
Redbooks Paper

Fundamentals of Grid Computing

The purpose of this IBM Redpaper is to provide discussion material about grid computing,
concepts, use, and architecture. Grid computing represents unlimited opportunities in terms
of business and technical aspects. The audience for this paper are all hungry minds looking
for a collection of facts and data about this new and exciting realm.

The following major topics will be introduced to the readers:

� What grid computing can do
� Grid concepts and components
� Grid construction
� The present and the future
� What the grid cannot do

Grid computing, most simply stated, is distributed computing taken to the next evolutionary
level. The goal is to create the illusion of a simple yet large and powerful self managing virtual
computer out of a large collection of connected heterogeneous systems sharing various
combinations of resources.

The standardization of communications between heterogeneous systems created the Internet
explosion. The emerging standardization for sharing resources, along with the availability of
higher bandwidth, are driving a possibly equally large evolutionary step in grid computing.

What grid computing can do
When you deploy a grid, it will be to meet a set of customer requirements. To better match
grid computing capabilities to those requirements, it is useful to keep in mind the reasons for
using grid computing. This section describes the most important capabilities of grid
computing.

Exploiting underutilized resources
The easiest use of grid computing is to run an existing application on a different machine. The
machine on which the application is normally run might be unusually busy due to an unusual
peak in activity. The job in question could be run on an idle machine elsewhere on the grid.

Viktors Berstis
© Copyright IBM Corp. 2002. All rights reserved. ibm.com/redbooks 1

There are at least two prerequisites for this scenario. First, the application must be
executable remotely and without undue overhead. Second, the remote machine must meet
any special hardware, software, or resource requirements imposed by the application.

For example, a batch job that spends a significant amount of time processing a set of input
data to produce an output set is perhaps the most ideal and simple use for a grid. If the
quantities of input and output are large, more thought and planning might be required to
efficiently use the grid for such a job. It would usually not make sense to use a word
processor remotely on a grid because there would probably be greater delays and more
potential points of failure.

In most organizations, there are large amounts of underutilized computing resources. Most
desktop machines are busy less than 5% of the time. In some organizations, even the server
machines can often be relatively idle. Grid computing provides a framework for exploiting
these underutilized resources and thus has the possibility of substantially increasing the
efficiency of resource usage.

The processing resources are not the only ones that may be underutilized. Often, machines
may have enormous unused disk drive capacity. Grid computing, more specifically, a “data
grid”, can be used to aggregate this unused storage into a much larger virtual data store,
possibly configured to achieve improved performance and reliability over that of any single
machine.

If a batch job needs to read a large amount of data, this data could be automatically replicated
at various strategic points in the grid. Thus, if the job must be executed on a remote machine
in the grid, the data is already there and does not need to be moved to that remote point. This
offers clear performance benefits. Also, such copies of data can be used as backups when
the primary copies are damaged or unavailable.

Another function of the grid is to better balance resource utilization. An organization may
have occasional unexpected peaks of activity that demand more resources. If the
applications are grid enabled, they can be moved to underutilized machines during such
peaks. In fact, some grid implementations can migrate partially completed jobs. In general, a
grid can provide a consistent way to balance the loads on a wider federation of resources.
This applies to CPU, storage, and many other kinds of resources that may be available on a
grid. Management can use a grid to better view the usage patterns in the larger organization,
permitting better planning when upgrading systems, increasing capacity, or retiring
computing resources no longer needed.

Parallel CPU capacity
The potential for massive parallel CPU capacity is one of the most attractive features of a
grid. In addition to pure scientific needs, such computing power is driving a new evolution in
industries such as the bio-medical field, financial modeling, oil exploration, motion picture
animation, and many others.

The common attribute among such uses is that the applications have been written to use
algorithms that can be partitioned into independently running parts. A CPU intensive grid
application can be thought of as many smaller “subjobs,” each executing on a different
machine in the grid. To the extent that these subjobs do not need to communicate with each
other, the more “scalable” the application becomes. A perfectly scalable application will, for
example, finish 10 times faster if it uses 10 times the number of processors.

Barriers often exist to perfect scalability. The first barrier depends on the algorithms used for
splitting the application among many CPUs. If the algorithm can only be split into a limited
number of independently running parts, then that forms a scalability barrier. The second
2 Fundamentals of Grid Computing

barrier appears if the parts are not completely independent; this can cause contention, which
can limit scalability. For example, if all of the subjobs need to read and write from one
common file or database, the access limits of that file or database will become the limiting
factor in the application’s scalability. Other sources of inter-job contention in a parallel grid
application include message communications latencies among the jobs, network
communication capacities, synchronization protocols, input-output bandwidth to devices and
storage devices, and latencies interfering with real-time requirements.

Applications
There are many factors to consider in grid-enabling an application. One must understand that
not all applications can be transformed to run in parallel on a grid and achieve scalability.
Furthermore, there are no practical tools for transforming arbitrary applications to exploit the
parallel capabilities of a grid. There are some practical tools that skilled application designers
can use to write a parallel grid application. However, automatic transformation of applications
is a science in its infancy. This can be a difficult job and often requires top mathematics and
programming talents, if it is even possible in a given situation. New computation intensive
applications written today are being designed for parallel execution and these will be easily
grid enabled, if they do not already follow emerging grid protocols and standards.

Virtual resources and virtual organizations for collaboration
Another important grid computing contribution is to enable and simplify collaboration among a
wider audience. In the past, distributed computing promised this collaboration and achieved it
to some extent. Grid computing takes these capabilities to an even wider audience, while
offering important standards that enable very heterogeneous systems to work together to
form the image of a large virtual computing system offering a variety of virtual resources, as
illustrated in Figure 1 on page 4. The users of the grid can be organized dynamically into a
number of virtual organizations, each with different policy requirements. These virtual
organizations can share their resources collectively as a larger grid.

Sharing starts with data in the form of files or databases. A “data grid” can expand data
capabilities in several ways. First, files or databases can seamlessly span many systems and
thus have larger capacities than on any single system. Such spanning can improve data
transfer rates through the use of striping techniques. Data can be duplicated throughout the
grid to serve as a backup and can be hosted on or near the machines most likely to need the
data, in conjunction with advanced scheduling techniques.

Sharing is not limited to files, but also includes many other resources, such as equipment,
software, services, licenses, and others. These resources are “virtualized” to give them a
more uniform interoperability among heterogeneous grid participants.

