
SG24-5432-00

International Technical Support Organization

www.redbooks.ibm.com

AIX Logical Volume Manager,
from A to Z:
Introduction and Concepts

Laurent Vanel, Ronald van der Knaap, Dugald Foreman,
Keigo Matsubara, Antony Steel

http://www.redbooks.ibm.com/

AIX Logical Volume Manager,
from A to Z:
Introduction and Concepts

January 2000

SG24-5432-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (January 2000)

This edition applies to AIX Version 4.3, Program Number 5765-C34.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix F, “Special notices” on page 391.

Take Note!

Contents

Preface .ix
The team that wrote this redbook. ix
Comments welcome. x

Chapter 1. Components of the logical volume manager 1
1.1 Overview . 2
1.2 The logical volume storage concepts . 5

1.2.1 Physical volumes . 6
1.2.2 Disk Independence . 13
1.2.3 The physical volume identifier (PVID) . 13
1.2.4 Physical Volume Layout . 14
1.2.5 Maximum number of physical partitions per physical volume . . . 16
1.2.6 Increasing number of physical partitions per physical volume . . . 17
1.2.7 Volume groups . 21
1.2.8 Logical volumes . 44
1.2.9 Mirroring . 60
1.2.10 Striping . 60
1.2.11 The ODM . 61

1.3 Operation of the logical volume manager . 70
1.3.1 High-level commands . 71
1.3.2 Intermediate-level commands . 71
1.3.3 Logical Volume Manager subroutine interface library 72
1.3.4 Introduction to device drivers . 75
1.3.5 Logical volume device driver . 76
1.3.6 Disk device driver . 80
1.3.7 Adapter device driver . 83

1.4 Use of the logical volume manager. 83
1.4.1 Planning your use of volume groups . 83
1.4.2 Planning your use of logical volumes . 86

1.5 Limits . 99

Chapter 2. Mirroring . 101
2.1 Principles . 101

2.1.1 Only logical volumes are mirrored . 101
2.1.2 Each logical volume can have up to three copies 101
2.1.3 Keep it simple. 103

2.2 Concepts . 105
2.2.1 The allocation policy . 105
2.2.2 The scheduling policy . 111
2.2.3 Availability . 115

2.3 Practical examples . 128
© Copyright IBM Corp. 2000 iii

2.3.1 Example configurations . 128
2.4 Mirroring of the rootvg . 132

2.4.1 Brief explanation about the AIX boot sequence 133
2.4.2 Contiguity of the boot logical volume . 134
2.4.3 Dump device . 135

Chapter 3. Striping . 137
3.1 Concept . 137

3.1.1 Basic schema of the striped logical volumes. 137
3.1.2 Inter physical volume allocation policy 141
3.1.3 The reorganization relocation flag. 145
3.1.4 Creation and extension of the striped logical volumes 147
3.1.5 Prohibited options of the mklv command with striping 150
3.1.6 Prohibited options of the extendlv command with striping 152
3.1.7 Summary . 152

3.2 Real examples . 152
3.2.1 Example configurations . 152
3.2.2 How to create the striped logical volumes. 153
3.2.3 How to extend the striped logical volumes 158
3.2.4 Erroneous situations. 161

3.3 The mirror and stripe function. 162
3.3.1 Super strict allocation policy . 163
3.3.2 How to manage a mirrored and striped logical volume 168

Chapter 4. Concurrent access volume groups 183
4.1 Concept . 183

4.1.1 Basic schema of the concurrent access 183
4.1.2 Concurrent access capable and concurrent mode 185
4.1.3 Concurrent Logical Volume Manager (CLVM) 187
4.1.4 Limitations . 193

4.2 Real examples . 195
4.2.1 Example configuration . 195
4.2.2 Defining shared LVM components for concurrent access 198
4.2.3 Installing the HACMP concurrent resource manager (CRM) . . . 200
4.2.4 Installing HACMP cluster configurations: Standard method . . . 203
4.2.5 Managing shared logical volumes for concurrent access 209
4.2.6 Static ODM update method. 210
4.2.7 Dynamic ODM update method . 211

4.3 Shared disk environment solutions . 219
4.3.1 HACMP and HACMP Enhanced Scalability (ES). 219
4.3.2 Cluster lock manager . 223
4.3.3 Shared disk solution on an RS/6000 SP system 226
4.3.4 What is the HC daemon? . 228
iv AIX Logical Volume Manager, From A to Z: Introduction and Concepts

4.4 History of the concurrent access . 231

Chapter 5. The AIX journaled file system . 233
5.1 What is a journaled file system? . 233
5.2 The JFS structure. 234

5.2.1 The superblock . 234
5.2.2 Logical blocks. 235
5.2.3 Disk i-nodes . 235
5.2.4 Disk i-node structure. 236
5.2.5 i-node addressing . 238
5.2.6 Fragments . 241
5.2.7 Fragments and number of bytes per i-node (NBPI) 242
5.2.8 Allocation bitmaps . 247
5.2.9 Allocation groups . 247
5.2.10 Allocation in compressed file systems. 251
5.2.11 Allocation in file systems with another fragment size 251
5.2.12 Allocation in file systems enabled for large files 252

5.3 How do we use a journaled file system? . 253
5.3.1 The JFS log . 253

5.4 File handling. 254
5.4.1 Understanding system call execution . 254
5.4.2 The logical file system . 255
5.4.3 Virtual file system overview . 257
5.4.4 Understanding virtual nodes (v-nodes) 258
5.4.5 Understanding generic i-nodes (g-nodes) 258
5.4.6 Understanding the virtual file system interface 259
5.4.7 Accessing files . 259

5.5 File types . 259
5.5.1 Regular files . 259
5.5.2 Sparse files . 260
5.5.3 Special or device files. 260
5.5.4 Directories . 263
5.5.5 Links. 264

Chapter 6. Backups . 267
6.1 Online backups for 4.3.3 and above . 267
6.2 Practical examples . 271

6.2.1 Concurrent online mirror backup. 271
6.2.2 The online JFS backup . 274
6.2.3 Online backups prior to 4.3.2 (the hack) 279

6.3 Files and system backups . 284
6.3.1 Backup methods. 285
6.3.2 Deciding on a backup policy . 286
v

6.3.3 Restoring data . 286
6.4 Backup commands . 287

6.4.1 The backup command . 287
6.4.2 The restore command. 290
6.4.3 The cpio command . 291
6.4.4 The tar command . 292
6.4.5 Block sizes and performance . 293

