a
ATM Address set
```

![Figure 233. Setting Classical IP information on 8260_hub24](image3)

The next screen shows the LAN Emulation Client settings. We are going to set the token-ring client to join an ELAN called mgmt. The default gateway will also be set to the default gateway for this elan.
Figure 234. Setting LAN Emulation Client information on 8260_hub24

We will now enable a module and port to give us connectivity outside this switch.
First we will enable module 1. Module 1 is a 3-port 155M MMF blade.

Figure 235. Enabling the module and port

A show device command shows the status of the hub.
8260_hub24> show device
8260_hub24 ATM Control Point and Switch Module
Name : 8260ATM
Location :

For assistance contact :

Manufacture id: VIME
Part Number: 10J2001 BC Level: E28230
Boot EEPROM version: v.3.2.2
Flash EEPROM version: v.3.2.2
Flash EEPROM backup version: v.3.1.8
Last Restart : 11:52:59 Wed 26 May 1999 (Restart Count: 2)

A-CPSW

> Subnet atm: Up
IP address: 192.168.1.24. Subnet mask: FF.FF.FF.00

> Subnet lan emulation ethernet/802.3
Not Started
Config ELAN Name :"
Actual ELAN Name :"
MAC Address: 000000000000
IP address : 0.0.0.0. Subnet mask: 00.00.00.00
ATM address :39.99.99.99.99.99.99.00.00.11.11.02.24.82.60.00.00.02.24.00
Config LES addr:none
Actual LES addr:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
BUS ATM address:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Config LECS add:none
Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
LEC Identifier: 0. Maximum Transmission Unit: 0

> Subnet lan emulation token ring
Up
Config ELAN Name :"mgmt."
Actual ELAN Name :"mgmt."
MAC Address: 400082600224
IP address : 10.3.1.24. Subnet mask: FF.FF.FF.00
ATM address :39.99.99.99.99.99.99.00.00.11.11.02.24.82.60.00.00.02.24.01
Config LES addr:none
Actual LES addr:39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.04
BUS ATM address:39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.04
Config LECS add:none
Actual LECS add:C5.00.79.00.00.00.00.00.00.00.00.00.00.00.A0.3E.00.00.01.00
LEC Identifier: 9. Maximum Transmission Unit: 4490

Default Gateway : OK

--
IP address: 10.3.1.1
ARP Server:
--
ATM address: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.01.0A

Device configured for PNNI port capability. No LES can start. Dynamic RAM size is 16 MB. Migration: off. Diagnostics: enabled.
Device defined as primary.
Duplicate ATM addresses are not allowed.

Figure 236. Show device command on 8260_hub24
To display the atm node_0 address, peer group and node IDs using the **show pnni Node_0** command.

```
8260_hub24> show pnni node_0
--------------------- Node 0 ---------------------
ATM addr : 39.99.99.99.99.99.99.99.00.00.11.11.02.24.82.60.00.00.02.24.00
Level Identifier : 96 (24 half-bytes and 0 bits)
PGroup Id: 60.39.99.99.99.99.99.99.00.00.11.11.02
Node Id : 60.A0.39.99.99.99.99.99.99.99.00.00.11.11.02.24.82.60.00.00.02.24.00
Unrestricted Transit.
```

Figure 237. show PNNI node_0 command on 8260_hub24

To display a list of neighbor node this switch has direct connectivity to use the **show pnni Neighbor** command.

```
8260_hub24> show pnni neighbor
------ Neighbors of Node 0------
60.A0.39.99.99.99.99.99.99.99.00.00.11.11.02.21.82.65.00.00.02.21.00:Full
   Port  1.01 vpi=0
```

Figure 238. show PNNI neighbor command on 8260_hub24

To display a list all the hubs that have joined this peer group use the **show pnni peer_group_members** command.

4 members are shown in this peer group now.

```
8260_hub24> show pnni peer_group_members
------ Peer Group of Node 0------
60.A0.39.99.99.99.99.99.99.99.99.00.00.11.11.02.24.82.60.00.00.02.24.00 connected
60.A0.39.99.99.99.99.99.99.99.99.99.00.00.11.11.02.22.82.65.00.00.02.22.00 connected
60.A0.39.99.99.99.99.99.99.99.99.99.00.00.11.11.02.23.82.65.00.00.02.23.00 connected
60.A0.39.99.99.99.99.99.99.99.99.99.00.00.11.11.02.21.82.65.00.00.02.21.00 connected
4 Members.
```

Figure 239. show PNNI peer_group_members command on 8260_hub24

7.3.5 Displaying the connectivity status of the network.

7.3.5.1 8265_hub11 in peer group 1

The following screens are taken from 8265_hub11 and show the connectivity from that hub.
The **Show PNNI Node_0** command for 8265_hub11 shows the atm address, node and peer group is's for this hub.

```plaintext
8265_hub11> show pnni node:0

NODE 0 CONFIG PARAMS (IN ACTIVE CONFIG REPOSITORY):
  leadership priority:      0
  level id:                 96
  peer group id             60.399999999999990000111101
  node id:                  60.a0.39999999999999000011110111.826500000011.00
  node's atm addr:          39.99999999999999000011110111.826500000011.00
  nodal representation:     simple
  node's transit capab:     unrestricted
  additional branching:     supported

NODE 0 OPERATIONAL:
  is not peer group leader
  is not a border node
  peer group containing this node has 3 members (includes this node)
```

Figure 240. SHOW PNNI NODE:0 command on 8265_hub11

The **Show PNNI Neighbor** command lists the hubs in peer group 1 that are directly attached to 8265_hub11. As can be seen from the following screen hubs 8265_hub12 and 8260_hub13 are direct PNNI neighbors of this hub.

```plaintext
8265_hub11> show pnni neighbor

NEIGHBORS OF NODE 0 CONTAINED IN PEER GROUP IDENTIFIED BY LEVEL ID 96:

  neighbor_1    node id:    60.a0.39999999999999000011110112.826500000012.00
  neighbor atm addr         39.99999999999999000011110112.826500000012.00
  state:     Full
  slot.phys-port:     14.03

  neighbor_2    node id:    60.a0.39999999999999000011110113.826500000013.00
  neighbor atm addr         39.99999999999999000011110113.826500000013.00
  state:     Full
  slot.phys-port:     14.01
```

Figure 241. SHOW PNNI NEIGHBOR on 8265_hub11

The **Show PNNI Peer_group_members** command lists all the hubs in the peer group that are up and active. As can be seen from this display below all three hubs in peer group 1 have joined the peer group.
The first two entries displayed with this Show Reachable_address command show the static routes defined to hub 8265_hub21 in Peer group 2 across the IISP link are active. The remaining entries are dynamically learned addresses from devices directly attached to this hub.

7.3.5.2 8265_hub21 in peer group 2

Show PNNI Node_0 command for 8265_hub21.
Figure 244. SHOW PNNI NODE:0 on 8265_hub21

The following command shows what switches within the peer group have direct connectivity to this switch. Show PNNI Neighbors command

Figure 245. SHOW PNNI NEIGHBOR on 8265_hub21

The Show PNNI Peer_group_members is used to list all the active hubs that have joined this peer group. As can be seen below all four hubs in peer group 2 have joined the peer group.
Reachability across the IISP link to 8265_hub11 is active as shown by the "Y" under the active heading. You can see both statically defined reachable addresses are active. The remaining four from port 7.1 have been dynamically learned.

Show reachable address command

Reachability across the IISP link to 8265_hub11 is active as shown by the "Y" under the active heading. You can see both statically defined reachable addresses are active. The remaining four from port 7.1 have been dynamically learned.

7.4 Configuring PNNI Hierarchy

We will now take the configuration we have just built (based on two PNNI peer groups interconnected with IISP links) and re-configure this so the peer groups are connected using the PNNI hierarchy. We will start with the configuration we have just completed. (as shown in the diagram in section 5-2 xxx) The final configuration will be as shown in the diagram below.
7.4.1 Overview

Figure 248. PNNI Configuration diagram

- **Peer #1**
 - 8265_hub11
 - ATM address = 39.99.99.99.99.99.99.00.00.11.11.cc.hh.dd.dd.00.00.cc.hh.00
 - cc = cluster#
 - hh = Hub#
 - dd = Device#
 - xx = Sequence#

- **Peer #2**
 - 8265_hub21
 - ATM address = 39.99.99.99.99.99.99.00.00.11.11.cc.hh.dd.dd.00.00.cc.hh.00
 - cc = cluster#
 - hh = Hub#
 - dd = Device#
 - xx = Sequence#
A summary of the process follows

- Remove any static REACHABLE ADDRESS definitions that are not required.
- Re-define the IISP links as PNNI links.
- Set the NODE_0 LEADERSHIP PRIORITY.

The reachable address definitions are not needed when you migrate to a peer group hierarchy environment as reachability is propagated across the hierarchy.

This is fine if all your switches have version 4 code. If you have a switch running version 3 code as we have, 8260_hub24 is an 8260, it will not understand the reachability information propagated across the peer group hierarchy. Reachability information is still required on the exit ports of the border switches to enable non version 4 switches to reach other peer groups. In our example you will see that not all the reachable addresses are deleted when we migrate our network to a hierarchical one. This is the reason for this.

Setting the Node_0 leadership priority. Within each peer group one of the switches will be elected peer group leader. This switch will advertise reachability information from within its peer group to other peer groups.

The default value for this parameter is 0. A switch with a leadership priority value of 0 can never be a peer group leader. To enable a switch to take part in the negotiation for peer group leader that goes on when the leader is being chosen...
this value must be set to at least 1. The range is from 1 to 255 but the settable range is up to 205. When a switch is elected peer group leader it adds 50 to its configured priority value and uses this in any further negotiation that may go on. Consequently any switch joining a peer group has to have a configured peer group leadership priority 50 higher than the current active peer group leaders to be able to take over as peer group leader. This is done deliberately to prevent needless swapping of the peer group leadership role in a running network.

If there are two hubs with the same leadership priority negotiating to become peer group leader the one with the highest address wins.

If you set the leadership priority to 1 in all your switches they will all take part in the election process but unless they were all powered on at the same instance in time it may not be the one with the highest address that becomes leader. Once a switch is elected peer group leader, 50 is added to its configured priority. So in this situation it's a bit hit and miss who will become the peer group leader.

The best approach is to decide which hub you want to become peer group leader and in the event of it failing which hub you would want to become its backup.

Make sure the peer group leader has a configured peer group priority of 51 over the backup. To ensure the backup always assumes the responsibility this should have a priority at least 51 over the other switches.

If you are not interested in which switch takes over if the switch you configure to be peer group leader fails just give this one switch a priority of 51 above all others.

7.4.2 Migration Procedure

We are going to show the configuration steps required for 8265_hub11 in Peer group 1 and 8265_hub21 in Peer group 2. The steps required for hubs 8265_hub12 and 8265_hub22 are the same and will not be repeated here. The configuration steps for 8260_hub13, which does not have any IISP links and 8260_hub24 will also be shown.

In our network we are going to make hubs 8265_hub11 and 8265_hub23 the peer group leaders by giving them a leadership priority of 110. We want hubs 8260_hub13 and 8265_hub22 to take over the leadership priority role if either 8265_hub11 or 8265_hub23 fail so we will configure them with a priority of 50. The remaining 8265 switches will have a priority of 1. The 8260 running version 3 code cannot be a peer group leader.

7.4.2.1 Configuration steps for 8265_hub11

The following screen shows the reachable address entry for the static IISP route to peer group 1 being deleted. A new entry is then made for the 8260 version 3 hub 8260_hub24. This is to ensure it can reach peer group 1. Note its length is
less than the 96 xxxverify these 88-96 xxx bit length of the reachability information propagated across the hierarchy. This is to ensure this entry does not interfere with the reachability information the version 4 switches will use.

Figure 250. reachable_address

The following screen shows the commands entered to change link 16.1 from IISP to PNNI.
Figure 251. set port PNNI

Note:

The set port enable pnni command. The default parameters are taken.

The leadership priority is set for 8265_hub11. We are setting the value to 110 to ensure this hub always becomes peer group leader. The **Show PNNI Node_0** command shows this node has become peer group leader.
Figure 252. Setting the leadership priority.

Note:

1. The leadership priority is set to 110.
2. This node has become peer group leader.

Figure 253. Show PNNI neighbor command.
The next screen shows the peer group members. The top part of the screen shows the switch in each peer group that is leader. Underneath this the switches that have joined this peer group are listed. The display shows three.

Figure 254. Show PNNI peer_group_members for 8265_hub11.

7.4.2.2 Configuring 8265_hub21

The following shows the reachable address information changes for 8265_hub21.

Figure 255. reachable_address
The IISP port in 8265_hub21 is changed to PNNI. Again the default parameters are chosen.

```
8265_hub21> show port 16.1 verbose
   Type Mode     Status
---------------------------------------------------------------
16.01:IISP enabled  UP
8265_hub21> set port 16.1 disable
16.01:Port set
8265_hub21> set port 16.1 enable pnni
16.01:Port set
8265_hub21> show port 16.1 verbose
   Type Mode     Status
---------------------------------------------------------------
16.01:PNNI enabled  up
   ILMI status          : up
   ILMI vci             : 0.16
   RB Bandwidth         : unlimited
   Police admin.        : off
   Signalling vci       : 0.5
   Routing vci          : 0.18
   Aggregation token    : 0
   RB Admin weight      : 5040
   NRB Admin weight     : 5040
   VPI range admin.     : 0-15 (4 bits)
   VCI range admin.     : 0-1023 (10 bits)
   Connector            : SC Duplex
   Media                : multimode fiber
   Port speed           : 155000 kbps
   Connection shaping   : Off.
   Remote device is active
   Frame format    : SONET STS-3c
   Scrambling mode : frame and cell
   Clock mode       : internal
```

Figure 256. IISP to PNNI port change for 8265_hub21.

The PNNI Node_0 leadership priority is set for 8265_hub21 to a value of 1. With this value it is eligible to become the peer group leader but will only do so if both hubs 8265_hub23 and 8265_hub22 are not operational.

```
8265_hub21> set pnni node:0 leader_priority:1
Set request executed. Caused, previously unconfig node 1 to be config with leader prior 0 & level id 88.
If you want to modify it do so before issuing COMMIT PNNI.
Issue UNCOMMIT PNNI to cancel, removes all 'set pnni' since last COMMIT PNNI.
8265_hub21> commit pnni
   COMMIT execution may cause new peer group leaders(s) to be created.
   Are you sure? (Y/N) Y
   COMMIT successfully executed, results in more configured levels.
   To save new configuration issue SAVE.
8265_hub21> save all
```

Figure 257. set pnni node:0 leader_priority for 8265_hub21.
The Show PNNI Node_0 command for 8265_hub21.

```
8265_hub21> show pnni node:0
NODE 0 CONFIG PARAMS (IN ACTIVE CONFIG REPOSITORY):
  leadership priority:      1
  level id:                 96
  peer group id             60.399999999999990000111102
  node id:                  60.a0.39999999999999000011110221.826500000221.00
  node's atm addr:          39.99999999999999000011110221.826500000221.00
  nodal representation:     simple
  node's transit capab:     unrestricted
  additional branching:     supported

NODE 0 OPERATIONAL:
  is not peer group leader
  is a border node
  peer group containing this node has 4 members (includes this node)
```

Figure 258. The Show PNNI Node_0 command for 8265_hub21.

This shows the directly attached hubs to 8265_hub21.

```
8265_hub21> show pnni neighbor
NEIGHBORS OF NODE 0 CONTAINED IN PEER GROUP IDENTIFIED BY LEVEL ID 96:

neighbor_1    node id:    60.a0.39999999999999000011110222.826500000222.00
neighbor atm addr         39.99999999999999000011110222.826500000222.00
state:     Full
slot.phys-port:     14.04

neighbor_2    node id:    60.a0.39999999999999000011110223.826500000223.00
neighbor atm addr         39.99999999999999000011110223.826500000223.00
state:     Full
slot.phys-port:     16.02

neighbor_3    node id:    60.a0.39999999999999000011110224.826000000224.00
neighbor atm addr         39.99999999999999000011110224.826000000224.00
state:     Full
slot.phys-port:     14.03
```

Figure 259. The show PNNI Neighbor command for 8265_hub21

The next display shows the peer group members as seen from 8265_hub21. The top two entries show the peer group leaders for both peer groups while the bottom four entries show the hubs that have joined this peer group.
7.4.2.3 Configuring 8260_hub13

We have decided we want to make this hub the backup peer group leader for peer group 1.

The PNNI Node_0 leadership priority is set to 50 for 8260_hub13.

```
8260_hub13> set pnni node:0 leader_priority:50
Set request executed.
Issue COMMIT PNNI to activate if this is your final 'SET PNNI' entry.
Issue UNCOMMIT PNNI to cancel, removes all 'set pnni' since last COMMIT PNNI.
8260_hub13> commit pnni
COMMIT execution may generate new peer group leader(s)
or remove existing peer group leader(s). ..
Are you sure ? (Y/N) Y
COMMIT successfully, may result in new peer group leader(s)
or loss of existing peer group leader(s).
8260_hub13> save all
```

The Show PNNI Node_0 command shows this hub has a leadership priority of 50 but is not the peer group leader. It will take over leadership if 8265_hub11 fails.
7.4.2.4 Configuring hubs 8265_hub12, 8265_hub22 and 8260_hub24.

Hubs 8265_hub12 and 8265_hub22 contain the other IISP link between the peer groups that has to be upgraded to PNNI. The upgrade of these two hubs is exactly the same as has been described for hubs 8265_hub11 and 8265_hub21 with the exception of the leadership priority value. Hub 8265_hub12 has a leadership priority of 1 and 8265_hub22 is 50.

The 8260_hub24 cannot take part in the peer group leadership election process. There are no changes to the 8260_hub24 configuration when migrating to peer group hierarchy. The 8260 can only run version 3 code and cannot be a peer group leader or border node. The minimum code level for an 8260 to be part of a network with peer group hierarchy is 3.2.0.

7.4.2.5 monitor 8260_hub24

The following screens show the network as viewed from the 8260_hub24.
7.4.2.6 Configuring 8265_hub23.

The only configuration changes here are to set the leadership priority. We have decided we want to make this hub the peer group leader for peer group 2. We will set the leadership priority to 110 to active this.

Following this set command the PNNI Node_0 configuration is shown below.
Figure 265 (Part 1 of 2). monitor 8265_hub23

The following Show PNNI Neighbor command shows the hubs directly connected to 8265_hub23 within this peer group and its partner node_1 peer group leader (8265_hub11) in peer group 1. Its node_1 partner is shown at the bottom of the screen.

```
8260_hub23> show pnni neighbor
NEIGHBORS OF NODE 0 CONTAINED IN PEER GROUP IDENTIFIED BY LEVEL ID 96:
neighbor_1 node id: 60.a0.39999999999999000011110222.826500000222.00
neighbor atm addr  39.999999999999000011110222.826500000222.00
state: Full
slot.phys-port: 14.03

neighbor_2 node id: 60.a0.39999999999999000011110221.826500000221.00
neighbor atm addr  39.999999999999000011110221.826500000221.00
state: Full
slot.phys-port: 16.01
```

Figure 266.

The show PNNI peer_group_members command shows that it and 8265_hub11 are the two peer group leaders in this network. All four hubs in this peer group are shown at the bottom.
Figure 267. Show PNNI peer_group_members command for 8265_hub23.

This completed the configuration for 8265_hub23.

7.4.3 Adding a WAN connection to another hub

We will now take our atm network running PNNI hierarchy as shown in section 5.4.1 and add another hub. (8260_hub25) This hub will be connected to 8265_hub23 using a DS3 WAN connection. A diagram of this follows.

The new switch will be part of the existing peer group 2. We will define the ports at both ends of the connection as VOID and set a VPC across the void to carry the PNNI connection.

We will show just the configuration of the WAN link. The basic hub and PNNI configuration has been done earlier in this book.
7.4.3.1 Configuration for 8265_hub23
We will now configure the WAN connection in 8265_hub23.

Our A8-WAN blade is installed in slot 5.

```
8260_hub23> set module 5 connected
Slot 5: Module set
8260_hub23> show module 5

Slot Install Connect Operation General Information
-------------------------------------------------------------------------------
 5   Y   Y   Y   8265 ATM WAN Module with OC3 + DS3 Ports
-------------------------------------------------------------------------------
```

Next we will enable the port we are using as VOID and set the port parameters we needed. (Check the 8265 command reference for details of all the parameters.)
Figure 270. Setting the VOID port in 8265_hub23.

The **Show Port 5.5 Verbose** command display follows.
Figure 271. The Show Port command for the VOID port.