The participants and users of the grid can be members of several real and virtual
organizations. The grid can help in enforcing security rules among them and implement
policies, which can resolve priorities for both resources and users.
 Fundamentals of Grid Computing 3

Figure 1 The Grid virtualizes heterogeneous and geographically disperse resources for each virtual
organization presenting a simpler view

Access to additional resources
In addition to CPU and storage resources, a grid can provide access to increased quantities
of other resources and to special equipment, software, licenses, and other services. The
additional resources can be provided in additional numbers and/or capacity.

For example, if a user needs to increase his total bandwidth to the Internet to implement a
data mining search engine, the work can be split among grid machines that have independent
connections to the Internet. In this way, the total searching capability is multiplied, since each
machine has a separate connection to the Internet. If the machines had shared the
connection to the Internet, there would not have been an effective increase in bandwidth.

Some machines may have expensive licensed software installed that the user requires. His
jobs can be sent to such machines more fully exploiting the software licenses.

Some machines on the grid may have special devices. Most of us have used remote printers,
perhaps with advanced color capabilities or faster speeds. Similarly, a grid can be used to
make use of other special equipment. For example, a machine may have a high speed, self
feeding, DVD writer that could be used to publish a quantity of data faster. Some machines
on the grid may be connected to scanning electron microscopes that can be operated
remotely. In this case, scheduling and reservation are important. A specimen could be sent in
advance to the facility hosting the microscope. Then the user can remotely operate the
machine, changing perspective views until the desired image is captured.

The grid can enable more elaborate access, potentially to remote medical diagnostic and
robotic surgery tools with two-way interaction from a distance. The variations are limited only
by one’s imagination. Today, we have remote device drivers for printers. Eventually, we will
4 Fundamentals of Grid Computing

see standards for grid enabled device drivers to many unusual devices and resources. All of
these will make the grid look like a large virtual machine with a collection of virtual resources
beyond what would be available on just one conventional machine.

Resource balancing
A grid federates a large number of resources contributed by individual machines into a
greater total virtual resource. For applications that are grid enabled, the grid can offer a
resource balancing effect by scheduling grid jobs on machines with low utilization, as
illustrated in Figure 2. This feature can prove invaluable for handling occasional peak loads of
activity in parts of an larger organization. This can happen in two ways:

� An unexpected peak can be routed to relatively idle machines in the grid.

� If the grid is already fully utilized, the lowest priority work being performed on the grid can
be temporarily suspended or even cancelled and performed again later to make room for
the higher priority work.

Without a grid infrastructure, such balancing decisions are difficult to prioritize and execute.

Occasionally, a project may suddenly rise in importance with a specific deadline. A grid
cannot perform a miracle and achieve a deadline when it is already too close. However, if the
size of the job is known, if it is a kind of job that can be sufficiently split into subjobs, and if
enough resources are available after preempting lower priority work, a grid can bring a very
large amount of processing power to solve the problem. In such situations, a grid can, with
some planning, succeed in meeting a surprise deadline.

Figure 2 Jobs are migrated to less busy parts of the grid to balance resource loads and absorb
unexpected peaks of activity in a part of an organization
 Fundamentals of Grid Computing 5

Other more subtle benefits can occur using a grid for load balancing. When jobs
communicate with each other, the Internet, or with storage resources, an advanced scheduler
could schedule them to minimize communications traffic or minimize the distance of the
communications. This can potentially reduce communication and other forms of contention in
the grid.

Finally, a grid provides excellent infrastructure for brokering resources. Individual resources
can be profiled to determine their availability and their capacity, and this can be factored into
scheduling on the grid. Different organizations participating in the grid can build up grid
credits and use them at times when they need additional resources. This can form the basis
for grid accounting and the ability to more fairly distribute work on the grid.

Reliability
High-end conventional computing systems use expensive hardware to increase reliability.
They are built using chips with redundant circuits that vote on results, and contain much logic
to achieve graceful recovery from an assortment of hardware failures. The machines also use
duplicate processors with hot pluggability so that when they fail, one can be replaced without
turning the other off. Power supplies and cooling systems are duplicated. The systems are
operated on special power sources that can start generators if utility power is interrupted. All
of this builds a reliable system, but at a great cost, due to the duplication of high-reliability
components.

In the future, we will see an alternate approach to reliability that relies more on software
technology than expensive hardware. A grid is just the beginning of such technology. The
systems in a grid can be relatively inexpensive and geographically dispersed. Thus, if there is
a power or other kind of failure at one location, the other parts of the grid are not likely to be
affected. Grid management software can automatically resubmit jobs to other machines on
the grid when a failure is detected. In critical, real-time situations, multiple copies of the
important jobs can be run on different machines throughout the grid, as illustrated in Figure 3
on page 7. Their results can be checked for any kind of inconsistency, such as computer
failures, data corruption, or tampering.
6 Fundamentals of Grid Computing

Figure 3 Redundant grid configuration and redundant job submission used to achieve high reliability

Such grid systems will utilize “autonomic computing.” This is a type of software that
automatically heals problems in the grid, perhaps even before an operator or manager is
aware of them. In principle, most of the reliability attributes achieved using hardware in
today’s high availability systems can be achieved using software in a grid setting in the future.

Management
The goal to virtualize the resources on the grid and more uniformly handle heterogeneous
systems will create new opportunities to better manage a larger, more disperse IT
infrastructure. It will be easier to visualize capacity and utilization, making it easier for IT
departments to control expenditures for computing resources over a larger organization.

The grid offers management of priorities among different projects. In the past, each project
may have been responsible for its own IT resource hardware and the expenses associated
with it. Often this hardware might be underutilized while another project finds itself in trouble,
needing more resources due to unexpected events. With the larger view a grid can offer, it
becomes easier to control and manage such situations. As illustrated in Figure 4 on page 8,
administrators can change any number of policies that affect how the different organizations
might share or compete for resources.

Aggregating utilization data over a larger set of projects can enhance an organization’s ability
to project future upgrade needs. When maintenance is required, grid work can be rerouted to
other machines without crippling the projects involved.

Autonomic computing can come into play here too. Various tools may be able to identify
important trends throughout the grid, informing management of those that require attention.

Job x

Job x

Job x
 Fundamentals of Grid Computing 7

Figure 4 Administrators can adjust policies to better allocate resources

Grid concepts and components
In this section, we introduce the various grid concepts, components, and terms in more detail.

Types of resources
A grid is a collection of machines, sometimes referred to as “nodes,” “resources,” “members,”
“donors,” “clients,” “hosts,” “engines,” and many other such terms. They all contribute any
combination of resources to the grid as a whole. Some resources may be used by all users of
the grid while others may have specific restrictions.

