
ibm.com/redbooks

AIX 5L Practical
Performance Tools erformance Tools
and Tuning Guideuning Guide

Kumiko Hayashi
Kangkook Ji

Octavian Lascu
Hennie Pienaar

Susan Schreitmueller
Tina Tarquinio

James Thompson

Updated performance information for
IBM Eserver p5 and AIX 5L V5.3

New tools for Eserver p5 with
SMT and Micro-Partitioning

Practical performance problem
determination examples

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

AIX 5L Practical Performance Tools and Tuning
Guide

April 2005

International Technical Support Organization

SG24-6478-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2005)

This edition applies to Version 5, Release 3, of AIX 5L (product number 5765-G03).

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiii
Comments welcome. xiv

Part 1. Introduction . 1

Chapter 1. Performance overview . 3
1.1 Performance expectations. 4

1.1.1 System workload. 5
1.1.2 Performance objectives. 6
1.1.3 Program execution model . 7
1.1.4 System tuning . 12

1.2 Introduction to the performance tuning process . 13
1.2.1 Performance management phases . 14

Chapter 2. Performance analysis and tuning . 21
2.1 CPU performance . 22

2.1.1 Processes and threads . 22
2.1.2 SMP performance . 26
2.1.3 Initial advice for monitoring CPU. 29

2.2 Memory overview . 31
2.2.1 Virtual memory manager (VMM) overview . 32
2.2.2 Paging space overview . 34

2.3 Disk I/O performance . 37
2.3.1 Initial advice . 37
2.3.2 Disk subsystem design approach . 38
2.3.3 Bandwidth-related performance considerations 38
2.3.4 Disk design . 39
2.3.5 Logical Volume Manager concepts . 41

2.4 Network performance . 48
2.4.1 Initial advice . 49
2.4.2 TCP/IP protocol. 50
2.4.3 Network tunables . 51

Part 2. Performance tools. 61
© Copyright IBM Corp. 2005. All rights reserved. iii

Chapter 3. General performance monitoring tools 63
3.1 The topas command . 64

3.1.1 Topas syntax. 65
3.1.2 Basic topas output. 66
3.1.3 Partition statistics . 68

3.2 The jtopas utility . 70
3.2.1 The jtopas configuration file . 73
3.2.2 The info section for the jtopas tool . 74
3.2.3 The jtopas consoles . 75
3.2.4 The jtopas playback tool . 76

3.3 The perfpmr utility . 77
3.3.1 Information about measurement and sampling. 78
3.3.2 Building and submitting a test case. 81
3.3.3 Examples for perfpmr . 84

3.4 Performance Diagnostic Tool (PDT) . 86
3.4.1 Examples for PDT . 87
3.4.2 Using reports generated by PDT. 92
3.4.3 Running PDT collection manually . 95

3.5 The curt command . 95
3.5.1 Information about measurement and sampling. 96
3.5.2 Examples for curt . 98
3.5.3 Overview of the reports generated by curt . 99
3.5.4 The default report . 100

3.6 The splat command. 119
3.6.1 splat syntax . 120
3.6.2 Information about measurement and sampling. 122
3.6.3 The execution, trace, and analysis intervals 123
3.6.4 Trace discontinuities . 124
3.6.5 Address-to-name resolution in splat . 124
3.6.6 splat examples . 125

3.7 The trace, trcnm, and trcrpt commands . 147
3.7.1 The trace command . 148
3.7.2 Information about measurement and sampling. 152
3.7.3 How to start and stop trace . 155
3.7.4 Running trace interactively . 156
3.7.5 Running trace asynchronously . 156
3.7.6 Running trace on an entire system for 10 seconds. 156
3.7.7 Tracing a command . 157
3.7.8 Tracing using one set of buffers per CPU . 157
3.7.9 Examples for trace . 158
3.7.10 The trcnm command . 163
3.7.11 Examples for trcnm . 164
3.7.12 The trcrpt command . 164
iv AIX 5L Practical Performance Tools and Tuning Guide

3.7.13 Examples for trcrpt . 169

Chapter 4. CPU analysis and tuning . 171
4.1 CPU overview . 172

4.1.1 Performance considerations with POWER4-based systems 172
4.1.2 Performance considerations with POWER5-based systems 172

4.2 CPU monitoring . 174
4.2.1 The lparstat command . 174
4.2.2 The mpstat command . 179
4.2.3 The procmon tool . 184
4.2.4 The topas command . 197
4.2.5 The sar command . 201
4.2.6 The iostat command . 205
4.2.7 The vmstat command . 208
4.2.8 The ps command . 210
4.2.9 The trace tool . 215
4.2.10 The curt command . 229
4.2.11 The splat command. 245
4.2.12 The truss command . 256
4.2.13 The gprof command . 259
4.2.14 The pprof command . 262
4.2.15 The prof command . 268
4.2.16 The tprof command . 270
4.2.17 The time command . 273
4.2.18 The timex command . 273

4.3 CPU related tuning tools and techniques . 276
4.3.1 The smtctl command. 276
4.3.2 The bindintcpu command . 278
4.3.3 The bindprocessor command . 280
4.3.4 The schedo command. 282
4.3.5 The nice command . 288
4.3.6 The renice command . 290

4.4 CPU summary . 291
4.4.1 Other useful commands for CPU monitoring 291

Chapter 5. Memory analysis and tuning . 297
5.1 Memory monitoring . 298

5.1.1 The ps command . 298
5.1.2 The sar command . 300
5.1.3 The svmon command . 301
5.1.4 The topas monitoring tool . 308
5.1.5 The vmstat command . 310

5.2 Memory tuning. 317
 Contents v

5.2.1 The vmo command . 317
5.2.2 Paging space thresholds tuning . 328

5.3 Memory summary . 329
5.3.1 Other useful commands for memory performance 330
5.3.2 Paging space commands . 331

Chapter 6. Network performance . 333
6.1 Network overview . 334

6.1.1 The maxmbuf tunable . 336
6.2 Hardware considerations. 340

6.2.1 Firmware levels . 340
6.2.2 Media speed considerations . 341
6.2.3 MTU size . 342

6.3 Network monitoring . 348
6.3.1 Creating network load . 349

6.4 Network monitoring commands. 351
6.4.1 The entstat command . 351
6.4.2 The netstat command . 356
6.4.3 The pmtu command . 370

6.5 Network packet tracing tools . 371
6.5.1 The iptrace command . 371
6.5.2 The ipreport command . 374
6.5.3 The ipfilter command. 376
6.5.4 The netpmon command . 376
6.5.5 The trpt command . 384

6.6 NFS related performance commands . 389
6.6.1 The nfsstat command . 389

6.7 Network tuning commands . 396
6.7.1 The no command . 396
6.7.2 The Interface Specific Network Options (ISNO) 415
6.7.3 The nfso command . 416

Chapter 7. Storage analysis and tuning . 425
7.1 Data placement and design. 426

7.1.1 AIX I/O stack . 426
7.1.2 Physical disk and disk subsystem. 428
7.1.3 Device drivers and adapters . 429
7.1.4 Volume groups and logical volumes . 430
7.1.5 VMM and direct I/O . 431
7.1.6 JFS/JFS2 file systems. 432

7.2 Monitoring . 433
7.2.1 The iostat command . 433
7.2.2 The filemon command. 441
vi AIX 5L Practical Performance Tools and Tuning Guide

7.2.3 The fileplace command . 449
7.2.4 The lslv, lspv, and lsvg commands . 463
7.2.5 The lvmstat command. 475
7.2.6 The sar -d command . 478

7.3 Tuning . 480
7.3.1 The lsdev, rmdev and mkdev commands . 480
7.3.2 The lscfg, lsattr, and chdev commands. 487
7.3.3 The ioo command . 495
7.3.4 The lvmo command. 499
7.3.5 The vmo command . 500

Part 3. Case studies and miscellaneous tools . 501

Chapter 8. Case studies . 503
8.1 Case study: NIM server. 504

8.1.1 Setting up the environment . 504
8.1.2 Monitoring NIM master using topas . 506
8.1.3 Upgrading NIM environment to Gbit Ethernet 510
8.1.4 Upgrading the disk storage . 512
8.1.5 Real workload with spread file system . 520
8.1.6 Summary. 522

8.2 POWER5 case study. 523
8.2.1 POWER5 introduction . 523
8.2.2 High CPU . 524
8.2.3 Evaluation . 531

Chapter 9. Miscellaneous tools . 533
9.1 Workload manager monitoring (WLM) . 534

9.1.1 Overview . 534
9.1.2 WLM concepts . 535
9.1.3 Administering WLM . 537
9.1.4 WLM performance tools . 546

9.2 Partition load manager (PLM) . 549
9.2.1 PLM introduction . 549
9.2.2 Memory management . 553
9.2.3 Processor management . 553

9.3 A comparison of WLM and PLM . 554
9.4 Resource monitoring and control (RMC). 557

9.4.1 RMC commands . 559
9.4.2 Information about measurement and sampling. 560
9.4.3 Verifying RMC facilities . 565
9.4.4 Examples using RMC . 570

Chapter 10. Performance monitoring APIs . 583
 Contents vii

10.1 The performance status (Perfstat) API . 584
10.1.1 Compiling and linking . 586
10.1.2 Changing history of perfstat API . 586
10.1.3 Subroutines . 587

10.2 System Performance Measurement Interface. 620
10.2.1 Compiling and linking . 621
10.2.2 Terms and concepts for SPMI. 621
10.2.3 Subroutines . 624
10.2.4 Basic layout of SPMI program. 629
10.2.5 SPMI examples . 632

10.3 Performance Monitor API . 637
10.3.1 Performance Monitor data access . 638
10.3.2 Compiling and linking . 639
10.3.3 Subroutines . 639
10.3.4 PM API examples . 640
10.3.5 PMAPI M:N pthreads support . 643

10.4 Miscellaneous performance monitoring subroutines 644
10.4.1 Compiling and linking . 644
10.4.2 Subroutines . 644
10.4.3 Combined example . 662

Appendix A. Source code . 665
perfstat_dump_all.c . 666
perfstat_dude.c. 670
spmi_dude.c . 679
spmi_data.c . 683
spmi_file.c . 689
Spmi_traverse.c . 691
dudestat.c. 695

Appendix B. Trace hooks . 699
AIX 5L trace hooks . 700

Abbreviations and acronyms . 709

Related publications . 711
IBM Redbooks . 711
Other publications . 712
Online resources . 713
How to get IBM Redbooks . 713
Help from IBM . 713

Index . 715
viii AIX 5L Practical Performance Tools and Tuning Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
ibm.com®
pSeries®
AIX 5L™
AIX®
DB2®
Enterprise Storage Server®
ESCON®

Hypervisor™
HACMP™
IBM®
Micro-Partitioning™
Nways®
POWER™
POWER3™
POWER4™

POWER5™
PTX®
Redbooks™
Redbooks (logo) ™
RS/6000®
Tivoli®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x AIX 5L Practical Performance Tools and Tuning Guide

Preface

This IBM® Redbook takes an insightful look at the performance monitoring and
tuning tools that are provided with AIX® 5L™. It discusses the usage of the tools
as well as the interpretation of the results by using many examples.

This redbook is meant as a practical guide for system administrators and AIX
technical support professionals so they can use the performance tools in an
efficient manner and interpret the outputs when analyzing an AIX system’s
performance.

This book provides updated information about monitoring and tuning systems
performance in an IBM Eserver® POWER5™ and AIX 5L V5.3 environment.
Practical examples for the new and updated tools are provided, together with
new information about using Resource Monitoring and to control part of RSCT for
performance monitoring.

Also, in 10.1, “The performance status (Perfstat) API” on page 584, this book
presents the Perfstat API for application programmers to have a better
understanding of the new and updated facilities provided with this API.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Kumiko Hayashi is an IT Specialist working at IBM Japan Systems Engineering
Co., Ltd. She has four years of experience in AIX, RS/6000®, and IBM ~
pSeries®. She provides pre-sales technical consultation and post-sales
implementation support. She is an IBM Certified Advanced Technical Expert -
pSeries and AIX 5L.

Kangkook Ji is an IT Specialist at IBM Korea. He has four years of experience in
AIX and pSeries. Currently as a Level 2 Support Engineer, he supports field
engineers, and his main work is high availability solutions, such as HACMP™
and AIX problems. His interests vary in many IT areas, such as Linux® and
middleware. He is an IBM Certified Advanced Technical Expert - pSeries and
AIX 5L and HACMP.

Octavian Lascu is a Project Leader at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM
© Copyright IBM Corp. 2005. All rights reserved. xi

classes worldwide in all areas of pSeries clusters and Linux. Before joining the
ITSO, Octavian worked at IBM Global Services Romania as a Software and
Hardware Services Manager. He holds a master's degree in Electronic
Engineering from the Polytechnical Institute in Bucharest and is also an IBM
Certified Advanced Technical Expert in AIX/PSSP/HACMP. He has worked with
IBM since 1992.

Hennie Pienaar is a Senior Education Specialist in South Africa. He has eight
years of experience in the AIX/Linux field. His areas of expertise include AIX,
Linux and Tivoli®. He is certified as an Advanced Technical Expert. He has
written extensively on AIX and Linux and has delivered classes worldwide on AIX
and HACMP.

Susan Schreitmueller is a Sr. Consulting I/T Specialist with IBM. She joined
IBM eight years ago, specializing in pSeries, AIX, and technical competitive
positioning. Susan has been a Systems Administrator on zSeries, iSeries, and
pSeries platforms and has expertise in systems administration and resource
management. She travels extensively to customer locations, and has a talent for
mentoring new hires and working to create a cohesive technical community that
shares information at IBM.

Tina Tarquinio is a Software Engineer in Poughkeepsie, NY. She has worked at
IBM for five years and has three years of AIX System Administration experience
working in the pSeries Benchmark Center. She holds a bachelor’s degree in
Applied Mathematics and Computer Science from the University of Albany in
New York. She is an IBM Certified pSeries AIX System Administrator and an
Accredited IT Specialist.

James Thompson is a Performance Analyst for IBM Systems Group in Tucson,
AZ. He has worked at IBM for five years, the first two years as a Level 2 Support
Engineer for Tivoli Storage Manager and for the past three years he has provided
performance support for the development of IBM Tape and NAS products. He
holds a bachelor’s degree in Computer Science from Utah State University.

Thanks to the following people for their contributions to this project:

Julie Peet, Certified IBM AIX System Administrator, pSeries Benchmark Center,
Poughkeepsie, NY.

Nigel Griffiths, Certified IT Specialist, pSeries Advanced Technology Group,
United Kingdom

Luc Smolders
IBM Austin
xii AIX 5L Practical Performance Tools and Tuning Guide

Andreas Hoetzel
IBM Austin

Gabrielle Velez
International Technical Support Organization, Rochester Center

Scott Vetter
IBM Austin

Dino Quintero
IBM Poughkeepsie

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
xiv AIX 5L Practical Performance Tools and Tuning Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction

Part 1 provides an overview of performance in an AIX 5L V5.3 environment and
an introduction to performance analysis and tuning methodology. It also provides
a description of overall performance metrics and expectations, together with the
system components that should be considered for tuning in an IBM Eserver
pSeries running AIX 5L.

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 AIX 5L Practical Performance Tools and Tuning Guide

Chapter 1. Performance overview

The performance of a computer system is based on human expectations and the
ability of the computer system to fulfill these expectations. The objective for
performance tuning is to make those expectations and their fulfillment match.
The path to achieving this objective is a balance between appropriate
expectations and optimizing the available system resources.

The performance-tuning process demands skill, knowledge, and experience, and
cannot be performed by only analyzing statistics, graphs, and figures. If results
are to be achieved, the human aspect of perceived performance must not be
neglected. Performance tuning also takes into consideration problem
determination aspects as well as pure performance issues.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 Performance expectations
Performance tuning on a newly installed system usually involves setting the
basic parameters for the operating system and applications. The sections in this
chapter describe the characteristics of different system resources and provide
some advice regarding their base tuning parameters if applicable.

Limitations originating from the sizing phase either limit the possibility of tuning,
or incur greater cost to overcome them. The system may not meet the original
performance expectations because of unrealistic expectations, physical
problems in the computer environment, or human error in the design or
implementation of the system. In the worst case adding or replacing hardware
may be necessary.

We therefore advise you to be particularly careful when sizing a system to allow
enough capacity for unexpected system loads. In other words, do not design the
system to be 100 percent busy from the start of the project. More information
about system sizing can be found in the redbook Understanding IBM Eserver
pSeries Performance and Sizing, SG24-4810.

Figure 1-1 System tuning

Network

Vi
rt
ual

Memory
M
anagement

Workload
Manager

System
Tuning

PSALLOC

schedo

Async I/O

no

nfso

LVM Tuning

vmo
of procs

ioo

CPU

filesystem
layout
4 AIX 5L Practical Performance Tools and Tuning Guide

When a system in a productive environment still meets the performance
expectations for which it was initially designed, but the demands and needs of
the utilizing organization have outgrown the system’s basic capacity,
performance tuning is performed to avoid and/or delay the cost of adding or
replacing hardware.

Remember that many performance-related issues can be traced back to
operations performed by somebody with limited experience and knowledge, who
unintentionally restricted some vital logical or physical resource of the system.

To evaluate if you have a performance issue, you can use the flow chart in
Figure 1-2 as a guide.

Figure 1-2 Performance problem determination flow chart

1.1.1 System workload
An accurate and complete definition of a system's workload is critical to
understanding and/or predicting its performance. A difference in workload can
cause far more variation in the measured performance of a system than
differences in CPU clock speed or random access memory (RAM) size. The

CPU
bound?

Network
bound?

Disk
bound?

Memory
bound?

Actions Additional
tests

Actions

Actions

Actions

YES

NO

NO

NO

NO

YES

YES

YES

START
 Chapter 1. Performance overview 5

workload definition must include not only the type and rate of requests sent to the
system, but also the exact software packages and in-house application programs
to be executed.

It is important to take into account the work that a system is performing in the
background. For example, if a system contains file systems that are
NFS-mounted and frequently accessed by other systems, handling those
accesses is probably a significant fraction of the overall workload, even though
the system is not a designated server.

A workload that has been standardized to allow comparisons among dissimilar
systems is called a benchmark. However, few real workloads duplicate the exact
algorithms and environment of a benchmark. Even industry-standard
benchmarks that were originally derived from real applications have been
simplified and homogenized to make them portable to a wide variety of hardware
and software platforms.

The only valid use for industry-standard benchmarks is to narrow the field of
candidate systems that will be subjected to a serious evaluation. Therefore, you
should not solely rely on benchmark results when trying to understand the
workload and performance of your system.

It is possible to classify workloads into the following categories:

Multiuser A workload that consists of a number of users submitting work
through individual terminals. Typically, the performance objectives
of such a workload are either to maximize system throughput while
preserving a specified worst-case response time or to obtain the
best possible response time for a constant workload.

Server A workload that consists of requests from other systems. For
example, a file-server workload is mostly disk read and disk write
requests. It is the disk-I/O component of a multiuser workload (plus
NFS or other I/O activity), so the same objective of maximum
throughput within a given response-time limit applies. Other server
workloads consist of items such as math-intensive programs,
database transactions, printer jobs.

Workstation A workload that consists of a single user submitting work through a
keyboard and receiving results on the display of that system.
Typically, the highest-priority performance objective of such a
workload is minimum response time to the user's requests.

1.1.2 Performance objectives
After defining the workload that your system will have to process, you can choose
performance criteria and set performance objectives based on those criteria. The
6 AIX 5L Practical Performance Tools and Tuning Guide

overall performance criteria of computer systems are response time and
throughput.

Response time is the elapsed time between when a request is submitted and
when the response from that request is returned. Examples include:

� The amount of time a database query takes

� The amount of time it takes to echo characters to the terminal

� The amount of time it takes to access a Web page

Throughput is a measure of the amount of work that can be accomplished over
some unit of time. Examples include:

� Database transactions per minute

� Kilobytes of a file transferred per second

� Kilobytes of a file read or written per second

� Web server hits per minute

The relationship between these metrics is complex. Sometimes you can have
higher throughput at the cost of response time or better response time at the cost
of throughput. In other situations, a single change can improve both. Acceptable
performance is based on reasonable throughput combined with reasonable
response time.

In planning for or tuning any system, make sure that you have clear objectives for
both response time and throughput when processing the specified workload.
Otherwise, you risk spending analysis time and resource dollars improving an
aspect of system performance that is of secondary importance.

1.1.3 Program execution model
To clearly examine the performance characteristics of a workload, a dynamic
rather than a static model of program execution is necessary, as shown in
Figure 1-3 on page 8.

Program Execution Hierarchy.
The figure is a triangle on its base. The left side represents hardware entities that
are matched to the appropriate operating system entity on the right side. A
program must go from the lowest level of being stored on disk, to the highest
level being the processor running program instructions.

For instance, from bottom to top, the disk hardware entity holds executable
programs; real memory holds waiting operating system threads and interrupt
handlers; the translation lookaside buffer holds disputable threads; cache
 Chapter 1. Performance overview 7

contains the currently dispatched thread and the processor pipeline and registers
contain the current instruction.

Figure 1-3 Program execution hierarchy

To run, a program must make its way up both the hardware and operating system
hierarchies in parallel. Each element in the hardware hierarchy is more scarce
and more expensive than the element below it. Not only does the program have
to contend with other programs for each resource, the transition from one level to
the next takes time. To understand the dynamics of program execution, you need
a basic understanding of each of the levels in the hierarchy.

Hardware hierarchy
Usually, the time required to move from one hardware level to another consists
primarily of the latency of the lower level (the time from the issuing of a request to
the receipt of the first data).

Fixed disks
The slowest operation for a running program on a standalone system is obtaining
code or data from a disk, for the following reasons:

� The disk controller must be directed to access the specified blocks (queuing
delay).

� The disk arm must seek to the correct cylinder (seek latency).

Hardware Operating system

Processor Pipeline and
Level 0 Registers

Real
Memory
(RAM)

Transaction
Lookaside

Buffer (TLB)

Dispatchable
Thread

Current Dispatched
Thread

Current
Instruction

Waiting Thread/
Interrupt Handlers

Executable
Programs

CORE

Cache - L1,L2,L3

Disk - incl.
paging space
8 AIX 5L Practical Performance Tools and Tuning Guide

� The read/write heads must wait until the correct block rotates under them
(rotational latency).

� The data must be transmitted to the controller (transmission time) and then
conveyed to the application program (interrupt-handling time).

Slow disk operations can have many causes besides explicit read or write
requests in the program. System-tuning activities frequently prove to be hunts for
unnecessary disk I/O.

Real memory
Real memory, often referred to as Random Access Memory, or RAM, is faster
than disk, but much more expensive per byte. Operating systems try to keep in
RAM only the code and data that are currently in use, storing any excess onto
disk, or never bringing them into RAM in the first place.

RAM is not necessarily faster than the processor though. Typically, a RAM
latency of dozens of processor cycles occurs between the time the hardware
recognizes the need for a RAM access and the time the data or instruction is
available to the processor.

If the access is going to a page of virtual memory that is stored over to disk, or
has not been brought in yet, a page fault occurs, and the execution of the
program is suspended until the page has been read from disk.

Translation Lookaside Buffer (TLB)
Programmers are insulated from the physical limitations of the system by the
implementation of virtual memory. You design and code programs as though the
memory were very large, and the system takes responsibility for translating the
program's virtual addresses for instructions and data into the real addresses that
are needed to get the instructions and data from RAM. Because this
address-translation process can be time-consuming, the system keeps the real
addresses of recently accessed virtual-memory pages in a cache called the
translation lookaside buffer (TLB).

As long as the running program continues to access a small set of program and
data pages, the full virtual-to-real page-address translation does not need to be
redone for each RAM access. When the program tries to access a
virtual-memory page that does not have a TLB entry, called a TLB miss, dozens
of processor cycles, called the TLB-miss latency are required to perform the
address translation.

Caches
To minimize the number of times the program has to experience the RAM
latency, systems incorporate caches for instructions and data. If the required
 Chapter 1. Performance overview 9

instruction or data is already in the cache, a cache hit results and the instruction
or data is available to the processor on the next cycle with no delay. Otherwise, a
cache miss occurs with RAM latency.

In some systems, there are two or three levels of cache, usually called L1, L2,
and L3. If a particular storage reference results in an L1 miss, then L2 is
checked. If L2 generates a miss, then the reference goes to the next level, either
L3, if it is present, or RAM.

Cache sizes and structures vary by model, but the principles of using them
efficiently are identical.

Pipeline and registers
A pipelined, superscalar architecture makes possible, under certain
circumstances, the simultaneous processing of multiple instructions. Large sets
of general-purpose registers and floating-point registers make it possible to keep
considerable amounts of the program's data in registers, rather than continually
storing and reloading the data.

The optimizing compilers are designed to take maximum advantage of these
capabilities. The compilers' optimization functions should always be used when
generating production programs, however small the programs are. The
Optimization and Tuning Guide for XL Fortran, XL C and XL C++ describes how
programs can be tuned for maximum performance.

Software hierarchy
To run, a program must also progress through a series of steps in the software
hierarchy.

Executable programs
When you request a program to run, the operating system performs a number of
operations to transform the executable program on disk to a running program.
First, the directories in the your current PATH environment variable must be
scanned to find the correct copy of the program. Then, the system loader (not to
be confused with the ld command, which is the binder) must resolve any external
references from the program to shared libraries.

To represent your request, the operating system creates a process, or a set of
resources, such as a private virtual address segment, which is required by any
running program.

The operating system also automatically creates a single thread within that
process. A thread is the current execution state of a single instance of a program.
In AIX, access to the processor and other resources is allocated on a thread
10 AIX 5L Practical Performance Tools and Tuning Guide

basis, rather than a process basis. Multiple threads can be created within a
process by the application program. Those threads share the resources owned
by the process within which they are running.

Finally, the system branches to the entry point of the program. If the program
page that contains the entry point is not already in memory (as it might be if the
program had been recently compiled, executed, or copied), the resulting
page-fault interrupt causes the page to be read from its backing storage.

Interrupt handlers
The mechanism for notifying the operating system that an external event has
taken place is to interrupt the currently running thread and transfer control to an
interrupt handler. Before the interrupt handler can run, enough of the hardware
state must be saved to ensure that the system can restore the context of the
thread after interrupt handling is complete. Newly invoked interrupt handlers
experience all of the delays of moving up the hardware hierarchy (except page
faults). Unless the interrupt handler was run very recently (or the intervening
programs were very economical), it is unlikely that any of its code or data
remains in the TLBs or the caches.

When the interrupted thread is dispatched again, its execution context (such as
register contents) is logically restored, so that it functions correctly. However, the
contents of the TLBs and caches must be reconstructed on the basis of the
program's subsequent demands. Thus, both the interrupt handler and the
interrupted thread can experience significant cache-miss and TLB-miss delays
as a result of the interrupt.

Waiting threads
Whenever an executing program makes a request that cannot be satisfied
immediately, such as a synchronous I/O operation (either explicit or as the result
of a page fault), that thread is put in a waiting state until the request is complete.
Normally, this results in another set of TLB and cache latencies, in addition to the
time required for the request itself.

Disputable threads
When a thread is disputable but not running, it is accomplishing nothing useful.
Worse, other threads that are running may cause the thread's cache lines to be
reused and real memory pages to be reclaimed, resulting in even more delays
when the thread is finally dispatched.
 Chapter 1. Performance overview 11

Currently dispatched threads
The scheduler chooses the thread that has the strongest claim to the use of the
processor. When the thread is dispatched, the logical state of the processor is
restored to the state that was in effect when the thread was interrupted.

Current machine instructions
Most of the machine instructions are capable of executing in a single processor
cycle if no TLB or cache miss occurs. In contrast, if a program branches rapidly
to different areas of the program and accesses data from a large number of
different areas causing high TLB and cache-miss rates, the average number of
processor cycles per instruction (CPI) executed might be much greater than one.
The program is said to exhibit poor locality of reference. It might be using the
minimum number of instructions necessary to do its job, but it is consuming an
unnecessarily large number of cycles. In part because of this poor correlation
between number of instructions and number of cycles, reviewing a program
listing to calculate path length no longer yields a time value directly. While a
shorter path is usually faster than a longer path, the speed ratio can be very
different from the path-length ratio.

The compilers rearrange code in sophisticated ways to minimize the number of
cycles required for the execution of the program. The programmer seeking
maximum performance must be primarily concerned with ensuring that the
compiler has all of the information necessary to optimize the code effectively,
rather than trying to second-guess the compiler's optimization techniques The
real measure of optimization effectiveness is the performance of an authentic
workload.

1.1.4 System tuning
After efficiently implementing application programs, further improvements in the
overall performance of your system becomes a matter of system tuning. The
main components that are subject to system-level tuning are:

Communications I/O
Depending on the type of workload and the type of communications link, it might
be necessary to tune one or more of the following communications device
drivers: TCP/IP, or NFS.

Fixed disk
The Logical Volume Manager (LVM) controls the placement of file systems and
paging spaces on the disk, which can significantly affect the amount of seek
latency the system experiences. The disk device drivers control the order in
which I/O requests are acted upon.
12 AIX 5L Practical Performance Tools and Tuning Guide

Real memory
The Virtual Memory Manager (VMM) controls the pool of free real-memory
frames and determines when and from where to steal frames to replenish the
pool.

Running thread
The scheduler determines which disputable entity should next receive control. In
AIX, the disputable entity is a thread.

1.2 Introduction to the performance tuning process
Performance tuning is primarily a matter of resource management and correct
system parameters setting. Tuning the workload and the system for efficient
resource use consists of the following steps:

� Identifying the workloads on the system

� Setting objectives:

– Determining how the results will be measured

– Quantifying and prioritizing the objectives

� Identifying the critical resources that limit the system's performance

� Minimizing the workload's critical-resource requirements:

– Using the most appropriate resource, if there is a choice

– Reducing the critical-resource requirements of individual programs or
system functions

– Structuring for parallel resource use

� Modifying the allocation of resources to reflect priorities

– Changing the priority or resource limits of individual programs

– Changing the settings of system resource-management parameters

� Repeating above steps until objectives are met (or resources are saturated)

� Applying additional resources, if necessary

There are appropriate tools for each phase of system performance management
Some of the tools are available from IBM; others are the products of third parties.
The following figure illustrates the phases of performance management in a
simple LAN environment.
 Chapter 1. Performance overview 13

1.2.1 Performance management phases
Figure 1-4 uses five weighted circles to illustrate the steps of performance tuning
a system; plan, install, monitor, tune, and expand. Each circle represents the
system in various states of performance; idle, unbalanced, balanced, and
overloaded. Essentially, you need to expand a system that is overloaded, tune a
system until it is balanced, monitor an unbalanced system and install for more
resources when an expansion is necessary.

Figure 1-4 Performance phases

Identification of the workloads
It is essential that all of the work performed by the system be identified.
Especially in LAN-connected systems, a complex set of cross-mounted file
systems can easily develop with only informal agreement among the users of the
systems. These file systems must be identified and taken into account as part of
any tuning activity.

With multiuser workloads, the analyst must quantify both the typical and peak
request rates. It is also important to be realistic about the proportion of the time
that a user is actually interacting with the terminal.

An important element of this identification stage is determining whether the
measurement and tuning activity has to be done on the production system or can
be accomplished on another system (or off-shift) with a simulated version of the
actual workload. The analyst must weigh the greater authenticity of results from a
production environment against the flexibility of the nonproductive environment,
where the analyst can perform experiments that risk performance degradation or
worse.

Importance of setting objectives
Although you can set objectives in terms of measurable quantities, the actual
desired result is often subjective, such as satisfactory response time. Further, the

Plan Install

(Idle system)

Monitor Tune Expand

(Unbalanced) (Balanced) (Overloaded)
14 AIX 5L Practical Performance Tools and Tuning Guide

analyst must resist the temptation to tune what is measurable rather than what is
important. If no system-provided measurement corresponds to the desired
improvement, that measurement must be devised.

The most valuable aspect of quantifying the objectives is not selecting numbers
to be achieved, but making a public decision about the relative importance of
(usually) multiple objectives. Unless these priorities are set in advance, and
understood by everyone concerned, the analyst cannot make trade-off decisions
without incessant consultation. The analyst is also apt to be surprised by the
reaction of users or management to aspects of performance that have been
ignored. If the support and use of the system crosses organizational boundaries,
you might need a written service-level agreement between the providers and the
users to ensure that there is a clear common understanding of the performance
objectives and priorities.

Identification of critical resources
In general, the performance of a given workload is determined by the availability
and speed of one or two critical system resources. The analyst must identify
those resources correctly or risk falling into an endless trial-and-error operation.

Systems have both real and logical resources. Critical real resources are
generally easier to identify, because more system performance tools are
available to assess the utilization of real resources. The real resources that most
often affect performance are as follows:

� CPU cycles
� Memory
� I/O bus
� Various adapters
� Disk arms/heads/spindles
� Disk space
� Network access

Logical resources are less readily identified. Logical resources are generally
programming abstractions that partition real resources. The partitioning is done
to share and manage the real resource.

Some examples of real resources and the logical resources built on them are as
follows:

CPU

� Processor time slice

Memory

� Page frames
 Chapter 1. Performance overview 15

� Stacks
� Buffers
� Queues
� Tables
� Locks and semaphores

Disk space

� Logical volumes
� File systems
� Files
� Partitions

Network access

� Sessions
� Packets
� Channels

It is important to be aware of logical resources as well as real resources. Threads
can be blocked by a lack of logical resources just as for a lack of real resources,
and expanding the underlying real resource does not necessarily ensure that
additional logical resources will be created. For example, consider the NFS block
I/O daemon, biod. A biod daemon on the client is required to handle each
pending NFS remote I/O request. The number of biod daemons therefore limits
the number of NFS I/O operations that can be in progress simultaneously. When
a shortage of biod daemons exists, system instrumentation may indicate that the
CPU and communications links are used only slightly. You may have the false
impression that your system is underused (and slow), when in fact you have a
shortage of biod daemons that is constraining the rest of the resources. A biod
daemon uses processor cycles and memory, but you cannot fix this problem
simply by adding real memory or converting to a faster CPU. The solution is to
create more of the logical resource (biod daemons).

Logical resources and bottlenecks can be created inadvertently during
application development. A method of passing data or controlling a device may,
in effect, create a logical resource. When such resources are created by
accident, there are generally no tools to monitor their use and no interface to
control their allocation. Their existence may not be appreciated until a specific
performance problem highlights their importance.

Minimizing critical resource requirements
Consider minimizing the workload's critical-resource requirements at three
levels, as discussed below.
16 AIX 5L Practical Performance Tools and Tuning Guide

Using the appropriate resource
The decision to use one resource over another should be done consciously and
with specific goals in mind. An example of a resource choice during application
development would be a trade-off of increased memory consumption for reduced
CPU consumption. A common system configuration decision that demonstrates
resource choice is whether to place files locally on an individual workstation or
remotely on a server.

Reducing the requirement for the critical resource
For locally developed applications, the programs can be reviewed for ways to
perform the same function more efficiently or to remove unnecessary function. At
a system-management level, low-priority workloads that are contending for the
critical resource can be moved to other systems, run at other times, or controlled
with the Workload Manager.

Structuring for parallel use of resources
Because workloads require multiple system resources to run, take advantage of
the fact that the resources are separate and can be consumed in parallel. For
example, the operating system read-ahead algorithm detects the fact that a
program is accessing a file sequentially and schedules additional sequential
reads to be done in parallel with the application's processing of the previous
data. Parallelism applies to system management as well. For example, if an
application accesses two or more files at the same time, adding an additional
disk drive might improve the disk-I/O rate if the files that are accessed at the
same time are placed on different drives.

Resource allocation priorities
The operating system provides a number of ways to prioritize activities. Some,
such as disk pacing, are set at the system level. Others, such as process priority,
can be set by individual users to reflect the importance they attach to a specific
task.

Repeating the tuning steps
A truism of performance analysis is that there is always a next bottleneck.
Reducing the use of one resource means that another resource limits throughput
or response time. Suppose, for example, we have a system in which the
utilization levels are as follows:

CPU: 90% Disk: 70% Memory 60%

This workload is CPU-bound. If we successfully tune the workload so that the
CPU load is reduced from 90 to 45 percent, we might expect a two-fold
improvement in performance. Unfortunately, the workload is now I/O-limited, with
utilizations of approximately the following:
 Chapter 1. Performance overview 17

CPU: 45% Disk: 90% Memory 60%

The improved CPU utilization allows the programs to submit disk requests
sooner, but then we hit the limit imposed by the disk drive's capacity. The
performance improvement is perhaps 30 percent instead of the 100 percent we
had envisioned.

There is always a new critical resource. The important question is whether we
have met the performance objectives with the resources at hand.

Attention: Improper system tuning with vmtune, schedtune, and other tuning
commands can result in unexpected system behavior like degraded system or
application performance, or a system hang. Changes should only be applied
when a bottleneck has been identified by performance analysis.

Applying additional resources
If, after all of the preceding approaches have been exhausted, the performance
of the system still does not meet its objectives, the critical resource must be
enhanced or expanded. If the critical resource is logical and the underlying real
resource is adequate, the logical resource can be expanded at no additional
cost. If the critical resource is real, the analyst must investigate some additional
questions:

� How much must the critical resource be enhanced or expanded so that it
ceases to be a bottleneck?

� Will the performance of the system then meet its objectives, or will another
resource become saturated first?

� If there will be a succession of critical resources, is it more cost-effective to
enhance or expand all of them, or to divide the current workload with another
system?

A more detailed diagram of performance management and tuning is presented in
Figure 1-5 on page 19.
18 AIX 5L Practical Performance Tools and Tuning Guide

Figure 1-5 Performance management cycle

6 - Minimize
resource
requirements

3 - Identify
workload

4 - Set performance
objectives

5 - Identify critical
resources

7 - Establish new
settings

8 - Record system
settings

9 - Apply and manage
new settings

10b - System
change needed

10a - performance
problem or
re-analysis

2 - Document your
system

1 - Installation or
Migration

7a - Repeat until
objectives met or
resorces saturated
 Chapter 1. Performance overview 19

20 AIX 5L Practical Performance Tools and Tuning Guide

Chapter 2. Performance analysis and
tuning

The performance of a computer system is based on human expectations and the
ability of the computer system to fulfill these expectations. The objective for
performance tuning is to match expectations and fulfillment. The path to
achieving this objective is a balance between appropriate expectations and
optimizing the available system resources. The discussion consists of:

� What can be actually tuned from the systems is categorized into CPU,
memory, disk, and network, as discussed in:

– “CPU performance” on page 22

– “Memory overview” on page 31

– “Disk I/O performance” on page 37

– “Network performance” on page 48

2

© Copyright IBM Corp. 2005. All rights reserved. 21

2.1 CPU performance
To monitoring and tuning of CPU performance, it is important to know about
process and scheduling. This section gives an overview of the process, thread,
and scheduling which are closely related to the performance of CPU.

2.1.1 Processes and threads
An understanding of the way processes and threads operate within the AIX
environment is required to successfully monitor and tune AIX for peak CPU
throughput. The following defines the differences between threads and
processes:

Processes A process is an activity within the system that is started with a
command, a shell script, or another process.

Threads A thread is an independent flow of control that operates within the
same address space as other independent flows of controls within a
process. A kernel thread is a single sequential flow of control.

Kernel threads are owned by a process. A process has one or more kernel
threads. The advantage of threads is that you can have multiple threads running
in parallel on different CPUs on an SMP system.

Applications can be designed to have user level threads that are scheduled to
work by the application or by the pthreads scheduler in libpthreads. Multiple
threads of control allow an application to service requests from multiple users at
the same time. With the libpthreads implementation, user threads sit on top of
virtual processors (VP) which are themselves on top of kernel threads. A multi
threaded user process can use one of two models, as follows:

1:1 Thread Model: The 1:1 model indicates that each user thread will
have exactly one kernel thread mapped to it. This is the default model
in early AIX 4.3. In this model, each user thread is bound to a VP and
linked to exactly one kernel thread. The VP is not necessarily bound
to a real CPU (unless binding to a processor was done). A thread
which is bound to a VP is said to have system scope because it is
directly scheduled with all the other user threads by the kernel
scheduler.

M:N Thread Model: The M:N model was implemented in AIX 4.3.1 and
has been since then the default model. In this model, several user
threads can share the same virtual processor or the same pool of
VPs. Each VP can be thought of as a virtual CPU available for
executing user code and system calls. A thread which is not bound to
a VP is said to be a local or process scope because it is not directly
scheduled with all the other threads by the kernel scheduler. The
22 AIX 5L Practical Performance Tools and Tuning Guide

pthreads library will handle the scheduling of user threads to the VP
and then the kernel will schedule the associated kernel thread. As of
AIX 4.3.2, the default is to have one kernel thread mapped to eight
user threads. This is tunable from within the application or through an
environment variable.

The kernel maintains the priority of the threads. A thread’s priority can range
from zero to 255. A zero priority is the most favored and 255 is the least favored.
Threads can have a fixed or non-fixed priority. The priority of fixed priority threads
does not change during the life of the thread, while non-fixed priority threads can
have their maximum priority changed by changing its nice value with the nice or
the renice commands (see 4.3.5, “The nice command” on page 288, and 4.3.6,
“The renice command” on page 290).

Thread aging
When a thread is created, the CPU usage value is zero. As the thread
accumulates more time on the CPU, the usage increments. The CPU usage can
be shown with the ps -ef command, looking at the “C” column of the output (see
Example 4-19 on page 212).

Every second, the scheduler ages the thread using the following formula:

CPU usage = CPU usage*(D/32)

Where D is the decay value as set by schedo -o sched_D (see 4.3.4, “The
schedo command” on page 282).

If the D parameter is set to 32, the thread usage will not decrease. The default of
16 will enable the thread usage to decrease, giving it more time on the CPU.

Calculating thread priority
The kernel calculates the priority for non-fixed priority threads using a formula
that includes the following:

base priority The base priority of a thread is 40.

nice value The nice value defaults to 20 for foreground processes and 24 for
background processes. This can be changed using the nice or
renice command.

r The CPU penalty factor. The default for r is 16. This value can be
changed with the schedo command.

D The CPU decay factor. The default for D is 16. This value can be
changed with the schedo command.

C CPU usage as Thread aging in preceding subsection.
 Chapter 2. Performance analysis and tuning 23

p_nice This is called the niced priority. It is calculated as from:

p_nice = base priority + nice value

x_nice The “extra nice” value. If the niced priority for a thread (p_nice) is
larger than 60, then the following formula applies:

x_nice = p_nice * 2 - 60

If the niced priority for a thread (p_nice) is equal or less than 60,
the following formula applies:

x_nice = p_nice

X The xnice factor is calculated as:

(x_nice + 4) / 64.

The thread priority is finally calculated based on the following formula:

Priority = (C * r/32 * X) + x_nice

Using this calculation method, note the following:

� With the default nice value of 20, the xnice factor is 1, no affect to the priority.
When the nice value is bigger than 20, it had greater effect on the x_nice
compared to the lower nice value.

� Smaller values of r reduce the impact of CPU usage to the priority of a thread;
therefore the nice value has more of an impact on the system.

Scheduling
The following scheduling policies apply to AIX:

SCHED_RR The thread is time-sliced at a fixed priority. If the thread is
still running when the time slice expires, it is moved to the
end of the queue of dispatchable threads. The queue the
thread will be moved to depends on its priority. Only root
can schedule using this policy.

SCHED_OTHER This policy only applies to non-fixed priority threads that
run with a time slice. The priority gets recalculated at
every clock interrupt. This is the default scheduling policy.

SCHED_FIFO This is a non-preemptive scheduling scheme except for
higher priority threads. Threads run to completion unless
they are blocked or relinquish the CPU of their own
accord. Only fixed priority threads use this scheduling
policy. Only root can change the scheduling policy of
threads to use SCHED_FIFO.
24 AIX 5L Practical Performance Tools and Tuning Guide

SCHED_FIFO2 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue if it was only
asleep for a short period of time.

SCHED_FIFO3 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue whenever it
becomes runnable, but it can be preempted by a higher
priority thread.

The following section describes important concepts in scheduling.

Run queues
Each CPU has a dedicated run queue. A run queue is a list of runnable threads,
sorted by thread priority value. There are 256 thread priorities (zero to 255).
There is also an additional global run queue where new threads are placed.

When the CPU is ready to dispatch a thread, the global run queue is checked
before the other run queues are checked. When a thread finishes its time slice on
the CPU, it is placed back on the runqueue of the CPU it was running on. This
helps AIX to maintain processor affinity. To improve the performance of threads
that are running with SCHED_OTHER policy and are interrupt driven, you can
set the environmental variable called RT_GRQ to ON. This will place the thread
on the global run queue. Fixed priority threads will be placed on the global run
queue if you run schedo -o fixed_pri_global=1.

Time slices
The CPUs on the system are shared among all of the threads by giving each
thread a certain slice of time to run. The default time slice of one clock tick (10
ms) can be changed using schedo -o timeslice. Sometimes increasing the time
slice improves system throughput due to reduced context switching. The vmstat
and sar commands show the amount of context switching. In a high value of
context switches, increasing the time slice can improve performance. This
parameter should, however, only be used after a thorough analysis.

Mode switching
There are two modes that a CPU operates in: kernel mode and user mode. In
user mode, programs have read and write access to the user data in the process
private region. They can also read the user text and shared text regions, and
have access to the shared data regions using shared memory functions.
Programs also have access to kernel services by using system calls.

Programs that operate in kernel mode include interrupt handlers, kernel
processes, and kernel extensions. Code operating in this mode has read and
write access to the global kernel address space and to the kernel data in the
 Chapter 2. Performance analysis and tuning 25

process region when executing within the context of a process. User data within
the process address space must be accessed using kernel services.

When a user program access system calls, it does so in kernel mode. The
concept of user and kernel modes is important to understand when interpreting
the output of commands such as vmstat and sar.

2.1.2 SMP performance
In an SMP system, all of the processors are identical and perform identical
functions:

� Any processor can run any thread on the system. This means that a process
or thread ready to run can be dispatched to any processor, except the
processes or threads bound to a specific processor using the bindprocessor
command.

� Any processor can handle an external interrupt except interrupt levels bound
to a specific processor using the bindintcpu command. Some SMP systems
use a first fit interrupt handling in which an interrupt always gets directed to
CPU0. If there are multiple interrupts at a time, the second interrupt is
directed to CPU1, the third interrupt to CPU2, and so on. A process bound to
CPU0 using the bindprocessor command may not get the necessary CPU
time to run with best performance in this case.

� All processors can initiate I/O operations to any I/O device.

Cache coherency
All processors work with the same virtual and real address space and share the
same real memory. However, each processor may have its own cache, holding a
small subset of system memory. To guarantee cache coherency the processors
use a snooping logic. Each time a word in the cache of a processor is changed,
this processor sends a broadcast message over the bus. The processors are
“snooping” on the bus, and if they receive a broadcast message about a modified
word in the cache of another processor, they need to verify if they hold this
changed address in their cache. If they do, they invalidate this entry in their
cache. The broadcast messages increase the load on the bus, and invalidated
cache entries increase the number of cache misses. Both reduce the theoretical
overall system performance, but hardware systems are designed to minimize the
impact of the cache coherency mechanism.

Processor affinity
If a thread is running on a CPU and gets interrupted and redispatched, the thread
is placed back on the same CPU (if possible) because the processor’s cache
may still have lines that belong to the thread. If it is dispatched to a different CPU,
the thread may have to get its information from main memory. Alternatively, it can
26 AIX 5L Practical Performance Tools and Tuning Guide

wait until the CPU where it was previously running is available, which may result
in a long delay.

AIX automatically tries to encourage processor affinity by having one run queue
per CPU. Processor affinity can also be forced by binding a thread to a processor
with the bindprocessor command. A thread that is bound to a processor can run
only on that processor, regardless of the status of the other processors in the
system. Binding a process to a CPU must be done with care, as you may reduce
performance for that process if the CPU to which it is bound is busy and there are
other idle CPUs in the system.

Locking
Access to I/O devices and real memory is serialized by hardware. Besides the
physical system resources, such as I/O devices and real memory, there are
logical system resources, such as shared kernel data, that are used by all
processes and threads. As these processes and threads are able to run on any
processor, a method to serialize access to these logical system resources is
needed. The same applies for parallelized user code.

The primary method to implement resource access serialization is the usage of
locks. A process or thread has to obtain a lock prior to accessing the shared
resource. The process or thread has to release this lock after the access is
completed. Lock and unlock functions are used to obtain and release these
locks. The lock and unlock operations are atomic operations, and are
implemented so that neither interrupts nor threads running on other processors
affect the outcome of the operation. If a requested lock is already held by another
thread, the requesting thread has to wait until the lock becomes available.

There are two ways for a thread to wait for a lock:

� Spin locks

A spin lock is suitable for a lock held only for a very short time. The thread
waiting on the lock enters a tight loop wherein it repeatedly checks for the
availability of the requested lock. No useful work is done by the thread at this
time, and the processor time used is counted as time spent in system (kernel)
mode. To prevent a thread from spinning forever, it may be converted into a
sleeping lock. An upper limit for the number of times to loop can be set using:

– The schedo -o maxpspin command

The maxspin parameter is the number of times to spin on a kernel lock
before sleeping. The default value of the n parameter for multiprocessor
systems is 16384, and 1 (one) for uniprocessor systems.

– The SPINLOOPTIME environment variable
 Chapter 2. Performance analysis and tuning 27

The value of SPINLOOPTIME is the number of times to spin on a user lock
before sleeping. This environment variable applies to the locking provided
by libpthreads.a.

– The YIELDLOOPTIME environment variable

Controls the number of times to yield the processor before blocking on a
busy user lock. The processor is yielded to another kernel thread,
assuming there is another runnable kernel thread with sufficient priority.
This environment variable applies to the locking provided by libpthreads.a.

� Sleeping locks

A sleeping lock is suitable for a lock held for a longer time. A thread
requesting such a lock is put to sleep if the lock is not available. The thread is
put back to the run queue if the lock becomes available. There is an additional
overhead for context switching and dispatching for sleeping locks.

AIX provides two types of locks, which are:

� Read-write lock

Multiple readers of the data are allowed, but write access is mutually
exclusive. The read-write lock has three states:

– Exclusive write
– Shared read
– Unlocked

� Mutual exclusion lock

Only one thread can access the data at a time. Others threads, even if they
want only to read the data, have to wait. The mutual exclusion (mutex) lock
has two states:

– Locked
– Unlocked

Both types of locks can be spin locks or sleeping locks.

Programmers in a multiprocessor environment should decide on the number of
locks for shared data. If there is a single lock then lock contention (threads
waiting on a lock) can occur often. If this is the case, more locks will be required.
However, this can be more expensive because CPU time must be spent locking
and unlocking, and there is a higher risk for a deadlock.

As locks are necessary to serialize access to certain data items, the heavy usage
of the same data item by many threads may cause severe performance
problems.
28 AIX 5L Practical Performance Tools and Tuning Guide

For more information about multiprocessing, refer to the AIX 5L Version 5.3
Performance Management Guide, SC23-4905.

http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixb
man/prftungd/prftungd.pdf

2.1.3 Initial advice for monitoring CPU
When you monitor the CPU usage, the vmstat command is a good tool use for
this purpose. The vmstat command displays entire system performance
statistics. Example 2-1 shows a sample of entire system performance statistics.
The new lparstat command is also useful to measure the CPU usage of the
whole system.

Example 2-1 Entire system performance statistics

[p630n06][/]> vmstat 1

System configuration: lcpu=4 mem=8192MB

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 0 341382 240915 0 0 0 0 0 0 25 805 368 25 1 74 0
 1 0 341382 240915 0 0 0 0 0 0 5 195 297 25 0 74 0
 1 0 341382 240915 0 0 0 0 0 0 3 192 310 25 0 75 0
 1 0 341382 240915 0 0 0 0 0 0 2 602 305 25 0 75 0
 1 0 341382 240915 0 0 0 0 0 0 1 190 304 25 0 75 0
... lines omitted ...

You need to check the kthr and the cpu category. The kthr category reports the
average number of thread on run queue (r column) and wait queue (b column).

The cpu category reports CPU statistics information.

us The us column shows the percent of CPU time spent in user mode.

sy The sy column details the percentage of time the CPU was executing
a process in system mode.

id The ID column shows the percentage of time which the CPU is idle.

wa The wa column details the percentage of time the CPU was idle with
pending local disk I/O and NFS-mounted disks.

In this example, the us (user) column of the cpu category shows 25% utilization.
we should know that when the server has two or more processors, the vmstat
displays the average of the total CPU utilization.
 Chapter 2. Performance analysis and tuning 29

http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixbman/prftungd/prftungd.pdf

To determine the number of available CPUs, use the lsdev command as in
Example 2-2. In this example, four CPUs are displayed as available.

Example 2-2 Determine the number of available CPUs

[p630n06][/]> lsdev -Cc processor
proc0 Available 00-00 Processor
proc1 Available 00-01 Processor
proc2 Available 00-02 Processor
proc3 Available 00-03 Processor

The mpstat command is a good tool to monitor each CPU utilization.
Example 2-3 shows a sample of displaying each CPU utilization with the mpstat
command. In this example, we can see that cpu0 keeps 100% busy and cpu2,
cpu3, cpu4 are idle. Therefore, the average CPU usage of four processors
becomes 25% shown in the "ALL" line. The sar command is also useful
command to measure the each CPU usage.

Example 2-3 Displaying each CPU utilization

[p630n06][/]> mpstat 1

System configuration: lcpu=4

cpu min maj mpc int cs ics rq mig lpa sysc us sy wa id
 0 0 0 0 104 1 1 1 0 100 0 100 0 0 0
 1 0 0 0 106 46 29 0 0 100 461 0 0 0 100
 2 0 0 0 215 244 125 1 0 100 195 0 0 0 100
 3 0 0 0 103 131 124 0 0 100 51 0 0 0 100
ALL 0 0 0 528 422 279 2 0 100 707 25 0 0 75
--
 0 0 0 0 104 1 1 1 0 100 0 100 0 0 0
 1 0 0 0 104 37 25 0 0 100 28 0 0 0 100
 2 0 0 0 212 236 125 1 0 100 138 0 1 0 99
 3 0 0 0 111 145 128 0 1 100 82 0 0 0 100
ALL 0 0 0 531 419 279 2 1 100 248 25 0 0 75
--
 0 0 0 0 106 1 1 1 0 100 0 100 0 0 0
 1 0 0 0 105 43 29 0 0 100 31 0 0 0 100
 2 0 0 0 205 231 124 1 0 100 125 0 0 0 100
 3 0 0 0 115 147 126 0 0 100 97 0 0 0 100
ALL 0 0 0 531 422 280 2 0 100 253 25 0 0 75
--

The topas command reports statistics information about the activity on the local
system on a character terminal. Using the -P flag, topas provides the lists of
30 AIX 5L Practical Performance Tools and Tuning Guide

busiest processes. Example 2-4 shows an example of the output of the busiest
processes screen. By default, CPU% column is the sort key. In this example, we
can see cpu_load (a program we used for our tests) process is the busiest
process.

Then, it is necessary to investigate the process itself. AIX provides trace and
profile tool such as trace, tprof, and some other commands.

Example 2-4 Displaying the lists of busiest processes

[p630n06][/]> topas -P
Topas Monitor for host: p630n06 Interval: 2 Tue Oct 26 20:21:01 2004

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
Topas Monitor for host: p630n06 Interval: 2 Tue Oct 26 20:21:15 2004

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 630800 172076 135 24 3 1 14 8:59 25.0 0 0 cpu_loade
root 577628 540876 58 41 307 67 307 0:00 0.0 0 0 topas
root 475292 282774 60 20 163 84 243 0:00 0.0 0 0 sshd
root 471268 180458 60 20 299 223 667 70:44 0.0 0 0 IBM.CSMAg
root 123020 1 60 20 70 2 128 19:36 0.0 0 0 syncd
root 401584 180458 60 20 588 2 4198 15:36 0.0 0 0 java
root 254080 180458 60 20 43 383 316 8:34 0.0 0 0 i4llmd
root 274524 335892 60 20 113 138 347 6:21 0.0 0 0 dtfile
root 57372 0 37 41 24 0 28 5:54 0.0 0 0 gil
root 192608 180458 60 20 27 133 162 1:48 0.0 0 0 aixmibd
root 295060 1 60 20 41 0 51 1:02 0.0 0 0 rpc.lockd
root 364616 180458 60 20 215 46 215 0:49 0.0 0 0 pcmsrv
root 28686 0 16 41 10 0 13 0:42 0.0 0 0 lrud
root 217250 180458 60 20 546 131 847 0:36 0.0 0 0 rmcd
root 131154 0 60 20 39 0 44 0:32 0.0 0 0 kbiod
root 512068 180458 60 20 215 193 430 0:25 0.0 0 0 IBM.HostR
root 729164 274524 60 20 33 138 267 0:18 0.0 0 0 dtfile
root 282774 180458 60 20 30 84 110 0:16 0.0 0 0 sshd
root 49176 0 60 41 11 0 12 0:11 0.0 0 0 xmgc
root 393308 180458 60 20 39 164 214 0:10 0.0 0 0 ctcasd

2.2 Memory overview

To analyze memory, you first need to know how much memory you have.
Example 2-5 on page 32 demonstrates how to find out how much memory your
system has.
 Chapter 2. Performance analysis and tuning 31

Example 2-5 Using lsattr

[node4][/]> lsattr -El mem0
goodsize 8192 Amount of usable physical memory in Mbytes False
size 8192 Total amount of physical memory in Mbytes False

The lsattr command will report the amount of memory in MB, so in the example
above the machine has 8GB of memory.

2.2.1 Virtual memory manager (VMM) overview
In a multi-user, multi-processor environment, the careful control of system
resources is paramount. System memory, whether paging space or real memory,
when not carefully managed, can result in poor performance and even program
and application failure. The AIX operating system uses the Virtual Memory
Manager (VMM) to control memory and paging space on the system.

The VMM services memory requests from the system and its applications.
Virtual-memory segments are partitioned in units called pages; each page is
either located in real physical memory (RAM) or stored on disk until it is needed.
AIX uses virtual memory to address more memory than is physically available in
the system. The management of memory pages in RAM or on disk is handled by
the VMM.

The amount of virtual memory used can exceed the size of real memory of a
system. The function of the VMM from a performance point of view is to

� Minimize the processor use and disk bandwidth resulting from paging

� Minimize the response degradation from paging for a process.

In AIX, virtual-memory segments are partitioned into 4096-byte units called
pages. The VMM maintains a free list of available page frames. The VMM also
uses a page-replacement algorithm to determine which virtual-memory pages
currently in RAM will have their page frames reassigned to the free list. The
page-replacement algorithm takes into account the existence of persistent
versus working segments, repaging, and VMM thresholds.

Free List
The VMM maintains a list of free (unallocated) page frames that it uses to satisfy
page faults. AIX tries to use all of RAM all of the time, except for a small amount
which it maintains on the free list. To maintain this small amount of unallocated
pages the VMM uses page outs and page steals to free up space and reassign
those page frames to the free list. The virtual-memory pages whose page frames
are to be reassigned are selected using the VMM’s page-replacement algorithm.
32 AIX 5L Practical Performance Tools and Tuning Guide

See “Paging space allocation policies” on page 34 for more information about
paging space allocation policies.

Memory Segments
AIX distinguishes between different types of memory segments. To understand
the VMM, it is important to understand the difference between persistent,
working and client segments.

Persistent segments have a permanent storage location on disk. Files
containing data or executable programs are mapped to persistent segments.
When a JFS file is opened and accessed, the file data is copied into RAM. VMM
parameters control when physical memory frames allocated to persistent pages
should be overwritten and used to store other data.

For JFS2, the file pages will be cached as local client pages. File data will be
copied into RAM, unless the file is accessed through Direct I/O (DIO) or
Concurrent I/O (CIO).

Working segments are transitory and exist only during their use by a process.
Working segments have no permanent disk storage location. Process stack and
data regions are mapped to working segments and shared library text segments.
Pages of working segments must also occupy disk storage locations when they
cannot be kept in real memory. The disk paging space is used for this purpose.
When a program exits, all of its working pages are placed back on the free list
immediately.

Client segments are saved and restored over the network to their permanent
locations on a remote file system rather than being paged out to the local system.
CD-ROM page-ins and compressed pages are classified as client segments.
JFS2 pages are also mapped into client segments.

Memory segments can be shared between processors or maintained as private.

Working Segments and Paging Space
Working pages in RAM that can be modified and paged out are assigned a
corresponding slot in paging space. The allocated paging space is used only if
the page needs to be paged out. However, an allocated page in paging space
cannot be used by another page. It remains reserved for a particular page for as
long as that page exists in virtual memory. Because persistent pages are paged
out to the same location on disk from which they came, paging space does not
need to be allocated for persistent pages residing in RAM.

The VMM has three modes for allocating paging space: early, late, and deffered.
Early allocation policy reserves paging space whenever a memory request for a
working page is made. Late allocation policy assigns paging space when the
 Chapter 2. Performance analysis and tuning 33

working page is being touched. Deferred allocation policy assigns paging space
when the working page is actually paged out of memory, which significantly
reduces the paging space requirements of the system.

VMM Memory Load Control Facility
When a process references a virtual-memory page that is on disk, because it
either has been paged out or has never been read, the referenced page must be
paged in, and this might cause one or more pages to be paged out if the number
of available (free) page frames is low. The VMM attempts to steal page frames
that have not been recently referenced and, therefore, are not likely to be
referenced in the near future, using a page-replacement algorithm. A successful
page-replacement keeps the memory pages of all currently active processes in
RAM, while the memory pages of inactive processes are paged out. However,
when RAM is over-committed, it becomes difficult to choose pages for page out
because, they will probably be referenced in the near future by currently running
processes. The result is that pages that are likely to be referenced soon might
still get paged out and then paged in again when actually referenced. When RAM
is over-committed, continuous paging in and paging out, called thrashing, can
occur. When a system is thrashing, the system spends most of its time paging in
and paging out instead of executing useful instructions, and none of the active
processes make any significant progress. The VMM has a memory load control
algorithm that detects when the system is thrashing and then attempts to correct
the condition.

2.2.2 Paging space overview
A paging space is a type of logical volume with allocated disk space that stores
information which is resident in virtual memory but is not currently being
accessed. This logical volume has an attribute type equal to paging, and is
usually simply referred to as paging space or swap space. When the amount of
free RAM in the system is low, programs or data that have not been used recently
are moved from memory to paging space to release memory for other activities.
The amount of paging space required depends on the type of activities
performed on the system. If paging space runs low, processes can be lost, and if
paging space runs out, the system can panic. When a paging space low
condition is detected, define additional paging space. The logical volume paging
space is defined by making a new paging space logical volume or by increasing
the size of existing paging space logical volumes.The total space available to the
system for paging is the sum of the sizes of all active paging space logical
volumes.

Paging space allocation policies
AIX uses three modes for paging space allocation. The PSALLOC environment
variable determines which paging space allocation algorithm is used: late or
34 AIX 5L Practical Performance Tools and Tuning Guide

early. You can switch to an early paging space allocation mode by changing the
value of the PSALLOC environment variable, but there are several factors to
consider before making such a change. When using the early allocation
algorithm, in a worst-case scenario, it is possible to crash the system by using up
all available paging space.

Comparing paging space allocation policies
The operating system supports three paging space allocation policies:

� Late Allocation Algorithm (LPSA) This paging space slot allocation method
is intended for use in installations where performance is more important than
the possibility of a program failing due to lack of memory. In this algorithm, the
paging space disk blocks are not allocated until corresponding pages in RAM
are touched.

� Early Allocation Algorithm (EPSA) This paging space slot allocation
method is intended for use in installations where this situation is likely, or
where the cost of failure to complete is intolerably high. Aptly called early
allocation, this algorithm causes the appropriate number of paging space
slots to be allocated at the time the virtual-memory address range is
allocated, for example, with the malloc() subroutine. If there are not enough
paging space slots to support the malloc() subroutine, an error code is set. To
enable EPSA, set the environment variable PSALLOC=early. Setting this
policy ensures that when the process needs to page out, pages will be
available.

� Deferred Allocation Algorithm This paging space slot allocation method is
the default beginning with AIX 4.3.2 Deferred Page Space Allocation (DPSA)
policy delays allocation of paging space until it is necessary to page out the
page, which results in no wasted paging space allocation. This method can
save huge amounts of paging space, which means disk space. On some
systems, paging space might not ever be needed even if all the pages
accessed have been touched. This situation is most common on systems with
very large amount of RAM. However, this may result in overcommitment of
paging space in cases where more virtual memory than available RAM is
accessed. This method saves huge amounts of paging space. To disable this
policy, use the vmo command and set the defps parameter to 0 (with vmo -o
defps=0). If the value is set to zero then the late paging space allocation policy
is used.

In AIX 5L V5.3 there are two paging space garbage collection (PSGC) methods

� Garbage collection on re-pagein

� Garbage collection scrubbing for in memory frames
 Chapter 2. Performance analysis and tuning 35

Paging Space Default Size
The default paging space size is determined during the system customization
phase of AIX installation according to the following standards:

� Paging space can use no less than 16 MB, except for hd6 which can use no
less than 64 MB in AIX 4.3 and later.

� Paging space can use no more than 20% of total disk space.

� If real memory is less than 256 MB, paging space is two times real memory.

� If real memory is greater than or equal to 256 MB, paging space is 512 MB.

Tuning paging space thresholds
When paging space becomes depleted, the operating system attempts to
release resources by first warning processes to release paging space, and then
by killing the processes. The vmo command is used to set the thresholds at which
this activity will occur. The vmo tunables that affect paging are:

npswarn The operating system sends the SIGDANGER signal to all active
processes when the amount of paging space left on the system goes
below this threshold. A process can either ignore the signal or it can
release memory pages using the disclaim() subroutine.

npskill The operating system will begin killing processes when the amount of
paging space left on the system goes below this threshold. When the
npskill threshold is reached, the operating system sends a SIGKILL
signal to the youngest process. Processes that are handling a
SIGDANGER signal and processes that are using the EPSA policy
are exempt from being killed.

nokilluid By setting the value of the nokilluid value to 1 (one), the root
processes will be exempt from being killed when the npskill threshold
is reached. User identifications (UIDs) lower than the number
specified by this parameter are not killed when the npskill parameter
threshold is reached.

When a process cannot be forked due to a lack of paging space, the scheduler
will make five attempts to fork the process before giving up and putting the
process to sleep. The scheduler delays 10 clock ticks between each retry. By
default, each clock tick is 10 ms. This results in 100 ms between retries. The
schedo command has a pacefork value that can be used to change the number of
times the scheduler will retry a fork.

To monitor the amount of paging space, use the lsps command. The -s flag
should be issued rather than the -a flag of the lsps command because the former
includes pages in paging space reserved by the EPSA policy.
36 AIX 5L Practical Performance Tools and Tuning Guide

2.3 Disk I/O performance
A lot of attention is required when the disk subsystem is designed and
implemented. For example, you will need to consider the following:

� Bandwidth of disk adapters and system bus
� Placement of logical volumes on the disks
� Configuration of disk layouts
� Operating system settings, such as striping or mirroring
� Performance implementation of other technologies, such as SSA

2.3.1 Initial advice
Do not make any changes to the default disk I/O parameters until you have had
experience with the actual workload. Note, however, that you should always
monitor the I/O workload and will need to balance the physical and logical
volume layout after runtime experience.

There are two performance-limiting aspects of the disk I/O subsystem that must
be considered:

� Physical limitations
� Logical limitations

A poorly performing disk I/O subsystem usually will severely penalize overall
system performance.

Physical limitations concern the throughput of the interconnecting hardware.
Logical limitations concern limiting both the physical bandwidth and the resource
serialization and locking mechanisms built into the data access software1. Note
that many logical limitations on the disk I/O subsystem can be monitored and
tuned with the ioo command.

For further information, refer to:

� AIX 5L Version 5.3 Performance Management Guide, SC23-4905

� AIX 5L Version 5.3 System Management Concepts: Operating System and
Devices, SC23-4908

� AIX 5L Version 5.3 System Management Guide: Operating System and
Devices, SC23-4910

1 Usually to ensure data integrity and consistency (such as file system access and mirror consistency updating).
 Chapter 2. Performance analysis and tuning 37

2.3.2 Disk subsystem design approach
For many systems, the overall performance of an application is bound by the
speed at which data can be accessed from disk and the way the application
reads and writes data to the disks. Designing and configuring a disk storage
subsystem for performance is a complex task that must be carefully thought out
during the initial design stages of the implementation. Some of the factors that
must be considered include:

� Performance versus availability

A decision must be made early on as to which is more important; I/O
performance of the application or application integrity and availability.
Increased data availability often comes at the cost of decreased system
performance and vice versa. Increased availability also may result in larger
amounts of disk space being required.

� Application workload type

The I/O workload characteristics of the application should be fairly well
understood prior to implementing the disk subsystem. Different workload
types most often require a different disk subsystem configuration in order to
provide acceptable I/O performance.

� Required disk subsystem throughput

The I/O performance requirements of the application should be defined up
front, as they will play a large part in dictating both the physical and logical
configuration of the disk subsystem.

� Required disk space

Prior to designing the disk subsystem, the disk space requirements of the
application should be well understood.

� Cost

While not a performance-related concern, overall cost of the disk subsystem
most often plays a large part in dictating the design of the system. Generally,
a higher-performance system costs more than a lower-performance one.

2.3.3 Bandwidth-related performance considerations
The bandwidth of a communication link, such as a disk adapter or bus,
determines the maximum speed at which data can be transmitted over the link.
When describing the capabilities of a particular disk subsystem component,
performance numbers typically are expressed in maximum or peak throughput,
which often do not realistically describe the true performance that will be realized
in a real world setting. In addition, each component most will likely have different
bandwidths, which can create bottlenecks in the overall design of the system.
38 AIX 5L Practical Performance Tools and Tuning Guide

The bandwidth of each of the following components must be taken into
consideration when designing the disk subsystem:

� Disk devices

The latest SCSI and SSA disk drives have maximum sustained data transfer
rates of 14-20 MB per second. Again, the real world expected rate will most
likely be lower depending on the data location and the I/O workload
characteristics of the application. Applications that perform a large amount of
sequential disk reads or writes will be able to achieve higher data transfer
rates than those that perform primarily random I/O operations.

� Disk adapters

The disk adapter can become a bottleneck depending on the number of disk
devices that are attached and their use. 2 Gb fibre channel adapters have a
channel rate of 200 megabytes per second. The maximum likely to be
realized by the system is 175 megabytes per second.

� System bus

The system bus architecture used can further limit the overall bandwidth of
the disk subsystem. Just as the bandwidth of the disk devices is limited by the
bandwidth of the disk adapter to which they are attached, the speed of the
disk adapter is limited by the bandwidth of the system bus. The current
generation of PCI-X slots have burst bandwidths from 533 - 1066 megabytes
per second. To calculate, take the bit value (32 or 64) multiply by the MHz
value and divide by 8. Dividing by 8 converts the number to bytes. So a PCI-X
64 bit slot running at 100 MHz has a burst bandwidth of (64 * 100 / 8 = 800
MB/s).

2.3.4 Disk design
A disk consists of a set of flat, circular rotating platters. Each platter has one or
two sides on which data is stored. Platters are read by a set of non-rotating, but
positionable, read or read/write heads that move together as a unit. The following
terms are used when discussing disk device block operations:

Sector An addressable subdivision of a track used to record one block of a
program or data. On a disk, this is a contiguous, fixed-size block.
Every sector of every disk is exactly 512 bytes.

Track A circular path on the surface of a disk on which information is
recorded and from which recorded information is read; a contiguous
set of sectors. A track corresponds to the surface area of a single
platter swept out by a single head while the head remains stationary.

Head A positionable entity that can read and write data from a given track
located on one side of a platter. Usually a disk has a small set of
heads that move from track to track as a unit.
 Chapter 2. Performance analysis and tuning 39

Cylinder The tracks of a disk that can be accessed without repositioning the
heads. If a disk has n number of vertically aligned heads, a cylinder
has n number of vertically aligned tracks.

Disk access times
The three components that make up the access time of a disk are:

Seek A seek is the physical movement of the head at the end of the disk
arm from one track to another. The time for a seek is the time
needed for the disk arm to accelerate, to travel over the tracks to be
skipped, to decelerate, and finally to settle down and wait for the
vibrations to stop while hovering over the target track. The total time
the seeks take is variable. The average seek time is used to
measure the disk capabilities.

Rotational This is the time that the disk arm has to wait while the disk is rotating
underneath until the target sector approaches. Rotational latency is,
for all practical purposes except sequential reading, a random
function with values uniformly between zero and the time required for
a full revolution of the disk. The average rotational latency is taken as
the time of a half revolution. To determine the average latency, you
must know the number of revolutions per minute (RPM) of the drive.
By converting the RPMs to revolutions per second and dividing by 2,
we get the average rotational latency.

Transfer The data transfer time is determined by the time it takes for the
requested data block to move through the read/write arm. It is linear
with respect to the block size. The average disk access time is the
sum of the averages for seek time and rotational latency plus the
data transfer time (normally given for a 512-byte block). The average
disk access time generally overestimates the time necessary to
access a disk; typical disk access time is 70 percent of the average.

Disks per adapter bus or loop
Discussions of disk, logical volume, and file system performance sometimes lead
to the conclusion that the more drives you have on your system, the better the
disk I/O performance. This is not always true because there is a limit to the
amount of data that can be handled by a disk adapter, which can become a
bottleneck. If all your disk drives are on one disk adapter and your hot file
systems are on separate physical volumes, you might benefit from using multiple
disk adapters. Performance improvement will depend on the type of access.

The major performance issue for disk drives is usually application-related; that is,
whether large numbers of small accesses (random) or smaller numbers of large
accesses (sequential) will be made. For random access, performance generally
will be better using larger numbers of smaller-capacity drives. The opposite
40 AIX 5L Practical Performance Tools and Tuning Guide

situation, up to a point, exists for sequential access (use faster drives or use
striping with a larger number of drives).

Physical disk buffers
The Logical Volume Manager (LVM) uses a construct called a pbuf (physical
buffer) to control a pending disk I/O. A single pbuf is used for each I/O request,
regardless of the number of pages involved. AIX creates extra pbufs when a new
physical volume is added to the system. When striping is used, you need more
pbufs because one I/O operation causes I/O operations to more disks and,
therefore, more pbufs. When striping and mirroring is used, even more pbufs are
required. Running out of pbufs reduces performance considerably because the
I/O process is suspended until pbufs are available again. Increase the number of
pbufs with the ioo command; however, pbufs are pinned so that allocating many
pbufs increases the use of memory.

2.3.5 Logical Volume Manager concepts
Many modern UNIX® operating systems implement the concept of a Logical
Volume Manager (LVM) that can be used to logically manage the distribution of
data on physical disk devices. The AIX LVM is a set of operating system
commands, library subroutines, and other tools used to control physical disk
resources by providing a simplified logical view of the available storage space.
Unlike other LVM offerings, the AIX LVM is an integral part of the base AIX
operating system provided at no additional cost.

Within the LVM, each disk or physical volume (PV) belongs to a volume group
(VG). A volume group is a collection of physical volumes, which can vary in
capacity and performance. A physical volume can belong to only one volume
group at a time.

When a volume group is created, the physical volumes within the volume group
are partitioned into contiguous, equal-sized units of disk space known as
physical partitions. Physical partitions are the smallest unit of allocatable storage
space in a volume group. The physical partition size is determined at volume
group creation, and all physical volumes that are placed in the volume group
inherit this size.

Use of LVM policies
Deciding on the physical layout of an application is one of the most important
decisions to be made when designing a system for optimal performance. The
physical location of the data files is critical to ensuring that no single disk, or
group of disks, becomes a bottleneck in the I/O performance of the application. In
order to minimize their impact on disk performance, heavily accessed files should
be placed on separate disks, ideally under different disk adapters. There are
 Chapter 2. Performance analysis and tuning 41

several ways to ensure even data distribution among disks and adapters,
including operating system level data striping, hardware data striping on a
Redundant Array of Independent Disks (RAID), and manually distributing the
application data files among the available disks.

The disk layout on a server system is usually very important to determine the
possible performance that can be achieved from disk I/O.

The AIX LVM provides a number of facilities or policies for managing both the
performance and availability characteristics of logical volumes. The policies that
have the greatest impact on performance are intra-disk allocation, inter-disk
allocation, I/O scheduling, and write-verify policies. These policies affect locally
attached physical disk. Disk LUNs from storage subsystems are not affected by
these policies.

Intra-disk allocation policy
The intra-disk allocation policy determines the actual physical location of the
physical partitions on disk. A disk is logically divided into the following five
concentric areas as shown in Figure 2-1:

� Outer edge
� Outer middle
� Center
� Inner middle
� Inner edge

Figure 2-1 Physical partition mapping

(Outer) Edge

(Outer) Middle

Center

Inner Edge

Inner Middle
42 AIX 5L Practical Performance Tools and Tuning Guide

Due to the physical movement of the disk actuator, the outer and inner edges
typically have the largest average seek times and are a poor choice for
application data that is frequently accessed. The center region provides the
fastest average seek times and is the best choice for paging space or
applications that generate a significant amount of random I/O activity. The outer
and inner middle regions provide better average seek times than the outer and
inner edges, but worse seek times than the center region.

As a general rule, when designing a logical volume strategy for performance, the
most performance-critical data should be placed as close to the center of the disk
as possible. There are, however, two notable exceptions:

� Applications that perform a large amount of sequential reads or writes
experience higher throughput when the data is located on the outer edge of
the disk due to the fact that there are more data blocks per track on the outer
edge of the disk than the other disk regions.

� Logical volumes with Mirrored Write Consistency (MWC) enabled should also
be located at the outer edge of the disk, as this is where the MWC cache
record is located.

When the storage consists of RAID LUNs, the intra-disk allocation policy will not
have any benefits to performance.

Inter-disk allocation policy
The inter-disk allocation policy is used to specify the number of disks that contain
the physical partitions of a logical volume. The physical partitions for a given
logical volume can reside on one or more disks in the same volume group
depending on the setting of the range option. The range option can be set by
using the smitty mklv command and changing the RANGE of physical volumes
menu option.

� The maximum range setting attempts to spread the physical partitions of a
logical volume across as many physical volumes as possible in order to
decrease the average access time for the logical volume.

� The minimum range setting attempts to place all of the physical partitions of a
logical volume on the same physical disk. If this cannot be done, it will attempt
to place the physical partitions on as few disks as possible. The minimum
setting is used for increased availability only, and should not be used for
frequently accessed logical volumes. If a non-mirrored logical volume is
spread across more than one drive, the loss of any of the physical drives will
result in data loss. In other words, a non-mirrored logical volume spread
across two drives will be twice as likely to experience a loss of data as one
that resides on only one drive.

The physical partitions of a given logical volume can be mirrored to increase data
availability. The location of the physical partition copies is determined by setting
 Chapter 2. Performance analysis and tuning 43

the Strict option with the smitty mklv command called Allocate each logical
partition copy. When Strict = y, each physical partition copy is placed on a
different physical volume. When Strict = n, the copies can be on the same
physical volume or different volumes. When using striped and mirrored logical
volumes in AIX 4.3.3 and above, there is an additional partition allocation policy
known as superstrict. When Strict = s, partitions of one mirror cannot share the
same disk as partitions from a second or third mirror, further reducing the
possibility of data loss due to a single disk failure.

In order to determine the data placement strategy for a mirrored logical volume,
the settings for both the range and Strict options must be carefully considered.
As an example, consider a mirrored logical volume with range setting of minimum
and a strict setting of yes. The LVM would attempt to place all of the physical
partitions associated with the primary copy on one physical disk, with the mirrors
residing on either one or two additional disks, depending on the number of copies
of the logical volume (2 or 3). If the strict setting were changed to no, all of the
physical partitions corresponding to both the primary and mirrors would be
located on the same physical disk.

I/O-scheduling policy
The default for logical volume mirroring is that the copies should use different
disks. This is both for performance and data availability. With copies residing on
different disks, if one disk is extremely busy, then a read request can be
completed using the other copy residing on a less busy disk. Different I/O
scheduling policies can be set for logical volumes. The different I/O scheduling
policies are as follows:

Sequential The sequential policy results in all reads being issued to
the primary copy. Writes happen serially, first to the
primary disk; only when that is completed is the second
write initiated to the secondary disk.

Parallel The parallel policy balances reads between the disks. On
each read, the system checks whether the primary is
busy. If it is not busy, the read is initiated on the primary. If
the primary is busy, the system checks the secondary. If it
is not busy, the read is initiated on the secondary. If the
secondary is busy, the read is initiated on the copy with
the fewest number of outstanding I/Os. Writes are initiated
concurrently.

Parallel/sequential The parallel/sequential policy always initiates reads on the
primary copy. Writes are initiated concurrently.

Parallel/round-robin The parallel/round-robin policy is similar to the parallel
policy except that instead of always checking the primary
copy first, it alternates between the copies. This results in
44 AIX 5L Practical Performance Tools and Tuning Guide

equal utilization for reads even when there is never more
than one I/O outstanding at a time. Writes are initiated
concurrently.

Write-verify policy
When the write-verify policy is enabled, all write operations are validated by
immediately performing a follow-up read operation of the previously written data.
An error message will be returned if the read operation is not successful. The use
of write-verify enhances the integrity of the data but can drastically degrade the
performance of disk writes.

Mirror write consistency (MWC)
The Logical Volume Device Driver (LVDD) always ensures data consistency
among mirrored copies of a logical volume during normal I/O processing. For
every write to a logical volume, the LVDD2 generates a write request for every
mirror copy. If a logical volume is using mirror write consistency, the requests for
this logical volume are held within the scheduling layer until the MWC cache
blocks can be updated on the target physical volumes. When the MWC cache
blocks have been updated, the request proceeds with the physical data write
operations. If the system crashes in the middle of processing, a mirrored write
(before all copies are written) MWC will make logical partitions consistent after a
reboot.

MWC Record The MWC Record consists of one disk sector. It identifies which
logical partitions may be inconsistent if the system is not shut
down correctly.

MWC Check The MWC Check (MWCC) is a method used by the LVDD to
track the last 62 distinct Logical Track Groups (LTGs) written to
disk. By default, an LTG is 32 4-KB pages (128 KB). AIX 5L
supports LTG sizes of 128 KB, 256 KB, 512 KB, and 1024 KB.
MWCC only makes mirrors consistent when the volume group is
varied back online after a crash by examining the last 62 writes to
mirrors, picking one mirror, and propagating that data to the other
mirrors. MWCC does not keep track of the latest data; it only
keeps track of LTGs currently being written. Therefore, MWC
does not guarantee that the latest data will be propagated to all
of the mirrors. It is the application above LVM that has to
determine the validity of the data after a crash.

There are three different states for the MWC:

Disabled (off) MWC is not used for the mirrored logical volume. To maintain
consistency after a system crash, the logical volumes file system

2 The scheduler layer (part of the bottom half of LVDD) schedules physical requests for logical operations and handles
mirroring and the MWC cache.
 Chapter 2. Performance analysis and tuning 45

must be manually mounted after reboot, but only after the syncvg
command has been used to synchronize the physical partitions
that belong to the mirrored logical partition.

Active MWC is used for the mirrored logical volume and the LVDD will
keep the MWC record synchronized on disk. Because every
update will require a repositioning of the disk write head to
update the MWC record, it can cause a performance problem.
When the volume group is varied back online after a system
crash, this information is used to make the logical partitions
consistent again.

Passive MWC is used for the mirrored logical volume but the LVDD will
not keep the MWC record synchronized on disk. Synchronization
of the physical partitions that belong to the mirrored logical
partition will be updated after IPL. This synchronization is
performed as a background task (syncvg). The passive state of
MWC only applies to big volume groups. Big volume groups can
accommodate up to 128 physical volumes and 512 logical
volumes. To create a big volume group, use the mkvg -B
command. To change a regular volume group to a big volume
group, use the chvg -B command.

The type of mirror consistency checking is important for maintaining data
accuracy even when using MWC. MWC ensures data consistency, but not
necessarily data accuracy.

Log logical volume
The log logical volume should be placed on a different physical volume from the
most active file system. Placing it on a disk with the lowest I/O utilization will
increase parallel resource usage. A separate log can be used for each file
system. However, special consideration should be taken if multiple logs must be
placed on the same physical disk, which should be avoided if possible.

The general rule to determine the appropriate size for the JFS log logical volume
is to have 4 MB of JFS log for each 2 GB of file system space. The JFS log is
limited to a maximum size of 256 MB.

Note that when the size of the log logical volume is changed, the logform
command must be run to reinitialize the log before the new space can be used.

nointegrity
The mount option nointegrity (not available for JFS2) bypasses the use of a log
logical volume for the file system mounted with this option. This can provide
better performance as long as the administrator knows that the fsck command
46 AIX 5L Practical Performance Tools and Tuning Guide

might have to be run on the file system if the system goes down without a clean
shutdown.

mount -o nointegrity /filesystem

To make the change permanent, either add the option to the options field in
/etc/filesystems manually or do it with the chfs command as follows (in this case
for the file system):

chfs -a options=nointegrity,rw /filesystem

JFS2 in-line log
In AIX 5L, log logical volumes can be either of JFS or JFS2 types, and are used
for JFS and JFS2 file systems respectively. The JFS2 file system type allows the
use of a in-line journaling log. This log section is allocated within the JFS2 itself.

Paging space
If paging space is needed in a system, performance and throughput always
suffer. The obvious conclusion is to eliminate paging to paging space as much as
possible by having enough real memory available for applications when they
need it. Paging spaces are accessed in a round-robin fashion, and the data
stored in the logical volumes is of no use to the system after a reboot/IPL.

The current default paging space slot allocation method, Deferred Page Space
Allocation (DPSA), delays allocation of paging space until it is necessary to page
out the page.

Some rules of thumb when it comes to allocating paging space logical volumes
are:

� Use the disk or disks that are least utilized.
� Do not allocate more than one paging space logical volume per physical disk.
� Avoid sharing the same disk with log logical volumes.
� If possible, make all paging spaces the same size.

Because the data in a page logical volume cannot be reused after a reboot/IPL,
the MWC is disabled for mirrored paging space logical volumes when the logical
volume is created.

Recommendations for performance optimization
As with any other area of system design, when deciding on the LVM policies, a
decision must be made as to which is more important; performance or
 Chapter 2. Performance analysis and tuning 47

availability. The following LVM policy guidelines should be followed when
designing a disk subsystem for performance:

� When using LVM mirroring:

– Use a parallel write-scheduling policy.

– Allocate each logical partition copy on a separate physical disk by using
the Strict option of the inter-disk allocation policy.

� Disable write-verify.

� Allocate heavily accessed logical volumes near the center of the disk.

Use an intra-disk allocation policy of maximum in order to spread the physical
partitions of the logical volume across as many physical disks as possible.

2.4 Network performance
Tuning network utilization is a complex and sometimes very difficult task. You
need to know how applications communicate and how the network protocols
work on AIX and other systems involved in the communication. The only general
recommendation for network tuning is that Interface Specific Network Options
(ISNO) should be used and buffer utilization should be monitored. Some basic
network tunables for improving throughput can be found in Table 2-2 on page 53.
Note that with network tuning, indiscriminately using buffers that are too large
can reduce performance.

For more information about how the different protocols work, refer to:

� 6.7.1, “The no command” on page 396

� 6.7.3, “The nfso command” on page 416

� AIX 5L Version 5.3 Performance Management Guide, SC23-4905

� AIX 5L Version 5.3 System Management Guide: Communications and
Networks, SC23-4909

� AIX 5L Version 5.3 System Management Guide: Operating System and
Devices, SC23-4910

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340, at:

http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC), at:

http://www.rfc-editor.org/
48 AIX 5L Practical Performance Tools and Tuning Guide

http://www.rs6000.ibm.com/support/sp/perf
http://www.rfc-editor.org/

There are also excellent books available on the subject, and a good starting point
is RFC 1180 “A TCP/IP Tutorial”. A short overview of the TCP/IP protocols can
be found in 2.4.2, “TCP/IP protocol” on page 50. Information about the network
tunables, including network adapter tunables, is provided in 2.4.3, “Network
tunables” on page 51.

2.4.1 Initial advice
A good knowledge of your network topology is necessary to understand and
detect possible performance bottlenecks on the network. This includes
information about the routers and gateways used, the Maximum Transfer Unit
(MTU) used on the network path between the systems, and the current load on
the networks used. This information should be well documented, and access to
these documents needs to be guaranteed at any time.

AIX offers a wide range of tools to monitor networks, network adapters, network
interfaces, and system resources used by the network software. These tools are
covered in detail in Chapter 6, “Network performance” on page 333. Use these
tools to gather information about your network environment when everything is
functioning correctly. This information will be very useful in case a network
performance problem arises, because a comparison between the monitored
information of the poorly performing network and the earlier well-performing
network helps to detect the problem source. The information gathered should
include:

� Configuration information from the server and client systems

A change in the system configuration can be the cause of a performance
problem. Sometimes such a change may be done by accident, and finding the
changed configuration parameter to correct it can be very difficult. The snap
-a command can be used to gather system configuration information. Refer to
the AIX 5L Version 5.3 Commands Reference, Volume 5, SC23-4892, for
more information about the snap command.

� The system load on the server system

Poor performance on a client system is not necessarily a network problem. In
case the server system is short on local resources, such as CPU or memory,
it may be unable to answer the client’s request in the expected time. The
perfpmr tool can be used to gather this information. Refer to 3.3, “The perfpmr
utility” on page 77.

� The system load on the client system

The same considerations for the server system apply to the client system. A
shortage of local resources, such as CPU or memory, can slow down the
client’s network operation. The perfpmr tool can be used to gather this
information; refer to 3.3, “The perfpmr utility” on page 77 for more information.
 Chapter 2. Performance analysis and tuning 49

� The load on the network

The network usually is a resource shared by many systems. Poor
performance between two systems connected to the network may be caused
by an overloaded network, and this overload could be caused by other
systems connected to the network. There are no native tools in AIX to gather
information about the load on the network itself. Tools such as Sniffer,
DatagLANce Network Analyzer, and Nways® Workgroup Manager can
provide such information. Detailed information about the network
management products IBM offers can be found at:

http://www.networking.ibm.com/netprod.html

However, tools such as ping or traceroute can be used to gather turnaround
times for data on the network. The ftp command can be used to transfer a
large amount of data between two systems using /dev/zero as input and
/dev/null as output, and registering the throughput. This is done by opening an
ftp connection, changing to binary mode, and then executing the ftp sub
command that transfers 10000 * 32 KB over the network:

put “| dd if=/dev/zero bs=32k count=10000” /dev/null

� Network interface throughput

The commands atmstat, estat, entstat, fddistat, and tokstat can be used
to gather throughput data for a specific network interface. The first step would
be to generate a load on the network interface. Use the example above, ftp
using dd to do a put. Without the “count=10000” the ftp put command will run
until it is interrupted.

While ftp is transferring data, issue the command sequence:

entstat -r en2;sleep 100;entstat en2>/tmp/entstat.en2

It is used to reset the statistics for the network interface, in our case en2
(entstat -r en2), wait 100 seconds (sleep 100), and then gather the
statistics for the interface (entstat en2>/tmp/entstat.en2). Refer to 6.4.1,
“The entstat command” on page 351 for details on these commands.

� Output of network monitoring commands on both the server and client

The output of the commands should be part of the data gathered by the
perfpmr tool. However, the perfpmr tool may change, so it is advised to
control the data gathered by perfpmr to ensure that the outputs of the netstat
and nfsstat commands are included.

2.4.2 TCP/IP protocol
Application programs send data by using one of the Internet Transport Layer
Protocols, either the User Datagram Protocol (UDP) or the Transmission Control
Protocol (TCP). These protocols receive the data from the application, divide it
50 AIX 5L Practical Performance Tools and Tuning Guide

http://www.networking.ibm.com/netprod.html

into smaller pieces called packets, add a destination address, and then pass the
packets along to the next protocol layer, the Internet Network layer.

The Internet Network layer encloses the packet in an Internet Protocol (IP)
datagram, adds the datagram header and trailer, decides where to send the
datagram (either directly to a destination or else to a gateway), and passes the
datagram on to the Network Interface layer.

The Network Interface layer accepts IP datagrams and transmits them as frames
over a specific network hardware, such as Ethernet or token-ring networks.

For more detailed information about the TCP/IP protocol, refer AIX 5L Version
5.3 System Management Guide: Communications and Networks, SC23-4909,
and TCP/IP Tutorial and Technical Overview, GG24-3376.

To interpret the data created by programs such as the iptrace and tcpdump
commands, formatted by ipreport, and summarized with ipfilter, you need to
understand how the TCP/IP protocols work together. Table 2-1 contains a short,
top-down reminder of TCP/IP protocols hierarchy.

Table 2-1 TCP/IP layers and protocol examples

2.4.3 Network tunables
In most cases you need to adjust some network tunables on server systems.
Most of these settings concern different network protocol buffers. You can set
these buffer sizes system-wide with the no command (refer to 6.7.1, “The no
command” on page 396), or use the Interface Specific Network Options3 (ISNO)
for each network adapter. For more details about ISNO, see AIX 5L Version 5.3
System Management Guide: Communications and Networks, SC23-4909, and
AIX 5L Version 5.3 Commands Reference, SC23-4888.

TCP/IP Layer Protocol Examples

Application Telnet, FTP, SMTP, LPD

Transport TCP, UDP

Internet Network IP, ICMP, IGMP, ARP, RARP

Network Interface Ethernet, token-ring, ATM, FDDI, SP Switch

Hardware Physical network

3 There are five ISNO parameters for each supported interface; rfc1323, tcp_nodelay, tcp_sendspace, tcp_recvspace,
and tcp_mssdflt. When set, the values for these parameters override the system-wide parameters of the same names
that had been set with the no command. When ISNO options are not set for a particular interface, system-wide options are
used. Options set by an application for a particular socket using the setsockopt subroutine override the ISNO options and
system-wide options set by using the chdev, ifconfig, and no commands.
 Chapter 2. Performance analysis and tuning 51

The change will only apply to the specific network adapter if you have enabled
ISNO with the no command as in the following example:

no -o use_isno=1

If different network adapter types with a big difference of MTU sizes are used in
the system, using ISNO to tune each network adapter for best performance is the
preferred way. For example with Ethernet adapters using an MTU of 1500 and an
ATM adapter using an MTU of 65527 installed.

Document the current values before making any changes, especially if you use
ISNO to change the individual interfaces. Example 2-6 shows how to use the
lsattr command to check the current settings for an network interface, in this
case token-ring:

Example 2-6 Using lsattr to check adapter settings

lsattr -H -El tr0 -F"attribute value"
attribute value

mtu 1492
mtu_4 1492
mtu_16 1492
mtu_100 1492
remmtu 576
netaddr 10.3.2.164
state up
arp on
allcast on
hwloop off
netmask 255.255.255.0
security none
authority
broadcast
netaddr6
alias6
prefixlen
alias4
rfc1323 0
tcp_nodelay
tcp_sendspace 16384
tcp_recvspace 16384
tcp_mssdflt

The highlighted part in Example 2-6 indicates the ISNO options. Before applying
ISNO settings to interfaces by using the chdev command, you can use ifconfig
to set them on each adapter. Should you for some reason need to reset them and
are unable to log in to the system, the values will not be permanent and will not
52 AIX 5L Practical Performance Tools and Tuning Guide

be activated after IPL. For this reason it is not recommended to set ISNO values
using ifconfig in any system startup scripts that are started by init (from
/etc/inittab).

Network buffer tuning
The values in Table 2-2 are settings that have proved to give the highest network
throughput for each network type. A general rule is to set the TCP buffer sizes to
10 times the MTU size, but as can be seen in the following table, this is not
always true for all network types.

Table 2-2 Network tunables minimum values for best performance

Device Speed
Mbit

MTU tcp
sendspace

tcpa

recvspace
sb_max rfc

1323

Ethernet 10 1500 16384 16384 32768 0

Ethernet 100 1500 16384 16384 32768 0

Ethernet 1000 1500 131072 65536 131072 0

Ethernet 1000 9000 131072 65536 262144 0

Ethernet 1000 9000 262144 131072 262144 1

ATM 155 1500 16384 16384 131072 0

ATM 155 9180 65536 65536 131072 1

ATM 155 65527 655360 655360 1310720 1

FDDI 100 4352 45056 45056 90012 0

SPSW - 65520 262144 262144 1310720 1

SPSW2 - 65520 262144 262144 1310720 1

HiPPI - 65536 655360 655360 1310720 1

HiPS - 65520 655360 655360 1310720 1

ESCON® - 4096 40960 40960 81920 0

Token-ring 4 1492 16384 16384 32768 0

Token-ring 16 1492 16384 16384 32768 0

Token-ring 16 4096 40960 40960 81920 0

Token-ring 16 8500 65536 65536 131072 0
 Chapter 2. Performance analysis and tuning 53

Other network tunable considerations
Table 2-3 shows some other network tunables that should be considered and
other ways to calculate some of the values in shown in Table 2-2 on page 53.

Table 2-3 Other basic network tunables

a. If an application sends only a small amount of data and then waits for a re-
sponse, the performance may degrade if the buffers are too large, especially
when using large MTU sizes. It might be necessary to either tune the sizes further
or disable the Nagle algorithm by setting tcp_nagle_limit to 0 (zero).

tunable name Comment

thewall The thewall parameter is read only and cannot be changed. It is
set at system boot to half the size of the memory, with a limit of
1GB on 32-bit kernel, and 65GB on a 64-bit kernel. no -o thewall
shows the current setting.

tcp_pmtu_discover Disable Path Maximum Transfer Unit (PMTU) discovery by setting
this option to 0 (zero) if the server communicates with more than
64 other systemsa. This option enables TCP to dynamically find
the largest size packet to send through the network, which will be
as big as the smallest MTU size in the network.

sb_max Could be set to slightly less than thewall, or at two to four times
the size of the largest value for tcp_sendspace, tcp_recvspace,
udp_sendspace, and udp_recvspace.
This parameter controls how much buffer space is consumed by
buffers that are queued to a sender’s socket or to a receiver’s
socket. A socket is just a queuing point, and it represents the file
descriptor for a TCP session. tcp_sendspace, tcp_recvspce,
udp_sendspace, and udp_recvspace parameters cannot be set
larger than sb_max.
The system accounts for socket buffers used based on the size of
the buffer, not on the contents of the buffer. For example, if an
Ethernet driver receives 500 bytes into a 2048-byte buffer and
then this buffer is placed on the applications socket awaiting the
application reading it, the system considers 2048 bytes of buffer
to be used. It is common for device drivers to receive buffers into
a buffer that is large enough to receive the adapter’s maximum
size packet. This often results in wasted buffer space, but it would
require more CPU cycles to copy the data to smaller buffers.
Because the buffers often are not 100 percent full of data, it is
best to have sb_max to be at least twice as large as the TCP or
UDP receive space. In some cases for UDP it should be much
larger.
Once the total buffers on the socket reach the sb_max limit, no
more buffers will be allowed to be queued to that socket.
54 AIX 5L Practical Performance Tools and Tuning Guide

tcp_sendspace This parameter mainly controls how much buffer space in the
kernel (mbuf) will be used to buffer data that the application
sends. Once this limit is reached, the sending application will be
suspended until TCP sends some of the data, and then the
application process will be resumed to continue sending.

tcp_recvspace This parameter has two uses. First, it controls how much buffer
space may be consumed by receive buffers. Second, TCP uses
this value to inform the remote TCP how large it can set its
transmit window to. This becomes the “TCP Window size.” TCP
will never send more data than the receiver has buffer space to
receive the data into. This is the method by which TCP bases its
flow control of the data to the receiver.

udp_sendspace Always less than udp_recvspace but never greater than 65536
because UDP transmits a packet as soon as it gets any data and
IP has an upper limit of 65536 bytes per packet.

udp_recvspace Always greater than udp_sendspace and sized to handle as
many simultaneous UDP packets as can be expected per UDP
socket. For single parent/multiple child configurations, set
udp_recvspace to udp_sendspace times the maximum number of
child nodes if UDP is used, or at least 10 times udp_sendspace.

tcp_mssdflt This setting is used for determining MTU sizes when
communicating with remote networks. If not changed and MTU
discovery is not able to determine a proper size, communication
degradationb may occur.
The default value for this option is 512 bytes and is based on the
convention that all routers should support 576 byte packets.
Calculate a proper size by using the following formula; MTU - (IP
+ TCP header)c.

ipqmaxlen Could be set to 512 when using file sharing with applications such
as GPFS.

tcp_nagle_limit Could be set to 0 to disable the Nagle Algorithm when using large
buffers.

fasttimo Could be set to 50 if transfers take a long time due to delayed
ACKs.

rfc1323 This option enables TCP to use a larger window size, at the
expense of a larger TCP protocol header. This enables TCP to
have a 4 GB window size. For adapters that support a 64K MTU
(frame size), you must use RFC1323 to gain the best possible
TCP performance.

tunable name Comment
 Chapter 2. Performance analysis and tuning 55

To document all network interfaces and important device settings, you can
manually check all interface device drivers with the lsattr command as is shown
in Example 2-7.

Basic network adapter settings
Network adapters should be set to utilize the maximum transfer capability of the
current network given available system memory. On large server systems (such
as database server or Web servers with thousands of concurrent connections),
you might need to set the maximum values allowed for network device driver
queues if you use Ethernet or token-ring network adapters. However, note that
each queue entry will occupy memory at least as large as the MTU size for the
adapter.

To find out the maximum possible setting for a device, use the lsattr command
as shown in the following examples. First find out the attribute names of the
device driver buffers/queues that the adapter uses. (These names can vary for
different adapters.) Example 2-7 is for an Ethernet network adapter interface
using the lsattr command.

Example 2-7 Using lsattr on an Ethernet network adapter interface

lsattr -El ent0
busmem 0x1ffac000 Bus memory address False
busintr 5 Bus interrupt level False
intr_priority 3 Interrupt priority False
rx_que_size 512 Receive queue size False
tx_que_size 8192 Software transmit queue size True
jumbo_frames no Transmit jumbo frames True
media_speed Auto_Negotiation Media Speed (10/100/1000 Base-T Ethernet) True
use_alt_addr no Enable alternate ethernet address True
alt_addr 0x000000000000 Alternate ethernet address True
trace_flag 0 Adapter firmware debug trace flag True
copy_bytes 2048 Copy packet if this many or less bytes True
tx_done_ticks 1000000 Clock ticks before TX done interrupt True
tx_done_count 64 TX buffers used before TX done interrupt True
receive_ticks 50 Clock ticks before RX interrupt True
receive_bds 6 RX packets before RX interrupt True
receive_proc 16 RX buffers before adapter updated True
rxdesc_count 1000 RX buffers processed per RX interrupt True

a. In a heterogeneous environment the value determined by MTU discovery can
be way off.
b. When setting this value, make sure that all routing equipment between the
sender and receiver can handle the MTU size; otherwise they will fragment the
packets.
c. The size depends on the original MTU size and if RFC1323 is enabled or not.
If RFC1323 is enabled, then the IP and TCP header is 52 bytes, if RFC1323 is not
enabled, the IP and TCP header is 40 bytes.
56 AIX 5L Practical Performance Tools and Tuning Guide

stat_ticks 1000000 Clock ticks before statistics updated True
rx_checksum yes Enable hardware receive checksum True
flow_ctrl yes Enable Transmit and Receive Flow Control True
slih_hog 10 Interrupt events processed per interrupt True

Example 2-8 shows what it might look like on a token-ring network adapter
interface using the lsattr command.

Example 2-8 Using lsattr on a token-ring network adapter interface

lsattr -El tok0
busio 0x7fffc00 Bus I/O address False
busintr 3 Bus interrupt level False
xmt_que_size 16384 TRANSMIT queue size True
rx_que_size 512 RECEIVE queue size True
ring_speed 16 RING speed True
attn_mac no Receive ATTENTION MAC frame True
beacon_mac no Receive BEACON MAC frame True
use_alt_addr no Enable ALTERNATE TOKEN RING address True
alt_addr 0x ALTERNATE TOKEN RING address True
full_duplex yes Enable FULL DUPLEX mode True

To find out the maximum possible setting for a device attribute, use the lsattr
command with the -R option on each of the adapters’ queue attributes as in
Example 2-9.

Example 2-9 Using lsattr to find out attribute ranges for a network adapter interface

lsattr -Rl ent0 -a tx_que_size
512...16384 (+1)
lsattr -Rl ent0 -a rx_que_size
512
lsattr -Rl tok0 -a xmt_que_size
32...16384 (+1)
lsattr -Rl tok0 -a rx_que_size
32...512 (+1)

In the example output, for the Ethernet adapter the maximum values for
tx_que_size and rx_que_size are 16384 and 512. For the token-ring adapter the
maximum values in the example output above for xmt_que_size and rx_que_size
is are also 16384 and 512. When only one value is shown it means that there is
only one value to use and it cannot be changed. When an ellipsis (...) separates
values it means an interval between the values surrounding the dotted line in
increments shown at the end of the line within parenthesis, such as in the
example above (+1), which means by increments of one.
 Chapter 2. Performance analysis and tuning 57

To change the values so that they will be used the next time the device driver is
loaded, use the chdev command as shown in Example 2-10. Note that with the -P
attribute, the changes will be effective after the next IPL.

Example 2-10 Using chdev to change a network adapter interface attributes

chdev -l ent0 -a tx_que_size=16384 -a rx_que_size=512 -P
ent0 changed

chdev -l tok0 -a xmt_que_size=16384 -a rx_que_size=512 -P
tok0 changed

The commands atmstat, entstat, fddistat, and tokstat can be used to monitor
the use of transmit buffers for a specific network adapter.

The MTU sizes for a network adapter interface can be examined by using the
lsattr command and the mtu attribute as in Example 2-11, which shows the tr0
network adapter interface.

Example 2-11 Using lsattr to examine the possible MTU sizes for a network adapter

lsattr -R -a mtu -l tr0
60...17792 (+1)

The minimum MTU size for token-ring is 60 bytes and the maximum size is just
over 17 KB. Example 2-12 shows the allowable MTU sizes for Ethernet (en0).

Example 2-12 Using lsattr to examine the possible MTU sizes for Ethernet

lsattr -R -a mtu -l en0
60...9000 (+1)

Note that 9000 as a maximum MTU size is only valid for Gigabit Ethernet; 1500 is
the maximum for 10/100 Ethernet.

Resetting network tunables to their default
Should you need to set all no tunables back to their default value, the following
commands are one way to do it:

#no -a | awk '{print $1}' | xargs -t -i no -d {}; no -o extendednetstats=0

Attention: The default boot time value for the network option
extendednetstats is 1 (one — the collection of extended network statistics is
enabled). However, because these extra statistics may cause a reduction in
system performance, extendednetstats is set to 0, for off, in /etc/rc.net. If you
want to enable this option at system runtime, you should comment the
corresponding line in /etc/rc.net. Keep in mind that you need to reboot the
system for changing this variable.
58 AIX 5L Practical Performance Tools and Tuning Guide

Some high-speed adapters have ISNO parameters set by default in the ODM
database. Review the AIX 5L Version 5.3 System Management Guide:
Communications and Networks, SC23-4909, for individual adapters default
values, or use the lsattr command with the -D option as in Example 2-13.

Example 2-13 Using lsattr to list default values for a network adapter

lsattr -HD -l ent0
attribute deflt description user_settable

busmem 0 Bus memory address False
busintr Bus interrupt level False
intr_priority 3 Interrupt priority False
rx_que_size 512 Receive queue size False
tx_que_size 8192 Software transmit queue size True
jumbo_frames no Transmit jumbo frames True
media_speed Auto_Negotiation Media Speed (10/100/1000 Base-T Ethernet) True
use_alt_addr no Enable alternate ethernet address True
alt_addr 0x000000000000 Alternate ethernet address True
trace_flag 0 Adapter firmware debug trace flag True
copy_bytes 2048 Copy packet if this many or less bytes True
tx_done_ticks 1000000 Clock ticks before TX done interrupt True
tx_done_count 64 TX buffers used before TX done interrupt True
receive_ticks 50 Clock ticks before RX interrupt True
receive_bds 6 RX packets before RX interrupt True
receive_proc 16 RX buffers before adapter updated True
rxdesc_count 1000 RX buffers processed per RX interrupt True
stat_ticks 1000000 Clock ticks before statistics updated True
rx_checksum yes Enable hardware receive checksum True
flow_ctrl yes Enable Transmit and Receive Flow Control True
slih_hog 10 Interrupt events processed per interrupt True

The deflt column shows the default values for each attribute. Example 2-14
shows how to use them on an Ethernet network adapter interface.

Example 2-14 Using lsattr to list default values for a network interface

lsattr -HD -l en0
attribute deflt description user_settable

mtu 1500 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr Internet Address True
state down Current Interface Status True
arp on Address Resolution Protocol (ARP) True
netmask Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
netaddr6 N/A True
 Chapter 2. Performance analysis and tuning 59

alias6 N/A True
prefixlen N/A True
alias4 N/A True
rfc1323 N/A True
tcp_nodelay N/A True
tcp_sendspace N/A True
tcp_recvspace N/A True
tcp_mssdflt N/A True

Default values should be listed in the deflt column for each attribute. If no value
is shown, it means that there is no default setting.
60 AIX 5L Practical Performance Tools and Tuning Guide

Part 2 Performance
tools

In Part 2 we describe the performance monitoring and tuning tools for the four
major subsystem components: CPU, memory, network I/O and disk I/O.

We also discuss some of the high level tools used as an entry point in
performance analyzing and tuning methodology, as well as some in-depth tools
for performance problem determination.

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 61

62 AIX 5L Practical Performance Tools and Tuning Guide

Chapter 3. General performance
monitoring tools

In this chapter we discuss the steps required to run general performance tools
and how to interpret the output of the tools.

This chapter discusses the following tools:

� topas
� jtopas
� perfpmr (tool for collecting performance data when reporting a problem)
� Performance Diagnostics Tool (PDT)
� trace

3

© Copyright IBM Corp. 2005. All rights reserved. 63

3.1 The topas command
The topas command is a performance monitoring tool that is ideal for broad
spectrum performance analysis. The command is capable of reporting on local
system statistics such as:

� CPU usage
� CPU events and queues
� memory and paging use
� disk performance
� network performance
� WLM partitioning
� NFS statistics

Topas can report on the top hot processes of the system as well as on Workload
Manager (WLM) hot classes. The WLM class information is only displayed when
WLM is active. The topas command defines hot processes as those processes
that use a large amount of CPU time. The topas command does not have an
option for logging information. All information is real time.

The topas command is located at /usr/bin/topas and is part of the bos.perf.tools
fileset and provided since AIX Version 4.3.

The performance monitoring module in topas is implemented using the facility of
System Performance Measurement Interface (SPMI). Therefore, like other tools
using SPMI, you can see shared memory segment with address starting 0x78 in
in shared memory address space while running topas command (see
Example 3-1).

Example 3-1 Shared memory segment for topas

[p630n02][/]> ipcs -m
IPC status from /dev/mem as of Thu Oct 28 10:50:04 CDT 2004
T ID KEY MODE OWNER GROUP
Shared Memory:
m 0 0x580010da --rw-rw-rw- root system
m 1 0x0d00051f --rw-rw-rw- root system
m 131074 0xffffffff --rw-rw---- root system
m 3 0xffffffff --rw-rw---- root system
m 4 0xffffffff --rw-rw---- root system
m 655365 0x7800061b --rw-rw-rw- root system

Since SPMI is the part of Performance Toolbox (PTX®), every metric you can get
from topas has the same semantics as the ones from PTX. For instance, you can
get the description and the maximum/minimum values for EVENTS/QUEUES
section of topas output shown in Example 3-4 on page 66 also by running the
64 AIX 5L Practical Performance Tools and Tuning Guide

program compiled from he source code presented in “Spmi_traverse.c” on
page 691. This program traverses the data structure provided by SPMI and prints
the brief information about each metric. Execution result of this program is listed
in the following Example 3-2. For more information about SMPI, refer also to
10.2, “System Performance Measurement Interface” on page 620.

Example 3-2 Descriptions for SPMI metrics

...(lines omitted)...
CPU/cpu0/pswitch:Process context switches on this processor:Long/Counter:0-5000
CPU/cpu0/syscall:Total system calls on this processor:Long/Counter:0-2000
CPU/cpu0/read:Read system calls on this processor:Long/Counter:0-1000
CPU/cpu0/write:Write system calls on this processor:Long/Counter:0-1000
CPU/cpu0/fork:Fork system calls on this processor:Long/Counter:0-100
CPU/cpu0/exec:Exec system calls on this processor:Long/Counter:0-100
...(lines omitted)...
Proc/runque:Average count of processes that are waiting for the cpu:Float/Quantity:0-10
Proc/runocc:Number of samplings of runque:Long/Quantity:0-1000000
Proc/swpque:Average count of processes waiting to be paged in:Float/Quantity:0-10
...(lines omitted)...

If you need more information about the metrics provided by topas, refer to
Performance Toolbox Version 2 and 3 Guide and Reference, SC23-2625. You
can also find the basic command syntax and description of the command in AIX
5L Version 5.3 Commands Reference, Volume 5, SC23-4892.

3.1.1 Topas syntax
The following Example 3-3 shows the basic syntax of topas command.

Example 3-3 Syntax of topas

[p630n02][/]> topas -h

 Usage: topas [-d number_of_monitored_hot_disks]
 [-h show help information]
 [-i monitoring_interval_in_seconds]
 [-m Use monochrome mode - no colors]
 [-n number_of_monitored_hot_network_interfaces]
 [-p number_of_monitored_hot_processes]
 [-w number_of_monitored_hot_WLM classes]
 [-c number_of_monitored_hot_CPUs]
 [-P show full-screen Process Display]
 [-L show full-screen Logical Partition display]
 [-U username - show username owned processes with -P]
 [-W show full-screen WLM Display]
 Chapter 3. General performance monitoring tools 65

The output of topas execution without flags is shown in Example 3-4.

Example 3-4 Output for topas without flags

Topas Monitor for host: r33n05 EVENTS/QUEUES FILE/TTY
Thu Oct 28 09:45:07 2004 Interval: 2 Cswitch 131 Readch 2
 Syscall 52 Writech 98
Kernel 0.3 |# | Reads 1 Rawin 0
User 0.0 |# | Writes 1 Ttyout 96
Wait 0.0 | | Forks 0 Igets 0
Idle 99.7 |############################| Execs 0 Namei 0
Physc = 0.00 %Entc= 0.5 Runqueue 0.0 Dirblk 0
 Waitqueue 0.0
Network KBPS I-Pack O-Pack KB-In KB-Out
en0 0.1 1.0 1.0 0.0 0.2 PAGING MEMORY
lo0 0.0 0.0 0.0 0.0 0.0 Faults 0 Real,MB 7167
 Steals 0 % Comp 10.7
Disk Busy% KBPS TPS KB-Read KB-Writ PgspIn 0 % Noncomp 1.1
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 1.3
hdisk2 0.0 0.0 0.0 0.0 0.0 PageIn 0
hdisk1 0.0 0.0 0.0 0.0 0.0 PageOut 0 PAGING SPACE
cd0 0.0 0.0 0.0 0.0 0.0 Sios 0 Size,MB 512
 % Used 1.1
Name PID CPU% PgSp Owner NFS (calls/sec) % Free 98.8
topas 557266 0.0 1.4 root ServerV2 0
rpc.lockd 446510 0.0 0.2 root ClientV2 0 Press:
netm 368820 0.0 0.0 root ServerV3 0 "h" for help
IBM.CSMAg 528590 0.0 2.1 root ClientV3 0 "q" to quit

With “-i” flag, you can specify updating interval and you can use the “+/-” keys to
modify the sampling interval.

3.1.2 Basic topas output
The basic output of topas is composed of two sections. The one is variable
(changeable) section in the left most part of the output and the other is static
(non-changeable) section in the right most part of the output.

The variable part of the topas display can have one, two, three, four or five
subsections. When the topas command is started, it displays all subsections for
which hot entities are monitored. The exception to this is the WorkLoad

Tip: By not specifying any flags for the command, topas command runs as
though invoked with the following command line:

topas -d20 -i2 -n20 -w20 -c20
66 AIX 5L Practical Performance Tools and Tuning Guide

Management (WLM) Classes subsection. which is displayed only when WLM is
active.

CPU Utilization This subsection displays a bar chart showing
cumulative CPU usage. Pressing the c key only once
will turn this subsection off. This output can display
either global CPU utilization or a list of hot CPUs. You
can toggle between these two outputs buy press c key
twice.

Network Interfaces This subsection displays a list of hot network
interfaces. The maximum number of interfaces
displayed is the number of hot interfaces being
monitored, as specified with the -n flag. Pressing the n
key turns off this subsection. Pressing the n key again
shows a one-line report summary of the activity for all
network interfaces.

Physical Disks This subsection displays a list of hot physical disks.
The maximum number of physical disks displayed is
the number of hot physical disks being monitored as
specified with the -d flag. Pressing the d key turns off
this subsection. Pressing the d key again shows a
one-line report summary of the activity for all physical
disks.

WLM Classes This subsection displays a list of hot WorkLoad
Management (WLM) Classes. The maximum number
of WLM classes displayed is the number of hot WLM
classes being monitored as specified with the -w flag.
Pressing the w key turns off this subsection.

Processes This subsection displays a list of hot processes. The
maximum number of processes displayed is the
number of hot processes being monitored as specified
with the -p flag. Pressing the p key turns off this
subsection. The process are sorted by their CPU
usage over the monitoring interval.

The Static section contains five subsections of statistics as follows:

EVENTS/QUEUES Display the per-second frequency of selected
system-global events and the average size of the
thread run and wait queues

FILE/TTY Displays the per-second frequency of selected file and
tty statistics.

PAGING Display the per-second frequency of paging statistics.
 Chapter 3. General performance monitoring tools 67

MEMORY Displays the real memory size and the distribution of
memory in use.

NFS NFS stats in calls per second

Figure 3-1 The basic output of Topas command

Topas provides you have additional screen outputs regarding to partition
statistics, detailed WLM information and detailed process information (this output
looks very similar to one of top command).

3.1.3 Partition statistics
Topas command in AIX 5L Version 5.3 supports Micro-Partitioning™ and
simultaneous multi-threading (SMT) environments, and reports status of the
partition. You can see sample screen output in a partitioned environment in
Example 3-5. Pressing the P key from the basic topas screen switches to the
partition statistics screen. Pressing the P key again gets out of this screen and
goes back to the basic topas screen. You can also specify the -L flag when you
run the topas command.

Example 3-5 Sample output for topas with partition statistics

Interval: 2 Logical Partition: r33n05 Thu Oct 28 09:56:16 2004

Variable section Static section
68 AIX 5L Practical Performance Tools and Tuning Guide

Psize: - Shared SMT ON Online Memory: 7168.0
Ent: 0.50 Mode: UnCapped Online Logical CPUs: 2
Partition CPU Utilization Online Virtual CPUs: 1
%usr %sys %wait %idle physc %entc %lbusy app vcsw phint %hypv hcalls
 0 0 0 100 0.0 0.40 0.00 - 512 0 0.0 0
===
LCPU minpf majpf intr csw icsw runq lpa scalls usr sys _wt idl pc lcsw
Cpu0 0 0 338 264 125 1 100 40 7 62 0 31 0.00 256
Cpu1 0 0 20 0 0 0 0 0 0 9 0 91 0.00 256

Detailed WorkLoad Management information
You can get more detailed information about WLM by using topas as well. This
output also contains detailed process information. You can see sample screen
output of this in Example 3-6. Pressing the W key from the basic topas screen
switches to partition statistics screen. Pressing the W key get out of this screen
and go back to the basic topas screen. You can also specify -W flag when you
run topas command.

Example 3-6 Sample output for topas with detailed WLM information

Topas Monitor for host: p630n02 Interval: 10 Thu Oct 28 09:57:25 2004
WLM-Class (Active) CPU% Mem% Disk-I/O%
app3 0 0 0
app2 0 0 0
app1.app5 0 0 0
app1.Shared 0 0 0
app1.Default 0 0 0
app1 0 0 0
System 0 10 0
Shared 0 1 0
Default 0 0 0
Unmanaged 0======= 15========== 0=====================
Unclassified 0A TEXT 0AGE 0 PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 17096 11726 60 20 537 158 548 13:18 0.0 163 1173 IBM.CSMAg
root 8536 1 60 20 125 2 125 2:10 0.0 1812909 syncd
root 14726 11726 60 20 147 417 309 1:08 0.0 335 893 i4llmd
root 3354 0 37 41 17 0 17 0:51 0.0 0 23 gil
root 33842 28372 60 20 200 145 468 0:17 0.0 18038992 dtfile
root 28874 35464 60 20 11305 13 11305 0:16 0.0 411526 java
root 12146 11726 60 20 160 78 160 0:13 0.0 106 532 aixmibd
root 7268 1 60 20 6 0 6 0:06 0.0 0 3 rt-fcparr
root 18604 11726 39 20 538 139 539 0:04 0.0 412 2661 rmcd
root 4470 11726 60 20 30 97 124 0:04 0.0 107 1270 sshd
 Chapter 3. General performance monitoring tools 69

Detailed process information
Topas provided the output more focused on process information. This output
looks similar to the output of top command (see Example 3-7 on page 70).
Pressing the P key from the basic topas screen switches to partition statistics
screen. Press the P key again to get out of this screen and go back to the basic
topas screen. You can also specify -P flag when you run topas command.

Example 3-7 Sample output for topas with detailed process information

Topas Monitor for host: r33n05 Interval: 10 Thu Oct 28 15:30:58 2004

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 528590 536586 60 20 527 159 539 9:07 0.0 166 1126 IBM.CSMAg
root 548876 1 60 20 106 17 106 0:31 0.0 0 274 getty
root 372918 0 37 41 29 0 29 0:23 0.0 0 30 gil
root 426230 1 60 20 127 2 127 0:19 0.0 1831381 syncd
root 479340 536586 60 20 141 15 141 0:17 0.0 46 504 muxatmd
root 446510 1 60 20 50 0 50 0:03 0.0 0 56 rpc.lockd
root 364722 0 60 41 12 0 12 0:03 0.0 0 4 xmgc
root 487588 536586 39 20 537 133 538 0:01 0.0 511 2834 rmcd
root 368820 0 36 41 12 0 12 0:00 0.0 026902 netm
root 344232 0 40 41 12 0 12 0:00 0.0 0 4 vmptacrt
root 377016 0 16 41 12 0 12 0:00 0.0 0 14 wlmsched
root 389138 0 60 20 12 0 12 0:00 0.0 0 3 rtcmd
root 397522 0 60 20 12 0 12 0:00 0.0 0 4 lvmbb
root 401616 0 38 41 49 0 49 0:00 0.0 0 90 j2pg
root 409828 0 60 20 19 0 19 0:00 0.0 0 15 dog
root 413826 536586 60 20 322 59 322 0:00 0.0 58 591 IBM.HostR
root 418000 536586 60 20 279 25 279 0:00 0.0 44 517 IBM.DRMd
root 422114 1 39 41 12 0 12 0:00 0.0 0 3 aioserver
root 340134 0 16 41 15 0 15 0:00 0.0 0 11 lrud
root 430306 1 60 20 137 22 137 0:00 0.0 14 159 errdemon

3.2 The jtopas utility
The jtopas tool is a Java™ based system-monitoring tool that provides a console
to view a summary of the overall system, as well as separate consoles to focus
on particular subsystems. Top instruments are featured in the jtopas tool for
various resources, such as processes, disks, etc. The data streams available are
“Near Real-Time (NRT)” and “Playback” (PB). PB data can be viewed from the
local host or a remote host, as long as Performance Toolbox for AIX has been
installed and configured.
70 AIX 5L Practical Performance Tools and Tuning Guide

The jtopas tool interface displays a set of tabs that represent the various
consoles. The main console provides a view of several resources and
subsystems and lends itself to providing an overall view of a computer system,
while the other consoles focus more on particular areas of the system. The main
console contains several top instruments.

A top instrument is a monitoring window that displays a group of devices or
processes. For instance, these top instruments can be sorted by the largest
consumers of a system resource, such as memory, CPU, storage, or network
adapters. Even though there might be thousands of processes, for example, only
the top 10 or 20 are displayed by the jtopas tool.

Each of the other consoles is composed of one or more instruments. An
instrument is similar to a window that can be resized, minimized, or moved. A
divider bar is used to separate top instrument information from global information
about the system, and the bar can be moved or either side of the bar can be
made to use the entire console display area.

At initialization, the jtopas tool displays all consoles with their instruments. If a
user configuration file is found, the consoles are constructed based on that file.
Otherwise, the default configuration is used. By default, the jtopas tool tries to
establish a communication link with the local host to drive the consoles.

To run the jtopas tool, type:

jtopas

When starting jtopas the Java interface is started you will see an image similar to
Figure 3-2 on page 72.
 Chapter 3. General performance monitoring tools 71

Figure 3-2 jtopas main screen

The jtopas tool uses recording files and a configuration file, as follows:

Recording Files
Recording files contain metric values recorded by an instance of the xmtrend
agent, acting as the top agent. This xmtrend agent is directed to record metric
data specifically for top data. The xmtrend agent creates a recording file of top
metric data as defined in the jtopas.cf configuration file. This recording file can be
used by the jtopas tool to display historical system events, or by the jazizo trend
analysis tool.
72 AIX 5L Practical Performance Tools and Tuning Guide

Not all data and data rates are available to the jtopas tool during a playback. For
top recordings and Near Real-Time data, the xmtrend daemon must be started
with the -T option. The top recordings are placed in the /etc/perf/Top/ directory.

3.2.1 The jtopas configuration file
The jtopas tool uses a default configuration file that determines the size, location,
and metrics viewed for each instrument. If any instrument is changed, upon exit,
users are asked if they want to save the current configuration. If Yes is selected, a
configuration file is placed in the user's HOME directory and is named
“.jtopas.cfg”. Users can return to using the default configuration by deleting the
/$HOME/.jtopas.cfg file.

As can be seen in Figure 3-2 on page 72, jtopas has the following menus:

File Menu Closes all windows and exits the jtopas tool. If the
configuration has changed, the user is asked whether to
save the new configuration

Data Source Menu The data source menu contains two options:

Near Real-Time: Data Changes the data stream to near
real-time data. Near real-time data is gathered from a
machine in real time and then made available to the
jtopas tool. The refresh rate, which can be changed in the
jtopas tool, defines how often data is requested and
displayed.

PlayBack Data: Changes the data stream to PlayBack
data. The PlayBack control panel is displayed when users
select this option. The jtopas tool continues to display
data at the refresh rate. The data is gathered from the
local or a remote machine. Recorded data is saved on a
server by the xmtrend agent at 1-minute intervals.
Although the refresh rate updates the console at a given
interval by default, the clock associated with the data
increments at the 1-minute interval. For example, if the
refresh rate is every 5 seconds and the recording file is
recorded every minute, the data and clock on the
PlayBack panel refreshes every 5 seconds by 1 minute

Reports Menu The Reports menu provides a set of report formats. Each
report summarizes the data in a tabular format that can be
viewed and printed. The font and size of the data can be
changed. Some reports might offer report options to
change how the data is summarized and displayed.
 Chapter 3. General performance monitoring tools 73

Host List The Host List menu allows users to add or delete a host
that can be monitored by jtopas.

Options Menu Options menu contains two options:

Refresh Rate: The jtopas tool cycles through at the
refresh rate. The cycle includes requesting the data and
updating the console. The refresh rate can be changed by
either clicking the refresh rate/status button or selecting
the menu option. The user can enter values of whole
seconds. The jtopas tool uses the default refresh rate.
The greater the refresh rate value, the less load the jtopas
tool consumes on the CPU. If the jtopas tool is unable to
complete an operation within the cycle time, the status
button turns yellow and an appropriate message is
displayed. If data cycles are consistently missed, the
refresh rate should be adjusted to increase the time
between updates.

Message Filter: The message filter option allows users to
filter out and display messages based on a specific
priority. The following are priorities for messages, each
priority having a color associated with it:

Priority 1: Red - Critical message, such as losing a host
connection

Priority 2 Yellow - Important message, such as losing a
data cycle

Priority 3 Black - Informational messages The text of each
message displayed is color-coded and is preceded by the
priority and the timestamp.

3.2.2 The info section for the jtopas tool
The info section provides status information and allows users to select the host
from which to gather the data. The following are the data fields:

Host Name: By default, the local host name is displayed. Host names
can be added, deleted, or selected.

To add a new host, select Host List from the menu bar and
then select Add Host. The new host is immediately
contacted for a connection and is added to the host list
pull-down. If the host list is modified in any way, upon exit,
the user is asked whether to save the new configuration. If
OK is selected, the new host list is saved in the
74 AIX 5L Practical Performance Tools and Tuning Guide

$HOME/.jtopas.cfg file and made available the next time
the same user starts the jtopas tool.

To delete a host, select Host List from the menu bar and
then select Delete Host. The old host will still remain
selected until a new host is selected.

To select a new host from the host list, open the list and
select the host name.

Message Section The jtopas tool generates informational messages.
These messages are assigned a priority to classify them
by importance and to allow users to hide messages of a
particular priority for easier viewing. As stated in the
Message Filter section of the Options menu, the following
priorities are assigned to messages: P1, P2, or P3. The
highest in importance is P1, as it is used for critical
messages. Messages can be filtered by selecting
Message Filter under the Options menu. Status/Refresh
Rate Button

The status button reflects the status of data acquisition
per the selected refresh rate. The refresh rate defines how
often the console data is updated. The value is in
seconds. The refresh rate can be changed by selecting
the button or selecting Refresh Rate under the Options
menu. If data is not retrieved and updated within the
refresh cycle, the button turns yellow and the button label
changes to No Update. If the data connection is lost, the
button turns red and the button label displays No Data.
Appropriate messages are also added to the message
section.

Current Time This field reflects the current day and time.

3.2.3 The jtopas consoles
In Figure 3-2 on page 72 the instruments is displayed as a window that can be
minimized, maximized, moved, and resized. If there are multiple columns with
headers, the columns can be reorganized and resized. Some instruments
implement a scroll bar to view additional data.

Top instruments monitor a group of common metrics ordered by a particular
column metric. For example, CPUs are by default ordered highest to lowest by
largest consumer of kernel CPU used. This default can be changed to largest
consumer of user CPU by clicking the User header label. Even if there are 64
CPUs, only a subset is displayed.
 Chapter 3. General performance monitoring tools 75

3.2.4 The jtopas playback tool
When the PlayBack data source is selected. The Playback Control panel
appears. Figure 3-3 shows the jtopas PlayBack panel. The panel allows a user to
control the playback. Closing the PlayBack panel returns the user to the NRT
data source.

Figure 3-3 jtopas playback control panel

Playbacks begin in a paused state. To begin displaying the playback, click Play.
The PlayBack panel contains the following information:

Host Name The initial playback host is the host that was selected for
the NRT data. This can be changed in the same manner
as it is changed in the main console.

Start / Stop The available start and stop times of all recorded data on
a particular host are displayed. By clicking Change, the
start and stop date and times can be altered. The Time
Selection panel displays dates and times of available
recorded data. Select a date and indicate whether it is the
start or stop date for the playback. Then select a start time
and stop time. Click OK to use the dates and times
selected.

PlayBack Time This time stamp represents the time stamp for the
playback sample that is displayed.

Sample Interval Even though the recording frequency is in minutes, metric
samples are taken at a much finer granularity. These
samples are combined to determine the mean across the
recording cycle. By default, sample updates to the jtopas
tool in the playback mode are at the recording frequency.
This is not the same as the refresh rate of the screen. The
refresh rate represents how often the data in the jtopas
console is refreshed. Having a refresh rate for the
console, as well as a sample interval, allows the user to
view a week's worth of data in hourly intervals and have
76 AIX 5L Practical Performance Tools and Tuning Guide

the console refresh at a rate that is comfortable to view
and analyze.

PlayBack Controls The following are the playback controls:

Rewind Plays the recording back in reverse. The sample interval
value becomes negative, which indicates that the
recording file is being traversed in reverse order and at
the interval displayed. Each time Rewind is selected, the
time interval increases. Clicking Play returns the playback
to the default sample rate.

Play Displays the recording file.

Fast Forward Increases the time between data samples. The sample
interval value increases, which indicates that the
recording file is being traversed at greater intervals. Each
time Fast Forward is selected, the time interval increases.
Clicking Play returns the playback to the default or
selected sample rate.

Pause Stops the playback but maintains the current playback
time in the recording file.

Stop Stops the playback and resets the playback time to the
beginning.

Step Forward Moves the playback forward one time interval and pauses.

Step Backward Moves the playback backward one time interval and
pauses.

3.3 The perfpmr utility
perfpmr consists of a set of utilities that collect the necessary information to
assist in analyzing performance issues. It is primarily designed to assist IBM
software support, but is also useful to document your system during
implementation and validation phases.

This tool contains a series of programs that use performance monitoring
commands and tools existing on the system, and collect the data in a file which
can be sent to IBM support, or saved for further reference.

As perfpmr is updated frequently, it is not distributed on AIX media. It can be
downloaded from:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr
 Chapter 3. General performance monitoring tools 77

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

Download the version that is appropriate for your AIX level. In our case (AIX 5L
V5.3), we downloaded the file from:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/perf53/perf53.tar.Z

Syntax
perfpmr.sh [-PDIgfnpsc][-F file][-x file][-d sec] monitor_seconds

-P preview only - show scripts to run and disk space needed

-D run perfpmr the original way without a perfpmr cfg
file

-I get lock instrumented trace also

-g do not collect gennames output.

-f if gennames is run, specify gennames -f.

-n used if no netstat or nfsstat desired.

-p used if no pprof collection desired while
monitor.sh running.

-s used if no svmon desired.

-c used if no configuration information is desired.

-F file use file as the perfpmr cfg file - default is
perfpmr.cfg

-x file only execute file found in perfpmr installation
directory

-d sec sec is time to wait before starting collection
period default is delay_seconds 0 monitor_seconds
is for the monitor collection period in seconds

For example, you can use perfpmr.sh 600 for standard collection period of 600
seconds.

3.3.1 Information about measurement and sampling
The perfpmr.sh 600 command executes the following shell scripts to obtain a
test case. You can also run these scripts independently.

aiostat.sh Collects AIO information into a report called aiostat.int

config.sh Collects configuration information into a report called
config.sum.

emstat.sh time Builds a report called emstat.int on emulated instructions.
The time parameter must be greater than or equal to 60.
78 AIX 5L Practical Performance Tools and Tuning Guide

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/perf53/perf53.tar.Z

filemon.sh time Builds a report called filemon.sum on file I/O. The time
parameter does not have any restrictions.

iostat.sh time Builds two reports on I/O statistics: a summary report
called iostat.sum and an interval report called iostat.int.
The time parameter must be greater than or equal to 60.

iptrace.sh time Builds a raw Internet Protocol (IP) trace report on network
I/O called iptrace.raw. You can convert the iptrace.raw file
to a readable ipreport file called iptrace.int using the
iptrace.sh -r command. The time parameter does not
have any restrictions.

lpartstat.sh Builds a report on Logical partitioning information, two file
are created lparstat.in and lparstat.sum

monitor.sh time Invokes system performance monitors and collects
interval and summary reports:

mpstat Builds a report on Logical processor information into a
report called mpstat.int

netstat.sh [-r] time Builds a report on network configuration and use called
netstat.int containing tokstat -d of the token-ring
interfaces, entstat -d of the Ethernet interfaces, netstat
-in, netstat -m, netstat -rn, netstat -rs, netstat -s,
netstat -D, and netstat -an before and after monitor.sh
was run. You can reset the Ethernet and token-ring
statistics and re-run this report by running netstat.sh -r 60.
The time parameter must be greater than or equal to 60.

nfsstat.sh time Builds a report on NFS configuration and use called
netstat.int containing nfsstat -m, and nfsstat -csnr
before and after nfsstat.sh was run. The time parameter
must be greater than or equal to 60.

pprof.sh time Builds a file called pprof.trace.raw that can be formatted
with the pprof.sh -r command. Refer to 4.2.14, “The
pprof command” on page 262 for more details. The time
parameter does not have any restrictions.

ps.sh time Builds reports on process status (ps). ps.sh creates the
following files:

psa.elfk: A ps -elfk listing after ps.sh was run.

psb.elfk: A ps -elfk listing before ps.sh was run.

ps.int Active processes before and after ps.sh was run.
 Chapter 3. General performance monitoring tools 79

ps.sum A summary report of the changes between when
ps.sh started and finished. This is useful for determining
what processes are consuming resources.

The time parameter must be greater than or equal to 60.

sar.sh time Builds reports on sar. sar.sh creates the following files:

sar.int Output of commands sadc 10 7 and sar -A

sar.sum A sar summary over the period sar.sh was run
The time parameter must be greater than or equal to 60.

svmon.sh Builds a report on svmon data into two files svmon.out and
svmon.out.S

tcpdump.sh int.time The int. parameter is the name of the interface; for
example, tr0 is token-ring. Creates a raw trace file of a
TCP/IP dump called tcpdump.raw. To produce a readable
tcpdump.int file, use the tcpdump.sh -r command. The
time parameter does not have any restrictions.

tprof.sh time Creates a tprof summary report called tprof.sum. Used
for analyzing memory use of processes and threads. You
can also specify a program to profile by specifying the
tprof.sh -p program 60 command, which enables you to
profile the executable-called program for 60 seconds. The
time parameter does not have any restrictions.

trace.sh time Creates the raw trace files (trace*) from which an ASCII
trace report can be generated using the trcrpt command
or by running trace.sh -r. This command creates a file
called trace.int that contains the readable trace. Used for
analyzing performance problems. The time parameter
does not have any restrictions.

vmstat.sh time Builds reports on vmstat: a vmstat interval report called
vmstat.int and a vmstat summary report called
vmstat.sum. The time parameter must be greater than or
equal to 60.

Due to the volume of data collected by trace, the trace will only run for five
seconds (by default), so it is possible that it will not be running when the
performance problems occur on your system, especially if performance problems
occur for short periods. In this case, it would be advisable to run the trace
independently for a period of 15 seconds when the problem is present. For
example, the command trace.sh 15 runs a trace for 15 seconds.
80 AIX 5L Practical Performance Tools and Tuning Guide

An IBM Eserver pSeries system running AIX can produce a test case (the total
data collected by perfpmr) of 135 MB, with 100 MB just for the traces. This size
can vary considerably depending on system load. If you run the trace on the
same system with the same workload for 15 seconds, then you could expect the
trace files to be approximately 300 MB in size.

One raw trace file per CPU is produced. The files are called trace.raw-0,
trace.raw-1, and so forth for each CPU. An additional raw trace file called
trace.raw is also generated. This is a master file that has information that ties in
the other CPU-specific traces. To merge the trace files together to form one raw
trace file, run the following commands:

trcrpt -C all -r trace.raw > trace.r
rm trace.raw*

3.3.2 Building and submitting a test case
You may be asked by IBM to supply a test case for a performance problem or you
may want to run perfpmr.sh for your own requirements (for example, to produce
a base line for detecting future performance problems). In either case,
perfpmr.sh is the tool to collect performance data. Even if your performance
problem is attributed to one component of your system, such as the network,
perfpmr.sh is still the way to send a test case because it contains other
information that is required for problem determination. Additional information for
problem determination may be requested by IBM software support.

There are five stages to building and sending a test case. These steps must be
completed when you are logged in as root. The steps are listed as follows:

� Prepare to download perfpmr
� Download perfpmr
� Install perfpmr
� Run perfpmr
� Upload the test case

Preparing for perfpmr
These filesets should be installed before running perfpmr.sh:

� bos.acct

Note: IBM releases Maintenance Levels for AIX. These are a collection of
Program Temporary Fixes (PTFs) used to upgrade the operating system to the
latest level, but remaining within your current release. Often these, along with
the current version of micro-code for the disks and adapters, have
performance enhancement fixes. You may therefore want to load these.
 Chapter 3. General performance monitoring tools 81

� bos.sysmgt.trace
� perfagent.tools
� bos.net.tcp.server
� bos.adt.include
� bos.adt.samples

Downloading perfpmr
The perfpmr is downloadable from:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

Using a browser, download the version that is applicable to your version of AIX.
The file size should be under 1 MB.

If you have downloaded perfpmr to a PC, transfer it to the system in binary mode
using ftp, placing it in an empty directory.

Installing perfpmr
Uncompress and extract the file with the tar command. The directory contains:

� Install
� PROBLEM.INFO
� README
� aiostat
� aiostat.sh
� config.sh
� emstat.sh
� filemon.sh
� getdate
� getevars
� iostat.sh
� iptrace.sh
� lparstat.sh
� lsc
� memfill
� monitor.sh
� mpstat.sh
� netstat.sh
� nfsstat.sh
� perf53.tar
� perfpmr.cfg
� perfpmr.sh

Important: Always download a new copy of perfpmr in case of changes. Do
not use an existing pre-downloaded copy.
82 AIX 5L Practical Performance Tools and Tuning Guide

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

� pprof.sh
� ps.sh
� quicksnap.sh
� sar.sh
� setpri
� setsched
� svmon.sh
� tcpdump.sh
� tprof.sh
� trace.sh
� vmstat.sh

In the directory you will notice files ending in .sh. These are shell scripts that may
be run separately. Normally these shell scripts are run automatically by running
perfpmr.sh. Read the README file to find any additional steps that may be
applicable to your system.

Install perfpmr by running ./Install. This will replace the following files in the
/usr/bin directory with symbolic links to the files in the directory where you
installed perfpmr

The output of the installation procedure will be similar to Example 3-20.

Example 3-8 perfpmr installation screen

./Install

(C) COPYRIGHT International Business Machines Corp., 2000

 PERFPMR Installation started...

 PERFPMR Installation completed.

Running perfpmr
There are two scenarios to consider when running perfpmr.

� If your system is performing poorly for long periods of time and you can
predict when it runs slow, then you can run ./perfpmr.sh 600.

� In some situations, a system may perform normally but will run slow at various
times of the day. If you run perfpmr.sh 600 then there is a chance that
perfpmr might not have captured the performance slowdown. In this case you
could run the scripts manually when the system is slow and use a longer
time-out period: for example, a trace.sh 15 will perform a trace for 15
 Chapter 3. General performance monitoring tools 83

seconds instead of the default five seconds. We would still need a perfpmr.sh
600 to be initially run before running individual scripts. This will ensure that all
of the data and configuration have been captured.

Uploading the test case
The directory also contains a file called PROBLEM.INFO that must be
completed. Bundle the files together using the tar command and upload the file
to IBM as documented in the README files.

3.3.3 Examples for perfpmr
Example 3-9 shows the output of the data collected while running the perfpmr.sh
program.

Example 3-9 Running perfpmr.sh

[p630n04][/home/hennie/perf/scripts]> perfpmr.sh 600

(C) COPYRIGHT International Business Machines Corp., 2000,2001,2002,2003,2004

 PERFPMR: perfpmr.sh Version 530 2004/10/06
 PERFPMR: current directory: /home/hennie/perf/scripts
 PERFPMR: perfpmr tool directory: /home/hennie/perf
 PERFPMR: Parameters passed to perfpmr.sh:
 PERFPMR: Data collection started in foreground (renice -n -20)

 TRACE.SH: Starting trace for 5 seconds
/bin/trace -k 10e,254,116,117 -f -n -C all -d -L 10000000 -T 10000000 -ao
trace.raw
 TRACE.SH: Data collection started
 TRACE.SH: Data collection stopped
 TRACE.SH: Trace stopped
 TRACE.SH: Trcnm data is in file trace.nm
 TRACE.SH: /etc/trcfmt saved in file trace.fmt
 TRACE.SH: Binary trace data is in file trace.raw

 TRACE.SH: Enabling locktrace

Attention: If you are using HACMP, then you may want to extend the Dead
Man Switch (DMS) time-out or shut down HACMP prior to collecting perfpmr
data to avoid accidental failover.

Tip: After you have installed perfpmr you can run it at any time to make sure
that all of the files are captured. By doing this, you can be confident that you
will get a full test case.
84 AIX 5L Practical Performance Tools and Tuning Guide

lock tracing enabled for all classes
 TRACE.SH: Starting trace for 5 seconds
/bin/trace -j 106,10C,10E,112,113,134,139,465,46D,606,607,608,609 -f -n -C all
-d -L 10000000 -T 10000000 -ao trace.raw.lock
 TRACE.SH: Data collection started
 TRACE.SH: Data collection stopped
 TRACE.SH: Trace stopped
 TRACE.SH: Disabling locktrace
lock tracing disabled for all classes
 TRACE.SH: Binary trace data is in file trace.raw

 MONITOR: Capturing initial lsps, svmon, and vmstat data
 MONITOR: Starting system monitors for 600 seconds.
 MONITOR: Waiting for measurement period to end....
iostat: 0551-157 Asynchronous I/O not configured on the system.

MONITOR: Capturing final lsps, svmon, and vmstat data
 MONITOR: Generating reports....
 MONITOR: Network reports are in netstat.int and nfsstat.int
 MONITOR: Monitor reports are in monitor.int and monitor.sum

 IPTRACE: Starting iptrace for 10 seconds....
0513-059 The iptrace Subsystem has been started. Subsystem PID is 40086.
0513-044 The iptrace Subsystem was requested to stop.
 IPTRACE: iptrace collected....
 IPTRACE: Binary iptrace data is in file iptrace.raw

 TCPDUMP: Starting tcpdump for 10 seconds....
kill: 41054: no such process
 TCPDUMP: tcpdump collected....
 TCPDUMP: Binary tcpdump data is in file tcpdump.raw

 FILEMON: Starting filesystem monitor for 60 seconds....
 FILEMON: tracing started
 FILEMON: tracing stopped
 FILEMON: Generating report....

 TPROF: Starting tprof for 60 seconds....
 TPROF: Sample data collected....
 TPROF: Generating reports in background (renice -n 20)
 TPROF: Tprof report is in tprof.sum

 CONFIG.SH: Generating SW/HW configuration
 CONFIG.SH: Report is in file config.sum

PERFPMR: Data collection complete.
[p630n04][/home/hennie/perf/scripts]>
 Chapter 3. General performance monitoring tools 85

3.4 Performance Diagnostic Tool (PDT)
The Performance Diagnostic Tool (PDT) package attempts to identify
performance problems automatically by collecting and integrating a wide range of
performance, configuration, and availability data. The data is regularly evaluated
to identify and anticipate common performance problems. PDT assesses the
current state of a system and tracks changes in workload and performance.

PDT data collection and reporting are easily enabled, and no further
administrator activity is required. While many common system performance
problems are of a specific nature, PDT also attempts to apply some general
concepts of well-performing systems to search for problems. Some of these
concepts are:

� Balanced use of resources
� Operation within bounds
� Identified workload trends
� Error-free operation
� Changes investigated
� Appropriate setting of system parameters

The PDT programs reside in /usr/sbin/perf/diag_tool and are part of the
bos.perf.diag_tool fileset, which is installable from the AIX base installation
media.

PDT Syntax
To start the PDT configuration, enter:

/usr/sbin/perf/diag_tool/pdt_config

Tip: It is useful to run perfpmr when your system is under load and performing
normally. This gives you a baseline to determine future performance problems.

You should run perfpmr again when:

� Your system is experiencing performance problems.

� You make hardware changes to the system.

� You make any changes to your network configuration.

� You make changes to the AIX Operating System, such as when you install
upgrades or tune AIX.

� You make changes to your application.
86 AIX 5L Practical Performance Tools and Tuning Guide

The pdt_config is a menu-driven program. Refer to 3.4.1, “Examples for PDT” on
page 87 for PDT usage.

To run the master script, enter:

/usr/sbin/perf/diag_tool/Driver_ <profile>

The master script, Driver_, only takes one parameter: the name of the collection
profile for which activity is being initiated. This name is used to select which _.sh
files to run. For example, if Driver_ is executed with $1=daily, then only those .sh
files listed with a daily frequency are run. Check the respective control files to see
which .sh files are driven by which profile names.

daily Collection routines for those _.sh files that belong to the daily
profile. Normally this is only information gathering.

daily2 Collection routines for those _.sh files that belong to the daily2
profile. Normally this is only reporting on previously collected
information.

offweekly Collection routines for those _.sh files that belong to the offweekly
profile.

Information about measurement and sampling
The PDT package consists of a set of shell scripts that invoke AIX commands.
When enabled, the collection and reporting scripts will run under the adm user.

The master script, Driver_, is started by the cron daemon entry
PDT:cron;Daemons:cron;cron; Monday through Friday at 9:00 and 10:00 in the
morning and every Sunday at 21:00 unless changed manually by editing the
crontab entries. Each time the Driver_ script is started it runs with different
parameters.

3.4.1 Examples for PDT
To start PDT, run the following command and use the menu-driven configuration
program to perform the basic setup:

/usr/sbin/perf/diag_tool/pdt_config

As pdt_config has a menu-driven interface, follow the menus. Example 3-10
shows the PDT main menu.

Example 3-10 PDT customization menu

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
 Chapter 3. General performance monitoring tools 87

3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:

First check the current setting by selecting 1, as shown in Example 3-11.

Example 3-11 PDT current setting

current PDT report recipient and severity level
root 3

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:

Example 3-11 on page 88 states level 3 reports are to be made and sent to the
root user on the local system. To check whether root has a mail alias defined, run
the following command:

grep root /etc/aliases

If nothing is returned, the mail should be delivered to the local node. If there is a
return value, it is used to provide an alternate destination address. For example:

root:pdt@collector.itso.ibm.com,"|/usr/bin/cat >>/tmp/log"

This shows that mail for the root user is routed to another user on another host,
in this case the user pdt on host “collector.itso.ibm.com”, and the mail will also be
appended to the /tmp/log file.

By default, the Driver_ program reports are generated with severity level 1 with
only the most serious problems identified. Severity levels 2 and 3 are more
detailed. By default, the reports are mailed to the adm user, but can be changed
to root or not sent at all.

The configuration program updates the adm user’s crontab file. Check the
changes made by using the cronadm command as in Example 3-12.
88 AIX 5L Practical Performance Tools and Tuning Guide

Example 3-12 Checking the PDT crontab entry

cronadm cron -l adm|grep diag_tool
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

It could also be done by using grep on the crontab file as shown in Example 3-13.

Example 3-13 Another way of checking the PDT crontab entry

grep diag_tool /var/spool/cron/crontabs/adm
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

The daily parameter makes the Driver_ program collect data and store it in the
/var/perf/tmp directory. The programs that do the actual collecting are specified in
the /var/perf/cfg/diag_tool/.collection.control file. These programs are also
located in the /usr/sbin/perf/diag_tool directory.

The daily2 parameter makes the Driver_ program create a report from the
/var/perf/tmp data files and e-mails it to the recipient specified in the
/var/perf/cfg/diag_tool/.reporting.list file. The PDT_REPORT is the formatted
version, and the .SM_RAW_REPORT is the unformatted report file.

Editing the configuration files
Some configuration files for PDT should be edited to better reflect the needs of a
specific system.

Finding PDT files and directories
PDT analyzes files and directories for systematic growth in size. It examines only
those files and directories listed in the file /var/perf/cfg/diag_tool/.files. The format
of the .files file is one file or directory name per line. The default content of this
file is as shown in Example 3-14.

Example 3-14 .files file

/usr/adm/wtmp
/var/spool/qdaemon/
/var/adm/ras/
/tmp/

You can use an editor or just append using the command print filename >>
.files to modify this file to track files and directories that are important to your
system.
 Chapter 3. General performance monitoring tools 89

Monitoring hosts
PDT tracks the average ECHO_REQUEST delay to hosts whose names are listed in
the /var/perf/cfg/diag_tool/.nodes file. This file is not shipped with PDT (which
means that no host analysis is performed by default), but may be created by the
administrator. The file should contain a hostname or TCP/IP address for each
host that is to be monitored. Each line in the .nodes file should only contain either
a hostname or an IP address. In the following example, we will monitor the
connection to the Domain Name Server (DNS). Example 3-15 shows how to
check which nameserver a DNS client is using by examining the /etc/resolv.conf
file.

Example 3-15 ./etc/resolv.conf file

awk '/nameserver/{print $2}' /etc/resolv.conf
9.3.4.2

To monitor the nameserver shown in the example, the .nodes file could contain
the IP address on a separate line, as in Example 3-16 on page 90.

Example 3-16 .nodes file

cat .nodes
9.3.4.2

Changing thresholds
The file /var/perf/cfg/diag_tool/.thresholds contains the thresholds used in
analysis and reporting. These thresholds have an effect on PDT report
organization and content. Example 3-17 is the content of the default file.

Example 3-17 .thresholds default file

grep -v ^# .thresholds
DISK_STORAGE_BALANCE 800
PAGING_SPACE_BALANCE 4
NUMBER_OF_BALANCE 1
MIN_UTIL 3
FS_UTIL_LIMIT 90
MEMORY_FACTOR .9
TREND_THRESHOLD .01
EVENT_HORIZON 30

The settings in the example are the default values. The thresholds are:

DISK_STORAGE_BALANCE The SCSI controllers having the largest and smallest
disk storage are identified. This is a static size, not the
amount allocated or free.The default value is 800. Any
integer value between zero (0) and 10000 is valid.
90 AIX 5L Practical Performance Tools and Tuning Guide

PAGING_SPACE_BALANCE The paging spaces having the largest and the smallest
areas are identified. The default value is 4. Any integer
value between zero (0) and 100 is accepted. This
threshold is presently not used in analysis and
reporting.

NUMBER_OF_BALANCE The SCSI controllers having the greatest and fewest
number of disks attached are identified.The default
value is one (1). It can be set to any integer value from
zero (0) to 10000.

MIN_UTIL Applies to process utilization. Changes in the top three
CPU consumers are only reported if the new process
had a utilization in excess of MIN_UTIL. The default
value is 3. Any integer value from zero (0) to 100 is
valid.

FS_UTIL_LIMIT Applies to journaled file system utilization. Any integer
value between zero (0) and 100 is accepted.

MEMORY_FACTOR The objective is to determine whether the total amount
of memory is adequately backed up by paging space.
The formula is based on experience and actually
compares MEMORY_FACTOR * memory with the average
used paging space. The current default is .9. By
decreasing this number, a warning is produced more
frequently. Increasing this number eliminates the
message altogether. It can be set anywhere between
.001 and 100.

TREND_THRESHOLD Used in all trending assessments. It is applied after a
linear regression is performed on all available historical
data. This technique basically draws the best line
among the points. The slope of the fitted line must
exceed the last_value * TREND_THRESHOLD. The
objective is to try to ensure that a trend, however
strong its statistical significance, has some practical
significance. The threshold can be set anywhere
between 0.00001 and 100000.

EVENT_HORIZON Also used in trending assessments. For example, in
the case of file systems, if there is a significant (both
statistical and practical) trend, the time until the file
system is 100 percent full is estimated. The default
value is 30, and it can be any integer value between
zero (0) and 100000.
 Chapter 3. General performance monitoring tools 91

3.4.2 Using reports generated by PDT
Example 3-18 shows the default-configured level 3 report. It is an example of
what will be delivered by e-mail every day.