```
8260_hub23> show port 5.5 verbose

<table>
<thead>
<tr>
<th>Type Mode</th>
<th>Status</th>
<th>Daughter Card Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.05:VOID enabled</td>
<td>UP</td>
<td>DS3 Port</td>
</tr>
</tbody>
</table>

No ILMI
VPI range admin. : 0-15 (4 bits)
VCI range admin. : 0-1023 (10 bits)
Connector : BNC
Media : coaxial cable
Port speed : 44736 kbps
Connection shaping : Off.
Shaping bandwidth : 44000 kbps
Remote device is active

DAUGHTER CARD INFORMATION:

<table>
<thead>
<tr>
<th>Type</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS3</td>
<td>0.5.1.J</td>
</tr>
</tbody>
</table>

CONFIGURATION CONTROL:

<table>
<thead>
<tr>
<th>Failure Integration Time</th>
<th>2500 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure Decay Time</td>
<td>10 s</td>
</tr>
<tr>
<td>Timing Source</td>
<td>PARM_EXTERNAL_FACILITY_TMG</td>
</tr>
<tr>
<td>Descramble Received Cells</td>
<td>Yes</td>
</tr>
<tr>
<td>Discard Idle Cells</td>
<td>Yes</td>
</tr>
<tr>
<td>Scramble Transmitted Cells</td>
<td>Yes</td>
</tr>
<tr>
<td>DS3 Format</td>
<td>C-bit</td>
</tr>
<tr>
<td>PLCP Framing</td>
<td>No</td>
</tr>
</tbody>
</table>

DIAGNOSTICS CONTROL:

<table>
<thead>
<tr>
<th>Diagnostic Pattern</th>
<th>00 00 00 00 00 00 00 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Monitoring</td>
<td>DISABLED</td>
</tr>
<tr>
<td>Internal Wrap</td>
<td>disabled</td>
</tr>
<tr>
<td>Reply Mode Wrap</td>
<td>disabled</td>
</tr>
<tr>
<td>Far End Mode Wrap</td>
<td>disabled</td>
</tr>
</tbody>
</table>

EQUIPMENT TEST RESULT:

<table>
<thead>
<tr>
<th>Tests Results</th>
<th>OK</th>
</tr>
</thead>
</table>

FAILURE STATUS:

<table>
<thead>
<tr>
<th>Loss of Signal</th>
<th>inactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Frame</td>
<td>inactive</td>
</tr>
<tr>
<td>Equipment Failure</td>
<td>inactive</td>
</tr>
<tr>
<td>Loss of Synchronization</td>
<td>inactive</td>
</tr>
<tr>
<td>Loss of Cell Delineation</td>
<td>inactive</td>
</tr>
<tr>
<td>DS3 Alarm Indication Signal (AIS)</td>
<td>inactive</td>
</tr>
<tr>
<td>DS3 Remote Alarm Indication (RAI)</td>
<td>inactive</td>
</tr>
<tr>
<td>PLCP Loss of Frame</td>
<td>inactive</td>
</tr>
<tr>
<td>PLCP Remote Alarm Indication (RAI)</td>
<td>inactive</td>
</tr>
<tr>
<td>Idle Signal</td>
<td>inactive</td>
</tr>
</tbody>
</table>

FAILURE SUMMARY STATUS:

<table>
<thead>
<tr>
<th>No Failure.</th>
</tr>
</thead>
</table>
We will now configure the VPC link across the void to 8260_hub25.

We have been given a VPI value of 1 by the supplier of the wide area link for the connection. We are also going to use 44mbps of the connection for this link. A detailed description of all the parameters for the Set VPC_LINK command can be found in the 8265 command reference.

```
8260_hub23> show vpc_link all
No match
8260_hub23> set vpc_link 5.5 1 enable pnni bandwidth:44000 bandwidth_rb:unlimited lico:off shaping:off ilmi_vci:none vpci:1
5.05 1:Accepted
8260_hub23> show vpc_link 5.5 1 verbose

VPI :Type Mode Status
-----:--------:--------:----------------------
 5.05 :1:PNNI enable UP
 :No IILMI
VPC Bandwidth : 44000 kbps
RB Bandwidth : unlimited
Police admin. : off
Signalling vci : 1.5
Routing vci : 1.18
Aggregation token : 0
RB Admin weight: 5040
NRB Admin weight: 5040
VPCI : 1
Shaping : Off
```

*Figure 272. Set VPC_LINK command for the WAN link.*

Note:

1. VPI is set to 1.

The following Show PNNI neighbor screen (taken after configuring 8260_hub25) shows that 8265_hub23 now has three neighbors including 8260_hub25.
Figure 273. Show PNNI Neighbor command for 8265_hub23.

The Show PNNI peer_group_members command for 8265_hub23.

Figure 274. Show PNNI peer_group_members command for 8265_hub23.

This completes the WAN configuration for 8265_hub23.
7.4.3.2 8260_hub25 configuration

The WAN configuration for this hub is exactly the same as for 8265_hub23. Points to remember here are that the VPCI value in the set VPC_LINK command must match at both ends of the link.

```
8260_hub25> set port 5.5 disable void shaping:44000
 5.05:Port set
8260_hub25> set port 5.5 parm timing_source 0
8260_hub25> set port 5.5 parm descramble_rcv_cells enable
8260_hub25> set port 5.5 parm scramble_xmt_cells enable
8260_hub25> set port 5.5 parm discard_idle_cells enable
8260_hub25> set port 5.5 parm address 10b
 Actual Value 02
 Enter value: 02
8260_hub25> set port 5.5 parm address 10d
 Actual Value 01
 Enter value: 00
8260_hub25> set port 5.5 enable void
 5.05:Port set
```

Figure 275. Setting the VOID port in 8260_hub25.
### Figure 276. Show Port command for the WAN link.

```
8260_hub25> show port 5.5 verbose

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
<th>Daughter Card Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.05:VOID enabled</td>
<td>UP</td>
<td>DS3 Port</td>
</tr>
</tbody>
</table>

No IIMI

- VPI range admin.: 0-15 (4 bits)
- VCI range admin.: 0-1023 (10 bits)
- Connector: BNC
- Media: coaxial cable
- Port speed: 44736 kbps
- Connection shaping: Off.
- Shaping bandwidth: 44000 kbps
- Remote device is active

DAUGHTER CARD INFORMATION:

- **Type**: DS3
- **Software Version**: 0.5.1.J

CONFIGURATION CONTROL:

- **Failure Integration Time**: 2500 ms
- **Failure Decay Time**: 10 s
- **Timing Source**: PARM_EXTERNAL_FACILITY_TMG
- **Descramble Received Cells**: Yes
- **Discard Idle Cells**: Yes
- **Scramble Transmitted Cells**: Yes
- **DS3 Format**: C-bit
- **PLCP Framing**: No

DIAGNOSTICS CONTROL:

- **Diagnostic Pattern**: 00 00 00 00 00 00 00 00
- **Performance Monitoring**: DISABLED
- **Internal Wrap**: disabled
- **Reply Mode Wrap**: disabled
- **Far End Mode Wrap**: disabled

EQUIPMENT TEST RESULT:

- **Tests Results**: OK

FAILURE STATUS:

- **Loss of Signal**: inactive
- **Loss of Frame**: inactive
- **Equipment Failure**: inactive
- **Loss of Synchronization**: inactive
- **Loss of Cell Delineation**: inactive
- **DS3 Alarm Indication Signal (AIS)**: inactive
- **DS3 Remote Alarm Indication (RAI)**: inactive
- **PLCP Loss of Frame**: inactive
- **PLCP Remote Alarm Indication (RAI)**: inactive
- **Idle Signal**: inactive

FAILURE SUMMARY STATUS:

- No Failure.
In this case we set VPI value to 1 at both ends of the link.

The VPI value may not be the same as is used at the another end. It will be whatever the WAN service provider supplies.

```
8260_hub25> show vpc_link all
   No match
8260_hub25> set vpc_link 5.5 1 enable pnni bandwidth:44000 bandwidth_rb:unlimited police:off shaping:off ilmi_vci:none vpci:1
   5.05 1:Accepted
8260_hub25> show vpc_link all verbose

   VPI  :Type  Mode      Status
   -----------------------------------------------
     5.05 1:PNNI enable  UP
      No ILMI
      VPC Bandwidth : 44000 kbps
      RB Bandwidth  : unlimited
      Police admin. : off
      Signalling vci: 1.5
      Routing vci : 1.18
      Aggregation token : 0
      RB Admin weight : 5040
      NRB Admin weight: 5040
      VPCI : 1
      Shaping : Off
      VCI range admin. : 0-1023 (10 bits)
```

Figure 277. Show VPC_LINK command for the VPC link

Note:

1. VPI is set to 1.

The show PNNI Neighbor command shows 8260_hub25 has one neighbor, 8265_hub23.

```
8260_hub25> show pnni neighbor

NEIGHBORS OF NODE 0 CONTAINED IN PEER GROUP IDENTIFIED BY LEVEL ID 96:

   neighbor_1   node id: 60.a0.39999999999999000000000001110223.82650000000223.00
   neighbor atm addr 39.9999999999999900000001110223.8265000000223.00
      state: Full
   slot.phys-port: 05.05
```

Figure 278. Show PNNI neighbor command
The Show PNNI peer_group_members follows.