6.5 Backing up and restoring volume groups . 294
6.5.1 The savevg command . 295
6.5.2 The restvg command . 297

6.6 The mksysb command . 299
6.6.1 Smit fast path for the mksysb related menus 301

Chapter 7. Performance . 303
7.1 Introduction . 303
7.2 The physical layer . 305

7.2.1 Adapters. 305
7.2.2 The number of disk adapters used . 306
7.2.3 The configuration of the adapter . 306
7.2.4 Type of disks used . 306
7.2.5 The cabling configuration . 306

7.3 The logical layer . 307
7.3.1 Volume groups . 308
7.3.2 Logical volumes . 308
7.3.3 Where should you create logical volumes? 313

7.4 Fragmentation . 315
7.4.1 Fragmentation example 1 . 315
7.4.2 Fragmentation example 2 . 316
7.4.3 The range of the logical volume . 318
7.4.4 Exact mapping . 319
7.4.5 Write verify . 319

7.5 Mirroring. 321
7.5.1 The mirror read algorithm . 321
7.5.2 Mirror write consistency . 322

7.6 Reorganizing volume groups . 323
7.6.1 reorgvg . 323

7.7 Striping. 325
7.7.1 Using disks not equal in size . 325
7.7.2 Striping in a random read/write environment. 327
7.7.3 The stripe width . 327
7.7.4 pbufs . 328
7.7.5 Checking the number of pbufs . 329

7.8 Finding fragmented logical volumes . 329
vi AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7.9 Performance considerations . 332
7.9.1 General performance considerations . 332
7.9.2 Performance considerations for striping 333
7.9.3 Performance considerations for mirroring 334

7.10 The application layer . 334
7.10.1 The journaled file system . 334
7.10.2 JFS compression . 341

7.11 Filemon example . 342

Appendix A. Mirroring of the rootvg . 353
A.1 Function . 353
A.2 Procedure . 353

Appendix B. Sample scripts for HACMP configurations 357
B.1 Define-Cluster-Topology . 357
B.2 Configuring-Cluster-Resources. 360
B.3 Unconfigure-Cluster . 364

Appendix C. /usr/sbin/cluster/hc/README . 367

Appendix D. The filemon.out file . 369

Appendix E. Filemon syntax . 377

Appendix F. Special notices . 391

Appendix G. Related publications. 395
G.1 IBM Redbooks publications . 395
G.2 IBM Redbooks collections . 395
G.3 Other resources . 396

How to get IBM Redbooks . 397
IBM Redbooks fax order form . 398

Glossary . 399

Index . 401

IBM Redbooks evaluation . 407
vii

viii AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Preface

LVM: Logical Volume Manager. What is its role in the AIX operating System?
How does it perform this function? Its role is to controls disk resources by
mapping data between a more simple and flexible logical view of storage
space and the actual physical disks

How it performs this function is in a topic vast enough to fill two books. This
first volume, AIX Logical Volume Manager, from A to Z: Introduction and
Concepts describes the basic components and defines physical volumes,
including volume groups and logical volumes. This book also describes the
advanced functions of the Logical Volume Manager, such as the mirroring to
increase the availability of the data, the stripping to spread data across
several disks and increase the performance in accessing large amounts of
sequential data, or the online backup function included in AIX Version 4.3.3.

This book is aimed at every IT specialist who wants to know more about the
core element of AIX, which is the Logical Volume Manager.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Laurent Vanel is an AIX and RS/6000 specialist at the International Technical
Support Organization, Austin Center. Before joining the ITSO three years
ago, Laurent Vanel was working in the French RISC System/6000 Technical
Center in Paris where he was conducting benchmarks and presentations for
the AIX and RS/6000 solutions.

Ronald van der Knaap is a Senior I/T Specialist in the Netherlands. He has
11 years of experience in the Unix/AIX field. His areas of expertise include a
wide range of System and Network Management products, AIX related
products, HACMP, Performance & Tuning, and RS/6000 SP systems. He has
written extensively on LVM Performance and journaled file systems.

Dugald Foreman is an AIX support specialist in England. He has two years
of experience in AIX, both spent working for IBM. His areas of expertise
include problem determination in software development and the AIX base
operating system. He has written extensively on LVM recovery procedures.

Keigo Matsubara is an Advisory I/T Specialist in Japan. He has seven years
of experience in the AIX filed. His areas of expertise include a wide range of
© Copyright IBM Corp. 2000 ix

AIX related products, particularly RS/6000 SP and high-end storage systems.
He has written extensively on Mirroring, Striping, and Concurrent access
volume groups. This is his second redbook.

Antony Steel is an Advisory IT Specialist in Australia. He has eight years of
experience in the field of Unix. He holds a degree in Theoretical Chemistry
from the University of Sydney. His areas of expertise include system
performance and customisation, scripting, and high availability.

Thanks to the following people for their invaluable contributions to this project:

Gerald McBrearty
LVM developer

Ram Pandiri
LVM developer

Johnny Shieh
LVM developer

Mathew Accapadi
AIX performance engineer

Mike Wortman
AIX file system developer

Carol Sherman
Graphic designer

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 407
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
x AIX Logical Volume Manager, From A to Z: Introduction and Concepts

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Components of the logical volume manager

This chapter will introduce the components of the Logical Volume Manager
(LVM) and how they relate to the Application and Physical Layers.The set of
operating system commands, library subroutines and other tools that allow
the user to establish and control logical volume storage is called the Logical
Volume Manager. The Logical Volume Manager controls disk resources by
mapping data between a simple and flexible logical view of storage space and
the actual physical disks. The Logical Volume Manager does this by using a
layer of device driver code that runs above the traditional physical device
drivers. This logical view of the disk storage is provided to applications and is
independent of the underlying physical disk structure. Figure 1 illustrates the
layout of those components.

Figure 1. How the LVM fits between the Application Layer and the Physical Layer

Physical

Volume

Physical

Volume

Physical

Volume

Application

Layer

Logical

Layer

Physical

Layer

Logical

Volume

Manager

Journaled

File System

Raw

Logical Volume

Volume

Group
Logical Volume Logical Volume

Physical

Disk

Physical

Disk

Physical

Array

Logical Volume Device Driver

Device Driver RAID Adapter
© Copyright IBM Corp. 2000 1

1.1 Overview

A hierarchy of structures is used to manage fixed disk storage, and there is a
clearly defined relationship (mapping) between them (See Figure 2, which
shows the relationship between Volume Groups (datavg), Logical Volumes
(lv04 and mirrlv), Logical Partitions (LP1,...), Physical Volumes (hdisk9), and
Physical Partitions (PP8,...)).