Example 3-18 PDT sample e-mail report

Performance Diagnostic Facility 1.0

 Report printed: Fri Nov 5 11:14:27 2004

 Host name: lpar05
 Range of analysis includes measurements
 from: Hour 10 on Friday, November 5th, 2004
 to: Hour 11 on Friday, November 5th, 2004

 Notice: To disable/modify/enable collection or reporting
 execute the pdt_config script as root

------------------------ Alerts ---------------------

I/O CONFIGURATION
 - Note: volume hdisk1 has 14112 MB available for allocation
 while volume hdisk0 has 8032 MB available

PAGING CONFIGURATION
- Physical Volume hdisk1 (type: SCSI) has no paging space defined

 - All paging spaces have been defined on one Physical volume (hdisk0) I/O
I/O BALANCE

 - Phys. volume cd0 is not busy
 volume cd0, mean util. = 0.00 %
 - Phys. volume hdisk1 is not busy
 volume hdisk1, mean util. = 0.00 %

PROCESSES
- First appearance of 15628 (ksh) on top-3 cpu list

 (cpu % = 7.10)
 - First appearance of 19998 (java) on top-3 cpu list
 (cpu % = 24.40)
 - First appearance of 15264 (java) on top-3 cpu list
 (cpu % = 24.40)
 - First appearance of 7958 (java) on top-3 cpu list

FILE SYSTEMS
 - File system hd2 (/usr) is nearly full at 92 %

----------------------- System Health ---------------
SYSTEM HEALTH

 - Current process state breakdown:
92 AIX 5L Practical Performance Tools and Tuning Guide

 74.20 [99.5 %] : active
 0.40 [0.5 %] : zombie
 74.60 = TOTAL
 [based on 1 measurement consisting of 10 2-second samples]
-------------------- Summary -------------------------
 This is a severity level 3 report
 No further details available at severity levels > 3

The PDT_REPORT, at level 3, will have the following report sections:

� Alerts
� Upward Trends
� Downward Trends
� System Health
� Other
� Summary

And subsections such as the following:

� I/O CONFIGURATION
� PAGING CONFIGURATION
� I/O BALANCE
� PROCESSES
� FILE SYSTEMS
� VIRTUAL MEMORY

Example 3-19 shows the raw information from the .SM_RAW_REPORT file that
is used for creating the PDT_REPORT file.

Example 3-19 .SM_RAW_REPORT file

H 1 | Performance Diagnostic Facility 1.0
H 1 |

H 1 | Report printed: Fri Nov 5 10:00:00 2004
H 1 |

H 1 | Host name: lpar05

H 1 | Range of analysis includes measurements

H 1 | from: Hour 10 on Friday, November 5th, 2004

H 1 | to: Hour 11 on Friday, November 5th, 2004
H 1 |
...(lines omitted)...
 Chapter 3. General performance monitoring tools 93

The script in Example 3-20 shows how to extract report subsections from the
PDT_REPORT file. In this example it displays all subsections in turn.

Example 3-20 Script to extract subsections

#!/bin/ksh

set -A tab "I/O CONFIGURATION" "PAGING CONFIGURATION" "I/O BALANCE" \
 "PROCESSES" "FILE SYSTEMS" "VIRTUAL MEMORY"

for string in "${tab[@]}";do
 grep -p "$string" /var/perf/tmp/PDT_*
done

Example 3-21 shows a sample output from the script in Example 3-20 using the
same data as in Example 3-18 on page 92.

Example 3-21 Output from extract subsection script

I/O CONFIGURATION
 - Note: volume hdisk1 has 14112 MB available for allocation
 while volume hdisk0 has 8032 MB available

PAGING CONFIGURATION
 - Physical Volume hdisk1 (type: SCSI) has no paging space defined
 - All paging spaces have been defined on one Physical volume (hdis

I/O BALANCE
 - Phys. volume cd0 is not busy
 volume cd0, mean util. = 0.00 %
 - Phys. volume hdisk1 is not busy
 volume hdisk1, mean util. = 0.00 %

PROCESSES
 - First appearance of 15628 (ksh) on top-3 cpu list
 (cpu % = 7.10)
 - First appearance of 19998 (java) on top-3 cpu list
 (cpu % = 24.40)
 - First appearance of 15264 (java) on top-3 cpu list
 (cpu % = 24.40)
 - First appearance of 7958 (java) on top-3 cpu list
 (cpu % = 24.40)

FILE SYSTEMS
 - File system hd2 (/usr) is nearly full at 92 %
94 AIX 5L Practical Performance Tools and Tuning Guide

Creating a PDT report manually
As an alternative to using the periodic report, any user can request a current
report from the existing data by executing:

/usr/sbin/perf/diag_tool/pdt_report #

Where, # is a severity number from one (1) to three (3). The report is produced
with the given severity (if none is provided, it defaults to one) and is written to
standard output. Generating a report in this way does not cause any change to
the /var/perf/tmp/PDT_REPORT files.

3.4.3 Running PDT collection manually
In some cases, you might want to run the collection manually or by other means
than using cron. You simply run the Driver_ script with options as in the cronfile.
The following example will perform the basic collection:

/usr/sbin/perf/diag_tool/Driver_ daily

3.5 The curt command
The CPU Usage Reporting Tool (curt) takes an AIX trace file as input and
produces a number of statistics related to CPU utilization and process/thread
activity. These easy-to-read statistics enable quick and easy tracking of what
a specific application is doing.

The curt command is located at in /usr/bin/curt and is part of the bos.perf.tools
fileset that is obtained from the AIX base installation media.

Syntax
The syntax for the curt command is:

curt -i inputfile [-o outputfile] [-n gensymsfile] [-m trcnmfile] [-a
 pidnamefile] [-f timestamp] [-l timestamp] [-r PURR] [-ehpstP]

Flags
-i inputfile Specifies the input AIX trace file to be analyzed.

-o outputfile Specifies an output file (default is stdout).

-n gennamesfile Specifies a names file produced by gennames.

-m trcnmfile Specifies a names file produced by trcnm.

-a pidnamefile Specifies a PID-to-process name mapping file.

-f timestamp Starts processing trace at time stamp seconds.
 Chapter 3. General performance monitoring tools 95

-l timestamp Stops processing trace at time stamp seconds.

-r PURR Uses the PURR register to calculate CPU times.

-e Outputs elapsed time information for system calls.

-h Displays usage text (this information).

-p Shows ticks as trace processing progresses.

-s Outputs information about errors returned by system
calls.

-t Outputs detailed thread by thread information.

-P Outputs detailed pthread information.

Parameters

inputfile The AIX trace file that should be processed by curt.

gennamesfile The names file as produced by gennames.

trcnmfile The names file as produced by trcnm.

outputfile The names of the output file created by curt.

pidnamefile If the trace process name table is not accurate, or if
more descriptive names are desired, use the -a flag to
specify a PID to process name mapping file. This is a
file with lines consisting of a process ID (in decimal)
followed by a space, then an ASCII string to use as the
name for that process.

timestamp The time in seconds at which to start and stop the trace
file processing.

3.5.1 Information about measurement and sampling
A raw (unformatted) system trace from AIX 5L is read by curt to produce
summaries on CPU utilization and either process or thread activity. This
summary information is useful for determining which application, system call, or
interrupt handler is using most of the CPU time and is a candidate to be
optimized to improve system performance.

Table 3-1 lists the minimum trace hooks required for curt. Using only these trace
hooks will limit the size of the trace file. However, other events on the system may
96 AIX 5L Practical Performance Tools and Tuning Guide

not be captured in this case. This is significant if you intend to analyze the trace
in more detail.

Table 3-1 Minimum trace hooks required for curt

HOOK ID Event Name Event Explanation

100 HKWD_KERN_FLIH Occurrence of a first-level interrupt,
such as an I/O interrupt, a data access
page fault, or a timer interrupt
(scheduler).

101 HKWD_KERN_SVC A thread has issued a system call.

102 HKWD_KERN_SLIH Occurrence of a second-level interrupt;
that is, first-level I/O interrupts are being
passed on to the second-level interrupt
handler who then is working directly
with the device driver.

103 HKWD_KERN_SLIHRET Return from a second-level interrupt to
the caller (usually a first-level interrupt
handler).

104 HKWD_KERN_SYSCRET Return from a system call to the caller
(usually a thread).

106 HKWD_KERN_DISPATCH A thread has been dispatched from the
runqueue to a CPU.

10C HKWD_KERN_IDLE The idle process has been dispatched.

119 HKWD_KERN_PIDSIG A signal has been sent to a process.

134 HKWD_SYSC_EXECVE An exec SVC has been issued by a
(forked) process.

135 HKWD_SYSC__EXIT An exit SVC has been issued by a
process.

139 HKWD_SYSC_FORK A fork SVC has been issued by a
process.

200 HKWD_KERN_RESUME A dispatched thread is being resumed
on the CPU.

210 HKWD_KERN_INITP A kernel process has been created.

38F HKWD_DR A processor has been added/removed.

465 HKWD_SYSC_CRTHREAD A thread_create SVC has been issued
by a process.
 Chapter 3. General performance monitoring tools 97

Trace hooks 119 and 135 are used to report on the time spent in the exit() system
call. This is special because a process will enter it but will never return (because
the calling process terminates). However a SIGCHLD signal is sent to the parent
process of the exiting process, and this event is reflected in the trace by a
HKWD_KERN_PIDSIG trace hook. curt will match this trace hook with the exit()
system call trace hook (HKWD_KERN_SVC) and treat it as the system call
return for the exit() system call.

3.5.2 Examples for curt
To generate a trace to be used in the following examples, we perform the
following steps.

The first step is generate a system trace from the system. This can be done by
using the trace.sh script as supplied by perfpmr. See perfpmr command for
details, or alternatively, you can run trace as shown in Example 3-34 on
page 117 (see 3.7.3, “How to start and stop trace” on page 155 for details on the
trace command).

Preparing to run curt is a four-stage process as follows:

1. Build the raw trace
This create the files listed in Example 3-12 on page 89, producing one raw
trace file per CPU. The files are called trace.raw-0, trace.raw-1, and so on for
each CPU. An additional raw trace file called trace.raw is also generated. This
is a master file that has information that ties in the other CPU-specific traces.

2. Merge the trace files
To merge the trace files together to form one raw trace file, run the trcrpt
command as shown in Example 3-12 on page 89.

3. Create the supporting files gennamesfile and trcnmfile
Neither the gennamesfile nor the trcnmfile file are necessary for curt to run.
However, if you provide one or both of those files, curt will output names for
system calls and interrupt handles instead of just addresses. The gennames
command output includes more information than the trcnm command output,
and so, while the trcnmfile will contain most of the important address to name
mapping data, a gennamesfile will enable curt to output more names,
especially interrupt handlers. gennames requires root authority to run. trcnm
can be run by any user.

4. Generate the curt output.

Example 3-22 Creating a trace file for curt to analyze

HOOKS="100,101,102,103,104,106,10C,119,134,135,139,200,210,38F,465"
SIZE="1000000"
export HOOKS SIZE
trace -n -C all -d -j $HOOKS -L $SIZE -T $SIZE -afo trace.raw
98 AIX 5L Practical Performance Tools and Tuning Guide

trcon ; sleep 5 ; trcstop
unset HOOKS SIZE
ls trace.raw*
trace.raw trace.raw-0 trace.raw-1 trace.raw-2 trace.raw-3
trcrpt -C all -r trace.raw > trace.r
rm trace.raw*
ls trace*
trace.r
gennames > gennames.out
trcnm > trace.nm

Alternatively, “-J curt” can be used in place of “-j $HOOKS” for the trace
command from Example 3-12 on page 89.

3.5.3 Overview of the reports generated by curt
The following is an overview of the reports that can be generated by the curt
command.

� A report header with the trace file name, trace size, and date and time the
trace was taken. The header also includes the command used when the trace
was run.

� For each CPU (and a summary of all of the CPUs), processing time
expressed in milliseconds and as a percentage (idle and non-idle
percentages are included) for various CPU usage categories.

� Average thread affinity across all CPUs and for each individual CPU.

� The total number of process dispatches for each individual CPU.

� Information about the amount of CPU time spent in application and system
call (syscall) mode, expressed in milliseconds and as a percentage by thread,
process, and process type. Also included are the number of threads per
process and per process type.

� Information about the amount of CPU time spent executing each kernel
process, including the idle process, expressed in milliseconds and as a
percentage of the total CPU time.

� Information about completed system calls that includes the name and
address of the system call, the number of times the system call was executed,
and the total CPU time expressed in milliseconds and as a percentage with
average, minimum, and maximum time the system call was running.

� Information about pending system calls (system calls for which the system
call return has not occurred at the end of the trace). The information includes
the name and address of the system call, the thread or process that made the
system call, and the accumulated CPU time the system call was running,
expressed in milliseconds.
 Chapter 3. General performance monitoring tools 99

� Information about the first level interrupt handlers (FLIHs) that includes the
type of interrupt, the number of times the interrupt occurred, and the total
CPU time spent handling the interrupt with average, minimum, and maximum
time. This information is given for all CPUs and for each individual CPU. If
there are any pending FLIHs (FLIHs for which the resume has not occurred at
the end of the trace), for each CPU the accumulated time and the pending
FLIH type is reported.

� Information about the second level interrupt handlers (SLIHs) that includes
the interrupt handler name and address, the number of times the interrupt
handler was called, and the total CPU time spent handling the interrupt with
average, minimum, and maximum time. This information is given for all CPUs
and for each individual CPU. If there are any pending SLIHs (SLIHs for which
the return has not occurred at the end of the trace), for each CPU the
accumulated time and the pending SLIH name and address is reported.

To create additional, specialized reports with curt, run the curt command using
the flags described below:

-e Produces a report that includes the statistics displayed in “The default
report” on page 119 and includes additional information about the System
Calls Summary Report. The additional information pertains to the total,
average, maximum, and minimum elapsed times a system call was
running. Refer to Example 3-34 on page 113 for this report.

-s Produces a report that includes the statistics displayed in 3.5.4, “The
default report” on page 100, and includes a report on errors returned by
system calls. Refer to Example 3-35 on page 115 for this report.

-t Produces a report that includes the statistics displayed in 3.5.4, “The
default report” on page 100, and includes a detailed report on thread status
that includes the amount of time the thread was in application and kernel
mode, what system calls the thread made, processor affinity, the number of
times the thread was dispatched, and to what CPU it was dispatched. The
report also includes dispatch wait times and details of interrupts. Refer to
Example 3-36 on page 115 for this report.

-p Produces a report that includes a detailed report on process status that
includes the amount of CPU time the process was in application and
system call mode, which threads were in the process, and what system
calls the process made. Refer to Example 3-37 on page 118.

3.5.4 The default report
This section explains the default report created by curt, using the following
command:

curt -i trace.r -m trace.nm -n gennames.out -o curt.out
100 AIX 5L Practical Performance Tools and Tuning Guide

The curt output always includes this default report in its output. The default
report includes the following sessions:

� General Information
� System Summary
� Processor Summary
� Application Summary by TID
� Application Summary by PID
� Application Summary by Process Type
� Kproc Summary
� System Calls Summary
� Pending System Calls Summary
� FLIH Summary
� SLIH Summary

General information
The first information in the report is the time and date when this particular curt
command was run, including the syntax of the curt command line that produced
the report.

The General Information section also contains some information about the AIX
trace file that was processed by curt. This information consists of the trace file
name, size, and creation date. The command used to invoke the AIX trace facility
and gather the trace file is displayed at the end of the report.

A sample of this output is shown in Example 3-23.

Example 3-23 General information from curt.out

Run on Mon Nov 15 17:26:06 2004
Command line was:
curt -i trace.r -m trace.nm -n gennames.out -o curt.out

AIX trace file name = trace.r
AIX trace file size = 3525612
AIX trace file created = Mon Nov 15 17:12:14 2004

Command used to gather AIX trace was:
 trace -n -C all -d -j 100,101,102,103,104,106,10C,119,134,135,139,200,210,38F,465 -L 1000000
-T 1000000 -afo trace.raw

System summary
The next part of the default output is the System Summary, shown in
Example 3-24.
 Chapter 3. General performance monitoring tools 101

Example 3-24 The System Summary report from curt.out

 System Summary

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
 =========== =========== =========== ===================
 14998.65 73.46 92.98 APPLICATION
 591.59 2.90 3.66 SYSCALL
 48.33 0.24 0.30 KPROC
 486.19 2.38 3.00 FLIH
 49.10 0.24 0.30 SLIH
 8.83 0.04 0.05 DISPATCH (all procs. incl. IDLE)
 1.04 0.01 0.01 IDLE DISPATCH (only IDLE proc.)
 ----------- ---------- -------
 16182.69 79.26 100.00 CPU(s) busy time
 4234.76 20.74 IDLE
 ----------- ----------
 20417.45 TOTAL

 Avg. Thread Affinity = 0.99

This portion of the report describes the time spent by the system as a whole (all
CPUs) in various execution modes.

The System Summary has the following fields:

Processing total This column gives the total time in milliseconds for the
corresponding processing category.

Percent total time This column gives the time from the first column as a
percentage of the sum of total trace elapsed time for all
processors. This includes whatever amount of time each
processor spent running the IDLE process.

Percent busy This column gives the time from the first column as a
percentage of the sum of total trace elapsed time for all
processors without including the time each processor
spent executing the IDLE process.

Avg. Thread Affinity The Avg. Thread Affinity is the probability that a thread
was dispatched to the same processor that it last
executed on.

The possible execution modes or processing categories translate as follows:

APPLICATION The sum of times spent by all processors in User (that is,
non-supervisory or non-privileged) mode.
102 AIX 5L Practical Performance Tools and Tuning Guide

SYSCALL The sum of times spent by all processors doing System
Calls. This is the portion of time that a processor spends
executing in the kernel code providing services directly
requested by a user process.

FLIH The sum of times spent by all processors in FLIHs (first
level interrupt handlers). The FLIH time consists of the
time from when the FLIH is entered until the SLIH is
entered, then from when the SLIH returns back into the
FLIH until either dispatch or resume is called.

SLIH The sum of times spent by all processors in SLIHs
(second level interrupt handlers). The SLIH time consists
of the time from when a SLIH is entered until it returns.
Note nested interrupts may occur inside an SLIH. These
FLIH times are not counted as SLIH time but rather as
FLIH time as described above.

DISPATCH The sum of times spent by all processors in the AIX
dispatch code. The time starts when the dispatch code is
entered and ends when the resume code is entered. The
dispatch code corresponds to the OS, deciding which
thread will run next and doing the necessary
bookkeeping. This time includes the time spent
dispatching all threads (that is, includes the dispatch of
the IDLE process).

IDLE DISPATCH The sum of times spent by all processors in the AIX
dispatch code where the process being dispatched was
the IDLE process. Because it is the IDLE process being
dispatched, the overhead spent in dispatching is less
critical than other dispatch times where there is useful
work being dispatched. Because the Dispatch category
already includes the IDLE Dispatch category’s time, the
IDLE Dispatch category’s time will not be included in
either of the total categories CPU busy time or TOTAL.

CPU(s) busy time The sum of times spent by all processors executing in
application, kernel, FLIH, SLIH, and dispatch modes.

IDLE The sum of times spent by all processors executing the
IDLE process.

TOTAL The sum of CPU(s) busy time and WAIT.

The System Summary in Example 3-24 on page 102 shows that the CPU spends
most of its time in application mode. We still have 4234.76 ms of idle time so we
know that we have enough CPU to run our applications. The Kproc Summary,
which can be seen in Example 3-29 on page 108, reports similar values. If there
 Chapter 3. General performance monitoring tools 103

was insufficient CPU power then we would not expect to see any wait time. The
Avg. Thread Affinity value is 0.99, showing good processor affinity (threads
returning to the same processor when they are ready to be re-run).

Processor summary
This part of the curt output follows the System Summary and is essentially the
same information but broken down on a processor-by processor basis. The same
description that was given for the System Summary applies here, except that the
phrase "sum of times spent by all processors" can be replaced by "time
spent by this processor". A sample of processor summary output is shown in
Example 3-35 on page 115.

Example 3-25 The Processor Summary from curt.out

Processor Summary processor number 0

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
 =========== =========== =========== ===================
 45.07 0.88 5.16 APPLICATION
 591.39 11.58 67.71 SYSCALL
 47.83 0.94 5.48 KPROC
 173.78 3.40 19.90 FLIH
 9.27 0.18 1.06 SLIH
 6.07 0.12 0.70 DISPATCH (all procs. incl. IDLE)
 1.04 0.02 0.12 IDLE DISPATCH (only IDLE proc.)
 ----------- ---------- -------
 873.42 17.10 100.00 CPU(s) busy time
 4232.92 82.90 IDLE
 ----------- ----------
 5106.34 TOTAL

 Avg. Thread Affinity = 0.98

 Total number of process dispatches = 1620
 Total number of idle dispatches = 782

 Processor Summary processor number 1

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
 =========== =========== =========== ===================
 4985.81 97.70 97.70 APPLICATION
 0.09 0.00 0.00 SYSCALL
 0.00 0.00 0.00 KPROC
 103.86 2.04 2.04 FLIH
104 AIX 5L Practical Performance Tools and Tuning Guide

 12.54 0.25 0.25 SLIH
 0.97 0.02 0.02 DISPATCH (all procs. incl. IDLE)
 0.00 0.00 0.00 IDLE DISPATCH (only IDLE proc.)
 ----------- ---------- -------
 5103.26 100.00 100.00 CPU(s) busy time
 0.00 0.00 IDLE
 ----------- ----------
 5103.26 TOTAL

 Avg. Thread Affinity = 0.99

 Total number of process dispatches = 516
 Total number of idle dispatches = 0

Avg. Thread Affinity = 0.99

...(lines omitted)...

The Total number of process dispatches refers to how many times AIX
dispatched any non-IDLE process on this processor.

Application Summary by Thread ID (TID)
The Application Summary by Thread ID shows an output of all threads that were
running on the system during trace collection and their CPU consumption. The
thread that consumed the most CPU time during the trace collection is at the top
of the list. The report is shown in Example 3-26.

Example 3-26 Application Summary by Thread ID

Application Summary (by Tid)

 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (Pid Tid)
 ======== =========== ======= ======== =========== ======= ===================
 4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418 32437)
 4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128 33557)
 4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894 28671)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390 28397)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584 32777)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916 33033)
 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580 30199)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154 34321)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424 31493)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992 32539)

 ...(lines omitted)...
 Chapter 3. General performance monitoring tools 105

The output has two main sections, of which one shows the total processing time
of the thread in milliseconds (processing total (msec)), and the other shows the
CPU time the thread has consumed, expressed as a percentage of the total CPU
time (percent of total processing time).

� Processing total (msec) section

combined The total amount of time, expressed in milliseconds,
that the thread was running in either application or
kernel mode.

application The amount of time, expressed in milliseconds, that
the thread spent in application mode.

syscall The amount of CPU time, expressed in milliseconds,
that the thread spent in system call mode.

� Percent of total processing time section

combined The amount of time the thread was running, expressed
as percentage of the total processing time.

application The amount of time the thread spent in application
mode, expressed as percentage of the total
processing time.

syacall The amount of CPU time that the thread spent in
system call mode, expressed as percentage of the
total processing time.

name (Pid Tid) The name of the process associated with the thread,
its process ID, and its thread ID.

The Application Summary by TID from curt shows an output of all threads that
were running on the system during the time of trace collection and their CPU
consumption as shown in Example 3-26 on page 105. The thread that consumed
the most CPU time during the time of the trace collection is on top of the list.

We created a test program called cpu with CPU-intensive code. Example 3-26 on
page 105 shows that the CPU spent most of its time in application mode running
the cpu process. To learn more about this process, we could run the gprof
command (see Chapter 4, “CPU analysis and tuning” on page 171) or other
profiling tools to profile the process, or look directly at the formatted trace file
from the trcrpt command. (See 3.7.12, “The trcrpt command” on page 164.)

Application Summary by Process ID (PID)
The Application Summary (by PID) has the same content as the Application
Summary (by TID), except that the threads that belong to each process are
consolidated, and the process that consumed the most CPU time during the
monitoring period is at the beginning of the list.
106 AIX 5L Practical Performance Tools and Tuning Guide

In Example 3-27, the column name (PID)(Thread Count) shows the process
name, its process ID, and the number of threads that belong to this process and
that have been accumulated for this line of data.

Example 3-27 The Application and Kernel Summary (by PID) from curt.out

Application and Kernel Summary (by Pid)

 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (Pid)(Thread Count)
 ======== =========== ====== ======== =========== ====== ============================
4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418)(1)
4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128)(1)
4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894)(1)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390)(1)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584)(1)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916)(1)
 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580)(1)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154)(1)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424)(1)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992)(1)
...(lines omitted)...

Application Summary by process type
The Application Summary (by process type) consolidates all processes of the
same name and sorts them in descending order of combined processing time.

The name (thread count) column shows the name of the process and the
number of threads that belong to this process name (type) that were running on
the system during the monitoring period. It is shown in Example 3-28.

Example 3-28 The Application Summary (by process type) from curt.out

 Application Summary (by process type)
 --
 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (thread count)
 ======== =========== ======= ======== =========== ======= ==================
 14954.0738 14954.0738 0.0000 73.2416 73.2416 0.0000 cpu(3)
 573.9466 21.2609 552.6857 2.8111 0.1041 2.7069 disp+work(9)
 20.9568 5.5820 15.3748 0.1026 0.0273 0.0753 trcstop(1)
 10.6151 2.4241 8.1909 0.0520 0.0119 0.0401 i4llmd(1)
 8.7146 5.3062 3.4084 0.0427 0.0260 0.0167 dtgreet(1)
 7.6063 1.4893 6.1171 0.0373 0.0073 0.0300 sleep(1)

...(lines omitted)...
 Chapter 3. General performance monitoring tools 107

Kproc Summary by Thread ID (TID)
The Kproc Summary (by TID) shows an output of all kernel process threads that
were running on the system during the time of trace collection and their CPU
consumption. The thread that consumed the most CPU time during the time of
the trace collection is at the beginning of the list shown in Example 3-29.

Example 3-29 Kproc summary by TID

 Kproc Summary (by Tid)

 -- processing total (msec) -- -- percent of total time --
 combined operation kernel combined operation kernel name (Pid Tid Type)
 ======== ========= ====== ======== ========= ====== ===================
 4232.9216 0.0000 4232.9216 20.7319 0.0000 20.7319 wait(516 517 W)
 30.4374 0.0000 30.4374 0.1491 0.0000 0.1491 lrud(1548 1549 -)

 ...(lines omitted)...

 Kproc Types

 Type Function Operation
 ==== ============================ ==========================
 W idle thread -

The Kproc Summary has the following fields:

name (Pid Tid Type) The name of the kernel process associated with the
thread, its process ID, its thread ID, and its type. The
kproc type is defined in the Kproc Types listing
following the Kproc Summary.

processing total (msec) section

combined The total amount of CPU time, expressed in
milliseconds, that the thread was running in either
operation or kernel mode

operation The amount of CPU time, expressed in milliseconds,
that the thread spent in operation mode

kernel The amount of CPU time, expressed in milliseconds,
that the thread spent in kernel mode

percent of total time section

combined The amount of CPU time that the thread was running,
expressed as a percentage of the total processing time

operation The amount of CPU time that the thread spent in
operation mode, expressed as a percentage of the
total processing time
108 AIX 5L Practical Performance Tools and Tuning Guide

kernel The amount of CPU time that the thread spent in
kernel mode, expressed as a percentage of the total
processing time

Kproc Types section

Type A single letter to be used as an index into this listing

Function A description of the nominal function of this type of
kernel process

System Calls Summary
The System Calls Summary provides a list of all system calls that were used on
the system during the monitoring period, as shown in Example 3-30. The list is
sorted by the total time in milliseconds consumed by each type of system call.

Example 3-30 The System Calls Summary from curt.out

 System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 605 355.4475 1.74% 0.5875 0.0482 4.5626 kwrite(4259c4)
 733 196.3752 0.96% 0.2679 0.0042 2.9948 kread(4259e8)
 3 9.2217 0.05% 3.0739 2.8888 3.3418 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 _poll(4e0ecc)
 228 1.1583 0.01% 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 klseek(425a48)
...(lines omitted)...

The System Calls Summary has the following fields:

Count The number of times a system call of a certain type (see
SVC (Address)) has been used (called) during the
monitoring period

Total Time (msec) The total time the system spent processing these system
calls, expressed in milliseconds
 Chapter 3. General performance monitoring tools 109

% sys time The total time the system spent processing these system
calls, expressed as a percentage of the total processing
time

Avg Time (msec) The average time the system spent processing one
system call of this type, expressed in milliseconds

Min Time (msec) The minimum time the system needed to process one
system call of this type, expressed in milliseconds

Max Time (msec) The maximum time the system needed to process one
system call of this type, expressed in milliseconds

SVC (Address) The name of the system call and its kernel address

Pending System Calls Summary
The Pending System Calls Summary provides a list of all system calls that have
been executed on the system during the monitoring period but have not
completed. The list is sorted by TID. Example 3-31 displays the pending system
calls summary.

Example 3-31 Pending System Calls Summary from curt.out

 Pending System Calls Summary

 Accumulated SVC (Address) Procname (Pid Tid)
 Time (msec)
 ============ ========================= ==========================
 0.0656 _select(4e0ee4) sendmail(7844 5001)
 0.0452 _select(4e0ee4) syslogd(7514 8591)
 0.0712 _select(4e0ee4) snmpd(5426 9293)
 0.0156 kioctl(4e07ac) trcstop(47210 18379)
 0.0274 kwaitpid(1cab64) ksh(20276 44359)
 0.0567 kread4259e8) ksh(23342 50873)
 ...(lines omitted)...

The Pending System Calls Summary has the following fields:

Accumulated Time(msec)The accumulated CPU time that the system spent
processing the pending system call, expressed in
milliseconds.

SVC (Address) The name of the system call and its kernel address.

Procname (Pid Tid) The name of the process associated with the thread
that made the system call, its PID, and the TID.

FLIH Summary
The FLIH Summary lists all first level interrupt handlers that were called during
the monitoring period, as shown in Example 3-32.
110 AIX 5L Practical Performance Tools and Tuning Guide

The Global Flih Summary lists the total of first level interrupts on the system,
while the Per CPU Flih Summary lists the first level interrupts per CPU.

Example 3-32 The Flih summaries from curt.out

 Global Flih Summary

 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 2183 203.5524 0.0932 0.0041 0.4576 31(DECR_INTR)
 946 102.4195 0.1083 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 12 1.6720 0.1393 0.0828 0.3366 32(QUEUED_INTR)
 1058 183.6655 0.1736 0.0039 0.7001 5(IO_INTR)

Per CPU Flih Summary

CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 635 39.8413 0.0627 0.0041 0.4576 31(DECR_INTR)
 936 101.4960 0.1084 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 9 1.3946 0.1550 0.0851 0.3366 32(QUEUED_INTR)
 266 33.4247 0.1257 0.0039 0.4319 5(IO_INTR)

CPU Number 1:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 4 0.2405 0.0601 0.0517 0.0735 3(DATA_ACC_PG_FLT)
 258 49.2098 0.1907 0.0060 0.5076 5(IO_INTR)
 515 55.3714 0.1075 0.0080 0.3696 31(DECR_INTR)
...(lines omitted)...

 Pending Flih Summary

 Accumulated Time (msec) Flih Type
 ======================== ================
 0.0123 5(IO_INTR)

 ...(lines omitted)...

The FLIH Summary report has the following fields:

Count The number of times a first level interrupt of a certain type
(see FLIH Type) occurred during the monitoring period.
 Chapter 3. General performance monitoring tools 111

Total Time (msec) The total time the system spent processing these first
level interrupts, expressed in milliseconds.

Avg Time (msec) The average time the system spent processing one first
level interrupt of this type, expressed in milliseconds.

Min Time (msec) The minimum time the system needed to process one first
level interrupt of this type, expressed in milliseconds.

Max Time (msec) The maximum time the system needed to process one
first level interrupt of this type, expressed in milliseconds.

Flih Type The number and name of the first level interrupt.

In Example 3-32 on page 111, the following are the FLIH types:

DATA_ACC_PG_FLT Data access page fault

QUEUED_INTR Queued interrupt

DECR_INTR Decrementer interrupt

IO_INTR I/O interrupt

SLIH Summary
The SLIH Summary lists all second level interrupt handlers that were called
during the monitoring period, as shown in Example 3-33.

The Global Slih Summary lists the total of second level interrupts on the system,
while the Per CPU Slih Summary lists the second level interrupts per CPU.

Example 3-33 The Slih summaries from curt.out

 Global Slih Summary

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 43 7.0434 0.1638 0.0284 0.3763 .copyout(1a99104)
 1015 42.0601 0.0414 0.0096 0.0913 .i_mask(1990490)

 Per CPU Slih Summary

CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 8 1.3500 0.1688 0.0289 0.3087 .copyout(1a99104)
 258 7.9232 0.0307 0.0096 0.0733 .i_mask(1990490)

CPU Number 1:
112 AIX 5L Practical Performance Tools and Tuning Guide

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 10 1.2685 0.1268 0.0579 0.2818 .copyout(1a99104)
 248 11.2759 0.0455 0.0138 0.0641 .i_mask(1990490)

...(lines omitted)...

The SLIH Summary report has the following fields:

Count The number of times each SLIH was called during the
monitoring period.

Total Time (msec) The total time the system spent processing these second
level interrupts, expressed in milliseconds.

Avg Time (msec) The average time the system spent processing one
second level interrupt of this type, expressed in
milliseconds.

Min Time (msec) The minimum time the system needed to process one
second level interrupt of this type, expressed in
milliseconds.

Max Time (msec) The maximum time the system needed to process one
second level interrupt of this type, expressed in
milliseconds.

Slih Name (Address) The name and kernel address of the second level
interrupt.

Report generated with the -e flag
The report generated with the -e flag includes the reports shown in 3.5.4, “The
default report” on page 100, and also includes additional information in the
System Calls Summary report as shown in Example 3-34. The additional
information pertains to the total, average, maximum, and minimum elapsed times
a system call was running.

Example 3-34 curt output with the -e flag

curt -e -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...

System Calls Summary

Count Total % sys Avg Min Max Tot Avg Min Max SVC
 Time time Time Time Time ETime ETime Etime ETime (Address)
 (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec)
===== ======== ===== ====== ====== ====== ========== ========= ========= ========= ======================
 605 355.4475 1.74% 0.5875 0.0482 4.5626 31172.7658 51.5252 0.0482 422.2323 kwrite(4259c4)
 733 196.3752 0.96% 0.2679 0.0042 2.9948 12967.9407 17.6916 0.0042 265.1204 kread(4259e8)
 Chapter 3. General performance monitoring tools 113

 3 9.2217 0.05% 3.0739 2.8888 3.3418 57.2051 19.0684 4.5475 40.0557 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 12.5002 0.3290 0.0051 3.3120 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 4.4574 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 4.6636 0.1036 0.0248 0.3037 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 5006.0887 79.4617 0.0294 100.4802 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 45.5026 22.7513 7.5745 37.9281 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 4494.9249 21.7146 0.0030 499.1363 _poll(4e0ecc)
 228 1.1583 0.01% 0.0051 0.0011 0.2436 1.1583 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 4498.7472 499.8608 499.8052 499.8898 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 0.5437 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 0.3553 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 0.2692 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 0.2350 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 5019.0588 5019.0588 5019.0588 5019.0588 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 0.5427 0.0053 0.0013 0.3650 klseek(425a48)
...(lines omitted)...

 Pending System Calls Summary

 Accumulated Accumulated SVC (Address) Procname (Pid Tid)
 Time (msec) ETime (msec)
 ============ ============ ========================= =========================
 0.0855 93.6498 kread(4259e8) oracle(143984 48841)

 ...(lines omitted)...

The System Calls Summary in this example has the following fields in addition to
the default System Calls Summary displayed in Example 3-30 on page 109:

Tot ETime (msec) The total amount of time from when the system call was
started to its completion. This time will include any times
spent servicing interrupts, running other processes, and
so forth.

Avg ETime (msec) The average amount of time from when the system call
was started to when it completed. This includes any time
spent servicing interrupts, running other processes, and
so forth.

Min ETime (msec) The minimum amount of time from when the system call
was started to when it completed. This includes any time
spent servicing interrupts, running other processes, and
so forth.

Max ETime (msec) The maximum amount of time from when the system call
was started to when it completed. This includes any time
spent servicing interrupts, running other processes, and
so forth.
114 AIX 5L Practical Performance Tools and Tuning Guide

The preceding example report shows that the maximum elapsed time for the
kwrite system call was 422.2323 msec, but the maximum CPU time was 4.5626
msec. If this amount of overhead time is unusual for the device being written to,
further analysis is needed.

Sometimes comparing the average elapsed time to the average execution time
shows that a certain system call is being delayed by something unexpected.
Other debug measures should be used to investigate further.

Report generated with the -s flag
The report generated with the -s flag includes the reports shown in 3.5.4, “The
default report” on page 100 and includes reports on errors returned by system
calls, as shown in Example 3-35.

Example 3-35 curt output with the -s flag

curt -s -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...
 Errors Returned by System Calls

Errors (errorno : count : description) returned for System call:
socket_aio_dequeue(0x11e0d8)
 11 : 485 : "Resource temporarily unavailable"
 Errors (errorno : count : description) returned for System call:
connext(0x11e24c)
75 : 7 : "Socket is already connected"
...(lines omitted)...

If a large number of errors of a specific type or on a specific system call point to a
system or application problem, other debug measures can be used to determine
and fix the problem.

Report generated with the -t flag
The report generated with the -t flag includes the reports shown in 3.5.4, “The
default report” on page 100, as well as a detailed report on thread status that
includes the amount of time the thread was in application and kernel mode, what
system calls the thread made, processor affinity, the number of times the thread
was dispatched, and to what CPU it was dispatched. The report also includes
dispatch wait times and details of interrupts. It is shown in Example 3-36.

Example 3-36 curt output with the -t flag

...(lines omitted)...

Report for Thread Id: 48841 (hex bec9) Pid: 143984 (kex 23270)
 Chapter 3. General performance monitoring tools 115

 Process Name: oracle

 Total Application Time (ms): 70.324465
 Total Kernel Time (ms): 53.014910

 Thread System Call Data
 Count Total Time Avg Time Min Time Max Time SVC (Address)
 (msec) (msec) (msec) (msec)
 ======== =========== =========== =========== =========== ================
 69 34.0819 0.4939 0.1666 1.2762 kwrite(169ff8)
 77 12.0026 0.1559 0.0474 0.2889 kread(16a01c)
 510 4.9743 0.0098 0.0029 0.0467 times(f1e14)
 73 1.2045 0.0165 0.0105 0.0306 select(1d1704)
 68 0.6000 0.0088 0.0023 0.0445 lseek(16a094)
 12 0.1516 0.0126 0.0071 0.0241 getrusage(f1be0)

 No Errors Returned by System Calls

 Pending System Calls Summary

 Accumulated SVC (Address)
 Time (msec)
 ============ ==========================
 0.1420 kread(16a01c)

 processor affinity: 0.583333

 Dispatch Histogram for thread (CPUid : times_dispatched).
 CPU 0 : 23
 CPU 1 : 23
 CPU 2 : 9
 CPU 3 : 9
 CPU 4 : 8
 CPU 5 : 14
 CPU 6 : 17
 CPU 7 : 19
 CPU 8 : 1
 CPU 9 : 4
 CPU 10 : 1
 CPU 11 : 4

 total number of dispatches: 131
 total number of redispatches due to interupts being disabled: 1
 avg. dispatch wait time (ms): 8.273515

 Data on Interrupts that Occured while Thread was Running
 Type of Interrupt Count
 =============================== ============================
 Data Access Page Faults (DSI): 115
116 AIX 5L Practical Performance Tools and Tuning Guide

 Instr. Fetch Page Faults (ISI): 0
 Align. Error Interrupts: 0
 IO (external) Interrupts: 0
 Program Check Interrupts: 0
 FP Unavailable Interrupts: 0
 FP Imprecise Interrupts: 0
 RunMode Interrupts: 0
 Decrementer Interrupts: 18
 Queued (Soft level) Interrupts: 15

...(lines omitted)...

The information in the threads summary includes:

Thread ID The TID of the thread.

Process ID The PID the thread belongs to.

Process Name The process name, if known, that the thread belongs to.

Total Application Time (ms)

The amount of time, expressed in milliseconds, that the
thread spent in application mode.

Total System Call Time (ms)

The amount of time, expressed in milliseconds, that the
thread spent in system call mode.

Thread System Call Data

A system call summary for the thread; this has the same
fields as the global System Call Summary. (See
Example 3-42 on page 128.) It also includes elapsed
times if the -e flag is specified and error information if the
-s flag is specified.

Pending System Calls Summary

If the thread was executing a system call at the end of the
trace, a pending system call summary will be printed. This
has the Accumulated Time and Supervisor Call (SVC
Address) fields. It also includes elapsed time if the -e flag
is specified.

Processor affinity The process affinity, which is the probability that, for any
dispatch of the thread, the thread was dispatched to the
same processor that it last executed on.

Dispatch Histogram for thread
 Chapter 3. General performance monitoring tools 117

Shows the number of times the thread was dispatched to
each CPU in the system.

Total number of dispatches

The total number of times the thread was dispatched (not
including redispatches described below).

Total number of redispatches

The number of redispatches due to interrupts being
disabled, which is when the dispatch disabled code is
forced to dispatch the same thread that is currently
running on that particular CPU because the thread had
disabled some interrupts. This is only shown if non-zero.

Avg. dispatch wait time (ms)

The average dispatch wait time is the average elapsed
time for the thread from being undispatched and its next
dispatch.

Data on Interrupts This is a count of how many times each type of FLIH
occurred while this thread was executing.

Report generated with the -p flag
When a report is generated using the -p flag, it gives detailed information about
each process found in the trace. The following example shows the report
generated for the router process (PID 129190). A sample output is given in
Example 3-37.

Example 3-37 curt output with -p flag

...(lines omitted)...

 Process Details for Pid: 129190
 Process Name: router
 7 Tids for this Pid: 245889 245631 244599 82843 78701 75347
 28941
 Total Application Time (ms): 124.023749
 Total System Call Time (ms): 8.948695

 Process System Call Data
 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
 ======== =========== ====== ======== ======== ======== ================
 93 3.6829 0.05% 0.0396 0.0060 0.3077 kread(19731c)
 23 2.2395 0.03% 0.0974 0.0090 0.4537 kwrite(1972f8)
 30 0.8885 0.01% 0.0296 0.0073 0.0460 select(208c5c)
 1 0.5933 0.01% 0.5933 0.5933 0.5933 fsync(1972a4)
118 AIX 5L Practical Performance Tools and Tuning Guide

 106 0.4902 0.01% 0.0046 0.0035 0.0105 klseek(19737c)
 13 0.3285 0.00% 0.0253 0.0130 0.0387 semctl(2089e0)
 6 0.2513 0.00% 0.0419 0.0238 0.0650 semop(2089c8)
 3 0.1223 0.00% 0.0408 0.0127 0.0730 statx(2086d4)
 1 0.0793 0.00% 0.0793 0.0793 0.0793 send(11e1ec)
 9 0.0679 0.00% 0.0075 0.0053 0.0147 fstatx(2086c8)
 4 0.0524 0.00% 0.0131 0.0023 0.0348 kfcntl(22aa14)
 5 0.0448 0.00% 0.0090 0.0086 0.0096 yield(11dbec)
 3 0.0444 0.00% 0.0148 0.0049 0.0219 recv(11e1b0)
 1 0.0355 0.00% 0.0355 0.0355 0.0355 open(208674)
 1 0.0281 0.00% 0.0281 0.0281 0.0281 close(19728c)

 Pending System Calls Summary

 Accumulated SVC (Address) Tid
 Time (msec)
 ============ ========================= ================
 0.0452 select(208c5c) 245889
 0.0425 select(208c5c) 78701
 0.0285 select(208c5c) 82843
 0.0284 select(208c5c) 245631
 0.0274 select(208c5c) 244599
 0.0179 select(208c5c) 75347

 ...(lines omitted)...

The -p flag process information includes the process ID and name, and a count
and list of the TIDs belonging to the process. The total application and system
call time for all the threads of the process is given. It also includes summary
reports of all completed and pending system calls for the threads of the process.

3.6 The splat command
The Simple Performance Lock Analysis Tool (splat) is a software tool that
generates reports on the use of synchronization locks. These include the simple
and complex locks provided by the AIX kernel as well as user-level mutexes,
read/write locks, and condition variables provided by the PThread library. splat is
not currently equipped to analyze the behavior of the VMM- and PMAP- locks
used in the AIX kernel.

The splat command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.
 Chapter 3. General performance monitoring tools 119

3.6.1 splat syntax
The syntax for the splat command is:

splat -i file [-n file] [-o file] [-d [bfta]] [-l address] [-c class]
[-s [acelmsS]] [-C cpus] [-S count] [-t start] [-T stop][-p]

splat -h [topic]
splat -j

Flags
-i inputfile Specifies the AIX trace log file input.

-n namefile Specifies the file containing output of gennames or gensyms
command.

-o outputfile Specifies an output file (default is stdout).

-d detail Specifies the level of detail of the report.

-c class Specifies class of locks to be reported.

-l address Specifies the address for which activity on the lock will be
reported.

-s criteria Specifies the sort order of the lock, function, and thread.

-C CPUs Specifies the number of CPUs on the MP system that the
trace was drawn from. The default is one. This value is
overridden if more CPUs are observed to be reported in
the trace.

-S count Specifies the number of items to report on for each
section. The default is 10. This gives the number of locks
to report in the Lock Summary and Lock Detail reports, as
well as the number of functions to report in the Function
Detail and threads to report in the Thread detail. (The -s
option specifies how the most significant locks, threads,
and functions are selected.)

-t starttime Overrides the start time from the first event recorded in
the trace. This flag forces the analysis to begin an event
that occurs starttime seconds after the first event in the
trace.

-T stoptime Overrides the stop time from the last event recorded in the
trace. This flag forces the analysis to end with an event
that occurs stoptime seconds after the first event in the
trace.

-p Specifies the use of the PURR register to calculate CPU
times.
120 AIX 5L Practical Performance Tools and Tuning Guide

-j Prints the list of IDs of the trace hooks used by splat.

-h topic Prints a help message on usage or a specific topic.

Parameters
inputfile The AIX trace log file input. This file can be a merge trace

file generated using trcrpt -r.

namefile File containing output of gennames or gensyms command.

outputfile File to write reports to.

detail The detail level of the report; can be either:

basic lock summary plus lock detail (the default)
function basic + function detail
thread basic + thread detail
all basic + function + thread detail

class Activity classes, which is a decimal value found in the file
/usr/include/sys/lockname.h.

address The address to be reported, given in hexadecimal.

criteria Order the lock, function, and thread reports by the
following criteria:

a Acquisitions
c Percent CPU time held
e Percent elapsed time held
l Lock address, function address, or thread ID
m Miss rate
s Spin count
S Percent CPU spin hold time (the default)
w Percent real wait time
W Average WaitQ depth

CPUs The number of CPUs on the MP system that the trace
was drawn from. The default is one. This value is
overridden if more CPUs are observed to be reported in
the trace.

count The number of locks to report in the Lock Summary and
Lock Detail reports, as well as the number of functions to
report in the Function Detail and threads to report in the
Thread detail. (The -s option specifies how the most
significant locks, threads, and functions are selected).

starttime The number of seconds after the first event recorded in
the trace that the reporting starts.
 Chapter 3. General performance monitoring tools 121

stoptime The number of seconds after the first event recorded in
the trace that the reporting stops.

topic Help topics, which are:

� all
� overview
� input
� names
� reports
� sorting

3.6.2 Information about measurement and sampling
The splat command takes as input AIX trace log file or a set of log files for an
SMP trace, and preferably a names file produced by gennames. When you run
trace you will usually use the flag -J splat to capture the events analyzed by splat
(or no -J flag, to capture all events). The important trace hooks are shown in
Table 3-2.

Table 3-2 Trace hooks required for splat

Hook ID Event name Event explanation

106 HKWD_KERN_DISPATCH The thread is dispatched from the
runqueue to a CPU.

10C HKWD_KERN_IDLE The idle process is been dispatched.

10E HKWD_KERN_RELOCK One thread is suspended while another
is dispatched; the ownership of a RunQ
lock is transferred from the first to the
second.

112 HKWD_KERN_LOCK The thread attempts to secure a kernel
lock; the subhook shows what
happened.

113 HKWD_KERN_UNLOCK A kernel lock is released.

38F Dynamic reconfiguration

46D HKWD_KERN_WAITLOCK The thread is enqueued to wait on a
kernel lock.

600 HKWD_PTHREAD_SCHEDUL
ER

Operations on a Scheduler Variable.

603 HKWD_PTHREAD_TIMER Operations on a Timer Variable.

605 HKWD_PTHREAD_VPSLEEP Operations on a Vpsleep Variable.
122 AIX 5L Practical Performance Tools and Tuning Guide

3.6.3 The execution, trace, and analysis intervals
In some cases you can use trace to capture the entire execution of a workload,
while other times you will only capture an interval of the execution. We
distinguish these as the execution interval and the trace interval. The execution
interval is the entire time that a workload runs. This interval is arbitrarily long for
server workloads that run continuously. The trace interval is the time actually
captured in the trace log file by trace. The length of this trace interval is limited
by how large of a trace log file will fit on the filesystem.

In contrast, the analysis interval is the portion of time that is analyzed by splat.
The -t and -T options tell splat to start and finish analysis some number of
seconds after the first event in the trace. By default splat analyzes the entire
trace, so this analysis interval is the same as the trace interval. Example 3-50 on
page 144 shows the reporting of the trace and analysis intervals.

You will usually want to capture the longest trace interval you can and analyze
the entire interval with splat in order to most accurately estimate the effect of
lock activity on the computation. The -t and -T options are usually used for
debugging purposes to study the behavior of splat across a few events in the
trace.

As a rule, either use large buffers when collecting a trace, or limit the captured
events to the ones needed to run splat.

606 HKWD_PTHREAD_CONDS Operations on a Condition Variable.

607 HKWD_PTHREAD_MUTEX Operations on a Mutex.

608 HKWD_PTHREAD_RWLOCK Operations on a Read/Write Lock.

609 HKWD_PTHREAD_GENERAL Operations on a PThread.

Hook ID Event name Event explanation

Note: As an optimization, splat stops reading the trace when it finishes its
analysis, so it will report the trace and analysis intervals as ending at the same
time even if they do not.
 Chapter 3. General performance monitoring tools 123

3.6.4 Trace discontinuities
The splat command uses the events in the trace to reconstruct the activities of
threads and locks in the original system. It will not be able to correctly analyze all
of the events across the trace interval if part of the trace is missing because:

� Tracing was stopped at one point and restarted at a later point.

� One CPU fills its trace buffer and stops tracing, while other CPUs continue
tracing.

� Event records in the trace buffer were overwritten before they could be copied
into the trace log file.

The policy of splat is to finish its analysis at the first point of discontinuity in the
trace, issue a warning message, and generate its report. In the first two cases
the warning message is:

TRACE OFF record read at 0.567201 seconds. One or more of the CPU’s has
stopped tracing. You may want to generate a longer trace using larger
buffers and re-run splat.

In the third case the warning message is:

TRACEBUFFER WRAPAROUND record read at 0.567201 seconds. The input trace has
some records missing; splat finishes analyzing at this point. You may want
to re-generate the trace using larger buffers and re-run splat.

Along the same lines, versions of the AIX kernel or PThread library that are still
under development may be incompletely instrumented, and so the traces will be
missing events. splat may not give correct results in this case.

3.6.5 Address-to-name resolution in splat
The lock instrumentation in the kernel and PThread library captures the
information for each lock event. Data addresses are used to identify locks;
instruction addresses are used to identify the point of execution. These
addresses are captured in the event records in the trace and used by splat to
identify the locks and the functions that operate on them.

However, these addresses are of little use for the programmer, who would rather
know the names of the lock and function declarations so they can be located in
the program source files. The conversion of names to addresses is determined
by the compiler and loader and can be captured in a file using the gennames or
gensyms utility. gennames also captures the contents of the file
/usr/include/sys/lockname.h, which declares classes of kernel locks. gensyms
captures the address to name translation of kernel and subroutines.
124 AIX 5L Practical Performance Tools and Tuning Guide

This gennames or gensyms output file is passed to splat with the -n option. When
splat reports on a kernel lock, it provides the best identification it can. A splat
lock summary is shown in Example 3-40 on page 127; the left column identifies
each lock by name if it can be determined, otherwise by class if it can be
determined, or by address if nothing better can be provided. The lock detail
shown in Example 3-41 on page 130 identifies the lock by as much of this
information as can be determined.

Kernel locks that are declared will be resolved by name. Locks that are created
dynamically will be identified by class if their class name is given when they are
created. Note that the libpthreads.a instrumentation is not equipped to capture
names or classes of PThread synchronizers, so they are always identified only by
address.

3.6.6 splat examples
The report generated by splat consists of an execution summary, a gross lock
summary, and a per-lock summary, followed by a list of lock detail reports that
optionally includes a function detail and/or a thread detail report.

Execution summary
Example 3-38 shows a sample of the Execution summary. This report is
generated by default when using splat.

Example 3-38 Execution summary report

splat Cmd: splat -sa -da -S100 -i trace.rpt -n gennames.out -o splat.out

Trace Cmd: trace -C all -aj 600,603,605,606,607,608,609 -T 2000000 -L 20000000
 -o trace.bin
Trace Host: lpar05 (0021768A4C00) AIX 5.2
Trace Date: Wed Apr 21 09:55:22 2004

Elapsed Real Time:18.330873
Number of CPUs Traced: 1 (Observed):0
Cumulative CPU Time:18.330873

 start stop
 -------------------- --------------------
trace interval (absolute tics) 1799170309 2104623072
 (relative tics) 0 305452763
 (absolute secs) 107.972055 126.302928
 (relative secs) 0.000000 18.330873
analysis interval (absolute tics) 1799170309 2104623072
 (trace-relative tics) 0 305452763
 Chapter 3. General performance monitoring tools 125

 (self-relative tics) 0 305452763
 (absolute secs) 107.972055 126.302928
 (trace-relative secs) 0.000000 18.330873
 (self-relative secs) 0.000000 18.330873

The execution summary consists of the following elements:

� The command used to run splat.

� The trace command used to collect the trace.

� The host that the trace was taken on.

� The date that the trace was taken on.

� The real-time duration of the trace in seconds.

� The maximum number of CPUs that were observed in the trace, the number
specified in the trace conditions information, and the number specified on the
splat command line. If the number specified in the header or command line is
less, the entry (Indicated: <value>) is listed. If the number observed in the
trace is less, the entry (Observed: <value>) is listed.

� The cumulative CPU time, equal to the duration of the trace in seconds times
the number of CPUs that represents the total number of seconds of CPU time
consumed.

� A table containing the start and stop times of the trace interval, measured in
tics and seconds, as absolute time stamps from the trace records, as well as
relative to the first event in the trace. This is followed by the start and stop
times of the analysis interval, measured in tics and seconds, as absolute time
stamps as well as relative to the beginning of the trace interval and the
beginning of the analysis interval.

Gross lock summary
Example 3-39 shows a sample of the gross lock summary report. This report is
generated by default when using splat.

Example 3-39 Gross lock summary

Unique Acquisitions Acq. or Passes % Total System
Total Addresses (or Passes) per Second ’spin’ Time
--------- ------------- ------------ -------------- ---------------

AIX (all) Locks: 523 523 1323045 72175.7768 0.003986
 RunQ: 2 2 487178 26576.9121 0.000000
 Simple: 480 480 824898 45000.4754 0.003986
 Complex: 41 41 10969 598.3894 0.000000
PThread CondVar: 7 6 160623 8762.4305 0.000000
 Mutex: 128 116 1927771 105165.2585 10.280745 *
 RWLock: 0 0 0 0.0000 0.000000
126 AIX 5L Practical Performance Tools and Tuning Guide

(’spin’ time goal <10%)

The gross lock summary report table consists of the following columns:

Total The number of AIX Kernel locks, followed by the number
of each type of AIX Kernel lock; RunQ, Simple, and
Complex. Under some conditions this will be larger than
the sum of the numbers of RunQ, Simple, and Complex
locks because we may not observe enough activity on a
lock to differentiate its type. This is followed by the number
of PThread condition variables, the number of PThread
Mutexes, and the number of PThread Read/Write Locks.

Unique Addresses The number of unique addresses observed for each
synchronizer type. Under some conditions a lock will be
destroyed and re-created at the same address; splat
produces a separate lock detail report for each instance
because the usage may be quite different.

Acquisitions For locks, the total number of times acquired during the
(or Passes) analysis interval; for PThread condition-variables, the total

number of times the condition passed during the analysis
interval.

Acq. or Passes Acquisitions or passes per second, which is the total
(per second) number of acquisitions or passes divided by the elapsed

real time of the trace.

% Total System The cumulative time spent spinning on each synchronizer
‘spin’ Time type, divided by the cumulative CPU time, times 100

percent. The general goal is to spin for less than 10
percent of the CPU time; a message to this effect is
printed at the bottom of the table. If any of the entries in
this column exceed 10 percent, they are marked with an
asterisk (*).

Per-lock summary
Example 3-40 shows a sample of the per-lock summary report. This report is
generated by default when using splat.

Example 3-40 Per-lock summary report

100 max entries, Summary sorted by Acquisitions:

T Acqui-
y sitions Locks or Percent Holdtime

Lock Names, p or Passes Real Real Comb Kernel
Class, or Address e Passes Spins Wait %Miss %Total / CSec CPU Elapse Spin Symbol
********************** * ****** ***** **** ***** ****** ********* ******** ****** ******* *******
PROC_INT_CLASS.0003 Q 486490 0 0 0.0000 36.7705 26539.380 5.3532 100.000 0.0000 unix
 Chapter 3. General performance monitoring tools 127

THREAD_LOCK_CLASS.0012 S 323277 0 0 0.0000 24.4343 17635.658 6.8216 6.8216 0.0000 libc
THREAD_LOCK_CLASS.0118 S 323094 0 0 0.0000 24.4205 17625.674 6.7887 6.7887 0.0000 libc
ELIST_CLASS.003C S 80453 0 0 0.0000 6.0809 4388.934 1.0564 1.0564 0.0000 unix
ELIST_CLASS.0044 S 80419 0 0 0.0000 6.0783 4387.080 1.1299 1.1299 0.0000 unix
tod_lock C 10229 0 0 0.0000 0.7731 558.020 0.2212 0.2212 0.0000 unix
LDATA_CONTROL_LOCK.0000 S 1833 0 0 0.0000 0.1385 99.995 0.0204 0.0204 0.0000 unix
U_TIMER_CLASS.0014 S 1514 0 0 0.0000 0.1144 82.593 0.0536 0.0536 0.0000 netinet

(... lines omitted ...)
000000002FF22B70 L 368838 0 N/A 0.0000 100.000 9622.964 99.9865 99.9865 0.0000
00000000F00C3D74 M 160625 0 0 0.0000 14.2831 8762.540 99.7702 99.7702 0.0000
00000000200017E8 M 160625 175 0 0.1088 14.2831 8762.540 42.9371 42.9371 0.1487
0000000020001820 V 160623 0 624 0.0000 100.000 1271.728 N/A N/A N/A
00000000F00C3750 M 37 0 0 0.0000 0.0033 2.018 0.0037 0.0037 0.0000
00000000F00C3800 M 30 0 0 0.0000 0.0027 1.637 0.0698 0.0698 0.0000

(... lines omitted ...)

The first line indicates the maximum number of locks to report (100 in this case,
but we only show 13 of the entries here) as specified by the -S 100 flag. It also
indicates that the entries are sorted by the total number of acquisitions or
passes, as specified by the -sa flag. Note that the various Kernel locks and
PThread synchronizers are treated as two separate lists in this report, so you
would get the top 100 Kernel locks sorted by acquisitions, followed by the top 100
PThread synchronizers sorted by acquisitions or passes.

The per-lock summary table consists of the following columns:

Lock Names, Class, The name, class, or address of the lock, depending on
or Address whether splat could map the address from a name file.

See 3.6.5, “Address-to-name resolution in splat” on
page 124 for an explanation.

Type The type of the lock, identified by one of the following
letters:

Q A RunQ lock
S A simple kernel lock
C A complex kernel lock
M A Pthread mutex
V A Pthread condition-variable
L A Pthread read/write lock

Acquisitions or Passes
The number of times the lock was acquired or the
condition passed during the analysis interval.

Spins The number of times the lock (or condition-variable) was
spun on during the analysis interval.

Wait The number of times a thread was driven into a wait state
for that lock or condition-variable during the analysis
interval.
128 AIX 5L Practical Performance Tools and Tuning Guide

%Miss The percentage of access attempts that resulted in a spin
as opposed to a successful acquisition or pass.

%Total The percentage of all acquisitions that were made to this
lock, out of all acquisitions to all locks of this type. Note
that all AIX locks (RunQ, simple, and complex) are treated
as being the same type for this calculation. The PThread
synchronizers mutex, condition-variable, and read/write
lock are all distinct types.

Locks or Passes / CSec
The number of times the lock (or condition-variable) was
acquired (or passed) divided by the cumulative CPU time.
This is a measure of the acquisition frequency of the lock.

Real CPU The percentage of the cumulative CPU time that the lock
was held by an executing thread. Note that this definition
is not applicable to condition-variables because they are
not held.

Real Elapse The percentage of the elapsed real time that the lock was
held by any thread at all, whether running or suspended.
Note that this definition is not applicable to
condition-variables because they are not held.

Comb Spin The percentage of the cumulative CPU time that
executing threads spent spinning on the lock. Note that
the PThreads library currently uses waiting for
condition-variables, so there is no time actually spent
spinning.

Kernel Symbol The name of the kernel-extension or library (or /unix for
the kernel) that the lock was defined in. Note that this
information is not recoverable for PThreads.

AIX kernel lock details
By default, splat prints out a lock detail report for each entry in the summary
report. There are two types of AIX Kernel locks: simple and complex. We will
start by examining the contents of the simple lock report, and follow this with an
explanation of the additional information printed with a complex lock report.

The RunQ lock is a special case of the simple lock, although its pattern of usage
differs markedly from other lock types. splat distinguishes it from the other
simple locks to save you the trouble of figuring out why it behaves so uniquely.

Simple- and RunQ- lock details
Example 3-41 shows a sample AIX SIMPLE lock report. The first line starts with
either [AIX SIMPLE Lock] or [AIX RunQ lock]. Below this is the 16-digit
 Chapter 3. General performance monitoring tools 129

hexadecimal ADDRESS of the lock. If the gennames output-file allows, the ADDRESS
is also converted into a lock NAME and CLASS, and the containing kernel-extension
(KEX) is identified as well. The CLASS is printed with an eight-hex-digit extension
indicating how many locks of this class were allocated prior to it.

Example 3-41 AIX SIMPLE lock

[AIX SIMPLE Lock] CLASS: NETISR_LOCK_FAMILY.FFFFFFFF
ADDRESS: 0000000000535378 KEX: unix
NAME: netisr_slock
==
 | | | Percent Held (18.330873s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
471 | 0.000 0 0 0 |0.002584 0.002584 | 0.01 0.01 0.00 0.00
--
%Enabled 0.00 (0)|SpinQ Min Max Avg | WaitQ Min Max Avg
%Disabled 100.00 (471)|Depth 0 0 0 | Depth 0 0 0
--

 Lock Activity w/Interrupts Enabled (mSecs)

 SIMPLE Count Minimum Maximum Average Total
 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
 LOCK 0 0.000000 0.000000 0.000000 0.000000
 SPIN 0 0.000000 0.000000 0.000000 0.000000
 UNDISP 0 0.000000 0.000000 0.000000 0.000000
 WAIT 0 0.000000 0.000000 0.000000 0.000000
 PREEMPT 0 0.000000 0.000000 0.000000 0.000000

 Lock Activity w/Interrupts Disabled (mSecs)

 SIMPLE Count Minimum Maximum Average Total
 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
 LOCK 471 0.001200 0.019684 0.005486 2.583943
 SPIN 0 0.000000 0.000000 0.000000 0.000000
 UNDISP 0 0.000000 0.000000 0.000000 0.000000
 WAIT 0 0.000000 0.000000 0.000000 0.000000
 PREEMPT 0 0.000000 0.000000 0.000000 0.000000

The statistics are:

Acquisitions The number of times the lock was acquired in the analysis
interval (this includes successful simple_lock_try() calls).

Miss Rate The percentage of attempts that failed to acquire the lock.
130 AIX 5L Practical Performance Tools and Tuning Guide

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times a thread was forced into suspended
wait state waiting for the lock to come available.

Busy Count The number of simple_lock_try() calls that returned busy.

Seconds Held This field contains the following subfields:

CPU The total number of CPU seconds that
the lock was held by an executing
thread.

Elapsed The total number of elapsed seconds
that the lock was held by any thread at
all, whether running or suspended.

Percent Held This field contains the following subfields:

Real CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread.

Real Elapsed The percentage of the elapsed real time
that the lock was held by any thread at
all, either running or suspended.

Comb(ined) Spin The percentage of the cumulative CPU
time that running threads spent
spinning while trying to acquire this
lock.

Real Wait The percentage of elapsed real time
that any thread waited to acquire this
lock. Note that if two or more threads
are waiting simultaneously, this wait
time will only be charged once. If you
want to know how many threads were
waiting simultaneously, look at the
WaitQ Depth statistics.

%Enabled The percentage of acquisitions of this lock that occurred
while interrupts were enabled. The total number of
acquisitions made while interrupts were enabled is in
parentheses.

%Disabled The percentage of acquisitions of this lock that occurred
while interrupts were disabled. In parentheses is the total
number of acquisitions made while interrupts were
disabled.
 Chapter 3. General performance monitoring tools 131

SpinQ The minimum, maximum, and average number of threads
spinning on the lock, whether executing or suspended,
across the analysis interval.

WaitQ The minimum, maximum, and average number of threads
waiting on the lock, across the analysis interval.

The Lock Activity with Interrupts Enabled (mSecs) and Lock Activity with
Interrupts Disabled (mSecs) sections contain information about the time each
lock state is used by the locks.

Figure 3-4 on page 132 shows the states that a thread can be in with respect to
the given simple or complex lock.

Figure 3-4 Lock states

The states are defined as follows:

(no lock reference) The thread is running, does not hold this lock, and is not
attempting to acquire this lock.

LOCK The thread has successfully acquired the lock and is
currently executing.

WAIT

UNDISP

SPIN LOCK

PREEMPT

The thread has
acquired the lock
in these states.

The thread is
attempting to
acquire the lock
in these states.

The thread is
executing in
these states.

The thread is
suspended in
these states.

no lock
reference
132 AIX 5L Practical Performance Tools and Tuning Guide

SPIN The thread is executing and unsuccessfully attempting to
acquire the lock.

UNDISP The thread has become undispatched while
unsuccessfully attempting to acquire the lock.

WAIT The thread has been suspended until the lock comes
available. It does not necessarily acquire the lock at that
time, instead going back to a SPIN state.

PREEMPT The thread is holding this lock and has become
undispatched.

The Lock Activity sections of the report measure the intervals of time (in
milliseconds) that each thread spends in each of the states for this lock. The
columns report the number of times that a thread entered the given state,
followed by the maximum, minimum, and average time that a thread spent in the
state once entered, followed by the total time all threads spent in that state.
These sections distinguish whether interrupts were enabled or disabled at the
time the thread was in the given state.

A thread can acquire a lock prior to the beginning of the analysis interval and
release the lock during the analysis interval. When splat observes the lock being
released, it recognizes that the lock had been held during the analysis interval up
to that point and counts the time as part of the state-machine statistics. For this
reason the state-machine statistics can report that the number of times that the
LOCK state was entered may actually be larger than the number of acquisitions
of the lock that were observed in the analysis interval.

RunQ locks are used to protect resources in the thread management logic.
These locks are acquired a large number of times and are only held briefly each
time. A thread does not necessarily need to be executing to acquire or release a
RunQ lock. Further, a thread may spin on a RunQ lock, but it will not go into an
UNDISP or WAIT state on the lock. You will see a dramatic difference between
the statistics for RunQ versus other simple locks.

Function detail
Example 3-42 is an example of the function detail report. This report is obtained
by using the -df or -da options of splat. Note that we have split the three right
columns here and moved them below the table.

Example 3-42 Function detail report for the simple lock report

Acqui- Miss Spin Wait Busy Percent Held of Total Time
Function Name sitions Rate Count Count Count CPU Elapse Spin Wait
^^^^^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^
._thread_unlock 80351 0.00 0 0 0 1.13 1.13 0.00 0.00
.thread_waitlock 68 0.00 0 0 0 0.00 0.00 0.00 0.00
 Chapter 3. General performance monitoring tools 133

Return Address Start Address Offset
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^
000000000001AA54 0000000000000000 0001AA54
000000000001A494 0000000000000000 0001A494

The columns are defined as follows:

Function Name The name of the function that acquired or attempted to
acquire this lock (with a call to one of the functions
simple_lock, simple_lock_try, simple_unlock,
disable_lock, or unlock_enable), if it could be resolved.

Acquisitions The number times the function was able to acquire this
lock.

Miss Rate The percentage of acquisition attempts that failed.

Spin Count The number of unsuccessful attempts by the function to
acquire this lock.

Wait Count The number of times that any thread was forced to wait on
the lock, using a call to this function to acquire the lock.

Busy Count The number of times the function used tried to acquire the
lock without success (that is, calls to simple_lock_try()
that returned busy).

Percent Held of Total Time contains the following subfields:

CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread that had acquired the
lock through a call to this function.

Elapse(d) The percentage of the elapsed real time
that the lock was held by any thread at
all, whether running or suspended, that
had acquired the lock through a call to
this function.

Spin The percentage of cumulative CPU time
that executing threads spent spinning
on the lock while trying to acquire the
lock through a call to this function.

Wait The percentage of elapsed real time
that executing threads spent waiting on
the lock while trying to acquire the lock
through a call to this function.
134 AIX 5L Practical Performance Tools and Tuning Guide

Return Address The return address to this calling function, in
hexadecimal.

Start Address The start address of the calling function, in hexadecimal.

Offset The offset from the function start address to the return
address, in hexadecimal.

The functions are ordered by the same sorting criterion as the locks, controlled
by the -s option of splat. Further, the number of functions listed is controlled by
the -S parameter, with the default being the top 10 functions being listed.

Thread detail
Example 3-43 shows an example of the thread detail report. This report is
obtained by using the -dt or -da options of splat.

Note that at any point in time, a single thread is either running or it is not, and
when it runs, it only runs on one CPU. Some of the composite statistics are
measured relative to the cumulative CPU time when they measure activities that
can happen simultaneously on more than one CPU, and the magnitude of the
measurements can be proportional to the number of CPUs in the system. In
contrast, the thread statistics are generally measured relative to the elapsed real
time, which is the amount of time a single CPU spends processing and the
amount of time a single thread spends in an executing or suspended state.

Example 3-43 Thread detail report

 Acqui- Miss Spin Wait Busy Percent Held of Total Time
ThreadID sitions Rate Count Count Count CPU Elapsed Spin Wait
~~~~~~~~ ~~~~~~~~  ~~~~~~~ ~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~ ~~~~~~ ~~~~~ ~~~~~

      517      1613    0.00 0      0      0 0.05 100.00   0.00  99.81
     5423      1569    0.00 0      0      0 0.06 100.00   0.00   0.00
     4877       504    0.00 0      0      0 0.01 100.00   0.00   0.00
     4183        79    0.00 0      0      0 0.00 100.00   0.00   0.00
        3        59    0.00 0      0      0 0.00 100.00   0.00   0.00
     2065        36    0.00 0      0      0 0.00 100.00   0.00   0.00
     2323        36    0.00 0      0      0 0.00 100.00   0.00   0.00
     2839        33    0.00 0      0      0 0.00 100.00   0.00   0.00
     2581        33    0.00 0      0      0 0.00 100.00   0.00   0.00
     5425         8    0.00 0      0      0 0.00 100.00   0.00   0.00

The columns are defined as follows:

ThreadID The thread identifier.

Acquisitions The number of times this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that 
failed to secure the lock.
 Chapter 3. General performance monitoring tools 135



Spin Count The number of unsuccessful attempts by this thread to 
secure the lock.

Wait Count The number of times this thread was forced to wait until 
the lock came available.

Busy Count The number of times this thread used try to acquire the 
lock, without success (calls to simple_lock_try() that 
returned busy).

Percent Held of Total Time consists of the following subfields:

CPU The percentage of the elapsed real time 
that this thread executed while holding 
the lock.

Elapse(d) The percentage of the elapsed real time 
that this thread held the lock while 
running or suspended.

Spin The percentage of elapsed real time 
that this thread executed while spinning 
on the lock.

Wait The percentage of elapsed real time 
that this thread spent waiting on the 
lock.

Complex lock report
The AIX Complex lock supports recursive locking, where a thread can acquire 
the lock more than once before releasing it, as well as differentiating between 
write-locking, which is exclusive, from read-locking, which is not. The top of the 
complex lock report appears in Example 3-44.

Example 3-44   Complex lock report (top part)

[AIX COMPLEX Lock]                 CLASS:      TOD_LOCK_CLASS.FFFF
ADDRESS: 0000000000856C88          KEX: unix
NAME:            tod_lock
======================================================================================
         |                             |                  | Percent Held ( 15.710062s )
Acqui-   |  Miss  Spin   Wait   Busy   |    Secs Held     |  Real  Real    Comb  Real
sitions  |  Rate  Count  Count  Count  |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait
8763     |  0.000 0      0      0      |0.044070 0.044070 |  0.28   0.28   0.00   0.00
--------------------------------------------------------------------------------------
%Enabled    0.00 (       0)|SpinQ   Min   Max   Avg  | WaitQ    Min   Max   Avg
%Disabled 100.00 (    8763)|Depth   0     0     0    | Depth   0     0     0    
---------------------------|Readers 0     0     0    |Readers  0     0     0    
          Min   Max   Avg  |Writers 0     0     0    |Writers  0     0     0    
Upgrade   0     0     0    +-----------------------------------------------------------
Dngrade   0     0     0    |LockQ   Min   Max   Avg  |
136 AIX 5L Practical Performance Tools and Tuning Guide



Recursion 0     1     0    |Readers 0     1     0    |
--------------------------------------------------------------------------------------

Note that this report begins with [AIX COMPLEX Lock]. Most of the entries are 
identical to the simple lock report, while some of them are differentiated by 
read/write/upgrade. For example, the SpinQ and WaitQ statistics include the 
minimum, maximum, and average number of threads spinning or waiting on the 
lock. They also include the minimum, maximum, and average number of threads 
attempting to acquire the lock for reading versus writing. Because an arbitrary 
number of threads can hold the lock for reading, the report includes the minimum, 
maximum, and average number of readers in the LockQ that holds the lock.

A thread may hold a lock for writing; this is exclusive and prevents any other 
thread from securing the lock for reading or for writing. The thread downgrades 
the lock by simultaneously releasing it for writing and acquiring it for reading; this 
enables other threads to acquire the lock for reading, as well. The reverse of this 
operation is an upgrade; if the thread holds the lock for reading and no other 
thread holds it as well, the thread simultaneously releases the lock for reading and 
acquires it for writing. The upgrade operation may require that the thread wait until 
other threads release their read-locks. The downgrade operation does not.

A thread may acquire the lock to some recursive depth; it must release the lock 
the same number of times to free it. This is useful in library code where a lock 
must be secured at each entry point to the library; a thread will secure the lock 
once as it enters the library, and internal calls to the library entry points simply 
re-secure the lock, and release it when returning from the call. The minimum, 
maximum, and average recursion depths of any thread holding this lock are 
reported in the table.

A thread holding a recursive write-lock is not allowed to downgrade it because 
the downgrade is intended to apply to only the last write-acquisition of the lock, 
and the prior acquisitions had a real reason to keep the acquisition exclusive. 
Instead, the lock is marked as being in the downgraded state, which is erased 
when the this latest acquisition is released or upgraded. A thread holding a 
recursive read-lock can only upgrade the latest acquisition of the lock, in which 
case the lock is marked as being upgraded. The thread will have to wait until the 
lock is released by any other threads holding it for reading. The minimum, 
maximum, and average recursion depths of any thread holding this lock in an 
upgraded or downgraded state are reported in the table.

The Lock Activity report also breaks down the time by whether the lock is being 
secured for reading, writing, or upgrading, as shown in Example 3-45.

Example 3-45   Complex lock report (lock activity)

Lock Activity w/Interrupts Enabled (mSecs)
 Chapter 3. General performance monitoring tools 137



  READ     Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK       7179        0.001260       0.023825  0.005623 40.366684
  SPIN          0        0.000000       0.000000 0.000000 0.000000
   UNDISP       0        0.000000       0.000000   0.000000 0.000000
  WAIT          0        0.000000       0.000000  0.000000 0.000000
  PREEMPT       0        0.000000       0.000000 0.000000 0.000000

  WRITE    Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK       1584        0.001380       0.008582       0.002338       3.703169
  SPIN          0        0.000000       0.000000 0.000000  0.000000
   UNDISP       0        0.000000       0.000000 0.000000  0.000000
  WAIT          0        0.000000       0.000000 0.000000  0.000000
  PREEMPT       0        0.000000       0.000000 0.000000  0.000000

  UPGRADE  Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK          0        0.000000       0.000000 0.000000  0.000000
  SPIN          0        0.000000       0.000000 0.000000  0.000000
   UNDISP       0        0.000000       0.000000 0.000000  0.000000
  WAIT          0        0.000000       0.000000 0.000000  0.000000
  PREEMPT       0        0.000000       0.000000 0.000000  0.000000

Note that there is no time reported to perform a downgrade because this is 
performed without any contention. The upgrade state is only reported for the 
case where a recursive read-lock is upgraded; otherwise the thread activity is 
measured as releasing a read-lock and acquiring a write-lock.

The function- and thread- details also break down the acquisition, spin, and wait 
counts by whether the lock is to be acquired for reading or writing, as shown in 
Example 3-46.

Example 3-46   Complex lock report (function and thread detail)

Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time
Function NameWrite Read Rate Write Read Write Read Count CPU ElapseSpin Wait 
^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^^^ 
.tstart 0 1912 0.00 0 0 0 0 0 0.07 0.07 0.00 0.00 
.clock 0 1911 0.00 0 0 0 0 0 0.05 0.05 0.00 0.00 

 Return Address   Start Address    Offset
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^
000000000001AA54 0000000000000000 0001AA54
138 AIX 5L Practical Performance Tools and Tuning Guide



000000000001A494 0000000000000000 0001A494

Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time
ThreadID Write Read Rate Write Read Write Read Count CPU Elapse Spin Wait
~~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
5423 1206 5484 0.00 0 0 0 0 0 0.24 0.24 0.00 0.00
4877 300 1369 0.00 0 0 0 0 0 0.03 0.03 0.00 0.00
517 54 242 0.00 0 0 0 0 0 0.01 0.01 0.00 0.00
4183 5 27 0.00 0 0 0 0 0 0.00 0.00 0.00 0.00

PThread synchronizer reports
By default, splat prints out a detailed report for each PThread entry in the
summary report. The PThread synchronizers come in three types; mutex,
read/write lock, and condition-variable. The mutex and read/write lock are related
to the AIX complex lock, so you will see similarities in the lock detail reports. The
condition-variable differs significantly from a lock, and this is reflected in the
report details.

The PThread library instrumentation does not provide names or classes of
synchronizers, so the addresses are the only way we have to identify them.
Under certain conditions the instrumentation is able to capture the return
addresses of the function-call stack, and these addresses are used with the
gennames output to identify the call-chains when these synchronizers are created.
Sometimes the creation and deletion times of the synchronizer can be
determined as well, along with the ID of the PThread that created them.
Example 3-47 shows an example of the header.

Example 3-47 PThread synchronizer report header

[PThread MUTEX] ADDRESS: 00000000F0049DE8
Parent Thread: 0000000000000001 creation time: 0.624240
Creation call-chain
==
00000000D00D9414 .pthread_mutex_lock
00000000D00E0D48 .pthread_once
00000000D01EC30C .__getgrent_tsd_callback
00000000D01D9574 ._libc_inline_callbacks
00000000D01D9500 ._libc_declare_data_functions
00000000D00EF400 ._pth_init_libc
00000000D00DCF78 .pthread_init
0000000010000318 .driver_addmulti
0000000010000234 .driver_addmulti
00000000D01D8E0C .__modinit
0000000010000174 .driver_addmulti
 Chapter 3. General performance monitoring tools 139

Mutex reports
The PThread mutex is like an AIX simple lock in that only one thread can acquire
the lock and is like an AIX complex lock in that it can be held recursively. A
sample report is shown in Example 3-48.

Example 3-48 PThread mutex report

[PThread MUTEX] ADDRESS: 00000000F010A3C8
Parent Thread: 0000000000000001 creation time: 15.708728
Creation call-chain ==
00000000D00491BC .pthread_mutex_lock
00000000D0050DA0 .pthread_once
00000000D007417C .__odm_init
00000000D01D9600 ._libc_process_callbacks
00000000D01D8F28 .__modinit
000000001000014C .driver_addmulti
==
 | | | Percent Held (15.710062s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
1 | 0.000 0 0 0 |0.000000 0.000000 | 0.00 0.00 0.00 0.00
--
Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0
Recursion 0 1 0

Besides the common header information and the [PThread MUTEX] identifier, this
report lists the following lock details:

Acquisitions The number of times the lock was acquired in the analysis
interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times a thread was forced into a
suspended wait state waiting for the lock to come
available.

Busy Count The number of trylock() calls that returned busy.

Seconds Held This field contains the following subfields:

CPU The total number of CPU seconds that
the lock was held by an executing
thread.
140 AIX 5L Practical Performance Tools and Tuning Guide

Elapsed The total number of elapsed seconds
that the lock was held, whether the
thread was running or suspended.

Percent Held This field contains the following subfields:

Real CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread.

Real Elapsed The percentage of the elapsed real time
that the lock was held by any thread at
all, either running or suspended.

Comb(ined) Spin The percentage of the cumulative cpu
time that running threads spent spinning
while trying to acquire this lock.

Real Wait The percentage of elapsed real time
that any thread was waiting to acquire
this lock. Note that if two or more
threads are waiting simultaneously, this
wait-time will only be charged once. If
you want to know how many threads
were waiting simultaneously, look at the
WaitQ Depth statistics.

Depth This field contains the following subfields:

SpinQ The minimum, maximum, and average
number of threads spinning on the lock,
whether executing or suspended,
across the analysis interval.

WaitQ The minimum, maximum, and average
number of threads waiting on the lock,
across the analysis interval.

Recursion The minimum, maximum, and average
recursion depth to which each thread
held the lock.

If the -dt or -da options are used, splat reports the thread detail as shown in
Example 3-49.

Example 3-49 PThread mutex report (thread detail)

Acqui- Miss Spin Wait Busy Percent Held of Total Time
 PThreadID sitions Rate Count Count Count CPU Elapse Spin Wait
 ~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~  ~~~~~~   ~~~~~~   ~~~~~~
         1        1   0.0000      0      0      0   0.0001 0.0001 0.0000 0.0000
 Chapter 3. General performance monitoring tools 141



The columns are defined as follows:

PThreadID The PThread identifier.

Acquisitions The number of times this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that 
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to 
secure the lock.

Wait Count The number of times this thread was forced to wait until 
the lock came available.

Busy Count The number of times this thread used try to acquire the 
lock without success (calls to simple_lock_try() that 
returned busy).

Percent Held of Total Time contains the following subfields:

CPU The percentage of the elapsed real time 
that this thread executed while holding 
the lock.

Elapse(d) The percentage of the elapsed real time 
that this thread held the lock while 
running or suspended.

Spin The percentage of elapsed real time 
that this thread executed while spinning 
on the lock.

Wait The percentage of elapsed real time 
that this thread spent waiting on the 
lock.

Read/Write lock reports
The PThread read/write lock is like an AIX complex lock in that it can be acquired 
for reading or writing; writing is exclusive in that a single thread can only acquire 
the lock for writing, and no other thread can hold the lock for reading or writing at 
that point. Reading is not exclusive, so more than one thread can hold the lock 
for reading. Reading is recursive in that a single thread can hold multiple 
read-acquisitions on the lock. Writing is not. A sample report is shown in 
Example 3-50.

Example 3-50   PThread read/write lock report

[PThread RWLock]    ADDRESS:    000000002FF22B70
Parent Thread:  0000000000000001     creation time: 0.051140                
Creation call-chain ==================================================================
00000000100003D4    .driver_addmulti
142 AIX 5L Practical Performance Tools and Tuning Guide



00000000100001B4    .driver_addmulti
=============================================================================
         |                     |                  | Percent Held (383.290027s )
Acqui-   |  Miss  Spin   Wait  |    Secs Held     |  Real  Real    Comb  Real
sitions  |  Rate  Count  Count |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait
3688386  |  0.000 0      0  |383.2384 383.2384 | 99.99  99.99   0.00   0.00
--------------------------------------------------------------------------------------
                Readers                  Writers Total
Depth     Min   Max Avg            Min   Max   Avg           Min   Max Avg
LockQ     0     3688386 3216413  0     0     0 0     3688386 3216413
SpinQ     0     0 0 0     0     0 0     0 0    
WaitQ     0     0 0 0     0     0 0     0 0    

Besides the common header information and the [PThread RWLock] identifier, 
this report lists the following lock details:

Acquisitions The number of times the lock was acquired in the analysis 
interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The current PThread implementation does not force 
threads to wait on read/write locks. What is reported here 
is the number of times a thread, spinning on this lock, is 
undispatched.

Seconds Held This field contains the following subfields:

CPU The total number of CPU seconds that 
the lock was held by an executing 
thread. If the lock is held multiple times 
by the same thread, only one hold 
interval is counted.

Elapsed The total number of elapsed seconds 
that the lock was held by any thread, 
whether the thread was running or 
suspended.

Percent Held This field contains the following subfields:

Real CPU The percentage of the cumulative CPU 
time that the lock was held by any 
executing thread.

Real Elapsed The percentage of the elapsed real time 
that the lock was held by any thread at 
all, either running or suspended.
 Chapter 3. General performance monitoring tools 143



Comb(ined) Spin The percentage of the cumulative cpu 
time that running threads spent 
spinning while trying to acquire this 
lock.

Real Wait The percentage of elapsed real time 
that any thread was waiting to acquire 
this lock. Note that if two or more 
threads are waiting simultaneously, this 
wait-time will only be charged once. If 
you want to know how many threads 
were waiting simultaneously, look at the 
WaitQ Depth statistics.

Depth This field contains the following subfields:

LockQ The minimum, maximum, and average 
number of threads holding the lock, 
whether executing or suspended, 
across the analysis interval. This is 
broken down by read-acquisitions, 
write-acquisitions, and all acquisitions 
together.

SpinQ The minimum, maximum, and average 
number of threads spinning on the lock, 
whether executing or suspended, 
across the analysis interval. This is 
broken down by read-acquisitions, 
write-acquisitions, and all acquisitions 
together.

WaitQ The minimum, maximum, and average 
number of threads in a timed-wait state 
for the lock, across the analysis interval. 
This is broken down by 
read-acquisitions, write-acquisitions, 
and all acquisitions together.

If the -dt or -da options are used, splat reports the thread detail as shown in 
Example 3-51.

Example 3-51   PThread read/write lock (thread detail)

Acquisitions   Miss    Spin Count    Wait Count Busy Percent Held of Total Time
 ThreadID  Write  Read    Rate   Write  Read   Write  Read   CountCPU  Elapse  Spin   Wait
 ~~~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
 1 0 36883860.000 0 0 0 00.00 99.99 0.00 0.00
144 AIX 5L Practical Performance Tools and Tuning Guide

The columns are defined as follows:

PThreadID The PThread identifier.

Acquisitions The number of times this thread acquired the lock,
differentiated by write versus read.

Miss Rate The percentage of acquisition attempts by the thread that
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to
secure the lock, differentiated by write versus read.

Wait Count The number of times this thread was forced to wait until the
lock came available, differentiated by write versus read.

Busy Count The number of times this thread used try to acquire the lock,
without success (for example calls to simple_lock_try() that
returned busy).

Percent Held of Total Time contains the following subfields:

CPU The percentage of the elapsed real time that
this thread executed while holding the lock.

Elapse(d) The percentage of the elapsed real time that
this thread held the lock while running or
suspended.

Spin The percentage of elapsed real time that this
thread executed while spinning on the lock.

Wait The percentage of elapsed real time that this
thread spent waiting on the lock.

Condition-Variable report
The PThread condition-variable is a synchronizer but not a lock. A PThread is
suspended until a signal indicates that the condition now holds. A sample report
is shown in Example 3-52.

Example 3-52 PThread Condition-Variable Report

[PThread CondVar] ADDRESS: 0000000020004858
Parent Thread: 0000000000000000 creation time: 18.316493
Creation call-chain ==
00000000D004E42C ._free_pthread
00000000D004CE98 .pthread_init
00000000D01D8E40 .__modinit
000000001000014C .driver_addmulti
===
 | | Spin / Wait Time (18.330873s)
 | Fail Spin Wait | Comb Comb
 Passes | Rate Count Count | Spin Wait
 Chapter 3. General performance monitoring tools 145

0 | 0.00 0 0 | 0.00 0.00

Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0

Besides the common header information and the [PThread CondVar] identifier,
this report lists the following details:

Passes The number of times the condition was signaled to hold
during the analysis interval.

Fail Rate The percentage of times that the condition was tested and
was not found to be true.

Spin Count The number of times that the condition was tested and was
not found to be true.

Wait Count The number of times a thread was forced into a suspended
wait state waiting for the condition to be signaled.

Spin / Wait Time This field contains the following subfields:

Comb Spin The total number of CPU seconds that
threads spun while waiting for the
condition.

Comb Wait The total number of elapsed seconds that
threads spent in a wait state for the
condition.

Depth This field contains the following subfields:

SpinQ The minimum, maximum, and average
number of threads spinning while waiting
for the condition, across the analysis
interval.

WaitQ The minimum, maximum, and average
number of threads waiting for the
condition, across the analysis interval.

If the -dt or -da options are used, splat reports the thread detail as shown in
Example 3-53.

Example 3-53 PThread Condition-Variable Report (thread detail)

 Fail Spin Wait % Total Time
 PThreadID Passes Rate Count Count Spin Wait
 ~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~   ~~~~~~ ~~~~~~
       1    80312    0.0000       0  80312   0.0000  82.4531
     258    80311    0.0000       0  80312   0.0000  82.4409
146 AIX 5L Practical Performance Tools and Tuning Guide



The columns are defined as follows:

PThreadID The PThread identifier.

Passes The number of times this thread was notified that the 
condition passed.

Fail Rate The percentage of times the thread checked the condition 
and did not find it to be true.

Spin Count The number of times the thread checked the condition 
and did not find it to be true.

Wait Count The number of times this thread was forced to wait until 
the condition came true.

Percent Total Time This field contains the following subfields:

Spin The percentage of elapsed real time that this 
thread spun while testing the condition.

Wait The percentage of elapsed real time that this 
thread spent waiting for the condition to hold.

3.7  The trace, trcnm, and trcrpt commands
The trace command is a utility that monitors statistics of user and kernel 
subsystems in detail.

Many of the performance tools listed in this book, such as curt, use trace to 
obtain their data, then format the data read from the raw trace report and present 
it to the user. The trcrpt command formats a report from the trace log.

Usually before analyzing the trace file, you would use other performance tools to 
obtain an overview of the system for potential or real performance problems. This 
give an indication of what to look for in the trace for resolving any performance 
bottlenecks. The commonly used methodology is to look at the curt output, then 
other performance command outputs, then the formatted trace file.

The trcnm command generates a list of all symbols with their addresses defined 
in the kernel. This data is used by the trcrpt -n command to interpret addresses 
when formatting a report from a trace log file. 

The trace command resides in /usr/sbin and is linked from /usr/bin. The trcnm 
and trcrpt commands reside in /usr/bin. All of these commands are part of the 
bos.sysmgt.trace fileset, which is installable from the AIX base installation media.
 Chapter 3. General performance monitoring tools 147



3.7.1  The trace command
The following syntax applies to the trace command:

� trace [  -a [  -g ] ] [  -f |  -l ] [ -b | -B] [ -c] [ -C [ CPUList | all ]] [  -d ] [  -h ] [ -j 
Event [ ,Event ] ] [ -k Event [ ,Event ] ] [ -J Event-group [ ,Event-group ]] [ -K 
Event-group [ ,Event-group ]] [ -m Message ] [  -n ] [  -o Name ] [  -o- ] [  -p ] [ 
-r reglist ] [  -s ] [ -A process-id [ ,process-id ] ] [ -t thread-id [ ,thread-id ] ] [ -x 
program-specification | -X program-specification ] [ -I ] [ -P trace-propagation 
][  -L Size ] [  -T Size ]

Flags
-a Runs the trace daemon asynchronously (that is, as a 

background task). Once trace has been started this way, you 
can use the trcon, trcoff, and trcstop commands to 
respectively start tracing, stop tracing, or exit the trace session. 
These commands are implemented as links to trace.

-b Allocates buffers from the kernel heap. If the requested buffer 
space cannot be obtained from the kernel heap, the command 
fails. This flag is only valid for a 32-bit kernel.

-B Allocates buffers in separate segments. This flag is only valid for 
a 32-bit kernel.

-c Saves the trace log file, adding .old to its name.

-C[CPUList | all]
Traces using one set of buffers per CPU in the CPUList. The 
CPUs can be separated by commas, or enclosed in double 
quotation marks and separated by commas or blanks. To trace 
all CPUs, specify all. Because this flag uses one set of buffers 
per CPU, and produces one file per CPU, it can consume large 
amounts of memory and file space and should be used with 
care. The files produced are named trcfile, trcfile-0, trcfile-1, and 
so forth, where then numbers represent the CPU numbers. If -T 
or -L are specified, the sizes apply to each set of buffers and 
each file. On a uniprocessor system, you may specify -C all, but 
the -C flag with a list of CPU numbers is ignored. If the -C flag is 
used to specify more than one CPU, such as -Call or -C "0 1", 
then the associated buffers are not put into the system dump.

-d Disables the automatic start of trace data collection. Normally 
the collection of trace data starts automatically when you issue 
the trace daemon, but when you have specified the trace 
command using the -d flag, the trace will not start until the trcon 
command has been issued.
148 AIX 5L Practical Performance Tools and Tuning Guide



-f Runs trace in a single mode. Causes the collection of trace data 
to stop as soon as the in-memory buffer is filled up. The trace 
data is then written to the trace log. Use the trcon command to 
restart trace data collection and capture another full buffer of 
data. If you issue the trcoff command before the buffer is full, 
trace data collection is stopped and the current contents of the 
buffer are written to the trace log.

-g Starts a trace session on a generic trace channel (channels 1 
through 7). This flag works only when trace is run 
asynchronously (-a). The return code of the command is the 
channel number; the channel number must subsequently be 
used in the generic trace subroutine calls. To stop the generic 
trace session, use the command trcstop -<channel_number>.

-h Omits the header record from the trace log. Normally, the trace 
daemon writes a header record with the date and time (from the 
date command) at the beginning of the trace log; the system 
name, version and release, the node identification, and the 
machine identification (from the uname -a command); and a 
user-defined message. At the beginning of the trace log, the 
information from the header record is included in the output of 
the trcrpt command.

-j Event[,Event]See the description for the -k flag.

-k Event[,Event]
Specifies the user-defined events for which you want to collect 
(-j) or exclude (-k) trace data. The Event list items can be 
separated by commas, or enclosed in double quotation marks 
and separated by commas or blanks.

The following events are used to determine the PID, the cpuid, 
and the exec path name in the trcrpt report:

106 DISPATCH
10C DISPATCH IDLE PROCESS
134 EXEC SYSTEM CALL
139 FORK SYSTEM CALL
465 KTHREAD CREATE

If any of these events is missing, the information reported by the 
trcrpt command will be incomplete. Consequently, when using 
the -j flag, you should include all of these events in the Event list. 
Conversely, when using the -k flag, you should not include these 
events in the Event list. If starting the trace with smit or the -J 
flag, these events are in the tidhk group. Additional event hooks 
can be read in Appendix B, “Trace hooks” on page 699.
 Chapter 3. General performance monitoring tools 149



-J Event-group [, Event-group ] 

-K Event-group [, Event-group]
Specifies the event groups to be included (-J) or excluded (-K). 
The -J and -K flags work like -j and -k, except with event groups 
instead of individual hook IDs. All four flags, -j, -J, -k, and -K, 
may be specified. Some important event groups relate to trace 
hooks used by other commands, such as curt and splat. A list 
of these groups can be shown by the command trcevgrp -l.

-l Runs trace in a circular mode. The trace daemon writes the 
trace data to the trace log when the collection of trace data is 
stopped. Only the last buffer of trace data is captured. When you 
stop trace data collection using the trcoff command, restart it 
using the trcon command. 

-L Size Overrides the default trace log file size of 1 MB with the value 
stated. Specifying a file size of zero sets the trace log file size to 
the default size. For a multiple-CPU system, the size limit applies 
to each of the per-CPU logfiles that are generated, rather than 
their collective size.

-m Message Specifies text to be included in the message field of the trace log 
header record.

-n Adds information to the trace log header; lock information, 
hardware information, and, for each loader entry, the symbol 
name, address, and type. 

-o Name Overrides the /var/adm/ras/trcfile default trace log file and writes 
trace data to a user-defined file.

-o - Overrides the default trace log name and writes trace data to 
standard output. The -c flag is ignored when using this flag. An 
error is produced if -o- and -C are specified.

-p Includes the cpuid of the current processor with each hook. This 
flag is only valid for 64-bit kernel traces. The trcrpt command 
can report the cpuid whether or not this option is specified.

-s Stops tracing when the trace log fills. The trace daemon 
normally wraps the trace log when it fills up and continues to 
collect trace data. During asynchronous operation, this flag 
causes the trace daemon to stop trace data collection. During 

Note: In the circular and alternate modes, the trace log file size must be at 
least twice the size of the trace buffer. In the single mode, the trace log file 
must be at least the size of the buffer. See the -T flag for information about 
controlling the trace buffer size.
150 AIX 5L Practical Performance Tools and Tuning Guide



interactive operations, the quit subcommand must be used to 
stop trace.

-T Size Overrides the default trace buffer size of 128 KB with the value 
stated. You must be root to request more than 1 MB of buffer 
space. The maximum possible size is 268,435,184 bytes (256 
MB) unless the -f flag is used, in which case it is 536,870,368 
bytes (512 MB). The smallest possible size is 8192 bytes, unless 
the -f flag is used, in which case it is 16,392 bytes. Sizes 
between 8,192 and 16,392 will be accepted when using the -f 
flag, but the actual size used will be 16,392 bytes. Note that with 
the -C option allocating one buffer per traced CPU, the size 
applies to each buffer rather than the collective size of all buffers.

Unless the -b or -B flags are specified, the system attempts to allocate the buffer 
space from the kernel heap. If this request cannot be satisfied, the system then 
attempts to allocate the buffers as separate segments.

The -f flag actually uses two buffers, which behave as a single buffer (except that 
a buffer wraparound trace hook will be recorded when the first buffer is filled).

Subcommands
When run interactively, trace recognizes the following subcommands:

trcon Starts the collection of trace data.
trcoff Stops the collection of trace data.
q or quit Stops the collection of trace data and exits trace.
! Runs the shell command specified by the Command parameter.
? Displays the summary of trace subcommands.

Signals
The INTERRUPT signal acts as a toggle to start and stop the collection of trace 
data. Interruptions are set to SIG_IGN for the traced process. 

Files
/usr/include/sys/trcmacros.h Defines trchook and utrchook macros.
/var/adm/ras/trcfile Contains the default trace log file.

Note: In the single mode, the trace log file must be at least the size of the 
buffer. See the -L flag for information about controlling the trace log file size. 
The trace buffers use pinned memory, which means they are not pageable. 
Therefore, the larger the trace buffers, the less physical memory is available to 
applications. In the circular and the alternate modes, the trace buffer size must 
be one-half or less the size of the trace log file.
 Chapter 3. General performance monitoring tools 151



3.7.2  Information about measurement and sampling
When trace is running, it will require a CPU overhead of less than 2%. When the 
trace buffers are full, trace will write its output to the trace log, which may require 
up to five percent of CPU resource. The trace command claims and pins buffer 
space. If a system is short of memory, then running trace could further degrade 
system performance.

The trace daemon configures a trace session and starts the collection of system 
events. The data collected by the trace function is recorded in the trace log. A 
report from the trace log is a raw file and can be formatted to a readable ASCII 
file with the trcrpt command.

When invoked with the -a flag, the trace daemon runs asynchronously (that is, as a 
background task). Otherwise, it is run interactively and prompts you for 
subcommands as is shown in Example 3-67 on page 176.

You can use the System Management Interface Tool (smit) to run the trace 
daemon. See “Using SMIT to stop and start trace” on page 175 for details.

Operation modes
There are three modes of trace data collection:

� Alternate (the default)

All trace events are captured in the trace log file.

� Circular

The trace events wrap within the in-memory buffers and are not captured in 
the trace log file until the trace data collection is stopped. To choose the 
Circular trace method, use the -l flag.

� Single

The collection of trace events stops when the in-memory trace buffer fills up 
and the contents of the buffer are captured in the trace log file. To choose the 
Single trace method, use the -f flag. 

Buffer allocation 
Trace buffers are either allocated from the kernel heap or put into separate 
segments. By default, buffers are allocated from the kernel heap unless the 
buffer size requested is too large for buffers to fit in the kernel heap, in which 
case they are allocated in separate segments.

Attention: Depending on what trace hooks you are tracing, the trace file can 
become very large.
152 AIX 5L Practical Performance Tools and Tuning Guide



Allocating buffers from separate segments hinders trace performance somewhat. 
However, buffers in separate segments will not take up paging space; just pinned 
memory. The type of buffer allocation can be specified with the optional -b or -B 
flags when using a 32-bit kernel.

Terminology used for trace
In order to understand how the trace facility (also called trace program) works, it 
is important to know the meaning of some terms.

Trace hooks
A trace hook is a specific event that is to be monitored. For example, if you want 
to monitor Physical File System (PFS) events, include trace hook 10A in the 
trace. Trace hooks are defined by the kernel and can change with different 
releases of the operating system, but trace hooks can also be defined and used 
by an application. If a specific event in an application does not have a trace hook 
defined, then this event will never show up in a trace report.

Trace hooks can be displayed with trcrpt -j. It is recommended that you run 
trcrpt -j to check for any modifications to the trace hooks that IBM may make.

Hook ID
A unique number is assigned to a trace hook (for example, a certain event) called 
a hook ID. These hook IDs can either be called by a user application or by the 
kernel. The hook IDs can be found in the file /usr/sys/include/trchkid.h.

Trace daemon
The trace daemon (sometimes also called trace command or trace process) has 
to be activated in order to generate statistics about user processes and kernel 
subsystems. This is actually the process that can be monitored by the ps 
command.

Trace buffer
The data that is collected by the trace daemon is first written to the trace buffer. 
Only one trace buffer is transparent to the user, though it is internally divided into 
two parts, also referred to as a set of trace buffers. By using the -C option with 
the trace command, one set of trace buffers can be created for each CPU of an 
SMP system. This enhances the total trace buffer capacity. 

Trace log file
Once one of the two internal trace buffers is full, its content is usually written to 
the trace log file. The trace log file does fill up quite quickly, so that in most cases 
only a few seconds are chosen to be monitored by trace.

The sequence followed by the trace facility is shown in Figure 3-5 on page 154.
 Chapter 3. General performance monitoring tools 153



Figure 3-5   The trace facility

Either a user process or a kernel subsystem calls a trace hook function (by using 
the hook ID). These trace hook functions check whether the trace daemon is 
running and, if so, pass the data to the trace daemon that then takes the hook ID 
and the according event and writes them (together with a time stamp) 
sequentially to the trace buffer. Depending on the options that were chosen 
when the trace daemon was invoked (see “Operation modes” on page 152), the 
trace data is then written to the trace log file. A report from the trace log can be 
generated with the trcrpt command.

Just as important is to keep in mind that the trace log file can grow huge 
depending on the amount of data that is being collected. A trace on a fully loaded 
24-way SMP can easily accumulate close to 100 MB of trace data in less than a 
second. Some sensibility is required to determine whether all that data is really 
needed. Often a few seconds is enough to catch all the important activities that 
need to be traced. An easy method of limiting the size of the trace log file is to run 
the trace in Single mode as discussed in “Operation modes” on page 152.

The trace facility

user
kernel

trace log file

trace buffers

A B

user
process

kernel
subsystems

trace 
hook calls

trace 
deamon
154 AIX 5L Practical Performance Tools and Tuning Guide



3.7.3  How to start and stop trace
There are several ways to stop and start trace. Trace daemon can be started 
from SMIT, from command line, or by using other data collection programs, 
based on trace (filemon, netpmon etc.)

Using SMIT to stop and start trace
A convenient way to stop and start trace is to use the smitty trace command. 
This is especially convenient if you are including or excluding specific trace 
hooks. Using the System Management Interface Tool (SMIT) enables you to view 
a trace hook list using the F4 key and choose the trace hook(s) to include or 
exclude.

To access the trace menus of SMIT, type smitty trace. The menu in 
Example 3-54 will appear.

Example 3-54   The SMIT trace menu

                                     Trace

Move cursor to desired item and press Enter.

  START Trace
  STOP Trace
  Generate a Trace Report
  Manage Event Groups

Enter the START Trace menu and start the trace as shown in Example 3-55.

Example 3-55   Using SMIT to start the trace

# smitty trace
                                  START Trace

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
  EVENT GROUPS to trace                              []                       +
  ADDITIONAL event IDs to trace                      []                       +
  Event Groups to EXCLUDE from trace                 []                       +
  Event IDs to EXCLUDE from trace                    []                       +
  Trace MODE                                         [alternate]              +
  STOP when log file full?                           [no]                     +
  LOG FILE                                           [trace.raw]
  SAVE PREVIOUS log file?                            [no]                     +
  Omit PS/NM/LOCK HEADER to log file?                [yes]                    +
  Omit DATE-SYSTEM HEADER to log file?               [no]                     +
 Chapter 3. General performance monitoring tools 155



  Run in INTERACTIVE mode?                           [no]                     +
  Trace BUFFER SIZE in bytes                         [10000000]                #
  LOG FILE SIZE in bytes                             [10000000]                #
  Buffer Allocation                                  [automatic]              +

You can exit the menu, then select the STOP Trace option of the menu in 
Example 3-54 on page 155 to stop the trace. The trace trace.raw will reside in 
the current directory.

3.7.4  Running trace interactively
Example 3-56 shows how to run trace interactively, tracing the ls command as 
well as other processes running on the system from within the trace command. 
The raw trace file created by trace is called /var/adm/ras/trcfile.

Example 3-56   Running trace interactively

# trace
-> !ls
-> quit
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system      1338636 Apr 16 08:53 /var/adm/ras/trcfile

3.7.5  Running trace asynchronously
Example 3-57 shows how to run trace asynchronously, tracing the ls command 
as well as other processes running on the system. This method avoids delays 
when the command finishes. The raw trace file created by trace is called 
/var/adm/ras/trcfile.

Example 3-57   Running trace asynchronously

# trace -a ; ls ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system       208640 Apr 16 08:54 /var/adm/ras/trcfile

Note that by using this method, the trace file is considerably smaller than the 
interactive method shown in Example 3-56.

3.7.6  Running trace on an entire system for 10 seconds
Example 3-58 on page 157 shows how to run trace on the entire system for 10 
seconds. This traces all system activity and includes all trace hooks. The raw 
trace file created by trace is called /var/adm/ras/trcfile.
156 AIX 5L Practical Performance Tools and Tuning Guide



Example 3-58   Running trace on an entire system for 10 seconds

# trace -a ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system      1350792 Apr 16 08:56 /var/adm/ras/trcfile

Tracing to a specific log file
Example 3-59 shows how to run trace asynchronously, tracing the ls command 
and outputting the raw trace file to /tmp/my_trace_log.

Example 3-59   Tracing to a specific log file

# ls -l /tmp/my_trace_log
/tmp/my_trace_log not found
# trace -a -o /tmp/my_trace_log; ls; trcstop
# ls -l /tmp/my_trace_log*
-rw-rw-rw-   1 root     system       206924 Apr 16 08:58 /tmp/my_trace_log

3.7.7  Tracing a command
The following section shows how to trace commands.

Tracing a command that is not already running on the system
Example 3-59 shows how to run trace on a command that you are about to start. 
It allows you to start trace, run the command, and then terminate trace. This 
ensures that all trace events are captured.

Tracing a command that is already running on the system
To trace a command that is already running, run a trace on the entire system as 
in Example 3-58, and use the trcrpt command with the -p flag to specify 
reporting of the specific process.

3.7.8  Tracing using one set of buffers per CPU
Normally, trace groups all CPU buffers into one trace file. Events that occurred 
on the individual CPUs may be separated into CPU-specific files as shown in 
Example 3-60. This increases the total buffered size capacity for collecting trace 
events.

Example 3-60   Tracing using one set of buffers per CPU

# trace -aC all ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root    system       37996 Apr 16 08:59 /var/adm/ras/trcfile
-rw-rw-rw-   1 root    system     1313400 Apr 16 09:00 /var/adm/ras/trcfile-0
-rw-rw-rw-   1 root    system       94652 Apr 16 09:00 /var/adm/ras/trcfile-1
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-10
 Chapter 3. General performance monitoring tools 157



-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-11
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-12
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-13
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-14
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-15
-rw-rw-rw-   1 root    system     1313400 Apr 16 09:00 /var/adm/ras/trcfile-2
-rw-rw-rw-   1 root    system     1010096 Apr 16 09:00 /var/adm/ras/trcfile-3
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-4
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-5
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-6
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-7
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-8
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-9

The example above has four individual files (one for each CPU) plus the master 
file /var/adm/ras/trcfile.

Running the trace -aCall -o mylog command would produce the files mylog, 
mylog-0, mylog-1, mylog-2, mylog-3, and so forth, one for each CPU.

3.7.9  Examples for trace
These are just two examples where trace can be used. The trace command is a 
powerful tool that can be used for many diagnostic purposes.

� Checking return times from called routines

If the system is running slow, then trace can be used to determine how long 
threads are taking to return from functions. Long return times could highlight a 
performance problem. An example of this shown in “Checking return times 
from trace” on page 178.

� Sequential reads and writes

If you are experiencing high disk I/O then you can determine how long the 
disk I/O is taking to perform and what sort of disk accesses are occurring. For 
example, a database may be performing a full table scan on an unindexed file 
to retrieve records. This would be inefficient and may point to problems with 
indexing, or there may not be an index at all. An example of this is shown in 
“Sequential reads and writes” on page 162.

Checking return times from trace
In this section we will check return times from the trace to see if there are any 
long delays.
158 AIX 5L Practical Performance Tools and Tuning Guide



First, we create a raw trace of all the processes running on the system as in 
Example 3-61. Then the individual CPU traces are combined into the raw trace 
file (trace.r). We will then use trcrpt to create the file trcrpt.out.

Example 3-61   Running trace on an entire system for 10 seconds

# trace -aC all ; sleep 10 ; trcstop
# gennames > gennames.out
# trcnm > trace.nm
# cp /etc/trcfmt trace.fmt
# trcrpt -C all -r /var/adm/ras/trcfile > trace.r
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > 
trcrpt.out

A useful part of the trace report (trcrp.out) is the return times from various 
functions that occurred during the trace. Use the grep command for only the 
microsecond times for an indication of which processes are using the most time. 
This can also be achieved by using the shell script in Example 3-62. The script 
greps for the microsecond times, and displays trace file lines of the top 20 
highest return times. It excludes the trace hook ID 102 (wait).

Example 3-62   Script to check for return times in trace

# Extract the return times from the trace file

TMPFILE1=/tmp/usec1-$$
TMPFILE2=/tmp/usec2-$$

grep "ID  PROCESS NAME" trcrpt.out

grep usec trcrpt.out | grep -vw '102 wait' | awk -F'[' '{ print $2 }' |\
awk '{ print $1 }' > $TMPFILE1

sort -rn $TMPFILE1| head -20 > $TMPFILE2

while read string
do

grep "$string usec" trcrpt.out

done < $TMPFILE2

Example 3-63 shows the output from the script.

Example 3-63   Top 20 highest return times

ID  PROCESS NAME CPU   PID   I  ELAPSED_SEC   DELTA_MSEC APPL SYSCALL KERNEL  INTERRUPT
104 syncd          2   378      4.504329796     0.000216       return from sync [472167 usec]
221 wait           0   516   1  4.882048580     0.002962               SCDISKDD iodone: ipldevice 
bp=30B47200 B_WRITE [392401 usec]
 Chapter 3. General performance monitoring tools 159



221 wait           0   516   1  4.875472073     0.003951               SCDISKDD iodone: ipldevice 
bp=309D2100 B_WRITE [386128 usec]
106 java           0   29944    1.924588685     0.000746               dispatch:   cmd=java pid=29944 
tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
104 java           2   29944    9.930639660     0.001493       return from _select [250117 usec]
106 java           0   29944    1.924588685     0.000746               dispatch:   cmd=java pid=29944 
tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
104 java           2   29944    9.930639660     0.001493       return from _select [250117 usec]
104 java           0   29944    4.926771906     0.005855       return from _select [250108 usec]
104 java           0   29944    7.928691841     0.029999       return from _select [250100 usec]
104 java           0   29944    8.929828448     0.019108       return from _select [250097 usec]
104 java           0   29944    4.426232284     0.005662       return from _select [250096 usec]
104 java           0   29944    8.429250350     0.009999       return from _select [250089 usec]
104 java           0   29944    7.678503300     0.016433       return from _select [250088 usec]
104 java           0   29944    4.175869414     0.041926       return from _select [250081 usec]
104 java           0   29944    4.676462779     0.032481       return from _select [250080 usec]
104 java           0   29944    8.679499786     0.036143       return from _select [250080 usec]
104 java           0   29944    4.676462779     0.032481       return from _select [250080 usec]
104 java           0   29944    8.679499786     0.036143       return from _select [250080 usec]
104 java           0   29944    8.179039200     0.021662       return from _select [250075 usec]
104 java           0   29944    2.424882026     0.012939       return from _select [250073 usec]
104 java           0   29944    5.927430839     0.003036       return from _select [250071 usec]
104 java           0   29944    3.425409815     0.016963       return from _select [250064 usec]
104 java           0   29944    9.180150683     0.015228       return from _select [250064 usec]
104 java           0   29944    3.425409815     0.016963       return from _select [250064 usec]
104 java           0   29944    9.180150683     0.015228       return from _select [250064 usec]
104 java           0   29944    6.427796087     0.007108       return from _select [250062 usec]

This example shows some large return times from syncd and java. As the syncd 
only featured once, compared to the java process 29944, we look at the java 
process. syncd may have a lot of data to write to disk because of a problem with 
the java process, and therefore longer return times.

To look at process 29944 in more detail, we run the trcrpt command specifying 
process 29944 in the command line, as in Example 3-64.

Example 3-64   Traces for process 29944 (java)

# trcrpt -O exec=on,pid=on,cpuid=on -o trcrpt.29944 -p 29944 -n trace.nm -t trace.fmt trace.r
# ls trcrpt.29944
trcrpt.29944

We can now look directly at the trace file called trcrpt.29944 using an editor such 
as vi that is able to handle large files. Editing the trace file with vi might produce 
an error stating that there is not enough space in the file system. If you get this 
error, choose a file system with enough free space to edit the trace file (in this 
example, /bigfiles is the name of the file system), then run these commands:

mkdir /bigfiles/tmp ; echo "set dir=/bigfiles/tmp" > $HOME/.exrc

This directs vi to use the /bigfiles/tmp directory for temporary storage.
160 AIX 5L Practical Performance Tools and Tuning Guide



From Example 3-63 on page 159 we know that we have a potential problem with 
process ID 29944 (java). We can now look further into the java process by 
producing a trace file specific to process 29944 as in the following example (the 
file we will create is called trcrpt.29944).

Search for the return time of 250117 microseconds (refer to Example 3-63 on 
page 159) in trcrpt.29944. This will display the events for the process as shown in 
Example 3-65.

Example 3-65   A traced routine call for process 29944

# cat trcrpt.29944
...(lines omitted)...
252 java           0   29944         1.674567306       0.003879           SOCK soo_select fp=10006FF0 
so=7013B000 corl=12 reqevents=00000001 rtneventsp=F00EFA50
116 java           0   29944         1.674568077       0.000771                   xmalloc(0020,30000000)
116 java           0   29944         1.674573257       0.005180                   xmalloc(0020,30000000)
2F9 java           0   29944         1.674585184       0.011927                   WLM STOP THREAD: 
pid=29944 class=65 nb_us=112 time=11760
10E java           -1  29944         1.924587939     250.002755                   relock: lock 
addr=1945040  oldtid=517  newtid=40263
106 java           0   29944         1.924588685       0.000746                   dispatch:   cmd=java 
pid=29944 tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
200 java           0   29944         1.924589576       0.000891                   resume  java iar=43620 
cpuid=00
104 java           0   29944         1.924604756       0.015180           return from _select [250042 
usec]
...(lines omitted)...

A similar entry is repeated many times throughout the trace file (trcrpt.29944), 
suggesting that the same problem occurs many times throughout the trace.

For ease of reading, Example 3-65 has been split vertically, approximately 
halfway across the page, and shown separately in the next two examples.

Example 3-66 shows the left-hand side with the times.

Example 3-66   A traced routine call for process 29944 (left side)

ID  PROCESS NAME   CPU PID      I    ELAPSED_SEC     DELTA_MSEC
252 java           0   29944         1.674567306       0.003879
116 java           0   29944         1.674568077       0.000771
116 java           0   29944         1.674573257       0.005180
2F9 java           0   29944         1.674585184       0.011927
10E java           -1  29944         1.924587939     250.002755

Attention: As some trace files may be large, be careful that you do not use all 
of the file system space, as this will cause problems for AIX and other 
applications running on the system. 
 Chapter 3. General performance monitoring tools 161



106 java           0   29944         1.924588685       0.000746
200 java           0   29944         1.924589576       0.000891
104 java           0   29944         1.924604756       0.015180

The right-hand side with the system calls is shown in Example 3-67. The trace 
hooks have been left in to enable you to associate the two examples.

Example 3-67   A traced routine call for process 29944 (right side)

ID  SYSCALL KERNEL  INTERRUPT
252 SOCK soo_select fp=10006FF0 so=7013B000 corl=12 reqevents=00000001 rtneventsp=F00EFA50
116  xmalloc(0020,30000000)
116  xmalloc(0020,30000000)
2F9  WLM STOP THREAD: pid=29944 class=65 nb_us=112 time=11760
10E  relock: lock addr=1945040  oldtid=517  newtid=40263
106  dispatch:cmd=java pid=29944 tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
200  resume  java iar=43620 cpuid=00
104 return from _select [250042 usec]

As can be seen from the above example, when the java process was trying to 
reserve memory, the Workload Manager (WLM) stopped the thread from 
running, which caused a relock to occur. The relock took 250.002755 usec 
(microseconds). This should be investigated further. You could, in this instance, 
tune the WLM to allow more time for the java process to complete.

Sequential reads and writes
The trace command can be used to identify reads and writes to files.

When the trace report has been generated, you can determine the type of reads 
and writes that are occurring on file systems when the trace was run.

The following script is useful for displaying the type of file accesses. The script 
extracts readi and writei Physical File System (PFS) calls from the formatted 
trace and sorts the file in order of the ip field (Example 3-68).

Example 3-68   Script to sort PFS trace events

:
egrep "PFS writei|PFS readi" trcrpt.out > readwrite
> trcrpt.pfs
for ip in `cat readwrite | grep 'ip=' | awk -F'ip=' '{ print $2 }' |\
 awk '{ print $1 }' | sort -u`
do
        grep "ip=$ip" readwrite >> trcrpt.pfs
done

The output from these scripts is shown in Example 3-69 on page 163.
162 AIX 5L Practical Performance Tools and Tuning Guide



Example 3-69   PFS file access in trace file

# cat trcrpt.pfs
...(lines omitted)...
PFS readi  VA.S=0000 3CE000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D0000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D4000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D6000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D8000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3E0000.293C5 bcount=2000 ip=1B160270
...(lines omitted)...

This example shows that the file at IP address 1B160270 was read from with a 
block size of 8 KB reads (bcount=2000). By looking at the Virtual Address (VA) 
field, you will observe that the VA field mostly incremented by 2000 (the 2000 is 
expressed in hexadecimal). If you see this sequence then you know that the file 
is receiving a lot of sequential reads. In this case, it could be because that file 
does not have an index. For an application to read large files without indexes, in 
some cases, a full table scan is needed to retrieve records. In this case it would 
be advisable to index the file.

To determine what file is being accessed, it is necessary to map the ip to a file 
name. This is done with the ps command.

For efficiency, it is best to perform file accesses in multiples of 4 KB. 

3.7.10  The trcnm command
The syntax of the trcnm command is:

trcnm [  -a [ FileName ] ] | [ FileName ] | -K Symbol ... 

Flags
-a Writes all loader symbols to standard output. The default 

is to write loader symbols only for system calls.

-K Symbol... Obtains the value of all command line symbols through 
the knlist system call. 

Parameters
FileName The kernel file that the trcnm command creates the name 

list for. If this parameter is not specified, the default 
FileName is /unix.

Symbol The name list will be created only for the specified 
symbols. To specify multiple symbols, separate the 
symbols by a space.
 Chapter 3. General performance monitoring tools 163



The trcnm command writes to standard output. When using the output from the 
trcnm command with the trcrpt -n command, save this latest output into a file.

Information about measurement and sampling
The trcnm command generates a list of symbol names and their addresses for 
the specified kernel file, or /unix if no kernel file is specified. The symbol names 
and addresses are read out of the kernel file. The output of the trcnm command 
is similar the output the stripnm -x command provides. The output format differs 
between these commands.

3.7.11  Examples for trcnm
The following command is used to create a name list for the kernel file /unix:

trcnm >/tmp/trcnm.out

To create the name list only for the kernel symbols net_malloc and m_copym, 
use the trcnm -K net_malloc m_copym command as shown in Example 3-70.

Example 3-70   Using trcnm to create the name list for specified symbols

# trcnm -K net_malloc m_copym
net_malloc           001C9FCC
m_copym              001CA11C

For each specified symbol the name and the address is printed.

3.7.12  The trcrpt command
The following syntax applies to the trcrpt command:

trcrpt [ -c ] [ -C [ CPUList | all ]] [ -d List ] 
[ -D Event-group-list ] [ -e Date ] [ -G ] [ -h ] [ -j ] [ -k List ]
[ -K Group-list ] [ -n Name ] [ -o File ] [ -p List ] [ -r ]
[ -s Date ] [ -t File ] [ -T List ] [ -v ] [ -O Options ] [-x ] [ File ]

Note: The trace command flag -n gathers the necessary symbol information 
needed by the trcrpt command and stores this information in the trace log 
file. The symbol information gathered by trace -n includes the symbols from 
the loaded kernel extensions. The trcnm command provides only the symbol 
information for the kernel. The use of the -n flag of trace as a replacement for 
the trcnm command is recommended.
164 AIX 5L Practical Performance Tools and Tuning Guide



Flags
-c Checks the template file for syntax errors.

-C [ CPUList | all ] Generates a report for a multi-CPU trace with trace -C. 
The CPUs can be separated by commas, or enclosed in 
double quotation marks and separated by commas or 
blanks. To report on all CPUs, specify trace -C all. The 
-C flag is not necessary unless you want to see only a 
subset of the CPUs traced or have the CPU number show 
up in the report. If -C is not specified, and the trace is a 
multi-CPU trace, trcrpt generates the trace report for all 
CPUs, but the CPU number is not shown for each hook 
unless you specify -O cpu=on. 

-d List Limits report to hook IDs specified with the List variable. 
The List parameter items can be separated by commas, 
or enclosed in double quotation marks and separated by 
commas or blanks.

-D Event-group-list Limits the report to hook IDs in the Event groups list, plus 
any hook IDs specified with the -d flag. List parameter 
items can be separated by commas or enclosed in double 
quotation marks and separated by commas or blanks.

-e Date Ends the report time with entries on or before the 
specified date. The Date variable has the form 
mmddhhmmssyy (month, day, hour, minute, second, and 
year). Date and time are recorded in the trace data only 
when trace data collection is started and stopped. If you 
stop and restart trace data collection multiple times during 
a trace session, date and time are recorded each time you 
start or stop a trace data collection. Use this flag in 
combination with the -s flag to limit the trace to data 
collected during a certain time interval.

    If you specify -e with -C, the -e flag is ignored.

-G List all event groups. The list of groups, the hook IDs in 
each group, and each group’s description is listed to 
standard output.

-h Omits the header information from the trace report and 
writes only formatted trace entries to standard output.

-j Displays the list of hook IDs. The trcrpt -j command 
can be used with the trace -j command that includes 
IDs of trace events, or the trace -k command that 
excludes IDs of trace events.
 Chapter 3. General performance monitoring tools 165



-k List Excludes from the report hook IDs specified with the List 
variable. The List parameter items can be separated by 
commas, or enclosed in double quotation marks and 
separated by commas or blanks.

-K Event-group-list Excludes from the report hook IDs in the event-groups list, 
plus any hook IDs specified with the -k flag. List 
parameter items can be separated by commas, or 
enclosed in double quotation marks and separated by 
commas or blanks.

-n Name Specifies the kernel name list file to be used to interpret 
addresses for output. Usually this flag is used when 
moving a trace log file to another system.

-o File Writes the report to a file instead of to standard output.

-O Options Specifies options that change the content and 
presentation of the trcrpt command. Arguments to the 
options must be separated by commas. Valid options are:

• 2line=[on|off]
Uses two lines per trace event in the report instead of 
one. The default value is off.

• cpuid=[on|off]
Displays the physical processor number in the trace 
report. The default value is off.

• endtime=Seconds
Displays trace report data for events recorded before 
the seconds specified. Seconds can be given in either 
an integral or rational representation. If this option is 
used with the starttime option, a specific range can be 
displayed.

• exec=[on|off]
Displays exec path names in the trace report. The 
default value is off.

• hist=[on|off]
Logs the number of instances that each hook ID is 
encountered. This data can be used for generating 
histograms. The default value is off. This option cannot 
be run with any other option. 

• ids=[on|off]
Displays trace hook identification numbers in the first 
column of the trace report. The default value is on.

• pagesize=Number
Controls the number of lines per page in the trace 
report and is an integer in the range of 0 through 500. 
The column headings are included on each page. No 
166 AIX 5L Practical Performance Tools and Tuning Guide



page breaks are present when the default value (zero) 
is set.

• pid=[on|off]
Displays the process IDs in the trace report. The 
default value is off.

• reportedcpus=[on|off]
Displays the number of CPUs remaining. This option is 
only meaningful for a multi-CPU trace; that is, if the 
trace was performed with the -C flag. For example, if a 
report is read from a system having four CPUs, and 
the reported CPUs value goes from four to three, then 
you know that there are no more hooks to be reported 
for that CPU.

• starttime=Seconds
Displays trace report data for events recorded after the 
seconds specified. The specified seconds are from the 
beginning of the trace file. Seconds can be given in 
either an integral or rational representation. If this 
option is used with the endtime option, a specific range 
of seconds can be displayed.

• svc=[on|off]
Displays the value of the system call in the trace 
report. The default value is off.

• tid=[on|off]
Displays the thread ID in the trace report. The default 
value is off. 

• timestamp=[0|1|2|3]
Controls the time stamp associated with an event in 
the trace report. The possible values are:
0 Time elapsed since the trace was started. Values 

for elapsed seconds and milliseconds are 
returned to the nearest nanosecond and 
microsecond, respectively. This is the default 
value.

1 Short elapsed time.
2 Microseconds.
3 No time stamp.

-p List Reports the process IDs for each event specified by the 
List variable. The List variable may be a list of process IDs 
or a list of process names. List items that start with a 
numeric character are assumed to be process IDs. The 
list items can be separated by commas, or enclosed in 
double quotation marks and separated by commas or 
blanks.
 Chapter 3. General performance monitoring tools 167



-r Outputs unformatted (raw) trace entries and writes the 
contents of the trace log to standard output one entry at a 
time. Use the -h flag with the -r flag to exclude the 
heading. To get a raw report for CPUs in a multi-CPU 
trace, use both the -r and -C flags.

-s Date Starts the report time with entries on or before the 
specified date. The Date variable has the form 
mmddhhmmssyy (month, day, hour, minute, second, and 
year). Date and time are recorded in the trace data only 
when trace data collection is started and stopped. If you 
stop and restart trace data collection multiple times during 
a trace session, date and time are recorded each time you 
start or stop a trace data collection. Use this flag in 
combination with the -e flag to limit the trace to data 
collected during a certain time interval. 

   If you specify -s with -C, the -s flag is ignored.

-t File Uses the file specified in the File variable as the template 
file. The default is the /etc/trcfmt file.

-T List Limits the report to the kernel thread IDs specified by the 
List parameter. The list items are kernel thread IDs 
separated by commas. Starting the list with a kernel 
thread ID limits the report to all kernel thread IDs in the 
list. Starting the list with a ! (exclamation point) followed by 
a kernel thread ID limits the report to all kernel thread IDs 
not in the list.

-v Prints file names as the files are opened. Changes to 
verbose setting. 

-x Displays the exec path name and value of the system call.

Parameters
File Name of the raw trace file.

Information about measurement and sampling
The trcrpt command reads the trace log specified by the File parameter, 
formats the trace entries, and writes a report to standard output. The default file 
from which the system generates a trace report is the /var/adm/ras/trcfile file, but 
you can specify an alternate File parameter. 
168 AIX 5L Practical Performance Tools and Tuning Guide



3.7.13  Examples for trcrpt
You can use the System Management Interface Tool (SMIT) to run the trcrpt 
command by entering the SMIT fast path smitty trcrpt.

Example 3-71 shows how to run trcrpt using /var/adm/ras/trcfile as the raw 
trace file.

Example 3-71   Running trcrpt via SMIT

                            Generate a Trace Report

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                      [Entry Fields]
  Show exec PATHNAMES for each event?              [yes]                    +
  Show PROCESS IDs for each event?                 [yes]                    +
  Show THREAD IDs for each event?                  [yes]                    +
  Show CURRENT SYSTEM CALL for each event?         [yes]                    +
  Time CALCULATIONS for report                     [elapsed+delta in milli> +
  Event Groups to INCLUDE in report                []                       +
  IDs of events to INCLUDE in report               []                       +X
  Event Groups to EXCLUDE from report              []                       +
  ID's of events to EXCLUDE from report            []                       +X
  STARTING time                                    []
  ENDING time                                      []
  LOG FILE to create report from                   [/var/adm/ras/trcfile]
  FILE NAME for trace report (default is stdout)   []

Combining trace buffers
Normally, trace groups all CPU buffers into one trace file. If you run trace with 
the -C all option, then the events that occurred on the individual CPUs will be 
separated into CPU-specific files as in the following example. To run trcrpt to 
format the trace into a readable file, you must combine the raw trace files into one 
raw trace file., then you can remove the specific raw trace files, as these are no 
longer required and usually are quite large in size. Example 3-72 shows this 
procedure.

Example 3-72   Tracing using one set of buffers per CPU

# trace -aC all ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system      44468 Apr 16 12:36 /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system     598956 Apr 16 12:37 /var/adm/ras/trcfile-0
-rw-rw-rw-   1 root     system     369984 Apr 16 12:37 /var/adm/ras/trcfile-1
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-10
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-11
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-12
 Chapter 3. General performance monitoring tools 169



-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-13
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-14
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-15
-rw-rw-rw-   1 root     system     394728 Apr 16 12:37 /var/adm/ras/trcfile-2
-rw-rw-rw-   1 root     system     288744 Apr 16 12:37 /var/adm/ras/trcfile-3
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-4
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-5
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-6
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-7
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-8
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-9
# trcrpt -C all -r /var/adm/ras/trcfile > trace.r
# ls -l trace.r
-rw-r--r--   1 root     system      1694504 Apr 16 13:55 trace.r
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > 
trcrpt.out
# head -10 trcrpt.out

Fri Apr 16 12:36:57 2004
System: AIX 5.2 Node: lpar05
Machine: 0021768A4C00
Internet Address: 09030445 9.3.4.69
The system contains 16 cpus, of which 16 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing all hooks.

# rm /var/adm/ras/trcfile*
# trcnm > trace.nm
# cp /etc/trcfmt trace.fmt
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > 
trcrpt.out
# head trcrpt.out
...(lines omitted)...
170 AIX 5L Practical Performance Tools and Tuning Guide



Chapter 4. CPU analysis and tuning

This chapter provides detailed information about the following CPU monitoring or 
tuning tools.

� Monitoring tools
– lparstat (new command in AIX 5L Version 5.3)
– mpstat (new command in AIX 5L Version 5.3)
– procmon (new tool in AIX 5L Version 5.3)
– topas
– sar
– iostat
– vmstat
– ps
– trace
– curt
– splat
– truss
– gprof,pprof,prof,tprof
– time,timex

� Tuning tools
– smtctl (new command in AIX 5L Version 5.3)
– bindintcpu
– bindprocessor
– schedo
– renice
– nice

4

© Copyright IBM Corp. 2005. All rights reserved. 171



4.1  CPU overview
When investigating a performance problem, we usually start by monitoring the 
statistics of CPU utilization. It is important continuously observe system 
performance because, when performing performance problem determination, we 
need to compare the loaded system data with normal usage data.

Generally, CPU is one of the fastest components of the system and if CPU 
utilization keeps the CPU 100% busy, this also affects system-wide performance. 
If you discover that the system keeps the CPU 100% busy, you need to 
investigate the process which causes this. AIX provides many trace and profiling 
tools for system and/or processes.

4.1.1  Performance considerations with POWER4-based systems
POWER4™-based server supports Logical Partitioning (LPAR). Each of the 
partitions on a same system can run a different level of operating system and 
LPAR-ing has been designed to isolate software running in one partition from the 
other partitions. Generally, an application is not aware that it is running in a LPAR 
or not. LPAR is transparent to AIX applications and most AIX performance tools. 
From the processor point of view, each LPAR needs at least one processor, and it 
is necessary to assign CPUs in integer numbers.

DLPAR
Using the Dynamic LPAR function, you can change the number of online 
processors dynamically. Some performance monitoring tools such as topas, 
sar, vmstat, iostat, lparstat, mpstat support DLPAR operation. These 
commands can detect the change of system configuration and report the latest 
system configuration.

4.1.2  Performance considerations with POWER5-based systems
POWER5 is IBM’s second generation of dual core microprocessor chips. 
POWER5 provides new and improved functions for more granular and flexible 
partitioning.

From the processor point of view, POWER5 processors contain new 
technologies, like Micro-Partitioning and simultaneous multi-threading (SMT). 
AIX 5L Version 5.3 also supports these new technologies.

Micro-Partitioning provides the ability to share a single processor between 
multiple partitions. These partitions are called shared processor partitions. Of 
course, POWER5-based systems continue to support partition with dedicated 
172 AIX 5L Practical Performance Tools and Tuning Guide



dedicated processors. These partitions are called dedicated partitions. 
Dedicated partitions don't share a single physical processor with other partitions.

In a shared-partition environment, the POWER Hypervisor™ schedules and 
distributes processor entitlement to shared-partitions from a set of physical 
processors. These physical processor set is called shared processor pool. 
Processor entitlement is distributed with each turn of the hypervisor’s dispatch 
wheel, and each partition consumes or cedes the given processor entitlement. 
Figure 4-1 shows a sample of a dedicated partition and a micro-partition on 
POWER5-based server.

Figure 4-1   LPARs configuration on Power5-based server

In simultaneous multi-threading (SMT), the processor fetches instructions from 
more than one thread. The basic concept of SMT is that no single process use all 
processor execution units at the same time. The POWER5 design implements 
two-way SMT on each of the chip’s two processor cores. Thus, each physical 
processor core is represented by two Virtual processors. Figure 4-2 on page 174 
shows a comparison between single threaded and simultaneous multi-threading.

Micro-partitions
Shared Pool of 6 CPUs

Li
nu

x

AI
X 

5L
 V

5.
3

AI
X 

5L
 V

5.
3

A
IX

 5
L 

V5
.3

Li
nu

x

A
IX

 5
L 

V5
.2

AI
X 

5L
 V

5.
3

Dedicated-
partitions

POWER Hypervisor

Micro-partitions
Shared Pool of 6 CPUs

Li
nu

x

AI
X 

5L
 V

5.
3

AI
X 

5L
 V

5.
3

A
IX

 5
L 

V5
.3

Li
nu

x

A
IX

 5
L 

V5
.2

AI
X 

5L
 V

5.
3

Dedicated-
partitions

POWER Hypervisor
 Chapter 4. CPU analysis and tuning 173



Figure 4-2   Simultaneous Multi-threading

For more information about Micro-Partitioning and SMT, refer to the whitepaper 
“IBM ~ p5 AIX 5L Support for Micro-Partitioning and Simultaneous 
Multi-threading”, at:

http://www-1.ibm.com/servers/aix/whitepapers/aix_support.pdf

4.2  CPU monitoring
This section introduces the most frequently used CPU monitoring commands. 
The command syntax, along with usage example is presented for clarity.

4.2.1  The lparstat command
The lparstat command has been introduced for showing logical partition (LPAR) 
related information and statistics. The lparstat command resides in /usr/bin and 
is part of the bos.acct package, which is installable from the AIX base installation 
media.

Syntax
lparstat { [ -i | -H | [ -h ] [ Interval [ Count ] ] }

FX0
FX1
LS0
LS1
FP0
FP1
BFX
CRL

FX0
FX1
LS0
LS1
FP0
FP1
BFX
CRL

Processor Cycles

Processor Cycles

POWER4(Single Threaded)

POWER5(Simultaous Munti-Threaded)

Thread0 Active

Thread1 Active
No Thread Active

FX0
FX1
LS0
LS1
FP0
FP1
BFX
CRL

FX0
FX1
LS0
LS1
FP0
FP1
BFX
CRL

Processor Cycles

Processor Cycles

POWER4(Single Threaded)

POWER5(Simultaous Munti-Threaded)

Thread0 Active

Thread1 Active
No Thread Active
174 AIX 5L Practical Performance Tools and Tuning Guide

http://www-1.ibm.com/servers/aix/whitepapers/aix_support.pdf


Flags
-i Lists detailed information on LPAR configuration

-H Provides detailed information about Hypervisor statistics

-h Adds summarized Hypervisor statistics to the default 
output

Parameters
Interval specifies the amount of time in seconds between each 

report

Count specifies the number of reports generated

Examples
lparstat command has following three modes. 

Monitoring mode 
The lparstat command with no options will generate a single report containing 
utilization statistics related to the LPAR since boot time. Example 4-1 on 
page 176 shows a sample of the utilization statistics report. 

The following information is displayed for the utilization statistics.

%user Shows the percentage of the entitled processing capacity 
used while executing at the user (or application) level. 

%sys Shows the percentage of the entitled processing capacity 
used while executing at the system (or kernel) level. 

%idle Shows the percentage of the entitled processing capacity 
unused while the partition was idle and did not have any 
outstanding disk I/O request. 

%wait Shows the percentage of the entitled processing capacity 
unused while the partition was idle and had outstanding 
disk I/O request(s). 

For the dedicated partitions, the entitled processing capacity is the number of 
physical processors. 

The following statistics are displayed only on the shared partition.

physc Shows the number of physical processors consumed. 

%entc Shows the percentage of the entitled capacity consumed. 

lbusy Shows the percentage of logical processors utilization 
while executing at the user and system level.
 Chapter 4. CPU analysis and tuning 175



app Shows the available physical processors in the shared 
pool.

phint Shows the number of phantom (targeted to another 
shared partition in this pool) interruptions received.

Example 4-1   Displaying the utilization statistics with the lparstat command

r33n01:/ # lparstat 1 5

System configuration: type=Shared mode=Uncapped smt=On lcpu=4 mem=7168 ent=2.00

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
  0.1   0.3    0.0   99.6  0.01   0.5    0.0     -   320     0
  0.0   0.3    0.0   99.7  0.01   0.5    0.0     -   376     0
  0.1   0.7    0.0   99.2  0.02   1.0    2.5     -   462     0
  0.0   0.3    0.0   99.7  0.01   0.4    0.0     -   434     0
  0.1   0.3    0.0   99.6  0.01   0.6    0.0     -   409     0
r33n01:/ #

If the -h flag is specified, the report will include the following Hypervisor related 
statistics. 

%hypv Shows the percentage of time spent in hypervisor. 

hcalls Shows the number of hypervisor calls executed. 

Example 4-2 shows a sample of lparstat statistics report using the -h flag. 

Example 4-2   The lparstat command with -h flag reports Hypervisor statistics

r33n01:/ # lparstat -h 1 5

System configuration: type=Shared mode=Uncapped smt=On lcpu=4 mem=7168 ent=2.00

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint  %hypv hcalls
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----  ----- ------
 47.3   0.1    0.0   52.6  1.00  50.2   27.8     -   189     0    2.8    204
 47.3   0.0    0.0   52.7  1.00  50.0   25.0     -   160     0    2.7    166
 47.4   0.0    0.0   52.5  1.00  50.0   25.0     -   169     0    2.6    173
 47.3   0.0    0.0   52.7  1.00  50.0   25.0     -   160     0    2.7    164
 47.3   0.0    0.0   52.7  1.00  50.0   25.0     -   162     0    2.7    166
r33n01:/ #

Information mode
The lparstat command with -i flag displays static LPAR configuration. 
Example 4-3 on page 177 shows a sample of static LPAR configuration report. 
176 AIX 5L Practical Performance Tools and Tuning Guide



Example 4-3   Displaying the static LPAR configuration report

r33n01:/ # lparstat -i
Node Name                                  : r33n01
Partition Name                             : r33n01_aix
Partition Number                           : 1
Type                                       : Shared-SMT
Mode                                       : Uncapped
Entitled Capacity                          : 2.00
Partition Group-ID                         : 32769
Shared Pool ID                             : 0
Online Virtual CPUs                        : 2
Maximum Virtual CPUs                       : 40
Minimum Virtual CPUs                       : 1
Online Memory                              : 7168 MB
Maximum Memory                             : 12288 MB
Minimum Memory                             : 1024 MB
Variable Capacity Weight                   : 128
Minimum Capacity                           : 1.00
Maximum Capacity                           : 4.00
Capacity Increment                         : 0.01
Maximum Dispatch Latency                   : 0
Maximum Physical CPUs in system            : 4
Active Physical CPUs in system             : 4
Active CPUs in Pool                        : -
Unallocated Capacity                       : 0.00
Physical CPU Percentage                    : 100.00%
Unallocated Weight                         : 0
r33n01:/ #

Hypervisor mode
The lparstat command with the -H flag provides detailed Hypervisor 
information. This option basically displays the statistics for each of the Hypervisor 
calls. Example 4-4 on page 178 shows a sample of the statistics for each of the 
Hypervisor calls.

The following information is displayed for Hypervisor statistics:

Number of calls The number of Hypervisor calls made. 

%Total Time Spent Percentage of total time spent in this type of call. 

%Hypervisor Time Spent Percentage of Hypervisor time spent in this type of 
call. 

Average Call Time(ns) Average call time for this type of call in 
nano-seconds.

Maximum Call Time(ns) Maximum call time for this type of call in 
nano-seconds.
 Chapter 4. CPU analysis and tuning 177



Example 4-4   Displaying the detailed information of Hypervisor calls

r33n01:/ # lparstat -H 10 2

System configuration: type=Shared mode=Uncapped smt=On lcpu=4 mem=7168 ent=2.00

           Detailed information on Hypervisor Calls

Hypervisor        Number of    %Total Time   %Hypervisor   Avg Call    Max Call
  Call              Calls         Spent      Time Spent    Time(ns)    Time(ns)

remove                    0            0.0           0.0          1         638
read                      0            0.0           0.0          1         285
nclear_mod                0            0.0           0.0          1           0
page_init                 3            0.0           0.0        816        5142
clear_ref                 0            0.0           0.0          1           0
protect                   0            0.0           0.0          1           0
put_tce                   0            0.0           0.0          1         785
xirr                      4            0.0           0.0        841        1521
eoi                       3            0.0           0.0        519         785
ipi                       0            0.0           0.0          1         773
cppr                      0            0.0           0.0          1           0
asr                       0            0.0           0.0          1           0
others                    0            0.0           0.0          1           0
enter                     3            0.0           0.0        256         739
cede                   1798            8.1         100.0     898346    16378277
migrate_dma               0            0.0           0.0          1           0
put_rtce                  0            0.0           0.0          1           0
confer                    0            0.0           0.0          1        2336
prod                     92            0.0           0.0        376         928
get_ppp                   1            0.0           0.0       1310        1840
set_ppp                   0            0.0           0.0          1           0
purr                      0            0.0           0.0          1           0
pic                       1            0.0           0.0        281         407
bulk_remove               0            0.0           0.0          1           0
send_crq                  0            0.0           0.0          1           0
copy_rdma                 0            0.0           0.0          1           0
get_tce                   0            0.0           0.0          1           0
send_logical_lan          0            0.0           0.0          1           0
add_logicl_lan_buf        0            0.0           0.0          1           0
-------------------------------------------------------------------------------
-
remove                    6            0.0           0.0        217         638
read                    109            0.0           0.0         81         285
nclear_mod                0            0.0           0.0          1           0
page_init                 3            0.0           0.0       1641        5142
clear_ref                 0            0.0           0.0          1           0
protect                   0            0.0           0.0          1           0
put_tce                  28            0.0           0.0        292         785
178 AIX 5L Practical Performance Tools and Tuning Guide



xirr                     18            0.0           0.0        647        1605
eoi                      17            0.0           0.0        399         785
ipi                       0            0.0           0.0          1         773
cppr                      0            0.0           0.0          1           0
asr                       0            0.0           0.0          1           0
others                    0            0.0           0.0          1           0
enter                     9            0.0           0.0        336         739
cede                   1821            8.1         100.0     885673    16378277
migrate_dma               0            0.0           0.0          1           0
put_rtce                  0            0.0           0.0          1           0
confer                    0            0.0           0.0          1        2336
prod                    100            0.0           0.0        365         928
get_ppp                   1            0.0           0.0       1264        1840
set_ppp                   0            0.0           0.0          1           0
purr                      0            0.0           0.0          1           0
pic                       1            0.0           0.0        382         407
bulk_remove               0            0.0           0.0          1           0
send_crq                  0            0.0           0.0          1           0
copy_rdma                 0            0.0           0.0          1           0
get_tce                   0            0.0           0.0          1           0
send_logical_lan          0            0.0           0.0          1           0
add_logicl_lan_buf        0            0.0           0.0          1           0
-------------------------------------------------------------------------------
-
r33n01:/ #

4.2.2  The mpstat command
The mpstat command is the new command which collects and displays detailed 
output on performance statistics for all logical CPUs in the system. The mpstat 
command resides in /usr/bin and is part of the bos.acct fileset, which is 
installable from the AIX base installation media.

Syntax
mpstat [ { -d | -i | -s | -a } ] [ -w ] [ interval [ count ] ]

flags
-a Displays all statistics report in wide output mode

-d Displays detailed affinity and migration statistics for AIX 
threads and dispatching statistics for logical processors in 
wide output mode

-i Displays detailed interrupt statistics in wide output mode

-s Displays SMT utilization report if SMT is enabled

-w Turn on wide output mode
 Chapter 4. CPU analysis and tuning 179



Parameters
Interval specifies the amount of time in seconds between each 

report

Count specifies the number of reports generated

Examples
When the mpstat command is invoked, it displays two sections of statistics. The 
first section displays the system configuration, which is displayed when the 
command starts, and whenever the system configuration is changed. User can 
specify the interval time between each report and the number of times of the 
statistics are reported.

The following system configuration information is displayed in the first section of 
the command output.

lcpu The number of logical processors. 

ent Entitled processing capacity in processor units. This 
information will be displayed only if the partition type is 
shared. 

The second section displays the utilization statistics for all logical CPUs. The 
mpstat command also displays a special CPU row with the cpuid “ALL”, which 
shows the partition-wide utilization. The mpstat command gives the various 
statistics. It depends on the flag. 

Default utilization statistics
If you run the mpstat command without a flag, it only gives a basic statistics. If the 
partition type is shared, a special CPU row with the cpuid U can be displayed 
when the entitled processing capacity has not entirely been consumed. 
Example 4-5 shows a sample of the mpstat command without flags.

Example 4-5   Default output of the mpstat command

r33n01:/ # mpstat 1 3

System configuration: lcpu=4 ent=2.0

cpu  min  maj  mpc  int   cs  ics   rq  mig lpa sysc us sy wa id   pc  %ec  lcs
  0    0    0    0  164   83   40    0    1 100   17  0  0  0 100 0.17  8.3  113
  1    0    0    0  102    1    1    1    0 100 3830453 66 34  0  0 0.83 41.6    0
  2    0    0    0   15   34   17    1    0 100   54 68 19  0 13 0.00  0.1   46
  3    0    0    0   10   16    9    0    0 100    0  0 22  0 78 0.00  0.0   46
  U    -    -    -    -    -    -    -    -   -    -  -  -  0 50 1.00 49.9    -
ALL    0    0    0  291  134   67    2    1 100 3830524 28 14  0 58 1.00 50.1  102
--------------------------------------------------------------------------------
  0    0    0    0  167  108   52    0    0 100   36  0  0  0 100 0.17  8.4  114
180 AIX 5L Practical Performance Tools and Tuning Guide



  1    0    0    0  100    0    0    1    0   - 3831531 66 34  0  0 0.83 41.6    0
  2    0    0    0   25   10    5    1    0 100   24 22 44  0 34 0.00  0.0   36
  3    0    0    0   10   15    8    0    0 100    0  0 50  0 50 0.00  0.0   36
  U    -    -    -    -    -    -    -    -   -    -  -  -  0 50 1.00 50.0    -
ALL    0    0    0  302  133   65    2    0 100 3831591 27 14  0 58 1.00 50.0   93
--------------------------------------------------------------------------------
  0    0    0    0  163   36   18    0    0 100    8  0  0  0 100 0.17  8.3  113
  1    0    0    0  102    1    1    1    0 100 3830744 66 34  0  0 0.83 41.7    0
  2    0    0    0   25   90   45    1    1 100   24 15 42  0 43 0.00  0.0   73
  3    0    0    0   11   17   11    0    0 100    2  1 40  0 59 0.00  0.0   73
  U    -    -    -    -    -    -    -    -   -    -  -  -  0 50 1.00 50.0    -
ALL    0    0    0  301  144   75    2    1 100 3830778 27 14  0 58 1.00 50.0  129
r33n01:/ #

The mpstat shows following statistics in default mode.

� Logical processor ID (cpu)
� Minor and major page faults (min, maj)
� Total number of inter-processor calls (mpc)
� Total number of interrupts (int)
� Total number of voluntary and involuntary context switches (cs, ics)
� Run rue size (rq)
� Total number of thread migrations (mig)
� Logical processor affinity (lpa)
� Total number of system calls (sysc)
� Processor usage statistics (us, sy, wa, id)
� Fraction of processor consumed (pc)
� The percentage of entitlement consumed (%ec)
� Total number of logical context switches (lcs)

Dispatch and affinity statistics
If you want to see the detailed affinity, migration and dispatch metrics, you can 
use the mpstat command with the -d option as in Example 4-6.

Example 4-6   Displaying the affinity, migration and dispatch metrics

r33n01:/ # mpstat -d 1 3

System configuration: lcpu=4 ent=2.0

cpu     cs    ics  bound     rq   push S3pull  S3grd  S0rd  S1rd  S2rd  S3rd  S4rd  S5rd   ilcs   
vlcs

Note: pc is displayed only in a shared partition, or when simultaneous 
multi-threading (SMT) is on. The %ec and lcs are displayed only in shared 
partition.
 Chapter 4. CPU analysis and tuning 181



  0    109     54      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0    
114
  1      1      1      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0      
0
  2     10      5      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0      
0
  3     14      7      0      0      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0     
17
ALL    134     67      3      3      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0     
65
-----------------------------------------------------------------------------------------------
-------
  0    109     54      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0    
114
  1      1      1      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0      
0
  2     12      6      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0      
0
  3     14      7      0      0      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0     
18
ALL    136     68      3      3      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0     
66
-----------------------------------------------------------------------------------------------
-------
  0    109     53      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0    
113
  1      1      1      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0      
0
  2     10      5      1      1      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0      
0
  3     12      6      0      0      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0     
16
ALL    132     65      3      3      0      0      0 100.0   0.0   0.0   0.0   0.0   0.0      0     
64
r33n01:/ #

Interrupt statistics
If you want to see the detailed interrupts statistics, you can use the mpstat 
command with -i option as in Example 4-7.

Example 4-7   Displaying the interrupt statistics

r33n01:/ # mpstat -i 1 3

System configuration: lcpu=4 ent=2.0

cpu   mpcs   mpcr    dev   soft    dec     ph
  0      0      0      1     56    115      0
182 AIX 5L Practical Performance Tools and Tuning Guide



  1      0      0      1      1    100      0
  2      0      0      2      1     14      0
  3      0      0      0      0     10      0
ALL      0      0      4     58    239      0
-------------------------------------------------------------------------------
-
  0      0      0      1     52    114      0
  1      0      0      1      1    100      0
  2      0      0      0      6     13      0
  3      0      0      1      1     10      0
ALL      0      0      3     60    237      0
-------------------------------------------------------------------------------
-
  0      0      0      0     51    113      0
  1      0      0      2      2    100      0
  2      0      0      0      6     16      0
  3      0      0      1      1     10      0
ALL      0      0      3     60    239      0
r33n01:/ #

SMT utilization statistics
To see the simultaneous multi-threading threads utilization, you can use the 
mpstat command with -s option. If mpstat is running in a dedicated partition and 
Simultaneous Multi-Threading is enabled, then only the thread (logical CPU) 
utilization is displayed. Example 4-8 shows a sample of the mpstat command 
with SMT enable mode on a shared processor partition. 

Example 4-8   The mpstat command shows thread utilization with SMT enable

r33n01:/ # mpstat -s 1 3

System configuration: lcpu=4 ent=2.0

     Proc0           Proc2
      0.30%         100.00%
 cpu0    cpu1    cpu2    cpu3
  0.23%   0.08%  84.17%  15.83%
-------------------------------------------------------------------------------
-
     Proc0           Proc2
      0.17%         100.00%
 cpu0    cpu1    cpu2    cpu3
  0.12%   0.05%  84.18%  15.82%
-------------------------------------------------------------------------------
-
     Proc0           Proc2
      0.22%         100.00%
 cpu0    cpu1    cpu2    cpu3
 Chapter 4. CPU analysis and tuning 183



  0.16%   0.05%  84.18%  15.82%
r33n01:/ #

4.2.3  The procmon tool
The procmon tool is the new command which shows performance statistics or 
the sorted list of processes table, and can also carry out actions on the 
processes. The procmon tool runs on the Performance Workbench platform. The 
Performance Workbench is an Eclipse-based tool and it has a graphical user 
interface to monitor the system activity.