```
8260_hub25> show pnni peer_group_members
VERTIX THIS UP CONN IS NODE_ID NUMBR SWITCH LINK CTED PGL THEN ATM_ADDR
 15 no no - no 58.60.39999999999999000011110225.826500000223.00 39.999999999999000011110223.826500000223.40
 14 no no - no 58.60.39999999999999000011110111.826500000111.00 39.999999999999000011110111.826500000111.40
Peer group contains 2 member(s)
  0 yes no yes no 60.a0.39999999999999000011110225.826500000225.00 39.999999999999000011110225.826500000225.00
 12 no yes yes no 60.a0.39999999999999000011110111.826500000222.00 39.999999999999000011110111.826500000222.00
 11 no yes yes no 60.a0.39999999999999000011110111.826500000221.00 39.999999999999000011110111.826500000221.00
 13 no no yes no 60.a0.39999999999999000011110224.826500000224.00 39.999999999999000011110224.826500000224.00
 10 no no yes yes 60.a0.39999999999999000011110223.826500000223.00 39.999999999999000011110223.826500000223.00
Peer group contains 5 member(s).
```

Figure 279. Show PNNI peer_group_members command.
Chapter 8. MSS configuration

8.1 Configuration overview

We are now going to show the MSS configuration we have used in the lab. This one configuration was used for the migration from pre-PNNI to PNNI; in the network when we built the PNNI configuration and migrated to PNNI hierarchy and when we produced the client configurations.

We have two MSS servers. MSS1 and MSS2 each attached to a separate switch. Each MSS has the following components configured.

8.1.1 LECS.

Both MSS servers have a LECS running. Introduced with MSS code version 2.2 is the ability to specify redundancy between LECS running in MSS servers. We have redundancy defined. MSS1 is the primary and MSS2 the secondary. i.e. With this feature we only need to make LECS changes to MSS1. Then we can copy the LECS database to the other LECS in the network. This can be done manually through T5 or will happen automatically every time the MSS starts up or the LECS function is restarted. This means you only have to maintain the primary LECS configuration avoiding the risk of different LECS databases in the network.

For a detailed description of how this function works please refer to the MSS 2.2 redbook SG24-5311-00.

8.1.2 ELANs

We have three ELANs configured in our network.

1 Ethernet ELAN et1,
1 Token-ring ELAN tr1,
and a management token-ring ELAN, mgmt.

Each is defined with LES/BUS redundancy. The primary running in MSS1 and the backup in MSS2. (You will see on some of the MSS1 screens an ELAN called tkr-prod. This ELAN was used to link between our test environment in the lab and the main network running in our office. It has no bearing on the scenarios documented here but was used to allow easy access to the test lab from our office.)

8.1.3 ARP server

An ARP server is defined in MSS1 for classical IP. There is an RS6000 network management station running NetView6000. All the atm components are connected using classical IP as well as the 'mgmt' ELAN.
8.1.4 LECs

LECs. There is a LEC defined for each of the elans in both MSS servers. The et1 and tr1 elans each have more than one IP address range. For each there is an IP address on the client and a default gateway that has redundancy between the two MSS. Some of the clients that join the tr1 and et1 elans are switches that have LANs with more than one IP address range. To enable local shortcuts to be created within the switch the MSS server must know about all the IP address ranges on its interfaces. MSS1 is set up as the primary default gateway with MSS2 the redundant.

8.1.5 Bridging.

Each MSS has a bridge defined and the ports are enabled on et1 and tr1. Transparent bridging on et1 and source-route transparent on tr1. Both MSS servers have the bridge defined for redundancy. To split the workload between MSS servers we have defined MSS2 to have its bridge ports forwarding while MSS1 is blocking. (By default the IP routing is being done by MSS1). We have adjusted the spanning tree bridge priorities to 100 on MSS2 and 200 on MSS1. MSS2 is the root bridge and has its TB port forwarding while MSS1 is in blocking state.

8.1.6 IPX

both MSS servers are defined as IPX routers on the et1 and tr1 ELANs.

8.1.7 MPOA.

Both MSS servers are defined as MPOA servers. In our examples of showing clients we will be creating MPOA shortcuts between an Ethernet switch MPOA client (8371) and the MSS client running in an 8270. ie Token-ring to Ethernet shortcuts across the ATM network.
ATM Configuration Examples

The address rule which used in this lab summarized as the following table. The 20 bytes address consists of 12 bytes prefix 39.99.99.99.00.00.11.11 and the rest address in the table.

<table>
<thead>
<tr>
<th>826x Switch</th>
<th>Cluster</th>
<th>HUB</th>
<th>ESI</th>
<th>MAC</th>
<th>Sel</th>
<th>CIP IP</th>
<th>LEC IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>8265#11</td>
<td>01</td>
<td>11</td>
<td></td>
<td>826500000111</td>
<td>00</td>
<td>192.168.1.11</td>
<td>10.3.1.11</td>
</tr>
<tr>
<td>8265#12</td>
<td>01</td>
<td>12</td>
<td></td>
<td>826500000112</td>
<td>00</td>
<td>192.168.1.12</td>
<td>10.3.1.12</td>
</tr>
<tr>
<td>8265#13</td>
<td>01</td>
<td>13</td>
<td></td>
<td>826500000113</td>
<td>00</td>
<td>192.168.1.13</td>
<td>10.3.1.13</td>
</tr>
<tr>
<td>8265#21</td>
<td>02</td>
<td>21</td>
<td></td>
<td>826500000221</td>
<td>00</td>
<td>192.168.1.21</td>
<td>10.3.1.21</td>
</tr>
<tr>
<td>8265#22</td>
<td>02</td>
<td>22</td>
<td></td>
<td>826500000222</td>
<td>00</td>
<td>192.168.1.22</td>
<td>10.3.1.22</td>
</tr>
<tr>
<td>8265#23</td>
<td>02</td>
<td>23</td>
<td></td>
<td>826500000223</td>
<td>00</td>
<td>192.168.1.23</td>
<td>10.3.1.23</td>
</tr>
<tr>
<td>8265#24</td>
<td>02</td>
<td>24</td>
<td></td>
<td>826500000224</td>
<td>00</td>
<td>192.168.1.24</td>
<td>10.3.1.24</td>
</tr>
<tr>
<td>8265#25</td>
<td>02</td>
<td>25</td>
<td></td>
<td>826500000225</td>
<td>00</td>
<td>192.168.1.25</td>
<td>10.3.1.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSS1</th>
<th>Cluster</th>
<th>HUB</th>
<th>ESI</th>
<th>MAC</th>
<th>Sel</th>
<th>CIP IP</th>
<th>LEC IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP server</td>
<td>01</td>
<td>11</td>
<td></td>
<td>821000000001</td>
<td>0A</td>
<td>192.168.1.1</td>
<td>-</td>
</tr>
<tr>
<td>LECS</td>
<td>01</td>
<td>11</td>
<td></td>
<td>821000000001</td>
<td>00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LES(et1)</td>
<td>01</td>
<td>11</td>
<td></td>
<td>821000000001</td>
<td>02</td>
<td>-</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>LES(tr1)</td>
<td>01</td>
<td>11</td>
<td></td>
<td>821000000001</td>
<td>03</td>
<td>-</td>
<td>10.2.1.1</td>
</tr>
<tr>
<td>LES(mgmt)</td>
<td>01</td>
<td>11</td>
<td></td>
<td>821000000001</td>
<td>04</td>
<td>-</td>
<td>10.3.1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSS2</th>
<th>Cluster</th>
<th>HUB</th>
<th>ESI</th>
<th>MAC</th>
<th>Sel</th>
<th>CIP IP</th>
<th>LEC IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP Client</td>
<td>02</td>
<td>21</td>
<td></td>
<td>821000000002</td>
<td>0A</td>
<td>192.168.1.2</td>
<td>-</td>
</tr>
<tr>
<td>LECS</td>
<td>02</td>
<td>21</td>
<td></td>
<td>821000000002</td>
<td>00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LES(et1)</td>
<td>02</td>
<td>21</td>
<td></td>
<td>821000000002</td>
<td>02</td>
<td>-</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>LES(tr1)</td>
<td>02</td>
<td>21</td>
<td></td>
<td>821000000002</td>
<td>03</td>
<td>-</td>
<td>10.2.1.1</td>
</tr>
<tr>
<td>LES(mgmt)</td>
<td>02</td>
<td>21</td>
<td></td>
<td>821000000002</td>
<td>04</td>
<td>-</td>
<td>10.3.1.1</td>
</tr>
</tbody>
</table>
An overview of the routing and bridging in the network follows.

Figure 282. MSS routing and bridging

8.2 MSS1 Configuration

8.2.1 ATM Interface Configuration

We are using the configuration program to configure the MSS server. The first screen shown in the navigation window as shown below.

Figure 283. Fig1 Navigation Window.
To start a new configuration select the **configure** pull down. Then select **new** and **MSS Server Module**.

Select **interfaces** from the navigation screen.

![Interface General screen](image)

Figure 284. Interface General screen.

Select the **ESI** tab.

We need to configured one ESI for MSS1, 821000000001. Enter this value in the locally administered ESI field and click Add.
Figure 285. Device Interface screen.

Now select the **Signalling** tab

We set the signalling protocol to UNI_3.1. The other parameters are the defaults.
8.2.2 LECS configuration

Go back to the navigation window and under LAN EMULATION select LECS then GENERAL.

Select atm device 0 from the pull down. Select ESI 821000000001 from the pull down then generate a selector. It should be ’00’ at this stage in the configuration.

Take the rest of the defaults.
Select **LECS Assignment policies** from the navigation window.

The only policy we will define is ELAN name. Select **By ELAN Name** from the policy type pull down then select Add. This will generate this policy type with a default priority of 10.
We have two LECS in our network and want to use the LECS database synchronization facility. We will define MSS1 as the primary where we will make changes and copy these to MSS2, which will act as a secondary. This term only applies to the LECS synchronization. Both LECS will be active on the network.

From the navigation window select LECS database synchronization, then general. MSS1 is going to be our primary LECS so check **Automatic LECS database synchronization**.

![LECS Synchronization General](image)

Figure 289. LECS synchronization screen.

From the navigation window select **Remote LECS address**. Add the ATM addresses of the redundant LECS in your network and click Add after each one.

![LECS Sync. Remote Addresses](image)

This completes the LECS configuration for MSS1.

8.2.3 ELAN Configuration

We will now configure the emulated LANs. The following screens will show how to configure the e1 ELAN. The other elans are configured in the same way with their own parameters.

From the navigation window select **ELANS**, then **local ELANS**, then **general**.
Type the emulated LAN name in the name field, select the ELAN type and the maximum frame size allowed.

![Emulated LAN configuration. General.](image)

Select the **LES/BUS GENERAL** tab.

Select the atm device number. In our case 0.

Select the ESI 820000000001 from the pull down and set the selector byte to 02.

Set the ELAN identifier to 1.

Now click ADD to save the settings.

Continue adding the definitions for all the elans.
Select les/bus then local les/bus.

We are going to configure the LES/BUS which provides control for an ELAN.

In the General window, we can define the general function of LES/BUS. To enable the BCM (Broadcast Control Manager), you must change the BUS mode operation to System.

This screen shows the parameters for ELAN et1. Set the BUS mode to system and accept the other defaults as shown.

Figure 291. Emulated LAN configuration. LES/BUS General.
Now select the BCM General 1 tab.

Enable the IP and IPX broadcast managers. Accept the other defaults.

Broadcast management is an enhancement of the BUS function in LAN Emulation. With this function the BCM caches client addresses. In many cases the BUS is then able to convert broadcast frames to unicast frames and send these frames to just one client. This can reduce the amount of broadcast traffic in the atm network significantly.
Now select the BCM general 2 tab and enable Netbios broadcast manager.
Select the bottom tab marked REDUNDANCY. This is where we define the les/bus redundancy. This screen shows the parameters for ELAN et1.

Each ELAN is defined in both MSSs. MSS1 has the primary les/bus pairs for the elans with MSS2 the backup. Here we show the definitions in MSS1 that point to its backup les/bus pair in MSS2.

First click **les/bus redundancy protocol support**. Then enter the **atm address** in full of the partner les/bus pair in the network. In our case the backup les/bus pair in MSS2. Now set the role this MSS is performing. ie as this is MSS1 select **primary**.

Select local les/bus policy values.

We have only one policy value selected to join an ELAN, the ELAN name. The next screen shows the configuration for ELAN et1.
8.2.4 LEC configuration for MSS1

Select LEC interfaces under LAN Emulation from the navigation window. The LEC interfaces general screen is displayed.

Select atm device 0, select the ESI shown from the pulldown and set a selector byte. We have chosen to use the ‘1x’ range of selectors for our clients and have given ‘10’ to the first ELAN et1.

Set a mac address. We are using locally administered MAC address of 400082100110. We have used the format 4000xxxxxyyzz where

xxxx is the device type ie 8210 here.

yy is the number of the box. ie 01 for mss1. 02 for mss2 and Dx for the redundant default gateways.

zz is the same as the selector byte.

Whatever you enter, stick to a defined scheme. It makes identifying the device from its MAC address much easier.

ATM forum is the default. Leave this.
Select the ELAN tab.

Enter the ELAN name (et1), select the ELAN type, in our case ethernet and set the max frame size.

(This screen was captured after entering all our clients to show the range of selectors, MAC addresses etc.)
Select the servers tab. If you are using redundant les/bus pairs all clients MUST join via the LECS in order to be able to re-register with the backup les/bus pair if the primary fails. Insure LECS Autoconfigure is checked.
Figure 299. LEC interfaces server screen.

Select the MISC tab. Check the "persistent data direct VCC mode" box.

This will keep the data direct VCC active from the client if the les/bus pair fails and the client has to register with the backup les/bus. Data transfer should not be disrupted while this happens. For a full description of this refer the MSS release 2.2 redbook sg24-5311-00.

Leave the other parameters at the defaults.
This is the last parameter to set so click ADD to add the LEC.

All other parameters behind the tabs are left at their defaults.

You can now go on and configure the remaining clients.
8.2.5 System

On the system general screen specify a name for this mss server. We used MSS1. This appears as the command line prompt and makes it easy to identify which MSS you are connected to.

We also set a location name of peer group 1.

![System General Screen](image)

Figure 301. system general screen

8.2.6 SNMP configuration

Select system, snmp config, communities, general.

The public community with read trap access is defined by default. We will add a new community of itso with read-write trap access.
Add **itso** to the name field, select **read-write trap** from the access type pull down and click **Add**.

Now select the **communities detail** screen. This is where you can add the addresses of workstations/servers you want the traps sent to. We have entered the address of our network management RS6000 on our classical IP network. The important think to note on this screen is how to get at the lower part of the screen. You must click where the arrow points on the box marked **ADDRESSES**. The configuration program has been re-written with the 2.2 release of code and these "hidden" parts of the screens are new.
Enter 192.168.1.100 as the IP address of server and 255.255.255.255 as its subnet mask, then click Add.

Now select the detail screen

Again, click on the box with the word "Traps" in to display the lower part of the screen.
Figure 304. change trap flags to all

Select the ITSO community. Change the trap flags to all and click **change**.
8.2.7 IP Configuration

We are now going to configure the IP parameters on this MSS. From the navigation window select **protocols** then **IP**. Start with the **interfaces** configuration screen.

8.2.7.1 Classical IP

Add the classical IP address for interface 0 and its subnet mask and click **Add**.

![IP configuration for the interfaces.](image-url)
8.2.7.2 LAN Emulation Client

To add an IP address to client interfaces highlight the interface. Add the IP address and subnet mask in the lower part of the screen and click **add**. This example shows a client for interface 2, the et1 ELAN.

The IP addresses for the other clients are added in the same way.

In our configuration we have more than one IP subnet on each of the et1 and tr1 clients. The display shows the et1 client with the three IP addresses we have defined for the three subnets active on this ELAN. Just keep on adding addresses until you have entered them all. Then go onto the next client.
8.2.7.3 Default Gateway

To configure the Redundant Default Gateway for each LEC, select **Redundant Gateway Interfaces**.

Figure 307. Configure redundant gateway interface

Here we are setting the redundant default gateway for the client on the et1 ELAN. As this ELAN has three IP subnet active we need three default gateway definitions, one for each subnet. The screen shows 10.1.1.1 with its subnet mask and MAC address of 40008210D110 being added. 10.1.1.1 is the default gateway for the 10.1.1.X subnet. The other addresses are added in the same way. An identical set of addresses will be repeated in MSS2 which has the default gateway for this ELAN.
8.2.8 CIP Configuration

To configure CIP, select Protocols from the navigation window, IP, Classical IP Over ATM, then General.

The classical IP over ATM screen is displayed.

MSS1 is out ARP server. Check "client is also an ARP server" on this screen.

Now select the Client Addr tab.
Select the ESI from the pull down and set a selector. We chose “0A” to be the ARP server.

This completed our classical IP definitions.

8.2.9 IPX configuration

Select Protocols, IPX then general from the navigation window.

To configure IPX, we need to the enabling IPX protocol and add the network numbers for IPX routing.

Check IPX to enable the IPX protocol.
Figure 309. Enabling the IPX protocol from the IPX-general screen.

Select the **interfaces** screen.

On this screen we will define the IPX circuit number. Click on the word configure at display the lower part of the screen. Select the interface for the ELAN you wish to configure the IPX protocol on. Add the circuit number and click **add**.

Highlight the next interface you need to configure IPX on etc. Continue until you have added the circuit number to all the interfaces you need IPX on.
Select **circuits** from the navigation window to configure the IPX network numbers.

Select the appropriate circuit and click on the word **Configure** at the top of the scrolling windows. Add the **IPX network number** in the appropriate field and select the **framing type** IPX is using on this interface. We have **Ethernet 802.3** selected as this is the circuit for the et1 ELAN.
Figure 311. Configuring the IPX network number and framing type.

From this screen you can go to another screen that will let you enable and add filters. Click on the word "filters" at the top of the screen. The bottom half changes to the screen shown below. This is where you add filters. None are defined in our configuration.
8.2.10 Bridge configuration

We will now configure bridging between the et1 and tr1 elans. Transparent bridging on the ethernet et1 ELAN and source-route transparent bridging on the token-ring tr1 ELAN.

Spanning tree will be enabled and to try and split the workload between the MSS servers we will configure MSS2 bridge with a higher priority than MSS1.

Bridging is selected from the navigation window under protocols then bridging. Select the general screen.

Check Bridging to enable the function globally.
Now select the SRB tab.

Set the bridge number to 1. Although not strictly needed with only two interfaces bridging we have defined an internal segment number of AAA.

Leave the other parameters at the defaults and select the SRTB tab.
We have defined a TB virtual segment of E1E, and a maximum frame size of 1470. The other parameters are the defaults.

![Figure 315. Bridging. SRTB parameters.](image)

Now select the TB tab.

The recommendation is to set the filtering database size to 1024 entries times the number of bridge ports. We have bridging defined on two ports so we have set this to 2048. The other parameters are the defaults. If you have the bridge ports already defined click recommended and the configurator should work this out for you!
Now select the bridging **interfaces** screen

You must enable each interface you want to participate in bridging by clicking on the **Bridging port**. The screen below shows bridging enabled on interfaces 2 and 3. These are the et1 and tr1 ELAN clients. Highlight the **interface** then check **bridge port** in the bottom part of the screen.
The lower part of the screen for token-ring interfaces is different as shown below. Highlighting interface 3 will bring this up.

Check **bridging port**.

Set the token-ring segment number this interface attaches to. In our case **A11**.

Set SRT from the pull down in the interface supports field. (Enables the port for source-route transparent bridging)

![Figure 318. Bridging interface screen. Source-route bridging.](image)

Now select **Bridging, spanning tree protocol** then **general**. We will now configure the spanning tree parameters.

This screen is shown below. We have set the bridge address to just **A** on both the transparent bridge and source-route fields. This bridge priority field for this bridge is set to **200**. The lower the number the higher the priority. (MSS2 has a value of 100 configured which will make it the root bridge.)
Now select the spanning tree interfaces screen.

You must enable the interfaces you want the spanning tree protocol active on.

To enable or disable the protocol on an interface click in the box under the STP heading for the particular interface you want. The screen below shows interface 2. The protocol can be enables or disabled from here.
8.2.11 MPOA configuration

MPOA (Multi Protocol Over ATM) provides a short cut VCC between the clients on different elans even though they may be different LAN types, ie layer-3 switching. The MSS server at release 2.1 and above includes an MPOA server. Release 2.2 added IPX support to MPOA. By default this is enabled. If you have clients that support MPOA the shortcut between the clients will happen automatically.

The following screen shows the MPOA general screen with the default parameters. We did not change any of these parameters.

Now select the **MPOA interfaces** screen.
Select interface 0, then configure the ESI from the pull down menu. Configure a selector byte. We chose 14 in our configuration. Accept the other defaults. This screen is shown below.

![MPOA interface configuration screen.](image)

By default all the interfaces are enabled. If you do not want MPOA to be active on an interface you can de-configure it. The screen below shows the options for an emulated LAN interface. In this case interface 2. The et1 ELAN. In our network MPOA was active on the et1 and tr1 elans but disabled on the mgmt ELAN.
8.3 MSS2 Configuration

In this section we are not going to show the complete configuration for MSS2. Just the differences with the configuration on MSS1. The majority of the configuration is the same.

8.3.1 Interface configuration

MSS2 configuration starts by creating ATM device and assign a ESI number to the interface. The screen below is the device interface screen with the ESI tab selected. The only difference here is the ESI of 821000000002 for MSS2.
8.3.2 LECS Configuration

The next screen is the LECS general. Again the only difference here with MSS1 is the ESI for MSS2. All other parameters are the same including the selector byte.

As you go through these configuration screens you will see we have tried to keep the addressing structure the same across both MSS servers.
In MSS2 we have defined the LECS to accept database synchronization from MSS1. The screen below is the LECS database synchronization screen which shows this.

8.3.3 ELANS

The next screen shows the ELAN definitions. The only difference here is the ESI for MSS2. Everything else is the same, including the selector byte

The ELAN shown in the screen is et1.
8.3.4 LES/BUS Definitions

The les/bus creation procedure is exactly the same as for MSS1. On the redundancy screen we need to define the atm address of the partner les/bus. In our case this is the primary les/bus in MSS1. The screen below shows the definition for ELAN et1. The address is the address of the primary les/bus in MSS1. The redundancy protocol role is set to "backup" as this is the role MSS2 plays.
8.3.5 LEC

The LEC interface definitions are the same apart from the ESI value and MAC address.

The ESI is the same as used on the previous screens.

The MAC address on the clients in MSS2 will be different from those of MSS1. The screen below shows the LEC definitions for the et1 ELAN. (The MAC address has to be different. You cannot have two clients with the same layer 2 address on a LAN segment)

We have changed byte 5 of the mac address from 01 to 02 to represent MSS2 all other fields are the same.
8.3.6 System

Set a different system name for MSS2. This will show in the command line prompt. The location is also different. The following screen shows the System General.

Figure 330. System General in MSS2
8.3.7 IP

The following screen is the IP interfaces screen showing interface 0. Here we set the IP address for MSS2 to join classical IP. This address is 192.168.1.2

![IP Interfaces Screen](image)

Figure 331. CIP address in MSS2

Next screen displays the IP parameters for the ELAN et1. The IP address for this interface is 10.1.1.3. The MAC address for this interface was set previously. The client IP addresses for the other elans are set in the same way.
To support the redundant default gateway function the same definitions are required in the **redundant-default IP gateway** screen on MSS2 as was defined in MSS1. The only difference is the **MAC address role**. As MSS2 is the backup for MSS1 we need to set the MAC address role accordingly. The following screen shows this.

Figure 332. Ethernet LEC's IP address in MSS2

Figure 333. Redundant IP Gateway in MSS2
8.3.8 Classical IP

MSS2 will not have an ARP server function, just a client. The differences in the CIP configuration are shown in the next two screens.

First the classical IP over ATM general screen. Do **not** check the "**client is also an ARP server**" box. Then in the **address** box type the **address of the ARP server** as we show in the screen below. (The ARP server is in MSS1)

![Classical IP over ATM in MSS2](image)

Figure 334. Classical IP over ATM in MSS2

Now select the **Client Addr** tab

The ESI and selector bytes have to be defined here for the CIP client in MSS2. The ESI is the one we have defined for MSS2 and the selector is "0A"

This is shown in the screen below.
8.3.9 Bridging

We will now show the screens with the different bridging parameters set.

On the bridging general, SRT screen MSS2 has a bridge number of 2. The internal virtual LAN segment (although not strictly required with only two bridging interfaces) is set to ABB. This is shown on the screen below.
Select the **SRTB** tab.

In the Source Routing Transparent Bridge, will use different TB: virtual number **E2E**.
On the spanning tree protocol general screen we have given the bridge address a different value. Also the bridge priority is set to 100 for both transparent bridging and source route bridging. This will give MSS2 a higher priority and hence make it the root bridge. The screen below shows this.

![Spanning Tree Protocol General Screen](image)

Figure 338. Spanning Tree protocol General screen in MSS2

8.3.10 MPOA

The only difference with the MPOA definitions between the two MSS servers is on the MPOA server interface screen. Here the ESI value is the one given to MSS2.

The screen below shows this.
8.4 MSS command line displays

8.4.1 Displaying the status of LES/BUS pairs

To display the status of a les/bus pair do the following. Go into Talk 5, Network 0, lan-emulation services and summary. A list of all the elans configured will be shown with their status and how many clients are registered with each.

The next two screens show the summary of the elans on both MSS1 and MSS2. First, displays the MSS1’s screen.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Type (slot/port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ATM (1/1)</td>
</tr>
<tr>
<td>1</td>
<td>NHRP-ATM 0 [N/A]</td>
</tr>
<tr>
<td>2</td>
<td>LEC-Ethernet [N/A]</td>
</tr>
<tr>
<td>3</td>
<td>LEC-Token Ring [N/A]</td>
</tr>
</tbody>
</table>

Figure 339. MPOA Server interface in MSS2

<table>
<thead>
<tr>
<th>Interface</th>
<th>Type (slot/port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ATM (1/1)</td>
</tr>
<tr>
<td>1</td>
<td>NHRP-ATM 0 [N/A]</td>
</tr>
<tr>
<td>2</td>
<td>LEC-Ethernet [N/A]</td>
</tr>
<tr>
<td>3</td>
<td>LEC-Token Ring [N/A]</td>
</tr>
</tbody>
</table>

Figure 340. Summary of the elans on MSS1.

NOTE:

1. Three Proxy-LECs are joined to ELAN "et1".
2. Nine NonProxy-LECs are joined to ELAN "mgmt".
Next, MSS2’s screen.

![Table](mss2 LE-SERVICES+SUMMARY)

ELAN Type (E=Ethernet/802.3, T=Token Ring/802.5)

<table>
<thead>
<tr>
<th>Interface #</th>
<th>LES-BUS State (UP=Up, RE=Redun. ID=Idle, ND=Net Down, ER=Error/Down, **=Other; Work with specific LES-BUS to see actual state)</th>
<th>ELAN Name</th>
<th>#LECs</th>
<th>#LECs</th>
<th>State Change</th>
<th>Last LES/BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Proxy</td>
<td>NonProxy</td>
<td></td>
<td>(Sys uptime)</td>
<td></td>
</tr>
<tr>
<td>E 0 RE et1</td>
<td></td>
<td>(Redundant)</td>
<td>00.00.00.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 RE mgmt</td>
<td></td>
<td>(Redundant)</td>
<td>00.00.00.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 RE tr1</td>
<td></td>
<td>(Redundant)</td>
<td>00.00.00.58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 341. Summary of the elans on MSS2.

Note.

The third column from the left, LES-BUS State. On MSS1 this is **UP** showing this MSS has the elan active whereas MSS2 shows **RE**. It is the redundant elan waiting to take over if a failure occurs with the primary in MSS1.

You can display a complete list of the running elan by selecting it and doing a list. The following screen shows this for elan **et1**. From the previous position in the menu, type **Work et1**, then **list**.
Figure 342. (Part 1 of 2) Operational les/bus pair for elan et1.
Figure 343. (Part 2 of 2) Operational les/bus pair for elan et1.

Note:

1. This shows the redundancy is up and operational for elan et1.
2. Configured to enable the Redundancy.
3. Peer redundancy is enabled. It makes both MSSs can be a Primary LES/BUS.
4. MSS1 configured to Primary LES/BUS
5. The ATM address of backup LES/BUS. It is the Redundancy partner.
6. Enabled the BCM for IP protocol. we can enable the BCM per protocol.

The see what clients have joined to the et1 elan, type show lec. The following screen shows the three clients that have joined to the elan.
Use the `show registered-mac` command to display a list of registered MAC addresses in the elan.

8.4.2 Displaying the status of the bridge

The following screens show the status of the bridge in MSS1 and MSS2.

8.4.2.1 MSS1 bridge displays

To display the bridge information, Go into `Talk 5, protocol asrt` and `list bridge`.
Figure 346. Bridge status for MSS1

1 This shows the bridge priority, i.e., 200 for MSS1.

2 802.1d and 8209 are the defaults.

The bridge port status for MSS1. Note the transparent bridge port is in blocking state. MSS2 is the root bridge and will have this port forwarding.

Figure 347.

MSS1 ASRT>LIST BRIDGE
Bridge ID (prio/add): 200/00-00-00-00-00-0A
Bridge state: Enabled
UB-Encapsulation: Disabled
Bridge type: ASRT
Number of ports: 2
STP Participation: IEEE802.1d and IBM-8209

<table>
<thead>
<tr>
<th>Port Interface</th>
<th>State MAC Address</th>
<th>Modes</th>
<th>MSDU</th>
<th>Segment Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Eth /0</td>
<td>Up 40-00-82-10-01-10</td>
<td>T</td>
<td>1516</td>
<td>RD</td>
</tr>
<tr>
<td>2 TKR /0</td>
<td>Up 02-00-41-08-80-88</td>
<td>SRT</td>
<td>4544</td>
<td>A11</td>
</tr>
</tbody>
</table>

Flags: RE = IBMRT PC behavior Enabled, RD = IBMRT PC behavior Disabled

SR bridge number: 1
SR virtual segment: AAA (1:N SRB Not Active)
Adaptive segment: E1E

MSS1 ASRT>LIST PORT
Port Id (dec) : 128: 1, (hex): 80-01
Port State : Blocking
STP Participation: Enabled
Port Supports : Transparent Bridging Only
Assoc Interface #/name : 2/Eth/0

Port Id (dec) : 128: 2, (hex): 80-02
Port State : Forwarding
STP Participation: Enabled
Port Supports : Transparent and Source Route Bridging
SRB: Segment Number: 0x8007 FT: Yes, TSF: Yes
Duplicate Frames Allowed: STE: Yes, TSF: Yes
Assoc Interface #/name : 3/TKR/0

Figure 348. List port command for the bridge in MSS1

NOTE:

1 The bridge port of ELAN et1 is blocking state. At this time, MSS2 will have forwarding state.

To look at the state of the spanning tree in the MSS1 bridge use the list spanning-tree-protocol state command.
NOTE:

The root bridge has a priority of 100 (MSS2).

To display how the bridge spanning tree in MSS1 is configured, use the `list spanning-tree-protocol configuration` command as shown below.

```
MSS1 ASRT>list spanning-tree-protocol configuration
802.1d Spanning Tree Configuration:

  Bridge ID (prio/addr):          200/00-00-00-00-00-0A
  Bridge state:                   Enabled
  Maximum age:                    20 seconds
  Hello time:                     2 seconds
  Forward delay:                  15 seconds
  Hold time:                      1 seconds
  Filtering age:                  300 seconds
  Filtering resolution:           5 seconds

  Port Interface Priority Cost State
  1  Eth /0  128       100   Enabled
  2  TKR /0  128       62    Enabled
```

Figure 350. Configured spanning tree for MSS1 bridge.

8.4.2.2 MSS2 bridge displays

The `list bridge` command for MSS2.
Figure 351. List bridge command for MSS2

NOTE:

1 This bridge has a priority of 100 and will become the root bridge.

The list port command shows the state of the ports on the MSS2 bridge. The transparent bridge port on this bridge is in forwarding state because MSS2 is root bridge.

Figure 352. List port command for the mss2 bridge.

The list spanning-tree-protocol state command for MSS2 shows this bridge is the root with a priority of 100.
8.4.3 MPOA displays

To display the MPOA status, go into Talk 5, protocol mpoa and mps, and select the command which listed in the following screen.

The following screen shows the current configuration status.
The **DISCOVERY** command discovers all neighbor MPSs and MPCs in the network automatically.

![Figure 355. Discovery command](image)

To display the status of the control-VCCs, use the **CONTROL-VCCs** command. Control-VCCs are used between MPOA entities to exchange MPOA control information.

![Figure 357. CONTROL-VCCs command](image)

To view the cache information that a MPOA server has saved for a particular short-cut, use the command **IMPOSITION-CACHE LIST**. You can see the detailed information using command **IMPOSITION-CACHE ENTRY**.

![Figure 358. IMPOSITION-CACHE LIST command](image)
The **SERVER-PURGE-CACHE-IP** command displays the purge cache maintained by the MPS for both the ingress and egress functions. This cache is an IP specific list.

```
MSS1 MPS >SERVER-PURGE-CACHE-IP
SERVER PURGE CACHE
Dest. IP        Pf NextHop IP      Age  Client IP/ATM
--------------- -- --------------- ---- ----------------------------------
10.2.1.0        24 10.2.1.99       1143 39999999999999000011110113827000000000120
10.2.1.99       32 10.2.1.99       1143 39999999999999000011110113827000000000120
10.2.2.0        24 10.2.2.101      1143 39999999999999000011110223827000000000220
10.2.2.101      32 10.2.2.101      1143 39999999999999000011110223827000000000220
```

Figure 359. SERVE-PURGE-CACHE-IP command

8.4.4 IP protocol displays

Use the **RENDUNDANT** command under the IP protocol to display the redundant default IP gateways which configured for each interface.