Figure 2. The relationship between the various components of the LVM

Each individual disk drive is called a physical volume (PV) and has a name,
usually /dev/hdiskx (where x is a unique integer on the system). Every
physical volume in use belongs to a volume group (VG) unless it is being
used as a raw storage device or a readily available spare (often called a ’Hot
Spare’). Each physical volume consists of a number of disks (or platters)
stacked one above the other. Each is divided into physical partitions (PPs) of
a fixed size for that physical volume. For space allocation purposes, each
physical volume is divided into five regions (outer_edge, outer_middle,
center, inner_middle, and inner_edge), and these can be viewed as
cylindrical segments cut perpendicularly through the disk platters (see Figure
3). The number of physical partitions in each region varies depending on the
total capacity of the disk drive.

The set of operating system commands, library subroutines, and other tools
that allow the user to establish and control logical volume storage is called
the Logical Volume Manager. The Logical Volume Manager controls disk

LP1 LP8 LP9 LP8 LP9

Logical Volume - Iv04 Logical Volume - mirrlv

PP8

PP42

PP19 PP18

PP45

PP18

PP45

Physical Volume

(/dev/hdisk9) LP: Logical Partitions

PP: Physical Partitions
2 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

resources by mapping data between a simple and flexible logical view of
storage space and the actual physical disks. The Logical Volume Manager
does this by using a layer of device driver code that runs above the traditional
physical device drivers. This logical view of the disk storage is provided to
applications and is independent of the underlying physical disk structure.

Figure 3. Physical volume regions

The logical volume manager handles a connected Redundant Array of
Independent Disk (RAID) disk array in the same manner. The RAID arrary is
treated as one disk even though, in most cases, it would be a very large one
(see 1.2.1.2, “Definition of RAID” on page 9).

After installation, the system has one volume group (the root volume group
called rootvg) consisting of a base set of logical volumes required to start the
system plus any other logical volumes that were specified to the installation
script. Any other physical volumes that are connected to the system can be
added to this volume group (using the extendvg command) or used to create a
new volume group (using the mkvg command).

The following relationship exists between volume groups and physical
volumes:

• On a single system, one to many physical volumes can make up a volume
group.

• Physical volumes cannot be shared between volume groups.

• The entire physical volume becomes part of the volume group.

• The LVM is physical volume independent, thus, different types of physical
volumes can make up a volume group within the limitation imposed by the
partition size and partition limit.

Outer Middle

Center

Inner Middle

Outer Edge

Disk Platters

Inner Edge
Chapter 1. Components of the logical volume manager 3

Within each volume group, one or more logical volumes (LVs) are defined.
Logical volumes are the way to group information located on one or more
physical volumes. Logical volumes are an area of disk used to store data,
which appears to be contiguous to the application, but can be non-contiguous
on the actual physical volume. It is this definition of a logical volume that
allows them to be extended, relocated, span multiple physical volumes, and
have their contents replicated for greater flexibility and availability.

Each logical volume consists of one or more logical partitions (LPs). Each
logical partition corresponds to at least one physical partition. If the logical
volume is mirrored, then additional physical partitions are allocated to store
the additional copies of each logical partition. These copies usually reside on
different physical volumes (for availability) but, for performance reasons, may
reside on the same physical volume.

Although logical partitions are numbered consecutively, the underlying
physical partitions are not necessarily either consecutive nor contiguous (see
Figure 2).

Logical volumes can be used in a number of ways:

Unstructured These are called raw logical volumes and are used
by the system for a number of purposes, for
example paging, and dump spaces. Applications,
particularly databases, can also use raw logical
volumes, and, in this case, the application manages
how the data is stored.

Structured If the Logical Volume is to be used to hold ordinary
files (data or programmes), AIX supplies the
Journaled File System (JFS) a hierarchical structure
of files and directories to provide the structure.

Logical volumes can be created/modified using commands or the menu
driven System Management Interface Tool (SMIT).

Mirroring logical volumes on the same physical volumes does not improve
availability of data and has only limited application by slightly improving I/O
performance. With multiple copies of the same information on the disk, you
increase the chance for the disk head to be close to the correct sector.

Attention
4 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Logical volumes reside only within a volume group. A logical volume can:

• Reside on one physical volume

• Span multiple physical volumes within the volume group

• Have mirrored copies on different physical volumes within the volume
group

So far, we have seen the following components:

Physical volumes A storage device that are divided into physical
partitions.

Volume groups A collection of one or more physical volumes,
independent of type.

Logical volumes A collection of logical partitions, each of which can
be mapped to any physical partition in the volume
group. If mirroring is used, the logical partition is
mapped to two or three physical partitions.

Logical volume manager Controls all this through the logical volume device
driver. It takes a complex structure of physical
partitions, including mirroring, and presents a
simple logical partitions structure to the
user/application.

To gain a better understanding of the LVM, we will look at its components in
greater detail.

1.2 The logical volume storage concepts

In Figure 2, we saw the relationship between the basic logical storage
concepts. We will now look at the following in more detail:

• Physical volumes

• Volume groups

• Logical volumes

• Mirroring

While the Web System Management tool will also allow much of the
configuration discussed in this book, we will limit this discussion to the use
of the actual commands ("command line") and SMIT.

Note
Chapter 1. Components of the logical volume manager 5

• Striping

• The Object Database Manager (ODM)

1.2.1 Physical volumes
Physical volumes, also known as direct access storage devices (DASDs), are
fixed or removable storage devices. Typically, these devices are hard disks. A
fixed storage device is any storage device defined during system
configuration to be an integral part of the system DASD. The operating
system detects an error if a fixed storage device is not available at some time
during normal operation. A removable storage device is any storage device
defined during system configuration to be an optional part of the system
DASD. The removable storage device can be removed from the system at any
time during normal operation. As long as the device is logically unmounted
first, the operating system does not detect an error.

The following are terms used when discussing DASD volumes:

Block A contiguous, 512-byte region of a physical volume that
corresponds in size to a DASD sector. This is often used
interchangeably with sector.

Partition A set of blocks (with sequential cylinder, head, and sector
numbers) contained within a single physical volume.

A physical volume is a DASD structured for requests at the physical level, that
is, the level at which a processing unit can request device-independent
operations on a physical sector address basis. A physical volume is
composed of the following:

• A device-dependent reserved area.

• A variable number of physical blocks that serve as DASD descriptors.

• A number of partitions, each containing a fixed number of physical blocks.

Typical operations at the physical level are read-physical-block and
write-physical-block.

The number of blocks in a partition, as well as the number of partitions in a
given physical volume, are fixed when the physical volume is installed in a
volume group. Every physical volume in a volume group has exactly the same
partition size.