The perfwb command is used to start the Performance Workbench. After perfwb 
is started, the procmon tool runs as a plug-in in the Performance Workbench. 
The perfwb command resides in /usr/bin and is part of the bos.perf.gtools.perfwb 
fileset, which is installable from the AIX base installation media. The 
Performance Workbench is included in bos.perf.gtools.perfwb fileset. The 
procmon tool plug-in is included in bos.perf.gtools.procmon fileset.

Procmon tool provides following functions.

� Displaying performance statistics
� Displaying sorted process lists

– Columns and sorting key can be configured
– Filtering rule can be defined

� Performing actions o processes
– kill, renice, showing detailed information of processes

� Exporting procmon data to file

Syntax
perfwb

Example
Procmon perspective
Procmon provides two main tables, the performance statistic view and the 
processes table. These views are provided in the procmon perspective. To 
display the procmon perspective, you can select Window → Open Perspective  
→ Procmon.

Displaying the performance statistics
If you click the Partition performance tab, it shows the performance statistics, as 
in Figure 4-3 on page 185.

CPU consumption displays the average of CPU utilization percentage. Memory 
consumption displays the information about the usage of memory and paging 
184 AIX 5L Practical Performance Tools and Tuning Guide



space. This view also provides the partition state information. It includes the 
number of CPUs, active kernel, the number of processes, and the length of time 
the system has been started.

Figure 4-3   Displaying the performance statistics

Displaying the process table
If you want to see the current status of active processes, you can click Processes 
tab as in Figure 4-4 on page 186.

This will display a sorted list of processes running on the machine. By default, 
each line contains process ID (PID), CPU usage, memory usage, effective user 
name, and command name. You can customize these columns using procmon 
preference as in Figure 4-13 on page 195.
 Chapter 4. CPU analysis and tuning 185



Figure 4-4   Displaying the process table

Performing an action
You can perform some commands to the processes from the processes tab. If 
you want to perform commands on processes, select the desired process and 
click the right mouse button to display the pop-up menu. This menu includes 
following two types of action.

� Detailed information
� Modify processes

Detailed information
This menu is used to display the thread or process information. To display this 
information, the svmon and proctools commands are used. Figure 4-5 on 
page 187 shows detailed information menu. You can customize the default option 
186 AIX 5L Practical Performance Tools and Tuning Guide



of the svmon and the proctools using the preferences menu, as in Figure 4-11 on 
page 192 and Figure 4-12 on page 193.

Figure 4-5   Detailed information menu

Show thread metrics It shows detailed thread information. 

Run svmon It calls the svmon command.

Run svmon in iterative mode... It calls the svmon -i command. a new panel 
opens to specify interval and the number of 
iterations.

Show files used It calls the procfiles command

Show process tree It calls the proctree command

Show signals actions It calls the procsig command
 Chapter 4. CPU analysis and tuning 187



Show stack It calls the procstack command

Show working directory It calls the procwdx command

Show address space map It calls the procmap command

Show tracing flags It calls the procflags command

Show credentials It calls the proccred command

Show loaded dynamic library It calls the procldd command

Figure 4-6 shows an example of “Show loaded dynamic library” on the process. If 
you want to save the result of this command, you can use save button. The 
information is saved in ASCII format.

Figure 4-6   Perform “Show loaded dynamic library” 

Modifying processes
This menu is used to perform operations on selected processes (kill, renice 
commands). Figure 4-7 on page 189 shows the process modification menu.
188 AIX 5L Practical Performance Tools and Tuning Guide



Figure 4-7   Displaying the modify menu

When you select kill menu, a new panel opens to specify the signal number for 
the kill command, as shown in Figure 4-8.

Figure 4-8   Specifies the signal number for the kill command
 Chapter 4. CPU analysis and tuning 189



When you select renice menu, a new panel opens to specify the number to add 
to the nice value for renice command, as in Figure 4-9.

Figure 4-9   Specifies the number to add the nice value for the renice command

Configuring procmon
Procmon has configured with some default value to use. And you can change 
this configuration in the Window → Preference dialog. Procmon provides the 
following options:

� Configuring the working directory
� Configuring the Proctools
� Configuring svmon command
� Configuring the process table

Configuring the working directory
By default, Procmon uses the $HOME/workspace directory as procmon working 
directory. If you want to change the working directory, select Window → 
Preferences, and then select Procmon dialog. Figure 4-10 on page 191 shows 
the Preference dialog for setting the procmon tool working directory.
190 AIX 5L Practical Performance Tools and Tuning Guide



Figure 4-10   Configuring the working directory

Configuring the proctools
Some proctools commands can be executed on the processes selected from the 
process table. Proctools dialog is used to set the default option for proctools 
command. If you want to customize Proctools option, select Window → 
Preference, and then select Procmon → Commands → Proctools. 

The following two options are available:

� Forces to take control of the target process even if another process has 
control. This option is supported by following proctools command as -F 
option.

– procfiles
– procstack
– procwdx
– procmap
– pocldd

� Prints the name of the files referred to by file descriptors. This option is 
supported by the procfile command as -n option.

These options are used with proctools commands supporting these options. 
Figure 4-11 on page 192 shows preference panel for proctools.
 Chapter 4. CPU analysis and tuning 191



Figure 4-11   Configuring the proctools option

Configuring the svmon command
The svmon command can run on the processes selected from the process table. 
By default, some options are specified to this command, and these options can 
be customized. If you want to change the default option, select Windows® → 
Preference, and then select Procmon → Commands → Svmon. Figure 4-12 on 
page 193 shows Preference panel for the svmon command.
192 AIX 5L Practical Performance Tools and Tuning Guide



Figure 4-12   Configuring the svmon command

Following three groups of options are available.

� Display

system segments Specifies only system segments are to be included in 
the statistics.

non-system segments Specifies only non-system segments are to be 
included in the statistics. 

both Specifies all segments are to be included in the 
statistics.
 Chapter 4. CPU analysis and tuning 193



� Select segment

working Specifies only working segments are to be included in 
the statistics. 

persistent Specifies only persistent segments are to be included 
in the statistics. 

client Specifies only client segments are to be included in 
the statistics. 

every segment Specifies all segments are to be included in the 
statistics. 

� Sort on

real memory pages Specifies the information to be displayed is sorted in 
decreasing order by the total number of pages in real 
memory. 

pinned pages Specifies the information to be displayed is sorted in 
decreasing order by the total number of pages pinned.

paging space pages Specifies the information to be displayed is sorted in 
decreasing order by the total number of pages 
reserved or used on paging space. 

virtual pages Specifies the information to be displayed is sorted in 
decreasing order by the total number of pages in 
virtual space. 

You can also enable to display the ranges within the segment pages which have 
been allocated. 

Configuring the process table
If you want to customize the process table, select Windows → Preference, and 
then select Procmon → Process table. This is used to specify the way process 
information are retrieved and displayed. Figure 4-13 on page 195 shows 
preference panel for process table.
194 AIX 5L Practical Performance Tools and Tuning Guide



Figure 4-13   Configuring the process table

The properties tab is used to customize following options:

� The number of processes displayed

� Refresh interval in second 
 Chapter 4. CPU analysis and tuning 195



� Enable automatic refresh of the process table

� Enable interrupt automatic refresh when starting a command on a PID

The displayed metrics is used to modify the columns displayed on process table. 
If you want to display an additional column, you can select the column name on 
the “Metrics available” field and add to the “Metrics displayed” field. If you remove 
the column name from the “Metrics displayed” field, it isn't displayed process 
table.

You can also define the default sort key of the process table. If you want to 
change the default sort key, select the column name from the Metrics displayed 
field and push “Set key” button. The sorting key can be changed using the 
process table panel too.

Other functions
Procmon provides additional handy functions. Filter processes and exporting 
procmon data are some of them.

Filter processes
Using the filter processes menu, you can define the filtering rule to the 
processes. This is used to display only processes you want to see in the 
processes table. If you want to create a new filter rule, select Filters... from the 
procmon menu. Figure 4-14 shows an example of defining the filter rule to 
display a process which has process ID 15748.

Figure 4-14   Defining the filter rule

Exporting procmon data
Procmon provides a way to export procmon data for external use. If you want to 
export the data, click the “Exports procmon reports to file” button in the procmon 
view. A new dialog opens to setup the export configuration, as shown in 
196 AIX 5L Practical Performance Tools and Tuning Guide



Figure 4-15. Using this dialog, you can select the format of the exported data 
(xml, csv, html) and the data to export (statistic line, processes table, summation 
table).

Figure 4-15   Export procmon data

4.2.4  The topas command 
The topas command is used to display statistics about the activity on the local 
system. The topas command reports the various kinds of statistics, such as CPU 
utilization, CPU events and queues, process lists, memory and paging statistics, 
disk and network performance, and NFS statistics. The topas command resides 
in /usr/bin and is part of the bos.perf.tools fileset, which is installable from the AIX 
base installation media.

Syntax
topas [ -d number_of_monitored_hot_disks ] [ -h ] [ -i 

monitoring_interval_in_seconds ] [ -n 
number_of_monitored_hot_network_interfaces ] [ -p 
number_of_monitored_hot_processes ] [ -w 
number_of_monitored_hot_WLM classes ] [ -c 
number_of_monitored_hot_CPUs ][ -U 
username_owned_processes ] [ -L |-P | -W ] [ -m]
 Chapter 4. CPU analysis and tuning 197



flags
-i Specifies the monitoring interval in seconds. The default is two 

seconds.

-L Displays the logical partition display.

Examples
Default output
Starting with AIX 5L Version 5.3, if the topas command runs on a shared 
partition, following two new values are reported for the CPU utilization. If the 
topas command runs on a dedicated partition, these values are not displayed.

Physc Number of physical processors granted to the partition

%Entc Percentage of Entitled Capacity granted to the partition

Example 4-9 shows the standard topas command and its output. It runs on a 
shared partition. If you run the topas command without flags, the output is 
refreshed every two seconds. 

The topas command shows following information in default mode.

� System hostname
� Current date
� Refresh interval
� CPU utilization 
� CPU events and queues
� Process lists
� Memory and paging statistics
� Disk and network performance
� WLM performance (displayed only when WLM is used)
� NFS statistics

Example 4-9   The topas command

Topas Monitor for host:    r33n05               EVENTS/QUEUES    FILE/TTY
Tue Oct 19 19:33:48 2004   Interval:  2         Cswitch     139  Readch    11185
                                                Syscall   13777  Writech   53.6M
Kernel    0.5   |#                           |  Reads         3  Rawin         0
User     46.9   |##############              |  Writes    13710  Ttyout      115
Wait      0.0   |                            |  Forks         0  Igets         0
Idle     52.6   |###############             |  Execs         0  Namei         1
Physc =  1.00                     %Entc=  50.0  Runqueue    1.0  Dirblk        0
                                                Waitqueue   0.0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out
en0       0.2      1.0     1.0     0.0     0.3  PAGING           MEMORY
lo0       0.1      2.0     2.0     0.1     0.1  Faults        0  Real,MB    6911
                                                Steals        0  % Comp     11.8
198 AIX 5L Practical Performance Tools and Tuning Guide



Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp   1.5
hdisk1    0.0      0.0     0.0     0.0     0.0  PgspOut       0  % Client    1.7
hdisk2    0.0      0.0     0.0     0.0     0.0  PageIn        0
hdisk0    0.0      0.0     0.0     0.0     0.0  PageOut       0  PAGING SPACE
cd0       0.0      0.0     0.0     0.0     0.0  Sios          0  Size,MB     512
                                                                 % Used      1.1
Name            PID  CPU%  PgSp Owner           NFS (calls/sec)  % Free     98.8
memtest      659600  25.0   1.3 root            ServerV2       0
topas        610492   0.0   1.5 root            ClientV2       0   Press:
pilegc       360624   0.0   0.1 root            ServerV3       0   "h" for help
IBM.CSMAg    532488   0.0   2.8 root            ClientV3       0   "q" to quit
getty        639088   0.0   0.4 root
gil          372918   0.0   0.1 root

The new -L flag has been added to the topas command to display logical 
partition. In this mode, the result of topas is similar to the mpstat command. 
Example 4-10 shows a sample of the topas command with -L flag.

Example 4-10   The topas command with -L flag

Interval:    2    Logical Partition: r33n05            Tue Oct 19 19:35:58 2004
Psize:       -                Shared SMT  ON           Online Memory:   6912.0
Ent: 2.00                      Mode: UnCapped          Online Logical CPUs:  4
Partition CPU Utilization                              Online Virtual CPUs:  2
%usr %sys %wait %idle physc %entc %lbusy   app   vcsw phint %hypv   hcalls
  47    0     0    53   1.0  50.00 25.00     -    356     0   0.0        0
===============================================================================
LCPU  minpf majpf  intr   csw icsw runq lpa scalls usr sys _wt idl   pc   lcsw
Cpu0      0     0    42    23   12    0 100     36  30  47   0  23 0.00     61
Cpu1      0     0    22     3    2    0 100      6   3  28   0  69 0.00     61
Cpu2      0     0   328   250  125    1 100     39   0   1   0  99 0.05    234
Cpu3      0     0   200     2    2    1 100  27428  99   1   0   0 0.95      0

Topas subcommands 
While topas is running, it accepts one-character subcommands. Using these 
subcommands, you can change the displayed metrics. Following characters are 
some of useful subcommands.

a Always return to the default topas screen. 

c Toggles the CPU statistics subsection between the cumulative report, 
off, and statistics of the per-processors. 

p Toggles the active processes subsection on and off. 

P Toggles the active processes with the full-screen mode on and off. 
This mode provides more detailed information about processes 
running on the system than the process subsection of the default 
display. This is the sam as the -P flag from the topas command line. 
 Chapter 4. CPU analysis and tuning 199



L Toggles the logical partition statistics on and off. This mod provides 
current LPAR configuration (CPU, memory), and statistics of the each 
logical CPUs. This display reports similar data to what is provided to 
mpstat and lparstat. This is the sam as the -L flag from the topas 
command line. 

q Quit the topas command. 

Arrow or Tab keys
Changes the sort key. Subsections from the default display such as 
the CPU, Network, Disk, WLM, and the full-screen WLM and process 
are sorted and displayed from highest to lowest order. The cursor 
over a column indicates the sort key. The cursor can be moved by 
using the Tab key or the arrow keys. 

Example 4-11 shows the process lists with full screen mode. It’s a sample output 
using the P subcommand.

Example 4-11   Displaying the process lists using the P subcommand

Topas Monitor for host:    r33n05      Interval:   2    Tue Oct 19 19:37:42 2004

                               DATA  TEXT  PAGE               PGFAULTS
USER       PID    PPID PRI NI   RES   RES SPACE    TIME CPU%  I/O  OTH COMMAND
root    659600  655434 125 24   329     2   329   18:30 25.0    0    0 memtest
root    610492  487492  58 41   384    26   384    0:00  0.0    0    0 topas
root    532488  651328  60 20   703   162   716   57:51  0.0    0    0 IBM.CSMAg
root    639088       1  60 20   106    17   106    2:59  0.0    0    0 getty
root    372918       0  37 41    29     0    29    2:22  0.0    0    0 gil
root    389354       1  60 20   130     2   130    1:50  0.0    0    0 syncd
root    622642  651328  60 20   141    15   141    1:46  0.0    0    0 muxatmd
root    364722       0  60 41    12     0    12    0:24  0.0    0    0 xmgc
root    581668       1  60 20    50     0    50    0:24  0.0    0    0 rpc.lockd
root    593968  651328  60 20   540   141   541    0:08  0.0    0    0 rmcd
root    630858  651328  60 20   183    43   183    0:06  0.0    0    0 snmpmibd6
root    368820       0  36 41    12     0    12    0:02  0.0    0    0 netm
root         1       0  60 20   156    10   156    0:02  0.0    0    0 init
root    422132       1  60 20    12     0    12    0:01  0.0    0    0 rgsr
root    405724       0  60 20    12     0    12    0:00  0.0    0    0 lvmbb
root    409812       0  38 41    81     0    81    0:00  0.0    0    0 j2pg
root    413742       1  60 20   164    22   164    0:00  0.0    0    0 errdemon
root    340134       0  16 41    14     0    14    0:00  0.0    0    0 lrud
root    426200       0  17 20    24     0    24    0:00  0.0    0    0 dog
root    430318       1  39 41    12     0    12    0:00  0.0    0    0 aioserver
200 AIX 5L Practical Performance Tools and Tuning Guide



useful combinations
� topas -i 1
� topas -L
� topas -P

4.2.5  The sar command
The sar (System Activity Report) command is used to collect statistics report 
about CPU, I/O, and other system activities. The sar command shows statistics in 
two ways, show real time data or show previously data. The sar command 
resides in /usr/sbin and is part of the bos.acct fileset, which is installable from the 
AIX base installation media.

syntax
/usr/sbin/sar [ { -A | [ -a ] [ -b ] [ -c ] [ -d ][ -k ] [ -m ] [ -q ] [ -r ] [ -u ] [ -v ] [ -w ] [ -y ] 
} ] [ -P ProcessorIdentifier, ... | ALL ] [ -ehh [ :mm [ :ss ] ] ] [ -X File ] [ -f File ] [ -i 
Seconds ] [ -o File ] [ -s hh [ :mm [ :ss ] ] ] [ Interval [ Number ] ]

flags
-P ProcessorIdentifier, ... | ALL

Reports per-processor statistics for the specified 
processor or processors. Specifying the “ALL” keyword 
reports statistics for each individual processor, and 
globally for all processors. 

-o File Saves the statistics data in the file in binary form. Each 
statistics data are in a separate record and each record 
contains a tag identifying the time of the reading. You can 
extract records from this file using the sar command with 
-f flag.

-f File Extracts records from the specified File (created by -o File 
flag).

Parameters
Interval Specifies the amount of time in seconds between each 

report

Count Specifies the number of reports generated

Example
When the sar command is invoked, it displays several sections of information and 
statistics. The first section displays the node information, which include the OS 
version, machine ID, and invoked date.
 Chapter 4. CPU analysis and tuning 201



The second section displays the system configuration, which is displayed when 
the command starts, and whenever there is a change in the system 
configuration. The following information is displayed in the second section of the 
command output.

lcpu Number of logical processors. 

ent Entitled processing capacity in processor units. This information will 
be displayed only on shared partition.

The third section displays the utilization statistics.The sar command gives the 
various statistics. It depends on the flags. 

Monitoring current CPU statistics
The sar command without a flag or with -u flag reports CPU utilization statistics. 
This statistics displays following values.

%usr Reports the percentage of time the CPU(s) spent in execution at the 
user (or application) level. It is equivalent to the us column reported 
by vmstat.

%sys Reports the percentage of time the CPU(s) spent in execution at the 
system (or kernel) level. It is equivalent to the sy column reported by 
vmstat.

%wio Reports the percentage of time the CPU(s) were idle during which 
the system had outstanding disk/NFS I/O request(s). It is equivalent 
to the wa column reported by vmstat.

%idle Reports the percentage of time the CPU(s) were idle with no 
outstanding disk I/O requests. It is equivalent to the id column 
reported by vmstat.

physc Reports the number of physical processors consumed. This will be 
reported only if the partition is running with shared processors or 
simultaneous multi-threading enabled. It is equivalent to the pc 
column reported by vmstat.

%entc Reports the percentage of entitled capacity consumed. This will be 
reported only if the partition is running with shared processors. It is 
equivalent to the ec column reported by vmstat.

Beginning with AIX 5L Version 5.3, the sar command reports utilization metrics 
physc and %entc for shared partitioning and simultaneous multi-threading (SMT) 
environments. The physc field indicates the number of physical processors 
consumed by the partition (in case of system wide utilization) or each logical 
CPU (if the -P flag is specified). The %entc field indicates the percentage of the 
allocated entitled capacity (in case of system wide utilization) or granted entitled 
capacity (if the -P flag is specified). 
202 AIX 5L Practical Performance Tools and Tuning Guide



If you specify the interval and number, the sar command reports current CPU 
utilization statistics, as in Example 4-12.

Example 4-12   The sar command without option

r33n01:/ # sar 1 5

AIX r33n01 3 5 00C3E3CC4C00    10/15/04

System configuration: lcpu=4 ent=2.00

18:00:35    %usr    %sys    %wio   %idle   physc   %entc
18:00:36      28      14       0      58    1.00    50.2
18:00:37      28      14       0      58    1.00    50.1
18:00:38      28      14       0      58    1.00    50.1
18:00:39      28      14       0      58    1.00    50.2
18:00:40      28      14       0      58    1.00    50.1

Average       28      14       0      58    1.00    50.2
r33n01:/ #

You can monitor per-processor statistics using the sar command with -P flag. 
When using the -P flag, CPU number or “ALL” parameter is required. 
Example 4-13 shows a sample of the sar command with the -P flag. The last line 
of each time stamp shows the average CPU utilization for all of the displayed 
CPUs. It is denoted by a line with dash(-). The last stanza of the output shows the 
average utilization for each CPU for the duration of the monitoring.

When the partition runs in capped mode, the partition cannot get more capacity 
than it is allocated. In uncapped mode, the partition can get more capacity than it 
is actually allocated. This is called granted entitled capacity. If the -P flag is 
specified and there is unused capacity, sar prints the unused capacity as 
separate CPU with cpu id “U”.

Example 4-13   The sar command with -P flag

r33n01:/ # sar -P ALL 1 3

AIX r33n01 3 5 00C3E3CC4C00    10/15/04

System configuration: lcpu=4 ent=2.00

18:10:57 cpu    %usr    %sys    %wio   %idle   physc   %entc
18:10:58  0       22      65       0      13    0.00     0.2
          1        0       4       0      96    0.00     0.1
          2       66      34       0       0    0.84    42.0
          3        0       0       0     100    0.16     8.0
          U        -       -       0      50    1.00    49.8
 Chapter 4. CPU analysis and tuning 203



          -       28      14       0      58    1.00    50.2
18:10:59  0       21      65       0      15    0.00     0.2
          1        0       6       0      94    0.00     0.0
          2       66      34       0       0    0.84    42.0
          3        0       0       0     100    0.16     8.0
          U        -       -       0      50    1.00    49.8
          -       28      14       0      58    1.00    50.2
18:11:00  0        5      75       0      20    0.00     0.1
          1        0       7       0      93    0.00     0.0
          2       66      34       0       0    0.84    42.0
          3        0       0       0     100    0.16     8.0
          U        -       -       0      50    1.00    49.8
          -       28      14       0      58    1.00    50.2

Average   0       17      68       0      15    0.00     0.1
          1        0       5       0      95    0.00     0.0
          2       66      34       0       0    0.84    42.0
          3        0       0       0     100    0.16     8.0
          U        -       -       0      50    1.00    49.8
          -       28      14       0      58    1.00    50.2
r33n01:/ #

Extracts records from the File
If you specify the filename with -f flag, the sar command extracts this file and 
report to standard output, as show in Example 4-14. If you don’t specify a file 
name, the default standard system activity daily data file is used. The default 
system activity daily data file name is /var/adm/sa/sadd. The “dd” parameter 
indicates the current day. 

Example 4-14   Extracting record from a file

r33n01:/home/kumiko # sar -o sar.out 1 10 > /dev/null
r33n01:/home/kumiko # sar -f sar.out

AIX r33n01 3 5 00C3E3CC4C00    10/15/04

System configuration: lcpu=4 ent=2.00

Note: The sar command calls a process named sadc to access system data. 
Two shell scripts (/usr/lib/sa/sa1 and /usr/lib/sa/sa2) are structured to be run 
by the cron command, and provide daily statistics and reports. Sample 
stanzas are included in the /var/spool/cron/crontabs/adm crontab file to collect 
the standard system activity. By default, this entries are commented out. If you 
want to collect the standard system activity data, you can customize or 
un-comment these sample stanzas.
204 AIX 5L Practical Performance Tools and Tuning Guide



18:16:27    %usr    %sys    %wio   %idle   physc   %entc
18:16:28      28      14       0      58    1.01    50.3
18:16:29      28      14       0      58    1.00    50.1
18:16:30      28      14       0      58    1.00    50.1
18:16:31      28      14       0      58    1.00    50.2
18:16:32      28      14       0      58    1.00    50.1
18:16:33      28      14       0      58    1.00    50.2
18:16:34      28      14       0      58    1.00    50.1
18:16:35      28      14       0      58    1.00    50.1
18:16:36      28      14       0      58    1.00    50.1
18:16:37      28      14       0      58    1.00    50.1

Average       28      14       0      58    1.00    50.2
r33n01:/home/kumiko # sar -f sar.out -P 3 -s 18:16:30 -e 18:16:35

AIX r33n01 3 5 00C3E3CC4C00    10/15/04

System configuration: lcpu=4 ent=2.00

18:16:30 cpu    %usr    %sys    %wio   %idle   physc   %entc
18:16:31  3        0       0       0     100    0.16     7.9
18:16:32  3        0       0       0     100    0.16     7.9
18:16:33  3        0       0       0     100    0.16     7.9
18:16:34  3        0       0       0     100    0.16     7.9
18:16:35  3        0       0       0     100    0.16     7.9

Average   3        0       0       0     100    0.16     7.9
r33n01:/home/kumiko #

useful combinations
� sar -P ALL interval number
� sar -o ouput.filename interval count > /dev/null &

4.2.6  The iostat command
The iostat command is used to report CPU statistics, input/output statistics, 
adapters, tty devices, disks and CD-ROMs statistics.

Syntax
iostat [ -a ] [ -s ] [ -t ] [ -T ] [ -d [ -m ] [ -A ] [ -P ] [ -q | -Q ] [ -l ] [ Drives ... ] [ Interval] 
[ Count ]

flags
-t Specifies tty/cpu report only
 Chapter 4. CPU analysis and tuning 205



parameters
Interval Specifies the amount of time in seconds between each 

report

Count Specifies the number of reports generated

Example
Starting with AIX 5.3, the iostat command reports the percentage of physical 
processors consumed (%physc), and the percentage of entitlement consumed 
(%entc). These metrics will only be displayed on shared processor partition or 
simultaneous multi-threading (SMT) environments. Example 4-15 shows a 
sample of the iostat command with -t flag. The first report of statistics section 
provides the statistics concerning the time since the system was booted. Each 
subsequent report covers the time since the previous report. For multiprocessor 
systems, the CPU values are global averages among all processors. 

The first section of the iostat command displays the current system configuration. 
And the next section reports the following statistics information.

tin Shows the total number of characters read by the system for all ttys. 

tout Shows the total number of characters written by the system to all ttys. 

%user Shows the percentage of CPU utilization that occurred while 
executing at the user level (application). 

%sys Shows the percentage of CPU utilization that occurred while 
executing at the system level (kernel). 

%idle Shows the percentage of time that the CPU or CPUs were idle and 
the system did not have an outstanding disk I/O request. 

%iowait Shows the percentage of time that the CPU or CPUs were idle during 
which the system had an outstanding disk I/O request. 

%physc The percentage of physical processors consumed, displayed only if 
the partition is running with shared processor. 

%entc The percentage of entitled capacity consumed, displayed only if the 
partition is running with shared processor. 

Example 4-15   The iostat command with -t flag

r33n01: # iostat -t 5

System configuration: lcpu=4 ent=2.00

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait    % physc   % 
entc
          0.0          8.2               0.0      0.0      100.0       0.0          0.00       
0.1
206 AIX 5L Practical Performance Tools and Tuning Guide



          0.6         41.2               0.0      0.0      100.0       0.0          0.00       
0.1
          1.6         33.6               2.7      1.4       95.8       0.0          0.00       
4.9
          0.8         21.0              27.7     14.3       58.0       0.0          0.00      
50.1
          1.4         21.6              27.7     14.3       58.0       0.0          0.00      
50.1
          1.6         27.3              11.0      5.7       83.3       0.0          0.00      
20.1
          1.8         33.7              23.5      0.1       76.4       0.0          0.00      
24.8
          0.0         20.2              47.5      0.1       52.5       0.0          0.00      
50.1
          0.0         20.2              47.4      0.1       52.5       0.0          0.00      
50.1
          0.0         20.2              47.5      0.1       52.5       0.0          0.00      
50.1
r33n01:/usr/lib/dr/scripts #

The iostat command has been enhanced to supports dynamic configuration 
changes. If configuration change is detected, the iostat report issues a warning 
and refreshes the latest system configuration. Example 4-16 shows the output 
when the iostat command detects dynamic configuration changes.

Example 4-16   The iostat command detects dynamic configuration change

r33n05:/ # iostat -t 5 10

System configuration: lcpu=2 ent=2.00

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait    % physc   % 
entc
          0.0          8.2              49.4      0.7       49.9       0.0          0.00      
50.1
          0.0         40.5              49.3      0.7       50.0       0.0          0.00      
50.0
          0.0         20.2              49.4      0.7       49.9       0.0          0.00      
50.1
System configuration changed. The current iteration values may be inaccurate.
          0.2         35.7              33.0     23.5       43.3       0.2          0.00      
65.5

System configuration: lcpu=4 ent=2.00

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait    % physc   % 
entc
 Chapter 4. CPU analysis and tuning 207



          0.0         44.2              46.9      0.5       52.5       0.0          0.00      
50.1
          0.0         40.6              46.9      0.5       52.6       0.0          0.00      
50.1
          0.0         20.4              48.9      0.5       50.6       0.0          0.00      
52.3
          0.0         20.2              46.9      0.5       52.6       0.0          0.00      
50.0
          0.0         20.0              47.0      0.5       52.5       0.0          0.00      
50.1
          0.0         20.4              46.9      0.5       52.6       0.0          0.00      
50.0
r33n05:/ #

useful combinations

� iostat -t interval count
� iostat -t -T interval count

4.2.7  The vmstat command
The vmstat command reports statistics about kernel threads, virtual memory, 
disks, traps and CPU activity.

Command Syntax
vmstat [ -f ] [ -i ] [ -s ] [ -I ] [ -t ] [ -v ] [ PhysicalVolume ... ] [ Interval [ Count ] ]

Parameters
Interval Specifies the amount of time in seconds between each 

report

Count Specifies the number of reports generated

Examples
Beginning with AIX 5L Version 5.3, the vmstat command reports the number of 
physical processors consumed (pc), and the percentage of entitlement 
consumed (ec). These new metrics will be displayed only when the partition is 
running as a shared processor partition or with simultaneous multi-threading 
(SMT) enabled. If the partition is running as a dedicated processor partition and 
with simultaneous multi-threading (SMT) disabled, these new metrics will not be 
displayed. Example 4-17 on page 209 shows a sample of the vmstat command 
without flag on shared-partition. The first report contains statistics for the time 
since system startup. Subsequent reports contain statistics collected during the 
interval since the previous report.
208 AIX 5L Practical Performance Tools and Tuning Guide



Following statistics information is he columns which related to CPU within the 
vmstat command output.

kthr Kernel thread state changes per second over the sampling interval

r The number of kernel threads placed in run queue

b The number of kernel threads placed in wait queue (awaiting 
resource or input/output)

faults Trap and interrupt rate averages per second over the sampling 
interval

in The number of device interrupts

sy The number of system calls

cs The number of kernel thread context switches

cpu Breakdown of percentage usage of CPU time

us The percentage of user time

sy The percentage of system time

id The percentage of CPU idle time

wa The percentage of CPU idle time during which the system had 
outstanding disk or NFS I/O requests

pc The number of physical processors consumed. Displayed only if 
the partition is running with shared processor

ec The percentage of entitled capacity consumed. Displayed only if 
the partition is running with shared processor

Example 4-17   The vmstat command without flag

r33n01:/ # vmstat 1 5

System configuration: lcpu=4 mem=7168MB ent=0

kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 1  0 149598 1647726   0   0   0   0    0   0   2 13860 133 47  1 52  0  1.01  50.3
 1  0 149600 1647724   0   0   0   0    0   0   1 13700 130 47  1 53  0  1.00  50.1
 2  0 149616 1647708   0   0   0   0    0   0   4 2493708 141 65 10 25  0  1.65  82.3
 2  0 149616 1647708   0   0   0   0    0   0   1 3832368 129 75 15 11  0  2.00 100.0
 2  0 149616 1647708   0   0   0   0    0   0   1 3832602 132 75 15 11  0  2.00 100.0
r33n01:/ #
 Chapter 4. CPU analysis and tuning 209



The vmstat command has been enhanced to supports dynamic configuration 
changes. If configuration change is detected, vmstat report issues a warning, 
and then changes to the latest system configuration. Example 4-18 shows the 
output when vmstat detects dynamic configuration changes. 

Example 4-18   The vmstat command detects dynamic configuration change

r33n05:/ # vmstat 5

System configuration: lcpu=2 mem=6912MB ent=0

kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 0  0 194344 1553879   0   0   0   0    0   0   3   42 146  0  0 99  0  0.00   0.2
 1  0 194346 1553877   0   0   0   0    0   0   0   13 138  0  0 99  0  0.00   0.1
System configuration changed. The current iteration values may be inaccurate.
 4  0 194891 1553331   0   0   0   0    0   0   3  499 191  0 17 82  0  0.47  23.7

System configuration: lcpu=4 mem=6912MB ent=0

kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 0  0 194891 1553331   0   0   0   0    0   0   0   17 134  0  0 99  0  0.00   0.1
 0  0 194891 1553331   0   0   0   0    0   0   0   14 136  0  0 99  0  0.00   0.1
^Cr33n05:/ #

4.2.8  The ps command
The ps command shows current status of processes. With regard to CPU, this 
command shows how much CPU resource a process is using, and whether 
processes are being penalized by the system. The ps command resides in 
/usr/bin and is part of the bos.rte.control fileset, which is installed by default from 
the AIX base installation media.

Syntax
X/Open Standards
ps [ -A ] [ -M ] [ -N ] [ -a ] [ -d ] [ -e ] [ -f ] [ -k ] [ -l ] [ -F format] [ -o Format ] [ -c Clist 
] [ -G Glist ] [ -g Glist ] [ -m ] [ -n NameList ] [ -p Plist ] [ -t Tlist ] [ -U Ulist ] [ -u Ulist 
] [ -T pid ] [ -L pidlist ] [ -X ]

Berkeley Standards
ps [ a ] [ c ] [ e ] [ ew ] [ eww ] [ g ] [ n ] [ U ] [ w ] [ x ] [ l | s | u | v ] [ t Tty ] [ 
ProcessNumber ] [ -X ]
210 AIX 5L Practical Performance Tools and Tuning Guide



Flags
-e Writes information to standard output about all processes, 

except kernel processes. 

-f Generates a full listing. 

-k Lists kernel processes. 

-o Format Displays information in the format specified by the Format 
variable. Multiple field specifiers can be specified for the 
Format variable. For more information of field name, refer 
to ps command reference.

-L pidlist Generates a list of descendants of each and every 
process ID that has been passed to it in the pidlist 
variable. The pidlist variable is a list of comma-separated 
process IDs. The list of descendants from all of the given 
pid is printed in the order in which they appear in the 
process table. 

-M Lists all 64 bit processes.

-T pid Displays the process hierarchy rooted at a given pid in a 
tree format using ASCII art. This flag can be used in 
combination with the -f, -F, -o, and -l flags. 

-U Ulist Displays only information about processes with the user 
ID numbers or login names specified for the Ulist variable. 
This flag is equivalent to the -u Ulist flag.

a Displays information about all processes with terminals 
(ordinarily only the user's own processes are displayed). 

u Displays user-oriented output. This includes the USER, 
PID, %CPU, %MEM, SZ, RSS, TTY, STAT, STIME, TIME, 
and COMMAND columns.

Example
Displaying all non-kernel processes
To display all non-kernel processes, the ps command with the combination of the 
-e and -f flags are used frequently. Example 4-19 on page 212 shows a sample 
of the ps command. Generally, this command reports a long list. You had better to 
use pipe or redirect output to file.

This command includes the field relevant to CPU in the output.

C Recent used CPU time for process. CPU utilization of process or 
thread, incremented each time the system clock ticks and the 
process or thread is found to be running. The value is decayed by the 
scheduler by dividing it by 2 once per second. For the sched_other 
 Chapter 4. CPU analysis and tuning 211



policy, CPU utilization is used in determining process scheduling 
priority. Large values indicate a CPU intensive process and result in 
lower process priority whereas small values indicate an I/O intensive 
process and result in a more favorable priority. 

TIME The total CPU time for the process since it started. 

Example 4-19   Displaying all non-kernel processes

r33n05:/ # ps -ef | pg
     UID    PID   PPID   C    STIME    TTY  TIME CMD
    root      1      0   0   Oct 06      -  0:02 /etc/init
    root 385070 626748   0 15:00:27      -  0:00 telnetd -a
    root 389354      1   0   Oct 06      -  1:50 /usr/sbin/syncd 60
    root 413742      1   0   Oct 06      -  0:00 /usr/lib/errdemon
    root 442370 651328   0   Oct 06      -  0:00 /usr/sbin/syslogd
    root 450780      1   0   Oct 06      -  0:00 /usr/ccs/bin/shlap64
    root 454836 651328   0   Oct 06      -  0:00 /usr/sbin/rsct/bin/IBM.ServiceRMd
    root 487492 598230   0 15:16:15  pts/1  0:00 -ksh
    root 491692 651328   0   Oct 06      -  0:00 /usr/sbin/rsct/bin/IBM.AuditRMd
  kumiko 495722 610458   0 18:20:07  pts/1  0:00 ./cputest
    root 507930 655434   0 18:26:18  pts/0  0:00 ps -ef
    root 532488 651328   0   Oct 06      - 57:37 /usr/sbin/rsct/bin/IBM.CSMAgentRMd
    root 548890 651328   0   Oct 06      -  0:00 /usr/sbin/rsct/bin/IBM.HostRMd
    root 552996 651328   0   Oct 06      -  0:00 /usr/sbin/rsct/bin/IBM.ERrmd
    root 557090 655434   0 18:26:18  pts/0  0:00 pg
    root 573470 651328   0   Oct 06      -  0:00 /usr/sbin/rpc.lockd -d 0
    root 577578      1   0   Oct 06      -  0:00 /usr/sbin/cron
    root 585776      1   0   Oct 06      -  0:00 /usr/sbin/uprintfd
    root 589880 651328   0   Oct 06      -  0:00 /usr/sbin/rsct/bin/IBM.DRMd
    root 593968 651328   0   Oct 06      -  0:08 /usr/sbin/rsct/bin/rmcd -r
    root 598230 626748   0 15:16:15      -  0:00 telnetd -a
    root 602224 651328   0   Oct 06      -  0:00 /usr/sbin/writesrv
    root 606306 651328   0   Oct 06      -  0:00 /usr/sbin/biod 6
  kumiko 610458 487492   0 18:14:23  pts/1  0:00 -ksh
    root 614494 651328   0   Oct 06      -  0:00 /usr/sbin/qdaemon
... lines omitted ...

Displaying the percentage of CPU execution time of process
To displaying the percentage of time the process has used the CPU since the 
process started, use the ps command with u or v flag. Example 4-20 on page 213 
shows a sample of the ps command with the u flag, and %CPU field shows the 
percentage of CPU execution time.

%CPU The percentage of time the process has used the CPU since the 
process started. The value is computed by dividing the time the 
process uses the CPU by the elapsed time of the process. In a 
multi-processor environment, the value is further divided by the 
212 AIX 5L Practical Performance Tools and Tuning Guide



number of available CPUs because several threads in the same 
process can run on different CPUs at the same time. 

Example 4-20   Displaying the percentage of CPU execution time of process

r33n05:/ # ps u
USER        PID %CPU %MEM   SZ  RSS    TTY STAT    STIME  TIME COMMAND
root     659600 43.8  0.0 1316 1324  pts/0 A    19:18:27  0:07 ./memtest
root     655434  0.0  0.0  744  792  pts/0 A    15:00:28  0:00 -ksh
root     557126  0.0  0.0  212  220  pts/0 A    19:18:07  0:00 ./cputest
root     503982  0.0  0.0  804  828  pts/0 A    19:18:35  0:00 ps u
root     487492  0.0  0.0  744  792  pts/1 A    15:16:15  0:00 -ksh
r33n05:/ #

Displaying processes related with specified user 
To list processes owned by specific users, use the ps command with the -u flag 
as shown in Example 4-21.

Example 4-21   Displaying processes related with specified user

r33n05:/ # ps -fu kumiko
     UID    PID   PPID   C    STIME    TTY  TIME CMD
  kumiko 495722 610458   0 18:20:07  pts/1  0:00 ./cputest
  kumiko 610458 487492   0 18:14:23  pts/1  0:00 -ksh
  kumiko 659464 610458  90 18:20:20  pts/1  0:14 ./memtest
r33n05:/ #

Displaying the specified column
To display a specified format with field specifiers, use the ps command with the -o 
flag. Example 4-22 shows a sample of displaying only specified field using the -o 
flag. 

Example 4-22   Displaying the specified column

r33n05:/ # ps -o pid,ppid,ruser,cpu,nice,time,comm
   PID   PPID    RUSER  CP NI        TIME COMMAND
557122 655434     root   0 24    00:00:11 cputest
655434 385070     root   0 20    00:00:11 ksh
659498 655434     root   0 20    00:00:11 ps
r33n05:/ #

Displaying the 64-bit processes
To list all the 64-bit processes, use the ps command with the -M flag, as shown in 
Example 4-23 on page 214.
 Chapter 4. CPU analysis and tuning 213



Example 4-23   Displaying the 64-bit processes

r33n05:/ # ps -efM
     UID    PID   PPID   C    STIME    TTY  TIME CMD
    root 450780      1   0   Oct 06      -  0:00 /usr/ccs/bin/shlap64
  kumiko 495722 610458   0 18:20:07  pts/1  0:00 ./cputest
    root 630858 651328   0   Oct 06      -  0:06 /usr/sbin/snmpmibd
r33n05:/ #

Displaying the process hierarchy
To display the process hierarchy in a tree format using ASCII art, use the ps 
command with the -T flag as shown in Example 4-24.

Example 4-24   Displaying the process hierarchy

r33n05:/ # ps -T 651328
    PID    TTY  TIME CMD
 651328      -  0:00 srcmstr
 442370      -  0:00    |\--syslogd
 454836      -  0:00    |\--IBM.ServiceRMd
 491692      -  0:00    |\--IBM.AuditRMd
 532488      - 57:42    |\--IBM.CSMAgentRMd
 548890      -  0:00    |\--IBM.HostRMd
 552996      -  0:00    |\--IBM.ERrmd
 573470      -  0:00    |\--rpc.lockd
 589880      -  0:00    |\--IBM.DRMd
 593968      -  0:08    |\--rmcd
 602224      -  0:00    |\--writesrv
 606306      -  0:00    |\--biod
 614494      -  0:00    |\--qdaemon
 618556      -  0:00    |\--rpc.statd
 622642      -  1:45    |\--muxatmd
 626748      -  0:00    |\--inetd
 385070      -  0:00    |   |\--telnetd
 655434  pts/0  0:00    |   |    \--ksh
 557122  pts/0  0:00    |   |       |\--cputest
 659528  pts/0  0:00    |   |        \--ps
 598230      -  0:00    |    \--telnetd
 487492  pts/1  0:00    |        \--ksh
 610458  pts/1  0:00    |            \--ksh
 495722  pts/1  0:00    |                \--cputest
 630858      -  0:06    |\--snmpmibd64
 634942      -  0:00    |\--portmap
 643140      -  0:00     \--sendmail
r33n05:/ #
214 AIX 5L Practical Performance Tools and Tuning Guide



Useful combination
� ps -ef | grep [condition]
� ps -el
� ps -ef | sort +3 -r | head -n 10
� ps -fu [user_id]
� ps eww | grep [PID]

4.2.9  The trace tool
The trace command is a daemon that records selected system events. The trace 
daemon configures a trace session and starts the collection of system events. 
The data collected by the trace daemon is recorded in the trace log. This trace 
log has binary format data. The trcrpt command is used to format report from 
the trace log. 

The trcnm command generates a list of all symbols with their addresses defined 
in the kernel. This data is used by the trcrpt -n command to interpret addresses 
when formatting a report from a trace log file.

The trace command resides in /usr/sbin, and /usr/bin/trace is a symbolic link to 
/usr/sbin/trace. The trcnm and the trcrpt commands reside in /usr/bin. All of these 
commands are part of the bos.sysmgt.trace fileset, which is installable from the 
AIX base installation media.

Syntax
The trace command
trace [  -a [  -g ] ] [  -f |  -l ] [ -b |  -B] [ -c] [ -C [ CPUList | all ]] [  -d ] [  -h ] [ -j Event 
[ ,Event ] ] [ -k Event [ ,Event ] ] [ -J Event-group [ ,Event-group ]] [ -K 
Event-group [ ,Event-group ]] [  -m Message ]  [  -n ] [  -o Name ] [  -o- ] [  -p ] [ -r 
reglist ] [  -s ] [ -A process-id [ ,process-id ] ] [ -t thread-id [ ,thread-id ] ] [ -x 
program-specification | -X program-specification ] [ -I ] [ -P trace-propagation ][  -L 
Size ] [  -T Size ]

Flags
-a Runs the trace daemon asynchronously. Once trace has 

been started this way, you can use the trcon, trcoff, and 
trcstop commands to respectively start tracing, stop tracing, 
or exit the trace session. These commands have symbolic 
link to /usr/bin/trace. 

-A process-id[,process-id]
Traces only the listed processes and, optionally, their 
children. A process-id is a decimal number. Multiple process 
IDs can be separated by commas or enclosed in quotes and 
 Chapter 4. CPU analysis and tuning 215



separated by spaces. The -A flag is only valid for trace 
channel 0. The -A and -g flags are incompatible. 

-C [CPUList | all] Traces using one set of buffers per CPU in the CPUList. The 
CPUs can be separated by commas, or enclosed in double 
quotation marks and separated by commas or blanks. To 
trace all CPUs, specify all. Since this flag uses one set of 
buffers per CPU, and produces one file per CPU, it can 
consume large amounts of memory and file space, and 
should be used with care.

-j Event[,Event] Specifies the trace events for which you want to collect.The 
Event list items can be separated by commas, or enclosed in 
double quotation marks and separated by commas or blanks.

-J Event-group [, Event-group]
Specifies the event groups for which you want to collect.

-o Name Overrides the /var/adm/ras/trcfile default trace log file and 
writes trace data to a user specified file. 

-r reglist Optional, and only valid for a trace run on a 64-bit kernel. The 
reglist options are separated by commas, or enclosed in 
quotation marks, and separated by blanks. Up to 8 registers 
may be specified. Following reglist values are supported.

PURR The PURR. Register for this cpu

MCR0, MCR1, MCRA The MCR. Registers, 0, 1, and A 

PMC1, PMC2, ... PMC8 PMC. Registers 1 through 8. 

-T Size Overrides the default trace buffer size of 128 KB with the 
Size byte. 

The trcstop command
trcstop

The trcnm command
trcnm [  -a [ FileName ] ] | [ FileName ] | -KSymbol1 ...

The trcrpt command
trcrpt [  -c ] [ -C [ CPUList | all ]] [  -d List ] [ -D Event-group-list ] [  -e Date ] [ -G 
] [ -h ] [  -j ] [ -k List ] [ -K Group-list ] [ -n Name ] [  -o File ] [  -p List ] [  -r ] [  -s 
Date ] [  -t File ] [  -T List ] [  -v ] [ -O Options ] [  -x ] [ File ]

Flags

-C [CPUList | all] Generates a report for a multi-cpu trace with trace -C. The 
CPUs can be separated by commas, or enclosed in double 
216 AIX 5L Practical Performance Tools and Tuning Guide



quotation marks and separated by commas or blanks. To 
report on all CPUs, specify trace -C all. The -C flag is not 
necessary unless you want to see only a subset of the CPUs 
traced, or have the CPU number show up in the report. If -C 
is not specified, and the trace is a multi-cpu trace, trcrpt 
generates the trace report for all CPUs, but the CPU number 
is not shown for each hook unless you specify -O cpu=on.

-d List Limits report to hook IDs specified with the List variable. The 
List parameter items can be separated by commas or 
enclosed in double quotation marks and separated by 
commas or blanks. 

-D Event-group-list
Limits the report to hook ids in the Event groups list, plus any 
hook ids specified with the -d flag. List parameter items can 
be separated by commas or enclosed in double quotation 
marks and separated by commas or blanks.

-j Displays the list of hook IDs. 

-o File Writes the report to a file instead of to standard output. 

-O Options Specifies options that change the content and presentation 
of the trcrpt command. 

-p List Reports the process IDs for each event specified by the List 
variable. The List variable may be a list of process IDs or a 
list of process names. List items that start with a numeric 
character are assumed to be process IDs. The list items can 
be separated by commas or enclosed in double quotation 
marks and separated by commas or blanks. 

Examples
When trace is running, it will require a CPU overhead of less than 2%. When the 
trace buffers are full, trace will write its output to the trace log, which may require 
up to five percent of CPU resource. The trace command claims and pins buffer 
space. If a system is short of memory, then running trace could further degrade 
system performance. If you specify many or all hooks, the trace log file become 
very large.

Terminology used for trace
In order to understand the trace tool, you need to know the meaning of some 
terms.

Trace hooks A trace hook is a specific event that is to be monitored. For 
example, if you want to monitor the open() system call, this 
 Chapter 4. CPU analysis and tuning 217



event has hook15B. Trace hooks can be displayed with 
trcrpt -j. Example 4-25 shows the trace hook lists.

Hook ID A unique number is assigned to a trace hook called a hook 
ID. These hook IDs can either be called by a user application 
or by the kernel. The hook IDs can be found in the file 
/usr/include/sys/trchkid.h. Example 4-26 on page 219 shows 
a part of /usr/include/sys/trchkid.h.

Trace buffer The data that is collected by the trace daemon is first written 
to the trace buffer. Only one trace buffer is transparent to the 
user, though it is internally divided into two parts, also 
referred to as a set of trace buffers. Using the -C flag with the 
trace command, one set of trace buffers can be created for 
each CPU of an SMP system. This enhances the total trace 
buffer capacity.

Trace log file Once one of the two internal trace buffers is full, its content is 
usually written to the trace log file. Depending on the amount 
of data that is being collected, the trace log file can become 
huge size quickly.

Example 4-25   Displaying the trace hook

r33n05:/ # trcrpt -j | more
...line is omitted...
122 ALARM SYSTEM CALL
12e CLOSE SYSTEM CALL
130 CREAT SYSTEM CALL
131 DISCLAIM SYSTEM CALL
134 EXEC SYSTEM CALL
135 EXIT SYSTEM CALL
137 FCNTL SYSTEM CALL
139 FORK SYSTEM CALL
13a FSTAT SYSTEM CALL
13b FSTATFS SYSTEM CALL
13e FULLSTAT SYSTEM CALL
14c IOCTL SYSTEM CALL
14e KILL SYSTEM CALL
152 LOCKF SYSTEM CALL
154 LSEEK SYSTEM CALL
15b OPEN SYSTEM CALL
15f PIPE SYSTEM CALL
160 PLOCK
163 READ SYSTEM CALL
169 SBREAK SYSTEM CALL
16a SELECT SYSTEM CALL
16e SETPGRP
16f SBREAK
218 AIX 5L Practical Performance Tools and Tuning Guide



179 LAPI
180 SIGACTION SYSTEM CALL
181 SIGCLEANUP
...line is omitted...

Example 4-26   Displaying the trace hook ID

r33n05:/ # more /usr/include/sys/trchkid.h
...skipping...
#define HKWD_SYSC_LOADTBL         0x15100000
#define HKWD_SYSC_LOCKF           0x15200000
#define HKWD_SYSC_LOCKX           0x15300000
#define HKWD_SYSC_LSEEK           0x15400000
#define HKWD_SYSC_MACCTL          0x15500000
#define HKWD_SYSC_MKDIR           0x15600000
#define HKWD_SYSC_MKNOD           0x15700000
#define HKWD_SYSC_MNTCTL          0x15800000
#define HKWD_SYSC_MOUNT           0x15900000
#define HKWD_SYSC_NICE            0x15a00000
#define HKWD_SYSC_OPEN            0x15b00000
#define HKWD_SYSC_OPENX           0x15c00000
#define HKWD_SYSC_OUNAME          0x15d00000
#define HKWD_SYSC_PAUSE           0x15e00000
#define HKWD_SYSC_PIPE            0x15f00000
#define HKWD_SYSC_PLOCK           0x16000000
#define HKWD_SYSC_PROFIL          0x16100000
#define HKWD_SYSC_PTRACE          0x16200000
#define HKWD_SYSC_READ            0x16300000
...line is omitted...

Running trace interactively
When you use the trace command without -a flag, the trace daemon runs 
interactive mode. In interactive mode, the trace daemon recognizes the following 
subcommands.

trcon Starts the collection of trace data.

trcoff Stops the collection of trace data.

q or quit Stops the collection of trace data and exits trace.

! Runs the shell command specified by the Command parameter.

? Displays the summary of trace subcommands.

Example 4-27 on page 220 shows how to run trace daemon interactively. In this 
example, trace daemon record system event of the ls command as well as other 
processes running on the system, and /var/adm/ras/trcfile is used for trace log 
file.
 Chapter 4. CPU analysis and tuning 219



Example 4-27   Running trace interactively

r33n05:/ # trace
-> !ls
.SPOT             audit             lpp               tftpboot
.Xdefaults        bin               mnt               tmp
.kshrc            dev               opt               u
.mwmrc            etc               proc              unix
.profile          export            sbin              usr
.rhosts           home              smit.log          var
.rhosts.prev      lib               smit.script
.sh_history       lost+found        smit.transaction
-> q
r33n05:/ # ls -l /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system      1216448 Oct 21 11:20 /var/adm/ras/trcfile
r33n05:/ # 

Running trace asynchronously
When you use the trace command with -a flag, the trace daemon runs 
asynchronous mode. Example 4-28 shows how to run trace daemon 
asynchronously. In this example, trace daemon record system event of the ls 
command as well as other processes running on the system, and 
/var/adm/ras/trcfile is used for trace log file. This method is used to avoid delays 
when the command finishes. And by using this method, the trace file is 
considerably smaller than the interactive mode shown in Example 4-27.

Example 4-28   Running trace asynchronously

r33n05:/ # trace -a; ls; trcstop
.SPOT             audit             lpp               tftpboot
.Xdefaults        bin               mnt               tmp
.kshrc            dev               opt               u
.mwmrc            etc               proc              unix
.profile          export            sbin              usr
.rhosts           home              smit.log          var
.rhosts.prev      lib               smit.script
.sh_history       lost+found        smit.transaction
r33n05:/ # ls -l /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system       523560 Oct 21 11:23 /var/adm/ras/trcfile
r33n05:/ #

Running trace all system event for 10 seconds
Example 4-29 on page 221 shows how to run trace on the entire system for 10 
seconds. This command traces all system activity and includes all trace hooks. 
The file /var/adm/ras/trcfile is used for trace log file. 
220 AIX 5L Practical Performance Tools and Tuning Guide



Example 4-29   Running trace all system event for 10 seconds

r33n05:/ # trace -a; sleep 10; trcstop
r33n05:/ # ls -l /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system      2054688 Oct 21 11:43 /var/adm/ras/trcfile
r33n05:/ #

Tracing to a specific log file
If you want to specify the trace log file, use -o flag. Example 4-30 shows a sample 
how to run trace asynchronously and output the trace file to /tmp/my_trace_log.

Example 4-30   Tracing to a specific log file

r33n05:/ # trace -a -o /tmp/my_trace_log; ls; trcstop
.SPOT             audit             lpp               tftpboot
.Xdefaults        bin               mnt               tmp
.kshrc            dev               opt               u
.mwmrc            etc               proc              unix
.profile          export            sbin              usr
.rhosts           home              smit.log          var
.rhosts.prev      lib               smit.script
.sh_history       lost+found        smit.transaction
r33n05:/ # ls -l /tmp/my_trace_log
-rw-rw-rw-   1 root     system       536928 Oct 21 11:51 /tmp/my_trace_log
r33n05:/ #

Tracing using one set of buffers per CPU
Only one trace files is used to record all CPU system event by default. By using 
the -C option, trace daemon used one set of buffers per CPU, and produces one 
file per CPU as show in Example 4-31. This consume large amounts of memory 
and file space for collecting system events. In this example, four individual files 
(one for each CPU) and the master file /var/adm/ras/trcfile are created.

Example 4-31   Tracing using one set of buffers per CPU

r33n05:/ # trace -a -C all; sleep 10; trcstop
Warning:  The available space, 127672320 bytes, may be insufficient.
r33n05:/ # ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system        50528 Oct 21 11:56 /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system       105728 Oct 21 11:56 /var/adm/ras/trcfile-0
-rw-rw-rw-   1 root     system       421664 Oct 21 11:56 /var/adm/ras/trcfile-1
-rw-rw-rw-   1 root     system      1074336 Oct 21 11:56 /var/adm/ras/trcfile-2
-rw-rw-rw-   1 root     system       371016 Oct 21 11:56 /var/adm/ras/trcfile-3
r33n05:/ #
 Chapter 4. CPU analysis and tuning 221



Formatting the trace log file
Using the trcrpt command, you can format the trace log file. Generally, this 
command displays many lines, you had better use pipe or -o flag. Example 4-32 
shows a sample of formatting a trace log using the trcrpt command.

Example 4-32   Formats the trace log file

r33n05:/ # trace -a -o /tmp/trace.log; sleep 10; trcstop
r33n05:/ #
r33n05:/ # trcrpt /tmp/trace.log | more
Thu Oct 21 14:11:00 2004
System: AIX 5.3 Node: r33n05
Machine: 00C3E3CC4C00
Internet Address: 81280D45 129.40.13.69
The system contains 80 cpus, of which 80 were traced.
Buffering: Kernel Heap
This is from a 64-bit kernel.
Tracing all hooks.

trace -a -o /tmp/trace.log

ID     ELAPSED_SEC     DELTA_MSEC   APPL    SYSCALL KERNEL  INTERRUPT

001    0.000000000       0.000000                   TRACE ON channel 0
                                                    Thu Oct 21 14:11:00 2004
104    0.000022621       0.022621           return from system call
101    0.000023710       0.001089           _getppid LR = D023335C
104    0.000024113       0.000403           return from _getppid [0 usec]
101    0.000024621       0.000508           kill LR = 10009BC0
14E    0.000025142       0.000521                   kill: signal SIGUSR1 to 
process 610342 trace
3B7    0.000025621       0.000479   SECURITY: privcheck entry: p=4
3B7    0.000025907       0.000286   SECURITY: privcheck exit: rc=0
119    0.000026865       0.000958                   pidsig:   pid=610342 
signal=SIGUSR1 lr=33E78
11F    0.000027798       0.000933                   setrq:   cmd=trace 
pid=610342 tid=1130525 prio
rity=60 policy=0 rq=0002
492    0.000028235       0.000437                   h_call: start H_PROD 
iar=2922C p1=0002 p2=00FF
 p3=0000
492    0.000029588       0.001353                   h_call: end H_PROD 
iar=2922C rc=0000
104    0.000030176       0.000588           return from kill [6 usec]
101    0.000030752       0.000576           close LR = 10009BD8
12E    0.000031184       0.000432           close fd=0
104    0.000031768       0.000584           return from close [1 usec]
222 AIX 5L Practical Performance Tools and Tuning Guide



101    0.000032218       0.000450           close LR = 10009BE4
... lines omitted ...

Formatting the trace log file with specified columns
Using the -O flag, the trcrpt command can format the trace log file with 
specified column. Following options are supported for -O flag.

2line=[on|off] Uses two lines per trace event in the report instead of one. 
The default value is off. 

cpuid=[on|off] Displays the physical processor number in the trace 
report. The default value is off. 

endtime=Seconds Displays trace report data for events recorded before the 
seconds specified. Seconds can be given in either an 
integral or rational representation. If this option is used 
with the “starttime” option, a specific range can be 
displayed. 

exec=[on|off] Displays exec path names in the trace report. The default 
value is off. 

hist=[on|off] Logs the number of instances that each hook ID is 
encountered. This data can be used for generating 
histograms. The default value is off. This option cannot be 
run with any other option. 

ids=[on|off] Displays trace hook identification numbers in the first 
column of the trace report. The default value is on. 

pagesize=Number Controls the number of lines per page in the trace report 
and is an integer within the range of 0 through 500. The 
column headings are included on each page. No page 
breaks are present when the default value of 0 is set. 

pid=[on|off] Displays the process IDs in the trace report. The default 
value is off. 

reportedcpus=[on|off]

Displays the number of CPUs remaining. This option is 
only meaningful for a multi-cpu trace, trace -C. For 
example, if you're reading a report from a system having 4 
CPUs, and the reported CPUs value goes from 4 to 3, 
then you know that there are no more hooks to be 
reported for that CPU. 

PURR=[on|off] Tells trcrpt to show the PURR along with any 
timestamps. The PURR is displayed following any 
timestamps. If the PURR is not valid for the processor 
traced, the elapsed time is shown instead of the PURR. If 
 Chapter 4. CPU analysis and tuning 223



the PURR is valid, or the cpuid is unknown, but wasn't 
traced for a hook, the PURR field contains asterisks (*).

starttime=Seconds Displays trace report data for events recorded after the 
seconds specified. The specified seconds are from the 
beginning of the trace file. Seconds can be given in either 
an integral or rational representation. If this option is used 
with the “endtime” option, a specific range of seconds can 
be displayed. 

svc=[on|off] Displays the value of the system call in the trace report. 
The default value is off. 

tid=[on|off] Displays the thread ID in the trace report. The default 
value is off. 

timestamp=[0|1|2|3] Controls the reporting of the time stamp associated with 
an event in the trace report. The possible values are: 

0 Time elapsed since the trace was started and delta 
time from the previous event. The elapsed time is in 
seconds and the delta time is in milliseconds. Both 
values are reported to the nearest nanosecond. This is 
the default. 

1 Short elapsed time. Reports only the elapsed time (in 
seconds) from the start of the trace. Elapsed time is 
reported to the nearest microsecond. 

2 Microsecond delta time. This is like 0, except the delta 
time is in microseconds, reported to the nearest 
microsecond. 

3 No time stamp. 

Example 4-33 shows a sample of the trcrpt command with -O flag. In this 
example, CPU ID and process ID are specified to report.

Example 4-33   Formatting the trace log file with specified columns

r33n05:/ # trace -a -C all -o /tmp/trace2.log; sleep 10; trcstop
r33n05:/ #
r33n05:/ # trcrpt -O pid=on,cpuid=on /tmp/trace2.log | more
... skip ...
492 2   16392         0.000038214       0.000630                   h_call: end H_CEDE iar
=1BF92D03D9ED9 rc=0000
492 3   20490         0.000038218       0.000004                   h_call: end H_CEDE iar
=1BF92D03D9ED7 rc=0001
100 3   20490         0.000039600       0.001382                           DATA ACCESS PA
GE FAULT iar=27744 cpuid=03
116 1   557308        0.000039911       0.000311                   xmalloc fastpath:   si
224 AIX 5L Practical Performance Tools and Tuning Guide



ze=02C0 align=0007 heap=F100060000000000
106 2   487678        0.000040046       0.000135                   dispatch:   cmd=trace
pid=487678 tid=1134655 priority=60 old_tid=16393 old_priority=255 CPUID=2
116 1   557308        0.000040348       0.000302                   xmalloc return:     re
sult=F1000600179D3800
200 3   20490         0.000041042       0.000694                   resume  wait iar=27744
 cpuid=03
116 1   557308        0.000041067       0.000025                   xmalloc fastpath:   si
ze=0200 align=0007 heap=F100060000000000
200 2   487678        0.000041289       0.000222                   resume  trace iar=A8A8
C cpuid=02
116 1   557308        0.000041294       0.000005                   xmalloc return:     re
sult=F100060015AF3E00
492 3   20490         0.000041630       0.000336                   h_call: start H_CEDE i
ar=500B p1=1BF92D03DA3DA p2=0000 p3=0000
104 2   487678        0.000042004       0.000374           return from system call. error
 EINTR
200 2   487678        0.000044466       0.002462                   resume  trace iar=2ED9
8 cpuid=02
... lines omittes ...

Reporting only specified process related event(s)
There are two methods for reporting only specified process related event:

– First, using the trace command with the -A flag. Using the -A flag, the 
trace daemon records only the specified processes. In versions prior to 
AIX 5L Version 5.3, the trace daemon traced the entire system event. 
Beginning with AIX 5L Version 5.3, the trace command enhanced to 
enable recording only for specified processes, threads or programs. This 
enhancement can save space in the trace file and also helps to focus on 
just the process or thread you want to see. Example 4-34 shows a sample 
of tracing only specified process.

Example 4-34   Tracing only specified process

r33n05:/ # ps -ef | grep inetd
    root 598252 495628   0 16:46:58  pts/1  0:00 grep inetd
    root 626748 651328   0   Oct 06      -  0:00 /usr/sbin/inetd
r33n05:/ # trace -a -A 626748; sleep 10; trcstop
r33n05:/ # trcrpt -O pid=on | more
... skip ...

trace -a -A 626748

ID  PID      I    ELAPSED_SEC     DELTA_MSEC   APPL    SYSCALL KERNEL  INTERRUPT

001 598260        0.000000000       0.000000                   TRACE ON channel 0
 Chapter 4. CPU analysis and tuning 225



                                                               Thu Oct 21 16:47:41 2004
200 626748        1.738538012    1738.538012                   resume  inetd iar=540BC cp
uid=FFFFFFFF
104 626748        1.738547256       0.009244           return from system call
101 626748        1.738550004       0.002748           naccept LR = 10003120
252 626748        1.738550777       0.000773           SOCK accept sofd=12 name=000000000
0000000 namelen=0
254 626748        1.738552806       0.002029                   MBUF m_get canwait=M_WAIT
type=MT_SONAME callfrom=000000000018DC4C
254 626748        1.738553651       0.000845                   MBUF return from m_get mbu
f=F100061001F78400 dataptr=F100061001F78468
252 626748        1.738554071       0.000420           SOCK soaccept so=F100061006B1A000
nam=F100061001F78400
52F 626748        1.738555231       0.001160   SEC CRED: crref  callfrom=00000000002D75AC
 callfrom2=000000000018E02C pid=626748 (inetd)
52F 626748        1.738555500       0.000269   SEC CRED: crfree  callfrom=00000000002D75E
0 callfrom2=000000000018E02C pid=626748 (inetd)
535 626748        1.738556105       0.000605                   TCP tcp_usrreq so=F1000610
06B1A000 req=0000000000000005 m=0000000000000000 nam=F100061001F78400
539 626748        1.738556617       0.000512                   PCB in_setpeeraddr inp=F10
0061006B1A278 nam=F100061001F78400 af=0000000000000018
535 626748        1.738556978       0.000361                   TCP tcp_usrreq_err so=F100
061006B1A000 error=0000000000000000
252 626748        1.738557521       0.000543           SOCK return from soaccept so=F1000
61006B1A000 error=0
... lines omitted ...

– Second, using the trcrpt command with -p flag. If you have trace log file 
includes all system activity, you can extract the process related event 
using the trcrpt command with -p flag. Example 4-35 shows a sample of 
extracting the process related event. In this example, the trace log file 
includes entire system event, and the trcrpt extracts only the event related 
to process which has PID 610382.

Example 4-35   Extracting the process related event

r33n05:/ # ps -ef | grep memtest
    root 508054 655474  72 16:40:46  pts/0  0:01 ./memtest
r33n05:/ # trace -a; sleep 10; trcstop
r33n05:/ # trcrpt -p 508054 | more
... skip ...

trace -a

ID     ELAPSED_SEC     DELTA_MSEC   APPL    SYSCALL KERNEL  INTERRUPT

101    0.000000000       0.000000           kwrite LR = D0235FD0
226 AIX 5L Practical Performance Tools and Tuning Guide



19C    0.000000453       0.000453           write(1,FFFFFFFFF09148D0,19)
104    0.000001525       0.001072           return from kwrite [2 usec]
101    0.000002852       0.001327           kwrite LR = D0235FD0
19C    0.000003281       0.000429           write(1,FFFFFFFFF09148D0,19)
104    0.000004306       0.001025           return from kwrite [1 usec]
101    0.000005638       0.001332           kwrite LR = D0235FD0
19C    0.000006029       0.000391           write(1,FFFFFFFFF09148D0,19)
104    0.000007012       0.000983           return from kwrite [1 usec]
101    0.000008319       0.001307           kwrite LR = D0235FD0
19C    0.000008735       0.000416           write(1,FFFFFFFFF09148D0,19)
104    0.000009882       0.001147           return from kwrite [2 usec]
101    0.000011378       0.001496           kwrite LR = D0235FD0
19C    0.000011773       0.000395           write(1,FFFFFFFFF09148D0,19)
104    0.000012857       0.001084           return from kwrite [1 usec]
101    0.000014189       0.001332           kwrite LR = D0235FD0
19C    0.000014609       0.000420           write(1,FFFFFFFFF09148D0,19)
104    0.000015743       0.001134           return from kwrite [2 usec]
101    0.000017109       0.001366           kwrite LR = D0235FD0
19C    0.000017504       0.000395           write(1,FFFFFFFFF09148D0,19)
... lines omitted ...

Reporting only specified hook event(s)
There are two methods for reporting only specified trace hook event.

– First, using the trace command with the -j or -J flag. Using the -j flag, you 
can specify the trace event which you want to collect. Using the -J flag, you 
can specify the event-group which you want to collect. 

Example 4-36 shows a sample of tracing only specified hook event. In this 
example, only the system event which has trace hook 0x15B(it means 
open() system call) is recorded.

Example 4-36   Tracing only specified event

r33n05:/ # trace -j 15B -a ; sleep 10; trcstop
r33n05:/ # trcrpt | more

... skip ...

trace -j 15B -a

ID     ELAPSED_SEC     DELTA_MSEC   APPL    SYSCALL KERNEL  INTERRUPT

001    0.000000000       0.000000                   TRACE ON channel 0
                                                    Thu Oct 21 17:37:54 2004
15B    0.001030802       1.030802           open fd=3
15B    0.404840773     403.809971           open fd=3
15B    0.408591970       3.751197           open fd=3
 Chapter 4. CPU analysis and tuning 227



15B    0.410061609       1.469639           open fd=3 _FLARGEFILE
15B    0.412220483       2.158874           open fd=3 _FLARGEFILE
15B    0.412356823       0.136340           open fd=3 _FLARGEFILE
15B    0.412592924       0.236101           open fd=3 _FLARGEFILE
15B    0.413577794       0.984870           open fd=3 _FLARGEFILE
15B    0.421370865       7.793071           open fd=3 _FLARGEFILE
15B    0.421716424       0.345559           open fd=3 _FLARGEFILE
15B    0.422057873       0.341449           open fd=3 _FLARGEFILE
15B    0.422317827       0.259954           open fd=3 _FLARGEFILE
15B    0.425110983       2.793156           open fd=3 _FLARGEFILE
15B    0.425318420       0.207437           open fd=3 _FLARGEFILE
15B    0.426369042       1.050622           open fd=3 _FLARGEFILE
15B    0.426418831       0.049789           open fd=3 _FLARGEFILE
15B    0.426633155       0.214324           open fd=3 _FLARGEFILE
15B    0.437612941      10.979786           open fd=3 _FLARGEFILE
... lines omitted ...

– Second, using the trcrpt command with -d or -D flag. If you have trace 
log file includes all system activity, you can extract only specified event 
using the trcrpt command with -d or -D flag. Using the -d flag, you can 
extract the trace event only you want to see. Using the -J flag, you can 
extract the event-group only you want to see. Example 4-37 shows a 
sample of extracting only specified hook event. In this example, only the 
system event which has trace hook 0x12E(it means close() system call) is 
extracted.

Example 4-37   Extracting only specified event

r33n05:/ # trace -a -T 1310720; sleep 10; trcstop
r33n05:/ # trcrpt -d 12E| more
... skip ...

trace -a -T 1310720

ID     ELAPSED_SEC     DELTA_MSEC   APPL    SYSCALL KERNEL  INTERRUPT

001    0.000000000       0.000000                   TRACE ON channel 0
                                                    Thu Oct 21 17:57:44 2004
12E    0.000030025       0.030025           close fd=0
12E    0.000031537       0.001512           close fd=1
12E    0.000032823       0.001286           close fd=2
12E    0.000051021       0.018198           close fd=4
12E    0.000059033       0.008012           close fd=5
12E    0.001025827       0.966794           close fd=10
12E    0.001171386       0.145559           close fd=3
12E    3.181724995    3180.553609           close fd=3
12E    3.182076970       0.351975           close fd=3
12E    3.182180945       0.103975           close fd=3
228 AIX 5L Practical Performance Tools and Tuning Guide



12E    3.182238554       0.057609           close fd=3
006    6.261873882    3079.635328                   TRACEBUFFER WRAPAROUND 0000
12E    7.786841453    1524.967571           close fd=12
12E    8.182368760     395.527307           close fd=3
12E    8.182719710       0.350950           close fd=3
... lines omitted ... 

Useful combinations
� trace -a; command; trcstop
� trace -a -C all 
� trace -a -j [trace_event]
� trace -a -J [event_group]
� trcrpt -o [file_name]
� trcrpt -d [trace_event]
� trcrpt -p [PID]

4.2.10  The curt command
The CPU Usage Reporting Tool (curt) is used to generate statistics report 
related to CPU utilization and process/thread activity from a trace log file. For 
information about trace, refer to 4.2.9, “The trace tool” on page 215. The curt 
command resides in /usr/bin and is part of the bos.perf.tools fileset, which is 
installable from the AIX base installation media.

Syntax
curt -i inputfile [-o outputfile] [-n gennamesfile] [-m trcnmfile] [-a pidnamefile] 
[-f timestamp] [-l timestamp] [-r PURR] [-ehpstP]

Flags
-i inputfile Specifies the input AIX trace file to be analyzed. 

-o outputfile Specifies the output file (default is stdout). 

-n gennamesfile Specifies a names file produced by gennames.

-m trcnmfile Specifies a names file produced by trcnm. 

-r PURR Uses the PURR register to calculate CPU times. 

Parameters
inputfile The AIX trace file that should be processed by curt.

Examples
The curt command reads a raw format trace file and generate a report which 
contains summaries on CPU utilization and either process or thread activity. This 
 Chapter 4. CPU analysis and tuning 229



report is useful for determining which application, system call, or interrupt 
handler is using most of the CPU time and is a candidate to be optimized to 
improve system performance. The trace file which is gathered using the trace 
command should contain at least following trace events.

� HKWD_KERN_SVC (101)

� HKWD_KERN_SYSCRET (104)

� HKWD_KERN_FLIH (100)

� HKWD_KERN_SLIH (102)

� HKWD_KERN_SLIHRET (103)

� HKWD_KERN_DISPATCH (106)

� HKWD_KERN_RESUME (200)

� HKWD_KERN_IDLE (10C)

� HKWD_SYSC_FORK (139)

� HKWD_SYSC_EXECVE (134)

� HKWD_KERN_PIDSIG (119)

� HKWD_SYSC__EXIT (135)

� HKWD_SYSC_CRTHREAD (465)

� HKWD_KERN_INITP (210)

� HKWD_NFS_DISPATCH (215)

� HKWD_CPU_PREEMPT (419)

� HKWD_DR (38F)

� HKWD_KERN_PHANTOM_EXTINT (47F)

� HKWD_KERN_HCALL (492)

� HKWD_PTHREAD_VPSLEEP (605)

� HKWD_PTHREAD_GENERAL (609)

Trace event-group “curt” also contains these event. Example 4-38 shows event 
list of curt event group.

Example 4-38   event list of curt event group

r33n05:/ # trcevgrp -l curt
curt - Hooks for CURT performance tool (reserved)
        
100,101,102,103,104,106,10C,119,134,135,139,200,210,215,38F,465,419,47F,492,605
,609
r33n05:/ #
230 AIX 5L Practical Performance Tools and Tuning Guide



Preparing for curt report
To generate the curt report, you need to prepare the raw format trace file. 
Example 4-39 shows a sample of creating a trace file. In this example we run the 
trace command with -C all option, and to merge the trace files we run the trcrpt 
command. Neither the gennamesfile nor the trcnmfile file are necessary for curt 
to run. However, if you provide one or both of those files, curt will output names 
for system calls and interrupt handles instead of just addresses. The gennames 
command output includes more information than the trcnm command output, and 
so, while the trcnmfile will contain most of the important address to name 
mapping data, a gennamesfile will enable curt to output more names, especially 
interrupt handlers.

Example 4-39   Preparing curt report

r33n05:/ # trace -a -C all ; sleep 10; trcstop
r33n05:/ # ls /var/adm/ras/trcfile*
/var/adm/ras/trcfile    /var/adm/ras/trcfile-1  /var/adm/ras/trcfile-3
/var/adm/ras/trcfile-0  /var/adm/ras/trcfile-2
r33n05:/ # trcrpt -r -C all > /tmp/trace.r
r33n05:/ # trcnm > /tmp/trcnm.out
r33n05:/ # gennames > /tmp/gennames.out

Creating curt report
Example 4-40 shows a sample of creating the curt report. Default curt report 
includes the following information.

� General Information
� System Summary
� Processor Summary
� Application Summary by TID
� Application Summary by PID
� Application Summary by Process Type
� Kproc Summary
� System Calls Summary
� Pending System Calls Summary
� Hypervisor Calls Summary
� System NFS Calls Summary
� FLIH Summary
� SLIH Summary

Example 4-40   Creating a curt report

r33n05:/ # curt -i /tmp/trace.r -m /tmp/trcnm.out -n /tmp/gennames.out > 
/tmp/curt.out
r33n05:/ #
 Chapter 4. CPU analysis and tuning 231



General Information
The first information in the report is the time and date when this particular curt 
command was run, including the syntax of the curt command line that produced 
the report. The “General Information” section also contains some information 
about the AIX trace file that was processed by curt. This information consists of 
the trace file name, size, and creation date. The command used to invoke the AIX 
trace facility and gather the trace file is displayed at the end of the report. A 
sample of this output is shown in Example 4-41.

Example 4-41   General information

r33n05:/ # more /tmp/curt.out
Run on Fri Oct 22 11:14:23 2004
Command line was:
curt -i /tmp/trace.r -m /tmp/trcnm.out -n /tmp/gennames.out
----
AIX trace file name = /tmp/trace.r
AIX trace file size = 10178908
AIX trace file created = Fri Oct 22 09:43:29 2004

Command used to gather AIX trace was:
  trace -a -C all

... lines omitted ...

System summary
The next part of the default output is the system summary. This section describes 
the time spent by the system as a whole (all processors) in various execution 
modes (see Example 4-42 on page 234). This section has the following fields.

processing total timeThis column gives the total time in milliseconds for the 
corresponding processing category.

percent total time This column gives the time from the first column as a 
percentage of the sum of total trace elapsed time for all 
processors. This includes whatever amount of time each 
processor spent running the IDLE process.

Percent busy time This column gives the time from the first column as a 
percentage of the sum of total trace elapsed time for all 
processors without including the time each processor 
spent executing the IDLE process.

Avg. Thread Affinity The Avg. Thread Affinity is the probability that a thread 
was dispatched to the same processor that it last 
executed on.
232 AIX 5L Practical Performance Tools and Tuning Guide



processing category This column gives execution modes. These mode are as 
follows.

APPLICATION The sum of times spent by all processors in User 
(non-privileged) mode. 

SYSCALL The sum of times spent by all processors doing 
System Calls. This is the portion of time that a 
processor spends executing in the kernel code 
providing services directly requested by a user 
process. 

HCALL The sum of times spent by all processors doing 
Hypervisor Calls. This is the portion of time that a 
processor spends executing in the hypervisor code 
providing services directly requested by the kernel. 

KPROC The sum of times spent by all processors executing 
kernel processes other than the IDLE process and 
NFS processes. This is the portion of time that a 
processor spends executing specially created 
dispatchable processes which only execute kernel 
code. 

NFS The sum of times spent by all processors executing 
NFS operations. NFS operations begin with 
RFS_DISPATCH_ENTRY and end with 
RFS_DISPATCH_EXIT subhooks. 

FLIH The sum of times spent by all processors in FLIHs 
(first level interrupt handlers). 

SLIH The sum of times spent by all processors in SLIHs 
(second level interrupt handlers). 

DISPATCH The sum of times spent by all processors in the AIX 
dispatch code. This sum includes the time spent in 
dispatching all threads (i.e. it includes the dispatches 
of the IDLE process). 

IDLE DISPATCH The sum of times spent by all processors in the AIX 
dispatch code where the process being dispatched 
was the IDLE process. Because the DISPATCH 
category includes the IDLE DISPATCH category's 
time, the IDLE DISPATCH category's time is not 
separately added to calculate either CPU(s) busy time 
or TOTAL (see below). 

CPU(s) busy time The sum of times spent by all processors executing in 
application, syscall, kproc, flih, slih, and dispatch 
modes. 
 Chapter 4. CPU analysis and tuning 233



IDLE The sum of times spent by all processors executing 
the IDLE process. 

TOTAL The sum of CPU(s) busy time and IDLE. This number 
is referred to as “total processing time”. 

Total Physical CPU time (msec)

The real time the CPU(s) were running (not preempted). 

Physical CPU percentage

The Physical CPU(s) Time as a percentage of total time.

Example 4-42   System summary

r33n05:/ # more /tmp/curt.out
... skip ...
                     System Summary
                     --------------
 processing       percent       percent
 total time    total time     busy time
     (msec)  (incl. idle)  (excl. idle)  processing category
===========   ===========   ===========  ===================
      27.49         27.05         27.05  APPLICATION
      45.22         44.49         44.49  SYSCALL
      13.99         13.76         13.76  HCALL
       3.40          3.34          3.34  KPROC (excluding IDLE and NFS)
       0.00          0.00          0.00  NFS
       7.15          7.03          7.03  FLIH
       3.02          2.97          2.97  SLIH
       1.37          1.35          1.35  DISPATCH (all procs. incl. IDLE)
       0.58          0.57          0.57  IDLE DISPATCH (only IDLE proc.)
-----------    ----------       -------
     101.64         99.99        100.00  CPU(s) busy time
       0.01          0.01                IDLE
-----------    ----------
     101.65                              TOTAL

Avg. Thread Affinity = 1.00

Total Physical CPU time (msec) = 103.43
Physical CPU percentage        = 0.86
... lines omitted ...

Processor summary
This part of the curt output follows the System Summary and is essentially the 
same information but broken down on a processor-by processor basis. The same 
description that was given for the System Summary applies here, except that the 
phrase “sum of times spent by all processors” can be replaced by “time spent by 
234 AIX 5L Practical Performance Tools and Tuning Guide



this processor”. Beginning with AIX 5L Version 5.3, some fields related to 
Hypervisor Call are added.

Total number of H_CEDE
The number of H_CEDE hypervisor call done by this processor; with 
preemption indicates the number of H_CEDE calls resulting in 
preemption.

Total number of H_CONFER
The number of H_CONFER hypervisor call done by this processor; 
with preemption indicates the number of H_CONFER calls resulting 
in preemption.

A sample of processor summary output is shown in Example 4-43.

Example 4-43   Processor summary

r33n05:/ # more /tmp/curt.out
... skip ...
              Processor Summary  processor number 1
              ---------------------------------------
 processing       percent       percent
 total time    total time     busy time
     (msec)  (incl. idle)  (excl. idle)  processing category
===========   ===========   ===========  ===================
      20.66         59.91         59.91  APPLICATION
       7.94         23.03         23.03  SYSCALL
       8.62         25.00         25.00  HCALL
       1.55          4.50          4.50  KPROC (excluding IDLE and NFS)
       0.00          0.00          0.00  NFS
       2.11          6.13          6.13  FLIH
       1.84          5.33          5.33  SLIH
       0.38          1.10          1.10  DISPATCH (all procs. incl. IDLE)
       0.16          0.46          0.46  IDLE DISPATCH (only IDLE proc.)
-----------    ----------       -------
      34.49         99.99        100.00  CPU(s) busy time
       0.00          0.01                IDLE
-----------    ----------
      34.49                              TOTAL

Avg. Thread Affinity = 1.00

Total number of process dispatches = 175
Total number of idle dispatches     = 156

Total Physical CPU time (msec) = 44.23
Physical CPU percentage        = 0.72
Physical processor affinity    =  0.960751
Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).
    PHYSICAL   CPU 1 : 586
 Chapter 4. CPU analysis and tuning 235



Total number of preemptions = 586
Total number of H_CEDE      = 574      with preeemption = 573
Total number of H_CONFER    = 0      with preeemption = 0

              Processor Summary  processor number 2
              ---------------------------------------
 processing       percent       percent
 total time    total time     busy time
     (msec)  (incl. idle)  (excl. idle)  processing category
===========   ===========   ===========  ===================
       6.83         12.84         12.85  APPLICATION
      37.28         70.12         70.12  SYSCALL
       5.37         10.09         10.10  HCALL
       1.85          3.47          3.47  KPROC (excluding IDLE and NFS)
... lines omitted ...

Application summary by TID
The Application Summary by Thread ID shows an output of all threads that were 
running on the system during trace collection and their CPU consumption. The 
thread that consumed the most CPU time during the trace collection is at the top 
of the list. The output has two main sections, of which one shows the total 
processing time of the thread in milliseconds (processing total in miliseconds), 
and the other shows the CPU time the thread has consumed, expressed as a 
percentage of the total CPU time (percent of total processing time). PID (process 
ID) and TID (thread ID) are always given in decimal. A sample of application 
summary by TID is shown in Example 4-44.

Example 4-44   Application summary by TID

r33n05:/ # more /tmp/curt.out
... skip ...

                     Application Summary (by Tid)
                     ----------------------------
    -- processing total (msec) --          -- percent of total processing time --
   combined  application      syscall     combined  application      syscall  name (Pid  Tid)
   ========  ===========      =======     ========  ===========      =======  
===================
    21.8643       3.5268      18.3375      21.5099       3.4697      18.0403  (610532  1118323)
    16.5744      16.5744       0.0000      16.3058      16.3058       0.0000  (487600  1167509)
     3.1864       1.1024       2.0840       3.1348       1.0846       2.0502  trcstop(598254  
1179805)
     2.5426       2.5426       0.0000       2.5014       2.5014       0.0000  (487600  1142923)
     1.2743       0.9171       0.3572       1.2537       0.9023       0.3514  muxatmd(622642  
798857)
     1.1672       1.1672       0.0000       1.1483       1.1483       0.0000  getty(639088  
774293)
236 AIX 5L Practical Performance Tools and Tuning Guide



     1.0533       1.0533       0.0000       1.0362       1.0362       0.0000  (487600  1044593)
     0.4702       0.4702       0.0000       0.4626       0.4626       0.0000  (487600  1163459)
     0.3353       0.0791       0.2562       0.3299       0.0778       0.2520  ksh(655440  
1073245)
     0.3098       0.0958       0.2139       0.3048       0.0943       0.2105  ksh(659476  
1056821)
     0.1192       0.0084       0.1108       0.1172       0.0083       0.1090  (598252  1179803)
     0.0852       0.0333       0.0520       0.0839       0.0327       0.0511  rmcd(593968  
684231)
     0.0295       0.0113       0.0182       0.0291       0.0111       0.0179  snmpmibd64(630858  
807073)
     0.0094       0.0067       0.0028       0.0093       0.0065       0.0027  syncd(389354  
409619)
... lines omitted ...

Application summary by PID 
The application summary (by PID) has the same content as the application 
summary (by TID), except that the threads that belong to each process are 
consolidated, and the process that consumed the most CPU time during the 
monitoring period is at the beginning of the list. A sample of application summary 
by PID is shown in Example 4-45.

Example 4-45   Application summary by PID

r33n05:/ # more /tmp/curt.out
... skip ...
                     Application Summary (by Pid)
                     ----------------------------
    -- processing total (msec) --          -- percent of total processing time --
   combined  application      syscall     combined  application      syscall  name (Pid)(Thread 
Count)
   ========  ===========      =======     ========  ===========      =======  
===================
    21.8643       3.5268      18.3375      21.5099       3.4697      18.0403  (610532)(1)
    20.6405      20.6405       0.0000      20.3060      20.3060       0.0000  (487600)(4)
     3.1864       1.1024       2.0840       3.1348       1.0846       2.0502  
trcstop(598254)(1)
     1.2743       0.9171       0.3572       1.2537       0.9023       0.3514  
muxatmd(622642)(1)
     1.1672       1.1672       0.0000       1.1483       1.1483       0.0000  getty(639088)(1)
     0.3353       0.0791       0.2562       0.3299       0.0778       0.2520  ksh(655440)(1)
     0.3098       0.0958       0.2139       0.3048       0.0943       0.2105  ksh(659476)(1)
     0.1192       0.0084       0.1108       0.1172       0.0083       0.1090  (598252)(1)
     0.0852       0.0333       0.0520       0.0839       0.0327       0.0511  rmcd(593968)(1)
     0.0295       0.0113       0.0182       0.0291       0.0111       0.0179  
snmpmibd64(630858)(1)
     0.0094       0.0067       0.0028       0.0093       0.0065       0.0027  syncd(389354)(1)
... lines omitted ...
 Chapter 4. CPU analysis and tuning 237



Application summary by process type
The Application Summary (by process type) consolidates all processes of the 
same name and sorts them in descending order of combined processing time. 
The name (thread count) column shows the name of the process and the number 
of threads that belong to this process name (type) that were running on the 
system during the monitoring period. A sample of application summary by 
process type is shown in Example 4-46.

Example 4-46   Application summary by process type

r33n05:/ # more /tmp/curt.out
... skip ...
                     Application Summary (by process type)
                     ------------------------------------
    -- processing total (msec) --          -- percent of total processing time --
   combined  application      syscall     combined  application      syscall  name (thread 
count)
   ========  ===========      =======     ========  ===========      =======  ==============
    42.6240      24.1758      18.4482      41.9332      23.7840      18.1492  (6)
     3.1864       1.1024       2.0840       3.1348       1.0846       2.0502  trcstop(1)
     1.2743       0.9171       0.3572       1.2537       0.9023       0.3514  muxatmd(1)
     1.1672       1.1672       0.0000       1.1483       1.1483       0.0000  getty(1)
     0.6451       0.1749       0.4701       0.6346       0.1721       0.4625  ksh(2)
     0.0852       0.0333       0.0520       0.0839       0.0327       0.0511  rmcd(1)
     0.0295       0.0113       0.0182       0.0291       0.0111       0.0179  snmpmibd64(1)
     0.0094       0.0067       0.0028       0.0093       0.0065       0.0027  syncd(1)

... lines omitted ...

Kproc summary
The kproc summary (by TID) shows an output of all kernel process threads that 
were running on the system during the time of trace collection and their CPU 
consumption. The kproc summary has the following fields.

name (Pid Tid Type) The name of the kernel process associated with the 
thread, its process ID, its thread ID, and its type. The 
kproc type is defined in the Kproc Types listing following 
the Kproc Summary.

processing total (msec) section

combined The total amount of CPU time, expressed in 
milliseconds, that the thread was running in either 
operation or kernel mode

kernel The amount of CPU time, expressed in milliseconds, 
that the thread spent in kernel mode
238 AIX 5L Practical Performance Tools and Tuning Guide



operation The amount of CPU time, expressed in milliseconds, 
that the thread spent in operation mode

percent of total time section

combined The amount of CPU time that the thread was running, 
expressed as a percentage of the total processing time

kernel The amount of CPU time that the thread spent in 
kernel mode, expressed as a percentage of the total 
processing time

operation The amount of CPU time that the thread spent in 
operation mode, expressed as a percentage of the 
total processing time 

Kproc Types section

Type A single letter to be used as an index into this listing

Function A description of the nominal function of this type of 
kernel process

A sample of kproc summary is shown in Example 4-47.

Example 4-47   Kproc summary

r33n05:/ # more /tmp/curt.out
... skip ...
                     Kproc Summary  (by Tid)
                     -----------------------
    -- processing total (msec) --          --   percent of total  time   --   name (Pid Tid 
Type)
   combined       kernel    operation     combined       kernel    operation
   ========       ======  ===========     ========       ======  ===========  
===================
     1.4096       1.4096       0.0000       1.3868       1.3868       0.0000  rtcmd(393466  
1130587 -)
     1.2630       1.2630       0.0000       1.2425       1.2425       0.0000  wait(12294  12295 
W)
     0.4387       0.4387       0.0000       0.4316       0.4316       0.0000  swapper(0  3 -)
     0.3051       0.3051       0.0000       0.3002       0.3002       0.0000  xmgc(364722  
372919 -)
     0.2956       0.2956       0.0000       0.2908       0.2908       0.0000  gil(372918  
401605 -)
     0.2712       0.2712       0.0000       0.2668       0.2668       0.0000  wait(16392  16393 
W)
     0.2627       0.2627       0.0000       0.2585       0.2585       0.0000  gil(372918  
393409 -)
     0.2358       0.2358       0.0000       0.2320       0.2320       0.0000  gil(372918  
405703 -)
 Chapter 4. CPU analysis and tuning 239



     0.2337       0.2337       0.0000       0.2299       0.2299       0.0000  gil(372918  
389311 -)
     0.1018       0.1018       0.0000       0.1001       0.1001       0.0000  rpc.lockd(581668  
761981 -)
     0.0517       0.0517       0.0000       0.0508       0.0508       0.0000  rpc.lockd(581668  
770175 -)
     0.0163       0.0163       0.0000       0.0160       0.0160       0.0000  netm(368820  
381115 -)
     0.0065       0.0065       0.0000       0.0064       0.0064       0.0000  rpc.lockd(581668  
778441 -)
... lins omitted ...

                     Kproc Types
                     -----------
 Type Function                       Operation
 ==== ============================   ==========================
  W   idle thread                    -
  N   NFS daemon                     NFS Remote Procedure Calls

... lines omitted ...

System calls summary
The System Calls Summary provides a list of all system calls that were used on 
the system during the monitoring period, as shown in Example 4-48 on 
page 241. The list is sorted by the total time in milliseconds consumed by each 
type of system call. The System Calls Summary has the following fields.

Count The number of times a system call of a certain type (see 
SVC (Address)) has been used (called) during the 
monitoring period

Total Time (msec) The total time the system spent processing these system 
calls, expressed in milliseconds

%sys time The total time the system spent processing these system 
calls, expressed as a percentage of the total processing 
time

Avg Time (msec) The average time the system spent processing one 
system call of this type, expressed in milliseconds

Min Time (msec) The minimum time the system needed to process one 
system call of this type, expressed in milliseconds

Max Time (msec) The maximum time the system needed to process one 
system call of this type, expressed in milliseconds

SVC (Address) The name of the system call and its kernel address
240 AIX 5L Practical Performance Tools and Tuning Guide



Example 4-48   System Calls Summary

[node6][/]> curt -i /tmp/trcrpt.r -m /tmp/trcnm.out | more
... skip ...
                     System Calls Summary
                     --------------------
   Count   Total Time   % sys  Avg Time  Min Time  Max Time  SVC (Address)
               (msec)    time    (msec)    (msec)    (msec)
========  ===========  ======  ========  ========  ========  ================
    1014       4.7623   0.05%    0.0047    0.0044    0.0106  _nsleep(1456048)
       2       1.9362   0.02%    0.9681    0.8623    1.0740  execve(1452280)
     103       0.9178   0.01%    0.0089    0.0021    0.0551  _select(145f4d8)
      44       0.6808   0.01%    0.0155    0.0088    0.0371  access(1461d40)
     149       0.6127   0.01%    0.0041    0.0014    0.0188  kread(145b578)
      38       0.6057   0.01%    0.0159    0.0009    0.1054  __loadx(1462190)
       2       0.5078   0.01%    0.2539    0.1355    0.3723  _exit(14552e0)
       2       0.5030   0.01%    0.2515    0.2384    0.2646  kfork(1452260)
     198       0.2872   0.00%    0.0015    0.0007    0.0568  kioctl(145e218)
       2       0.2353   0.00%    0.1177    0.0032    0.2322  _setpgid(145b818)
      56       0.2320   0.00%    0.0041    0.0037    0.0068  thread_waitact(1455c40)
      19       0.2203   0.00%    0.0116    0.0077    0.0287  statx(145e590)
      19       0.2168   0.00%    0.0114    0.0080    0.0294  open(145e4a0)
... lines omitted ...

Pending system calls summary
The Pending System Calls Summary provides a list of all system calls that have 
been executed on the system during the monitoring period but have not 
completed. The list is sorted by TID. Example 4-49 displays the pending system 
calls summary. The Pending System Calls Summary has the following fields.

Accumulated Time (msec)

The accumulated CPU time that the system spent 
processing the pending system call, expressed in 
milliseconds.

SVC (Address) The name of the system call and its kernel address.

Procname (Pid Tid) The name of the process associated with the thread that 
made the system call, its PID, and the TID.

Example 4-49   Pending System Calls Summary

[node6][/]> curt -i /tmp/trcrpt.r -m /tmp/trcnm.out | more
... skip ...
                     Pending System Calls Summary
                     ----------------------------
Accumulated   SVC (Address)               Procname (Pid  Tid)
Time (msec)
============  =========================  ==========================
 Chapter 4. CPU analysis and tuning 241



      0.0169  (unknown)(3e96790)          X(94296 106609)
      0.0037  _nsleep(1456048)            nimesis(503816 180277)
      0.0030  thread_waitact(1455c40)     syncd(61588 213097)
      0.0089  _select(145f4d8)            prngd(147566 282801)
      0.0043  kwaitpid(1455310)           ksh(323638 356359)
      0.0051  _select(145f4d8)            aixmibd(221292 377017)
      0.0034  _nsleep(1456048)            nimesis(503816 589859)
      0.0034  _nsleep(1456048)            nimesis(503816 598231)
      0.0035  _nsleep(1456048)            nimesis(503816 602177)
      0.0031  _nsleep(1456048)            java(352468 614515)
      0.0035  _nsleep(1456048)            nimesis(503816 663625)
      0.0037  _nsleep(1456048)            java(409634 667895)
... lines omitted ...

Hypervisor calls summary
Hypervisor calls summary sections is a new section beginning with AIX 5L 
Version 5.3. If there is hypervisor activity in the trace, an additional section is 
inserted at this point of the report. This major section of the report is called 
Hypervisor Calls Summary. This section summarizes the processing time spent 
in hypervisor calls. A sample of Hypervisor calls summary is shown in 
Example 4-50.

Example 4-50   Hypervisor Calls Summary

r33n05:/ # more /tmp/curt.out
... skip ...
                     Hypervisor Calls Summary
                     ------------------------
   Count   Total Time   % sys  Avg Time  Min Time  Max Time  HCALL (Address)
               (msec)    time    (msec)    (msec)    (msec)
========  ===========  ======  ========  ========  ========  =================
     665       1.2927   1.27%    0.0019    0.0016    0.0033  H_XIRR(3a86be0)
     418       0.8637   0.85%    0.0021    0.0012    0.0035  H_CEDE(9032)
    1021       0.8120   0.80%    0.0008    0.0004    0.0097  H_PUT_TCE(3a9a090)
    1283       0.6963   0.69%    0.0005    0.0005    0.0014  H_PUT_TCE(3aa4060)
     176       0.1420   0.14%    0.0008    0.0007    0.0013  H_EOI(3a83d38)
     130       0.1352   0.13%    0.0010    0.0006    0.0016  H_PROD(2922c)
      35       0.0642   0.06%    0.0018    0.0011    0.0022  H_CEDE(3a86be0)
       3       0.0057   0.01%    0.0019    0.0019    0.0020  H_CEDE(1032)
       2       0.0044   0.00%    0.0022    0.0021    0.0023  H_CEDE(3aa4060)
... lines omitted ...

System NFS calls summary
NFS calls summary section is a new section beginning with AIX 5L Version 5.3. 
This section summarizes the processing time spent in NFS operations. For each 
NFS operation, identified by operation name and NFS version, the summary 
242 AIX 5L Practical Performance Tools and Tuning Guide



gives the number of times the operation was called and the total processor time 
for all calls in milliseconds and as a percentage of total NFS operation time for all 
operations with the same NFS version. In addition, the summary gives the 
average, minimum and maximum times for one call to the operation.The System 
NFS Calls Summary is followed by the Pending NFS Calls Summary. This part 
lists the NFS calls which have started but not completed. A sample of system 
NFS calls summary is shown in Example 4-51.

Example 4-51   System NFS calls summary

[node6][/]> curt -i /tmp/trcrpt.r -m /tmp/trcnm.out | more
... skip ...
                     System NFS Calls Summary
                     ------------------------
   Count   Total Time  Avg Time  Min Time  Max Time  % Tot  % Tot  Opcode
               (msec)    (msec)    (msec)    (msec)   Time  Count
========  ===========  ========  ========  ========  =====  =====  =============
     449       9.1109    0.0203    0.0181    0.0256  100.00  100.00  RFS3_GETATTR
--------  -----------  --------  --------  --------  -----  -----  -------------
     449       9.1109    0.0203                                    NFS V3 TOTAL

                     Pending NFS Calls Summary
                     -------------------------
Accumulated   Sequence Number  Procname (Pid  Tid)
Time (msec)
============  ===============  ==========================

... lines omitted ...

FLIH summary
This section lists all first level interrupt handlers that were called during the 
monitoring period. The Global Flih Summary lists the total of first level interrupts 
on the system, while the Per CPU Flih Summary lists the first level interrupts per 
CPU. A sample of FLIH Summary is shown in Example 4-52 on page 244. The 
FLIH Summary report has the following fields.

Count The number of times a first level interrupt of a certain type 
(see FLIH Type) occurred during the monitoring period.

Total Time (msec) The total time the system spent processing these first 
level interrupts, expressed in milliseconds.

Avg Time (msec) The average time the system spent processing one first 
level interrupt of this type, expressed in milliseconds.

Min Time (msec) The minimum time the system needed to process one first 
level interrupt of this type, expressed in milliseconds.
 Chapter 4. CPU analysis and tuning 243



Max Time (msec) The maximum time the system needed to process one 
first level interrupt of this type, expressed in milliseconds.

Flih Type The number and name of the first level interrupt.

Example 4-52   FLIH Summary

r33n05:/ # more /tmp/curt.out
... skip ...
                     Global Flih Summary
                     -------------------
       Count  Total Time    Avg Time    Min Time    Max Time  Flih Type
                  (msec)      (msec)      (msec)      (msec)
      ====== =========== =========== =========== ===========  =========
         489      0.3754      0.0008      0.0007      0.0011    9(PHANTOM)
         317      0.6528      0.0021      0.0010      0.1666   32(QUEUED_INTR)
         876      4.1670      0.0048      0.0004      0.0115   31(DECR_INTR)
        1126      2.0283      0.0018      0.0006      0.0152    3(DATA_ACC_PG_FLT)
         176      3.2764      0.0186      0.0011      0.1947    5(IO_INTR)

                     Per CPU Flih Summary
                     --------------------

CPU Number 1:
       Count  Total Time    Avg Time    Min Time    Max Time  Flih Type
                  (msec)      (msec)      (msec)      (msec)
      ====== =========== =========== =========== ===========  =========
         139      0.2229      0.0016      0.0010      0.0420   32(QUEUED_INTR)
         174      1.0495      0.0060      0.0004      0.0115   31(DECR_INTR)
         520      0.7246      0.0014      0.0006      0.0145    3(DATA_ACC_PG_FLT)
         136      1.9101      0.0140      0.0017      0.1947    5(IO_INTR)

... lines omitted ...

SLIH summary
This section lists all second level interrupt handlers that were called during the 
monitoring period. The Global Slih Summary lists the total of second level 
interrupts on the system, while the Per CPU Slih Summary lists the second level 
interrupts per CPU. A sample of SLIH Summary is shown in Example 4-53 on 
page 245. The SLIH Summary report has the following fields.

Count The number of times each SLIH was called during the 
monitoring period.

Total Time (msec) The total time the system spent processing these second 
level interrupts, expressed in milliseconds.
244 AIX 5L Practical Performance Tools and Tuning Guide



Avg Time (msec) The average time the system spent processing one 
second level interrupt of this type, expressed in 
milliseconds.

Min Time (msec) The minimum time the system needed to process one 
second level interrupt of this type, expressed in 
milliseconds.

Max Time (msec) The maximum time the system needed to process one 
second level interrupt of this type, expressed in 
milliseconds.

Slih Name (Address) The name and kernel address of the second level 
interrupt.

Example 4-53   SLIH summary

r33n05:/ # more /tmp/curt.out
... skip ...
                     Global Slih Summary
                     -------------------
       Count  Total Time    Avg Time    Min Time    Max Time Slih Name(Address)
                  (msec)      (msec)      (msec)      (msec)
      ====== =========== =========== =========== =========== =================
          22      0.6328      0.0288      0.0053      0.2561 sisscsi_dd[sisscsi_dd64](3ae8128)
         154      2.9742      0.0193      0.0084      0.4301 goentdd[goentdd64](3bfba20)

                     Per CPU Slih Summary
                     --------------------

CPU Number 1:
       Count  Total Time    Avg Time    Min Time    Max Time Slih Name(Address)
                  (msec)      (msec)      (msec)      (msec)
      ====== =========== =========== =========== =========== =================
          14      0.2305      0.0165      0.0053      0.0234 sisscsi_dd[sisscsi_dd64](3ae8128)
         122      2.0994      0.0172      0.0084      0.4301 goentdd[goentdd64](3bfba20)

... lines omitted ...

Useful combinations
� curt -i [input_file] -o [output_file]
� curt -i [input_file] -n [namefile] -m [namefile] -o [output_file]

4.2.11  The splat command
The Simple Performance Lock Analysis Tool (splat) is a software tool that 
provides kernel and pthread lock usage reports. The splat command resides in 
 Chapter 4. CPU analysis and tuning 245



/usr/bin and is part of the bos.perf.tools fileset, which is installable from the AIX 
base installation media.

Syntax
splat -i file [ -n file ] [ -o file ] [ -d [ bfta ] ] [ -l address ] [ -c class] [ -s [ acelmsS 
] ] [ -C cpus ] [ -S count ] [ -t start] [ -T stop] [ -p ]

splat -j

Flags
-i inputfile AIX trace file (REQUIRED). 

-n namefile File containing output of gensyms command. 

-o outputfile File to write reports to (DEFAULT: stdout). 

-d detail Detail information. Following parameter is supported.

[b]asic summary and lock detail (DEFAULT) 

[f]unction basic + function detail 

[t]hread basic + thread detail

[a]ll basic + function + thread detail

-s criteria Sort the lock, function, and thread reports criteria. 
Following parameter is supported.

a acquisitions 

c percent CPU hold time 

e percent elapsed hold time 

l lock address, function address, or thread ID 

m miss rate 

s spin count 

S percent CPU spin hold time (DEFAULT) 

w percent real wait time

W average waitq depth 

-S count The maximum number of entries in each report 
(DEFAULT: 10).

Examples
Splat takes as primary input an AIX trace file which has been collected with the 
AIX trace command. Before analyzing a trace with splat, you will need to make 
sure that the trace is collected with an adequate set of hooks. The trace file which 
246 AIX 5L Practical Performance Tools and Tuning Guide



is gathered using the trace command should contain at least followings trace 
events.

� HKWD_KERN_DISPATCH (106)

� HKWD_KERN_IDLE (10C)

� HKWD_KERN_RELOCK (10E)

� HKWD_KERN_LOCK (112)

� HKWD_KERN_UNLOCK (113)

� HKWD_SYSC_EXECVE (134)

� HKWD_SYSC_FORK (139)

� HKWD_CPU_PREEMPT (419)

� HKWD_SYSC_CRTHREAD (465)

� HKWD_KERN_WAITLOCK (46D)

� HKWD_KERN_WAKEUPLOCK (46E)

� HKWD_PTHREAD_CONDS (606)

� HKWD_PTHREAD_MUTEX (607)

� HKWD_PTHREAD_RWLOCK (608)

� HKWD_PTHREAD_GENERAL (609)

Trace event-group “splat“ contains these events. Example 4-54 shows event list 
of splat event group.

Example 4-54   Event list of splat event-group

r33n05:/ # trcevgrp -l splat
splat - Hooks for SPLAT performance tool (reserved)
        106,10C,10E,112,113,134,139,465,46D,46E,606,607,608,609,419
r33n05:/ #

Creating a splat report
To generate the splat report from a trace file, use -i flag to specify the trace file. 
Example 4-55 shows a sample of generating a splat report. 

Example 4-55   Creating splat report

r33n05:/ # trace -J splat -a -o /tmp/trace.out
r33n05:/ # gennames > /tmp/gennames.out
r33n05:/ # splat -sa -da -S100 -i /tmp/trace.out -n /tmp/gennames.out -o /tmp/splat.out
 Chapter 4. CPU analysis and tuning 247



Execution summary
The execution summary section contains following information.

� The command used to run splat.
� The command used to collect the system trace.
� The host that the trace was taken on.
� The date that the trace was taken on.
� The real-time duration of the trace in seconds.
� The maximum number of CPUs that were observed in the trace, the number 

specified in the trace conditions information, and the number specified on the 
splat command line. If the number specified in the header or command line is 
less, the entry (Indicated: <value>) is listed. If the number observed in the 
trace is less, the entry (Observed: <value>) is listed.

� The cumulative CPU time, equal to the duration of the trace in seconds times 
the number of CPUs that represents the total number of seconds of CPU time 
consumed.

� A table containing the start and stop times of the trace interval, measured in 
tics and seconds, as absolute time stamps from the trace records, as well as 
relative to the first event in the trace.

Example 4-56   Execution summary

r33n05:/tmp # more /tmp/splat.out

splat Cmd:      splat -sa -da -S100 -i /tmp/trace.out -n /tmp/gennames.out -o /tmp/splat.out

Trace Cmd:   trace -J splat -a -o /tmp/trace.out
Trace Host:  r33n05 (00C3E3CC4C00) AIX 5.3
Trace Date:  Fri Oct 22 18:09:01 2004

Elapsed Real Time:        4.421330
Number of CPUs Traced:    80            (Observed):3
Cumulative CPU Time:      353.706403

                                                       start                    stop
                                            --------------------    --------------------
trace interval     (absolute tics)              515696762799603         515697815076151
                   (relative tics)                            0              1052276548
                   (absolute secs)                 2166793.121007            2166797.542337
                   (relative secs)                     0.000000                4.421330
analysis interval  (absolute tics)              515696762799603         515697815076151
                   (trace-relative tics)                      0              1052276548
                   (self-relative tics)                       0              1052276548
                   (absolute secs)                 2166793.121007            2166797.542337
                   (trace-relative secs)               0.000000                4.421330
248 AIX 5L Practical Performance Tools and Tuning Guide



                   (self-relative secs)                0.000000                4.421330

... lines omitted ...

Gross lock summary
Example 4-57 on page 250 shows a sample of the gross lock summary report. 
The gross lock summary report section contains following information.

Total The number of AIX Kernel locks, followed by the number 
of each type of AIX Kernel lock; RunQ, Simple, and 
Complex. Under some conditions this will be larger than 
the sum of the numbers of RunQ, Simple, and Complex 
locks because we may not observe enough activity on a 
lock to differentiate its type. This is followed by the number 
of PThread condition variables, the number of PThread 
Mutexes, and the number of PThread Read/Write Locks.

Unique Addresses The number of unique addresses observed for each 
synchronizer type. Under some conditions a lock will be 
destroyed and re-created at the same address; splat 
produces a separate lock detail report for each instance 
because the usage may be quite different.

Acquisitions (or Passes)
For locks, the total number of times acquired during the 
analysis interval; for PThread condition-variables, the total 
number of times the condition passed during the analysis 
interval.

Acq. or Passes per second
Acquisitions or passes per second, which is the total 
number of acquisitions or passes divided by the elapsed 
real time of the trace.

%Total System ‘spin’ Time
The cumulative time spent spinning on each synchronizer 
type, divided by the cumulative CPU time, times 100 
percent. The general goal is to spin for less than 10 
percent of the CPU time; a message to this effect is 
printed at the bottom of the table. If any of the entries in 
this column exceed 10 percent, they are marked with an 
asterisk (*).
 Chapter 4. CPU analysis and tuning 249



Example 4-57   Gross lock summary

r33n05:/tmp # more /tmp/splat.out
... skip...
                                  Unique       Acquisitions      Acq. or Passes      % Total 
System
                      Total      Addresses     (or Passes)         per Second          'spin' 
Time
                    ---------  -------------   ------------      --------------      
---------------
AIX (all) Locks:       1139           1139            17444          3945.4191         0.000007
           RunQ:          0              0                0             0.0000         0.000000
         Simple:       1088           1088            16916          3825.9980         0.000007
    Transformed:          0              0                0             0.0000
         Krlock:          0              0                0             0.0000         0.000000
        Complex:         51             51              528           119.4211         0.000000
PThread CondVar:          0              0                0             0.0000         0.000000
          Mutex:          0              0                0             0.0000         0.000000
         RWLock:          0              0                0             0.0000         0.000000

... lines omitted ...

Per-lock summary
Example 4-58 on page 251 shows a sample of the per-lock summary report. The 
per-lock summary section contains following information.

Lock The name, lock class or address of the lock.

Type The type of the lock, identified by one of the following 
letters: 

Q A RunQ lock 

S A simple kernel lock 

D A disabled simple kernel lock

C A complex kernel lock 

M A PThread mutex 

V A PThread condition-variable 

L A PThread read/write lock

Acquisitions The number of successful lock attempts for this lock, 
minus the number of times a thread was preempted while 
holding this lock.

Spins The number of unsuccessful lock attempts for this lock, 
minus the number of times a thread was undispatched 
while spinning.
250 AIX 5L Practical Performance Tools and Tuning Guide



Wait or Transform The number of unsuccessful lock attempts that resulted in 
the attempting thread going to sleep to wait for the lock to 
become available, or allocating a krlock.

%Miss Spins divided by Acquisitions plus Spins, multiplied by 
100.

%Total Acquisitions divided by the total number of all lock 
acquisitions, multiplied by 100.

Locks/CSec Acquisitions divided by the combined elapsed duration in 
seconds.

Real CPU The percent of combined elapsed trace time that threads 
held the lock in question while dispatched. 
DISPATCHED_HOLDTIME_IN_SECONDS divided by 
combined trace duration, multiplied by 100.

Real Elaps(ed) The percent of combined elapsed trace time that threads 
held the lock while dispatched or sleeping. 
UNDISPATCHED_AND_DISPATCHED_HOLDTIME_IN_
SECONDS divided by combined trace duration, multiplied 
by 100.

Comb Spin The percent of combined elapsed trace time that threads 
spun while waiting to acquire this lock. 
SPIN_HOLDTIME_IN_SECONDS divided by combined 
trace duration, multiplied by 100.

Example 4-58   Per-lock summary report

r33n05:/ # more /tmp/splat.out
...skip ...

100 max entries, Summary sorted by Acquisitions:

                                   T  Acqui-          Wait
                                   y  sitions          or                      Locks or      
Percent Holdtime
                                   p    or           Trans-                     Passes    Real     
Real     Comb
 Lock Name, Class, or Address      e  Passes  Spins   form   %Miss   %Total    / CSec     CPU     
Elapse    Spin
********************************** *  ******* ****** ****** ******* ********  ********* 
******** ******** ********
               000000000101CDD8    D    1548      0      0   0.0000   8.8741      4.377   
0.0002   0.0182   0.0000
               F100060004289A58    D    1088      0      0   0.0000   6.2371      3.076   
0.0001   0.0083   0.0000
               F1000600041BB0B0    D     710      0      0   0.0000   4.0702      2.007   
0.0002   0.0130   0.0000
 Chapter 4. CPU analysis and tuning 251



               F1000588D000BD30    D     665      0      0   0.0000   3.8122      1.880   
0.0002   0.0127   0.0000
               F1000610003FF0B8    D     660      0      0   0.0000   3.7835      1.866   
0.0001   0.0045   0.0000
               F1000108C045FCB8    D     658      0      0   0.0000   3.7721      1.860   
0.0015   0.1201   0.0000
               000000000101BDD8    D     463      0      0   0.0000   2.6542      1.309   
0.0001   0.0057   0.0000
               F1000600151962C8    D     440      0      0   0.0000   2.5224      1.244   
0.0002   0.0123   0.0000
               0000000003BA67A0    D     440      0      0   0.0000   2.5224      1.244   
0.0000   0.0031   0.0000
               0000000003B70BB0    D     440      0      0   0.0000   2.5224      1.244   
0.0004   0.0304   0.0000
               00000000028C5AB0    D     440      0      0   0.0000   2.5224      1.244   
0.0001   0.0107   0.0000
               F1000108C045EF38    D     351      0      0   0.0000   2.0122      0.992   
0.0002   0.0147   0.0000
               F1000588D0000430    D     279      0      0   0.0000   1.5994      0.789   
0.0001   0.0051   0.0000

... lines omitted ...

AIX kernel lock details
By default, splat prints out a lock detail report for each entry in the summary 
report. Example 4-59 shows a sample of kernel lock detail in lock detail report.

Example 4-59   kernel lock detail report

r33n05:/ # more /tmp/splat.out
...skip ...

[AIX SIMPLE Lock]                 ADDRESS: 000000000101CDD8          KEX: unix
======================================================================================
         |              Trans-         |                  | Percent Held (  4.421330s )
Type:    |  Miss  Spin   form   Busy   |    Secs Held     |  Real  Real    Comb   Real
Disabled |  Rate  Count  Count  Count  |CPU      Elapsed  |  CPU  Elapsed  Spin   Wait
         |  0.000 0      0      0      |0.000803 0.000803 |  0.00   0.02   0.00   0.00
--------------------------------------------------------------------------------------
Total Acquisitions:  1548     |SpinQ   Min   Max   Avg  |Krlocks SpinQ Min   Max   Avg
Acq. holding krlock: 0        |Depth   0     0     0    |Depth         0     0     0
--------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------
PROD     |                         CONFER                              | HANDOFF
0        | SELF: 0         TARGET: 0                     ALL: 0        | 0
         |          w/ preemption: 0           w/ preemption: 0        |
252 AIX 5L Practical Performance Tools and Tuning Guide



--------------------------------------------------------------------------------------

                      Lock Activity (mSecs) - Interrupts Disabled

  SIMPLE      Count         Minimum        Maximum        Average          Total
  +++++++     ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK          1548        0.000328       0.001853       0.000518       0.802521
   w/ KRLOCK       0        0.000000       0.000000       0.000000       0.000000
  SPIN             0        0.000000       0.000000       0.000000       0.000000
  KRLOCK LOCK      0        0.000000       0.000000       0.000000       0.000000
  KRLOCK SPIN      0        0.000000       0.000000       0.000000       0.000000
  TRANSFORM        0        0.000000       0.000000       0.000000       0.000000
... lines omitted ...

Function detail report
Example 4-60 is an example of the function detail report. This report is obtained 
by using splat with the -df or -da options. 

Example 4-60   Function detail report

r33n05:/ # more /tmp/splat.out
...skip ...

                       Acqui-    Miss  Spin  Transf. Busy    Percent Held of Total Time
  Function Name       sitions    Rate  Count  Count  Count    CPU   Elapse  Spin  Transf. 
Return Address   Start Address    Offset
 ^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^
              .tstart      499    0.00      0      0      0    0.00   0.01   0.00   0.00  
0000000000060D48 0000000000000000 00060D48
               .clock      497    0.00      0      0      0    0.00   0.00   0.00   0.00  
0000000000060228 0000000000000000 00060228
               .clock      496    0.00      0      0      0    0.00   0.01   0.00   0.00  
0000000000060110 0000000000000000 00060110
           .sys_timer       44    0.00      0      0      0    0.00   0.00   0.00   0.00  
000000000005FD10 0000000000000000 0005FD10
               .tstop        7    0.00      0      0      0    0.00   0.00   0.00   0.00  
0000000000060AB8 0000000000000000 00060AB8
          .tstop_fast        4    0.00      0      0      0    0.00   0.00   0.00   0.00  
000000000005EB28 0000000000000000 0005EB28
         .incinterval        1    0.00      0      0      0    0.00   0.00   0.00   0.00  
00000000000FCDE0 0000000000000000 000FCDE0

... lines omitted ...
 Chapter 4. CPU analysis and tuning 253



Thread detail report
Example 4-61 shows an example of the thread detail report. This report is 
obtained by using the -dt or -da options of splat command.