```
MSS1 IP>RENDUNDANT
Redundant Default IP Gateways for each interface:
inf 2 10.1.1.1        255.255.255.0   40.00.82.10.01.10 primary active
inf 2 10.1.2.1        255.255.255.0   40.00.82.10.02.10 primary active
inf 2 10.1.3.1        255.255.255.0   40.00.82.10.03.10 primary active
inf 3 10.2.1.1        255.255.255.0   40.00.82.10.01.11 primary active
inf 3 10.2.2.1        255.255.255.0   40.00.82.10.02.11 primary active
inf 3 10.2.3.1        255.255.255.0   40.00.82.10.03.11 primary active
inf 3 10.2.4.1        255.255.255.0   40.00.82.10.04.11 primary active
inf 3 10.2.5.1        255.255.255.0   40.00.82.10.05.11 primary active
inf 4 10.3.1.1        255.255.255.0   40.00.82.10.01.12 primary active
```

Figure 360. REDUNDANT default gateway command

NOTE:

Because MSS1 act as primary gateway, the status is "Primary" and "active". The MSS2 will be "Backup" and "Standby".
Chapter 9. Web Interfaces

In this chapter carry out the procedure to manage 8265 and MSS Server from a web browser attached to the network.

Web Interface is easy to use for beginner.

You just click it on screen instead typing command using Command Line Interface.

you return to result as previous command directly.

9.1 Web interface for 8265 Control Point integrated web server

The 8265 has an integrated web server that has the following features:

• Graphical topology display application to provide an exact image of the topology seen by the PNNI node.

• Graphical view of the 8265 chassis, ATM modules, and ATM interfaces, with easy navigation.

• TELNET link to the Control Point.

• Direct navigation to integrated web servers on attached devices.

• Basic configuration functions (isolate and connect modules, enable and disable ATM interfaces).

• Debugging facilities (traces, error log, dump and cleared table)

• Basic SHOW functions.

In this section, we show some examples using web interface for 8265.

9.1.1 Prepare to 8265

The community table defines which IP addresses can access the integrated web server on 8265.

To create a web-access entry in the Community table, use the "set community" command as following.

```
8265_hub11> set community webmgr 10.2.1.50 http_enable
```

Figure 361. set community for web access

9.1.2 access to the 8265

We access to 8265_hub11 using web browser on PC.

1. Enter http:// followed by the IP address of 8265_hub11(10.3.1.11).

2. Enter user_name and password for logon to the 8265_hub11
Note:

1. 0x0A02132 means 10.2.1.50 as IP address of PC using web browser.
2. The user_name is always "admin".
3. The password is the current Administrator password.

3. Initial screen is shown with status of module, port and power supply as following.
Figure 363. Initial screen for 8265_hub11
9.1.3 some examples

9.1.3.1 Device information

Select slot 14 from the initial screen.

We see the screen same as "show module 14" and "show port 14.all" command with graphical.

Figure 364. show slot 14 on 8265_hub11

Note:

1. change the specify port to Enable/Disable.

2. select enable/disable from pull down and then Apply_Selection.

2. telnet and access to another devices as just click.
When click **more** under Services, Monitor and Network from left menu, another options are shown.

9.1.3.2 trace in Services

Select **Trace** from Services on left menu.

click specified options to take traces and **Apply**.
9.1.3.3 PNNI in Network

1. at 8265_hub11 as peer group leader within peer group 1

Select PNNI from Network on left menu.

PNNI network is shown with graphical.

Figure 366. PNNI network on 8265_hub11

Note:

1. square 0 with yellow means this node is peer group leader within this peer group.

2. square with pink means thin node is another peer group leader outside this peer group.

just click on right on specified node, node information is shown.
Figure 367. PNII network with address information on 8265_hub11

Note:
1. Information on node 0.
 This node has 39.99.99.99.99.99.00.00.11.11.01.11.82.65.00.00.01.11.00 as ATM address and 10.3.1.11 as IP address.

2. at 8265_hub23 as peer group leader within peer group 2
 access to 8265_hub23 same as 8265_hub11.
9.2 Web Interface for MSS Server

The MSS Server has a web server that has the following features:

- Graphical view of the MSS Server.
- Operator Console functions same as Talk 5 for Command Line Interface.
- Gateway Configuration functions same as Talk 6 for Command Line Interface.
- Event Logging System Console functions as Talk 2 for Command Line Interface.
- Help functions.

In this section, we show some examples using web interface for MSS Server.
9.2.1 Access to the MSS

We access to MSS1 using web browser on PC.
1. Enter http:// followed by the IP address of MSS1 (10.3.1.2).
2. Initial screen is shown.

Figure 369. Initial screen on MSS1

Note:
1. Select Configuration and Console using operator console or configuration.
3. Configuration and Console screen

![Configuration and Console screen](image)

Figure 370. configuration and console screen

Note:

1. Operator Console is same as Talk 5 for Command Line Interface.
2. Gateway Configuration is same as Talk 6 for Command Line Interface.
4. Operator Console screen

![Operator Console screen](image)

Figure 371. Operator Console screen
9.2.2 Some examples

9.2.2.1 Show LEC Entries

Select following from Configuration and Console window:

Operator Console

- NETWORK commands
- 0: ATM
- LE-SERVICES
- WORK with an existing les-bus
- SHOW information
- LEC entries

This screen of listing LECs joined to this MSS is shown as the following.

![Configuration and Console](image)

Figure 372. Show LEC entries on MSS1

Though process is same as CLI, only we can return any screens through Configuration and Console to LEC entries using web.

just click it from the Command Path list and Return To.
Figure 373. Show LEC entries with

Note:

1. click and command list is shown.
9.2.2.2 Show IP addresses
Select following from Configuration and Console window:
Operator Console
-> PROTOCOL commands
-> IP
-> INTERFACE addresses

![Configuration and Console - Netscape](image)

<table>
<thead>
<tr>
<th>Interface</th>
<th>MTU</th>
<th>IP Address(es)</th>
<th>Mask(s)</th>
<th>Address-MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM/0</td>
<td>9100</td>
<td>192.160.1.1</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ETH/0</td>
<td>1500</td>
<td>10.1.3.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ETH/2</td>
<td></td>
<td>10.1.2.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ETH/3</td>
<td></td>
<td>10.1.1.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ETH/4</td>
<td></td>
<td>10.2.4.4</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ETH/5</td>
<td></td>
<td>10.2.2.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ETH/6</td>
<td></td>
<td>10.2.3.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ETH/7</td>
<td></td>
<td>10.2.1.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>TRK/0</td>
<td>4490</td>
<td>10.2.5.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>TRK/1</td>
<td>4490</td>
<td>10.3.1.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
<tr>
<td>TRK/2</td>
<td>4490</td>
<td>10.3.1.2</td>
<td>255.255.255.0</td>
<td>Unspecified</td>
</tr>
</tbody>
</table>

Figure 374. show IP addresses on MSS1
Chapter 10. ATM Proxy Clients Configuration Examples

10.1 Overview

We are now going to show the configuration of a number of clients and attach them to our ATM network. Instead of our 8265 network we will use two 8260s we used to show the migration process from version 2 code to PNNI version 3 code. This should not be a problem as everything we are going to demonstrate can be done with these switches. In general, the proxy configuration should not be dependent of the backbone configuration. The logical network configuration will be exactly the same as we have used in the PNNI configuration examples. This is shown in the MSS chapter xxxlink. We will have the same two user ELANs, one ethernet (et1) and the other token-ring (tr1) and our clients will join these.

We are going to show the configuration for the following clients.

8271-712. The 8271 switch is now based on new hardware and we are going to show the configuration of this with its ATM UFC.

8274-GRS routeswitch.

8270-800. We will show the configuration of this token-ring switch together with the MSS client blade we have installed. The MSS client includes the MPOA client and we will demonstrate how shortcuts can be created with other clients in our network. (The 8371 ethernet switch. The 2216 router running an NHRP client.) With MPOA, or layer 3 switching in the ATM world, the LAN types do not need to be the same. Hence our examples will show shortcuts between clients on token-ring and ethernet ELANs.

Typically in a lot of networks today where switches are used customers have more than one IP subnet in a physical LAN. Workstations traffic from one subnet to another has to be routed through a router. In the ATM world this would mean routing through an MSS server. With the implementation of MSS client, local MPOA shortcuts can be created within the 8270 switch without the traffic being passed to and from the router function in the MSS. This will be shown.

2216-400 router. We will show the configuration of this switch with an NHRP client.

8371-A16 ethernet switch. This switch includes an MPOA client. We will show how to configure this switch and that shortcuts are created.

S/390 OSA 2 adapter. We will show the configuration of an OSA 2 adapter. Our 9276 has an ATM OSA card and we will show how to configure two lan-emulation clients in the OSA.

For clarity, diagrams of our network and logical network follow.
Figure 375. Physical Network Diagram
10.2 Configuring the 8271-712

We are going to leave the base switch in its default configuration. This has all ports in the default domain. We will set a management IP address and configure the ATM UFC with one lan emulation client.

First logon to the 8271 switch. The main menu is displayed as shown.
In the "SWITCH MANAGEMENT" menu, we can configure Port, Unit and VLAN. Here show the VLAN status. We will use just one VLAN as default.

\begin{verbatim}
IBM 8271 Nways Switch Main Menu

SWITCH MANAGEMENT
USER ACCESS LEVELS
STATUS
MANAGEMENT SETUP
SOFTWARE UPGRADE
INITIALIZE
RESET
REMOTE POLL
ATM CONFIGURATION
LOGOFF

Port ID: 1 VLAN ID: [1]
APPLY CANCEL
\end{verbatim}

\begin{verbatim}
IBM 8271 Nways Switch VLAN Setup

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>VLAN Membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13 ATM</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Port ID: 1 VLAN ID: [1]
\end{verbatim}

\begin{verbatim}
Figure 377. 8271 Main menu

Figure 378. Switch VLAN setup screen

Note:

1 All switch ports include ATM are assigned to VLAN1
Before configure the ATM UFC, we need 8271 management configuration. The IP address is 10.1.1.4, and the default gateway will be 10.1.1.1. The rest of the configuration is left at the default values.

![IBM 8271 Nways Switch Management Setup](image)

Now we will configure the ATM LEC interface. From the switch main menu select "ATM CONFIGURATION". The following screen is displayed. After configuring the ATM module choose "ATM LEC SETUP" to setup the ATM LEC.

![Figure 379. 8271 Management setup](image)
IBM 8271 Nways Switch ATM Module Configuration

Changing the configuration displayed on this screen will cause the device to be reset and may result in a loss of communication. Please refer to the manual before editing any of the fields on this screen.

ATM Mode: LAN Emulation Version 1
Signalling: uni3.1
SONET/SDH: SONET STS-3c
Max VPI Bits(0-4): [1]
Max VCI Bits: 10
ILMI VCC: [0] [16]

ATM Module Version Information:
 Hardware Version: 1.00
 Upgradable Software Version: 1.07D
 Boot Software Version: 1.00

By selecting the "ATM LEC SETUP", the following screen is displayed. We can define the ATM LEC in this screen. We have defined the LEC to join the et1 elan by using the LECS.

To activate the changes made choose APPLY.

Notes:

1. Signalling UNI version. we will use UNI3.1
2. VPI/VCI bit. Leave at the default value.
3. This switch will use ILMI function. Leave the default value.
4. The ATM UFC’s software version. The latest code can be obtained from the IBM networking WEB site. (www.networking.ibm.com)
Figure 381. ATM LEC Setup

Note:

1. The ATM LEC will attach to the default VLAN1 as shown in Figure 378 on page 354.
2. Connect the VLAN to the ELAN
3. You can define either the LES’s ATM address, or the LEC will obtain the LES address from the LECS. We have set LECS.
4. The name of ELAN that the LEC will join is "et1"

You can verify the status of the ATM connection as follows. Choose “SWITCH MANAGEMENT” from the main menu. This screen is shown below.
Figure 382. Switch management screen

Select port 13 and then STATS. The ATM port statistics menu is displayed as shown below.

Select LEC from this screen. The ATM VLAN LEC Status screen is displayed.
IBM 8271 Nways Switch ATM VLAN LEC Status

Port ID: 13

Select the VLAN to be monitored in the field below:

VLAN: []

LEC State: Active
LEC ELAN Name: et1
LEC ATM Address: 3999999999999900001110221:08004e355:00

Last LEC Failure Reason: None
LEC Operation at Failure: None

Frames Received: 63408 Octets Received: 30295440
Frames Transmitted: 14198 Octets Transmitted: 1104529

CLEAR SCREEN COUNTERS CANCEL

Figure 383. ATM LEC status

Note:

1. The LEC status is shown as active.

2. The LEC ELAN name.

3. This shows the full ATM address of this LEC. The first 13 bytes are obtained from the ATM switch. The next 6 bytes are the ESI and on the 8271 it is the burned in MAC address. The last byte, the selector is automatically assigned to "00"

Note 1.

If the LEC is not active and the configuration is correct. Try resetting the 8271 switch and verifying the status in MSS.

Note 2.

WARNING. The Spanning Tree Protocol is not supported over ATM. Read the microcode release notes. If you try and create a redundant link with the ATM UFC, a network loop will occur!
10.3 8274 Configuration

Using a terminal program with the command line interface, we log into the 8274 with the default logon id admin with password switch as shown in Figure 384 on page 360.

![Welcome to the IBM Corporation Gigabit RouteSwitch! Version 3.4.4](image)

Figure 384. Log into the 8274 switch

10.3.1 System Configuration

Once logged into the 8274, basic system information may be changed. Type syscfg at the command prompt as shown in Figure 385 on page 360.

![Figure 385. Change the basic system information](image)
Then we can change the system prompt be typing `chpr` at the command prompt as shown in Figure 386 on page 361, if we need.

```
/ %chpr

Currently the prompt format is:

$Menu-Path %

Example prompt format:

$Menu-Path > $SysName -> %

wxyz :

Yields a prompt like:

$Menu-Path > Marketing 1 -> %

wxyz :

New prompt format: ITSO_GRS1$Menu-Path>

ITSO_GRS1/>
```

Figure 386. Change the system prompt

10.3.2 ATM Port Configuration

To view ATM port information, use the `vap` command as shown in Figure 387 on page 361.

```
ITSO_GRS1/>vap 5/2

<table>
<thead>
<tr>
<th>Slot Port</th>
<th>ATM Port Description</th>
<th>Conn Tran</th>
<th>Media UNI</th>
<th>Max VCI</th>
<th>Type</th>
<th>Typ</th>
<th>VCC</th>
<th>bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 2</td>
<td>ATM PORT</td>
<td>PVC</td>
<td>STS3c</td>
<td>Multi Pri</td>
<td>1023</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot Port</th>
<th>Loopback Cfg Tx Clk Source</th>
<th>End System</th>
<th>Sig</th>
<th>Sig</th>
<th>IIMI</th>
<th>IIMI</th>
<th>IIMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 2</td>
<td>NoLoop</td>
<td>LocalTiming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot Port</th>
<th>ATM Network Prefix</th>
<th>Ver VCI</th>
<th>Enable VCI</th>
<th>Poll</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Slot Port</th>
<th>Tx Seg Sz</th>
<th>Rx Seg Sz</th>
<th>Tx Buff Sz</th>
<th>Rx Buff Sz</th>
<th>Oper</th>
<th>SSCOP</th>
<th>IIMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 2</td>
<td>131072</td>
<td>131072</td>
<td>4600</td>
<td>4600</td>
<td>Enb(PVC)</td>
<td>Down</td>
<td>Down</td>
</tr>
</tbody>
</table>
```

Figure 387. View ATM Port Configuration
Note:

1. Display the ATM port 5/2 as PVC

The ATM port configuration is changed to SVC using map command as shown in Figure 388 on page 362.

```
ITSO_GRS1/>map 5/2

Slot 5 Port 2 Configuration

1) Description (30 chars max) : ATM PORT
2) Conn Type { PVC(1), SVC(2) } : PVC
3) Max VOCs (1-1023) : 1023
4) Max VCI bits (1..10) : 10
5) UNI Type : Private
6) Tx SAR Buffer Size (131072) : 131072
7) Rx SAR Buffer Size (131072) : 131072
8) Tx Frame Buffer Size (1800-8192) : 4600
9) Rx Frame Buffer Size (1800-8192) : 4600
10) P1 Scramble {False(1),True(2)} : True
11) Timing Mode {Loop(1),Local(2)} : Local
12) Loopback Config {NoLoop(1),DiagLoop(2),LineLoop(3)} : NoLoop
13) Phy media {SONET(1),SDH(2)} : SONET

Enter (option=value/save/cancel) : 2=2

Slot 5 Port 2 Configuration

1) Description (30 chars max) : ATM PORT
2) Conn Type { PVC(1), SVC(2) } : SVC

30) Sig version {3.0(1) 3.1(2)} : 3.0
31) Signaling VCI (0..1023) : 5
32) ILMI Enable {False(1),True(2)} : True
33) ESI (12 hex-chars) : 0020dac778d1
34) ILMI VCI (0..1023) : 16
35) ILMI Polling {Off(1),On(2)} : Off

3) Max VOCs (1-1023) : 1023
4) Max VCI bits (1..10) : 10
5) UNI Type : Private

13) Phy media {SONET(1),SDH(2)} : SONET
```

Figure 388 (Part 1 of 2). Modify the 8274 ATM Port Configuration to SVC
Figure 388 (Part 2 of 2). Modify the 8274 ATM Port Configuration to SVC

Note:

1. Change connection type to SVC.
2. Change the burned-in ESI address to Locally Administered address of 827400000001
3. Modifying the port will reset the port.

To view ATM port information, type vap at the command prompt as shown in Figure 389 on page 364. The 13-byte ATM network prefix of is displayed. This address was learned from the 8265 ATM switch 8265_HUB1 that this 8274 is physically connected to.
10.3.3 Create a LANE service

Figure 390 on page 365 shows how to create a LANE service. We use the cas command set to create a LANE service.
<table>
<thead>
<tr>
<th>Service Type</th>
<th>Description</th>
<th>Encaps Type</th>
<th>Connection Type</th>
<th>PTOP Group</th>
<th>Admin Status</th>
<th>BandWidth Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTOP Bridging</td>
<td>PTOP Bridging Service 1</td>
<td>Private</td>
<td>PVC</td>
<td>1</td>
<td>Enable</td>
<td>1</td>
</tr>
<tr>
<td>LAN Emulation</td>
<td>LAN Emulation Service 1</td>
<td>802.3</td>
<td>SVC</td>
<td>1</td>
<td>Enable</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 390 (Part 1 of 3). Create a LANE service on Port 5/2
Figure 390 (Part 2 of 3). Create a LANE service on Port 5/2

Enter (option=value/save/cancel) : **22=2**

Slot 5 Port 2 Service 1 LANE Configuration Parameters

1) Proxy { NO (1), YES (2) } : YES
2) Max Frame Size { 1516 (1), 4544 (2) } : 1516
2) Max Frame Size { 9234 (3), 18190 (4) } : **1516**
3) Use translation options { NO (1), YES (2) } : Yes (use Swch menu to set)
4) Use Fwd Delay time { NO (1), YES (2) } : NO
5) Use LE Cfg Server (LECS) { NO (1), YES (2) } : **YES**
6) Use Default LECS address { NO (1), YES (2) } : YES
7) Control Time-out (in seconds) : 10
8) Max Unknown Frame Count : 10
9) Max Unknown Frame Time (in seconds) : 1
10) VCC Time-out Period (in minutes) : 20
11) Max Retry Count : 2
12) Aging Time (in seconds) : 300
13) Expected LE_ARP Resp Time (in seconds) : 1
14) Flush Time-out (in seconds) : 4
15) Path Switching Delay (in seconds) : 6
16) ELAN name (32 chars max) : et1

Enter (option=value/save/cancel) : **16=et1**

Slot 5 Port 2 Service 1 LANE Configuration Parameters

1) Proxy { NO (1), YES (2) } : YES
2) Max Frame Size { 1516 (1), 4544 (2) } : 1516
2) Max Frame Size { 9234 (3), 18190 (4) } : **1516**
3) Use translation options { NO (1), YES (2) } : Yes (use Swch menu to set)
4) Use Fwd Delay time { NO (1), YES (2) } : NO
5) Use LE Cfg Server (LECS) { NO (1), YES (2) } : **YES**
6) Use Default LECS address { NO (1), YES (2) } : YES
7) Control Time-out (in seconds) : 10
8) Max Unknown Frame Count : 10
9) Max Unknown Frame Time (in seconds) : 1
10) VCC Time-out Period (in minutes) : 20
11) Max Retry Count : 2
12) Aging Time (in seconds) : 300
13) Expected LE_ARP Resp Time (in seconds) : 1
14) Flush Time-out (in seconds) : 4
15) Path Switching Delay (in seconds) : 6
16) ELAN name (32 chars max) : et1

Enter (option=value/save/cancel) : **save**

Saving new LANE Configuration values
Figure 390 (Part 3 of 3). Create a LANE service on Port 5/2

Note:

1. Modify the service type of LAN Emulation

2. The default LECS address is the ATM well known address. The other option is to configure the ATM address of the LECS directly. In this example, the 8265_HUB1 is configured to respond to this well known address request since we use well known address for LECS. We use the set lan_emul configuration_server active_wka command on the 8265 as shown in.

3. Modify the LANE configuration

4. Add an ELAN name. This will be used by the LECS to respond with LES/BUS ATM address as well as by the LES/BUS during the join process.

To view the services defined on the 8274, the vas command is entered at the command prompt. Figure 391 on page 368 displays the services.

Slot 5 Port 2 Service 1 is configured for LAN Emulation.
Figure 391. View ATM services

The connection to the LES/BUS function on the MSS is successful, as indicated by the Oper Status of LANE Op. and the dynamically allocated Conn VCI's of 87, 88, 89, 90.

10.3.4 Create a VLAN

A new VLAN will be created as it is not recommended to use the default VLAN for application data traffic.

The new VLAN will be created with the following attributes:
1. VLAN number 2 - part of Group 1
2. Network address rule
 • Protocol IP: 10.1.1.0
3. Port address rule
 • ATM port 5/2 using the LANE service
 • Gigabit Ethernet port 7/1, 7/2
4. Virtual IP router arm - 10.1.1.10
5. Default RIP - Silent
6. Default framing type - Ethernet II
Figure 392 (Part 1 of 2). Create a VLAN

```
ITSO_GRS1/> cratvl
Enter the VLAN Group id for this VLAN (1) : 1
Enter the VLAN Id for this VLAN (2) : 2
Enter the new VLAN's description: VLAN2
Enter the Admin status for this vlan [(e)nable/(d)isable] (d) : e
Select rule type:
1. Port Rule
2. MAC Address Rule
3. Protocol Rule
4. Network Address Rule
5. User Defined Rule
6. Binding Rule
7. DHCP PORT Rule
8. DHCP MAC Rule
Enter rule type (1): 4

Set Rule Admin Status to [(e)nable/(d)isable] (d) : e

Select the Network Protocol:
1. IP
2. IPX
Enter protocol type: 1
Enter the IP Address: 10.1.1.0
Enter the IP Mask (255.0.0.0): 255.255.255.0
Configure more rules for this vlan [y/n] (n) : y

Select rule type:
1. Port Rule
2. MAC Address Rule
3. Protocol Rule
4. Network Address Rule
5. User Defined Rule
6. Binding Rule
7. DHCP PORT Rule
8. DHCP MAC Rule
Enter rule type (1): 1

Set Rule Admin Status to [(e)nable/(d)isable] (d) : e
Enter the list of ports in Slot/Interface format: 5/2
Configure more rules for this vlan [y/n] (n) : y

Select rule type:
1. Port Rule
2. MAC Address Rule
3. Protocol Rule
4. Network Address Rule
5. User Defined Rule
6. Binding Rule
7. DHCP PORT Rule
8. DHCP MAC Rule
Enter rule type (1): 1

Set Rule Admin Status to [(e)nable/(d)isable] (d) : e
Enter the list of ports in Slot/Interface format: 7/1-2
Configure more rules for this vlan [y/n] (n) : n
VLAN 1: 2 created successfully
```
Figure 392 (Part 2 of 2). Create a VLAN

Note:

1. Create a rule Type as Network Address Rule for VLAN2.

2. Select IP protocol for Network Address Rule. IP address is 10.1.1.0 and IP Mask is 255.255.255.0.

3. Create another rule type as Port Rule for VLAN2. Interface 5/2, 7/1 and 7/2 are assigned to this VLAN.

4. Enable IP as IP address is 10.1.1.10.

5. Enable IPX as IPX network address is 100.
displays the status of the VLAN followed by the Virtual Interface VLAN Membership.