Computation
The most common resource is computing cycles provided by the processors of the machines
on the grid. The processors can vary in speed, architecture, software platform, and other
associated factors, such as memory, storage, and connectivity. There are three primary ways
to exploit the computation resources of a grid. The first and simplest is to use it to run an
existing application on an available machine on the grid rather than locally. The second is to
use an application designed to split its work in such a way that the separate parts can execute
in parallel on different processors. The third is to run an application that needs to be executed
many times on many different machines in the grid. “Scalability” is a measure of how
efficiently the multiple processors on a grid are used. If twice as many processors makes an
application complete in one half the time, then it is said to be perfectly scalable. However,
there may be limits to scalability when applications can only be split into a limited number of
8 Fundamentals of Grid Computing

separately running parts or if those parts experience some other contention for resources of
some kind.

Storage
The second most common resource used in a grid is data storage. A grid providing an
integrated view of data storage is sometimes called a “data grid.” Each machine on the grid
usually provides some quantity of storage for grid use, even if temporary. Storage can be
memory attached to the processor or it can be “secondary storage” using hard disk drives or
other permanent storage media. Memory attached to a processor usually has very fast
access but is volatile. It would best be used to cache data to serve as temporary storage for
running applications.

Secondary storage in a grid can be used in interesting ways to increase capacity,
performance, sharing, and reliability of data. Many grid systems use mountable networked file
systems, such as Andrew File System (AFS), Network File System (NFS), Distributed File
System (DFS), or General Parallel File System (GPFS). These offer varying degrees of
performance, security features, and reliability features.

Capacity can be increased by using the storage on multiple machines with a unifying file
system. Any individual file or data base can span several storage devices and machines,
eliminating maximum size restrictions often imposed by file systems shipped with operating
systems. A unifying file system can also provide a single uniform name space for grid
storage. This makes it easier for users to reference data residing in the grid, without regard
for its exact location. In a similar way, special data base software can “federate” an
assortment of individual data bases and files to form a larger, more comprehensive data
base, accessible using data base query functions.

Figure 5 Data striping is writing or reading successive records to/from different physical devices,
overlapping the access for faster throughput; additional techniques increase reliability

More advanced file systems on a grid can automatically duplicate sets of data, to provide
redundancy for increased reliability and increased performance. An intelligent grid scheduler
can help select the appropriate storage devices to hold data, based on usage patterns. Jobs
can then be scheduled closer to the data, preferably on the machines directly connected to
the storage devices holding the required data.

High speed data Record Record Record Record Record Record

Striped virtual file system

Mirrors, Replicas, Journals...

Virtualization
Capacity

Sharing

Availability

Striping - speed

Mirrors - reliability

Replicas - remote

Journals - transactions
 Fundamentals of Grid Computing 9

Data striping can also be implemented by grid file systems, as illustrated in Figure 5 on
page 9. When there are sequential or predictable access patterns to data, this technique can
create the virtual effect of having storage devices that can transfer data at a faster rate than
any individual disk drive. This can be important for multimedia data streams or when
collecting large quantities of data at extremely high rates from CAT scans or particle physics
experiments, for example.

A grid file system can also implement journaling so that data can be recovered more reliably
after certain kinds of failures. In addition, some file systems implement advanced
synchronization mechanisms to reduce contention when data is shared and updated by many
users.

Communications
The rapid growth in communication capacity among machines today makes grid computing
practical, compared to the limited bandwidth available when distributed computing was first
emerging. Therefore, it should not be a surprise that another important resource of a grid is
data communication capacity. This includes communications within the grid and external to
the grid. Communications within the grid are important for sending jobs and their required
data to points within the grid. Some jobs require a large amount of data to be processed and
it may not always reside on the machine running the job. The bandwidth available for such
communications can often be a critical resource that can limit utilization of the grid.

External communication access to the Internet, for example, can be valuable when building
search engines. Machines on the grid may have connections to the external Internet in
addition to the connectivity among the grid machines. When these connections do not share
the same communication path, then they add to the total available bandwidth for accessing
the Internet.

Redundant communication paths are sometimes needed to better handle potential network
failures and excessive data traffic. In some cases, higher speed networks must be provided to
meet the demands of jobs transferring larger amounts of data. A grid management system
can better show the topology of the grid and highlight the communication bottlenecks. This
information can in turn be used to plan for hardware upgrades.

Software and licenses
The grid may have software installed that may be too expensive to install on every grid
machine. Using a grid, the jobs requiring this software are sent to the particular machines on
which this software happens to be installed. When the licensing fees are significant, this
approach can save significant expenses for an organization.

Some software licensing arrangements permit the software to be installed on all of the
machines of a grid but may limit the number of installations that can be simultaneously used
at any given instant. License management software keeps track of how many concurrent
copies of the software are being used and prevents more than that number from executing at
any given time. The grid job schedulers can be configured to take software licenses into
account, optionally balancing them against other priorities or policies.

Special equipment, capacities, architectures, and policies
Platforms on the grid will often have different architectures, operating systems, devices,
capacities, and equipment. Each of these items represents a different kind of resource that
the grid can use as criteria for assigning jobs to machines. While some software may be
available on several architectures, for example, PowerPC and x86, such software is often
designed to run only on a particular type of hardware and operating system. Such attributes
must be considered when assigning jobs to resources in the grid.
10 Fundamentals of Grid Computing

In some cases, the administrator of a grid may create a new artificial resource type that is
used by schedulers to assign work according to policy rules or other constraints. For
example, some machines may be designated to only be used for medical research. These
would be identified as having a medical research attribute and the scheduler could be
configured to only assign jobs that require machines of the medical research “resource.”
Others may be participate in the grid only if they are not used for military purposes. In this
situation, jobs requiring a “military resource” would not be assigned to such machines. Of
course, the administrators would need to impose a classification on each kind of job through
some certification procedure to use this kind of approach.

Jobs and applications
Although various kinds of resources on the grid may be shared and used, they are usually
accessed via an executing “application” or “job.” Usually we use the term “application” as the
highest level of a piece of work on the grid. However, sometimes the term “job” is used
equivalently. Applications may be broken down into any number of individual jobs, as
illustrated in Figure 6. Those, in turn, can be further broken down into “subjobs.” The grid
industry uses other terms, such as transaction, work unit, or submission, to mean the same
thing as a job.

Jobs are programs that are executed at an appropriate point on the grid. They may compute
something, execute one or more system commands, move or collect data, or operate
machinery. A grid application that is organized as a collection of jobs is usually designed to
have these jobs execute in parallel on different machines in the grid.