Example 4-61   Thread detail report

r33n05:/ # more /tmp/splat.out
...skip ...
           Acqui-    Miss   Spin  Transf. Busy    Percent Held of Total Time             
Process
 ThreadID  sitions   Rate   Count  Count  Count    CPU   Elapse  Spin Transf. ProcessID  Name
 ~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~  
~~~~~~~~~~~~~
    16393      1523    0.00      0      0      0    0.02   0.02   0.00   0.00     16392  wait
   409619         8    0.00      0      0      0    0.00   0.00   0.00   0.00    389354  syncd
   381115         6    0.00      0      0      0    0.00   0.00   0.00   0.00    368820  netm
   622683         3    0.00      0      0      0    0.00   0.00   0.00   0.00    442370  
syslogd
        3         3    0.00      0      0      0    0.00   0.00   0.00   0.00    639088  
swapper
   561177         2    0.00      0      0      0    0.00   0.00   0.00   0.00    389354  syncd
   372919         2    0.00      0      0      0    0.00   0.00   0.00   0.00    364722  xmgc
  1146957         1    0.00      0      0      0    0.00   0.00   0.00   0.00    507954

... lines omitted ...

Complex lock report
The AIX Complex lock supports recursive locking, where a thread can acquire 
the lock more than once before releasing it, as well as differentiating between 
write-locking, which is exclusive, from read-locking, which is not. This section has 
three part. Example 4-62 shows a sample of the top part of this section.

Example 4-62   Complex lock report

r33n05:/ # more /tmp/splat.out
...skip ...
[AIX COMPLEX Lock]                 ADDRESS: F100060016230160          KEX: liblvm
======================================================================================
         |                             |                  | Percent Held (  4.421330s )
Acqui-   |  Miss  Spin   Wait   Busy   |    Secs Held     |  Real  Real    Comb   Real
sitions  |  Rate  Count  Count  Count  |CPU      Elapsed  |  CPU  Elapsed  Spin   Wait
72       |  0.000 0      0      0      |0.000252 0.000252 |  0.00   0.01   0.00   0.00
--------------------------------------------------------------------------------------
%Enabled  100.00 (      72)|SpinQ   Min   Max   Avg  | WaitQ    Min   Max   Avg
%Disabled   0.00 (       0)|Depth   0     0     0    | Depth    0     0     0
---------------------------|Readers 0     0     0    |Readers   0     0     0
          Min   Max   Avg  |Writers 0     0     0    |Writers   0     0     0
254 AIX 5L Practical Performance Tools and Tuning Guide



Upgrade   0     0     0    +-----------------------------------------------------------
Dngrade   0     0     0    |LockQ   Min   Max   Avg  |
Recursion 0     1     0    |Readers 0     1     0    |
--------------------------------------------------------------------------------------

... lines omitted ...

The lock activity report 
The lock activity report also breaks down the time by whether the lock is being 
secured for reading, writing, or upgrading, as shown in Example 4-63. 

Example 4-63   Complex lock report - Lock activity

r33n05:/ # more /tmp/splat.out
...skip ...
                      Lock Activity w/Interrupts Enabled (mSecs)

  READ     Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK         70        0.002466       0.004618       0.003575       0.250218
  SPIN          0        0.000000       0.000000       0.000000       0.000000
   UNDISP       0        0.000000       0.000000       0.000000       0.000000
  WAIT          0        0.000000       0.000000       0.000000       0.000000
  PREEMPT       0        0.000000       0.000000       0.000000       0.000000

  WRITE    Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK          2        0.000429       0.000941       0.000685       0.001370
  SPIN          0        0.000000       0.000000       0.000000       0.000000
   UNDISP       0        0.000000       0.000000       0.000000       0.000000
  WAIT          0        0.000000       0.000000       0.000000       0.000000
  PREEMPT       0        0.000000       0.000000       0.000000       0.000000

  UPGRADE  Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK          0        0.000000       0.000000       0.000000       0.000000
  SPIN          0        0.000000       0.000000       0.000000       0.000000
   UNDISP       0        0.000000       0.000000       0.000000       0.000000
  WAIT          0        0.000000       0.000000       0.000000       0.000000
  PREEMPT       0        0.000000       0.000000       0.000000       0.000000

... lines omitted ...
 Chapter 4. CPU analysis and tuning 255



The function and thread details also break down the acquisition, spin, and wait 
counts by whether the lock is to be acquired for reading or writing, as shown in 
Example 4-64.

Example 4-64   Complex lock report - function and thread detail

r33n05:/ # more /tmp/splat.out
...skip ...
                      Acquisitions    Miss    Spin Count    Wait Count   Busy    Percent Held 
of Total Time
 Function Name        Write   Read    Rate   Write   Read  Write   Read  Count   CPU   Elapse  
Spin   Wait    Return Address   Start
Address    Offset
 ^^^^^^^^^^^^^^^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^ ^^^^^^ 
^^^^^^ ^^^^^^  ^^^^^^^^^^^^^^^^ ^^^^^^^
^^^^^^^^^ ^^^^^^^^
             .j2_rdwr      0     70    0.00      0      0      0      0      0    0.00   0.01   
0.00   0.00  00000000002FC384 0000000
000000000 002FC384
            .j2_close      1      0    0.00      0      0      0      0      0    0.00   0.00   
0.00   0.00  0000000000367BD8 0000000
000000000 00367BD8
             .j2_open      1      0    0.00      0      0      0      0      0    0.00   0.00   
0.00   0.00  00000000003055B4 0000000
000000000 003055B4

           Acquisitions   Miss    Spin Count    Wait Count   Busy    Percent Held of Total Time             
Process
 ThreadID  Write  Read    Rate   Write  Read   Write  Read   Count     CPU  Elapse  Spin   Wait  
ProcessID  Name
 ~~~~~~~~  ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ 
~~~~~~ ~~~~~~~~~  ~~~~~~~~~~~~~
  1146959       2     70    0.00      0      0      0      0      0    0.01   0.01   0.00   
0.00    507956  trcstop

... lines omitted ...

Useful combinations
� splat -sa -da -i [input_file] -n [name_file] -o [ouput_file]

4.2.12  The truss command
The truss command tracks a process's system calls, received signals, and 
incurred machine faults. The application to be examined is either specified on the 
command line of the truss command, or truss can be attached to one or more 
already running processes.
256 AIX 5L Practical Performance Tools and Tuning Guide



The truss command resides in /usr/bin and is part of the bos.sysmgt.serv_aid 
fileset, which is installable from the AIX base installation media.

Syntax
truss [ -f] [ -c] [ -a] [ -l ] [ -d ] [ -D ] [ -e] [ -i] [ { -t | -x} [!] Syscall [...] ] [ -s [!] Signal 
[...] ] [ { -m }[!] Fault  [...]] [ { -r | -w} [!] FileDescriptor [...] ] [ { -u } [!]LibraryName 
[...]:: [!]FunctionName [ ... ] ] [ -o Outfile] {Command| -p pid [. . .]}

Flags
-c Counts traced system calls, faults, and signals rather than 

displaying trace results line by line. A summary report is 
produced after the traced command terminates or when 
truss is interrupted. If the -f flag is also used, the counts 
include all traced Syscalls, Faults, and Signals for child 
processes. 

-o Outfile Designates the file to be used for the trace output. By 
default, the output goes to standard error. 

-t [!] Syscall Includes or excludes system calls from the trace process. 
System calls to be traced must be specified in a list and 
separated by commas. If the list begins with an "!" symbol, 
the specified system calls are excluded from the trace 
output. The default is -tall. 

Examples
The truss command can generate large amounts of output, so you should reduce 
the number of system calls you are tracing or attach truss to a running process 
only for a limited amount of time. Example 4-65 shows the flow of using the date 
command. You can see that after the program has been loaded and the initial 
setup has been performed, kioctl and kwrite system calls are used in this 
program.

Example 4-65   Truss command without any flag

r33n05:/ # truss date
execve("/usr/bin/date", 0x2FF2294C, 0x2FF22954)  argc: 1
sbrk(0x00000000)                                = 0x20000F94
sbrk(0x0000000C)                                = 0x20000F94
__libc_sbrk(0x00000000)                         = 0x20000FA0
getuidx(4)                                      = 0
getuidx(2)                                      = 0
getuidx(1)                                      = 0
getgidx(4)                                      = 0
getgidx(2)                                      = 0
getgidx(1)                                      = 0
 Chapter 4. CPU analysis and tuning 257



__loadx(0x01000080, 0x2FF1E6E0, 0x00003E80, 0x2FF22680, 0x00000000) = 
0xD0083130
__loadx(0x01000180, 0x2FF1E6E0, 0x00003E80, 0xF08B3A94, 0xF08B39C4) = 
0xF09E8B78
__loadx(0x07080000, 0xF08B3A64, 0xFFFFFFFF, 0xF09E8B78, 0x00000000) = 
0xF09E9A98
... slip...

access("/usr/lib/nls/msg/en_US/date.cat", 0)    = 0
_getpid()                                       = 561398
kioctl(1, 22528, 0x00000000, 0x00000000)        = 0
Sun Oct 24 15:26:29 EDT 2004
kwrite(1, " S u n   O c t   2 4   1".., 29)     = 29
kfcntl(1, F_GETFL, 0x2FF22FFC)                  = 2
kfcntl(2, F_GETFL, 0xF09148D0)                  = 2
_exit(0)
r33n05:/ #

Truss summary report
To get a truss summary report, use the -c flag with the truss command. 
Example 4-66 shows a samples of truss summary report. In this example, we 
collect summary of date command.

Example 4-66   Truss summary report

r33n05:/ # truss -c -o /tmp/truss_c.out date
Sun Oct 24 15:03:00 EDT 2004
r33n05:/ # more /tmp/truss_c.out
syscall               seconds   calls  errors
execve                    .00       1
_exit                     .00       1
kwrite                    .00       1
_getpid                   .00       1
getuidx                   .00      18
kioctl                    .00       1
getgidx                   .00      18
__libc_sbrk               .00       1
sbrk                      .00       2
access                    .00       1
kfcntl                    .00       2
__loadx                   .00      17
                         ----     ---    ---
sys totals:               .00      64      0
usr time:                 .00
elapsed:                  .00
r33n05:/ #
258 AIX 5L Practical Performance Tools and Tuning Guide



Monitoring specified system call
To monitor specified system call, use the -t flag with the truss command. 
Example 4-67 shows a sample of monitoring specified system call. In this 
example, the truss command monitor only open() system call.

Example 4-67   Monitoring specified system call

r33n05:/ # truss -t open -o /tmp/truss.test perfwb > /dev/null
r33n05:/ # more  /tmp/truss.test
open("/usr/lib/nls/msg/en_US/ksh.cat", O_RDONLY) = 3
open(".kshrc", O_RDONLY)                        = 3
open("/usr/bin/perfwb", O_RDONLY)               = 3
r33n05:/ #

Useful combinations
� truss command -o [ouput_file]
� truss -c command -o [ouput_file]
� truss -t Systemcall -o [ouput_file] command

4.2.13  The gprof command
The gprof command produces an execution profile of C, Pascal, FORTRAN, or 
COBOL programs (with or without the source). The effect of called routines is 
incorporated into the profile of each caller. The gprof command is useful in 
identifying how a program consumes CPU resource. To find out which functions 
(routines) in the program are using the CPU, you can profile the program with the 
gprof command. The gprof command is in fact a subset of the prof command.

The gprof command resides in /usr/ccs/bin/gprof, is linked from /usr/bin/gprof, 
and is part of the bos.adt.prof fileset, which is installable from the AIX base 
installation media.

Syntax
gprof [ -b ] [ -e Name ] [ -E Name ] [ -f Name ] [-g filename ] [-i filename] [-p 
filename ] [ -F Name ] [ -L PathName ] [ -s ] [ -z ] [ a.out [ gmon.out ... ] ]

Examples
To use gprof, we need to make binary code and gmon.out file. Example 4-68 on 
page 260 shows a sample of preparing gprof and using gprof command. The 
first step is to compile the C source code into a binary code using -pg flag. Next 
step is to run binary code. Then gmon.out file is created. The gprof command 
makes execution profile of this program.
 Chapter 4. CPU analysis and tuning 259



Example 4-68   Using gprof command 

r33n05:/home/kumiko/src # cc -pg -o memtest memtest.c
r33n05:/home/kumiko/src # ./memtest > /dev/null
r33n05:/home/kumiko/src # ls -l gmon.out
-rw-r--r--   1 root     system       933968 Oct 24 15:36 gmon.out
r33n05:/home/kumiko/src # gprof memtest > gprof.out

Detailed function report
Example 4-69 shows a sample of detail function report. This reports the 
functions sorted according to the time they represent, including the time of their 
call-graph descendents.

Example 4-69   Detailed function report

r33n05:/home/kumiko/src # more gprof.out
... skip ...
                                  called/total       parents
index  %time    self descendents  called+self    name           index
                                  called/total       children

                0.00        0.00    2004/2004        .printf [2]
[1]      0.0    0.00        0.00    2004         ._doprnt [1]
                0.00        0.00       1/1           .fwrite [22]

-----------------------------------------------

                0.00        0.00    2004/2004        .main [26]
[2]      0.0    0.00        0.00    2004         .printf [2]
                0.00        0.00    2004/2004        ._doprnt [1]

-----------------------------------------------

                0.00        0.00    2001/2001        .fflush_unlocked [6]
[3]      0.0    0.00        0.00    2001         ._xflsbuf [3]
                0.00        0.00    2001/2001        ._xwrite [4]

-----------------------------------------------

                0.00        0.00    2001/2001        ._xflsbuf [3]

... lines omitted ...

Flat profile
Example 4-70 on page 261 shows a sample of the flat profile of gprof command. 
260 AIX 5L Practical Performance Tools and Tuning Guide



Example 4-70   Flat profile

r33n05:/home/kumiko/src # gprof memtest > gprof.out
... skip ...

  %   cumulative   self              self     total
 time   seconds   seconds    calls  ms/call  ms/call  name
  0.0       0.00     0.00     2004     0.00     0.00  ._doprnt [1]
  0.0       0.00     0.00     2004     0.00     0.00  .printf [2]
  0.0       0.00     0.00     2001     0.00     0.00  ._xflsbuf [3]
  0.0       0.00     0.00     2001     0.00     0.00  ._xwrite [4]
  0.0       0.00     0.00     2001     0.00     0.00  .fflush [5]
  0.0       0.00     0.00     2001     0.00     0.00  .fflush_unlocked [6]
  0.0       0.00     0.00     2001     0.00     0.00  .write [7]
  0.0       0.00     0.00        3     0.00     0.00  .splay [8]
  0.0       0.00     0.00        2     0.00     0.00  .free [9]
  0.0       0.00     0.00        2     0.00     0.00  .free_48_44 [10]
  0.0       0.00     0.00        2     0.00     0.00  .free_common [11]
  0.0       0.00     0.00        2     0.00     0.00  .free_y [12]
  0.0       0.00     0.00        2     0.00     0.00  .leftmost [13]
  0.0       0.00     0.00        2     0.00     0.00  .malloc_common [14]
  0.0       0.00     0.00        2     0.00     0.00  .malloc_common_50_34 [15]
  0.0       0.00     0.00        2     0.00     0.00  .malloc_y [16]
  0.0       0.00     0.00        1     0.00     0.00  .__ioctl [17]
  0.0       0.00     0.00        1     0.00     0.00  ._findbuf [18]
  0.0       0.00     0.00        1     0.00     0.00  ._wrtchk [19]

... lines omitted ...

Listing of cross references
A cross-reference index, as shown in Example 4-71 is the last item produced 
summarizing the cross references found during profiling.This report is an 
alphabetical listing of the cross references found during profiling.

Example 4-71   Listing of cross references

r33n05:/home/kumiko/src # gprof memtest > gprof.out
... skip ...

Index by function name

  [17] .__ioctl             [10] .free_48_44          [16] .malloc_y
   [1] ._doprnt             [11] .free_common         [27] .moncontrol
  [18] ._findbuf            [12] .free_y              [28] .monitor
  [19] ._wrtchk             [22] .fwrite              [29] .nsleep
   [3] ._xflsbuf            [23] .fwrite_unlocked     [30] .pre_ioctl
   [4] ._xwrite             [24] .ioctl                [2] .printf
  [20] .exit                [25] .isatty              [31] .rightmost
  [21] .extend_brk          [13] .leftmost            [32] .sleep
 Chapter 4. CPU analysis and tuning 261



   [5] .fflush              [26] .main                 [8] .splay
   [6] .fflush_unlocked     [14] .malloc_common        [7] .write
   [9] .free                [15] .malloc_common_50_3

... lines omitted ...

Useful combination

� gprof [binary_code] > [ouput_file]

4.2.14  The pprof command
The pprof command reports on all kernel threads running within an interval using 
the trace utility. The pprof command is useful for determining the CPU usage for 
processes and their associated threads.

The pprof command resides in /usr/bin and is part of the bos.perf.tools fileset, 
which is installable from the AIX base installation media.

Syntax
pprof { time | -I pprof.flow | -i tracefile | -d } [ -T bytes] [ -v ] [ -s ] [ -n ] [ -f ] [ -p ] [ 
-w ]

Paramters
time Specifies the number of seconds to trace the system. 

Examples
Creating a pprof report
The pprof command reports on all kernel threads running within an interval using 
the trace utility. This information is saved in the file files. Example 4-72 shows a 
sample of creating pprof output. In this example, pprof reports CPU usage of all 
kernel threads for 60 seconds.

Example 4-72   Creating pprof report

r33n05:/home/kumiko/pprof # pprof 60
Sun Oct 24 16:00:15 2004
System: AIX r33n05 Node: 5 Machine: 00C3E3CC4C00

r33n05:/home/kumiko/pprof #
*** PPROF COMPLETED ***

r33n05:/home/kumiko/pprof # ls -l
total 72
-rw-r--r--   1 root     system         7004 Oct 24 16:01 pprof.cpu
-rw-r--r--   1 root     system         2061 Oct 24 16:01 pprof.famcpu
262 AIX 5L Practical Performance Tools and Tuning Guide



-rw-r--r--   1 root     system         5465 Oct 24 16:01 pprof.famind
-rw-r--r--   1 root     system         3072 Oct 24 16:01 pprof.flow
-rw-r--r--   1 root     system         1599 Oct 24 16:01 pprof.namecpu
-rw-r--r--   1 root     system         7005 Oct 24 16:01 pprof.start
r33n05:/home/kumiko/pprof #

The pprof.cpu report
Example 4-75 on page 265 shows a sample of pprof.cpu file. This file contains all 
kernel-level threads sorted by actual CPU time. 

� Process Name (Pname)
� Process ID (PID)
� Parent Process ID (PPID)
� Process State at Beginning and End (BE)
� Thread ID (TID)
� Parent Thread ID (PTID)
� Actual CPU Time (ACC_time)
� Start Time (STT_time)
� Stop Time (STP_time)
� The difference between the Stop time and the Start time (STP_STT)

Example 4-73   The pprof.cpu report

r33n05:/home/kumiko/pprof # more pprof.cpu

                    Pprof CPU Report

                    Sorted  by  Actual CPU  Time

                    From: Sun Oct 24 16:00:15 2004
                    To:   Sun Oct 24 16:01:16 2004

        E = Exec'd      F = Forked
        X = Exited      A = Alive (when traced started or stopped)
        C = Thread Created

               Pname      PID     PPID  BE      TID     PTID  ACC_time  STT_time  STP_time   
STP-STT
               =====    =====    ===== ===    =====    =====  ========  ========  ========  
========
                wait    16392        0  AA    16393        0     0.066     0.000    60.968    
60.968
               syncd   389354        1  AA   565273        0     0.022     1.884     2.166     
0.282
               getty   639088        1  AA   774293        0     0.020     0.001    60.968    
60.967
 Chapter 4. CPU analysis and tuning 263



                wait    12294        0  AA    12295        0     0.017     0.379    60.972    
60.593
               pprof   598092   401466  AA  1056959        0     0.013     1.822    60.088    
58.266
             muxatmd   622642   651328  AA   798857        0     0.007     1.125    56.132    
55.007
             swapper        0        0  AA        3        0     0.006     0.504    60.505    
60.001

... lines omitted ...

The pprof.start report
Example 4-74 shows the pprof.start file. This file lists all kernel threads sorted by 
start time.

� Process Name (Pname)
� Process ID (PID)
� Parent Process ID (PPID)
� Process State Beginning and End (BE)
� Thread ID (TID)
� Parent Thread ID (PTID)
� Actual CPU Time (ACC_time)
� Start Time (STT_time)
� Stop Time (STP_time)
� The difference between the Stop time and the Start time (STP_STT)

Example 4-74   The pprof.start report

r33n05:/home/kumiko/pprof # more pprof.start

                    Pprof START TIME Report

                    Sorted  by  Start Time

                    From: Sun Oct 24 16:00:15 2004
                    To:   Sun Oct 24 16:01:16 2004

        E = Exec'd      F = Forked
        X = Exited      A = Alive (when traced started or stopped)
        C = Thread Created

               Pname      PID     PPID  BE      TID     PTID  ACC_time  STT_time  STP_time   
STP-STT
               =====    =====    ===== ===    =====    =====  ========  ========  ========  
========
264 AIX 5L Practical Performance Tools and Tuning Guide



                wait    16392        0  AA    16393        0     0.066     0.000    60.968    
60.968
             UNKNOWN   569472       -1  EA  1196165        0     0.000     0.000     0.000     
0.000
               trace   536820   401466  AX  1167547        0     0.001     0.000     0.000     
0.000
             UNKNOWN   569472       -1  CA  1204321  1196165     0.001     0.000    60.088    
60.087
             UNKNOWN   561244       -1  EA  1200233        0     0.000     0.000     0.000     
0.000
               getty   639088        1  AA   774293        0     0.020     0.001    60.968    
60.967
                netm   368820        0  AA   381115        0     0.000     0.078    60.079    
60.000
... lines omitted ...

The pprof.namecpu report
Example 4-75 shows the pprof.namecpu file. This file lists information about each 
type of kernel thread.

� Process Name (Pname)
� Number of Threads (#ofThreads)
� CPU Time (CPU_Time)
� % of Total CPU Time (%)

Example 4-75   The pprof.namecpu report

r33n05:/home/kumiko/pprof # more pprof.namecpu

                    Pprof  PROCESS  NAME  Report

                    Sorted  by  CPU  Time

                    From: Sun Oct 24 16:00:15 2004
                    To:   Sun Oct 24 16:01:16 2004

               Pname #ofThreads  CPU_Time        %
            ======== ==========  ========  ========
                wait          2     0.083    45.917
               syncd         14     0.028    15.490
               getty          1     0.020    11.064
               pprof          4     0.013     7.192
                 gil          4     0.012     6.639
             muxatmd          1     0.007     3.873
             swapper          1     0.006     3.319
           rpc.lockd         12     0.003     1.660
 Chapter 4. CPU analysis and tuning 265



                xmgc          1     0.002     1.106
               trace          1     0.001     0.553
          snmpmibd64          1     0.001     0.553

... lines omitted ...

The pprof.famind report
Example 4-76 shows the pprof.famind file. This file lists all processes grouped by 
families.

� Start Time (STT)
� Stop Time (STP)
� Actual CPU Time (ACC)
� Process ID (PID)
� Parent Process ID (PPID)
� Thread ID (TID)
� Parent Thread ID (PTID)
� Process State at Beginning and End (BE)
� Level (LV)
� Process Name (PNAME)

Example 4-76   The pprof.famind report

r33n05:/home/kumiko/pprof # more pprof.famind

         Pprof PROCESS FAMILY Report - Indented

         Sorted by Family and Start Time

                    From: Sun Oct 24 16:00:15 2004
                    To:   Sun Oct 24 16:01:16 2004

        E = Exec'd      F = Forked
        X = Exited      A = Alive (when traced started or stopped)
        C = Thread Created

         STT      STP      ACC    PID   PPID    TID   PTID  BE LV PNAME
     =======  =======  =======  =====  =====  =====  =====  == == ==============

       0.504   60.505    0.006      0      0      3      0  AA  0      swapper
      47.327   47.327    0.000      1      0   4099      0  AA  0      init

       0.000   60.968    0.066  16392      0  16393      0  AA  2     .. wait

       0.000    0.000    0.000 569472     -1 1196165      0  EA  2     .. UNKNOWN
       0.000   60.088    0.001 569472     -1 1204321 1196165  CA  2     ..- UNKNOWN
266 AIX 5L Practical Performance Tools and Tuning Guide



       0.000    0.000    0.001 536820 401466 1167547      0  AX  2     .. trace

... lines omitted ...

The pprof.famcpu report
Example 4-77 shows the pprof.famcpu file. This file lists the information for all 
families (processes with a common ancestor). The Process Name and Process 
ID for the family is not necessarily the ancestor.

� Start Time (Stt-Time)
� Process Name (Pname)
� Process ID (PID)
� Number of Threads (#Threads)
� Total CPU Time (Tot-Time)

Example 4-77   The pprof.famcpu report 

r33n05:/home/kumiko/pprof # more pprof.famcpu

                 Pprof PROCESS FAMILY SUMMARY Report

                 Sorted by CPU Time

                    From: Sun Oct 24 16:00:15 2004
                    To:   Sun Oct 24 16:01:16 2004

     Stt-Time                    Pname    PID #Threads Tot-Time
     ========     ====================  ===== ======== ========
       0.0000                     wait  16392        1    0.066
       1.8844                    syncd 389354       14    0.028
       0.0009                    getty 639088        1    0.020
       0.3790                     wait  12294        1    0.017
       0.0002                    trace 536820        5    0.015
       0.1790                      gil 372918        4    0.013
       1.1250                  muxatmd 622642        1    0.007
       0.5039                  swapper      0        1    0.006
       0.1110                rpc.lockd 581668       12    0.002
       1.6998                     xmgc 364722        1    0.002
       0.0002                  UNKNOWN 569472        2    0.001
       0.7567                     rmcd 593968        1    0.001
       2.8284               snmpmibd64 630858        1    0.001
      47.4474                     rgsr 422132        1    0.000
       0.0783                     netm 368820        1    0.000
      47.3268                     init      1        1    0.000
 Chapter 4. CPU analysis and tuning 267



       1.8852                     j2pg 409812        5    0.000
      47.3267                  UNKNOWN 536822        1    0.000
       1.6304                   pilegc 360624        2    0.000
       0.5040                   reaper 336036        1    0.000
      45.5198                     cron 577578        1    0.000
      52.1472                 sendmail 643140        1    0.000
      48.6320                  syslogd 442370        1    0.000
       1.6737                    rdpgc 467172        1    0.000
      18.1069                    nfsSM 463074        1    0.000
       0.0002                  UNKNOWN 561244        1    0.000
                                              ======== ========
                                                  63    0.181
r33n05:/home/kumiko/pprof # 

Useful combination

� pprof sleep [second]

4.2.15  The prof command
The prof command displays object file profile data. This is useful for determining 
where in an executable most of the time is spent. The prof command interprets 
profile data collected by the monitor subroutine for the object program file (a.out 
by default).

The prof command resides in /usr/ccs/bin, is linked from /usr/bin, and is part of 
the bos.adt.prof fileset, which is installable from the AIX base installation media.

Syntax
prof [ -t |  -c |  -a |  -n ] [  -o |  -x ] [  -g ] [  -z ] [  -h ] [  -s ] [  -S ] [  -v ] [  -L PathName 
] [ Program ] [  -m MonitorData ... ]

Flags
-x Displays each address in hexadecimal, along with the symbol name.

-g Includes non-global symbols (static functions).

-s Produces a summary file in mon.sum. This is useful when more than 
one profile file is specified.

Examples
To use prof, we need to make binary code and mon.out file. Example 4-78 on 
page 269 shows a sample of preparing prof and using prof command. The first 
step is to compile the source code into a binary using -p flag. Next step is to run 
binary code. Then mon.out file is created. The prof command makes execution 
profile of this program.
268 AIX 5L Practical Performance Tools and Tuning Guide



Example 4-78   Creating prof report

r33n05:/home/kumiko/src # cc -p -o memtest memtest.c
r33n05:/home/kumiko/src # ./memtest > /dev/null
r33n05:/home/kumiko/src # ls -l mon.out
-rw-r--r--   1 root     system       933750 Oct 24 16:19 mon.out
r33n05:/home/kumiko/src # prof -xg -s > prof.out
r33n05:/home/kumiko/src # ls -l prof.out
-rw-r--r--   1 root     system         2404 Oct 24 16:19 prof.out
r33n05:/home/kumiko/src #

The prof report
Example 4-79 shows a sample of prof report. The following columns are 
reported:

Address The virtual address where the function is located

Name The name of the function

Time The percentage of the total running time of the time 
program used by this function

Seconds The number of seconds accounted for by this function 
alone

Cumsecs A running sum of the number of seconds accounted for by 
this function

#Calls The number of times this function was invoked, if this 
function is profiled

msec/call The average number of milliseconds spent in this function 
and its descendents per call, if this function is profiled.

Example 4-79   The prof report

r33n05:/home/kumiko/src # more prof.out

Address  Name                 %Time     Seconds     Cumsecs  #Calls   msec/call
10000558 .main                  0.0        0.00        0.00       1      0.0
d1d95e64 .monitor               0.0        0.00        0.00       1      0.0
d1d97188 .moncontrol            0.0        0.00        0.00       1      0.0
d1d9dc64 .free_common           0.0        0.00        0.00       2      0.0
d1d9debc .malloc_common         0.0        0.00        0.00       2      0.0
d1d9e2e4 .free                  0.0        0.00        0.00       2      0.0
d1d9e3ac .free_48_44            0.0        0.00        0.00       2      0.0
d1d9e4c8 .malloc_common_50_34   0.0        0.00        0.00       2      0.0
d1d9ecd0 .splay                 0.0        0.00        0.00       3      0.0
d1d9f25c .leftmost              0.0        0.00        0.00       2      0.0
d1d9f8b4 .free_y                0.0        0.00        0.00       2      0.0
 Chapter 4. CPU analysis and tuning 269



d1da0c70 .malloc_y              0.0        0.00        0.00       2      0.0
d1da32ec .printf                0.0        0.00        0.00    2004      0.000
d1da366c ._doprnt               0.0        0.00        0.00    2004      0.000
d1dbc4f4 .__ioctl               0.0        0.00        0.00       1      0.0
d1dbc6c0 .pre_ioctl             0.0        0.00        0.00       1      0.0
d1dbc9e8 .ioctl                 0.0        0.00        0.00       1      0.0
d1dbe164 .fflush_unlocked       0.0        0.00        0.00    2001      0.000
d1dbe860 ._findbuf              0.0        0.00        0.00       1      0.0
d1dbeab0 ._xflsbuf              0.0        0.00        0.00    2001      0.000
d1dbebf0 ._xwrite               0.0        0.00        0.00    2001      0.000

... lines omitted ...

4.2.16  The tprof command
The tprof command reports CPU usage for individual programs and the system 
as a whole. This command is a useful tool for anyone with a Java, C, C++, or 
FORTRAN program that might be CPU-bound and who wants to know which 
sections of the program are most heavily using the CPU.

The tprof command resides in /usr/bin and is part of the bos.perf.tools fileset, 
which is installable from the AIX base installation media.

Syntax
tprof [ -c ] [ -C { all | CPUList } ] [ -d ] -D ] [ -e ] [ -F ] [ -j ] [ -k ] [ -l ] [ -m ObjectsList 
] [ -M SourcePathList ] [ -p ProcessList ] [ -P { all | PIDsList } ] [ -s ] [ -S 
SearchPathList ] [ -t ] [ -T BufferSize ] [ -u ] [ -v ] [ -V VerboseFileName ] [ -z ] { { -r 
RootString } | { [ -A { all | CPUList }] [ -r RootString ] -x Program } }

Flags
-e Turns on kernel extension profiling.

-k Enables kernel profiling.

-s Enables shared library profiling.

-x Program Specifies the program to be executed by tprof. Data 
collection stops when Program completes or trace is 
manually stopped with either trcoff or trcstop 

Examples
For subroutine-level profiling, the tprof command can be run without modifying 
executable programs (that is, no re-compilation with special compiler flags is 

Note: The -x flag must be the last flag in the list of flags specified in tprof.
270 AIX 5L Practical Performance Tools and Tuning Guide



necessary). This is still true if the executables have been striped, unless the back 
tables have also been removed. Example 4-80 shows a sample of creating tprof 
report for 60 seconds, and Example 4-81 shows a sample of displaying tprof 
report.

Example 4-80   Creating tprof report

r33n05:/home/kumiko/tprof # tprof -kes -x sleep 60
Sun Oct 24 16:34:10 2004
System: AIX 5.3 Node: r33n05 Machine: 00C3E3CC4C00
Starting Command sleep 60
stopping trace collection.
shmat: A file descriptor does not refer to an open file.
Generating sleep.prof
r33n05:/home/kumiko/tprof # ls -l sleep.prof
-rw-r--r--   1 root     system        14231 Oct 24 16:35 sleep.prof

Example 4-81   The tprof report

r33n05:/home/kumiko/tprof # more sleep.prof

Process                                Freq  Total Kernel   User Shared  Other
=======                                ====  ===== ======   ==== ======  =====
wait                                      4  92.47  92.47   0.00   0.00   0.00
/usr/java14/jre/bin/java                  2   7.49   0.39   0.00   7.03   0.07
./memtest                                 1   0.04   0.04   0.00   0.00   0.00
=======                                ====  ===== ======   ==== ======  =====
Total                                     7 100.00  92.90   0.00   7.03   0.07

Process                   PID      TID  Total Kernel   User Shared  Other
=======                   ===      ===  ===== ======   ==== ======  =====
wait                    16392    16393  24.05  24.05   0.00   0.00   0.00
wait                    12294    12295  24.01  24.01   0.00   0.00   0.00
wait                     8196     8197  22.22  22.22   0.00   0.00   0.00
wait                    20490    20491  22.19  22.19   0.00   0.00   0.00
/java14/jre/bin/java   503996  1212499   7.24   0.29   0.00   6.88   0.07
/java14/jre/bin/java   503994  1212497   0.25   0.11   0.00   0.14   0.00
./memtest              655552  1192035   0.04   0.04   0.00   0.00   0.00
=======                   ===      ===  ===== ======   ==== ======  =====
Total                                  100.00  92.90   0.00   7.03   0.07

        Total Samples = 2790    Total Elapsed Time = 61.97s

  Total % For All Processes (KERNEL) = 92.90

Subroutine                                            %   Source
==========                                         ====== ======
h_cede_end_point                                    92.47 hcalls.s
pcs_glue                                             0.07 vmvcs.s
 Chapter 4. CPU analysis and tuning 271



.memset_overlay                                      0.07 64/low.s

.trchook64                                           0.07 trchka64.s

.pagerRdwrReadAhead                                  0.04 rnel/j2/j2_vcpager.c

.iMark                                               0.04 kernel/j2/j2_inode.c

.vnop_seek                                           0.04 s/kernel/lfs/vnops.c

.memmove_overlay                                     0.04 64/low.s

.simple_lock                                         0.04 64/low.s

.v_inspft                                            0.04 kernel/vmm/v_lists.c

  Total % For All Processes (SH-LIBs) = 7.03

Shared Object                                                             %
=============                                                          ======
/usr/java14/jre/bin/libjitc.a                                            4.16
/usr/java14/jre/bin/classic/libjvm.a                                     2.11
/usr/java14/jre/bin/libzip.a                                             0.43
/usr/lib/libc.a[shr.o]                                                   0.18
/usr/lib/libpthreads.a[shr_xpg5.o]                                       0.14

  Profile: /usr/java14/jre/bin/libjitc.a

  Total % For All Processes (/usr/java14/jre/bin/libjitc.a) = 4.16

Subroutine                                            %   Source
==========                                         ====== ======
.union_set                                           0.32 /Qopt/dfQ_fsescape.c
.Commoning_Init_Dataflow_B                           0.22 /dfQ_commoning_sub.c
.Commoning_Final_Dataflow_B                          0.14 /dfQ_commoning_sub.c
.Copypropa_Init_Dataflow                             0.14 Qopt/dfQ_copypropa.c
.dopt_generate_dag                                   0.11 Dopt/dopt_quad2dag.c
.MERGE_VARREF                                        0.11 /util/jit_dataflow.c
.Deadstore_Final_Dataflow_V                          0.11 Qopt/dfQ_deadstore.c
._fill                                               0.07 noname
.alloc_sets                                          0.07 /Qopt/dfQ_fsescape.c
.CostBenefitAnalysis                                 0.07 /dfQ_commoning_sub.c

... lines omitted ...

Useful combinations

� tprof -x sleep [second]
� tprof -skeuj -x sleep [second]
� tprof -kes -x sleep [seconds]
� tprof -A -x sleep
272 AIX 5L Practical Performance Tools and Tuning Guide



4.2.17  The time command
The time command reports the real time, the user time, and the system time 
taken to execute a command. This command can be useful for determining the 
length of time a command takes to execute.

The time command resides in /usr/bin and is part of the bos.rte.misc_cmds 
fileset, which is installable from the AIX base installation media.

Syntax
time [ -p ] Command [ Argument ... ]

Parameters
Command The command that will be timed by the time command.

Examples
The time command simply counts the CPU ticks from when the command that 
was entered as an argument is started until that command completes. 
Example 4-82 shows a sample of using time command to determine the length of 
time to calculate. This command reports following information.

System time This is the time that the CPU spent in kernel mode.

User time This is the time the CPU spent in user mode.

Real time This is the elapsed time.

Example 4-82   Counting CPU ticks using the time command

r33n05:/ # /usr/bin/time bc <<! /dev/null
> 999^9999
> !

... skip ...

Real   5.91
User   4.11
System 0.16
r33n05:/ #

4.2.18  The timex command
The timex command reports the real time, user time, and system time to execute 
a command. Additionally, the timex command has the capability of reporting 
various statistics for the command being executed. The timex command can 
output the same information that can be obtained from the sar command by 
using the -s flag. 
 Chapter 4. CPU analysis and tuning 273



The timex command resides in /usr/bin and is part of the bos.acct fileset, which 
is installable from the AIX base installation media.

Syntax
timex [  -o ] [  -p ] [  -s ] Command

Flags
-s Reports total system activity during the execution of the 

command. All data items listed in the sar command are 
reported.

Parameters
Command The command that will be timed by the time command.

Examples

The timex -s command uses the sar command to acquire additional statistics. 
The output of the timex command, when used with the -s flag, produces a report 
similar to the output obtained from the sar command with various flags. 
Example 4-83 shows a sample of timex command with -s flag.

Example 4-83   Displaying statistics information using the times command

r33n05:/ # timex -s bc <<! /dev/null
> 9999^9999
> !

... skip ...

real 10.45
user 7.30
sys  0.22

AIX r33n05 3 5 00C3E3CC4C00    10/25/04

System configuration: lcpu=4 ent=2.00

12:17:51    %usr    %sys    %wio   %idle   physc   %entc
12:18:02      34       1       0      65    0.74    37.1

System configuration: lcpu=4 ent=2.00

12:17:51 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
12:18:02       0       0       0       0       0       0       0       0

System configuration: lcpu=4 mem=6912MB ent=2.00
274 AIX 5L Practical Performance Tools and Tuning Guide



12:17:51   slots cycle/s fault/s  odio/s
12:18:02  130178    0.00   32.16    0.00

System configuration: lcpu=4 ent=2.00

12:17:51 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
12:18:02       0       0    3893       0       0       0

System configuration: lcpu=4 ent=2.00

12:17:51 scall/s sread/s swrit/s  fork/s  exec/s rchar/s wchar/s
12:18:02    3787       4    3725    0.28    0.47    7558    4108

System configuration: lcpu=4 ent=2.00

12:17:51 cswch/s
12:18:02     139

System configuration: lcpu=4 ent=2.00

12:17:51  iget/s lookuppn/s dirblk/s
12:18:02       0          6        0

System configuration: lcpu=4 ent=2.00

12:17:51 runq-sz %runocc swpq-sz %swpocc
12:18:02     1.0      73

System configuration:

12:17:51  proc-sz     inod-sz     file-sz     thrd-sz
12:18:02  135/262144  0/176       1297/2455   284/524288

System configuration: lcpu=4 ent=2.00

12:17:51   msg/s  sema/s
12:18:02    0.00    0.00
r33n05:/ #

Useful combinations
� timex [command]
� timex -s command
 Chapter 4. CPU analysis and tuning 275



4.3  CPU related tuning tools and techniques
This section describes some additional CPU related performance tools and 
tuning techniques.

4.3.1  The smtctl command
The smtctl command controls the enabling and disabling of processor 
simultaneous multi-threading mode.

This command is provided for privileged users and applications to control 
utilization of processors with simultaneous multi-threading support. The 
simultaneous multi-threading mode allows processors to have thread level 
parallelism at the instruction level. This mode can be enabled or disabled for all 
processors either immediately or on subsequent boots of the system. This 
command controls the simultaneous multi-threading options.

Syntax
smtctl [ -m off | on [ -w boot | now ]]

Flags
-m off Sets the simultaneous multi-threading mode to disabled. 

-m on Sets the simultaneous multi-threading mode to enabled. 

-w boot Makes the simultaneous multi-threading mode change 
effective on next and subsequent reboots. 

-w now Makes the simultaneous multi-threading mode change 
immediately but will not persist across reboot. 

Example
Displaying the current SMT setting
To check the status of SMT, you can use smtctl command without flag. 
Example 4-84 on page 277 shows a sample of the smtctl command without flag. 
The following information is reported for current SMT status.

SMT Capability Indicator that the physical processors are capable of 
simultaneous multi-threading

SMT Mode Current runtime simultaneous multi-threading mode of 
disabled or enabled

Note: If neither the -w boot or the -w now options are specified, then the mode 
change is made immediately and will persist across subsequent boots. 
276 AIX 5L Practical Performance Tools and Tuning Guide



SMT Boot Mode Current boot time simultaneous multi-threading mode of 
disabled or enabled

SMT Threads The number of simultaneous multi-threading threads per 
physical processor

SMT Bound Indicator that the simultaneous multi-threading threads 
are bound on the same physical processor

Example 4-84   Displaying the current SMT status

r33n05:/ # smtctl

This system is SMT capable.

SMT is currently enabled.

SMT boot mode is not set.

Processor 1 has 2 SMT threads
SMT thread 0 is bound with processor 1
SMT thread 2 is bound with processor 1

Processor 2 has 2 SMT threads
SMT thread 1 is bound with processor 2
SMT thread 3 is bound with processor 2
r33n05:/ #

Changing the SMT mode
Using the smtctl with -m on flag, you can enable the SMT mode. Example 4-85 
shows a sample of enabling SMT mode. In this example, the mode change is 
made immediately and will persist across subsequent boots because -w flag is 
not specified.

Example 4-85   Enabling the SMT mode

r33n05:/ # smtctl -m on
smtctl: SMT is now enabled and will persist across reboots.
        Note that the boot image must be remade with the bosboot
        command before the next reboot.
r33n05:/ #

Using the smtctl with the -m off flag, you can disable the SMT mode. 
Example 4-86 on page 278 shows a sample of disabling the SMT mode. In this 
example, the mode change immediately but will not persist across reboot 
because -w now option is specified.
 Chapter 4. CPU analysis and tuning 277



Example 4-86   Disabling the SMT mode

r33n05:/ # smtctl -m off -w now
smtctl: SMT is now disabled.
r33n05:/ #

Useful combinations
� smtctl
� smtctl -m on -w now
� smtctl -m off- w now

4.3.2  The bindintcpu command
The bindintcpu command is used to direct an interrupt from a specific hardware 
device, at a specific interrupt level, to a specific CPU number or numbers. The 
bindintcpu command is only applicable to certain hardware types. Once an 
interrupt level has been directed to a CPU, all interrupts on that level will be 
directed to that CPU until directed otherwise by the bindintcpu command. The 
bindintcpu command resides in /usr/sbin and is part of the devices.chrp.base.rte 
fileset, which is installable from the AIX base installation media. 

Syntax
bindintcpu <level> <cpu> [<cpu>...]

Parameters
level The bus interrupt level

cpu The specific CPU number. You may be able to bind an 
interrupt to more than one CPU

Examples
The bindintcpu command can be useful for redirecting an interrupt to a specific 
processor. In a shared processor LPAR, the bindintcpu command binds bus 
interrupt level to a virtual CPU. If the threads of a process are bound to a specific 
CPU using the bindprocessor command, this process could be continually 
disrupted by an interrupt from a device. Refer to 4.3.3, “The bindprocessor 
command” on page 280 for more details on the bindprocessor command. 

This continual interruption can become a performance issue if the CPU is 
frequently interrupted. To overcome this, an interrupt that is continually 
interrupting a CPU can be redirected to a specific CPU or CPUs other than the 
CPU where the threads are bound. Assuming that the interrupt is from the 
Ethernet adapter ent1, the following procedure can be performed.
278 AIX 5L Practical Performance Tools and Tuning Guide



To determine the interrupt level for a specific device, the lsattr command can be 
used as in Example 4-87. Here we see that the interrupt level is 85.

Example 4-87   How to determine the interrupt level of an adapter

# lsattr -El ent0
alt_addr        0x000000000000   Alternate Ethernet Address                    True
busintr         85               Bus interrupt level                           False
busmem          0xc8030000       Bus memory address                            False
chksum_offload  yes              Enable hardware transmit and receive checksum True
intr_priority   3                Interrupt priority                            False
ipsec_offload   no               IPsec Offload                                 True
large_send      yes              Enable TCP Large Send Offload                 True
media_speed     Auto_Negotiation Media Speed                                   True
poll_link       no               Enable Link Polling                           True
poll_link_timer 500              Time interval for Link Polling                True
rom_mem         0xc8000000       ROM memory address                            False
rx_hog          1000             RX Descriptors per RX Interrupt               True
rxbuf_pool_sz   1024             Receive Buffer Pool Size                      True
rxdesc_que_sz   512              RX Descriptor Queue Size                      True
slih_hog        10               Interrupt Events per Interrupt                True
tx_preload      1520             TX Preload Value                              True
tx_que_sz       8192             Software TX Queue Size                        True
txdesc_que_sz   512              TX Descriptor Queue Size                      True
use_alt_addr    no               Enable Alternate Ethernet Address             True

To determine which CPUs are available on the system, the bindprocessor 
command can be used as in Example 4-88. 

Example 4-88   How to determine the available CPUs

# bindprocessor -q
The available processors are:  0 1 2 3

In order to redirect the interrupt level 85 to CPU1 on the system, use the 
bindintcpu command as in Example 4-89 on page 280. All interrupts from bus 
interrupt level 85 will be handled by the processor CPU1. The other CPUs of the 
system will no longer be required to service interrupts from this interrupt level.

Note: Not all hardware supports one interrupt level binding to multiple CPUs, 
and an error may therefore result when using bindintcpu on some systems. It 
is recommended to specify only one CPU per interrupt level. If an interrupt 
level is redirected to CPU0, then this interrupt level cannot be redirected to 
another CPU by the bindintcpu command until the system has been 
rebooted.
 Chapter 4. CPU analysis and tuning 279



Example 4-89   redirect the specified interrupt to CPU

# bindintcpu 85 1
#

In Example 4-90, the system has four CPUs. These CPUs are CPU0, CPU1, 
CPU2, and CPU3. If a non-existent CPU number is entered, an error message is 
displayed.

Example 4-90   Error message against incorrect CPU number 

# bindintcpu 85 4
Invalid CPU number 4
Usage: bindintcpu <level> <cpu> [<cpu>...]
  Assign interrupt at <level> to be delivered only to the indicated cpu(s).

The vmstat command can be used as shown in Example 4-91 to obtain interrupt 
statistics. The column heading level shows the interrupt level, and the column 
heading count gives the number of interrupts since system startup. 

Example 4-91   Displaying interrupt statistics with the vmstat command 

# vmstat -i
priority level    type   count module(handler)
    0       2   hardware  6382 i_mpc_int_handler(793a34)
    1       4   hardware   195 /usr/lib/drivers/isa/rsdd_rspc(2439eec)
    3      85   hardware 150622 /usr/lib/drivers/pci/scentdd(250ba8c)
    3      87   hardware 84089 /usr/lib/drivers/pci/s_scsiddpin(22016e8)
    3      88   hardware    90 /usr/lib/drivers/pci/s_scsiddpin(22016e8)
    3     101   hardware    60 /usr/lib/drivers/pci/s_scsiddpin(22016e8)
    3     105   hardware  3823 /etc/drivers/pci/efcddpin(21cb8d8)
    3     115   hardware    39 /etc/drivers/pci/efcddpin(21cb8d8)

4.3.3  The bindprocessor command
The bindprocessor command uses the bindprocessor kernel service to bind or 
unbind a kernel thread to a processor. The bindprocessor kernel service binds a 
single thread or all threads of a process to a processor. Bound threads are forced 
to run on that processor. Processes are not bound to processors; the kernel 
threads of the process are bound. Kernel threads that are bound to the chosen 
processor, remain bound until unbound by the bindprocessor command or until 
they terminate. New threads that are created using the thread_create kernel 
service become bound to the same processor as their creator. This applies to the 
initial thread in the new process created by the fork subroutine: the new thread 
inherits the bind properties of the thread which called fork. When the exec 
subroutine is called, thread properties are left unchanged.The bindprocessor 
280 AIX 5L Practical Performance Tools and Tuning Guide



command resides in /usr/sbin and is part of the bos.mp fileset, which is installed 
by default on SMP systems when installing AIX.

In a shared processor LPAR, the bindprocessor command binds to virtual CPUs 
instead of physical CPUs. This aspect could possibly cause problems for an 
application or kernel extension that is dependent on executing on a specific 
physical CPU. 

Syntax
bindprocessor Process [ ProcessorNum ] | -q | -u Process

Flags
-q Displays the processors that are available. 

-u Unbinds the threads of the specified process.

Parameters
Process This is the process identification number (PID) for the 

process to be bound to a processor.

[ ProcessorNum ] This is the processor number as specified from the output 
of the bindprocessor -q command. If the parameter 
ProcessorNum is omitted, then the thread of a process 
will be bound to a randomly selected processor. 

Examples
Display the available processors
To display the available processors, the bindprocessor command can be used as 
in Example 4-92.

Example 4-92   Displaying available processors with the bindprocessor command

# bindprocessor -q
The available processors are:  0 1 2 3

Binding a thread to processor
Example 4-93 shows a sample of using the bindprocessor command. In this 
example, the cputest process is binded to processor 1. The ps command with -o 
THREAD option is useful to know whether a thread is bound to a processor or not.

Example 4-93   Bind a thread to processor

r33n05:/ # ps -o THREAD
    USER    PID   PPID      TID ST  CP PRI SC    WCHAN        F     TT BND COMMAND
    root 385176 495628        - A    0  60  1        -   240001  pts/1   - -ksh
    root 536592 557206        - A    0  60  1        -   200001  pts/1   - ps -o THREAD
 Chapter 4. CPU analysis and tuning 281



    root 557206 659630        - A    0  60  1        -   200001  pts/1   - /usr/bin/ksh
    root 569598 557206        - A    0  68  1        -   200001  pts/1   - cputest
r33n05:/ # bindprocessor -q
The available processors are:  0 1 2 3
r33n05:/ # bindprocessor 569598 1
r33n05:/ # 0s -o THREAD
/usr/bin/ksh: 0s:  not found.
r33n05:/ # ps -o THREAD
    USER    PID   PPID      TID ST  CP PRI SC    WCHAN        F     TT BND COMMAND
    root 385176 495628        - A    0  60  1        -   240001  pts/1   - -ksh
    root 536602 557206        - A    0  60  1        -   200001  pts/1   - ps -o THREAD
    root 557206 659630        - A    0  60  1        -   200001  pts/1   - /usr/bin/ksh
    root 569598 557206        - A    0  68  1        -   200001  pts/1   1 cputest
r33n05:/ #

4.3.4  The schedo command
The schedo command is used to set or display current or next boot values for all 
CPU scheduler tuning parameters. This command can only be executed by root 
user. The schedo command can also make permanent changes or defer changes 
until the next reboot. Whether the command sets or displays a parameter is 
determined by the accompanying flag. The -o flag performs both actions. It can 
either display the value of a parameter or set a new value for a parameter.

The schedo command has replaced the schedtune command. In AIX 5.2, a 
compatibility script named schedtune is provided to help the transition. In AIX 5.3, 
the schedtune script is not available anymore. The schedo command resides in 
/usr/bin/schedo and is part of the bos.perf.tune fileset. This fileset is installable 
from the AIX base installation media.

Syntax
schedo [ -p | -r ] { -o Tunable[=Newvalue]}

schedo [ -p | -r ] { -d Tunable }

schedo [ -p | -r ] -D

schedo [ -p | -r ] -a

schedo -h [ Tunable ]

Attention: Incorrect changes of scheduling parameters can cause 
performance degradation or operating-system failure. Refer to AIX 5L Version 
5.3 Performance Management Guide, SC23-4905, before using these tools.
282 AIX 5L Practical Performance Tools and Tuning Guide



schedo -L [Tunable ]

schedo -x [Tunable ]

schedo -?

Flags
-h [Tunable] Displays help about the Tunable parameter if one is 

specified. Otherwise, displays the schedo command 
usage statement. 

-a Displays the current, reboot (when used in conjunction 
with -r) or permanent (when used in conjunction with -p) 
value for all tunable parameters, one per line in pairs 
Tunable = Value. For the permanent option, a value is only 
displayed for a parameter if its reboot and current values 
are equal. Otherwise NONE displays as the value. 

-d Tunable Resets Tunable to its default value. If a tunable needs to 
be changed (that is, it is currently not set to its default 
value, and -r is not used in combination, it won't be 
changed but a warning is displayed. 

-D Resets all tunables to their default value. If tunables 
needing to be changed are of type “Bosboot” or “Reboot”, 
or are of type Incremental and have been changed from 
their default value, and -r is not used in combination, they 
will not be changed but display warning message.

-o Tunable [=Newvalue]

Displays the value or sets Tunable to Newvalue. If a 
tunable needs to be changed (the specified value is 
different than current value), and is of type “Bosboot” or 
“Reboot”, or if it is of type Incremental and its current 
value is bigger than the specified value, and -r is not used 
in combination, it will not be changed but a warning 
displays. When -r is used in combination without a new 
value, the nextboot value for tunable is displayed. When 
-p is used in combination without a new value, a value 
displays only if the current and next boot values for 
tunable are the same. Otherwise NONE displays as the 
value.

-p Makes changes apply to both current and reboot values, 
when used in combination with -o, -d or -D, that is, turns 
on the updating of the /etc/tunables/nextboot file in 
addition to the updating of the current value. These 
 Chapter 4. CPU analysis and tuning 283



combinations cannot be used on Reboot and Bosboot 
type parameters because their current value can't be 
changed. 
When used with -a or -o without specifying a new value, 
values are displayed only if the current and next boot 
values for a parameter are the same. Otherwise NONE 
displays as the value.

-r Makes changes apply to reboot values when used in 
combination with -o, -d or -D, that is, turns on the updating 
of the /etc/tunables/nextboot file. If any parameter of type 
Bosboot is changed, the user will be prompted to run 
bosboot. 
When used with -a or -o without specifying a new value, 
next boot values for tunables display instead of current 
values.

-L [ Tunable ] Lists the characteristics of one or all tunables. 

-x [Tunable] Lists characteristics of one or all tunables. 

Examples
Displaying current parameter value
Beginning with AIX 5L Version 5.3, several tuning parameters have been added 
to the schedo command. Example 4-94 shows all CPU scheduler parameters. 

Example 4-94   Displaying current parameter values with the schedo command

r33n05:/ # schedo -a
           v_repage_hi = 0
         v_repage_proc = 4
            v_sec_wait = 1
         v_min_process = 2
         v_exempt_secs = 2
              pacefork = 10
               sched_D = 16
               sched_R = 16
             timeslice = 1
               maxspin = 16384
              %usDelta = 100
          affinity_lim = 7
idle_migration_barrier = 4
      fixed_pri_global = 0
         big_tick_size = 1
             force_grq = 0
      smt_snooze_delay = 0
  setnewrq_sidle_mload = 384
    sidle_S1runq_mload = 64
284 AIX 5L Practical Performance Tools and Tuning Guide



    sidle_S2runq_mload = 134
    sidle_S3runq_mload = 134
    sidle_S4runq_mload = 4294967040
 search_globalrq_mload = 256
  search_smtrunq_mload = 256
     smtrunq_load_diff = 2
   shed_primrunq_mload = 64
        unboost_inflih = 1
    n_idle_loop_vlopri = 100
       hotlocks_enable = 0
         krlock_enable = 1
  krlock_conferb4alloc = 0
    krlock_spinb4alloc = 1
    krlock_confer2self = 0
   krlock_spinb4confer = 1024
    slock_spinb4confer = 1024
r33n05:/ #

Beginning with AIX 5L Version 5.3, the following parameters are supported. In an 
environment other than Power5 processor, these new parameter values are 
displayed as “N/A”.

smt_snooze_delay Amount of time in microseconds in idle loop without 
useful work before snoozing (calling h_cede). A value 
of -1 indicates to disable snoozing, a value of 0 
indicates to snooze immediately. Default: 0. Range: -1 
to 100000000 (max. 100 seconds).

setnewrq_sidle_mload Minimum system load above which idle secondary 
sibling threads will be considered for new work even 
when primary is not idle. Default: 384. Range: 0 to 
4294967040 (0xFFFFFF00).

sidle_S1runq_mload  The minimum load above which idle load balancing for 
secondary sibling threads will search for work in the 
primary sibling thread's run queue. Default: 64. Range: 
0 to 4294967040 (0xFFFFFF00)

sidle_S2runq_mload Minimum load above which secondary sibling threads 
will look for work among other run queues owned by 
CPUs within their S2 affinity domain during idle load 
balancing. Default: 134. Range: 0 to 4294967040 
(0xFFFFFF00). It is recommended that this tunable 
parameter be never set to a value that is less than the 
value of sidle_S1runq_mload.

sidle_S3runq_mload Minimum load above which secondary sibling threads 
will look for work among other run queues owned by 
CPUs within their S3 affinity domain during idle load 
 Chapter 4. CPU analysis and tuning 285



balancing. Default: 134. Range: 0 to 4294967040 
(0xFFFFFF00). It is recommended that this tunable 
parameter be never set to a value that is less than the 
value of sidle_S2runq_mload.

sidle_S4runq_mload Minimum load above which secondary sibling threads 
will look for work on any local run queues. Default: 
4294967040 (0xFFFFFF00). Range: 0 to 4294967040 
(0xFFFFFF00). It is recommended that this tunable 
parameter be never set to a value that is less than the 
value of sidle_S3runq_mload.

search_globalrq_mload Minimum load above which secondary sibling threads 
will look for work in the global run queue in the 
dispatcher. Default: 256. Range: 0 to 4294967040 
(0xFFFFFF00).

search_smtrunq_mload Minimum load above which the dispatcher will also 
search the run queues belonging to its sibling 
hardware threads. This is meant for load balancing on 
a physical processor and is not the same as idle load 
balancing as this check is made in the dispatcher 
when choosing the next job to be dispatched. This 
works in conjunction with the smtrunq_load_diff 
tunable. Default: 256. Range: 0 to 4294967040 
(0xFFFFFF00).

smtrunq_load_diff Minimum load difference between sibling run queue 
loads for a task to be stolen from the sibling's run 
queue. This is enabled only when the load is greater 
than the value for the search_smtrunq_mload tunable. 
Default: 2. Range: 1 to 4294967040 (0xFFFFFF00).

shed_primrunq_mload The maximum load below which the secondary sibling 
threads will try to shed work onto the primary sibling 
thread's run queue. Default: 64. Range: 0 to 
4294967040 (0xFFFFFF00).

unboost_inflih Enables (1) or disables (0) the unboost of the hot lock 
priority in the flih. When disabled, the unboost occurs 
in the dispatcher. Default: 1 (enabled). Range: 0 to 1.

n_idle_loop_vlopri Number of times to run the low hardware priority loop 
each time in idle loop if no new work is found. Default: 
100. Range: 0 to 1000000.

hotlocks_enable Enables (1) or disables (0) the hardware priority 
boosting of hot locks. Default: 0 (disabled). Range: 0 to 
1.
286 AIX 5L Practical Performance Tools and Tuning Guide



krlock_enable Enables (1) or disables (0) krlocks. This parameter 
only applies to the 64bit kernel. Default: 1 (enabled). 
Range: 0 to 1.

krlock_conferb4alloc Enables (1) or disables conferring after spinning 
slock_spinb4confer before trying to acquire or 
allocating krlock. This parameter only applies to the 
64bit kernel. Default: 0 (disabled). Range: 0 to 1.

krlock_spinb4alloc Number of additional aquisition attempts after spinning 
slock_spinb4confer, and conferring (if 
krlock_conferb4alloc is on), before allocating krlock.  
This parameter only applies to the 64bit kernel. 
Default: 1. Range: 1 to MAXINT.

krlock_confer2self Enables (1) or disables (0) conferring to self after 
trying to acquire krlock krlock_spinb4confer times. This 
parameter only applies to the 64bit kernel. Default: 1 
(enabled). Range: 0 to 1.

krlock_spinb4confer Number of krlock acquisition attempts before 
conferring to the krlock holder (or self). This parameter 
only applies to the 64bit kernel. Default: 1024. Range: 
0 to MAXINT.

slock_spinb4confer Number of attempts for a simple lock before conferring. 
Default: 1024. Range: 0 to MAXINT.

Changing a parameter value
To change the current parameter value of schedo with the -o flag. Example 4-95 
shows a sample of how to change a parameter value using the -o flag. In this 
example, sched_R parameter value is changed from 16 to 5. The sched_R and 
sched_D parameters are used for calculating the CPU scheduler’s priority. 

For more information about CPU scheduler, refer to Chapter 11. “CPU 
performance monitoring” of the AIX 5L Version 5.3 Performance Management 
Guide, SC23-4905, which can be found at:

http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixb
man/prftungd/prftungd.pdf

Example 4-95   Changing a parameter value

r33n05:/ # schedo -a | grep sched
               sched_D = 16
               sched_R = 16
r33n05:/ # schedo -o sched_R=5
Setting sched_R to 5
r33n05:/ # schedo -a | grep sched
               sched_D = 16
 Chapter 4. CPU analysis and tuning 287

http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixbman/prftungd/prftungd.pdf


               sched_R = 5
r33n05:/ #

Changing smt_snooze_delay parameter value
The smt_snooze_delay parameter the new parameter begin with AIX 5L Version 
5.3. This parameter is used to specify the amount of time a thread will spin in an 
idle loop before sending a cede call to the POWER™ Hypervisor. If a value of -1 
is specified, the thread will not cede while waiting in the idle loop. If the snooze 
delay is set to 0, the thread will cede immediately upon entering an idle wait.

For more information, refer to the redbook Advanced POWER Virtualization on 
IBM ~ p5 Servers: Introduction and Basic Configuration, SG24-7940:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247940.html

Example 4-96 shows a sample of changing the smt_snooze_delay parameter 
value. In this example, smt_snooze_delay value is changed from 0 to -1. 

Example 4-96   Changing smt_snooze_delay

r33n05:/ # schedo -o smt_snooze_delay
smt_snooze_delay = 0
r33n05:/ # schedo -o smt_snooze_delay=-1
Setting smt_snooze_delay to -1
r33n05:/ # schedo -o smt_snooze_delay
smt_snooze_delay = -1
r33n05:/ # 

4.3.5  The nice command
The nice command enables a user to adjust the dispatching priority of a 
command. Non-root authorized users can only degrade the priority of their own 
commands. A user with root authority can improve the priority of a command as 
well. A process, by default, has a nice value of 20. The renice command is used 
to change the nice value of one or more processes that are running on a system.

The nice commands reside in /usr/bin and are part of the bos.rte.control fileset, 
which is installed by default from the AIX base installation media.

syntax
nice [  -Increment|  -n Increment ] Command [ Argument ... ]

Flags
-Increment Moves a command’s priority up or down. You can specify 

a positive or negative number. Positive increment values 
288 AIX 5L Practical Performance Tools and Tuning Guide

http://www.redbooks.ibm.com/redpieces/abstracts/sg247940.html


degrade priority, and negative increment values improve 
priority. Only users with root authority can specify a 
negative increment. If you specify an increment value that 
would cause the nice value to exceed the range of 0 to 39, 
the nice value is set to the value of the limit that was 
exceeded.

Parameters
Command This is the actual command that will run with the modified 

nice value.

Examples
The nice command changes the value of the priority of a thread by changing the 
nice value of its process, which is used to determine the overall priority of that 
thread.

Displaying the current nice value
To determine the nice value, use the ps command with -l flag as in 
Example 4-97. The nice value for a user process that is started in the foreground 
is 20 by default, and if the If the process is launched in the background, the nice 
value is 24 by default.

Example 4-97   Displaying the nice value using the ps command

r33n05:/ # ps -l
       F S UID    PID   PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD
  240001 A   0 385176 495628   0  60 20 177c77400   716           pts/1  0:00 ksh
  200001 A   0 557210 385176   0  60 20 187cd8400   820           pts/1  0:00 ps
  240001 A   0 569598      1   0  68 24 97d09400   212           pts/1  0:00 cputest
r33n05:/ #

Reducing the priority of a process
The priority of the process can be reduced by increasing the nice value. 
Example 4-98 shows a sample of reducing the nice value of a process. In this 
example, nice value is specified to reduce by 10.

Example 4-98   Reducing the priority of a process

r33n05:/ # nice -10 ps -l
       F S UID    PID   PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD
  240001 A   0 385176 495628   0  60 20 177c77400   716           pts/1  0:00 ksh
  200001 A   0 557218 385176   0  80 30 187cd8400   820           pts/1  0:00 ps
  240001 A   0 569598      1   0  68 24 97d09400   212           pts/1  0:00 cputest
r33n05:/ #
 Chapter 4. CPU analysis and tuning 289



4.3.6  The renice command
The renice command is used to change the nice value of one or more processes 
that are running on a system. The renice command can also change the nice 
values of a specific process group.

The renice command resides in /usr/sbin/renice, is linked from /usr/bin/renice, 
and is part of the bos.adt.prof fileset, which is installable from the AIX base 
installation media.

syntax
renice [  -n Increment ] [  -g |  -p |  -u ] ID ...

Flags
-g Interprets all IDs as unsigned decimal integer process 

group IDs.

-n Increment Specifies the number to add to the nice value of the 
process. The value of Increment can only be a decimal 
integer from -20 to 20. Positive increment values degrade 
priority. Negative increment values require appropriate 
privileges and improve priority.

-p Interprets all IDs as unsigned integer process IDs. The -p 
flag is the default if you specify no other flags.

-u Interprets all IDs as user name or numerical user IDs.

Parameters
ID Where the -p option is used or any other flag is not 

specified, this will be the value of the process 
identification number (PID). In the case where the -g flag 
is used, the value of ID will be the process group 
identification number (PGID). In the case where the -u 
flag is used, this value denotes the user identification 
number (UID). 

Examples

Changing the thread’s priority
The priority of a thread that is currently running on the system can be changed by 
using the renice command to change the nice value for the process that contains 
the thread. Example 4-99 on page 291 shows a sample of reducing the thread’s 
priority using the renice command.
290 AIX 5L Practical Performance Tools and Tuning Guide



Example 4-99   Changing the thread's priority using the renice command

r33n05:/ # nice -10 ps -l
       F S UID    PID   PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD
  240001 A   0 385176 495628   0  60 20 177c77400   716           pts/1  0:00 ksh
  200001 A   0 557218 385176   0  80 30 187cd8400   820           pts/1  0:00 ps
  240001 A   0 569598      1   0  68 24 97d09400   212           pts/1  0:00 cputest
r33n05:/ # renice -n 10 -p 569598
r33n05:/ # ps -l
       F S UID    PID   PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD
  240001 A   0 385176 495628   0  60 20 177c77400   716           pts/1  0:00 ksh
  200001 A   0 557224 385176   0  60 20 187cd8400   820           pts/1  0:00 ps
  240001 A   0 569598      1   0  88 34 97d09400   212           pts/1  0:00 cputest
r33n05:/ #

Useful combinations
� renice -n [increment] [ID]
� renice -n [increment] -g [ID]
� renice -n [increment] -u [ID]

4.4  CPU summary
This section presents CPU related performance commands which help us 
summarize the data collected.

4.4.1  Other useful commands for CPU monitoring
Here are some other useful more commands

The alstat and emstat commands
The alstat command displays alignment exception statistics. The emstat 
command displays emulation exception statistics. /usr/bin/emstat is linked from 
/usr/bin/alstat, so both command has same binary code.

The emstat and alstat commands reside in /usr/bin and are part of the 
bos.perf.tools fileset, which is installable from the AIX base installation media.

Syntax
alstat [ -e | -v ] [ Interval ] [ Count ]

emstat [ -a | -v ] [ Interval ] [ Count ]
 Chapter 4. CPU analysis and tuning 291



Useful combinations
� alstat -e [interval] [count]
� alstat -v [interval] [count]
� emstat -a [interval] [count]
� emstat -v [interval] [count]

The trcevgrp command
The trcevgrp command is used to maintain the trace event groups. The trcevgrp 
command reside in /usr/bin and are part of the bos.sysmgt.trace fileset, which is 
installable from the AIX base installation media.

syntax
trcevgrp -l [ event-group [ ... ] ]

trcevgrp -r [ event-group [ ... ] ]

trcevgrp -a -d "group-description" -h "hook-list" event-group

trcevgrp -u [ -d "group-description" ] [ -h "hook-list" ] event-group ]

The gennames, genld, genkld, genkex, gensyms commands
The gennames, genld, genkld, genkex, and gensyms commands extract information 
from the running system for offline processing. 

The gennames command gathers name-to-address mapping information 
necessary for commands such as tprof, filemon, netpmon, pprof, and curt to 
work in offline mode. This is useful when it is necessary to post-process a trace 
file from a remote system or perform the trace data collection at one time and 
post-process it at another time.

The genld command collects the list of all processes currently running on the 
system, and optionally reports the list of loaded objects corresponding to each 
process.

The genkld command extracts the list of shared objects for all processes 
currently loaded into the shared segment and displays the virtual address, size, 
and path name for each object on the list.

The genkex command extracts the list of kernel extensions currently loaded into 
the system and displays the address, size, and path name for each kernel 
extension in the list.

The gensyms command extracts name-to-address mapping that is necessary for 
offline processing of other commands, such as tprof or splat.
292 AIX 5L Practical Performance Tools and Tuning Guide



These commands reside in /usr/bin and are part of the bos.perf.tools fileset, 
which can be installed from the AIX base installation media.

syntax
gennames[-f ]

genld [ -h | -l [ -d ] ]

genkld [ -dh ]

genkex [ -dh ]

gensyms [-ofhs] [-k kernel] [-i file] [-b binary[,binary[,...]]] [-S path]

The locktrace command
The locktrace command is used to controls kernel lock tracing. If the machine 
has been rebooted after running the bosboot -L command, kernel lock tracing 
can be turned on or off for one or more individual lock classes, or for all lock 
classes. If bosboot -L was not run, lock tracing can only be turned on for all locks 
or none.

The locktrace command resides in /usr/bin and is part of the bos.perf.tools 
fileset, which is installable from the AIX base installation media.

Syntax
locktrace [ -r ClassName | -s ClassName | -S | -R | -l ]

-R Turn off all lock tracing. 

-S Turn on lock tracing for all locks regardless of their class 
membership. 

-l List kernel lock tracing current status. 

Useful combinations
� locktrace -S
� locktrace -l
� locktrace -R

The stripnm Command
The stripnm command extracts the symbol information from a specified object 
file, executable, or archive library and prints it to standard output. If the input file 
is an archive library, the command extracts the symbol information from each 
object file contained in the archive.
 Chapter 4. CPU analysis and tuning 293



The stripnm command resides in /usr/bin and is part of the bos.perf.tools fileset, 
which is installable from the AIX base installation media.

Syntax
stripnm [ -x | -d ] [ -s ] [ -z ] File

-d Prints symbol address values in decimal format. This is 
the default with -z flag.

-x Prints symbol address values in hexadecimal format. This 
is the default without -z flag.

-z Uses the old format. 

Useful combinations
� stripnm [object_file] > [ouput_file]
� stripnm -d [object_file] > [ouput_file]
� stripnm -xz [object_file] > [ouput_file]

Process-related commands
The /proc filesystem provides a mechanism to control processes. It also gives 
access to information about the current state of processes and threads, but in 
binary form. The proctools commands provide ascii reports based on some of 
the available information. Following proctools commands are supported.

procwdx Prints the current working directory of processes.

procfiles Reports information about all file descriptors opened by 
processes.

procflags Prints the /proc tracing flags, the pending and held 
signals, and other /proc status information for each thread 
in the specified processes.

proccred Prints the credentials (effective, real, saved user IDs, and 
group IDs) of processes.

procmap Prints the address space map of processes.

procldd Lists the dynamic libraries loaded by processes, including 
shared objects explicitly attached using dlopen().

procsig Lists the signal actions defined by processes.

procstack Prints the hexadecimal addresses and symbolic names 
for each of the stack frames of the current thread in 
processes.

procstop Stops processes on the PR_REQUESTED event.

procrun Starts a process that has stopped on the 
PR_REQUESTED event.
294 AIX 5L Practical Performance Tools and Tuning Guide



procwait Waits for all of the specified processes to terminate.

proctree Prints the process tree containing the specified process 
IDs or users.

These commands reside in /usr/bin and is part of the bos.perf.proctools fileset, 
which is installable from the AIX base installation media. 

Syntax
procwdx [ -F ] [ ProcessID ] ...

procfiles [ -F ] [ -n ][ ProcessID ] ...

procflags [ -r ] [ ProcessID ] ...

proccred [ ProcessID ] ...

procmap [ -F ] [ ProcessID ] ...

procldd [ -F ] [ ProcessID ] ...

procsig [ ProcessID ] ...

procstack [ -F ] [ ProcessID ] ...

procstop [ ProcessID ] ...

procrun [ ProcessID ] ...

procwait [ -v ] [ ProcessID ] ...

proctree [ -a ] [ { ProcessID | User } ]

Flags
-F Forces procfiles to take control of the target process even 

if another process has control. 

-n Prints the names of the files referred to by file descriptors. 

Parameters
ProcessID Specifies the process ID.
 Chapter 4. CPU analysis and tuning 295



296 AIX 5L Practical Performance Tools and Tuning Guide



Chapter 5. Memory analysis and tuning

In this chapter we discuss how to monitor and tune memory characteristics. By 
monitoring the memory you can observe when memory performance is 
degrading and then use the tuning techniques discussed to improve 
performance. This chapter describes the following tools: 

� Memory monitoring

– The ps command

– The sar command

– The svmon command

– The topas monitoring tool

– The vmstat command

� Memory tuning 

– The vmo command

� Other commands related to memory performance

5

© Copyright IBM Corp. 2005. All rights reserved. 297



5.1  Memory monitoring
Monitoring any performance characteristics is a very important part of achieving 
the best results possible. There are many ways to investigate different 
parameters and settings, but combining several tools and commands can give 
you the best overall picture of performance. These commands have many uses, 
in this section we will only discuss how they can be used to monitor memory. We 
will show how these commands can be used to gauge how the memory of the 
system is performing at any given moment.

5.1.1  The ps command
The ps (Process Status) command shows the current status of active processes. 
It is located /usr/bin, installed by default from the AIX base installation media, and 
is part of the bos.rte.commands fileset.

Syntax
Usage: ps [-AMNaedfklm] [-n namelist] [-F Format] [-o specifier[=header],...]
                [-p proclist][-G|-g grouplist] [-t termlist] [-U|-u userlist] 
[-c classlist] [ -T pid] [ -L pidlist ]
Usage: ps [aceglnsuvwxU] [t tty] [processnumber]

Useful combinations of the ps command for memory statistics
� ps aux
� ps v
� ps -ealf

Using the ps command
The u and v flags report the following statistics

� %MEM, which is the percentage of real memory a process is using.

� RSS, the amount of real memory size of the process (in 1KB units).

The u flag also reports the SZ statistic, which represents the size of the core 
image of the process (in 1KB units).

The ps command can be used to determine what percentage of real memory a 
process is using. In Example 5-1 you can identify the processes using the 
highest percentages of real memory, by looking at the %MEM column, which is 
sorted in descending order. 

Example 5-1   Example using ps aux

[p630n04][/]> ps aux | head -1 ; ps aux | sort -rn +3 | head
298 AIX 5L Practical Performance Tools and Tuning Guide



USER       PID %CPU %MEM   SZ  RSS    TTY STAT    STIME  TIME COMMAND
root     32958  0.0  1.0 19060 19076      - A      Oct 11  0:01 java -Djava.secur
root     29290  0.0  1.0 15316 15328      - A      Oct 08  0:04 /usr/java14/jre/b
root     38072  0.0  0.0  176  188  pts/8 A    10:01:37  0:00 sort -rn +3
root     37646  0.0  0.0 3640 3412      - A    14:21:39  0:00 Xvnc :5 -desktop
root     35352  0.0  0.0 1056 1116      - A    14:21:42  0:00 xterm
root     35078  0.0  0.0 1092 1120      - A    12:05:55  0:51 /usr/sbin/rsct/bi
root     34800  0.0  0.0  692  716  pts/8 A    10:01:37  0:00 ps aux
root     33848  0.0  0.0  668  708      - A      Oct 11  0:00 /bin/ksh /usr/per
root     33668  0.0  0.0  128  136  pts/8 A    10:01:37  0:00 head
root     33472  0.0  0.0  716  756  pts/2 A    14:21:42  0:00 -ksh

You can also see similar statistics using the v flag.

Example 5-2   Using ps v

r33n01:/ # ps v 868488
    PID    TTY STAT  TIME PGIN  SIZE   RSS   LIM  TSIZ   TRS %CPU %MEM COMMAND
 868488  pts/0 A     0:43    0    56    24    xx     2     8 19.9  0.0 cpu_load

The ps command can also be used to track how much virtual memory a process 
using. In Example 5-3 you can identify which processes are using the most 
amount of virtual memory, by looking at the SZ (size) column, which is listed in 
descending order.

Example 5-3   Example using ps -ealf

r33n01:/ # ps -ealf | head -1 ; ps -ealf | sort -rn +9 | head
       F S      UID    PID   PPID   C PRI NI ADDR    SZ    WCHAN    STIME    TTY  TIME CMD
  240001 A     root 856238 901306   0  39 20 177317400  3176        *   Oct 12      - 39:35 
/usr/sbin/rsct/bin/IBM.CSMAgentRMd
  340001 A     root 811154 901306   0  39 20 b72ab400  2624 f1000588d000e740   Oct 12      -  
0:05 /usr/sbin/rsct/bin/rmcd -r
  240001 A     root 807052 901306   0  60 20 97329400  2064        *   Oct 12      -  0:00 
/usr/sbin/rsct/bin/IBM.ERrmd
  240001 A     root 479470 901306   0  60 20 1d723d400  1704            Oct 12      -  0:00 
sendmail: accepting connections
  240001 A     root 790660 901306   0  60 20 37343400  1608        *   Oct 12      -  0:00 
/usr/sbin/rsct/bin/IBM.AuditRMd
  240001 A     root 798856 901306   0  60 20 b734b400  1584        *   Oct 12      -  0:00 
/usr/sbin/rsct/bin/IBM.DRMd
  240001 A     root 802954 901306   0  60 20 1f731f400  1576        *   Oct 12      -  0:00 
/usr/sbin/rsct/bin/IBM.HostRMd
  240401 A     root 823450 901306   0  60 20 27322400  1492        *   Oct 12      -  0:00 
/usr/sbin/rsct/bin/IBM.ServiceRMd
  240001 A     root 401502 901306   0  60 20 97249400  1036            Oct 12      -  0:04 
/usr/sbin/snmpmibd
 Chapter 5. Memory analysis and tuning 299



  240001 A   daemon 884926 901306   0  60 20 197279400   860            Oct 12      -  0:00 
/usr/sbin/rpc.statd -d 0 -t 50

5.1.2  The sar command
The sar command is very useful in determining real time statistics about your 
system. It writes to standard output the contests of selected cumulative activity 
counters in the operating system. It is located in /usr/sbin, is installable from the 
AIX base installation media, and is part of the bos.rte.commands fileset.

Syntax
sar { -A | [-a][-b][-c][-d][-k][-m][-q][-r][-u][-v][-w][-y] } [-s hh[:mm[:ss]]] 
[-e hh[:mm[:ss]]] [-P processor_id[,...] | ALL] [-f file] [-i seconds] [-o 
file] [interval [number]][-X file] [-i seconds] [-o file] [interval [number]]

Useful combinations of the sar command
� sar -r 

Using the sar command
The sar command with the -r flag will display paging statistics.

Example 5-4   Using sar -r

[p630n04][/]> sar -r 10 5

AIX p630n04 3 5 000685CF4C00    10/13/04

System configuration: lcpu=4 mem=8192MB

14:29:15   slots cycle/s fault/s  odio/s
14:29:25 2096685    0.00    1.75    0.00
14:29:35 2096685    0.00  112.00    0.00
14:29:45 2096685    0.00    0.00    0.90
14:29:55 2096685    0.00    0.00    0.00
14:30:05 2096685    0.00  170.00    0.00

Average  2096685       0      56       0

The output of Example 5-4 shows that there was approximately 8190 MB of free 
space on the paging spaces in the system (2096685 * 4096 / 1024 / 1024 = 458) 
during our measurement interval. The sar -r report has the following format: 
300 AIX 5L Practical Performance Tools and Tuning Guide



cycle/s Reports the number of page replacement cycles per second 
(equivalent to the cy column reported by vmstat).

fault/s Reports the number of page faults per second. This is not a count of 
page faults that generate I/O because some page faults can be 
resolved without I/O.

slots Reports the number of free 4096-byte pages on the paging spaces.

odio/s Reports the number of non-paging disk I/Os per second.

5.1.3  The svmon command
The svmon command is an analysis tool for virtual memory.It captures the current 
state of memory, including real, virtual and paging space memory. The svmon 
command invokes the svmon_back command. Both are located in /usr/lib/perf, 
and both part of the perfagent.tools fileset.

Syntax
svmon [-G  [-i Intvl [NumIntvl] ][-z] ]
svmon [-P [pid1...pidn] [-r] [-u|-p|-g|-v] [-ns] [-wfc] [-q] [-t Count] [ -i 
Intvl [NumIntvl] ] [-l] [-j] [-z]  [-m] ]
svmon [-S [sid1...sidn] [-r] [-u|-p|-g|-v] [-ns] [-wfc] [-q] [-t Count] [ -i 
Intvl [NumIntvl] ] [-l] [-j] [-z] [-m] ]
svmon [-D sid1...sidn [-b] [-q] [ -i Intvl [NumIntvl] ][-z]]
svmon [-F [fr1...frn] [-q] [-i Intvl [NumIntvl] ][-z] ]
svmon [-C cmd1...cmdn [-r] [-u|-p|-g|-v] [-ns] [-wfc] [-q] [-t Count] [ -i 
Intvl [NumIntvl] ] [-d] [-l] [-j] [-z] [-m] ]
svmon [-U [lognm1...lognmn] [-r] [-u|-p|-g|-v] [-ns] [-wfc] [-t Count] [ -i 
Intvl [NumIntvl] ] [-d] [-l] [-j] [-z] [-m] ]
svmon [-W [class1...classn] [-e] [-r] [-u|-p|-g|-v] [-ns] [-wfc] [-q] [-t 
Count] [ -i Intvl [NumIntvl] ] [-l] [-j] [-z] [-m] ]
svmon [-T [tier1...tiern] [-a superclass] [-x] [-e] [-r] [-u|-p|-g|-v] [-ns] 
[-wfc] [-q] [-t Count] [ -i Intvl [NumIntvl] ] [-l] [-z] [-m] ]

If no option is given, svmon -G is the default.

Useful combinations of the svmon command
� svmon or svmon -G
� svmon -P
� svmon -C
� svmon -i

Using the svmon command
When you use the -G flag or give no flags with the svmon command, it will provide 
you with the global view. The global view shows system-wide memory utilization. 
In Example 5-5 on page 302, you can the amount of real memory pages that are 
 Chapter 5. Memory analysis and tuning 301



inuse and free are shown. The number of pg space pages inuse shows how 
much paging space is being used.

Example 5-5   Example using svmon or svmon -G

[p630n04][/]> svmon
               size      inuse       free        pin    virtual
memory      2097152     880310    1216842     167387     245557
pg space    2097152        533

               work       pers       clnt      lpage
pin          167168          0        219          0
in use       245557          0     634753          0

To print out global statistics over an interval, use the -G flag. In Example 5-6 we 
will repeat it five times at two-second intervals.

Example 5-6   Using svmon -G over an interval

r33n01:/ # svmon -G -i 2 5
               size      inuse       free        pin    virtual
memory      1835008     194772    1640236     124539     151495
pg space     131072        788

               work       pers       clnt      lpage
pin          124539          0          0          0
in use       171463          0      23309          0
               size      inuse       free        pin    virtual
memory      1835008     194776    1640232     124539     151499
pg space     131072        788

               work       pers       clnt      lpage
pin          124539          0          0          0
in use       171467          0      23309          0
               size      inuse       free        pin    virtual
memory      1835008     194776    1640232     124539     151499
pg space     131072        788

               work       pers       clnt      lpage
pin          124539          0          0          0
in use       171467          0      23309          0
               size      inuse       free        pin    virtual
memory      1835008     194776    1640232     124539     151499
pg space     131072        788

               work       pers       clnt      lpage
pin          124539          0          0          0
in use       171467          0      23309          0
302 AIX 5L Practical Performance Tools and Tuning Guide



               size      inuse       free        pin    virtual
memory      1835008     194776    1640232     124539     151499
pg space     131072        788

               work       pers       clnt      lpage
pin          124539          0          0          0
in use       171467          0      23309          0

The columns on the resulting svmon report are described as follows:

memory Statistics describing the use of real memory, shown in 4 K 
pages. 

size Total size of memory in 4 K pages. 

inuse Number of pages in RAM that are in use by a 
process plus the number of persistent pages that 
belonged to a terminated process and are still 
resident in RAM. This value is the total size of 
memory minus the number of pages on the free list. 

free Number of pages on the free list. 

pin Number of pages pinned in RAM (a pinned page is 
a page that is always resident in RAM and cannot 
be paged out). 

pg space Statistics describing the use of paging space, shown in 4 
K pages. This data is reported only if the -r flag is not 
used. The value reported is the actual number of 
paging space pages used, which indicates that these 
pages were paged out to the paging space. This differs 
from the vmstat command in that the vmstat command's 
avm column which shows the virtual memory accessed 
but not necessarily paged out. 

size Total size of paging space in 4 K pages. 

inuse Total number of allocated pages. 

in use Detailed statistics on the subset of real memory in use, 
shown in 4 K frames. 

work Number of working pages in RAM. 

pers Number of persistent pages in RAM. 

clnt Number of client pages in RAM (client page is a 
remote file page). 

pin Detailed statistics on the subset of real memory 
containing pinned pages, shown in 4 K frames. 
 Chapter 5. Memory analysis and tuning 303



work Number of working pages pinned in RAM. 

pers Number of persistent pages pinned in RAM. 

clnt Number of client pages pinned in RAM. 

Using the svmon command, you can display memory usage statistics for 
processes. Using the -P flag, and specifying the process id (PID), If no PID is 
supplied it will provide statistics are displayed for all active processes. You can 
use Example 5-7 to read the output of the svmon -P command.

Example 5-7   Example using svmon -P

[p630n04][/]> svmon -P |grep -p Pid 
-------------------------------------------------------------------------------
Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
68532 java             80615     5485        0    29922      N     Y     N
Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
29290 tnameserv        25022     5471        0    17630      N     Y     N
Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
15510 hagsd            18305     5487        0    15091      N     N     N

Process ID 68532 is using 80615 pages of real memory and no paging space. 

The svmon command can also be used to track memory being used by a specific 
command, by using the -C flag of the command. In Example 5-8 the -C flag is 
used to track the memory usage of the hagsd (in fact this is the high availability 
group services daemon, part of RSCT) process. You can compare the output in 
Example 5-7 and Example 5-8 to see how the two flags relate to each other.

Example 5-8   Example using svmon -C

[p630n04][/]> svmon -C hagsd

===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
hagsd                                18305     5486        0    15091

...............................................................................
SYSTEM segments                      Inuse      Pin     Pgsp  Virtual
                                      6442     4237        0     6442

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp 
Virtual
       0         0 work kernel seg                   -   6442  4237    0  6442

...............................................................................
EXCLUSIVE segments                   Inuse      Pin     Pgsp  Virtual
                                      4498        2        0     1293
304 AIX 5L Practical Performance Tools and Tuning Guide



    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp 
Virtual
   c84b9         1 clnt code,/dev/hd2:18061          -   3143     0    -     -
   40488         f work shared library data          -    970     0    0   970
   18463         3 work working storage              -    204     0    0   204
   48469         2 work process private              -    119     2    0   119
     480         - clnt /dev/hd9var:463              -     47     0    -     -
   e04bc         - clnt /dev/hd9var:509              -     13     0    -     -
   38467         - clnt /dev/hd9var:473              -      2     0    -     -
   b84b7         4 work working storage              -      0     0    0     0

...............................................................................
SHARED segments                      Inuse      Pin     Pgsp  Virtual
                                      7365     1247        0     7356

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp 
Virtual
      20         d work shared library text          -   7327  1218    0  7327
   90412         - work                              -     27    27    0    27
   18103         - clnt /dev/hd4:110                 -      3     0    -     -
   98213         - clnt /dev/hd4:98                  -      1     0    -     -
   f845f         - work                              -      1     1    0     1
   5002a         - clnt /dev/hd4:23                  -      1     0    -     -
   48029         - clnt /dev/hd4:66                  -      1     0    -     -
   5044a         - work                              -      1     1    0     1
   6002c         - clnt /dev/hd4:861                 -      1     0    -     -
   18183         - clnt /dev/hd4:99                  -      1     0    -     -
     220         - clnt /dev/hd4:94                  -      1     0    -     -

Memory-leaking programs
A memory leak is a program error that consists of repeatedly allocating memory, 
using it, and then neglecting to free it. A memory leak in a long-running program, 
such as an interactive application, is a serious problem, because it can result in 
memory fragmentation and the accumulation of large numbers of mostly 
garbage-filled pages in real memory and page space. Systems have been known 
to run out of page space because of a memory leak in a single program.

A memory leak can be detected with the svmon command, by looking for 
processes whose working segment continually grows. A leak in a kernel segment 
can be caused by an mbuf leak or by a device driver, kernel extension, or even 
the kernel. To determine if a segment is growing, use the svmon command with 
the -P and -i options to look at a process or a group of processes and see if any 
segment continues to grow.
 Chapter 5. Memory analysis and tuning 305



Example 5-9   Using the svmon command with the -P and -i options

r33n01:/ # svmon -P 872520 -i 1 3

-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  872520 cpu_loader       14052     6661        0    14050      N     N     N

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               -  10885  6658    0 10885
  1d58bd         d work loader segment               -   3142     0    0  3142
   675c6         2 work process private              -     14     3    0    14
   675e6         f work shared library data          -      9     0    0     9
  1c75dc         1 clnt code,/dev/hd3:4138           -      2     0    -     -
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  872520 cpu_loader       14052     6661        0    14050      N     N     N

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               -  10885  6658    0 10885
  1d58bd         d work loader segment               -   3142     0    0  3142
   675c6         2 work process private              -     14     3    0    14
   675e6         f work shared library data          -      9     0    0     9
  1c75dc         1 clnt code,/dev/hd3:4138           -      2     0    -     -
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  872520 cpu_loader       14052     6661        0    14050      N     N     N

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               -  10885  6658    0 10885
  1d58bd         d work loader segment               -   3142     0    0  3142
   675c6         2 work process private              -     14     3    0    14
   675e6         f work shared library data          -      9     0    0     9
  1c75dc         1 clnt code,/dev/hd3:4138           -      2     0    -     -

Correlating the svmon output with other commands
Using more than one command to track memory is common, and can be a great 
asset if you use the right commands with each other. For correlating svmon and 
vmstat output, see Figure 5-1 on page 307.
306 AIX 5L Practical Performance Tools and Tuning Guide



Figure 5-1   Correlating svmon and vmstat output

For correlating svmon and ps output see Example 5-10.

Example 5-10   Correlating svmon and ps output

[p630n04][/]> ps v 20948
   PID    TTY STAT  TIME PGIN  SIZE   RSS   LIM  TSIZ   TRS %CPU %MEM COMMAND
 20948      - A     0:00    0   724   912    xx   131   188  0.0  0.0 twm
[p630n04][/]> svmon -P 20948
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
   20948 twm              13184     5421        0    13136      N     N     N

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp Virtual
      20         d work shared library text          -   6522  1218    0  6522
       0         0 work kernel seg                   -   6433  4201    0  6433
   c0518         2 work process private              -     99     2    0    99
   10542         f work shared library data          -     82     0    0    82
   20504         1 clnt code,/dev/hd2:65851          -     47     0    -     -
     540         - clnt /dev/hd4:4279                -      1     0    -     -

In previous example we can calculate the memory consumed by a process:

99 + 82 = 181 * 4k blocks = 724
 Chapter 5. Memory analysis and tuning 307



5.1.4  The topas monitoring tool
The topas command is a performance monitoring tool that is ideal for broad 
spectrum performance analysis.The topas command requires the perfagent.tools 
fileset to be installed on the system. The topas command resides in /usr/bin and 
is part of the bos.perf.tools fileset that is obtained from the AIX base installable 
media. 

Syntax
topas [-d number_of_monitored_hot_disks]

              [-h show help information]

              [-i monitoring_interval_in_seconds]

              [-m Use monochrome mode - no colors]

              [-n number_of_monitored_hot_network_interfaces]

              [-p number_of_monitored_hot_processes]

              [-w number_of_monitored_hot_WLM classes]

              [-c number_of_monitored_hot_CPUs]

              [-P show full-screen Process Display]

              [-L show full-screen Logical Partition display]

              [-U username - show username owned processes with -P]

              [-W show full-screen WLM Display]

Useful combinations of the topas command
� topas 
� topas -i

Using the topas monitoring tool
The topas monitoring tool tracks many statistics, including memory usage and 
paging information. In Example 5-11, you can see the output of the topas 
command.

Example 5-11   Using the topas monitoring tool

Topas Monitor for host:    r33n01               EVENTS/QUEUES    FILE/TTY
Wed Oct 27 10:47:56 2004   Interval:  2         Cswitch     147  Readch    11187
                                                Syscall     125  Writech     271
308 AIX 5L Practical Performance Tools and Tuning Guide



Kernel    0.1   |#                           |  Reads         4  Rawin         0
User      0.0   |#                           |  Writes       13  Ttyout      214
Wait      0.0   |                            |  Forks         0  Igets         0
Idle     99.9   |############################|  Execs         0  Namei         1
Physc =  0.00                     %Entc=   0.2  Runqueue    0.0  Dirblk        0
                                                Waitqueue   0.0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out
en0       0.3      1.0     1.0     0.0     0.5  PAGING           MEMORY
lo0       0.1      2.0     2.0     0.1     0.1  Faults        0  Real,MB    7167
                                                Steals        0  % Comp     10.1
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp   2.4
hdisk0    0.0      0.0     0.0     0.0     0.0  PgspOut       0  % Client    2.6
                                                PageIn        0
Name            PID  CPU%  PgSp Owner           PageOut       0  PAGING SPACE
topas        741626   0.0   1.5 root            Sios          0  Size,MB     512
mpstat       766092   0.0   0.1 root                             % Used      1.1
mpstat       794688   0.0   0.1 root            NFS (calls/sec)  % Free     98.8
mpstat       778270   0.0   0.1 root            ServerV2       0
mpstat       737532   0.0   0.1 root            ClientV2       0   Press:
IBM.CSMAg    856238   0.0   2.7 root            ServerV3       0   "h" for help
getty        893156   0.0   0.4 root            ClientV3       0   "q" to quit

Paging statistics
There are two parts of the paging statistics reported by topas. The first part is 
total paging statistics. This simply reports the total amount of paging available on 
the system and the percentages free and used. The second part provides a 
breakdown of the paging activity. The reported items and their meanings are 
listed below.

Faults Reports the number of faults.

Steals Reports the number of 4 KB pages of memory stolen by the Virtual 
Memory Manager per second.

PgspIn Reports the number of 4 KB pages read in from the paging space 
per second.

PgspOut Reports the number of 4 KB pages written to the paging space per 
second.

PageIn Reports the number of 4 KB pages read per second.

PageOut Reports the number of 4 KB pages written per second.

Sios Reports the number of input/output requests per second issued by 
the Virtual Memory Manager.
 Chapter 5. Memory analysis and tuning 309



Memory statistics
The memory statistics are listed below.

Real Shows the actual physical memory of the system in megabytes.

%Comp Reports real memory allocated to computational pages.

%Noncomp Reports real memory allocated to non-computational pages.

%Client Reports on the amount of memory that is currently used to cache 
remotely mounted files.

To learn more about the topas monitoring tool, refer to 3.1, “The topas command” 
on page 64.

5.1.5  The vmstat command
The vmstat command is useful for reporting statistics about virtual memory. The 
vmstat command is located in /usr/bin, is part of the bos.acct fileset and is 
installable from the AIX base installation media.

The vmstat command summarizes the total active virtual memory used by all of 
the processes in the system, as well as the number of real-memory page frames 
on the free list. Active virtual memory is defined as the number of virtual-memory 
working segment pages that have actually been touched. This number can be 
larger than the number of real page frames in the machine, because some of the 
active virtual-memory pages may have been written out to paging space.

Syntax
vmstat [ -fsviItlw ] [Drives] [ Interval [Count] ] 

Useful combinations of the vmstat command
� vmstat or vmstat Interval Count
� vmstat -v

Using the vmstat command
The vmstat command gives data on virtual memory activity to standard output. 
The first line of data is an average since the last system reboot. In Example 5-12 
you can see a summary of the virtual memory activity since the last system 
startup.

Example 5-12   Using vmstat

r33n01:/ # vmstat

System configuration: lcpu=4 mem=7168MB ent=0
310 AIX 5L Practical Performance Tools and Tuning Guide



kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 1  1 148162 1649286   0   0   0   0    0   0   0 29121 133  0  0 99  0  0.00   0.2

When determining if a system might be short on memory or if some memory 
tuning needs to be done, run the vmstat command over a set interval and 
examine the pi and po columns on the resulting report. These columns indicate 
the number of paging space page-ins per second and the number of paging 
space page-outs per second. If the values are constantly non-zero, there might 
be a memory bottleneck. Having occasional non-zero values is not a concern 
because paging is the main principle of virtual memory.

To use the vmstat command, specifying Interval and Count, you would input the 
interval for the update period in seconds, and the Count should represent the 
number of iterations to be performed. The first report contains statistics since the 
system startup. Each report after that contains data collected during the interval 
time period. 

For memory data you should pay attention to the avm, fre, pi and po columns 
(see Example 5-13).

Example 5-13   Using vmstat Interval Count

r33n01:/ # vmstat 1 5

System configuration: lcpu=4 mem=7168MB ent=0

kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 0  0 148175 1649272   0   0   0   0    0   0   2  167 134  0  0 99  0  0.00   0.2
 0  0 148177 1649270   0   0   0   0    0   0   1   21 138  0  0 99  0  0.00   0.1
 0  0 148177 1649270   0   0   0   0    0   0   1    9 130  0  0 99  0  0.00   0.1
 0  0 148177 1649270   0   0   0   0    0   0   1   11 132  0  0 99  0  0.00   0.1
 0  0 148177 1649270   0   0   0   0    0   0   5   17 134  0  0 99  0  0.00   0.1

The reported fields are:

kthr Indicates the number of kernel thread state changes per second over 
the sampling interval.

r Average number of threads on the run queues per second. These 
threads are only waiting for CPU time and are ready to run. Each 
thread has a priority ranging from zero to 127. Each CPU has a run 
queue for each priority; therefore there are 128 run queues for each 
CPU. Threads are placed on the appropriate run queue. The run 
queue reported by vmstat is across all run queues and all CPUs. 
 Chapter 5. Memory analysis and tuning 311



Each CPU has its own run queue. The maximum you should see this 
value increase to is based on the following formula: 5 x (Nproc - 
Nbind), where Nproc is the number of active processors and Nbind is 
the number of active processors bound to processes with the 
bindprocessor command.

b Average number of threads on block queue per second. These 
threads are waiting for resource or I/O. Threads are also located in 
the wait queue (wa) when scheduled, but are waiting for one of their 
threads pages to be paged in. On an SMP system there will always 
be one thread on the block queue. If compressed file systems are 
used, then there will be an additional thread on the block queue.

memory Information about the use of virtual and real memory. Virtual pages 
are considered active if they have been accessed. A page is 4096 
bytes.

avm Active Virtual Memory (avm) indicates the number of virtual pages 
accessed. This is not an indication of available memory.

fre This indicates the size of the free list. A large portion of real memory 
is utilized as a cache for file system data. It is not unusual for the size 
of the free list to remain small. The VMM maintains this free list. The 
free list entries point to buffers of 4 K pages that are readily available 
when required. The minimum number of pages is defined by minfree. 
The default value is 120. If the number of the free list drops below 
that defined by minfree, then the VMM steals pages until maxfree+8 
is reached. Terminating applications release their memory, and those 
frames are added back to the free list. Persistent pages (files) are not 
added back to the free list. They remain in memory until the VMM 
steals their pages. Persistent pages are also freed when their 
corresponding file is deleted. A small value of fre could cause the 
system to start thrashing due to overcommitted memory. This does 
not indicate the amount of unused memory.

Page Information about page faults and paging activity. These are 
averaged over the interval and given in units per second.

re The number of reclaims per second. During a page fault, when the 
page is on the free list and has not been reassigned, this is 
considered a reclaim because no new I/O request has been initiated. 
It also includes the pages last requested by the VMM for which I/O 
has not been completed or those prefetched by VMM’s read-ahead 
mechanism but hidden from the faulting segment.

pi Indicates the number of page in requests. Those are pages that have 
been paged to paging space and are paged into memory when 
required by way of a page fault. Normally you would not want to see 
more than five sustained pages per second (as a rule of thumb) 
312 AIX 5L Practical Performance Tools and Tuning Guide



reported by vmstat as paging (particularly page in (pi)) effects 
performance. A system that is paging data in from paging space 
results in slower performance because the CPU has to wait for data 
before processing the thread. A high value of pi may indicate a 
shortage of memory or indicate a need for performance tuning. 

po The number of pages out process. The number of pages per second 
that is moved to paging space. These pages are paged out to paging 
space by the VMM when more memory is required. They will stay in 
paging space and be paged in if required. A terminating process will 
disclaim its pages held in paging space, and pages will also be freed 
when the process gives up the CPU (is preempted). po does not 
necessarily indicate thrashing, but if you are experiencing high 
paging out (po) then it may be necessary to investigate the 
application vmo command parameters minfree and max free, and the 
environmental variable PSALLOC. 

fr Number of pages freed. When the VMM requires memory, VMM’s 
page-replacement algorithm is employed to scan the Page Frame 
Table to determine which pages to steal. If a page has not been 
referenced since the last scan, it can be stolen. If there has been no 
I/O for that page then the page can be stolen without being written to 
disk, thus minimizing the effect on performance.

sr Represents pages scanned by the page-replacement algorithm. 
When page stealing occurs (when fre of vmstat goes below minfree 
of vmo), the pages in memory are scanned to determine which can 
be stolen.

cy This refers to the page replacement algorithm. The value refers to the 
number of times the page replacement algorithm does a complete 
cycle through memory looking for pages to steal. If this value is 
greater than zero, this means severe memory shortages. The page 
stealer steals memory until maxfree is reached. This usually occurs 
before the memory has been completely scanned, hence the value 
will stay at zero. However if the page stealer is still looking for 
memory to steal and the memory has already been scanned, then 
the cy value will increment to one. Each scan will increment cy until 
maxfree has been satisfied, at which time page stealing will stop and 
cy will be reset to zero.You are more likely to see the cy value 
increment when there is less physical memory installed, as it takes a 
shorter time for memory to be completely scanned and memory 
shortage is more likely.

Faults Trap and interrupt rate averages per second over the sampling 
interval.
 Chapter 5. Memory analysis and tuning 313



in Number of device or hardware interrupts per second observed in the 
interval. An example of an interrupt would be the 10 ms clock 
interrupt or a disk I/O completion. Due to the clock interrupt, the 
minimum value you see is 100.

sy Number of system calls per second. These are resources provided 
by the kernel for the user processes and data exchange between the 
process and the kernel. This reported value can vary depending on 
workloads and on how the application is written, so it is not possible 
to determine a value for this. Any value of 10,000 and more should be 
investigated.

cs Kernel thread context switches per second. A CPU’s resource is 
divided into 10 ms time slices and a thread will run for the full 10 ms 
or until it gives up the CPU (is preempted). When another thread gets 
control of the CPU, the previous thread’s contexts and working 
environments must be saved and the new thread’s contexts and 
working environment must be restored. AIX handles this efficiently. 
Any significant increase in context switches should be investigated.

cpu Breakdown of percentage use of CPU time. The columns us, sy, id, 
and wa are averages over all of the processors. I/O wait is a global 
statistic and is not processor specific.

us User time. This indicates the amount of time a program is in user 
mode. Programs can run in either user mode or system mode. In 
user mode, the program does not require the resources of the kernel 
to manage memory, set variables, or perform computations.

sy System time indicates the amount of time a program is in system 
mode; that is, processes using kernel processes (kprocs) and others 
that are using kernel resources. Processes requiring the use of 
kernel services must switch to service mode to gain access to the 
services, such as to open a file or read/write data.

id CPU idle time. This indicates the percentage of time the CPU is idle 
without pending I/O. When the CPU is idle, it has nothing on the run 
queue. When there is a high aggregate value for id, it means there 
was nothing for the CPU to do and there were no pending I/Os. A 
process called wait is bound to every CPU on the system. When the 
CPU is idle, and there are no local I/Os pending, any pending I/O to a 
Network File System (NFS) is charged to id.

wa CPU wait. CPU idle time during which the system had at least one 
outstanding I/O to disk (whether local or remote) and asynchronous 
I/O was not in use. An I/O causes the process to block (or sleep) until 
the I/O is complete. Upon completion, it is placed on the run queue. A 
wa of over 25 percent could indicate a need to investigate the disk I/O 
subsystem for ways to improve throughput, such as load balancing. 
314 AIX 5L Practical Performance Tools and Tuning Guide



The vmstat output marks an idle CPU as wait I/O (wio) if an outstanding I/O was 
started on that CPU. With this method, vmstat will report lower wio times when 
more processors are installed, just a few threads are doing I/O, and the system is 
otherwise idle. For example, a system with four CPUs and one thread doing I/O 
will report a maximum of 25 percent wio time. A system with 12 CPUs and one 
thread doing I/O will report a maximum of eight percent wio time. Network File 
System (NFS) client reads/writes go through the VMM, and the time that NFS 
block I/O daemons spend in the VMM waiting for an I/O to complete is reported 
as I/O wait time.

Using the -v flag you can gather data on the VMM (Example 5-14 on page 315).

Example 5-14   Using vmstat -v

r33n01:/ # vmstat -v
              1835008 memory pages
              1741547 lruable pages
              1649277 free pages
                    2 memory pools
               124020 pinned pages
                 80.0 maxpin percentage
                 20.0 minperm percentage
                 80.0 maxperm percentage
                  0.7 numperm percentage
                13521 file pages
                  0.0 compressed percentage
                    0 compressed pages
                  1.0 numclient percentage
                 80.0 maxclient percentage
                17592 client pages
                    0 remote pageouts scheduled
                    0 pending disk I/Os blocked with no pbuf
                    0 paging space I/Os blocked with no psbuf
                 2740 filesystem I/Os blocked with no fsbuf
                  133 client filesystem I/Os blocked with no fsbuf
                    0 external pager filesystem I/Os blocked with no fsbuf

This list explains the output:

memory pages Size of real memory in number of 4 KB pages.

lruable pages Number of 4 KB pages considered for replacement. This 
number excludes the pages used for VMM internal pages 
and the pages used for the pinned part of the kernel text.

free pages Number of free 4 KB pages.

memory pools Tuning parameter (managed using vmo) specifying the 
number of pools.
 Chapter 5. Memory analysis and tuning 315



pinned pages Number of pinned 4 KB pages.

maxpin percentage Tuning parameter (managed using vmo) specifying the 
percentage of real memory that can be pinned.

minperm percentage Tuning parameter (managed using vmo) in percentage of 
real memory. This specifies the point below which file 
pages are protected from the re-page algorithm.

maxperm percentage Tuning parameter (managed using vmo) in percentage of 
real memory. This specifies the point above which the 
page stealing algorithm steals only file pages.

file page Number of 4 KB pages currently used by the file cache. 

compressed percentage 

Percentage of memory used by compressed pages.

compressed pages Number of compressed memory pages.

numclient percentage Percentage of memory occupied by client pages.

maxclient percentage Tuning parameter (managed using vmo) specifying the 
maximum percentage of memory that can be used for 
client pages.

client pages Number of client pages.

remote pageouts scheduled 

Number of pageouts scheduled for client filesystems.

pending disk I/Os blocked with no pbuf 

Number of pending disk I/O requests blocked because no 
pbuf was available. Pbufs are pinned memory buffers 
used to hold I/O requests at the logical volume manager 
layer.

paging space I/Os blocked with no psbuf 

Number of paging space I/O requests blocked because 
no psbuf was available. Psbufs are pinned memory 
buffers used to hold I/O requests at the virtual memory 
manager layer.

filesystem I/Os blocked with no fsbuf

Number of filesystem I/O requests blocked because no 
fsbuf was available. Fsbuf are pinned memory buffers 
used to hold I/O requests in the filesystem layer.

client filesystem I/Os blocked with no fsbuf
316 AIX 5L Practical Performance Tools and Tuning Guide



Number of client filesystem I/O requests blocked because 
no fsbuf was available. NFS (Network File System) and 
VxFS (Veritas) are client filesystems. Fsbuf are pinned 
memory buffers used to hold I/O requests in the 
filesystem layer.

external pager filesystem I/Os blocked with no fsbuf

Number of external pager client filesystem I/O requests 
blocked because no fsbuf was available. JFS2 is an 
external pager client filesystem. Fsbuf are pinned memory 
buffers used to hold I/O requests in the filesystem layer.

5.2  Memory tuning
Tuning memory performance is very important and dynamic part of achieving the 
best results possible. There are many settings that can be changed, and it can be 
difficult to get the right combination of changes to improve performance. The 
commands in this section can be used to change memory settings on the 
system. Some of these commands have multiple uses, however in this section 
we will only discuss how they can be used to tune memory performance.

5.2.1  The vmo command
The vmo command is a run time tool used to tune the VMM settings. It is located 
in /usr/sbin, and is installable from the base AIX Installation media. All the 
settings set by the vmo command are also saved in /etc/tunables.

Syntax
vmo -h [tunable] | {-L [tunable]} | {-x [tunable]}

        vmo [-p|-r] (-a | {-o tunable})

        vmo [-p|-r] (-D | ({-d tunable} {-o tunable=value}))

Useful combinations of the vmo command
� vmo -a
� vmo -h tunable
� vmo -L tunable
� vmo -r -o tunable=value

Using the vmo command
To see the current settings, you can use the -a flag. The -a flag shows the current 
settings of the tunables as in Example 5-15.
 Chapter 5. Memory analysis and tuning 317



Example 5-15   Using vmo -a

r33n01:/ # vmo -a
        memory_frames = 1835008
      pinnable_frames = 1710666
              maxfree = 128
              minfree = 120
             minperm% = 20
              minperm = 348308
             maxperm% = 80
              maxperm = 1393237
       strict_maxperm = 0
              maxpin% = 80
               maxpin = 1468007
           maxclient% = 80
            lrubucket = 131072
                defps = 1
            nokilluid = 0
            numpsblks = 131072
              npskill = 1024
              npswarn = 4096
             v_pinshm = 0
pta_balance_threshold = n/a
         pagecoloring = n/a
            framesets = 2
             mempools = 1
            lgpg_size = 0
         lgpg_regions = 0
     num_spec_dataseg = 0
     spec_dataseg_int = 512
      memory_affinity = 1
            htabscale = n/a
  force_relalias_lite = 0
  relalias_percentage = 0
           rpgcontrol = 2
             rpgclean = 0
            npsrpgmin = 6144
            npsrpgmax = 8192
                scrub = 0
           scrubclean = 0
          npsscrubmin = 6144
          npsscrubmax = 8192
data_stagger_interval = 161
 large_page_heap_size = 0
    kernel_heap_psize = 4096
soft_min_lgpgs_vmpool = 0
vm_modlist_threshold = -1
      vmm_fork_policy = 1
      low_ps_handling = 1
318 AIX 5L Practical Performance Tools and Tuning Guide



      mbuf_heap_psize = 4096
     strict_maxclient = 1
       cpu_scale_memp = 8

Here are the tunable explanations:

cpu_scale_memp Determines the ratio of CPUs per-mempool. For every 
cpu_scale_memp CPUs, at least one mempool will be 
created. Can be reduced to reduce contention on the 
mempools. Use in conjunction with the tuning of the 
maxperm parameter. 

data_stagger_interval 

Specifies what the staggering is that will be applied to the 
data section of a large-page data executable with 
LDR_CNTRL=DATA_START_STAGGER=Y. 

defps Turns on/off Deferred Page Space Allocation (DPSA) 
policy. May be useful to turn off DPSA policy if you are 
concerned about page-space overcommitment. Having 
the value on reduces paging space requirements. 

force_relalias_lite  If set to 0, a heuristic will be used, when tearing down an 
mmap region, to determine when to avoid locking the 
source mmapped segment. This is a scalability trade-off, 
controlled by relalias_percentage, possibly costing more 
compute time used. 

framesets Specifies the number of real memory page sets per 
memory pool. 

htabscale On non-LPAR machines, the hardware page frame table 
(PFT) is completely software controlled and its size is 
based on the amount of memory being used. The default 
is to have 4 page table entries (PTE) for each frame of 
memory (sz=(M/4096)*4*16 where size of PTE is 16 
bytes). 

kernel_heap_psize Sets the default page size to use for the kernel heap. This 
is an advisory setting and is only valid on the 64-bit 
kernel. If pages of the specified size cannot be allocated, 
the kernel heap will use pages of a different, smaller page 
size. 16M pages should only be used for the kernel heap 
under high performance environments. 

large_page_heap_size 

When kernel_heap_psize is set to 16M, this tunable sets 
the maximum amount of the kernel heap to try to back 
 Chapter 5. Memory analysis and tuning 319



with 16M pages. After the kernel heap grows beyond this 
amount and 16M is selected kernel_heap_psize, 4K 
pages will be used for the kernel heap. If this tunable is 
set to 0, it is ignored, and no maximum is set for the 
amount of kernel heap that can be backed with 16M 
pages. This tunable should only be used in very special 
environments where only a portion of the kernel heap 
needs to be backed with 16M pages. 

lgpg_regions Specifies the number of pages in the large page pool. 
This parameter does not exist in 64-bit kernels running on 
non-POWER4 based machines. Using large pages 
improves performance in the case where there are many 
TLB misses and large amounts of memory is being 
accessed. 

low_ps_handling Specifies the action to change the system behavior in 
relation to process termination during low paging space 
conditions. 

lrubucket Specifies the number of memory frames per bucket. The 
page-replacement algorithm divides real memory into 
buckets of frames. On systems with multiple memory 
pools, the lrubucket parameter is per memory pool. 

maxclient% Specifies maximum percentage of RAM that can be used 
for caching client pages. Similar to maxperm% but cannot 
be bigger than maxperm%. 

maxfree Specifies the number of frames on the free list at which 
page-stealing is to stop. 

maxperm% Specifies the point above which the page-stealing 
algorithm steals only file pages. 

maxpin% Specifies the maximum percentage of real memory that 
can be pinned. 

memory_affinity This parameter can be used to instruct VMM to allocate 
memory frames in the same MCM that the executing thread is 
running in, if possible. This parameter only enables memory 
affinity, which can then be turned on for a given process by 
setting its MEMORY_AFFINITY environment variable to MCM. 
This parameter is only supported on POWER4 and POWER5 
based machines. 

mempools Changes the number of memory pools that will be configured at 
system boot time. This parameter does not exist in UP kernels. 

minfree Specifies the minimum number of frames on the free list at which 
the VMM starts to steal pages to replenish the free list. Page 
320 AIX 5L Practical Performance Tools and Tuning Guide



replacement occurs when the number of free frames reaches 
minfree. If processes are being delayed by page stealing, 
increase minfree to improve response time. The 
difference between minfree and maxfree should always 
be equal to or greater than maxpgahead. 

minperm% Specifies the point below (in percentage of total number 
of memory frames) which the page-stealer will steal file or 
computational pages regardless of repaging rates. 

nokilluid User IDs lower than this value are exempt from getting 
killed due to low page-space conditions. If the system is 
out of paging space and system administrator’s processes 
are getting killed, set to 1 in order to protect specific user 
ID processes from getting killed due to low page space or 
ensure there is sufficient paging space available. 

npskill Specifies the number of free paging space pages at which 
the operating system begins killing processes. Increase 
this value if you experience processes being killed 
because of low paging space. 

npswarn Specifies the number of free paging space pages at which 
the operating system begins sending the SIGDANGER 
signal to processes. Increase this value if you experience 
processes being killed because of low paging space. 

npsrpgmax Specifies the number of free paging space blocks at which 
the Operating System stops freeing disk blocks on pagein 
of Deferred Page Space Allocation Policy pages. 

npsrpgmin Specifies the number of free paging space blocks at which 
the Operating System starts freeing disk blocks on pagein 
of Deferred Page Space Allocation Policy pages. 

npsscrubmax Specifies the number of free paging space blocks at which 
the Operating System stops Scrubbing in memory pages 
to free disk blocks from Deferred Page Space Allocation 
Policy pages. V

npsscrubmin Specifies the number of free paging space blocks at which 
the Operating System starts Scrubbing in memory pages 
to free disk blocks from Deferred Page Space Allocation 
Policy pages. 

num_spec_dataseg Reserve special data segment IDs for use by processes 
executed with the environment variable 
DATA_SEG_SPECIAL=Y. These data segments are 
assigned so that the hardware page table entries for 
pages within these segments are better distributed in the 
 Chapter 5. Memory analysis and tuning 321



cache to reduce cache collisions. As many are reserved 
as possible up to the requested number. Running vmo -a 
after reboot displays the actual number reserved. This 
parameter is only supported in 64-bit kernels running on 
POWER4 based machines. The correct number to 
reserve depends on the number of processes run 
simultaneously with DATA_SEG_SPECIAL=Y and the 
number of data segments used by each of these 
processes. 

pagecoloring Turns on or off page coloring in the VMM. This parameter 
is not supported in 64-bit kernels. 

pta_balance_threshold 

Specifies the point at which a new pta segment will be 
allocated. This parameter does not exists in 64-bit 
kernels.

relalias_percentage If force_relalias_lite is set to 0, then this specifies the 
factor used in the heuristic to decide whether to avoid 
locking the source mmapped segment or not.This is used 
when tearing down an mmapped region and is a 
scalability statement, where avoiding the lock may help 
system throughput, but, in some cases, at the cost of 
more compute time used. If the number of pages being 
unmapped is less than this value divided by 100 and 
multiplied by the total number of pages in memory in the 
source mmapped segment, then the source lock will be 
avoided. A value of 0 for relalias_percentage, with 
force_relalias_lite also set to 0, will cause the source 
segment lock to always be taken. The Default value is 0. 
Effective values for relalias_percentage will vary by 
workload, however, a suggested value is: 200. 

rpgclean Enables or Disables freeing paging space disk blocks of 
Deferred Page Space Allocation Policy pages on read 
accesses to them. 

rpgcontrol Enables or Disables freeing of paging space disk blocks 
at pagein of Deferred Page Space Allocation Policy 
pages. 

scrub Enables or Disables freeing of paging space disk blocks 
from pages in memory for Deferred Page Space 
Allocation Policy pages. V
322 AIX 5L Practical Performance Tools and Tuning Guide



scrubclean Enables or Disables freeing paging space disk blocks of 
Deferred Page Space Allocation Policy pages in memory 
that are not modified. 

soft_min_lgpgs_vmpool 

When soft_min_lgpgs_vmpool is non-zero, large pages 
will not be allocated from a vmpool that has fewer than 
soft_min_lgpgs_vmpool % of its large pages free. If all 
vmpools have less than soft_min_lgpgs_vmpool % of their 
large pages free, allocations will occur as normal. 

spec_dataseg_int Modify the interval between the special data segment IDs 
reserved with num_spec_dataseg. This parameter is only 
supported in 64-bit kernels running on POWER4 based 
machines. 

strict_maxclient If set to 1, the maxclient value will be a hard limit on how 
much of RAM can be used as a client file cache. Set to 0 
in order to make the maxclient value a soft limit if client 
pages are being paged out when there are sufficient free 
pages. Use in conjunction with the tuning of the maxperm 
and maxclient parameters. 

strict_maxperm If set to 1, the maxperm value will be a hard limit on how 
much of RAM can be used as a persistent file cache. Set 
to 1 in order to make the maxperm value a hard limit (use 
in conjunction with the tuning of the maxperm parameter). 

v_pinshm If set to 1, will allow pinning of shared memory segments. 
Change when there is too much overhead in pinning or 
unpinning of AIO buffers from shared memory segments. 
Tuning Useful only if application also sets SHM_PIN flag 
when doing a shmget call and if doing async I/O from 
shared memory segments. 

vm_modlist_threshold 

Determines whether to keep track of dirty file pages. 
Special values: -2: Never keep track of modified pages. 
This provides the same behavior as on a system prior to 
AIX 5.3. -1: Keep track of all modified pages. Other 
values: >= 0: Keep track of all dirty pages in a file if the 
number of frames in memory at full sync time is greater 
than or equal to vm_modlist_threshold. This parameter 
can be modified at any time, changing the behavior of a 
running system. In general, a new value will not be seen 
until the next full sync for the file. A full sync occurs when 
 Chapter 5. Memory analysis and tuning 323



the VW_FULLSYNC flag is used or all pages in the file 
(from 0 to maxvpn) are written to disk. 

To display help for any particular tunable, you can use the -h flag, as in 
Example 5-16.

Example 5-16   Usnig vmo -h

r33n01:/ # vmo -h lgpg_regions
Help for tunable lgpg_regions:
Specifies the number of large pages to reserve for implementing with the shmget() system call 
with the SHM_LGPAGE flag. Default: 0; Range: 0 - number of pages. lpgpg_size must also be used 
in addition to this option. The application has to be modified to specify the SHM_LGPAGE flag 
when calling shmget(). This will improve performance in the case where there are many TLB 
misses and large amounts of memory is being 
accessed.

Using the -L flag provides a very detailed report on the tunable specified and all 
of its values, as in Example 5-17.

Example 5-17   Using vmo -L

r33n01:/ # vmo -L minfree
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT           TYPE
     DEPENDENCIES
--------------------------------------------------------------------------------
minfree                   120    120    120    8      200K   4KB pages         D
     maxfree
     memory_frames
--------------------------------------------------------------------------------

To change any of the tunables you would use the -o flag. To set a value at the 
next reboot requires the use of the -r flag. Some values also require that the 
bosboot command be run, and the value will take effect after next reboot 
following the running of the bosboot command.

Example 5-18 below turns memory affinity off, which is on by default.

Example 5-18   Changing vmo tunables

r33n01:/ # vmo -r -o memory_affinity=0
Setting memory_affinity to 0 in nextboot file
Warning: some changes will take effect only after a bosboot and a reboot
Run bosboot now? y

bosboot: Boot image is 22476 512 byte blocks.
Warning: changes will take effect only at next reboot
324 AIX 5L Practical Performance Tools and Tuning Guide



Not all tunables require a bosboot and a system reboot to set them. Check the 
help (wmo -h) for each option. 

To tune the page replacement algorithm, you would make changes to the 
minperm, maxperm, minfree and maxfree tunables. To tune persistent file reads, 
you would make changes to the minpageahead and maxpageahead tunables. To 
tune persistent file writes, you would make changes to numclust, maxrandwrt, 
and sync_release_ilock.

Memory pools
The vmo -o mempools=number_of_memory_pools command allows you to change 
the number of memory pools that are configured at system boot time. The 
mempools option is therefore not a dynamic change. It is recommended to not 
change this value without a good understanding of the behavior of the system 
and the VMM algorithms. You cannot change the mempools value on a UP 
kernel and on an MP kernel, the change is written to the kernel file.

Reduce memory scanning overhead with lrubucket
Tuning with the lrubucket parameter can reduce scanning overhead on large 
memory systems. The page-replacement algorithm scans memory frames 
looking for a free frame. During this scan, reference bits of pages are reset, and if 
a free frame has not been found, a second scan is done. In the second scan, if 
the reference bit is still off, the frame will be used for a new page (page 
replacement).

On large memory systems, there may be too many frames to scan, so now 
memory is divided up into buckets of frames. The page-replacement algorithm 
will scan the frames in the bucket and then start over on that bucket for the 
second scan before moving on to the next bucket. The default number of frames 
in this bucket is 131072 or 512 MB of RAM. The number of frames is tunable with 
the command vmo -o lrubucket=new value, and the value is in 4 KB frames.

Values for minfree and maxfree parameters
On a large memory system the maxfree and minfree defaults are a very small 
percentage of real memory. If memory demand continues after the minfree value 
is reached, then processes may be killed.

The purpose of the free list is to keep track of real-memory page frames released 
by terminating processes and to supply page frames to requestors immediately, 
without forcing them to wait for page steals and the accompanying I/O to 
complete. The minfree limit specifies the free-list size below which page stealing 
to replenish the free list is to be started. The maxfree parameter is the size above 
which stealing will end.
 Chapter 5. Memory analysis and tuning 325



The objectives in tuning these limits are to ensure that:

� Any activity that has critical response-time objectives can always get the page 
frames it needs from the free list. 

� The system does not experience unnecessarily high levels of I/O because of 
premature stealing of pages to expand the free list.

The default value of minfree and maxfree depend on the memory size of the 
machine. The default value of maxfree is determined by this formula:

maxfree = minimum (# of memory pages/128, 128)

By default the minfree value is the value of maxfree - 8. However, the difference 
between minfree and maxfree should always be equal to or greater than 
maxpgahead. Or in other words, the value of maxfree should always be greater 
than or equal to minfree plus the size of maxpgahead. The minfree/maxfree 
values will be different if there is more than one memory pool. Memory pools 
were introduced in AIX 4.3.3 for MP systems with large amounts of RAM. Each 
memory pool will have its own minfree/maxfree which are determined by the 
previous formulas, but the minfree/maxfree values shown by the vmo command 
will be the sum of the minfree/maxfree for all memory pools.

Remember, that minfree pages in some sense are wasted, because they are 
available, but not in use. If you have a short list of the programs you want to run 
fast, you can investigate their memory requirements with the svmon command, 
and set minfree to the size of the largest. This technique risks being too 
conservative because not all of the pages that a process uses are acquired in 
one burst. At the same time, you might be missing dynamic demands that come 
from programs not on your list that may lower the average size of the free list 
when your critical programs run.

Values for minperm and maxperm parameters
The operating system takes advantage of the varying requirements for real 
memory by leaving in memory pages of files that have been read or written. If the 
file pages are requested again before their page frames are reassigned, this 
technique saves an I/O operation. These file pages may be from local or remote 
(for example, NFS) file systems.

The goals for maxperm and minperm is to find the appropriate value for 
maxperm to ensure that the systems favors filepages.

The ratio of page frames used for files versus those used for computational 
(working or program text) segments is loosely controlled by the minperm and 
maxperm values:

� If percentage of RAM occupied by file pages rises above maxperm, 
page-replacement steals only file pages. 
326 AIX 5L Practical Performance Tools and Tuning Guide



� If percentage of RAM occupied by file pages falls below minperm, 
page-replacement steals both file and computational pages. 

� If percentage of RAM occupied by file pages is between minperm and 
maxperm, page-replacement steals only file pages unless the number of file 
repages is higher than the number of computational repages.

In a particular workload, it might be worthwhile to emphasize the avoidance of file 
I/O. In another workload, keeping computational segment pages in memory 
might be more important. To understand what the ratio is in the untuned state, 
use the vmstat command with the -v option, as in Example 5-14 on page 315.

If you notice that the system is paging out to paging space, it could be that the file 
repaging rate is higher than the computational repaging rate since the number of 
file pages in memory is below the maxperm value. So, in this case we can 
prevent computational pages from being paged out by lowering the maxperm 
value to something lower than the numperm value. 

Persistent file cache limit with the strict_maxperm option
The strict_maxpermoption of the vmo command, when set to 1, places a hard limit 
on how much memory is used for a persistent file cache by making the maxperm 
value be the upper limit for this file cache. When the upper limit is reached, the 
least recently used (LRU) is performed on persistent pages.

Attention: The strict_maxperm option should only be enabled for those cases 
that require a hard limit on the persistent file cache. Improper use of 
strict_maxperm can cause unexpected system behavior because it changes the 
VMM method of page replacement. 

JFS2 file system cache limit with the maxclient parameter
The enhanced JFS file system uses client pages for its buffer cache, which are 
not affected by the maxperm and minperm threshold values. To establish hard 
limits on enhanced JFS file system cache, you can tune the maxclient parameter. 
This parameter represents the maximum number of client pages that can be 
used for buffer cache. To change this value, you can use the vmo -o maxclient 
command. The value for maxclient is shown as a percentage of real memory.

Example 5-19 shows how to tune the maximum number of client pages.

Example 5-19   Setting maxclient% using vmo -o

r33n01:/ # vmo -o maxclient%=75
Setting maxclient% to 75

After the maxclient threshold is reached, LRU begins to steal client pages that 
have not been referenced recently. If not enough client pages can be stolen, the 
 Chapter 5. Memory analysis and tuning 327



LRU might replace other types of pages. By reducing the value for maxclient, you 
help prevent Enhanced JFS file-page accesses from causing LRU to replace 
working storage pages, minimizing paging from paging space. The maxclient 
parameter also affects NFS clients and compressed pages. Also note that 
maxclient should generally be set to a value that is less than or equal to 
maxperm, particularly in the case where strict_maxperm is enabled.

Minimum memory requirement calculation
The formula to calculate the minimum memory requirement of a program is the 
following:

Total memory pages (4 KB units) = T + ( N * ( PD + LD ) ) + F

where:

T= Number of pages for text (shared by all users) 

N = Number of copies of this program running simultaneously 

PD = Number of working segment pages in process private segment 

LD = Number of shared library data pages used by the process 

F = Number of file pages (shared by all users) 

Multiply the result by 4 to obtain the number of kilobytes required. You may want 
to add in the kernel, kernel extension, and shared library text segment values to 
this as well even though they are shared by all processes on the system. For 
example, some applications like databases use very large shared library 
modules. 

5.2.2  Paging space thresholds tuning
If available paging space depletes to a low level, the operating system attempts 
to release resources by first warning processes to release paging space and 
finally by killing processes if there still is not enough paging space available for 
the current processes.

Values for the npswarn and npskill paramaters
The npswarn and npskill thresholds are used by the VMM to determine when to 
first warn processes and eventually when to kill processes.

These parameters can be set through the vmo command:

npswarn Specifies the number of free paging space pages at which 
the operating system begins sending the SIGDANGER 
signal to processes. If the npswarn threshold is reached 
and a process is handling this signal, the process can 
328 AIX 5L Practical Performance Tools and Tuning Guide



choose to ignore it or do some other action such as exit or 
release memory using the disclaim() subroutine. The 
value of npswarn must be greater than zero and less than 
the total number of paging space pages on the system. It 
can be changed with the command vmo -o 
npswarn=value.

npskill Specifies the number of free paging space pages at which 
the operating system begins killing processes. If the 
npskill threshold is reached, a SIGKILL signal is sent to 
the youngest process. Processes that are handling 
SIGDANGER or processes that are using the early 
page-space allocation (paging space is allocated as soon 
as memory is requested) are exempt from being killed. 
The formula to determine the default value of npskill is as 
follows: 

npskill = maximum (64, number_of_paging_space_pages/128)

The npskill value must be greater than zero and less than 
the total number of paging space pages on the system. It 
can be changed with the command vmo -o npskill=value.

nokillroot and nokilluid 

By setting the nokillroot option to 1 with the command 
vmo -o nokillroot=1, processes owned by root will be 
exempt from being killed when the npskill threshold is 
reached. By setting the nokilluid option to a nonzero value 
with the command vmo -o nokilluid, user IDs lower than 
this value will be exempt from being killed because of low 
page-space conditions.

When a process cannot be forked due to a lack of paging space, the scheduler 
will make five attempts to fork the process before giving up and putting the 
process to sleep. The scheduler delays 10 clock ticks between each retry. By 
default, each clock tick is 10 ms. This results in 100 ms between retries. The 
schedo command has a pacefork value that can be used to change the number 
of times the scheduler will retry a fork.

5.3  Memory summary
This section contains some other useful commands for memory monitoring and 
tuning.
 Chapter 5. Memory analysis and tuning 329



5.3.1  Other useful commands for memory performance

lsattr
Displays attribute characteristics and possible values of attributes for devices in 
the system.

Syntax
lsattr {-D[-O]| -E[-O] | -F Format [-Z Character]} -l Name [-a 
Attribute]...[-H]
        [-f File]
lsattr {-D[-O]| -F Format [-Z Character]}{[-c Class][-s Subclass][-t Type]}
        [-a Attribute]... [-H][-f File]
lsattr -R {-l Name | [-c Class][-s Subclass][-t Type]} -a Attribute [-H]
        [-f File]
lsattr {-l Name | [-c Class][-s Subclass][-t Type]} -o Operation [...]
        -F Format [-Z Character][-f File][-H]
lsattr -h

To find out how much physical memory a system has, you can use the -E and -l 
flags.

Example 5-20   Using lsattr -El

r33n01:/ # lsattr -El mem0
goodsize 7168 Amount of usable physical memory in Mbytes False
size     7168 Total amount of physical memory in Mbytes  False

ipcs
The ipcs command reports status about active Inter Process Communication 
(IPC) facilities.

Syntax
ipcs [ - [ [ at ] | T ] bcmopqrsX [ [S1] | P ] [ -C corefile ] [ -N namelist ] 
]

rmss
The rmss (Reduced Memory System Simulator) command is used to estimate 
the effects of reducing the amount of available memory on a system without 
having to physically remove memory. 

Syntax
rmss [-s startmemsize] [-f finalmemsize] [-d deltamemsize]
             [-n numiterations] [-o outputfile] command
rmss -c memsize
rmss -r
330 AIX 5L Practical Performance Tools and Tuning Guide



rmss -p

Examples of rmss
To display the current memory size, use the -p flag.

Example 5-21   Using rmss -p

r33n01:/ # rmss -p
Simulated memory size is 7168 Mb.

To change the memory size, use the -c flag.

Example 5-22   Using rmss -c

r33n01:/ # rmss -c 2048
Simulated memory size changed to 2048 Mb.
r33n01:/ # rmss -p
Simulated memory size is 2048 Mb.

To reset the memory back to the real size, use the -r flag.

Example 5-23   Using rmss -r

r33n01:/ # rmss -r
Simulated memory size is 7168 Mb.

5.3.2  Paging space commands
The Virtual Memory Manager uses disk paging space as a temporary repository 
for processes that are not using active memory. Paging space performance is an 
important component of overall memory and system performance, thus we 
present the paging space related monitoring and tuning commands.

mkps
Adds additional paging space.

Syntax
mkps [-a] [-n] [-t lv] -s NumLPs Vgname Pvname
mkps [-a] [-n] -t nfs hostname pathname

chps
Used to change the attributes of defined paging spaces. 

Syntax 
chps [-s NewLPs | -d DecrLPs] [-a {y|n}] Psname
 Chapter 5. Memory analysis and tuning 331



lsps 
Displays the characteristics of defined paging spaces.

Syntax
lsps {-s | [-c | -l] {-a | Psname | -t {lv|nfs} } }

Example 
The following Example 5-24 on page 332 shows how to list the paging spaces on 
a system.

Example 5-24   Using lsps

r33n01:/ # lsps -a
Page Space      Physical Volume   Volume Group    Size %Used Active  Auto  Type
hd6             hdisk0            rootvg         512MB     1   yes   yes    lv
r33n01:/ # lsps -s
Total Paging Space   Percent Used
      512MB               1%

rmps
Removes a paging space.

Syntax
rmps Psname

swapoff
Deactivates a paging space.

Syntax
swapoff DeviceName {DeviceName...}

swapon
Activates a paging space.

Syntax
swapon {-a | DeviceName...}
332 AIX 5L Practical Performance Tools and Tuning Guide



Chapter 6. Network performance

In this chapter we discuss components that affect network performance and look 
at commands used to monitor and tune AIX network components.

This chapter covers:

� Factors that effect network performance

� Hardware considerations in a network environment

� AIX commands used for network monitoring

� AIX commands used for network tuning

6

© Copyright IBM Corp. 2005. All rights reserved. 333



6.1  Network overview
Tuning network utilization is a complex and sometimes very difficult task. You 
need to know how applications communicate and how the network protocols 
work on AIX and other systems involved in the communication. The only general 
recommendation for network tuning is that Interface Specific Network Options 
(ISNO) should be used and buffer utilization should be monitored.

Knowledge of you network topology is essential, this will help you find the 
performance bottlenecks on the network. This includes information about the 
routers and gateways used, the Maximum Transfer Unit (MTU) used on the 
network path between the systems, and the current load on the networks used. 
This information should be well documented, and access to these documents 
needs to be easily available. 

TCP/IP protocol
Application programs transmit data over the network by making use of one of the 
transport layer protocols, either the User Datagram Protocol (UDP) or the 
Transmission Control Protocol (TCP). These protocols receive the data from the 
application, divide it into smaller pieces called packets, add a destination 
address, and then pass the packets along to the next protocol layer, the Internet 
layer.

The Internet layer encloses the packet in an Internet Protocol (IP) datagram, 
adds the datagram header and trailer, decides where to send the datagram 
(either directly to a destination or else to a gateway by looking at the IP address 
of the destination) and passes the datagram on to the Network Interface layer.

The Network Interface layer accepts IP datagrams and transmits them as frames 
over a specific network, such as Ethernet or token-ring networks. For more 
detailed information about the TCP/IP protocol, refer to AIX 5L Version 5.3 
System Management Guide: Communications and Networks, SC23-4909. To 
interpret the data created by programs such as the iptrace and tcpdump 
commands, formatted by ipreport, and summarized with ipfilter. For a 
diagram of the TCP/IP layers in AIX, see Figure 6-1 on page 335.

Note: When tuning network buffers, indiscriminately using buffers that are too 
large can in fact reduce performance
334 AIX 5L Practical Performance Tools and Tuning Guide



Figure 6-1   AIX TCP/IP communication model

In most cases you need to adjust some network tunables on server systems. 
Most of these settings effect different protocol buffers. You can set these buffer 
sizes system wide with the no command, or you can enable the Interface Specific 
Network Options (ISNO) option with the no command see “The Interface Specific 
Network Options (ISNO)” on page 415, and Example 6-1.

Example 6-1   Setting ISNO with the no command

[p630n04][/]> no -o use_isno=1
Setting use_isno to 1
[p630n04][/]>

By enabling use_isno option with no, will allow you to set buffer settings on a 
specific interface, giving you better control over performance management.

Network memory overview
The network subsystem uses a memory management facility that revolves 
around a data structure called an mbuf. Mbufs are mostly used to store data in 
 Chapter 6. Network performance 335



the kernel for incoming and outbound network traffic. Having mbuf pools of the 
right size can have a positive effect on network performance. If the mbuf pools 
are configured incorrectly, both network and system performance can suffer.

There are two tunables that can be used to define the upper limit for the amount 
of memory that can be used by the network subsystem. The thewall and 
maxmbuf.

The thewall tunable
AIX uses a network tunable called thewall, this defines the upper limit for 
network kernel buffers. 

The size of thewall is defined at installation time and is based on ow much 
memory your machine has and type of kernel used. When running AIX 5L V5.3 
running a 32 bit kernel is 1GB or half the size of real memory depending on 
which of the two is the smallest. If you have AIX 5L V5.3 running a 64bit kernel 
the size of thewall will be 65GB or half the size of real memory, depending on 
which of the two is smaller.

To display the size of the thewall value make use of the no command (see 
Example 6-2).

Example 6-2   Displaying the thewall value

[p630n02][/home/hennie]> no -o thewall
thewall = 1048576
[p630n02][/home/hennie]>

6.1.1  The maxmbuf tunable
The maxmbuf tunable used by AIX specifies the maximum amount of memory that 
can be used by the networking subsystem. This value can be displayed using the 
lsattr command as in Example 6-3.

Example 6-3   lsattr command to display sys0 attributes

[p630n02][/usr/include/sys]> lsattr -El sys0
SW_dist_intr    false                 Enable SW distribution of interrupts              True
autorestart     true                  Automatically REBOOT system after a crash         True
boottype        disk                  N/A                                               False
capacity_inc    1.00                  Processor capacity increment                      False
capped          true                  Partition is capped                               False

Attention: Take note that the size of thewall is static from AIX 5L Version 5.1 
and later, and cannot be changed, to reduce the upper limit of memory used 
for networking make use of the maxmbuf tunable.
336 AIX 5L Practical Performance Tools and Tuning Guide



conslogin       enable                System Console Login                              False
cpuguard        enable                CPU Guard                                         True
dedicated       true                  Partition is dedicated                            False
ent_capacity    4.00                  Entitled processor capacity                       False
frequency       484000000             System Bus Frequency                              False
fullcore        false                 Enable full CORE dump                             True
fwversion       IBM,RG031014_d65e06_s Firmware version and revision levels              False
id_to_partition 0X036E80909F92EB01    Partition ID                                      False
id_to_system    0X036E80909F92EB01    System ID                                         False
iostat          false                 Continuously maintain DISK I/O history            True
keylock         normal                State of system keylock at boot time              False
max_capacity    4.00                  Maximum potential processor capacity              False
max_logname     9                     Maximum login name length at boot time            True
maxbuf          20                    Maximum number of pages in block I/O BUFFER CACHE True
maxmbuf         0                     Maximum Kbytes of real memory allowed for MBUFS   True
maxpout         0                     HIGH water mark for pending write I/Os per file   True
maxuproc        128                   Maximum number of PROCESSES allowed per user      True
min_capacity    1.00                  Minimum potential processor capacity              False
minpout         0                     LOW water mark for pending write I/Os per file    True
modelname       IBM,7028-6C4          Machine name                                      False
ncargs          6                     ARG/ENV list size in 4K byte blocks               True
pre430core      false                 Use pre-430 style CORE dump                       True
pre520tune      disable               Pre-520 tuning compatibility mode                 True
realmem         8388608               Amount of usable physical memory in Kbytes        False
rtasversion     1                     Open Firmware RTAS version                        False
systemid        IBM,0110685BF         Hardware system identifier                        False
variable_weight 0                     Variable processor capacity weight                False
[p630n02][/usr/include/sys]>

By default the maxmbuf tunable is disabled, it is set to 0, this means that the value 
of thewall will be used to define the maximum amount of memory used for 
network communications. By setting a non zero value to maxmbuf will override the 
value of thewall. This is the only way of reducing the value set by thewall.

To change the value of maxmbuf the chdev command can be used. In 
Example 6-4 the size of maxmbuf has been changed to 1 Gigabyte, the value of 
maxmbuf’s are defined in 1Kbyte units.

Example 6-4   Change maxmbuf value with chdev

[p630n01][/]> chdev -l sys0 -a maxmbuf=1000000
sys0 changed
[p630n01][/]> lsattr -El sys0

The SMIT can also be used to change the maxmbuf attribute. To change the 
maxmbuf. Type smitty system -> Change / Show Characteristics of Operating 
 Chapter 6. Network performance 337



System. Here you can change the value Maximum Kbytes of real memory 
allowed for MBUFS (see Example 6-5).

Example 6-5   smitty screen to change maxmbuf value

Change / Show Characteristics of Operating System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP]                                                   [Entry Fields]
System ID                                           0X036E80909F92EB01
Partition ID                                        0X036E80909F92EB01
Maximum number of PROCESSES allowed per user [128]                   +#
Maximum number of pages in block I/O BUFFER CACHE [20]                    +#
Maximum Kbytes of real memory allowed for MBUFS [0]                     +#
Automatically REBOOT system after a crash true                   +
Continuously maintain DISK I/O history false                  +
HIGH water mark for pending write I/Os per file [0]                     +#
LOW water mark for pending write I/Os per file [0]                     +#
Amount of usable physical memory in Kbytes          8388608
State of system keylock at boot time                normal
Enable full CORE dump                               false                  +
Use pre-430 style CORE dump                         false                  +

[MORE...11]

F1=Help             F2=Refresh          F3=Cancel           F4=List
F5=Reset            F6=Command          F7=Edit             F8=Image
F9=Shell            F10=Exit            Enter=Do

The sockthresh and strthresh tunables 
The sockthresh and strthresh are tunables that limit the upper number for new 
sockets or TCP connections and new streams resource connections.

Sockets are used to store IP connection information, for every connection there is 
a socket associated with it. Sockets store the following information about each 
connection:

� Protocol used by the connection.
� Source address of the connection.
� Destination address of the connection.
� Source port number used by the connection.
� Destination port number.
338 AIX 5L Practical Performance Tools and Tuning Guide



To display information about sockets used on your system use the netstat 
command with the -a option as in Example 6-6.

Example 6-6   Output of netstat -a command

[p630n04][/home/hennie]> netstat -a
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)
........Line omited........
tcp        0      0  *.telnet               *.*                    LISTEN
tcp4       0      0  *.smtp                 *.*                    LISTEN
tcp4       0      0  *.time                 *.*                    LISTEN
tcp4       0      0  *.sunrpc               *.*                    LISTEN
tcp4       0      0  *.smux                 *.*                    LISTEN
tcp        0      0  *.exec                 *.*                    LISTEN
tcp        0      0  *.login                *.*                    LISTEN
tcp        0      0  *.shell                *.*                    LISTEN
tcp4       0      0  *.klogin               *.*                    LISTEN
tcp4       0      0  *.kshell               *.*                    LISTEN
tcp4       0      0  *.rmc                  *.*                    LISTEN
tcp4       0      0  *.hp-manag             *.*                    LISTEN
tcp4       0      0  *.nim                  *.*                    LISTEN
tcp4       0      0  *.nimreg               *.*                    LISTEN
tcp4       0      0  *.writesrv             *.*                    LISTEN
tcp4       0      0  loopback.33749         loopback.33750         ESTABLISHED
tcp4       0      0  loopback.33750         loopback.33749         ESTABLISHED
tcp4       0      0  *.shilp                *.*                    LISTEN
tcp4       0      0  loopback.33749         loopback.34085         CLOSE_WAIT
tcp4       0      0  p630n01.ssh            tot191.itso.ibm..4929  ESTABLISHED
...............Lines omited.............

The sockthresh tunable specifies the memory usage limit for socket connections. 
New socket connections are not allowed to exceed the value of the sockthresh 
tunable. The default value for the sockthresh tunable is 85%, once the total 
amount of allocated memory reaches 85% of the thewall or maxmbuf tunable 
value, the systems will not permit more socket connections, until the buffer usage 
drops below 85%. 

Similarly, the strthresh tunable limits the amount of mbuf memory used for 
streams resources and the default value for the strthresh tunable is 85%. The 
async and TTY subsystems run in the streams environment. The strthresh 
tunable specifies that once the total amount of allocated memory reaches 85% of 
the thewall tunable value, no more memory goes to streams resources, to open 
streams, push modules or write to streams devices. 

The no command can be used to set the percentage values of the sockthresh 
and strthresh.
 Chapter 6. Network performance 339



To display the sockthresh and strthresh values use the no command as in 
Example 6-7.

Example 6-7   no command to display sockthresh

[p630n02][/]> no -o sockthresh -o strthresh
sockthresh = 85
strthresh = 85
[p630n02][/]>

6.2  Hardware considerations
When setting up a network it is very important to understand the role hardware 
plays in performance. Configuring your adapter or device correctly is important 
for optimal performance and stability.

Today almost all systems are shipped with on board network adapters ranging in 
speed from 10 Mbps to 1000 Mbps ethernet. Additional adapters can come in 
PCI 32 bit or PCI 64 bit, thus it is important to place these adapters in the correct 
slots for optimal performance. The way you interconnect all these adapters will 
have a big impact on you network performance.

There are a few factors that should be taken into account when connecting 
systems to a network:

� Firmware levels
� Media Speed
� MTU size

6.2.1  Firmware levels
Firmware (sometimes referred to as microcode) is code that is permanently 
loaded into the ROM (Read Only Memory) of an adapter or bus that enables the 
base functions of that device. Thus, keeping the firmware up to date especially 
on older systems is crucial to achieve optimal performance.

To display the firmware level of your system you can run the lscfg -vp 
command d see Example 6-8. This displays platform specific information and 
vital product data as it is found in the customized database (ODM - Object Data 
Manager).

Example 6-8   lscfg -v command 

[node6][/]> lscfg -vp|grep -p ROM
.......lines omited.......
340 AIX 5L Practical Performance Tools and Tuning Guide



      10/100 Mbps Ethernet PCI Adapter II:
        Network Address.............0002554F5E8B
        ROM Level.(alterable).......SCU015
        Product Specific.(Z0).......A5204205
        Device Specific.(YL)........U0.1-P1/E2

      Platform Firmware:
        ROM Level.(alterable).......3R030501
        Version.....................RS6K
        System Info Specific.(YL)...U0.1-P1/Y1
      Physical Location: U0.1-P1/Y1

      System Firmware:
        ROM Level.(alterable).......RG030430_d54e07_sfw132
        Version.....................RS6K
        System Info Specific.(YL)...U0.1-P1/Y2
      Physical Location: U0.1-P1/Y2
.......lines omited..

You can see from the output in Example 6-8 on page 340 that the ROM level of 
the 10/100 Mbps adapter is on SCU015.

The latest firmware release information can be obtained from the following IBM 
link: 

https://techsupport.services.ibm.com/server/mdownload/download.html 

At this link you find a list of all the different hardware platforms and there related 
Firmware/Microcode levels. By clicking on the description button you will get 
information on how to update your firmware level.

6.2.2  Media speed considerations
Normally when you connect your system to a network it will by default try and 
detect the speed and duplex settings of the network. The adapter communicates 
with the devices on the other end of the cable (normally the with) to detect the 
speeds. 

If you are setting up a point-point connection both ends should be setup to use 
Auto_Negotiation. This will have the adapters negotiate the speed and duplex 
rating to the highest possible speeds between the two adapters. If one of the 
adapters are not set to Auto_Negotiate then both adapters must be manually 
configured with the same settings.

This can be done by using smitty -> Devices -> Communication -> Ethernet 
Adapter -> Adapter -> Change /Show Characteristics, then you select the 
Media speed that should be used. The chdev command can also be used to 
 Chapter 6. Network performance 341

https://techsupport.services.ibm.com/server/mdownload/download.html


perform the same task. Make sure that both systems are setup at the same 
speed and duplex setting.

Ethernet adapters can be setup with the following modes:

� 10_Half_Duplex
� 10_Full_Duplex
� 100_Half_Duplex
� 100_Full_Duplex
� Auto_Negotiation

The same options apply for Gigabit Ethernet. To set the same values on the 
network switch, see the switch documentation.

To display the speed of the adapter use the netstat -v command as in 
Example 6-9.

Example 6-9   netstat -v command to display media speed

[p630n05][/]> netstat -v ent0 |grep Media
Media Speed Selected: Auto negotiation
Media Speed Running: 100 Mbps Full Duplex
[p630n05][/]>

The output of the above example displays that adapter ent0 is selected to 
connect with Auto_negotiation and is currently running with a Media speed of 
100_Full_Duplex.

6.2.3  MTU size
When large amounts of data need to be transferred over a network, the data is 
packaged and transferred in a series of IP datagrams. The size of these packets 
is determined by the MTU (maximum transfer unit) size, this is the largest packet 
or frame that can be send over a network.

Different network adapters support different MTU sizes. The default MTU size for 
ethernet is 1500. Table 6-1 displays the default MTU sizes used by various 
network types.

Table 6-1   Default MTU sizes

Network Default MTU size

16Mbit Token Ring 17914

4 Mbit Token Ring 4464

FDDI 4352
342 AIX 5L Practical Performance Tools and Tuning Guide



All devices on the same physical or logical (VLAN) network should use the same 
MTU size. 

The MTU size used within a network can have a large impact on performance 
depending on the workload type. Using larger MTU sizes on a network with large 
packet transfers will mean less packets, which in turn means less 
acknowledgements and better bandwidth utilization. But if applications use of 
smaller packets to transfer information, bigger MTU sizes will not increase the 
performance of your network.

When two hosts communicate over multiple networks, the packets can get 
fragmented if the interconnecting networks use smaller MTU sizes (specially in a 
WAN environment, the routers limit the MTU size to 572 bytes). This could put 
additional overhead on the gateways or bridges interconnecting these networks. 
This off course means reduced network performance. AIX supports path MTU 
(PMTU) discovery, as described in RFC1191. This means that AIX will chose the 
proper MTU size when sending packets outside the local network.

PMTU is enabled by default, the no command can be used to enable or disable 
tcp_pmtu_discover or udp_pmtu_discover options.

To display the current tcp_pmtu_discover setting use the no -o 
tcp_pmtu_discover command as in Example 6-10.

Example 6-10   tcp_pmtu_discover example

[p630n04][/]> no -o tcp_pmtu_discover
tcp_pmtu_discover = 1

To disable TCP PMTU use the same no command, as in Example 6-11.

Example 6-11   no command to disable tcp_mtu_discover

[p630n05][/]> no -o tcp_pmtu_discover=0
Setting tcp_pmtu_discover to 0
[p630n05][/]>

Ethernet 1500

Ethernet with Jumbo Frames enabled 9000

IEEE 802.3/802.2 1492

X.25 576

ATM 9180

Network Default MTU size
 Chapter 6. Network performance 343



With Gigabit Ethernet you can also use the Jumbo frames option, which permits 
MTU sizes larger than 6000 bytes (default 9000). You need to enable jumbo 
frames when all the machines on the network use Gigabit Ethernet adapters, and 
also the switch must support this feature. The 10/100 Ethernet adapters do not 
support jumbo frames.

To enable Jumbo frames on a Gigabit Ethernet adapter, use the chdev command 
or smit. To enable jumbo frames both en* and et* interfaces should be disabled 
first otherwise the command will fail. You need to use the chdev -l en* -a 
state=detach command as in Example 6-12.

Example 6-12   The chdev command to detach an interface

[p630n05][/]> chdev -l en1 -a state=detach
en1 changed
[p630n05][/]>

Once the device is detached, use chdev or smitty to enable jumbo frames as in 
Example 6-13.

Example 6-13   Enabling jumbo_frames

[p630n04][/]> chdev -l ent1 -a jumbo_frames=yes
ent1 changed
[p630n04][/]>

You can also use SMIT: smitty chgenet (see Example 6-14).

Example 6-14   Enabling jumbo frames via SMIT

Change / Show Characteristics of an Ethernet Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
  Ethernet Adapter                                    ent1
  Description                                         10/100/1000 Base-TX P>
  Status                                              Available
  Location                                            1Z-08
  Rcv descriptor queue size                          [1024]                  +#
  TX descriptor queue size                           [512]                   +#
  Software transmit queue size                       [8192]                  +#
  Transmit jumbo frames                               yes                    +
  Enable hardware TX TCP resegmentation               yes                    +
  Enable hardware transmit and receive checksum       yes                    +
  Media speed                                         Auto_Negotiation       +
  Enable ALTERNATE ETHERNET address                   no                     +
344 AIX 5L Practical Performance Tools and Tuning Guide



  ALTERNATE ETHERNET address                         [0x000000000000]        +
  Apply change to DATABASE only                       no                     +

F1=Help             F2=Refresh          F3=Cancel           F4=List
F5=Reset            F6=Command          F7=Edit             F8=Image
F9=Shell            F10=Exit            Enter=Do

After you have enabled jumbo frames, the en* interface needs to be enabled 
again as in Example 6-15.

Example 6-15   Using chdev to enable en1

[p630n05][/]> chdev -l en1 -a state=up
en1 changed
[p630n05][/]>

We ran some tests to measure the throughput increase when using jumbo 
frames. We use two methods to transfer an 8GB file.

First, we check the MTU size using netstat -in command as in Example 6-16:

Example 6-16   netstat -in to check mtu size

[p630n05][/]> netstat -in
Name  Mtu   Network     Address            Ipkts Ierrs    Opkts Oerrs  Coll
en0   1500  link#2      0.2.55.4f.cb.f5    2705991     0  4277041     0     0
en0   1500  192.168.100 192.168.100.35     2705991     0  4277041     0     0
en1   1500  link#3      0.2.55.53.b1.95   35874354     0  8753187     4     0
en1   1500  10.1.1      10.1.1.5          35874354     0  8753187     4     0
en2   1500  link#4      0.2.55.4f.cb.f4     649378     0       10     0     0
en2   1500  172.16.100  172.16.100.35       649378     0       10     0     0
lo0   16896 link#1                             150     0      307     0     0
lo0   16896 127         127.0.0.1              150     0      307     0     0
lo0   16896 ::1                                150     0      307     0     0
[p630n05][/]>

The interface we use for out test is en1. As can be seen from the output, the 
second column of the netstat -in command displays the current MTU size, which 
is currently set to 1500 bytes.

The first test was to ftp a large file from one system to another. Using dd in 
conjunction with the /dev/zero and /dev/null files will make sure that disk I/O 
doesn’t effect our tests. The syntax of dd is as follows.

dd [if=InputFile] [of=OutputFile] [cbs=Number] [fskip=Number] [skip=Number] 
[seek=Number] [count=Number] [bs=Number] [span=yes|no] [ibs=Number] 
[obs=Number] [files=Number] [conv=Parameter[, ...]]
 Chapter 6. Network performance 345



Using dd in combination with ftp allows us to test the network with virtually any 
file size. In Example 6-17 we show a 8GB transfer via ftp (1,000,000 blocks of 
8k).

Example 6-17   Using dd to ftp a large file

ftp> bin
200 Type set to I.
ftp> put "|dd if=/dev/zero bs=8k count=1000000" /dev/null
200 PORT command successful.
150 Opening data connection for /dev/null.
1000000+0 records in.
1000000+0 records out.
226 Transfer complete.
8192000000 bytes sent in 70.43 seconds (1.136e+05 Kbytes/s)
local: |dd if=/dev/zero bs=8k count=1000000 remote: /dev/null
ftp>
ftp>  put "|dd if=/dev/zero bs=8k count=1000000" /dev/null
200 PORT command successful.
150 Opening data connection for /dev/null.
1000000+0 records in.
1000000+0 records out.
226 Transfer complete.
8192000000 bytes sent in 70.4 seconds (1.136e+05 Kbytes/s)
local: |dd if=/dev/zero bs=8k count=1000000 remote: /dev/null
ftp>

Running the test twice, the results we obtained were 70.43 and 70.4 seconds 
respectively.

For the second phase, we enabled jumbo frames (see Example 6-18):

� Detach interface
� Enable jumbo frames on the adapter
� Re-activate the interface

Example 6-18   Enabling jumbo frames

[p630n05][/]> chdev -l ent1 -a jumbo_frames
ent1 changed
[p630n05][/]> chdev -l ent1 -a jumbo_frames=yes
ent1 changed
[p630n05][/]>
[p630n05][/]> chdev -l en1 -a state=up
en1 changed
[p630n05][/]>
346 AIX 5L Practical Performance Tools and Tuning Guide



Make sure that all the other systems connected to the same switch (VLAN) have 
jumbo_frames enabled, and the switch supports jumbo frames.

To verify the new MTU size, use lsattr -El en* (see Example 6-19), or netstat 
-in.

Example 6-19   Attribute information of interface en1

[p630n05][/]> lsattr -El en1
alias4                      IPv4 Alias including Subnet Mask           True
alias6                      IPv6 Alias including Prefix Length         True
arp           on            Address Resolution Protocol (ARP)          True
authority                   Authorized Users                           True
broadcast                   Broadcast Address                          True
mtu           9000          Maximum IP Packet Size for This Device     True
netaddr       10.1.1.5      Internet Address                           True
netaddr6                    IPv6 Internet Address                      True