```
ITSO_GRS1/>atvl
VLAN  VLAN  VLAN  Admin  Operational
Group:Id  Description                                   Status  Status
---------------------------------------------------------------------
1: 2    VLAN2                             Enabled  Active
```

```
ITSO_GRS1/>vivl
Virtual Interface VLAN Membership
Slot/Intf/Service/Instance  Group    Member of VLAN#
--------------------------    -----    ---------------
1   /1   /Rtr      /1          1      1
1   /1   /Rtr      /2          1      2
4   /1   /Brg      /1          1      1
4   /32   /Brg      /1          1      1
5   /2   /Brg      /1          1      1 2
5   /2   /Lne      /1          1      1 2
7   /1   /Brg      /1          1      1 2
7   /2   /Brg      /1          1      1 2
```

Figure 393. View CLANs and Assignments

Note:

1 Virtual IP router arm is a member of VLAN 2
2 LANE service on interface 5/2 and gigabit ethernet ports on interface 7/1-7/2 are assigned to VLAN 2.

The default VLAN 1 is modified to disable IP.

This is done for the following reasons:

- The 8274 will not manage via the default VLAN but rather by the VLANs that will be created.
- Since there are no policies configurable for the default VLAN 1, all broadcast and unicast traffic to unknown destination are flooded out all ports within the group.
- Save IP address space since every virtual router port has to have its own IP subnet.
- The default VLAN should not be used for communication at all.
10.3.5 Connectivity between the 8274 and the MSS

In order to verify that we have connectivity between the 8274 and the MSS, we type ping 10.1.1.1 from command prompt as shown in Figure 395 on page 372.

![Figure 395. Verify IP connectivity](image)

10.4 8270 and 2216 configurations with MPOA and NHRP

In this section we are going to configure an 8270-800 token-ring switch domain and the MSS client UFC we have installed. This will join the tr1 ELAN.

We will then configure the 2216 switch with an ethernet lan and a 155MMF ATM LIC. The ATM LIC will join the et1 ethernet ELAN and will be configured with an NHRP client.
We will have workstations on the LANs behind each switch and will show the shortcuts that are created between these MPOA and NHRP clients bypassing the router function in the MSS.

The following diagram shows what we are going to do. You can see this is a small part of the overall logical diagram shown at the beginning of this chapter.

![Logical overview of the 8270 and 2216 connectivity](image)

Figure 396. Logical overview of the 8270 and 2216 connectivity

10.4.1 8270 configuration

In our 8270 configuration we will configure the base switch with a single domain and configure the MSS client, with an MPOA client to join the tr1 ELAN. This will give it the ability to create shortcuts where these are allowed.
10.4.1.1 Add physical Interface

The MSS client is configured the same was as an MSS. The configuration tool only contains sections for the parameters that apply to the MSS client but will be familiar to anyone who has used the MSS configuration tool before.

To configure an MSS client, select <New configuration> from menu bar, then <MSS client> and <ATM> in sequence. The Navigator will change to the screen to configuring MSS Client [ATM]. The following navigation window is displayed.

![Navigation windows](image)

We will add a Token interface to attach the MSS client to the base unit domain. Here we are adding one client as all the base token-ring ports are in the default domain. If you have created more than one domain a separate interface is needed for each domain. The ATM interface already exist in the screen because we have selected ATM type MSS client.
Next we will configure the interfaces. The interfaces screen is shown below. We will configure the ATM interface first.

In the **General** window, leave the default values.

Assigned the ESI number of **827000000101** as shown in the following window.
Change the signalling protocol to **UNI 3.1**. In our ATM network, all signalling protocol used is UNI 3.1. and leave the other parameter at the defaults.
Select the signalling tab. We will assign a locally administrated address on the Token ring interface. Assigned the address 400082700101.

Figure 401. Signalling protocol

Figure 402. Assign MAC address on the Token ring interface
10.4.1.2 Configuring LEC interface

To configure the LEC interface, select LEC interfaces under LAN Emulation in the Navigation window. On the General tab window, you can set LEC information. Set the ESI to the one shown and the selector to 10. The locally administered MAC address is set to 400082700110.

Figure 403. Configuring LEC

Select the ELAN tab and set the ELAN name to tr1.
Select the servers tab and ensure that LECS Autoconfiguration is checked.
Select the misc tab.

Check the persistent data direct VCC mode. By enable the **Persistent data direct VCC mode**, we can prevent the LEC from dropping connections to clients for the time period shown if the les/bus pair fails and the LEC re-joins the backup les/bus.

Leave the other parameters at the defaults.
10.4.1.3 Configuring System

In the system general screen you set the following. System name to **8270#1** and location to **ITSO**.

![Figure 406. Configuring persistent data direct VCC mode](image)

![Figure 407. Configuring System General](image)
In the MSS client we have not configured any IP addresses on interfaces so we are going to configure TCP/IP Host services to enable management access to the client from the network. There are two ways to access MSS client. From the network using the IP address defined in **TCP/IP host services** or from the base 8270 unit by selecting the **Non-Token-ring Port**. The base unit has a management IP address which should be different from the one defined in the MSS client.

Put the IP address and default gateway as shown the following window.

![TCP/IP Host services](image)

Figure 408. TCP/IP Host services

10.4.1.4 Configuring SNMP

We are going to configure a community name of **itso** and **read-write trap** access.

To configuring community, select community under the SNMP config in the Navigation window.

Enter the details as shown below and click **add**.
Figure 409. Add community

To configure the server IP address the traps will be sent to, click on the word **addresses** at the top of the screen. Add the IP address of the server and click **add**.

Figure 410. Configure Trap server
To configure the Trap flags, click on the word **traps**. Select **all** from the pull down and click **add**.

![Figure 411. Configuring Traps](image)

10.4.1.5 Configuring MPOA Client

To configure the MPOA client, select the MPOA client under the Protocols in the Navigation window. MPOA Client is enabled as default but we need to change some of the default parameters like as ESI number.

In the **General** tab, leave the status for MPOA enabled. Set the ESI to the value shown from the pull down and set a selector of 20. We have left the fragmentation mode set to **perform fragmentation**, as we will be switching to ethernet clients.

This is shown on the screen below.
Select the shortcut tab. This shows that MPOA shortcuts will be set up when the frame rate exceeds 10 frames per second. We left this at the default. Some of the effects of this can be seen later when we show examples of screens where shortcuts have been set up.

We have set a locally administered MAC address of 400082700120.
By default the MPOA client and the NHRP client are enabled. We have configured the MPOA client. For reference the NHRP general and interface screens are shown.
Figure 414. NHRP General

The following window shown the **NHRP interface**. Box level defaults are left enabled.

Figure 415. NHRP interface
10.4.1.6 Configuring Bridging
Now we will configure Bridging. The interface between the MPOA client and the switch domains in the base unit is through a source-route bridge. Bridging must be enabled and a source-route bridge set up between the MPOA client and each switch domain. We have only one switch domain, the default hence we have only one token-ring bridge port.

Select the General tab under Bridging in the Navigation window. Check bridging.

SRB is the only bridge type available. Select the SRB tab and set the bridge number. We have set C. The bridge number should unique amongst bridges that attach to the same segment.
Figure 417. Configuring Source route Bridge

Now we will configure the bridge interfaces. Select **Interfaces** under **Bridging**. The bridge interfaces that can be configured are the token-ring interfaces and the LEC-token-ring interface. Numbers 2 and 3 in our case. These are shown in the screens below.

Highlight the Token ring interface. Check **Bridging port** so this interface participates in the bridge. The 8270 only support source route bridge so set the **interface supports** field to **SRB**. We have given a segment number of **A12** to this interface but it should match the segment number of the switch base ports.
After configure the Token ring interface, highlight the **LEC-Token ring**. Configure this in the same way but use a segment number of **A11**. This is the segment number the MSS knows the tr1 ELAN as.
To configure spanning tree, select the Spanning tree protocol under Bridging in Navigation window.

In default, enable the spanning tree. You can assign the bridge address which will be used as the bridge MAC address in the **General** window that follows.

![Spanning Tree Protocol Configuration](image)

Figure 420. Configuring Spanning tree

10.4.2 Configuring 2216

We will configure the 2216-400 LEC and NHRP client. NHRP shortcuts will be set-up the 8270 in our example.

The following shows the 2216 navigation window.
First we will add the adapters in their slots. We have our ATM adapter in slot 4 and a two port ethernet adapter in slot 5. We are only using ethernet port 1.
Next we will configure the interfaces we have just added. This is basically similar to the MSS and MSS client so it will only be briefly described here.

To configure the ATM interface, select the ESI tab, and assign the locally administrated address 221600000201 and click <ADD>.

![Image of configuring ESI](image)

Figure 423. Configuring ESI

Select **signalling**. Change the signalling protocol to **UNI 3.1** as shown below.
Figure 424. Configuring signalling

To configure the NHRP interface select the NHRP-ATM interface. We have changed the parameters as follows.

Set the ESI to 221600000201 with a selector of 1E.
Select the MAC Address tab and assign a locally administered MAC address. 02004468400E. (In non-canonical form this is 400022160201)
Select the first ethernet interface. We are using an RJ45 cable to attach to a hub and want ethernet framing. We have set a MAC address of 020044684080.

![Figure 427. Configuring Ethernet interface](image)

10.4.2.2 Configuring LEC

The ESI and selector byte are configure under the **general** tab. The MAC address assigned is "020044684008”. It will be "400022160210" in non-canonical format.
Select the ELAN tab. The 2216 will join ELAN et1 so enter the ELAN name, et1 in the ELAN name field.
10.4.2.3 Configuring System

The system information is configured on the following window. Define the system name and the location.

![System General Window](image)

Figure 430. System information
10.4.2.4 Configuring IP
Select IP under protocols from the navigation window.

We will configure the IP address in the Ethernet interface. The IP address of the LEC-Ethernet will be in the same subnet as ELAN et1. The ethernet interface has a subnet of its own.

To configure IP address on the Ethernet interface, highlight the Ethernet interface and put the IP address to 10.1.10.1 with subnet mask 255.255.255.0 and click <ADD> as shown below.

![Figure 431. Adding IP address in the Ethernet interface](image)

We will assign IP address 10.1.1.11 in the LEC-interface. Type the IP address and subnet mask and click <ADD>.
The 2216 is a router and to communicate with other IP subnets through the MSS a default route is required in our configuration. We will add a default static route to the 2216. This is shown below.

Add the destination network 0.0.0.0 with mask 0.0.0.0 and next hop router 10.1.1.1 which is the MSS interface. Click add.
10.4.2.5 Configuring NHRP

The NHRP configuration is the default. It is shown here for reference so you can see what parameters are defined. The NHRP general screen follows.

The NHRP Interface screen follows. The box level defaults are checked.
10.5 Monitoring connectivity between 8270 and 2216 using MPOA/NHRP

In our network we are now going to establish connectivity between a workstation attached to the 8270 switch and one on the ethernet lan connected to the 2216 router. The following screens are taken from the MPOA client in the 8270, the MPOA server in the MSS and the NHRP client in the 2216. The 2216 does not have an MPOA client, just an NHRP client but this can be used to establish a shortcut with an MPOA client in the 8270. The following screens show when the shortcuts are established.
10.5.1 8270/2216 shortcuts with NHRP enable on 2216 and MPOA on 8270

The following diagram shows the shortcut flow.

![Diagram showing shortcut flow between 8270 and 2216 with NHRP and MPOA enabled.]

Figure 436. Logical diagram of MPOA and NHRP interoperability

10.5.1.1 Monitoring from the MPOA/NHRP server in the MSS

A control VCC will be established between the MPOA client in the 8270 and the MPOA server in the MSS. Control VCCs will also be established between the NHRP client in the 2216 and the NHRP server in the MSS.

The following MSS screen shows the connections from the MPOA server to other MPOA servers and clients in the network. To display this do the following.

Talk 5 >> Protocol MPOA >> MPS >> DISCOVERY
The first entry shows the MPOA server in MSS1 knows about the second MPOA server in MSS2. The remaining entries are for the MPOA clients. As can be seen we had two 8270 mss clients in our network.

The control VCC relationship between MPS and MPCs are shown in the following screen. Issue the command `CONTROL-VCCs`. We have a control VCC to each of our 8270s. The selector byte of 20 was defined for the control VCC.

10.5.1.2 Monitoring connections from the 8270 MSS client

The 8270 MSS client includes the MPOA client. The following screen shows the MPOA servers this MPOA client knows about.

To display this do the following. `Talk 5 >> Protocol MPOA >> MPC >> Neighbour >> LIST`
We can display a list of the VCCs that have been established to and from this MPOA client. From Protocol MPOA >> MPC >> VCC >> List

This is shown below.

To see a detailed display of a single VCC issues the command LIST-VCC and enter the VPI and VCI values when prompted. Two examples follow showing detailed displays of the last two VCCs in the previous screen.
Figure 441. Show the detail of VCC

NOTE:

1 This VCC is a connection to the 2216 as shown in the ATM address. The Calling Party field shows TRUE which means this end (the 8270) established this connection. This is the shortcut VCC established by the MPOA client to the 2216 LEC.

2 This shows the type of encapsulation being used for the connection. The client is on an Ethernet lan (IP address in 3 below) Hence the 8270 is using Ethernet LANE encapsulation.

3 The 10.1.10.100 is the IP address of the workstation on the ethernet lan attached to the 2216. A state of resolved means a shortcut has been established for this connection.

4 On the second VCC the Calling Party field is shown as FALSE. This VCC was established by the “other end”. As seen from the ATM address this is a connection from the NHRP client in the 2216 to the 8270 switch.

5 The encapsulation type for this connection is TR-LANE. The NHRP client in the 2216 is forwarding frames across this shortcut VCC in the format required for the 8270 to put them directly onto its switch ports.
A shortcut is established. The default is 10. The display below shows this client has a number of connections to other clients. Some of these have shortcuts established and others have not. A shortcut state of **FLOW DETECTED** means the client knows about the connection but the flow of traffic has not reached the level necessary for it to establish a shortcut. A shortcut state of **RESOLVED** means the client has established a shortcut to this device. In our testing we issued PINGS to these addresses. One per second is under the shortcut threshold of 10. Hence at that time a shortcut was not established. We then used FTP to transfer a file. This exceeded the 10 threshold and the shortcut was established. You have the option of defining in the configuration how many frames per second have to flow before the MPOA client will try and establish a shortcut.

The 10.1.10.100 is the ethernet attached station which behind of 2216. so we can see it is resolved.

Figure 442. Show list of Ingress cache entries

```plaintext
8270#1 MPC INGRESS>LIST
IP-Ingress Cache For MPC on ATM Interface 0
============================================================
Ingress Cache Entries for Direct Host Routes:
--------------------------------------------------------
1) Protocol Address: 10.2.1.5 Shortcut State: FLOW DETECTION
2) Protocol Address: 10.1.1.11 Shortcut State: RESOLVED
3) Protocol Address: 9.170.3.240 Shortcut State: FLOW DETECTION
4) Protocol Address: 10.2.1.1 Shortcut State: FLOW DETECTION
5) Protocol Address: 10.1.10.100 Shortcut State: RESOLVED
6) Protocol Address: 10.2.2.1 Shortcut State: RESOLVED
7) Protocol Address: 10.3.1.21 Shortcut State: RESOLVED
8) Protocol Address: 10.3.1.11 Shortcut State: RESOLVED

Ingress Cache Entries for Direct Network Routes:
------------------------------------------------
Ingress Cache Entries for Derived Host Routes:
================================================
```

NOTE:

1. Here the 8270 has sensed traffic to this address but the flow rate is below the threshold necessary to establish a shortcut.

2. IP address 10.1.10.100 is our target station on the ethernet lan attached to the 2216. This has a shortcut established as can be seen from the resolved state.

To display detailed information about a particular connection use the **LIST-ENTRY** command. Enter the IP address when prompted as shown below.
NOTE:

1. A shortcut to this address has been established. The IP address of 10.1.1.100 is resolved.

2. The encapsulation type being used on this connection is Ethernet-DIX-IP-LANE.

3. It is possible to create local shortcuts within the 8270 switch between workstations on different IP subnetworks without the traffic being routed through the MSS router function. (There is more on this later) This connection is across the ATM network to a 2216 hence the Local Shortcut status is FALSE.

To display the status of the connections being received by the 8270 MPOA client use the MPC EGRESS displays.

The next display is the MPC >> EGRESS >> LIST command which shows a list of the connections to this MPOA client. The display shows we have one connection going to workstation 10.2.2.100 attached to an 8270 token-ring switch port.
To display detailed information about this entry use the **LIST-ENTRIES** command. Enter the IP address when prompted. The following screen shows this display.

NOTE:
1. This shows the source atm address of the connection which is the 2216 NHRP client.
2. This is not a local shortcut between workstations attached to this 8270 switch.

10.5.1.3 Monitoring shortcuts from the 2216

We can display a list of what shortcuts the 2216 has established.

Go to **Talk 5 >> Protocol NHRP >> CACHE LIST** to see a list of the entries the 2216 knows about. This is shown in the screen below. We have one entry to workstation 10.2.2.100 which is attached to our 8270 switch.
To display detailed information about entries in the cache list use the cache entry command as shown below. The display for address 10.2.2.100 is shown below.

```
2216 NHRP>cache list
Total Cache Entries = 1, Active Entries = 1
NHRP Resolution Cache Entries

-------------------------------
Dest Address   NextHop Address State Htime MTU   Net
-----------------    ------------- ----- ----- ----  ---
10.2.2.100      10.2.2.100      Act   585   4490  1
-------------------------------
```

Figure 446. the CACHE LIST command

To display the shortcut-VCC status, issue the command **LANE-SHORTCUT** from the NHRP interface. You can see the MAC address of 10.2.2.100 and VPI/VCI information as shown in the following screen.

```
2216 NHRP>cache entry
Enter destination address [0.0.0.0]? 10.2.2.100
Destination: 10.2.2.100
NextHop: 10.2.2.100
ATM Address: 399999999999990000111101118270000010120 1
State: Act
Net: 1
HoldingTime: 562 seconds
MTU size: 4490
Flags: 0x00420000
```

Figure 447. the CACHE ENTRY command

NOTE:

1 This is the ATM address of the 8270. IP workstation 10.2.2.100 is attached to one of the token-ring ports.

To display the shortcut-VCC status, issue the command **LANE-SHORTCUT** from the NHRP interface. You can see the MAC address of 10.2.2.100 and VPI/VCI information as shown in the following screen.