A disk must be designated as a physical volume and put in an available state
before it can be assigned to a volume group. A physical volume has certain
configuration and identification data written on it. This is usually done before
6 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

the disk is shipped or can be done by running the low level diagnostic format
command. This information includes a physical volume identifier (PVID)
which is unique to the system. When a disk become a physical volume, it is
divided into 512 byte physical sectors. You designate a disk as a physical
volume with the mkdev or chdev commands or by using the System
Management Interface Tool (SMIT).

1.2.1.1 The structure of a physical volume
Figure 4 shows the structure of a physical volume. The technology used in the
construction of the read/write heads, as well as the composition of the
magnetic material used on the platter surface, defines how much information
can be stored on the disk device and how long it will take to store/retrieve.

The following terms are used when discussing disk operations:

Sector An addressable section of a track used to record one block of
contiguous data

Track A circular path on the both surfaces of a disk platter on which data
is written and read. It is a contiguous set of sections that can be
swept by the read/write head without the head being moved.

Head This is the single unit that is used to read and write the data on the
surface of the platter. There are a number of heads (one for each
platter) that are moved as a single unit. This unit is called the
actuator.

Cylinder A vertically aligned collection of tracks that can be read without
moving the head unit. If the disk consists of n vertically aligned
heads, a cylinder consists of n vertically aligned tracks.

Platter A single disk that is coated on one or both sides with material that
can be magnetized/de-magnetized by the read/write head.

Region As described above, the physical volume is divided into five
regions for allocation purposes.

The earliest read/write heads used small coils that generated a magnetic field
when a current was passed through them, thereby, changing the magnetic
properties of a section on the surface of the disk. This magnetic polarity
would define the binary value stored. By passing a coil over the surface of the
disk and causing it to intersect with the magnetic field of each area, a small
current would be generated in the coil; its direction dependent on the polarity
of that section of disk. The newer technologies in read/write heads and
greater densities in the packing of information on the disk surface have lead
to higher overall capacity disk drives.
Chapter 1. Components of the logical volume manager 7

There have also been changes in technology. Some systems now use a
different technology for the read heads called magneto resistive (MR). These
read heads sense the variations in the electrical resistance of the platter
surface rather than relying on the electrical induction.

The greatest amount of time in the whole process of reading/writing data on a
physical volume is spent in locating the information and returning it to the
requesting task. In the simplest case, a request arrives for data, the head is
moved to the correct position, the required number of blocks are read, and
the data returned. The next request arrives, the head is repositioned and so
on. This process involves a significant delay. In order to minimize this, some
changes have been introduced:

Elevator sorting Incoming requests are sorted by location so that the
actuator can fulfill more requests in one pass, thus,
minimizing seek time

Read ahead Data is read in after the initial request and cached,
thus, making the assumption that the next read
request from the given process will probably want the
next portion of data on the disk. Thus, the next request
for data can be quickly fulfilled, as it is coming from
the cache and not relying on the disk to retrieve it.

Banding As data is written at a fixed rate, there will be larger
gaps between the data the further out from the center
of the disk one is. Banding partitions the disk into
sections of increased data density as the head moves
out from the center. This ensures even data density
and an increase in the overall capacity of the disk. It
also results in higher performance read and writes on
the outer partitions of the disk due to the higher data
density.
8 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 4. The structure of a disk drive

1.2.1.2 Definition of RAID
Another method of improving access to data was by introducing the ability to
spread I/O simultaneously across multiple disks. This functionality is provided
through Redundant Array of Independent Disks (RAID) support. RAID is
defined with a number of levels:

RAID 0 This is also known as data striping. This is when the data is
split into smaller chunks (strips) and spread over a number of
physical volumes, thus, each read is conducted from a number
of physical volumes in parallel. Data transfer rates are higher
for sequential operations, as I/O operations can be
overlapped, and higher for random access, as the data is
better scattered across multiple physical volumes. RAID 0 is
designed for performance not availability.

RAID 1 This is also known as disk mirroring. In this case, duplicate
copies of data are kept on separate physical volumes. In most
instances, each physical volume will have at least one other
physical volume with an exact copy of its data. As discussed in
Chapter 7, “Performance” on page 303, this is primarily for
availability but, in some cases, may improve performance. The
drawback of RAID 1 is that the number of physical volumes
must be doubled.

Spindle

Tracks

Disk Platter

Magnetic Surface

Read/Write Heads

A
c
t
u

a
t
o
r

M
e
c
h
a
n
i
s
m

Chapter 1. Components of the logical volume manager 9

RAID 2/31 RAID 2 and 3 describe disk arrays that are ’parallel process’
arrays, where all the drives in the array operate in unison. This
is similar to striping, but data is split into chunks, and each
chunk is written to the same physical location on different
physical volumes. Instead of mirroring the data, parity
information is calculated for each chunk of data and written
separately. For RAID 3, the parity data can only be stored on
one physical volume, while with RAID 2, this can be spread
over a number of physical volumes. Performance of RAID 2/3
is good for large amounts of data but poor for small requests,
as their is no overlapping or independent operation.

RAID 41 This configuration overcomes some of the disadvantages of
RAID 3 by striping the data over all physical volumes but one.
This last physical volume is used for the parity data. This
configuration is good for large reads, but the parity disk
becomes a bottleneck when writing.

RAID 5 This configuration overcomes the bottleneck in RAID 4 of
having only one physical volume for the parity data by
spreading all the parity data across all disks. In a disk array,
each chunk of data strip is on n-1 disks, with the parity
information on the nth disk. The parity data is never stored on
the same disk of the data it protects.

1
These forms of RAID are not used in AIX

AIX Version 4.3.3 supports

• RAID 0

• RAID 1

• RAID 0 and RAID 1 - not defined together as a standard

Disk subsystems that support RAID at the time of publication include:

• IBM 7135 RAIDiant array

• IBM 3514 High Availability External Disk Array

• IBM 9570 Disk Array Subsystem

• SSA Adapters (6217(4-I), 6218(4-J), 6219(4-M), 6215(4-N), 6225(4-P))
support RAID

But it is important to check with IBM locally to get information on the latest
hardware and microcode levels required for RAID.
10 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

1.2.1.3 Factors when considering physical storage options
In this section, we will look at the capabilities and functions of the different
storage options to provide an understanding of the rationale behind some of
the storage management policies.

As usual, it is a balancing act between requirements (determined by
application, users, and physical environment) and cost.

Adapters
There are some important things to consider when looking at storage
technology, starting with the adapter:

• Cabling requirements (lengths, adapter, disk, adapter to adapter).

• Performance / Reliability (maximum sustained and burst data transfer
rates and reliability will affect performance).