netmask       255.255.255.0 Subnet Mask                                True
prefixlen                   Prefix Length for IPv6 Internet Address    True
remmtu        1500          Maximum IP Packet Size for REMOTE Networks True
rfc1323       1             Enable/Disable TCP RFC 1323 Window Scaling True
security      none          Security Level                             True
state         up            Current Interface Status                   True
tcp_mssdflt   1448          Set TCP Maximum Segment Size               True
tcp_nodelay                 Enable/Disable TCP_NODELAY Option          True
tcp_recvspace 131072        Set Socket Buffer Space for Receiving      True
tcp_sendspace 131072        Set Socket Buffer Space for Sending        True
[p630n05][/]>

We ran the test again with the dd command (see Example 6-20).

Example 6-20   Running test with MTU size 9000

ftp> bin
200 Type set to I.
ftp> put "|dd if=/dev/zero bs=8k count=1000000" /dev/null
200 PORT command successful.
150 Opening data connection for /dev/null.
1000000+0 records in.
1000000+0 records out.
226 Transfer complete.
8192000000 bytes sent in 66.97 seconds (1.195e+05 Kbytes/s)
local: |dd if=/dev/zero bs=8k count=1000000 remote: /dev/null
ftp> 
ftp>put "|dd if=/dev/zero bs=8k count=1000000" /dev/null
200 PORT command successful.
150 Opening data connection for /dev/null.
1000000+0 records in.
1000000+0 records out.
 Chapter 6. Network performance 347



226 Transfer complete.
8192000000 bytes sent in 66.94 seconds (1.195e+05 Kbytes/s)
local: |dd if=/dev/zero bs=8k count=1000000 remote: /dev/null
ftp>

As you can see from the output again the results are 66.97 and 66.94 seconds 
respectively. By comparing the output of the two tests we can see that there is a 
performance gain of 5%.

6.3  Network monitoring
AIX offers a wide range of tools to monitor networks, including network adapters, 
network interfaces, and system resources used by the network software. These 
tools are covered in this chapter. Use these tools to gather information about 
your network environment when everything is functioning correctly. This 
information will be very useful in case a network performance problem arises, 
because a comparison between the monitored information of the poorly 
performing network and the earlier well-performing network helps to detect the 
problem source.

System load
Poor system performance may not necessarily come from a network problem. In 
case your system is short on local resources, such as CPU or memory, you may 
start performance problem resolution with these subsystems. For details, refer to 
Chapter 4, “CPU analysis and tuning” on page 171, and Chapter 5, “Memory 
analysis and tuning” on page 297.

Gathering information
Gathering configuration information from the server and client systems and 
keeping a soft copy of the information is important, as a change in the system 
configuration can be the cause of a performance problem. Sometimes such a 
change may be done by accident, and finding the changed configuration 
parameter can be very difficult. A very useful command for gathering a snapshot 
of the system information is snap -a. The snap command has the following 
syntax:

snap [ -a ] [ -A ] [ -b ] [ -c ] [ -D ] [ -f ] [ -g ] [ -G ] [ -i ] [ -k ] [ -l 
] [ -L ][ -n ] [ -N ] [ -p ] [ -r ] [ -s ] [ -S ] [ -t ] [ -T ] [ -w ] [ -o 
OutputDevice ] [ -d Dir ] [ -v Component ]

Example 6-21   The snap -a command

[p630n01][/]snap -a 
Checking space requirement for general information................ done.
348 AIX 5L Practical Performance Tools and Tuning Guide



Checking space requirement for tcpip information...................done
Checking space requirement for nfs information............... done.
Checking space requirement for kernel information............... done.
Checking space requirement for printer information.... done.
Checking space requirement for dump information......Checking space.....

........lines omited............

The snap -a command (see Example 6-21 on page 348) collects configuration 
information about your whole system and stores it in the /etc/ibmsupt directory. 
If you want to specify a different directory use the -d option.

To view TCP/IP specific information gathered by snap, see the 
/tmp/ibmsupt/tcpip directory. This directory contains configuration information 
about the TCP/IP subsystem stored in a file named tcpip.snap, which contains 
output of the following commands:

� lssrc -a
� netstat -m
� netstat -in
� netstat -v
� netstat -s
� netstat -an
� netstat -sr
� arp -a
� arp -t atm -a
� uname -xM

The commands used by snap -a are also useful for monitoring your system. We 
discuss some of these commands in more detail further in this chapter.

6.3.1  Creating network load
The network usually is a resource shared by many systems. Poor performance 
between two systems connected to the network may be caused by an 
overloaded network, and this overload could be caused by other systems 
connected to the network. For network analysis, you may have use additional 
tools, such as sniffers, network analyzers etc. 

However, tools such as ping or traceroute can be used to gather turnaround 
times for data on the network, to test if hosts availability on the network and 

Note: Make sure you have enough space in the directory you plan to store the 
configuration data.
 Chapter 6. Network performance 349



whether or not the correct routes are being used to communicate with remote 
hosts.

A good method for testing the network is to create some load to simulate real 
traffic over the network. We used two methods for creating “artificial” load. The 
first one will be to ftp large chunks of data using the dd command (see 
Example 6-17 on page 346). The other will be creating a pipe file and then using 
rsh with dd to transfer data over the network.

To create network load using ftp, in this example we will transfer 10GB of data 
using the /dev/zero and /dev/null files. These files are used so that disk I/O 
operation is not effected and disk does not become a bottleneck.

Testing using transfers using a FIFO file.
A pipe file can also be used to generate network load. Use the mknod command 
to create a FIFO (named pipelines) file. See Example 6-22.

In our test example we are going to test our network between two systems via 
the same Gbit Ethernet network. The IP labels for the two Gbit adapters are gp01 
and gp05.

Example 6-22   Creating a pipe file (FIFO) with mknod

[gp01][/tmp]> mknod fifo p
[gp01][/tmp]> ls -l fifo
prw-r--r--   1 root     system            0 Oct 14 16:37 fifo
[gp01][/tmp]>

Once the pipe file has been created on host gp01, you can use the dd command 
to write data to this file (see Example 6-23). The command will wait until data will 
be extracted (read) from the pipe with another command, or interrupted with 
Ctrl-C.

Example 6-23   Using dd with a pipe file on 

[gp01][/tmp]> dd if=/dev/zero bs=10k count=1000000 of=/tmp/fifo

On the remote node gp05, use the rsh command to connect to remote node 
gp01, and read data from the pipe with dd, as in Example 6-24.

Example 6-24   Extracting data from pipe on node gp05

[gp05][/]> timex rsh gp01  "dd if=/tmp/fifo bs=8k"|dd of=/dev/null bs=8k
1250000+0 records in.
1250000+0 records out.

real 83.72
350 AIX 5L Practical Performance Tools and Tuning Guide



user 8.64
sys  40.59

184+2499632 records in.
184+2499632 records out.
[gp05][/].

We used the timex command to measure the time it takes to transfer the data.

6.4  Network monitoring commands
This section presents the network monitoring commands, with usage examples, 
and useful combinations. Some of the commands may also be used for 
monitoring other system subsystems, but we emphasize the network related 
aspects.

6.4.1  The entstat command
The entstat command displays ethernet device driver and device statistics.

Syntax:
entstat [ -drt ] Device_Name

Useful options

entstat -d This option will display interface as well device driver 
information

entstat -r This option resets statistics collected by entstat

Description
The entstat command displays the statistics gathered by the specified Ethernet 
device driver. The user can optionally specify that the device-specific statistics be 
displayed in addition to the device generic statistics. If no flags are specified, only 
the device generic statistics are displayed.

The entstat command is part of the devices.common.IBM.ethernet.rte fileset 
and the path of the executable is /usr/bin/entstat

Examples
When using the entstat command you must specify the ethernet device to 
check. See Example 6-25 on page 352 shows detailed output of the ent1 device 
driver and communication statistics.
 Chapter 6. Network performance 351



Example 6-25   The entstat - d ent1

[p630n04][/]> entstat -d ent1
-------------------------------------------------------------
ETHERNET STATISTICS (ent1) :
Device Type: 10/100/1000 Base-TX PCI-X Adapter (14106902)
Hardware Address: 00:02:55:53:b1:88
Elapsed Time: 0 days 1 hours 40 minutes 37 seconds

Transmit Statistics:                          Receive Statistics:
--------------------                          -------------------
Packets: 2260                                 Packets: 3309
Bytes: 583730                                 Bytes: 255115
Interrupts: 0                                 Interrupts: 3297
Transmit Errors: 0                            Receive Errors: 0
Packets Dropped: 0                            Packets Dropped: 0
                                              Bad Packets: 0
Max Packets on S/W Transmit Queue: 7
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 1

Broadcast Packets: 2135                       Broadcast Packets: 2203
Multicast Packets: 0                          Multicast Packets: 0
No Carrier Sense: 0                           CRC Errors: 0
DMA Underrun: 0                               DMA Overrun: 0
Lost CTS Errors: 0                            Alignment Errors: 0
Max Collision Errors: 0                       No Resource Errors: 0
Late Collision Errors: 0                      Receive Collision Errors: 0
Deferred: 0                                   Packet Too Short Errors: 0
SQE Test: 0                                   Packet Too Long Errors: 0
Timeout Errors: 0                             Packets Discarded by Adapter: 0
Single Collision Count: 0                     Receiver Start Count: 0
Multiple Collision Count: 0
Current HW Transmit Queue Length: 1

General Statistics:
-------------------
No mbuf Errors: 0
Adapter Reset Count: 0
Adapter Data Rate: 2000
Driver Flags: Up Broadcast Running
        Simplex 64BitSupport ChecksumOffload
        PrivateSegment LargeSend DataRateSet

10/100/1000 Base-TX PCI-X Adapter (14106902) Specific Statistics:
--------------------------------------------------------------------
Link Status : Up
Media Speed Selected: Auto negotiation
Media Speed Running: 1000 Mbps Full Duplex
352 AIX 5L Practical Performance Tools and Tuning Guide



PCI Mode: PCI-X (100-133)
PCI Bus Width: 64-bit
Latency Timer: 144
Cache Line Size: 128
Jumbo Frames: Enabled
TCP Segmentation Offload: Enabled
TCP Segmentation Offload Packets Transmitted: 3
TCP Segmentation Offload Packet Errors: 0
Transmit and Receive Flow Control Status: Disabled
Transmit and Receive Flow Control Threshold (High): 24576
Transmit and Receive Flow Control Threshold (Low): 16384
Transmit and Receive Storage Allocation (TX/RX): 24/40

The following list contains short descriptions of the bolded fields in Example 6-25 
on page 352:

Device Type Displays the description of the adapter type.

Hardware Address Displays the Ethernet network address currently used by 
the device.

Elapsed Time Displays the real time period which has elapsed since last 
time the statistics were reset. Part of the statistics may be 
reset by the device driver during error recovery when a 
hardware error is detected. There will be another Elapsed 
Time displayed in the middle of the output when this 
situation has occurred in order to reflect the time 
differences between the statistics.

Transmit Statistics Fields

Packets The number of packets transmitted successfully by the 
device.

Bytes The number of bytes transmitted successfully by the 
device.

Transmit Errors The number of output errors encountered on this device. 
This is a counter for unsuccessful transmissions due to 
hardware/network errors.

Packets Dropped The number of packets accepted by the device driver for 
transmission which were not (for any reason) given to the 
device.

S/W Transmit Queue Overflow 
The number of outgoing packets which have overflowed 
the software transmit queue.

No Carrier Sense The number of unsuccessful transmissions due to the no 
carrier sense error.
 Chapter 6. Network performance 353



Single Collision Count
The number of outgoing packets with single (only one) 
collision encountered during transmission.

Multiple Collision Count
The number of outgoing packets with multiple (2 - 15) 
collisions encountered during transmission.

Current HW Transmit Queue Length
The number of outgoing packets which currently exist on 
the hardware transmit queue.

No Resource Errors The number of incoming packets dropped by the 
hardware due to the resource error. This error usually 
occurs because the receive buffers on the adapter were 
exhausted. Some adapters may have the size of the 
receive buffers as a configurable parameter. Check the 
device configuration attributes for possible tuning 
information.

Receive Collision Errors
The number of incoming packets with the collision errors 
during the reception.

General Statistics Fields

No mbuf Errors The number of times that mbufs were not available to the 
device driver. This usually occurs during receive 
operations when the driver must obtain mbuf buffers to 
process inbound packets. If the mbuf pool for the 
requested size is empty, the packet will be discarded. The 
netstat -m command should be used to confirm this.

Adapter Reset Count
The number of times that the adapter has been restarted 
(re-initialized).

Device Specific Statistics Fields

Link Status The state of the interface at this time.

Media Speed Selected
The speed at which the adapter should connect to the 
network the default is auto-negotiate. Options are. 
10_Half_Duplex, 10_Full_Duplex, 100_Half_Duplex, 
100_Full_Duplex,Auto_Negotiation. Use chdev or SMIT to 
change these values.
354 AIX 5L Practical Performance Tools and Tuning Guide



Media Speed Running
The speed at which the adapter is connected to the 
network.

Jumbo Frames Specifies if Jumbo frames is enabled or not, this option is 
only available for Gigabit Ethernet.

An increasing number of collisions could be caused by too much load on the 
subnetwork. It may be necessary to split the sub-net into two or more smaller 
subnets in a case like this. If making use of switches it is unlikely that you will see 
any collisions.

If the statistics for errors, such as the transmit errors, are increasing fast, these 
errors should be corrected first. Some errors may be caused by hardware 
problems. These hardware problems need to be fixed before any software tuning 
is performed. The error counter should stay close to zero.

Sometimes it is useful to know how many packets an application or task sends or 
receives. Use entstat -r to reset the counters to zero, then run the command. 
After the completion of the application or task, run entstat again to get this 
information as in Example 6-26. In this example the entstat counters are reset 
(set to zero), and the ping command is used with the -f (flood) option. When 
ping -f is stopped, use again the entstat command to report any errors.

Example 6-26   entstat report while executing a command

[p630n01][/]> entstat -r ent0; ping -f p630n05 64 2048; entstat ent0

Incorporating the sleep command with entstat it is possible to record entstat 
information over a period of time as in Example 6-27.

Example 6-27   entstat report over a period of time

[p630n01][/]> entstat -r ent0;sleep 300;entstat ent0

The numbers of packets, bytes, and broadcasts transmitted and received depend 
on several factors, like the applications running on the system, or the number of 
systems connected to the same physical network. There is no rule about how 
much is too much. Monitoring an Ethernet adapter on a regular basis using 
entstat can point out possible problems before users notice any slowdown. The 
problem can be taken care of by redesigning the network layout, tuning the 
adapter parameters using the chdev command, or tuning network options using 
the no command.
 Chapter 6. Network performance 355



6.4.2  The netstat command
The netstat command is a tool that displays network statistics. It is used for 
analyzing the system network stack, and to display information about the network 
traffic, the amount of data send and received by each protocol, and memory 
usage for network buffers.

The netstat command is a symbolic link to the /usr/sbin/netstat command and is 
part of the bos.net.tcp.client fileset.

syntax:
netstat [-Aan] [-f address_family] [core unix netinet addr]

               [-D]

               [-cCgimnrsPv] [-f address_family] [-p proto] [core unix netinet addr]

               [-n] [-I interface] [interval] [core unix netinet addr]

Useful options
netstat -v Displays the same output as entstat -d. Refer to 

Example 6-25 on page 352.

netstat -in Displays network interface information related to 
maximum transmission Unit (MTU) sizes, packets 
received and transmitted, and errors received and 
transmitted.

netstat -rn Displays routing information associated with the different 
interfaces your system has connected. Information about 
the path mtu, amount of times a particular route has been 
used.

netstat -m Displays statistics for the communications memory buffer 
(mbuf) usage. Each processor has its own mbuf pool. If 
the network option extendednetstats is set to 1, a 
summary of all processors is collected and displayed. The 
extendednetstats is set to 0 (zero) by default.

netstat -s The output of this command shows detailed statistics for 
ALL THE protocols used. This includes packets sent and 
received, packets dropped, and error counters. The 
netstat -p command can be used to display the 
information for a specific protocol. This is useful if you are 
only interested in the statistics for a particular protocol, for 
example Transmission control protocol (TCP). Using the 
netstat -p tcp command
356 AIX 5L Practical Performance Tools and Tuning Guide



netstat -D This command shows the count of packets transmitted 
and received as well as the count for dropped packets for 
each layer in the communications subsystem.

netstat -an The output of this command shows the state of all sockets 
including the current sizes for their receive and send 
queues.

netstat -c This command provides statistics about the NBC usage.

netstat examples
The first example we look at is the netstat -v ent0 (Example 6-28) command. 
This will display device driver information that gets extracted from the entstat 
command. You will see in the output that the command gives you the exact 
output as if you were to run the entstat -d ent0 command.

Example 6-28   netstat -v ent0

[p630n04][/]> netstat -v ent0
-------------------------------------------------------------
ETHERNET STATISTICS (ent0) :
Device Type: 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
Hardware Address: 00:02:55:4f:d6:74
Elapsed Time: 0 days 1 hours 45 minutes 46 seconds

Transmit Statistics:                          Receive Statistics:
--------------------                          -------------------
Packets: 4131                                 Packets: 27064
Bytes: 535698                                 Bytes: 3360732
Interrupts: 2                                 Interrupts: 26548
Transmit Errors: 0                            Receive Errors: 0
Packets Dropped: 0                            Packets Dropped: 0
                                              Bad Packets: 0
Max Packets on S/W Transmit Queue: 4
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 1

Broadcast Packets: 64                         Broadcast Packets: 20754
Multicast Packets: 2                          Multicast Packets: 6
No Carrier Sense: 0                           CRC Errors: 0
DMA Underrun: 0                               DMA Overrun: 0
Lost CTS Errors: 0                            Alignment Errors: 0
Max Collision Errors: 0                       No Resource Errors: 0
Late Collision Errors: 0                      Receive Collision Errors: 0
Deferred: 0                                   Packet Too Short Errors: 0
SQE Test: 0                                   Packet Too Long Errors: 0
Timeout Errors: 0                             Packets Discarded by Adapter: 0
Single Collision Count: 0                     Receiver Start Count: 0
Multiple Collision Count: 0
 Chapter 6. Network performance 357



Current HW Transmit Queue Length: 1

General Statistics:
-------------------
No mbuf Errors: 0
Adapter Reset Count: 0
Adapter Data Rate: 200
Driver Flags: Up Broadcast Running
        Simplex AlternateAddress 64BitSupport
        ChecksumOffload PrivateSegment LargeSend
        DataRateSet

10/100 Mbps Ethernet PCI Adapter II (1410ff01) Specific Statistics:
--------------------------------------------------------------------
Link Status : up
Media Speed Selected: Auto negotiation
Media Speed Running: 100 Mbps Full Duplex
Receive Pool Buffer Size: 1024
Free Receive Pool Buffers: 1012
No Receive Pool Buffer Errors: 0
Receive Buffer Too Small Errors: 0
Entries to transmit timeout routine: 0
Transmit IPsec packets: 0
Transmit IPsec packets dropped: 0
Receive IPsec packets: 0
Receive IPsec packets dropped: 0
Inbound IPsec SA offload count: 0
Transmit Large Send packets: 12
Transmit Large Send packets dropped: 0
Packets with Transmit collisions:
 1 collisions: 0           6 collisions: 0          11 collisions: 0
 2 collisions: 0           7 collisions: 0          12 collisions: 0
 3 collisions: 0           8 collisions: 0          13 collisions: 0
 4 collisions: 0           9 collisions: 0          14 collisions: 0
 5 collisions: 0          10 collisions: 0          15 collisions: 0
[p630n04][/]>

Refer to the entstat command for more detail (Example 6-25 on page 352).

The netstat -in command can be used to display network interface statistics as 
in Example 6-29.

Example 6-29   netstat -in

[p630n04][/]> netstat -in
Name  Mtu   Network     Address            Ipkts Ierrs    Opkts Oerrs  Coll
en0   1500  link#2      0.2.55.4f.d6.74       2875     0      830     0     0
en0   1500  192.168.100 192.168.100.34        2875     0      830     0     0
en1   9000  link#3      0.2.55.53.b1.88          0     0        3     3     0
358 AIX 5L Practical Performance Tools and Tuning Guide



en1   9000  10.1.1      10.1.1.4                 0     0        3     3     0
lo0   16896 link#1                            5974     0     7554     0     0
lo0   16896 127         127.0.0.1             5974     0     7554     0     0
lo0   16896 ::1                               5974     0     7554     0     0
[p630n04][/]>

The fields displayed are: 

name This field displays the name of the interface of which statistics will be 
displayed. Only interfaces that are currently up will be displayed.

MTU This field displays the interface MTU size used. From the output of 
Example 6-29 on page 358 you will note that interface en1 are using 
an MTU of 9000 which means the interface has jumbo_frames 
enabled.

Network This field displays the network address of the network that the 
interface is connected to.

Address This field displays the adapter hardware address and interface IP 
address.

Ipkts This filed displays the count of packets received by the interface.

Ierrs This field displays a count of the errors received by the interface.

Opkts This field displays a count of packets transmitted from this interface.

Oerrs This field displays a count of error packets generated from this 
interface.

Coll This field displays a count of the collisions occurred on this adapter. 
The collision count for ethernet is not supported.

When running the netstat -in command check that all network interfaces of 
systems on the same networks have the same network address. The MTU size 
of systems on the same physical network or VPN must be the same. The Ierrs 
and Oerrs, should always be zero, if not the network hardware and interfaces 
should be checked for problems. On ethernet the collision field is not supported 
and will always display 0 (zero).

The netstat -rn command will display routing information a your systems in 
Example 6-30.

Example 6-30   netstat -rn command

[p630n04][/]> netstat -rn
Routing tables
Destination      Gateway           Flags   Refs     Use  If   PMTU Exp Groups

Route Tree for Protocol Family 2 (Internet):
default          192.168.100.60    UG        1      831  en0     -   -
 Chapter 6. Network performance 359



10.1.1.0         10.1.1.4          UHSb      0        0  en1     -   -  =>
10.1.1/24        10.1.1.4          U         0      188  en1     -   -
10.1.1.4         127.0.0.1         UGHS      0      269  lo0     -   -
10.1.1.255       10.1.1.4          UHSb      0      219  en1     -   -
127/8            127.0.0.1         U         7      883  lo0     -   -
192.168.100.0    192.168.100.34    UHSb      0        0  en0     -   -  =>
192.168.100/24   192.168.100.34    U         4      203  en0     -   -
192.168.100.34   127.0.0.1         UGHS      0      489  lo0     -   -
192.168.100.255  192.168.100.34    UHSb      0       88  en0     -   -

Route Tree for Protocol Family 24 (Internet v6):
::1              ::1               UH        0       16  lo0     -   -
[p630n04][/]>

The fields displayed are:

Destination This field displays the destination address of either a host or 
network for a specific route. Normally there will be, this is the route 
that will be used by your system if no route is specifically defined 
for a destination.

Gateway This field displays the gateway that will be used to connected to a 
defined destination.

Flags This field displays the state and type of route a list of possible 
options is:

              A - An Active Dead Gateway Detection is enabled on the route. 
This field only applies to AIX 5.1 or later.

              U - The route is Up.

H - The route is to a host rather than to a network.

              G - The route is to a gateway.

D - The route was created dynamically by a redirect.

              M - The route has been modified by a redirect.

              L - The link-level address is present in the route entry.

              c - Access to this route creates a cloned route.

              W - The route is a cloned route.

              1 - Protocol specific routing flag #1.

              2 - Protocol specific routing flag #2.

              3 - Protocol specific routing flag #3.

              b - The route represents a broadcast address.

              e - Has a binding cache entry.
360 AIX 5L Practical Performance Tools and Tuning Guide



              l - The route represents a local address.

              m - The route represents a multicast address.

              P - Pinned route.

              R - Host or net unreachable.

              S - Manually added.

              u - Route usable.

              s - The Group Routing stopsearch option is enabled on the route.

Refs This field displays the current number of active uses for the route. 
Connection-oriented protocols hold on to a single route for the 
duration of a connection, while connectionless protocols obtain a 
route while sending to the same destination.

Use This field displays a count of number of packets sent making use of 
this route.

If This field displays a count of the network interface utilization for this 
route.

PMTU This field displays the path MTU size for the for this route. AIX 5.3 
does not display a value for this field. See the “The pmtu 
command” on page 370.

Exp This field displays the time in minutes before this route expires.

Groups This field displays a list of group id’s associated with this route.

The various layers of the communication subsystem share common buffer pools 
called the communications memory buffers (mbufs). The mbuf management 
facility controls buffer sizes. The buffer pools consists of pinned kernel memory. 
Pointers to mbufs passed from one layer of the communication subsystem to 
another reduces mbuf management overhead and avoids copying of data.

The maximum amount of memory the system can use for mbufs is defined in the 
system configuration. Use the command lsattr -El sys0 -a maxmbuf to control 
the current value set, and lsattr -Rl sys0 -a maxmbuf to see the possible 
values. The maxmbuf value can be changed by using the chdev -l sys0 -a 
maxmbuf=NewValue command. A change requires a reboot of the system to 
become activate.

Note: In AIX 5.3 the PMTU field does not display any information with the 
netstat -rn command, the pmtu command should be used to display or 
delete PMTU values.
 Chapter 6. Network performance 361



If maxmbuf in the system configuration is zero, then the network option thewall 
defines the maximum amount of memory to be used. The thewall value is a static 
value in AIX 5.3 and cannot be changed. You can only use the mamxbuf attribute 
to manage the size of the mbuf pool.

On a multiprocessor system each processor manages its own mbuf pool. This is 
done to avoid unnecessary waits for locks that may occur if all processors are 
using the same mbuf pool. The netstat -m command is used to observe the 
system’s mbuf usage as in Example 6-31.

Example 6-31   netstat -m command

[p630n06][/]> netstat -m

Kernel malloc statistics:

******* CPU 0 *******
By size           inuse     calls failed   delayed    free   hiwat   freed
32                  108       136      0         0      20   10484       0
64                  133      8947      0         1      59   10484       0
128                 138     39544      0         2      86    5242       0
256                 153  14089423      0         8   10471   10484    5726
512                3271  19217932      0       469     505   13105       0
1024                127      5326      0        32      21    5242       0
2048               2098      9834      0      2054    2018    7863       0
4096                170      7668      0        42    1598    2621       0
8192                  4       282      0         8       3    1310       0
16384              2560      7014      0       723       8     655    2588
32768                 0        31      0         1       4     327       0
65536                 2         3      0         2       0     327       0
131072                0         0      0         0     204     409       0

******* CPU 1 *******
By size           inuse     calls failed   delayed    free   hiwat   freed
32                    2         7      0         0     126   10484       0
64                  105      5260      0         2      23   10484       0
128                  54     26973      0         0      42    5242       0
256                   7   9657550      0         0    6297   10484       0
......lines ommitted...........

The netstat -m command displays mbuf usage per CPU (see Example 6-32 on 
page 363). By enabling the option extendednetstats with the no command, the 
system will display detailed output. The extendednetstats option of the no 
command is defined as a reboot option (you have to reboot the system for this 
option to become active after a change). 
362 AIX 5L Practical Performance Tools and Tuning Guide



Example 6-32   netstat -m example

[p630n04][/]> netstat -m
3309 mbufs in use:
3236 mbuf cluster pages in use
14598 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached

Kernel malloc statistics:

******* CPU 0 *******
By size           inuse     calls failed   delayed    free   hiwat   freed
32                   41      7507      0         1      87    2620       0
64                   81       436      0         1      47    2620       0
128                  52     12271      0         0      44    1310       0
256                   7     17693      0         1      73    2620       0
512                  71    275975      0       320    2489    3275       0
1024                 11       183      0         1       5    1310       0
2048                  1      2079      0      1023    1963    1965      44
4096                  3       184      0        41     214     655       0
8192                  5        20      0         3      12     327       0
16384                 0      1952      0       245       0     163    1796
131072                0         0      0         0      86     102     172

...........lines omited CPU 1 2 and 3

By type           inuse   calls failed delayed  memuse  memmax  mapb
mbuf               3309   1812160      0     883 1694208 2964992    12
mcluster           3236    606715      0    3332 36308992 38930432   252
socket              284    116948      0      15   98752  102496     0
pcb                 100     57464      0       0   11200   16704     0
routetbl             36     34951      0       0    5120    7456     0
fragtbl               0         9      0       0       0      32     0
ifaddr               45        43      0       2    7456    7456     0
mblk                 19     64109      0       0    2688   20480     0
mblkdata             46       596      0       6   65536   67584     0
strhead              31        77      0       0    9632    9632     0
strqueue             49       174      0       2   25088   25088     0
strmodsw             22         4      0       0    1408    1408     0
strosr                0      8315      0       0       0     256     0
strsyncq             56       446      0       1    6624    6688     0
streams             182      2893      0       1   28928   28928     0
devbuf             1538      8711      0    1698 10486048 12583200    41
kernel tablemoun     59       112      0       2  156320  160416     0
spec buf              1         0      0       0     128     128     0
locking              90        89      0       6   23040   23040     0
temp                 28    109653      0       1   26496   30720     0
 Chapter 6. Network performance 363



mcast opts            0         4      0       0       0      32     0
mcast addrs           3         3      0       0     192     192     0

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
[p630n04][/]>

If the request for mbufs field is non zero, this is a good indication that the 
maxmbuf attribute needs to be increased. See Example 6-4 on page 337.

If the “sockets not created because sockthresh was reached” field is non-zero, 
the sockthresh attribute should be increased with the no command. See 6.7.1, 
“The no command” on page 396.

From the output of the netstat -m command with extendednetstats enable you 
should note that additional information gets displayed at the end of the normal 
CPU report. This gives detailed information on memory utilization and mbufs 
used by the networking subsystem. The netstat -p tcp displays detailed 
information about the tcp protocol (see Example 6-33).

Example 6-33   netstat -p to monitor tcp

[p630n04][/home/hennie]> netstat -p tcp
tcp:
        147575 packets sent
                93370 data packets (2160063890 bytes)
                143 data packets (178440 bytes) retransmitted
                5196 ack-only packets (4278 delayed)
                0 URG only packets
                0 window probe packets
                48850 window update packets
                98 control packets
                65622 large sends
                2157856140 bytes sent using largesend
                64240 bytes is the biggest largesend
        334159 packets received
                203334 acks (for 2160063991 bytes)
                792 duplicate acks
                0 acks for unsent data
                204227 packets (169162567 bytes) received in-sequence
                51 completely duplicate packets (88 bytes)

Note: If you increase the maxmbuf attribute, this will automatically allow more 
space for sockets, as sockthresh is a percentage value of the maxmbuf or 
thewall attributes.
364 AIX 5L Practical Performance Tools and Tuning Guide



                0 old duplicate packets
                0 packets with some dup. data (0 bytes duped)
                709 out-of-order packets (54816 bytes)
                0 packets (0 bytes) of data after window
                0 window probes
                8 window update packets
                1 packet received after close
                0 packets with bad hardware assisted checksum
                0 discarded for bad checksums
                0 discarded for bad header offset fields
                0 discarded because packet too short
                10 discarded by listeners
                0 discarded due to listener's queue full
                125978 ack packet headers correctly predicted
                129051 data packet headers correctly predicted
        53 connection requests
        38 connection accepts
        60 connections established (including accepts)
        987 connections closed (including 18 drops)
        0 connections with ECN capability
        0 times responded to ECN
        0 embryonic connections dropped
        80458 segments updated rtt (of 80541 attempts)
        0 segments with congestion window reduced bit set
        0 segments with congestion experienced bit set
        0 resends due to path MTU discovery
        3 path MTU discovery terminations due to retransmits
        88 retransmit timeouts
                1 connection dropped by rexmit timeout
        27 fast retransmits
                0 when congestion window less than 4 segments
        7 newreno retransmits
        0 times avoided false fast retransmits
        0 persist timeouts
                0 connections dropped due to persist timeout
        86 keepalive timeouts
                83 keepalive probes sent
                3 connections dropped by keepalive
        0 times SACK blocks array is extended
        0 times SACK holes array is extended
        0 packets dropped due to memory allocation failure
        0 connections in timewait reused
        0 delayed ACKs for SYN
        0 delayed ACKs for FIN
        0 send_and_disconnects
        0 spliced connections
        0 spliced connections closed
        0 spliced connections reset
        0 spliced connections timeout
 Chapter 6. Network performance 365



        0 spliced connections persist timeout
        0 spliced connections keepalive timeout
[p630n04][/home/hennie]>

The statistics of interest are: 

� Packets Sent and Data Packets 
� Data Packets Retransmitted
� Packets Received
� Completely Duplicate Packets
� Retransmit Timeouts 

For the TCP statistics, compare the number of packets sent to the number of 
data packets retransmitted. If the number of packets retransmitted is over 10-15 
percent of the total packets sent, TCP is experiencing timeouts indicating that 
network traffic may be too high for acknowledgments (ACKs) to return before a 
timeout. A bottleneck on the receiving node or general network problems can 
also cause TCP retransmissions, which will increase network traffic, further 
adding to any network performance problems. 

Also, compare the number of packets received with the number of completely 
duplicate packets. If TCP on a sending node times out before an ACK is received 
from the receiving node, it will retransmit the packet. Duplicate packets occur 
when the receiving node eventually receives all the retransmitted packets. If the 
number of duplicate packets exceeds 10-15 percent, the problem may again be 
too much network traffic or a bottleneck at the receiving node. Duplicate packets 
increase network traffic. 

The value for retransmit timeouts occurs when TCP sends a packet but does not 
receive an ACK in time. It then re-sends the packet. This value is incremented for 
any subsequent retransmittals. These continuous retransmittals drive CPU 
utilization higher, and if the receiving node does not receive the packet, it 
eventually will be dropped. 

The netstat -D command shows the number of packets received, transmitted, 
and dropped in the communications subsystem as shown in Example 6-34.

Example 6-34   netstat -D command

[p630n04][/]> netstat -D

Source                         Ipkts                Opkts     Idrops     Odrops
-------------------------------------------------------------------------------
ent_dev0                      502053               166238          0          0
ent_dev2                           0                    0          0          0
ent_dev1                       29505                31669          0          0
366 AIX 5L Practical Performance Tools and Tuning Guide



                ---------------------------------------------------------------
Devices Total                 531558               197907          0          0
-------------------------------------------------------------------------------
ent_dd0                       502053               166238          0          0
ent_dd2                            0                    0          0          0
ent_dd1                        29505                31669          0          0
                ---------------------------------------------------------------
Drivers Total                 531558               197907          0          0
-------------------------------------------------------------------------------
fcs_dmx0                           0                  N/A          0        N/A
fcs_dmx1                           0                  N/A          0        N/A
ent_dmx0                      501997                  N/A         60        N/A
ent_dmx2                           0                  N/A          0        N/A
ent_dmx1                       29505                  N/A          0        N/A
                ---------------------------------------------------------------
Demuxer Total                 531502                  N/A         60        N/A
-------------------------------------------------------------------------------
IP                            563528               247255      85498      21217
IPv6                              16                   16          0          0
TCP                           335550               148439         65          0
UDP                            35488                10960       3632          0
                ---------------------------------------------------------------
Protocols Total               934566               406654      89195      21217
-------------------------------------------------------------------------------
en_if0                        501997               166253          0         61
en_if1                         29505                31787          0       6548
lo_if0                         73308                81766       8459          0
                ---------------------------------------------------------------
Net IF Total                  604810               279806       8459       6609
-------------------------------------------------------------------------------
                ---------------------------------------------------------------
NFS/RPC Total                    N/A                65878          0          0
-------------------------------------------------------------------------------
(Note:  N/A -> Not Applicable)
[p630n04][/]>

The Devices layer shows number of packets coming into the adapter, going out of 
the adapter, and number of packets dropped on input and output. There are 

Note: In the statistics output, a N/A displayed in a field indicates the count is 
not applicable. For the NFS/RPC statistics, the number of incoming packets 
that pass through RPC is the same as the number of packets that pass 
through NFS, so these numbers are not summed in the NFS/RPC Total field, 
thus the N/A displayed. NFS has no outgoing packet or outgoing packet drop 
counters specific to NFS and RPC. Therefore, individual counts have a field 
value of N/A, and the cumulative count is stored in the NFS/RPC Total field.
 Chapter 6. Network performance 367



various causes of adapter errors, and the netstat -v command can be 
examined for more details. 

The Drivers layer shows packet counts handled by the device driver for each 
adapter. Output of the netstat -v command is useful here to determine which 
errors are counted. 

The Demuxer values show packet counts at the demux layer, and Idrops here 
usually indicate that filtering has caused packets to be rejected (for example, 
NetWare or DecNet packets being rejected because these are not handled by the 
system under examination). Details for the Protocols layer can be seen in the 
output of the netstat -s or netstat -p commands.

The netstat -c command provides statistics about the network buffer cache 
(NBC) usage as in Example 6-35.

Example 6-35   netstat -c command

Network Buffer Cache Statistics:
-------------------------------
Current total cache buffer size: 756389056
Maximum total cache buffer size: 756389056
Current total cache data size: 636761915
Maximum total cache data size: 636761915
Current number of cache: 100016
Maximum number of cache: 100016
Number of cache with data: 100016
Number of searches in cache: 400113
Number of cache hit: 16
Number of cache miss: 200038
Number of cache newly added: 100016
Number of cache updated: 0
Number of cache removed: 0
Number of successful cache accesses: 100032
Number of unsuccessful cache accesses: 100022
Number of cache validation: 0
Current total cache data size in private segments: 1438760235
Maximum total cache data size in private segments: 1438760235
Current total number of private segments: 20000
Maximum total number of private segments: 20000
Current number of free private segments: 0
Current total NBC_NAMED_FILE entries: 100022
Maximum total NBC_NAMED_FILE entries: 100022

This command shows the statistics of the Network Buffer Cache. The Network 
Buffer Cache is a list of network buffers that contain data that can be transmitted 
to networks. The Network Buffer Cache grows dynamically, as data objects are 
368 AIX 5L Practical Performance Tools and Tuning Guide



added to or removed from it. The Network Buffer Cache is used by some network 
kernel interfaces for performance enhancement on the network I/O

The Example 6-35 on page 368 shows a NBC that is mostly written to, without 
many cache hits reported. The number of newly added files to the cache are 
equal to the number of total files in the cache. The reason could be an application 
just started using the NBC. However, the cache hit count should go up soon. This 
may also signal that the cache is too small for the application. The NBC is used 
by the send_file() system call if the SF_SYNC_CACHE flag is set. It is also used 
by the FRCA. If neither of these is used on a system, the values in the netstat 
-c output are 0 (zero). 

Network options to control the NBC
nbc_limit Specifies the total maximum amount of memory in kilobytes that can 
be used for the NBC. The default value is derived from thewall. When the cache 
grows to this limit, the least-used cache objects are flushed out of cache to make 
room for the new ones.

nbc_max_cache Specifies the maximum size of the cache object allowed in the 
NBC without using the private segments in number of bytes, the default being 
131,072 (128K) bytes. A data object bigger than this size is either cached in a 
private segment or is not cached at all.

nbc_min_cache Specifies the minimum size of the cache object allowed in the 
NBC in number of bytes, the default being one byte. A data object smaller than 
this size is not put into the NBC. 

nbc_pseg Specifies the maximum number of private segments that can be 
created for the NBC. The default value is 0. When this option is set at a non-zero 
value, a data object between the size specified in nbc_max_cache and the 
segment size (256 MB) is cached in a private segment. A data object bigger than 
the segment size is not cached at all. When the maximum number of private 
segments exist, cache data in private segments may be flushed for new cache 
data so that the number of private segments do not exceed the limit. When 
nbc_pseg is set to zero, all caches in private segments are flushed.

nbc_pseg_limit Specifies the maximum amount of cached data allowed in 
private segments in the NBC in kilobytes. The default value is half of the total real 
memory size on the running system. Because data cached in private segments 
are pinned by the NBC, nbc_pseg_limit controls the amount of pinned memory 
used for the NBC in addition to the network buffers in global segments. When the 
amount of cached data reaches this limit, cache data in private segments may be 
flushed for new cache data so that the total pinned memory size does not exceed 
the limit. When nbc_pseg_limit is set to zero, all caches in private segments are 
flushed.
 Chapter 6. Network performance 369



6.4.3  The pmtu command
The pmtu command manages pmtu information. It is used to displays and deletes 
Path MTU discovery related information.

The pmtu command is provided to manage the Path MTU information. The 
command can be used to display the Path MTU table. By default the IPV4 (IP 
Version 4) pmtu entries are displayed. IPV6 pmtu entries can be displayed using 
the &ndash;inet6 flag. This command also enables a root user to delete a pmtu 
entry (using the pmtu delete command). The delete can be based on destination, 
gateway, or both.

A pmtu entry gets added into the PMTU table when a route add occurs with an 
MTU value. 

Another network option, pmtu_expire, is provided to expire unused pmtu entries. 
The default value of pmtu_expire is 10 minutes.

Syntax
pmtu [-inet6] display/[delete [-dst destination] [-gw gateway] ]

In AIX 5.2 an later, the netstat -rn command does not display information about 
Path MTU in its output. The pmtu command should be used to display or delete 
any information about Path MTU.

Example 6-36 shows the output of pmtu display command.

Example 6-36   The pmtu display command output

"[p630n04][/home/hennie/tcpdump]> pmtu display

   dst           gw            If    pmtu     refcnt   redisc_t    exp

 -------------------------------------------------------------------------

9.12.6.143    192.168.100.    en0    1500        2          7       0

192.168.100.  127.0.0.1       lo0   16896        2          7       0

192.168.100.  192.168.100.    en0    1500        1         22       0

127.0.0.1     127.0.0.1       lo0   16896        3          7       0
[p630n04][/home/hennie/tcpdump]>

The field in the previous Example 6-36 have the following description:

dst Displays the destination network of the path.
370 AIX 5L Practical Performance Tools and Tuning Guide



gw Display the gateway used to connect to the network

If Displays the interface used for the connection

pmtu Displays the Path MTU size used for the connection

refcnt Displays the number of current TCP and UDP applications using this 
pmtu entry 

redisc_t Displays the amount of time that is elapsed since the last Path MTU 
discovery attempt. The PMTU is rediscovered after every 
pmtu_rediscover_interval minutes. Its default value is 30 minutes 
and can be changed using the no command. 

exp  Displays the pmtu expiry time. The expiry time is controlled by the 
network option pmtu_expire. Its default value is 10 minutes. This 
value can be changed using the no command. A value of 0 does not 
expire any entries. The exp entry signifies the expiry time. PMTU 
entries having more than zero refcnt have exp of 0. When the refcnt 
becomes zero, the exp time increases every minute and the entry 
gets deleted when the exp variable becomes equal to pmtu_expire.

To delete a particular Path MTU entry use the pmtu delete command as in 
Example 6-37.

Example 6-37   Delete pmtu entry

[p630n04][/]> pmtu delete -dst 9.12.6.143

6.5  Network packet tracing tools
This section describes the network packet tracing commands and other packet 
monitoring tools.

6.5.1  The iptrace command
The iptrace command provides interface-level packet tracing for Internet 
protocols. 

The iptrace command records Internet packets received from configured 
network interfaces. Command flags provide a filter so that iptrace only traces 
packets meeting specific criteria. Monitoring the network traffic with iptrace can 
often be very useful in determining why network performance is not as expected. 

The ipreport command formats the data file generated by iptrace. The 
ipreport command generates a readable trace report from the specified trace 
file created by the iptrace command. Monitoring the network traffic with iptrace 
 Chapter 6. Network performance 371



or tcpdump can often be very useful in determining why network performance is 
not as expected. The ipreport command will format the binary trace reports from 
either of these commands, or network sniffer, into an ASCII (or EBCDIC) 
formatted file. 

The ipfilter command sorts the output file created by the ipreport command, 
provided the -r (for NFS/RPC reports) and -s (for all reports) flags have been 
used in generating the report. The ipfilter command provides information 
about NFS, UDP, TCP, IPX, and ICMP headers in table form. Information can be 
displayed together, or separated by headers into different files. It can also provide 
separate information about NFS calls and replies.

The tcpdump command prints out the headers of packets captured on a network 
interface. The tcpdump command is a very powerful network packet trace tool that 
allows a wide range of packet filtering criteria. These criteria can range from 
simple trace-all options to detailed byte and bit level evaluations in packet 
headers and data parts. 

The trpt command performs protocol tracing on TCP sockets. Monitoring the 
network traffic with trpt can be useful in determining how applications that use 
the TCP connection oriented communications protocol perform.

Measurement and sampling
The iptrace command can monitor more than one network interface at the same 
time, and not only one as with the tcpdump command. With the iptrace command 
the kernel copies the whole network packet to user space (to the monitoring 
iptrace command) from the kernel space. This can result in a lot of dropped 
packets, especially if the number of monitored interfaces has not been limited by 
using the -i Interface option to reduce the number of monitored interfaces.

Because network tracing can produce large amounts of data, it is important to 
limit the network trace either by scope (what to trace) or amount (how much to 
trace). Unlike the tcpdump command, the iptrace command does not offer many 
options to reduce the scope of the network trace. The iptrace command also 
relies on the ipreport command to format the binary network trace data into a 
readable format (unlike tcpdump which can do both). 

The iptrace command uses either the network trace kernel extension 
(net_xmit_trace kernel service), which is the default method, or the Berkeley 
Packet Filter (BPF) packet capture library to capture network packets (-u flag). 

Note: The iptrace command will perform any filtering of packets in user 
space and not in kernel space as the tcpdump command does (unless the -B 
flag is used).
372 AIX 5L Practical Performance Tools and Tuning Guide



The iptrace command can either run as a daemon or under the System 
Resource Controller (SRC).

For more information about the BPF, see Packet Capture Library Subroutines in 
AIX 5L Version 5.3 Technical Reference: Communications, Volume 2. For more 
information about the net_xmit_trace kernel service, see AIX 5L Version 5.3 
Technical Reference: Kernel and Subsystems, Volume 1.

Syntax:

/usr/sbin/iptrace [ -a ] [ -b ][ -e ] [ -u ] [ -PProtocol_list ] [ -i 
Interface ] [ -p Port_list ] [ -s Host [ -b ] ] [ 
-dHost ] [ -L Log_size ] [ -B ] [ -T ] [ -S 
snap_length]  LogFile 

The iptrace command is located in /usr/sbin/iptrace, and it is part of the 
bos.net.tcp.server fileset.

Example of iptrace command
As mentioned in the previous paragraph, the iptrace command can be run in 
two ways, from the command line or using the SRC service. If starting iptrace 
with the iptrace command you have to stop it using the kill -15 PID command. 
The kernel extension loaded by the iptrace daemon remains active in memory if 
iptrace is stopped any other way.

Example 6-38   Starting iptrace with startsrc

[p630n04][/]> startsrc -s iptrace -a "-i en0 iptrc.out" &
[1]     26402
[p630n04][/]> 

The command in example Example 6-38 shows how to manually start iptrace 
and monitor any packets passing through interface en0. Use with care, as when 
using any type of tracing tool, since large amounts of information gets collected 
in a very short period of time. 

We ran iptrace for a period of 20 seconds over a very busy network and this 
created a trace file of 184 Mb. To stop tracing, use the stopsrc command as in 
Example 6-39.

Example 6-39   Stop iptrace with the iptrace command

[p630n04][/]> stopsrc -s iptrace
 Chapter 6. Network performance 373



6.5.2  The ipreport command
After the trace file has been created you must use the ipreport command to 
generate a human readable you can analyze.

Syntax:
ipreport [-CenrsSvx1NT] [-c count] [-j pktnum] [-X bytes] tracefile

 -c <count>: display <count> number of packets
 -C: validate checksums
 -e: show ebcdic instead of ascii
 -j <pktnum>: jump to packet number <pktnum>
 -n: number packets
 -N: dont do name resolution
 -r: know about rpc
 -s: start lines with protocol indicator strings
 -S: input file was generated on a sniffer
 -T: input file is in tcpdump format
 -v: verbose
 -x: print packet in hex
 -X <bytes>: limit hex dumps to <bytes>
 -1: compatibility: trace was generated on AIX3.1

The ipreport command is located in /usr/sbin/ipreport and is part of the 
bos.net.tcp.server fileset.

When using the ipreport command you must specify the existing trace file that 
was generated by the iptrace command. The ipreport command writes 
information generated to standard output, so you can use output redirection to a 
file as in Example 6-40. After the report file has been created, use the viewer of 
your choice to see the contents of the file.

Example 6-40   Using ipreport to generate a report file

[p630n04][/home/hennie/iptrc]> ipreport -r -s iptrc.out > ipreport

Example 6-41 shows a sample output form a report generated by the ipreport 
command. Observe the lines related to the ping command.

Example 6-41   Caption from output of ipreport

........lines omitted...........

ETH: ====( 98 bytes transmitted on interface en0 )====10:46:50.449898352
ETH:    [ 00:02:55:4f:d6:74 -> 00:02:55:4f:c4:ab ]  type 800  (IP)
IP:     < SRC =  192.168.100.34 >  (p630n04)
IP:     < DST =  192.168.100.31 >  (p630n01)
374 AIX 5L Practical Performance Tools and Tuning Guide



IP:     ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=45286, ip_off=0
IP:     ip_ttl=255, ip_sum=c12f, ip_p = 1 (ICMP)
ICMP:   icmp_type=8 (ECHO_REQUEST)  icmp_id=26464  icmp_seq=1

ETH: ====( 100 bytes received on interface en0 )====10:46:50.450025717
ETH:    [ 00:02:55:4f:c4:ab -> 00:02:55:4f:d6:74 ]  type 800  (IP)
IP:     < SRC =  192.168.100.31 >  (p630n01)
IP:     < DST =  192.168.100.34 >  (p630n04)
IP:     ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=56741, ip_off=0
IP:     ip_ttl=255, ip_sum=9470, ip_p = 1 (ICMP)
ICMP:   icmp_type=0 (ECHO_REPLY)  icmp_id=26464  icmp_seq=1

..............lines omited..................

The fields of interest (for the ping command) are:

� The source (SRC) and destination (DST) host address, both in dotted decimal 
and in ASCII

� The IP packet length (ip_len)

� The indication of the higher-level protocol in use (ip_p)

Example 6-42 shows the captured information about FTP packets. Observe the 
IP packet size, ip_len information.

Example 6-42   Observing ftp packets

.........lines omitted.............

ETH: ====( 4434 bytes transmitted on interface en0 )====11:25:49.84682843
ETH:    [ 00:02:55:4f:d6:74 -> 00:02:55:4f:c4:ab ]  type 800  (IP)
IP:     < SRC =  192.168.100.34 >  (p630n04)
IP:     < DST =  192.168.100.31 >  (p630n01)
IP:     ip_v=4, ip_hl=20, ip_tos=8, ip_len=4420, ip_id=49936, ip_off=0 DF
IP:     ip_ttl=60, ip_sum=2109, ip_p = 6 (TCP)
TCP:    <source port=32836, destination port=20(ftp-data) >
TCP:    th_seq=8f233e5c, th_ack=67842c8d
TCP:    th_off=5, flags<ACK>
TCP:    th_win=17520, th_sum=5b4, th_urp=0
TCP: 00000000     74686973 20697320 61206269 6766696c     |this is a bigfil|
TCP: 00000010     650a7468 69732069 73206120 62696766     |e.this is a bigf|
TCP: 00000020     696c650a 74686973 20697320 61206269     |ile.this is a bi|
TCP: 00000030     6766696c 650a7468 69732069 73206120     |gfile.this is a |
TCP: 00000040     62696766 696c650a 74686973 20697320     |bigfile.this is |

............lines omited.............
 Chapter 6. Network performance 375



6.5.3  The ipfilter command
The ipfilter command extracts different operation headers from an ipreport 
output file and displays them in a table. Some customized NFS information 
regarding requests and replies is also provided.

syntax
ipfilter [ -f [ u n t x c a ] ] [ -s [ u n t x c a ] ] [ -n [ -d 

milliseconds ] ] ipreport_output_file

The ipfilter command is located in /usr/bin/ipfilter and is part of the 
bos.perf.tools fileset.

The ipfilter command reads a file created by ipreport. The ipreport file has 
to be created by using the -s or -rsn flag, which specifies that ipreport will prefix 
each line with the protocol header. If no option flags are specified, ipfilter will 
generate a file containing all protocols called ipfilter.all (see Example 6-43).

Example 6-43   Output of the ipfilter command

Operation Headers:  ICMP IPX NFS TCP UDP ATM

                                                                                                
Ports
                                                                                     
----------------------------------------------------------------------------------------------
pkt. Source Dest. Length Seq # Ack # Source Dest  Net_Interf Operation
----------------------------------------------------------------------------------------------
101 9.12.6.143 192.168.100.34 41, 5d6975ec, 2c4d7c53 1172, 23(telnet) en0 TCP ACK PUSH
102 192.168.100.34 9.12.6.143 41, 2c4d7c53, 5d6975ed 23(telnet), 1172 en0 TCP ACK PUSH
103 9.12.6.143 192.168.100.34 41, 5d6975ed, 2c4d7c54 1172, 23(telnet) en0 TCP ACK PUSH
104 192.168.100.34 9.12.6.143 41, 2c4d7c54, 5d6975ee 23(telnet), 1172 en0 TCP ACK PUSH

6.5.4  The netpmon command
The netpmon command monitors activity and reports statistics on network I/O and 
network-related CPU usage.

Syntax:
netpmon [ -o File ] [ -d ] [ -T n ] [ -P ] [ -t ] [ -v ] [ -O ReportType  
... ] [ -i Trace_File -n Gennames_File ]

Once netpmon is started, it runs in the background until it is stopped by issuing 
the trcstop command. The netpmon command reports on network-related 
activity over the monitoring period. If the default settings are used, the trace 
376 AIX 5L Practical Performance Tools and Tuning Guide



command is invoked automatically by the netpmon command. Alternately, netpmon 
has an option -d flag to switch the trace on at a later time using the trcon 
command. When the trace is stopped by issuing the trcstop command, the 
netpmon command outputs its report and exits. Reports are either displayed on 
standard output by default or can be redirected to a file with the -f flag.

The netpmon command monitors a trace of a specific number of trace hooks. The 
trace hooks include NFS, cstokdd, and ethchandd. When the netpmon command 
is issued with the -v flag, the trace hooks used by netpmon are listed. 
Alternatively, you can run the trcevgrp -l netpmon command to receive a list of 
trace hooks that are used by netpmon. 

The netpmon command can also be used offline with the -i flag specifying the 
trace file and a -n flag to specify the gennames file. The gennames command is 
used to create this file.

Reports are generated for the CPU use, the network device driver I/O, Internet 
socket calls, and Network File System (NFS) I/O information.

CPU Usage The netpmon command monitors CPU usage by all 
threads and interrupt handlers. It estimates how much of 
this usage is due to network-related activities.

Network Device-Driver I/O
The netpmon command monitors I/O operations through 
Micro-Channel Ethernet, token- ring, and 
Fiber-Distributed Data Interface (FDDI) network device 
drivers. In the case of transmission I/O, the command also 
monitors utilizations, queue lengths, and destination 
hosts. For receive ID, the command also monitors time in 
the demux layer.

Internet Socket Calls The netpmon command monitors all send, recv, sendto, 
recvfrom, read, and write subroutines on Internet sockets. 
It reports statistics on a per-process basis, for each of the 
following protocol types:
- Internet Control Message Protocol (ICMP)
- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

NFS I/O The netpmon command monitors read and write 
subroutines on client Network File System (NFS) files, 
client NFS remote procedure call (RPC) requests, and 
NFS server read or write requests. The command reports 
subroutine statistics on a per-process or optional 
per-thread basis and on a per-file basis for each server. 
The netpmon command reports client RPC statistics for 
 Chapter 6. Network performance 377



each server, and server read and write statistics for each 
client. 

Any combination of the preceding report types can be specified with the 
command line flags. By default, all the reports are produced.

If network-intensive applications are being monitored, the netpmon command may 
not be able to capture all of the data. This occurs when the trace buffers are full. 
The following message is displayed: 

“TRACEBUFFER 8 WRAPAROUND, 10249 missed entries”

The size of the trace buffer can be increased by using the -T flag. Using the 
offline mode is the most reliable way to limit buffer overflows. This is because 
trace is much more efficient in processing and logging than the trace-based 
utilities filemon, netpmon, and tprof.

In memory-constrained environments, the -P flag can be used to pin the text and 
data pages of the netpmon process in memory so they cannot be swapped out.

Example 6-44   Starting netpmon tracing

[p630n04][/nfs] > netpmon -T 10000000 -o /netpmon/netpmon.out

In Example 6-44 we are starting netpmon specifying that it should use a trace 
buffer size of 1,000,000 bytes and the output be written to a file called 
/netpmon/netpmon.out.

Once netpmon has been started start running commands to generate network 
activity. After all the commands has completed run trcstop to stop the tracing 
(see Example 6-45).

Example 6-45   Stop netpmon tracing

[p630n04][/nfs]> trcstop
[netpmon: Reporting started]
[p630n04][/nfs]>
[netpmon: Reporting completed]

[netpmon: 166.387 secs in measured interval]

[p630n04][/nfs]>

After you have stopped tracing you can view the contents of the netpmon output 
file with the more command, as in Example 6-46 on page 379.
378 AIX 5L Practical Performance Tools and Tuning Guide



Example 6-46   netpmon output file

[p630n04][/home/hennie/netpmon]> more /netpmon/netpmon.ou
Fri Oct 22 17:05:49 2004
System: AIX p630n04 Node: 5 Machine: 000685CF4C00

TRACEBUFFER 134 WRAPAROUND, 30491 missed entries

========================================================================

Process CPU Usage Statistics:
-----------------------------
                                                   Network
Process (top 20)             PID  CPU Time   CPU %   CPU %
----------------------------------------------------------
cp                         25724   11.2790   2.943   0.000
cat                        26240    4.3129   1.125   0.000
netpmon                    27224    2.6688   0.696   0.000
rm                         26248    1.1326   0.296   0.000
IBM.CSMAgentRMd            23870    0.9378   0.245   0.000
ftp                        31610    0.4678   0.122   0.080
ftp                        28436    0.4410   0.115   0.075
ftp                        24774    0.4271   0.111   0.074
ftp                        25418    0.4144   0.108   0.073
lrud                        1806    0.4079   0.106   0.000
ftp                        24866    0.3999   0.104   0.072
ftp                        17390    0.3973   0.104   0.072
ftp                        26486    0.3949   0.103   0.072
UNKNOWN                    19022    0.3580   0.093   0.000
hats_nim                   23734    0.3461   0.090   0.000
ksh                        26238    0.1186   0.031   0.000
ksh                        25726    0.1153   0.030   0.000
ksh                        26484    0.1146   0.030   0.000
hats_nim                   26844    0.1095   0.029   0.000
pilegc                      2580    0.0965   0.025   0.000
----------------------------------------------------------
Total (all processes)              25.4537   6.642   0.518
Idle time                         347.9617  90.802

========================================================================

First Level Interrupt Handler CPU Usage Statistics:
---------------------------------------------------
                                                   Network
FLIH                              CPU Time   CPU %   CPU %
----------------------------------------------------------
external device                     3.1065   0.811   0.160
PPC decrementer                     0.3027   0.079   0.000
data page fault                     0.0994   0.026   0.000
 Chapter 6. Network performance 379



queued interrupt                    0.0892   0.023   0.000
----------------------------------------------------------
Total (all FLIHs)                   3.5979   0.939   0.160

========================================================================

Second Level Interrupt Handler CPU Usage Statistics:
----------------------------------------------------
                                                   Network
SLIH                              CPU Time   CPU %   CPU %
----------------------------------------------------------
scentdd32                           6.5237   1.702   0.990
s_scsiddpin32                       0.1059   0.028   0.000
goentdd32                           0.0009   0.000   0.000
efcddpin32                          0.0004   0.000   0.000
/unix                               0.0001   0.000   0.000
----------------------------------------------------------
Total (all SLIHs)                   6.6311   1.730   0.990

========================================================================

TCP Socket Call Statistics (by Process):
----------------------------------------
                                   ------ Read -----   ----- Write -----
Process (top 20)             PID   Calls/s   Bytes/s   Calls/s   Bytes/s
------------------------------------------------------------------------
ftp                        31610      0.08       342     19.73   1289477
ftp                        28436      0.08       342     18.57   1213545
ftp                        24774      0.08       342     18.12   1184130
ftp                        25418      0.08       342     17.82   1164292
ftp                        24866      0.08       342     17.70   1156767
ftp                        17390      0.08       342     17.56   1147190
ftp                        26486      0.08       342     17.44   1139666
sshd                       20794      5.10     83628      3.68       257
------------------------------------------------------------------------
Total (all processes)                 5.69     86022    130.62   8295325

========================================================================

ICMP Socket Call Statistics (by Process):
-----------------------------------------
                                   ------ Read -----   ----- Write -----
Process (top 20)             PID   Calls/s   Bytes/s   Calls/s   Bytes/s
------------------------------------------------------------------------
hats_nim                   26844      0.33       342      0.33        27
hats_nim                   23734      0.02        21      0.02         2
------------------------------------------------------------------------
Total (all processes)                 0.35       363      0.35        29
380 AIX 5L Practical Performance Tools and Tuning Guide



========================================================================

NFS Client RPC Statistics (by Server):
--------------------------------------

Server                     Calls/s
----------------------------------
p630n01                       5.62
------------------------------------------------------------------------
Total (all servers)           5.62

========================================================================

Detailed Second Level Interrupt Handler CPU Usage Statistics:
-------------------------------------------------------------

SLIH: scentdd32
count:                  267892
  cpu time (msec):      avg 0.024   min 0.010   max 12.402  sdev 0.098

SLIH: s_scsiddpin32
count:                  9444
  cpu time (msec):      avg 0.011   min 0.006   max 0.026   sdev 0.002

SLIH: goentdd32
count:                  50
  cpu time (msec):      avg 0.018   min 0.008   max 0.028   sdev 0.005

SLIH: efcddpin32
count:                  29
  cpu time (msec):      avg 0.015   min 0.008   max 0.027   sdev 0.006

SLIH: /unix
count:                  39
  cpu time (msec):      avg 0.004   min 0.002   max 0.006   sdev 0.001

COMBINED (All SLIHs)
count:                  277454
  cpu time (msec):      avg 0.024   min 0.002   max 12.402  sdev 0.097

========================================================================

Detailed TCP Socket Call Statistics (by Process):
-------------------------------------------------

PROCESS: ftp   PID: 31610
reads:                  8
  read sizes (bytes):   avg 4096.0  min 4096    max 4096    sdev 0.0
  read times (msec):    avg 3.061   min 0.006   max 9.761   sdev 3.551
 Chapter 6. Network performance 381



writes:                 1890
  write sizes (bytes):  avg 65362.7 min 8       max 65536   sdev 3365.5
  write times (msec):   avg 36.975  min 0.014   max 403.457 sdev 18.378

PROCESS: ftp   PID: 28436
reads:                  8
  read sizes (bytes):   avg 4096.0  min 4096    max 4096    sdev 0.0
  read times (msec):    avg 4.996   min 0.007   max 19.014  sdev 6.031
writes:                 1779
  write sizes (bytes):  avg 65351.9 min 8       max 65536   sdev 3468.7
  write times (msec):   avg 38.907  min 0.014   max 403.273 sdev 17.478

PROCESS: ftp   PID: 24774
reads:                  8
  read sizes (bytes):   avg 4096.0  min 4096    max 4096    sdev 0.0
  read times (msec):    avg 6.182   min 0.006   max 21.363  sdev 6.547
writes:                 1736
  write sizes (bytes):  avg 65347.3 min 8       max 65536   sdev 3511.2
  write times (msec):   avg 39.630  min 0.013   max 403.241 sdev 16.834

PROCESS: ftp   PID: 25418
reads:                  8
  read sizes (bytes):   avg 4096.0  min 4096    max 4096    sdev 0.0
  read times (msec):    avg 8.733   min 0.006   max 23.426  sdev 7.990
writes:                 1707
  write sizes (bytes):  avg 65344.1 min 8       max 65536   sdev 3540.8
  write times (msec):   avg 40.072  min 0.014   max 403.229 sdev 17.128

PROCESS: ftp   PID: 24866
reads:                  8
  read sizes (bytes):   avg 4096.0  min 4096    max 4096    sdev 0.0
  read times (msec):    avg 10.733  min 0.006   max 46.869  sdev 14.107
writes:                 1696
  write sizes (bytes):  avg 65342.8 min 8       max 65536   sdev 3552.3
  write times (msec):   avg 40.102  min 0.013   max 403.016 sdev 16.784

PROCESS: ftp   PID: 17390
reads:                  8
  read sizes (bytes):   avg 4096.0  min 4096    max 4096    sdev 0.0
  read times (msec):    avg 9.895   min 0.006   max 29.064  sdev 8.615
writes:                 1682
  write sizes (bytes):  avg 65341.2 min 8       max 65536   sdev 3567.0
  write times (msec):   avg 40.227  min 0.013   max 403.264 sdev 16.952

PROCESS: ftp   PID: 26486
reads:                  8
  read sizes (bytes):   avg 4096.0  min 4096    max 4096    sdev 0.0
  read times (msec):    avg 11.040  min 0.005   max 31.570  sdev 9.328
writes:                 1671
382 AIX 5L Practical Performance Tools and Tuning Guide



  write sizes (bytes):  avg 65339.9 min 8       max 65536   sdev 3578.7
  write times (msec):   avg 40.270  min 0.013   max 403.002 sdev 17.022

PROCESS: sshd   PID: 20794
reads:                  489
  read sizes (bytes):   avg 16384.0 min 16384   max 16384   sdev 0.0
  read times (msec):    avg 0.007   min 0.005   max 0.054   sdev 0.004
writes:                 353
  write sizes (bytes):  avg 69.7    min 52      max 388     sdev 28.9
  write times (msec):   avg 0.017   min 0.013   max 0.063   sdev 0.005

PROTOCOL: TCP (All Processes)
reads:                  545
  read sizes (bytes):   avg 15121.4 min 4096    max 16384   sdev 3731.1
  read times (msec):    avg 0.809   min 0.005   max 46.869  sdev 3.744
writes:                 12514
  write sizes (bytes):  avg 63506.0 min 8       max 65536   sdev 11348.2
  write times (msec):   avg 38.299  min 0.013   max 403.457 sdev 18.250

========================================================================

Detailed ICMP Socket Call Statistics (by Process):
--------------------------------------------------

PROCESS: hats_nim   PID: 26844
reads:                  32
  read sizes (bytes):   avg 1024.0  min 1024    max 1024    sdev 0.0
  read times (msec):    avg 0.009   min 0.006   max 0.015   sdev 0.002
writes:                 32
  write sizes (bytes):  avg 81.0    min 81      max 81      sdev 0.0
  write times (msec):   avg 0.054   min 0.037   max 0.067   sdev 0.008

PROCESS: hats_nim   PID: 23734
reads:                  2
  read sizes (bytes):   avg 1024.0  min 1024    max 1024    sdev 0.0
  read times (msec):    avg 0.006   min 0.006   max 0.006   sdev 0.000
writes:                 2
  write sizes (bytes):  avg 81.0    min 81      max 81      sdev 0.0
  write times (msec):   avg 0.050   min 0.039   max 0.060   sdev 0.010

PROTOCOL: ICMP (All Processes)
reads:                  34
  read sizes (bytes):   avg 1024.0  min 1024    max 1024    sdev 0.0
  read times (msec):    avg 0.009   min 0.006   max 0.015   sdev 0.002
writes:                 34
  write sizes (bytes):  avg 81.0    min 81      max 81      sdev 0.0
  write times (msec):   avg 0.054   min 0.037   max 0.067   sdev 0.008

========================================================================
 Chapter 6. Network performance 383



Detailed NFS Client RPC Statistics (by Server):
-----------------------------------------------

SERVER: p630n01
calls:                  538
  call times (msec):    avg 10.680  min 6.720   max 32.442  sdev 1.177

COMBINED (All Servers)
calls:                  538
  call times (msec):    avg 10.680  min 6.720   max 32.442  sdev 1.177
[p630n04][/home/hennie/netpmon]>

Example 6-46 on page 379 is a full listing of all the data collected by netpmon.

The data collected by the netpmon command in this example is:

� Process CPU Usage Statistics (top 20 processes)
� First Level Interrupt Handler CPU Usage Statistics
� Second Level Interrupt Handler CPU Usage Statistics
� TCP Socket Call Statistics (by Process)
� ICMP Socket Call Statistics (by Process)
� NFS Client RPC Statistics (by Server)
� Detailed Second Level Interrupt Handler CPU Usage Statistics
� Detailed TCP Socket Call Statistics (by Process)
� Detailed ICMP Socket Call Statistics (by Process)
� Detailed NFS Client RPC Statistics (by Server)

The global reports are shown at the beginning of the netpmon output, and are the 
occurrences during the measured interval. The detailed reports provide 
additional information for the global reports. By default, the reports are limited to 
the 20 most active statistics measured. All information in the reports is listed from 
top to bottom as most active to least active.

The reports generated by the netpmon command begin with a header, which 
identifies the date, the machine ID, and the length of the monitoring period in 
seconds. The header is followed by a set of global and detailed reports for all 
specified report types.

6.5.5  The trpt command
The syntax of the trpt command is:

trpt [ -a ] [ -f ] [ -j ] [ -pAddress ]... [ -s ] [ -t ] 

The trpt command queries the protocol control block (PCB) for TCP trace 
records. This buffer is created when a socket is marked for debugging with the 
384 AIX 5L Practical Performance Tools and Tuning Guide



setsockopt() subroutine. The trpt command then prints a description of these 
trace records. 

In order for the trpt command to work, the TCP application that is to be 
monitored must be able to set the SO_DEBUG flag with the setsockopt() subroutine. 
If this is not possible you can enable this option for all new sockets that are 
created by using the no command with the sodebug option set to one:

no -o sodebug=1

Note that the SO_DEBUG flag will not be turned off for sockets that have this set 
even when the sodebug option is set to zero.

Examples for trpt
The following examples show the output of trpt command after sodebug has 
been set to one (1) with the no command, and a telnet session has been started 
immediately thereafter. Note that all trpt reports query the stored TCP trace 
records from the PCB. Only when trpt is used with the -f flag will it follow the 
trace as it occurs (after it has displayed the currently stored trace records), 
waiting briefly for additional records each time the end of the log is reached.

For a detailed description of the output fields of the trpt command, see AIX 5L 
Version 5.3 Commands Reference, Volume 5, SC23-4892.

To list the PCB addresses for which trace records exist, use the -j parameter 
with the trpt command as in Example 6-47.

Example 6-47   Using trpt -j

# trpt -j
7064fbe8

You can check the PCB record with the netstat command as in Example 6-48.

Example 6-48   Using netstat -aA

# netstat -aA|head -2;netstat -aA |grep 7064fbe8
Active Internet connections (including servers)
PCB/ADDR Proto Recv-Q Send-Q  Local Address      Foreign Address    (state)
7064fbe8 tcp        0      0  wlmhost.32826      wlmhost.telnet     ESTABLISHED

The report format of the netstat -aA column layout is: 

PCB/ADDR Proto Recv-Q Send-Q  Local Address      Foreign Address    (state) 

The fields description: 

PCB/ADDR The PCB address

Proto Protocol 
 Chapter 6. Network performance 385



Recv-Q Receive queue size (in bytes)

Send-Q Send queue size (in bytes)

Local Address Local address

Foreign Address Remote address

(state) Internal state of the protocol 

Displaying all stored trace records
When no option is specified, the trpt command prints all of the trace records 
found in the system and groups them according to their TCP connection PCB. 
Note that in the following examples, there is only one PCB opened with SO_DEBUG 
(7064fbe8). Example 6-49 shows the output during initialization.

Example 6-49   Using trpt during Telnet initialization

# trpt 
7064fbe8:                                                                                
365 CLOSED:user ATTACH -> CLOSED                                                         
365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT                    
365 CLOSED:user CONNECT -> SYN_SENT                                                      
365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED                   
365 ESTABLISHED:output fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED                   
365 ESTABLISHED:output [fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> ESTABLISHED  
365 ESTABLISHED:user SEND -> ESTABLISHED                                                 
...(lines omitted)...

Example 6-50 shows the result of the trpt command after the telnet session is 
closed.

Example 6-50   Using trpt during telnet termination

# trpt
...(lines omitted)...
591 ESTABLISHED:output fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED                  
591 ESTABLISHED:input 4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT                
591 CLOSE_WAIT:output fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT                    
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK                    
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK 

Displaying source and destination addresses
To print the values of the source and destination addresses for each packet 
recorded in addition to the normal output, use the -a parameter with the trpt 
command as in Example 6-51 on page 387. The following example contains the 
same information as the two examples in Example 6-49 and Example 6-50, but 
with additional details. The reason for showing the full report is that it can be 
correlated with the examples mentioned. Note that even though the telnet 
386 AIX 5L Practical Performance Tools and Tuning Guide



session has ended, the TCP trace buffer still contains the protocol trace 
information (it was just a short connection).

Example 6-51   Using trpt -a 

# trpt -a

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output (src=1.3.1.164,32821, dst=1.3.1.164,23)[fcbaf1a5..fcbaf1a9)@0(win=4000) <SYN> -> SYN_SENT
365 CLOSED:user CONNECT -> SYN_SENT
365 SYN_SENT:input (src=1.3.1.164,23, dst=1.3.1.164,32821)4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
365 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED
365 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)[fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> 
ESTABLISHED
365 ESTABLISHED:user SEND -> ESTABLISHED
...(lines omitted)...
591 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED
591 ESTABLISHED:input (src=1.3.1.164,23, dst=1.3.1.164,32821)4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT
591 LAST_ACK:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK

Displaying packet-sequencing information
To print a detailed description of the packet-sequencing information in addition to 
the normal output, use the -s parameter with the trpt command as in the 
Example 6-52. The following example contains the same information as 
Example 6-49 on page 386 and Example 6-50 on page 386, but with additional 
details.

Example 6-52   Using trpt -s

# trpt -s

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED

rcv_nxt 0 rcv_wnd 0 snd_una 0 snd_nxt 0 snd_max 0
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT
rcv_nxt 0 rcv_wnd 0 snd_una fcbaf1a5 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 CLOSED:user CONNECT -> SYN_SENT
rcv_nxt 0 rcv_wnd 0 snd_una fcbaf1a5 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
rcv_nxt 4b96e889 rcv_wnd 4410 snd_una fcbaf1a6 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 4b96e889 snd_wl2 fcbaf1a6 snd_wnd 4410

...(lines omitted)...
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK

rcv_nxt 4b96e914 rcv_wnd 4410 snd_una fcbaf1d3 snd_nxt fcbaf1d4 snd_max fcbaf1d4
snd_wl1 4b96e913 snd_wl2 fcbaf1d3 snd_wnd 4410

591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK
rcv_nxt 4b96e914 rcv_wnd 4410 snd_una fcbaf1d3 snd_nxt fcbaf1d4 snd_max fcbaf1d4
 Chapter 6. Network performance 387



snd_wl1 4b96e913 snd_wl2 fcbaf1d3 snd_wnd 4410

Displaying timers at each point in the trace
To print the values for all timers at each point in the trace in addition to the normal 
output, use the -t parameter with the trpt command as in Example 6-53. The 
following example contains the same information as Example 6-49 on page 386 
and Example 6-50 on page 386, but with additional details.

Example 6-53   Using trpt -t

# trpt -t

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT

REXMT=6 (t_rxtshft=0), KEEP=150
365 CLOSED:user CONNECT -> SYN_SENT

REXMT=6 (t_rxtshft=0), KEEP=150
365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
365 ESTABLISHED:output fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED
365 ESTABLISHED:output [fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> ESTABLISHED

REXMT=3 (t_rxtshft=0)
365 ESTABLISHED:user SEND -> ESTABLISHED

REXMT=3 (t_rxtshft=0)
...(lines omitted)...

591 ESTABLISHED:output fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED
591 ESTABLISHED:input 4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK

REXMT=3 (t_rxtshft=0), 2MSL=1200
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK

REXMT=3 (t_rxtshft=0), 2MSL=1200

Printing trace records for a single protocol control block
Example 6-54 shows the trace record for a single protocol control block.

Example 6-54   Display the trace record associated with a protocol control block

# trpt -j
7057d1f0, 7089b9f0, 714ae5f0
# trpt -p 7057d1f0

7057d1f0:
520 CLOSED:user ATTACH -> CLOSED
520 CLOSED:user SOCKADDR -> CLOSED
520 SYN_SENT:output [cd913597..cd91359b)@0(win=4000)<SYN> -> SYN_SENT
520 CLOSED:user CONNECT -> SYN_SENT
388 AIX 5L Practical Performance Tools and Tuning Guide



520 SYN_SENT:input dde23b65@cd913598(win=16d0)<SYN,ACK> -> ESTABLISHED
520 ESTABLISHED:output cd913598@dde23b66(win=4470)<ACK> -> ESTABLISHED
520 ESTABLISHED:output [cd913598..cd913660)@dde23b66(win=4470)<ACK,PUSH> -> 
ESTABLISHED
520 ESTABLISHED:user SEND -> ESTABLISHED
520 ESTABLISHED:input dde23b66@cd913660(win=1920)<ACK> -> ESTABLISHED
521 ESTABLISHED:input [dde23b66..dde23bc6)@cd913660(win=1920)<ACK,PUSH> -> 
ESTABLISHED
.... ( lines omitted)...........

6.6  NFS related performance commands
The NFS subsystem involves multiple performance monitoring and tuning 
commands. NFS performance is determined not only by the network subsystem, 
but also by the Virtual Memory Manager, CPU, and Disk I/O subsystems. In this 
section we present the NFS related performance monitoring and tuning 
commands.

6.6.1  The nfsstat command
The nfsstat command displays statistics about the Network File System (NFS) 
and the Remote Procedure Call (RPC) interface to the kernel. You can also use 
the nfsstat command to reinitialize this information.

The nfsstat command is a monitoring tool. Its output data can be used for 
problem determination and performance tuning. 

The nfsstat command resides in /usr/sbin/nfsstat and is part of the 
bos.net.nfs.client fileset, which is installable from the AIX base installation media.

The syntax of the nfsstat command is:

/usr/sbin/nfsstat [ -c ] [ -s ] [ -n ] [ -r ] [ -m ] [ -v4 ] [ -z ] [ -x] [ -t] [-b][ -g ]

Information about measurement and sampling
The nfsstat command reads out statistic information collected by the NFS client 
and the NFS server kernel extensions. This read is done at nfsstat command 
execution time. The nfsstat -z command is used to reset the statistics, nfsstat 
-z command can only be executed by root.

The nfsstat command displays server and client statistics for both RPC and 
NFS. The -s (server), -c (client), -r (RPC), and -n (NFS) flags can be used to 
display only a subset of all data. 
 Chapter 6. Network performance 389



The RPC statistics output consists of two parts: the first shows the statistics for 
connection-oriented TCP RPC, the second shows the statistics for 
connectionless User Datagram Protocol (UDP) RPC. The NFS statistics output is 
also divided into two parts: the first shows the NFS Version 2 statistics, and the 
second shows the NFS Version 3 statistics. The RPC statistics are useful for 
detecting performance problems caused by time-outs and retransmissions. The 
NFS statistics show the usage count of file system operations, such as read(), 
write(), and getattr(). These values show how the file system is used. This can 
help to decide which tuning actions to perform to improve performance. The 
nfsstat command can display information about each mounted file system.

Examples for nfsstat
In this section we take a closer look at each of the statistics nfsstat can provide:

� NFS server RPC statistics - the nfsstat -sr command.
� NFS server NFS statistics - the nfsstat -sn command.
� NFS client RPC statistics - the netstat -cr command.
� NFS client NFS statistics - the netstat -cn command.
� Statistics on mounted file systems - the nfsstat -m command

NFS server RPC statistics
The output in Example 6-55 shows the server RPC statistics created using the 
nfsstat -sr command:

Example 6-55   Output of nfsstat -sr

[p630n04][/nfs2]> nfsstat -sr

Server rpc:
Connection oriented
calls      badcalls   nullrecv   badlen     xdrcall    dupchecks  dupreqs
234949     0          0          0          0          119817     0
Connectionless
calls      badcalls   nullrecv   badlen     xdrcall    dupchecks  dupreqs
0          0          0          0          0          0          0
[p630n04][/nfs2]>

The output shows statistics for both connection-oriented (TCP) and 
connectionless (UDP) RPC. In this example, NFS used TCP as the transport 
protocol. The fields in this output are:

calls Total number of RPC calls received from clients. 

badcalls Total number of calls rejected by the RPC layer. The rejects happen 
because of failed authentication. The value should be zero.
390 AIX 5L Practical Performance Tools and Tuning Guide



nullrecv Number of times a RPC call was not available when it was thought to 
be received.

badlen Packets truncated or damaged (number of RPC calls with a length 
shorter than a minimum-sized RPC call). The value should stay at 
zero. An increasing value may be caused by network problems.

xdrcall Number of RPC calls whose header could not be External Data 
Representation (XDR) decoded. The value should stay at zero. An 
increasing value may be caused by network problems.

dupchecks Number of RPC calls that require a look-up in the duplicate request 
cache. Duplicate checks are performed for operations that cannot be 
performed twice with the same result. If the first command succeeds 
but the reply is lost, the client retransmits this request. This 
retransmitted command will fail. An example of an operation that 
cannot be performed twice with the same result is the rm command. 
We want duplicate requests like these to succeed, so the duplicate 
cache is consulted, and, if it is a duplicate request, the same 
(successful) result is returned on the duplicate request as was 
generated on the initial request.

These operations apply to duplicate checks: setattr(), write(), 
create(), remove(), rename(), link(), symlink(), mkdir(), and rmdir(). 
Any instance of these is stored in the duplicate request cache.

The size of the duplicate request cache is controlled by the NFS 
options nfs_tcp_duplicate_cache_size for the TCP network transport 
and nfs_udp_duplicate_cache_size for the UDP network transport. 
for information regarding the NFS options 
nfs_tcp_duplicate_cache_size and nfs_udp_duplicate_cache_size.

These NFS options need to be increased on a high volume NFS 
server. Calculating the NFS operations per second and using four 
times this value is a good starting point. The nfsstat -z; sleep 60; 
nfsstat -sn command can be used to capture the number of NFS 
operations per minute.

dupreqs Number of duplicate RPC calls found. This value gets increased 
each time a duplicate RPC request, using the data from the duplicate 
request cache, is found. An increasing value for dupreqs indicates 
retransmissions of commands from clients. These retransmissions 
can be caused by time-outs (the server did not answer in time) or 
dropped packets on the client receiving side or server sending side. 
Use the nfsstat -cr command to check for time-outs on the NFS 
clients. Refer to “NFS client RPC statistics” on page 393 for more 
information about the nfsstat -cr command. Use the netstat -in, 
netstat -s, netstat -v, and netstat -m commands to check for 
dropped packets on both NFS client and NFS server.
 Chapter 6. Network performance 391



See “The nfso command” on page 416 for an explanation on how to change the 
nfs option listed above.

The nfsstat -zsr; sleep 60; nfsstat -sr can be used to get the server RPC 
statistics for one minute and to calculate the per-second values. Doing this on a 
well-performing NFS server during normal operation and storing this data will 
help to verify NFS server load in case this server later shows an NFS 
performance problem. The cause for bad performance may be a temporary 
increased load from one or more NFS clients.

NFS server NFS statistics
The NFS server NFS statistics can be used to determine the type of NFS 
operation used most on the server. This helps to decide which tuning can be 
performed to increase NFS server performance. For example, a high percentage 
of write() calls may require disk and LVM tuning to increase write performance. A 
high value of read() calls may require more RAM for file caching. There are no 
rules of thumb, as tuning the NFS server depends on many factors such as: 

� The amount of RAM installed
� The disk subsystem used
� The number of CPUs installed
� The CPU speed of the installed CPUs
� The number of NFS clients
� The networks used

Example 6-56 shows the output of the nfsstat -sn command.

Example 6-56   Output of nfsstat -sn command

# nfsstat -sn

Server nfs:
calls      badcalls   public_v2  public_v3  
809766     0          0          0          
Version 2: (0 calls)
null       getattr    setattr    root       lookup     readlink   read       
0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       
wrcache    write      create     remove     rename     link       symlink    
0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       
mkdir      rmdir      readdir    statfs     
0 0%       0 0%       0 0%       0 0%       
Version 3: (809765 calls)
null       getattr    setattr    lookup     access     readlink   read       
1 0%       133491 16% 558 0%     227155 28% 15397 1%   0 0%       56636 6%   
write      create     mkdir      symlink    mknod      remove     rmdir      
172511 21% 67425 8%   558 0%     0 0%       0 0%       67486 8%   558 0%     
rename     link       readdir    readdir+   fsstat     fsinfo     pathconf   
0 0%       0 0%       1023 0%    560 0%     2 0%       0 0%       0 0%       
392 AIX 5L Practical Performance Tools and Tuning Guide



commit     
66404 8% 

This example shows a high usage of write. The reported 21 percent may still be 
low enough not to worry about. However, the values for create (67425) and 
remove (67486) are high and equal. This could be an indication of an NFS client 
creating a high number of temporary files in the NFS file system. Creating these 
temporary files in a local file system on the NFS client will reduce the load on the 
NFS server. The NFS client performance (at least the performance of the 
application creating the temporary files) will increase as well.

NFS client RPC statistics
The output in Example 6-57 shows the client RPC statistics created using the 
command nfsstat -cr.

Example 6-57   Output of nfsstat -cr command

# nfsstat -cr

Client rpc:
Connection oriented
calls      badcalls   badxids    timeouts   newcreds   badverfs   timers     
1392748    0          0          0          0          0          0          
nomem      cantconn   interrupts 
0          0          0          
Connectionless
calls      badcalls   retrans    badxids    timeouts   newcreds   badverfs   
188030     0          13         0          0          0          0          
timers     nomem      cantsend   
11         0          0          

The fields in this output are:

calls Total number of RPC calls made to NFS. 

badcalls Total number of calls rejected by the RPC layer. The value should 
be zero.

retrans Number of times a call had to be retransmitted due to a time-out 
while waiting for a reply from the server. This is applicable only to 
RPC over connectionless (UDP) transports. The NFS client had to 
retransmit requests to the NFS server because the NFS server was 
not responding in time. This could indicate an overloaded server, 
dropped packets on the server, or dropped packets on the client. 
Running the vmstat and iostat commands on the server should 
show the load on the server. See also the related commands in 
5.1.5, “The vmstat command” on page 310, 7.2.1, “The iostat 
 Chapter 6. Network performance 393



command” on page 433, and 6.4.2, “The netstat command” on 
page 356. Use the netstat -in, netstat -s, netstat -v, and 
netstat -m commands on the server and client to check for 
dropped packets.

Dropped packets on the server could be caused by an overrun of 
the network adapter transmit queue or a UDP socket buffer 
overflow. Tuning the NFS option nfs_socketsize using the nfso 
command in case of socket buffer overflows is required. Refer to 
6.7.3, “The nfso command” on page 416 for more information about 
the nfso command.

badxid Number of times a reply from a server was received that did not 
correspond to any outstanding call. This means the server is taking 
too long to reply. Refer to the description for the retrans field.

timeouts Number of times a call timed-out while waiting for a reply from the 
server. The same as for the retrans value applies. Refer to the 
description in for the retrans field.

Increasing the NFS mount option timeo by using the smitty 
chnfsmnt command should reduce the NFS client requests that 
time out and are retransmitted. This reduces the load on the server 
because the number of retransmitted requests decreases. 
However, the performance improvement on the client is not very 
high. If dynamic retransmission is used, the timeo value is only 
used for the first retransmission timeout. Refer to “Statistics on 
mounted file systems” on page 395 for more details.

newcreds Number of times authentication information had to be refreshed. 

badverfs Number of times a call failed due to a bad verifier in the response. 

timers Number of times the calculated time-out value was greater than or 
equal to the minimum specified time-out value for a call.

nomem Number of times a call failed due to a failure to allocate memory. 

cantconn Number of times a call failed due to a failure to make a connection 
to the server.

interrupts Number of times a call was interrupted by a signal before 
completing. 

cantsend Number of times a send failed due to a failure to make a 
connection to the client.

NFS client NFS statistics
These statistics show the NFS clients’ usage for the various NFS calls. This 
information can help in deciding the next steps to perform to increase 
394 AIX 5L Practical Performance Tools and Tuning Guide



performance. Example 6-58 was taken on the NFS client at the same time the 
NFS Server Example 6-56 on page 392 was produced.

Example 6-58   Output of nfsstat -cn command

# nfsstat -cn

Client nfs:
calls      badcalls   clgets     cltoomany  
1584182    0          0          0          
Version 2: (188425 calls)
null       getattr    setattr    root       lookup     readlink   read       
0 0%       95392 50%  0 0%       0 0%       11740 6%   0 0%       81068 43%  
wrcache    write      create     remove     rename     link       symlink    
0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       
mkdir      rmdir      readdir    statfs     
0 0%       0 0%       223 0%     2 0%       
Version 3: (1399306 calls)
null       getattr    setattr    lookup     access     readlink   read       
0 0%       230820 16% 966 0%     393221 28% 26634 1%   0 0%       97536 6%   
write      create     mkdir      symlink    mknod      remove     rmdir      
296985 21% 116725 8%  966 0%     0 0%       0 0%       116786 8%  966 0%     
rename     link       readdir    readdir+   fsstat     fsinfo     pathconf   
0 0%       0 0%       1771 0%    968 0%     4 0%       0 0%       0 0%       
commit     
114958 8% 

Refer to “NFS server NFS statistics” on page 392 for more information and use of 
this statistic. The NFS clients nfsstat -cn example above shows the same high 
count for file create and file remove as the server side in Example 6-56 on 
page 392. There could be an application running, creating temporary files in a 
NFS mounted file system. Moving these temporary files off of NFS to a local file 
system will increase performance on this NFS client and reduce load on the NFS 
server.

Statistics on mounted file systems
The nfsstat -m command displays statistics for each NFS mounted file system 
on an NFS client system. This includes:

� Name of the file system
� Name of the server serving the file system
� Flags used to mount the file system
� Current timers used for dynamic retransmission

Example 6-59 on page 396 is an example of the nfsstat -m output.
 Chapter 6. Network performance 395



Example 6-59   Output of nfsstat -m command

# nfsstat -m

/server1 from /server1:server1.itso.ibm.com
 Flags:   
vers=2,proto=udp,auth=unix,hard,intr,dynamic,rsize=8192,wsize=8192,retrans=5
 Lookups: srtt=7 (17ms), dev=3 (15ms), cur=2 (40ms)
 Reads:   srtt=47 (117ms), dev=4 (20ms), cur=7 (140ms)
 All:     srtt=10 (25ms), dev=7 (35ms), cur=4 (80ms)

This example shows one NFS file system mounted over /server1. The NFS 
server serving this file system is server1.itso.ibm.com, and the directory name on 
the server is /system1. 

Flags The flags used to mount the NFS file system. Refer to the mount 
command in AIX 5L Version 5.3 Commands Reference, Volume 5, 
SC23-4892, for more information.

srtt Smoothed round-trip time.

dev Estimated deviation.

cur Current backed-off time-out value.

The current timers used for dynamic retransmission are the numbers in 
parentheses in the example output. These are the actual times in milliseconds. 
Response times are shown for lookups, reads, writes, and a combination of all 
operations (All). There was no write to this NFS file system, and so no respond 
time values are shown for this function. 

The dynamic retransmission can be turned off using the NFS option 
nfs_dynamic_retrans. Refer to 6.7.3, “The nfso command” on page 416 for more 
information. The default in AIX is that dynamic retransmission is used.

6.7  Network tuning commands
Beside network monitoring, tuning is a very important component to consider for 
obtaining optimal system performance. This section presents the network-related 
tuning commands, mentioning also other tuning commands, not directly involved 
in network parameters tuning.

6.7.1  The no command
The no (network options) command is used to set network tuning parameters. 
396 AIX 5L Practical Performance Tools and Tuning Guide



Use the no command to configure network tuning parameters. The no command 
sets or displays current or next boot values for network tuning parameters. This 
command can also make permanent changes or defer changes until the next 
reboot. Whether the command sets or displays a parameter is determined by the 
accompanying flag. The -o flag performs both actions. It can either display the 
value of a parameter or set a new value for a parameter. When the no command 
is used to modify a network option it logs a message to the syslog using the 
LOG_KERN facility. 

no Syntax
no [ -p | -r ] { -o Tunable[=NewValue] } 
no [ -p | -r ] {-d Tunable } 
no [ -p | -r ] { -D } 
no [ -p | -r ] -a 
no -? 
no -h [ Tunable ] 
no -L [ Tunable ] 
no -x [ Tunable ] Note: Multiple flags -o, -d, -x, and -L are allowed.

The no command in located in /usr/sbin/no and is part of the bos.net.tcp.client 
fileset. This fileset is installed by default at installation time.

Be careful when you use this command. If used incorrectly, the no command can 
cause your system to become inoperable. 

Before modifying any tunable parameter, you should first carefully read about all 
its characteristics of a tunable. For more information about tunable parameters, 
see Network Tunable Parameters in the man pages

You must then make sure that the Diagnosis and Tuning sections for this 
parameter truly apply to your situation and that changing the value of this 
parameter could help improve the performance of your system. 

The no examples
A list of all the available tunables can be displayed with the no -a command as in 
Example 6-60.

Example 6-60   The no -a example

[p630n04][/home/hennie]> no -a
                 arpqsize = 12
               arpt_killc = 20
              arptab_bsiz = 7
                arptab_nb = 73
                bcastping = 0
      clean_partial_conns = 0
 Chapter 6. Network performance 397



                 delayack = 0
            delayackports = {}
         dgd_packets_lost = 3
            dgd_ping_time = 5
           dgd_retry_time = 5
       directed_broadcast = 0
         extendednetstats = 1
                 fasttimo = 200
        icmp6_errmsg_rate = 10
          icmpaddressmask = 0
ie5_old_multicast_mapping = 0
                   ifsize = 256
          inet_stack_size = 16
               ip6_defttl = 64
                ip6_prune = 1
            ip6forwarding = 0
       ip6srcrouteforward = 1
             ipforwarding = 1
                ipfragttl = 60
        ipignoreredirects = 0
                ipqmaxlen = 100
          ipsendredirects = 1
        ipsrcrouteforward = 1
           ipsrcrouterecv = 1
           ipsrcroutesend = 1
          llsleep_timeout = 3
                lowthresh = 90
                 main_if6 = 0
               main_site6 = 0
                 maxnip6q = 20
                   maxttl = 255
                medthresh = 95
               mpr_policy = 1
              multi_homed = 1
                nbc_limit = 891289
            nbc_max_cache = 131072
            nbc_min_cache = 1
         nbc_ofile_hashsz = 12841
                 nbc_pseg = 0
           nbc_pseg_limit = 4194304
           ndd_event_name = {all}
        ndd_event_tracing = 0
            ndp_mmaxtries = 3
            ndp_umaxtries = 3
                 ndpqsize = 50
                ndpt_down = 3
                ndpt_keep = 120
               ndpt_probe = 5
           ndpt_reachable = 30
398 AIX 5L Practical Performance Tools and Tuning Guide



             ndpt_retrans = 1
             net_buf_size = {all}
             net_buf_type = {all}
        net_malloc_police = 0
           nonlocsrcroute = 1
                 nstrpush = 8
              passive_dgd = 0
         pmtu_default_age = 10
              pmtu_expire = 10
 pmtu_rediscover_interval = 30
              psebufcalls = 20
                 psecache = 1
             pseintrstack = 12288
                psetimers = 20
           rfc1122addrchk = 0
                  rfc1323 = 0
                  rfc2414 = 0
             route_expire = 1
          routerevalidate = 0
                 rto_high = 64
               rto_length = 13
                rto_limit = 7
                  rto_low = 1
                     sack = 0
                   sb_max = 1048576
       send_file_duration = 300
              site6_index = 0
               sockthresh = 75
                  sodebug = 0
                somaxconn = 1024
                 strctlsz = 1024
                 strmsgsz = 0
                strthresh = 85
               strturncnt = 15
          subnetsarelocal = 1
       tcp_bad_port_limit = 0
                  tcp_ecn = 0
       tcp_ephemeral_high = 65535
        tcp_ephemeral_low = 32768
             tcp_finwait2 = 1200
          tcp_init_window = 0
    tcp_inpcb_hashtab_siz = 24499
              tcp_keepcnt = 8
             tcp_keepidle = 14400
             tcp_keepinit = 150
            tcp_keepintvl = 150
     tcp_limited_transmit = 1
             tcp_maxburst = 0
              tcp_mssdflt = 1460
 Chapter 6. Network performance 399



          tcp_nagle_limit = 65535
               tcp_ndebug = 100
              tcp_newreno = 1
           tcp_nodelayack = 0
        tcp_pmtu_discover = 1
            tcp_recvspace = 16384
            tcp_sendspace = 16384
             tcp_timewait = 1
                  tcp_ttl = 60
                  thewall = 1048576
       udp_bad_port_limit = 0
       udp_ephemeral_high = 65535
        udp_ephemeral_low = 32768
    udp_inpcb_hashtab_siz = 24499
        udp_pmtu_discover = 1
            udp_recvspace = 42080
            udp_sendspace = 9216
                  udp_ttl = 30
                 udpcksum = 1
                 use_isno = 1
           use_sndbufpool = 1
[p630n04][/home/hennie]>

The no -o command is used to display or set a specific tunable.In Example 6-61 
the no -o command is used to display the tunable value of tcp_recvspace.

Example 6-61   The no -o example to display a tunable

[p630n04][/home/hennie]> no -o tcp_recvspace
tcp_recvspace = 16384
[p630n04][/home/hennie]>

When changing the value of a tunable make sure you understand the 
characteristics of the tunable.

The no -L command can be used to display the values associated with the 
tunables. All the tunables can be listed with its attributes or a particular tunable 
can be displayed.

To display all the attributes associated with the no command use no -L with no 
arguments as in Example 6-62.

Example 6-62   The no -L command 

[p630n04][/home/hennie]> no -L

General Network Parameters
----------------------------------------------------------------------------------------------
400 AIX 5L Practical Performance Tools and Tuning Guide



NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT           TYPE 
DEPENDENCIES
----------------------------------------------------------------------------------------------
extendednetstats          1      0      0      0      1      boolean           R
----------------------------------------------------------------------------------------------
fasttimo                  200    200    200    50     200    millisecond       D
----------------------------------------------------------------------------------------------
inet_stack_size           16     16     16     1      32K-1  kbyte             R
----------------------------------------------------------------------------------------------
nbc_limit                 891289 891289 891289 0      2G-1   kbyte             D
     thewall
----------------------------------------------------------------------------------------------
nbc_max_cache             128K   128K   128K   1      2G-1   byte              D
     nbc_min_cache
----------------------------------------------------------------------------------------------
nbc_min_cache             1      1      1      1      128K   byte              D
     nbc_max_cache
----------------------------------------------------------------------------------------------
nbc_ofile_hashsz          12841  12841  12841  1      999999 segment           D
----------------------------------------------------------------------------------------------
nbc_pseg                  0      0      0      0      2G-1   segment           D
----------------------------------------------------------------------------------------------
nbc_pseg_limit            4M     4M     4M     0      2G-1   kbyte             D
----------------------------------------------------------------------------------------------
ndd_event_name            {all}  {all}  {all}  0      128    string            D
----------------------------------------------------------------------------------------------
ndd_event_tracing         0      0      0      0      2G-1   numeric           D
----------------------------------------------------------------------------------------------
net_buf_size              {all}  {all}  {all}  0      128    string            D
----------------------------------------------------------------------------------------------
net_buf_type              {all}  {all}  {all}  0      128    string            D
----------------------------------------------------------------------------------------------
net_malloc_police         0      0      0      0      2G-1   numeric           D
----------------------------------------------------------------------------------------------
sb_max                    1M     1M     1M     1      2G-1   byte              D
----------------------------------------------------------------------------------------------
send_file_duration        300    300    300    0      2G-1   second            D
----------------------------------------------------------------------------------------------
sockthresh                75     85     85     0      100    %_of_thewall      D
----------------------------------------------------------------------------------------------
sodebug                   0      0      0      0      1      boolean           C
----------------------------------------------------------------------------------------------
somaxconn                 1K     1K     1K     0      32K-1  numeric           C
----------------------------------------------------------------------------------------------
tcp_inpcb_hashtab_siz     24499  24499  24499  1      999999 numeric           R
----------------------------------------------------------------------------------------------
thewall                   1M     1M     1M     0      1M     kbyte             S
----------------------------------------------------------------------------------------------
udp_inpcb_hashtab_siz     24499  24499  24499  1      83000  numeric           R
 Chapter 6. Network performance 401



----------------------------------------------------------------------------------------------
use_isno                  1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
use_sndbufpool            1      1      1      0      1      boolean           R
----------------------------------------------------------------------------------------------
clean_partial_conns       0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
delayack                  0      0      0      0      3      boolean           D
----------------------------------------------------------------------------------------------
delayackports             {}     {}     {}     0      10     ports_list        D
----------------------------------------------------------------------------------------------
rfc1323                   0      0      0      0      1      boolean           C
----------------------------------------------------------------------------------------------
rfc2414                   0      0      0      0      1      boolean           C
----------------------------------------------------------------------------------------------
rto_high                  64     64     64     2      2G-1   roundtriptime R
     rto_low
----------------------------------------------------------------------------------------------
rto_length                13     13     13     1      64     roundtriptime R
----------------------------------------------------------------------------------------------
rto_limit                 7      7      7      1      64     roundtriptime R
     rto_high
     rto_low
----------------------------------------------------------------------------------------------
rto_low                   1      1      1      1      63     roundtriptime     R
     rto_high
----------------------------------------------------------------------------------------------
sack                      0      0      0      0      1      boolean           C
----------------------------------------------------------------------------------------------
tcp_bad_port_limit        0      0      0      0      2G-1   numeric           D
----------------------------------------------------------------------------------------------
tcp_ecn                   0      0      0      0      1      boolean           C
----------------------------------------------------------------------------------------------
tcp_ephemeral_high        64K-1  64K-1  64K-1  32K+1  64K-1  numeric           D
     tcp_ephemeral_low
----------------------------------------------------------------------------------------------
tcp_ephemeral_low         32K    32K    32K    1K     65534  numeric           D
     tcp_ephemeral_high
----------------------------------------------------------------------------------------------
tcp_finwait2              1200   1200   1200   0      64K-1  halfsecond        D
----------------------------------------------------------------------------------------------
tcp_init_window           0      0      0      0      32K-1  byte              C
----------------------------------------------------------------------------------------------
tcp_keepcnt               8      8      8      0      2G-1   numeric           D
----------------------------------------------------------------------------------------------
tcp_keepidle              14400  14400  14400  1      2G-1   halfsecond        C
----------------------------------------------------------------------------------------------
tcp_keepinit              150    150    150    1      2G-1   halfsecond        D
----------------------------------------------------------------------------------------------
402 AIX 5L Practical Performance Tools and Tuning Guide



tcp_keepintvl             150    150    150    1      32K-1  halfsecond        C
----------------------------------------------------------------------------------------------
tcp_limited_transmit      1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
tcp_maxburst              0      0      0      0      32K-1  numeric           D
----------------------------------------------------------------------------------------------
tcp_mssdflt               1460   1460   1460   1      64K-1  byte              C
----------------------------------------------------------------------------------------------
tcp_nagle_limit           64K-1  64K-1  64K-1  0      64K-1  byte              D
----------------------------------------------------------------------------------------------
tcp_ndebug                100    100    100    0      32K-1  numeric           D
----------------------------------------------------------------------------------------------
tcp_newreno               1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
tcp_nodelayack            0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
tcp_recvspace             16K    16K    16K    4K     2G-1   byte              C
     sb_max
----------------------------------------------------------------------------------------------
tcp_sendspace             16K    16K    16K    4K     2G-1   byte              C
     sb_max
----------------------------------------------------------------------------------------------
tcp_timewait              1      1      1      1      5      15_second         D
----------------------------------------------------------------------------------------------
tcp_ttl                   60     60     60     1      255    0.6_second        C
----------------------------------------------------------------------------------------------
udp_bad_port_limit        0      0      0      0      2G-1   numeric           D
----------------------------------------------------------------------------------------------
udp_ephemeral_high        64K-1  64K-1  64K-1  32K+1  64K-1  numeric           D
     udp_ephemeral_low
----------------------------------------------------------------------------------------------
udp_ephemeral_low         32K    32K    32K    1K     65534  numeric           D
     udp_ephemeral_high
----------------------------------------------------------------------------------------------
udp_recvspace             42080  42080  42080  4K     2G-1   byte              C
     sb_max
----------------------------------------------------------------------------------------------
udp_sendspace             9K     9K     9K     4K     2G-1   byte              C
     sb_max
----------------------------------------------------------------------------------------------
udp_ttl                   30     30     30     1      255    second            C
----------------------------------------------------------------------------------------------
udpcksum                  1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
directed_broadcast        0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
ie5_old_multicast_mapping 0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
ip6_defttl                64     64     64     1      255    numeric           D
 Chapter 6. Network performance 403



----------------------------------------------------------------------------------------------
ip6_prune                 1      1      1      1      2G-1   second            D
----------------------------------------------------------------------------------------------
ip6forwarding             0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
ip6srcrouteforward        1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
ipforwarding              1      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
ipfragttl                 60     60     60     1      255    halfsecond        D
----------------------------------------------------------------------------------------------
ipignoreredirects         0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
ipqmaxlen                 100    100    100    100    2G-1   numeric           R
----------------------------------------------------------------------------------------------
ipsendredirects           1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
ipsrcrouteforward         1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
ipsrcrouterecv            1      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
ipsrcroutesend            1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
maxnip6q                  20     20     20     1      32K-1  numeric           D
----------------------------------------------------------------------------------------------
multi_homed               1      1      1      0      3      boolean           D
----------------------------------------------------------------------------------------------
nonlocsrcroute            1      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
subnetsarelocal           1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
arpqsize                  12     12     12     1      32K-1  numeric           D
     tcp_pmtu_discover
     udp_pmtu_discover
----------------------------------------------------------------------------------------------
arpt_killc                20     20     20     0      32K-1  minute            D
----------------------------------------------------------------------------------------------
arptab_bsiz               7      7      7      1      32K-1  bucket_size       R
----------------------------------------------------------------------------------------------
arptab_nb                 73     73     73     1      32K-1  buckets           R
----------------------------------------------------------------------------------------------
dgd_packets_lost          3      3      3      1      32K-1  numeric           D
----------------------------------------------------------------------------------------------
dgd_ping_time             5      5      5      1      2G-1   second            D
----------------------------------------------------------------------------------------------
dgd_retry_time            5      5      5      1      32K-1  numeric           D
----------------------------------------------------------------------------------------------
ndp_mmaxtries             3      3      3      0      2G-1   numeric           D
----------------------------------------------------------------------------------------------
404 AIX 5L Practical Performance Tools and Tuning Guide



ndp_umaxtries             3      3      3      0      2G-1   numeric           D
----------------------------------------------------------------------------------------------
ndpqsize                  50     50     50     1      32K-1  numeric           D
----------------------------------------------------------------------------------------------
ndpt_down                 3      3      3      1      2G-1   halfsecond        D
----------------------------------------------------------------------------------------------
ndpt_keep                 120    120    120    1      2G-1   halfsecond        D
----------------------------------------------------------------------------------------------
ndpt_probe                5      5      5      1      2G-1   halfsecond        D
----------------------------------------------------------------------------------------------
ndpt_reachable            30     30     30     1      2G-1   halfsecond        D
----------------------------------------------------------------------------------------------
ndpt_retrans              1      1      1      1      2G-1   halfsecond        D
----------------------------------------------------------------------------------------------
passive_dgd               0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
rfc1122addrchk            0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
lowthresh                 90     90     90     0      100    %_of_thewall      D
----------------------------------------------------------------------------------------------
medthresh                 95     95     95     0      100    %_of_thewall      D
----------------------------------------------------------------------------------------------
nstrpush                  8      8      8      8      32K-1  numeric           R
----------------------------------------------------------------------------------------------
psebufcalls               20     20     20     20     2G-1   numeric           I
----------------------------------------------------------------------------------------------
psecache                  1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
pseintrstack              12K    12K    12K    12K    2G-1   byte              R
----------------------------------------------------------------------------------------------
psetimers                 20     20     20     20     2G-1   numeric           I
----------------------------------------------------------------------------------------------
strctlsz                  1K     1K     1K     0      32K-1  byte              D
----------------------------------------------------------------------------------------------
strmsgsz                  0      0      0      0      32K-1  byte              D
----------------------------------------------------------------------------------------------
strthresh                 85     85     85     0      100    %_of_thewall      D
----------------------------------------------------------------------------------------------
strturncnt                15     15     15     1      2G-1   numeric           D
----------------------------------------------------------------------------------------------
bcastping                 0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
icmp6_errmsg_rate         10     10     10     1      255    msg/second        D
----------------------------------------------------------------------------------------------
icmpaddressmask           0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
ifsize                    256    256    256    8      1K     numeric           R
----------------------------------------------------------------------------------------------
llsleep_timeout           3      3      3      1      2G-1   second            D
 Chapter 6. Network performance 405



----------------------------------------------------------------------------------------------
main_if6                  0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
main_site6                0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
maxttl                    255    255    255    1      255    second            D
----------------------------------------------------------------------------------------------
mpr_policy                1      1      1      1      5      numeric           D
----------------------------------------------------------------------------------------------
pmtu_default_age          10     10     10     0      32K-1  minute            D
----------------------------------------------------------------------------------------------
pmtu_expire               10     10     10     0      32K-1  minute            D
----------------------------------------------------------------------------------------------
pmtu_rediscover_interval  30     30     30     0      32K-1  minute            D
----------------------------------------------------------------------------------------------
route_expire              1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
routerevalidate           0      0      0      0      1      boolean           D
----------------------------------------------------------------------------------------------
site6_index               0      0      0      0      32K-1  numeric           D
----------------------------------------------------------------------------------------------
tcp_pmtu_discover         1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------
udp_pmtu_discover         1      1      1      0      1      boolean           D
----------------------------------------------------------------------------------------------

n/a means parameter not supported by the current platform or kernel

Parameter types:
    S = Static: cannot be changed
    D = Dynamic: can be freely changed
    B = Bosboot: can only be changed using bosboot and reboot
    R = Reboot: can only be changed during reboot
    C = Connect: changes are only effective for future socket connections
    M = Mount: changes are only effective for future mountings
    I = Incremental: can only be incremented

Value conventions:
    K = Kilo: 2^10       G = Giga: 2^30       P = Peta: 2^50
    M = Mega: 2^20       T = Tera: 2^40       E = Exa: 2^60
[p630n04][/home/hennie]>

As can be seen in Example 6-62 on page 400 the no -L command displays a list 
of all the tunables and detail about the value of each tunable.

The fields displayed by the no -L command are:

NAME This displays the name of the tunable
406 AIX 5L Practical Performance Tools and Tuning Guide



CUR This displays the current value of the tunable

DEF This displays the default value of the tunable

BOOT This displays the value of the tunable after a reboot.

MIN This displays the minimum value of the tunable

MAX This displays the maximum value of the tunable.

UNIT This displays the tunables unit of measurement

TYPE This displays the parameter type. The parameter type 
specifies how a particular tunable change will take effect. 

D - Dynamic, the tunable value is a dynamic value and a 
change to the tunable will take effect immediately. 

S - Static, the tunable is a static value and the value of the 
tunable cannot be changed.

R - Reboot, the tunable value is a reboot value and the 
tunable change will only take effect after a reboot.

B - Bosboot, the tunable value is a bosboot value and the 
user needs to run the bosboot command for the BLV (Boot 
logical volume) to be updated. Changes will only take 
effect after a reboot.

M - Mount, the value of the tunable is a mount value and 
the tunable will only take effect after the file system is 
remounted or new mounts occur on a file system.

I - Incremental, the value of the tunable is incremental and 
can only be incremented, except at boot time.

C - Connect, the value of the tunable is connection 
orientated, the tunable will only take effect for new socket 
connections.

DEPENDENCIES This displays a list of dependable tunables, it will display 
one dependency per line.

To display the attributes associated with particular tunable see Example 6-63 on 
page 408. This example displays the output of the no -L command to display the 
value attributes associated with the tcp_recvspace tunable.
 Chapter 6. Network performance 407



Example 6-63   The no -L tcp_recvspace

[p630n04][/home/hennie]> no -L tcp_recvspace
----------------------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT           TYPE
     DEPENDENCIES
----------------------------------------------------------------------------------------------
tcp_recvspace             32K    16K    16K    4K     2G-1   byte              C
     sb_max
----------------------------------------------------------------------------------------------
[p630n04][/home/hennie]>

The no -x command gives the same information as the no -L command, it just 
displays the information of each tunable in a comma separated list. See 
Example 6-64.

Example 6-64   The no -x command

[p630n04][/]> no -x
arpqsize,12,12,12,1,32767,numeric,D,tcp_pmtu_discover,udp_pmtu_discover,
arpt_killc,20,20,20,0,32767,minute,D,
arptab_bsiz,7,7,7,1,32767,bucket_size,R,
arptab_nb,73,73,73,1,32767,buckets,R,
bcastping,0,0,0,0,1,boolean,D,
clean_partial_conns,0,0,0,0,1,boolean,D,
delayack,0,0,0,0,3,boolean,D,
delayackports,{},{},{},0,10,ports_list,D,
dgd_packets_lost,3,3,3,1,32767,numeric,D,
dgd_ping_time,5,5,5,1,2147483647,second,D,
dgd_retry_time,5,5,5,1,32767,numeric,D,
directed_broadcast,0,0,0,0,1,boolean,D,
extendednetstats,1,0,0,0,1,boolean,R,
fasttimo,200,200,200,50,200,millisecond,D,
icmp6_errmsg_rate,10,10,10,1,255,msg/second,D,
icmpaddressmask,0,0,0,0,1,boolean,D,
ie5_old_multicast_mapping,0,0,0,0,1,boolean,D,
ifsize,256,256,256,8,1024,numeric,R,
inet_stack_size,16,16,16,1,32767,kbyte,R,
ip6_defttl,64,64,64,1,255,numeric,D,
ip6_prune,1,1,1,1,2147483647,second,D,
ip6forwarding,0,0,0,0,1,boolean,D,
ip6srcrouteforward,1,1,1,0,1,boolean,D,
ipforwarding,1,0,0,0,1,boolean,D,
ipfragttl,60,60,60,1,255,halfsecond,D,
ipignoreredirects,0,0,0,0,1,boolean,D,
ipqmaxlen,100,100,100,100,2147483647,numeric,R,
ipsendredirects,1,1,1,0,1,boolean,D,
ipsrcrouteforward,1,1,1,0,1,boolean,D,
ipsrcrouterecv,1,0,0,0,1,boolean,D,
408 AIX 5L Practical Performance Tools and Tuning Guide



ipsrcroutesend,1,1,1,0,1,boolean,D,
llsleep_timeout,3,3,3,1,2147483647,second,D,
lowthresh,90,90,90,0,100,%_of_thewall,D,
main_if6,0,0,0,0,1,boolean,D,
main_site6,0,0,0,0,1,boolean,D,
maxnip6q,20,20,20,1,32767,numeric,D,
maxttl,255,255,255,1,255,second,D,
medthresh,95,95,95,0,100,%_of_thewall,D,
mpr_policy,1,1,1,1,5,numeric,D,
multi_homed,1,1,1,0,3,boolean,D,
nbc_limit,891289,891289,891289,0,2147483647,kbyte,D,thewall,
nbc_max_cache,131072,131072,131072,1,2147483647,byte,D,nbc_min_cache,
nbc_min_cache,1,1,1,1,131072,byte,D,nbc_max_cache,
nbc_ofile_hashsz,12841,12841,12841,1,999999,segment,D,
nbc_pseg,0,0,0,0,2147483647,segment,D,
nbc_pseg_limit,4194304,4194304,4194304,0,2147483647,kbyte,D,
ndd_event_name,{all},{all},{all},0,128,string,D,
ndd_event_tracing,0,0,0,0,2147483647,numeric,D,
ndp_mmaxtries,3,3,3,0,2147483647,numeric,D,
ndp_umaxtries,3,3,3,0,2147483647,numeric,D,
ndpqsize,50,50,50,1,32767,numeric,D,
ndpt_down,3,3,3,1,2147483647,halfsecond,D,
ndpt_keep,120,120,120,1,2147483647,halfsecond,D,
ndpt_probe,5,5,5,1,2147483647,halfsecond,D,
ndpt_reachable,30,30,30,1,2147483647,halfsecond,D,
ndpt_retrans,1,1,1,1,2147483647,halfsecond,D,
net_buf_size,{all},{all},{all},0,128,string,D,
net_buf_type,{all},{all},{all},0,128,string,D,
net_malloc_police,0,0,0,0,2147483647,numeric,D,
nonlocsrcroute,1,0,0,0,1,boolean,D,
nstrpush,8,8,8,8,32767,numeric,R,
passive_dgd,0,0,0,0,1,boolean,D,
pmtu_default_age,10,10,10,0,32767,minute,D,
pmtu_expire,10,10,10,0,32767,minute,D,
pmtu_rediscover_interval,30,30,30,0,32767,minute,D,
psebufcalls,20,20,20,20,2147483647,numeric,I,
psecache,1,1,1,0,1,boolean,D,
pseintrstack,12288,12288,12288,12288,2147483647,byte,R,
psetimers,20,20,20,20,2147483647,numeric,I,
rfc1122addrchk,0,0,0,0,1,boolean,D,
rfc1323,0,0,0,0,1,boolean,C,
rfc2414,0,0,0,0,1,boolean,C,
route_expire,1,1,1,0,1,boolean,D,
routerevalidate,0,0,0,0,1,boolean,D,
rto_high,64,64,64,2,2147483647,roundtriptime,R,rto_low,
rto_length,13,13,13,1,64,roundtriptime,R,
rto_limit,7,7,7,1,64,roundtriptime,R,rto_high,rto_low,
rto_low,1,1,1,1,63,roundtriptime,R,rto_high,
sack,0,0,0,0,1,boolean,C,
 Chapter 6. Network performance 409



sb_max,1048576,1048576,1048576,1,2147483647,byte,D,
send_file_duration,300,300,300,0,2147483647,second,D,
site6_index,0,0,0,0,32767,numeric,D,
sockthresh,75,85,85,0,100,%_of_thewall,D,
sodebug,0,0,0,0,1,boolean,C,
somaxconn,1024,1024,1024,0,32767,numeric,C,
strctlsz,1024,1024,1024,0,32767,byte,D,
strmsgsz,0,0,0,0,32767,byte,D,
strthresh,85,85,85,0,100,%_of_thewall,D,
strturncnt,15,15,15,1,2147483647,numeric,D,
subnetsarelocal,1,1,1,0,1,boolean,D,
tcp_bad_port_limit,0,0,0,0,2147483647,numeric,D,
tcp_ecn,0,0,0,0,1,boolean,C,
tcp_ephemeral_high,65535,65535,65535,32769,65535,numeric,D,tcp_ephemeral_low,
tcp_ephemeral_low,32768,32768,32768,1024,65534,numeric,D,tcp_ephemeral_high,
tcp_finwait2,1200,1200,1200,0,65535,halfsecond,D,
tcp_init_window,0,0,0,0,32767,byte,C,
tcp_inpcb_hashtab_siz,24499,24499,24499,1,999999,numeric,R,
tcp_keepcnt,8,8,8,0,2147483647,numeric,D,
tcp_keepidle,14400,14400,14400,1,2147483647,halfsecond,C,
tcp_keepinit,150,150,150,1,2147483647,halfsecond,D,
tcp_keepintvl,150,150,150,1,32767,halfsecond,C,
tcp_limited_transmit,1,1,1,0,1,boolean,D,
tcp_maxburst,0,0,0,0,32767,numeric,D,
tcp_mssdflt,1460,1460,1460,1,65535,byte,C,
tcp_nagle_limit,65535,65535,65535,0,65535,byte,D,
tcp_ndebug,100,100,100,0,32767,numeric,D,
tcp_newreno,1,1,1,0,1,boolean,D,
tcp_nodelayack,0,0,0,0,1,boolean,D,
tcp_pmtu_discover,1,1,1,0,1,boolean,D,
tcp_recvspace,16384,16384,16k,4096,2147483647,byte,C,sb_max,
tcp_sendspace,16384,16384,16384,4096,2147483647,byte,C,sb_max,
tcp_timewait,1,1,1,1,5,15_second,D,
tcp_ttl,60,60,60,1,255,0.6_second,C,
thewall,1048576,1048576,1048576,0,1048576,kbyte,S,
udp_bad_port_limit,0,0,0,0,2147483647,numeric,D,
udp_ephemeral_high,65535,65535,65535,32769,65535,numeric,D,udp_ephemeral_low,
udp_ephemeral_low,32768,32768,32768,1024,65534,numeric,D,udp_ephemeral_high,
udp_inpcb_hashtab_siz,24499,24499,24499,1,83000,numeric,R,
udp_pmtu_discover,1,1,1,0,1,boolean,D,
udp_recvspace,42080,42080,42080,4096,2147483647,byte,C,sb_max,
udp_sendspace,9216,9216,9216,4096,2147483647,byte,C,sb_max,
udp_ttl,30,30,30,1,255,second,C,
udpcksum,1,1,1,0,1,boolean,D,
use_isno,1,1,1,0,1,boolean,D,
use_sndbufpool,1,1,1,0,1,boolean,R,
[p630n04][/]>
410 AIX 5L Practical Performance Tools and Tuning Guide



To display a specific tunable using the no -x command see Example 6-65.

Example 6-65   The no -x tcp_recvspace

[p630n04][/]> no -x tcp_recvspace
tcp_recvspace,16384,16384,16k,4096,2147483647,byte,C,sb_max,
[p630n04][/]>

The output of the no -x command lists the following attributes. “tunable, current, 
default, reboot, min, max, unit, type” in a comma separated list.

As can be seen from the output the command the current value of the tunable is 
32K, the default value is 16K, the minimum value is 4K, the maximum value is 
2G-1. The unit used for this tunable is bytes, and the tunable type is C (Connect), 
which means if the tunable is changed the changes will only take effect for new 
connections. This tunable is also dependent on the sb_max tunable.

To better understand what a specific tunable is used for you can use the no -h 
command to display a description of the tunable. As can be seen in 
Example 6-66 a very detailed explanation is given about the tcp_recvspace 
tunable, when using the no -h option.

Example 6-66   The no -h example

[p630n04][/home/hennie]> no -h tcp_recvspace

Help for tunable tcp_recvspace:

Specifies the system default socket buffer size for receiving data. This 
affects the window size used by TCP. Setting the socket buffer size to 16KB 
(16,384) improves performance over Standard Ethernet and token-ring networks. 
The default is a value of 4096; however, a value of 16,384 is set automatically 
by the rc.net file or the rc.bsdnet file (if Berkeley-style configuration is 
issued). Lower bandwidth networks, such as Serial Line Internet Protocol 
(SLIP), or higher bandwidth networks, such as Serial Optical Link, should have 
different optimum buffer sizes. The optimum buffer size is the product of the 
media bandwidth and the average round-trip time of a packet. In AIX 4.3.3 and 
later versions, the tcp_recvspace network option can also be set on a per 
interface basis via the ifconfig command. The tcp_recvspace attribute must 
specify a socket buffer size less than or equal to the setting of the sb_max 
attribute. tcp_recvspace is a Connect attribute, but for daemons started by 
inetd, the following command needs to be executed: 'stopsrc -s inetd ; startsrc 
-s inetd' 

To change the value of a tunable with no -o see Example 6-67 on page 412. The 
no -o command is used to change the value of the tcp_recvspace to 32768.
 Chapter 6. Network performance 411



Example 6-67   The no -o

[p630n04][/home/hennie]> no -o tcp_recvspace=32768
Setting tcp_recvspace to 32768
Change to tunable tcp_recvspace, will only be effective for future connections
[p630n04][/home/hennie]> 

All tunables set by the no -o command is only valid for the duration that the 
system is up. If the system is rebooted it automatically uses the default values of 
the tunables.

AIX 5.2 introduced a more flexible and centralized mode for setting most of the 
AIX kernel tuning parameters. It is now possible to make permanent changes 
without editing any rc files. This is achieved by placing the reboot values for all 
tunable parameters in a new /etc/tunables/nextboot stanza file. When the 
machine is rebooted, the values in that file are automatically applied.

The /etc/tunables/lastboot stanza file is automatically generated with all the 
values that were set immediately after the reboot. This provides the ability to 
return to those values at any time. The /etc/tunables/lastboot.log log file 
records any changes made or that could not be made during reboot. There are 
sets of SMIT panels and a Web-based System Manager plug-in also available to 
manipulate current and reboot values for all tuning parameters, as well as the 
files in the /etc/tunables directory. 

Pre 5.2 compatibility mode considerations
Pre 5.2 compatibility mode is controlled by the pre520tune attribute of sys0. 
When running in pre 5.2 compatibility mode, reboot values for parameters, 
except those of type Bosboot, are not really meaningful because in this mode 
they are not applied at boot time.

In pre 5.2 compatibility mode, setting reboot values to tuning parameters 
continues to be achieved by imbedding calls to tuning commands in rc scripts 
called during the boot sequence. Parameters of type Reboot can therefore be set 
without the -r flag, so that existing scripts continue to work.

This mode is automatically turned ON when a machine is MIGRATED to AIX 5L 
Version 5.2. For complete installations, it is turned OFF and the reboot values for 
parameters are set by applying the content of the /etc/tunables/nextboot file 
during the reboot sequence. Only in that mode are the -r and -p flags fully 
functional. 

The following commands were introduced in AIX 5.2 to modify the tunables files 
(see Table 6-2 on page 413).
412 AIX 5L Practical Performance Tools and Tuning Guide



Table 6-2   AIX 5.2 Tunables commands

To make any changes to no tunables be effective after a reboot the -r or -p 
commands can be used.

When using the -r option with the no command will have the tunable change only 
take effect after a reboot.

In Example 6-68 we are changing the value of the tcp_recvspace to 16k which is 
the default but we only want changes to take effect after the reboot. 

Example 6-68   The no -r -o tcp_recvspace

[p630n04][/etc/tunables]> no -r -o tcp_recvspace=16k
Setting tcp_recvspace to 16k in nextboot file
Warning: changes will take effect only at next reboot
[p630n04][/etc/tunables]>

As explained earlier, the /etc/tunables/nextboot file is used to set values after a 
reboot (see Example 6-69).

Example 6-69   Contents of the /etc/tunables/nextboot file

[p630n04][/etc/tunables]> more /etc/tunables/nextboot
# IBM_PROLOG_BEGIN_TAG
# This is an automatically generated prolog. #
# bos530 src/bos/usr/sbin/perf/tune/nextboot 1.1
#
# Licensed Materials - Property of IBM
#
# (C) COPYRIGHT International Business Machines Corp. 2002
# All Rights Reserved
#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
# IBM_PROLOG_END_TAG

vmo:

Command Purpose

tunsave Saves values to a stanza file

tunrestore Applies applicable parameter values that are specified in a file

tuncheck Validates files that are created manually

tundefault Resets tunable parameters to their default values
 Chapter 6. Network performance 413



no:
        tcp_recvspace = "16k"
[p630n04][/etc/tunables]>

The vmo, schedo, ioo, no and nfso commands all make use of this file to store 
their tunable values that will be set at next reboot.

After we executed the no -r -o tcp_recvspace command an entry gets made in 
the /etc/tunables/nextboot file. In Example 6-69 on page 413 you will notice 
that the tcp_recvspace value is set to 16k this will be set when the system is 
rebooted.

Also if you query the current value of the tcp_recvspace tunable you will note that 
the tunable value has not changed. See Example 6-70.

Example 6-70   The no -o tcp_recvspace to display the current value

[p630n04][/etc/tunables]> no -o tcp_recvspace
tcp_recvspace = 32768
[p630n04][/etc/tunables]>

To have no tunable values take effect immediately and after a reboot use the no 
-p command. See Example 6-71. This will have the current no tunable change to 
the specified value as well as an entry be made in the /etc/tunables/nextboot 
file.

Example 6-71   The no -p -o tcp_recvspace command

[p630n04][/etc/tunables]> no -p -o tcp_recvspace=16k
Setting tcp_recvspace to 16k
Setting tcp_recvspace to 16k in nextboot file
Change to tunable tcp_recvspace, will only be effective for future connections
[p630n04][/etc/tunables]> 

If you want to change the value of a tunable to its default value make use of the 
no -d command to change a specific value.

In Example 6-72 we are using the no -d command to change the value of the 
tcp_recvspace tunable to its default value which is 16384 bytes.

Example 6-72   The no -d tcp_recvspace command

[p630n04][/]> no -d tcp_recvspace
Setting tcp_recvspace to 16384
[p630n04][/]>
414 AIX 5L Practical Performance Tools and Tuning Guide



6.7.2  The Interface Specific Network Options (ISNO)
In AIX 5L V5.2 and later Interface Specific Network Options (ISNO) made it 
possible to define certain no option on a specific interface.

In Example 6-73 we are using the lsattr to display information about a particular 
interface you will note at the end of the report that it lists attributes that would 
normally be set with the no command.

When using no to set certain tunables they are defined system wide, if tunables 
are defined on a particular interface using the chdev command, they will be 
defined for the particular interface giving you better manageability.

Example 6-73   The lsattr -El en0 command

[p630n04][/home/hennie/nfso]> lsattr -El en0
alias4                       IPv4 Alias including Subnet Mask           True
alias6                       IPv6 Alias including Prefix Length         True
arp           on             Address Resolution Protocol (ARP)          True
authority                    Authorized Users                           True
broadcast                    Broadcast Address                          True
mtu           1500           Maximum IP Packet Size for This Device     True
netaddr       192.168.100.34 Internet Address                           True
netaddr6                     IPv6 Internet Address                      True
netmask       255.255.255.0  Subnet Mask                                True
prefixlen                    Prefix Length for IPv6 Internet Address    True
remmtu        576            Maximum IP Packet Size for REMOTE Networks True
rfc1323                      Enable/Disable TCP RFC 1323 Window Scaling True
security      none           Security Level                             True
state         up             Current Interface Status                   True
tcp_mssdflt                  Set TCP Maximum Segment Size               True
tcp_nodelay                  Enable/Disable TCP_NODELAY Option          True
tcp_recvspace                Set Socket Buffer Space for Receiving      True
tcp_sendspace                Set Socket Buffer Space for Sending        True
[p630n04][/home/hennie/nfso]> 

In Example 6-74 on page 416 we use the chdev command to change an ISNO 
attribute of an interface. 

Note: If you use the no -d command to chance a tunable to its default value, 
the /etc/tunables/nextboot file is not updated. Use the no -p -d combination to 
have a command set to its default and update the next reboot value.

Note: If no value is displayed next to the ISNO fields, the no values for that 
tunable is used by the interface.
 Chapter 6. Network performance 415



Example 6-74   The chdev command to change ISNO value

[p630n04][/home/hennie]> chdev -l en0 -a tcp_recvspace=32768
en0 changed
[p630n04][/home/hennie]> lsattr -El en0

In Example 6-75 you will note that after changing the tcp_recvspace attribute of 
the interface, the value gets displayed next to the output of the command.

Example 6-75   The lsattr to display ISNO values

[p630n04][/home/hennie]> lsattr -El en0
alias4                       IPv4 Alias including Subnet Mask           True
alias6                       IPv6 Alias including Prefix Length         True
arp           on             Address Resolution Protocol (ARP)          True
authority                    Authorized Users                           True
broadcast                    Broadcast Address                          True
mtu           1500           Maximum IP Packet Size for This Device     True
netaddr       192.168.100.34 Internet Address                           True
netaddr6                     IPv6 Internet Address                      True
netmask       255.255.255.0  Subnet Mask                                True
prefixlen                    Prefix Length for IPv6 Internet Address    True
remmtu        576            Maximum IP Packet Size for REMOTE Networks True
rfc1323                      Enable/Disable TCP RFC 1323 Window Scaling True
security      none           Security Level                             True
state         up             Current Interface Status                   True
tcp_mssdflt                  Set TCP Maximum Segment Size               True
tcp_nodelay                  Enable/Disable TCP_NODELAY Option          True
tcp_recvspace 32768          Set Socket Buffer Space for Receiving      True
tcp_sendspace                Set Socket Buffer Space for Sending        True
[p630n04][/home/hennie]>

6.7.3  The nfso command
The nfso command enables the configuration of Network File System (NFS) 
variables and removal of file locks from NFS client systems on the server. Prior to 
changing NFS variables to tune NFS performance, monitor the load on the 
system using the nfsstat, netstat, vmstat, and iostat commands.

The nfso command is located in /usr/sbin/nfso and is part of the 
bos.net.nfs.client fileset, which is installable from the AIX base installation media.

nfso syntax
The syntax of the nfso command is:

nfso [ -p | -r ] [ -c ] { -o Tunable[ =Newvalue ] }
nfso [ -p | -r ] { -d Tunable }
416 AIX 5L Practical Performance Tools and Tuning Guide



nfso [ -p | -r ] -D
nfso [ -p | -r ] -a [ -c ]
nfso -?
nfso -h Tunable
nfso -l Hostname
nfso [ -c ]
nfso -L [ Tunable ]
nfso -x [ Tunable ]

Multiple flags -o, -d, and -L are allowed.

Information about measurement and sampling
The nfso command reads the NFS network variables from kernel memory and 
writes changes to kernel memory of the running system. The values not equal to 
the default values must be set after each system start. This can be done by 
adding the necessary nfso variable values into the /etc/tunables/nextboot file. 
Most changes performed by nfso take effect immediately.

Examples for nfso
This section shows some examples of the nfso command.

Listing all of the tunables and their current values
Example 6-76 uses the nfso -a command to display the current NFS network 
variables. This command should always be used to display and store the current 
setting prior changing them.

Example 6-76   Display and store in a file the current NFS network variables

[p630n04][/home/hennie/nfso]> nfso -a
                   portcheck = 0
                 udpchecksum = 1
              nfs_socketsize = 600000
          nfs_tcp_socketsize = 600000
           nfs_setattr_error = 0
        nfs_gather_threshold = 4096
         nfs_repeat_messages = 0
nfs_udp_duplicate_cache_size = 5000
nfs_tcp_duplicate_cache_size = 5000
    nfs_server_base_priority = 0
         nfs_dynamic_retrans = 1
            nfs_iopace_pages = 0
         nfs_max_connections = 0
             nfs_max_threads = 3891
      nfs_use_reserved_ports = 0
    nfs_device_specific_bufs = 1
           nfs_server_clread = 1
                 nfs_rfc1323 = 0
 Chapter 6. Network performance 417



          nfs_max_write_size = 32768
           nfs_max_read_size = 32768
       nfs_allow_all_signals = 0
                 nfs_v2_pdts = 1
                 nfs_v3_pdts = 1
              nfs_v2_vm_bufs = 1000
              nfs_v3_vm_bufs = 1000
   nfs_securenfs_authtimeout = 0
   nfs_v3_server_readdirplus = 1
           lockd_debug_level = 0
           statd_debug_level = 0
           statd_max_threads = 50
    nfs_v4_fail_over_timeout = 0
             utf8_validation = 1
                 nfs_v4_pdts = 1
              nfs_v4_vm_bufs = 1000
[p630n04][/home/hennie/nfso]>

Displaying characteristics of all tunables
Example 6-77 displays the output when using the nfso command with the -L flag 
to display all of the variables and their characteristics. 

Example 6-77   Listing of nfso tunables

[p630n04][/home/hennie/nfso]> nfso -L
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT           TYPE
     DEPENDENCIES
--------------------------------------------------------------------------------
portcheck                 0      0      0      0      1      On/Off            D
--------------------------------------------------------------------------------
udpchecksum               1      1      1      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_socketsize            600000 600000 600000 40000  1M     Bytes             D
--------------------------------------------------------------------------------
nfs_tcp_socketsize        600000 600000 600000 40000  1M     Bytes             D
--------------------------------------------------------------------------------
nfs_setattr_error         0      0      0      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_gather_threshold      4K     4K     4K     512    8K+1   Bytes             D
--------------------------------------------------------------------------------
nfs_repeat_messages       0      0      0      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_udp_duplicate_cache_size
                          5000   5000   5000   5000   100000 Req               I
--------------------------------------------------------------------------------
nfs_tcp_duplicate_cache_size
                          5000   5000   5000   5000   100000 Req               I
--------------------------------------------------------------------------------
nfs_server_base_priority  0      0      0      31     125    Pri               D
418 AIX 5L Practical Performance Tools and Tuning Guide



--------------------------------------------------------------------------------
nfs_dynamic_retrans       1      1      1      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_iopace_pages          0      0      0      0      64K-1  Pages             D
--------------------------------------------------------------------------------
nfs_max_connections       0      0      0      0      10000  Number            D
--------------------------------------------------------------------------------
nfs_max_threads           3891   3891   3891   5      3891   Threads           D
--------------------------------------------------------------------------------
nfs_use_reserved_ports    0      0      0      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_device_specific_bufs  1      1      1      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_server_clread         1      1      1      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_rfc1323               0      0      0      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_max_write_size        32K    32K    32K    512    64K    Bytes             D
--------------------------------------------------------------------------------
nfs_max_read_size         32K    32K    32K    512    64K    Bytes             D
--------------------------------------------------------------------------------
nfs_allow_all_signals     0      0      0      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_v2_pdts               1      1      1      1      8      PDTs              M
--------------------------------------------------------------------------------
nfs_v3_pdts               1      1      1      1      8      PDTs              M
--------------------------------------------------------------------------------
nfs_v2_vm_bufs            1000   1000   1000   512    5000   Bufs              I
--------------------------------------------------------------------------------
nfs_v3_vm_bufs            1000   1000   1000   512    5000   Bufs              I
--------------------------------------------------------------------------------
nfs_securenfs_authtimeout 0      0      0      0      60     Seconds           D
--------------------------------------------------------------------------------
nfs_v3_server_readdirplus 1      1      1      0      1      On/Off            D
--------------------------------------------------------------------------------
lockd_debug_level         0      0      0      0      10     Level             D
--------------------------------------------------------------------------------
statd_debug_level         0      0      0      0      10     Level             D
--------------------------------------------------------------------------------
statd_max_threads         50     50     50     1      1000   Threads           D
--------------------------------------------------------------------------------
nfs_v4_fail_over_timeout  0      0      0      0      3600   Seconds           D
--------------------------------------------------------------------------------
utf8_validation           1      1      1      0      1      On/Off            D
--------------------------------------------------------------------------------
nfs_v4_pdts               1      1      1      1      8      PDTs              M
--------------------------------------------------------------------------------
nfs_v4_vm_bufs            1000   1000   1000   512    5000   Bufs              I
--------------------------------------------------------------------------------
 Chapter 6. Network performance 419



n/a means parameter not supported by the current platform or kernel

Parameter types:
    S = Static: cannot be changed
    D = Dynamic: can be freely changed
    B = Bosboot: can only be changed using bosboot and reboot
    R = Reboot: can only be changed during reboot
    C = Connect: changes are only effective for future socket connections
    M = Mount: changes are only effective for future mountings
    I = Incremental: can only be incremented

Value conventions:
    K = Kilo: 2^10       G = Giga: 2^30       P = Peta: 2^50
    M = Mega: 2^20       T = Tera: 2^40       E = Exa: 2^60
[p630n04][/home/hennie/nfso]>

Any change (with -o, -d, or -D) to a Mount parameter results in a message 
warning the user that the change is only effective for future mountings. Any 
attempt to change (with -o, -d, or -D but without -r) the current value of a 
parameter of type Incremental with a new value smaller than the current value 
results in an error message.

Displaying and changing a tunable with the nfso command
Example 6-78 displays the value of the nfs_dynamic_retrans variable by using 
the -o flag, which can also be used to change a variable by assigning it to a 
specific value.

Example 6-78   Displaying and changing a tunable

# nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 1
# nfso -o nfs_dynamic_retrans=0
Setting nfs_dynamic_retrans to 0
# nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 0

Resetting a tunable value to its default
Example 6-79 shows that a value was changed in Example 6-78 can be reset to 
the default by using the -d flag.

Example 6-79   Restoring default tunable value

# nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 0
# nfso -d nfs_dynamic_retrans
Setting nfs_dynamic_retrans to 1
# nfso -o nfs_dynamic_retrans
420 AIX 5L Practical Performance Tools and Tuning Guide



nfs_dynamic_retrans= 1

Displaying help information about a tunable
Using the -h flag with the nfso command displays information about that specific 
variable, as shown in Example 6-80. 

Example 6-80   Getting information about a tunable

[p630n04][/home/hennie/nfso]> nfso -h nfs_dynamic_retrans
Help for tunable nfs_dynamic_retrans:
Specifies whether the NFS client should use a dynamic retransmission algorithm 
to decide when to resend NFS requests to the server. Default: 1; Range: 0 or 1. 
If this function is turned on, the timeo parameter is only used in the first 
retransmission. With this parameter set to 1, the NFS client will attempt to 
adjust its timeout behavior based on past NFS server response. This allows for 
a floating timeout value along with adjusting the transfer sizes used. All of 
this is done based on an accumulative history of the NFS server's response 
time. In most cases, this parameter does not need to be adjusted. There are 
some instances where the straightforward timeout behavior is desired for the 
NFS client. In these cases, the value should be set to 0 before mounting file 
systems.
[p630n04][/home/hennie/nfso]>

Permanently changing an nfso tunable
When using the -p flag, permanent changes are made to a variable. It changes 
the current value and makes an entry into the /etc/tunables/nextboot file. 
Example 6-81 displays the contents of the /etc/tunables/nextboot file with no 
information about the nfs_dynamic_retrans variable. Then by executing nfso -p 
with the -o flag to change the nfs_dynamic_retrans variable, a line was added to 
/etc/tunables/nextboot file. This ensures that the variable is defined for each 
reboot. It also changed the current value of the variable.

Example 6-81   Permanently changing the nextboot file

# nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 1
# cat /etc/tunables/nextboot
ioo:
nfso:
        nfs_v3_vm_bufs = "5000"
        nfs_v2_vm_bufs = "5000"
vmo:
        maxperm% = "50"
        maxclient% = "50"
        spec_dataseg_int = "0"

# nfso -p -o nfs_dynamic_retrans=0
# cat /etc/tunables/nextboot
 Chapter 6. Network performance 421



ioo:
nfso:
        nfs_dynamic_retrans = "0"
        nfs_v3_vm_bufs = "5000"
        nfs_v2_vm_bufs = "5000"
vmo:
        maxperm% = "50"
        maxclient% = "50"
        spec_dataseg_int = "0"
# nfso -o nfs_dynamic_rtrans
nfs_dynamic_retrans= 0

Changing a tunable after reboot
By using the -r flag the change to a variable will only take effect after a reboot. In 
Example 6-82 we used the nfso command with the -r flag to have the variable 
change after the reboot. First we displayed the value of the nfs_dyanmic_retrans 
variable, which is set to 0, as it is in /etc/tunables/nextboot. We then ran nfso with 
the -r flag. The current value of the variable has not changed, but the contents of 
the /etc/tunables/nextboot have been updated.

Example 6-82   Changing a parameter after next reboot

# nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 0

# cat /etc/tunables/nextboot
ioo:
nfso:
        nfs_dynamic_retrans = "0"
        nfs_v3_vm_bufs = "5000"
        nfs_v2_vm_bufs = "5000"
vmo:
        maxperm% = "50"
        maxclient% = "50"
        spec_dataseg_int = "0"

# nfso -ro nfs_dynamic_rtrans=1

# nfso -o nfs_dynamic_rtrans
nfs_dynamic_rtrans=0

# cat /etc/tunables/nextboot
ioo:
nfso:
        nfs_dynamic_retrans = "1"
        nfs_v3_vm_bufs = "5000"
        nfs_v2_vm_bufs = "5000"
vmo:
422 AIX 5L Practical Performance Tools and Tuning Guide



        maxperm% = "50"
        maxclient% = "50"
        spec_dataseg_int = "0"
 Chapter 6. Network performance 423



424 AIX 5L Practical Performance Tools and Tuning Guide



Chapter 7. Storage analysis and tuning

In this chapter we discuss how to monitor and tune disk I/O. The disk storage is a 
key component which determines the performance of several other subsystems.

The physical aspect (adapters, disks, etc.) is as critical in system performance as 
the device drivers, LVM and file system layers. Thus, we present performance 
monitoring at all levels together with some tuning techniques.

These commands are covered in this chapter:

� For monitoring:

– iostat, filemon, fileplace, lslv, lspv, lsvg, lvmstat, sar -d 

� For tuning:

– lsdev, rmdev, mkdev, lscfg, lsattr, chdev, ioo, lvmo, vmo

7

© Copyright IBM Corp. 2005. All rights reserved. 425



7.1  Data placement and design
There is a vast gap between disk metrics and system metrics. In fact it's entirely 
possible to use the same hardware and application and get vastly different 
results in system performance by varying the data layout. For optimal 
performance, the data access patterns of the application and the subsequent 
workload need to match the data layout.

Data layout goals
� Minimize I/O service times
� Balance I/O across all disks
� Keep I/O localized and sequential

7.1.1  AIX I/O stack
The AIX logical volume manager (LVM) provides flexibility in specifying the data 
layout. A basic understanding of the AIX I/O stack is important in order to 
effectively monitor and tune an AIX system.

Figure 7-1   AIX I/O Stack

Cache

Write Cache  (ack sent back to app.)

Disk 

Device Driver (s)

Application

LVM

VMM

LVM

Local FS
JFS/JFS2

Remote FS     
NFS

Disk Subsystem (optional)

R
aw

 LVs
R

aw
 disks

Logical File 
System

DIO
CIO

Application memory area caches data to avoid I/O

NFS caches file attributes
NFS has a cached filesystem for NFS clients 

JFS and JFS2 cache use extra system RAM
JFS uses persistent pages for cache
JFS2 uses client pages for cache

DIO and CIO mount option bypasses VMM caching

Queues exist for both adapters and disks

Adapter device drivers use DMA for I/O

Disk subsystems have read and write cache

Disks have memory to store commands/data 
426 AIX 5L Practical Performance Tools and Tuning Guide



Figure 7-1 on page 426 shows the path a data request moves through from the 
initiating application down to the physical disk. Some applications manage their 
own data buffering, and system performance can be improved by bypassing file 
system caching to avoid the condition known as double buffering. Double 
buffering, where data resides in main memory more than once, increases CPU 
load and reduces available main memory. 

Figure 7-2   AIX I/O Management

Figure 7-2 shows the I/O stack for AIX. When tuning, we have to be aware of all 
the layers, as each layer impacts performance, and there are knobs to turn at 
each layer.

I/O operations can be coalesced into fewer I/Os, or broken up into more I/Os as 
they go up and down through the I/O layers. Generally, one gets better 
performance, in MB/s, with fewer but larger I/Os. With fewer I/Os, there's less 
CPU overhead to handle the requests.

Note that system setup, from a data layout viewpoint, is generally done from the 
bottom up. First the disk subsystem is configured, then the device layer (hdisks, 
vpaths, etc.), then the LVM layer (VGs then LVs) then the filesystems, and finally 
the files.

crfs chfs
mkfs

logform

mkvg extendvg mklv importvg chvg
importvg exportvg cplv mklvcopy
mirrorvg migratepv varyonvg ...

Application

Filesystem

VMM

LVM

Device drivers

Disk subsystem

Disk

mount umount

mknfsexp chnfsexp
showmount
cfsadmin

lsattr chdev mkdev rmdev

Software variesSoftware varies

open() close() read() write()

ioo vmo vmtune

Async, sync and other 
options for both open 

and R/W

Mount options 
affect the I/O 

      dio cio rbr rbrw rbw 

I/O to a file

I/O to blocks in a filesystem

File I/O to filesystem cache

Block I/O to logical disk

Block I/O to a physical disk

Disk I/O starts from the top down
Disk setup and data layout is from the bottom up

mount     
-o cio | dio
 Chapter 7. Storage analysis and tuning 427



The disk interconnection technology exists below the device driver level, 
sometimes prior to the disk subsystem and within the disk subsystem if it exists. 
The advent of SANs, NAS and iSCSI have additional latencies for getting the I/O 
across the disk network.

Direct I/O bypasses the use of JFS cache, and is beneficial in some 
circumstances, e.g., when updating log files. Direct I/O can be specified either by 
a mount option mount -o dio or via a program opening a file with the O_DIRECT 
open flag. Another mount option exists for multi indirect support (useful when 
copying many file >32 KB) to allow more memory segments to be used for inode 
caching: mount -o mind, which applies to AIX 4.3.3 only.

Synchronous and asynchronous I/O refer to whether or not the application is 
coded to wait for the I/O to complete (synchronous-wait, asynchronous-don’t 
wait). Default write I/Os to JFS or JFS2 are asynchronous unless specifically 
coded to be synchronous.

Most database applications use the character device (the r device, e.g. 
/dev/r<lvname>) for I/O though it's also possible to use the block device.

NFS file attribute caching is specified via the actimeo, acregmin, acregmax, 
acdirmin and acdirmax attributes in /etc/filesystems. It also allows a cached 
filesystem on NFS clients via the cfsadmin command. When caching is specified, 
files from the NFS server will be cached to local disk.

Figure 7-2 on page 427 is a companion figure to Figure 7-1 on page 426, and 
shows the basic commands used to manage each layer. These commands will 
be discussed further in 7.2, “Monitoring” on page 433 and in 7.3, “Tuning” on 
page 480.

We will now discuss each of the layers of the AIX I/O stack and what to keep in 
mind when setting up each layer.

7.1.2  Physical disk and disk subsystem
Correctly sizing and purchasing the appropriate storage is critical in obtaining 
desired performance. When purchasing disk, the size, speed (rpm), number, and 
attachment type all play a role in the overall performance of the system. Capacity 
of physical disks is increasing much faster than throughput (both I/Os per second 
and MBs per second). This trend leads to buying enough capacity, but ending up 
short on throughput. 

Most physical disk is purchased and installed within a disk subsystem like the 
IBM 2105 Enterprise Storage System (ESS) or the IBM DS4000 (FAStT) storage 
systems. The disk in these storage systems is then configured into RAID groups. 
The RAID groups are then sliced or carved into logical disks commonly referred 
428 AIX 5L Practical Performance Tools and Tuning Guide



to as LUNs (logical unit numbers) and then assigned to servers. A RAID LUN 
whether it is comprised of two or more disks, appears to the AIX system as a 
single physical disk. 

For the purposes of this document, we will focus on disk residing in a disk 
subsystem. The AIX documentation provides details on direct attached physical 
disk. 

RAID 5 versus Mirroring
The two main choices to protect against data loss due to disk failure are a 
RAID 5 approach or some type of mirroring (RAID 1, RAID 10, LVM mirroring). 
Neither is better than the other in all situations. 

7.1.3  Device drivers and adapters
At this time, several high-speed adapters for connecting disk drives are available 
(SCSI, SSA, FC); however, if you build a configuration with a lot of these 
adapters on one system bus, you may have fast adapters, but the bus becomes 
the performance bottleneck. Therefore, it is always better to spread these fast 
adapters across several busses.

Attaching forty fast disks or LUNs to one disk adapter may result in low disk 
performance. Although the disks or the RAID-based LUNs are fast, all the data 
must go through that one adapter. This adapter gets overloaded, resulting in low 
performance. Adding more disk adapters is a good thing to do when a lot of disks 
are used, especially if those disks are used intensively.

Beside using multiple adapters, the device drivers for the adapters should 
support load balancing (Multi-Path I/O - MPIO). MPIO operation is dependant on 
the adapter (AIX) device driver, and also on the storage subsystem used.

MPIO is short for multi-path I/O. MPIO is the ability to uniquely detect, configure 
and manage a device on multiple physical paths. MPIO in AIX consists of 
enhancements to the configuration subsystem and device drivers. MPIO also 
includes a new module called a path control module or PCM for short. The PCM 
provides the ability for a device driver to be tailored to the capabilities of the 
device being managed. This is an important change in allowing a device vendor 
to provide code to modify the behavior of the AIX base device driver. The MPIO 
components are (see also Figure 7-3 on page 430):

– Device Configuration Database (ODM) 
– Device Configuration Commands
– Device Configuration Methods
– Device Drivers
– Path Control Module (PCM)
 Chapter 7. Storage analysis and tuning 429



– User Interfaces (SMIT and WEBSM)

Figure 7-3   MPIO device driver structure

7.1.4  Volume groups and logical volumes
Many options of the LVM were designed to deal with direct attached storage 
(DAS). LVM options like specifying the Inter-Physical Volume Allocation Policy do 
not have any effect on RAID LUNs. Data availability options like Logical Partition 
copies may not be necessary when the storage subsystem is handling 
redundancy.

Figure 7-4 on page 431 presents the logical diagram for the LVM. For details, 
refer to the redbook AIX Logical Volume Manager from A to Z, Introduction and 
Concepts, SG24-5432.

Application

Device Driver PCM

Adapter Adapter

disk
430 AIX 5L Practical Performance Tools and Tuning Guide



Figure 7-4   Logical Volume Manager diagram