```
2216 NHRP>laneShortcut all
LANE Shortcut Interface #: 1, ATM Network Interface #: 0

--------------------------
Next Hop Prot @ Dest Mac @ VPI/VCI
--------------------------
10.2.2.100 40-00-56-0E-01-01 0/132

Current MTU being used: 4490
```

Figure 448. the LANE_SHORTCUT command
10.5.1.4 Statistics report in MSS1 with both MPOA and NHRP enabled
To show that the data transfer actually bypasses the MSS router function we
transferred a 12 Mbyte file from the Ethernet attached workstation to the
token-ring attached workstation. Then displayed the statistics in the MSS.

The statistics are shown below.

<table>
<thead>
<tr>
<th>Net</th>
<th>Interface</th>
<th>Unicast</th>
<th>Multicast</th>
<th>Bytes</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pkts Rcv</td>
<td>Pkts Rcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ATM/0</td>
<td>10</td>
<td>0</td>
<td>566</td>
<td>9</td>
<td>479</td>
</tr>
<tr>
<td>1</td>
<td>NHRPL/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Eth/0</td>
<td>4</td>
<td>1</td>
<td>310</td>
<td>4</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>TKR/0</td>
<td>0</td>
<td>1</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>TKR/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TKR/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 449. Show statistics on MSS1

10.5.1.5 Statistics report in MSS1 with MPOA and NHRP disabled.
We repeated the previous test with MPOA and NHRP disabled. The statistics now
show this file being transferred through the MSS router. The byte count on the
ATM interface has increased. So has the received count on the ethernet interface
and the transmit count on the token-ring interface.

<table>
<thead>
<tr>
<th>Net</th>
<th>Interface</th>
<th>Unicast</th>
<th>Multicast</th>
<th>Bytes</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pkts Rcv</td>
<td>Pkts Rcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ATM/0</td>
<td>472</td>
<td>0</td>
<td>30488</td>
<td>581</td>
<td>44142</td>
</tr>
<tr>
<td>1</td>
<td>NHRPL/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Eth/0</td>
<td>40</td>
<td>43</td>
<td>6112</td>
<td>52</td>
<td>3830</td>
</tr>
<tr>
<td>3</td>
<td>TKR/0</td>
<td>46</td>
<td>65</td>
<td>8398</td>
<td>51</td>
<td>2915</td>
</tr>
<tr>
<td>4</td>
<td>TKR/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TKR/2</td>
<td>0</td>
<td>2</td>
<td>108</td>
<td>2</td>
<td>108</td>
</tr>
</tbody>
</table>

Figure 450. Show statistics on MSS1
10.5.2 8270 Local shortcut

In our network we have more than one IP subnet attached to our 8270 switch. (10.2.1.x, 10.2.2.x, 10.2.3.x etc. all with a subnet mask of 255.255.255.0) Normally traffic from workstations on one subnet would have to route through the MSS router to get to workstations on a different subnet even though they are physically attached to the same 8270 switch. The MPOA client implementation allows for local shortcuts to be established within the same switch. This means once the traffic flow exceeds the predefined flow count (10 frames per second by default) a shortcut can be created within the same 8270 switch. Data is then switched between workstations in the 8270 and not sent to the MSS router only to be routed back to the same edge switch. Hence reducing ATM network traffic.

In our example we have two clients 10.2.2.100 and 10.2.3.100 on the same switch but in different subnets. When a file is transferred between them a local shortcut is created bypassing the MSS router. The following screens show this.

First a diagram of the local shortcut.

Figure 451. Local shortcut within the same 8270 switch.
The following screen shows the MPOA control VCC and data direct VCC with the MSS LEC.

![Figure 452. Show list of VCCs](image)

The following screen shows the **MPC >> INGRESS** displays.

The first is an **MPC INGRESS LIST** command that shows our two attached workstations in resolved state. i.e. a shortcut has been created for both of them.

The second and third are **MPC INGRESS LIST-ENTRIES** commands for these two addresses. They show the destination ATM address is the same in both cases and a local shortcut has been established. (Local Shortcut is TRUE)
NOTE:

<table>
<thead>
<tr>
<th>Ingress Cache Entries for Direct Host Routes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Protocol Address: 10.2.3.100</td>
</tr>
<tr>
<td>3) Protocol Address: 10.2.1.1</td>
</tr>
<tr>
<td>4) Protocol Address: 10.2.1.5</td>
</tr>
<tr>
<td>5) Protocol Address: 10.2.2.100</td>
</tr>
<tr>
<td>6) Protocol Address: 100.121.107.96</td>
</tr>
<tr>
<td>7) Protocol Address: 100.2.2.10</td>
</tr>
</tbody>
</table>

Ingress Cache Entries for Direct Network Routes:

Ingress Cache Entries for Derived Host Routes:

<table>
<thead>
<tr>
<th>Ingress Cache Entries for Direct Network Routes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8) Protocol Address: 100.121.107.96</td>
</tr>
</tbody>
</table>

| 8) Protocol Address: 100.121.107.96 | Shortcut State: HOLD DOWN |

Figure 453. Show list of ingress cache entries
IP address 10.2.2.100 and 10.2.3.100 are resolved. This means the MPOA client has created a shortcut to these addresses.

When the MPOA client discovers the ATM address of the partner client is itself it creates the shortcut within itself. The ATM address is same because they are behind on the same 8270 box.

The local shortcut status is TRUE for both these entries. This means the shortcut between these workstations is created within the same switch.

The MPC EGRESS displays that follow show the same information.

```
8270#1 MPC EGRESS> LIST
Egress Cache For MPC on ATM Interface 0
========================================
Egress Cache Entries w/ MPOA-Tag Encapsulation:
Egress Cache Entries w/ Native 1483 Encapsulation (Host Routes):
1) Protocol Address/Mask: 10.2.2.100 /255.255.255.255 State: ACTIVE
2) Protocol Address/Mask: 10.2.1.5 /255.255.255.255 State: ACTIVE
3) Protocol Address/Mask: 10.2.3.100 /255.255.255.255 State: ACTIVE
Egress Cache Entries w/ Native 1483 Encapsulation (Netwk Routes):
----------------------------------------------------------------
8270#1 MPC EGRESS> LIST-ENTRIES 10.2.3.100
Destination Protocol Address Mask [255.255.255.255]?
Egress Cache Entries matching 10.2.3.100/255.255.255.255 :
1) Address/Mask: 10.2.3.100/255.255.255.255 Entry Type: 1483 (HOST, DIRECT)
   LEC #: 3    Cache ID: x5c   State: ACTIVE
   MPS: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.01.14
   Source: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.70.00.00.01.20
   Remaining Age (mins:secs): 35:4
   Recvd Octets: N/A
   Recvd Frames Forwarded: N/A
   Recvd Frames Discarded: N/A
   Tag Value: N/A       Local Shortcut: TRUE
   DLL Header: x0040400038212763c0008210011106b0a12ca110aaaa03000000800
   LANE Extensions in last Imposition reply: Formats 7, 11, 13, 17
8270#1 MPC EGRESS> LIST-ENTRIES 10.2.2.100
Destination Protocol Address Mask [255.255.255.255]?
Egress Cache Entries matching 10.2.2.100/255.255.255.255 :
1) Address/Mask: 10.2.2.100/255.255.255.255 Entry Type: 1483 (HOST, DIRECT)
   LEC #: 3    Cache ID: x57   State: ACTIVE
   MPS: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.01.14
   Source: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.70.00.00.01.20
   Remaining Age (mins:secs): 36:22
   Recvd Octets: N/A
   Recvd Frames Forwarded: N/A
   Recvd Frames Discarded: N/A
   Tag Value: N/A       Local Shortcut: TRUE
   DLL Header: x00404000999999020c0008210011106b0a12ca110aaaa03000000800
   LANE Extensions in last Imposition reply: Formats 7, 11, 13, 17
```
10.5.2.1 Statistics report in MSS1. Local MPOA Shortcut

We repeated the previous test, this time displaying the statistics in the MSS with and without the MPOA client enabled in the 8270. The first screen below shows the MSS statistics with the MPOA client enabled. The display was taken before then just after transferring a 12 Mbyte file.

<table>
<thead>
<tr>
<th>MSS1 +STATISTICS</th>
<th>Unicast</th>
<th>Multicast</th>
<th>Bytes</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td>Interface</td>
<td>Pkts Rcv</td>
<td>Pkts Rcv</td>
<td>Received</td>
<td>Trans</td>
</tr>
<tr>
<td>0</td>
<td>ATM/0</td>
<td>19</td>
<td>0</td>
<td>1427</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>NHRPL/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Eth/0</td>
<td>1</td>
<td>1</td>
<td>170</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>TKR/0</td>
<td>8</td>
<td>2</td>
<td>749</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>TKR/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TKR/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 455. Show statistics on MSS1 with MPOA client.

10.5.2.2 Statistics report in MSS1. No local shortcut.

The 12 Mbyte file was then transferred with the MPOA client disabled. Now the route is to and from the MSS router. Again the statistics were taken before and then just after transferring the file.

<table>
<thead>
<tr>
<th>MSS1 +STATISTICS</th>
<th>Unicast</th>
<th>Multicast</th>
<th>Bytes</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td>Interface</td>
<td>Pkts Rcv</td>
<td>Pkts Rcv</td>
<td>Received</td>
<td>Trans</td>
</tr>
<tr>
<td>0</td>
<td>ATM/0</td>
<td>425</td>
<td>0</td>
<td>28388</td>
<td>516</td>
</tr>
<tr>
<td>1</td>
<td>NHRPL/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Eth/0</td>
<td>19</td>
<td>39</td>
<td>4470</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>TKR/0</td>
<td>59</td>
<td>59</td>
<td>8864</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>TKR/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TKR/2</td>
<td>0</td>
<td>1</td>
<td>54</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 456. Show statistics on MSS1
10.6 8371

We are going to configure an 8371 with an MPOA client. The basic configuration is very similar to the MSS but you can only use the command line and WEB interface. There is no configuration tool.

Figure 457. Logical view of the 8371 attached to the network.

10.6.1 Configuring the 8371 as an MPOA client

10.6.1.1 ATM Port Configuration

We used Slot 2 for the UFC which has port 1 assigned to Network 38. The LEC is assigned Network 40. We will use the command line to configure the 8371.

Enter Talk 6 -> network 38 -> interface

We use the ADD ESI command to set the ESI to 837100000101. The UNI version is set to 3.1.
Figure 458. ATM configuration

Note:

1. Setting the ESI to 837100000101.
2. Changing uni-version to 3.1.

10.6.1.2 LEC configuration

Enter Talk 6 -> network 38

We use the ASSIGN-LEC command to assign a LEC to network 38. The first available is network 40.

Figure 459. assigning LEC as network 40 on network 38

Enter Talk 6 -> network 40

Then we configure the LEC.

We will set the ELAN name to et1, the selector to 10, and the MAC address to 400083710110 for LEC.
Figure 460. Configuring LEC as network 40

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical ATM interface number</td>
<td>38</td>
</tr>
<tr>
<td>LEC interface number</td>
<td>40</td>
</tr>
<tr>
<td>LECS auto configuration</td>
<td>Yes</td>
</tr>
<tr>
<td>Default LECS ATM address</td>
<td>00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00</td>
</tr>
<tr>
<td>C1: Primary ATM address</td>
<td>Ethernet Forum Compliant LEC Config>SET ELAN-NAME et1</td>
</tr>
<tr>
<td>ESI address</td>
<td>83.71.00.00.01.01 (User assigned address)</td>
</tr>
<tr>
<td>Selector byte</td>
<td>0x10</td>
</tr>
<tr>
<td>C2: Emulated LAN type</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Maximum frame size</td>
<td>1516</td>
</tr>
<tr>
<td>C5: Emulated LAN name</td>
<td>et1</td>
</tr>
<tr>
<td>C6: LE Client MAC address</td>
<td>40.00.83.71.01.10</td>
</tr>
<tr>
<td>C7: Control timeout</td>
<td>30</td>
</tr>
<tr>
<td>C7i: Initial control timeout</td>
<td>5</td>
</tr>
<tr>
<td>C7x: Control timeout multiplier</td>
<td>2</td>
</tr>
<tr>
<td>C10: Maximum unknown count</td>
<td>10</td>
</tr>
<tr>
<td>C11: Maximum unknown time</td>
<td>1</td>
</tr>
<tr>
<td>C12: VCC timeout period</td>
<td>1200</td>
</tr>
<tr>
<td>C13: Maximum retry count</td>
<td>1</td>
</tr>
<tr>
<td>C17: Aging time</td>
<td>300</td>
</tr>
<tr>
<td>C18: Forward delay time</td>
<td>15</td>
</tr>
<tr>
<td>C20: LE ARP response time</td>
<td>1</td>
</tr>
<tr>
<td>C21: Flush timeout</td>
<td>4</td>
</tr>
<tr>
<td>C22: Path switch delay</td>
<td>6</td>
</tr>
<tr>
<td>C24: Multicast send VCC type</td>
<td>Best-Effort</td>
</tr>
<tr>
<td>C25: Multicast send VCC avg rate</td>
<td>155000</td>
</tr>
<tr>
<td>C26: Multicast send VCC peak rate</td>
<td>155000</td>
</tr>
<tr>
<td>C28: Connection completion timer</td>
<td>4</td>
</tr>
<tr>
<td>C33: Forward disconnect timeout</td>
<td>60</td>
</tr>
<tr>
<td>C37: Minimum Reconfig Delay</td>
<td>1</td>
</tr>
<tr>
<td>C38: Maximum Reconfig Delay</td>
<td>5</td>
</tr>
<tr>
<td>C39: BUS Connect Retries</td>
<td>1</td>
</tr>
<tr>
<td>LE ARP queue depth</td>
<td>5</td>
</tr>
<tr>
<td>LE ARP cache size</td>
<td>5000</td>
</tr>
<tr>
<td>Best effort peak rate</td>
<td>155000</td>
</tr>
<tr>
<td>Packet trace</td>
<td>No</td>
</tr>
<tr>
<td>Data direct VCC mode</td>
<td>False</td>
</tr>
<tr>
<td>Data direct timeout</td>
<td>30</td>
</tr>
<tr>
<td>IP Encapsulation</td>
<td>ETHER</td>
</tr>
</tbody>
</table>
Note:

1. The ELAN name is set to et1.
2. The ESI is set to 837100000101
3. The selector is set to 10.
4. The locally administered MAC address is set to 400083710110.

We will now enable the interfaces we have just configured.

Enter Talk 6

```
Config> ENABLE INTERFACE 38
Interface enabled successfully

Config> ENABLE INTERFACE 40
Interface enabled successfully
```

Figure 461. Enabling interface network 38 and 40

Next we will configure MPOA.

10.6.1.3 MPOA configuration

Enter Talk 6 -> protocol MPOA -> MPC -> 38 -> config

We will set the selector byte to 20 and the MAC address to 400083710120 for the MPOA Client.

We will also enable IPX. IP is enabled by default.

```
Config> ENABLE INTERFACE 38
Interface enabled successfully

Config> ENABLE INTERFACE 40
Interface enabled successfully
```

Note:-

If the configuration has been cleared you may need to ADD interface 38 before configuring it.

To do so do the following.

Talk 6 >> Protocol MPOA >> MPC >> 38 >> ADD

This will add the interface. You can now continue configuring it.
Figure 462. Configuring MPOA

Note:

1. Setting the selector to 20.
2. Setting the ESI to 837100000101.
3. Setting the MAC address to 400083710120.
4. Enabling shortcuts for IPX.

10.6.1.4 TCP/IP host service configuration

We cannot configure an IP addresses on the interface so we are going to configure TCP/IP Host services to enable management access to the 8371.
Enter Talk 6 -> protocol hst

TCP/IP-Host config> SET IP-HOST
IP-Host address [10.1.2.4]? 10.1.1.5
Address mask [255.0.0.0]? 255.255.255.0
IP-Host address set.

TCP/IP-Host config> ADD DEFAULT-GATEWAY
Default-Gateway address [0.0.0.0]? 10.1.1.1

Figure 463. Configuring IP host service

Note:
1. Setting the TCP/IP host address to 10.1.1.5.
2. Setting the default gateway address to 10.1.1.1.

10.6.1.5 Bridge configuration
Because all ethernet ports and LECs are configured as bridge ports by default there is no bridge configuration to be done. The bridge configuration is shown here for reference only.

Enter Talk 6 -> protocol asrt

Note:-
If the configuration has been cleared you will need to enable the bridge.
To do so do the following.
Talk 6 >> Protocol ASRT >> Enable Bridge
Figure 464. Show bridge configuration

Note:

1. The Bridge is Enabled by default.
2. Spanning Tree participation (IEEE 802.1d) is enabled by default.
10.6.2 Web Interface for the 8371

The 8371 has a web server that has the following features:

- Graphical view of the 8371.
- Operator Console functions the same as Talk 5.
- Gateway Configuration functions the same as Talk 6.
- Event Logging System Console functions the same as Talk 2 in the Command Line Interface.
- Help functions.
In this section, we will show some examples using web interface for the 8371.

10.6.2.1 Access the 8371 using the WEB interface

1. Enter `http://` followed by the IP address of the 8371. (In our case 10.1.1.5).
2. The Initial WEB screen is shown below.

![Initial WEB screen on the 8371](image)

Figure 466. Initial WEB screen on the 8371

Note:

1. Select "Configuration and Console" from here.
2. Click on a port to show the status of that port.

Click on configuration and console. You are taken to the following screen.
Figure 467. Configuration and Console

- Front Logging System
- Operator Console
- Gateway Configuration
- ELS Console
- Memory Statistics
- Reload Gateway
- Status

Figure 468. Configuration and console screen

Note:

Operator console screen.

Figure 469. Operator Console screen

The next screen is an example of the display you get when clicking on an ethernet port to show its status. That is an ethernet port on the display in figure 92.
We are going to connect two workstations to 8371 ports that have IP addresses in different subnets. These workstation addresses are 10.1.2.100 and 10.1.3.100 and would normally require a router to route between the subnets. With the 8371 MPOA client we can create a local shortcut between the ethernet ports so that user data bypasses the MSS router.

A diagram of the configuration follows.

Having connected the workstations a file transfer was performed from one to the other.
10.6.3.1 Monitoring on MSS

A look at the MSS MPOA server shows the 8371 MPOA client is registered.

To see this use: `- Talk 5 >> Protocol MPOA >> MPS >> Discovery.`
NOTE:

8371’s ATM address

10.6.3.2 Monitoring the MPOA connections on the 8371

To display what VCCs the 8371 has established. **Talk 5 >> Protocol MPOA >> MPC >> 38 >> VCC >> list**

```
MPC/38 VCC>LIST
SVCs For MPC On AIM Interface 38 (total 2):
1) VPI/VCI 0/406 State: OPERATIONAL
   Remote ATM: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.01.14
2) VPI/VCI 0/407 State: OPERATIONAL
   Remote ATM: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.70.00.00.01.01.20.
```

Figure 473. Show list of VCCs

To see what workstation addresses have created shortcuts look at the ingress list. **Talk 5 >> Protocol MPOA >> MPC >> 38 >> Ingress**
Figure 474. Show list of ingress entries

NOTE:

1. IP address 10.1.3.100 and 10.1.2.100 are resolved. A shortcut has been created between them.

2. As both workstations are on the same 8371 a local shortcut has been created.
The encapsulation type is LLC Tagged. This is the method preferred by the 8371.

The Egress display shows the same status information for the two stations.

Figure 475. Show list of egress entries

10.6.4 Connectivity between 8270 and 8371 using MPOA

We will now show MPOA connectivity between our 8371 attached to the et1 elan and a 8270 attached to the tr1 elan. The configuration of our 8371 is the same as we have just used for the local shortcut example. The 8270 has the same configuration as we have used previously in this chapter.

We will transfer our 12 Mbyte file from between a workstation attached to our 8371 and a token-ring workstation attached to our 8270 to create the shortcut.

A logical network diagram follows.
10.6.4.1 Monitoring the MPOA status from the MSS MPOA server

From the MPOA server both the 8371 and 8270 MPOA clients have been discovered. This is shown in the display below.

```
MSS1 MPS >DISCOVERY

DISCOVERY TABLE
Net Type Age MAC Addr/RD ATM Address
---- ---- ----- ------------ ----------------------------------------
2 MSC 263 0004ACEBEA20 399999999999000000111101100010120
2 MSC 225 000629A07483 3999999999999900001111011182100000010120
2 MSC 7547 000629A07489 3999999999999900001111011182700000010120
3 MSC 1377 400082100211 39999999999900000011110111000629A074A602
3 MSC 171  A12C 3999999999999900001111011182700000010120
```

Figure 477. the DISCOVERY command
The **Control-VCCs** command shows the control VCCs between the MPOA server and the MPOA clients. There are two MPOA clients, our 8371 and 8270 as shown below.

![Control-VCCs command](image)

10.6.4.2 Monitoring the connections from the 8371

The following screen shows the three displays from the 8371.

![Show list of VCCs](image)
NOTE:

1 Calling party: FALSE means this VCC was established from the other end. i.e. the 8270.
2 The encapsulation type is LLC 1483. This is the format preferred by the 8371.
3 The calling Party is TRUE. This end, the 8371 established the VCC to the 8270.
4 The encapsulation used is TR-LANE. This is the 8270s preferred encapsulation type.

The ingress connections for this client are shown in the next display. First the list command then the list-entries for IP address 10.2.2.100. The information displayed is similar to the previous display.