• Addressability - How many devices can be attached per adapter and if
multiple systems can be used.

• Device support - Use the type of devices you need.

• Cost - Both adapter and devices.

There are four main types of adapters:

Small Computer Systems Interface (SCSI)
This is the most common type of adapter. The original standard
(now known as SCSI-1) allows up to seven devices on a 1 byte
parallel arbitrated bus. Since then, there have been SCSI-2, Fast
SCSI, Wide SCSI, Fast/Wide, and Differential SCSI, all of which
have offered improvements in transfer rates, cable lengths and
availability. Backward capability has been maintained. SCSI
supports multiple adapters on the bus.

High Performance Parallel Interface Adapter (HiPPI)
This allows point-to-point communications up to 800 Mb/sec to a
maximum distance of 25 m.

ESCON Channel Adapter
Allows 17 MB/s over optical fibre links up to 20 km.

Serial Storage Architecture
Serial Storage Architecture, or SSA, is an emerging standard
defining a new connection mechanism for peripheral devices. The
architecture specifies a serial interface that has the benefits of
more compact cables and connectors, higher performance and
reliability, and, ultimately, a lower subsystem cost. A general
purpose transport layer provides for 20 MB per second full duplex
Chapter 1. Components of the logical volume manager 11

communications over 10 meter copper cables (extended with use
of optical fibre). Devices are connected together in loops with up to
128 nodes (devices) allowed per loop. Information is transmitted in
128 byte frames that are multiplexed to allow concurrent
operations. In addition, the full duplex communications allows
simultaneous reading and writing of data.

Fibre Channel arbitrated loop (FC-AL)
This a new set of interfaces and protocols that intends to support
linking storage devices using high-speed network communications
hardware. FC-AL has standards supported by a trade association
in which IBM, Hewlett-Packard, Sun, and others are members.
FC-AL allows up to 100 MB/s around a loop of up to 126 devices.

Disk Storage
All disks have a fairly similar design (see Figure 3 on page 3). They have a
number of platters fixed on a central hub, which is rotated at high speed. Both
surfaces of each platter are coated with a thin film of magnetic material on
which the data is stored. The read/write heads are fixed on the end of arms
(actuators). To move to different tracks, the heads are moved back and forth
by the actuators as one unit.

The following terms are used in discussing disk performances:

Seek time The time it takes the actuator to move head to the correct
track

Rotational latency The time it takes for the platter to rotate to bring the
correct sector under the head.

As discussed previously, the density of the data on the disk is determined by
the technology of the head and the film on the platter
surface.

The following factors are key in determining the performance of the storage
system. More details will be discussed in 7.2, “The physical layer” on page
305.

• Input/output ratio (the quantity of code that is executed per sector of data)

• The number of disks that contain data

• Disk drive performance

• Disk drive data path performance

• Size of blocks accessed (does the application use large or small blocks of
data?)
12 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• Pattern of data (random, sequential)

• Ability to cache/ read ahead

• Response time required.

Availability and fault tolerance
The need for availability of the system will also influence the decision on
which storage technology to use and will also influence the performance of
the I/O subsystem.

1.2.2 Disk Independence
One great feature of the LVM is its ability to support a mixture of disks in a
volume group, regardless of their type or location. Thus SSA, Serial, SCSI,
and RAID drives can make up one volume group and may reside across a
number of adapters.

The basic design of the interaction between the LVM and the disk device
driver always ensures that the LVM’s use of the physical volume will have the
same behavior, regardless of the type of physical volume being used in the
LVM. Thus, a physical volume, such as a SSA (Serial Storage Architecture)
disk, behaves the same in the LVM as a standard SCSI drive, although they
use different adapter and device drivers.

The LVM concentrates on the special file that represents the physical volume.
Although it is not required by the LVM, almost all physical volumes are
represented as hdiskx. The only exceptions to the transparent use of disks by
the LVM are the read/write optical disk drives. There is special code in the
high level LVM commands that checks for the existence of optical devices.
Because of the removability of optical media, there is special handling to
ensure that the LVM knows the true identity of the optical disk drive.

This not only presents a simple view of data storage to the application, but
allows the system administrator to better match data needs to the storage
technology without adding new levels of confusion.

1.2.3 The physical volume identifier (PVID)
Sometime, it can get confusing as to the true name of a physical volume and
how it is recognized by the system. This usually occurs during service calls or
after a system has crashed. The ODM is used to attach an hdiskx name to a
physical volume ID (PVID) of a disk. The PVID is the soft "serial number" of a
disk that is created, usually just once during the lifetime of a physical
volume’s usage on AIX. It may need to be recreated using the dd command if
Chapter 1. Components of the logical volume manager 13

someone accidently overwrites it, or uses the low level diagnostics to
reformat the disk.

To make a disk into a physical volume, the PVID is placed onto the disk. The
PVID is an combination of the machine’s serial number (from the systems
EPROMs) and the date the PVID was generated. This combination ensures
the extremely low chance of PVIDs being duplicated. When the system is
booted, the disk configurator looks at the PVID residing on the disk and
compares it with an entry in the ODM. If an entry is found, then the disk is
given the hdiskx number in the ODM that is associated with the PVID. If there
is no matching entry, then the next name in the pool of ’free’ hdisk names is
allocated to the physical volume.

If an hdisk is removed with the rmdev -l hdiskx -d command, then the hdisk

name is available for use by another disk.

The PVID can be obtained by issuing:

/usr/sbin/lpquerypv -H /dev/hdiskx (AIX Version 4 and above)

/usr/bin/hdf (AIX Version 3.2.x)

Since the PVID is contained in the ODM, there can be times when the ODM
no longer matches the ’true’ PVID on the disk.

There are instances, such as multi-host environments, where you may wish to
change this name so that disk numbers are consistent over multiple hosts.
This involves a simple procedure of creating ’dummy’ disks (using mkdev) so
that when the real disks are assigned physical volume numbers by the
configuration manager, the hdisk numbers will match over the different
systems. More details can be found in the HACMP Cookbook, SG24-4553.

1.2.4 Physical Volume Layout
A physical volume consists of a logically contiguous string of physical sectors.
Sectors are numbered 0 through the last physical sector number (LPSN) on
the physical volume. The total number of physical sectors on a physical
volume is LPSN + 1. The actual physical location and physical order of the
sectors are transparent to the sector numbering scheme.

Sector numbering applies to user-accessible data sectors only. Spare
sectors and Customer-Engineer (CE) sectors are not included. CE sectors
are reserved for use by diagnostic test routines or microcode.