7.1.5  VMM and direct I/O
When you are processing normal I/O to JFS or JFS2 files, the I/O goes from the 
application buffer to the VMM and from there to the JFS. The contents of the 
buffer could get cached in RAM through the VMM's use of real memory as a file 
buffer cache. If the file cache hit rate is high, then this type of cached I/O is very 
effective by improving performance of JFS I/O. But applications that have poor 
cache hit rates or applications that do very large I/Os may not get much benefit 
from the use of normal cached I/O. In operating system Version 4.3, direct I/O 
was introduced as an alternative I/O method for JFS files. 

Direct I/O is only supported for program working storage (local persistent files). 
The main benefit of direct I/O is to reduce CPU utilization for file reads and writes 
by eliminating the copy from the VMM file cache to the user buffer. If the cache hit 
rate is low, then most read requests have to go to the disk. Writes are faster with 
normal cached I/O in most cases. But if a file is opened with O_SYNC or 
O_DSYNC (see Using sync/fsync Calls), then the writes have to go to disk. In 

Physical
Volume

Physical
Volume

Physical
Volume

Application
Layer

Logical
Layer

Physical
Layer

Logical
Volume
Manager

JFS/JFS2
Raw

Logical Volume

Volume
Group

Logical 
Volume

Logical 
Volume

Physical
Disk

Physical
Disk

Physical
Array

Logical Volume Device Driver

Device 
Driver

RAID 
Adapter
 Chapter 7. Storage analysis and tuning 431



these cases, direct I/O can benefit applications because the data copy is 
eliminated.

Even though the use of direct I/O can reduce CPU usage, it typically results in 
longer elapsed times, especially for small I/O requests, because the requests 
would not be cached in memory. 

Direct I/O reads cause synchronous reads from the disk, whereas with normal 
cached policy, the reads may be satisfied from the cache. This can result in poor 
performance if the data was likely to be in memory under the normal caching 
policy. Direct I/O also bypasses the VMM read-ahead algorithm because the I/Os 
do not go through the VMM. The read-ahead algorithm is very useful for 
sequential access to files because the VMM can initiate disk requests and have 
the pages already be resident in memory before the application has requested 
the pages. Applications can compensate for the loss of this read-ahead by using 
one of the following methods: 

� Issuing larger read requests (minimum of 128 K) 
� Issuing asynchronous direct I/O read-ahead by the use of multiple threads 
� Using the asynchronous I/O facilities such as aio_read() or lio_listio() 

Direct I/O writes bypass the VMM and go directly to the disk, so that there can be 
a significant performance penalty; in normal cached I/O, the writes can go to 
memory and then be flushed to disk later (write-behind). Because direct I/O 
writes do not get copied into memory, when a sync operation is performed, it will 
not have to flush these pages to disk, thus reducing the amount of work the 
syncd daemon has to perform. 

7.1.6  JFS/JFS2 file systems
With the introduction of AIX 5L IBM introduced a new file system referred to as 
Enhanced JFS (JFS2) that provides greater scalability than the previous file 
system JFS. Enhanced JFS is designed and optimized for a 64-bit kernel 
environment taking full advantage of 64-bit functionality. JFS2 is the default file 
system for a 64-bit kernel installation.

JFS is the default file system for a 32-bit kernel installation. JFS2 is supported in 
a 32-bit kernel environment. It is recommended to use a 64-bit kernel to achieve 
maximum performance for JFS2.

Table 7-1 shows a comparison between JFS and JFS2.

Table 7-1   JFS/JFS2 comparison

Function JFS JFS2

Fragments/Block size 512- 4096 Frags 512- 4096 Frags
432 AIX 5L Practical Performance Tools and Tuning Guide



For more information refer to AIX 5L Version 5.3 Performance Management 
Guide, SC23-4905.

7.2  Monitoring
Multi-resource system monitoring tools such as vmstat provide the first indicators 
that a disk related bottleneck may exist. This section provides details on disk 
specific tools that are used to further investigate disk performance issues.

The goal of monitoring is to ensure that you, the system’s administrator, are 
warning of impending problems and slow-downs before your customers tell you 
about them.

Monitoring should be proactive and exception-based. When something is out of 
spec or out of norm, an alert should be sent. You should not rely only on reviews 
of logs or reports after the fact.

7.2.1  The iostat command
The iostat command is used for monitoring system input/output device load by 
observing the time the physical disks are active in relation to their average 
transfer rates. The iostat command generates reports that can be used to 
determine an imbalanced system configuration to better balance the I/O load 
between physical disks and adapters.

File size 64 GBytes 4 Petabytes

Filesystem size 1 TBytes 4 Petabytes

Number of inodes Limited at file system 
creation or expansion

Dynamic, limited by disk 
space

Directory organization Standard Faster file lookups 
compared to JFS

Online defragmentation Yes Yes

Compression Yes No

Quotas Yes Yes

Fsck on large filesystems Slow Fast

Deferred update Yes No

Function JFS JFS2
 Chapter 7. Storage analysis and tuning 433



The primary purpose of the iostat tool is to detect I/O bottlenecks by monitoring 
the disk utilization (% tm_act field). iostat can also be used to identify CPU 
problems, assist in capacity planning, and provide insight into solving I/O 
problems. Armed with both vmstat and iostat, you can capture the data required 
to identify performance problems related to CPU, memory, and I/O subsystems

Beginning with AIX 5.3, the iostat command reports the number of physical 
processors consumed (physc) and the percentage of entitlement consumed (% 
entc) in micro-partitioning and simultaneous multi-threading environments. 
These metrics will only be displayed on micro- partitioning/simultaneous 
multi-threading environments. 

AIX 5.3 also introduces enhancements to the iostat command to allow the user 
to obtain asynchronous I/O (AIO) statistics.

iostat resides in /usr/bin and is part of the bos.acct fileset, which is installable 
from the AIX base installation media.

iostat syntax
The syntax of the iostat command is 

iostat [ -a ] [ -s ] [-t  ] [ -T ] [ -d [ -m ] [ -A ] [ -P ] [ -q | -Q ] [ -l ] 
[ Drives ... ] [ Interval] [ Count ]

Useful combinations
� iostat -d hdisk4 collect disk stats for hdisk4
� iostat -a 5 adapter stats every 5 seconds
� iostat 5 60 stats every 5 seconds for 5 minutes

Information about measurement and sampling 
The iostat command generates different types of reports:

� tty and CPU utilization
� Disk utilization
� System throughput
� Adapter throughput
� Asynchronous I/O statistics

Examples

Tip: The average I/O size can be calculated by dividing the value for Kbps by 
tps (avg I/O = Kbps/tps). 2144.0/67.0=32Kb
434 AIX 5L Practical Performance Tools and Tuning Guide



The disk utilization report, generated by the iostat command, provides statistics 
on a per physical disk basis. Statistics for CD-ROM devices are also reported. 

A disk header column is displayed followed by a column of statistics for each disk 
that is configured. If the PhysicalVolume parameter is specified, only those 
names specified are displayed. Example 7-1 shows the disk utilization report.

Example 7-1   Disk utilization report

[p630n06][/home/guest/2105]> iostat -d

System configuration: lcpu=4 drives=9

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk3           0.0       0.0       0.0       9492       444
hdisk2           0.6     126.4       1.4   45393397  27468855
hdisk1           0.4      52.2       0.8   27393610   2730728
hdisk0           0.4      12.0       0.8     969337   5921412
cd0              0.0       0.0       0.0          0         0
dac0             0.0       0.0       0.0          0         0
dac0-utm         0.0       0.0       0.0          0         0
hdisk5           0.0       1.6       0.0      29753    874124
hdisk4           0.0       0.0       0.0      21223        16

If iostat -d is run as is, then the statistics since boot time are displayed.

If you run iostat specifying an interval, for example iostat -d 5 to display 
statistics every five seconds, or you run iostat specifying an interval and a 
count, such as iostat -d 2 5 to display five reports of statistics every two 
seconds, then the reports will reflect the amount of I/O on the system over the 
last interval.

Disk utilization report for MPIO
For multi-path input-output (MPIO) enabled devices, the path name will be 
represented as Path0, Path1, Path2 and so on. The numbers 0, 1, 2, and so on 
are the path IDs provided by the lspath command. Since paths to a device can 
be attached to any adapter, the adapter report will report the path statistics under 
each adapter. The disk name will be a prefix to all of the paths. For all 
MPIO-enabled devices, the adapter report will print the path names as 
hdisk10_Path0, hdisk0_Path1, and so on. 

Tip: The interval used for an iostat report can be calculated by summing the 
Kb_read and Kb_wrtn values and dividing by the data rate Kbps ( (Kb_read + 
Kb_wrtn)/Kbps ). (2016+128)/2144=1 second.
 Chapter 7. Storage analysis and tuning 435



If you use iostat -m, you can see input/output statistics on MPIO as shown in 
Example 7-2. In this example hdisk0 has a single path, and hdisk4 has two 
paths.

Example 7-2   Output of iostat -m

[p630n06][/home/guest/2105]> iostat -m hdisk0
...system information omitted...

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.4      11.9       0.8     972949   5921780

Paths:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
Path0            0.4      11.9       0.8     972949   5921780

[p630n06][/home/guest/2105]> iostat -m hdisk4
...system information omitted...

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk4           0.0       0.0       0.0      21223        24

Paths:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
Path1            0.0       0.0       0.0          0         0
Path0            0.0       0.0       0.0      21223        24

Enabling disk input/output statistics
To improve performance, the collection of disk input/output statistics may have 
been disabled. For large system configurations where a large number of disks is 
configured, the system can be configured to avoid collecting physical disk 
input/output statistics when the iostat command is not executing. If the system 
is configured in this manner, then the first disk report displays the message Disk 
History Since Boot Not Available instead of the disk statistics. Subsequent 
interval reports generated by the iostat command contain disk statistics 
collected during the report interval. Any tty and CPU statistics after boot are 
unaffected if a system management command is used to re-enable disk 
statistics-keeping. The first iostat command report displays activity from the 
interval starting at the point that disk input/output statistics were enabled.

To enable the collection of this data, enter: 

chdev -l sys0 -a iostat=true

To display the current settings, enter: 

lsattr -E -l sys0 -a iostat

If disk input/output statistics are enabled, the lsattr command will display: 

iostat true Continuously maintain DISK I/O history True
436 AIX 5L Practical Performance Tools and Tuning Guide



If disk input/output statistics are disabled, the lsattr command will display: 

iostat false Continuously maintain DISK I/O history True.

Adapter throughput report
If the -a flag is specified, an adapter-header row is displayed followed by a line of 
statistics for the adapter. This will be followed by a disk-header row and the 
statistics of all of the disks and CD-ROMs connected to the adapter. The adapter 
throughput report shown in Example 7-3 is generated for all of the disk adapters 
connected to the system. Each adapter statistic reflects the performance of all of 
the disks attached to it.

Example 7-3   Adapter throughput report

[p630n06][/]> iostat -a

System configuration: lcpu=4 drives=7

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait
          0.1        2748.5               3.0      1.0       95.6       0.4

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
scsi0                    192.8       3.1   73769489  37524044

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk3_Path0           0.0       0.0       0.0       9492       444
hdisk2_Path0           0.7     128.6       1.4   45393397  28866430
hdisk1_Path0           0.4      52.2       0.8   27393610   2735094
hdisk0_Path0           0.4      11.9       0.8     972990   5922076

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
ide0                       0.0       0.0          0         0

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
cd0                    0.0       0.0       0.0          0         0

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
fcs0                       4.5       0.0      50976   2550116

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk5_Path1           0.0       0.0       0.0          0         0
hdisk5_Path0           0.0       4.5       0.0      29753   2550092
hdisk4_Path1           0.0       0.0       0.0          0         0
hdisk4_Path0           0.0       0.0       0.0      21223        24

Note: Some system resources are consumed in maintaining disk I/O history 
for the iostat command. Disable disk history if not needed.
 Chapter 7. Storage analysis and tuning 437



If iostat -a is run as is, then the statistics since boot time are displayed.

If you run iostat specifying an interval, for example iostat -a 5 to display 
statistics every five seconds, or you run iostat specifying an interval and a 
count, for example iostat -a 2 5 to display five reports of statistics every two 
seconds, then the reports reflect the amount of I/O on the system over the last 
interval (current activity).

Asynchronous I/O statistics
AIX 5L Version 5.3 introduces enhancements to the iostat command, these 
allow the user to obtain AIO statistics. In previous versions of AIX there were no 
tools available to monitor AIO. From Version 5.3 the performance kernel libraries 
are modified to obtain AIO statistics and the iostat command is enhanced to 
monitor also the AIO.

The iostat command reports CPU and I/O statistics for the system, adapters, 
TTY devices, disks and CD-ROMs. This command is enhanced by new 
monitoring features and flags for getting the AIO and the POSIX AIO statistics. 

The following new flags are added to the iostat command:

-A Reports AIO statistics along with the existing output.

-P Reports AIO statistics using the POSIX AIO calls. If not specified 
then the Legacy AIO statistics are returned.

-q Reports each AIO queue’s request count.

-Q Reports AIO queues associated with each mounted file system and 
the queue request count.

-l Displays the data in a 132 column width. This flag is simply a 
formatting flag.

Tip: It is useful to run iostat when your system is under load and performing 
normally. This gives a baseline to determine future performance problems with 
the disk, CPU, and tty subsystems.

You should run iostat again when: 

� Your system is experiencing performance problems.

� You make hardware or software changes to the disk subsystem.

� You make changes to the AIX Operating System, such as installing, 
upgrades, and changing the disk tuning parameters using ioo.

� You make changes to your application.
438 AIX 5L Practical Performance Tools and Tuning Guide



When using the -A option, the output of iostat gives additional statistics of the 
AIO. The following information is added:

avgc Average global non-fastpath AIO request count per second for the 
specified interval.

avfc Average global AIO fastpath request count per second for the 
specified interval

maxg Maximum global non-fastpath AIO request count since the last time 
this value was fetched

maxf Maximum fastpath request count since the last time this value was 
fetched

maxr Maximum AIO requests allowed. This is the AIO device maxreqs 
attribute.

When the AIO device driver is not configured in the kernel, the iostat -A 
command gives an error message that the AIO is not loaded like in the following 
example.

Example 7-4   The iostat with AIO not configured

[p630n06][/]> iostat -Aq

System configuration: lcpu=4

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow
iostat: 0551-157 Asynchronous I/O not configured on the system.

In order to use the AIO drivers we have to enable the AIO device driver using the 
mkdev -l aio0 command or through smit aio. In order to enable the POSIX AIO 
device drivers, you have to use the mkdev -l posix_aio0 or smit posixaio 
commands.

Once enabled, iostat will report AIO statistics as in Example 7-5.

Example 7-5   iostat -A displays basic AIO statistics

[p630n06][/]> iostat -A

System configuration: lcpu=4 drives=7

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow
        0    0    0    0 4096            3.0  1.0  95.6  0.4
...lines omitted...

Check the avgc as it shows the average number of AIO requests in the queues 
along with the maxg as it shows the maximum number of AIO requests in the 
 Chapter 7. Storage analysis and tuning 439



queues for the last measuring period. If the avgc or maxg is getting close to the 
maxr then tuning of the maxreqs and maxservers attributes is required.

If we use raw devices, then avfc is of interest as it reflects the use of the average 
AIO fastpath calls along with the maxf as it shows the maximum value of fastpath 
count value. As the fast path calls bypass the AIO queues, these statistics give 
only information on how fastpath AIO used.

If we are interested in the allocation of the AIO queues and their use, then the 
iostat -Aq command is useful (see Example 7-6).

Example 7-6   Output of the iostat -Aq command with AIO queue statistics

[p630n06][/]> iostat -Aq | head

System configuration: lcpu=4

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow
        0    0    0    0 4096            3.0  1.0  95.6  0.4

q[  0]=0       q[  1]=0       q[  2]=0       q[  3]=0       q[  4]=0
q[  5]=0       q[  6]=0       q[  7]=0       q[  8]=0       q[  9]=0
q[ 10]=0       q[ 11]=0       q[ 12]=0       q[ 13]=0       q[ 14]=0
q[ 15]=0       q[ 16]=0       q[ 17]=0       q[ 18]=0       q[ 19]=0

If statistics of any single queue are significantly higher than the others, it points to 
the application using one file system significantly more than other file systems. 
The queues are usually allocated one per file system.

If a specific AIO queue is filling up unusually and we want to know to which file 
system the queue is related, then the iostat -AQ command is useful. See 
Example 7-7 that shows the distribution of the AIO queues to specific file 
systems.

Example 7-7   The iostat -AQ command output

[p630n06][/]> iostat -AQ

System configuration: lcpu=4

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow
        0    0    0    0 4096            3.0  1.0  95.6  0.4

Queue#         Count          Filesystems
129            0              /
130            0              /usr
132            0              /var
133            0              /tmp
440 AIX 5L Practical Performance Tools and Tuning Guide



136            0              /home
137            0              /proc
138            0              /opt
139            0              /itso_files
143            0              /mnt
156            0              /localfs
158            0              /ljfs
177            0              /essfs

The iostat -P option and related options for POSIX AIO 
In order to get the basic POSIX AIO statistics we have to use the iostat -P 
command. The output is in the same format as for the iostat -A legacy AIO 
command as well as the meaning of the flags is the same but related to the 
POSIX AIO calls.

The output format of the iostat -Pq command corresponds with the iostat -Aq 
and the iostat -PQ corresponds with the iostat -AQ command.

Using SMIT and going through menus Devices → Asynchronous I/O → 
Asynchronous I/O (Legacy) → Change/Show Characteristics of Asynchronous 
I/O, you can set the characteristics of the AIO, like minservers, maxservers, 
maxreqs, kprocprio, autoconfig, or fastpath.

7.2.2  The filemon command
The filemon command monitors a trace of file-system and I/O-system events 
and reports performance statistics for files, virtual memory segments, logical 
volumes, and physical volumes. filemon is useful to those whose applications 
are believed to be disk-bound and want to know where and why. 

Monitoring disk I/O with the filemon command is usually done when there is a 
known performance issue regarding the I/O. The filemon command shows the 
load on different disks, logical volumes, and files in great detail. Since filemon is 
based on the trace utility, it is normally only used for reporting over a period of a 
few minutes.

The filemon command resides in /usr/sbin and is part of the bos.perf.tools 
fileset, which is installable from the AIX base installation media.

filemon syntax
filemon [ -d ] [ -i Trace_File -n Gennames_File] [ -o File] [ -O Levels] [ -P ] 
[ -T n] [ -u ] [ -v ]
 Chapter 7. Storage analysis and tuning 441



Useful combinations
� filemon -o fm.out;sleep 15;trcstop filemon trace for 15 seconds, 

output saved to fm.out
� filemon; {disk I/O command}; trcstop filemon trace for of ‘some 

command’, output to stdout

Information about measurement and sampling 
To provide a more complete understanding of file system performance for an 
application, the filemon command monitors file and I/O activity at four levels: 

Logical file system The filemon command monitors logical I/O operations 
on logical files. The monitored operations include all 
read, write, open, and lseek system calls, which may 
or may not result in actual physical I/O depending on 
whether the files are already buffered in memory. I/O 
statistics are kept on a per-file basis.

Virtual memory system The filemon command monitors physical I/O 
operations (that is, paging) between segments and 
their images on disk. I/O statistics are kept on a 
per-segment basis.

Logical volumes The filemon command monitors I/O operations on 
logical volumes. I/O statistics are kept on a 
per-logical-volume basis.

Physical volumes The filemon command monitors I/O operations on 
physical volumes. At this level, physical resource 
utilizations are obtained. I/O statistics are kept on a 
per-physical-volume basis.

Any combination of the four levels can be monitored, as specified by the 
command line flags. By default, the filemon command only monitors I/O 
operations at the virtual memory, logical volume, and physical volume levels. 
These levels are all concerned with requests for real disk I/O. 
442 AIX 5L Practical Performance Tools and Tuning Guide



Examples
The dd command provides an easy way to generate I/O to disk which can be 
traced with the filemon command. 

Writing to a file
The most active resources are reported with filemon. If the item you are 
interested in is not one of the most active, the report may not contain information 
on that item. 

In this example we use dd to write a 100 MB file to disk using a 4MB blocksize. In 
Example 7-8 the output is saved to the fm.out.

Example 7-8   The filemon trace while writing to a file with dd

[p630n06][/home/guest]> filemon -o fm.out -O all

Enter the "trcstop" command to complete filemon processing

[p630n06][/home/guest]> dd if=/dev/zero of=/localfs/100mbfile bs=4096K count=25
25+0 records in.
25+0 records out.
[p630n06][/home/guest]> trcstop
[p630n06][/home/guest]> [filemon: Reporting started]
[filemon: Reporting completed]

[filemon: 5.664 secs in measured interval]

Because the ‘-O all’ flag was specified, all the filemon reports were saved in 
fm.out. If the -O flag is not specified, the default is the vm, lv, and pv levels (virtual 
memory, logical volume, physical volume). The only level not included by default 

Tip: To facilitate using filemon, a simple shell script can be created. We 
created a script called fmon.sh.

[p630n06][/home/guest]> cat fmon.sh
#!/usr/bin/ksh
Usage="Usage: fmon.sh [command]"
if [ $# -eq 0 ] ; then
        echo $Usage
        exit
fi
filemon -o fm.out -O all
$@
#next line optional
#sync;sleep 5
trcstop
 Chapter 7. Storage analysis and tuning 443



is the logical file level (lf). All reports, regardless of which report flag(s) are 
specified contains header information similar to what is show in Example 7-9.

Example 7-9   Header information for filemon reports

Fri Oct  8 14:06:37 2004
System: AIX p630n06 Node: 5 Machine: 000684FF4C00

Cpu utilization:  31.9%

The header shows when and where the report was created and the CPU 
utilization during the monitoring period. 

We will now cover each report in detail.

Logical volumes report
The logical volume report has three parts; the header, the logical volume 
summary, and the detailed logical volume report. To create only a logical volume 
report, issue the filemon command as follows:

filemon -uo filemon.lv -O lv;{command or sleep statement};trcstop

Example 7-10 shows the full logical volume report. The logical volume with the 
highest utilization is at the top, and the others are listed in descending order.

Example 7-10   Logical volume report information

Fri Oct 15 12:24:22 2004
System: AIX p630n06 Node: 5 Machine: 000684FF4C00

Cpu utilization:  32.2%

Most Active Logical Volumes
------------------------------------------------------------------------
  util  #rblk  #wblk   KB/s  volume                   description
------------------------------------------------------------------------
  0.45     56 204800 23128.4  /dev/fslv01              /localfs
  0.41   1952      0  220.4  /dev/hd6                 paging
  0.39   1936      0  218.6  /dev/paging00            paging
  0.14      0    280   31.6  /dev/hd8                 jfs2log
  0.01      0     16    1.8  /dev/hd4                 /
  0.00      0      8    0.9  /dev/hd1                 /home
  0.00      0     16    1.8  /dev/loglv02             jfs2log

------------------------------------------------------------------------
Detailed Logical Volume Stats   (512 byte blocks)
------------------------------------------------------------------------

VOLUME: /dev/fslv01  description: /localfs
444 AIX 5L Practical Performance Tools and Tuning Guide



reads:                  7       (0 errs)
  read sizes (blks):    avg     8.0 min       8 max       8 sdev     0.0
  read times (msec):    avg   0.247 min   0.231 max   0.298 sdev   0.021
  read sequences:       4
  read seq. lengths:    avg    14.0 min       8 max      32 sdev    10.4
writes:                 400     (0 errs)
  write sizes (blks):   avg   512.0 min     512 max     512 sdev     0.0
  write times (msec):   avg 287.052 min  19.938 max 867.239 sdev 244.275
  write sequences:      1
  write seq. lengths:   avg 204800.0 min  204800 max  204800 sdev     0.0
seeks:                  5       (1.2%)
  seek dist (blks):     init   1536,
                        avg  2366.0 min      40 max    8032 sdev  3313.3
time to next req(msec): avg   8.674 min   0.000 max 975.635 sdev  74.663
throughput:             23128.4 KB/sec
utilization:            0.45
...lines omitted...

The 100 MB of data written to fslv01 with the dd command is visible in the 
report. In the Most Active Logical Volumes section, the wblk column is the 
number of 512 byte write blocks, so 204800 * 512 bytes = 104857600 bytes = 
100*1024*1024 bytes = 100 MB. In the Detailed Logical Volume Stats section, 
a similar calculation is possible: 400 writes * 512 write size * 512 byte block size 
= 400 * 512 * 512 bytes = 104857600 bytes = 100*1024*1024 bytes = 100 MB.

Virtual memory system report
The virtual memory report has three parts: the header, the segment summary, 
and the detailed segment report. To create only a virtual memory report, issue 
the filemon command as follows:

filemon -uo filemon.vm -O vm;{command or sleep statement};trcstop

Example 7-11 shows the full virtual memory report, in which the segment with 
the highest utilization is at the top, and the others are listed in descending order.

Example 7-11   Virtual memory system report information

Fri Oct 15 12:24:19 2004
System: AIX p630n06 Node: 5 Machine: 000684FF4C00

Cpu utilization:  33.2%

Most Active Segments
------------------------------------------------------------------------
  #MBs  #rpgs  #wpgs  segid  segtype                  volume:inode
------------------------------------------------------------------------
 100.0      0  25600   f3a1f  page table
   0.6    154      0   e001  page table
 Chapter 7. Storage analysis and tuning 445



   0.0      0      1   f7e1  page table
   0.0      0      1   870d0  page table
   0.0      0      1   5f0cb  page table

------------------------------------------------------------------------
Detailed VM Segment Stats   (4096 byte pages)
------------------------------------------------------------------------

SEGMENT: f3a1f  segtype: page table
segment flags:          pgtbl
writes:                 25600   (0 errs)
  write times (msec):   avg 801.602 min  30.606 max 1559.925 sdev 444.427
  write sequences:      1
  write seq. lengths:   avg 25600.0 min   25600 max   25600 sdev     0.0

SEGMENT: e001  segtype: page table
segment flags:          log pgtbl
reads:                  154     (0 errs)
  read times (msec):    avg   3.824 min   0.198 max  19.220 sdev   4.905
  read sequences:       1
  read seq. lengths:    avg   154.0 min     154 max     154 sdev     0.0
...(lines omitted)...

The 100 MB of data written with the dd command passed through the VMM and 
is visible in the report. In the Most Active Segments section, the 100MB is visible 
in the first line. The segid of that line f3alf can be matched with the Detailed 
Logical Volume Stats section. For that segid, 25600 writes of blocksize 4096 
bytes are shown. 25600 * 4096 bytes = 104857600 bytes = 100*1024*1024 bytes 
= 100 MB.

Logical file system report
The logical file system report has three parts: the header, most active files, and 
the detailed file stats. To create only a logical file system report, issue the 
filemon command as follows:

filemon -uo filemon.lf -O lf;{command or sleep statement};trcstop

Example 7-11 on page 445 shows the full logical file system report. In the report, 
the file with the highest utilization is in the beginning.

Example 7-12   Logical file system report information

Fri Oct 15 12:24:15 2004
System: AIX p630n06 Node: 5 Machine: 000684FF4C00

Cpu utilization:  30.2%

Most Active Files
446 AIX 5L Practical Performance Tools and Tuning Guide



------------------------------------------------------------------------
  #MBs  #opns   #rds   #wrs  file                     volume:inode
------------------------------------------------------------------------
 100.0      1      0     25  100mbfile                <major=0,minor=2>:9
 100.0      1     25      0  zero
   0.3      1     70      0  unix                     <major=0,minor=5>:4433
   0.0      3      6      2  ksh.cat                  <major=0,minor=5>:15753
   0.0      1      2      0  cmdtrace.cat             <major=0,minor=5>:15469
   0.0      1      1      0  dd.cat                   <major=0,minor=5>:15500
   0.0      7      2      0  SWservAt                 <major=0,minor=4>:53
   0.0      7      2      0  SWservAt.vc              <major=0,minor=4>:54

------------------------------------------------------------------------
Detailed File Stats
------------------------------------------------------------------------

FILE: /localfs/100mbfile  volume: <major=0,minor=2>  inode: 9
opens:                  1
total bytes xfrd:       104857600
writes:                 25      (0 errs)
  write sizes (bytes):  avg 4194304.0 min 4194304 max 4194304 sdev     0.0
  write times (msec):   avg  14.492 min  13.079 max  16.161 sdev   0.673
lseeks:                 2

FILE: /dev/zero
opens:                  1
total bytes xfrd:       104857600
reads:                  25      (0 errs)
  read sizes (bytes):   avg 4194304.0 min 4194304 max 4194304 sdev     0.0
  read times (msec):    avg   6.010 min   4.630 max  10.667 sdev   1.688
...(lines omitted)...

The 100 MB file created with the dd command, using /dev/zero as the source is 
visible throughout this report. The Most Active Files section shows both the 
amount of data written as well as the number of write commands issued. The 
count=25 parameter of the dd command matches with the number of writes. In 
the Detailed File Stats section, we see the 4096 KB blocksize specified in the 
dd command matching the write sizes in bytes (4194304).

Physical volumes report
The physical volume report is divided into three parts; the header, the physical 
volume summary, and the detailed physical volume report. To create only a 
physical volume report, issue the filemon command as follows:

filemon -uo filemon.pv -O pv;{command or sleep statement};trcstop
 Chapter 7. Storage analysis and tuning 447



Example 7-13 shows the full physical volume report. In the report, the disks are 
presented in descending order of utilization. The disk with the highest utilization 
is shown first

Example 7-13   Physical volumes report information

Fri Oct 15 12:24:27 2004
System: AIX p630n06 Node: 5 Machine: 000684FF4C00

Cpu utilization:  31.7%

Most Active Physical Volumes
------------------------------------------------------------------------
  util  #rblk  #wblk   KB/s  volume                   description
------------------------------------------------------------------------
  0.66     56 204815 34935.7  /dev/hdisk2              N/A
  0.57   1976    424  409.3  /dev/hdisk0              N/A
  0.02      0     31    5.3  /dev/hdisk1              N/A

------------------------------------------------------------------------
Detailed Physical Volume Stats   (512 byte blocks)
------------------------------------------------------------------------

VOLUME: /dev/hdisk2  description: N/A
reads:                  7       (0 errs)
  read sizes (blks):    avg     8.0 min       8 max       8 sdev     0.0
  read times (msec):    avg   0.229 min   0.217 max   0.246 sdev   0.008
  read sequences:       4
  read seq. lengths:    avg    14.0 min       8 max      32 sdev    10.4
writes:                 416     (0 errs)
  write sizes (blks):   avg   492.3 min       1 max     512 sdev    96.7
  write times (msec):   avg   4.534 min   1.960 max  11.742 sdev   1.161
  write sequences:      23
  write seq. lengths:   avg  8905.0 min       1 max   31744 sdev 13550.0
seeks:                  27      (6.4%)
  seek dist (blks):     init 57677568,
                        avg 35549677.2 min       1 max 57875454 sdev 28104423.6
  seek dist (%tot blks):init 20.11437,
                        avg 12.39753 min 0.00000 max 20.18339 sdev 9.80109
time to next req(msec): avg  75.037 min   0.010 max 958.979 sdev 176.740
throughput:             34935.7 KB/sec
utilization:            0.66
...(lines omitted)...

The 100 MB file created with the dd command that was written to hdisk2 is visible 
throughout this report. The Most Active Physical Volumes section shows the 
number of 512 byte blocks written to the volume. 204815 * 512 = 100 MB. The 
Detailed Physical Volume Stats section shows 416 writes with an average write 
448 AIX 5L Practical Performance Tools and Tuning Guide



size of 492 blocks. Besides the write commands caused by the dd command, 
some other minor activity occurred during the filemon tracing. 

7.2.3  The fileplace command
The fileplace command displays the placement of a file’s logical or physical 
blocks within a Journaled File System (JFS) or Enhanced Journaled File System 
(JFS2), but not Network File System (NFS). Logically contiguous files in the file 
system may be both logically and physically fragmented on the logical and 
physical volume level, depending on the available free space at the time the file 
and logical volume (file system) were created.

The fileplace command can be used to examine and assess the efficiency of a 
file’s placement on disk and help identify those files that will benefit from 
reorganization.

The fileplace command resides in /usr/bin and is part of the bos.perf.tools 
fileset, which is installable from the AIX base installation media.

fileplace syntax
fileplace [ { -l | -p } [ -i ] [ -v ] ] File | [-m LogicalVolumeName]

Useful combinations
� fileplace -lv somefile Logical layout for file ‘somefile’
� fileplace -pv otherfile Physical layout for file ‘otherfile’

Information about measurement and sampling
The fileplace command extracts information about a file’s physical and logical 
disposition from the JFS logical volume superblock and inode tables directly from 
disk and displays this information in a readable form. If the file is newly created, 
extended, or truncated, the file system information may not yet be on the disk 
when the fileplace command is run. In this case use the sync command to flush 
the file information to the logical volume.

Data on logical volumes (file systems) appears to be contiguous to the user but 
can be non-contiguous on the physical volume. File and file system 
fragmentation can severely hurt I/O performance because it causes more disk 
arm movement. To access data from a disk, the disk controller must first be 
directed to the specified block by the LVM through the device driver. Then the 
disk arm must seek the correct cylinder. After that the read/write heads must wait 
until the correct block rotates under them. Finally the data must be transmitted to 
the controller over the I/O bus to memory before it can be made available to the 
application program. Of course some adapters and I/O architectures support 
 Chapter 7. Storage analysis and tuning 449



both multiple outstanding I/O requests and reordering of those requests, which in 
some cases will be sufficient, but in most cases will not.

To assess the performance effect of file fragmentation, an understanding of how 
the file is used by the application is required:

� If the application is primarily accessing this file sequentially, the logical 
fragmentation is more important. At the end of each fragment read ahead 
stops. The fragment size is therefore very important.

� If the application is accessing this file randomly, the physical fragmentation is 
more important. The closer the information is in the file, the less latency there 
is when accessing the physical data blocks.

Examples for fileplace
In Example 7-14, the fileplace command lists to standard output the ranges of 
logical volume fragments allocated to the specified file. The order in which the 
logical volume fragments are listed corresponds directly to their order in the file.

Example 7-14   Using fileplace

[p630n06][/]> fileplace /smit.log

File: /smit.log  Size: 55920 bytes  Vol: /dev/hd4
Blk Size: 4096  Frag Size: 4096  Nfrags: 14

  Logical Extent
  --------------
  00000782                       1 frags         4096 Bytes,   7.1%
  00000787-00000788              2 frags         8192 Bytes,  14.3%
  00000856-00000860              5 frags        20480 Bytes,  35.7%
  00000875                       1 frags         4096 Bytes,   7.1%
  00000880-00000881              2 frags         8192 Bytes,  14.3%
  00000893-00000895              3 frags        12288 Bytes,  21.4%

Attention: Avoid using fragmentation sizes smaller than 4096 bytes. Even 
though it is allowed, it will increase the need for system administration and can 
cause performance degradation in the I/O system. Fragmentation sizes 
smaller than 4096 are only useful when a file system is used for files smaller 
than the fragmentation size (<512, 1024, or 2048 bytes). If needed these file 
systems should be created separately and defragmented regularly by using 
the defragfs command. If no other job control system is used in the system, 
use cron to execute the command on a regular basis. One scenario in which it 
could be appropriate is when an application creates many Simultaneous 
Peripheral Operation Off Line (SPOOL) files, for example printer files that are 
written once and read mainly one time (by the qdaemon).
450 AIX 5L Practical Performance Tools and Tuning Guide



The report shows that the majority of the file occupies a consecutive range of 
blocks starting from 856 and ending at 860(35.7%).

Analyzing the logical report
The logical report that the fileplace command creates with the -l flag (default) 
displays the file placement in terms of logical volume fragments for the logical 
volume containing the file. It is shown in Example 7-15.

Example 7-15   Using fileplace -l

[p630n06][/]> fileplace -l /smit.log

File: /smit.log  Size: 55920 bytes  Vol: /dev/hd4
Blk Size: 4096  Frag Size: 4096  Nfrags: 14

  Logical Extent
  --------------
  00000782                       1 frags         4096 Bytes,   7.1%
  00000787-00000788              2 frags         8192 Bytes,  14.3%
  00000856-00000860              5 frags        20480 Bytes,  35.7%
  00000875                       1 frags         4096 Bytes,   7.1%
  00000880-00000881              2 frags         8192 Bytes,  14.3%
  00000893-00000895              3 frags        12288 Bytes,  21.4%

The fields in the logical report of the fileplace command are interpreted as:

File The name of the file being examined
Size The file size in bytes
Vol The name of the logical volume where the file is placed
Blk Size The block size in bytes for that logical volume
Frag Size The fragment size in bytes
Nfrags The number of fragments
Compress Whether the file system is compressed
Logical Fragments The logical block numbers where the file resides

The Logical Fragments part of the report is interpreted as, from left to right:

Start The start of a consecutive block range
Stop The end of the consecutive block range
Nfrags Number of contiguous fragments in the block range
Size The number of bytes in the contiguous fragments
Percent Percentage of the block range compared with total file 

size

Portions of a file may not be mapped to any logical blocks in the volume. These 
areas are implicitly filled with null (0x00) by the file system when they are read. 
These areas show as unallocated logical blocks. A file that has these holes will 
show the file size to be a larger number of bytes than it actually occupies. 
 Chapter 7. Storage analysis and tuning 451



Analyzing the physical report
The physical report that the fileplace command creates with the -p flag displays 
the file placement in terms of underlying physical volume (or the physical 
volumes that contain the file). If the logical volume containing the file is mirrored, 
the physical placement is displayed for each mirror copy. The physical report is 
shown in Example 7-16. 

Example 7-16   Using fileplace -p

[p630n06][/]> fileplace -p /smit.log

File: /smit.log  Size: 55920 bytes  Vol: /dev/hd4
Blk Size: 4096  Frag Size: 4096  Nfrags: 14

  Physical Addresses (mirror copy 1)                                           Logical Extent
  ---------------------------------- ----------------
  14419246           hdisk0             1 frags         4096 Bytes,   7.1%    00000782
  14419251-14419252  hdisk0             2 frags         8192 Bytes,  14.3%    00000787-00000788
  14419320-14419324  hdisk0             5 frags        20480 Bytes,  35.7%    00000856-00000860
  14419339           hdisk0             1 frags         4096 Bytes,   7.1%    00000875
  14419344-14419345  hdisk0             2 frags         8192 Bytes,  14.3%    00000880-00000881
  14419357-14419359  hdisk0             3 frags        12288 Bytes,  21.4%    00000893-00000895

The fields in the physical report of the fileplace command are interpreted as:

File The name of the file being examined
Size The file size in bytes
Vol The name of the logical volume where the file is placed
Blk Size The block size in bytes for that logical volume
Frag Size The fragment size in bytes
Nfrags The number of fragments
Compress Whether the file system is compressed
Physical Address The physical block numbers where the file resides for 

each mirror copy

The Physical Address part of the report are interpreted from left to right as:

Start The start of a consecutive block range
Stop The end of the consecutive block range
PVol Physical volume where the block is stored
Nfrags Number of contiguous fragments in the block range
Size The number of bytes in the contiguous fragments
Percent Percentage of block range compared with total file size
Logical Fragment The logical block addresses corresponding to the physical 

block addresses

Portions of a file may not be mapped to any physical blocks in the volume. These 
areas are implicitly filled with null (0x00) by the file system when they are read. 
452 AIX 5L Practical Performance Tools and Tuning Guide



These areas show as unallocated physical blocks. A file that has these holes will 
show the file size to be a larger number of bytes than it actually occupies. 

Analyzing the physical address
The Logical Volume Device Driver (LVDD) requires that all disks are partitioned 
in 512 byte blocks. This is the physical disk block size, and is the basis for the 
block addressing reported by the fileplace command. Refer to “Interface to 
Physical Disk Device Drivers” in AIX 5L Version 5.3 Kernel Extensions and 
Device Support Programming Concepts, SC23-4900, for more details.

The XLATE ioctl operation translates a logical address (logical block number and 
mirror number) to a physical address (physical device and physical block number 
on that device). Refer to the “XLATE ioctl Operation” in AIX 5L Version 5.3 Files 
Reference, SC23-4895, for more details.

Whatever the fragment size, a full block is considered to be 4096 bytes. In a file 
system with a fragment size less than 4096 bytes, however, a need for a full block 
can be satisfied by any contiguous sequence of fragments totalling 4096 bytes. It 
does not need to begin on a multiple-of-4096-byte boundary. For more 
information, refer to the AIX 5L Version 5.3 Performance Management Guide, 
SC23-4905.

The primary performance hazard for file systems with small fragment sizes is 
space fragmentation. The existence of small files scattered across the logical 
volume can make it impossible to allocate contiguous or closely spaced blocks 
for a large file. Performance can suffer when accessing large files. Carried to an 
extreme, space fragmentation can make it impossible to allocate space for a file, 
even though there are many individual free fragments. 

Another adverse effect on disk I/O activity is the number of I/O operations. For a 
file with a size of 4 KB stored in a single fragment of 4 KB, only one disk I/O 
operation would be required to either read or write the file. If the choice of the 
fragment size was 512 bytes, eight fragments would be allocated to this file, and 
for a read or write to complete, several additional disk I/O operations (disk seeks, 
data transfers, and allocation activity) would be required. Therefore, for file 
systems that use a fragment size of 4 KB, the number of disk I/O operations 
might be far less than for file systems that employ a smaller fragment size. 

Example 7-17 illustrates how the 512-byte physical disk block is reported by the 
fileplace command.

Example 7-17   Using fileplace -p

# fileplace -p file.log 

File: file.log  Size: 148549 bytes  Vol: /dev/hd1 
Blk Size: 4096  Frag Size: 512  Nfrags: 296   Compress: no 
 Chapter 7. Storage analysis and tuning 453



  Physical Addresses (mirror copy 1)                                   Logical Fragment 
  ----------------------------------                                   ---------------- 
  4693063          hdisk0            8 frags     4096 Bytes,   2.7%    0052039 
  4693079          hdisk0            8 frags     4096 Bytes,   2.7%    0052055 
  4693106          hdisk0            8 frags     4096 Bytes,   2.7%    0052082 
  4693120          hdisk0            8 frags     4096 Bytes,   2.7%    0052096 
  0829504-0829528  hdisk0           32 frags    16384 Bytes,  10.8%    1562432-1562456 
  0825064-0825080  hdisk0           24 frags    12288 Bytes,   8.1%    1557992-1558008 
  0825120          hdisk0            8 frags     4096 Bytes,   2.7%    1558048 
  0825008-0825016  hdisk0           16 frags     8192 Bytes,   5.4%    1557936-1557944
  0824182          hdisk0            8 frags     4096 Bytes,   5.4%    1557110-1557118 
  0829569-0829593  hdisk0           32 frags    16384 Bytes,  10.8%    1562497-1562521 
  0829632-0829656  hdisk0           32 frags    16384 Bytes,  10.8%    1562560-1562584 
  0829696-0829712  hdisk0           24 frags    12288 Bytes,   8.1%    1562624-1562640 
  0829792-0829864  hdisk0           80 frags    40960 Bytes,  27.0%    1562720-1562792 

In the following explanation we use the following line from the previous example:

0825008-0825016  hdisk0 16 frags 8192 Bytes, 5.4% 1557936-1557944 

As the fragment size is less than 4096 bytes in this case, the start range is the 
starting address of the 4096/FragSize contiguous blocks, and the end range is 
nothing but the starting address of the 4096/FragSize contiguous blocks. 

Hence from 0825008 to 08250015 is the first 4096-byte block, which is occupied by 
the file (8 frags in this case), and from 08250016 to 08250023 is the next 4096-byte 
block that is occupied by the file (8 frags, totals up to 16 frags now). Note that the 
actual range is 0825008–0850023, but instead 0825008–08250016 is displayed.

The reason why fileplace does not display the proper end physical address is 
that AIX always tries to allocate the specified block size contiguously on the disk. 
Hence, for a 4 KB block size, AIX will always look for eight contiguous 512-byte 
blocks on the disk to allocate. Hence fileplace always displays the start and end 
range in terms of block addressing. 

So if the fragment size and block size are same, then fileplace display seems to 
be meaningful output, but if the block size and fragment size are not the same, 
then the output may be a little bit confusing. Actually fileplace always displays 
the address ranges in terms of start and end address of a block and not a 
fragment, even though the addressing is done based on fragments.

The formula fileplace uses to display the mapping of physical address, logical 
address, and fragments is: 

Number of fragments = (End Address - Start Address) + (Block Size / Frag Size)
454 AIX 5L Practical Performance Tools and Tuning Guide



For more information refer also to “Understanding Fragments” in AIX 5L Version 
5.3 System Management Concepts: Operating System and Devices, SC23-4908.

To illustrate the addressing, consider an example in AIX where the word size is 
4 bytes, which means that addressing is done for each and every 4 bytes. This 
example applies to the case of an array of the longlong type:

longlong word[10];

The starting address of word[0] is 123456. The display of the range of addresses 
occupied by this array is: 

Start Address: 123456 
End Address: 123474 
Total no. of words occupied: 20 

However, if you calculate 123474 - 123456 + 1 = 19 words, this is one word less. 
The end address is nothing but the address of word[10], which occupies two 
words, so the actual formula in this case is: 

(Endaddress - startaddress) + (Data size / wordsize)

With our example above it would be:

(123474 - 123456)+ (8 / 4) = 20 words

Analyzing the indirect block report
The fileplace -i flag will display any indirect block(s) used for the file in addition 
to the default display or together with the -l, -p, or -v flags. Indirect block(s) are 
needed for files larger than 32 KB. An single indirect block is used for storing 
addresses to data blocks when the inode’s number of data block addresses is not 
sufficient. A double indirect block is used to store addresses to other blocks that 
in their turn store addresses to data blocks. The -i flag is not support with JFS2 
filesystems. For more detail on the use of the indirect block see AIX 5L Version 
5.3 System User's Guide: Operating System and Devices, SC23-4910. For 
examples of the use of the -i flag, see AIX 5L Performance Tools Handbook, 
SG24-6039.

Analyzing the volume report
The volume report displays information about the file and its placement, including 
statistics about how widely the file is spread across the volume and the degree of 
fragmentation in the volume.

Logical report
In Example 7-18 the statistics are expressed in terms of logical fragment 
numbers. This is the logical block’s placement on the logical volume, for each of 
the logical copies of the file.
 Chapter 7. Storage analysis and tuning 455



Example 7-18   Using fileplace -vl

[p630n06][/]> fileplace -vl /smit.log

File: /smit.log  Size: 62087 bytes  Vol: /dev/hd4
Blk Size: 4096  Frag Size: 4096  Nfrags: 16
Inode: 6  Mode: -rw-r--r--  Owner: root  Group: system

  Logical Extent
  --------------
  00000782                       1 frags         4096 Bytes,   6.2%
  00000787-00000788              2 frags         8192 Bytes,  12.5%
  00000856-00000860              5 frags        20480 Bytes,  31.2%
  00000875                       1 frags         4096 Bytes,   6.2%
  00000880-00000881              2 frags         8192 Bytes,  12.5%
  00000893-00000895              3 frags        12288 Bytes,  18.8%
  00000940-00000941              2 frags         8192 Bytes,  12.5%

  16 frags over space of 160 frags:   space efficiency = 10.0%
  7 extents out of 16 possible:   sequentiality = 60.0%

If the application primarily accesses this file sequentially, the logical 
fragmentation is important. When VMM reads a file sequentially, by default it 
uses read ahead. At the end of each fragment, read ahead stops. The fragment 
size is therefore very important. High space efficiency means that the file is less 
fragmented. In the example above, the file has only 10 percent space efficiency 
for the logical fragmentation.

Space efficiency is calculated as the number of non-null fragments (N) divided by 
the range of fragments assigned to the file (R) and multiplied by 100:

( N / R ) * 100

Range is calculated as the highest assigned address (MaxBlk) minus the lowest 
assigned address (MinBlk) plus 1:

MaxBlk - MinBlk + 1

Physical report
In Example 7-19 the statistics are expressed in terms of physical volume 
fragment numbers. This is the logical block placement on physical volume(s) for 
each of the logical copies of the file.

Example 7-19   The fileplace -vp

[p630n06][/]> fileplace -vp /smit.log

File: /smit.log  Size: 67909 bytes  Vol: /dev/hd4
Blk Size: 4096  Frag Size: 4096  Nfrags: 17
Inode: 6  Mode: -rw-r--r--  Owner: root  Group: system
456 AIX 5L Practical Performance Tools and Tuning Guide



  Physical Addresses (mirror copy 1)                                           Logical Extent
  ----------------------------------                                           ----------------
  14419246           hdisk0             1 frags         4096 Bytes,   5.9%    00000782
  14419251-14419252  hdisk0             2 frags         8192 Bytes,  11.8%    00000787-00000788
  14419320-14419324  hdisk0             5 frags        20480 Bytes,  29.4%    00000856-00000860
  14419339           hdisk0             1 frags         4096 Bytes,   5.9%    00000875
  14419344-14419345  hdisk0             2 frags         8192 Bytes,  11.8%    00000880-00000881
  14419357-14419359  hdisk0             3 frags        12288 Bytes,  17.6%    00000893-00000895
  14419404-14419405  hdisk0             2 frags         8192 Bytes,  11.8%    00000940-00000941
  14419416           hdisk0             1 frags         4096 Bytes,   5.9%    00000952

  17 frags over space of 171 frags:   space efficiency = 9.9%
  8 extents out of 17 possible:   sequentiality = 56.2%

If the application primarily accesses this file randomly, the physical fragmentation 
is important. The closer the information is in the file, the less latency when 
accessing the physical data blocks. High sequentiality means that the file’s 
physical blocks are allocated more contiguously. In the example above, the file 
has a 56.2 percent sequentiality. 

Sequential efficiency is defined as 1 minus the number of gaps (nG) divided by 
number of possible gaps (nPG): 1 - ( nG / nPG ).

The number of possible gaps equals N minus 1:

nPG = N - 1

Sparsely allocated files
A file is a sequence of indexed blocks of arbitrary size. The indexing is 
accomplished through the use of direct mapping or indirect index blocks from the 
file inode. Each index within a file’s address range is not required to map to an 
actual data block.

A file that has one or more inode data block indexes that are not mapped to an 
actual data block is considered sparsely allocated or called a sparse file. A 
sparse file will have a size associated with it (in the inode), but it will not have all 
of the data blocks allocated that match this size.

A sparse file is created when an application extends a file by seeking a location 
outside the currently allocated indexes, but the data that is written does not 
occupy all of the newly assigned indexes. The new file size reflects the farthest 
write into the file. 

A read to a section of a file that has unallocated data blocks results in a default 
value of null (0x00) bytes being returned. A write to a section of a file that has 
unallocated data blocks causes the necessary data blocks to be allocated and 
 Chapter 7. Storage analysis and tuning 457



the data written, but there may not be enough free blocks in the file system any 
more. The result is that the write will fail. Database systems in particular maintain 
data in sparse files. 

The problem with sparse files occurs first when unallocated space is needed for 
data being added to the file. Problems caused by sparse files can be avoided if 
the file system is large enough to accommodate all of the file’s defined sizes, and 
of course to not have any sparse files in the file system.

It is possible to check for the existence of sparse files within a file system by 
using the fileplace command. Example 7-20 shows how to use the ls, du, and 
fileplace commands to identify that a file is not sparse.

Example 7-20   Checking a file that is not sparse

[p630n06][/localfs]> ls -l happy.file
-rw-r--r--   1 root     system         1536 Oct 12 14:38 happy.file
[p630n06][/localfs]> du -k happy.file
4       happy.file
[p630n06][/localfs]> fileplace happy.file

File: happy.file  Size: 1536 bytes  Vol: /dev/fslv01
Blk Size: 4096  Frag Size: 4096  Nfrags: 1

  Logical Extent
  --------------
  00000194                       1 frags         4096 Bytes,  100.0%

The example output above shows that the size of the file happy.file is 1536 bytes, 
but because the file system block (fragment) size is 4096 bytes and the smallest 
allocation size in a file system is one (1) block, du and fileplace show that the 
file actually uses 4 KB of disk space. Example 7-21 shows how the same type of 
report could look if the file was sparse.

Example 7-21   Checking a sparse file

[p630n06][/localfs]> ls -l unhappy.file
-rw-r--r--   1 root     system       256001 Oct 12 14:35 unhappy.file
[p630n06][/localfs]> du -k unhappy.file
4       unhappy.file
[p630n06][/localfs]> fileplace unhappy.file

File: unhappy.file  Size: 256001 bytes  Vol: /dev/fslv01
Blk Size: 4096  Frag Size: 4096  Nfrags: 1

  Logical Extent
  --------------
  00000193                       1 frags         4096 Bytes,  100.0%
        unallocated            62 frags       253952 Bytes      0.0%
458 AIX 5L Practical Performance Tools and Tuning Guide



In the example output, the ls -l command shows the size information stored 
about the unhappy.file file in the file’s inode record, which is the size in bytes 
(256001). The du -k command shows the number of allocated blocks for the file 
(in this case only one 4 KB block). The fileplace command shows how the 
blocks (Logical Fragments) are allocated. In the fileplace output above there 
are 62 unallocated blocks and one allocated at logical address 00000193, so the 
unhappy.file file is sparse.

Creating a sparse file
To create a sparse file you can use the dd command with the seek option. In the 
following examples we show how to check the file system utilization during the 
process of creating a sparse file.

First we check the file system for our current directory with the df command to 
see how much apparent space is available. Note the number of inodes that are 
currently used (12) from the df output in Example 7-22.

Example 7-22   Using df

[p630n06][/localfs]> df $PWD
Filesystem    512-blocks      Free %Used    Iused %Iused Mounted on
/dev/fslv01     10485760   1978128   82%       12     1% /localfs

Then we use the dd command to create a 1 gigabyte sparse file as shown in the 
Example 7-23. The input was just a new line character (\n) from the echo 
command. 

Example 7-23   Creating a sparse file

[p630n06][/localfs]> echo | dd of=ugly.file seek=1024 bs=1024k
0+1 records in.
0+1 records out.

Example 7-24 shows the examination of the file’s space utilization with the ls. 
The example shows the output of the ls command that displays the file’s inode 
byte counter. Note that the -s flag will report the actual number of KB blocks 
allocated, as does the du command.

Example 7-24   Using ls on the sparse file

[p630n06][/localfs]> ls -sl ugly.file
   4 -rw-r--r--   1 root     system   1073741825 Oct 12 15:24 ugly.file

According to the ls output in the previous example, the file size is 1073741825 
bytes but only 4 (1 KB) blocks. Now we know that this is a sparse file. In 
Example 7-25 on page 460 we use the fileplace -l command to look at the 
allocation in detail, first from a logical view.
 Chapter 7. Storage analysis and tuning 459



Example 7-25   Using fileplace -l on the sparse file

[p630n06][/localfs]> fileplace -l ugly.file

File: ugly.file  Size: 1073741825 bytes  Vol: /dev/fslv01
Blk Size: 4096  Frag Size: 4096  Nfrags: 1

  Logical Extent
  --------------
  00000195                       1 frags         4096 Bytes,  100.0%
        unallocated        262144 frags   1073741824 Bytes      0.0%

The logical report above shows that logical block 195 is allocated for the file 
occupying 4 KB, and the rest is unallocated. 

Example 7-26 shows the physical view of the file using the fileplace -p 
command.

Example 7-26   Using fileplace -p on the sparse file

[[p630n06][/localfs]> fileplace -p ugly.file

File: ugly.file  Size: 1073741825 bytes  Vol: /dev/fslv01
Blk Size: 4096  Frag Size: 4096  Nfrags: 1

  Physical Addresses (mirror copy 1)                                           Logical Extent
  ----------------------------------                                           ----------------

07209699         hdisk2              1 frags         4096 Bytes,  100.0%    00000195
unallocated       262144 frags   1073741824 Bytes     0.0%

The physical report shows that physical block 07209699 is allocated for the logical 
block 195 and it resides on hdisk2. 

Example 7-27 shows the volume report (logical view) for the file using the 
fileplace -v command.

Example 7-27   Using fileplace -lv on the sparse file

[p630n06][/localfs]> fileplace -lv ugly.file

File: ugly.file  Size: 1073741825 bytes  Vol: /dev/fslv01
Blk Size: 4096  Frag Size: 4096  Nfrags: 1
Inode: 12  Mode: -rw-r--r--  Owner: root  Group: system

  Logical Extent
  --------------
  00000195                       1 frags         4096 Bytes,  100.0%
        unallocated        262144 frags   1073741824 Bytes      0.0%
460 AIX 5L Practical Performance Tools and Tuning Guide



  1 frags over space of 1 frags:   space efficiency = 100.0%
  1 extent out of 1 possible:   sequentiality = 100.0%

The volume report, for the logical view, shows that the file has 100 percent space 
efficiency and sequentiality. 

The next and final fileplace command report on this file (in Example 7-28) 
shows the volume report for the physical view of the file.

Example 7-28   Using fileplace -pv on the sparse file

#[p630n06][/localfs]> fileplace -pv ugly.file

File: ugly.file  Size: 1073741825 bytes  Vol: /dev/fslv01
Blk Size: 4096  Frag Size: 4096  Nfrags: 1
Inode: 12  Mode: -rw-r--r--  Owner: root  Group: system

  Physical Addresses (mirror copy 1)                                           Logical Extent
  ----------------------------------                                           ----------------
  07209699           hdisk2             1 frags         4096 Bytes,  100.0%    00000195
        unallocated        262144 frags   1073741824 Bytes 0.0%

  1 frags over space of 1 frags:   space efficiency = 100.0%
  1 extent out of 1 possible:   sequentiality = 100.0%

The volume report above, for the physical view, also shows that the file has 100 
percent space efficiency and sequentiality. 

Searching for sparse files
To find sparse files in file systems we can use the find command with the -ls flag. 
Example 7-29 shows how this can be done.

Example 7-29   Using find to find sparse files

[p630n06][/localfs]> find /localfs -type f -xdev -ls
    9 102400 -rw-r--r--  1 root      system    104857600 Oct 11 15:14 /localfs/100mbfile
   11    4 -rw-r--r--  1 root      system        1536 Oct 12 14:38 /localfs/happy.file
   12    4 -rw-r--r--  1 root      system    1073741825 Oct 12 15:24 /localfs/ugly.file

The second column is the allocated block size, the seventh column is the byte 
size and the 11th column is the file name. In the output above it is obvious that 
this will be time consuming if done manually because the find command lists all 
 Chapter 7. Storage analysis and tuning 461



files by using the -type f flag. Because we cannot limit the output further by only 
using the find command, we do it with a script.

The script in Example 7-30 takes as an optional parameter the file system to 
scan. If no parameter is given, it will list all file systems in the system with the 
lsfs command (except /proc) and stores this in the fs variable. The find 
command, on the last line in the script, searches all file systems specified in the 
fs variable for files (-type f), does not traverse over file system boundaries 
(-xdev), and lists inode information about the file (-ls). The output from the find 
command is then examined by awk in the pipe. The awk command compares the 
sizes of a normalized block and byte value and, if they do not match, awk will print 
the filename, block, and byte sizes.

Example 7-30   Shell script to search for sparse files

:fs=${1:-"$(lsfs -c|awk -F: 'NR>2&&!/\/proc/{print $1}')"}
find $fs -xdev -type f -ls 2>/dev/null|awk '{if (int($2*1024)<int($7/1024)) print $11,$2,$7}'

The awk built in int() function is used because awk returns floating point values 
as the result of calculations, and the comparison should be done with integers. 
Example 7-31 is sample output from running the script above.

Example 7-31   Sample output from sparse file search script

/localfs/ugly.file 4 1073741825
/ljfs/ug3 16 1073741825

To find out how many sparse files the script found, just pipe the output to the wc 
command with -l flag.

Displaying logical to physical map for a logical volume
Example 7-32 shows the use of -m flag to display logical to physical map of a 
logical volume.

Example 7-32   Using -m flag

[p630n06][/]> fileplace -m hd2
Device: /dev/hd2   Partition Size: 256 MB      Block Size = 4096
Number of Partitions: 6   Number of Copies: 1

  Physical Addresses (mirror copy 1)                                   Logical Fragment
  ----------------------------------                                   ----------------
  14484000-14549535  hdisk0        65536 blocks 268435456 Bytes,  16.7%    0000000-0065535
  14811680-15139359  hdisk0       327680 blocks 1342177280 Bytes,  83.3%    0065536-0393215
462 AIX 5L Practical Performance Tools and Tuning Guide



7.2.4  The lslv, lspv, and lsvg commands
Many times it is useful to determine the layout of logical volumes on disks and 
volume groups to identify whether rearranging or changing logical volume 
definitions might be appropriate. Some of the commands that can be used are 
lslv, lspv, and lsvg:

� The lslv command displays the characteristics and status of the logical 
volume.

� The lspv command is useful for displaying information about the physical 
volume, its logical volume content, and the logical volume allocation layout.

� The lsvg command displays information about volume groups.

The lslv, lsvg, and lspv commands read different Logical Volume Manager 
(LVM) volume groups and logical volume descriptor areas from physical volumes. 

When information from the Object Data Manager (ODM) Device Configuration 
database is unavailable, some of the fields will contain a question mark (?) in 
place of the missing data.

These commands resides in /usr/sbin and are part of the bos.rte.lvm fileset, 
which is installed by default from the AIX base installation media.

lslv
The syntax of the lslv command is:

lslv [ -L ] [ -l| -m ] [ -n DescriptorPV ] LVname 
lslv [ -L ] [ -n DescriptorPV ] -p PVname [ LVname ]

Useful combinations
� lslv LVname List detailed logical volume attributes 

for logical volume
� lslv -l LVname Lists physical volumes and distributions 

for logical volume

lspv
The syntax of the lspv command is:

lspv [-L] [-M | -l | -p]  [-n DescriptorPV] [-v VGid] PVname

Useful combinations
� lspv List all physical volumes and the 

associated volume groups
� lspv -l PVname Lists logical volumes on the specified 

physical volume
 Chapter 7. Storage analysis and tuning 463



lsvg
The syntax of the lsvg command is:

lsvg [-o] [[-L] -n PVname] | -p ] volume group ... 
lsvg [-L] [-i] [-M | -l | -p] VGname...

Useful combinations
� lsvg List all volume groups
� lsvg VGname List detailed volume group attributes 
� lsvg -l VGname Lists logical volumes for a volume group
� lsvg -p VGname Lists physical volumes for a volume group

Examples for lslv, lspv, and lsvg
When starting to look for a potential I/O-related performance bottleneck, we often 
need to find out more about the disks in use, such as their content and purpose. 
Here are a few of the actions we need to perform:

� Determine the volume group the disks in question belong to.

� Determine the logical volume layout on the disks in question.

� Determine the logical volume layout of all of the disks in question on the 
volume group.

To accomplish this we use mainly the lsvg, lspv, and lslv commands.

To monitor disk I/O we usually start with the iostat command, which shows the 
load on different disks in great detail. The output in Example 7-33 is the summary 
since boot time (if the iostat attribute has been enabled for the sys0 logical 
device driver).

Example 7-33   Starting point with iostat

[p630n06][/]> iostat -ad

System configuration: lcpu=4 drives=7

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
scsi0                     22.8       1.2    1950889   7790812

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk3_Path0           0.0       0.0       0.0       3157         0
hdisk2_Path0           0.3      18.5       0.5    1745814   6147340
hdisk1_Path0           0.2       3.3       0.5      55979   1348248
hdisk0_Path0           0.1       1.0       0.2     145939    295224

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
ide0                       0.0       0.0          0         0
464 AIX 5L Practical Performance Tools and Tuning Guide



Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
cd0                    0.0       0.0       0.0          0         0

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
fcs0                      76.7       5.9      22728  32770316

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk5_Path1           0.0       0.0       0.0          0         0
hdisk5_Path0           0.2      64.6       2.9        598  27608970
hdisk4_Path1           0.0       0.0       0.0          0         0
hdisk4_Path0           0.1      12.1       3.0      22130   5161346

This system has three adapters (SCSI, IDE, Fibre). There are four local disks on 
the SCSI adapter. The IDE adapter is controlling the CD-ROM. The fibre channel 
adapter has two paths to hdisk4 and hdisk5. Since IPL the disks have not been 
very active. To find out how long the statistics have been gathering, use the 
uptime command as shown in Example 7-34.

Example 7-34   Using uptime

[p630n06][/]> uptime
  04:31PM   up 4 days,  22:49,  10 users,  load average: 0.00, 0.03, 0.04

The example tells us that the statistics have been collected over four days. Also 
note that the output of iostat will show an average over 24 hours during that 
time. We know that our system is only used during normal working hours so we 
could check the current running statistics as in Example 7-35.

Example 7-35   Using iostat

# iostat -ad 1 2
...(lines omitted)...
Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
scsi0                    6764.0     278.0          0      6764

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk3_Path0           0.0       0.0       0.0          0         0
hdisk2_Path0          51.0     4236.0      57.0          0      4236
hdisk1_Path0          97.0     2528.0     221.0          0      2528
hdisk0_Path0           0.0       0.0       0.0          0         0

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
fcs0                     8832.0      69.0          0      8832

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk5_Path1           0.0       0.0       0.0          0         0
hdisk5_Path0          18.0     8832.0      69.0          0      8832
 Chapter 7. Storage analysis and tuning 465



hdisk4_Path1           0.0       0.0       0.0          0         0
hdisk4_Path0           0.0       0.0       0.0          0         0

And now we see that the system performs quite a bit of I/O on hdisk1 and 
hdisk2, so we should check how the layout is for these disks. First let’s find out 
what volume groups the disk belong to as seen in Example 7-36.

Example 7-36   Using lspv to examine the disk versus volume group mapping

[p630n06][/]> lspv
hdisk0          000684ff60a73b09                    rootvg          active
hdisk1          000684ff753af8b0                    localvg         active
hdisk2          000684fff5a4045d                    localvg         active
hdisk3          000684ff702c2c01                    jikkvg          active
hdisk4          0000331209edf8b2                    essvg           active
hdisk5          0000331209edf958                    essvg           active

The disks we are examining (hdisk1 and hdisk2) belong to the localvg volume 
group. Because the two disks belongs to the same volume group, we can go 
ahead and list some information about the disks from the volume group 
perspective using lsvg as shown in Example 7-37.

Example 7-37   Using lsvg to check the distribution

[p630n06][/]> lsvg -p localvg
localvg:
PV_NAME           PV STATE          TOTAL PPs   FREE PPs    FREE DISTRIBUTION
hdisk1            active            546         420         110..00..92..109..109
hdisk2            active            546         426         110..00..98..109..109

Now we see that the disks have the same number of physical partitions, and 
because volume groups have one physical partition size, they must be the same 
size.

The lsvg -p fields are interpreted as follows:

PV_NAME A physical volume within the group. 
PV STATE State of the physical volume. 
TOTAL PPs Total number of physical partitions on the physical 

volume. 
FREE PPs Number of free physical partitions on the physical volume. 
FREE Distribution The number of physical partitions allocated within each 

section of the physical volume: outer edge, outer middle, 
center, inner middle, and inner edge of the physical 
volume.
466 AIX 5L Practical Performance Tools and Tuning Guide



Now we can find out which logical volumes occupy the vg0 volume group, as 
shown in Example 7-38.

Example 7-38   Using lsvg to get all logical volumes within the volume group

[p630n06][/]> lsvg -l localvg
localvg:
LV NAME             TYPE       LPs   PPs   PVs  LV STATE      MOUNT POINT
loglv02             jfs2log    1     1     1    open/syncd    N/A
fslv01              jfs2       20    40    2    open/stale    /localfs
loglv03             jfslog     1     1     1    open/syncd    N/A
lv00                jfs        4     4     1    open/syncd    /ljfs
testlv              jfs2       200   200   2    closed/syncd  N/A

This tells us that there are both JFS and JFS2 filesystems, a logical volume 
without an entry in /etc/filesystems (testlv mount point show up as N/A), and 
that one logical volume is mirrored (fslv01) and one logical volume is spread 
over two disks (testlv). The output above also shows that we have two external 
log logical volumes; loglv02 that is used by JFS2 file systems and loglv03 that is 
used by JFS file systems. The report does not tell us which of the file systems 
uses which log logical volume, nor if any of them uses inline logs either.

The lsvg -l report has the following format:

LV NAME A logical volume within the volume group. 
TYPE Logical volume type. 
LPs Number of logical partitions in the logical volume. 
PPs Number of physical partitions used by the logical volume. 
PVs Number of physical volumes used by the logical volume. 
LV STATE State of the logical volume. Opened/stale indicates that 

the logical volume is open but contains partitions that are 
not current. Opened/syncd indicates that the logical 
volume is open and synchronized. Closed indicates that 
the logical volume has not been opened. 

MOUNT POINT File system mount point for the logical volume, if 
applicable. 

At this point it would be a good idea to check which of the file systems are the 
most used with the filemon or lvmstat commands. For instance, Example 7-39 
with lvmstat shows the five busiest logical volumes.

Example 7-39   Checking busy logical volumes with lvmstat

[p630n06][/]> lvmstat -v localvg -c 5

Logical Volume       iocnt   Kb_read   Kb_wrtn      Kbps
  fslv01             19036   3380224    709512     19.07
  lv00               13574   1048644     95280      5.33
 Chapter 7. Storage analysis and tuning 467



  testlv              6188   1584128         0      7.39
  loglv03             3422         0     13688      0.06
  loglv02             1690         0      6760      0.03

We can clearly see that both fslv01and lv00 are the most utilized logical 
volumes. Now we need to get more information about the layout on the disks. If 
the workload shows a significant degree of I/O dependency (although it has a lot 
of I/O we cannot conclude the complete workload from the iostat or lvmstat 
output only), we can investigate the physical placement of the files on the disk to 
determine whether reorganization at some level would yield an improvement. To 
view the placement of the partitions of logical volume lv04 within physical volume 
hdisk2, the lslv command could be used as shown in Example 7-40.

Example 7-40   Using lslv -p

[p630n06][/]> lslv -p hdisk2 fslv01
hdisk2:fslv01:/localfs
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE       1-10
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      11-20
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      21-30
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      31-40
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      41-50
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      51-60
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      61-70
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      71-80
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      81-90
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE      91-100
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE     101-110
0001   0002   0003   0004   0005   0006   0007   0008   0009   0010     111-120
0011   0012   0013   0014   0015   0016   0017   0018   0019   0020     121-130
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     131-140
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     141-150
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     151-160
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     161-170
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     171-180
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     181-190
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     191-200
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     201-210
USED   USED   USED   USED   USED   USED   USED   USED   USED            211-219
USED   USED   USED   USED   USED   USED   USED   USED   USED   USED     220-229
USED   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE     230-239
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE     240-249
FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE   FREE     250-259

...(lines omitted)...
468 AIX 5L Practical Performance Tools and Tuning Guide



The USED label tells us that this partition is allocated by another logical volume, 
the FREE label tells us that it is not allocated, and the numbers 0001-0020 indicate 
that this belongs to the logical volume we wanted to check, in our case fslv01. A 
STALE partition (not shown in the example above) is a physical partition that 
contains data you cannot use.

Example 7-41 shows a similar output from lspv to find out the intra disk layout of 
logical volumes on hdisk1 and hdisk2.

Example 7-41   Using lspv to check the intra disk policy

[p630n06][/]> lspv -l hdisk1;lspv -l hdisk2
hdisk1:
LV NAME               LPs   PPs   DISTRIBUTION          MOUNT POINT
testlv                100   100   55..45..00..00..00    N/A
lv00                  4     4     04..00..00..00..00    /ljfs
loglv03               1     1     01..00..00..00..00    N/A
fslv01                20    20    20..00..00..00..00    /localfs
loglv02               1     1     01..00..00..00..00    N/A
hdisk2:
LV NAME               LPs   PPs   DISTRIBUTION          MOUNT POINT
testlv                100   100   55..45..00..00..00    N/A
fslv01                20    20    20..00..00..00..00    /localfs

Filesystems lv00 and fslv01 are both on hdisk1. Additionally fslv01 is mirrored on 
hdisk2. The filesystems are on the same part of hdisk1, and is contiguously 
allocated there. Example 7-42 shows the intra disk layout in another, more 
readable, way with the lspv command.

Example 7-42   Using lspv to check the intra disk layout

[p630n06][/]> lspv -p hdisk1;lspv -p hdisk2
hdisk1:
PP RANGE  STATE   REGION        LV ID               TYPE       MOUNT POINT
  1-110   free    outer edge
111-111   used    outer middle  loglv02             jfs2log    N/A
112-112   used    outer middle  loglv03             jfslog     N/A
113-116   used    outer middle  lv00                jfs        /ljfs
117-136   stale   outer middle  fslv01              jfs2       /localfs
137-219   used    outer middle  testlv              jfs2       N/A
220-236   used    center        testlv              jfs2       N/A
237-328   free    center
329-437   free    inner middle
438-546   free    inner edge
hdisk2:
PP RANGE  STATE   REGION        LV ID               TYPE       MOUNT POINT
  1-110   free    outer edge
111-130   used    outer middle  fslv01              jfs2       /localfs
 Chapter 7. Storage analysis and tuning 469



131-219   used    outer middle  testlv              jfs2       N/A
220-230   used    center        testlv              jfs2       N/A
231-328   free    center
329-437   free    inner middle
438-546   free    inner edge

The output above shows us the same information. If we had a fragmented layout 
for our logical volumes this would have meant that the disk arms would have to 
move across the disk platter whenever the end of the first part of the logical 
volume was reached. This is usually the case when file systems are expanded 
during production and this is an excellent feature of Logical Volume Manager 
Device Driver (LVMDD). After some time in production, the logical volumes must 
be reorganized so that they occupy contiguous physical partitions. We can also 
examine how the logical volume partitions are organized with the lslv command. 
Example 7-43 shows a quick look at the two log logical volumes.

Example 7-43   Using lslv to check the logical volume disk layout

[p630n06][/]> lslv -m fslv01;lslv -m lv00
fslv01:/localfs
LP    PP1  PV1               PP2  PV2               PP3  PV3
0001  0111 hdisk2            0117 hdisk1
0002  0112 hdisk2            0118 hdisk1
...(lines omitted)...
0019  0129 hdisk2            0135 hdisk1
0020  0130 hdisk2            0136 hdisk1
lv00:/ljfs
LP    PP1  PV1               PP2  PV2               PP3  PV3
0001  0113 hdisk1
0002  0114 hdisk1
0003  0115 hdisk1
0004  0116 hdisk1

The output simply shows what physical partitions are allocated for each logical 
partition. In a more complex allocation it can be most useful to check the 
locations used for different very active logical volumes, compare where they are 
allocated on the disk, and, if possible, move the hot spots closer together.

The lslv -m report has the following format:

LPs Logical partition number. 
PV1 Physical volume name where the logical partition's first physical 

partition is located. 
PP1 First physical partition number allocated to the logical partition. 
PV2 Physical volume name where the logical partition's second physical 

partition (first copy) is located. 
470 AIX 5L Practical Performance Tools and Tuning Guide



PP2 Second physical partition number allocated to the logical partition. 
PV3 Physical volume name where the logical partition’s third physical 

partition (second copy) is located. 
PP3 Third physical partition number allocated to the logical partition. 

Using lslv
The lslv command displays the characteristics and status of the logical volume, 
as Example 7-44 shows.

Example 7-44   Logical volume fragmentation with lslv

[p630n06][/]> lslv -l hd6
hd6:N/A
PV                COPIES        IN BAND       DISTRIBUTION
hdisk0            010:000:000   100%          000:010:000:000:000

The lslv command also shows that it has 10 LPs but no additional copies. It also 
says that the intra-policy of center is 100% in band.

The lslv -l report has the following format:

PV Physical volume name. 

COPIES These three fields are displayed:

– The number of logical partitions containing at least one 
physical partition (no copies) on the physical volume 

– The number of logical partitions containing at least two 
physical partitions (one copy) on the physical volume 

– The number of logical partitions containing three physical 
partitions (two copies) on the physical volume 

IN BAND The percentage of physical partitions on the physical volume 
that belong to the logical volume and were allocated within the 
physical volume region specified by intra-physical allocation 
policy. 

DISTRIBUTION The number of physical partitions allocated within each section 
of the physical volume. The DISTRIBUTION shows how the 
physical partitions are placed in each part of the intrapolicy; that 
is: edge : middle : center : inner-middle : inner-edge

The higher the IN BAND percentage, the better the allocation efficiency. Each 
logical volume has its own intra policy. If the operating system cannot meet this 
requirement, it chooses the best way to meet the requirements.
 Chapter 7. Storage analysis and tuning 471



Using lspv
The lspv command is useful for displaying information about the physical 
volume, its logical volume content, and logical volume allocation layout, as 
Example 7-45 shows.

Example 7-45   Logical volume fragmentation with lspv -l

[p630n06][/]> lspv -l hdisk0
hdisk0:
LV NAME               LPs   PPs   DISTRIBUTION          MOUNT POINT
hd6                   10    10 00..10..00..00..00    N/A
...(lines omitted)...

This example shows that the hd6 logical volume is at the outer middle part of the 
disk, with all physical partitions located their.

The lspv -l report has the following format:

LV NAME Name of the logical volume to which the physical partitions are 
allocated. 

LPs The number of logical partitions within the logical volume that are 
contained on this physical volume. 

PPs The number of physical partitions within the logical volume that 
are contained on this physical volume. 

DISTRIBUTION The number of physical partitions belonging to the logical volume 
that are allocated within each of the following sections of the 
physical volume: outer edge, outer middle, center, inner 
middle, and inner edge of the physical volume. 

MOUNT POINT File system mount point for the logical volume, if applicable.

Another way to use lspv is with the -p parameter as in Example 7-46.

Example 7-46   Logical volume fragmentation with lspv -p

[p630n06][/]> lspv -p hdisk0
hdisk0:
PP RANGE  STATE   REGION        LV NAME             TYPE       MOUNT POINT
  1-1     used    outer edge    hd5                 boot       N/A
  2-110   free    outer edge
111-111   used    outer middle  hd6                 paging     N/A
112-115   used    outer middle  lg_dumplv           sysdump    N/A
116-124   used    outer middle  hd6                 paging     N/A
125-219   free    outer middle
220-220   used    center        hd8                 jfs2log    N/A
221-221   used    center        hd4                 jfs2       /
222-222   used    center        hd2                 jfs2       /usr
223-223   used    center        hd9var              jfs2       /var
224-224   used    center        hd3                 jfs2       /tmp
225-225   used    center        hd1                 jfs2       /home
472 AIX 5L Practical Performance Tools and Tuning Guide



226-226   used    center        hd10opt             jfs2       /opt
227-231   used    center        hd2                 jfs2       /usr
232-241   used    center        paging00            paging     N/A
242-328   free    center
329-437   free    inner middle
438-546   free    inner edge

As shown in the output above, this output is easier to read.

The lspv -p report has the following format:

PP RANGE A range of consecutive physical partitions contained on a single 
region of the physical volume. 

STATE The current state of the physical partitions; free, used, stale, or 
vgda. 

REGION The intra-physical volume region in which the partitions are 
located. 

LV ID The name of the logical volume to which the physical partitions are 
allocated. 

TYPE The type of the logical volume to which the partitions are allocated. 
MOUNT POINT File system mount point for the logical volume, if applicable.

Using lsvg
The lsvg command is useful for displaying information about the volume group 
and its logical and physical volumes.

First we need to understand the basic properties of the volume group, such as:

� Its general characteristics
� Its currently allocated size
� Its physical partition size
� Whether there are any STALE partitions
� How much space is already allocated
� How much is not allocated

Example 7-47 shows how to obtain this basic information about a volume group.

Example 7-47   Using lsvg to obtain volume group basics

[p630n06][/]> lsvg -L essvg
VOLUME GROUP:       essvg                    VG IDENTIFIER:  000684ff00004c00000000ff78cdb1e1
VG STATE:           active                   PP SIZE:        16 megabyte(s)
VG PERMISSION:      read/write               TOTAL PPs:      1190 (19040 megabytes)
MAX LVs:            256                      FREE PPs:       869 (13904 megabytes)
LVs:                2                        USED PPs:       321 (5136 megabytes)
OPEN LVs:           2                        QUORUM:         2
TOTAL PVs:          2                        VG DESCRIPTORS: 3
STALE PVs:          0                        STALE PPs:      0
 Chapter 7. Storage analysis and tuning 473



ACTIVE PVs:         2                        AUTO ON:        yes
MAX PPs per VG:     32512
MAX PPs per PV:     1016                     MAX PVs:        32
LTG size (Dynamic): 256 kilobyte(s)          AUTO SYNC:      no
HOT SPARE:          no                       BB POLICY:      relocatable

The volume group shown in the example has two logical volumes and two disks 
with a physical partition size of 16 MB.

We also need to find out which logical volumes are created on this volume group 
and if they all are open and in use as shown in Example 7-48. If they are not 
open and in use they might be old, corrupted and forgotten, or only used 
occasionally, and if we were to need more space to reorganize the volume group 
we might be able to free that space.

Example 7-48   Using lsvg to check the logical volume state

[p630n06][/]> lsvg -l essvg
essvg:
LV NAME             TYPE       LPs   PPs   PVs  LV STATE      MOUNT POINT
loglv01             jfs2log    1     1     1    open/syncd    N/A
fslv02              jfs2       320   320   1    open/syncd    /essfs

As the example above shows, there are one logical volume with a file system and 
one jfslog2. We can have two types of jfs: a journal file system or an Enhanced 
Journaled File System (JFS2).

Remember that the physical partition size was 16 MB, so even though the logs 
logical volume only has one (1) logical partition it is a 16 MB partition. 
Example 7-49 shows the disks that are allocated for this volume group.

Example 7-49   Using lsvg to determine disks allocated to the volume group

[p630n06][/]> lsvg -p essvg
essvg:
PV_NAME           PV STATE          TOTAL PPs   FREE PPs    FREE DISTRIBUTION
hdisk4            active            595         594         119..118..119..119..119
hdisk5            active            595         275         119..00..00..37..119

So there are two disks in this volume group and mirroring is not activated for the 
logical volumes. When finding out information about volume groups it is often 
necessary to know what kind of disks are being used to make up the volume 
group. To examine disks we can use the lspv, lsdev, and lscfg commands.
474 AIX 5L Practical Performance Tools and Tuning Guide



Acquiring more disk information
Example 7-50 uses the lsdev command to obtain information about the types of 
disks in the volume group.

Example 7-50   Using lsdev to examine a disk device

[p630n06][/]> lsdev -Cl hdisk4
hdisk4 Available 1n-08-02 MPIO Other FC SCSI Disk Drive

The output tells us that it is an MPIO FC SCSI disk drive.

7.2.5  The lvmstat command
The lvmstat command reports input and output statistics for logical partitions, 
logical volumes, and volume groups. lvmstat is useful in determining whether a 
physical volume is becoming a hindrance to performance by identifying the 
busiest physical partitions for a logical volume.

lvmstat can help identify particular logical volume partitions that are used more 
than other partitions (hot spots or high-traffic partitions). If these partitions reside 
on the same disk or are spread out over several disks, it may be necessary to 
migrate them to new disks or, when the volume group only has one disk, put 
them closer together on the same disk to reduce the performance penalty.

The lvmstat command resides in /usr/sbin and is part of the bos.rte.lvm fileset, 
which is installed by default from the AIX base installation media.

lvmstat syntax
lvmstat {-l|-v} <name> [-e|-d] [-F] [-C] [-c count] [-s] [interval [iterations]]

Useful combinations
� lvmstat -v rootvg -e Enable stat collection for volume group 

rootvg
� lvmstat -v rootvg Report stats for volume group rootvg
� lvmstat -v rootvg -d Disable stat collection for volume group rootvg

Information about measurement and sampling
The lvmstat command generates reports that can be used to change logical 
volume configuration to better balance the input and output load between 
physical disks. 

By default, the statistics collection is not enabled. Using the -e flag enables the 
Logical Volume Device Driver (LVMDD) to collect the physical partition statistics 
for each specified logical volume or the logical volumes in the specified volume 
group. Enabling the statistics collection for a volume group enables it for all 
 Chapter 7. Storage analysis and tuning 475



logical volumes in that volume group. On every I/O call done to the physical 
partition that belongs to an enabled logical volume, the I/O count for that partition 
is incremented by LVMDD. All data collection is done by the LVMDD, and the 
lvmstat command reports on those statistics.

The first report section generated by lvmstat provides statistics concerning the 
time since the statistical collection was enabled. Each subsequent report section 
covers the time since the previous report. All statistics are reported each time 
lvmstat runs. The report consists of a header row, followed by a line of statistics 
for each logical partition or logical volume depending on the flags specified. 

Examples for lvmstat
If the statistics collection has not been enabled for the volume group or logical 
volume you want to monitor, the output from lvmstat will look like Example 7-51.

Example 7-51   Using lvmstat without enabling statistics collection

[p630n06][/home/guest]> lvmstat -v localvg
0516-1309 lvmstat: Statistics collection is not enabled for this logical 
device.
        Use -e option to enable.

To enable statistics collection for all logical volumes in a volume group (in this 
case the rootvg volume group), use the -e option together with the -v <volume 
group> flag as follows:

lvmstat -v localvg -e

When you do not need to continue collecting statistics with lvmstat, it should be 
disabled because it has an impact on system performance. To disable statistics 
collection for all logical volumes in a volume group (in this case the rootvg volume 
group), use the -d option together with the -v <volume group> flag as follows:

lvmstat -v localvg -d

If there is no activity on the partitions of the monitored device, lvmstat will print a 
period (.) for the time interval where no activity occurred. In Example 7-52 there 
was no activity at all in the vg0 volume group:

Example 7-52   No activity lvmstat

[p630n06][/home/guest]> date;lvmstat -v localvg 1 10;print;date
Wed Oct 13 14:20:59 CDT 2004
..........
Wed Oct 13 14:21:08 CDT 2004
476 AIX 5L Practical Performance Tools and Tuning Guide



Monitoring logical volume utilization
Because the lvmstat command enables you to monitor the I/O on logical 
partitions, it is a powerful tool to use when monitoring logical volume utilization. 
In the following scenario we start by using lvmstat to list the volume group 
statistics by using the -v <volume group> flag as is shown in Example 7-53.

Example 7-53   Using lvmstat with a volume group

[p630n06][/home/guest]> lvmstat -v localvg

Logical Volume       iocnt   Kb_read   Kb_wrtn      Kbps
  fslv01            307444  17413752   7924436     88.83
  testlv            204800  52428800         0    183.80
  loglv02            17592         0     70368      0.25
  lv00               13728   1048648     95892      4.01
  loglv03             3555         0     14220      0.05

This output shows that the most-utilized logical volumes since we turned on the 
statistical collection are fslv01 and testlv. Example 7-54 shows the use of the -l 
<logical volume> flag to look at the logical partition statistics for logical volume 
fslv01 and testlv.

Example 7-54   Using lvmstat with a single logical volume

[p630n06][/home/guest/2105]> lvmstat -l fslv01 | head

Log_part  mirror#  iocnt   Kb_read   Kb_wrtn      Kbps
       9       1   44401   1045184   1913536     10.37
       4       1   28318    860864   1823168      9.41
       6       1   23639   1048576         0      3.68
      14       1   23202    791104   1632580      8.49
       5       1   19741    946176         0      3.32
      15       1   17131    788544    934272      6.04
      13       1   16265    786432    290516      3.77
      16       1   11407    786432    262116      3.68

[p630n06][/home/guest]> lvmstat -l testlv | head

Log_part  mirror#  iocnt   Kb_read   Kb_wrtn      Kbps
       1       1    1024    262144         0      0.92
       2       1    1024    262144         0      0.92
       3       1    1024    262144         0      0.92
       4       1    1024    262144         0      0.92
       5       1    1024    262144         0      0.92
       6       1    1024    262144         0      0.92
       7       1    1024    262144         0      0.92
       8       1    1024    262144         0      0.92
 Chapter 7. Storage analysis and tuning 477



From the output we see that the most-utilized logical partition for the fslv01 
logical volume is logical partition number 9, and that each partition was used 
equally for the testlv logical volume.

lvmstat reports on each individual logical partition with a one-line output for each 
as can be seen in the output above. The report has the following format: 

Log_part  Logical partition number 
mirror# Mirror copy number of the logical partition
iocnt Number of read and write requests  
Kb_read The total number of kilobytes read  
Kb_wrtn The total number of kilobytes written  
Kbps The amount of data transferred in kilobytes per second

7.2.6  The sar -d command
The sar command is used to gather statistical information about your system — 
CPU, queuing, paging, file access, and more — that can help determine system 
performance. The sar command can have an impact on system performance.

The sar command can be used for:

� Collecting real-time information
� Displaying previously captured data
� Collecting data using cron

sar resides in /usr/sbin and is part of the bos.perf.tools fileset, which is installable 
from the AIX base installation media

This section will focus on the -d option that directly relates to storage.

sar syntax
/usr/sbin/sar [ { -A | [ -a ] [ -b ] [ -c ] [ -d ][ -k ] [ -m ] [ -q ] [ -r ] [ -u ] [ -v ] [ -w ] [ -y ] 
} ] [ -P ProcessorIdentifier, ... | ALL ] [ -ehh [ :mm [ :ss ] ] ] [ -XFile ] [ -fFile ] [ 
-iSeconds ] [ -oFile ] [ -shh [ :mm [ :ss ] ] ] [ Interval [ Number ] ]

Useful combinations
� sar -d 5 60 Disk report at 5 second intervals for 60 

iterations.

Information about measurement and sampling 
The sar command itself can generate a considerable number of reads and writes 
depending on the interval at which it is run. Run the sar statistics without the 
workload to understand the sar command’s contribution to your total statistics. 
Reports activity for each block device with the exception of tape drives. 
478 AIX 5L Practical Performance Tools and Tuning Guide



The activity data reported is: 

%busy Reports the portion of time the device was busy servicing 
a transfer request. 

avque Before AIX 5.3: Reports the instantaneous number of 
requests sent to disk but not completed yet. AIX 5.3: 
Reports the average number of requests waiting to be 
sent to disk. 

read/s, write/s, blk/s Reports the number of read-write transfers from or to a 
device. The number of bytes is transferred in 512-byte 
units. 

avwait, avserv Average wait time and service time per request in 
milliseconds.

Examples for sar -d
One of the nice features of the sar command is that it summarizes and provides 
an average when an Interval and Number is specified. Additionally it provides 
information on the disk queue and service times.

In Example 7-55 we see an example of the sar command with an interval of 5 
seconds and the number of intervals being 3.

Example 7-55   sar -d 5 3

# sar -d 5 3

AIX p690_LPAR1 3 5 0022BE2A4C00    10/15/04

System configuration: lcpu=2 drives=5

15:48:35     device    %busy    avque    r+w/s    Kbs/s   avwait   avserv

15:48:40     hdisk0      0      0.0        0        0      0.0      0.0
             hdisk1    100    235.9      387     1660     11.8      7.7
                cd0      0      0.0        0        0      0.0      0.0
             hdisk2      0      0.0        0        0      0.0      0.0
             hdisk3      0      0.0        0        0      0.0      0.0

15:48:45     hdisk0      0      0.0        0        0      0.0      0.0
             hdisk1     99    235.7      396     1696      5.9      7.5
                cd0      0      0.0        0        0      0.0      0.0
             hdisk2      0      0.0        0        0      0.0      0.0
             hdisk3      0      0.0        0        0      0.0      0.0

15:48:50     hdisk0      0      0.0        0        0      0.0      0.0
             hdisk1     99    236.9      389     1679      8.3      7.7
 Chapter 7. Storage analysis and tuning 479



                cd0      0      0.0        0        0      0.0      0.0
             hdisk2      0      0.0        0        0      0.0      0.0
             hdisk3      0      0.0        0        0      0.0      0.0

Average      hdisk0      0      0.0        0        0      0.0      0.0
             hdisk1     99    236.2      390     1678      8.7      7.6
                cd0      0      0.0        0        0      0.0      0.0
             hdisk2      0      0.0        0        0      0.0      0.0
             hdisk3      0      0.0        0        0      0.0      0.0

The report raises some red flags that indicate a number of performance issues. 
One hdisk is 100% busy and the other three are idle. There is a large queue of 
requests waiting for hdisk1. The data rate is 1.7 MB/second and each request is 
waiting on average 8.7 milliseconds and is taking 7.6 milliseconds to complete.

7.3  Tuning
In order to effectively tune the storage layer, it is important to understand the 
workload generated by the application. Without a good understand of the 
workload, and the subsequent load that is placed on the storage, tuning will likely 
be ineffective. Worse than that, improper tuning can degrade performance. 
Tuning cannot make up for bad data placement and design.

This section covers the commands that can be used to tune the I/O layer. For the 
discussion of data placement and design see.

7.3.1  The lsdev, rmdev and mkdev commands
When tuning disk storage you often need to work with the adapters and disks. 
Some tuning requires that the device is made unavailable (changed from 
available to defined). A major change like installing a new device driver may 
require the device to be completely removed from the system and then 
re-installed. The basic commands to work with adapters and disks at this level 
are lsdev, rmdev, and mkdev:

� The lsdev command displays devices in the system and their characteristics.

� The rmdev command unconfigures or both unconfigures and undefines 
devices (removes/deletes).

� The mkdev command makes available a previously defined device.

These commands reside in /usr/sbin and are part of the bos.rte.methods fileset, 
which is installed by default from the AIX base installation media.
480 AIX 5L Practical Performance Tools and Tuning Guide



lsdev
The syntax of the lsdev command is:

lsdev [ -C ][ -c Class ] [ -s Subclass ] [ -t Type ] [ -f File ] [ -F Format | 
-r ColumnName ] [ -h ] [ -H ] [ -l  { Name | - } ] [ -p Parent ] [ -S State ]

lsdev -P [ -c Class ] [ -s Subclass ] [ -t Type ] [ -f File ] [ -F Format | -r 
ColumnName ] [ -h ] [ -H ]

Useful combinations
� lsdev -Cc tape list all attached tape devices
� lsdev -Cc disk list all attached disk drives
� lsdev -Cc adapter list all adapters

rmdev
The syntax of the rmdev command is:

rmdev { -l | -p }Name [ -d | -S ] [ -f File ] [ -h ] [ -q ] [ -R ]

Useful combinations
� rmdev -l hdisk4 Change status of disk to defined
� rmdev -dl hdisk4 Undefine and remove device
� rmdev -dl fcs0 -R Unconfigure device and all children devices

mkdev
The syntax of the mkdev command is:

mkdev -l Name [ -h ] [ -q ] [ -S ]

Useful combinations
� mkdev -l hdisk4 Change status of disk to available

Examples for lsdev, rmdev, mkdev
This paragraph presents usage examples for the lsdev, rmdev, and mkdev 
commands.

Using lsdev
The lsdev command can be used to list customized or predefined devices in the 
Device Configuration database. Customized devices are those which are defined 
to the operating system. Pre-defined devices are those which the operating 
system has information on how to configure if the device is attached to the 
system. If you want to list devices that are configured to the system, you use the 
-C flag. The command lsdev -C would list all devices of all types that are defined 
to the system. It is often helpful to restrict the output to a specific device class. 
 Chapter 7. Storage analysis and tuning 481



A common way to look at the disk is to use the command lsdev -Cc disk. A 
variation of that command which uses the -H flag to include header information is 
shown in Example 7-56.

Example 7-56   lsdev -CH -c disk

# lsdev -CH -c disk
name   status    location     description

hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk3 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device

The output shows that there are three types of disk attached to the system: LVD 
SCSI, MPIO Other FC SCSI, and 1742-900. The MPIO Other FC SCSI is a 
generic device driver used by AIX for multi path disk drivers, for which AIX does 
not have information available in the Pre-defined Device Configuration database. 
The LVD SCSI disk drive is the basic locally attached device type. The 1742-900 
is the DS4500 (FAStT 900) disk device. AIX 5.3 has built-in support for DS4500 
disk devices. 

The first column is the customized name of the device. Many commands take the 
customized name as an argument (lsdev, mkdev, rmdev, lsattr, chdev, 
lscfg). When specifying a specific device with one of those commands, you use 
the -l flag. 

By using the same command, but changing the class to adapter, we can see all 
the device adapters defined to the system. 

Example 7-57   lsdev -CH -c adapter

# lsdev -CH -c adapter
name  status    location description

ent0  Available 44-08    Gigabit Ethernet-SX PCI-X Adapter (14106802)
ent1  Available 47-08    10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent2  Available 4s-08    10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent3  Available 54-08    10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent4  Available 5F-08    Gigabit Ethernet-SX PCI-X Adapter (14106802)
fcs0  Available 41-08    FC Adapter
fcs1  Available 4Q-08    FC Adapter
sa0   Available          LPAR Virtual Serial Adapter
scsi0 Available 3s-08    Wide/Ultra-3 SCSI I/O Controller
scsi1 Available 5M-08    Wide/Ultra-3 SCSI I/O Controller
scsi2 Available 3A-08    Wide/Fast-20 SCSI I/O Controller
482 AIX 5L Practical Performance Tools and Tuning Guide



vsa0  Available          LPAR Virtual Serial Adapter

Using the location column from Example 7-56 on page 482 and Example 7-57 on 
page 482, it is easy to identify which adapter each hdisk is attached to. The disk 
hdisk5 at location 41-08-02 is attached through adapter fcs0 at location 41-08. 

In the case of MPIO disk drives this is misleading. It is necessary to use the 
lspath command with MPIO disk drives to see if the disk is available through 
other adapters.

IBM Enterprise Storage Server® considerations
ESS disk devices are configured as MPIO-capable or non-MPIO-capable 
depending on which ESS host attachment script is installed. To configure ESS 
devices as non-MPIO-capable devices, install the ibm2105.rte package with a 
version of 32.6.100.x. To configure ESS devices as MPIO-capable devices, 
install the devices.fcp.disk.ibm2105.mpio.rte package with a version of 
33.6.100.y. 

A visible difference between MPIO-capable and non-MPIO-capable is the 
number of disk devices reported by commands like lspv or lsdev -Cc disk. For 
non-MPIO-capable host attachment script (32.6.100.x ibm2105.rte), an hdisk 
device will show up for each path. 

For each of the two types of ESS host attachment scripts, there is a 
corresponding device driver to facilitate path management. The two types of 
attachment scripts and two types of subsystem device drivers cannot be 
intermixed.

For the non-MPIO-capable 32.6.100.x ibm2105.rte attachment script, you install 
the Subsystem Device Driver (SDD or devices.sdd.52.rte). In addition to an 
hdisk for every path, after installing SDD you also get a logical disk device with 
the name vpathX (X is a unique number for each hdisk).

Example 7-58   non-MPIO-capable ESS devices

[p630n05][/]> lsdev -Cc disk | egrep "vpath|2105"
hdisk4  Available 1n-08-01      IBM FC 2105
hdisk5  Available 1n-08-01      IBM FC 2105
hdisk6  Available 1n-08-01      IBM FC 2105
hdisk7  Available 1n-08-01      IBM FC 2105
hdisk8  Available 11-08-01      IBM FC 2105
hdisk9  Available 11-08-01      IBM FC 2105
hdisk10 Available 11-08-01      IBM FC 2105
hdisk11 Available 11-08-01      IBM FC 2105
vpath0  Available               Data Path Optimizer Pseudo Device Driver
vpath1  Available               Data Path Optimizer Pseudo Device Driver
 Chapter 7. Storage analysis and tuning 483



For the MPIO-capable 33.6.100.y devices.fcp.disk.ibm2105.pio.rte attachment 
script, you install the Subsystem Device Driver Path Control Module (SDDPCM 
or devices.sddpcm.52f.rte). When the ESS devices are configured as 
MPIO-capable devices, SDDPCM is loaded during the ESS device configuration 
and becomes part of the AIX MPIO SCSI/FCP (Fibre Channel Protocol) device 
driver. At the time of this publication, SDDPCM does not support HACMP, GPFS, 
SVC. With MPIO-capable devices, each hdisk shows up once regardless of 
home many paths. To see paths, you can use the lspath command as in 
Example 7-59.

Example 7-59   MPIO-capable ESS devices

#lsdev -Cc disk
hdisk0 Available 1S-08-00-8,0  16 Bit LVD SCSI Disk Drive
hdisk1 Available 1S-08-00-9,0  16 Bit LVD SCSI Disk Drive
hdisk2 Available 1S-08-00-10,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available 1S-08-00-11,0 16 Bit LVD SCSI Disk Drive
hdisk4 Available 1n-08-02      IBM MPIO FC 2105
hdisk5 Available 1n-08-02      IBM MPIO FC 2105
#lspath -l hdisk4
Enabled hdisk4 fscsi0
Enabled hdisk4 fscsi0
Enabled hdisk4 fscsi1
Enabled hdisk4 fscsi1

Using rmdev
The rmdev command can be used to unconfigure a device or to unconfigure and 
undefine a device. The command requires that any child devices be in a state 
where they can be undefined as well. For disks that belong to a volume group, 
the respective volume group must be varied off. Likewise for adapters.

To unconfigure a device, you issue the command rmdev -l {name}. The name 
can be identified by using the lsdev command as in Example 7-56 on page 482. 
When a device is unconfigured, the device status changes from available to 
defined. 

Example 7-60 shows how to unconfigure a device with rmdev. The lsdev 
command is used before and after to show the status change.

Example 7-60   Unconfigure a device with rmdev

# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk3 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
484 AIX 5L Practical Performance Tools and Tuning Guide



hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device
# rmdev -l hdisk3
hdisk3 Defined
# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk3 Defined   41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device

When a device is in a defined state, you can modify attributes that cannot be 
modified when the device is an available state.

If a disk is in a volume group that is varied on, the rmdev command will fail as in 
Example 7-61

Example 7-61   rmdev with busy device

# rmdev -l hdisk3
Method error (/usr/lib/methods/ucfgdevice):
        0514-062 Cannot perform the requested function because the
                 specified device is busy.

To completely remove a device from the system, use the rmdev command with 
the -d flag. Example 7-62 shows how to unconfigure and undefine a device with 
rmdev. The lsdev command is used before and after to show the status change.

Example 7-62   Unconfigure and undefine a device with rmdev

# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk3 Defined   41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device
# rmdev -dl hdisk2
hdisk2 deleted
# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk3 Defined   41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device

This disk, hdisk2, has been completely removed from the system. To bring it back 
you need to run cfgmgr.
 Chapter 7. Storage analysis and tuning 485



Using mkdev
The mkdev command makes available the previously defined device specified by 
the given device logical name (-l Name flag). At times you may need to 
unconfigure a device in order to make changes to the device attributes. Once the 
changes are made, the mkdev command is used to make the device available. 

Example 7-63 shows how to make a device available with mkdev. The lsdev 
command is used before and after to show the status change.

Example 7-63   mkdev example

# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk3 Defined   41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device
# mkdev -l hdisk3
hdisk3 Available
# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device

The hdisk, hdisk2 is still undefined from the rmdev command from Example 7-62 
on page 485. To bring back the device, we can run cfgmgr which detects and 
defines devices that are attached to the system (see Example 7-64). 

Example 7-64   cfgmgr to bring back removed devices

# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device
# cfgmgr
# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk3 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 4Q-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 41-08-02     1742-900 (900) Disk Array Device

The disk, hdisk2, is now available for use on the system.
486 AIX 5L Practical Performance Tools and Tuning Guide



7.3.2  The lscfg, lsattr, and chdev commands
In 7.3.1, “The lsdev, rmdev and mkdev commands” on page 480 we discussed 
how to list, configure, and change the status of devices. The focus will be on disk 
devices and disk adapters. The commands to list and change device attributes 
are:

� The lscfg command displays configuration, diagnostic, and vital product data 
(VPD)

� The lsattr command displays attribute characteristics and possible values of 
attributes for devices in the system.

� The chdev command changes the characteristics of a device.

These commands reside in /usr/sbin, lsattr and chdev are part of the 
bos.rte.methods fileset, lscfg is part of the bos.rte.diag fileset, both of which are 
installed by default from the AIX base installation media

lscfg
The syntax of the lscfg command is:

lscfg [ -v ] [ -p ] [ -s ] [ -l Name ]

Useful combinations
� lscfg -vl hdisk4 List detailed about a specific device

lsattr
The syntax of the lsattr command is:

lsattr { -D [ -O ] | -E [ -O ] | -F Format [ -Z Character ] } -l Name [-a 
Attribute ] ...[ -f File ] [ -h ] [ -H ]

lsattr -R { -l Name | [ -c Class ] [ -s Subclass ] [ -t Type ] } -a Attribute [ 
-f File ] [ -h ] [ -H ]

Useful combinations
� lsattr -El fcs0 List attributes of a specific device. 

Attributes labeled true can be changed.

chdev
The syntax of the chdev command is:

chdev -l Name [ -a Attribute=Value ... ] [ -f File ] [ -h ] [ -p ParentName ] [ 
-P | -T ] [ -q ] [ -w ConnectionLocation ]
 Chapter 7. Storage analysis and tuning 487



Useful combinations
� chdev -l ent0 -a jumbo_frames=yes Change the value of an 

attribute for a specific device.

Examples for lscfg, lsattr, chdev
Using lscfg
The lscfg can be used to display configuration, diagnostic, and vital product data 
(VPD). Each device and each device type has different characteristics that are 
displayed. To understand what the fields mean, you need to refer to the product 
documentation for the specific device. 

In Example 7-65 we take a look at the lscfg output for a fibre channel adapter. We 
use the -v flag for verbose output, otherwise only the first line shown would be 
reported. We also use th -l flag to specify the name of the device that we are 
interested in. 

Example 7-65   lscfg for fibre channel adapter

# lscfg -vl fcs0
  fcs0             U1.5-P1-I1/Q1  FC Adapter

        Part Number.................09P5079
        EC Level....................A
        Serial Number...............1C2250AE1A
        Manufacturer................001C
        Feature Code................2765
        FRU Number..................09P5080
        Network Address.............10000000C92D6BBA
        ROS Level and ID............02C03951
        Device Specific.(Z0)........2002606D
        Device Specific.(Z1)........00000000
        Device Specific.(Z2)........00000000
        Device Specific.(Z3)........03000909
        Device Specific.(Z4)........FF401210
        Device Specific.(Z5)........02C03951
        Device Specific.(Z6)........06433951
        Device Specific.(Z7)........07433951
        Device Specific.(Z8)........20000000C92D6BBA
        Device Specific.(Z9)........CS3.91A1
        Device Specific.(ZA)........C1D3.91A1
        Device Specific.(ZB)........C2D3.91A1
        Device Specific.(YL)........U1.5-P1-I1/Q1

For this adapter, the more useful fields are the FRU Number, Network Address, 
and Device Specific.(Z9). 
488 AIX 5L Practical Performance Tools and Tuning Guide



If you do not have physical access to the machine to check the adapter type 
label, you can search the IBM Web site using the FRU Number. A search of the 
IBM Web site indicates that this adapter is a 6228 adapter. At the time of this 
publication, adapter microcode downloads are located at:

http://techsupport.services.ibm.com/server/mdownload/adapter.html 

Checking the readme for the 6228 adapter shows that field Z9 is the microcode 
level. The level is determined by dropping the CS, for CS3.91A1, the adapter 
microcode level is 3.91A1.

The other useful field is the Network Address. This is the World Wide Name 
(WWN) for this fibre channel adapter. The WWN is useful for fibre channel switch 
zoning and for disk subsystem configuration. 

For disk devices, the lscfg output provides different information. For DS4000 
devices (FAStT) there is no additional information. Example 7-66 shows the lscfg 
output for a DS4000 disk device.

Example 7-66   lscfg -vl for DS4000 (FAStT)

# lscfg -vl hdisk5
  hdisk5           U1.5-P1-I1/Q1-W200200A0B812106F-L9000000000000  1742-900 
(900 ) Disk Array Device

For ESS 2105 storage, the ESS host attachment script needs to be installed for 
AIX to correctly identify the disk device“IBM Enterprise Storage Server® 
considerations” on page 483. If the ESS host attachment script is not installed, 
an ESS disk device will show up as MPIO Other FC SCSI Disk Drive. 

Example 7-67   lscfg -vl for ESS without host attachment script

# lscfg -vl hdisk2
  hdisk2           U1.5-P1-I1/Q1-W5005076300CD9589-L5313000000000000  

MPIO Other FC SCSI Disk Drive

        Manufacturer................IBM
        Machine Type and Model......2105800
        Part Number.................
        ROS Level and ID............312E3632
        Serial Number...............31322513
        EC Level....................
        FRU Number..................
        Device Specific.(Z0)........000003329F001002
        Device Specific.(Z1)........
        Device Specific.(Z2)........0013
        Device Specific.(Z3)........16602
        Device Specific.(Z4)........
        Device Specific.(Z5)........
 Chapter 7. Storage analysis and tuning 489

http://techsupport.services.ibm.com/server/mdownload/adapter.html


        Device Specific.(Z6)........

With the ESS MPIO-capable attachment script, ESS devices show up as in 
Example 7-68.

Example 7-68   lscfg -vl for ESS with host attachment script

# lscfg -vl hdisk2
  hdisk2           U1.5-P1-I1/Q1-W5005076300CD9589-L5313000000000000  

IBM MPIO FC 2105

        Manufacturer................IBM
        Machine Type and Model......2105800
        Serial Number...............31322513
        EC Level....................1.62
        Device Specific.(Z0)........10
        Device Specific.(Z1)........00AC
        Device Specific.(Z2)........0013
        Device Specific.(Z3)........16602
        Device Specific.(Z4)........05
        Device Specific.(Z5)........00

The lscfg output tell us that the ESS storage is a 2105 model 800. And the serial 
number of the disk is 31322513. The serial number corresponds to the volume 
label from the ESS Specialist interface.

Using lsattr
The lsattr command displays attribute characteristics and possible values of 
attributes for devices in the system. Each device has different characteristics that 
can be modified. To change attribute characteristics the chdev command is used. 
Some attribute changes require that the device be in a defined state. To change a 
device state, use the rmdev and mkdev commands. 

To display the effective characteristics of a device and to see which attributes can 
be changed, use the -El flags as in example Example 7-69. The fibre channel 
adapter also has a child device, fscsi0, which has attributes as well.

Example 7-69   lsattr -El for fibre channel adapters

# lsattr -El fcs0
bus_intr_lvl  547        Bus interrupt level                                False
bus_io_addr   0xfc00     Bus I/O address                                    False
bus_mem_addr  0xe0020000 Bus memory address                                 False
init_link     al         INIT Link flags                                    True
intr_priority 3          Interrupt priority                                 False
lg_term_dma   0x800000   Long term DMA                                      True
max_xfer_size 0x100000   Maximum Transfer Size                              True
490 AIX 5L Practical Performance Tools and Tuning Guide



num_cmd_elems 200        Maximum number of COMMANDS to queue to the adapter True
pref_alpa     0x1        Preferred AL_PA                                    True
sw_fc_class   2          FC Class for Fabric                                True

# lsattr -El fscsi0
attach       switch       How this adapter is CONNECTED         False
dyntrk       no           Dynamic Tracking of FC Devices        True
fc_err_recov delayed_fail FC Fabric Event Error RECOVERY Policy True
scsi_id      0x661600     Adapter SCSI ID                       False
sw_fc_class  3            FC Class for Fabric                   True

The output of lsattr -El has four columns and from left to right they are: 

� attribute attribute name, used in chdev
� value current setting
� description description
� user_settable False=not-settable , True=settable

For ESS devices, the default settings are different depending on whether the 
ESS host attachment script as installed prior to configuring the disk devices. In 
Example 7-70 and Example 7-70 the differences between with and without the 
host attachment script is visible.

Example 7-70   lsattr -El for ESS without host attachment script

# lsattr -El hdisk2
PCM             PCM/friend/fcpother              Path Control Module              False
algorithm       fail_over                        Algorithm                        True
clr_q           no                               Device CLEARS its Queue on error True
dist_err_pcnt   0                                Distributed Error Sample Time    True
dist_tw_width   50                               Distributed Error Sample Time    True
hcheck_interval 0                                Health Check Interval            True
hcheck_mode     nonactive                        Health Check Mode                True
location                                         Location Label                   True
lun_id          0x5313000000000000               Logical Unit Number ID           False
max_transfer    0x40000                          Maximum TRANSFER Size            True
node_name       0x5005076300c09589               FC Node Name                     False
pvid            0000331209edfde20000000000000000 Physical volume identifier       False
q_err           yes                              Use QERR bit                     True
q_type          simple                           Queuing TYPE                     True
queue_depth     1                                Queue DEPTH                      True
reassign_to     120                              REASSIGN time out value          True
reserve_policy  single_path                      Reserve Policy                   True
rw_timeout      30                               READ/WRITE time out value        True
scsi_id         0x651000                         SCSI ID                          False
start_timeout   60                               START unit time out value        True
ww_name         0x5005076300cd9589               FC World Wide Name               False
 Chapter 7. Storage analysis and tuning 491



Of particular interest is the queue_depth value of 1, and the algorithm value of 
fail_over.

Example 7-71   lsattr -El for ESS without host attachment script

# lsattr -El hdisk2
PCM             PCM/friend/sddpcm                PCM                                     True
PR_key_value    none                             Reserve Key                             True
algorithm       load_balance                     Algorithm                               True
dist_err_pcnt   0                                Distributed Error Percentage            True
dist_tw_width   50                               Distributed Error Sample Time           True
hcheck_interval 20                               Health Check Interval                   True
hcheck_mode     nonactive                        Health Check Mode                       True
location                                         Location Label                          True
lun_id          0x5313000000000000               Logical Unit Number ID                  True
lun_reset_spt   yes                              Support SCSI LUN reset                  True
node_name       0x5005076300c09589               FC Node Name                            False
pvid            0000331209edfde20000000000000000 Physical volume identifier              False
q_type          simple                           Queuing TYPE                            True
qfull_dly       20                               delay in seconds for SCSI TASK SET FULL True
queue_depth     20                               Queue DEPTH                             True
reserve_policy  no_reserve                       Reserve Policy                          True
rw_timeout      60                               READ/WRITE time out value               True
scbsy_dly       20                               delay in seconds for SCSI BUSY          True
scsi_id         0x651000                         SCSI ID                                 True
start_timeout   180                              START unit time out value               True
ww_name         0x5005076300cd9589               FC World Wide Name                      False

With the ESS host attachment script installed prior to defining the disk devices, 
the attributes for the disk are automatically set to values that improve 
performance. 

For DS4000 (FAStT) devices, two additional devices besides hdisks are present 
to the operating system. The two additional devices are the Disk Array Router 
(darX) and the Disk Array Controller (dacX). 

Example 7-72 shows attributes for DS4000 disk devices. Some of the attributes 
that are listed as False, can be changed, but not from the operating system. For 
example, the cache_method can be changed at the disk subsystem. Once the 
change is made there, the device can be reconfigured to detect the change. 

Example 7-72   attributes for DS4000 disk devices

# lsattr -El hdisk4
PR_key_value   none                             Persistant Reserve Key Value           True
cache_method   fast_write                       Write Caching method                   False
ieee_volname   600A0B800012106E0000002140960E7F IEEE Unique volume name                False
lun_id         0x0005000000000000               Logical Unit Number                    False
492 AIX 5L Practical Performance Tools and Tuning Guide



max_transfer   0x100000                         Maximum TRANSFER Size                  True
prefetch_mult  1                                Multiple of blocks to prefetch on read False
pvid           000684ffbecd9b200000000000000000 Physical volume identifier             False
q_type         simple                           Queuing Type                           False
queue_depth    10                               Queue Depth                            True
raid_level     5                                RAID Level                             False
reassign_to    120                              Reassign Timeout value                 True
reserve_policy single_path                      Reserve Policy                         True
rw_timeout     30                               Read/Write Timeout value               True
scsi_id        0x660100                         SCSI ID                                False
size           16384                            Size in Mbytes                         False
write_cache    yes                              Write Caching enabled                  False

Example 7-73   Attributes for DS4000 array and controller devices

# lsattr -El dac0
GLM_type        low                GLM type                 False
alt_held_reset  no                 Alternate held in reset  False
cache_size      1024               Cache Size in MBytes     False
controller_SN   1T34058487         Controller serial number False
ctrl_type       1742-0900          Controller Type          False
location                           Location Label           True
lun_id          0x0                Logical Unit Number      False
node_name       0x200200a0b812106e FC Node Name             False
passive_control no                 Passive controller       False
scsi_id         0x650100           SCSI ID                  False
utm_lun_id      0x001f000000000000 Logical Unit Number      False
ww_name         0x200200a0b812106f World Wide Name          False
# lsattr -El dar0
act_controller dac0,dac1 Active Controllers                          False
aen_freq       600       Polled AEN frequency in seconds             True
all_controller dac0,dac1 Available Controllers                       False
autorecovery   no        Autorecover after failure is corrected      True
balance_freq   600       Dynamic Load Balancing frequency in seconds True
cache_size     1024      Cache size for both controllers             False
fast_write_ok  yes       Fast Write available                        False
held_in_reset  none      Held-in-reset controller                    True
hlthchk_freq   600       Health check frequency in seconds           True
load_balancing no        Dynamic Load Balancing                      True
switch_retries 5         Number of times to retry failed switches    True

The lsattr command can be used to show the default values for a device or a 
specific attribute. Example 7-74 on page 494 shows the default value for a 
specific attribute. To get all the default values for a device, omit the -a flag in the 
command.
 Chapter 7. Storage analysis and tuning 493



Example 7-74   default value for a specific attribute

# lsattr -D -l hdisk3 -a queue_depth
queue_depth 20 Queue DEPTH True

The default value for the attribute queue_depth for device hdisk3 is 20.

The lsattr command can be used to show possible values for a specific attribute. 
Example 7-75 shows how to get the possible values for a specific attribute.

Example 7-75   possible values for a specific attribute

# lsattr -R -l hdisk3 -a queue_depth
1...256 (+1)

The possible values for the attribute queue_depth for device hdisk3 are 1-256. 

Using chdev
The chdev command changes the characteristics of a device. The lsattr 
command is useful in determining which values can be changed and what the 
possible values are. 

Many devices attributes require the device to not be in use in order to make a 
change. It may be necessary to change the device status to defined. Changing 
the device status to defined is done with the rmdev command. 

In Example 7-76 we change the queue_depth for a DS4500 disk device from 10 
to 20. 

Example 7-76   chdev for a disk device

# lsattr -El hdisk5 -a queue_depth
queue_depth 10 Queue Depth True
# chdev -l hdisk5 -a queue_depth=20
hdisk5 changed
# lsattr -El hdisk5 -a queue_depth
queue_depth 20 Queue Depth True

This works without errors because hdisk5 does not belong to a volume group and 
is in a state where its attributes can be changed. 

In Example 7-77 we have to unmount a filesystem in order to vary off the volume 
group to which the hdisk belongs.

Example 7-77   steps to change an active disk device

# lsattr -El hdisk4 -a queue_depth
queue_depth 10 Queue Depth True
494 AIX 5L Practical Performance Tools and Tuning Guide



# chdev -l hdisk4 -a queue_depth=20
Method error (/etc/methods/chgfcparray):
        0514-062 Cannot perform the requested function because the
                 specified device is busy.

# umount /fastfs
# varyoffvg fastvg
# chdev -l hdisk4 -a queue_depth=20
hdisk4 changed
# lsattr -El hdisk4 -a queue_depth
queue_depth 20 Queue Depth True

7.3.3  The ioo command
The ioo command manages all the I/O-related tuning parameters, while the vmo 
command manages all the other Virtual Memory Manager, or VMM, parameters 
previously managed by the vmtune command. The commands are part of the 
bos.perf.tune fileset, which also contains the tunsave, tunrestore, tuncheck, and 
tundefault commands.

Misuse of the ioo command can cause performance degradation or 
operating-system failure. Before experimenting with ioo, you should be 
thoroughly familiar with the Virtual Memory Manager (VMM). For more details, 
consult also Chapter 5, “Memory analysis and tuning” on page 297.

ioo syntax
The syntax of the ioo command is:

ioo [ -p | -r ] { -o Tunable [ =NewValue ] } | {-d Tunable} | -D | -a
ioo -L [ Tunable ]

Useful combinations
� ioo -L Table of tunables
� ioo -ra Show reboot values
� ioo -o maxpgahead=16 Change tunable value
� ioo -h maxpgahead Show help for a tunable

Examples for ioo
The ioo command has many parameters that can be tuned. Due to its system 
impact, the ioo command can only be executed by the root user. The -L flag can 
be used to list one or all tunables. Example 7-78 on page 496 shows the first 15 
lines and the last 15 lines from the ioo -L command. The full table can viewed on 
an AIX 5.3 system or looked up in the command reference documentation.
 Chapter 7. Storage analysis and tuning 495



Example 7-78   ioo -L output

# ioo -L
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT           TYPE
     DEPENDENCIES
--------------------------------------------------------------------------------
minpgahead                2      2      2      0      4K     4KB pages         D
     maxpgahead
--------------------------------------------------------------------------------
maxpgahead                8      8      8      0      4K     4KB pages         D
     minpgahead
--------------------------------------------------------------------------------
pd_npages                 64K    64K    64K    1      512K   4KB pages         D
--------------------------------------------------------------------------------
maxrandwrt                0      0      0      0      512K   4KB pages         D
--------------------------------------------------------------------------------
numclust                  1      1      1      0      2G-1   16KB/cluster      D
--------------------------------------------------------------------------------
numfsbufs                 186    186    186    1      2G-1                     M
--------------------------------------------------------------------------------
sync_release_ilock        0      0      0      0      1      boolean           D
--------------------------------------------------------------------------------
lvm_bufcnt                9      9      9      1      64     128KB/buffer      D
--------------------------------------------------------------------------------
j2_minPageReadAhead       2      2      2      0      64K    4KB pages         D
--------------------------------------------------------------------------------
j2_maxPageReadAhead       128    128    128    0      64K    4KB pages         D
--------------------------------------------------------------------------------
j2_nBufferPerPagerDevice  512    512    512    0      256K                     M
--------------------------------------------------------------------------------
j2_nPagesPerWriteBehindCluster
                          32     32     32     0      64K                      D
--------------------------------------------------------------------------------
j2_maxRandomWrite         0      0      0      0      64K    4KB pages         D
--------------------------------------------------------------------------------
j2_nRandomCluster         0      0      0      0      64K    16KB clusters     D
--------------------------------------------------------------------------------
jfs_clread_enabled        0      0      0      0      1      boolean           D
--------------------------------------------------------------------------------
jfs_use_read_lock         1      1      1      0      1      boolean           D
--------------------------------------------------------------------------------
j2_inodeCacheSize         400    400    400    1      1000                     D
--------------------------------------------------------------------------------
j2_metadataCacheSize      400    400    400    1      1000                     D
--------------------------------------------------------------------------------
pv_min_pbuf               256    256    256    256    2G-1                     D
--------------------------------------------------------------------------------
j2_dynamicBufferPreallocation
                          16     16     16     0      256    16k slabs         M
496 AIX 5L Practical Performance Tools and Tuning Guide



--------------------------------------------------------------------------------
j2_maxUsableMaxTransfer   512    512    512    1      4K     pages             M
--------------------------------------------------------------------------------
j2_non_fatal_crashes_system
                          0      0      0      0      1      boolean           D
--------------------------------------------------------------------------------

n/a means parameter not supported by the current platform or kernel

Parameter types:
    S = Static: cannot be changed
    D = Dynamic: can be freely changed
    B = Bosboot: can only be changed using bosboot and reboot
    R = Reboot: can only be changed during reboot
    C = Connect: changes are only effective for future socket connections
    M = Mount: changes are only effective for future mountings
    I = Incremental: can only be incremented

Value conventions:
    K = Kilo: 2^10       G = Giga: 2^30       P = Peta: 2^50
    M = Mega: 2^20       T = Tera: 2^40       E = Exa: 2^60

Example 7-79 shows all of the reboot values for ioo that will be used on the next 
boot of the system.

Example 7-79   Show all reboot values with ioo

# ioo -ra
                    minpgahead = 2
                    maxpgahead = 8
                     pd_npages = 65536
                    maxrandwrt = 0
                      numclust = 1
                     numfsbufs = 186
            sync_release_ilock = 0
                    lvm_bufcnt = 9
           j2_minPageReadAhead = 2
           j2_maxPageReadAhead = 128
      j2_nBufferPerPagerDevice = 512
j2_nPagesPerWriteBehindCluster = 32
             j2_maxRandomWrite = 0
             j2_nRandomCluster = 0
            jfs_clread_enabled = 0
             jfs_use_read_lock = 1
             j2_inodeCacheSize = 400
          j2_metadataCacheSize = 400
                   pv_min_pbuf = 256
 j2_dynamicBufferPreallocation = 16
 Chapter 7. Storage analysis and tuning 497



       j2_maxUsableMaxTransfer = 512
   j2_non_fatal_crashes_system = 0

Specific help for each tunable can be displayed using the -h flag as shown in 
Example 7-80.

Example 7-80   Displaying help for ioo tunable parameter

# ioo -h maxpgahead
Help for tunable maxpgahead:
Specifies the maximum number of pages to be read ahead when processing a 
sequentially accessed file. Default: 8 (the default should be a power of two 
and should be greater than or equal to minpgahead); Range: 0 to 4096. Observe 
the elapsed execution time of critical sequential-I/O-dependent applications 
with the time command. Because of limitations in the kernel, do not exceed 512 
as the maximum value used. The difference between minfree and maxfree should 
always be equal to or greater than maxpgahead. If execution time decreases with 
higher maxpgahead, observe other applications to ensure that their performance 
has not deteriorated.

Changing tunable values
Before modifying any tunable parameter, you should first carefully read about all 
its characteristics. Detailed information on each tunable can be found in the AIX 
product documentation. You must then make sure that the Diagnosis and Tuning 
sections for this parameter truly apply to your situation and that changing the 
value of this parameter could help improve the performance of your system.

You can set tunables using the -o option. Example 7-81 shows how to increase 
the value of maxpgahead.

Example 7-81   Increasing value of maxpgahead using ioo

# ioo -o maxpgahead=16
Setting maxpgahead to 16

However the help for this tunable indicates that you have to also make sure the 
difference between minfree and maxfree is greater than or equal to maxpgahead. 
Since the default values for minfree and maxfree are 120 and 128 respectively, 
we either need to change those values, or set maxpgahead back to its default 
value. Example 7-82 shows how to set a tunable back to its default value.

Example 7-82   Restoring a tunable to its default value using ioo.

# ioo -d maxpgahead
Setting maxpgahead to 8
498 AIX 5L Practical Performance Tools and Tuning Guide



7.3.4  The lvmo command
The lvmo command sets or displays pbuf tuning parameters. Misuse of the lvmo 
command can cause performance degradation or operating-system failure. You 
must have root authority to run this command. 

The lvmo command is part of the bos.rte.lvm fileset that is installed during 
installation of the operating system.

lvmo syntax
The syntax of the lvmo command is:

lvmo -v Name -o Tunable [ =NewValue ]
lvmo -a

Useful combinations
� lvmo -a Show LVM pbuf tunable values
� lvmo -v rootvg -o pv_pbuf_count=2048 Change pbuf value

Examples for lvmo
The lvmo command follows a similar convention to the commands vmo and ioo. 
The -v flag allows you to specify a volume group for the commands to take place. 
The default volume group is rootvg (see Example 7-83).

Example 7-83   listing pbuf statistics for a volume group

# lvmo -v dasvg -a
vgname = dasvg
pv_pbuf_count = 512
total_vg_pbufs = 512
max_vg_pbuf_count = 16384
pervg_blocked_io_count = 7455
global_pbuf_count = 512
global_blocked_io_count = 7455

The lvmo command has three tunables: 

pv_pbuf_count  The number of pbufs that will be added when a physical 
volume is added to the volume group.

max_vg_pbuf_count The maximum number of pbufs that can be allocated for 
the volume group. The volume group must be varied off 
and varied on again for this value to take effect.

global_pbuf_count The minimum number of pbufs that will be added when a 
physical volume is added to any volume group. 
 Chapter 7. Storage analysis and tuning 499



To increase the pbufs for a physical volume added to a specific volume group, 
you need to specify the -v flag as well as the pv_pbuf_count tunable. 
Example 7-84 shows how this is done.

Example 7-84   Increase pbufs for a specific volume group

# lvmo -v dasvg -o pv_pbuf_count=1024
# lvmo -v dasvg -a
vgname = dasvg
pv_pbuf_count = 1024
total_vg_pbufs = 1024
max_vg_pbuf_count = 16384
pervg_blocked_io_count = 7455
global_pbuf_count = 512
global_blocked_io_count = 7455

7.3.5  The vmo command
The vmo command manages Virtual Memory Manager tunable parameters. 
Some of these parameters have an effect on storage performance. Notably the 
minfree and maxfree parameters which are tightly associated with the 
maxpgahead and minpgahead parameters of the ioo command.

For more detail on the vmo command see 5.2.1, “The vmo command” on 
page 317.
500 AIX 5L Practical Performance Tools and Tuning Guide



Part 3 Case studies and 
miscellaneous tools

Part 3 provides two case studies for performance monitoring and tuning a NIM 
server and gives a practical example of using the new tools and features in an 
IBM Eserver p5 with Micro-Partitioning and SMT. 

We describe how to use the Workload Manager and Partition Load Manager for 
performance monitoring and system analysis and introduce the Resource 
Monitoring and Control (part of RSCT) functionality for monitoring system 
performance.

In Chapter 10, “Performance monitoring APIs” on page 583 we also provide 
information about the Perfstat API and usage examples for programming 
applications to use this interface.

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 501



502 AIX 5L Practical Performance Tools and Tuning Guide



Chapter 8. Case studies

This chapter presents practical examples for a NIM environment and a POWER5 
case study.

NIM case study
In the first section of this chapter we go through the performance tuning process 
for an AIX system that is using the Network Installation Management (NIM) 
software. Network Install Manager is a complex application which relies on 
several subsystems to provide software installation and maintenance in an AIX, 
or a mixed AIX/Linux environment (from AIX 5L V5.3).

NIM uses a client server model which provides clients with all the necessary 
resources for booting, installing, maintaining or diagnosing (AIX only) client 
machines. In a NIM environment, the following subsystems should be considered 
as candidates for performance tuning: network (TCP/IP), NFS, Virtual Memory 
Manager, Disk I/O and Logical Volume Manager.

POWER5 case study
This section considers specific POWER5 performance issues. We monitor the 
CPU performance of a POWER5-based system using a simple case scenario.

8

© Copyright IBM Corp. 2005. All rights reserved. 503



8.1  Case study: NIM server
In this case study we utilized an IBM Eserver pSeries model 690 server that 
was configured into four separate logical partitions (LPAR). Each partition 
included one 10/100 Ethernet adapter, one gigabit Ethernet adapter, and one 
internal SCSI hard disk. Each partition had two processors and 4GB of RAM. 
The partition configured as the NIM master (server) also has two fibre channel 
adapters and an additional local SCSI hard disk assigned to it. 

For our first test, we had all partitions using the 10/100 Ethernet adapters, 
connected to a switch, with effective link parameters of 100Mbps, full duplex. The 
NIM server resources were allocated on the second internal SCSI hard disk. 
Later, we configured NIM to use the gigabit ethernet (connected to a GbitE 
switch), and also used the external fibre channel (FC) storage, connected via a 
Storage Area Network (a FC switch). A diagram of our test environment is 
presented in Figure 8-1.

Figure 8-1   Test environment NIM diagram

8.1.1  Setting up the environment
We have installed the NIM master (in our case LPAR1) from AIX installation 
CD-ROMs with AIX 5L V5.3. For this purpose, we have assigned the CD-ROM 
drive available in the media drawer to LPAR1.

NIM Master
(resource server)

100MbitE
1GbitE

LPAR1

LPAR2

LPAR3

LPAR4

fcs0

SAN

p690 CEC

Storage Array
(RAID5)

C
ontroller 1

C
ontroller 2

Standalone client

Standalone client

Standalone client

# IP labels:
# for 100Mbit Eternet
192.168.100.71 p690_lpar1
192.168.100.72 p690_lpar2
192.168.100.73 p690_lpar3
192.168.100.74 p690_lpar4
# for Gbit Ethernet
10.10.100.71 glpar1
10.10.100.72 glpar2
10.10.100.73 glpar3
10.10.100.74 glpar4
504 AIX 5L Practical Performance Tools and Tuning Guide



Once installed, we have configured the NIM master and start defining the 
resources to be used in our environment.

In our environment we want to install the three remaining LPARs (LPAR2, LPAR3, 
and LPAR4) form the NIM master. For this purpose, in the initial phase we need 
to define the following resources:

1. A NIM repository containing the software packages to be used for installing 
the clients (similar to the content of the AIX installation CD set). This type of 
resource is known as “lpp_source”.

2. A repository containing the binaries (executables) and libraries to be used for 
executing various operations (programs) during clients’ installation, together 
with the kernel image used for booting the clients. This is known as “Shared 
Product Object Tree” (SPOT), and is in fact a directory similar to /usr file 
system.

3. The three clients (LPAR2, LPAR3, and LPAR4), which are defined in the NIM 
environment as “Standalone” machines (after installation they will boot from 
their own disk and will run an independent copy of the operating system).

These machines are defined using the MAC address of the network 
(Ethernet) adapter to be used for installation and an associated IP address.

While defining the resources mentioned before, we observed that defining the 
LPPSOURCE and SPOT type resources is very I/O disk resource demanding:

– In fact, creation of the LPPSOURCE consists of copying the necessary 
LPPs (Licensed Program Products) from the AIX installation CD-ROMs to 
a designated space on the disk.

– Also, creating the SPOT, is similar to an installation process, where the 
installation takes place on the defined disk (file system) space. 

Once these resources are created, we proceed to installing the clients. Installing 
the clients in a NIM environment can be of three types: SPOT installation, bos 
rte, and mksysb. During initial client installation (of bos rte type), the following 
resources are used:

– The bootp server (to allow clients to boot over the network)
– The tftp server (to transfer the kernel to be loaded by the clients)
– The NFS subsystem (to run the install programs and to retrieve the 

necessary LPPs for installing the client)

Since the NIM software repository resides on a file system, and this file system is 
NFS exported to the NIM clients, the following subsystems are also involved 
during the installation process:

– The Virtual Memory Manager
– The TCP/IP subsystem
– The NFS subsystem
 Chapter 8. Case studies 505



– The Logical Volume Manager

Thus, we found useful to tune these subsystems for obtaining the maximum 
performance for our NIM master. We started by monitoring an idle NIM master, 
and then gradually, tried to identify the bottlenecks during various NIM 
operations.

8.1.2  Monitoring NIM master using topas
During client installation process, to begin the performance tuning process for the 
system, we start by monitoring the system using topas. 

Example 8-1   topas output for NIM server

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Fri Oct 22 17:23:42 2004   Interval:  2         Cswitch    1040  Readch        0
                                                Syscall     204  Writech     199
Kernel    6.2   |##                          |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      199
Wait      0.0   |                            |  Forks         0  Igets         0
Idle     93.8   |########################### |  Execs         0  Namei         2
                                                Runqueue    0.0  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en1   11473.5   8387.0   705.0   458.8 22488.2
lo0       0.0      0.0     0.0     0.0     0.0  PAGING           MEMORY
                                                Faults        0  Real,MB    4095
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  Steals        0  % Comp     17.9
hdisk1   12.5  11136.0    90.0 22272.0     0.0  PgspIn        0  % Noncomp  27.6
...(lines omitted)...

From the topas output, the only resource that is running at maximum speed is the 
ethernet adapter en1. A 10/100 adapter running at 100_Full_Duplex, has a 
transmit speed limit of approximately 10 Megabytes per second (10 MB/second = 
10,000 KB/second). The topas output shows en1 at 11,437.5 KB/second. None 
of the other devices are overutilized at this point. The direct attached SCSI disk 
hdisk1, which contains the file systems being used for the NIM resources, is only 
12.5 percent busy. 

When a resource is running at its maximum speed, and is the limiting factor in the 
system, additional resources need to be added. In this case, tuning will not be 
able to compensate for the device data rate limit of the ethernet adapter.

To increase the network throughput bandwidth, we have chosen to allocate a 
Gigabit Ethernet adapter to the system. A Gigabit Ethernet adapter has a one 
direction maximum data rate of 100 Mbytes per second, 10 times the rate of a 
100Mbit adapter. 
506 AIX 5L Practical Performance Tools and Tuning Guide



Creating a benchmark
One of the difficulties with just monitoring the NIM server as it handles NIM client 
requests, is that the workload varies. For tuning, it is desirable to have a 
representative workload that can be used as a benchmark. This benchmark 
workload can be run before and after tuning to see if any improvement occurs. 
This does not eliminate the need to monitor the system to determine actual 
workload benefits from tuning, but does provide a useful way to see if 
performance tuning is helping a related workload. 

Since NIM uses NFS to transfer data between the server and clients, a simple 
workload is to mount an NFS directory on the clients and generate I/O with the dd 
command. The NIM server can rsh to the NIM clients which will be useful in 
automating the workload. 

Example 8-2 shows how to export the directory that is being used for NIM 
resources. Then we use the remote shell (rsh) to mount the exported directory on 
each of the NIM clients. 

Example 8-2   setting up for NIM benchmark run

# exportfs -i -o root=glpar2:glpar3:glpar4 /dasbk
# for i in 2 3 4 ; do
> rsh glpar$i "mount 192.168.100.71:/dasbk /mnt"
> done

To facilitate the benchmarking effort we created two scripts, one for generating 
read I/O and one for generating write I/O. 

Example 8-3   NIM write I/O benchmark script

#!/usr/bin/ksh

for i in 2 3 4
  do
    rsh glpar$i "dd if=/dev/zero of=/mnt/file$i bs=128K count=8000" &
  done

#wait command waits for all background processes to finish before continuing
wait

Example 8-4   NIM read I/O benchmark script

#!/usr/bin/ksh

for i in 2 3 4
  do
    rsh glpar$i "dd if=/mnt/file$i of=/dev/null bs=128K count=8000" &
  done
 Chapter 8. Case studies 507



#wait command waits for all background processes to finish before continuing
wait

We first execute the writenim.sh with the timex command to get the total run 
time of the script. 

Example 8-5   Script for NIM write I/O benchmark

# timex ./writenim.sh
8000+0 records in
8000+0 records out
8000+0 records in.
8000+0 records out.
8000+0 records in.
8000+0 records out.

real 386.79
user 0.02
sys  0.00

We observed that it took 386.79 seconds to write 3000 MB (1000 MB per NIM 
client). This gives us a throughput of 7.75 MB/second. We also collected a topas 
screen output, which shows similar results to the actual workload from 
Example 8-1 on page 506.

Example 8-6   topas output from write I/O benchmark script

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Tue Oct 26 10:19:18 2004   Interval:  2         Cswitch    1750  Readch        0
                                                Syscall     207  Writech      95
Kernel   13.0   |####                        |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout       95
Wait      0.0   |                            |  Forks         0  Igets         0
Idle     87.0   |#########################   |  Execs         0  Namei         2
                                                Runqueue    0.0  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en1   12011.6  16283.0  1748.0 23809.5   213.7
en0       0.1      3.0     0.0     0.1     0.0  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults        1  Real,MB    4095
                                                Steals        0  % Comp     12.8
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  10.7
hdisk1   84.5  11538.0   358.5     4.0 23072.0  PgspOut       0  % Client   10.9

In order to get an accurate result from the read I/O script, we need to unmount all 
the related filesystems. This is necessary to flush the caches, that is both the 
508 AIX 5L Practical Performance Tools and Tuning Guide



filesystem cache of the NIM server as well as the NFS client caches of the NIM 
clients.

Example 8-7   script for NIM read I/O benchmark

# umount /dasbk
# mount /dasbk
# for i in 2 3 4 ; do
> rsh glpar$i umount /mnt
> rsh glpar$i mount 192.168.100.71:/dasbk /mnt
> done
# timex ./readnim.sh
8000+0 records in.
8000+0 records out.
8000+0 records in
8000+0 records out
8000+0 records in.
8000+0 records out.

real 268.74
user 0.02
sys  0.00

The read benchmark executed in 268.74 seconds, so the read throughput was 
11.16 MB/second (3000 MB / 268.74 second). In Example 8-8 we collected a 
topas screen output which indicates that we have reached the limit of hdisk0 as 
well. 

Example 8-8   topas output from read I/O benchmark script

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Tue Oct 26 10:32:38 2004   Interval:  2         Cswitch    1232  Readch        0
                                                Syscall     204  Writech     170
Kernel   10.0   |###                         |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      170
Wait     46.2   |##############              |  Forks         0  Igets         0
Idle     43.8   |#############               |  Execs         0  Namei         2
                                                Runqueue    0.0  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   3.0
en1   11799.0   8635.0   801.0   488.0 23110.1
en0       0.5      5.0     0.0     1.0     0.0  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults      197  Real,MB    4095
                                                Steals        0  % Comp     12.8
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp   5.5
hdisk1  100.0  11494.0   302.5 22988.0     0.0  PgspOut       0  % Client    5.7
 Chapter 8. Case studies 509



8.1.3  Upgrading NIM environment to Gbit Ethernet
Now that we have a representative workload, we can add the gigabit ethernet 
adapter and rerun the benchmark workloads. This will give us an idea of what 
performance increase we may get in the actual workload.

Running the NIM script for write I/O resulted in a time of 260.40 seconds for a 
throughput of 11.5 MB/second. The execution is identical to Example 8-5 on 
page 508.

Output from the topas command was captured and is shown in Example 8-9

Example 8-9   The topas output from write I/O benchmark script with gigabit ethernet

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Tue Oct 26 11:17:07 2004   Interval:  2         Cswitch   14586  Readch        0
                                                Syscall      64  Writech     148
Kernel   63.5   |##################          |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      148
Wait      0.0   |                            |  Forks         0  Igets         0
Idle     36.5   |###########                 |  Execs         0  Namei         0
                                                Runqueue    2.5  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en0   72998.9  99075.0  9752.0   141.4K 1247.4
en1       0.6      8.0     1.0     0.8     0.3  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults        0  Real,MB    4095
                                                Steals        0  % Comp     17.3
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  50.5
hdisk1  100.0  42304.0   661.0     0.0 84608.0  PgspOut       0  % Client   50.7
hdisk3    0.0      0.0     0.0     0.0     0.0  PageIn        0

The network throughput and CPU utilization has increased, but hdisk1 (the actual 
disk used for NIM repository) is now 100% busy, and is the current bottleneck. 
Although we increased the throughput of the networking component ten fold, our 
benchmark did not see the same amount of performance improvement.

This is typical of the performance tuning process. Increasing one resource often 
moves the bottleneck to a different component of the system. 

Running the NIM script for read I/O resulted in a time of 175.87 seconds for a 
throughput of 17.1 MB/second. The execution is identical to Example 8-7 on 
page 509.

Output from the topas command was captured and is shown in Example 8-10

Example 8-10   topas output from read I/O benchmark script with gigabit ethernet

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
510 AIX 5L Practical Performance Tools and Tuning Guide



Tue Oct 26 11:23:31 2004   Interval:  2         Cswitch     919  Readch        0
                                                Syscall      59  Writech     162
Kernel    5.0   |##                          |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      162
Wait     95.0   |########################### |  Forks         0  Igets         0
Idle      0.0   |                            |  Execs         0  Namei         0
                                                Runqueue    0.0  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   8.0
en0   13896.1   9133.0   969.0   527.7 27264.4
en1       0.6      8.0     1.0     0.8     0.4  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults      526  Real,MB    4095
                                                Steals        0  % Comp     17.2
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp   9.5
hdisk1  100.0  13556.0   372.5 27112.0     0.0  PgspOut       0  % Client    9.7
hdisk3    0.0      0.0     0.0     0.0     0.0  PageIn     3388

NIM workload results with gigabit ethernet
Utilizing the benchmark script, we did see a performance improvement in both 
read I/O and write I/O. Now we want to see what kind of improvement we get 
when the NIM server is handling NIM client requests. We collected topas output 
as well as iostat output while three NIM client installs were processing 
simultaneously. 

Example 8-11   NIM server topas output with gigabit ethernet

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Tue Oct 26 08:36:13 2004   Interval:  2         Cswitch    2143  Readch        0
                                                Syscall     268  Writech     500
Kernel   15.0   |#####                       |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        1  Ttyout      326
Wait     85.0   |########################    |  Forks         0  Igets         0
Idle      0.0   |                            |  Execs         0  Namei         2
                                                Runqueue    0.0  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   8.0
en0   28098.3  18455.0  1901.0  1027.2 55169.4K
en1       0.5      4.0     2.0     0.2     0.7  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults      532  Real,MB    4095
                                                Steals        0  % Comp     15.2
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  38.8
hdisk1  100.0  27352.0   156.0 54704.0     0.0  PgspOut       0  % Client   38.9

The output is similar to what was seen during the benchmark script runs. 
Network throughput has increased, but hdisk1 has become completely busy. 

During the NIM client installation process, we collected iostat command output, 
using iostat 5 >> iostat.out. This started iostat collecting statistics every 5 
 Chapter 8. Case studies 511



seconds and saved the output to the file iostat.out. Once the client installs 
completed the command was stopped by pressing Ctrl-C.

Example 8-12   NIM server iostat output with gigabit ethernet

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait
          0.2        275.4               0.0     16.2        0.2      83.6

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.2       3.2       0.8          0        16
hdisk1         100.0     27371.2     167.8     136856         0

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait
          0.0        146.2               0.3     14.6        0.0      85.1

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.2       4.0       1.2          0        20
hdisk1         100.0     26365.6     181.0     131828         0

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait
          0.0        224.4               0.2     10.3        0.4      89.1

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.2       4.0       0.8          0        20
hdisk1         100.0     22391.2     186.4     111956         0

8.1.4  Upgrading the disk storage
Using a single locally attached SCSI drive poses many problems. One of the 
most important issues is that there is no data redundancy. Secondly, the 
performance is not sufficient to handle the client requests. 

We have decided to use an IBM storage subsystem DS4500 (FAStT 900) to 
move the NIM server resources to. We have assigned two LUNs to the NIM 
server. The two LUNs reside on separate RAID groups. The RAID groups are 
comprised of 7 disks each and are configured in RAID5, with a stripe size of 
64kB. 

There are many ways of configuring these two DS4500 LUNs. Since the disk 
subsystem is handling the data redundancy, we do not need to use LVM 
mirroring. Our two main choices at this point are either a spread, or a striped 
logical volume:

– A spread logical volume also known as course striping, alternates data 
between the hdisks in a volume group on a physical partition level (PP).
512 AIX 5L Practical Performance Tools and Tuning Guide



– A striped logical volume alternates data between hdisks on a finer basis. 
With a striped logical volume, you can specify a stripe size from 
4KB-128KB (must be a power of two).

We decided to use a JFS2 file system, so we also have additional choices on 
how to create the JFS2 log (in-line or on a separate logical volume).

Configuring the LVM
AIX 5.3 has the device drivers and disk type pre-loaded for DS4500 disk devices. 
After configuring the DS4500 storage and assigning the LUNs to the server, the 
command cfgmgr detects the new storage and configures it to the system. After 
the disk is configured to the system, the disk need to assigned to a volume group. 
Once assigned to a volume group, the disk is automatically split into physical 
partitions. These physical partitions can then be made into logical volumes and 
the filesystem configured on the logical volumes. 

To start the process we create a new volume group with the DS4500 disk 
devices. Example 8-13 we first list the disks available to the system with the 
lsdev command, then define the volume group with mkvg. Finally we check the 
characteristics of the volume group with lsvg.

Example 8-13   Creating a new volume group

# lsdev -Cc disk
hdisk0 Available 3s-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 5M-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk3 Available 41-08-02     MPIO Other FC SCSI Disk Drive
hdisk4 Available 41-08-02     1742-900 (900) Disk Array Device
hdisk5 Available 4Q-08-02     1742-900 (900) Disk Array Device

# mkvg -y ds4500vg hdisk4 hdisk5
ds4500vg

# lsvg ds4500vg
VOLUME GROUP:       ds4500vg                 VG IDENTIFIER:  
0022be2a00004c00000000ffd6b94f26
VG STATE:           active                   PP SIZE:        32 megabyte(s)
VG PERMISSION:      read/write               TOTAL PPs:      1022 (32704 
megabytes)
MAX LVs:            256                      FREE PPs:       1022 (32704 
megabytes)
LVs:                0                        USED PPs:       0 (0 megabytes)
OPEN LVs:           0                        QUORUM:         2
TOTAL PVs:          2                        VG DESCRIPTORS: 3
STALE PVs:          0                        STALE PPs:      0
ACTIVE PVs:         2                        AUTO ON:        yes
MAX PPs per VG:     32512
 Chapter 8. Case studies 513



MAX PPs per PV:     1016                     MAX PVs:        32
LTG size (Dynamic): 1024 kilobyte(s)         AUTO SYNC:      no
HOT SPARE:          no                       BB POLICY:      relocatable

The volume group contains two physical volumes, with a physical partition (PP) 
size of 32 megabytes. There are a total of 1022 PP, and the volume group has a 
logical track group (LTG) of 1024 kilobytes. 

Spread versus striped logical volume
We cannot be sure up front which type of logical volume will give us the best 
performance. To help determine which type to use, we will create both types of 
logical volumes and run the benchmark script.

Example 8-14   Creating stripe and spread logical volumes

# mklv -y'spreadlv' -t'jfs2' -e'x' ds4500vg 120
spreadlv
# mklv -y'stripelv' -t'jfs2' '-S64K' ds4500vg 120 hdisk4 hdisk5
stripelv

Now that the logical volumes are created, we can create the jfs2 filesystems on 
these logical volumes.

Example 8-15   Create and mount filesystems on previously defined logical volumes

# mklv -y'spreadlv' -t'jfs2' -e'x' ds4500vg 120
spreadlv
# mklv -y'stripelv' -t'jfs2' '-S64K' ds4500vg 120 hdisk4 hdisk5
stripelv
# crfs -v jfs2 -d'spreadlv' -m'/spreadfs' -A'No' -p'rw' -a agblksize='4096'
File system created successfully.
3931836 kilobytes total disk space.
New File System size is 7864320
# crfs -v jfs2 -d'stripelv' -m'/stripefs' -A'No' -p'rw' -a agblksize='4096'
File system created successfully.
3931836 kilobytes total disk space.
New File System size is 7864320
# mount /spreadfs
# mount /stripefs

With the filesystems mounted, we need to export the filesystems and mount 
them on the NIM clients like we did in Example 8-2 on page 507.

Example 8-16   Exporting filesystems for benchmark testing

# exportfs -i -o root=glpar2:glpar3:glpar4 /spreadfs
514 AIX 5L Practical Performance Tools and Tuning Guide



# exportfs -i -o root=glpar2:glpar3:glpar4 /stripefs

Benchmarking spread file system
With the file systems exported, we can mount one of them and run the 
benchmark. 

Example 8-17   Mounting spreadfs on NIM clients

# for i in 2 3 4; do
> rsh glpar$i "mount glpar1:/spreadfs /mnt”
> done

The hostname glpar2 is the IP label (as associated in the /etc/hosts file) for 
LPAR2 Gbit Ethernet interface, and so on (see the IP labels assignment in 
Figure 8-1 on page 504).

With the spreadfs file system NFS mounted on each of the NIM clients, we run 
the same script from Example 8-3 on page 507.

Example 8-18   Script for NIM write I/O benchmark - gigabit and DS4500

# timex ./writenim.sh
8000+0 records in.
8000+0 records out.
8000+0 records in
8000+0 records out
8000+0 records in.
8000+0 records out.

real 44.99
user 0.02
sys  0.01

With both gigabit ethernet and the DS4500 disk subsystem, the write throughput 
has increased dramatically to 66.7 MB/second (3000 MB / 44.99 second). 

In Example 8-19 we show the full topas screen output as there is enough load for 
the other values to be of interest.

Example 8-19   The topas output for NIM write benchmark - DS4500 spread and gigabit ethernet

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Wed Oct 27 08:59:00 2004   Interval:  2         Cswitch   12640  Readch        0
                                                Syscall      61  Writech     163
Kernel   92.0   |##########################  |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      163
Wait      0.0   |                            |  Forks         0  Igets         0
Idle      8.0   |###                         |  Execs         0  Namei         0
 Chapter 8. Case studies 515



                                                Runqueue    0.0  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en0     110.8K   151.0K13837.0   219.8K 1861.7
en1       0.3      3.0     1.0     0.1     0.4  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults        0  Real,MB    4095
                                                Steals        0  % Comp     17.2
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  50.4
hdisk5  100.0  54720.0    53.5     0.0   106.9K PgspOut       0  % Client   50.4
hdisk4   84.5  59408.0   140.0     0.0   116.0K PageIn        0
hdisk2    0.0      0.0     0.0     0.0     0.0  PageOut   28542  PAGING SPACE
                                                Sios      27255  Size,MB     512
Name            PID  CPU%  PgSp Owner                            % Used      1.0
nfsd         409606  50.1   0.8 root            NFS (calls/sec)  % Free     98.9
j2pg         147544   0.0   0.2 root            ServerV2       0
topas        307366   0.0   1.2 root            ClientV2       0   Press:
gil           73764   0.0   0.1 root            ServerV3    3412   "h" for help
pilegc        61470   0.0   0.2 root            ClientV3       0   "q" to quit

The topas output shows that some of the system resources are being fully 
utilized. This is a good thing. The CPU is only 8 percent idle, but is showing zero 
wait time. The new disks are fully utilized, but appear to be slightly imbalanced. 
And the Gbit Ethernet card throughput (one direction) is close to its maximum of 
100 MB/second.

Now we run the read I/O benchmark, making sure to flush the caches.

Example 8-20   Script for NIM read I/O benchmark - DS4500 spread and gigabit

# umount /spreadfs
# mount /spreadfs
# for i in 2 3 4 ; do
> rsh glpar$i umount /mnt
> rsh glpar$i mount glpar1:/spreadfs /mnt
> done
# timex ./readnim.sh
8000+0 records in.
8000+0 records out.
8000+0 records in.
8000+0 records out.
8000+0 records in
8000+0 records out

real 30.20
user 0.02
sys  0.00

With both gigabit ethernet and the DS4500 disk subsystem, the read throughput 
has increased dramatically to 99.3 MB/second (3000 MB / 30.20 second). 
516 AIX 5L Practical Performance Tools and Tuning Guide



In Example 8-21 on page 517 we show the full topas screen output as there is 
enough load for the other values to be of interest.

Example 8-21   The topas output for NIM read benchmark - DS4500 spread and gigabit ethernet