```
MPC/38 INGRESS>LIST
IP-Ingress Cache For MPC on ATM Interface 38
========================================
Ingress Cache Entries for Direct Host Routes:
--------------------------------------------
1)  IP Address: 10.2.2.100            State: RESOLVED
Ingress Cache Entries for Direct Network Routes:

Ingress Cache Entries for Derived Host Routes:
----------------------------------------------
MPC/38 INGRESS>
```

```
MPC/38 INGRESS>LIST-ENTRIES 10.2.2.100
Destination Protocol Address Mask [255.255.255.255]?
Host Route Entries matching 10.2.2.100/255.255.255.255
---------------------------
Direct Host Routes :
1) Address: 10.2.2.100  Shortcut State: RESOLVED
   Hold Down Cause: N/A   CIE Code: x0
   Dest ATM: 39.99.99.99.99.99.99.00.00.11.11.11.82.70.00.00.01.01.20
   Remaining Age (mins:secs): 16:23   Last Request ID: x1
   Destn MTU: 4490   Encaps. Type: TR-SNAP-IP-LANE
   LANE Encaps. Hdr: x00000040400099990020c000821011106b0a12ca110
   Tag Value: N/A
   Shortcut VCC (VPI/VCI): 0/ 460   Local Shortcut ?: FALSE
   MPS: 39.99.99.99.99.99.99.00.00.11.11.11.82.10.00.00.00.01.14
   Derived Host Routes :
      Network Route Entries matching 10.2.2.100/255.255.255.255
      None found!
```

Figure 480. Show list of ingress cache entries

NOTE:

1 The ATM address for the IP workstation 10.2.2.100. i.e. the 8270.
2 This is not a local shortcut hence FALSE.
10.6.4.3 Monitoring the connections from the 8270

Looking at the same connections from the 8270 end we see the following.

First the VCCs. The first command below shows there are two VCCs to the 8371. A full display of each of them then follows.

```
8270#1 MPC VCC> LIST
SVCs For MPC On ATM Interface 0 (total 4):
1) VPI/VCI 0/907 State: OPERATIONAL
   Remote ATM: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.14
2) VPI/VCI 0/908 State: OPERATIONAL
   Remote ATM: 39.99.99.99.99.99.99.00.00.11.11.01.11.82.10.00.00.00.01.11
3) VPI/VCI 0/922 State: OPERATIONAL
   Remote ATM: 39.99.99.99.99.99.99.00.00.11.11.01.11.83.71.00.00.01.01.20
4) VPI/VCI 0/923 State: OPERATIONAL
   Remote ATM: 39.99.99.99.99.99.99.00.00.11.11.01.11.83.71.00.00.01.01.20
```

NOTE:
1. This VCC is initiated by the 8270.
2. This VCC is initiated by the 8371.

The Ingress connections from this MPOA client are shown below. It shows that the shortcut connection created to 10.1.2.100 (resolved).
Figure 482. Show list of ingress cache entries

NOTE:

1. The shortcut connection to 10.1.2.100 has been created. (Resolved)
2. The ATM address for IP address 10.1.2.100

The egress connections from this client are shown below. This shows the connection from the 8371 to the 8270.
Figure 483. Show list of egress cache entries.

Figure 484. Show statistics on MSS1 with MPOA enabled.

10.6.4.4 Statistics report on MSS1. With MPOA shortcut.

A display of the statistics in MSS1 before and after transferring the 12 Mbyte file follows.
10.6.4.5 Statistics display on MSS1. No MPOA Shortcut.
The following displays were taken before and just after a 12 Mbyte file was transferred.

<table>
<thead>
<tr>
<th>Net</th>
<th>Interface</th>
<th>Unicast</th>
<th>Multicast</th>
<th>Bytes</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ATM/0</td>
<td>30</td>
<td>0</td>
<td>1762</td>
<td>38</td>
<td>2866</td>
</tr>
<tr>
<td>1</td>
<td>NHRPL/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Eth/0</td>
<td>1</td>
<td>2</td>
<td>232</td>
<td>2</td>
<td>124</td>
</tr>
<tr>
<td>3</td>
<td>TKR/0</td>
<td>7</td>
<td>3</td>
<td>734</td>
<td>5</td>
<td>330</td>
</tr>
<tr>
<td>4</td>
<td>TKR/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TKR/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net</th>
<th>Interface</th>
<th>Unicast</th>
<th>Multicast</th>
<th>Bytes</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ATM/0</td>
<td>13883</td>
<td>0</td>
<td>1307650</td>
<td>14091</td>
<td>1303996</td>
</tr>
<tr>
<td>1</td>
<td>NHRPL/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Eth/0</td>
<td>4488</td>
<td>45</td>
<td>282122</td>
<td>8973</td>
<td>12677484</td>
</tr>
<tr>
<td>3</td>
<td>TKR/0</td>
<td>8985</td>
<td>70</td>
<td>12809026</td>
<td>4528</td>
<td>316879</td>
</tr>
<tr>
<td>4</td>
<td>TKR/1</td>
<td>0</td>
<td>1</td>
<td>54</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>TKR/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 485. Show statistics on MSS1 without MPOA clients.

10.7 osa

We are now going to configure an OSA2 atm adapter in a 9672 with two lan-emulation clients to join our network. How the OSA will attach to the network is in Figure 486 on page 439.

Figure 486. Logical attachment of OSA to the network

We will attach the OSA to logical partition 4 (LP4) which is running an OS/390 system with a TCP/IP stack. The OSA/SF is also running in this partition. The OSA is on CHPID E0. Addresses 20A0/1 will attach to LEC0 and 20A2/3 will
attach to LEC1 as shown below. Address 20AF is used by the OSA/SF to connect to the OSA card.

We are going to configure both Lan-Emulation Clients available with the ATM OSA card. The aim here is to show how to configure both and has no significance in network design.

The aim here is to show how to configure the OSA. Detailed information about the OSA is available in the following publications.

GC23-3870 Planning for the system/390 OSA feature.

SG24-4470 OSA-2 Implementation guide for OS/390

The Figure 487 on page 440 shows how the system addresses are assigned.

Figure 487. System addresses in LP4
An overview of how the OSA/SF GUI running on a workstation connects to the OSA/SF application in the 9672 is shown in Figure 488 on page 441. The OSA can be configured using the GUI or IOACMD from a TSO session.

We are going to configure the OSA using the OSA/SF GUI. The configuration program GUI comes with the OSA/SF code and has to be downloaded from the 9672 and installed on a workstation. This can be done using a terminal emulator or FTP providing you have access to the 9672. We already had a TCP/IP network with access to the 9672 so we used FTP to download the file. Detailed instructions on how to download and install the GUI can be found in the Open Systems Adapter Support Facility User’s Guide, SC28-1855.

Start the GUI on your workstation. The OSA/SF Hosts window is displayed. The first thing you must do is to create and ICON, that has the connectivity information behind it to connect to the OSA/SF application in the 9672. From the Selected pull-down select create another. We then selected TCP/IP because we already has a TCP/IP connection to the host. From the next screen define the connectivity information. IP address, Port number (default is 2000) and the name for this host.

Double click on the icon you have created to connect the OSA/SF application in the 9672. An example of this is shown in Figure 489 on page 441.
This screen has three icons and can connect to the OSA/SF in three systems. We will now connect to the host in logical partition 4 which we have named RA39 using TCP/IP.

Once connected to the OSA/SF the first screen displayed is the OSA CHPID tree view in its collapsed form. To work with an OSA click on the + sign to expand it. This then displays the ports available on the OSA card and the channel devices addresses. This is shown in Figure 490 on page 442 where our CHPID, E0 is shown expanded.

![OSA CHPID tree view](image)

Figure 490. 4-RA39 - OSA CHPIDs - Tree View

Start the configuration by double clicking on port 0. The resulting screen for port 0 is shown Figure 491 on page 443. Start by configuring the ESI for the OSA adapter.
On the physical tab click on the set for the **Active MAC address (ESI)**.

![Figure 491. ATM Emulated Token Ring Settings: Port 0 on CHPID E0](image)

XXX note that the ESI display has ERROR XXX

The set Active MAC Address (ESI) is shown in Figure 492 on page 443.

![Figure 492. Set Active MAC Address (ESI)](image)

Note:

The parameter is an ATM End System Identifier. It is not a MAC address. Make sure that the value you use is different from any other ATM device ESI connecting to the same ATM switch.

We have specified an ESI of 96720000E001 in line with our existing scheme. Click set when you have finished. This sets the new value into the osa card. There is a prompt to re-enable the OSA to make the change active. We did not at this stage as there is more configuration to do.

You will be returned to the OSA CHPIDs tree view screen. (Figure 493 on page 444)
Now highlight the **CHPID** (In our case E0) and from the **selected** pull-down select **configurations** and then **config list**.

![Figure 493. 4-RA39 - OSA CHPIDs - Tree View](image)

The configuration list for CHPID E0 is displayed. (Figure 494 on page 444)

![Figure 494. Configuration List for CHPID E0](image)
The screen shown contains the configuration which is the one we built and will be described. This screen will be blank when you start so click ADD to bring up the first configuration screen. This is shown in Figure 495 on page 445.

![Figure 495. 4-RA39 - Configuration for OSA E0](image)

Enter a name for the configuration you are going to create in the configuration name field in Figure 495 on page 445.

We are going to create a configuration with two lan-emulation clients so highlight ATM LEC Platform under the "Available modes" section and click Add. This will take you to the ATM LEC Platform settings screen as shown in Figure 496 on page 445.

![Figure 496. ATM LEC Platform Settings](image)

There are three tabs here. A physical tab with one screen for the ATM port settings. Uni type, VPI/VCI bit ranges etc. A LEC port0 tab with three screens for
setting the definitions for the first Lan-Emulation Client. Then a tab for LEC port 1 which contains the same three screens for the second client.

Note:
The VPI/VCI value defined at the ATM switch must match or be a super set of the default values of the OSA adapter for the ILMI negotiation to succeed.

For your reference we show how our port 7.13 was configured in Figure 497 on page 446.

```
8260_hub21> show port 7.13 verbose
           Type       Mode      Status
---------------------------------------------
                  7.13:UNI enabled  UP

Signalling Version : Auto
> Oper Sig. Version : 3.1
ILMI status        : UP
ILMI vci           : 0.16
RB Bandwidth       : unlimited
Signalling vci     : 0.5
Administrative weight: 5040
VPI.VCI range      : 15.1023 (4.10 bits)
Connector          : SC DUPLEX
Media              : multimode fiber
Port speed          : 155000 kbps
Remote device is active

Frame format       : SONET STS-3c
Scrambling mode    : frame and cell
Clock mode         : internal
```

Figure 497. ATM port definition at the switch

On the physical screen set the UNI version to **UNI_3.1**. Set a port name, we used **porte0**. The other options are left at the defaults, i.e. OSA transmit clock, SONET framing and the maximum number of bits for the VCI range.
Select the LEC port 0 tab to configure the first LEC (Figure 498 on page 447).

![Figure 498. ATM LEC Platform Settings: LEC port 0 (Page 1 of 3)](image)

This will be a token-ring LEC and will join the tr1 elan. Ensure the **Use this port in the configuration** is set to **yes**. Enter the **MAC address** in the local MAC address field, (We are using 40009672E001) select the **LAN type**, **16Mb Token-ring** in our case and set the **max data frame size** to **4544**.

Go to the second screen for LEC port 0 shown in Figure 499 on page 447 (by clicking the arrow pointing to right on the top right hand corner of the screen).

![Figure 499. ATM LEC Platform Settings: LEC port 0 (Page 2 of 3)](image)
Leave the **Automatic configuration mode** checked. The client will then look for a LECS address from the atm switch and go there for the LES/BUS address.

Enter the elan name `tr1` in the emulated lan name field. Leave the other parameters at the defaults.

Screen three for the LEC contains control parameters and we left these at the defaults. (Figure 500 on page 448)

![ATM LEC Platform Settings: LEC port 0](image)

Now select the LEC port 1 tab. The first screen for the second LEC is displayed as shown in Figure 501 on page 449.

We are configuring this second LEC. The configuration steps are the same as we have just entered for LEC 0 apart from the addresses.

Enable this port by setting the **Use this port in the configuration** to **yes**. Enter the MAC address (**02009672E002**) in the MAC address field. As this is going to join an ethernet elan the MAC address has to be in canonical format. Set the lan
type to **ethernet** and the maximum frame size to **1516**. Leave the other parameters at the defaults.

![Figure 501. ATM LEC Platform Settings: LEC port 1 (Page 1 of 3)](image1)

Now select Page 2 of 3 (Figure 502 on page 449). Leave the **Automatic configuration mode** set to **automatic** and enter the elan name, **et1** in the emulated LAN name field. Leave the other parameters at the defaults.

![Figure 502. ATM LEC Platform Settings: LEC port 1 (Page 2 of 3)](image2)

This completes the emulated lan definitions for both clients.
Click change to save this window. You will be returned to the configurations for OSA E0 screen (Figure 503 on page 450). Select TCP/IP passthru from the available modes screen and click Add.

![Figure 503. 4-RA39 - Configuration for OSA E0](image)

The TCP/IP passthru settings screen is displayed in Figure 504 on page 450. It shows the two sets of definitions for the two LECs we have defined.

![Figure 504. TCP/IP Passthru Settings](image)

To enter these definitions click Add from this screen. The TCP/IP Passthru OAT entry definitions in Figure 505 on page 451 is displayed. Enter the LPAR number, channel unit address, OSA port number (0 or 1) this definition applies too.

The IP address of the host OS/390 system, TCP/IP stack this definition applies to is entered in the address field at the bottom of the screen. After typing the
address click **Add address** to add this address to the table. If you want more addresses continue until the last is entered. Then click **change**.

![Figure 505. TCP/IP Passthru OAT Entry Definition](image)

Return to the TCP/IP passthru settings screen (Figure 504 on page 450) and add the definitions for all the interfaces you need. We show two in this screen as we have two LECs.

Click **change** from Figure 504 on page 450 to return to the **configuration for OSA E0** screen shown in Figure 503 on page 450.

The next step is to save this configuration. From the **configurations** pull down select **save**. This will save this file on the host sys/390 system. Remember the workstation GUI interface is not the only way of configuring the OSA. It can also be configured using REXX from TSO. The configuration files must XXX be available to both methods.

Note:

The following action is disruptive as it loads the configuration to the OSA card and restarts the card. Stop all network traffic through the OSA and vary the system devices (20A0 through 20A3 in our case) offline before proceeding.

The configuration we built can be activated from XXXhereXXX. The OSA/SF address (20AF in our configuration) needs to be online to perform this load. From the **configurations** pull down menu select **activate**.
10.7.1 Verification of the OSA ATM connections

You can use the OSA/SF GUI screens to verify that the LECs have joined the elans. From the OSA CHPIDs tree view screen (Figure 506 on page 452) double click on the port item.

![Figure 506. 4-RA39 - OSA CHPIDs - Tree View](image)

The emulated token-ring port settings screen is displayed for the port. You can see that the LEC has learned the first 13 bytes of the atm address from the atm switch. This is shown at the bottom of the screen in Figure 507 on page 452.

![Figure 507. ATM Emulated Token Ring Settings: Port 0 on CHPID E0 (Physical)](image)

Now select the emulation tab and move to page 2 of 9 shown in Figure 508 on page 453. The address of the LES this client has joined is displayed at the bottom
of the screen. As is the name of the emulated lan you have configured plus the name of the lan this client has actually joined. In our case: tr1.

![Figure 508. ATM Emulated Token Ring Settings: Port 0 on CHPID E0 (Emulation)](image)

Go back to the OSA CHPIDs view (Figure 506 on page 452) and select port 1. This is the second LEC that was set to join the et1 elan. (Note there is no physical tab on this port) Select the second screen under the emulation tab as shown in Figure 509 on page 453. Again you can see the atm address of the LES this LEC is registered with. The elan name this client has joined is shown under actual elan name.

![Figure 509. ATM Emulated Ethernet Settings: Port 1 on CHPID E0 (Emulation)](image)

From MSS1 in our network you can see the status of the two OSA LECs. MSS1 is the primary LES/BUS pair for the elans and the IP default gateway.
The **Show LEC** command in T5 shows LEC0 in our OSA has joined the **tr1** elan (Figure 510 on page 454). The **Show Registered-MAC** address command shows the MAC address we have defined for LEC0 in the OSA.

Figure 510. MSS T5 output for tr1
The same is true for LEC1 which has joined the et1 elan shown in Figure 511 on page 455.

Connectivity exists with TCP/IP in the 9672 as shown by the pings from MSS1 in Figure 512 on page 456.
10.7.1.1 Reference Information

For reference we are including the IOCDS definitions for CHPID E0. As can be seen in Figure 513 on page 456 CHPID E0 is available to many partitions. We only used partition 4.

Some of the definitions from the TCPIP.PROFILE dataset are included in Figure 514 on page 457 to show just what we had configured for the interfaces, the gateways to networks 10.2.x.x and 10.1.x.x and the default gateway. This is only a
small section of this dataset but these definitions are shown to help the reader in understanding our configuration.

TCP_CONFIG
UNRESTRICTLOWPORTS
TCPSENDBfsize 16384 ; Range is 256-256K - Default is 16K
TCPRCVBufrsize 16384 ; Range is 256-256K - Default is 16K
SENDGARBAGE FALSE ; Packet contains no data
UDP_CONFIG
UNRESTRICTLOWPORTS
UDPCHKsum ; Do checksum
UDPSENDBfsize 16384 ; Default is 16K
UDPRCVBufrsize 16384 ; Default is 16K
IP_CONFIG
VARSUBNETTING
; ***
; ATM OSA Definition LE
; ***
DEVICE OSA20A0 LCS 20A0
LINK OSAT20A0 IBMTR 0 OSA20A0
DEVICE OSA20A2 LCS 20A2
LINK OSAT20A2 ETHERor802.3 1 OSA20A2
; ---
HOME
10.2.1.92 OSA20A0
10.1.1.92 OSA20A2
GATEWAY
10 = OSA20A0 4000 0.255.255.0 0.2.1.0
10 = OSA20A2 1492 0.255.255.0 0.1.1.0
10 10.2.1.1 OSA20A0 4000 0.255.0.0 0.2.0.0
10 10.1.1.1 OSA20A2 1492 0.255.0.0 0.1.0.0
DEFAULTNET 10.2.1.1 osat28a0 4000 0
; ---
START OSA20A0
START OSA20A2

Figure 5.14. part of TCPIP.PROFILE
Appendix A. Troubleshooting the ATM Environment

A.1 Troubleshooting the 8260/85

This section provides information on how to troubleshoot the 8260 and 8285 configurations. This section will show problems occurring for SSI and NNI connections, as well as settings for the LIS in CIP.

A.1.1 Troubleshooting SSI Connections

To enable connectivity between switches, we configure an SSI connection between them. This is done using the `set port` command:

```
8285> set port 1.13 enable ssi 155000
```

When setting up your SSI parameters, make certain that you satisfy the following conditions:

1. The ATM network address (the first 11 bytes of the ATM address) for each switch is the same.
2. The ATM cluster number (11th byte of the ATM address) is the same on each switch.
3. The hub numbers (13th byte of the ATM address) are different.

Even though the port may be physically up, that is receiving and transmitting properly, if it is misconfigured, it will be reported as being not in service. If this happens, the 8285 will try to provide helpful error messages in the IX Status field returned by the `show port` command with the `verbose` option.

```
8285> show port 1.13 verbose

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13</td>
<td>SSI enabled</td>
<td>UP-NOT IN SERVICE</td>
</tr>
</tbody>
</table>

SSI Bandwidth : 155000 Kbps
Connector : SC DUPLEX
Media : Multimode fiber
Port speed : 155000 Kbps
Remote device is active
IX status : HUB numbers identical
Scrambling mode : frame and cell
Clock mode : internal
```
A list of some of these messages is given in :tref refid=tabtbl69a..

Table 11. IX Status Messages and Causes

A.1.2 Troubleshooting the CIP Network

There are relatively few entities in a CIP network that could cause problems. However, should you be unable to reach other CIP devices, the following items should be considered:

• Check the ARP server to see that you have registered with it. The procedure for doing so is described below in :hdref refid=chekarp..

• If so, check the IP parameters you configured on the 8285 to ensure that they are correct. Pay particular attention to your IP subnet and your IP subnet mask.

• If you are not registered with the ARP server, try the steps outlined in :hdref refid=fixarp..

Checking ARP Server for Registration

If you are unable to ping the ARP server or any other IP device, check to see if the ARP server is properly registering your IP and ATM addresses.

For AIX ARP servers, this can be checked in two ways:
1. Using SMIT, the Systems Management Interface Tool
2. Using the fast path command arp -t atm -a

Checking ARP Registration via SMIT

To check ARP registration via SMIT, perform the following steps:
1. Log on to the server as root.
2. Issue the command smit.
3. Select the following menu items in sequence:
 • Communications Applications and Services
 • TCP/IP
 • Further Configuration
 • Network Interfaces
• List SVCs over an ATM 100 Network or List SVCs over an ATM 155 Network depending on your interface

Checking ARP Registration via Fast Path Command

To check ARP registration via the fast path command, perform the following steps:
1. Log on to the server as root.
2. Key in the command:

arp -t atm -a

Correcting ARP Registration

If the ARP server is not registering your 8285 CIP information, but is registering other CIP devices, try re-initializing the 8285 CIP function by re-entering the SET DEVICE ARP_SERVER command. This will force the 8285 to go through the CIP registration process again.

If you are still not able to register, check the ARP server address you keyed in and be sure that all 20 bytes of the address explicitly match the ARP server's address.

A.1.3 Troubleshooting Your LANE Network

There are relatively few entries in a LANE network that could cause you problems. The following sections describe the typical items that should be considered:
• Check the Physical (ATM) Connection
• Check the LANE Registration
• Other Considerations

A.1.4 Check the Physical (ATM) Connection

When you connect an ATM device to an IBM 8260 or 8285, you have to connect the physical cabling to the device and configure its ATM parameters. Then the device should be connected to the ATM network and you can check the status from the IBM 8260/85 console using the show port command.

:figref refid=figfig6a4. shows a sample console screen when the command is issued.
Notes:

1. This `show port` command was issued after the physical cabling had been connected, but before the remote device was powered on.

2. You can get the status shown in several lines, but the main status is shown in the first line. The "UP-NO ACTIVITY" means the physical cabling is done but no physical layer activity is detected.

3. This `show port` command was issued after the physical connection was up and the remote device was ready.

4. "UP-OKAY" means the remote device is attached to the ATM network.

The typical reasons an ATM device might be unable to make a physical connection are as follows:

- **Cabling**

 If a fiber cable is used, check to see if each end of the cable is connected to the appropriate connector, transmit or receive. And if a copper cable is used, check to see that the pinouts of the cable and each end of the cable are matched, especially when you use a non-Forum compliant adapter or the connection is between ATM switches.
If the pinouts are mismatched, the status should be UP-NO ACTIVITY which means physical activity isn't detected on the port.

- **ATM Connection Parameters**

 Check if the ATM connection parameters used in the switch and the device are matched, such as:

 - Connection type (SVC/PVC)
 - VPC/VCC number
 - UNI Version (3.0/3.1/4.0)
 - Service type (CBR/VBR/UBR/ABR)
 - Required and available bandwidth if RB connection

 If this information is mismatched, the status should be UP-NOT IN SERVICE which means physical activity is detected on the port but that the device cannot access the network.

When the physical layer connection is established, then the device requests to register with a LANE network. You can check the status from the IBM 8285 console using SHOW LAN_EMUL SERVERS and SHOW DEVICE commands.

:figref refid=figfig6a5. and :figref refid=figfig6a6. show a sample console screen when the SHOW LAN_EMUL SERVERS command is issued.