Note
14 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The first 128 sectors of a physical volume are reserved to store various types
of information for its configuration and operation. Table 1 describes what is
stored in these sectors. Further detail is contained in the header file:
/usr/include/sys/hd_psn.h

Table 1. The structure of the first 128 sectors of a physical volume

Starting
Sector

Record Description

0 bootrecord This is one sector that contains information that
allows the Read Only Storage (ROS) to boot the
system. The physical volume identifier is also
contained in the boot record.
A description of what is contained in the
boot record can be found in
/usr/include/sys/bootrecord.h

1 Configuration

2 MWC cache
and alternate
cache

The mirror write consistency (MWC) records must
stay contiguous. They identify which logical
partitions may be inconsistent if the system
is not shutdown properly. When the volume
group is varied back online for use, this
information is then used to make logical
partitions consistent again. The MWC Caches
are allocated two sectors, but the alternate cache
doesn’t start at the beginning of the second sector.

7 LVM This sector is used by the LVM when a physical
volume is part of a volume group. It contains LVM
ID field, size of the VGDA, and the location (at the
end of the physical volume) that is reserved for the
relocation of bad blocks.
More information can be found in:
/usr/include/lrmrec.h

8 bad block This record points to the bad block directory,
which is used to record the blocks of the
physical volume that have been diagnosed
as unusable. Each record consists of a
reason why the block has been marked bad,
the logical sector number of the block, and
the logical sector number of the relocated
block. Details can be found in:
/usr/include/sys/bbdir.h.

22 bad block
length

The size of the bad block directory.
Chapter 1. Components of the logical volume manager 15

1.2.4.1 Physical Partitions
When you add a physical volume to a volume group, the physical volume is
partitioned into contiguous, equal sized units of space called physical
partitions. A physical partition is the smallest unit of storage space allocated.
Physical volumes inherit the volume group’s physical partition size, which can
only be set when the volume group is created (for example, using mkvg -s).

In pre-AIX 4.3.1 versions, if you add a new volume group, the physical
partition sizes in megabytes you are allowed to chose are: 1, 2, 4, 8, 16, 32,
64, 128, and 256.

The support for physical partition sizes of 512 MB and 1024 MB have been
added to AIX 4.3.1. Hence, if you add a new volume group, the physical
partition sizes in megabytes you are allowed to chose are: 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, and 1024 MBs.

1.2.5 Maximum number of physical partitions per physical volume
In the design of the LVM, each logical partition maps to one or more physical
partitions, up to a maximum of three. Each physical partition maps to a

64 config backup A backup copy of the configuration record.

70 LVM backup A backup of the LVM record.

71 bad block
backup

Backup of the bad block directory.

120 concurrent
config work
directory

The concurrent configuration scratch sectors are
used by each physical volume when a configuration
operation is sent across.

128 first non
reserved

The volume group descriptor area and status area
(VGDA / VGSA) record starts here. There is further
discussion of this area under the section on volume
groups.

Starting
Sector

Record Description

If you select a physical partition size of 512 or 1024 MBs on a AIX 4.3.1 or
later system, the volume group created cannot be imported on older
versions of AIX.

Note
16 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

number of disk sectors. By default, the design of the LVM limits the number of
Physical Partitions that the LVM can track to 1016. Any physical volume
created with a PP size that resulted in more than 1016 physical partitions
would have the remaining PPs not tracked by the VGSA.

For RAID systems, the LVM is unaware of the size of the individual disks that
make up /dev/hdiskx. The LVM bases the 1016 limitation on the AIX
recognized size of /dev/hdiskx and not the real physical disks that make up
/dev/hdiskx.

In AIX Versions 4.1.2 and below, users were allowed to create physical
volumes that violated this limit. However, only the first 1016 physical
partitions would be monitored if they were stale or not.

In AIX Version 4.3.2 and 4.3.3, new improvements are offered that allow the
user to create volume groups with up to 128 disks and have a maximum of
1024*1016 partitions in a volume group. This enhancement called big VGDA,
is discussed in 1.2.7.5, “Big VGDA or VGDA expansion” on page 30.

Table 2 shows the minimum partition size for each physical volume size
based on the 1016 limitation. These are also the default partition size when a
logical volume is created.

Table 2. Default PP sizes with 1016 physical partitions per disk

In AIX Version 4.3.1, the option was added to allow users to create physical
volumes with more than 1016 physical partitions.

1.2.6 Increasing number of physical partitions per physical volume
In version 4.3.1, an option was added to allow the user to create physical
volumes whose physical partitions were limited by a multiple of 1016 using
chvg -t n, where n is the multiple of 1016. This will, however, reduce the
number of physical volumes that are allowed in the volume group. This is
because each volume group is limited to 32 512 physical partitions, which is
32 physical volumes, each with 1016 partitions. Thus, if the number of

Default physical partition size (MB) Physical volume size

2 < 300 MB

4 < 4 GB

8 < 8 GB

16 < 16 GB

32 < 32 GB
Chapter 1. Components of the logical volume manager 17

physical partitions factor is set to 4 (4064 partitions allowed per physical
volume), then only eight physical volumes will be allowed in the volume
group.

The screens below show the result of using a factor of 4.

A test volume group.

The factor set to 4.

After the chvg -t command has been run, and if you need to add more
disks to the volume group, you can change back to 1016 partitions a disk if
you only have disks that need 1016 or less partitions in the volume group.
This volume group cannot be imported into systems running AIX 4.3.0 or
below.

Note

/home/cpsu # lsvg keom_vg
VOLUME GROUP: keom_vg VG IDENTIFIER: 00017d375d1869a5
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 537 (2148 megabytes)
MAX LVs: 256 FREE PPs: 537 (2148 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32

/home/cpsu # chvg -t4 keom_vg
0516-1193 chvg: WARNING, once this operation is completed, volume group keom_vg

cannot be imported into AIX 430 or lower versions. Continue (y/n) ?
y
0516-1164 chvg: Volume group keom_vg changed. With given characteristics keom_vg

can include upto 8 physical volumes with 4064 physical partitions each.
18 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The volume group changed.

Now, using this factor, those physical volumes created in earlier versions of
AIX that violated the 1016 limit can be brought back into a supported state.

This command cannot be run if there are any stale physical partitions in the
volume group. The -t flag may also not be used if the volume group is varied
on in concurrent mode.

Table 3 gives details of the effect of changing the -t factor on the maximum
partitions per physical volume and the maximum number of physical volumes
for the volume group.