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Wed Oct 27 09:04:54 2004   Interval:  2         Cswitch    6905  Readch        0
                                                Syscall      53  Writech     185
Kernel   52.2   |###############             |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      185
Wait     24.0   |#######                     |  Forks         0  Igets         0
Idle     23.8   |#######                     |  Execs         0  Namei         0
                                                Runqueue    2.5  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.5
en0     102.5K 69925.0  7118.0  4028.4   201.1K
en1       0.3      4.0     1.0     0.2     0.4  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults      648  Real,MB    4095
                                                Steals        0  % Comp     17.2
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  38.9
hdisk4   56.5  53248.0  1524.0   104.0K    0.0  PgspOut       0  % Client   39.0
hdisk5   43.0  49152.0  1360.0 98304.0     0.0  PageIn    25584
hdisk2    0.0      0.0     0.0     0.0     0.0  PageOut       0  PAGING SPACE
                                                Sios      25602  Size,MB     512
Name            PID  CPU%  PgSp Owner                            % Used      1.0
nfsd         409606  25.0   0.8 root            NFS (calls/sec)  % Free     98.9
topas        254150   0.0   1.5 root            ServerV2       0
j2pg         147544   0.0   0.2 root            ClientV2       0   Press:
gil           73764   0.0   0.1 root            ServerV3    3198   "h" for help
aixmibd      442596   0.0   0.6 root            ClientV3       0   "q" to quit

Although the read throughput was higher, the resources do not report being as 
busy as with the write workload. The network adapter is still close to its limit at 
100 MB/second. 

Now that we have some numbers for a spread file system, we will run the same 
benchmark for the striped file system.

Benchmarking stripe file system
To prepare for running the same benchmark against the stripe file system, we 
need to unmount the spread file system from the NIM clients. Then the striped 
file system needs to mounted, and the script run.

Example 8-22   Script for NIM write I/O benchmark - gigabit and DS4500 striped

# for i in 2 3 4 ; do
> rsh glpar$i "umount /mnt"
> rsh glpar$i "mount glpar1:/stripefs /mnt"
 Chapter 8. Case studies 517



> done
# timex ./writenim.sh
8000+0 records in.
8000+0 records out.
8000+0 records in.
8000+0 records out.
8000+0 records in
8000+0 records out

real 98.00
user 0.02
sys  0.00

The striped filesystem finished in 98 seconds giving a throughput of 30.6 MB/s 
(3000 MB/98 seconds). This is much slower than the spread filesystem which 
finished in less than half the time at 45 seconds. 

This may be a good indication that in our environment we are using large 
sequential reads and writes (typical NIM environment).

Example 8-23   The topas output for NIM write benchmark - DS4500 stripe and gigabit ethernet

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Wed Oct 27 09:25:51 2004   Interval:  2         Cswitch    7700  Readch        0
                                                Syscall      54  Writech     142
Kernel   94.1   |########################### |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      142
Wait      0.0   |                            |  Forks         0  Igets         0
Idle      5.9   |##                          |  Execs         0  Namei         0
                                                Runqueue   17.9  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en0   96998.7    127.4K10872.0   183.2K 1512.8
en1       0.5      5.0     1.0     0.6     0.3  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults        0  Real,MB    4095
                                                Steals    23301  % Comp     17.2
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  77.1
hdisk5  100.0  49019.5   140.5     4.0 95584.0  PgspOut       0  % Client   77.2
hdisk4   95.3  46992.8   782.1    20.0 91616.0  PageIn        0
hdisk2    0.0      0.0     0.0     0.0     0.0  PageOut   24054  PAGING SPACE
                                                Sios      23294  Size,MB     512
Name            PID  CPU%  PgSp Owner                            % Used      1.0
nfsd         409606  52.2   0.8 root            NFS (calls/sec)  % Free     98.9
lrud          45078  26.1   0.1 root            ServerV2       0
j2pg         147544   0.0   0.2 root            ClientV2       0   Press:
topas        286806   0.0   1.5 root            ServerV3    2976   "h" for help
gil           73764   0.0   0.1 root            ClientV3       0   "q" to quit
518 AIX 5L Practical Performance Tools and Tuning Guide



Disk Busy% increased, but KBPS for the disks is lower. The extra overhead in 
splitting the I/Os into 64 KB strips between the DS4500 RAID LUNs resulted in 
decreased write performance. Course striping from implementing a spread file 
system appears to outperform fine striping. 

After observing the write performance, it is time to finish the benchmark 
comparison by running the read I/O script.

Example 8-24   Script for NIM read I/O benchmark - gigabit and DS4500 striped

# umount /stripefs;mount /stripefs
# for i in 2 3 4 ; do
> rsh glpar$i "umount /mnt"
> rsh glpar$i "mount glpar1:/stripefs /mnt"
> done
# timex ./readnim.sh
8000+0 records in.
8000+0 records out.
8000+0 records in.
8000+0 records out.
8000+0 records in
8000+0 records out

real 29.46
user 0.02
sys  0.00

Read throughput for the striped filesystem is comparable and finished less than a 
second quicker than the spread filesystem. With both gigabit ethernet and the 
DS4500 disk subsystem, the read throughput for the striped file system has 
increased to 101.8 MB/second (3000 MB / 29.46 second). 

In Example 8-25 we show the topas screen output for the NIM read benchmark 
to the striped file system.

Example 8-25   The topas output for NIM read benchmark - DS4500 stripe and gigabit ethernet

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Wed Oct 27 09:32:52 2004   Interval:  2         Cswitch    7185  Readch        0
                                                Syscall      59  Writech     228
Kernel   53.5   |################            |  Reads         0  Rawin         0
User      0.0   |                            |  Writes        0  Ttyout      228
Wait     25.0   |#######                     |  Forks         0  Igets         0
Idle     21.5   |#######                     |  Execs         0  Namei         0
                                                Runqueue    0.5  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   5.0
en0     104.4K 71323.0  7186.0  4107.7   204.8K
en1       0.5      3.0     1.0     0.6     0.5  PAGING           MEMORY
 Chapter 8. Case studies 519



lo0       0.0      0.0     0.0     0.0     0.0  Faults      639  Real,MB    4095
                                                Steals        0  % Comp     17.2
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  46.4
hdisk4   89.0  52166.0  1377.0   101.9K    0.0  PgspOut       0  % Client   46.4
hdisk5   70.0  52140.0  1361.0   101.8K    0.0  PageIn    26065
hdisk2    0.0      0.0     0.0     0.0     0.0  PageOut       0  PAGING SPACE
                                                Sios      26060  Size,MB     512
Name            PID  CPU%  PgSp Owner                            % Used      1.0
nfsd         409606  25.0   0.8 root            NFS (calls/sec)  % Free     98.9
topas        266346   0.0   1.5 root            ServerV2       0
j2pg         147544   0.0   0.2 root            ClientV2       0   Press:
aixmibd      442596   0.0   0.6 root            ServerV3    3257   "h" for help
rpc.lockd    385272   0.0   0.2 root            ClientV3       0   "q" to quit

The disk Busy% is much higher for the striped filesystem, but the load is better 
balanced. The rest of the resource utilization is similar to the spread file system.

8.1.5  Real workload with spread file system
Although the striped file system outperformed the spread file system for read 
operations, the difference was small. The difference between write throughput 
was significant, the spread filesystem had more than double the write throughput 
of the striped filesystem. Because of these results, we select the spread 
filesystem. 

With the NIM resources moved to the spread filesystem, we can now monitor a 
real workload. For this we will simultaneously restore three NIM clients and 
monitor the output with topas, iostat, and sar.

Important: Little benefit is gained from doing a similar feature twice. For 
example it is common knowledge that with database applications, you want to 
avoid double buffering. Double buffering is where both the application and the 
operating system use memory as cache. This consumes memory that could 
be used for other operations, and wastes CPU cycles doing redundant 
caching. Likewise with striping. The DS4500 LUNs are already striped across 
disks. Using LVM striping across DS4500 LUNs results in, for lack of a better 
term, double striping. The DS4500 controller is going to receive small stripes 
alternating between different disk groups. This extra striping is not benefiting 
the disk subsystem, and could even be causing performance degradation. 

In summary, it is important to understand the workload the application is 
generating so as to make the most efficient use of system resources. 
520 AIX 5L Practical Performance Tools and Tuning Guide



Example 8-26   The topas output after gigabit ethernet and DS4500 storage

Topas Monitor for host:    p690_lpar1           EVENTS/QUEUES    FILE/TTY
Wed Oct 27 17:18:50 2004   Interval:  2         Cswitch    5126  Readch        0
                                                Syscall     218  Writech     645
Kernel   34.5   |##########                  |  Reads         0  Rawin         0
User      0.2   |#                           |  Writes        1  Ttyout      189
Wait      4.5   |##                          |  Forks         0  Igets         0
Idle     61.2   |##################          |  Execs         0  Namei         2
                                                Runqueue    0.0  Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en0   73874.8  47437.0  4809.0  2651.3   141.7K
en1       0.3      5.0     1.0     0.2     0.4  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults      175  Real,MB    4095
                                                Steals        0  % Comp     18.1
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0  % Noncomp  37.2
hdisk5   31.0  36776.0   261.0 73552.0     0.0  PgspOut       0  % Client   37.3
hdisk4   28.0  35480.0   199.0 70960.0     0.0  PageIn    17942
hdisk2    0.0      0.0     0.0     0.0     0.0  PageOut       0  PAGING SPACE
                                                Sios      18022  Size,MB     512
Name            PID  CPU%  PgSp Owner                            % Used      1.0
nfsd         409606   0.0   0.8 root            NFS (calls/sec)  % Free     98.9
topas        348170   0.0   1.2 root            ServerV2       0
sadc         393360   0.0   0.2 root            ClientV2       0   Press:
nimesis      262222   0.0   1.4 root            ServerV3    2232   "h" for help
gil           73764   0.0   0.1 root            ClientV3       0   "q" to quit

The three NIM clients definitely made use of the additional network and storage 
resources. They have not “maxed out” the available resources based on the 
benchmark testing. 

To collect iostat information we executed the command iostat 5 60 >> 
iostat.out. This collected statistics every 5 seconds for 60 intervals, for a total of 
five minutes. We scanned through the output and Example 8-27 contains the 
interval where activity was the highest. 

Example 8-27   The iostat output after gigabit ethernet and DS4500 storage

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait
          0.4         80.8               0.2     25.7       73.1       1.0

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.0       0.0       0.0          0         0
hdisk1           0.0       0.0       0.0          0         0
hdisk3           0.0       0.0       0.0          0         0
hdisk2           0.0       0.0       0.0          0         0
dac0             0.0     27161.6      97.4     135808         0
dac0-utm         0.0       0.0       0.0          0         0
dac1             0.0     25395.2      97.0     126976         0
 Chapter 8. Case studies 521



dac1-utm         0.0       0.0       0.0          0         0
hdisk4          18.8     27161.6      97.4     135808         0
hdisk5          20.0     25395.2      97.0     126976         0
cd0              0.0       0.0       0.0          0         0

The dac0 and dac1 items in the Disks: column are the DS4500 controllers. If 
there were more disks per controller and activity on the disks, the dac0 and dac1 
would show a cumulative value. As there is only one disk per controller in our 
configuration, the values are the same for the disk and its associated controller. 

The DS4500 system is handling the I/O requests and has some throughput left 
over. The load is spread fairly evenly over the two DS4500 hdisks. 

The sar command is another useful way of collecting disk statistics. To collect the 
disks statistics in Example 8-28 we executed the command sar -d 5 60 >> 
sar.out. We then scanned the output and selected the interval with the highest 
utilization.

Example 8-28   The sar output after gigabit ethernet and DS4500 storage

117:15:28     device    %busy    avque    r+w/s    Kbs/s   avwait   avserv
...(lines omitted)....
               dac0      0      0.0      145    33231      0.0      0.0
           dac0-utm      0      0.0        0        0      0.0      0.0
               dac1      0      0.0      150    32261      0.0      0.0
           dac1-utm      0      0.0        0        0      0.0      0.0
             hdisk4     24      0.0      145    33231      0.0      0.0
             hdisk5     24      0.0      150    32261      0.0      0.0
...(lines omitted)....

The output from sar -d is similar to iostat, but with sar we get some additional 
values that can be useful. Details on the output for sar command can be found in 
7.2.6, “The sar -d command” on page 478.

Zero values for avque, avwait, avserv are desirable. Nonzero values should be 
subject for further investigation and tuning.

8.1.6  Summary
Performance tuning is an iterative process. This case study went through a 
couple of basic iterations of the process. It is important to accurately identify 
system bottlenecks and then make the correct choice as to add resources, tune 
resources, or leave it alone. Performance tuning on a production system is risky. 
Having system backups and system documentation can go a long way in 
recovering from bad tuning choices. An understanding of the actual system 
522 AIX 5L Practical Performance Tools and Tuning Guide



workload and the effects of tuning commands is the important first step in the 
performance tuning process. 

8.2  POWER5 case study
This chapter provides POWER5 specific performance issue. We provides the 
monitoring of the CPU performance of POWER5-based system using a simple 
case scenario.

The performance described in this chapter is a sample in a certain specific 
environment. The actual throughput and performance are affected by various 
factors, such as hardware configuration, partition configuration, and the 
characteristic of a process. User needs to evaluate the performance according to 
each environment. There is no assurance that the performance described in this 
chapter applicable to other similar environments.

8.2.1  POWER5 introduction
We described the outline of Micro-Partitioning and simultaneous multi-threading 
(SMT) which are the feature of POWER5 in 4.1.2, “Performance considerations 
with POWER5-based systems” on page 172. 

With these new technologies, the calculation of the performance statistics has 
changed. In previous version of AIX (AIX 5L V5.1 and V5.2), the performance 
statistics was calculated using each processor usage. In traditional processor 
utilization, data collection is sample based. There are 100 samples per second 
sorted into four categories: %usr, %sys, %wait, and %idle.

In a shared-partition environment, we have to consider that there is unused time 
slice in each entitled processor capacity. When a virtual processor or SMT thread 
becomes idle, it is able to cede processor cycle to Hypervisor, and then the 
Hypervisor can dispatch unused processor cycles for other work. 

In order to collect CPU utilization at a processor thread level (in an SMT 
environment), in the POWER5 architecture has implemented a new register, 
called the Processor Utilization Resource Register (PURR). Each thread has its 
own PURR. The units are the same as the timebase register and the sum of the 
PURR values for both threads is equal to timebase register.

For more information about calculation using PURR, refer to the redbook 
Advanced POWER Virtualization on IBM ~ p5 Servers Architecture and 
Performance Considerations, SG24-5768.
 Chapter 8. Case studies 523



8.2.2  High CPU
In our test environment we have simulated a CPU load to verify the output of 
various AIX performance monitoring commands.

LPAR configuration
To verify the LPAR configuration, use lparstat -i command, as shown in 
Example 8-29. The test described in “Monitoring CPU utilization” on page 525 is 
performed using this configuration.

Example 8-29   Verifying the LPAR configuration

r33n05:/ # lparstat -i
Node Name                                  : r33n05
Partition Name                             : r33n05
Partition Number                           : 3
Type                                       : Shared
Mode                                       : Uncapped
Entitled Capacity                          : 0.50
Partition Group-ID                         : 32771
Shared Pool ID                             : 0
Online Virtual CPUs                        : 1
Maximum Virtual CPUs                       : 40
Minimum Virtual CPUs                       : 1
Online Memory                              : 7168 MB
Maximum Memory                             : 15360 MB
Minimum Memory                             : 1024 MB
Variable Capacity Weight                   : 128
Minimum Capacity                           : 0.10
Maximum Capacity                           : 4.00
Capacity Increment                         : 0.01
Maximum Dispatch Latency                   : 9999999
Maximum Physical CPUs in system            : 4
Active Physical CPUs in system             : 4
Active CPUs in Pool                        : -
Unallocated Capacity                       : 0.00
Physical CPU Percentage                    : 50.00%
Unallocated Weight                         : 0
r33n05:/ #

To view the current simultaneous multi-threading (SMT) mode settings, use the 
smtctl command, as shown in Example 8-30. In this example, SMT mode is 
disabled.

Example 8-30   Displaying the current SMT mode setting

r33n05:/ # smtctl
524 AIX 5L Practical Performance Tools and Tuning Guide



This system is SMT capable.

SMT is currently disabled.

SMT boot mode is set to enabled.

Processor 1 has 1 SMT threads
SMT thread 0 is bound with processor 1
r33n05:/ #

Monitoring CPU utilization
AIX 5L V5.3 provides several commands to monitor the CPU utilization. Also 
there are new commands for displaying and performing dynamic configuration 
changes. These new commands are lparstat and smtctl. 

From the output of Example 8-29 on page 524, and Example 8-30 on page 524, 
we get the following CPU related information:

� Entitled capacity is 0.5
� The number of Virtual CPU is 1
� SMT mode setting is disabled

In our scenario, we change SMT mode setting from disable to enable while 
monitoring commands are running. To turn the SMT on, use the following 
command:

smtctl -m on -w now

For more information about this command, refer to “The smtctl command” on 
page 276.

Example 8-31 on page 526 shows how to display the changes in CPU utilization 
using the lparstat command. Since this partition is a shared-partition, following 
statistics are displayed to report shared physical and logical processor utilization 
and entitled capacity utilization: 

physc Shows the number of physical processors consumed. 

%entc Shows the percentage of the entitled capacity consumed. 

lbusy Shows the percentage of logical processor(s) utilization 
that occurred while executing at the user and system 
level. 

Because the SMT mode turned on, the number of logical CPUs was also 
changed from one to two. And after the configuration was changed, we observed 
 Chapter 8. Case studies 525



that the value of %use and %sys slightly decreased compared to previous case 
(SMT mode off).

Example 8-31   Statistics information of the lparstat command

System configuration: type=Shared mode=Uncapped smt=Off lcpu=1 mem=7168 ent=0.50 

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
 15.9  84.1    0.0    0.0  1.00 200.2  100.0     -   100     0 
 15.5  84.5    0.0    0.0  1.00 199.9  100.0     -   100     0 
 15.5  84.5    0.0    0.0  1.00 199.9  100.0     -   100     1 
 15.4  84.6    0.0    0.0  1.00 200.0  100.0     -   100     0 
 15.4  84.6    0.0    0.0  1.00 200.0  100.0     -   100     0 
 15.4  84.6    0.0    0.0  1.00 200.0  100.0     -   100     0 
System configuration changed. The current iteration values may be inaccurate.
  9.1  64.9    0.3   25.7  1.00 200.1   96.4     - -1036941459     2 

System configuration: type=Shared mode=Uncapped smt=On lcpu=2 mem=7168 ent=0.50 

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
 14.5  68.5    0.0   17.0  1.00 200.0   97.3     -   200     0 
 14.3  68.8    0.0   16.9  1.00 200.0   97.4     -   200     0 
 14.4  68.9    0.0   16.7  1.00 200.0   97.9     -   200     0 
 14.4  68.9    0.0   16.7  1.00 200.0   95.4     -   200     0 
 14.4  68.9    0.0   16.7  1.00 200.0   99.0     -   200     0 
... lines omitted ...

The vmstat command can also provide system-wide CPU utilization. 
Example 8-32 shows the changes in CPU utilization using the vmstat command.

Example 8-32   Statistics information of the vmstat command

System configuration: lcpu=1 mem=7168MB ent=0

kthr    memory              page              faults              cpu          
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 3  0 183852 1635807   0   0   0   0    0   0   2 330610 206349 16 84  0  0  1.00 200.4
 3  0 183856 1635803   0   0   0   0    0   0   0 330201 206398 16 84  0  0  1.00 200.0
 3  0 183856 1635803   0   0   0   0    0   0   1 331949 207594 16 84  0  0  1.00 200.0
 3  0 183856 1635803   0   0   0   0    0   0   0 331351 207210 15 85  0  0  1.00 200.0
 3  0 183856 1635803   0   0   0   0    0   0   0 331128 207033 15 85  0  0  1.00 200.0
 3  0 183856 1635803   0   0   0   0    0   0   0 332095 207415 15 85  0  0  1.00 200.0
System configuration changed. The current iteration values may be inaccurate.
 2  0 184153 1635506   0   0   0   0    0   0  10 229907 191740  9 65 26  0  1.00 200.3

System configuration: lcpu=2 mem=7168MB ent=0
526 AIX 5L Practical Performance Tools and Tuning Guide



kthr    memory              page              faults              cpu          
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 3  0 184153 1635506   0   0   0   0    0   0   0 430302 370946 14 69 17  0  0.99 198.1
 3  0 184153 1635506   0   0   0   0    0   0   0 422901 365423 14 69 17  0  1.00 200.1
 3  0 184154 1635505   0   0   0   0    0   0   0 424881 371246 14 69 17  0  1.00 200.1
 3  0 184154 1635505   0   0   0   0    0   0   0 418912 371810 14 69 17  0  1.00 200.1
 3  0 184154 1635505   0   0   0   0    0   0   0 424568 367992 14 69 17  0  1.00 200.1
 3  0 183946 1635712   0   0   0   0    0   0   2 424401 364435 14 69 17  0  1.00 200.1
 3  0 183946 1635712   0   0   0   0    0   0   6 421948 364210 14 69 17  0  1.00 200.1
 3  0 183845 1635812   0   0   0   0    0   0  12 424660 367271 14 69 17  0  1.00 200.1
 3  0 183845 1635812   0   0   0   0    0   0   1 423924 364879 14 69 17  0  1.00 200.1
 3  0 183845 1635812   0   0   0   0    0   0   5 425998 367266 14 69 17  0  1.00 200.1
 3  0 183845 1635812   0   0   0   0    0   0   3 422701 367368 14 69 17  0  1.00 200.1
... lines omitted ...

The mpstat command is useful to investigate every logical CPU utilization. 
Example 8-33 shows how to of display the changes in CPU utilization, using the 
mpstat command. Because the SMT mode was turned on, the number of logical 
CPUs also changed from one to two. Before the SMT was turned on, only the 
lines for “CPU0” and “ALL” were reported. And after the configuration was 
changed, the line for “CPU1” was added to the report. With regard to each logical 
CPU, we can see that %usr value of CPU1 increased a little, and %sys value of 
CPU1 decreased, and %usr and %sys of CPU2 also decreased. 

Example 8-33   Statistics information of the mpstat command

System configuration: lcpu=1 ent=0.5 

cpu  min  maj  mpc  int   cs  ics   rq  mig lpa sysc us sy wa id   pc  %ec  lcs
  0    0    0    0 202317 207605 6398    4    0 100 330610 16 84  0  0 1.00 100.1  100
ALL    0    0    0 202317 207605 6398    4    0 100 330610 16 84  0  0 1.00 200.1  100
--------------------------------------------------------------------------------
  0    0    0    0 201076 206396 6376    4    0 100 330201 16 84  0  0 1.00 199.9  100
ALL    0    0    0 201076 206396 6376    4    0 100 330201 16 84  0  0 1.00 199.9  100
--------------------------------------------------------------------------------
  0    0    0    0 202194 207607 6499    4    0 100 331949 16 84  0  0 1.00 199.9  100
ALL    0    0    0 202194 207607 6499    4    0 100 331949 16 84  0  0 1.00 199.9  100
--------------------------------------------------------------------------------
  0    0    0    0 201824 207213 6475    4    0 100 331351 15 85  0  0 1.00 199.9  100
ALL    0    0    0 201824 207213 6475    4    0 100 331351 15 85  0  0 1.00 199.9  100
--------------------------------------------------------------------------------
  0    0    0    0 201699 207058 6438    4    0 100 331128 15 85  0  0 1.00 199.9  100
ALL    0    0    0 201699 207058 6438    4    0 100 331128 15 85  0  0 1.00 199.9  100
--------------------------------------------------------------------------------
  0    0    0    0 202242 207457 6288    4    0 100 332095 15 85  0  0 1.00 200.0  100
ALL    0    0    0 202242 207457 6288    4    0 100 332095 15 85  0  0 1.00 200.0  100
 Chapter 8. Case studies 527



--------------------------------------------------------------------------------

System configuration changed. The current iteration values may be inaccurate.
  0    0    0    0 85317 95448 10284    4 13806 100 147128 11 88  0  1 0.58 116.0  101
  1    0    0    0 52226 120148 67918    1 13817 100 84520  7 33  0 60 0.00  0.8 -1036941560
  U    -    -    -    -    -    -    -    -   -    -  -  - 20 78 0.49 98.0    -
ALL    0    0    0 137543 215596 78202    5 27623 100 231648  0  1 20 79 0.58 116.9 -1036941459
--------------------------------------------------------------------------------

System configuration: lcpu=2 ent=0.5 

cpu  min  maj  mpc  int   cs  ics   rq  mig lpa sysc us sy wa id   pc  %ec  lcs
  0    0    0    0 145401 160058 14781    2 28249 100 247053 17 81  0  2 0.49 98.8  100
  1    0    0    0 111684 260265 148616    1 28251 100 179047 12 57  0 31 0.51 101.2  100
ALL    0    0    0 257085 420323 163397    3 56500 100 426100 14 69  0 17 1.00 200.0  200
--------------------------------------------------------------------------------
  0    0    0    0 145380 156860 11656    2 27441 100 244538 17 82  0  2 0.49 98.9  100
  1    0    0    0 110224 259681 149465    1 27442 100 178412 12 56  0 32 0.51 101.1  100
ALL    0    0    0 255604 416541 161121    3 54883 100 422950 14 69  0 17 1.00 200.0  200
--------------------------------------------------------------------------------
  0    0    0    0 144738 161093 16525    2 25027 100 246852 17 81  0  2 0.49 98.9  100
  1    0    0    0 112291 256378 144082    1 25028 100 177993 12 57  0 31 0.51 101.0  100
ALL    0    0    0 257029 417471 160607    3 50055 100 424845 14 69  0 17 1.00 200.0  200
--------------------------------------------------------------------------------
  0    0    0    0 142620 165471 23010    2 25380 100 238842 17 80  0  3 0.49 99.0  100
  1    0    0    0 112281 253830 141552    2 25381 100 180098 12 58  0 30 0.50 101.0  100
ALL    0    0    0 254901 419301 164562    4 50761 100 418940 14 69  0 17 1.00 200.0  200
--------------------------------------------------------------------------------
  0    0    0    0 146475 154862 8574    2 25786 100 247945 17 82  0  1 0.49 98.9  100
  1    0    0    0 110335 260850 150502    2 25786 100 176635 12 56  0 32 0.51 101.1  100
ALL    0    0    0 256810 415712 159076    4 51572 100 424580 14 69  0 17 1.00 200.0  200
--------------------------------------------------------------------------------
  0    0    0    0 146874 153136 6442    1 27873 100 247752 17 82  0  1 0.49 98.8  100
  1    0    0    0 109546 263523 153952    2 27874 100 176579 12 56  0 32 0.51 101.2  100
ALL    0    0    0 256420 416659 160394    3 55747 100 424331 14 69  0 17 1.00 200.0  200
--------------------------------------------------------------------------------
  0    0    0    0 144702 153055 8546    2 27174 100 245862 17 82  0  1 0.49 98.7  100
  1    0    0    0 109726 261928 152198    2 27176 100 176046 12 56  0 32 0.51 101.2  100
ALL    0    0    0 254428 414983 160744    4 54350 100 421908 14 69  0 17 1.00 200.0  200
... lines omitted ...

The sar command with the -P flag can also provide utilization for every logical 
CPU. Example 8-34 shows the changes for logical CPU utilization using the sar 
command.

Example 8-34   Statistics information of the sar command

AIX r33n05 3 5 00C3E3CC4C00    10/26/04
528 AIX 5L Practical Performance Tools and Tuning Guide



System configuration: lcpu=1 ent=0.50

18:14:43 cpu    %usr    %sys    %wio   %idle   physc   %entc
18:14:44  0       17      83       0       0    1.00   100.0
          -       17      83       0       0    1.00   100.0
18:14:45  0       16      84       0       0    1.00   100.0
          -       16      84       0       0    1.00   100.0
18:14:46  0       16      84       0       0    0.99   100.0
          -       16      84       0       0    0.99   100.0
18:14:47  0       15      85       0       0    1.00   100.0
          -       15      85       0       0    1.00   100.0
18:14:48  0       15      85       0       0    1.00   100.0
          -       15      85       0       0    1.00   100.0
18:14:49  0       15      85       0       0    1.00   100.0
          -       15      85       0       0    1.00   100.0

Average   0       16      84       0       0    1.00   100.0
          -       16      84       0       0    NaNQ    NaNQ

System configuration changed. The current iteration values may be inaccurate.

18:14:50  0       11      89       0       0    0.81   161.2
          1        1       4       0      94    0.00     0.4
          -        9      72       0      18    0.81   161.6

System configuration: lcpu=2 ent=0.50

18:14:51 cpu    %usr    %sys    %wio   %idle   physc   %entc
18:14:51  0       17      81       0       2    0.49    49.4
          1       12      56       0      31    0.51    50.6
          -       15      68       0      17    1.00   100.0
18:14:52  0       17      80       0       3    0.50    49.5
          1       12      57       0      31    0.51    50.5
          -       14      69       0      17    1.00   100.0
18:14:53  0       17      82       0       1    0.49    49.4
          1       12      56       0      32    0.51    50.6
          -       14      69       0      17    1.00   100.0
18:14:54  0       16      79       0       4    0.49    49.5
          1       12      59       0      29    0.50    50.5
          -       14      69       0      17    0.99   100.0
18:14:55  0       17      82       0       1    0.50    49.5
          1       12      56       0      32    0.51    50.5
          -       14      69       0      17    1.00   100.0
18:14:56  0       17      82       0       1    0.49    49.4
          1       12      56       0      32    0.51    50.6
          -       14      69       0      17    1.00   100.0
18:14:57  0       17      82       0       1    0.49    49.4
          1       12      56       0      32    0.51    50.6
          -       14      69       0      17    1.00   100.0
 Chapter 8. Case studies 529



18:14:58  0       17      82       0       1    0.49    49.4
          1       12      56       0      32    0.51    50.6
          -       15      69       0      17    1.00   100.0
... lines omitted ...

After the configuration was changed, SMT mode is enabled and so each virtual 
processors was configured as 2-way logical processor. To display simultaneous 
multi-threading threads utilization, use the mpstat command with the -s flag as in 
Example 8-35. In this example, we run this command after the configuration was 
changed because the -s flag is available only in a partition with SMT enabled. In 
this case, both cpu0 and cpu1 are using the virtual processor about 50%.

Example 8-35   Displaying the simultaneous multi-threading threads utilization

System configuration: lcpu=2 ent=0.5 

     Proc0     
    100.05%    
 cpu0    cpu1   
 49.37%  50.68% 
-------------------------------------------------------------------------------
-
     Proc0     
     99.98%    
 cpu0    cpu1   
 49.32%  50.66% 
-------------------------------------------------------------------------------
-
     Proc0     
     99.98%    
 cpu0    cpu1   
 49.31%  50.67% 
-------------------------------------------------------------------------------
-
     Proc0     
     99.98%    
 cpu0    cpu1   
 49.37%  50.61% 
-------------------------------------------------------------------------------
-
     Proc0     
     99.98%    
 cpu0    cpu1   
 49.32%  50.66% 
-------------------------------------------------------------------------------
-
     Proc0     
     99.98%    
530 AIX 5L Practical Performance Tools and Tuning Guide



 cpu0    cpu1   
 49.37%  50.61% 

... lines omitted...

8.2.3  Evaluation
In this case scenario, the CPU utilization was changed by changing SMT mode 
from disable to enable.

With regard to CPU, POWER5-based systems support the following dynamic 
configuration changes: 

� Remove, move, and add entitled shared processor capacity

� Add and remove virtual processors

� Change between capped and uncapped processing capacity

� Change the weight of an uncapped partition

Change to these parameter values also effects overall system performance. For 
more information, refer to the redbook Advanced POWER Virtualization on IBM 
~ p5 Servers Architecture and Performance Considerations, SG24-5768.
 Chapter 8. Case studies 531



532 AIX 5L Practical Performance Tools and Tuning Guide



Chapter 9. Miscellaneous tools

In the first section of this chapter we present the Workload Manager (WLM) 
feature on AIX which provides a set of tools that assist in gleaning useful 
performance statistics and provides the administrator an efficient mechanism to 
control allocation of resources to processes.

The second section introduces the Partition Load Manager (PLM) software which 
is part of the Advanced POWER Virtualization feature and helps customers to 
maximize the utilization of processor and memory resources of DLPAR capable 
logical partitions running AIX 5L on pSeries servers.

In the third section, we present a short comparison between two techniques of 
vertical server consolidation: Workload Manager and partitioning (with Partition 
Load Manager - PLM).

The fourth section of this chapter introduces the Resource Monitoring and 
Control subsystem and a short overview about how to use the RMC for 
monitoring system performance.

9

© Copyright IBM Corp. 2005. All rights reserved. 533



9.1  Workload manager monitoring (WLM)
This section introduces the WLM as a monitoring tool for performance related 
problems in AIX 5L. WLM is a complex tool which can be used, beside 
performance monitoring, for gathering accounting data, and also for managing 
the load on a standalone system.

In conjunction with dynamic LPAR, WLM may also be used as a resource 
provisioning tool in a partitioned environment.

For more details about auditing and load management functions of WLM, refer to 
these publications:

� AIX 5L Workload Manager (WLM), SG24-5977
� Accounting and Auditing on AIX, SG24-6396

9.1.1  Overview
It is imperative for businesses today to understand the behavior of applications 
under workload and react to changes in workload; to ensure better response 
times and the optimum utilization of resources; to guarantee the uptime of 
servers in accordance with service level agreements, and effectively gather 
statistics on resource usage. 

It is becoming increasingly vital for system administrators today to be able to 
determine and control resource usage by processes. There is a need to monitor 
how the resources on a system are being used, and to implement effective 
mechanisms to efficiently balance the allocation of resources among the 
processes.

The WLM feature on AIX provides a set of tools that assist in gleaning useful 
performance statistics and provide the administrator an efficient mechanism to 
control allocation of resources to processes.

WLM is primarily intended for use with large systems running multiple 
applications, databases and transaction processing systems, where workloads 
are combined into a single large system (“vertical” server consolidation).

Workload Manager provides the flexibility for dividing system resources between 
jobs without having to partition the system (where reinstallation and 
reconfiguration are required). WLM also provides an effective means of isolation 
between jobs with very different system behaviors. 

More and more organizations are charging user communities for computing 
services being used. WLM can be effectively used in conjunction with the AIX 
534 AIX 5L Practical Performance Tools and Tuning Guide



accounting subsystem to profile accounting information for WLM classes. These 
resource usage statistics can be used for billing users for the system resources. 

9.1.2  WLM concepts
This section introduces the WLM terminology used throughout this chapter.

Definitions
The functionality of WLM is based on entities called classes. System 
administrators can define classes with a set of attributes and resource limits and 
assign processes to a class based on assignment rules for the class. AIX WLM 
provides the ability to control allocation of resources (CPU, physical memory and 
bandwidth) to these classes.

Processes are placed in these classes based on users, groups, application 
paths, process types, or application tags. These attributes form the assignment 
rules for classification of processes.

User ID The user name owning a process can be used to classify 
the process to a class. The user ids are available in the 
/etc/password file or the NIS. The smitty lsuser 
command will list the users on the system

Group The group name of a process can be used to classify the 
process to a class. The group names are available in the 
/etc/group file or the NIS. The smitty lsgroup command 
will list the group name on the system

Application path The complete path name of the binary running the 
application.

Process types Process type attributes specifying if the process is 32-bit 
or 64-bit can be used to determine the class for a process.

Application tag An attribute set by the WLM API to enable classification 
for different instances of the same binary application.

Resource usage can be monitored and controlled at the class level. As the 
resource limits are set and the resource utilization regulated for each class, 
applications are prevented from interfering with each other when sharing a single 
server.

Web servers, databases, and batch programs executing low priority tasks in the 
background can be grouped into separate distinct classes.
 Chapter 9. Miscellaneous tools 535



Class hierarchy
A hierarchy of classes can be specified and processes automatically assigned to 
these classes by their characteristics, and manually placed in the classes based 
on simple rules.

The class hierarchy with two levels can be set up depending upon the needs of 
the organization by defining superclasses and subclasses. 

SuperClass A superclass is a class that has subclasses associated with it. No 
processes can belong to the superclass without also belonging to 
a subclass. A superclass has a set of resource limitation values 
and resources target shares that determines the amount of 
resources that can be used by the processes that belong to the 
superclass

Subclass A subclass is a class associated with exactly one superclass. A 
subclass has resource limitation values that determines the 
resources that can be used by the processes used in the 
subclass.

WLM supports 32 superclasses (27 user-defined and 5 predefined). Each 
superclass in turn can have 12 subclasses (10 user-defined and 2 predefined).

The predefined superclasses are automatically created and are classified as:

Default As the name suggests it is the default class and all non-root 
processes that are not automatically assigned to a specific 
superclass are assigned to the default superclass.

System System superclass has all privileged (root) processes assigned 
to it if they are not assigned by rules to a specific class.

Shared Shared superclass receives all the memory pages that are 
shared by processes in more than one superclass.

Unclassified Memory pages that cannot be directly tied to any processes (and 
thus, to any class) at the time of the initial classification are 
charged to the Unclassified superclass.

Unmanaged A special superclass to which no processes are assigned. This 
class is used to accumulate the memory usage for all pinned 
pages that are not managed by WLM.

Class attributes
Class tiers Tiers define class importance relative to other classes. Ten tiers 

(0 through 9) can be defined to prioritize classes, with 0 being the 
most important and 9 least important.
536 AIX 5L Practical Performance Tools and Tuning Guide



Inheritance Specifies whether the child process inherits the class assignment 
from its parent.

Localshm Prevents memory segments belonging to one class from 
migrating to shared class.

Shares Numbers for each class to determine the percentage share for 
allocation of CPU, memory and disk I/O for the class.

Resource Set Limits the set of resources a given class has access in terms of 
CPUs.

9.1.3  Administering WLM
Working with WLM might seem a fairly sophisticated task, but, in fact, if you only 
need specific WLM functionality (like performance monitoring), it is simple 
enough to set up WLM and get fast results.

WLM configuration - A six step process
WLM can be set up on the system using the following six simple steps:

1. Determining the processes running on the system

2. Classification of the processes

3. Creation of WLM classes for these processes

4. Assigning the processes to pertinent classes using assignment rules

5. Verifying the classes and assignment rules

6. Starting WLM in passive mode

The central idea is to classify the processes on the system, based on certain 
parameters like the applications or workloads these processes belong to. 
Subsequently these processes can be grouped into WLM classes and each 
class can be monitored, and managed, separately for its resource usage.

The steps to set up WLM are detailed in “Setting up WLM” on page 538.

WLM administration tools
WLM can be administered in three different ways:

Command Line WLM can be administered using simple commands and 
editing a few configuration files

SMIT System Management Interface Tool - The hugely popular 
ASCII based AIX system administration tool provides a 
menu based interface to WLM commands
 Chapter 9. Miscellaneous tools 537



WebSM Web-based System Manager - graphical tool for 
managing AIX systems and convenient to use,

We have used SMIT in the examples throughout this chapter. For more 
information, check the redbook AIX 5L Workload Manager (WLM), SG24-5977.

Table 9-1 on page 545 provides a list and a brief introduction to WLM commands 
and the WebSM tool.

Setting up WLM
This section describes the steps needed to configure the WLM on AIX.

1. Determine the processes running on the system
The first step is to check for all the processes running on the system and 
determine what the processes are doing and which application or workload they 
belong to, and decide on how to classify the processes. 

The following command can be used to check for the processes on the system:

Example 9-1   Sample output of ps -e -o pid,tag,user.group,comm,args

[p630n02][/]> ps -e -o pid,tag,user,group,comm,args

 4470 -                   root   system sshd     /usr/sbin/sshd
 5082 -                   root   system hostmibd /usr/sbin/hostmibd
 5168 -                   root   system shlap    /usr/ccs/bin/shlap
 5476 -                   root   system errdemon /usr/lib/errdemon
 6542 -                   root     cron cron     /usr/sbin/cron
 6722 -                   root   system getty    getty /dev/console console
 8010 -                   root   system dtlogin  /usr/dt/bin/dtlogin -daemon
13336 -                  user1    staff prog1    ./prog1 -c 1000
13592 -                   root   system telnetd  telnetd -a
19750 -                   root   system prog3    ./prog3 -m 2000
20056 -                   root   system ksh      -ksh
23016 -                   root   system sshd     sshd: root@pts/5
23882 -                   root   system ksh      -ksh
24428 -                  user2    staff prog2    ./prog2 -c 500

The processes prog1, prog2 and prog3 (bold in the above example) will be used 
in this section for illustration. 

prog1 CPU intensive program executed by user1

prog2 CPU intensive program executed by user2

ps -e -o pid,tag,user,group,comm,args
538 AIX 5L Practical Performance Tools and Tuning Guide



prog3 Memory intensive program

2. Classify the processes
The next step is to define your classes. In order to define which classes you 
need, you must know your users and their computing needs, the applications on 
your system, and their resource needs, and the requirements of your business 
(that is, which tasks are critical and which can be given lower priority. 

Because WLM regulates the resource utilization among the classes, you should 
group the same in the same classes the applications and/or users with the same 
resource utilization patterns. For instance, you generally want to separate the 
interactive jobs that typically consume very little CPU time but require quick 
response time when activated from batch type jobs that, typically, are very CPU 
and memory intensive.

In the Example 9-1 on page 538 the prog1, prog2 and prog3 can be grouped into 
different classes.

3. Creating WLM classes
Once the processes have been classified, it is time to create the WLM classes for 
these processes. We can use the smitty wlm fast path to create the WLM 
classes. 

� smitty wlm

Example 9-2   Smitty menu screen for WLM 

Workload Manager

Move cursor to desired item and press Enter.

  Manage time-based configuration sets

  Work on alternate configurations
  Work on a set of Subclasses
  Show current focus (Configuration, Class Set)

  List all classes
  Add a class
  Change / Show Characteristics of a class
  Remove a class
  Class assignment rules

Note: The programs simulate resource utilization and have been used for 
illustration purposes only.
 Chapter 9. Miscellaneous tools 539



  Start/Stop/Update WLM
  Assign/Unassign processes to a class/subclass

� Select “Add a Class” from the smitty screen. A smitty screen with fields to 
specify the attributes of the class will be displayed

� Specify the attributes of the class. The Inheritance and the Localshm 
characteristics must be set to Yes. The <tab> key maybe use to change the 
values from the default No to Yes in the screen. 

Inheritance means that when a process starts a subprocess it has the same 
class. This is useful for applications that start a lot of other processes, such as 
database starting connections for users from a listener type process. Localshm 
means that any shared memory created by a process in a class belongs to that 
class too. This is useful for databases that access shared memory, such as the 
DB2® buffer pool or Oracle SGA.

Example 9-3   Smitty menu screen for General characteristics of a class

General characteristics of a class

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
* Class name                                         [app1]
  Description                                        [CPU Intensive]
  Tier                                               [0]                     +#
  Resource Set                                                               +
  Inheritance                                        [Yes]                   +
  User authorized to assign its processes to this cl []                      +
  ass
  Group authorized to assign its processes to this c []                      +
  lass
  User authorized to administrate this class         []                      +
  (Superclass only)
  Group authorized to administrate this class        []                      +
  (Superclass only)
  Localshm                                           [Yes]                   +

F1=Help             F2=Refresh          F3=Cancel           F4=List
F5=Reset            F6=Command          F7=Edit             F8=Image
F9=Shell            F10=Exit            Enter=Do

We have created a WLM class app1 for the prog1 process in this example. 
Similarly, WLM classes app2 and app3 have been created for the prog2, and 
prog3 programs respectively, using the same steps as described in this section.
540 AIX 5L Practical Performance Tools and Tuning Guide



4. Assigning the process to a class based on assignment rules
After the creation of WLM classes, the processes have to be assigned to these 
classes based on some assignment rules.Select the “Class Assignment rules” 
from the initial smitty screen for the Workload Manager. A SMIT screen with 
operations for the WLM class rules will be displayed.

Example 9-4   SMIT menu screen for class assignment rules

Class assignment rules

Move cursor to desired item and press Enter.

  List all Rules
  Create a new Rule
  Change / Show Characteristics of a Rule
  Delete a Rule
  Attribute value groupings

F1=Help             F2=Refresh          F3=Cancel           F8=Image
F9=Shell            F10=Exit            Enter=Do

� Select “Create a new Rule” from the smitty screen. This will display a screen 
to specify the attributes for creating a rule of a WLM class. 

Example 9-5   Creating a new rule for a WLM class

Create a new Rule

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Order of the rule                                  [1] #
* Class name                                          app1 +
* User                                               [-] +
* Group                                              [user1] +
  Application                                        [-]
  Type                                               [-] +
  Tag                                                [-]

Example 9-6   Creating a new rule for a WLM class

Create a new Rule

Type or select values in entry fields.
 Chapter 9. Miscellaneous tools 541



Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
* Order of the rule                                  [1] #
* Class name app3 +
* User                                               [-] +
* Group                                              [-] +
  Application                                        [-]
  Type                                               [/work/app3/prog3] +
  Tag                                                [-]

5. Verifying WLM classes and assignment rules
After the creation of the WLM classes and assignment of the processes to these 
classes based on assignment rules, it is worthwhile to list the classes and rules 
for verification

� Select “List All Classes” from the initial smitty screen for the Workload 
Manager. This will display the defined WLM classes

Example 9-7   Smitty screen to list all classes

Workload Manager

Move cursor to desired item and press Enter.

  Manage time-based configuration sets

  Work on alternate configurations
  Work on a set of Subclasses
  Show current focus (Configuration, Class Set)

  List all classes
  Add a class
  Change / Show Characteristics of a class
  Remove a class
  Class assignment rules

  Start/Stop/Update WLM
  Assign/Unassign processes to a class/subclass

Note: The application being classified should be a binary. In case of a script 
being used, the binary being invoked in the script should be entered.
542 AIX 5L Practical Performance Tools and Tuning Guide



Example 9-8   Screen output listing the WLM classes

COMMAND STATUS

Command: OK            stdout: yes           stderr: no

Before command completion, additional instructions may appear below.

System
Default
Shared
app1
app2
app3

The default super classes System, Default and Shared are listed along with the 
sample classes we have created, i.e., app1, app2 and app3.

� Select “List all Rules” from the initial smitty screen for Class assignment 
rules. This will display the assignment rules defined for WLM classes.

Example 9-9   Smitty screen for Class assignment rules

 Class assignment rules

Move cursor to desired item and press Enter.

  List all Rules
  Create a new Rule
  Change / Show Characteristics of a Rule
  Delete a Rule
  Attribute value groupings

Example 9-10   Screen output listing class assignment rules

COMMAND STATUS

Command: OK            stdout: yes           stderr: no

Before command completion, additional instructions may appear below.

 #  Class     User      Group     Application             Type      Tag
001 app3      -         -         /work/app3/prog3        -         -
002 app2      user2     -         -                       -         -
003 app1      user1     -         -                       -         -
004 System    root      -         -                       -         -
 Chapter 9. Miscellaneous tools 543



005 Default   -         -         -                       -         -

6. Starting WLM in passive mode
WLM can be run in either “passive” or “active” mode. 

Passive WLM places all processes in the defined classes and lets you 
monitor the classes without controlling anything.

Active WLM proactively controls the classes based on the share, tier, 
rset, and limit attributes.

� Select “Start/Stop/Update WLM” from the initial Workload Manager 
screen.This will display the screen to start, stop or update WLM.

Example 9-11   Screen output for starting/stopping/updating WLM

Start/Stop/Update WLM

Move cursor to desired item and press Enter.

  Start Workload Manager
  Update Workload Manager
  Stop Workload Manager
  Show WLM status

� Select “Start Workload Manager”. A screen to select attributes for starting 
the Workload Manager is displayed.

� Specify “Management mode” as Passive and select No for “Enforce 
Resource Set bindings”.

Example 9-12   Smitty screen output for starting WLM

Start Workload Manager

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
* Configuration, or for a set: set name/currently current 
      applicable configuration
  Management mode Passive 
  Enforce Resource Set bindings No 
  Disable class total limits on resource usage Yes 
  Disable process total limits on resource usage Yes 
  Start now, at next boot, or both ? Now 

� Select “Show WLM status” from the “Start/Stop/Update WLM” screen. This 
will display information about WLM status.
544 AIX 5L Practical Performance Tools and Tuning Guide



Example 9-13   Smitty screen output for WLM class listing

COMMAND STATUS

Command: OK            stdout: yes           stderr: no

Before command completion, additional instructions may appear below.

WLM is running in passive mode, Rset bindings not active.
Checking classes and rules for 'current' configuration...
System
Default
Shared
app1
app2
app3

WLM commands
WLM configuration can also be done using simple command line options. Table 
4-1 gives a brief overview of the WLM commands and their usage.

Table 9-1   WLM commands

The class assignment rules for a class can be added by editing the 
/etc/wlm/current/rules file. All the user defined classes must be added above 

Command Description Usage

mkclass Creates a WLM class mkclass <class name>
mkclass -a inheritance=yes -a localshm =yes <class name>

wlmassign Assigns a process to a 
WLM class

wlmassign <class name> <process id>

lsclass Returns the list of 
superclasses

lsclass

wlmcheck Checks WLM settings wlmcheck

rmclass Removes a WLM 
class

rmclass <class name>

wlmcntrl -p Starts WLM in passive 
mode

wlmcntrl -p

wlmcntrl -a Starts WLM in active 
mode

wlmcntrl -a

wlmcntrl -o Stops WLM wlmcntrl -o
 Chapter 9. Miscellaneous tools 545



the System and Default class line, because the rules file is examined from top to 
bottom to decide the class of a process.

Example 9-14   A sample /etc/wlm/current/rules file

* class resvd user group application type tag
app3    -       -       -       /work/app3/prog3        -       -
app2    -       user2   -       -       -       -
app1    -       user1   -       -       -       -
System   -    root   -    -           -   -
Default  -    -      -    -           -   -

Example 9-15   A sample /etc/wlm/current/classes file

System:
Default:
Shared:
app1:
        description = "CPU intensive app"
        inheritance = "yes"
        localshm = "yes"
app2:
        description = "CPU intensive app"
        inheritance = "yes"
        localshm = "yes"
app3:
        description = "Memory intensive app"
        inheritance = "yes"
        localshm = "yes"

9.1.4  WLM performance tools
Various tools are available on AIX to monitor WLM class resource usage. These 
tools give an idea of how the resources are being utilized on the system by the 
processes, and can be used by system administrators for resource monitoring 
and control. Some of these tools are available with the AIX operating system and 
the others have to be installed separately.

This section provides a brief introduction to the following most commonly used 
tools for monitoring WLM classes. Please refer to the redbook AIX 5L Workload 
Manager (WLM), SG24-5977.

� wlmstat
� topas
� svmon
� Performance Toolbox
546 AIX 5L Practical Performance Tools and Tuning Guide



wlmstat
The wlmstat command reports the WLM per class resource utilization. If a count 
is specified, wlmstat loops count times and sleeps interval seconds after each 
block is displayed.

wlmstat -l [Class] -t [Tier] [Interval][Count].

wlmstat displays information about CPU, memory and disk I/O utilization for all 
the predefined and user defined classes.

Example 9-16   Sample output of wlmstat command

p630n02][/etc/wlm/current]> wlmstat
         CLASS CPU MEM DKIO
     Unmanaged   0  14   0
       Default   0   0   0
        Shared   0   1   0
        System   0   7   0
          app1 44   1   0
          app2 22   0   0
          app3   8  55   0
         TOTAL 74  64   0

wlmstat can be used to display individual information in detail on CPU, memory 
or disk I/O using the Svc, Svm or Svi flags respectively.

Example 9-17   Sample wlmstat output displaying detailed CPU usage statistics

[p630n02][/etc/wlm/current]> wlmstat -Svc
         CLASS tr i #pr CPU sha min smx hmx des  rap urap pri
     Unmanaged  0 0   0   0  -1   0 100 100 100  100    0  10
       Default  0 0   0   0  -1   0 100 100 100  100    0   0
        Shared  0 0   0   0  -1   0 100 100 100  100    0   0
        System  0 0  80   0  -1   0 100 100 100  100    0   0
          app1  0 1   2  43  -1   0 100 100 100  100    0   0
          app2  0 1   2  19  -1   0 100 100 100  100    0   0
          app3  0 1   1  06  -1   0 100 100 100  100    0   0

topas
The topas command displays performance statistics updated on the screen at 
regular intervals. When used with -W flag the command displays information on 
percentage of CPU, memory and disk I/O utilization for the WLM classes.
 Chapter 9. Miscellaneous tools 547



Example 9-18   topas -W

[p630n02][/work]> topas -W
Topas Monitor for host:    p630n02     Interval:   2    Mon Oct 25 15:13:04 
2004

WLM-Class (Passive)             CPU%      Mem%     Disk-I/O%
app1 47         1            0
app2 23         0            0
app3                            12        55            0
System                           0         7            0
Shared                           0         1            0
Default                          0         0            0
Unmanaged                        0        14            0
Unclassified                     0         0            0

svmon
The svmon command captures and analyzes a snapshot of virtual memory. 
svmon provides the ability to report workload management related activity with 
the following 2 types of report: 

Class Report Prints memory usage information pertinent to a class. 
Usage is with the -W flag.

Tier Report Prints memory usage information with respect to a class 
tier. Usage is with the -T flag.

Example 9-19   Using svmon with WLM

[p630n02][/work]> svmon -W app3
WLM is running in passive mode

===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
app3                                512670        4        0   512077

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp Virtual
   20564         - work                              -  65536     0    0 65536
   90572         - work                              -  65536     0    0 65536
   88551         - work                              -  65536     0    0 65536
   c8579         - work                              -  65536     0    0 65536
   485e9         - work                              -  65536     0    0 65536
   f855f         - work                              -  65536     0    0 65536
   c85b9         - work                              -  65483     0    0 65485
   18543         - work                              -  53319     0    0 53319
   18463         - clnt /dev/hd2:49716               -    304     0    -     -
   48589         - clnt /dev/hd9var:467              -     57     0    -     -
548 AIX 5L Practical Performance Tools and Tuning Guide



   98433         - clnt /dev/hd3:4103                -     57     0    -     -
     540         - clnt /dev/hd2:1098                -     42     0    -     -
   80550         - work                              -     37     0    0    37
   48449         - clnt /dev/hd2:289                 -     32     0    -     -
   20544         - clnt /dev/hd2:1025                -     19     0    -     -
   104e2         - clnt /dev/hd2:45304               -     17     0    -     -
     560         - work                              -     15     0    0    15

Performance Toolbox
The wlmmon and wlmperf commands provide graphical views of Workload 
Manager resource activities by class.

The wlmmon and wlmperf commands generate resource usage reports of system 
WLM activity. The wlmperf command, which is a part of the Performance Toolbox 
(PTX), can generate reports from trend recordings made by PTX daemons for 
periods covering minutes, hours, days, weeks, or months.

The wlmmon command generates three types of visual reports:

� Snapshot display
� Detailed display
� Tabulation display

While the wlmstat command provides a per-second view of WLM activity, it is not 
suitable for the long term analysis (it is resource consuming). To supplement the 
wlmstat command, the wlmmon and wlmperf commands provide reports of WLM 
activity over much longer time periods, with minimal system impact.

9.2  Partition load manager (PLM) 
The Partition Load Manager (PLM) software is part of the Advanced POWER 
Virtualization feature and helps customers to maximize the utilization of 
processor and memory resources of DLPAR capable logical partitions running 
AIX 5L on pSeries servers.

This section is based on the redbook Advanced POWER Virtualization on IBM 
~ p5 Servers: Introduction and Basic configuration, SG24-7940.

9.2.1  PLM introduction
The PLM is a resource manager, which assigns and moves resources based on 
defined policies and utilization of the resources in an IBM Eserver pSeries 
based on POWER5 architecture (~ p5). PLM manages memory, both 
dedicated processor and partitions using Micro-Partitioning technology to 
 Chapter 9. Miscellaneous tools 549



readjust the resources. This adds additional flexibility on top of the 
micro-partitions flexibility added by the POWER Hypervisor.

PLM, however, has no knowledge about the importance of any workload running 
in the partitions and cannot readjust priority based on the changes of types of 
workloads. Currently, PLM only manages partitions running AIX. 

PLM is set up in a partition or on another system running AIX 5L V5.2 ML4 or AIX 
5L V5.3. Linux or i5/OS support for PLM and the clients is not available. You can 
have other installed applications on the partition or system running the PLM as 
well. A single instance of the PLM can only manage a single server.

To configure PLM, you can use the command line interface or the Web-based 
System Manager for graphical set up.

PLM uses a client/server model to report and manage resource utilization. The 
clients (managed partitions) notify the PLM server when resources are either 
under or over-utilized. Upon notification of one of these events, the PLM server 
makes resource allocation decisions based on a policy file defined by the system 
administrator.

PLM uses the Resource Monitoring and Control (RMC) subsystem for network 
communication, which provides a robust and stable framework for monitoring and 
managing resources. Communication with the Hardware Management Console 
(HMC) to gather system information and execute commands PLM requires a 
configured SSH connection (both server and client running on all partitions 
managed bt PLM). Figure 9-1 on page 551 shows an overview of the PLM 
components.
550 AIX 5L Practical Performance Tools and Tuning Guide



Figure 9-1   PLM overview

The policy file defines managed partitions, their entitlements, their thresholds, 
and organizes the partitions into groups. Every node managed by PLM must be 
defined in the policy file along with several associated attribute values:

� Optional maximum, minimum, and guaranteed resource values
� The relative priority or weight of the partition
� Upper and lower load thresholds for resource event notification

For each resource (processor and memory), the administrator specifies an upper 
and a lower threshold for which a resource event should be generated. You can 
also choose to manage only one resource.

Partitions that have reached an upper threshold become resource requesters. 
Partitions that have reached a lower threshold become resource donors. When a 
request for a resource is received, it is honored by taking resources from one of 
three sources when the requester has not reached its maximum value:

� A pool of free, unallocated resources
� A resource donor
� A lower priority partition with excess resources over entitled amount

As long as there are resources available in the free pool, they will be given to the 
requester. If there are no resources in the free pool, the list of resource donors is 
checked. If there is a resource donor, the resource is moved from the donor to 
the requester. The amount of resource moved is the minimum of the delta values 
 Chapter 9. Miscellaneous tools 551



for the two partitions, as specified by the policy. If there are no resource donors, 
the list of excess users is checked.

When determining if resources can be taken from an excess user, the weight of 
the partition is determined to define the priority. Higher priority partitions can take 
resources from lower priority partitions. A partition's priority is defined as the ratio 
of its excess to its weight, where excess is expressed with the formula (current 
amount - desired amount) and weight is the policy defined weight. A lower value 
for this ratio represents a higher priority. Figure 9-2 shows an overview of the 
process for partitions.

Figure 9-2   PLM resource distribution for partitions

In Figure 9-2, all partitions are capped partitions. LPAR3 is under heavy load and 
over its high CPU average threshold value becoming a requestor. There are no 
free resources in the free pool and no donor partitions available. PLM now 
checks the excess list to find a partition having resources allocated over its 
guaranteed value and with a lower priority. Calculating the priority, LPAR1 has the 
highest ratio number and therefore the lowest priority. PLM deallocates 
resources from LPAR1 and allocates them to LPAR3.

If the request for a resource cannot be honored, it is queued and re-evaluated 
when resources become available. A partition cannot fall below its minimum or 
rise above its maximum definition for each resource.
552 AIX 5L Practical Performance Tools and Tuning Guide



The policy file, once loaded, is static, and has no knowledge of the nature of the 
workload on the managed partitions. A partition's priority does not change upon 
the arrival of high priority work. The priority of partitions can only be changed by 
some action, external to PLM, by loading a new policy.

PLM handles memory and both types of processor partitions: dedicated and 
shared processor partitions. All the partitions in a group must be of the same 
processor type.

9.2.2  Memory management
PLM manages memory by moving Logical Memory Blocks (LMBs) across 
partitions. To determine when there is demand for memory, PLM uses two 
metrics:

� Utilization percentage (ratio of memory in use to available)
� The page replacement rate

For workloads that result in significant file caching, the memory utilization on AIX 
may never fall below the specified lower threshold. With this type of workload, a 
partition may never become a memory donor, even if the memory is not currently 
being used.

In the absence of memory donors, PLM can only take memory from excess 
users. Since the presence of memory donors cannot be guaranteed, and is 
unlikely with some workloads, memory management with PLM may only be 
effective if there are excess users present. One way to ensure the presence of 
excess users is to assign each managed partition a low guaranteed value, such 
that it will always have more than its guaranteed amount. With this sort of policy, 
PLM will always be able to redistribute memory to partitions based on their 
demand and priority.

9.2.3  Processor management
For dedicated processor partitions, PLM moves physical processors, one at a 
time, from partitions that are not utilizing them, to partitions that have demand for 
them. This enables dedicated processor partitions running AIX 5L Version 5.2 
and AIX 5L Version 5.3 to better utilize their resources. If one partition needs 
more processor capacity, PLM automatically moves processors from a partition 
that has idle capacity.

For shared processor partitions, PLM manages the entitled capacity and the 
number of virtual processors (VPs) for capped or uncapped partitions. When a 
partition has requested more processor capacity, PLM will increase the entitled 
capacity for the requesting partition if additional processor capacity is available. 
 Chapter 9. Miscellaneous tools 553



For uncapped partitions, PLM can increase the number of virtual processors to 
increase the partition's potential to consume processor resources under high 
load conditions. Conversely, PLM will also decrease entitled capacity and the 
number of virtual processors under low-load conditions, to more efficiently utilize 
the underlying physical processors.

9.3  A comparison of WLM and PLM 
AIX offers two methods of vertical server consolidation: workload management 
with Workload Manager, and partitioning, of which the most recent development 
is shared processor logical partitions (Micro-Partitioning technology) with PLM. 
This section compares these two approaches.

With the introduction of shared processor logical partitions (SPLPARs) and PLM, 
partitions are approaching the flexibility and granularity of WLM classes in their 
responses to changing load, while providing the additional security of separate 
operating systems. The sections below compare WLM classes and SPLPARs in 
terms of their ability to dynamically provision resources (CPU, memory and I/O) 
to applications, and the features they provide. SPLPARs are not necessarily 
smaller than 1 CPU, but they can be given CPU entitlement in fractions of 0.01 
CPUs (1.75 CPUs, for example). We assume that WLM is configured on 
dedicated processors. 

Table 9-2   Requirement and configuration

WLM SPLPAR+PLM

WLM is provided free with AIX. Micro-Partitioning and PLM are provided 
as part of the advanced POWER 
virtualization feature for AIX, which is a 
chargeable option.

WLM is installed by default. No additional hardware is required.The 
managed server must have an HMC. 
LPARs must be defined and installed, and 
have Resource Management and Control 
(RMC) connections to the PLM server. 
The PLM server must be separately 
installed.

WLM classes, tiers, limits, shares and 
rules must be manually configured.

POWER Hypervisor (PHYP) entitlements, 
and PLM shares and capping must be 
manually configured.
554 AIX 5L Practical Performance Tools and Tuning Guide



Table 9-3   Allocation and separation

Table 9-4   Performance overhead 

WLM SPLPAR+PLM

All processes within an operating system 
(OS) are assigned to a class.

All processes run within a partition. 

All classes run within the same OS. An OS 
crash will stop all the classes.

Partitions run separate OSs. An OS crash 
in one partition will have no effect on the 
others. 

A process in one class can start a process 
in another class.

A process in one partition can only start a 
process in another partition using network 
communication. 

A resource sets can be used to restrict a 
class to particular CPUs. 

The administrator has no control over 
which CPUs in the shared pool are used 
by a particular partition. However, LPARs 
can be grouped so they only compete 
against others in the group. 

WLM SPLPAR+PLM

WLM is built into the definition of a 
process. Once running, the overhead is 
minimal.

Resource Management and Control 
(RMC) services gather and export the 
system status. The RMC daemon also 
processes reconfiguration (dynamic 
LPAR) requests from the HMC. 

WLM can significantly increase the boot 
time of an OS if the number of disks 
attached is large.

The RMC services are always started on 
boot.

Only one OS is required. Each partition must have its own OS.

Dedicated partitions are the 'default state' 
against which SPLPAR performance is 
measured. AIX 5.3 on POWER5 has set a 
number of benchmark records. 

The performance penalty of sharing 
processors depends on factors such as 
the size of the partition and the number of 
other partitions running.
 Chapter 9. Miscellaneous tools 555



Table 9-5   Resource entitlement 

Table 9-6   Prioritization

WLM SPLPAR+PLM

Classes can have maximum, minimum, 
and target resource entitlements. A class 
may be given less than its target, if all 
classes are under heavy load. It will only 
be given less than its minimum if it cannot 
use the resources, or if a higher tier class 
(see "prioritization") takes all the 
resources.

Partitions can have maximum, minimum, 
and guaranteed resource entitlements in 
the PHYP. A partition will only be given 
less than its guaranteed amount if it 
cannot use the resources assigned to it. It 
will never be given less than its minimum 
entitlement. 

Target entitlements are known as shares. 
The resources given to a class are 
determined by its share divided by the 
total number of shares for active classes. 
An active class is one with running 
processes.

Partitions are assigned a share in PLM. 
The resources given to an LPAR are 
determined by its share divided by the 
total number of shares for active LPARs. 
PLM will override the PHYP's normal 
distribution of these additional resources. 

A class with a maximum entitlement of 
100% can use any free resources on the 
system.

An uncapped partition can use any free 
resources on the system, as PLM will 
increase a partition's virtual processors in 
order to exploit additional CPUs. 

I/O throughput can be controlled. I/O 
resources can be shared between 
classes.

I/O throughput is not controlled. I/O 
resources can only be shared through a 
VIO server. PLM cannot move I/O 
resources between partitions. 

The sum of the defined minimum resource 
entitlements of all the classes cannot 
exceed the total capacity of the system, 
even if some classes are not active (have 
no processes running).

The sum of the defined minimum capacity 
entitlements can exceed the total capacity 
of the system as long as not all the 
partitions are started. 

WLM SPLPAR+PLM

Classes can be put into tiers. Processes in 
a lower tier class will only run if no higher 
tier processes are running. Higher tier 
classes, therefore, cannot be limited by 
lower tier classes, but lower tier classes 
can be starved.

PLM has no concept of the importance of 
a workload beyond the share setting (see 
"resource entitlement"). Running a lower 
priority SPLPAR will limit the resources 
available to a higher priority SPLPAR 
because the lower priority SPLPAR will 
still use its guaranteed entitlement. 
However, lower priority SPLPARs cannot 
be starved. 
556 AIX 5L Practical Performance Tools and Tuning Guide



Table 9-7   Speed of response to changing load

WLM still provides a greater degree of control and granularity, and classes are 
still more dynamic in their response to changes in load than an SPLPAR, 
although these differences are becoming less noticeable. By running separate 
operating systems, SPLPARs provide an additional degree of separation with 
clear advantages for availability. PLM can also run with dedicated partitions, 
avoiding the performance overhead of SPLPARs, but reducing the granularity of 
control still further.

9.4  Resource monitoring and control (RMC)
The Resource Monitoring and Control (RMC) application is a part of Reliable 
Scalable Cluster Technology (RSCT). RMC is the strategic technology for 
monitoring and event management in AIX 5L. It provides a consistent and 
comprehensive set of monitoring and response capabilities that can assist in 
detecting system resource problems.

RMC can monitor various aspects of the system resources (hardware and 
software), and can specify a wide range of actions to be taken when a threshold 

Processes can be started, and classes 
activated, even if they cannot achieve their 
minimum entitlement.

New partitions will not start if their 
minimum requirements cannot be met. 

WLM SPLPAR+PLM

There is no latency associated with a 
class using additional CPU.

There is a latency associated with 
dynamically adding virtual processors. 
Furthermore, if a high number of virtual 
processors are made permanently 
available instead, a performance 
overhead is incurred. Additional 
entitlement (up to 100% of a partition's 
virtual processors) can be added without 
delay. 

Monitoring is constant. Access to a class's 
resources is provided on a per-minute 
basis (as long as the class can use its full 
entitlement).

Monitoring is based on 10 second 
intervals. By default, a threshold must be 
reached 6 times in order to trigger a 
dynamic LPAR event. Entitlement 
changes are made only when an event is 
triggered, but excess capacity is 
distributed constantly (based on shares). 

WLM SPLPAR+PLM
 Chapter 9. Miscellaneous tools 557



or specified condition is met. If configured, RMC can also react in response 
(automated response) to conditions and events occurred on the system on in a 
cluster.

RMC monitors, among other things, several performance related aspects, like 
CPU, memory, file systems, paging space etc.

By monitoring conditions of interest and providing automated responses when 
these conditions occur, RMC helps maintain system availability.

The whole RSCT package is composed by following filesets

rsct.core Core RSCT component including RMC

rsct.basic Basic functions supporting availability infrastructure such 
as Topology Services (HATS) and Group Services 
(HAGS)

rsct.compat.basic Event Management (HAEM)
rsct.compat.clients Client services of Event Management (HAEM)

RMC is included in the rsct.core package, which is installed automatically with 
AIX 5L Version 5.3. The RSCT application executables reside in /usr/sbin/rsct/bin 
directory. This package provides basic RMC services and some additional RSCT 
functions.

The other RSCT packages such as rsct.basic and rsct.compat.basic come with 
AIX 5.3 installation media, but they aren’t installed automatically.

Services provided by those packages such as HATS, HAGS, and HAEM are very 
important to certain applications. Cluster Systems Management (CSM), Parallel 
System Support Programs (PSSP), and High Availability Cluster 
Multi-Processing/Enhanced Scalability (HACMP/ES) are applications using 
those services. Note that HAEM has been moved from the rsct.basic and 
rsct.clients packages to the rsct.compat package, and it is currently supported 
only in PSSP, and partially in HACMP.

RMC can be configured and used through the WebSM Graphical User Interface 
(GUI), but it also provides command line interface programs (commands) that 
can be used to manage it. For additional information, see the Resource 
Monitoring and Control Guide and Reference, SC23-4345. For the latest 
information, review the README documents in the /usr/sbin/rsct/README 
directory that accompany the RSCT installation media.
558 AIX 5L Practical Performance Tools and Tuning Guide



9.4.1  RMC commands
The following scripts, utilities, commands, and files can be used to control 
monitoring on a system with RMC. See the man pages or AIX 5L Version 5.3 
Commands Reference for detailed usage information. 

These are the primary RMC commands:

chrsrc Changes the persistent attribute values of a resource or 
resource class. 

lsactdef Lists action definitions of a resource or resource class. 

lsrsrc Lists resources or a resource class. 

lsrsrcdef Lists a resource or resource class definition. 

mkrsrc Defines a new resource. 

refrsrc Refreshes the resources within the specified resource 
class. 

rmrsrc Removes a defined resource. 

These are additional RMC commands:

ctsnap Gathers configuration, log, and trace information for the 
RSCT product. 

lsaudrec Lists records from the audit log. 

rmaudrec Removes records from the audit log. 

rmcctrl Manages the RMC subsystem. 

Additional Event Response Resource Manager commands:

chcondition Changes any of the attributes of a defined condition. 

lscondition Lists information about one or more conditions. 

mkcondition Creates a new condition definition that can be monitored. 

rmcondition Removes a condition. 

chresponse Adds or deletes the actions of a response, or renames a 
response. 

lsresponse Lists information about one or more responses. 

mkresponse Creates a new response definition with one action. 

rmresponse Removes a response. 

lscondresp Lists information about a condition and its linked 
responses, if any. 
 Chapter 9. Miscellaneous tools 559



mkcondresp Creates a link between a condition and one or more 
responses. 

rmcondresp Deletes a link between a condition and one or more 
responses. 

startcondresp Starts monitoring a condition that has one or more linked 
responses. 

stopcondresp Stops monitoring a condition that has one or more linked 
responses. 

9.4.2  Information about measurement and sampling
The RMC subsystem and its resource managers are controlled by the System 
Resource Controller (SRC). The basic flow in RMC for monitoring is that 
resource managers provide values for dynamic attributes, which are dynamic 
properties of resources. Resource managers obtain this information from a 
variety of sources, depending on the resource. RMC “aware” applications then 
register for events, and specify conditions for dynamic attributes for which they 
want to receive events (event expression/condition). Whenever this condition is 
true, an event notification is returned to the application (response) and the event 
expression is disabled until a rearm1 expression is true.

Comparing RMC with HAEM
High Availability Event Management (HAEM) is another facility of monitoring and 
controlling system resource that used by old version of RSCT. Now, all of its 
basic functions have been replaced by RMC equivalents. For instance, 
HACMP/ES Version 5.2 is mostly implemented by using RMC facilities and it is 
different from traditional way of its development which is based on HAEM 
infrastructure.

When you compare RMC with HAEM, you can find many similarities. Dynamic 
attributes are the equivalent of resource variables in Event Management. A 
resource manager in RMC is the equivalent of a resource monitor in HAEM (with 
respect to monitoring). The overhead in RMC should be about the same as in 
Event Management with respect to monitoring and event generation. The RMC 
subsystem acts as a broker between the client processes that use it and the 
resource manager processes that control resources.

Refer to Event Management Programming Guide and Reference, SA22-7354, for 
more information about HAEM.

1  The rearm expression is commonly the inverse of the event expression (for example, a dynamic attribute is on or off). It
can also be used with the event expression to define an upper and lower boundary for a condition of interest.
560 AIX 5L Practical Performance Tools and Tuning Guide



Abstractions used in RMC
In order to provide consistent monitoring and controlling interfaces of system 
resources, RMC maintains some abstractions that will provides more concrete 
logical infrastructures. In the performance monitoring perspective, we need to 
understand some of those abstractions and relationship between them. 

Some important abstractions are listed in following paragraph

Physical/Logical device 
This means actually devices which we encounter in 
everyday life, such as filesystem, paging device, CPU, 
memory and so on. Most of important system devices are 
predefined as the RMC resource.

Resource The fundamental concept of RMC’s architecture. It is 
mapped to an instance of a physical or logical devices 
that provides services to some other component of the 
system.

Resource class A set of resources of the same type. For example, the 
resource group IBM.PagingSpace contains resources that 
indicates physical entity “/dev/hd6” and “/dev/paging00”

Resource manager A daemon process that provides the interface between 
RMC and actual physical or logical entities. This also 
trigger registered response action when specified 
condition is met.
 Chapter 9. Miscellaneous tools 561



Figure 9-3   RMC diagram

Figure 9-3 illustrates how RMC works when it monitors a specific device. In this 
case, “/dev/hd6” and “/dev/paging00” or system paging devices are physical 
entities to be monitored. These entities are mapped to the RMC resources (the 
instance of IBM.PagingSpace resource class). Between physical devices and 
resource, resource manager exists and is responsible for defining and mapping 
those two abstractions. The resource manager IBM.HostRM is also responsible 
for other important resource classes such as IBM.PhysicalVolume, 
IBM.Processor and so on. Resource managers running on the system are 
registered in the form of the SRC subsystem. Of course, IBM.HostRM is one of 
those. Therefore, the status of the resource manager can be monitored by lssrc 
-s IBM.HostRM command.

In order to gather performance data, the IBM.HostRM takes advantage of the 
calls of perfstat library (/usr/lib/libperfstat.h) which is very relevant to general 
performance monitoring commands, such as vmstat, iostat and topas. For 
other basic system information, general commands and calls are used as well. 
Then RMC commands like lsrsrc use RSCT libraries (/usr/sbin/rsct/lib/libct_*) 
and retrieve information gathered by resource managers.

monitored with lsps -a
(traditional, using CLI)

added with "mkps"

paging00

hd6

Physical Device

IBM.HostRM 
(daemon)

IBM.EthernetDevice
IBM.FDDIDevice
IBM.Host
IBM.HostPublic
IBM.PagingDevice
IBM.PhysicalVolume
IBM.Processor
IBM.Program
IBM.TokenRingDevice

IBM.PagingDevice

resource 1:
  Name             = "/dev/hd6"
  Size             = 524288
  ActivePeerDomain = ""
  NodeNameList     = {"p630n06"}
resource 2:
  Name             = "/dev/paging00"
  Size             = 655360
  ActivePeerDomain = ""
  NodeNameList     = {"p630n06"}

lsrsrc -Ap IBM.PagingDevice
ctrmc 

(daemon)
IBM.WLMRM
IBM.DRM
IBM.ConfigRM
IBM.ERRM
IBM.AuditRM
IBM.FSRM
IBM.HostRM
IBM.SensorRM
IBM.LPRM
IBM.ServiceRM
IBM.CSMAgentRM

IBM.Host

IBM.FDDIDevice

IBM.EthernetDevice

libperfstat.a

lssrc -g rsct_rm
562 AIX 5L Practical Performance Tools and Tuning Guide



Most of the attributes we can expect from the certain system device are 
predefined in resource classes and supported by RMC. For instance, you can 
see the status of paging devices by issuing lsrsrc -Ad IBM.PagingDevice. This 
result should be same as the execution result of lsps -a.

Here, we have a detailed explanation on abstractions mentioned so far.

Resource managers
A resource manager is a stand-alone daemon. The resource manager contains 
definitions of all resource classes that the resource manager manages. 

You can list resource managers in your system by using lssrc -g rsct_rm 
command.The following resource managers are provided with the RMC fileset:

IBM.AuditRM The Audit Log resource manager (AuditRM) provides a 
system-wide facility for recording information about the 
system’s operation, which is particularly useful for tracking 
subsystems running in the background. 

IBM.ERRM The Event Response resource manager (ERRM) provides 
the ability to take actions in response to conditions 
occurring on the system. 

IBM.FSRM The File System resource manager (FSRM) monitors file 
systems. 

IBM.HostRM The host resource manager (HostRM) monitors resources 
related to an individual machine. The types of values that 
are provided relate to the load (processes, paging space, 
and memory usage) and status of the operating system. It 
also monitors program activity from initiation until 
termination.

Beside the basic resource managers, you can also add customized resource 
managers for the specific needs of applications. For example, a resource 
manager IBM.DMSRM will be added to the system when you install CSM. 

Resource classes
A resource manager is a process that maps resource and resource-class 
abstractions into calls and commands for one or more specific types of 
resources. A resource class definition includes a description of all attributes, 
actions, and other characteristics of a resource class. Resource classes can be 
seen by “lsrsrc” command and each resource classes is under control of a 
certain resource manager. The following list describes resource manager and its 
resource classes:

� Audit Log resource manager (IBM.AuditLog)
 Chapter 9. Miscellaneous tools 563



– IBM.AuditRM
– IBM.AuditLogTemplate

� Configuration resource manager (IBM.ConfigRM)

– IBM.NetworkInterface
– IBM.ServiceEvent
– IBM.ManagementServer
– IBM.HostPublic
– IBM.DRM

� File System resource manager (IBM.FSRM)

– IBM.FileSystem 

� Host resource manager IBM.HostRM

– IBM.ATMDevice
– IBM.EthernetDevice 
– IBM.FDDIDevice 
– IBM.Host            
– IBM.PagingDevice    
– IBM.PhysicalVolume
– IBM.Processor       
– IBM.Program         
– IBM.TokenRingDevice 

� Event Response resource manager (IBM.ERRM)

– IBM.Association
– IBM.Condition
– IBM.EventResponse 

When any physical changes of the system occur (addition or removal of a 
physical device), it may happen that RMC will not reflect these changes 
automatically. An easy way to reflect this to the RMC resource class is to issue 
the refrsrc command with proper resource manager. For instance, if an 
additional ethernet adapter is added by hot-plug facility of the PCI I/O slot, this 
cannot be listed immediately by lsrsrc IBM.EthernetDevice command. To 
make this device visible from RMC and have the RMC controlling the device, you 
need to run the command refrsrc IBM.HostRM.

The resource class IBM.Host defines a number of dynamic attributes containing 
kernel statistics. There are more kernel stats available than what are currently 
defined as dynamic attributes. The IBM.Program resource class enables an 
application to obtain events related to running programs, such as process death 
or rebirth. To find out more about the definition of a class, see “Examining 
resource classes” on page 565.
564 AIX 5L Practical Performance Tools and Tuning Guide



9.4.3  Verifying RMC facilities
We are going to see how to verify the status of various RMC objects. SRC 
commands and RMC commands will be used to verify and control the status of 
each object.

Verifying that the RMC is active
To verify that the RMC daemons and are active, run the lssrc command as 
shown in Example 9-20.

Example 9-20   Using lssrc to verify RMC daemon

# lssrc -g rsct
Subsystem         Group            PID          Status
 ctrmc            rsct             18330        active
 ctcas            rsct             22188        active

The output shows that RMC (ctrmc) is active as well as ctcas is running.

Normally the ctrmc subsystem will be started by init because the installation 
procedure will create the following entry in /etc/inittab:

ctrmc:2:once:/usr/bin/startsrc -s ctrmc > /dev/console 2>&1

The RMC command rmcctrl controls the operation of the RMC subsystem and 
the RSCT resource managers. It is not normally run from the command line, but 
it can be used in some diagnostic environments. For example, it can be used to 
add, start, stop, or delete an RMC subsystem.

Verifying the status of resource managers
To verify resource managers are active, run the lssrc command as shown in 
Example 9-21.

Example 9-21   Using lssrc to see resource manager status

# lssrc -g rsct_rm
Subsystem         Group            PID          Status
 IBM.ERRM         rsct_rm          23736        active
 IBM.CSMAgentRM   rsct_rm          22966        active
 IBM.ServiceRM    rsct_rm          21428        active
 IBM.AuditRM      rsct_rm          19102        active
 IBM.HostRM       rsct_rm          19380        active
 IBM.DRM          rsct_rm          24004        active

Examining resource classes
By using lsrsrc without any flags, it will show all defined resource classes, as 
shown in Example 9-22 on page 566.
 Chapter 9. Miscellaneous tools 565



Example 9-22   Defined resource classes

# lsrsrc            
class_name                                      
"IBM.Association"                               
"IBM.ATMDevice"                                 
"IBM.AuditLog"                                  
"IBM.AuditLogTemplate"                          
"IBM.Condition"                                 
"IBM.EthernetDevice"                            
"IBM.EventResponse"                             
"IBM.FDDIDevice"                                
"IBM.Host"                                      
"IBM.FileSystem"                                
"IBM.PagingDevice"                              
"IBM.PhysicalVolume"                            
"IBM.Processor"                                 
"IBM.Program"                                   
"IBM.TokenRingDevice" 
"IBM.Sfp"
"IBM.ServiceEvent"
"IBM.ManagementServer"
"IBM.NetworkInterface"
"IBM.HostPublic"
"IBM.DRM"
"IBM.WLM"

Examine resources and their attributes
The lsrsrc command enables you to verify resources and their attributes. You 
can combine some flags to examine each of classes in more detail. Dynamic and 
persistent attributes are defined in the resource classes, and these can be seen 
for each of the resources. 

Persistent attributes define the characteristics of the resource, and they are not 
dynamically changed by the system. Example of persistent attributes are Device 
Name, IP Address, and so on. 

When we use the -ap (default) flags to the lsrsrc command, it will only show the 
persistent attributes defined for the specified class. Example 9-23 shows the 
persistent attributes for the IBM.Host resource class.

Example 9-23   Using lsrsrc with the -ap flags

# lsrsrc -ap IBM.Host
Resource Persistent Attributes for: IBM.Host
resource 1:
        Name                = "lpar05"
        NodeNameList        = {"lpar05"}
566 AIX 5L Practical Performance Tools and Tuning Guide



        NumProcessors       = 16
        RealMemSize         = 8589897728
        OSName              = "AIX"
        KernelVersion       = "5.2"
        DistributionName    = "IBM"
        DistributionVersion = "5.2"
        Architecture        = "ppc"

Dynamic attributes reflect internal states or performance variables of resources 
and resource classes. For example, all the file system resources have dynamic 
attributes such as, operational state, %total used, % inode used, and so on.

To verify the dynamic attributes, use the -ad flags with the lsrsrc command, as 
shown in Example 9-24. Note that we get the current value of the attribute as 
well2.

Example 9-24   Using lsrsrc with the -ad flags

# lsrsrc -ad IBM.Host
Resource Dynamic Attributes for: IBM.Host
resource 1:
        ActiveMgtScopes     = 1
        UpTime              = 535139
        NumUsers            = 8
        LoadAverage         = {490103,473272,470732}
        PctRealMemActive    = 70
        VMActivePageCount   = 1469482
        KMemSizeOther       = 151200
        KMemSizeStreams     = 11776
        KMemSizeMblk        = 65920
        KMemSizeOtherIP     = 4128
        KMemSizeProtcb      = 320
        KMemSizeSock        = 2144
        KMemSizeMbuf        = 2360320
        KMemNumOther        = 24
        KMemNumStreams      = 148
        KMemNumMblk         = 115
        KMemNumOtherIP      = 35
        KMemNumProtcb       = 2
        KMemNumSock         = 6
        KMemNumMbuf         = 2052
        KMemFailOtherRate   = 0
        KMemFailStreamsRate = 0
        KMemFailMblkRate    = 0
        KMemFailOtherIPRate = 0
        KMemFailProtcbRate  = 0

2  Because some of the dynamic attributes are rates, which require two values obtained over a time interval, it takes a few
seconds to execute the lsrsrc command.
 Chapter 9. Miscellaneous tools 567



        KMemFailSockRate    = 0
        KMemFailMbufRate    = 0
        KMemReqOtherRate    = 0
        KMemReqStreamsRate  = 0
        KMemReqMblkRate     = 0
        KMemReqOtherIPRate  = 0
        KMemReqProtcbRate   = 0
        KMemReqSockRate     = 0
        KMemReqMbufRate     = 0
        VMPgSpOutRate       = 0
        VMPgSpInRate        = 1
        VMPgFaultRate       = 3
        VMPgOutRate         = 0
        VMPgInRate          = 1
        RealMemFramesFree   = 430009
        PctRealMemPinned    = 6
        PctRealMemFree      = 20
        PctTotalTimeKernel  = 0
        PctTotalTimeUser    = 25.2053388090349
        PctTotalTimeWait    = 0
        PctTotalTimeIdle    = 74.7946611909651
        PctTotalPgSpFree    = 56.6489219665527
        PctTotalPgSpUsed    = 43.3510780334473
        TotalPgSpFree       = 594007
        TotalPgSpSize       = 1048576
        ProcSwapQueue       = 4.37159006295268
        ProcRunQueue        = 2.67393331721446

Some classes have a different layout. To analyze the class structure, use the 
lsrsrcdef command, as shown in Example 9-25 (we have used for this example 
the IBM.PhysicalVolume resource class).

Example 9-25   Using lsrsrcdef

# lsrsrcdef IBM.PhysicalVolume
Resource Persistent Attribute Definitions for: IBM.PhysicalVolume
attribute 1:
        program_name  = "Name"
        display_name  = ""
        group_name    = ""
        properties    = {"public","read_only","selectable","reqd_for_define"}
        description   = ""
        attribute_id  = 0
        group_id      = 0
        data_type     = "char_ptr"
        variety_list  = {[1,1]}
        variety_count = 1
        default_value = ""
attribute 2:
568 AIX 5L Practical Performance Tools and Tuning Guide



        program_name  = "PVId"
        display_name  = ""
        group_name    = ""
        properties    = {"public","inval_for_define","read_only","selectable"}
        description   = ""
        attribute_id  = 4
        group_id      = 0
        data_type     = "binary_ptr"
        variety_list  = {[1,1]}
        variety_count = 1
        default_value = ""
attribute 3:
        program_name  = "NodeNameList"
        display_name  = ""
        group_name    = ""
        properties    = {"option_for_define","public","read_only","selectable"}
        description   = ""
        attribute_id  = 2147483647
        group_id      = 0
        data_type     = "char_ptr_array"
        variety_list  = {[1,1]}
        variety_count = 1
        default_value = {}

To examine only specified attributes (in Example 9-25 on page 568, attributes 1 
and 3), from the output in the previous example, we can use lsrsrc to show only 
what is defined for the Value and PVId attributes from IBM.PhysicalVolume (See 
Example 9-26).

Example 9-26   Using lsrsrc with the -x dAb flags

# lsrsrc -xdAb IBM.PhysicalVolume Name PVId
"hdisk1":"0x0021768a 0x4fe05e1f 0x00000000 0x00000000":
"hdisk0":"0x0021768a 0xabd8785a 0x00000000 0x00000000":
"hdisk7":"0x0021768a 0xca813afd 0x00000000 0x00000000":
"hdisk6":"0x00071542 0xe0f1cc17 0x00000000 0x00000000":
"hdisk5":"0x00071542 0xe0f18309 0x00000000 0x00000000":
"hdisk4":"0x0021768a 0x9378cb88 0x00000000 0x00000000":
"hdisk3":"0x00000000 0x035d72e7 0x00000000 0x00000000":
"hdisk2":"0x00050592 0x247553da 0x00000000 0x00000000":

By using the -x (no header), -d (delimiter separated output), and -ab (both 
persistent and dynamic attributes) the lsrsrc command displays the disk drives 
and their physical volume ID in our system. A similar output can be shown by 
using the -t flag as is in Example 9-27 on page 570, or the -xab flags in 
combination with -t. The -t flag is for formatting the command output in a tabular 
manner.
 Chapter 9. Miscellaneous tools 569



Example 9-27   Using lsrsrc with the -t flag

# lsrsrc  -t IBM.PhysicalVolume Name PVId
Resource Persistent Attributes for: IBM.PhysicalVolume
Name     PVId
"hdisk1" "0x0021768a 0x4fe05e1f 0x00000000 0x00000000"
"hdisk0" "0x0021768a 0xabd8785a 0x00000000 0x00000000"
"hdisk7" "0x0021768a 0xca813afd 0x00000000 0x00000000"
"hdisk6" "0x00071542 0xe0f1cc17 0x00000000 0x00000000"
"hdisk5" "0x00071542 0xe0f18309 0x00000000 0x00000000"
"hdisk4" "0x0021768a 0x9378cb88 0x00000000 0x00000000"
"hdisk3" "0x00000000 0x035d72e7 0x00000000 0x00000000"
"hdisk2" "0x00050592 0x247553da 0x00000000 0x00000000"

9.4.4  Examples using RMC
In this section, we will provide a specific case of system monitoring and how to 
utilize the RMC facilities. In this case, the PctFree attribute of one of the paging 
devices will be monitored by RMC. When this value reaches a level set by the 
user, execution of a response script will be triggered. Then the script will gather 
paging space related performance data. We use the command line interface, 
since this is also used for most of the performance monitoring and tuning tools. 
The GUI (Graphical User Interface) is explained in the redbook AIX 5L 
Differences Guide Version 5.3 Edition, SG24-5765.

To start using monitoring with RMC you have to:

1. Determine monitoring object: You need to decide what resource to monitor 
and the desired threshold(s).

2. Set monitoring guideline and response action: Establish the monitoring 
guideline and determine what action to be performed when the event occurs.

3. Writing an event response script: Create a script that will perform the desired 
action.

4. Creating a condition: Create an RMC condition that meets the monitoring 
requirements.

5. Creating a response to condition event: Create an RMC response for the 
action script(s).

6. Associating response with condition: Create an RMC association between the 
defined RMC condition and RMC response.

7. Activate monitoring for the condition

We constructed our example according to the steps we mentioned in the 
previous list. 
570 AIX 5L Practical Performance Tools and Tuning Guide



Determine the object to be monitored
In this example we are going to monitor system following paging spaces. 
Example 9-28 shows devices to be monitored in this case. 

Example 9-28   Listing all paging spaces by using lsps

[p630n06][/]> lsps -a
Page Space      Physical Volume   Volume Group    Size %Used Active  Auto  Type
paging00        hdisk0            rootvg        2560MB     1   yes    no    lv
hd6             hdisk0            rootvg        2560MB     1   yes   yes    lv

In Example 9-29, you can see the same device can be monitored using RMC.

Example 9-29   Listing all paging spaces by using RMC command

[p630n06][/]> lsrsrc -Ap  IBM.PagingDevice
Resource Persistent Attributes for IBM.PagingDevice
resource 1:
        Name             = "/dev/hd6"
        Size             = 655360
        ActivePeerDomain = ""
        NodeNameList     = {"p630n06"}
resource 2:
        Name             = "/dev/paging00"
        Size             = 655360
        ActivePeerDomain = ""
        NodeNameList     = {"p630n06"}

[p630n06][/]> lsrsrc -Ad IBM.PagingDevice
Resource Dynamic Attributes for IBM.PagingDevice
resource 1:
        OpState = 1
        PctFree = 99
resource 2:
        OpState = 1
        PctFree = 99

Set monitoring guideline and response action
We want to see each paging device’s usage by monitoring PctFree attribute of 
IBM.PagingDevice resource. We regard paging space usage more than 80% as 
serious situation and usage less than 50% as normal. The following table 
contains dynamic attributes of IBM.PagingDevice class and monitoring 
guidelines we want to define.
 Chapter 9. Miscellaneous tools 571



Table 9-8   monitoring devices and guidelines

We want a script to be executed, if usage of either “/dev/hd6” or “/dev/paging00” 
exceed the limit. The scripts will gather sufficient information to verify which 
process is responsible for the increasing the usage of the paging space. The 
result of this script will be stored in the certain location in the system and a mail 
with the same content will be sent to system administrator (root user).

Writing an event response script
The basic script in Example 9-30 is an example of how to gather top 10 paging 
consuming process and top 10 virtual memory consuming processes. It contains 
vmstat output as well. This also explains how to send an e-mail to the root user. 
The result will be mailed l to the root user when a condition occurs that triggers 
the activation of the event response script.

Example 9-30   An event response shell script example: pgsp_info.sh

#!/usr/bin/ksh

DT=`date +%H%M`
LOGFILE=/itso_files/pgsp_$DT.out
SVMON=/usr/bin/svmon
VMSTAT=/usr/bin/vmstat

EVENTTIME=$(perl -e 'use POSIX qw(strftime);print strftime("%Y-%m-%d 
%T",localtime('${ERRM_TIME%,*}') );')

exec >> /itso_files/pgsp_$DT.out
exec 2>1&

echo "        TIME OF EVENT : $EVENTTIME"
echo "        CONDITION     : $ERRM_COND_NAME"
echo "        SERVERITY     : $ERRM_COND_SEVERITY"
echo "        EVENT TYPE    : $ERRM_TYPE"
echo "        EXPRESSION    : $ERRM_EXPR"
echo "        RESOURCE NAME : $ERRM_RSRC_NAME"
echo "        RESOURCE CLASS: $ERRM_RSRC_CLASS_NAME"
echo "        DATA TYPE     : $ERRM_DATA_TYPE"
echo "        DATA VALUE    : $ERRM_VALUE"
echo ""
echo "# Top 10 paging space using processes"
$SVMON -Pg -t 1 |grep Pid ; $SVMON -Pg -t 10 |grep "N"

Device Dynamic
Attribute 

Event
Condition

Rearm
Condition

Response

/dev/hd6 PctFree 10% < 20% > Execution of script

/dev/paging00 PctFree 10% < 20% > Execution of script
572 AIX 5L Practical Performance Tools and Tuning Guide



echo ""
echo "# Top 10 virtual memory using processes"
$SVMON -P -t 1 |grep Pid ; $SVMON -P -t 10 |grep "N"

echo ""
echo "#vmstat output "
$VMSTAT 2 10

#Send execution result to root
cat $LOGFILE |mail -s "RSCT: $ERRM_COND_NAME $ERRM_COND_SEVERITY" root

An event response script will have the following environment variables set when it 
is started by RMC:

ERRM_COND_HANDLE The condition resource handle that caused the 
event, represented as a string of six hexadecimal 
integers that are separated by spaces.

ERRM_COND_NAME The name of the condition resource that caused 
the event. It is enclosed within double quotation 
marks.

ERRM_COND_SEVERITY The significance of the Condition resource that 
caused the event. For the severity attribute values 
of 0, 1, and 2, this environment variable has the 
following values; informational, warning, and 
critical. All other Condition resource severity 
attribute values are represented in this environment 
variable as a decimal string.

ERRM_COND_SEVERITYID The significance of the Condition resource that 
caused the event. For the severity attribute values of 
0, 1, and 2, this environment variable has the 
following values: informational, warning, and critical. 
All other Condition resource severity attribute values 
are represented in this environment variable as a 
decimal string.

ERRM_ER_HANDLE The event response resource handle for this event. 
It is represented as a string of six hexadecimal 
integers that are separated by spaces.

Note: The output is also appended to a debug file in log directory (in this case, 
/itso_files/) named pgsp_$DT.out. It can be helpful to use logfiles when 
developing event response scripts.
 Chapter 9. Miscellaneous tools 573



ERRM_ER_NAME The name of the event response resource that is 
executing this command. It is enclosed within 
double quotation marks.

ERRM_RSRC_HANDLE The resource handle of the resource whose state 
change caused the generation of this event. It is 
represented as a string of six hexadecimal integers 
that are separated by spaces.

ERRM_RSRC_NAME The name of the resource whose dynamic attribute 
changed to cause this event. It is enclosed within 
double quotation marks.

ERRM_RSRC_CLASS_NAME
The name of the resource class of the dynamic 
attribute that caused the event to occur. It is 
enclosed within double quotation marks.

ERRM_RSRC_CLASS_PNAME
The name of the resource class of the dynamic 
attribute (enclosed within double quotation marks) 
that caused the event to occur; set to the 
programmatic name of the class that caused the 
event to occur.

ERRM_TIME The time the event occurred written as a decimal 
string that represents the time since midnight 
January 1, 1970, in seconds, followed by a comma 
and the number of microseconds. 

ERRM_TYPE The type of event that occurred. The two possible 
values for this environment variable are event and 
rearm event. 

ERRM_TYPEID The type of event that occurred. The two possible 
values for this environment variable are event and 
rearm event.

ERRM_EXPR The expression that was evaluated that caused the 
generation of this event. This could be either the 
event or rearm expression, depending on the type 
of event that occurred. This can be determined by 
the value of ERRM_TYPE. 

ERRM_ATTR_NAME The programmatic name of the dynamic attribute 
used in the expression that caused this event to 
occur. A variable name is restricted to include only 
7-bit ASCII characters that are alphanumeric (a-z, 
A-Z, 0-9) and the underscore character (_). The 
name must begin with an alphabetic character.
574 AIX 5L Practical Performance Tools and Tuning Guide



ERRM_ATTR_PNAME The programmatic name of the dynamic attribute 
used in the expression that caused this event to 
occur. A variable name is restricted to include only 
7-bit ASCII characters that are alphanumeric (a-z, 
A-Z, 0-9) and the underscore character (_). The 
name must begin with an alphabetic character. 

ERRM_DATA_TYPE RMC ct_data_type_t of the dynamic attribute that 
changed to cause this event.

ERRM_VALUE The value of the dynamic attribute that caused the 
event to occur for all dynamic attributes except 
those with a data type of CT_NONE. 

ERRM_SD_DATA_TYPES The data type for each element within the 
structured data (SD) variable separated by 
commas. This environment variable is only defined 
when ERRM_DATA_TYPE is CT_SD_PTR.

The ERRM_TIME is a string with the current time in seconds. This must be 
converted into the current time in a more readable format. Example 9-31 shows 
how to use perl for the conversion.

Example 9-31   Using perl to convert ERRM_TIME

perl -e 'use POSIX qw(strftime);print strftime("%Y-%m-%d 
%T",localtime('${ERRM_TIME%,*}') );'

Creating a condition
A condition is needed for monitoring of a metric to be performed. To define a 
condition, use the mkcondition command. In Example 9-32, a condition is 
defined to use the IBM.PagingDevice resource manager.

Example 9-32   Using mkcondition command

mkcondition -r IBM.PagingDevice \
        -e "PctFree < 20" \
        -E "PctFree > 50" \
        -d "Paging space usage more than 80%" \
        -D "Paging space usage less than 50%" \
        -s 'Name=="/dev/hd6" || Name=="/dev/paging00"' \
        -V "Pgsp_state"

This example creates a condition that monitors the system paging device 
“/dev/hd6” and, when the evaluation of PctFree < 20 is true, it generates an 
event named "Pgsp state" and the monitoring stops. When the expression 
PctFree >50 becomes true, monitoring will restart. This technique is necessary 
to prevent an event from being generated repeatedly and indefinitely.
 Chapter 9. Miscellaneous tools 575



By default, conditions generate informational events. Because we did not specify 
anything else, the chcondition command can be used to change it to a critical 
condition.

chcondition -S c "Pgsp_state"

To check how the definition of the condition appears to RMC, use the 
lscondition command, as in Example 9-33.

Example 9-33   Using the lscondition command

[p630n06][/itso_files]> lscondition "Pgsp_state"
Displaying condition information:

condition 1:
        Name             = "Pgsp_state"
        MonitorStatus    = "Not monitored"
        ResourceClass    = "IBM.PagingDevice"
        EventExpression  = "PctFree < 20"
        EventDescription = "Paging space usage more than 80%"
        RearmExpression  = "PctFree > 50"
        RearmDescription = "Paging space usage less than 50%"
        SelectionString  = "Name==\"/dev/hd6\" || Name==\"/dev/paging00\""
        Severity         = "c"
        NodeNames        = {}
        MgtScope         = "l"

Creating a response to condition event
In order to perform an action when a condition is activated, a response is 
needed. In the following example we create a response that activates the script 
shown in Example 9-30 on page 572. We define our event response script to 
RMC:

mkresponse -n pgsp_resp -s /itso_files/pgsp_info.sh pgsp_resp_1

This event response has all stdout discarded (we did not specify the -o flag), will 
be active only when an event occurs (-e flag), and will be active all days and 
hours in the week (we did not specify otherwise with the -d and -t flags).

To check how the definition of our response looks to RMC, we can use the 
lsresponse command, as shown in Example 9-34.

Example 9-34   Using the lsresponse command

[p630n06]> lsresponse pgsp_resp
Displaying response information:

        ResponseName    = "pgsp_resp_1"
576 AIX 5L Practical Performance Tools and Tuning Guide



        Action          = "pgsp_resp"
        DaysOfWeek      = 1-7
        TimeOfDay       = 0000-2400
        ActionScript    = "/itso_files/pgsp_info.sh"
        ReturnCode      = 0
        CheckReturnCode = "n"
        EventType       = "a"
        StandardOut     = "n"
        EnvironmentVars = ""
        UndefRes        = "n"

Associating response with condition
Create an RMC association between the defined RMC condition and RMC 
response. To associate an event condition, such as our condition "_EVENT 
12345", with an event response, such as our response "rsct.trapevent", we 
use the mkcondresp command:

mkcondresp  "Pgsp_state" "pgsp_resp_1"

To check how the definition of our condition/response connection appears to 
RMC, we can use the lscondresp command, as in Example 9-35.

Example 9-35   Using lsresponse command

[p630n06][/itso_files]> lscondresp Pgsp_
Displaying condition with response information:

condition-response link 1:
        Condition = "Pgsp_state"
        Response  = "pgsp_resp_1"
        State     = "Not active"

Note that we only used the first part of the condition name (Pgsp_).

If we were to leave out the search expression for the lscondresp command, we 
would get a line view of all the condition/response connections that are defined 
on the system, as shown in Example 9-36.

Example 9-36   Using the lscondresp command

[p630n06][/itso_files]> lscondresp
Displaying condition with response information:
Condition        Response                   State
"Pgsp_state"     "pgsp_resp_1"              "Not active"
...(lines omitted)...
 Chapter 9. Miscellaneous tools 577



The previous example (Example 9-36 on page 577) shows the condition and the 
response as "Not active". The next step is to activate the monitoring of the 
condition and the response.

Activate monitoring for the condition
To activate monitoring of a condition, we use the startcondresp command. For 
our condition "Pgsp_state" we use the following command:

startcondresp "Pgsp_state"

After running the startcondresp command, the “Pgsp_state" condition with the 
"pgsp_resp_1" response will be monitored (Active), as shown in Example 9-37.

Example 9-37   Using the lscondresp command to verify monitoring state 

[p630n06][/itso_files]> lscondresp
Displaying condition with response information:
Condition        Response                   State
"Pgsp_state"     "pgsp_resp_1"              "Active"
...(lines omitted)...

When we check the condition again with the lscondition command we get the 
ouput shown in Example 9-38, which now indicates that the condition is 
"Monitored".

Example 9-38   Using the lscondition command

[p630n06][/]> lscondition Pgsp_
Displaying condition information:

condition 1:
        Name             = "Pgsp_state"
        MonitorStatus    = "Monitored and event monitored"
        ResourceClass    = "IBM.PagingDevice"
        EventExpression  = "PctFree < 20"
        EventDescription = "Paging space usage more than 80%"
        RearmExpression  = "PctFree > 50"
        RearmDescription = "Paging space usage less than 50%"
        SelectionString  = "Name==\"/dev/hd6\" || Name==\"/dev/paging00\""
        Severity         = "i"
        NodeNames        = {}
        MgtScope         = "l"

The startcondresp command can also be used to create a condition-response 
association, such as associating the condition "Pgsp_state", with an event 
response, such as "rsct.trapevent":

startcondresp  "Pgsp_state" "pgsp_resp_1"
578 AIX 5L Practical Performance Tools and Tuning Guide



Note, however, that this creates a condition-response association, and also 
activates it (see Example 9-39, and refer to “Associating response with condition” 
on page 577).

Example 9-39   Using the startcondresp and lscondresp commands

[p630n06][/itso_files]> startcondresp  "Pgsp_state" "pgsp_resp_1"
[p630n06][/itso_files]> lscondresp Pgsp_
Displaying condition with response information:

condition-response link 1:
        Condition = "Pgsp_state"
        Response  = "pgsp_resp_1"
        State     = "Not active"

How the condition/response event generation works
When the event-generating expressions for the “Pgsp_state” condition becomes 
true, our shell script generates an e-mail message (see Example 9-40).

Example 9-40   Sample monitoring output

[p630n06]> mail 
mbox: A file or directory in the path name does not exist.
[p630n06][/itso_files]> mail -f /mbox
Mail [5.2 UCB] [AIX 5.X]  Type ? for help.
"/mbox": 2messages
>   1 root              Wed Oct 13 15:41  63/3414 "RSCT: Pgsp_state 
Information"
    2 root              Wed Oct 13 15:41  63/3417 "RSCT: Pgsp_state 
Information"
? 1
Message  1:
From root Wed Oct 13 15:41:57 2004
Date: Wed, 13 Oct 2004 15:41:18 -0500
From: root
To: root
Subject: RSCT: Pgsp_state Informational

        TIME OF EVENT : 2004-10-13 15:39:38
        CONDITION     : Pgsp_state
        SERVERITY     : Informational
        EVENT TYPE    : Event
        EXPRESSION    : PctFree < 20
        RESOURCE NAME : /dev/paging00
        RESOURCE CLASS: Paging Device
        DATA TYPE     : CT_INT64
        DATA VALUE    : 79

# Top 10 paging space using processes
 Chapter 9. Miscellaneous tools 579



     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  721148 elephant       1781946     4591   159003  1939918      Y     N     N
  241740 java             18545     4592    15630    30436      N     Y     N
  352468 java             18087     4596     8781    25327      N     Y     N
  401584 java              9701     4585     7200    19445      N     Y     N
  266260 Xvnc             11620     4572     5658    18671      N     N     N
  176224 snmpmibd64        5820     4591     4677    10676      Y     N     N
  110758 shlap64           5863     4591     4656    10662      Y     N     N
  487580 svmon_back.64     5930     4591     4537    10616      Y     N     N
  671988 nmon64            6216     4591     4537    10898      Y     N     N
  229500 rpc.statd         9087     4575     4006    15873      N     Y     N

# Top 10 virtual memory using processes
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  721148 elephant       1781952     4591   159748  1940704      Y     N     N
  241740 java             18545     4592    15630    30436      N     Y     N
  352468 java             18087     4596     8781    25327      N     Y     N
  266260 Xvnc             11620     4572     5658    18671      N     N     N
  454694 IBM.ERrmd         9818     4585     3806    16219      N     Y     N
  401584 java              9701     4585     7200    19445      N     Y     N
  606408 lslv              9463     4573     3371    15586      N     N     N
  376908 Xvnc              9455     4572     3766    15680      N     N     N
  246000 Xvnc              9449     4572     3776    15680      N     N     N
  635000 sendmail          9419     4572     3371    15387      N     N     N

#vmstat output

System configuration: lcpu=4 mem=8192MB

kthr    memory              page              faults        cpu
----- ----------- ------------------------ ------------ -----------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa
 1  1 2291621    96   0   1 450 535  550   0 204 3973 4322 25  1 30 44
 1  2 2292513     0   0   1 398 307  322   0 225 2905 4254 30  1 25 44
 1  2 2294039     3   0   4 769 816  832   0 222 4792 6362 25  2 32 42
 1  1 2295290     2   0   2 628 506  508   0 237 4743 5872 25  2 49 24
 1  1 2296048     3   0   3 382 200  204   0 206 3787 3994 25  1 45 29
 1  1 2297078     0   0   1 517 332  333   0 222 4203 5121 25  1 38 36
 1  3 2300218    15   0   8 1587 1642 1657   0 264 7443 14217 27  3 27 42
 1  5 2301388     2   0   3 583 769  769   0 178 2624 5699 25  1  4 69
 1  5 2302324    98   0   6 520 465  474   0 191 2158 4614 25  1  0 74
 1  5 2302917    19   0   1 259 361  365   0 179 1474 3042 25  1  0 74

?

With this information, you can find which process caused paging space problem. 
In this case, the process elephant (with process ID 721148) is the most 
suspicious one. This process is consuming a large amount of virtual memory and 
580 AIX 5L Practical Performance Tools and Tuning Guide



paging space at the same time. This result also provides additional information, 
like needed active virtual memory (avm), and the amount of freelist the system is 
currently maintaining. Note that our event response script also appended the 
output to a file in the /itso_files directory named pgsp_$DT.out.

Stopping the monitoring of a condition
To stop monitoring a condition, use the stopcondresp command (here applied to 
our sample condition/response monitoring event for the paging devices):

stopcondresp "Pgsp_state"

To verify that the monitoring has stopped, use the lscondresp command, as in 
Example 9-41.

Example 9-41   Using the lscondresp command

[p630n06][/itso_files]> lscondresp
Displaying condition with response information:
Condition        Response                   State
"Pgsp_state"     "pgsp_resp_1"              "Not active"
...(lines omitted)...

Removing a response definition
Since RMC uses a hierarchical structure, whenever you want to remove an 
object (in this case, a response definition), you must remove also any 
dependencies, relations and associations. 

To remove a response definition, you must first remove any condition-response 
associations for the response definition. This can be accomplished by using the -f 
flag with the rmresponse command:

rmresponse -f pgsp_resp_1

Thus, you have to perform the same operation following these steps:

� First, remove the association of the response from the condition (in our 
example, between the "Pgsp_state" condition and “pgsp_resp_1” response) 
as shown below:

rmcondresp "Pgsp_state" “pgsp_resp_1”

� Next, the response definition can be removed:

rmresponse pgsp_resp_1
 Chapter 9. Miscellaneous tools 581



Removing a condition
To remove a condition, it is first necessary to remove any condition-response 
associations for the condition. This can be accomplished by using the -f flag with 
the rmcondition command:

rmcondition -f "Pgsp_state"

You can also perform the same operation in two steps, by first disassociating the 
response from the condition (in our example, between the "Pgsp_state" 
condition and “pgsp_state_1” response):

rmcondresp "Pgsp_state" “pgsp_resp_1”

And second, by removing the condition:

rmcondition "Pgsp_state
582 AIX 5L Practical Performance Tools and Tuning Guide



Chapter 10. Performance monitoring 
APIs

In this chapter we describe how to use the different Application Programming 
Interfaces (API) that are available. It contains information about how to use the 
Perfstat API to develop customized performance monitoring applications. We 
also describe the basic use of the System Performance Measurement Interface 
(SPMI) API and the Performance Monitor (PM) API. Finally, we show some 
examples of using other performance-monitoring subroutines that are available 
on AIX.

This chapter contains the following sections:

� “The performance status (Perfstat) API” on page 584
� “System Performance Measurement Interface” on page 620
� “Performance Monitor API” on page 637
� “Miscellaneous performance monitoring subroutines” on page 644

10
© Copyright IBM Corp. 2005. All rights reserved. 583



10.1  The performance status (Perfstat) API
The Perfstat API is a collection of C programming language subroutines that 
execute in user space and extract data from the perfstat kernel extension (kex) to 
obtain statistics. This API is available in AIX 5L.

The Perstat API enabled the developers to write a performance monitoring 
application with simple and consistent interface. Before Perfstat API, developers 
were supposed to manipulate various structures and calls in their own code. 
Without perfstat API, you were supposed to manipulate kernel memory interface 
(“/dev/kmem”) directly. This also required that you have a good understanding 
about kernel data structures and related subroutines.

Now, with Perfstat API, all of these functions are integrated into one interface 
(Perfstat kernel extension - kex) which makes calls on behalf of user application. 
This kex contains ODM calls as well. For instance, with just a few subroutines in 
perfstat API, such as perfstat_disk() and perfstat_cpu_total(), you can simply 
write an application which is similar to iostat, and you just need to include one 
header file (perfstat.h) in your program.

On the contrast, without Perfstat API, you need to play with a lot of subroutines 
and structures, such as iostat.h, sysinfo,h, odm.h. Figure 10-1 on page 585 
shows a comparison between traditional ways of monitoring application 
development and the newly introduced development method using the perfstat 
library.

The Perfstat API is both a 32-bit and a 64-bit API, and is thread safe, very simple 
to use, and does not require root security level authentication. It is the preferred 
way to develop monitoring applications, and the kex is also used by most system 
monitoring commands.

The Perfstat API subroutines reside in the libperfstat.a library in the /usr/lib 
directory (or, in /lib, which is a symbolic link to /usr/lib), and is part of the 
bos.perf.libperfstat fileset, which is installable from the AIX base installation 
media and requires the bos.perf.perfstat fileset as prerequisite.

The /usr/include/libperfstat.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 

Note: The API is under development, and will have additional API subroutines 
and data structures in future releases.

The internal perfstat kex access mechanisms are not publicly available. Only 
the perfstat Library API will be maintained for public use.
584 AIX 5L Practical Performance Tools and Tuning Guide



include file is also part of the bos.perf.libperfstat fileset. Sample source code is 
also available and resides in the /usr/samples/libperfstat directory.

The documentation for the subroutines can be found in the AIX 5L Version 5.3 
Technical Reference: Base Operating System and Extensions, Volume 1, 
SC23-4913. 

Figure 10-1   Comparison traditional monitoring application with application using perfstat

For comparison, the traditional way for performance monitoring coded inside 
applications is presented in Figure 10-2 on page 586.

ODM:
CuAt, CuDv

Kernel

/usr/lib/perf/perfstat
(bos.perf.libperfstat)

(kernel extension)

"/dev/kmem"

Monitoring
applications

perfstat_disk()
perfstat_cpu()

using
/usr/lib/libperfstat.h

Kernel space                         User space

Using libperfstat
(AIX 5L)
 Chapter 10. Performance monitoring APIs 585



Figure 10-2   Traditional application monitoring (without libperfstat)

10.1.1  Compiling and linking
After writing a C program that uses the Perfstat API and includes the libperfstat.h 
header file, run cc on it specifying that you want to link to the libperfstat.a library, 
as shown in Example 10-1.

Example 10-1   Compile and link with libperfstat.a

# cc -lperfstat -o perfstat_program perfstat_program.c

This creates the perfstat_program file from the perfstat_program.c source 
program, linking it with the libperfstat.a library. Then perfstat_program can be 
run as a normal command.

10.1.2  Changing history of perfstat API
Ever since perfstat API was introduced in AIX 5L, the new functions and 
performance monitoring fields are added to the API, as the version of AIX 

ODM:
CuAt, CuDv

Kernel
"/dev/kmem"

Monitoring
applications

knlist()
getprocs()
open()
lseek()

using
sysinfo.h
uminfo.h
iostat.h

procinfo.h

Kernel space                         User space

Traditional Appl. Monitoring
(Pre- AIX 5L) odm_initialize()

odm_get_list()
odm_terminal()

Application using odm.h
586 AIX 5L Practical Performance Tools and Tuning Guide



evolves. For instance, in AIX 5L V5.2, the perfstat_diskadapter() call has been 
added to perfstat API, and this enables users to retrieve performance statistics 
about disk adapters (such as SCSI and FC adapters). Any program using call 
can be run on AIX 5.2 or higher, but you can’t run this on AIX 5.1. This means 
you have to be careful with the backward compatibility if you want to backport 
your applications to earlier operating system versions.

The Figure 10-3 is explains the relationship between perfstat call and each 
versions of AIX.

For complete specifications for changing history of perfstat API subroutines and 
structures, refer to AIX 5L Version 5.3 Performance Tools Guide and Reference, 
SC23-4906. The header file “/usr/include/libperfstat.h/” of each version of AIX 
provides detailed information about the calls supported.

Figure 10-3   Additions have been made to the perfstat APIs 

10.1.3  Subroutines
The Perfstat API subroutines cover various aspects of the monitored system, 
such as CPU, memory etc. The following is a classification of these subroutines.

perfstat_cpu()
perfstat_cpu_total()
perfstat_memory_total()
perfstat_disk()
perfstat_disk_total()
perfstat_netinterface()
perfstat_netinterface_total()

perfstat_diskadapter()
perfstat_diskpath()
perfstat_netbuffer()
perfstat_pagingspace()
perfstat_reset()

perfstat_partition_total()
perfstat_cpu_total{

minfaults;
majfaults;
puser;
psys;
pidle;
....
}

perfstat_cpu_total{
puser;
psys;
pidle;
puart;
tecrintrs;
....
}

AIX 5.3

AIX 5.2

AIX 5.1

C
om

patibility
 Chapter 10. Performance monitoring APIs 587



Subroutine Types and classification
The following subroutines (components of Perfstat API) are categorized into 
CPU, disk, network, memory, disk, and other areas:

CPU related subroutines
perfstat_cpu The perfstat_cpu subroutine retrieves one or more 

individual CPU usage statistics. The same function 
can be used to retrieve the number of available sets 
of CPU statistics.

perfstat_cpu_total The perfstat_cpu_total subroutine returns global 
CPU usage statistics.

Memory related subroutines
perfstat_memory_total The perfstat_memory_total subroutine returns 

global memory usage statistics

perfstat_pagingspace The pefstat_pagingspace subroutine retrieves 
individual paging space usage. The same function 
can be used to retrieve the number of available sets 
of paging space statistics

Disk related subroutines
perfstat_disk The perfstat_disk subroutine retrieves one or more 

individual disk usage statistics. The same function 
can also be used to retrieve the number of available 
sets of disk statistics. 

perfstat_disk_total The perfstat_disk_total subroutine returns global 
disk usage statistics.

perfstat_diskadapter The perfstat_diskadapter subroutine retrieves one 
or more individual diskadapter usage statistics. The 
same function can also be used to retrieve the 
number of available sets of diskadapter statistics.

perfstat_diskpath The perfstat_diskpath subroutine retrieves one or 
more individual diskpath usage statistics. The 
same function can also be used to retrieve the 
number of available sets of diskpath statistics. This 
subroutine can be used for mpio environment

Network related subroutines
perfstat_netinterface The perfstat_netinterface subroutine retrieves one 

or more individual network interface usage 
statistics. The same function can also be used to 
588 AIX 5L Practical Performance Tools and Tuning Guide



retrieve the number of available sets of network 
interface statistics.

perfstat_netinterface_total The perfstat_netinterface_total subroutine returns 
global network interface usage statistics.

perfstat_netbuffer The perfstat_netbuffer subroutine retrieves the 
individual network buffer allocation usage statistics. 
The same function can also be used to retrieve the 
number of available sets of network buffer 
allocation statistics.

perfstat_protocol The perfstat_netbuffer subroutine retrieves the 
individual network buffer allocation usage statistics. 
The same function can also be used to retrieve the 
number of available sets of network buffer 
allocation statistics

Other subroutines
perfstat_partition_total The pefstat_partition_total subroutine returns 

global partition usage statistics

perfstat_reset The perfstat_reset subroutine is called to clear the 
dictionary whenever the machine configuration has 
changed

The perfstat API only gives raw data. The Perfstat API enables you to acquire the 
data quite easily as can be seen in the following sample programs. Only 
rudimentary error checking is done in the example program. This is done for 
clarity of reading purposes only. Another sample program that calls all the APIs 
are provided in Example: A-2, “perfstat_dude.c program” on page 670.

Global and component-specific subroutine 
Now, we are going to consider another classification of Perfstat subroutines. 
Subroutines can be classified into two major categories, one contains the global 
subroutines that reports a values about a set of components, and the other 
contains component-specific subroutines that reports a values about individual 
components on a system.

Note: The Perfstat API subroutines return raw data. To create output similar to 
what is reported by commands such as iostat and vmstat, take a snapshot, 
wait for a specified interval of time, then take another snapshot. After this, 
deduct the first obtained value from the second to get the proper delta for the 
occurrence during the specified interval time. The libperfstat.h file should be 
reviewed to identify the units of each metric.
 Chapter 10. Performance monitoring APIs 589



Global subroutines
Global subroutines are in the identical from and take the similar types of 
arguments. Example 10-2 shows the basic format of this type of subroutine.

Example 10-2   Global subroutine prototype

int 
perfstat_comp_total (perfstat_id_t, perfstat_comp_total_t, sizeof_struct, 
desired_number)

This subroutine retrieves statistics related to a set of components. In the returned 
structure only one set of data will be provided. Memory, disk, netinterface and 
partition are the available components for global subroutines. Subroutines belong 
to this categories are:

� perfstat_memory_total ()
� perfstat_disk_total () 
� perfstat_netinterface_total ()
� perfstat_partition_total ()

Component-specific subroutines
Component-specific subroutines are in the identical form and take the similar 
types of arguments. Example 10-3 shows the basic format of this type of 
subroutine. 

Example 10-3   Component-specific subroutine prototype

int 
perfstat_comp (perfstat_id_t, perfstat_comp_total_t, sizeof_struct, 
desired_number)

The subroutine will retrieve individual component metrics. In returned structure 
multiple set of metric will be provided. CPU, disk, diskpath, diskadapter, 
netinterface, protocol, netbuffer, pagingspace can be the component for 
component-specific subroutines. Subroutines belong to this categories are:

� pefstat_cpu ()
� perfstat_disk ()
� perfstat_diskpath ()
� perfstat_diskadapter ()
� perfstat_netinterface ()
� perfstat_protocol ()
� perfstat_netbuffer ()
� perfstat_pagingspace ()
590 AIX 5L Practical Performance Tools and Tuning Guide



Subroutine specification and examples
In this section, we will cover detailed specifications for each subroutines and 
provide simple exemplary codes. We will cover most of subroutines provided by 
perfstat API, some of missing subroutines will be just listed in later section.

perfstat_cpu
The perfstat_cpu subroutine retrieves one or more individual CPU usage 
statistics. The same function can be used to retrieve the number of available sets 
of CPU statistics.

perfstat_id_t * name;
perfstat_cpu_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_cpu (name, userbuff, sizeof_struct, desired_number)

Supported version
This subroutine is supported in AIX 5.1 and later versions.

Parameters
name Contains a name identifying the first CPU for which 

statistics are desired. "" is used to indicate the first 
available CPU. For example: cpu0, cpu1, and so on.

userbuff Points to the memory area that is to be filled with one or 
more perfstat_cpu_t structures.

sizeof_struct Specifies the size of the perfstat_cpu_t structure: 
sizeof(perfstat_cpu_t).

desired_number Specifies the number of perfstat_cpu_t structures to copy 
to userbuff.

Example
Example 10-4 shows a sample code that uses the perfstat_cpu_t structure to 
obtain information about CPU statistics.

Example 10-4   Sample perfstat_cpu_t program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 main()
5 {
6     perfstat_id_t   name;
 Chapter 10. Performance monitoring APIs 591



+7     perfstat_cpu_t  *ub;
8     int             ncpu,i;
 
9     ncpu = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0);
10     ub = malloc(sizeof(perfstat_cpu_t)*ncpu);

11     strcpy(name.name,"");
 
12     if (perfstat_cpu(&name,ub,sizeof(perfstat_cpu_t),ncpu) >= 0)
13         for (i = 0; i < ncpu; i++) {
14             printf("name    : %s\n",   ub[i].name);
15             printf("\tuser    : %llu\n", ub[i].user);
16             printf("\tsys     : %llu\n", ub[i].sys);
17             printf("\tidle    : %llu\n", ub[i].idle);
18             printf("\twait    : %llu\n", ub[i].wait);
19             printf("\tpswitch : %llu\n", ub[i].pswitch);
20             printf("\tsyscall : %llu\n", ub[i].syscall);
21             printf("\tsysread : %llu\n", ub[i].sysread);
22             printf("\tsyswrite: %llu\n", ub[i].syswrite);
23             printf("\tsysfork : %llu\n", ub[i].sysfork);
24             printf("\tsysexec : %llu\n", ub[i].sysexec);
25             printf("\treadch  : %llu\n", ub[i].readch);
26             printf("\twritech : %llu\n", ub[i].writech);
27 #ifdef _AIX530
28 printf("\tpsys : %llu\n", ub[i].psys);
29 printf("\tpuser : %llu\n", ub[i].puser); 
30 printf("\tpidle : %llu\n", ub[i].pidle);
31 printf("\tpwait : %llu\n", ub[i].pwait);
32 printf("\trunqueue : %llu\n", ub[i].runque);
33 printf("\tdevintrs : %llu\n", ub[i].devintrs);
34 printf("\tsoftintrs : %llu\n", ub[i].softintrs);
35 #endif
36         }
37 }

On line 3 the libperfstat.h declaration file is included. Then on lines 6 and 7 we 
declare the variables for calling the perfstat_cpu subroutine (line 12). Note how 
the usage and reference of structures is done in the call. The first call to 
perfstat_cpu is done to acquire the number of CPUs in the system. This is then 
used to allocate the appropriate number of structures, with malloc, to store the 
information for each CPU. This code also contains newly added fields in 
perfstat_cpu_t structure. You can see this part from line 28 to the end of this 
code. With the AIX Version 5.3 and the later, you can retrieve these values from 
the system. In order to do so, you need to specify -D_AIX530 option with cc when 
compiling the code.

The output from the program is shown in Example 10-5.
592 AIX 5L Practical Performance Tools and Tuning Guide



Example 10-5   Sample output from the perfstat_cpu_t program

# perfstat_cpu_t
name    : cpu0
        user    : 143183
        sys     : 44509
        idle    : 82268216
        wait    : 3032
        pswitch : 111623167
        syscall : 9895110
        sysread : 857795
        syswrite: 176179
        sysfork : 3796
        sysexec : 4659
        readch  : 610497259
        writech : 10252878
        psys : 106205944754
        puser : 290208972941
        pidle : 182043749379
        pwait : 21854685
        runqueue : 3
        devintrs : 99015
        softintrs : 3331579
name    : cpu1
        user    : 114661
        sys     : 28145
        idle    : 82322323
        wait    : 36
        pswitch : 399428
        syscall : 134210
        sysread : 9696
        syswrite: 1485
        sysfork : 688
        sysexec : 50
        readch  : 5696737
        writech : 120190
        psys : 48027180264
        puser : 232364642278
        pidle : 143862899898
        pwait : 5398361
        runqueue : 0
        devintrs : 98044
        softintrs : 41197334

These are definitions of each structure element:

name CPU name (cpu0, cpu1, and so on)
user CPU user time (raw ticks)
sys CPU sys time (raw ticks)
 Chapter 10. Performance monitoring APIs 593



idle CPU idle time (raw ticks)
wait CPU wait time (raw ticks)
pswitch Incremented whenever the current running process 

changes
syscall Number of syscalls
sysread Number of readings
syswrite Number of writings
sysfork Number of forks 
sysexec Number of execs
readch Number of bytes read by CPU
writech Number of bytes written by CPU
puser Physical CPU user time (raw ticks, Only in AIX5.3)
psys Physical CPU sys time (raw ticks, only in AIX5.3)
pidle Physical CPU idle time (raw ticks, only in AIX5.3)
pwait Physical CPU wait time (raw ticks, only in AIX5.3)
runque Number of threads on the runque (Only in AIX5.3)
devintrs number of device interrupts (Only in AIX5.3)
softintrs number of offlevel handlers called (Only in AIX5.3)

perfstat_cpu_total
The perfstat_cpu_total subroutine returns global CPU usage statistics.

perfstat_id_t * name;
perfstat_cpu_total_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_cpu_total (name, userbuff, sizeof_struct, desired_number)

Supported version
This subroutine is supported in AIX 5.1 and later versions.

Parameters
name  In AIX 5.2, this must always be set to NULL. 

userbuff Points to the memory area that is to be filled with the 
perfstat_cpu_total_t structure. 

sizeof_struct Specifies the size of the perfstat_cpu_total_t structure: 
sizeof(perfstat_cpu_total_t). 

desired_number In AIX 5.2, this must always be set to 1. 

Example
The sample code shown in Example 10-6 uses the perfstat_cpu_total_t structure 
to obtain information about CPU statistics.
594 AIX 5L Practical Performance Tools and Tuning Guide



Example 10-6   Sample perfstat_cpu_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_cpu_total_t    ub;

7      if (perfstat_cpu_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_cpu_total_t),1) >= 0) {
8          printf("ncpus       : %d\n", ub.ncpus);
9          printf("ncpus_cfg   : %d\n", ub.ncpus_cfg);
10          printf("description : %s\n", ub.description);
11          printf("processorHZ : %llu\n", ub.processorHZ);
12          printf("user        : %llu\n", ub.user);
13          printf("sys         : %llu\n", ub.sys);
14          printf("idle        : %llu\n", ub.idle);
15          printf("wait        : %llu\n", ub.wait);
16          printf("pswitch     : %llu\n", ub.pswitch);
17          printf("syscall     : %llu\n", ub.syscall);
18          printf("sysread     : %llu\n", ub.sysread);
19          printf("syswrite    : %llu\n", ub.syswrite);
20          printf("sysfork     : %llu\n", ub.sysfork);
21          printf("sysexec     : %llu\n", ub.sysexec);
22          printf("readch      : %llu\n", ub.readch);
23          printf("writech     : %llu\n", ub.writech);
24          printf("devintrs    : %llu\n", ub.devintrs);
25          printf("softintrs   : %llu\n", ub.softintrs);
26          printf("lbolt       : %ld\n", ub.lbolt);
27          printf("loadavg T0  : %llu\n", ub.loadavg[0]);
28          printf("loadavg T-5 : %llu\n", ub.loadavg[1]);
29          printf("loadavg T-15: %llu\n", ub.loadavg[2]);
30          printf("runque      : %llu\n", ub.runque);
31          printf("swpque      : %llu\n", ub.swpque);
32 #ifdef _AIX530
33 printf("psys        : %llu\n", ub.psys);
34 printf("puser       : %llu\n", ub.puser);
35 printf("pidle       : %llu\n", ub.pidle);
36 printf("pwait       : %llu\n", ub.pwait);
37>#endif 
36 }
37 }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
the only variable we need for calling the perfstat_cpu_total subroutine, which we 
do on line 7. Note how the usage and reference of structures is done in the call, 
 Chapter 10. Performance monitoring APIs 595



especially the reference to NULL for the pointer to the perfstat_id_t reference. 
This code also contains newly added fields in perfstat_cpu_total_t structure. You 
can see this part from line 32 to the end of this code. With the AIX Version 5.3 
and the later, you can retrieve these values from the system. In order to do this 
you need to specify -D_AIX530 option with compilation command cc. The output 
from of this program is shown in Example 10-7.

Example 10-7   Sample output from the perfstat_cpu_total_t program

# perfstat_cpu_total_t
ncpus       : 4
ncpus_cfg   : 4
description : PowerPC_POWER4
processorHZ : 1100152416
user        : 23987733
sys         : 1332681
idle        : 146744848
wait        : 10208601
pswitch     : 304218689
syscall     : 1069171832
sysread     : 86134624
syswrite    : 91759560
sysfork     : 122134
sysexec     : 152505
readch      : 30225867708
writech     : 21921375932
devintrs    : 0
softintrs   : 0
lbolt       : 45567458
loadavg T0  : 132391
loadavg T-5 : 132552
loadavg T-15: 132367
runque      : 295136
swpque      : 385398

The following list contains the definitions of each structure element:

ncpus   Number of active CPUs
ncpus_cfg    Number of configured CPUs
description  CPU description
processorHZ  CPU speed in Hz
user     CPU user time (raw ticks)
sys  CPU sys  time (raw ticks)
idle     CPU idle time (raw ticks)
wait     CPU wait time (raw ticks)
pswitch  Number of changes of the current running process
syscall  Number of syscalls executed
sysread  Number of readings
596 AIX 5L Practical Performance Tools and Tuning Guide



syswrite     Number of writings
sysfork  Number of forks
sysexec  Number of execs
readch   Total number of bytes read
writech Total number of bytes written
devintrs     Total number of interrupts
softintrs    Total number of software interrupts
lbolt    Number of ticks since last reboot
loadavg  Load average now, last 5 minutes, last 15 minutes
runque   Average length of the run queue
swpque   Average length of the swap queue
puser     Physical CPU user time (raw ticks, only in AIX53)
psys  Physical CPU sys  time (raw ticks, only in AIX53)
pidle     Physical CPU idle time (raw ticks, only in AIX53)
pwait     Physical CPU wait time (raw ticks, only in AIX53)

perfstat_memory_total
The perfstat_memory_total subroutine returns global memory usage statistics.

perfstat_id_t * name;
perfstat_memory_total_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_memory_total (name, userbuff, sizeof_struct, desired_number)

Supported version
This subroutine is supported in AIX 5.1 and later versions.

Parameters
name  In AIX 5.2, this must always be set to NULL. 

userbuff  Points to the memory area that is to be filled with the 
perfstat_memory_total_t structures.  

sizeof_struct  Specifies the size of the perfstat_memory_total_t 
structure; sizeof(perfstat_memory_total_t).  

desired_number  In AIX 5.2, this must always be set to 1. 

Example
The code in Example 10-8 on page 597 uses the perfstat_memory_total_t 
structure to obtain information about memory statistics.

Example 10-8   Sample perfstat_memory_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
 Chapter 10. Performance monitoring APIs 597



3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_memory_total_t ub;

7      if (perfstat_memory_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_memory_total_t),1) >= 0) {
8          printf("virt_total: %llu\n", ub.virt_total);
9          printf("real_total: %llu\n", ub.real_total);
10          printf("real_free : %llu\n", ub.real_free);
11          printf("real_inuse: %llu\n", ub.real_inuse);
12          printf("pgbad     : %llu\n", ub.pgbad);
13          printf("pgexct    : %llu\n", ub.pgexct);
14          printf("pgins     : %llu\n", ub.pgins);
15          printf("pgouts    : %llu\n", ub.pgouts);
16          printf("pgspins   : %llu\n", ub.pgspins);
17          printf("pgspouts  : %llu\n", ub.pgspouts);
18          printf("scans     : %llu\n", ub.scans);
19          printf("cycles    : %llu\n", ub.cycles);
20          printf("pgsteals  : %llu\n", ub.pgsteals);
21          printf("numperm   : %llu\n", ub.numperm);
22          printf("pgsp_total: %llu\n", ub.pgsp_total);
23          printf("pgsp_free : %llu\n", ub.pgsp_free);
24          printf("pgsp_rsvd : %llu\n", ub.pgsp_rsvd);
25      }
26  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_memory_total subroutine, which we do on line 
7. Note how the usage and reference of structures is done in the call. The output 
of this program is shown in Example 10-9.

Example 10-9   Sample output from the perfstat_memory_total_t program

# perfstat_memory_total_t
virt_total: 2621440
real_total: 2097152
real_free : 911629
real_inuse: 1185523
pgbad     : 9
pgexct    : 298073502
pgins     : 5095811
pgouts    : 21968950
pgspins   : 4524147
pgspouts  : 19319465
scans     : 52989124
cycles    : 24
598 AIX 5L Practical Performance Tools and Tuning Guide



pgsteals  : 19718704
numperm   : 649872
pgsp_total: 524288
pgsp_free : 320133
pgsp_rsvd : 2048

These are definitions of each structure element:

virt_total  Total virtual memory (4K pages)
real_total  Total real memory (4K pages)
real_free   Free real memory (4K pages)
real_pinned  Real memory that is pinned (4K pages)
real_inuse   Real memory that is in use (4K pages)
pgbad    Count of bad pages
pgexct Count of page faults
pgins Count of pages paged in
pgouts Count of pages paged out
pgspins Count of page ins from paging space
pgspouts Count of page outs from paging space
scans Count of page scans by clock
cycles Count of clock hand cycles
pgsteals Count of page steals
numperm Number of non-working frames
pgsp_total   Total paging space (4K pages)
pgsp_free    Free paging space (4K pages)
pgsp_rsvd    Reserved paging space (4K pages)

perfstat_pagingspace
The perfstat_pagingspace retrieves individual paging space usage statistics. 

perfstat_id_t *name; 
perfstat_pagingspace_t *userbuff; 
size_t sizeof_struct; 
int desired_number; 

int perfstat_pagingspace (name, userbuff, sizeof_struct, desired_number)

Supported version
This subroutine is supported in AIX 5.2 and later versions.

Parameters
Name Contains either ““, FIRST_PAGINGSPACE, or a name 

identifying the first paging space for which statistics are 
desired. For example: paging00, hd6, ... 
 Chapter 10. Performance monitoring APIs 599



userbuff Points to the memory area to be filled with one or more 
perfstat_pagingspace_t structures. 

sizeof_struct Specifies the size of the perfstat_pagingspace_t 
structure: sizeof(perfstat_pagingspace_t) 

desired_number  Specifies the number of perfstat_pagingspace_t 
structures to copy to userbuff. 

Example
The code in Example 10-10 uses the perfstat_pagingspace_t structure to obtain 
information about memory statistics.

Example 10-10   Sample perfstat_pagingspace program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>
4  int
5  main(int argc, char agrv[])
6  {
7          int             i, ret, tot;
8          perfstat_id_t   first;
9          perfstat_pagingspace_t *pinfo;
10          tot = perfstat_pagingspace(NULL, NULL, 
sizeof(perfstat_pagingspace_t), 0);
11          pinfo = calloc(tot, sizeof(perfstat_pagingspace_t));
12          strcpy(first.name, FIRST_PAGINGSPACE);
13          ret = perfstat_pagingspace(&first, pinfo, 
sizeof(perfstat_pagingspace_t), tot);
14          for (i = 0;
15               i < ret;
16               i++) {
17                  printf("\nStatistics for paging space : %s\n", 
pinfo[i].name);
18                  printf("---------------------------\n");
19                  printf("type : %s\n", pinfo[i].type == LV_PAGING ? "logical 
volume" : "NFS file");
20                  if (pinfo[i].type == LV_PAGING) {
21                          printf("volume group : %s\n", 
pinfo[i].u.lv_paging.vgname);
22                  } else {
23                          printf("hostname : %s\n", 
pinfo[i].u.nfs_paging.hostname);
24                          printf("filename : %s\n", 
pinfo[i].u.nfs_paging.filename);
25                  } printf("size (in LP) : %llu\n", pinfo[i].lp_size);
26                  printf("size (in MB) : %llu\n", pinfo[i].mb_size);
27                  printf("used (in MB) : %llu\n", pinfo[i].mb_used);
28          }
600 AIX 5L Practical Performance Tools and Tuning Guide



29  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 and 7 we 
declare variables for calling the perfstat_pagingspace_total subroutine, which 
we do on line 13. Note how the usage and reference of structures is done in the 
call. The output of this program is shown in Example 10-11.

Example 10-11   Sample output from the perfstat_pagingspace program

Statistics for paging space : hd6 
--------------------------- 
type : logical volume 
volume group : rootvg 
size (in LP) : 64 
size (in MB) : 512 
used (in MB) : 4 

These are definitions of each structure element:

type type of paging device (LV_PAGING or NFS_PAGING) 
Possible values are: 
LV_PAGING      logical volume
NFS_PAGING     NFS file 

lp_size size in number of logical partitions 
mb_size size in megabytes 
mb_used portion used in megabytes 
io_pending number of pending I/O 
active indicates if active (1 if so, 0 if not) 
automatic indicates if automatic (1 if so, 0 if not) 

perfstat_disk
The perfstat_disk subroutine retrieves one or more individual disk usage 
statistics. The same function can also be used to retrieve the number of available 
sets of disk statistics. 

perfstat_id_t * name;
perfstat_disk_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_disk (name, userbuff, sizeof_struct, desired_number)
 Chapter 10. Performance monitoring APIs 601



Parameters
name  Contains a name identifying the first disk for which 

statistics are desired. "" is used to indicate the first 
available disk. For example: hdisk0, hdisk1, and so on.

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_disk_t structures.  

sizeof_struct  Specifies the size of the perfstat_disk_t structure; 
sizeof(perfstat_cpu_t).

desired_number  Specifies the number of perfstat_disk_t structures to copy 
to userbuff. 

Example
The code in Example 10-12 uses the perfstat_disk_t structure to obtain 
information about disk statistics.

Example 10-12   Sample perfstat_disk_t program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 main()
5 {
6     perfstat_id_t   name;
7     perfstat_disk_t *ub;
8     int             ndisk,i;

9     ndisk = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0);
10     ub = malloc(sizeof(perfstat_disk_t)*ndisk);

11     strcpy(name.name,"");

12     if (perfstat_disk (&name,ub,sizeof(perfstat_disk_t),ndisk) >= 0)
13         for (i = 0; i < ndisk; i++) {
14             printf("name       : %s\n",  ub[i].name);
15             printf("\tdescription: %s\n",  ub[i].description);
16             printf("\tvgname     : %s\n",  ub[i].vgname);
17             printf("\tsize       : %llu\n", ub[i].size);
18             printf("\tfree       : %llu\n", ub[i].free);
19             printf("\tbsize      : %llu\n", ub[i].bsize);
20             printf("\txrate      : %llu\n", ub[i].xrate);
21             printf("\txfers      : %llu\n", ub[i].xfers);
22             printf("\twblks      : %llu\n", ub[i].wblks);
23             printf("\trblks      : %llu\n", ub[i].rblks);
24             printf("\tqdepth     : %llu\n", ub[i].qdepth);
25             printf("\ttime       : %llu\n", ub[i].time);
26         }
602 AIX 5L Practical Performance Tools and Tuning Guide



27 }

On line 3 the libperfstat.h declaration file is included. Then on lines 6 and 7 we 
declare variables for calling the perfstat_disk subroutine, which we do on line 
12. Note how the usage and reference of structures is done in the call. The first 
call to perfstat_disk is done to acquire the number of available sets of disk 
statistics in the system. This is then used to allocate the appropriate number of 
structures to keep the information for each statistics set with malloc. The output 
of this program is shown in Example 10-13.

Example 10-13   Sample output from the perfstat_disk_t program

# perfstat_disk_t
name       : hdisk1
    description: 16 Bit SCSI Disk Drive
    vgname     : vg0
    size       : 8672
    free       : 7936
    bsize      : 512
    xrate      : 0
    xfers      : 14104
    wblks      : 148913
    rblks      : 1298481
    qdepth     : 0
    time       : 7498
...(lines omitted)...
name       : cd0
    description: SCSI Multimedia CD-ROM Drive
    vgname     : None
    size       : 0
    free       : 0
    bsize      : 512
    xrate      : 0
    xfers      : 0
    wblks      : 0
    rblks      : 0
    qdepth     : 0
    time       : 0

These are definitions for each structure element:

name     Name of the disk
description  Disk description
vgname   Volume group name
size     Size of the disk (MB)
free     Free portion of the disk (MB)
bsize    Disk block size (bytes)
 Chapter 10. Performance monitoring APIs 603



xrate    KB/sec xfer rate capability
xfers    Total transfers to/from disk
wblks    Blocks written to disk
rblks    Blocks read from disk
qdepth   Queue depth
time     Amount of time disk is active

perfstat_disk_total
The perfstat_disk_total subroutine returns global disk usage statistics.

perfstat_id_t * name;
perfstat_disk_total_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_disk_total (name, userbuff, sizeof_struct, desired_number)

Supported version
This subroutine is supported in AIX 5.2 and later versions.

Parameters
name  In AIX 5.2, this must always be set to NULL.  

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_disk_total_t structures.  

sizeof_struct  Specifies the size of the perfstat_disk_total_t structure; 
sizeof(perfstat_cpu_t).

desired_number  In AIX 5.2, this must always be set to 1.  

Example
The code in Example 10-14 uses the perfstat_disk_total_t structure to obtain 
information about disk statistics.

Example 10-14   Sample perfstat_disk_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_disk_total_t   ub;

7      if (perfstat_disk_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_disk_total_t),1) >= 0) {
8          printf("number: %d\n", ub.number);
9          printf("size  : %llu\n", ub.size);
604 AIX 5L Practical Performance Tools and Tuning Guide



10          printf("free  : %llu\n", ub.free);
11          printf("xrate : %llu\n", ub.xrate);
12          printf("xfers : %llu\n", ub.xfers);
13          printf("wblks : %llu\n", ub.wblks);
14          printf("rblks : %llu\n", ub.rblks);
15          printf("time  : %llu\n", ub.time);
16      }
17  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_disk_total subroutine, which we do on line 7. 
Note how the usage and reference of structures is done in the call. The output of 
this program is shown in Example 10-15.

Example 10-15   Sample output from the perfstat_disk_total_t program

# perfstat_disk_total_t
number: 5
size  : 34688
free  : 23520
xrate : 0
xfers : 254296
wblks : 3447164
rblks : 5065261
time  : 168958

These are definitions of each structure element as displayed above.

number Number of disks
size Size of the disks (MB)
free Free portion of the disks (MB)
xrate Average kbytes/sec xfer rate capability
xfers Total transfers to/from disks
wblks Blocks written to all disks
rblks Blocks read from all disks
time Amount of time disk is active

perfstat_diskadapter
The perfstat_diskadapter subroutine retrieves one or more individual diskadapter 
usage statistics. The same function can also be used to retrieve the number of 
available sets of diskadapter statistics.

perfstat_id_t *name;
perfstat_diskadapter_t *userbuff; 
size_t sizeof_struct; 
int desired_number; 
 Chapter 10. Performance monitoring APIs 605



int perfstat_diskadapter (name, userbuff, sizeof_struct, desired_number) 

Supported version
This subroutine is supported in AIX 5.2 and later versions.

Parameters

name Contains either ““, FIRST_DISKADAPTER, or a name 
identifying the first disk adapter for which statistics are 
desired. For example: scsi0, scsi1, ... 

userbuff Points to the memory area to be filled with one or more 
perfstat_diskadapter_t structures. 

sizeof_struct Specifies the size of the perfstat_diskadapter_t structure: 
sizeof(perfstat_diskadapter_t) 

desired_number Specifies the number of perfstat_diskadapter_t structures 
to copy to userbuff. 

Example
The code in Example 10-16 uses the perfstat_diskadapter_t structure to obtain 
information about disk statistics.

Example 10-16   Sample perfstat_diskadapter_t program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>
4 int
5 main(int argc, char *argv[])
6 {
7  int i, ret, tot;
8  perfstat_diskadapter_t *statp;
9  perfstat_id_t   first;
10  /* check how many perfstat_diskadapter_t structures are available */
11  tot = perfstat_diskadapter(NULL, NULL, sizeof(perfstat_diskadapter_t), 0);
12  /* allocate enough memory for all the structures */
13  statp = calloc(tot, sizeof(perfstat_diskadapter_t));
14  /* set name to first interface */
15 strcpy(first.name, FIRST_DISK);
16  /*
17  * ask to get all the structures available in one call
18  */
19  /* return code is number of structures returned */
20  ret = perfstat_diskadapter(&first, statp, sizeof(perfstat_diskadapter_t), 
tot);
21  /* print statistics for each of the disk adapters */
22  for (i = 0;
24  i < ret;
606 AIX 5L Practical Performance Tools and Tuning Guide



25  i++) {
26  printf("\nStatistics for adapter : %s\n", statp[i].name);
27  printf("----------------------\n");
28  printf("description : %s\n", statp[i].description);
29  printf("number of disks connected : %d\n", statp[i].number);
29  printf("total disk size : %llu MB\n", statp[i].size);
30  printf("total disk free space : %llu MB\n", statp[i].free);
31  printf("number of blocks read : %llu\n", statp[i].rblks);
32  printf("number of blocks written : %llu\n", statp[i].wblks);
34  }
35 }

On line 3 the libperfstat.h declaration file is included. Then on line 8 and 9 we 
declare variables for calling the perfstat_diskadapter subroutine, which we do on 
line 20. Note how the usage and reference of structures is done in the call.The 
output of this program is shown in Example 10-17.

Example 10-17   Sample output from the perfstat_diskadapter_t program

# perfstat_diskadapter_t
Statistics for adapter : ide0
----------------------
description : ATA/IDE Controller Device
number of disks connected : 1
total disk size : 0 MB
total disk free space : 0 MB
number of blocks read : 0
number of blocks written : 0

Statistics for adapter : scsi0
----------------------
description : Wide/Ultra-3 SCSI I/O Controller
number of disks connected : 3
total disk size : 174464 MB
total disk free space : 120000 MB
number of blocks read : 23323
number of blocks written : 5448

These are definitions of each structure element as displayed above.

number number of disks connected to adapter 
size total size of all disks (in MB) 
free free portion of all disks (in MB) 
xrate total kbytes/sec xfer rate capability 
xfers total number of transfers to/from disk 
rblks 512 bytes blocks written via adapter 
wblks 512 bytes blocks read via adapter 
 Chapter 10. Performance monitoring APIs 607



time amount of time disks are active 

perfstat_diskpath
The perfstat_diskpath subroutine retrieves one or more individual diskpath usage 
statistics. The same function can also be used to retrieve the number of available 
sets of diskpath statistics. This subroutine can be used for mpio environment.

perfstat_id_t *name; 
perfstat_diskpath_t *userbuff;
size_t sizeof_struct; i
nt desired_number; 

int perfstat_diskpath (name, userbuff, sizeof_struct, desired_number) 

Parameters

name Contains either ““, FIRST_DISKPATH, a name identifying 
the first disk path for which statistics are desired, or a 
name identifying a disk for which path statistics are 
desired. For example: hdisk0_Path2, hdisk1_Path0, ... or 
hdisk5 (equivalent to hdisk5_Pathfirstpath) 

userbuff Points to the memory area to be filled with one or more 
perfstat_diskpath_t structures. 

sizeof_struct Specifies the size of the perfstat_diskpath_t structure: 
sizeof(perfstat_diskpath_t) 

desired_number Specifies the number of perfstat_diskpath_t structures to 
copy to userbuff. 

Supported version
This subroutine is supported in AIX 5.2 and later versions.

Example
The code in Example 10-18 uses the perfstat_diskpath structure to obtain 
information about disk statistics.

Example 10-18   Sample perfstat_diskadapter_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>
4
5          main()
6          {
7              perfstat_id_t   name;
8              perfstat_diskpath_t *ub;
608 AIX 5L Practical Performance Tools and Tuning Guide



9              int             ndisk,i;
10
11              ndisk = perfstat_diskpath 
(NULL,NULL,sizeof(perfstat_diskpath_t),0);
12              ub = malloc(sizeof(perfstat_diskpath_t)*ndisk);
13
14              strcpy(name.name,"");
15
16              if (perfstat_diskpath 
(&name,ub,sizeof(perfstat_diskpath_t),ndisk) >= 0)
17                  for (i = 0; i < ndisk; i++) {
18                      printf("name       : %s\n",  ub[i].name);
19                      printf("\txrate      : %llu\n", ub[i].xrate);
20                      printf("\txfers      : %llu\n", ub[i].xfers);
21                      printf("\twblks      : %llu\n", ub[i].wblks);
22                      printf("\trblks      : %llu\n", ub[i].rblks);
23                      printf("\ttime       : %llu\n", ub[i].time);
24                      printf("\tadapter    : %s\n", ub[i].adapter);
25                  }
26          }

On line 3 the libperfstat.h declaration file is included. Then on lines 7 and 8 we 
declare variables for calling the perfstat_diskpath subroutine, which we do on 
line 16. Note how the usage and reference of structures is done in the call. The 
first call to perfstat_diskpath is done to acquire the number of available sets of 
diskpath (mpio paths) statistics in the system. This is then used to allocate the 
appropriate number of structures to keep the information for each statistics set 
with malloc. The output of this program is shown in Example 10-19.

Example 10-19   Sample output from the perfstat_diskpath_t program

# perfstat_diskpath_t
name       : hdisk0_Path0
        xrate      : 0
        xfers      : 0
        wblks      : 0
        rblks      : 0
        time       : 0
        adapter    : scsi0
name       : hdisk1_Path0
        xrate      : 0
        xfers      : 492
        wblks      : 4856
        rblks      : 8
        time       : 0
        adapter    : scsi0

These are definitions of each structure element as displayed above.
 Chapter 10. Performance monitoring APIs 609



xrate total kbytes/sec xfer rate capability
xfers total number of transfers via the path
rblks 512 bytes blocks written via the path
wblks 512 bytes blocks read via the path 
time amount of time disks are active 

perfstat_netinterface
The perfstat_netinterface subroutine retrieves one or more individual network 
interface usage statistics. The same function can also be used to retrieve the 
number of available sets of network interface statistics.

perfstat_id_t * name;
perfstat_netinterface_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_netinterface (name, userbuff, sizeof_struct, desired_number)

Parameters
name  Contains a name identifying the first network interface for 

which statistics are desired. "" is used to specify the first 
available interface. For example: en0, tr1, and so on.

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_netinterface_t structures.  

sizeof_struct  Specifies the size of the perfstat_netinterface_t structure; 
sizeof(perfstat_cpu_t).

desired_number  Specifies the number of perfstat_netinterface_t structures 
to copy to userbuff.

Supported version
This subroutine is supported in AIX 5.1 and later versions.

Example
The code in Example 10-20 uses the perfstat_netinterface_t structure to obtain 
information about network statistics.

Example 10-20   Sample perfstat_netinterface_t program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>
4 main()
5 {
6     perfstat_id_t           name;
7     perfstat_netinterface_t *ub;
610 AIX 5L Practical Performance Tools and Tuning Guide



8     int                     nnetinterface,i;
9     nnetinterface = perfstat_netinterface 
(NULL,NULL,sizeof(perfstat_netinterface_t),0);
10     ub = malloc(sizeof(perfstat_netinterface_t)*nnetinterface);
11     strcpy(name.name,"");
12     if (perfstat_netinterface 
(&name,ub,sizeof(perfstat_netinterface_t),nnetinterface) >= 0)
13         for (i = 0; i < nnetinterface; i++) {
14             printf("name       : %s\n",     ub[i].name);
15             printf("\tdescription: %s\n",   ub[i].description);
16             printf("\ttype       : %u\n",   ub[i].type);
17             printf("\tmtu        : %llu\n", ub[i].mtu);
18             printf("\tipackets   : %llu\n", ub[i].ipackets);
19             printf("\tibytes     : %llu\n", ub[i].ibytes);
20             printf("\tierrors    : %llu\n", ub[i].ierrors);
21             printf("\topackets   : %llu\n", ub[i].opackets);
22             printf("\tobytes     : %llu\n", ub[i].obytes);
23             printf("\toerrors    : %llu\n", ub[i].oerrors);
24             printf("\tcollisions : %llu\n", ub[i].collisions);
25         }
26 }

On line 3 the libperfstat.h declaration file is included. Then on lines 6 and 7 we 
declare variables for calling the perfstat_netinterface subroutine, which we do 
on line 9. Note how the usage and reference of structures is done in the call. The 
first call to perfstat_netinterface is done to acquire the number of network 
interfaces in the system. This is then used to allocate the appropriate number of 
structures to keep the information for each network interface with malloc.

The output of this program is shown in Example 10-21.

Example 10-21   Sample output from the perfstat_netinterface_t program

# perfstat_netinterface_t
name       : tr0
        description: Token Ring Network Interface
        type       : 9
        mtu        : 1492
        ipackets   : 764483
        ibytes     : 153429823
        ierrors    : 0
        opackets   : 499053
        obytes     : 93898923
        oerrors    : 0
        collisions : 0
name       : en0
        description: Standard Ethernet Network Interface
        type       : 6
 Chapter 10. Performance monitoring APIs 611



        mtu        : 1500
        ipackets   : 0
        ibytes     : 0
        ierrors    : 0
        opackets   : 3
        obytes     : 180
        oerrors    : 3
        collisions : 0
name       : lo0
        description: Loopback Network Interface
        type       : 24
        mtu        : 16896
        ipackets   : 17501
        ibytes     : 2031836
        ierrors    : 0
        opackets   : 17501
        obytes     : 2031432
        oerrors    : 0
        collisions : 0

The output shows only raw data. The Perfstat API enables you to acquire the 
data quite easily, as can be seen in the program in Example 10-20 on page 610. 
Note that the type value of 9, in the output above for token-ring, translates in hex 
to ISO88025 or token-ring (see Table 10-1). 

The following is a short definition of each structure element as displayed above:

name     Name of the interface
description  Interface description (lscfg type output)
type     Interface types: see /usr/include/net/if_types.h or Table 10-1
mtu  Network frame size
ipackets     Packets received on interface
ibytes   Bytes received on interface
ierrors  Input errors on interface
opackets     Packets sent on interface
obytes   Bytes sent on interface
oerrors  Output errors on interface
collisions   Collisions on CSMA interface

Table 10-1   Interface types from if_types.h

Name Type Name Type

1822 0x2 DS3 0x1e

HDH1822 0x3 SIP 0x1f

X25DDN 0x4 FRELAY 0x20
612 AIX 5L Practical Performance Tools and Tuning Guide



X25 0x5 RS232 0x21

ETHER 0x6 PARA 0x22

OTHER 0x1 ULTRA 0x1d

ISO88023 0x7 ARCNET 0x23

ISO88024 0x8 ARCNETPLUS 0x24

ISO88025 0x9 ATM 0x25

ISO88026 0xa MIOX25 0x26

STARLAN 0xb SONET 0x27

P10 0xc X25PLE 0x28

P80 0xd ISO88022LLC 0x29

HY 0xe LOCALTALK 0x2a

FDDI 0xf SMDSDXI 0x2b

LAPB 0x10 FRELAYDCE 0x2c

SDLC 0x11 V35 0x2d

T1 0x12 HSSI 0x2e

CEPT 0x13 HIPPI 0x2f

ISDNBASIC 0x14 MODEM 0x30

ISDNPRIMARY 0x15 AAL5 0x31

PTPSERIAL 0x16 SONETPATH 0x32

PPP 0x17 SONETVT 0x33

LOOP 0x18 SMDSICIP 0x34

EON 0x19 PROPVIRTUAL 0x35

XETHER 0x1a PROPMUX 0x36

NSIP 0x1b VIPA 0x37

SLIP 0x1c

Name Type Name Type
 Chapter 10. Performance monitoring APIs 613



perfstat_netinterface_total
The perfstat_netinterface_total subroutine returns global network interface usage 
statistics.

perfstat_id_t * name;
perfstat_netinterface_total_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_netinterface_total (name, userbuff, sizeof_struct, 
desired_number)

Supported version
This subroutine is supported in AIX 5.1 and later versions.

Parameters
name  In AIX 5.2, this must always be set to NULL. 

userbuff  Points to the memory area that is to be filled with the 
perfstat_netinterface_total_t structure.  

sizeof_struct  Specifies the size of the perfstat_netinterface_total_t 
structure; sizeof(perfstat_netinterface_total_t).  

desired_number  In AIX 5.2, this must always be set to 1. 

Example
The code in Example 10-22 uses the perfstat_netinterface_total_t structure to 
obtain information about CPU statistics.

Example 10-22   Sample perfstat_netinterface_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_netinterface_total_t   ub;

7      if (perfstat_netinterface_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_netinterface_total_t),1) >= 0) {
8          printf("number    : %d\n", ub.number);
9          printf("ipackets  : %llu\n", ub.ipackets);
10          printf("ibytes    : %llu\n", ub.ibytes);
11          printf("ierrors   : %llu\n", ub.ierrors);
12          printf("opackets  : %llu\n", ub.opackets);
13          printf("obytes    : %llu\n", ub.obytes);
14          printf("oerrors   : %llu\n", ub.oerrors);
15          printf("collisions: %llu\n", ub.collisions);
614 AIX 5L Practical Performance Tools and Tuning Guide



16      }
17  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_netinterface_total subroutine, which we do 
on line 7. Note how the usage and reference of structures is done in the call. The 
output of this program is shown in Example 10-23.

Example 10-23   Sample output from the perfstat_netinterface_total_t program

# perfstat_netinterface_total_t
number    : 3
ipackets  : 781984
ibytes    : 155461659
ierrors   : 0
opackets  : 516557
obytes    : 95930535
oerrors   : 3
collisions: 0

The following is a short definition of each structure element as displayed in 
previous example:

number   Interfaces count
ipackets     Packets received on interface
ibytes   Bytes received on interface
ierrors  Input errors on interface
opackets     Packets sent on interface
obytes   Bytes sent on interface
oerrors  Output errors on interface