```
8285> show lan_emul servers 1

--------------------------------------------------------------------------
--------------------------- LAN Emulation Server  1 ----------------------
Status                : Running.
LAN type              : Ethernet.
Actual ELAN name      : "8285ETH4".
Desired ELAN name     : "".
Actual max frame size : 1516.
Desired max frame size: 1516.
ATM address : 39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.02
Max number of clients : 64.
Current number of operational clients : 1. 2
40.00.82.85.01.02.02 (port 0.0) OPERATIONAL NonProxy 3
8285>
```

Figure 516. The Sample Console Screen to Check the LANE Registration

Notes

1. This `show lan_emul servers` command was issued after the server was up and the clients had requested to be registered.

2. The number of clients registered with the IBM 8285 integrated LES is shown on this line.

3. The clients registered with the IBM 8285 integrated LES are shown in these lines. This information only appears when you specify either of the servers using the server ID.
Figure 517. The Sample Console Screen to Check the LANE Registration

```
8285> show device
8285 Nways ATM Workgroup Switch
Name : 8285
Location :

For assistance contact :

Manufacture id: 53-
Part Number: 58G9605 BC Level: C38846
Serial Number: LAC050
Boot EEPROM version: v.1.4.0
Flash EEPROM version: v.1.4.0
Flash EEPROM backup version: v.1.0.0
Last Restart : 14:57:56 Thu 17 Oct 96 (Restart Count: 1)

A-8285

ATM address: 39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00

> Subnet atm:
  IP address: 192.168.21.85. Subnet mask: ff.ff.00

> Subnet lan emulation Ethernet/802.3
  Up
  Name "$IBM_ETHERNET_LAN1" 3
  MAC Address: 420082850001
  IP address : 192.168.30.1. Subnet mask: FF.FF.FF.00
  ATM address :39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00
  Config LES addr:39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.02
  Actual LES addr:39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.02
  BUS ATM address:39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.02
  Config LECS add:none
  Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  LEC Identifier: 1. Maximum Transmission Unit: 1492

> Subnet lan emulation token ring
  up
  Name "$8285TR4" 3
  MAC Address: 420082850002
  IP address : 0.0.0.0. Subnet mask: 00.00.00.00
  ATM address :39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.00
  Config LES addr:39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.03
  Actual LES addr:39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.03
  BUS ATM address:39.99.99.99.99.99.99.00.00.99.99.01.02.40.00.82.85.01.02.03
  Config LECS add:none
  Actual LECS add:00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
  LEC Identifier: 2. Maximum Transmission Unit: 4544

Default Gateway :
  IP address: 0.0.0.0

ARP Server:
  ATM address: 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00

Dynamic RAM size is 8 MB. Migration: off. Diagnostics: enabled.
```

Figure 517. The Sample Console Screen to Check the LANE Registration
Notes:

1. This `show device` command was issued when the server was up and the clients had requested to be registered. This command can be used to check the status of each LEC on the IBM 8285, especially if they are registered with an external LES.

2. This line shows the ELAN type and Ethernet type of the LEC. The Ethernet/802.3 means the ELAN type is Ethernet and the Ethernet type is 802.3. Don't make the mistake of thinking that Ethernet/802.3 means that both DIX and 802.3 Ethernet types are supported. The LEC on the IBM 8285 can support either of them and the status should be Ethernet/DIX when the Ethernet type is DIX.

3. The appropriate values in these fields mean that the registration process has successfully completed, because these values are returned by the LES.

The typical reasons a LEC might be unable to register with the LES are as follows:

- **ATM switch connection**

 If the LECs are attached to a different switch, check to see if the connection between the switches has been established.

- **Designated LES address**

 Check if the designated LES ATM address specified for the LEC, especially the SEL field, is correct.

- **Max SDU size/ELAN name**

 Check if the same maximum SDU size and ELAN name are defined on the LEC and LES. If these values don't match, the registration process fails. And some LECs, such as the IBM 8285 internal LEC, don't have specific values for themselves, but instead get the values from their LES.

- **Registration sequence**

 Reissue the LANE registration request from the LEC. Several devices have limited retry counts to issue the registration request and only do so during the initialization phase. Therefore, they won't register when the LES is restarted. Furthermore, network or LES congestion may prevent them from successfully completing the registration process within the allowed period.

 For example, PCs using the IBM ATM device driver have a retry count limit for the registration request, but IBM 8281 and 8285 internal LECs do not.

A.1.5 Other Considerations

When the communication between LECs is unable to be established even though both LECs are registered with the LES, the typical reasons are as follows:

- **Ethernet type**

 Check to see if the same Ethernet type is configured for both LECs. For LECs to communicate with each other, they should be configured with the same Ethernet type, 802.3 or DIX/Ethernet V2.

 If one of the LECs that is unable to communicate is the IBM 8285’s, you can check the Ethernet type from the console using the `set device` command as shown in Figure 515.
• IP network number

If one of the LECs that is unable to communicate is the IBM 8285's, check to see if the IP interfaces, CIP, Ethernet LEC and token-ring LEC, have been defined to different subnetworks. If the IP interfaces are on the same subnetwork, only the CIP interface is used.
Appendix B. First Sample Appendix

This is a sample appendix.
Appendix C. Second Sample Appendix

This is a sample appendix.
Appendix D. Special Notices

This publication is intended to help who do what. The information in this publication is not intended as the specification of any programming interfaces that are provided by product name(s). See the PUBLICATIONS section of the IBM Programming Announcement for product name(s) for more information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent program that does not infringe any of IBM's intellectual property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The information about non-IBM ("vendor") products in this manual has been supplied by the vendor and IBM assumes no responsibility for its accuracy or completeness. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

Any performance data contained in this document was determined in a controlled environment, and therefore, the results that may be obtained in other operating environments may vary significantly. Users of this document should verify the applicable data for their specific environment.
Reference to PTF numbers that have not been released through the normal distribution process does not imply general availability. The purpose of including these reference numbers is to alert IBM customers to specific information relative to the implementation of the PTF when it becomes available to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

IBM ®

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States and/or other countries. (For a complete list of Intel trademarks see www.intel.com/dradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of others.
Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO Redbooks” on page 475.

- full title, xxxx-xxxx
- full title, xxxx-xxxx
- full title, xxxx-xxxx

E.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs:

<table>
<thead>
<tr>
<th>CD-ROM Title</th>
<th>Collection Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>System/390 Redbooks Collection</td>
<td>SK2T-2177</td>
</tr>
<tr>
<td>Networking and Systems Management Redbooks Collection</td>
<td>SK2T-6022</td>
</tr>
<tr>
<td>Transaction Processing and Data Management Redbook</td>
<td>SK2T-8038</td>
</tr>
<tr>
<td>Lotus Redbooks Collection</td>
<td>SK2T-8039</td>
</tr>
<tr>
<td>Tivoli Redbooks Collection</td>
<td>SK2T-8044</td>
</tr>
<tr>
<td>AS/400 Redbooks Collection</td>
<td>SK2T-2849</td>
</tr>
<tr>
<td>RS/6000 Redbooks Collection (HTML, BkMgr)</td>
<td>SK2T-8040</td>
</tr>
<tr>
<td>RS/6000 Redbooks Collection (PostScript)</td>
<td>SK2T-8041</td>
</tr>
<tr>
<td>RS/6000 Redbooks Collection (PDF Format)</td>
<td>SK2T-8043</td>
</tr>
<tr>
<td>Application Development Redbooks Collection</td>
<td>SK2T-8037</td>
</tr>
</tbody>
</table>

E.3 Other Publications

These publications are also relevant as further information sources:

- full title, xxxx-xxxx
How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also read redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks site.

 Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will be published this way. The intent is to get the information out much quicker than the formal publishing process allows.

- **E-mail Orders**
 Send orders via e-mail including information from the redbooks fax order form to:

<table>
<thead>
<tr>
<th>In United States</th>
<th>Outside North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-mail address</td>
<td></td>
</tr>
<tr>
<td>usib6fpl@ibmmail.com</td>
<td>Contact information is in the “How to Order” section at this site:</td>
</tr>
</tbody>
</table>

- **Telephone Orders**
 United States (toll free) 1-800-879-2755
 Canada (toll free) 1-800-IBM-4YOU
 Outside North America Country coordinator phone number is in the “How to Order” section at this site:

- **Fax Orders**
 United States (toll free) 1-800-445-9269
 Canada 1-403-267-4455
 Outside North America Fax phone number is in the “How to Order” section at this site:

This information was current at the time of publication, but is continually subject to change. The latest information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at http://w3.itso.ibm.com/.

IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical professionals; click the Additional Materials button. Employees may also view redbook, residency, and workshop announcements at http://inews.ibm.com/.
IBM Redbook Fax Order Form

Please send me the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Order Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First name
Last name
Company
Address
City
Postal code
Country
Telephone number
Telefax number
VAT number

- [] Invoice to customer number
- [] Credit card number

Credit card expiration date
Card issued to
Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not available in all countries. Signature mandatory for credit card payment.
Glossary

Your glossary term, acronym or abbreviation.
Term definition
List of Abbreviations

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>ITSO</td>
<td>International Technical Support Organization</td>
</tr>
</tbody>
</table>
Index

Numerics
100BASE-FX 50
100BASE-TX 50
10Base2 48
10Base5 48
10BASE-T 50
2210 164
2216 164
802.3/Ethernet 28
8210 71, 88, 113
8260 71, 86
8260 Multiprotocol Hub 37
8265 Nways ATM 37
8265 Nways ATM Switch 38
8271 71, 144
8272 71, 154
8274 71, 112
8274 Nways RouteSwitch 37
8281 71, 128, 132
8285 71, 85, 102
8285 Customization
LEC
ELAN name 465
Ethernet type 465
IP parameters 466
maximum SDU size 465
LES/BUS
ELAN name 465
Ethernet type 465
maximum SDU size 465

A
AAL-5 64, 103
ACN 74, 82
active monitor 140
adaptive cut-through 48, 52
address filters 54
Address Registration 31
address resolution 28
address resolution requests 31
AIX 67, 68, 177
any-to-any translation 57
AppleTalk 44
ARP server 32, 73, 86, 88, 179
configuring 171
ARP table 33
ASM 112
assignment policies 115
assignment policy 100
ATM 37
ATM adapters 71
ATM Address 86
ATM address 75
ATM backbone 74
ATM cluster network 82
ATM device 107
ATM Forum LAN Emulation 31
ATM LEC Address 107
ATM network prefix 136
ATM prefix 74
ATM Switched Module 112
ATM Switches 37
ATM UFC 54
ATM uplink 112, 144
ATMARP 33
atvl 127
AUTOEXEC.NCF 183

B
BAN/BNN 63
bandwidth 83
Banyan Vines 44
BBCM 43
BCM 130, 146
BootP 54
bridge name 134
bridge number 160
bridge type 133
Bridging BroadCast Manager 43
bridging filters 142
Broadcast and Unknown Server 25, 28, 32
BroadCast Manager 43
broadcasts 28
burned in address 97
burned-in address 100
BUS 27, 28, 32

campus backbone 37
canonical 140
cas 121
CellView 185
CIP 32, 93, 184
Classical IP 32, 43, 57, 73, 86, 168, 179, 181
PVC 172
SVC 174
cluster 74, 85
cluster number 86
community name 92, 137
configuration direct VCC 29
configuration utility program 47, 133
control direct VCC 29
control distribute VCC 30
cratvl 125
Cut-through 52
cut-through 48

D
dac 49
das 49
data direct VCC 30
data-direct VCC 44
Daughter cards 38
Default Gateway 77
default gateway 80, 88, 104, 127, 138
default priority 101
Distributed ARP server 44
DLSw 62
DLUR 63
domain name 153, 163
domains 48
DOS/Windows 67
D-PVLAN 43
driver 177, 182
dual-attachment concentrator 49
dual-homing 49
Dynamic Protocol VLANs 43

E
EIA 232 47
ELAN 28, 32, 99, 145
ELAN name 153, 178
ELAN type 102, 167
ELANs 25
E-MAC 38
desk system identifier 26, 100
ESCON 63
ESI 26, 90, 97, 146, 184
Ethernet 37, 46, 99
Ethernet V2 47
EtherPiping 48
EtherProbe 48
expansion unit 40

F
Fast BUS mode 130
FDDI 37
fragment-free 52
full-duplex Ethernet 48

generic flow control 136
GFC 136

H
hardware inventory 71
HEMAC 38
HN 74
HTMAC 38
hub management 38
hub number 74

I
I/F 167
IBM 2210 Nways Multiaccess Router 62
IBM 2216 Multiaccess Connector 63
IBM 2220 Nways Broadband Switch 61
IBM 2225 Nways Multiservice Switch 62
IBM 2230 Nways ATM Switch 61
IBM 8210 37
IBM 8224 Ethernet Stackable Hub 51
IBM 8270 Nways Token-Ring Switch 55
IBM 8271 47
IBM 8271 Nways Ethernet LAN Switches 48
IBM 8272 Nways Token-Ring LAN Switch 52
IBM 8273 47
IBM 8273 Nways Ethernet RouteSwitch 57
IBM 8274 47
IBM 8281 ATM LAN Bridge 46
IBM LAN Emulation 107
IEEE 802.2 LLC 28
IEEE 802.3 47
IEEE 802.5 31, 47
ILMI 26, 63, 99, 135
ILMI MIB 27
InATMARP 33
Intelligent flow management 52
Interim Local Management Interface 26, 63
internal virtual segment 160
Interphase 185
Interphase Adapters 65
IP routing 114
ipr 128
IPX 28, 52
ISA 64
ISDN 62

L
LAN destinations 31
LAN Emulation 25, 42, 54
LAN Emulation Client 44
LAN Emulation Clients 25
Lan Emulation Configuration Server 25
LAN Emulation Server 43, 113
LAN Emulation Server 25
LAN Emulsion VC Connections 29
LAN Switches 47
LAN Switching 38
LAN types 29
LANE 25, 38, 54, 112, 181
LANE service 117
LAPS 181
largest frame bit 160
LE Service Components 25
LEC 28, 54, 99, 106
LEC ESI 107
LEC Index 152
LEC index 162
LEC interface 166
LEC Local Unicast MAC Address 107
LECS 25, 27, 99
LECs 25
LECS ATM address 101
LECS ATM addresses 27
LECS AutoConfiguration 108
LES 25, 27, 32, 113
LESS/BUS 25, 88, 99, 102, 113, 129, 145, 156
LIS 32, 73, 88
LIS client
PVC 172
SVC 174
locally administered address 114
locally administered ESI 100
locally-administered ESIs 34
Logical IP Subnet 32
logical link 81, 82
logical topology 72
LUNI 27

MAC addresses 31
map 118
MARS 32
Max Frame Size 110
maximum frame size 134
media modules 41
Micro 64
microcode 52
MPOA 44
MPTS 180
MSS 28, 37, 73, 106
MSS CIP clients 33
MSS configuration program 89, 113
MSS Server 33
multicast 28
Multicast Address Resolution 45
Multicast Address Resolution Service 32
cast forward VCC 30
multicast send VCC 30
multiport bridge 46
Multiprotocol over ATM 44

navigation window 94, 129
NBBS 61
NBMA 32
NDIS 64
NetBIOS 28
network device interface specification 64
network diagram 74
network prefix 26
Networking BroadBand Services 61
Next Hop Resolution Protocol 32
NHRP 32, 44
NNI 74, 81
non-blocking 39
Non-Broadcast Multiple Access 32
non-canonical 140
Novell NetWare 68, 177, 182
NT 177

O
OC/3 65
odi 64
open data link interface 64
OS/2 65, 177, 180
out-of-band 95

P
packet channel 38
PCI 64
PDU 103
permanent static database 135
Permanent Virtual Circuits 34
physical topology 72
ping 79, 87
PNNI 39, 74
point-to-multipoint VCC 30
point-to-point connection 28
point-to-point VCC 30
policy-based ELANs 27
port mirroring 39
port name 139
priority 101
protocol data unit 103
proxy 99
proxy LEC 99
PVCs 34

Q
QoS 44, 61
Quality of Service 61

R
radio button 133
Redundant ARP server 44
redundant default IP gateway 44
ReSerVation protocol 32
RFC 1188 49
RFC 1213 49
RFC 1512 49
RFC 1577+ client 44
RI/RO 55
RIF 160
ring number 140
RIP 128
RISC System/6000 183
RMON 38
RMON2 38
role 82
route descriptors 31
router 62
routing 73
routing information field 160
RSVP, and 32
runts 48

S
SBus 64
SDU 103
SDU size 103
selector 100, 114
Selector byte 26
service data unit 103
set device atm_address 78
set lan_emul 102
set module 77
set port 77
shared-media 28
show device 77
show port 77
signalling protocol 34
signalling type 82
Simple Network Management Protocol 52
SLIP 133
SMDS 62
SNMP 52, 135
SNMP agent 47
SONET 49
source route 142
source routing 31
source-route 159
source-route switching 53
spanning tree 135
SRB 149, 160
SRT 149, 160
SR-TB 149, 160
SSI 74, 79, 87
Store-and-forward 52
store-and-forward 48
Super VLAN 43
SVC 31, 118
SVCs 34
Switched Virtual Circuits 34

T
TB 149
TFTP 54
Timeouts 33
T-MAC 38
Token-piping 53
token-ring 28, 37, 46, 99
traffic policing 39
traffic shaping 39
traffic type 83
translational bridging 73
transparent bridging 135, 148
transparent bridging 73
transparent switching 57
trap 137
TURBOWAYS 63, 177

U
UDP/IP 52
UFC 49
Unacknowledged Datagram Protocol/Internet Protocol 52
UNI 26, 64, 74
UNI signalling protocol 82
UNI version 82, 179
unicast 28
unicast MAC address 114
Universal Feature Card 49
universal feature card 53
universally administered 26

Unknown RefID_ale
address registration 31
address resolution 31
broadcast and unknown server 27
BUS 27
configuration direct VCC 29
connection management 31
control direct VCC 29
control distribute VCC 30
data direct VCC 30
data transfer 31
initialization 30
LAN Emulation Client 28
LE clients 27
LE configuration server 28
LE server 27
LE Service Operation 30
LEC 28
LECS 28
LES 27
multicast forward VCC 30
multicast send VCC 30
Unknown RefID_atm
addresses 26
LAN Emulation 25
Unknown RefID_lane
ELAN type 167
Unknown RefID_le
Clients 28, 32
Configuration Server 32
Server 32
summary 31
user-to-network interface 27
Unknown RefID_net
prefix 26
Unknown RefID_trbl
ATM parameters 463
ELAN name 465
Ethernet type 465
IP network number 466
LANE registration sequence 465
maximum SDU size 465
physical connection 461
uplink modules 57
user-to-network interface 26

V
vap 117
VCC 27
VCCs 28
VCI 135
Video distribution 38
virtual ATM interfaces 43
virtual channel identifier 135
virtual circuit 183
virtual IP router arm 127
virtual path identifier 82, 135
virtual switch 48, 53
VPI 135
VT100 emulation 89
W
Web browser 89
Well Known Address 99
well known address 124, 148
Windows 95 66, 177
Windows NT 66
WKA 99, 111, 178

Z
Zero-hop routing server 45
ITSO Redbook Evaluation

ATM Configuration Examples
SG24-2126-01

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?

_ Customer _ Business Partner _ Solution Developer _ IBM employee _ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

__

__

__

__

What other redbooks would you like to see published?

__

__

__

__

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

__

__

__

__