Figure 6 An application is one or more jobs that are scheduled to run on machines in the grid; the
results are collected and assembled to produce the answer

The jobs may have specific dependencies that may prevent them from executing in parallel in
all cases. For example, they may require some specific input data that must be copied to the
machine on which the job is to run. Some jobs may require the output produced by certain
 Fundamentals of Grid Computing 11

other jobs and cannot be executed until those prerequisite jobs have completed executing.
Jobs may spawn additional subjobs, depending on the data they process. This work flow can
create a hierarchy of jobs and subjobs. Finally, the results of all of the jobs must be collected
and appropriately assembled to produce the ultimate answer for the application.

Scheduling, reservation, and scavenging
The grid system is responsible for sending a job to a given machine to be executed. In the
simplest of grid systems, the user may select a machine suitable for running his job and then
execute a grid command that sends the job to the selected machine. More advanced grid
systems would include a job “scheduler” of some kind that automatically finds the most
appropriate machine on which to run any given job that is waiting to be executed. Schedulers
react to current availability of resources on the grid. The term “scheduling” is not to be
confused with “reservation” of resources in advance to improve the quality of service.
Sometimes the term “resource broker” is used in place of “scheduler,” but this term implies
that some sort of bartering capability is factored into scheduling.

In a “scavenging” grid system, any machine that becomes idle would typically report its idle
status to the grid management node. This management node would assign to this idle
machine the next job that is satisfied by the machine’s resources. Scavenging is usually
implemented in a way that is unobtrusive to the normal machine user. If the machine
becomes busy with local non-grid work, the grid job is usually suspended or delayed. This
situation creates somewhat unpredictable completion times for grid jobs, although it is not
disruptive to those machines donating resources to the grid.

To create more predictable behavior, grid machines are often “dedicated” to the grid and are
not preempted by outside work. This enables schedulers to compute the approximate
completion time for a set of jobs, when their running characteristics are known.

As a further step, grid resources can be “reserved” in advance for a designated set of jobs.
Such reservations operate much like a calendaring system used to reserve conference rooms
for meetings. This is done to meet deadlines and guarantee quality of service. When policies
permit, resources reserved in advance could also be scavenged to run lower priority jobs
when they are not busy during a reservation period, yielding to jobs for which they are
reserved. Thus, various combinations of scheduling, reservation, and scavenging can be
used to more completely utilize the grid.

Scheduling and reservation is fairly straightforward when only one resource type, usually
CPU, is involved. However, additional grid optimizations can be achieved by considering
more resources in the scheduling and reservation process. For example, it would be
desirable to assign executing jobs to machines nearest to the data that these jobs require.
This would reduce network traffic and possibly reduce scalability limits. Optimal scheduling,
considering multiple resources, is a difficult mathematics problem. Therefore, such
schedulers may use heuristics. These heuristics are rules that are designed to improve the
probability of finding the best combination of job schedules and reservations to optimize
throughput or any other metric.

Intragrid to Intergrid
There have been attempts to formulate a precise definition for what a “grid” is. In fact, the
concept of grid computing is still evolving and most attempts to define it precisely end up
excluding implementations that many would consider to be grids. We will be pragmatic and
not claim to make any definitive descriptions of what a grid is and is not. Therefore, the
following descriptions of various kinds of “grids” must be taken loosely.
12 Fundamentals of Grid Computing

Grids can be built in all sizes, ranging from just a few machines in a department to groups of
machines organized as a hierarchy spanning the world. In this section, we will describe some
examples in this range of grid system topologies.

Figure 7 A simple grid

As presented in Figure 7, the simplest grid consists of just a few machines, all of the same
hardware architecture and same operating system, connected on a local network. This kind of
grid uses homogeneous systems so there are fewer considerations and may be used just for
experimenting with grid software. The machines are usually in one department of an
organization, and their use as a grid may not require any special policies or security
concerns. Because the machines have the same architecture and operating system,
choosing application software for these machines is usually simple. Some people would call
this a “cluster” implementation rather than a “grid.”

The next progression would be to include heterogeneous machines. In this configuration,
more types of resources are available. The grid system is likely to include some scheduling
components. File sharing may still be accomplished using networked file systems. Machines
participating in the grid may include ones from multiple departments but within the same
organization. Such a grid is also referred to as an “Intragrid.”

As the grid expands to many departments, policies may be required for how the grid should
be used. For example, there may be policies for what kinds of work is allowed on the grid and
at what times. There may be a prioritization by department or by kinds of applications that
should have access to grid resources. Also, security becomes more important as more
organizations are involved. Sensitive data in one department may need to be protected from
access by jobs running for other departments. Dedicated grid machines may be added to
increase the quality of service for grid computing, rather than depending entirely on
scavenged resources.
 Fundamentals of Grid Computing 13

The grid may grow geographically in an organization that has facilities in different cities.
Dedicated communications’ connections may be used among these facilities and the grid. In
some cases, VPN tunneling or other technologies may be used over the Internet to connect
the different parts of the organization. Security increases in importance once the bounds of
any given facility are traversed. The grid may grow to be hierarchically organized to reduce
the contention implied by central control, increasing scalability.

Figure 8 A more complex Intergrid

Over time, as illustrated in Figure 8, a grid may grow to cross organization boundaries, and
may be used to collaborate on projects of common interest. This is known as an “Intergrid.”
The highest levels of security are usually required in this configuration to prevent possible
attacks and spying. The Intragrid offers the prospect for trading or brokering resources over a
much wider audience. Resources may be purchased as a utility from trusted suppliers.

Grid construction
An ad hoc grid may be installed by a few programmers in their spare time, but as the grid
grows, and as users become more dependent on it for mission-critical work, a degree of
planning is essential. It is best to understand the organization’s requirements and choose grid
technologies that best fit these requirements. This section discussed some of the planning
considerations and grid components that address the requirements.
14 Fundamentals of Grid Computing

Deployment planning
The use of a grid is often born from a need for increased resources of some type. One often
looks to their neighbor who may have excess capacity in the particular resource. One of the
first considerations is the hardware available and how it is connected via a LAN or WAN. Next,
an organization may want to add additional hardware to augment the capabilities of the grid. It
is important to understand the applications to be used on the grid. Their characteristics can
affect the decisions of how to best choose and configure the hardware and its data
connectivity.

Security
Security is a much more important factor in planning and maintaining a grid than in
conventional distributed computing, where data sharing comprises the bulk of the activity. In a
grid, the member machines are configured to execute programs rather than just move data.
This makes an unsecured grid potentially fertile ground for viruses and Trojan horse
programs. For this reason, it is important to understand exactly which components of the grid
must be rigorously secured to deter any kind of attack. Furthermore, it is important to
understand the issues involved in authenticating users and properly executing the
responsibilities of a certificate authority.