collisions   Collisions on csma interface

perfstat_partition
The pefstat_partition_total subroutine returns global partition usage statistics

perfstat_id_t *name; 
perfstat_partition_total_t *userbuff; 
size_t sizeof_struct; 
int desired_number; 

int perfstat_partition_total(name, userbuff, sizeof_struct, desired_number)

Supported version
This subroutine is supported in AIX 5.3 and later versions.
 Chapter 10. Performance monitoring APIs 615



Parameters
name Must be set to NULL. 

userbuff Points to the memory area to be filled with the 
perfstat_partition_total_t structures. 

sizeof_struct Specifies the size of the perfstat_partition_total_t 
structure: sizeof(perfstat_partition_total_t). 

desired_number Must be set to 1

Example
The code in Example 10-24 uses the perfstat_partition structure to obtain 
information about partition statistics.

Example 10-24   Sample perfstat_partition_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>
4  int
5  main(int argc, char *argv[])
6  {
7          perfstat_partition_total_t pinfo;
8          int             rc;
9          rc = perfstat_partition_total(NULL, &pinfo, 
sizeof(perfstat_partition_total_t), 1);
10          if (rc != 1) {
11                  perror("Error in perfstat_partition_total");
12                  exit(-1);
13          }
14          printf("Partition Name : %s\n", pinfo.name);
15          printf("Partition Number : %u\n", pinfo.lpar_id);
16          printf("Type : %s\n", pinfo.type.b.shared_enabled ? "Shared" : 
"Dedicated");
17          printf("Mode : %s\n", pinfo.type.b.capped ? "Capped" : "Uncapped");
18          printf("Entitled Capacity : %u\n", (double) 
pinfo.entitled_proc_capacity / (double) 100.0);
19          printf("Partition Group-ID : %u\n", pinfo.group_id);
20          printf("Shared Pool ID : %u\n", pinfo.pool_id);
21          printf("Online Virtual CPUs : %u\n", pinfo.online_cpus);
22          printf("Maximum Virtual CPUs : %u\n", pinfo.max_cpus);
23          printf("Minimum Virtual CPUs : %u\n", pinfo.min_cpus);
24          printf("Online Memory : %llu MB\n", pinfo.online_memory);
25          printf("Maximum Memory : %llu MB\n", pinfo.max_memory);
26          printf("Minimum Memory : %llu MB\n", pinfo.min_memory);
27          printf("Variable Capacity Weight : %u\n", 
pinfo.var_proc_capacity_weight);
28          printf("Minimum Capacity : %u\n", pinfo.min_proc_capacity);
616 AIX 5L Practical Performance Tools and Tuning Guide



29          printf("Maximum Capacity : %u\n", pinfo.max_proc_capacity);
30          printf("Capacity Increment : %u\n", pinfo.proc_capacity_increment);
31          printf("Maximum Physical CPUs in system: %u\n", 
pinfo.max_phys_cpus_sys);
32          printf("Active Physical CPUs in system : %u\n", 
pinfo.online_phys_cpus_sys);
33          printf("Active CPUs in Pool : %u\n", pinfo.phys_cpus_pool);
34          printf("Unallocated Capacity : %u\n", pinfo.unalloc_proc_capacity);
35          printf("Physical CPU Percentage : %4.2f%%\n",
36          (double) pinfo.entitled_proc_capacity / (double) 
pinfo.online_cpus);
37          printf("Unallocated Weight : %u\n", 
pinfo.unalloc_var_proc_capacity_weight);
38  }

On line 3 the libperfstat.h declaration file is included. Then on line 7 we declare 
variables for calling the perfstat_partition_total subroutine, which we do on 
line 9. Note how the usage and reference of structures is done in the call. The 
output of this program is shown in Example 10-25.

Example 10-25   Sample output from the perfstat_partition_t program

#perfstat_partition_t
Partition Name : partition01
Partition Number : 1
Type : Dedicated
Mode : Uncapped
Entitled Capacity : 1070176665
Partition Group-ID : 32769
Shared Pool ID : 0
Online Virtual CPUs : 1
Maximum Virtual CPUs : 2
Minimum Virtual CPUs : 1
Online Memory : 512 MB
Maximum Memory : 1024 MB
Minimum Memory : 512 MB
Variable Capacity Weight : 128
Minimum Capacity : 10
Maximum Capacity : 100
Capacity Increment : 1
Maximum Physical CPUs in system: 2
Active Physical CPUs in system : 2
Active CPUs in Pool : 0
Unallocated Capacity : 0
Physical CPU Percentage : 20.00%
Unallocated Weight : 0
 Chapter 10. Performance monitoring APIs 617



These are definitions of each structure element as displayed in previous 
example:

type set of bits describing the partition
lpar_id logical partition identifier
group_id identifier of the LPAR group this partition is a member of
pool_id identifier of the shared pool of physical processors this 

partition is a member of
online_cpus number of virtual CPUs currently online on the partition 
max_cpus maximum number of virtual CPUs this partition can ever 

have
min_cpus minimum number of virtual CPUs this partition must have
online_memory amount of memory currently online
max_memory maximum amount of memory this partition can ever have
min_memory minimum amount of memory this partition must have 
entitled_proc_capacity 

number of processor units this partition is entitled to 
receive

max_proc_capacity maximum number of processor units this partition can 
ever have

min_proc_capacity minimum number of processor units this partition must 
have 

proc_capacity_increment
increment value to the entitled capacity */

unalloc_proc_capacity 
number of processor units currently unallocated in the 
shared processor pool this partition belongs to 

var_proc_capacity_weight 
partition priority weight to receive extra capacity

unalloc_var_proc_capacity_weight
number of variable processor capacity weight units 
currently unallocated in the shared processor pool this 
partition belongs to

online_phys_cpus_sys  
number of physical CPUs currently active in the system 
containing this partition 

max_phys_cpus_sys maximum possible number of physical CPUs in the 
system containing this partition

phys_cpus_pool number of the physical CPUs currently in the shared 
processor pool this partition belong to

puser Physical CPU user time (raw ticks)
psys Physical CPU sys time (raw ticks)
pidle Physical CPU idle time (raw ticks)
pwait Physical CPU wait time (raw ticks)
618 AIX 5L Practical Performance Tools and Tuning Guide



pool_idle_time number of clock ticks a processor in the shared pool was 
idle

phantintrs number of phantom interrupts received by the partition
invol_virt_cswitch number involuntary virtual CPU context switches
vol_virt_cswitch number voluntary virtual CPU context switches 
timebase_last most recently cpu time base

Makefile for Perfstat
Example 10-26 shows a makefile for compiling the perfstat sample programs. 

Example 10-26   Makefile

# nl Makefile
1  CC=cc
2  CFLAGS=-g
3  PERF_LIBS=-lperfstat

4  PERF_PROGRAMS = perfstat_cpu_t perfstat_cpu_total_t perfstat_disk_t 
perfstat_diskada[ter_t perfstat_diskpath_t perfstat_disk_total_t 
perfstat_memory_total_t perfstat_pagingspace_t perfstat_netinterface_t 
perfstat_netinterface_total_t perfstat_partition_t perfstat_dump_all 
perfstat_dude

5  all:    $(PERF_PROGRAMS)

6  $(PERF_PROGRAMS):       $$@.c
7          $(CC) $(CFLAGS) $(LIBS) $(PERF_LIBS) $? -o $@

Lines 1-3 are variable declarations that make changing compile parameters 
easier. In line 2 you can specify compilation options. Line 4 declares a variable 
for the programs (PERF_PROGRAMS). Line 6 declares that all of the programs that 
are targets (declared on line 4) will have a source that they depend on (appended 
.c to each target). Line 7 is the compile statement itself; if the program 
perfstat_dump_all was the target (and the source file was changed since the 
last created target), then the line would be parsed to look like the following:

cc -g -lperfstat perfstat_dump_all.c -o perfstat_dump_all

Line 5 declares a target named all that, if we had other target:source lines with 
compile statements, would include them as sources on this line as well. Because 
this line is the first non-declarative line in the Makefile, just typing make in the 
same directory would evaluate it, thus compiling everything that has changed 
sources since the last time they were compiled.

To use the makefile, just run the make command.
 Chapter 10. Performance monitoring APIs 619



Additional Perfstat API subroutines 
The following are Perfstat API subroutines that are not covered in previous 
section. Refer to “Perfstat API programming” section in the manual “AIX 5L 
Version 5.3 Performance Tool Guide and Reference”, SC23-4906-00 for 
examples of these subroutines and the description of libperstat.h file.

perfstat_protocol The subroutine retrieves protocol usage statistics such 
as ICMP, ICMPv6, IP, IPv6, TCP, UDP, RPC, NFS, 
NFSv2, NFSv3. This subroutine is available from AIX 
5.2.

perfstat_netbuffer The subroutine retrieves network buffer allocation usage 
statistics. The perfstat_netbuffer subroutine retrieves 
statistics about network buffer allocations for each 
possible buffer size. This subroutine is available from 
AIX 5.2.

perfstat_reset The perfstat_reset subroutine flushes the information 
cache for the library and should be called whenever the 
machine configuration has changed.This subroutine is 
available from AIX 5.2.

10.2  System Performance Measurement Interface
The System Performance Measurement Interface (SPMI) is an API that provides 
standardized access to local system resource statistics. In AIX 5L, SPMI mainly 
uses the perfstat kernel extension (kex) to obtain statistics. SPMI and Remote 
Statistics Interface (RSi) are utilized by the Performance Toolbox and 
Performance Aide Products. 

By developing SPMI application programs, an user can retrieve information about 
system performance with minimum system overhead. The SPMI API is 
supported on both AIX 4.3 and AIX 5L, it has more metrics than the Perfstat API 
and data is more refined as it provides rates and percentages for some statistics. 
It also enables user-created data suppliers to export data for processing by the 
Performance Toolbox. 

The SPMI API is a collection of C programming language subroutines that 
execute in user space and extract data from the running kernel regarding 
performance statistics.

The SPMI API subroutines reside in the libSpmi.a library in the /usr/lib (or /lib 
because /lib is a symbolic link to /usr/lib) and is part of the perfagent.tools fileset, 
which is installable from the AIX base installation media and requires that the 
bos.perf.perfstat fileset as prerequisite.
620 AIX 5L Practical Performance Tools and Tuning Guide



The /usr/include/sys/Spmidef.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is part of the perfagent.server fileset. 

The documentation for the subroutines can be found in the AIX 5L Version 5.3 
Technical Reference: Base Operating System and Extensions, Volume 2, 
SC23-4914.

10.2.1  Compiling and linking
After writing a C program that uses the SPMI API and including the 
sys/Spmidef.h header file, you just run cc on it specifying that you want to link to 
the libSpmi.a library as follows:

cc -lSpmi -o spmi_program spmi_program.c

This will create the spmi_program file from the spmi_program.c source program, 
linking it with the libSpmi.a library. Then spmi_program can be run as a normal 
command.

10.2.2  Terms and concepts for SPMI
Due to the fact that SPMI has been developed as a part of AIX Performance 
Toolbox (PTX), SPMI inherited many of its features from PTX. So, most of its 
terminology, concepts and data organization of SPMI are derived from PTX. In 
this section, we cover the terminology that represents the data types and 
structures used in SPMI programming. We also cover the relationship between 
those and it’s organization as well.

Terminology
From now on, we will see some new terms, especially for SPMI. Here, we have a 
list of essential terms for SPMI and brief explanation of these terms.

Context Context indicates a set of system component such as CPU, disk, 
memory and so on. It also indicates an individual component 
such as cpu0, hdisk1, ent0 and so on. This can be regarded as 
an abstraction for the same type of system components or each 
of substantial system component at the same time. With 
definitions of system header file, Cx stands for context, most of 
the time.

Metric Metric describes a probe in or instrumentation of system 
component a.k.a context in SPMI world. It contains the statistical 
value of context. For context cpu0, the metric that can contain 
system value is kern.
 Chapter 10. Performance monitoring APIs 621



Statistic Statistic is synonymous to the term metric in PTX and SPMI. But 
this term is more preferred in describing the APIs. With 
definitions of system header file, Stat stands for statistic, most of 
the time.

Instantiation When multiple copies of a resource (context) are available, the 
SPMI uses a base context description as a template. The SPMI 
creates one instance of that context for each copy of the 
resource or system object. This process is know as instantiation. 
We can say the subcontext cpu0 is instantiated by using template 
of its parent context or cpu. 

SPMI data organization
SPMI data is organized in a multilevel hierarchy of contexts. A context may have 
subordinate contexts, known as sub contexts, as well as metrics. The 
higher-level context is called a parent context. 

Figure 10-4   Sample Data Hierarchy for SPMI object

In Figure 10-4 each ellipse depicts a context or a subcontext; CPU, Memory, Disk 
and so on. Each rectangle depicts a metric (or statistic); %user, %kernel, %wait, 
and so on. In this case, cpu0 is a subcontext of parent context cpu. In other 
words, cpu0 context is a instance of cpu context.

TOP

DiskMemCPU

%allbusy cachcont

%user %kernel %wait %user %kernel %wait

cpu_ncpu_1cpu_0
622 AIX 5L Practical Performance Tools and Tuning Guide



Such a relationship between context, subcontext and metric can be expressed by 
the following example. This illustrates the SPMI data hierarchy for a metric:

CPU/cpu0/kern

The parents in the example above are CPU and cpu0, and the metric that can 
contain statistical value is kern (time spent executing in kernel mode). For more 
information about a list of available SPMI metrics, see also “Traversing and 
displaying the SPMI hierarchy” on page 635.

The SPMI can generate new instances of the subcontracts of instantiable 
contexts prior to the execution of API subroutines that traverse the data hierarchy. 
An application program can also request instantiation explicitly. In either case, 
instantiation is accomplished by requesting the instantiation for the parent 
context of the instances.

Some instantiable contexts always generate a fixed number of sub context 
instances in a given system as long as the system configuration remains 
unchanged. Other contexts generate a fixed number of subcontracts on one 
system, but not on another. A final type of context is entirely dynamic in that it will 
add and delete instances as required during operation.

Shared memory segment used for SPMI
The SPMI uses a shared memory segment created from user space. When an 
SPMI application program starts, the SPMI checks whether another program has 
already set up the SPMI data structures in shared memory. If the SPMI does not 
find the shared memory area, it creates one and generates and initializes all data 
structures. If the SPMI finds the shared memory area, it bypasses the 
initialization process. A counter, called users, shows the number of processes 
currently using the SPMI. 

When an application program terminates, the SPMI releases all memory 
allocated for the application and decrements the users counter. If the counter 
drops to less than 1, the entire common shared memory area is freed. 
Subsequent execution of an SPMI application reallocates the common shared 
memory area. An application program has access to the data hierarchy through 
the API. 
 Chapter 10. Performance monitoring APIs 623



10.2.3  Subroutines
For a complete list of the SPMI API subroutines refer to AIX 5L Version 5.3 
Technical Reference: Base Operating System and Extensions, Volume 2, 
SC23-4914.

To create a simple monitoring program using the SPMI API, the following 
subroutine sequence could be used to create a snapshot of the current values for 
specified statistics:

SpmiInit Initializes the SPMI for a local data consumer program.

SpmiCreateStatSet Creates an empty set of statistics.

SpmiPathGetCx Returns a handle to use when referencing a context.

SpmiPathAddSetStat Adds a statistics value to a set of statistics.

SpmiGetValue Returns a decoded value based on the type of data value 
extracted from the data field of an SpmiStatVals structure.

Before the program exits, the following subroutines should be called to clean up 
the used SPMI environment (allocated memory is not released until the program 
issues an SpmiExit subroutine call):

SpmiFreeStatSet Erases a set of statistics. 

SpmiExit Terminates a dynamic data supplier (DDS) or local data 
consumer program’s association with the SPMI, and 
releases allocated memory.

After setting up an SPMI environment in a monitoring application, the statistical 
values could be retrieved iteratively by the use of these subroutines:

SpmiFirstVals Returns a pointer to the first SpmiStatVals structure 
belonging to a set of statistics. 

Important: If you need to terminate an SPMI program, use kill <PID> without 
specifying a signal. This sends the SIGTERM signal to the process and it will exit 
properly. If for some reason this is not done, and a SIGKILL signal is sent to 
terminate the process and its threads, you must clean up the shared memory 
areas used by the application. The following steps must be done manually:

1. Make sure no other SPMI program is running.
2. Run the ipcs command and look for segments with segment IDs beginning 

with 0x78.
3. Use the ipcrm command with the -m flag to remove all segments that have 

a segment ID beginning with 0x78.
4. Run the slibclean command.
624 AIX 5L Practical Performance Tools and Tuning Guide



SpmiGetStat Returns a pointer to the SpmiStat structure corresponding 
to a specified statistic handle. 

SpmiNextVals Returns a pointer to the next SpmiStatVals structure in a 
set of statistics.

SpmiInit
The SpmiInit subroutine initializes the SPMI. During SPMI initialization, a 
memory segment is allocated and the application program obtains basic address 
ability to that segment. An application program must issue the SpmiInit 
subroutine call before issuing any other subroutine calls to the SPMI.

int TimeOut;

int SpmiInit (TimeOut)

Parameters
TimeOut Specifies the number of seconds the SPMI waits for a Dynamic 

Data Supplier (DDS) program to update its shared memory 
segment. If a DDS program does not update its shared memory 
segment in the time specified, the SPMI assumes that the DDS 
program has terminated or disconnected from shared memory 
and removes all contexts and statistics added by the DDS 
program. The Time Out value must be either zero or greater than 
or equal to 15 seconds and less than or equal to 600 seconds. A 
value of zero overrides any other value from any other program 
that invokes the SPMI and disables the checking for terminated 
DDS programs.

SpmiCreateStatSet
The SpmiCreateStatSet subroutine creates an empty set of statistics and returns 
a pointer to an SpmiStatSet structure:

struct SpmiStatSet *SpmiCreateStatSet()

SpmiPathGetCx
The SpmiPathGetCx subroutine searches the context hierarchy for a given path 
name of a context and returns a handle to use when subsequently referencing 
the context:

char *CxPath;
SpmiCxHdl Parent;

SpmiCxHdl SpmiPathGetCx(CxPath, Parent)
 Chapter 10. Performance monitoring APIs 625



Parameters
CxPath Specifies the path name of the context to find. If you specify the 

fully qualified path name in the CxPath parameter, you must set 
the Parent parameter to NULL. If the path name is not qualified 
or is only partly qualified (that is, if it does not include the names 
of all contexts higher in the data hierarchy), the SpmiPathGetCx 
subroutine begins searching the hierarchy at the context 
identified by the Parent parameter. If the CxPath parameter is 
either NULL or an empty string, the subroutine returns a handle 
identifying the top context. 

Parent Specifies the anchor context that fully qualifies the CxPath 
parameter. If you specify a fully qualified path name in the 
CxPath parameter, you must set the Parent parameter to NULL. 

SpmiPathAddSetStat
The SpmiPathAddSetStat subroutine adds a statistics value to a set of statistics. 
The SpmiStatSet structure that provides the anchor point to the set must exist 
before the SpmiPathAddSetStat subroutine call can succeed.

struct SpmiStatSet *StatSet;
char *StatName;
SpmiCxHdl Parent;

struct SpmiStatVals *SpmiPathAddSetStat(StatSet, StatName, Parent)

Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

StatName Specifies the name of the statistic within the context 
identified by the Parent parameter. If the Parent 
parameter is NULL, you must specify the fully qualified 
path name of the statistic in the StatName parameter. 

Parent Specifies either a valid SpmiCxHdl handle as obtained by 
another subroutine call or a NULL value. 

SpmiFirstVals
The SpmiFirstVals subroutine returns a pointer to the first SpmiStatVals structure 
belonging to the set of statistics identified by the StatSet parameter.

struct SpmiStatSet *StatSet;
struct SpmiStatVals *SpmiFirstVals(StatSet)
626 AIX 5L Practical Performance Tools and Tuning Guide



Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

SpmiStatVals structures are accessed in reverse order, so the last statistic added 
to the set of statistics is the first one returned. This subroutine call should only be 
issued after an SpmiGetStatSet subroutine has been issued against the statset. 

SpmiGetValue
The SpmiGetValue subroutine returns a decoded value based on the type of data 
value extracted from the data field of an SpmiStatVals structure.

The SpmiGetValue subroutine performs the following steps: 

1. Verifies that an SpmiStatVals structure exists in the set of statistics identified 
by the StatSet parameter. 

2. Determines the format of the data field as being either SiFloat or SiLong, and 
extracts the data value for further processing. 

3. Determines the data value as being of either type SiQuantity or type 
SiCounter. 

4. If the data value is of type SiQuantity, returns the val field of the SpmiStatVals 
structure. 

5. If the data value is of type SiCounter, returns the value of the val_change field 
of the SpmiStatVals structure divided by the elapsed number of seconds 
since the previous time a data value was requested for this set of statistics. 

This subroutine call should only be issued after an SpmiGetStatSet subroutine 
has been issued against the statset. 

struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

float SpmiGetValue(StatSet, StatVal)

Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

StatVal Specifies a pointer to a valid structure of type 
SpmiStatVals as created by the SpmiPathAddSetStat 
subroutine call, or returned by the SpmiFirstVals or 
SpmiNextVals subroutine calls. 
 Chapter 10. Performance monitoring APIs 627



SpmiNextVals
The SpmiNextVals subroutine returns a pointer to the next SpmiStatVals 
structure in a set of statistics, taking the structure identified by the StatVal 
parameter as the current structure. The SpmiStatVals structures are accessed in 
reverse order so the statistic added before the current one is returned. This 
subroutine call should only be issued after an SpmiGetStatSet subroutine has 
been issued against the statset. 

struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

struct SpmiStatVals *SpmiNextVals(StatSet, StatVal)

Parameters
StatSet Specifies a pointer to a valid structure of type SpmiStatSet 

as created by the SpmiCreateStatSet subroutine call. 

StatVal Specifies a pointer to a valid structure of type 
SpmiStatVals as created by the SpmiPathAddSetStat 
subroutine call, or returned by a previous SpmiFirstVals 
subroutine or SpmiNextVals subroutine call. 

SpmiFreeStatSet
The SpmiFreeStatSet subroutine erases the set of statistics identified by the 
StatSet parameter. All SpmiStatVals structures chained off the SpmiStatSet 
structure are deleted before the set itself is deleted. 

struct SpmiStatSet *StatSet;

int SpmiFreeStatSet(StatSet)

Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

SpmiExit
A successful SpmiInit subroutine or SpmiDdsInit subroutine call allocates 
shared memory. Therefore, a Dynamic Data Supplier (DDS) program that has 
issued a successful SpmiInit or SpmiDdsInit subroutine call should issue an 
SpmiExit subroutine call before the program exits the SPMI. Allocated memory is 
not released until the program issues an SpmiExit subroutine call. 

void SpmiExit()
628 AIX 5L Practical Performance Tools and Tuning Guide



10.2.4  Basic layout of SPMI program
In this section, we will describe the basic layout of a SPMI program. To monitor 
the system using SPMI, we have to decide what kind of statistics (or metrics) to 
be monitored, define the statistics set, and run proper subroutines to get actual 
values for the defined sets from system. Finally, we have to print the retrieved 
values using appropriate subroutines. We use some pieces of codes from 
Source code, “spmi_dude.c” on page 679 and use those as sample. The basic 
layout of this code is illustrated in the Example 10-27. The complete source code 
will be provided as well.

Example 10-27   Basic layout of SPMI programs

main ()
{

/* Initialization stage. Prepare shared memory area for program */
SpmiInit()
/*Define monitoring statistic set*/
SpmiCreateStatSet()
SpmiAddSetStat()
/*Retrieve monitoring data*/
SpmiGetStatSet()
/*Traverse output data structure*/
SpmiFirstVal () or SpmiNextVal()
SpmiGetValue()
/*Termination stage. Decrease the usage count for shared memory*/
SpmiExit()

}

Decide which statistics (or metric) to be monitored
SPMI provides almost every performance items that can be monitored in AIX. 
Appendix A, “Spmi_traverse.c” on page 691 provides a complete list of available 
statistics. You can refer to the output of this program and choose the statistics 
you want to monitor (see Example 10-35 on page 636).

In this case, we choose some statistics and it is listed in following 
Example 10-28. This list is assigned to the string array stat[].

Example 10-28   Statistics to be monitored

char *stats[] = {
"CPU/glwait",
"CPU/glidle",
"CPU/glkern",
"CPU/gluser",
"Mem/Virt/scan",
"Mem/Virt/steal",
"PagSp/%totalfree",
 Chapter 10. Performance monitoring APIs 629



"PagSp/%totalused",
"Mem/Virt/pagein",
"Mem/Virt/pageout",
"Mem/Virt/pgspgin",
"Mem/Virt/pgspgout",
"Proc/runque",
"Proc/swpque",
NULL
};

Define statistics set
With the statistics decided in the previous example, you need to define a 
structure for the set of statistics (statset). A SpmiStatSet structure defined in 
Spmidef.h can be used for this purpose. With this declared structure SPMIset, 
statistics from string array stat[] will be added by using SpmiPathAddSetStat() 
subroutine.

Example 10-29   Defining SpmiStatSet structure and adding statistics

struct SpmiStatSet*SPMIset = NULL;
...(lines omitted)...

if ((SPMIset = SpmiCreateStatSet()) == NULL) {
SPMIerror("SpmiCreateStatSet");
exit(SpmiErrno);

}
/*
 * For each metric we want to monitor we need to add it to
 * our statistical collection set.
 */

    for (i = 0; stats[i] != NULL; i++) {
if (SpmiPathAddSetStat(SPMIset,stats[i],SPMIcxhdl) == NULL) {

SPMIerror("SpmiPathAddSetStats");
exit(SpmiErrno);

}

Run the subroutine to collect data
With declared statset SPMIset, you can run SpmiGetStatset () subroutine. At this 
point of subroutine, you will retrieve the actual performance data.

Example 10-30   Retrieve performance data using SpmiGetStatSet () subroutine

if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {
630 AIX 5L Practical Performance Tools and Tuning Guide



Print out value from the result data structure
Example 10-31 shows the data structure resulted from running the 
SpmiGetStatSet() subroutine.

Example 10-31   The data structure result of SpmiGetStatSet() subroutine

struct SpmiStatVals*SPMIval = NULL;
struct SpmiStat*SPMIstat = NULL;

....(lines omitted)....
SPMIval = SpmiFirstVals(SPMIset);
do {

if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
SPMIerror("SpmiGetValue");
exit(SpmiErrno);

}
printf("%5.0f ",statvalue);
PDEBUG("\t%s\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat, 0));

/*
 * Finally we get the next statistic in our data hierarchy.
 * And if this is NULL, then we have retrieved all our statistics.
 */
} while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));

printf("\n");

The execution result of this subroutine (Example 10-30 on page 630) is stored in 
the special SPMI data structure. In this data structure, SPMIStatSet structure 
plays a role of anchor point. This means the structure itself doesn’t contain any 
data but you can find structures containing actually data by using proper 
subroutines. Figure 10-5 explains the relationship between the data structure 
and the subroutines which are used for traversing this data structure. In 
Figure 10-5, the system-defined keywords for the data structure and subroutines 
are in italic font and the keywords for the declared variables are using default 
(normal) font.
 Chapter 10. Performance monitoring APIs 631



Figure 10-5   Traversing the data structure which is result of SpmiGetStatSet() subroutine

You can find complete source code of this example in Appendix A, in 
“spmi_dude.c” on page 679. Detailed execution results for this program are 
covered in next section.

10.2.5  SPMI examples
In this section we present three examples (programs) that use the SPMI API: 

� “Hard-coded metrics” on page 632 uses a hard-coded array to store the 
hierarchical names of the metrics we want to collect statistics about.

� “Reading metrics from a file” on page 633 reads the metrics from a file.

� “Traversing and displaying the SPMI hierarchy” on page 635 traverses the 
SPMI hierarchy and displays all metrics.

Hard-coded metrics
This example uses the spmi_dude program given in Appendix A, in 
“spmi_dude.c” on page 679. This shows how the SPMI environment can be set 
up to collect and display statistics. Example 10-32 contains a sample output 
created by the spmi_dude program.

Example 10-32   Sample output from the spmi_dude program

#spmi_dude 1 10
swpq  runq pgspo pgspi pgout  pgin %used %free    fr    sr    us    sy    id    wa
    0     0    39    61     0     0     0     0     0     0    17     1    77     5
    0     2    39    61     0     0     0     0     0     0    50     0    50     0

SPMIVal
:SpmiStatVals

SPMIVal
:SpmiStatVals

SPMIVal
:SpmiStatVals

printf ("...", statvalue:float)

SpmiGetStatSet ()

SpmiNextVal () SpmiNextVal ()

SpmiGettValue ()SpmiGetValue () SpmiGetValue ()

printf ("...", statvalue:float) printf ("...", statvalue:float)

SPMISet
:SpmiStatSet

NULL

SpmiFirstVal ()
632 AIX 5L Practical Performance Tools and Tuning Guide



    0     2    39    61     0     0     0     0     0     0    50     0    49     0
    0     2    39    61     0     0     0    11     0     0    50     0    49     1
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    49     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0

Table 10-2 explains the values shown in the columns in the previous output for 
the spmi_dude program.

Table 10-2   Column explanation

Reading metrics from a file
The program in Appendix A, “spmi_file.c” on page 689 shows how to set up the 
SPMI environment to collect and display statistics after reading the SPMI metrics 
from a file. Example 10-33 displays a sample output created by the spmi_file 
program shown in the previous example.

Column SPMI metric SPMI description

wa CPU/glwait System-wide time waiting for I/O (percent)

id CPU/glidle System-wide time CPU is idle (percent)

sy CPU/glkern System-wide time executing in kernel mode 
(percent)

us CPU/gluser System-wide time executing in user mode 
(percent)

fr Mem/Virt/scan Physical memory 4K frames examined by VMM

fr Mem/Virt/steal Physical memory 4K frames stolen by VMM

%free PagSp/%totalfree Total free disk paging space (percent)

%used PagSp/%totalused Total used disk paging space (percent)

pgin Mem/Virt/pagein 4K pages read by VMM

pgout Mem/Virt/pageout 4K pages written by VMM

pgspi Mem/Virt/pgspgin 4K pages read from paging space by VMM

pgspo Mem/Virt/pgspgout 4K pages written to paging space by VMM

runq Proc/runque Average count of processes that are waiting for the 
CPU

swpq Proc/swpque Average count of processes waiting to be paged in
 Chapter 10. Performance monitoring APIs 633



Example 10-33   Sample output from the spmi_file program 

# spmi_file|pr -t -2
IP/NetIF/en0/oerror      : 0        Mem/Virt/pgspgin         : 0
IP/NetIF/en0/ooctet_kb   : 0        Mem/Virt/pageout         : 0
IP/NetIF/en0/opacket     : 0        Mem/Virt/pagein          : 0
IP/NetIF/en0/ierror      : 0        PagSp/pgspgout           : 0
IP/NetIF/en0/ioctet_kb   : 0        PagSp/pgspgin            : 0
IP/NetIF/en0/ipacket     : 0        PagSp/%totalused         : 39
SysIO/writech_kb         : 0        PagSp/%totalfree         : 61
SysIO/readch_kb          : 0        PagSp/totalfree          : 320219
Syscall/fork             : 0        PagSp/totalsize          : 524288
Syscall/total            : 0        Mem/Real/numclient       : 261066
Proc/ksched              : 0        Mem/Real/numlocal        : 935329
Proc/swpocc              : 88272    Mem/Real/comp            : 536802
Proc/swpque              : 0        Mem/Real/noncomp         : 659593
Proc/runocc              : 182151   Mem/Real/numfrb          : 900748
Proc/runque              : 0        Mem/Real/%clnt           : 13
Proc/pswitch             : 0        Mem/Real/%local          : 57
Mem/Kmem/mbuf/blocks     : 0        Mem/Real/%noncomp        : 32
Mem/Kmem/mbuf/memmax     : 2309     Mem/Real/%comp           : 26
Mem/Kmem/mbuf/memuse     : 2305     Mem/Real/%pinned         : 7
Mem/Kmem/mbuf/failures   : 0        Mem/Real/%free           : 43
Mem/Kmem/mbuf/calls      : 0        Mem/Real/size            : 2097143
Mem/Kmem/mbuf/inuse      : 2052     CPU/glidle               : 77
Mem/Virt/steal           : 0        CPU/glwait               : 5
Mem/Virt/scan            : 0        CPU/glkern               : 1
Mem/Virt/pgspgout        : 0        CPU/gluser               : 17

The output was formatted with the pr command so that the columns created by 
the spmi_file program would fit on one screen. The left column shows the SPMI 
hierarchy name, and the value to the right of the separating colon (:) is the 
statistical value. The output Mem/Real/size shows the amount of real memory on 
the system. The value of the metric, in this case 2097143, is the number of 4 KB 
memory pages on the system (8 GB).

Example 10-34 shows the input file used with the spmi_file program to create 
the output presented in Example 10-33 on page 634.

Example 10-34   Sample input file SPMI_METRICS

CPU/gluser             
CPU/glkern             
CPU/glwait             
CPU/glidle             
Mem/Real/size          
Mem/Real/%free         
Mem/Real/%pinned       
Mem/Real/%comp         
634 AIX 5L Practical Performance Tools and Tuning Guide



Mem/Real/%noncomp      
Mem/Real/%local        
Mem/Real/%clnt         
PagSp/totalsize        
PagSp/totalfree        
PagSp/%totalfree       
PagSp/%totalused       
PagSp/pgspgin          
PagSp/pgspgout         
Mem/Real/size          
Mem/Real/numfrb        
Mem/Real/noncomp       
Mem/Real/comp          
Mem/Real/numlocal      
Mem/Real/numclient     
Mem/Virt/pagein        
Mem/Virt/pageout       
Mem/Virt/pgspgin       
Mem/Virt/pgspgout      
Mem/Virt/scan          
Mem/Virt/steal         
Mem/Kmem/mbuf/inuse    
Mem/Kmem/mbuf/calls    
Mem/Kmem/mbuf/failures 
Mem/Kmem/mbuf/memuse   
Mem/Kmem/mbuf/memmax   
Mem/Kmem/mbuf/blocks   
Proc/pswitch           
Proc/runque            
Proc/runocc            
Proc/swpque            
Proc/swpocc            
Proc/ksched 
Syscall/total
Syscall/fork
SysIO/readch_kb
SysIO/writech_kb
IP/NetIF/en0/ipacket
IP/NetIF/en0/ioctet_kb
IP/NetIF/en0/ierror
IP/NetIF/en0/opacket
IP/NetIF/en0/ooctet_kb
IP/NetIF/en0/oerror

Traversing and displaying the SPMI hierarchy
The program in Appendix A, “Spmi_traverse.c” on page 691, shows how to set 
up the SPMI environment, and then how to traverse and display all metrics found 
 Chapter 10. Performance monitoring APIs 635



in the SPMI hierarchy. Example 10-35 shows the sample output created by the 
spmi_traverse program.

Example 10-35   Sample output from the spmi_traverse program

CPU/gluser:Systemwide time executing in user mode (percent):Float/Quantity:0-100
CPU/glkern:Systemwide time executing in kernel mode (percent):Float/Quantity:0-100
CPU/glwait:Systemwide time waiting for IO (percent):Float/Quantity:0-100
CPU/glidle:Systemwide time CPU is idle (percent):Float/Quantity:0-100
CPU/gluticks:Systemwide CPU ticks executing in user mode:Long/Counter:0-100
CPU/glkticks:Systemwide CPU ticks executing in kernel mode:Long/Counter:0-100
CPU/glwticks:Systemwide CPU ticks waiting for IO:Long/Counter:0-100
CPU/gliticks:Systemwide CPU ticks while CPU is idle:Long/Counter:0-100
CPU/cpu0/user:Time executing in user mode (percent):Float/Quantity:0-100
CPU/cpu0/kern:Time executing in kernel mode (percent):Float/Quantity:0-100
CPU/cpu0/wait:Time waiting for IO (percent):Float/Quantity:0-100
CPU/cpu0/idle:Time CPU is idle (percent):Float/Quantity:0-100
CPU/cpu0/uticks:CPU ticks executing in user mode:Long/Counter:0-100
CPU/cpu0/kticks:CPU ticks executing in kernel mode:Long/Counter:0-100
CPU/cpu0/wticks:CPU ticks waiting for IO:Long/Counter:0-100
CPU/cpu0/iticks:CPU ticks while CPU is idle:Long/Counter:0-100
...(lines omitted)...
NFS/V3Svr/mknod:NFS server mknode creation requests:Long/Counter:0-200
NFS/V3Svr/remove:NFS server file removal requests:Long/Counter:0-200
NFS/V3Svr/rmdir:NFS server directory removal requests:Long/Counter:0-200
NFS/V3Svr/rename:NFS server file rename requests:Long/Counter:0-200
NFS/V3Svr/link:NFS server link creation requests:Long/Counter:0-200
NFS/V3Svr/readdir:NFS server read-directory requests:Long/Counter:0-200
NFS/V3Svr/readdir+:NFS server read-directory plus requests:Long/Counter:0-200
NFS/V3Svr/fsstat:NFS server file stat requests:Long/Counter:0-200
NFS/V3Svr/fsinfo:NFS server file info requests:Long/Counter:0-200
NFS/V3Svr/pathconf:NFS server path configure requests:Long/Counter:0-200
NFS/V3Svr/commit:NFS server commit requests:Long/Counter:0-200
Spmi/users:Count of common shared memory users:Long/Quantity:0-10
Spmi/statsets:Count of defined StatSets:Long/Quantity:0-50
Spmi/ddscount:Count of active dynamic data suppliers:Long/Quantity:0-10
Spmi/consumers:Count of active data consumers:Long/Quantity:0-10
Spmi/comused:kbytes of common shared memory in use:Long/Quantity:0-200
Spmi/hotsets:Count of defined HotSets:Long/Quantity:0-50

Makefile for SPMI
Example 10-36 shows what a makefile would look like for all of the programs 
described above.

Example 10-36   Makefile

# nl Makefile
     1  CC=cc
     2  CFLAGS=-g
636 AIX 5L Practical Performance Tools and Tuning Guide



     3  SPMI_LIBS=-lSpmi

     4  SPMI_PROGRAMS = spmi_dude spmi_file spmi_traverse

     5  all:    $(SPMI_PROGRAMS)

     6  $(SPMI_PROGRAMS):       $$@.c
     7          $(CC) $(CFLAGS) $(LIBS) $(SPMI_LIBS) $? -o $@

Lines 1-3 are variable declarations that make changing compile parameters 
easier. Line 4 declares a variable for the programs (SPMI_PROGRAMS). Line 6 
declares that all programs that are targets (declared on line 4) will have a source 
that they depend on (appended .c to each target). Line 7 is the compile 
statement itself. If the program spmi_dude was the target (and the source file was 
changed since the last created target), then the line would be parsed to look like 
the following:

cc -g -lSpmi spmi_dude.c -o spmi_dude

Line 5 declares a target named all so that if we had other target:source lines 
with compile statements, they could be included as sources on this line. Because 
this line is the first non-declarative line in the Makefile, just typing make in the 
same directory would evaluate it and thus compile everything that has changed 
sources since the last time they were compiled.

10.3  Performance Monitor API
The Performance Monitor (PM) Application Programming Interface (API) is a 
collection of C programming language subroutines that provide access to some 
of the counting facilities of the Performance Monitor features included in selected 
IBM microprocessors.

The Performance Monitor API and the events available on each of the supported 
processors are separated by design. The events available are different on each 
processor. However, none of the API calls depend on the availability or status of 
any of the events.

The Performance Monitor API includes a set of:

� System level APIs to enable counting of the activity of a whole machine, or of 
a set of processes with a common ancestor.

� First-party kernel thread level APIs to enable threads running in 1:1 mode to 
count their own activity.

� Third-party kernel thread level APIs to enable a debugger to count the activity 
of target threads running in 1:1 mode.
 Chapter 10. Performance monitoring APIs 637



The Performance Monitor API subroutines reside in the libpmapi.a library in the 
/usr/pmapi/lib directory. The libpmapi.a library is linked to from /usr/lib (or /lib, 
which is a symbolic link to /usr/lib) and is part of the bos.pmapi.lib fileset, which is 
installable from the AIX base installation media.

The /usr/include/pmapi.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is also part of the bos.pmapi.lib fileset.

Sample source code is available with the distribution, and it resides in the 
/usr/samples/pmapi directory.

The tables describing different events for different processors reside in the 
/usr/pmapi/lib directory. To extract the events available on the specific processor, 
use the API subroutine that extracts this information at run time. Refer to 
Example 10-39 on page 641.

The documentation for the subroutines can be found in the AIX 5L Version 5.3 
Technical Reference: Base Operating System and Extensions, Volume 1, 
SC23-4913, and the RS/6000 Scientific and Technical Computing: POWER3 
Introduction and Tuning Guide, SG24-5155.

10.3.1  Performance Monitor data access
Hardware counters are extra logic inserted in the processor to count specific 
events. They are updated at every CPU cycle, and can count metrics such as the 
number of cycles, instructions, floating-point and fixed-point operations, loads 
and stores of data, and delays associated with cache. Hardware counters are 
non-intrusive, are very accurate, and have a low overhead, but they are specific 
for each processor. The metrics can be useful if you want to determine such 
statistics as instructions per cycle and cache hit rates.

Performance Monitor contexts are extensions to the regular processor and 
thread contexts. They include one 64-bit counter per hardware counter and a set 
of control words. The control words define what events get counted and when 
counting is on or off. Because the monitor cannot count every event 
simultaneously, alternating the counted events can provide more data. 

The thread and thread group Performance Monitor contexts are independent. 
This enables each thread or group of threads on a system to program 
themselves to be counted with their own list of events. In other words, except 
when using the system level API, there is no requirement that all threads count 
the same events.

Only events categorized as verified (PM_VERIFIED) have gone through full 
verification and can be trusted to count accurately. Events categorized as caveat 
638 AIX 5L Practical Performance Tools and Tuning Guide



(PM_CAVEAT) have been verified but are accurate only within the limitations 
documented in the event description (returned by pm_init). Events categorized 
as unverified (PM_UNVERIFIED) have undefined accuracy.

For more detailed information about the Performance Monitoring API, review the 
following documentation:

� AIX 5L Version 5.3 General Programming Concepts, SC23-4896

� AIX 5L Version 5.3 Technical Reference: Base Operating System and 
Extensions, Volume 1, SC23-4913

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155

Also, refer to the following Web site:

http://www.austin.ibm.com/tech/monitor.html

10.3.2  Compiling and linking
After writing a C program that uses the PM API, and including the pmapi.h and 
sys/types.h header file, run cc on it specifying that you want to link to the 
libpmapi.a library, as shown in Example 10-37.

Example 10-37   Compile and link with libpmapi.a

# cc -lpmapi -o pmapi_program pmapi_program.c

This creates the pmapi_program file from the pmapi_program.c source program, 
linking it with the libpmapi.a library. Then pmapi_program can be run as a normal 
command.

10.3.3  Subroutines
The following subroutines constitute the basic Performance Monitor API. Each 
subroutine has four additional variations for first-party kernel thread or group 

Note: Use caution with unverified events. The PM API software is essentially 
providing a service to read hardware registers, which may or may not have 
any meaningful content.

Note: If you create a thread-based monitoring application (using the threads 
library), the pthread.h header file must be the first included file of each source 
file. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or 
the cc_r compiler used. In this case, the flag is automatically set.
 Chapter 10. Performance monitoring APIs 639

http://www.austin.ibm.com/tech/monitor.html


counting, and third-party kernel thread or group counting. These variations have 
the suffixes _group, _mygroup, _mythread, and _thread:

pm_init Initializes the PM API; always called first.
pm_cycles Measures processor speed in cycles per second.
pm_error Decodes PM API error codes. 
pm_set_program Sets system-wide PM programmation. 
pm_get_program Retrieves system-wide PM settings. 
pm_delete_program Deletes previously established system-wide PM 

settings. 
pm_start Starts system-wide PM counting.
pm_stop Stops system-wide PM counting. 
pm_get_data Returns system-wide PM data. 
pm_reset_data Resets system-wide PM data. 

For a detailed description of the subroutines, read the AIX 5L Version 5.3 
Technical Reference: Base Operating System and Extensions, Volume 1, 
SC23-4913.

10.3.4  PM API examples
A program using the PM API usually consists of three parts:

� Initialization
� Monitoring
� Reporting

Example 10-38 shows the basic layout of a program that uses the PM API.

Example 10-38   Basic layout of PM API programs

main ()
{
/* code that is not monitored */

pm_init
pm_set_program
pm_start

/* code that is monitored */
pm_stop
pm_get_data

/* code that is not monitored */
pm_delete_program
printf(...);

}

640 AIX 5L Practical Performance Tools and Tuning Guide



The sample program in Example 10-39 traverses the available event list (read at 
runtime from the .evs files in /usr/pmapi/lib directory), and displays all events on 
the system.

Example 10-39   Sample pmapi_list.c program for displaying available events

1 #include <sys/types.h>
2 #include <pmapi.h>

3 main(int argc, char *argv[])
4 {
5     static pm_info_t    pminfo;
6     static pm_events_t  *pmeventp;
7     static int          i,j,rc;

8     if ((rc = pm_init(PM_VERIFIED|PM_UNVERIFIED|PM_CAVEAT, &pminfo)) > 0) {
9         pm_error("pm_init", rc);
10         exit(-1);
11     }

12     for (i = 0; i < pminfo.maxpmcs; i++) {
13         pmeventp = pminfo.list_events[i];
14         for (j = 0; j < pminfo.maxevents[i]; j++, pmeventp++) {
15             printf("proc name  : %s\n",pminfo.proc_name);
16             printf("event id   : %d\n",pmeventp->event_id);
17             printf("status     : %c\n",pmeventp->status);
18             printf("threshold  : %c\n",pmeventp->threshold);
19             printf("short name : %s\n",pmeventp->short_name);
20             printf("long name  : %s\n",pmeventp->long_name);
21             printf("description: %s\n",pmeventp->description);
22         }
23     }
24 }

Example 10-40 shows the sample output from the pmapi_list program shown in 
Example 10-39 on page 641.

Example 10-40   Sample output from the sample pmapi_list program

...(lines omitted)...

proc name  : POWER4
event id   : 1
status     : u
threshold  : g
short name : PM_BRQ_FULL_CYC
long name  : Cycles branch queue full
description: The ISU sends a signal indicating that the issue queue that feeds 
the ifu br unit cannot accept any more group (queue is full of groups).
 Chapter 10. Performance monitoring APIs 641



...(lines omitted)...
proc name  : POWER4
event id   : 19
status     : v
threshold  : g
short name : PM_LSU0_LDF
long name  : LSU0 executed Floating Point load instruction
description: A floating point load was executed from LSU unit 0

proc name  : POWER4
event id   : 20
status     : v
threshold  : g
short name : PM_LSU1_LDF
long name  : LSU1 executed Floating Point load instruction
description: A floating point load was executed from LSU unit 1
....(lines omitted).....

proc name  : POWER4
event id   : 42
status     : v
threshold  : g
short name : PM_L2SC_ST_REQ
long name  : L2 slice C store requests
description: A store request as seen at the L2 directory has been made from the 
core. Stores are counted after gathering in the L2 store queues. The event is 
provided on each of the three slices A,B, and C.

proc name  : POWER4
event id   : 43
status     : v
threshold  : g
short name : PM_L2_PREF
long name  : L2 cache prefetches
description: A request to prefetch data into L2 was made
.....( lines mitted).....
proc name  : POWER4
event id   : 78
status     : v
threshold  : g
short name : PM_INST_FROM_L35
long name  : Instructions fetched from L3.5
description: An instruction fetch group was fetched from the L3 of another 
module. Fetch Groups can contain up to 8 instructions
.....( lines omitted)...............

proc name  : POWER4
event id   : 80
status     : v
642 AIX 5L Practical Performance Tools and Tuning Guide



threshold  : g
short name : PM_GRP_DISP_REJECT
long name  : Group dispatch rejected
description: A group that previously attempted dispatch was rejected.

proc name  : POWER4
event id   : 81
status     : c
threshold  : g
short name : PM_INST_CMPL
long name  : Instructions completed
description: Number of Eligible Instructions that completed.

.... (line omitted) ....

The output displays events defined on POWER4 architecture. The status field 
has the following values:

v verified 
u unverified 
c caveat char 

The threshold field has the following values:

y thresholdable 
g group-only 
G thresholdable group-only 

For more examples of using Performance Monitor APIs, see AIX 5L Version 5.3 
Performance Tools Guide and Reference, SC23-4906. Functional sample codes 
are available in the /usr/samples/pmapi directory.

HPM ToolKit is a Hardware Performance Monitor tool developed by IBM 
Research for performance measurements of applications running on IBM 
POWER3™ and POWER4 systems. Its implementation is based upon PM API. 
The toolkit can be downloaded from the following IBM site:

http://www.alphaworks.ibm.com/tech/hpmtoolkit

10.3.5  PMAPI M:N pthreads support
AIX Version 5.3 start to support M:N threading Model. Under M:N threading 
model, M user threads are mapped to N kernel threads, with M typically being 
considerably bigger than N to allow large numbers of pthreads to run. Making 
PMAPI calls from a program running in this mode was previously not supported.

The PMAPI library has been updated by internal changes to handle the M:N 
thread model, as the current unchanged interfaces simply work in M:N mode. 
 Chapter 10. Performance monitoring APIs 643

http://www.alphaworks.ibm.com/tech/hpmtoolkit


The only significant change is for third party API callers, for example debuggers, 
where new interfaces with pid, tid, and ptid must be used.

10.4  Miscellaneous performance monitoring subroutines
In this section we describe the use of some subroutines that are available to 
programmers from different libraries. The documentation for the subroutines can 
be found in the AIX 5L Version 5.3 Technical Reference: Base Operating System 
and Extensions, Volume 1, SC23-4913, and AIX 5L Version 5.3 Technical 
Reference: Base Operating System and Extensions, Volume 2, SC23-4914.

10.4.1  Compiling and linking
Many of the subroutines described in this section require different libraries to be 
linked with the program. For each subroutine that requires a specific library this is 
mentioned. The general syntax for compiling and linking is:

cc -lLIBRARY -o program program.c

This creates the program executable file from the program.c source program, 
linking it with the libLIBRARY.a library. Then program can be run as a normal 
command.

10.4.2  Subroutines
The following subroutines can be used to obtain statistical metrics:

sys_parm Provides a service for examining or setting kernel 
run-time tunable parameters.

vmgetinfo Retrieves Virtual Memory Manager (VMM) information.

swapqry Returns paging device status.

rstat Gets performance data from remote kernels.

getprocs Gets process table entries.

wlm_get_info Reads the characteristics of superclasses or subclasses.

wlm_get_bio_stats Reads the WLM disk I/O statistics per class or per device.

sys_parm
The sys_parm subroutine is used to query and/or customize run-time operating 
system parameters. This is a replacement service for sysconfig with respect to 
querying or changing information in the var structure. 
644 AIX 5L Practical Performance Tools and Tuning Guide



Syntax
int cmd;
int parmflag;
struct vario *parmp;

int sys_parm ( cmd, parmflag, parmp)

Parameters
cmd  Specifies the SYSP_GET or SYSP_SET function.  

parmflag  Specifies the parameter upon which the function will act.  

parmp  Points to the user-specified structure from which or to 
which the system parameter value is copied. parmp points 
to a structure of type vario as defined in var.h.  

Library
libc.a

Examples
The code in Example 10-41 uses the vario structure to obtain information about 
the run-time operating system parameters.

Example 10-41   Using sys_param

#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
sys_param_()
{
    struct vario    vario;

    if (!sys_parm(SYSP_GET,SYSP_V_BUFHW,&vario))
        printf("v_bufhw (buffer pool high-water mark)                 : 
%lld\n",vario.v.v_bufhw.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MBUFHW,&vario))
        printf("v_mbufhw (max. mbufs high water mark)                 : %lld\n", 
vario.v.v_mbufhw.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MAXUP,&vario))
        printf("v_maxup (max. # of user processes)                    : %lld\n", 
vario.v.v_maxup.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MAXPOUT,&vario))
        printf("v_maxpout (# of file pageouts at which waiting occurs): %lld\n", 
vario.v.v_maxpout.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MINPOUT,&vario))
        printf("v_minpout (# of file pageout at which ready occurs)   : %lld\n", 
vario.v.v_minpout.value);
    if (!sys_parm(SYSP_GET,SYSP_V_IOSTRUN,&vario))
 Chapter 10. Performance monitoring APIs 645



        printf("v_iostrun (enable disk i/o history)                   : %d\n", 
vario.v.v_iostrun.value);
    if (!sys_parm(SYSP_GET,SYSP_V_LEASTPRIV,&vario))
        printf("v_leastpriv (least privilege enablement)              : %d\n", 
vario.v.v_leastpriv.value);
    if (!sys_parm(SYSP_GET,SYSP_V_AUTOST,&vario))
        printf("v_autost (automatic boot after halt)                  : %d\n", 
vario.v.v_autost.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MEMSCRUB,&vario))
        printf("v_memscrub (memory scrubbing enabled)                 : %d\n", 
vario.v.v_memscrub.value);
    if (!sys_parm(SYSP_GET,SYSP_V_LOCK,&vario))
        printf("v_lock (# entries in record lock table)               : %lld\n", 
vario.v.v_lock.value);
    if (!sys_parm(SYSP_GET,SYSP_V_FILE,&vario))
        printf("v_file (# entries in open file table)                 : %lld\n", 
vario.v.v_file.value);
    if (!sys_parm(SYSP_GET,SYSP_V_PROC,&vario))
        printf("v_proc (max # of system processes)                    : %lld\n", 
vario.v.v_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_VE_PROC,&vario))
        printf("ve_proc (process table high water mark (64 Krnl))     : %llu\n", 
vario.v.ve_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_V_CLIST,&vario))
        printf("v_clist (# of cblocks in cblock array)                : %lld\n", 
vario.v.v_clist.value);
    if (!sys_parm(SYSP_GET,SYSP_V_THREAD,&vario))
        printf("v_thread (max # of system threads)                    : %lld\n", 
vario.v.v_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_VE_THREAD,&vario))
        printf("ve_thread (thread table high water mark (64 Krnl))    : %llu\n", 
vario.v.ve_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_VB_PROC,&vario))
        printf("vb_proc (beginning of process table (64 Krnl))        : %llu\n", 
vario.v.vb_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_VB_THREAD,&vario))
        printf("vb_thread (beginning of thread table (64 Krnl))       : %llu\n", 
vario.v.vb_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario))
        printf("v_ncpus (number of active CPUs)                       : %d\n", 
vario.v.v_ncpus.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCPUS_CFG,&vario))
        printf("v_ncpus_cfg (number of processor configured)          : %d\n", 
vario.v.v_ncpus_cfg.value);
    if (!sys_parm(SYSP_GET,SYSP_V_FULLCORE,&vario))
        printf("v_fullcore (full core enabled (true/false))           : %d\n", 
vario.v.v_fullcore.value);
    if (!sys_parm(SYSP_GET,SYSP_V_INITLVL,&vario))
646 AIX 5L Practical Performance Tools and Tuning Guide



        printf("v_initlvl (init level)                                : %s\n", 
vario.v.v_initlvl.value);
    if (!sys_parm(SYSP_GET,SYSP_V_COREFORMAT,&vario))
        printf("v_coreformat (Core File Format (64 Krnl))             : %s\n", 
vario.v.v_coreformat.value);
    if (!sys_parm(SYSP_GET,SYSP_V_XMGC,&vario))
        printf("v_xmgc (xmalloc garbage collect delay)                : %d\n", 
vario.v.v_xmgc.value);
    if (!sys_parm(SYSP_GET,SYSP_V_CPUGUARD,&vario))
        printf("v_cpuguard (CPU Guarding Mode (true/false))           : %d\n", 
vario.v.v_cpuguard.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCARGS,&vario))
        printf("v_ncargs (length of args,env for exec())              : %d\n", 
vario.v.v_ncargs.value);
}
main()                 
{ 
sys_param_();
} 

Example 10-42 shows the output from the program in previous example.

Example 10-42   Sample output from the sys_param subroutine program

v_bufhw (buffer pool high-water mark)                 : 20        
v_mbufhw (max. mbufs high water mark)                 : 0         
v_maxup (max. # of user processes)                    : 1000      
v_maxpout (# of file pageouts at which waiting occurs): 0         
v_minpout (# of file pageout at which ready occurs)   : 0         
v_iostrun (enable disk i/o history)                   : 1         
v_leastpriv (least privilege enablement)              : 0         
v_autost (automatic boot after halt)                  : 0         
v_memscrub (memory scrubbing enabled)                 : 0         
v_lock (# entries in record lock table)               : 200       
v_file (# entries in open file table)                 : 511       
v_proc (max # of system processes)                    : 262144    
ve_proc (process table high water mark (64 Krnl))     : 3791704576
v_clist (# of cblocks in cblock array)                : 16384     
v_thread (max # of system threads)                    : 524288    
ve_thread (thread table high water mark (64 Krnl))    : 3925887872
vb_proc (beginning of process table (64 Krnl))        : 3791650816
vb_thread (beginning of thread table (64 Krnl))       : 3925868544
v_ncpus (number of active CPUs)                       : 4         
v_ncpus_cfg (number of processor configured)          : 4         
v_fullcore (full core enabled (true/false))           : 0         
v_initlvl (init level)                                :           
v_coreformat (Core File Format (64 Krnl))             :           
v_xmgc (xmalloc garbage collect delay)                : 3000      
v_cpuguard (CPU Guarding Mode (true/false))           : 0         
 Chapter 10. Performance monitoring APIs 647



v_ncargs (length of args,env for exec())              : 6 

vmgetinfo
The vmgetinfo subroutine returns the current value of certain Virtual Memory 
Manager parameters. 

Syntax
void *out;
int command;
int arg;

int vmgetinfo(out, command, arg) 

Parameters
arg  Additional parameter that depends on the command parameter.  

command  Specifies which information should be returned. The command 
parameter has the following valid value: VMINFO 

out  Specifies the address where VMM information should be returned.  

Library
libc.a

Example
The code in Example 10-43 uses the vminfo structure to obtain information about 
certain VMM parameters.

Example 10-43   Using vmgetinfo

#include <stdio.h>
#include <stdlib.h>
#include <sys/vminfo.h>                                                                                   
vmgetinfo_()                                                                                              
{                                                                                                         
    struct vminfo   vminfo;                                                                               
                                                                                                          
    if (!vmgetinfo(&vminfo,VMINFO,sizeof(vminfo))) {                                                      
        printf("vminfo.pgexct (count of page faults)                        : 
%lld\n",vminfo.pgexct);     
        printf("vminfo.pgrclm (count of page reclaims)                      : 
%lld\n",vminfo.pgrclm);     
        printf("vminfo.lockexct (count of lockmisse)                        : 
%lld\n",vminfo.lockexct);   
        printf("vminfo.backtrks (count of backtracks)                       : 
%lld\n",vminfo.backtrks);   
        printf("vminfo.pageins (count of pages paged in)                    : 
%lld\n",vminfo.pageins);    
648 AIX 5L Practical Performance Tools and Tuning Guide



        printf("vminfo.pageouts (count of pages paged out)                  : 
%lld\n",vminfo.pageouts);   
        printf("vminfo.pgspgins (count of page ins from paging space)       : 
%lld\n",vminfo.pgspgins);   
        printf("vminfo.pgspgouts (count of page outs from paging space)     : 
%lld\n",vminfo.pgspgouts);  
        printf("vminfo.numsios (count of start I/Os)                        : 
%lld\n",vminfo.numsios);    
        printf("vminfo.numiodone (count of iodones)                         : 
%lld\n",vminfo.numiodone);  
        printf("vminfo.zerofills (count of zero filled pages)               : 
%lld\n",vminfo.zerofills);  
        printf("vminfo.exfills (count of exec filled pages)                 : 
%lld\n",vminfo.exfills);    
        printf("vminfo.scans (count of page scans by clock)                 : 
%lld\n",vminfo.scans);      
        printf("vminfo.cycles (count of clock hand cycles)                  : 
%lld\n",vminfo.cycles);     
        printf("vminfo.pgsteals (count of page steals)                      : 
%lld\n",vminfo.pgsteals);   
        printf("vminfo.freewts (count of free frame waits)                  : 
%lld\n",vminfo.freewts);    
        printf("vminfo.extendwts (count of extend XPT waits)                : 
%lld\n",vminfo.extendwts);  
        printf("vminfo.pendiowts (count of pending I/O waits)               : 
%lld\n",vminfo.pendiowts);  
        printf("vminfo.pings (count of ping-pongs: source => alias)         : 
%lld\n",vminfo.pings);      
        printf("vminfo.pangs (count of ping-pongs):alias => alias)          : 
%lld\n",vminfo.pangs);      
        printf("vminfo.pongs (count of ping-pongs):alias => source)         : 
%lld\n",vminfo.pongs);      
        printf("vminfo.dpongs (count of ping-pongs):alias page delete)      : 
%lld\n",vminfo.dpongs);     
        printf("vminfo.wpongs (count of ping-pongs):alias page writes)      : 
%lld\n",vminfo.wpongs);     
        printf("vminfo.cachef (count of ping-pong cache flushes)            : 
%lld\n",vminfo.cachef);     
        printf("vminfo.cachei (count of ping-pong cache invalidates)        : 
%lld\n",vminfo.cachei);     
        printf("vminfo.numfrb (number of pages on free list)                : 
%lld\n",vminfo.numfrb);     
        printf("vminfo.numclient (number of client frames)                  : 
%lld\n",vminfo.numclient);  
        printf("vminfo.numcompress (no of frames in compressed segments)    : 
%lld\n",vminfo.numcompress);
        printf("vminfo.numperm (number frames non-working segments)         : 
%lld\n",vminfo.numperm);    
 Chapter 10. Performance monitoring APIs 649



        printf("vminfo.maxperm (max number of frames non-working)           : 
%lld\n",vminfo.maxperm);    
        printf("vminfo.memsizepgs (real memory size in 4K pages)            : 
%lld\n",vminfo.memsizepgs); 
        printf("vminfo.minperm (no fileonly page steals)                    : 
%lld\n",vminfo.minperm); 
        printf("vminfo.minfree (minimun pages free list (fblru))            : 
%lld\n",vminfo.minfree);
        printf("vminfo.maxfree (maxfree pages free list (fblru))            : 
%lld\n",vminfo.maxfree);
        printf("vminfo.maxclient (max number of client frames)              : 
%lld\n",vminfo.maxclient);
        printf("vminfo.rpgcnt[0] (repaging cnt)                             : 
%lld\n",vminfo.rpgcnt[0]);
        printf("vminfo.rpgcnt[1] (repaging cnt)                             : 
%lld\n",vminfo.rpgcnt[1]);
        printf("vminfo.numpout (number of fblru page-outs)                  : 
%lld\n",vminfo.numpout);
        printf("vminfo.numremote (number of fblru remote page-outs)         : 
%lld\n",vminfo.numremote);
        printf("vminfo.numwseguse (count of pages in use for working seg)   : 
%lld\n",vminfo.numwseguse);
        printf("vminfo.numpseguse (count of pages in use for persistent seg): 
%lld\n",vminfo.numpseguse);
        printf("vminfo.numclseguse (count of pages in use for client seg)   : 
%lld\n",vminfo.numclseguse);
        printf("vminfo.numwsegpin (count of pages pinned for working seg)   : 
%lld\n",vminfo.numwsegpin);
        printf("vminfo.numpsegpin (count of pages pinned for persistent seg): 
%lld\n",vminfo.numpsegpin);
        printf("vminfo.numclsegpin (count of pages pinned for client seg)   : 
%lld\n",vminfo.numclsegpin);
        printf("vminfo.numvpages (accessed virtual pages)                   : 
%lld\n",vminfo.numvpages);
    }
}
main()                 
{ 
vmgetinfo_();        
} 

Example 10-44 shows sample output from the previous program.

Example 10-44   Sample output from the vmgetinfo subroutine program

vminfo.pgexct (count of page faults)                        : 14546505012618220
vminfo.pgrclm (count of page reclaims)                      : 536876590        
vminfo.lockexct (count of lockmisses)                        : 536876658        
vminfo.backtrks (count of backtracks)                       : 120109297309366  
650 AIX 5L Practical Performance Tools and Tuning Guide



vminfo.pageins (count of pages paged in)                    : 2014365968504570 
vminfo.pageouts (count of pages paged out)                  : 1418138608473918 
vminfo.pgspgins (count of page ins from paging space)       : 3805877901186    
vminfo.pgspgouts (count of page outs from paging space)     : 10523206752198   
vminfo.numsios (count of start I/Os)                        : 3372769634949130 
vminfo.numiodone (count of iodones)                         : 1953278648653902 
vminfo.zerofills (count of zero filled pages)               : 4932190655748242 
vminfo.exfills (count of exec filled pages)                 : 657018864015574  
vminfo.scans (count of page scans by clock)                 : 10112917647137050
vminfo.cycles (count of clock hand cycles)                  : 77846288734      
vminfo.pgsteals (count of page steals)                      : 2602183782570402 
vminfo.freewts (count of free frame waits)                  : 877973456558566  
vminfo.extendwts (count of extend XPT waits)                : 536877610        
vminfo.pendiowts (count of pending I/O waits)               : 731223013988974  
vminfo.pings (count of ping-pongs: source => alias)         : 536877746        
vminfo.pangs (count of ping-pongs):alias => alias)          : 536877814        
vminfo.pongs (count of ping-pongs):alias => source)         : 536877882        
vminfo.dpongs (count of ping-pongs):alias page delete)      : 536877950        
vminfo.wpongs (count of ping-pongs):alias page writes)      : 536878018        
vminfo.cachef (count of ping-pong cache flushes)            : 536878086        
vminfo.cachei (count of ping-pong cache invalidates)        : 536878154        
vminfo.numfrb (number of pages on free list)                : 65345            
vminfo.numclient (number of client frames)                  : 23562            
vminfo.numcompress (no of frames in compressed segments)    : 0                
vminfo.numperm (number frames non-working segments)         : 32535            
vminfo.maxperm (max number of frames non-working)           : 32761            
vminfo.memsizepgs (real memory size in 4K pages)            : 131047           
vminfo.minperm (no fileonly page steals)                    : 6552             
vminfo.minfree (minimun pages free list (fblru))            : 120              
vminfo.maxfree (maxfree pages free list (fblru))            : 128              
vminfo.maxclient (max number of client frames)              : 104016           
vminfo.rpgcnt[0] (repaging cnt)                             : 0                
vminfo.rpgcnt[1] (repaging cnt)                             : 0                
vminfo.numpout (number of fblru page-outs)                  : 0                
vminfo.numremote (number of fblru remote page-outs)         : 0                
vminfo.numwseguse (count of pages in use for working seg)   : 33167            
vminfo.numpseguse (count of pages in use for persistent seg): 8973             
vminfo.numclseguse (count of pages in use for client seg)   : 23562
vminfo.numwsegpin (count of pages pinned for working seg)   : 14195
vminfo.numpsegpin (count of pages pinned for persistent seg): 0
vminfo.numclsegpin (count of pages pinned for client seg)   : 0
vminfo.numvpages (accessed virtual pages)                   : 34567

swapqry
The swapqry subroutine returns information to a user-designated buffer about 
active paging and swap devices. 
 Chapter 10. Performance monitoring APIs 651



Syntax
char *PathName;
struct pginfo *Buffer;
int swapqry (PathName,  Buffer)

Parameters
PathName  Specifies the full path name of the block device.  
Buffer  Points to the buffer into which the status is stored. 

Library
libc.a

Example
The code in Example 10-45 uses the pginfo structure to obtain information about 
active paging and swap devices.

Example 10-45   Using swapqry

#include <stdio.h>
#include <stdlib.h>
#include <sys/vminfo.h>                                                                                   
swapqry_()
{
    struct pginfo   pginfo;
    char            device[256];
    char            path[256];
    char            cmd[256];
    FILE            *file;

    bzero(cmd,sizeof(cmd));
    sprintf(cmd,"odmget -q \"value = paging\" CuAt|awk '/name/{gsub(\"\\\"\",\"\",$3);print 
$3}'\n");
    if (file = popen(cmd,"r"))
        while (fscanf(file,"%s\n", &device)!=EOF) {
            sprintf(path,"/dev/%s", device);
            if (!swapqry(path,&pginfo)) {
                printf("pagingspace                      : %s\n",path);
                printf("devno (device number)            : %u\n",pginfo.devno);
                printf("size (size in PAGESIZE blocks)   : %u\n",pginfo.size);
                printf("free  (# of free PAGESIZE blocks): %u\n",pginfo.free);
                printf("iocnt (number of pending i/o's)  : %u\n",pginfo.iocnt);
            }
        }
    pclose(file);
}
main()                 
{ 
    swapqry_();        
652 AIX 5L Practical Performance Tools and Tuning Guide



} 

Example 10-46 shows the output from the program in Example 10-45 on 
page 652.

Example 10-46   Sample output from the swapqry subroutine program

pagingspace                      : /dev/hd6
devno (device number)            : 655362  
size (size in PAGESIZE blocks)   : 262144  
free  (# of free PAGESIZE blocks): 259240  
iocnt (number of pending i/o's)  : 0 

rstat
The rstat subroutine gathers statistics from remote kernels. These statistics are 
available on items such as paging, swapping, and CPU utilization. It 
communicates with the rstatd service.

Syntax
char *host;
struct statstime *statp;

rstat (host, statp) 

Parameters
host  Specifies the name of the machine to be contacted to 

obtain statistics found in the statp parameter.  

statp  Contains statistics from host. 

Library
librpcsvc.a

Example
The code in Example 10-47 uses the statstime structure to obtain statistics from 
the remote host specified in the host variable.

Example 10-47   Using rstat

#include <stdio.h>
#include <stdlib.h>
#include <rpcsvc/rstat.h>
rstat_(char *host)
{
    struct statstime statstime;
    if (!rstat(host, &statstime)) {
        printf("host         : %s\n",host);
 Chapter 10. Performance monitoring APIs 653



        printf("cp_time[0]   : %d\n",statstime.cp_time[0]);
        printf("cp_time[1]   : %d\n",statstime.cp_time[1]);
        printf("cp_time[2]   : %d\n",statstime.cp_time[2]);
        printf("cp_time[3]   : %d\n",statstime.cp_time[3]);
        printf("dk_xfer[0]   : %d\n",statstime.dk_xfer[0]);
        printf("dk_xfer[1]   : %d\n",statstime.dk_xfer[1]);
        printf("dk_xfer[2]   : %d\n",statstime.dk_xfer[2]);
        printf("dk_xfer[3]   : %d\n",statstime.dk_xfer[3]);
        printf("v_pgpgin     : %u\n",statstime.v_pgpgin);
        printf("v_pgpgout    : %u\n",statstime.v_pgpgout);
        printf("v_pswpin     : %u\n",statstime.v_pswpin);
        printf("v_pswpout    : %u\n",statstime.v_pswpout);
        printf("v_intr       : %u\n",statstime.v_intr);
        printf("if_ipackets  : %d\n",statstime.if_ipackets);
        printf("if_ierrors   : %d\n",statstime.if_ierrors);
        printf("if_opackets  : %d\n",statstime.if_opackets);
        printf("if_oerrors   : %d\n",statstime.if_oerrors);
        printf("if_collisions: %d\n",statstime.if_collisions);
        printf("v_swtch      : %d\n",statstime.v_swtch);
        printf("avenrun[0]   : %d\n",statstime.avenrun[0]);
        printf("avenrun[1]   : %d\n",statstime.avenrun[1]);
        printf("avenrun[2]   : %d\n",statstime.avenrun[2]);
        printf("boottime     : %s",ctime(&statstime.boottime.tv_sec));
        printf("curtime      : %s",ctime(&statstime.curtime.tv_sec));
    }
}
main()                 
{ 
    rstat_("wlmhost"); 
} 

The librpcsvc.a library contains the rstat subroutine. Link this library to the cc 
command with the -lrpcsvc flag as follows:

cc -lrpcsvc -o <program> <program>.c

Example 10-48 shows the output from running the program in Example 10-47 on 
page 653.

Example 10-48   Sample output from the rstat subroutine program

host         : wlmhost                 
cp_time[0]   : 28498                   
cp_time[1]   : 0                       

Note: This line must be enabled in /etc/inetd.conf and the inetd subsystem 
refreshed for the rstat subroutine to work:

rstatd sunrpc_udp udp wait root /usr/sbin/rpc.rstatd rstatd 100001 1-3
654 AIX 5L Practical Performance Tools and Tuning Guide



cp_time[2]   : 0                       
cp_time[3]   : 10747805                
dk_xfer[0]   : 24944                   
dk_xfer[1]   : 361                     
dk_xfer[2]   : 31                      
dk_xfer[3]   : 31                      
v_pgpgin     : 469012                  
v_pgpgout    : 330709                  
v_pswpin     : 886                     
v_pswpout    : 2458                    
v_intr       : 44313756                
if_ipackets  : 436778                  
if_ierrors   : 0                       
if_opackets  : 240334                  
if_oerrors   : 4                       
if_collisions: 0                       
v_swtch      : 7168446                 
avenrun[0]   : 3                       
avenrun[1]   : 5                       
avenrun[2]   : 3                       
boottime     : Mon Jun  4 08:01:53 2001
curtime      : Tue Jun  5 13:01:36 2001

getprocs
The getprocs subroutine returns information about processes, including process 
table information defined by the procsinfo structure, and information about the 
per-process file descriptors defined by the fdsinfo structure.

Syntax
struct procsinfo *ProcessBuffer;
or struct procsinfo64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo *FileBuffer;
int FileSize;
pid_t *IndexPointer;
int Count;

int getprocs(ProcessBuffer,ProcessSize,FileBuffer,FileSize,IndexPointer, 
Count)

Parameters
ProcessBuffer Specifies the starting address of an array of procsinfo, 

procsinfo64, or procentry64 structures to be filled in with process 
table entries. If a value of NULL is passed for this parameter, the 
getprocs subroutine scans the process table and sets return 
values as normal, but no process entries are retrieved. 
 Chapter 10. Performance monitoring APIs 655



ProcessSize Specifies the size of a single procsinfo, procsinfo64, or 
procentry64 structure. 

FileBuffer Specifies the starting address of an array of fdsinfo or fdsinfo64 
structures to be filled in with per-process file descriptor 
information. If a value of NULL is passed for this parameter, the 
getprocs subroutine scans the process table and sets return 
values as normal, but no file descriptor entries are retrieved. 

FileSize Specifies the size of a single fdsinfo or fdsinfo64 structure. 

IndexPointer Specifies the address of a process identifier, which indicates the 
required process table entry. A process identifier of zero selects 
the first entry in the table. The process identifier is updated to 
indicate the next entry to be retrieved. 

Count Specifies the number of process table entries requested. 

Library
libc.a

Example
The code in Example 10-49 on page 656 uses the procsinfo structure to obtain 
information about processes.

Example 10-49   Using getprocs

#include <procinfo.h>                                                                      
#include <sys/proc.h>                                                                      
getprocs_()                                                                                
{                                                                                          
    struct procsinfo    ps[8192];                                                          
    pid_t               index = 0;                                                         
    int                 nprocs;                                                            
    int                 i;                                                                 
    char                state;                                                             
                                                                                           
    if ((nprocs = getprocs(&ps, sizeof(struct procsinfo), NULL, 0, &index, 8192)) > 0) {   
        printf("total # %-8d %3s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s\n",nprocs,        
            "cmd","state","pid","ppid","uid",                                              
            "nice","#thrd","io/4k","size",                                                 
            "%real","io/b");                                                               
        for (i=0; i<nprocs; i++) {                                                         
            if (ps[i].pi_pid == 0) strcpy(ps[i].pi_comm,"swapper");                        
            if (ps[i].pi_comm[0] == '') strcpy(ps[i].pi_comm,"zombie");                    
            switch (ps[i].pi_state) {                                                      
                case SNONE:     state='E'; break;                                          
                case SIDL:      state='C'; break;                                          
                case SZOMB:     state='Z'; break;                                          
                case SSTOP:     state='S'; break;                                          
656 AIX 5L Practical Performance Tools and Tuning Guide



                case SACTIVE:   state='A'; break;                                          
                case SSWAP:     state='P'; break;                                          
            }                                                                              
            printf("%20s %5c %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",                       
                ps[i].pi_comm, state, ps[i].pi_pid, ps[i].pi_ppid, ps[i].pi_uid,           
                ps[i].pi_nice, ps[i].pi_thcount, ps[i].pi_majflt, ps[i].pi_size,           
                ps[i].pi_prm, ps[i].pi_ioch);                                              
        }                                                                                  
    }                                                                                      
} 
main()                 
{ 
    getprocs_();   
} 

Example 10-50 shows the output from running the example program above.

Example 10-50   Sample output from the getprocs subroutine program

total # 65       cmd state   pid  ppid   uid  nice #thrd io/4k  size %real  io/b
             swapper     A     0     0     0    41     1     7     3     6     0
                init     A     1     0     0    20     1    91   203     0 94344704
                wait     A   516     0     0    41     1     0     2     6     0
                wait     A   774     0     0    41     1     0     2     6     0
                wait     A  1032     0     0    41     1     0     2     6     0
                wait     A  1290     0     0    41     1     0     2     6     0
                lrud     A  1548     0     0    41     1     0     3     6     0
                xmgc     A  1806     0     0    41     1     0     4     6     0
                netm     A  2064     0     0    41     1     1     4     6     0
                 gil     A  2322     0     0    41     5     0    16     6     0
            wlmsched     A  2580     0     0    41     1     0     4     6     0
                 dog     A  3184     1     0    20     4     0    10     6     0
               lvmbb     A  3372     0     0    20     1     0     4     6     0
                 bsh     A  4602     1     0    22     1     0   314     0 10949
...(lines omitted)...

wlm_get_info
The wlm_get_info subroutine is used to get the characteristics of the classes 
defined in the active Workload Manager (WLM) configuration, together with their 
current resource usage statistics. 

Syntax
struct wlm_args *wlmargs;
struct wlm_info *info
int *count

int wlm_get_info ( wlmargs, info, count)
 Chapter 10. Performance monitoring APIs 657



Parameters
wlmargs The address of a struct wlm_args data structure. The versflags fields 

of the wlm_args structure must be provided and initialized with 
WLM_VERSION. Optionally, the following flag values can be OR'ed 
to WLM_VERSION: WLM_SUPER_ONLY, WLM_SUB_ONLY, 
WLM_VERBOSE_MODE. WLM_SUPER_ONLY and 
WLM_SUB_ONLY are mutually exclusive. 

name Contains either a null string or the name of a valid superclass or 
subclass (in the form Super.Sub). This field can be used in 
conjunction with the flags to further narrow the scope of 
wlm_get_info.

All the other fields of the wlm_args structure can be left uninitialized. 

info The address of an array of structures of type struct wlm_info. Upon 
successful return from wlm_get_info, this array contains the WLM 
statistics for the classes selected. 

count The address of an integer containing the maximum number of 
elements (of type wlm_info) for wlm_get_info to copy into the array 
above. If the call to wlm_get_info is successful, this integer contains 
the number of elements actually copied. If the initial value is equal to 
zero (0), wlm_get_info sets this value to the number of classes 
selected by the specified combination of versflags and name above. 

Library
libwlm.a

Example
The code in Example 10-51 uses the wlm_info structure to obtain information 
about characteristics of the active WLM classes.

Example 10-51   Using wlm_get_info

#include <stdio.h>
#include <stdlib.h>
#include <sys/wlm.h>                                                                                                    
#include <sys/wlm.h>
wlm_get_info_()
{
    struct wlm_args wlmargs;
    struct wlm_info *wlminfo;
    int             wlmcount = 0;
    int             i=0;

    if (!wlm_initialize(WLM_VERSION)) {
        wlmargs.versflags = WLM_VERSION;
        bzero(wlmargs.cl_def.data.descr.name,sizeof(wlmargs.cl_def.data.descr.name));
658 AIX 5L Practical Performance Tools and Tuning Guide



        if (!wlm_get_info(&wlmargs,NULL,&wlmcount) && wlmcount > 0) {
            wlminfo = malloc(wlmcount*sizeof(struct wlm_info));
            if (!wlm_get_info(&wlmargs,wlminfo,&wlmcount)) {
                printf("%-15s %8s %8s %8s %8s %8s %8s\n",

 "Class","Tier","Id","Pri","Inuse","#Pages","ChgLvl");
                for (i = 0; i< wlmcount; i++) {
                    printf("%-15s %8d %8d %8d %8d %8d %8d\n",

wlminfo[i].i_descr.name, wlminfo[i].i_descr.tier, wlminfo[i].i_class_id,
wlminfo[i].i_cl_pri, wlminfo[i].i_cl_inuse, wlminfo[i].i_cl_npages,
wlminfo[i].i_cl_change_level);

                }
            }
        }
    }
}
main()                 
{ 
    wlm_get_info_();   
} 

Example 10-52 shows how the output of the example program above may look.

Example 10-52   Sample output from the wlm_get_info subroutine program

Class               Tier       Id      Pri    Inuse   #Pages   ChgLvl
Unclassified           0        0       10        1    28911        1
Unmanaged              0       16       10        1    14244        1
Default                0       32       47        3        0        2
Shared                 0       48       47        0     4843        2
System                 6       64      145       54    30695        2
db1                    0       80        0        0        0        1
db1.Default            0       81       23        0        0        2
db1.Shared             0       82       23        0        0        2
db1.sub1               0       83        0        0        0        1
db2                    0       96       47        0        0        1
...(lines omitted)...

The libwlm.a library contains the wlm_get_info subroutine. Link this library to the 
cc command with the -lwlm flag as follows:

cc -lwlm -o <program> <program>.c

Note: To initialize the WLM API connection, you must use the wlm_initialize 
subroutine before other WLM subroutines can be used. This only needs to be 
done once per process.
 Chapter 10. Performance monitoring APIs 659



wlm_get_bio_stats
The wlm_get_bio_stats subroutine is used to get the WLM disk I/O statistics. 
There are two types of statistics available: 

� The statistics about disk I/O utilization per class and per devices, returned by 
wlm_get_bio_stats in wlm_bio_class_info_t structures

� The statistics about the disk I/O utilization per device, all classes combined, 
returned by wlm_get_bio_stats in wlm_bio_dev_info_t structures

Syntax
dev_t dev;
void *array;
int *count;
char *class;
int flags;
int wlm_get_bio_stats ( dev, array, count, class, flags)

Parameters
flags  Must be initialized with WLM_VERSION. Optionally, the following 

flag values can be OR'ed to WLM_VERSION: 
WLM_SUPER_ONLY, WLM_SUB_ONLY, 
WLM_BIO_CLASS_INFO, WLM_BIO_DEV_INFO, 
WLM_BIO_ALL_DEV, WLM_BIO_ALL_MINOR, 
WLM_VERBOSE_MODE. One of the mutually exclusive flags 
WLM_BIO_CLASS_INFO or WLM_BIO_DEV_INFO must be 
specified. WLM_SUPER_ONLY and WLM_SUB_ONLY are 
mutually exclusive. 

dev  Device identification (major, minor) of a disk device. If dev is equal 
to 0, the statistics for all devices are returned (even if 
WLM_BIO_ALL_DEV is not specified in the flags argument). 

array  Pointer to an array of wlm_bio_class_info_t structures (when 
WLM_BIO_CLASS_INFO is specified in the flags argument) or an 
array of wlm_bio_dev_info_t  structures (when 
WLM_BIO_DEV_INFO is specified in the flags argument). A NULL 
pointer can be passed together with a count of 0 to determine how 
many elements are in scope for the set of arguments passed.  

count  The address of an integer containing the maximum number of 
elements to be copied into the array above. If the call to 
wlm_get_bio_stats is successful, this integer will contain the 
number of elements actually copied. If the initial value is equal to 0, 
wlm_get_bio_stats sets this value to the number of elements 
selected by the specified combination of flags and class.  
660 AIX 5L Practical Performance Tools and Tuning Guide



class  A pointer to a character string containing the name of a superclass 
or subclass. If class is a pointer to an empty string (""), the 
information for all classes is returned. The class parameter is taken 
into account only when the flag WLM_BIO_CLASS_INFO is set.  

Library
libwlm.a

Example
The code in Example 10-53 uses the wlm_bio_dev_info_t structure to obtain 
information about WLM disk I/O statistics.

Example 10-53   Using wlm_get_bio_stats

#include <stdio.h>
#include <stdlib.h>
#include <sys/wlm.h>                                                                                                    
#include <sys/wlm.h>
wlm_get_bio_()
{
    dev_t                       wlmdev = 0;
    struct wlm_bio_dev_info_t   *wlmarray;
    int                         wlmcount = 0;
    char                        *wlmclass = NULL;
    int                         wlmflags = WLM_VERSION|WLM_BIO_ALL_DEV;
    int                         i=0;

    if (!wlm_initialize(WLM_VERSION)) {
        wlmflags |= WLM_BIO_DEV_INFO;
        if (!wlm_get_bio_stats(wlmdev,NULL,&wlmcount,wlmclass,wlmflags) && wlmcount > 0) {
            wlmarray = (struct wlm_bio_dev_info_t*)malloc(wlmcount*sizeof(struct 
wlm_bio_dev_info_t));
            if (!wlm_get_bio_stats(wlmdev,(void*)wlmarray,&wlmcount,wlmclass,wlmflags)) {
                for (i = 0; i< wlmcount; i++) {

printf("device                                     : %ld\n", wlmarray[i].wbd_dev);
printf("active_cntrl (# of active cntrl)           : %d\n", wlmarray[i].wbd_active_cntrl);
printf("in_queue (# of requests in waiting queue)  : %d\n", wlmarray[i].wbd_in_queue);
printf("max_queued (maximum # of requests in queue): %d\n", wlmarray[i].wbd_max_queued);
printf("last[0] (Statistics of last second)        : %d\n", wlmarray[i].wbd_last[0]);
printf("max[0] (Maximum of last second statistics) : %d\n", wlmarray[i].wbd_max[0]);
printf("av[0] (Average of last second statistics)  : %d\n", wlmarray[i].wbd_av[0]);
printf("total[0] (Total of last second statistics) : %d\n", wlmarray[i].wbd_total[0]);
printf("\n");

                }
            }
        }
    }
}

 Chapter 10. Performance monitoring APIs 661



main()                 
{ 
    wlm_get_bio_();   
} 

Example 10-54 shows what the output of the program above would look like.

Example 10-54   Sample output from the wlm_get_bio_stats subroutine program

device                                     : 917504
active_cntrl (# of active cntrl)           : 0     
in_queue (# of requests in waiting queue)  : 0     
max_queued (maximum # of requests in queue): 0     
last[0] (Statistics of last second)        : 0     
max[0] (Maximum of last second statistics) : 0     
av[0] (Average of last second statistics)  : 0     
total[0] (Total of last second statistics) : 0 

device                                     : 917504
active_cntrl (# of active cntrl)           : 2 
in_queue (# of requests in waiting queue)  : 0     
max_queued (maximum # of requests in queue): 0     
last[0] (Statistics of last second)        : 0     
max[0] (Maximum of last second statistics) : 72 
av[0] (Average of last second statistics)  : 0     
total[0] (Total of last second statistics) : 0 
...(lines omitted)...

The libwlm.a library contains the wlm_get_info subroutine. Link this library to the 
cc command with the -lwlm flag as follows:

cc -lwlm -o <program> <program>.c

10.4.3  Combined example
The dudestat.c program in Appendix A, “Source code” on page 665 illustrates 
how the different subroutines could be used together. Sample output of the 
dudestat program is shown in Example 10-55.

Example 10-55   Sample output from the dudestat program

# dudestat root kiwi saffy fuzzy swede
PARTY ON!

Note: To initialize the WLM API connection, you must use the wlm_initialize 
subroutine before other WLM subroutines can be used. This only needs to be 
done once per process.
662 AIX 5L Practical Performance Tools and Tuning Guide



The root dude is online and excellent!

There are 4 dudes missing!

Dude, here is some excellent info for you today

v_maxup (max. # of user processes)                    : 1000
v_maxpout (# of file pageouts at which waiting occurs): 0
v_minpout (# of file pageout at which ready occurs)   : 0
v_file (# entries in open file table)                 : 511
v_proc (max # of system processes)                    : 262144
freewts (count of free frame waits)                   : 877973724082172
extendwts (count of extend XPT waits)                 : 0
pendiowts (count of pending I/O waits)                : 740774484377600
numfrb (number of pages on free list)                 : 51945
numclient (number of client frames)                   : 19994
numcompress (no of frames in compressed segments)     : 0
numperm (number frames non-working segments)          : 32628
maxperm (max number of frames non-working)            : 32761
maxclient (max number of client frames)               : 104016
memsizepgs (real memory size in 4K pages)             : 131047
paging space device                                   : /dev/hd6
size (size in PAGESIZE blocks)                        : 262144
free  (# of free PAGESIZE blocks)                     : 259171
iocnt (number of pending i/o's)                       : 0
 Chapter 10. Performance monitoring APIs 663



664 AIX 5L Practical Performance Tools and Tuning Guide



Appendix A.  Source code

This appendix contains source code that was used to create the examples for 
these sections of this book:

� The perfstat_dude.c program in 10.1, “The performance status (Perfstat) API” 
on page 584.

� The programs spmi_dude.c, spmi_data.c, spmi_file.c, and spmi_traverse.c in 
10.2, “System Performance Measurement Interface” on page 620.

� The dudestat.c program in 10.4, “Miscellaneous performance monitoring 
subroutines” on page 644.

A

© Copyright IBM Corp. 2005. All rights reserved. 665



perfstat_dump_all.c
Example A-1 shows how to combine all examples from 10.1.3, “Subroutines” on 
page 587 to access data provided by AIX 5.3 Perfstat API subroutines. Note that 
the error checking and memory management in this example must be enhanced 
for a production-type program. 

Example: A-1   AIX 5.3 Perfstat API complete example

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 cpu()
5 {
6     perfstat_id_t   name;
7     perfstat_cpu_t  *ub;
8     int             ncpu,i;

9     ncpu = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0);
10     ub = malloc(sizeof(perfstat_cpu_t)*ncpu);

11     strcpy(name.name,"");

12     if (perfstat_cpu(&name,ub,sizeof(perfstat_cpu_t),ncpu) >= 0)
13         for (i = 0; i < ncpu; i++) {
14             printf("name    : %s\n",   ub[i].name);
15             printf("\tuser    : %llu\n", ub[i].user);
16             printf("\tsys     : %llu\n", ub[i].sys);
17             printf("\tidle    : %llu\n", ub[i].idle);
18             printf("\twait    : %llu\n", ub[i].wait);
19             printf("\tpswitch : %llu\n", ub[i].pswitch);
20             printf("\tsyscall : %llu\n", ub[i].syscall);
21             printf("\tsysread : %llu\n", ub[i].sysread);
22             printf("\tsyswrite: %llu\n", ub[i].syswrite);
23             printf("\tsysfork : %llu\n", ub[i].sysfork);
24             printf("\tsysexec : %llu\n", ub[i].sysexec);
25             printf("\treadch  : %llu\n", ub[i].readch);
26             printf("\twritech : %llu\n", ub[i].writech);
27         }
28 }
      
29 cpu_total()
30 {
31     perfstat_cpu_total_t    ub;

32     if (perfstat_cpu_total((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_cpu_total_t), 1) >= 0) {
33         printf("ncpus       : %d\n", ub.ncpus);
666 AIX 5L Practical Performance Tools and Tuning Guide



34         printf("ncpus_cfg   : %d\n", ub.ncpus_cfg);
35         printf("description : %s\n", ub.description);
36         printf("processorHZ : %llu\n", ub.processorHZ);
37         printf("user        : %llu\n", ub.user);
38         printf("sys         : %llu\n", ub.sys);
39         printf("idle        : %llu\n", ub.idle);
40         printf("wait        : %llu\n", ub.wait);
41         printf("pswitch     : %llu\n", ub.pswitch);
42         printf("syscall     : %llu\n", ub.syscall);
43         printf("sysread     : %llu\n", ub.sysread);
44         printf("syswrite    : %llu\n", ub.syswrite);
45         printf("sysfork     : %llu\n", ub.sysfork);
46         printf("sysexec     : %llu\n", ub.sysexec);
47         printf("readch      : %llu\n", ub.readch);
48         printf("writech     : %llu\n", ub.writech);
49         printf("devintrs    : %llu\n", ub.devintrs);
50         printf("softintrs   : %llu\n", ub.softintrs);
51         printf("lbolt       : %ld\n", ub.lbolt);
52         printf("loadavg T0  : %llu\n", ub.loadavg[0]);
53         printf("loadavg T-5 : %llu\n", ub.loadavg[1]);
54         printf("loadavg T-15: %llu\n", ub.loadavg[2]);
55         printf("runque      : %llu\n", ub.runque);
56         printf("swpque      : %llu\n", ub.swpque);
57     }
58 }

59 disk()
60 {
61     perfstat_id_t   name;
62     perfstat_disk_t *ub;
63     int             ndisk,i;

64     ndisk = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0);
65     ub = malloc(sizeof(perfstat_disk_t)*ndisk);

66     strcpy(name.name,"");

67     if (perfstat_disk (&name,ub,sizeof(perfstat_disk_t),ndisk) >= 0)
68         for (i = 0; i < ndisk; i++) {
69             printf("name       : %s\n",  ub[i].name);
70             printf("\tdescription: %s\n",  ub[i].description);
71             printf("\tvgname     : %s\n",  ub[i].vgname);
72             printf("\tsize       : %llu\n", ub[i].size);
73             printf("\tfree       : %llu\n", ub[i].free);
74             printf("\tbsize      : %llu\n", ub[i].bsize);
75             printf("\txrate      : %llu\n", ub[i].xrate);
76             printf("\txfers      : %llu\n", ub[i].xfers);
77             printf("\twblks      : %llu\n", ub[i].wblks);
78             printf("\trblks      : %llu\n", ub[i].rblks);
 Appendix A. Source code 667



79             printf("\tqdepth     : %llu\n", ub[i].qdepth);
80             printf("\ttime       : %llu\n", ub[i].time);
81         }
82 }

83 disk_total()
84 {
85     perfstat_disk_total_t   ub;

86     if (perfstat_disk_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_disk_total_t), 1) >= 0) {
87         printf("number: %d\n", ub.number);
88         printf("size  : %llu\n", ub.size);
89         printf("free  : %llu\n", ub.free);
90         printf("xrate : %llu\n", ub.xrate);
91         printf("xfers : %llu\n", ub.xfers);
92         printf("wblks : %llu\n", ub.wblks);
93         printf("rblks : %llu\n", ub.rblks);
94         printf("time  : %llu\n", ub.time);
95     }
96 }

97 memory_total()
98 {
99     perfstat_memory_total_t ub;

100    if (perfstat_memory_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {
101        printf("virt_total: %llu\n", ub.virt_total);
102        printf("real_total: %llu\n", ub.real_total);
103        printf("real_free : %llu\n", ub.real_free);
104        printf("real_inuse: %llu\n", ub.real_inuse);
105        printf("pgbad     : %llu\n", ub.pgbad);
106        printf("pgexct    : %llu\n", ub.pgexct);
107        printf("pgins     : %llu\n", ub.pgins);
108        printf("pgouts    : %llu\n", ub.pgouts);
109        printf("pgspins   : %llu\n", ub.pgspins);
110        printf("pgspouts  : %llu\n", ub.pgspouts);
111        printf("scans     : %llu\n", ub.scans);
112        printf("cycles    : %llu\n", ub.cycles);
113        printf("pgsteals  : %llu\n", ub.pgsteals);
114        printf("numperm   : %llu\n", ub.numperm);
115        printf("pgsp_total: %llu\n", ub.pgsp_total);
116        printf("pgsp_free : %llu\n", ub.pgsp_free);
117        printf("pgsp_rsvd : %llu\n", ub.pgsp_rsvd);
118    }
119}

120netinterface()
668 AIX 5L Practical Performance Tools and Tuning Guide



121{
122    perfstat_id_t           name;
123    perfstat_netinterface_t *ub;
124    int                     nnetinterface,i;
      
125    nnetinterface = perfstat_netinterface (NULL,NULL, 
sizeof(perfstat_netinterface_t), 0);
126    ub = malloc(sizeof(perfstat_netinterface_t)*nnetinterface);

127    strcpy(name.name,"");

128    if (perfstat_netinterface (&name,ub, sizeof(perfstat_netinterface_t), 
nnetinterface) >= 0)
129        for (i = 0; i < nnetinterface; i++) {
130            printf("name       : %s\n",     ub[i].name);
131            printf("\tdescription: %s\n",   ub[i].description);
132            printf("\ttype       : %u\n",   ub[i].type);
133            printf("\tmtu        : %llu\n", ub[i].mtu);
134            printf("\tipackets   : %llu\n", ub[i].ipackets);
135            printf("\tibytes     : %llu\n", ub[i].ibytes);
136            printf("\tierrors    : %llu\n", ub[i].ierrors);
137            printf("\topackets   : %llu\n", ub[i].opackets);
138            printf("\tobytes     : %llu\n", ub[i].obytes);
139            printf("\toerrors    : %llu\n", ub[i].oerrors);
140            printf("\tcollisions : %llu\n", ub[i].collisions);
141        }
142}

143netinterface_total()
144{
145    perfstat_netinterface_total_t   ub;

146    if (perfstat_netinterface_total ((perfstat_id_t*)NULL,&ub, 
sizeof(perfstat_netinterface_total_t),1) >= 0) {
147        printf("number    : %d\n", ub.number);
148        printf("ipackets  : %llu\n", ub.ipackets);
149        printf("ibytes    : %llu\n", ub.ibytes);
150        printf("ierrors   : %llu\n", ub.ierrors);
151        printf("opackets  : %llu\n", ub.opackets);
152        printf("obytes    : %llu\n", ub.obytes);
153        printf("oerrors   : %llu\n", ub.oerrors);
154        printf("collisions: %llu\n", ub.collisions);
155    }
156}

157main()
158{
159    cpu_total();
160    cpu();
 Appendix A. Source code 669



161    disk_total();
162    disk();
163    memory_total();
164    netinterface_total();
165    netinterface();
166}

perfstat_dude.c
The perfstat_dude.c program in Example A-2 makes one reading of a selected 
number of statistics, then waits for a specified amount of time before it takes the 
other reading. 

Example: A-2   perfstat_dude.c program

#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
#include <libperfstat.h>

#defineNCPU1024
#defineNDISK1024
#defineNNETWORK1024

static intncpu = NCPU;
static intndisk = NDISK;
static intnnetwork = NNETWORK;

cpu_t(int t)
{

perfstat_id_tname;
perfstat_cpu_tub[NCPU];
int i, rc;
static u_longlong_tttime[NCPU];
static u_longlong_tuser[NCPU];
static u_longlong_tsys[NCPU];
static u_longlong_tidle[NCPU];
static u_longlong_twait[NCPU];
static u_longlong_tsysfork[NCPU];
static u_longlong_tsyscall[NCPU];
static u_longlong_tpswitch[NCPU];

strcpy(name.name,"");

if (t) {
if ((rc = perfstat_cpu (&name,ub,sizeof(perfstat_cpu_t),NCPU)) >= 0) {
670 AIX 5L Practical Performance Tools and Tuning Guide



printf("%6.6s %6.6s %6.6s %6.6s %3.3s %3.3s %3.3s %3.3s\n",
"cpu","fk","sy","cs"," us"," sy","id","wa");

for (i=0;i<rc;i++) {
ttime[i] = 

(ub[i].user-user[i])+(ub[i].sys-sys[i])+(ub[i].idle-idle[i])+(ub[i].wait-wait[i
]);

printf("%6.6s ", ub[i].name);
printf("%6lld ", ub[i].sysfork-sysfork[i]);
printf("%6lld ", ub[i].syscall-syscall[i]);
printf("%6lld ", ub[i].pswitch-pswitch[i]);
printf("%3lld ", (ub[i].user-user[i])*100/ttime[i]);
printf("%3lld ", (ub[i].sys-sys[i])*100/ttime[i]);
printf("%3lld ", (ub[i].idle-idle[i])*100/ttime[i]);
printf("%3lld ", (ub[i].wait-wait[i])*100/ttime[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_cpu 1");

}
} else {

if ((rc = perfstat_cpu (&name,ub,sizeof(perfstat_cpu_t),NCPU)) >= 0) {
for (i=0;i<rc;i++) {

user[i] = ub[i].user;
sys[i] = ub[i].sys;
idle[i] = ub[i].idle;
wait[i] = ub[i].wait;
sysfork[i] = ub[i].sysfork;
syscall[i] = ub[i].syscall;
pswitch[i] = ub[i].pswitch;

}
} else {

perror("perfstat_cpu 0");
}

}
}
cpu_total_t(int t)
{

perfstat_cpu_total_tub;
static int ncpus;
static u_longlong_tttime;
static u_longlong_trunque;
static u_longlong_tswpque;
static u_longlong_tdevintrs;
static u_longlong_tsoftintrs;
static u_longlong_tsysfork;
static u_longlong_tsyscall;
static u_longlong_tpswitch;
static u_longlong_tuser;
 Appendix A. Source code 671



static u_longlong_tsys;
static u_longlong_tidle;
static u_longlong_twait;

if (t) {
if (perfstat_cpu_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_cpu_total_t),1) >= 0) {
ttime = (ub.user-user)+(ub.sys-sys)+(ub.idle-idle)+(ub.wait-wait);
printf("Que     Faults                      Cpu\n");
printf("%3.3s %3.3s %6.6s %6.6s %6.6s %6.6s %3.3s %3.3s %3.3s 

%3.3s\n",
"rq","sq","fk","in","sy","cs","us","sy","id","wa");
printf("%3lld ", ub.runque-runque);
printf("%3lld ", ub.swpque-swpque);
printf("%6lld ", ub.sysfork-sysfork);
printf("%6lld ", (ub.devintrs+ub.softintrs)-(devintrs+softintrs));
printf("%6lld ", ub.syscall-syscall);
printf("%6lld ", ub.pswitch-pswitch);
printf("%3lld ", (ub.user-user)*100/ttime);
printf("%3lld ", (ub.sys-sys)*100/ttime);
printf("%3lld ", (ub.idle-idle)*100/ttime);
printf("%3lld ", (ub.wait-wait)*100/ttime);
printf("\n\n");

} else {
perror("perfstat_cpu_total 1");

}
} else {

if (perfstat_cpu_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_cpu_total_t),1) >= 0) {

ncpus = ub.ncpus;
runque = ub.runque;
swpque = ub.swpque;
sysfork = ub.sysfork;
syscall = ub.syscall;
devintrs = ub.devintrs;
softintrs = ub.softintrs;
pswitch = ub.pswitch;
user = ub.user;
sys = ub.sys;
idle = ub.idle;
wait = ub.wait;

} else {
perror("perfstat_cpu_total 0");

}
}

}

disk_t(int t)
672 AIX 5L Practical Performance Tools and Tuning Guide



{
perfstat_id_tname;
perfstat_disk_tub[NDISK];
int i,rc;
static u_longlong_tqdepth[NDISK];
static u_longlong_ttime[NDISK];
static u_longlong_txrate[NDISK];
static u_longlong_txfers[NDISK];
static u_longlong_trblks[NDISK];
static u_longlong_twblks[NDISK];

strcpy(name.name,"");

if (t) {
if ((rc = perfstat_disk (&name,ub,sizeof(perfstat_disk_t),NDISK)) >= 0) 

{
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"disk","vg","qd","busy","KB/s","xfers","KBrd","KBwr");
for (i=0;i<rc;i++) {

printf("%6s ", ub[i].name);
printf("%6s ", ub[i].vgname);
printf("%6lld ", ub[i].qdepth-qdepth[i]);
printf("%6lld ", ub[i].time-time[i]);
printf("%6lld ", ub[i].xrate-xrate[i]);
printf("%6lld ", ub[i].xfers-xfers[i]);
printf("%6lld ", ub[i].rblks-rblks[i]);
printf("%6lld ", ub[i].wblks-wblks[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_disk 1");

}
} else {

if ((rc = perfstat_disk (&name,ub,sizeof(perfstat_disk_t),NDISK)) >= 0) 
{

for (i=0;i<rc;i++) {
qdepth[i] = ub[i].qdepth;
time[i] = ub[i].time;
xrate[i] = ub[i].xrate;
xfers[i] = ub[i].xfers;
rblks[i] = ub[i].rblks;
wblks[i] = ub[i].wblks;

}
} else {

perror("perfstat_disk 0");
}

}
}

 Appendix A. Source code 673



disk_total_t(int t)
{

perfstat_disk_total_tub;
static u_longlong_ttime;
static u_longlong_txrate;
static u_longlong_txfers;
static u_longlong_trblks;
static u_longlong_twblks;

if (t) {
if (perfstat_disk_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_disk_total_t),1) >= 0) {
printf("%6.6s %6.6s %6.6s %6.6s %6.6s\n",

"busy"," KB/s","xfers","KBrd","KBwr");
printf("%6lld ", ub.time-time);
printf("%6lld ", ub.xrate-xrate);
printf("%6lld ", ub.xfers-xfers);
printf("%6lld ", ub.rblks-rblks);
printf("%6lld ", ub.wblks-wblks);
printf("\n\n");

} else {
perror("perfstat_disk_total 1");

}
} else {

if (perfstat_disk_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_disk_total_t),1) >= 0) {

time = ub.time;
xrate = ub.xrate;
xfers = ub.xfers;
rblks = ub.rblks;
wblks = ub.wblks;

} else {
perror("perfstat_disk_total 0");

}
}

}

memory_total_t(int t)
{

perfstat_memory_total_tub;
static u_longlong_treal_free;
static u_longlong_treal_inuse;
static u_longlong_tpgsp_free;
static u_longlong_tpgspins;
static u_longlong_tpgspouts;
static u_longlong_tpgins;
static u_longlong_tpgouts;
static u_longlong_tpgexct;
674 AIX 5L Practical Performance Tools and Tuning Guide



static u_longlong_tpgsteals;
static u_longlong_tscans;
static u_longlong_tnumperm;

if (t) {
if (perfstat_memory_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {
printf("Real memory          Paging space Virtual\n");
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s 

%6.6s\n",

"free","use","free","psi","pso","pi","po","fault","fr","sr","num");
printf("%6lld ", ub.real_free);
printf("%6lld ", ub.real_inuse);
printf("%6lld ", ub.pgsp_free);
printf("%6lld ", ub.pgspins);
printf("%6lld ", ub.pgspouts);
printf("%6lld ", ub.pgins);
printf("%6lld ", ub.pgouts);
printf("%6lld ", ub.pgexct);
printf("%6lld ", ub.pgsteals);
printf("%6lld ", ub.scans);
printf("%6lld ", ub.numperm);
printf("\n\n");

} else {
perror("perfstat_memory_total 1");

}
} else {

if (perfstat_memory_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {

real_free = ub.real_free;
real_inuse = ub.real_inuse;
pgsp_free = ub.pgsp_free;
pgspins = ub.pgspins;
pgspouts = ub.pgspouts;
pgins = ub.pgins;
pgouts = ub.pgouts;
pgexct = ub.pgexct;
pgsteals = ub.pgsteals;
scans = ub.scans;
numperm = ub.numperm;

} else {
perror("perfstat_memory_total 1");

}
}

}

netinterface_t(int t)
{

 Appendix A. Source code 675



perfstat_id_tname;
perfstat_netinterface_tub[NDISK];
int i,rc;
static u_longlong_tipackets[NDISK];
static u_longlong_tibytes[NDISK];
static u_longlong_tierrors[NDISK];
static u_longlong_topackets[NDISK];
static u_longlong_tobytes[NDISK];
static u_longlong_toerrors[NDISK];
static u_longlong_tcollisions[NDISK];

strcpy(name.name,"");

if (t) {
if ((rc = perfstat_netinterface 

(&name,ub,sizeof(perfstat_netinterface_t),NNETWORK)) >= 0) {
printf("%7.7s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"network","mtu","ipack","ibyte","ierr","opack"," obyte"," 
oerr","coll");

for (i=0;i<rc;i++) {
printf("%7s ", ub[i].name);
printf("%6lld ", ub[i].mtu);
printf("%6lld ", ub[i].ipackets-ipackets[i]);
printf("%6lld ", ub[i].ibytes-ibytes[i]);
printf("%6lld ", ub[i].ierrors-ierrors[i]);
printf("%6lld ", ub[i].opackets-opackets[i]);
printf("%6lld ", ub[i].obytes-obytes[i]);
printf("%6lld ", ub[i].oerrors-oerrors[i]);
printf("%6lld ", ub[i].collisions-collisions[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_netinterface 1");

}
} else {

if ((rc = perfstat_netinterface 
(&name,ub,sizeof(perfstat_netinterface_t),NNETWORK)) >= 0) {

for (i=0;i<rc;i++) {
ipackets[i] = ub[i].ipackets;
ibytes[i] = ub[i].ibytes;
ierrors[i] = ub[i].ierrors;
opackets[i] = ub[i].opackets;
obytes[i] = ub[i].obytes;
oerrors[i] = ub[i].oerrors;
collisions[i] = ub[i].collisions;

}
} else {

perror("perfstat_netinterface 1");
676 AIX 5L Practical Performance Tools and Tuning Guide



}
}

}

netinterface_total_t(int t)
{

perfstat_netinterface_total_tub;
static u_longlong_tipackets;
static u_longlong_tibytes;
static u_longlong_tierrors;
static u_longlong_topackets;
static u_longlong_tobytes;
static u_longlong_toerrors;
static u_longlong_tcollisions;

if (t) {
if (perfstat_netinterface_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_netinterface_total_t),1) >= 0) {
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"ipack","ibyte","ierr","opack"," obyte"," oerr","coll");
printf("%6lld ", ub.ipackets-ipackets);
printf("%6lld ", ub.ibytes-ibytes);
printf("%6lld ", ub.ierrors-ierrors);
printf("%6lld ", ub.opackets-opackets);
printf("%6lld ", ub.obytes-obytes);
printf("%6lld ", ub.oerrors-oerrors);
printf("%6lld ", ub.collisions-collisions);
printf("\n\n");

} else {
perror("perfstat_netinterface_total 1");

}
} else {

if (perfstat_netinterface_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_netinterface_total_t),1) >= 0) {

ipackets = ub.ipackets;
ibytes = ub.ibytes;
ierrors = ub.ierrors;
opackets = ub.opackets;
obytes = ub.obytes;
oerrors = ub.oerrors;
collisions = ub.collisions;

} else {
perror("perfstat_netinterface_total 0");

}
}

}

main()
{

 Appendix A. Source code 677



struct variovario;
int rc;

if (!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario))
        ncpu = vario.v.v_ncpus_cfg.value;

if ((rc = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0)) > 0)
        ncpu = rc;

if ((rc = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0)) > 0)
        ndisk = rc;

if ((rc = perfstat_netinterface 
(NULL,NULL,sizeof(perfstat_netinterface_t),0)) > 0)
        nnetwork = rc;

cpu_total_t(0);
cpu_t(0);
memory_total_t(0);
disk_total_t(0);
disk_t(0);
netinterface_total_t(0);
netinterface_t(0);

sleep(1);

cpu_total_t(1);
cpu_t(1);
memory_total_t(1);
disk_total_t(1);
disk_t(1);
netinterface_total_t(1);
netinterface_t(1);

}

Example A-3 shows a sample output from perfstat_dude program.

Example: A-3   Output from perfstat_dude

# perfstat_dude
Que     Faults                      Cpu
 rq  sq     fk     in     sy     cs  us  sy  id  wa
  0   0      0      0   2359   1473   0   0  86  13

   cpu     fk     sy     cs  us  sy  id  wa
  cpu0      0    240    240   0   0  99   0
  cpu1      0    289    300   0   0 100   0
  cpu2      0    337    336   0   0  99   0
  cpu3      0   1231    594   0   0  45  52
678 AIX 5L Practical Performance Tools and Tuning Guide



Real memory          Paging space Virtual
  free    use   free    psi    pso     pi     po  fault     fr     sr    num
1753170 343982 1046751 614369 4217286 716225 5114271 143100457 4224489 70493357  
95299

  busy   KB/s  xfers   KBrd   KBwr
   116      0    228  21054    256

  disk     vg     qd   busy   KB/s  xfers   KBrd   KBwr
hdisk0 rootvg      0     22      0     55   4210    248
hdisk1 datavg      0      7      0     24   4210      0
hdisk2  ssavg      0     79      0     96   8420      0
hdisk4   None      0      0      0      0      0      0
hdisk6   None      0      0      0      0      0      0
hdisk5   None      0      0      0      0      0      0
hdisk7 ssavg2      0      3      0     48   4210      0
hdisk3  ssavg      0      3      0      4      4      0
   cd0 not available      0      0      0      0      0      0

 ipack  ibyte   ierr  opack  obyte   oerr   coll
    14   1074      0      0      0      0      0

network    mtu  ipack  ibyte   ierr  opack  obyte   oerr   coll
    en0   1500      7    537      0      0      0      0      0
    en1   1500      7    537      0      0      0      0      0
    lo0  16896      0      0      0      0      0      0      0

spmi_dude.c
Example A-4 shows the source code for the spmi_dude.c program.

Example: A-4   spmi_dude.c source code

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/Spmidef.h>

#if defined(DEBUG)
#define PDEBUG(x,y) printf(x,y)

#else
#define PDEBUG(x,y)

#endif

extern errno;
 Appendix A. Source code 679



extern charSpmiErrmsg[]; 
extern intSpmiErrno; 
/*
 * Since we need this structure pointer in our cleanup() function
 * we declare it as a global variable.
 */
struct SpmiStatSet*SPMIset = NULL;
/*
 * These are the statistics we are interested in monitoring.
 * To the left of the last slash (/) is the context, to the
 * right of this slash (/) is the actual statistic within
 * the context. Note that statistics can have the same
 * name but belong to different contexts.
 */
char *stats[] = {

"CPU/glwait",
"CPU/glidle",
"CPU/glkern",
"CPU/gluser",
"Mem/Virt/scan",
"Mem/Virt/steal",
"PagSp/%totalfree",
"PagSp/%totalused",
"Mem/Virt/pagein",
"Mem/Virt/pageout",
"Mem/Virt/pgspgin",
"Mem/Virt/pgspgout",
"Proc/runque",
"Proc/swpque",
NULL
};

void
SPMIerror(char *s)
{

/* We do not want the \n that the SpmiErrmsg have at the 
 * end since we will use our own error reporting format.
 */
SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
680 AIX 5L Practical Performance Tools and Tuning Guide



 * _cleanup() ourselves.
 */
void
cleanup(int s)
{
    if (SPMIset)

if (SpmiFreeStatSet(SPMIset))
SPMIerror("SpmiFreeStatSet");

SpmiExit();
_cleanup();
_exit(0);

}

#define MAXDELAY2
#define MAXCOUNT-1

main(int argc, char *argv[])
{

struct SpmiStatVals*SPMIval = NULL;
struct SpmiStat*SPMIstat = NULL;
SpmiCxHdl SPMIcxhdl = 0;
char context[128];
char *statistic;
float statvalue;
int i, hardcore = 0, bailout = 0;
int maxdelay = MAXDELAY;
uint maxcount = MAXCOUNT;
/*
 * Here we initialize the SPMI environment for our process.
 */
if (SpmiInit(15)) {

SPMIerror("SpmiInit");
exit(SpmiErrno);

}
if (argc == 2)

maxdelay = atoi(argv[1]);
else if (argc == 3) {

maxdelay = atoi(argv[1]);
maxcount = atoi(argv[2]);

}
/*
 * To illustrate enhanced durability of our simple program.
 */
hardcore = atoi(getenv("HARDCORE"));
/*
 * We make sure that we clean up the SPMI memory that we use
 * before we terminate the process. atexit() is called when
 * the process is normally terminated, and we trap signals
 * that a terminal user, or program malfunction could 
 Appendix A. Source code 681



 * generate and cleanup then as well.
 */
atexit(cleanup);
signal(SIGINT,cleanup); 
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);
/*
 * Here we create the base for our SPMI statistical data hierarchy.
 */
if ((SPMIset = SpmiCreateStatSet()) == NULL) {

SPMIerror("SpmiCreateStatSet");
exit(SpmiErrno);

}
/*
 * For each metric we want to monitor we need to add it to
 * our statistical collection set.
 */

    for (i = 0; stats[i] != NULL; i++) {
if (SpmiPathAddSetStat(SPMIset,stats[i],SPMIcxhdl) == NULL) {

SPMIerror("SpmiPathAddSetStats");
exit(SpmiErrno);

}
    }

printf ("%5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s\n",
"swpq","runq","pgspo","pgspi","pgout","pgin",
"%used","%free","fr","sr","us","sy","id","wa");

/*
 * In this for loop we collect all statistics that we have specified
 * to SPMI that we want to monitor.  Each of the data values selected 
 * for the set is represented by an SpmiStatVals structure. 
 * Whenever Spmi executes a request from the to read the data values 
 * for a set all SpmiStatVals structures in the set are updated.
 * The application program will then have to traverse the list of 
 * SpmiStatVals structures through the SpmiFirstVals() and SpmiNextVals()
 * function calls.
 */
for (i=0; i< maxcount; i++) {

again:
/*
 * First we must request that SPMI refresh our statistical
 * data hierarchy.

  */
if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {

/*
 * if the hardcore variable is set (environment variable HARDCORE),
 * then we discard runtime errors from SpmiGetStatSet (up to three
 * times). This can happen some time if many processes use the SPMI 
 * shared resources simultaneously. 
682 AIX 5L Practical Performance Tools and Tuning Guide



 */
if (hardcore && (3 > bailout++)) goto again;
SPMIerror("SpmiGetStatSet");
exit(SpmiErrno);

}
bailout = 0;
/*
 * Here we get the first entry point in our statistical data hierarchy.
 * Note that SPMI will return the values in the reverse order of the one
 * used to add them to our statistical set.
 */
SPMIval = SpmiFirstVals(SPMIset);
do {

if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
SPMIerror("SpmiGetValue");
exit(SpmiErrno);

}
printf("%5.0f ",statvalue);
PDEBUG("\t%s\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat, 0));

/*
 * Finaly we get the next statistic in our data hierarchy.
 * And if this is NULL, then we have retreived all our statistics.
 */
} while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));
printf("\n");
sleep(maxdelay);

}
}

spmi_data.c
Example A-5 shows the source code for the spmi_data.c program.

Example: A-5   spmi_data.c source code

/*  The following statistics are added by the SpmiPathAddSetStat
 *  subroutine to form a set of statistics:
 *     CPU/cpu0/kern
 *     CPU/cpu0/idle
 *     Mem/Real/%free
 *     PagSp/%free
 *     Proc/runque
 *     Proc/swpque
 *  These statistics are then retrieved every 2 seconds and their
 *  value is displayed to the user.
 */
#include <sys/types.h>
 Appendix A. Source code 683



#include <sys/errno.h>
#include <signal.h>
#include <stdio.h>
#include <sys/Spmidef.h>

#define TIME_DELAY 2            /* time between samplings */

extern char   SpmiErrmsg[];     /* Spmi Error message array */
extern int    SpmiErrno;        /* Spmi Error indicator */

struct SpmiStatSet *statset;    /* statistics set */

/*====================== must_exit() ==========================*/
/* This subroutine is called when the program is ready to exit.
 * It frees any statsets that were defined and exits the
 * interface.
 */
/*=============================================================*/

void must_exit()
{
    /* free statsets */
    if (statset)
    if (SpmiFreeStatSet(statset))
       if (SpmiErrno)
       printf("%s", SpmiErrmsg);

/* exit SPMI */
    SpmiExit();
    if (SpmiErrno)
       printf("%s", SpmiErrmsg);
    exit(0);
}

/*======================== getstats() =========================*/
/* getstats() traverses the set of statistics and outputs the
 * statistics values.
 */
/*=============================================================*/

void getstats()
{
    int                  counter=20;    /* every 20 lines output
                                         * the header
                                         */
    struct SpmiStatVals   *statval1;
    float                 spmivalue;

/* loop until a stop signal is received. */
684 AIX 5L Practical Performance Tools and Tuning Guide



    while (1) {
       if(counter == 20) {
          printf("\nCPU/cpu0   CPU/cpu0  Mem/Real   PagSp     ");
          printf("Proc       Proc\n");
          printf("    kern       idle    %%free     %%free    ");
          printf("runque     swpque\n");
          printf("============================================");
          printf("===============\n");
          counter=0;
       }

       /* retrieve set of statistics */
       if (SpmiGetStatSet(statset, TRUE) != 0) {
          printf("SpmiGetStatSet failed.\n");
          if (SpmiErrno)
             printf("%s", SpmiErrmsg);
          must_exit();
       }

       /* retrieve first statistic */
       statval1 = SpmiFirstVals(statset);
       if (statval1 == NULL) {
          printf("SpmiFirstVals Failed\n");
          if (SpmiErrno)
             printf("%s", SpmiErrmsg);
          must_exit();
       }

       /* traverse the set of statistics */
       while (statval1 != NULL) {
          /* value to be displayed */
          spmivalue = SpmiGetValue(statset, statval1);
          if (spmivalue < 0.0) {
             printf("SpmiGetValue Failed\n");
             if (SpmiErrno)
                printf("%s", SpmiErrmsg);
             must_exit();
          }
          printf("  %6.2f   ",spmivalue);

          statval1 = SpmiNextVals(statset, statval1);
       }  /* end while (statval1) */
       printf("\n");
       counter++;
       sleep(TIME_DELAY);
    }
}

/*======================== addstats() =========================*/
 Appendix A. Source code 685



/* addstats() adds statistics to the statistics set. */
/* addstats() also takes advantage of the different ways a
 * statistic may be added to the set.
 */
/*=============================================================*/
void addstats()
{
    SpmiCxHdl   cxhdl, parenthdl;

    /* initialize the statistics set */
    statset = SpmiCreateStatSet();
    if (statset == NULL)
    {
       printf("SpmiCreateStatSet Failed\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathGetCx the fully qualified path name of the
     * context
     */
    if (!(cxhdl = SpmiPathGetCx("Proc", NULL)))
    {
       printf("SpmiPathGetCx failed for Proc context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

/* Pass SpmiPathAddSetStat the name of the statistic */
    /* & the handle of the parent */
    if (!SpmiPathAddSetStat(statset,"swpque", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Proc/swpque statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

if (!SpmiPathAddSetStat(statset,"runque", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Proc/runque statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }
686 AIX 5L Practical Performance Tools and Tuning Guide



/* Pass SpmiPathAddSetStat the fully qualified name of the
     * statistic
     */
    if (!SpmiPathAddSetStat(statset,"PagSp/%totalfree", NULL))
    {
       printf("SpmiPathAddSetStat failed for PagSp/%%free statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

if (!(parenthdl = SpmiPathGetCx("Mem", NULL)))
    {
       printf("SpmiPathGetCx failed for Mem context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

/* Pass SpmiPathGetCx the name of the context */
    /* & the handle of the parent context */
    if (!(cxhdl = SpmiPathGetCx("Real", parenthdl)))
    {
       printf("SpmiPathGetCx failed for Mem/Real context.\n");
       if (SpmiErrmsg)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"%free", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Mem/Real/%%free statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathGetCx the fully qualified path name of the
     * context
     */
    if (!(cxhdl = SpmiPathGetCx("CPU/cpu0", NULL)))
    {
       printf("SpmiPathGetCx failed for CPU/cpu0 context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"idle", cxhdl))
 Appendix A. Source code 687



    {
       printf("SpmiPathAddSetStat failed for CPU/cpu0/idle statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"kern", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for CPU/cpu0/kern statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    return;
}

/*=============================================================*/
main(int argc, char **argv)
{
    int   spmierr=0;

/* Initialize SPMI */
    if ((spmierr = SpmiInit(15)) != 0)
    {
       printf("Unable to initialize SPMI interface\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       exit(-98);
    }

    /* set up interrupt signals */
    signal(SIGINT,must_exit);
    signal(SIGTERM,must_exit);
    signal(SIGSEGV,must_exit);
    signal(SIGQUIT,must_exit);
 
    /* Go to statistics routines. */
    addstats();
    getstats();
 
    /* Exit SPMI */
    must_exit();
}

688 AIX 5L Practical Performance Tools and Tuning Guide



spmi_file.c
Example A-6 shows the source code for the spmi_file.c program.

Example: A-6   spmi_file.c source code

#include <stdio.h>
#include <stdlib.h>
#include <sys/Spmidef.h>

extern errno;
extern charSpmiErrmsg[]; 
extern intSpmiErrno; 

struct SpmiStatSet*SPMIset = NULL;

void
SPMIerror(char *s)
{

/* We do not want the \n that the SpmiErrmsg have at the 
 * end since we will use our own error reporting format. 
 */                                                      
SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.
 */
void
cleanup(int s)
{
    if (SPMIset)

if (SpmiFreeStatSet(SPMIset))
SPMIerror("SpmiFreeStatSet");

SpmiExit();
_cleanup();
_exit(0);

}

main(int argc, char *argv[])
{

struct SpmiStatVals*SPMIval = NULL;
 Appendix A. Source code 689



struct SpmiStat*SPMIstat = NULL;
SpmiCxHdl SPMIcxhdl = 0;
FILE *file;

    char stats[4096];
    float statvalue;
    /*
     * Here we initialize the SPMI environment for our process.
     */

if (SpmiInit(15)) {
SPMIerror("SpmiInit");
exit(SpmiErrno);

}
    /*
     * We make sure that we clean up the SPMI memory that we use
     * before we terminate the process. atexit() is called when
     * the process is normally terminated, and we trap signals
     * that a terminal user, or program malfunction could
     * generate and cleanup then as well.
     */

atexit(cleanup);
signal(SIGINT,cleanup);
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);

    /*
     * Here we create the base for our SPMI statistical data hierarchy.
     */ 

if ((SPMIset = SpmiCreateStatSet()) == NULL) {
SPMIerror("SpmiCreateStatSet");
exit(SpmiErrno);

}
    /*
     * Open the file we have the SPMI metrics stored in
     */ 

if ((file = fopen("SPMI_METRICS", "r")) == NULL) exit(1);
    /*
     * Read all lines in the file
     */ 
    while (fscanf(file,"%s",&stats) != EOF) {

/*
 * For each metric we want to monitor we need to add it to
 * our statistical collection set (assuming the input file syntax is 

correct).
 */
if ((SPMIval = SpmiPathAddSetStat(SPMIset,stats,SPMIcxhdl)) == NULL) {

SPMIerror("SpmiPathAddSetStats");
exit(SpmiErrno);

}
    }
690 AIX 5L Practical Performance Tools and Tuning Guide



    fclose(file);
/*
 * First we must request that SPMI refresh our statistical
 * data hierarchy.
 */
if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {

SPMIerror("SpmiGetStatSet");
exit(SpmiErrno);

}
/*
 * Here we get the first entry point in our statistical data hierarchy.
 * Note that SPMI will return the values in the reverse order of the one
 * used to add them to our statistical set.
 */
SPMIval = SpmiFirstVals(SPMIset);
do {

if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
SPMIerror("SpmiGetValue");
exit(SpmiErrno);

}
printf("%-25s: 

%.0f\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat,0),statvalue);
/*
 * Finaly we get the next statistic in our data hierarchy.
 * And if this is NULL, then we have retreived all our statistics.
 */
} while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));

}

Spmi_traverse.c
Example A-7 shows the source code for the spmi_traverse.c program.

Example: A-7   spmi_traverse.c source code

#include <sys/types.h>
#include <sys/errno.h>
#include <stdio.h>
#include <sys/Spmidef.h>
 
extern errno;
extern charSpmiErrmsg[]; 
extern intSpmiErrno; 

SPMIerror(char *s)
{
    /* We do not want the \n that the SpmiErrmsg have at the
 Appendix A. Source code 691



     * end since we will use our own error reporting format.
     */

SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.
 */
void
cleanup(int s)                                 
{                                         
    SpmiExit();                           

_cleanup ();
_exit (0);

}
/*
 * This function that traverses recursively down a
 * context link.  When the end of the context link is found,
 * findstats traverses down the statistics links and writes the
 * statistic name to stdout.  findstats is originally passed the
 * context handle for the TOP context.
 */
findstats(SpmiCxHdl SPMIcxhdl)
{

struct SpmiCxLink   *SPMIcxlink;
struct SpmiStatLink *SPMIstatlink;
struct SpmiCx       *SPMIcx, *SPMIcxparent;
struct SpmiStat     *SPMIstat;
int                 instantiable;
/*
 * Get the first context.
 */
if (SPMIcxlink = SpmiFirstCx(SPMIcxhdl)) {

while (SPMIcxlink) {
SPMIcx = SpmiGetCx(SPMIcxlink->context);
/*
 * Determine if the context's parent is instantiable
 * because we do not want to have to print the metrics
 * for every child of that parent, ie Procs/<PID>/metric
 * will be the same for every process.
 */
SPMIcxparent = SpmiGetCx(SPMIcx->parent);
692 AIX 5L Practical Performance Tools and Tuning Guide



if (SPMIcxparent->inst_freq == SiContInst)
instantiable++;

else
instantiable = 0;

/*
 * We only want to print out the stats for any contexts
 * whose parents aren't instantiable. If the parent
 * is instantiable then we only want to print out
 * the stats for the first instance of that parent.
 */
if (instantiable > 1) {

/*
  * Output the name of the metric with instantiable parents.
  */

fprintf(stdout,"%s/%s/.....\n",SPMIcxparent->name,SPMIcx->name);
} else {

/*
  * Traverse the stats list for the context.
  */

if (SPMIstatlink = SpmiFirstStat(SPMIcxlink->context)) {
while (SPMIstatlink) {

SPMIstat = SpmiGetStat(SPMIstatlink->stat);
/*

  * Output name of the statistic.
  */

fprintf(stdout, "%s:%s",

SpmiStatGetPath(SPMIcxlink->context,SPMIstatlink->stat,10),
SPMIstat->description);

/*
  * Output data type/value type about the metric
  */

fprintf(stdout, ":%s/%s",
(SPMIstat->data_type == SiLong?"Long":"Float"),
(SPMIstat->value_type == 

SiCounter?"Counter":"Quantity"));
/*

  * Output max/min information about the metric.
  */

fprintf(stdout,":%ld-%ld\n",SPMIstat->min,SPMIstat->max);
/*

  * Get next SPMIstatlink
  */

SPMIstatlink = SpmiNextStat(SPMIstatlink);
}

}
}   
/*

  * Recursive call to this function, this gets the next context link
 Appendix A. Source code 693



  */
findstats(SPMIcxlink->context);
/*

  * After returning from the previous link, we go to the next context
  */

SPMIcxlink = SpmiNextCx(SPMIcxlink);
}

}
}

main(int argc, char *argv[])
{

int    spmierr=0;
SpmiCxHdlSPMIcxhdl;
/*
 * Here we initialize the SPMI environment for our process.
 */
if ((spmierr = SpmiInit(15)) != 0) {

SPMIerror("SpmiInit");
exit(errno);

}
/*
 * We make sure that we clean up the SPMI memory that we use
 * before we terminate the process. atexit() is called when
 * the process is normally terminated, and we trap signals
 * that a terminal user, or program malfunction could
 * generate and cleanup then as well.
 */
atexit(cleanup);
signal(SIGINT,cleanup);
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);

if ((SPMIcxhdl = SpmiPathGetCx(NULL, NULL)) == NULL)
SPMIerror("SpmiPathGetCx");

else
/*
 * Traverse the SPMI statistical data hierarchy.
 */
findstats(SPMIcxhdl);

}

SPMI statistics in AIX 5.3
The following example is a execution result of above program. This list contains 
every statistic that is supported by SPMI API. You can refer to this list and decide 
which of those statistics will be monitored.
694 AIX 5L Practical Performance Tools and Tuning Guide



dudestat.c
Example A-8 shows the source code for the dudestat.c program. 

Example: A-8   dudestat.c source code

#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
#include <sys/vminfo.h> 
#include <sys/wlm.h>
#include <procinfo.h>
#include <sys/proc.h>
#include <usersec.h>

sys_param_dude()
{

struct variovario;

if (!sys_parm(SYSP_GET,SYSP_V_MAXUP,&vario)) 
printf("v_maxup (max. # of user processes)                    : %lld\n", 

vario.v.v_maxup.value);
if (!sys_parm(SYSP_GET,SYSP_V_MAXPOUT,&vario)) 

printf("v_maxpout (# of file pageouts at which waiting occurs): %lld\n", 
vario.v.v_maxpout.value);

if (!sys_parm(SYSP_GET,SYSP_V_MINPOUT,&vario)) 
printf("v_minpout (# of file pageout at which ready occurs)   : %lld\n", 

vario.v.v_minpout.value);
if (!sys_parm(SYSP_GET,SYSP_V_FILE,&vario)) 

printf("v_file (# entries in open file table)                 : %lld\n", 
vario.v.v_file.value);

if (!sys_parm(SYSP_GET,SYSP_V_PROC,&vario)) 
printf("v_proc (max # of system processes)                    : %lld\n", 

vario.v.v_proc.value);

if ((!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario)) != 
(!sys_parm(SYSP_GET,SYSP_V_NCPUS_CFG,&vario)))

printf("Dude! v_ncpus %d (number of active CPUs) \
does not match v_ncpus_cfg %d (number of processor configured)\n",
vario.v.v_ncpus_cfg.value,
vario.v.v_ncpus_cfg.value);

}

vmgetinfo_dude()
{

struct vminfovminfo;

if (!vmgetinfo(&vminfo,VMINFO,sizeof(vminfo))) {
 Appendix A. Source code 695



printf("freewts (count of free frame waits)                   : 
%lld\n",vminfo.freewts);

printf("extendwts (count of extend XPT waits)                 : 
%lld\n",vminfo.extendwts);

printf("pendiowts (count of pending I/O waits)                : 
%lld\n",vminfo.pendiowts);

printf("numfrb (number of pages on free list)                 : 
%lld\n",vminfo.numfrb);

printf("numclient (number of client frames)                   : 
%lld\n",vminfo.numclient);

printf("numcompress (no of frames in compressed segments)     : 
%lld\n",vminfo.numcompress);

printf("numperm (number frames non-working segments)          : 
%lld\n",vminfo.numperm);

printf("maxperm (max number of frames non-working)            : 
%lld\n",vminfo.maxperm);

printf("maxclient (max number of client frames)               : 
%lld\n",vminfo.maxclient);

printf("memsizepgs (real memory size in 4K pages)             : 
%lld\n",vminfo.memsizepgs);

}
}

swapqry_dude()
{

struct pginfopginfo;
char device[256];
char path[256];
char cmd[256];
FILE *file;

bzero(cmd,sizeof(cmd));
sprintf(cmd,"odmget -q \"value = paging\" CuAt|awk 

'/name/{gsub(\"\\\"\",\"\",$3);print $3}'\n");
if (file = popen(cmd,"r"))

while (fscanf(file,"%s\n", &device)!=EOF) {
sprintf(path,"/dev/%s", device);
if (!swapqry(path,&pginfo)) {

printf("paging space device                                   : 
%s\n",path);

printf("size (size in PAGESIZE blocks)                        : 
%u\n",pginfo.size);

printf("free  (# of free PAGESIZE blocks)                     : 
%u\n",pginfo.free);

printf("iocnt (number of pending i/o's)                       : 
%u\n",pginfo.iocnt);

}
}

pclose(file);
696 AIX 5L Practical Performance Tools and Tuning Guide



}

getprocs_dude(char *dudes[])
{

struct procsinfops[8192]; 
int uids[12]; 
pid_t index = 0;
int nprocs;
int i,j,k;
char *p;

if (dudes[0] != NULL)
if ((nprocs = getprocs(&ps, sizeof(struct procsinfo), NULL, 0, &index, 

8192)) > 0)
for (i = 0,k = 0; dudes[i] != NULL; i++)

for (j=0; j<nprocs; j++) {
p = IDtouser(ps[j].pi_uid);
if (!strcmp(dudes[i],p)) {

printf ("The %s dude is online and 
excellent!\n\n",dudes[i]);

uids[k++] = ps[j].pi_uid;
break;

}
}

if (i != k) {
j = i - k;
printf ("There %s %d dude%s 

missing!\n\n",(j>1)?"are":"is",j,(j>1)?"s":"");
}

}

main(int argc, char *argv[])
{

printf("PARTY ON!\n\n");
getprocs_dude(argc>1?&argv[1]:NULL);
printf("Dude, here are some excellent info for you today\n\n");
sys_param_dude();
vmgetinfo_dude();
swapqry_dude();

}

 Appendix A. Source code 697



698 AIX 5L Practical Performance Tools and Tuning Guide



Appendix B. Trace hooks

This appendix contains a listing of the AIX 5L trace hook IDs. Trace hooks can be 
thought of as markers in a trace report that mark certain events. After creating 
the trace report, the trace hooks can then be used to search for these events. 

A trace report can be taken with all trace hooks active, or with only certain trace 
hooks active. It is a particularly good idea to limit the number of events that are 
captured (by limiting the number of trace hooks) on systems that are very busy, 
especially large SMP systems. Because the trace buffers are limited in size and 
can grow extremely quickly, avoid filling the buffer by limiting the number of trace 
hooks. Refer to 3.7, “The trace, trcnm, and trcrpt commands” on page 147 for 
further information about trace. The trace hooks that are needed by AIX trace 
post-processing tools, such as filemon, netpmon, tprof, or curt, are specified in 
the AIX documentation that can be found at:

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

B

© Copyright IBM Corp. 2005. All rights reserved. 699

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/


AIX 5L trace hooks
The following list of trace hooks and their respective hook IDs can be obtained by 
running the trcrpt -j command. We recommend that you run trcrpt -j every 
time the operating system is updated to check for any modifications to the trace 
hooks that IBM may make.

Example: B-1   AIX 5.2 trace hooks using trcrpt -j

#uname -a
AIX lpar05 2 5 0021768A4C00
#trcrpt -j
001 TRACE ON
002 TRACE OFF
003 TRACE HEADER
004 TRACEID IS ZERO
005 LOGFILE WRAPAROUND
006 TRACEBUFFER WRAPAROUND
007 UNDEFINED TRACE ID
008 DEFAULT TEMPLATE
00a TRACE_UTIL
100 FLIH
101 SYSTEM CALL
102 SLIH
103 RETURN FROM SLIH
104 RETURN FROM SYSTEM CALL
105 LVM EVENTS
106 DISPATCH
107 FILENAME TO VNODE (lookuppn)
108 FILE ORIENTED SYSTEM CALLS
10a KERN_PFS
10b LVM BUF STRUCT FLOW
10c DISPATCH IDLE PROCESS
10d FILE VFS AND INODE
10e LOCK OWNERSHIP CHANGE
10f KERN_EOF
110 KERN_STDERR
111 KERN_LOCKF
112 LOCK
113 UNLOCK
114 LOCKALLOC
115 SETRECURSIVE
116 XMALLOC size,align,heap
117 XMFREE address,heap
118 FORKCOPY
119 SENDSIGNAL
11a KERN_RCVSIGNAL
11c P_SLIH
11d KERN_SIGDELIVER
700 AIX 5L Practical Performance Tools and Tuning Guide



11e ISSIG
11f SET ON READY QUEUE
120 ACCESS SYSTEM CALL
121 SYSC_ACCT
122 ALARM SYSTEM CALL
12e CLOSE SYSTEM CALL
130 CREAT SYSTEM CALL
131 DISCLAIM SYSTEM CALL
134 EXEC SYSTEM CALL
135 EXIT SYSTEM CALL
137 FCNTL SYSTEM CALL
139 FORK SYSTEM CALL
13a FSTAT SYSTEM CALL
13b FSTATFS SYSTEM CALL
13e FULLSTAT SYSTEM CALL
14c IOCTL SYSTEM CALL
14e KILL SYSTEM CALL
152 LOCKF SYSTEM CALL
154 LSEEK SYSTEM CALL
15b OPEN SYSTEM CALL
15f PIPE SYSTEM CALL
160 PLOCK
163 READ SYSTEM CALL
169 SBREAK SYSTEM CALL
16a SELECT SYSTEM CALL
16e SETPGRP
16f SBREAK
180 SIGACTION SYSTEM CALL
181 SIGCLEANUP
183 SIGRETURN
18e TIMES
18f ULIMIT SYSTEM CALL
195 USRINFO SYSTEM CALL
19b WAIT SYSTEM CALL
19c WRITE SYSTEM CALL
1a4 GETRLIMIT SYSTEM CALL
1a5 SETRLIMIT SYSTEM CALL
1a6 GETRUSAGE SYSTEM CALL
1a7 GETPRIORITY SYSTEM CALL
1a8 SETPRIORITY SYSTEM CALL
1a9 ABSINTERVAL SYSTEM CALL
1aa GETINTERVAL SYSTEM CALL
1ab GETTIMER SYSTEM CALL
1ac INCINTERVAL SYSTEM CALL
1ad RESTIMER SYSTEM CALL
1ae RESABS SYSTEM CALL
1af RESINC SYSTEM CALL
1b0 VMM_ASSIGN (assign virtual page to a physical page)
1b1 VMM_DELETE (delete a virtual page)
 Appendix B. Trace hooks 701



1b2 VMM_PGEXCT (pagefault)
1b3 VMM_PROTEXCT (protection fault)
1b4 VMM_LOCKEXCT (lockmiss)
1b5 VMM_RECLAIM
1b6 VMM_GETPARENT
1b7 VMM_COPYPARENT
1b8 VMM_VMAP (fault on a shared process private segment)
1b9 VMM_ZFOD (zero fill a page)
1ba VMM_PAGEIO
1bb VMM_SEGCREATE (segment create)
1bc VMM_SEGDELETE (segment delete)
1bd VMM_DALLOC
1be VMM_PFEND
1bf VMM_EXCEPT
1c8 PPDD
1ca TAPEDD
1cf C327DD
1d0 DDSPEC_GRAPHIO
1d1 ERRLG
1d2 DUMP
1d9 VMM_ZERO
1da VMM_MKP
1db VMM_FPGIN
1dc VMM_SPACEOK
1dd VMM_LRU
1f0 SETTIMER SYSTEM CALL
200 RESUME
201 KERN_HFT
202 KERN_KTSM
204 SWAPPER swapin process
205 SWAPPER swapout process
206 SWAPPER post process for suspension
207 SWAPPER sched stats
208 SWAPPER process stats
209 SWAPPER sched stats
20a MEMORY SCRUBBING disable
20b MEMORY SCRUBBING enable
20c MEMORY SCRUBBING choose segment of memory
20d MEMORY SCRUBBING report single bit errors
20e LOCKL locks a conventional process lock
20f UNLOCKL unlocks a conventional process lock
211 NFS: Client VNOP read/write routines
212 NFS: Client VNOP routines
213 NFS: Server read/write services
214 NFS: Server services
215 NFS: Server dispatch
216 NFS: Client call
217 NFS: RPC Debug
218 NFS: rpc.lockd hooks
702 AIX 5L Practical Performance Tools and Tuning Guide



220 FDDD
221 SCDISKDD
222 BADISKDD
223 SCSIDD
226 GIODD
228 SERDASDD
229 TMSCSIDD
22c tsdd
232 SCARRAYDD
233 SCARRAY
234 CLOCK
250
251 NETERR
252 SOCK
254 MBUF
255 NETIF_EN
256 NETIF_TOK
257 NETIF_802.3
258 NETIF_X25
259 NETIF_SER
25a TCPDBG
272 PSLA DR. OPEN(X) CALL
273 PSLA DR. CLOSE CALL
274 PSLA DR. READ CALL
275 PSLA DR. WRITE CALL
276 PSLA DR. IOCTL CALLS
277 PSLA INTERRUPT HANDLER
278 PSLA DR. CONFIG CALL
280 HIADD
292 VCA DEVICE DRIVER
2a1 IDEDISKDD
2a2 IDECDROMDD
2a4 kentdd
2a5 kentdd
2a6 kentdd
2a7 stokdd
2a8 stokdd
2a9 stokdd
2aa stokdd
2c7 chatmdd
2c8 chatmdd
2c9 chatmdd
2ca bbatmdd
2d9 NFS: krpc network hooks
2da cstokdd
2db cstokdd
2dc cstokdd
2e6 phxentdd
2e7 phxentdd
 Appendix B. Trace hooks 703



2e8 phxentdd
2ea gxentdd
2eb gxentdd
2ec gxentdd
2ed nbc
2f9 WLM
2fa ethchandd
2fb ethchandd
2fc  VMM_VWAIT EVENT
2fd RPDP:
2fe System freeze:
300 ODM EVENTS
339 ATM SIGNALING-DD -
33a if_at
340
355 PDIAGEX
38d AIO: Asynchronous I/O
38e SISADD
38f DYNAMIC RECONFIG:
393 LVM NON-I/O EVENTS
3a0 atmcm
3a5 atmsock
3a7 jatmdd
3a8 SCSESDD
3a9 dpmpdd
3aa dpmpdd
3ab dpmpdd
3ac sciedd
3af NFS: cachefs hooks
3b0 AutoFS: Client VNOP read/write routines
3b4 TMSSA Device
3b5 ecpadd
3b6 ecpadd
3b7 SECURITY:
3b8 SEC DATA:
3b9 FCDD
3c0 ecpadd
3c1 ecpadd
3c2 ecpadd
3c4 FCPS
3c5  IPCACCESS EVENT
3c6  IPCGET EVENT
3c7  MSGCONV EVENT
3c8  MSGCTL SYSTEM CALL
3c9  MSGGET SYSTEM CALL
3ca  MSGRCV SYSTEM CALL
3cb  MSGSELECT SYSTEM CALL
3cc  MSGSND SYSTEM CALL
3cd  MSGXRCV SYSTEM CALL
704 AIX 5L Practical Performance Tools and Tuning Guide



3ce  SEMCONV EVENT
3cf  SEMCTL SYSTEM CALL
3d0  SEMGET SYSTEM CALL
3d1  SEMOP SYSTEM CALL
3d2  SEM EVENT
3d3  SHMAT SYSTEM CALL
3d4  SHMCONV EVENT
3d5  SHMCTL SYSTEM CALL
3d6  SHMDT SYSTEM CALL
3d7  SHMGET SYSTEM CALL
3d8  MADVISE SYSTEM CALL
3d9  MINCORE SYSTEM CALL
3da  MMAP SYSTEM CALL
3db  MPROTECT SYSTEM CALL
3dc  MSYNC SYSTEM CALL
3dd  MUNMAP SYSTEM CALL
3de  MVALID SYSTEM CALL
3df  MSEM_INIT SYSTEM CALL
3e0  MSEM_LOCK SYSTEM CALL
3e1  MSEM_REMOVE SYSTEM CALL
3e2  MSEM_UNLOCK SYSTEM CALL
3e3 ecpadd
3e4 ecpadd
3e8 bbatmdd
3e9 bbatmdd
3ea bbatmdd
3f7 J2 - VNODE
3f8 J2 - PAGER
3fd vlandd
3fe vlandd
3ff vlandd
400 STTY
401 STTY STRTTY
402 STTY LDTERM
403 STTY SPTR
404 STTY NLS
405 STTY PTY
406 STTY RS
407 STTY LION
408 STTY CXMA
409 STTY SF
417 STTY VCON
45a SSA Adapter
45b SSA DASD
460 ASSERT WAIT
461 CLEAR WAIT
462 THREAD BLOCK
463 EMPSLEEP
464 EWAKEUPONE
 Appendix B. Trace hooks 705



465 THREAD_CREATE SYSTEM CALL
466 KTHREAD_START
467 THREAD_TERMINATE SYSTEM CALL
468 KSUSPEND
469 THREAD_SETSTATE
46a THREAD_TERMINATE_ACK
46b THREAD_SETSCHED
46c TIDSIG
46d WAIT_ON_LOCK
46e WAKEUP_LOCK
470 scentdd
471 scentdd
472 scentdd
473 goentdd
474 goentdd
475 goentdd
502 GSC
503 GSC
522 ICA:        IBM Crypto Accelerator Error Traces
523 ICA:        IBM Crypto Accelerator Verbose Traces
524 ICA:        IBM Crypto Accelerator Verbose Traces
527  UDI MANAGEMENT AGENT
528  UDI SCSI MAPPER
529  UDI BRIDGE MAPPER
52a  UDI NETMAPPER (
52b  UDI GIO MAPPER
52c  UDI NETWORK DRIVER
52d  UDI SCSI DRIVER
535 TCP
536 UDP
537 IP
538 IP6
539 PCB
590 ATM DdMain trc,
591 ATM ERROR trc,
592 ATM Common trc,
593 ATM ILMI trace,
594 ATM QSAAL trc,
595 ATM SVC trace,
5a0 sysldr/mods
5a1 load/kxent
5a2 sysldr/execld
5a3 sysldr/errs:
5a4 sysldr/chkpt:
600 Pthread user scheduler thread
603 Pthread timer thread
605 Pthread vp sleep
606 Pthread condition variable
607 Pthread mutex
706 AIX 5L Practical Performance Tools and Tuning Guide



608 Pthread read/write lock
609 General pthread library call
60a HKWD_LIBC_MALL_COMMON
60b HKWD_LIBC_MALL_INTERNAL
707 LFTDD:
709 INPUTDD:
71f BLDD:
722 SGIODD:
72d MIRDD:
730 SONDD:
733 MOJDD:
734 USBKBD:
735 USBMSE:
736 USBOHCD:
7ff STREAMS (PSE)
 Appendix B. Trace hooks 707



708 AIX 5L Practical Performance Tools and Tuning Guide



acronyms
AIO Asynchronous I/O

AIX Advanced Interactive 
Executive

API Application Programming 
Interface

ARP Address Resolution 
Protocol

ATM Asynchronous Transfer 
Mode

CGI Common Gateway 
Interface

CLI Command Line Interface

CPU Central Processing Unit

CSM Cluster Systems 
Management

DASD Direct Access Storage 
Device

DLPAR Dynamic Logical Partition

DLPAR Dynamic Logical Partition

DMA Direct Memory Access

DNS Domain Name Service

DPSA Deferred Paging Space 
Algorithm

EPSA Early Paging Space 
Algorithm

FC Fibre Channel

FDDI Fiber Distributed Data 
Interface

FIFO First In First Out

GPFS General Parallel File 
System

GUI Graphical User Interface

HACMP/ES High Availability Cluster 
Multi-Processing/Enhanc
ed Scalability

Abbreviations and 
© Copyright IBM Corp. 2005. All rights reserved.
HAEM High Availability Event 
Management

HMC Hardware Management 
Console

IBM International Business 
Machines Corporation

IPC Inter Process 
Communication

IPL Initial Program Load

ISNO Interface Specific 
Network Options

ITSO International Technical 
Support Organization

JFS Journaled File System

KEX Kernel Extension

LAN Local Area Network

LMBs Logical Memory Blocks

LPAR Logical Partition

LPP Licensed Product 
Program

LPSA Late Paging Space 
Algorithm

LUN Logical Unit Number

LV Logical Volume

LVD Low Voltage Differential 
(Scsi)

LVDD Logical Volume Device 
Driver

LVM Logical Volume Manager

MCM Multi-chip Module

MPIO Multi-path I/O

MTU Maximum Transfer Unit

NAS Network Access Storage

NFS Network File System
 709



NFS Network File System

NIM Network Install Manager

NIS Network Information 
Services

NLS National Language 
Support

ODM Object Data Manager

PCM Path Control Module

PID Process Id

PLM Partition Load Manager

PMAPI Performance Monitoring 
Application Programming 
Interface

PSSP Parallel Systems Support 
Program

PTX Performance Toolbox

RFC Request For Comment

RMC Resource Monitoring 
Control

RPC Remote Procedure Call

RPM Red Hat Package 
Manager

RSCT Reliable Scalable Cluster 
Technology

SCSI Small Computer System 
Interface

SDD Subsystem Device Driver

SLIP Serial Line Interface 
Protocol

SMIT System Management 
Interface Tool

SMP Symmetric 
Multi-processing

SMT Simultaneous 
Multi-threading

SPLPAR Shared Processor Logical 
Partition

SPMI System Performance 
Monitoring Interface

SRC System Resource 
Controller

VMM Virtual Memory Manager

VP Virtual Processor

WLM Workload Manager

WLM Workload Manager

WWN World Wide Number
710 AIX 5L Practical Performance Tools and Tuning Guide



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 713. Note that some of the documents referenced here may be available 
in softcopy only. 

� Developing and Porting C and C++ Applications on AIX, SG24-5674

� Advanced POWER Virtualization on IBM Eserver p5 Servers Architecture 
and Performance Considerations, SG24-5768

� Advanced POWER Virtualization on IBM Eserver p5 Servers: Introduction 
and Basic Configuration, SG24-7940

� Auditing and Accounting on AIX, SG24-6020

� Accounting and Auditing on AIX 5L, SG24-6396

� Introduction to pSeries Provisioning, SG24-6389

� AIX Logical Volume Manager from A to Z, Introduction and Concepts, 
SG24-5432

� A Practical Guide for Resource Monitoring and Control (RMC), SG24-6615

� A Comparison of Workload Management and Partitioning, TIPS0426

� AIX 5L Workload Manager (WLM), SG24-5977

� Understanding IBM Eserver pSeries Performance and Sizing, SG24-4810

� RS/6000 SP System Performance Tuning Update, SG24-5340

� AIX 5L Performance Tools Handbook, SG24-6039

� AIX 5L Differences Guide Version 5.3 Edition, SG24-5765

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155
© Copyright IBM Corp. 2005. All rights reserved. 711



Other publications
These publications are also relevant as further information sources:

� AIX 5L Version 5.3 Technical Reference: Base Operating System and 
Extensions, Volume 1, SC23-4913

� AIX 5L Version 5.3 Technical Reference: Base Operating System and 
Extensions, Volume 2, SC23-4914

� IBM Reliable Scalable Cluster Technology Administration Guide, SA22-7889

� IBM Reliable Scalable Cluster Technology for AIX 5L Technical Reference, 
SA22-7890

� AIX 5L Version 5.3 Performance Tools Guide and Reference, SC23-4906

� AIX 5L Version 5.3 Performance Management Guide, SC23-4905

� Performance Toolbox Version 2 and 3 Guide and Reference, SC23-2625

� AIX 5L Version 5.3 System Management Concepts: Operating System and 
Devices, SC23-4908

� AIX 5L Version 5.3 System Management Guide: Operating System and 
Devices, SC23-4910

� AIX 5L Version 5.3 Commands Reference, Volume 1, SC23-4888

� AIX 5L Version 5.3 Commands Reference, Volume 2, SC23-4889

� AIX 5L Version 5.3 Commands Reference, Volume 3, SC23-4890

� AIX 5L Version 5.3 Commands Reference, Volume 4, SC23-4891

� AIX 5L Version 5.3 Commands Reference, Volume 5, SC23-4892

� AIX 5L Version 5.3 Commands Reference, Volume 6, SC23-4893

� AIX 5L Version 5.3 System User's Guide: Operating System and Devices, 
SC23-4911

� AIX 5L Version 5.3 General Programming Concepts, SC23-4896

� AIX 5L Version 5.3 System Management Guide: Communications and 
Networks, SC23-4909

� TCP/IP Tutorial and Technical Overview, GG24-3376

� Event Management Programming Guide and Reference, SA22-7354

� AIX 5L Version 5.3 Files Reference, SC23-4895

� AIX 5L Version 5.3 Kernel Extensions and Device Support Programming 
Concepts, SC23-4900
712 AIX 5L Practical Performance Tools and Tuning Guide



Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM High Performance Computing Toolkit Web page

http://www.alphaworks.ibm.com/tech/hpmtoolkit

� RS/6000 SP System Performance Tuning Update

http://www.rs6000.ibm.com/support/sp/perf

� Request For Comment (RFC) Web site

http://www.rfc-editor.org/

� IBM network management products

http://www.networking.ibm.com/netprod.html

� Performance problem determination tool collection

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, 
draft publications and Additional materials, as well as order hardcopy Redbooks 
or CD-ROMs, at this Web site: 

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 713

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.alphaworks.ibm.com/tech/hpmtoolkit
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr
http://www.rs6000.ibm.com/support/sp/perf
http://www.rfc-editor.org/
http://www.networking.ibm.com/netprod.html


714 AIX 5L Practical Performance Tools and Tuning Guide



Index

Symbols
.files file   89
.nodes file   90
.SM_RAW_REPORT file   93
.thresholds file   90

A
access time   40

rotational   40
seek   40
transfer   40

adapter throughput report   437
Address Resolution Protocol, see ARP
adm user   88
AIX maintenance level   81
algorithms   6
allocation of resources   535
alstat   291
analysis interval   123
API   583
application path   535
Application Programming Interfaces, see API
application tag   535
ARP   59
atmstat command   50
automated responses   558
availability   15

B
benchmark   6
bindintcpu   26, 278–279
bindprocessor   26–27, 278, 280
bos.acct   434
bos.net.nfs.client   389
bos.perf.diag_tool   86
bos.perf.tools   95, 119, 441, 478
bos.rte.lvm   463, 475

C
C program   586, 621, 639
cache   9
capped   552
© Copyright IBM Corp. 2005. All rights reserved.
caveat   638
cc command   586
charging   534
chcondition   576
chcondition command   559
chdev   354, 415, 487
chfs   47
chresponse command   559
chrsrc command   559
Class Report   548
commands

atmstat   50
cc   586
chcondition   559
chresponse   559
chrsrc   559
cronadm   88
ctsnap   559
curt   95
dd   459
defragfs   450
df   459
Driver_   88
du   458
entstat   50
estat   50
fddistat   50
filemon   467
fsck   46
ftp   50
gennames   95, 120–121, 124
gensyms   121, 124
gprof   106
ioo   37
iostat   393, 464, 589
ipcrm   624
ipcs   624
ipfilter   51
ipreport   51
iptrace   51
kill   624
logform   46
lsactdef   559
lsattr   52, 56, 437
 715



lsaudrec   559
lscondition   559
lscondresp   559
lslv   463
lspv   463
lsresponse   559
lsrsrc   559, 567
lsrsrcdef   559
lsvg   464
lvmstat   467
make   619
mkcondition   559
mkcondresp   560
mkresponse   559
mkrsrc   559
mount   396
netstat   50
nfso   416
nfsstat   50, 389
no   51
pdt_config   87
ping   50
pr   634
refrsrc   559
rmaudrec   559
rmcctrl   559, 565
rmcondition   559, 582
rmcondresp   560
rmresponse   559, 581
rmrsrc   559
rstatd   653
slibclean   624
snap   49
splat   120–121
startcondresp   560
stopcondresp   560
sync   449
syncvg   46
tcpdump   51
tokstat   50
trace   148
traceroute   50
trcnm   163
trcoff   148
trcon   148
trcrpt   98, 164
trcstop   148
vmstat   393, 589

communications I/O   12

compilers   10
compiling   586, 621, 639
complex kernel lock   128
condition-variable   129
CPU overhead   152
CPU Usage Reporting Tool   95
critical resource   16
cron   450
cronadm command   88
crontab   87
crontab file   89
ctcas   565
ctrmc   565
ctsnap command   559
cumulative CPU time   127
current machine instruction   12
currently dispatched thread   12
curt

Application summary by PID   237
Application summary by process type   238
Application summary by TID   236
Hypervisor calls summary   242
Processor summary   234
System summary   232

curt command   95
additional information   113
application summary by process ID   106
application summary by process type   107
application summary by thread ID   105
default report   100
detailed process information   118
detailed thread status   115
errors by system calls   115
FLIH summary   110
general information report   101
Kproc summary by thread ID   108
pending system calls summary   110
processor summary report   104
SLIH summary   112
system calls summary   109
system summary report   101
trace hooks   96

cylinder   40

D
dd command   459
DDS   624
Dead Man Switch, see DMS
716 AIX 5L Practical Performance Tools and Tuning Guide



defragfs command   450
destination address   386
devices.chrp.base.rte   278
df command   459
disk I/O   37

access time   40
design approach   38

disk utilization report   435
Disputable threads   11
DMS   84
Driver_ command   88
du command   458
dudestat.c   695
dynamic attributes   567
dynamic data supplier, see DDS
dynamic LPAR   534

E
Enhanced Journaled File System, see JFS2
entitlement   551
entstat   355
entstat command   50
EPSA   36
ERRM   563
estat command   50
event management   557
Event Response resource manager, see ERRM
excess user   552
execution interval   123
execution modes   233
expand   14
expectations   3
expression   579

F
failovers   84
fddistat command   50
figures   3
File System resource manager, see FSRM
filemon   378
filemon command   467

I/O activity   442
fileplace   450
fileplace command

examples   450
indirect block report   455
logical report   451
physical address   453

physical mapping   462
physical report   452

filesystems   467
fixed disk   12
FLIH   100
fragment size   453
fsck command   46
FSRM   563
ftp command   50

G
gaps   457
genkex   292
genkld   292
genld   292
gennames   292
gennames command   95, 120–121, 124
gensyms   246, 292
gensyms command   121, 124
gprof   259
gprof command   106
Graphical User Interface, see GUI
graphs   3
group   535
GUI   558

H
HACMP   84, 558
HAEM   558, 560
HAGS   558
hardware hierarchy   8
HATS   558
head   39
HKWD_KERN_PIDSIG   98
HKWD_KERN_SVC   98
hook ID   153
human expectations   21
Hypervisor   550

I
I/O activity levels   442
IBM.DMSRM   563
ifconfig   52
ifconfig command   53
indirect block   455
industry-standard benchmarks   6
inode   459
 Index 717



inode table   449
install   14
inter-disk allocation   42
inter-disk allocation policy   43
Interface Specific Network Options   334
Interface Specific Network Options, see ISNO
interrupt handlers   11
intra-disk allocation   42
intra-disk allocation policy   42
ioo   41, 414
ioo command   37
iostat   205, 207
iostat command   393, 464, 589

adapter throughput report   437
disk utilization report   435

IP   334
ipcrm command   624
ipcs command   624
ipfilter   372, 376
ipfilter command   51
ipreport   334, 371, 374
ipreport command   51
iptrace   334, 371–373
iptrace command   51
ISNO   48, 51, 334

J
JFS   467
JFS inode table   449
JFS log   46
JFS superblock   449
JFS2   467, 474
job isolation   534
jobs   534
jtopas   63, 70, 73

Near Real-Time   70
Playback   70

K
kernel statistics   564
kill command   624
kproc   238

L
libperfstat.a   586
libperfstat.h   586, 601
libpmapi.a   639

libSpmi.a   621
linking   586, 621, 639
LMB   553
lock types   132
locktrace   293
logform command   46
logical file system   442
logical fragment numbers   455
logical fragmentation   450
Logical Memory Blocks   553
logical resources   15
Logical Track Groups   45
Logical Volume Device Driver, see LVDD
Logical Volume Manager Device Driver, see LVM-
DD
Logical Volume Manager, see LVM
logical volume utilization   477
logical volumes   442, 467
lower threshold   551
lsactdef command   559
lsattr   32, 56, 279, 415, 487
lsattr command   52, 56, 437
lsaudrec command   559
lscfg   487
lscondition   576, 578
lscondition command   559
lscondresp   577, 581
lscondresp command   559
lsdev   30, 480
lslv command   463

examples   464
usage   471

lspath   483
lsps   36
lspv command   463

examples   464
usage   472

lsresponse command   559
lsrsrc   564–566
lsrsrc command   559, 567
lsrsrcdef   568
lsrsrcdef command   559
lssrc   565
lsvg command   464

examples   464
usage   473

LVDD   45, 453
LVM   41, 463
LVMDD   470, 475
718 AIX 5L Practical Performance Tools and Tuning Guide



lvmo   499
lvmstat   475
lvmstat command   467

examples   476
logical volume utilization   477

M
Mail Handler, see MH
maintenance level   81
make command   619
managed partitions   550
Maximum Transfer Unit, see MTU
maxmbuf   336
mbuf   305, 354, 356
Mbufs   335
memory donors   553
MH   580
Micro-Partitioning   549
mirror write consistency   45
mkcondition   575
mkcondition command   559
mkcondresp   577
mkcondresp command   560
mkdev   480
mklv   44
mkresponse command   559
mkrsrc command   559
monitor   14
monitoring   557
monitoring conditions   558
mount command   396
mounted file system   395
MPIO   435
mpstat   30, 179
MTU   49
multi-path input-output, see MPIO
Multiuser   6
multiuser   6, 14
mutex   129
MWC Check   45
MWC Record   45

N
Near Real-Time   73
netpmon   376–377

reports   384
netstat   339, 354, 356, 361
netstat command   50

Network File System, see NFS
network tuning   48
NFS   389, 416
NFS clients   395
nfs_dynamic_retrans   420
nfso   414
nfso command   416

examples   417
nfso tunable

nfs_dynamic_retrans   420
nfsstat   389
nfsstat command   50, 389

client NFS statistics   394
mounted file systems   395
NFS statistics   392
RPC statistics   390, 393

nice   288
no   396, 414
no command   51
no tunable

use_isno   52
nointegrity   46
NRT   76

O
Object Data Manager, see ODM
objectives   7
ODM   463
other subroutines   644

P
packet-sequencing information   387
paging space   47
paging space garbage collection   35
Parallel System Support Programs, see PSSP
partition

dedicated processor   553
shared processor   553

Partition load manager   549
partition weight   552
passive   544
pbuf   41
pbufs   41
PCB, see protocol control block
PDT   63, 86

.files file   89

.nodes file   90

.SM_RAW_REPORT file   93
 Index 719



.threshold file   90
configuration files   89
manual collection   95
report   92

PDT directories   89
PDT files   89
pdt_config command   87

interface   87
performance concept   21
performance criteria   6
Performance Diagnostic Tool, see PDT
Performance Diagnostics Tool   63
Performance Monitor, see PM
performance statistics   534
Performance Toolbox   546
performance tuning   21
Performance Workbench   184
perfpmr   50, 63, 81
perfpmr command   49

filesets   81
installation   83
PROBLEM.INFO file   84
Running perfpmr   83

perfpmr files
config.sh   78
emstat.sh   78
filemon.sh   79
iostat.sh   79
iptrace.sh   79
monitor.sh   79
netstat.sh   79
nfsstat.sh   79
pprof.sh   79
ps.sh   79
sar.sh   80
tcpdump.sh   80
tprof.sh   80
trace.sh   80
vmstat.sh   80

Perfstat API   586
compiling and linking   586
interface types   612

perfstat kernel extension   584
perfstat_cpu subroutine   591
perfstat_cpu_total subroutine   594
perfstat_disk subroutine   601
perfstat_disk_total subroutine   604
perfstat_dude.c   670
perfstat_memory_total subroutine   597, 599

perfstat_netbuffer subroutine   620
perfstat_netinterface subroutine   610
perfstat_netinterface_total subroutine   614
perfstat_protocol subroutine   620
perfstat_reset subroutine   620
perfwb   184
PFS   153, 162
Physical File System, see PFS
physical fragment numbers   456
physical fragmentation   450
physical partition   41, 466
physical volume   41, 442
ping command   50
Pipeline   10
plan   14
PLM   549

memory management   553
policy file   553

PM   583
PM API   637

compiling and linking   639
pmtu   361
policy   551
pprof   262
predicting performance   5
prioritization   556
problem determination   3
process types   535
processes   22
processor pipeline   8
processor time slice   15
procfile   191
procmon   184
proctools   294
prof   259, 268
program execution model   7
Program Temporary Fix, see PTF
protocol control block   384, 388
ps   210, 213, 297
PSGC   35
PSSP   558
PTF   81
Pthread condition-variable   128
Pthread mutex   128
Pthread read/write lock   128

Q
qdaemon   450
720 AIX 5L Practical Performance Tools and Tuning Guide



R
RAID   42
RAM   10
raw trace   98
read-locking   136
real memory   7, 13
real resources   15
recursive locking   136
Redbooks Web site   713

Contact us   xiv
Redundant Array of Independent Disks, see RAID
refrsrc   564
refrsrc command   559
registers   8, 10
Remote Procedure Call, see RPC
renice   290
resource class   563
resource donor   551
resource entitlement   556
resource manager   560, 563
Resource Monitoring and Control, see RMC   550
resource usage   534
resource utilization   550
response time   7
rfc1323   55
rmaudrec command   559
RMC   550, 557, 560

active WLM classes   658
dynamic attributes   566
examples   645
persistent attributes   566
physical/logical device   561
resource   561
resource class   563
resource manager   561, 563
RMC

listing   576
vmgetinfo   648

RMC abstractions   561
rmcctrl command   559, 565
rmcondition command   559, 582
rmcondresp command   560
rmdev   480
rmresponse command   559, 581
rmrsrc command   559
RPC   389
RSCT   557
rsct.basic   558
rsct.compat.basic   558

rsct.compat.clients   558
rstat   654
rstatd command   653
running thread   13
RunQ lock   128

S
sadc   204
sar   25, 201–202, 273, 297, 300, 478
sb_max   54
schedo   25, 282, 287, 414
SCSI   39
SD   575
sector   39
sequential reads and writes   162
server   6
service-level agreement   15, 534
shared processor partition   172
shared processor pool   173
simple kernel lock   128
Simple Performance Lock Analysis Tool   119
sizing   4
slibclean command   624
SLIH   100
SMIT   169
SMT   277
smtctl   276–277
snap command   49
sockthresh   338
software hierarchy   10
source address   386
source code   665
sparse file   457

creation   459
determining   459
finding   461

speed   15
splat   122, 245, 247
splat command   120–121

AIX kernel lock details   129
analysis interval   123
complex-lock report   136
execution interval   123
execution summary   125
function detail report   133
gross lock summary report   126
lock details   129
mutex reports   140
 Index 721



per-lock summary report   127
PThread synchronizer reports   139
read/write lock reports   142
thread detail report   135
trace discontinuities   124
trace hooks   122
trace interval   123

SPMI   64, 620–621
SpmiExit   628
SpmiFreeStatSet   628
SpmiGetValue   627

SPMI API
basic program layout   640
compiling and linking   621
makefile   636

SPMI hierarchy   635
spmi_data.c   683
spmi_dude.c   679
spmi_file.c   689
spmi_traverse.c   691
SpmiCreateStatSet subroutine   625
SpmiFreeStatSet subroutine   628
SpmiGetValue subroutine   627
SpmiInit subroutine   625
SpmiNextVals subroutine   628
SpmiPathAddSetStat subroutine   626
SpmiPathGetCx subroutine   625
SSA   39
stale partition   469
startcondresp   578
startcondresp command   560
statistics   3
stopcondresp   581
stopcondresp command   560
Strict   44
stripnm   293
strthresh   338
structured data, see SD
subclasses   536
superblock   449
superclasses   536
superstrict   44
svmon   192, 297, 301, 546, 548
svmon_back   301
swapqry   651
symbol names

list   164
sync command   449
syncvg command   46

system branch   11
System Management Interface Tool, see SMIT
System Performance Measurement Interface   64
System Performance Measurement Interface, see 
SPMI
system resources   3–4

T
TCP   50, 334, 390
tcp_mssdflt   55
tcp_pmtu_discover   54
tcp_recvspace   55
tcp_sendspace   55
tcpdump   334, 372
tcpdump command   51
thewall   54, 336, 362
thread   8, 22
Thread Model 1:1   22
Thread Model M:N   22
thread state   132
threshold   551
throughput   7
throughput data   50
Tier Report   548
time   273
timex   273
TLB   12
tokstat command   50
top command   68
topas   30, 63–66, 197, 297, 546–547
tprof   31, 270, 378
trace   63, 123, 152, 215, 219
trace buffer   152–154
trace command   148

CPU overhead   152
data collection   152
examples   158
INTERRUPT signals   151
return times   158
running asynchronously   156
running interactively   156
sequential read and write   162
subcommands   151
tracing a command   157
tracing to log file   157

trace facility   153
trace hook   153

list   699
722 AIX 5L Practical Performance Tools and Tuning Guide



trace hook function   154
trace interval   123
trace log file   153
traceroute   349
traceroute command   50
track   39
Transmission Control Protocol, see TCP
trcevgrp   292
trcnm   215–216

symbol names   164
trcnm command   163

examples   164
trcoff   215
trcoff command   148
trcon   215, 377
trcon command   148
trcrpt   169, 215–216, 222, 224
trcrpt command   98, 164

combining trace buffers   169
trcstop   215–216, 376, 378
trcstop command   148
trpt   372, 384–385
trpt command

stored trace records   386
truss   256
tuncheck   495
tune   14
tuning   3, 12
tunrestore   495
tunsave   495

U
UDP   50, 334, 390
udp_recvspace   55
udp_sendspace   55
unallocated logical blocks   451
unverified   639
upper threshold   551
use_isno   52
User Datagram Protocol, see UDP
user ID   535

V
vario structure   645
verified   638
Virtual Memory Manager   13
Virtual Memory Manager, see VMM
virtual memory system   442

virtual processor   22
vmgetinfo   648
vminfo   648
VMM   13, 644
vmo   36, 297, 414, 500
vmstat   25–26, 29, 208, 210, 280, 297, 301
vmstat command   393, 589
volume group   41, 466

W
waiting threads   11
WebSM   538, 558
WLM   162, 534

API   535
attributes   535, 541
Class attributes   536
Class hierarchy   536
Class tiers   536
classes   535, 541
Inheritance   537
Localshm   537
Resource   537
Subclass   536
SuperClass   536

wlm_bio_class_info_t   660
wlm_get_bio_stats subroutine   660
wlm_get_info subroutine   657
wlmmon   549
wlmperf   549
wlmstat   546–547, 549
workload   5, 13, 538
Workload Manager   534
Workload Manager, see WLM
workstation   6
write-locking   136
write-verify   42
write-verify policy   45

X
XLATE ioctl operation   453
 Index 723



724 AIX 5L Practical Performance Tools and Tuning Guide



(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

AIX 5L Practical Perform
ance 

Tools and Tuning Guide







®

SG24-6478-00 ISBN 0738491799

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

AIX 5L Practical 
Performance Tools 
and Tuning GuideGuide
Updated 
performance 
information for 
IBM Eserver p5 
and AIX 5L V5.3

New tools for 
Eserver p5 with 
SMT and 
Micro-Partitioning

Practical 
performance 
problem 
determination 
examples

This IBM Redbook incorporates the latest AIX 5L performance 
and tuning tools. It is a comprehensive guide about the 
performance monitoring and tuning tools that are provided 
with AIX 5L Version 5.3, and it is the ultimate guide for system 
administrators and support professionals who want to 
efficiently use the AIX performance monitoring and tuning 
tools and understand how to interpret the statistics.

The usage of each tool is explained along with the 
measurements it takes and the statistics it produces. This 
redbook contains a large number of usage and output 
examples for each of the tools, pointing out the relevant 
statistics to look for when analyzing an AIX system's 
performance from a practical point of view. It also explains the 
performance API available with AIX 5L and gives examples 
about how to create your own performance tools. 

This redbook also contains an overview of the graphical AIX 
performance tools available with AIX 5L and the AIX 
Performance Toolbox Version 3.0.

This redbook is a rework of the very popular redbook AIX 5L 
Performance Tools Handbook, SG24-6039, published in 
2003.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. Performance overview
	1.1 Performance expectations
	1.1.1 System workload
	1.1.2 Performance objectives
	1.1.3 Program execution model
	1.1.4 System tuning

	1.2 Introduction to the performance tuning process
	1.2.1 Performance management phases


	Chapter 2. Performance analysis and tuning
	2.1 CPU performance
	2.1.1 Processes and threads
	2.1.2 SMP performance
	2.1.3 Initial advice for monitoring CPU

	2.2 Memory overview
	2.2.1 Virtual memory manager (VMM) overview
	2.2.2 Paging space overview

	2.3 Disk I/O performance
	2.3.1 Initial advice
	2.3.2 Disk subsystem design approach
	2.3.3 Bandwidth-related performance considerations
	2.3.4 Disk design
	2.3.5 Logical Volume Manager concepts

	2.4 Network performance
	2.4.1 Initial advice
	2.4.2 TCP/IP protocol
	2.4.3 Network tunables


	Part 2 Performance tools
	Chapter 3. General performance monitoring tools
	3.1 The topas command
	3.1.1 Topas syntax
	3.1.2 Basic topas output
	3.1.3 Partition statistics

	3.2 The jtopas utility
	3.2.1 The jtopas configuration file
	3.2.2 The info section for the jtopas tool
	3.2.3 The jtopas consoles
	3.2.4 The jtopas playback tool

	3.3 The perfpmr utility
	3.3.1 Information about measurement and sampling
	3.3.2 Building and submitting a test case
	3.3.3 Examples for perfpmr

	3.4 Performance Diagnostic Tool (PDT)
	3.4.1 Examples for PDT
	3.4.2 Using reports generated by PDT
	3.4.3 Running PDT collection manually

	3.5 The curt command
	3.5.1 Information about measurement and sampling
	3.5.2 Examples for curt
	3.5.3 Overview of the reports generated by curt
	3.5.4 The default report

	3.6 The splat command
	3.6.1 splat syntax
	3.6.2 Information about measurement and sampling
	3.6.3 The execution, trace, and analysis intervals
	3.6.4 Trace discontinuities
	3.6.5 Address-to-name resolution in splat
	3.6.6 splat examples

	3.7 The trace, trcnm, and trcrpt commands
	3.7.1 The trace command
	3.7.2 Information about measurement and sampling
	3.7.3 How to start and stop trace
	3.7.4 Running trace interactively
	3.7.5 Running trace asynchronously
	3.7.6 Running trace on an entire system for 10 seconds
	3.7.7 Tracing a command
	3.7.8 Tracing using one set of buffers per CPU
	3.7.9 Examples for trace
	3.7.10 The trcnm command
	3.7.11 Examples for trcnm
	3.7.12 The trcrpt command
	3.7.13 Examples for trcrpt


	Chapter 4. CPU analysis and tuning
	4.1 CPU overview
	4.1.1 Performance considerations with POWER4-based systems
	4.1.2 Performance considerations with POWER5-based systems

	4.2 CPU monitoring
	4.2.1 The lparstat command
	4.2.2 The mpstat command
	4.2.3 The procmon tool
	4.2.4 The topas command
	4.2.5 The sar command
	4.2.6 The iostat command
	4.2.7 The vmstat command
	4.2.8 The ps command
	4.2.9 The trace tool
	4.2.10 The curt command
	4.2.11 The splat command
	4.2.12 The truss command
	4.2.13 The gprof command
	4.2.14 The pprof command
	4.2.15 The prof command
	4.2.16 The tprof command
	4.2.17 The time command
	4.2.18 The timex command

	4.3 CPU related tuning tools and techniques
	4.3.1 The smtctl command
	4.3.2 The bindintcpu command
	4.3.3 The bindprocessor command
	4.3.4 The schedo command
	4.3.5 The nice command
	4.3.6 The renice command

	4.4 CPU summary
	4.4.1 Other useful commands for CPU monitoring


	Chapter 5. Memory analysis and tuning
	5.1 Memory monitoring
	5.1.1 The ps command
	5.1.2 The sar command
	5.1.3 The svmon command
	5.1.4 The topas monitoring tool
	5.1.5 The vmstat command

	5.2 Memory tuning
	5.2.1 The vmo command
	5.2.2 Paging space thresholds tuning

	5.3 Memory summary
	5.3.1 Other useful commands for memory performance
	5.3.2 Paging space commands


	Chapter 6. Network performance
	6.1 Network overview
	6.1.1 The maxmbuf tunable

	6.2 Hardware considerations
	6.2.1 Firmware levels
	6.2.2 Media speed considerations
	6.2.3 MTU size

	6.3 Network monitoring
	6.3.1 Creating network load

	6.4 Network monitoring commands
	6.4.1 The entstat command
	6.4.2 The netstat command
	6.4.3 The pmtu command

	6.5 Network packet tracing tools
	6.5.1 The iptrace command
	6.5.2 The ipreport command
	6.5.3 The ipfilter command
	6.5.4 The netpmon command
	6.5.5 The trpt command

	6.6 NFS related performance commands
	6.6.1 The nfsstat command

	6.7 Network tuning commands
	6.7.1 The no command
	6.7.2 The Interface Specific Network Options (ISNO)
	6.7.3 The nfso command


	Chapter 7. Storage analysis and tuning
	7.1 Data placement and design
	7.1.1 AIX I/O stack
	7.1.2 Physical disk and disk subsystem
	7.1.3 Device drivers and adapters
	7.1.4 Volume groups and logical volumes
	7.1.5 VMM and direct I/O
	7.1.6 JFS/JFS2 file systems

	7.2 Monitoring
	7.2.1 The iostat command
	7.2.2 The filemon command
	7.2.3 The fileplace command
	7.2.4 The lslv, lspv, and lsvg commands
	7.2.5 The lvmstat command
	7.2.6 The sar -d command

	7.3 Tuning
	7.3.1 The lsdev, rmdev and mkdev commands
	7.3.2 The lscfg, lsattr, and chdev commands
	7.3.3 The ioo command
	7.3.4 The lvmo command
	7.3.5 The vmo command


	Part 3 Case studies and miscellaneous tools
	Chapter 8. Case studies
	8.1 Case study: NIM server
	8.1.1 Setting up the environment
	8.1.2 Monitoring NIM master using topas
	8.1.3 Upgrading NIM environment to Gbit Ethernet
	8.1.4 Upgrading the disk storage
	8.1.5 Real workload with spread file system
	8.1.6 Summary

	8.2 POWER5 case study
	8.2.1 POWER5 introduction
	8.2.2 High CPU
	8.2.3 Evaluation


	Chapter 9. Miscellaneous tools
	9.1 Workload manager monitoring (WLM)
	9.1.1 Overview
	9.1.2 WLM concepts
	9.1.3 Administering WLM
	9.1.4 WLM performance tools

	9.2 Partition load manager (PLM)
	9.2.1 PLM introduction
	9.2.2 Memory management
	9.2.3 Processor management

	9.3 A comparison of WLM and PLM
	9.4 Resource monitoring and control (RMC)
	9.4.1 RMC commands
	9.4.2 Information about measurement and sampling
	9.4.3 Verifying RMC facilities
	9.4.4 Examples using RMC


	Chapter 10. Performance monitoring APIs
	10.1 The performance status (Perfstat) API
	10.1.1 Compiling and linking
	10.1.2 Changing history of perfstat API
	10.1.3 Subroutines

	10.2 System Performance Measurement Interface
	10.2.1 Compiling and linking
	10.2.2 Terms and concepts for SPMI
	10.2.3 Subroutines
	10.2.4 Basic layout of SPMI program
	10.2.5 SPMI examples

	10.3 Performance Monitor API
	10.3.1 Performance Monitor data access
	10.3.2 Compiling and linking
	10.3.3 Subroutines
	10.3.4 PM API examples
	10.3.5 PMAPI M:N pthreads support

	10.4 Miscellaneous performance monitoring subroutines
	10.4.1 Compiling and linking
	10.4.2 Subroutines
	10.4.3 Combined example


	Appendix A. Source code
	perfstat_dump_all.c
	perfstat_dude.c
	spmi_dude.c
	spmi_data.c
	spmi_file.c
	Spmi_traverse.c
	dudestat.c

	Appendix B. Trace hooks
	AIX 5L trace hooks

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