Table 3. Effect of -t factor in chvg

chvg -t factor Maximum partitions / PV Maximum disks / VG

1 (default size) 1016 32

2 2032 16

3 3048 10

4 4064 8

5 5080 6

6 6096 5

7 7112 4

8 8128 4

/home/cpsu # lsvg keom_vg
VOLUME GROUP: keom_vg VG IDENTIFIER: 00017d375d1869a5
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 537 (2148 megabytes)
MAX LVs: 256 FREE PPs: 537 (2148 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 4064 MAX PVs: 8

The -t flag may require a modification of the LVM meta data. In this
situation it is advisable to vary off the volume group in management mode
to ensure the integrity of the volume group.

Note
Chapter 1. Components of the logical volume manager 19

1.2.6.1 Querying a physical volume
The lspv command is useful in querying the usage of physical partitions on a
physical volume.

The lspv hdiskx command will return high level information about the physical
volume, the PVID, VGID, volume group name, number of VGDAs, number of
logical volumes, and the physical partition usage by region.

The lspv -l hdiskx command will show the allocation of physical partitions for
each logical volume on the physical volume by region.

The lspv -p hdiskx command will show the allocation of physical partitions by
region.

9 9144 3

10 10160 2

16 16256 2

chvg -t factor Maximum partitions / PV Maximum disks / VG

/home/red # lspv hdisk11
PHYSICAL VOLUME: hdisk11 VOLUME GROUP: keovg
PV IDENTIFIER: 00017d37e671fe4b VG IDENTIFIER 00017d377005016c
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 4 megabyte(s) LOGICAL VOLUMES: 3
TOTAL PPs: 535 (2140 megabytes) VG DESCRIPTORS: 2
FREE PPs: 498 (1992 megabytes)
USED PPs: 37 (148 megabytes)
FREE DISTRIBUTION: 107..70..107..107..107
USED DISTRIBUTION: 00..37..00..00..00

/home/red # lspv -l hdisk11
hdisk11:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
ulv01 12 12 00..12..00..00..00 N/A
ulv02 24 24 00..24..00..00..00 /home/kim
loglv00 1 1 00..01..00..00..00 N/A
20 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The lspv -M hdiskx command will show the logical partition to physical
partition map for each logical volume.

The lslv -p hdiskx command will show the status of each physical partition
for the physical volume. This is shown in the Section 1.2.8 on logical volumes.

1.2.7 Volume groups
As discussed previously, a volume group is a collection of physical volumes.
When you install the system, one volume group (the root volume group, called
rootvg) is created. New volume groups can be created with the mkvg

command. Physical volumes are added to a volume group using the extendvg

command and can be removed using the reducevg command. It is important to
remember that the rootvg has attributes that differs from the user defined
volume groups, particularly, it cannot be imported or exported.

/home/red # lspv -p hdisk11
hdisk11:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-107 free outer edge

108-119 used outer middle ulv01 jfs N/A
120-143 used outer middle ulv02 jfs /home/kim
144-144 used outer middle loglv00 jfslog N/A
145-214 free outer middle
215-321 free center
322-428 free inner middle
429-535 free inner edge

/home/red # lspv -M hdisk11
hdisk11:1-107
hdisk11:108 ulv01:1
hdisk11:109 ulv01:2
hdisk11:110 ulv01:3
hdisk11:111 ulv01:4
hdisk11:112 ulv01:5
hdisk11:113 ulv01:6
hdisk11:114 ulv01:7
hdisk11:115 ulv01:8
hdisk11:116 ulv01:9
hdisk11:117 ulv01:10
hdisk11:118 ulv01:11
hdisk11:119 ulv01:12
hdisk11:120 ulv02:1
hdisk11:121 ulv02:2

.................
hdisk11:142 ulv02:23
hdisk11:143 ulv02:24
hdisk11:144 loglv00:1
hdisk11:145-535
Chapter 1. Components of the logical volume manager 21

1.2.7.1 The Volume Group Identifier
Just as the PVID is a soft serial number for the disk, the Volume Group also
has an identifier called the Volume Group Identifier (VGID). It is a soft serial
number for the volume group and is the number that is referenced by the
low-level LVM commands not the volume group name. It also forms the base
for all logical volume IDs created for the logical volumes in the volume group.

1.2.7.2 Volume groups and major numbers
When a volume group is created, a major number is assigned. This can be
specified (mkvg -V major_number) or the next lowest available number will be
assigned. The lvlstmajor command will show which major numbers are
available.

It is recommended in multi-host environments that the major numbers are
consistent across the cluster, particularly, if file systems are being cross
mounted. This is because the NFS uses the major number as part of the file
handle, which is used when remote systems refer to the file.

When a volume group is created, two files are created in /dev with the
selected major number:

• __vgnn where nn is the major number

• vg_name

As logical volumes are created, they will have the same major number and
consecutive minor numbers starting from 1 (for both the character and block
devices). The screen below shows the major and minor numbers for the
volume group (agvg) and the logical volume (jonlv).

1.2.7.3 Volume group status area (VGSA)
If a physical volume is part of a volume group, it contains two additional
reserved areas. One area contains both the volume group status area and the

-> Show what major numbers are free
/dev # lvlstmajor
42,44...

-> Now create a volume group (agvg) with one logical volume (jonlv)

/dev # ls -l | grep 42,

crw------- 1 root system 42, 0 Sep 20 17:32 __vg42
crw-rw---- 1 root system 42, 0 Sep 20 17:31 agvg
brw-rw---- 1 root system 42, 1 Sep 20 17:32 jonlv
crw-rw---- 1 root system 42, 1 Sep 20 17:32 rjonlv
22 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

volume group descriptor area and follows the first 128 reserved sectors (see
Table 1 on page 15). The other area is at the end of the physical volume and
is reserved as a relocation pool for bad blocks that must be
software-relocated. Both of these areas are described by the LVM record. The
space between these two reserved areas is divided into equal-sized
partitions, the physical partitions assigned by the LVM for the user.

The volume group status area contains the state of all allocated physical
partitions on all of the physical volumes in the volume group.

The volume group status area (VGSA) is also used when logical volumes are
mirrored, and it records information on stale partitions. It is also used by
quorum (see below) if the VGSAs differ between physical volumes.

The important information is contained in 127 byte records for each physical
volume in the volume group. This record represents the 1016 physical
partitions, that is, each byte contains the status of eight partitions. However, if
the chvg/mkvg -t factor is used to increase the number of physical partitions
on the disk, then this area will be larger. This is why these volume groups are
not supported by versions of AIX Version 4.3.1 and earlier.

If the mirror copy of a particular physical partition cannot be written, then the
appropriate bit in the VGSA is changed. A quick bit mask is then used to
determine which physical partitions, if any, have become stale and must
undergo a data re-sync when the problem is resolved.

While a physical partition is marked stale, it is not used for a read request or
updated with a write request.