Organization
The technology considerations are important in deploying a grid. However, organizational and
business issues can be equally important. It is important to understand how the departments
in an organization interact, operate, and contribute to the whole. Often, there are barriers built
between departments and projects to protect their resources in an effort to increase the
probability of timely success. However, by rethinking some of these relationships, one can
find that more sharing of resources can sometimes benefit the entire organization better. For
example, a project that finds itself behind schedule and over budget may not be able to afford
the resources required to solve the problem. A grid would give such projects an added
measure of safety, providing an extra margin of resource capacity needed to finish the project.
Similarly, a project in its early stages, when computing resources are not being fully utilized,
may be able to donate them to other projects in need. A grid also offers the ability for the
organization’s management to see the bigger priority picture and react more quickly in shifting
resource utilization, priorities, and policies.

Grid software components
This section presents some of the key components that must be discussed before designing
a grid computing architecture.

Management components
Any grid system has some management components. First, there is a component that keeps
track of the resources available to the grid and which users are members of the grid. This
information is used primarily to decide where grid jobs should be assigned.

Second, there are measurement components that determine both the capacities of the nodes
on the grid and their current utilization rate at any given time. This information is used to
schedule jobs in the grid. Such information is also used to determine the health of the grid,
alerting personnel to problems such as outages, congestion, or overcommitment. This
information is also used to determine overall usage patterns and statistics, as well as to log
and account for usage of grid resources.

Third, advanced grid management software can automatically manage many aspects of the
grid. This is known as “autonomic computing,” or “recovery oriented computing.” This
 Fundamentals of Grid Computing 15

software would automatically recover from various kinds of grid failures and outages, finding
alternative ways to get the workload processed.

Donor software
Each machine contributing resources typically needs to enroll as a member of the grid and
install some software that manages the grid’s use of its resources. Usually, some sort of
identification and authentication procedure must be performed before a machine can join the
grid. A certificate authority can be used to establish the identity of the donor machine as well
as the users and the grid itself.

Some grid systems provide their own login to the grid while others depend on the native
operating systems for user authentication. In the latter case, a user ID mapping system may
be needed to match the user’s rights properly on different machines. This typically is manually
maintained by a grid administrator. He determines which user ID a given user may possess
on each grid machine and enters these IDs in a protected data base or registry. In this way,
when grid jobs are submitted to different machines for a user, the proper local machine user
ID is used for determining the users rights.

In some grid systems, it is possible to join the grid without any special authentication. And in
others, it is possible for any user to submit jobs to the grid. Such systems may be convenient
to set up, but should be discouraged in larger deployments due to the serious security
problems that they would open up.

The grid system makes information about the newly added resources available throughout
the grid. The donor machine will usually have some sort of monitor that determines or
measures how busy the machine is and the rate or amount of resources utilized. This
information is “bubbled up” to the management software of the grid and used to schedule use
of those resources accordingly. In a scavenging system, this information tells the grid
management software when the machine is idle and available for work.

Most importantly, the software installed on a given machine can accept an executable job
from the grid management system and execute it. A user somewhere on the grid submits a
job for execution on the grid. The grid management software must communicate with the grid
donor software to send the job there. The donor grid software must be able to receive the
executable file or select the proper one from copies pre-installed on the donor machine. The
software is executed and the output is sent back to the requester. More advanced
implementations can dynamically adjust the priority of a running job, suspend it and resume it
later, or checkpoint it with the possibility of resuming its execution on a different machine.
These kinds of actions may be necessary to respond to load balancing problems or priority or
policy changes in the grid.

Submission software
Usually any member machine of a grid can be used to submit jobs to the grid and initiate grid
queries. However, in some grid systems, this function is implemented as a separate
component installed on “submission nodes” or “submission clients.” When a grid is built using
dedicated resources rather than scavenged resources, separate submission software is
usually installed on the user’s desktop or workstation.

Distributed grid management
Larger grids may have a hierarchical or other type of organizational topology usually
matching the connectivity topology. That is, machines locally connected together with a LAN
form a “cluster” of machines. The grid may be organized in a hierarchy consisting of clusters
of clusters. The work involved in managing the grid is distributed to increase the scalability of
the grid. The collection and grid operation and resource data as well as job scheduling is
distributed to match the topology of the grid. For example, a central job scheduler will not
16 Fundamentals of Grid Computing

schedule a submitted job directly to the machine which is to execute it. Instead the job is sent
to a lower level scheduler which handles a set of machines (or further clusters). The lower
level scheduler handles the assignment to the specific machine. Similarly, the collection of
statistical information is distributed. Lower level clusters receive activity information from the
individual machines, aggregate it, and send it to higher level management nodes in the
hierarchy.

Schedulers
Most grid systems include some sort of job scheduling software. This software locates a
machine on which to run a grid job that has been submitted by a user. In the simplest cases,
it may just blindly assign jobs in a round-robin fashion to the next machine matching the
resource requirements. However, there are advantages to using a more advanced scheduler.

Some schedulers implement a job priority system. This is sometimes done by using several
job queues, each with a different priority. As grid machines become available to execute jobs,
the jobs are taken from the highest priority queues first. Policies of various kinds are also
implemented using schedulers. Policies can include various kinds of constrains on jobs,
users, and resources. For example, there may be a policy that restricts grid jobs from
executing at certain times of the day.

Schedulers usually react to the immediate grid load. They use measurement information
about the current utilization of machines to determine which ones are not busy before
submitting a job. Schedulers can be organized in a hierarchy. For example, a meta-scheduler
may submit a job to a cluster scheduler or other lower level scheduler rather than to an
individual machine.

More advanced schedulers will monitor the progress of scheduled jobs managing the overall
work-flow. If the jobs are lost due to system or network outages, a good scheduler will
automatically resubmit the job elsewhere. However, if a job appears to be in an infinite loop
and reaches a maximum timeout, then such jobs should not be rescheduled. Typically, jobs
have different kinds of completion codes, some of which are suitable for re-submission and
some of which are not.

Reserving resources on the grid in advance is accomplished with a “reservation system.” It is
more than a scheduler. It is first a calendar based system for reserving resources for specific
time periods and preventing any others from reserving the same resource at the same time. It
also must be able to remove or suspend jobs that may be running on any machine or
resource when the reservation period is reached.

Communications
A grid system may include software to help jobs communicate with each other. For example,
an application may split itself into a large number of subjobs. Each of these subjobs is a
separate job in the grid. However, the application may implement an algorithm that requires
that the subjobs communicate some information among them. The subjobs need to be able to
locate other specific subjobs, establish a communications connection with them, and send
the appropriate data. The open standard Message Passing Interface (MPI) and any of several
variations is often included as part of the grid system for just this kind of communication.

Observation, management, and measurement
We mentioned above the schedulers react to current loads on the grid. Usually, the donor
software will include some tools that measure the current load and activity on a given
machine using either operating system facilities or by direct measurement. This software is
sometimes referred to as a “load sensor.” Some grid systems provide the means for
implementing custom load sensors for other than CPU or storage resources.
 Fundamentals of Grid Computing 17

Such measurement information is useful not only for scheduling, but also for discovering
overall usage patterns in the grid. The statistics can show trends which may signal the need
for additional hardware. Also, measurement information about specific jobs can be collected
and used to better predict the resource requirements of that job the next time it is run. The
better the prediction, the more efficiently the grid’s workload can be managed.

The measurement information can also be saved for accounting purposes, to form the basis
for grid resource brokering, or to manage priorities more fairly. The information can also be
displayed in various forms to better visualize grid activity and utilization.

Using a grid: A user’s perspective
This section describes the typical usage activities in using the grid from an user’s perspective.

Enrolling and installing grid software
A user first enrolls as a grid user, and installs the provided grid software on his own machine.
He may optionally enroll his machine as a donor on the grid.

Enrolling in the grid may require authentication for security purposes. The user positively
establishes his identity with a certificate authority. This should not be done solely via the
Internet. The certificate authority must take steps to assure that the user is in fact who he
claims to be. The certificate authority makes a special certificate available to software
needing to check the true identity of a grid user and his grid requests. Similar steps may be
required to identify the donating machine. The user has the responsibility of keeping his grid
credentials secure.

Once the user and/or machine are authenticated, the grid software is provided to the user for
installing on his machine for the purposes of using the grid as well as donating to the grid.
This software may be automatically preconfigured by the grid management system to know
the communication address of the management nodes in the grid and user or machine
identification information. In this way, the installation may be a one click operation with a
minimum of interaction required on the part of the user. In less automated grid installations,
the user may be asked to identify the grid’s management node and possibly other
configuration information. He may choose to limit the resources donated to the grid, the times
that his machine is usable by the grid, and other policy related constraints. The user may also
need to inform the grid administrator which user IDs are his on other machines that exist on
the grid.

Logging onto the grid
To use the grid, most grid systems require the user to log on to a system using a user ID that
is enrolled in the grid. Other grid systems may have their own grid login ID separate from the
one on the operating system. A grid login is usually more convenient for grid users. It
eliminates the ID matching problems among different machines. To the user, it makes the grid
look more like one large virtual computer rather than a collection of individual machines.
Globus, for example, implements a proxy login model that keeps the user logged in for a
specified amount of time, even if he logs off and back on the operating system and even if the
machine is rebooted.

Once logged on, the user can query the grid and submit jobs. Some grid implementations
permit some query functions if the user is not logged into the grid or even if the user is not
enrolled in the grid.
18 Fundamentals of Grid Computing

Queries and submitting jobs
The user will usually perform some queries to check to see how busy the grid is, to see how
his submitted jobs are progressing, and to look for resources on the grid. Grid systems
usually provide command line tools as well as graphical user interfaces (GUIs) for queries.
Command line tools are especially useful when the user wants to write a script that
automates a sequence of actions. For example, the user might write a script to look for an
available resource, submit a job to it, watch the progress of the job, and present the results
when the job has finished.

Job submission usually consists of three parts, even if there is only one command required.
First, some input data and possibly the executable program or execution script file are sent to
the machine to execute the job. Sending the input is called “staging the input data.”
Alternatively, the data and program files may be pre-installed on the grid machines or
accessible via a mountable networked file system. When the grid consists of heterogeneous
machines, there may be multiple executable program files, each compiled for the different
machine platforms on the grid. A nice feature provided by some grid systems is to register
these multiple versions of the program so that the grid system can automatically choose a
correctly matching version to the grid machine that will run the program. Some grid
technologies require that the program and input data be first processed or “wrappered” in
some way by the grid system. This may be done to add protective execution controls around
the application or just to simply collect all of the data files into one.

Second, the job is executed on the grid machine. The grid software running on the donating
machine executes the program in a process on the user’s behalf. It may use a common user
ID on the machine or it may use the user’s own user ID, depending on which grid technology
is used. Some grid systems implement a protective “sandbox” around the program so that it
cannot cause any disruption to the donating machine if it encounters a problem during
execution. Rights to access files and other resources on the grid machine may be restricted.

Third, the results of the job are sent back to the submitter. In some implementations,
intermediate results can be viewed by the user who submitted the job. In some grid
technologies that do not automatically stage the output data back to the user, the results must
be explicitly sent to the user, perhaps using a networked file system.

Scripts are also useful for submitting a series of jobs, for a parameter space application, for
example. Some computation problems consist of a search for the desired result based on
some input parameters. The goal is to find the input parameters that produce the best desired
result. For each input parameter, a separate job is executed to find the result for that value.
The whole application consists of many such jobs, which explore the results for a large
number of input parameter values. Scripts are usually used to launch the many subjobs, each
receiving their own particular parameter values. Parameter inputs can sometimes be more
complex than simply a number. Sometimes a different input data set represents the “input
parameter.” Scripts help automate the large variety of more complex parameter space study
problems. For simpler parameter space inputs, some grid products provide a GUI to submit
the series of subjobs, each with different input parameter values.

When there are a large number of subjobs, the work required to collect the results and
produce the final result is usually accomplished by a single program, usually running on the
machine at the point of job submission. If there are a very large number subjobs required for
an application, the work of collecting the results might be distributed as well. For example, the
subjob that submits more subjobs to the grid would be responsible for collecting and
aggregating the results of the subjobs it spawned.
 Fundamentals of Grid Computing 19

Data configuration
The data accessed by the grid jobs may simply be staged in and out by the grid system.
However, depending on its size and the number of jobs, this can potentially add up to a large
amount of data traffic. For this reason, some thought is usually given on how to arrange to
have the minimum of such data movement on the grid.

For example, if there will be a very large number of sub-jobs running on most of the grid
systems for an application that will be repeatedly run, the data they use may be copied to
each machine and reside until the next time the application runs. This is preferable to using a
networked file system to share this data, because in such a file system, the data would be
effectively moved from a central location every time the application is run. Thus is true unless
the file system implements a caching feature or replicates the data automatically.

There are many considerations in efficiently planning the distribution and sharing of data on a
grid. This type of analysis is necessary for large jobs to better utilize the grid and not create
unnecessary bottlenecks.

Monitoring progress and recovery
The user can query the grid system to see how his application and its subjobs are
progressing. When the number of subjobs becomes large, it becomes to difficult to list them
all in a graphical window. Instead, there may simply be a one large bar graph showing some
averaged progress metric. It becomes more difficult for the user to tell if any particular subjob
is not running properly.

A grid system, in conjunction with its job scheduler, often provides some degree of recovery
for subjobs that fail. A job may fail due to a:

� Programming error: The job stops part way with some program fault.

� Hardware or power failure: The machine or devices being used stop working in some way.

� Communications interruption: A communication path to the machine has failed or is
overloaded with other data traffic.

� Excessive slowness: The job might be in an infinite loop or normal job progress may be
limited by another process running at a higher priority or some other form of contention.

It is not always possible to automatically determine if the reason for a job’s failure is due to a
problem with the design of the application or if it is due to failures of various kinds in the grid
system infrastructure. Schedulers are often designed to categorize job failures in some way
and automatically resubmit jobs so that they are likely to succeed, running elsewhere on the
grid. In some systems, the user is informed about any job failures and the user must decide
whether to issue a command to attempt to rerun the failed jobs.

Grid applications can be designed to automate the monitoring and recovery of their own
subjobs using functions provided by the grid system software application programming
interfaces (APIs).

Reserving resources
To improve the quality of a service, the user may arrange to reserve a set of resources in
advance for his exclusive or high priority use. A calendaring system analogy can be used
here. Such a reservation system can also be used in conjunction with planned hardware or
software maintenance events, when the affected resource might not be available for grid use.
20 Fundamentals of Grid Computing

In a scavenging grid, it may not be possible to reserve specific machines in advance. Instead,
the grid management systems may allocate a larger fraction of its capacity for a given
reservation to allow for the likelihood of some of the resources becoming unavailable. This
must be done in conjunction with tools that have profiled the grid’s workload capacity
sufficiently to have reliable statistics about the grid’s ability to serve the reservation.

Using a grid: An administrator’s perspective
This section describes the typical usage activities in using the grid from an administrator’s
perspective.

Planning
The administrator should understand the organization’s requirements for the grid to better
choose the grid technologies that satisfy those requirements. The following sections briefly
describe the steps the administrator may take to manage the grid. It is suggested that one
should start by deploying a small grid first, to learn about its installation and management,
before having to confront more complicated issues involved with a large grid.

Installation
First, the selected grid system must be installed on an appropriately configured set of
machines. These machines should be connected using networks with sufficient bandwidth to
other machines on the grid. Of prime importance is understanding the fail-over scenarios for
the given grid system so that the grid can continue operating even if any of the management
machines fails in some way. Machines should be configured and connected to facilitate
recovery scenarios. Any critical data bases or other data essential for keeping track of the
jobs in the grid, members of the grid, and machines on the grid should have suitable backups.
Furthermore, public key certificates must be backed up and the private keys must be held in a
highly secured place inaccessible by anyone else.

After installation, the grid software may need to be configured for the local network address
and IDs. The administrator will usually require root access to the machines managing the
grid. In some grid systems, he will also need root access to the donor machines be required
to install the software on those as well. The software to be installed on the donor machines
may need to be customized so that it can find the grid management machines automatically
and include pre-installed public keys for the grid. This software may be provided to potential
donors on an FTP or equivalent server or be made available on physical media.

Once, the grid is operational, there may be application software and data that should be
installed on donor machines as well. This software may have specific licensing restrictions
that should be understood and adhered to. Some grid systems include tools to assist with
grid-wide license management. This can both help in following the rules of the licenses and
most efficiently exploit those licenses.

Managing enrollment of donors and users
An ongoing task for the grid administrator is to manage the members of the grid, both the
machines donating resources and the users. Users may be further organized as project
groups. The administrator is responsible for controlling the rights of the users in the grid.
Donor machines may have access rights that require management as well. Grid jobs running
on donor machines may be executed under a special grid user ID on behalf of the users
 Fundamentals of Grid Computing 21

submitting the jobs. The rights of these grid user IDs must be properly set so that grid jobs do
not allow access to parts of the donor machine to which the users are not entitled.

As users join the grid, their identity must be positively established and entered in the
certificate authority. The user and his certificate credentials must be added to the user list
using the software appropriate for the grid system deployed. In some cases, the administrator
must propagate the user information to several or all grid machines. Also, when the grid
system depends primarily on the operating system for user login, the administrator may need
to add entries to map the grid user to specific operating system user IDs on the donor
machines.

Similar enrollment activity is usually required to enroll donor machines into the grid. The
machine’s identity is established and registered with the certificate authority. The
administrator of the grid must have an agreement with the administrator of the donor machine
about user IDs, software, access rights, and any policy restrictions. The administrator must
enter the machine’s identification credentials, addresses, and resource characteristics using
the appropriate software for enrolling the donor machine into the grid. In some cases, the
administrator may need to manually propagate this information to other machines in the grid.

Corresponding procedures for removing users and machines must be executed by the
administrator.

Certificate authority
It is critical to ensure the highest levels of security in a grid because the grid is designed to
execute code and not just share data. Thus, it can be fertile ground for viruses, Trojan horses,
and other attacks if the grid system is compromised in any way. The certificate authority is
one of the most important aspects of maintaining strong grid security. An organization may
choose to use an external certificate authority or operate one itself. You must be able to trust
the certificate authority to strictly adhere to its responsibilities.

The primary responsibilities of a certificate authority are:

� Positively identify entities requesting certificates

� Issuing, removing, and archiving certificates

� Protecting the certificate authority server

� Maintaining a namespace of unique names for certificate owners

� Serve signed certificates to those needing to authenticate entities

� Logging activity

Briefly, a certificate authority is based on the public key encryption system. In this system,
keys are generated in pairs, a public key and a private key. Either one can be used to encrypt
some data such that the other is needed to decrypt it. The private key is guarded by the
owner and never revealed to anyone. The public one is given to anyone needing it. A
certificate authority is used to hold these public keys and to guarantee who they belong to.
When a user uses his private key to encrypt something, the receiver uses the corresponding
public key to decrypt it. The receiver knows that only that user’s public key can decrypt the
message correctly. However, anyone could intercept this message and decrypt it because
anyone can get the originator’s public key. If the originator instead doubly encrypts the
message with his private key and the intended recipient’s public key, a secure communication
link is formed. The receiver uses his private key to decrypt the message and then uses the
sender’s public key for the second decryption. Now the recipient knows that if the message
decrypts properly, then only the sender could have sent it and furthermore, the sender knows
that only the intended receiver can decrypt it. The beauty of all of this is that nobody had to
22 Fundamentals of Grid Computing

securely carry an encryption key from the sender to the receiver, as must be done for
conventional encryption systems, and any tampering with the communication is revealed. A
similar exchange is used to get anyone’s public key from the certificate authority, so that the
user knows that he has received an unaltered public key for the desired user.

Resource management
Another responsibility of the administrator is to manage the resources of the grid. This
includes setting permissions for grid users to use the resources as well as tracking resource
usage and implementing a corresponding accounting or billing system. Usage statistics are
useful in identifying trends in an organization that may require the acquisition of additional
hardware, reduction in excess hardware to reduce costs, and adjustments in priorities and
policies to achieve utilization that is fairer or better achieves the overall goals of an
organization.

Some grid components, usually job schedulers, have provisions for enforcing priorities and
policies of various kinds. It is the responsibility of the administrator to configure these to best
meet the goals of the overall organization. Software license managers can be used in a grid
setting to control the proper utilization. These may be configured to work with job schedulers
to prioritize the use of the limited licenses.

Data sharing
For small grids, the sharing of data can be fairly easy, using existing networked file systems,
databases, or standard data transfer protocols. As a grid grows and the users become
dependent on any of the data storage repositories, the administrator should consider
procedures to maintain backup copies and replicas to improve performance. All of the
resource management concerns apply to data on the grid.

Using a grid: An application developer’s perspective
Grid applications can be categorized in one of the following three categories:

� Applications that are not enabled for using multiple processors but can be executed on
different machines.

� Applications that are already designed to use the multiple processors of a grid setting.

� Applications that need to be modified or rewritten to better exploit a grid.

The latter category is of interest to grid application developers. They will find a need for tools
for debugging and measuring the behavior of grid applications. Such grid based tools are still
in their infancy. It may be useful for developers to configure a small grid of their own so that
they can use debuggers on each machine to control and watch the detailed workings of the
applications. Since the debugging process can bypass certain security precautions, it may
not always be wise to allow such debugging on a production grid.

Globus is more a developer’s toolkit for building grid components rather than a
comprehensive grid system. It has the basic components needed to build new facilities to
manage grid operations, measurement, repair, and debug grid applications. Tools conforming
to the emerging Open Grid Services Architecture (OGSA) interfaces will be usable on various
vendor grid systems.
 Fundamentals of Grid Computing 23

The present and the future
The Globus toolkit is a set of tools useful for building a grid. Its strength is a good security
model, with a provision for hierarchically collecting data about the grid, as well as the basic
facilities for implementing a simple, yet world-spanning grid. Globus will grow over time
through the work of many organizations that are extending its capabilities. More information
about Globus can be obtained at http://www.globus.org.

Most grid systems include some job schedulers, but as grids span wider areas, there will be a
need for more meta-schedulers that can manage variously configured collections of clusters
and smaller grids. These schedulers will evolve to better schedule jobs, considering multiple
resources rather than just CPU utilization. They will also extend their reach to implement
better quality of service, using reservations, redundancy, and history profiles of jobs and grid
performance.

Today, grid systems are still at the early stages of providing a reliable, well performing, and
automatically recoverable virtual data sharing and storage. We will see products that take on
this task in a grid setting, federating data of all kinds, and achieving better performance,
integration with scheduling, reliability, and capacity.

Autonomic computing has the goal to make the administrator’s job easier by automating the
various complicated tasks involved in managing a grid. These include identifying problems in
real time and quickly initiating corrective actions before they seriously impair the grid.

Open Grid Services Architecture (OGSA) is an open standard at the base of all of these
future grid enhancements. OGSA will standardize the grid interfaces that will be used by the
new schedulers, autonomic computing agents, and any number of other services yet to be
developed for the grid. It will make it easier to assemble the best products from various
vendors, increasing the overall value of grid computing. More information about OGSA can
be obtained at http://www.globus.org/ogsa.

What the grid cannot do
A word of caution should be given to the overly enthusiastic. The grid is not a silver bullet that
can take any application and run it a 1000 times faster without the need for buying any more
machines or software. Not every application is suitable or enabled for running on a grid.
Some kinds of applications simply cannot be parallelized. For others, it can take a large
amount of work to modify them to achieve faster throughput. The configuration of a grid can
greatly affect the performance, reliability, and security of an organization’s computing
infrastructure. For all of these reasons, it is important for the us to understand how far the grid
has evolved today and which features are coming tomorrow or in the distant future.
24 Fundamentals of Grid Computing

http://www.globus.org
http://www.globus.org/ogsa

Acknowledgements
This publication was produced during the grid computing project, organized and coordinated
by the International Technical Support Organization in October 2002. The following team of
specialists, from around the world, contributed to this project:

Jonathan Armstrong and Viktors Berstis
Grid Computing Initiative, e-Technology Center - IBM Austin

Mike Kendzierski
ITS Northeast Region - IBM North America

Andreas Neukoetter
iBM ^ OGSA Development - IBM Germany

Richard Bing-Wo
Professional Services Consultant - IBM North America

Olegario Hernandez
Business Partner - IBM Chile

Masanobu Takagi
IBM Japan

Adeeb Amir
Professional Services Consultant - IBM North America

Ryo Murakawa
IBM Japan

Norbert Bieberstein
Solution Development Manager - IBM Germany

Luis Ferreira
Grid and Linux Team, International Technical Support Organization - IBM Austin
 Fundamentals of Grid Computing 25

26 Fundamentals of Grid Computing

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. 27

This document created or updated on November 11, 2002.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an Internet note to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AFS®
IBM®
IBM eServer™

DFS™
Redbooks™
Redbooks(logo)™

PowerPC®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Globus Project™ and Globus Toolkit™ are trademarks held by the University of Chicago.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks of others.

®

28 Fundamentals of Grid Computing

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Fundamentals of Grid Computing
	What grid computing can do
	Exploiting underutilized resources
	Parallel CPU capacity
	Applications
	Virtual resources and virtual organizations for collaboration
	Access to additional resources
	Resource balancing
	Reliability
	Management

	Grid concepts and components
	Types of resources

	Intragrid to Intergrid
	Grid construction
	Deployment planning
	Grid software components

	Using a grid: A user’s perspective
	Enrolling and installing grid software
	Logging onto the grid
	Queries and submitting jobs
	Data configuration
	Monitoring progress and recovery
	Reserving resources

	Using a grid: An administrator’s perspective
	Planning
	Installation
	Managing enrollment of donors and users
	Certificate authority
	Resource management
	Data sharing

	Using a grid: An application developer’s perspective
	The present and the future
	What the grid cannot do
	Acknowledgements

	Notices
	Trademarks