A physical partition changes from active to stale if it is no longer consistent
with its other copies in the logical partition. This can be caused by a write
error or by the physical volume not being available for a write. The physical
partition state will change from stale to active after the logical partition is
successfully re-synchronized. For this operation, the logical volume device
driver reads from an active partition in the logical partition and writes that
data to any stale partitions. If this has been successful, then the status of the
physical partition is changed to active (the bit in the VGSA set to 0). If an
error occurs during this re-synchronization, the partition will remain stale.

Normal input/output operations on this logical partition can continue while the
re-synchronization is taking place.

Table 4 on page 25 shows the detailed structure of the VGSA.
Chapter 1. Components of the logical volume manager 23

1.2.7.4 Volume group descriptor area (VGDA)
The VGDA contains information about the volume group, the logical volumes
that reside in the volume group, and the physical volumes that make up the
volume group. These VGDAs are also used in quorum voting. The status
information pertaining to the physical volume status is limited to active or
missing.

As the VGDA contains information about each of the disks in the volume
group, only one disk need to be specified when the importvg command is
being used to import a volume group into a system. The importvg command
will go to the specified physical volume, read the VGDA, find out what other
physical volumes make up the volume group (by their PVID), and import them
into the system and the ODM as well.

As the VGDA contains information about logical volumes in the volume group,
any changes to a logical volume (creation, extension, or deletion) will mean
that the VGDA on all disks is updated.

The volume group descriptor area (VGDA) is divided into the following:

• The volume group header.

This header contains general information about the volume group and a
time stamp used to verify the consistency of the VGDA.

• A list of logical volume entries.

The logical volume entries describe the states and policies of logical
volumes. This list defines the maximum number of logical volumes allowed
in the volume group.

• A list of physical volume entries.

The physical volume entries describe the number of physical partitions,
the state of the physical volume, and the physical partition map. The size
of the physical volume list is variable because the number of entries in the
partition map can vary for each physical volume. For example, a 200 MB
physical volume with a partition size of 1 MB has 200 partition map
entries.

• A volume group trailer.

This trailer contains an ending time stamp for the volume group descriptor
area.
24 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Table 4 shows the detailed structure of the VGDA.

Table 4. Structure of the VGSA / VGDA

Position Field Description

128 VGSA

Time stamp at the
beginning of the VGSA

Physical volume missing
flag

Stale map - 127 * vgsa
factor 8bit records - 1
record for 8 physical
partitions. There is one
map for each physical
volume in the volume
group. One for each
physical volume

vgsa factor - for more than
1016 partitions1

VGSA Version

Reserved

Time stamp at the end of
the vgsa (consistency
check)

136 (3841) vgda header

First timestamp for
consistency checking

vgid

Number of logical volumes

Maximum number of
logical volumes - 128
(5121) default

PP size as x, where 2x is
size (range 20-30)

Number of Physical
Volumes
Chapter 1. Components of the logical volume manager 25

Number of Volume Group
Descriptor Areas

vgda size - 2098(82421)

bigvgda flag1

Quorum on/off1

autovaryon yes/no1

vgda checksum1

Reserved

For each logical Volume lv header

Logical number (0 ... to
number of logical
volumes - 1)

Pointer to name list

Logical volume maximum
size

Logical volume state
(open/closed sync/stale)

Number of mirror copies

Mirror write policy

Number of logical
partitions

read/write flag

Bad block relocation
desired

Write verify

MWC flag

Stripe flag

Stripe width

Information on the special
files permission1

Position Field Description
26 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

1
For a big VGDA

The variable size of the physical partition map is the reason that some volume
groups will not achieve their default maximum number of physical volumes,
particularly, those consisting of large physical volumes.

Every physical volume has two VGDAs, which are kept up to date, but they
are only used as follows:

• One physical volume - Both copies used

• Two physical volumes - Both VGDAs used on the first physical volume, the
first VGDA on the second physical volume. The first physical volume is the
first one in the volume group. Either the volume group was initially created

Logical volume control
block1

Reserved

For each PV physical volume header Physical volume number

Physical volume ID

Number of physical
partitions

Physical volume state
(active/missing)

Number of vgdas on disk

Map of Logical volume to
physical partition

Reserved

Name list Mapping of logical volume
numbers to name

vgda trailer Concurrency flag

2nd timestamp for
consistency checking

2242 (89061) 2nd VGDA (if appropriate) -
same structure as first
vgda

Position Field Description
Chapter 1. Components of the logical volume manager 27

with one physical volume, or the order in which the physical volumes were
listed during the creation.

• Three or more physical volumes - The first VGDA from each physical
volume is used.

Let us look at what happens in a simple case with two physical volumes.
Initially, we have a volume group (datavg) consisting of one physical volume
(hdisk4) and one logical volume (ulv00). There will be two copies of the VGDA
on hdisk4.

Figure 5. The simple case of one disk in the volume group with one logical volume

We now add another physical volume (hdisk5) to the volume group, and the
VGDA is updated, and two VGDAs will be created on the second physical
volume. To avoid confusion, we will only look at the first VGDA on the second
physical volume, as the second one is not used by the logical volume
manager.

VGDA

hdisk4

VGDA1

VGDA2

physical volume

hdisk4 uvl00

hdisk4

uvl00

uvl00

logical

volume

volume group:datavg

hdisk5
28 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 6. A second disk is added and the VGDA is updated

Two further logical volumes are added to the volume group (ulv01 and ulv02).
The VGDAs are all updated.

Figure 7. Two further logical volumes added

VGDA

hdisk4

VGDA1

VGDA2

physical volume

hdisk4 uvl00

hdisk4

uvl00

uvl00

logical

volume

volume group:datavg

hdisk5

VGDA3

hdisk4 uvl00

hdisk5

hdisk5

hdisk5

VGDA

hdisk4

VGDA1

VGDA2

physical volume

hdisk4 uvl00

hdisk4

uvl00

uvl00

logical

volume

volume group:datavg

hdisk5

VGDA3

hdisk4 uvl00

hdisk5 uvl01

hdisk5 uvl01

hdisk5 uvl01uvl02 uvl02

uvl02

uvl00 uvl00
Chapter 1. Components of the logical volume manager 29

1.2.7.5 Big VGDA or VGDA expansion
The original limitation to LVM of 32 disks per volume group was becoming a
problem with systems with a large number of disks. Especially with the
increased use of LVM mirroring, the need for larger volume groups grew.

As the result, AIX Version 4.3.2 introduced the -B option. This changes the
maximum number of disks that can be included into a volume group from 32
to 128 disks. And, the number of logical volumes that can exist in that volume
group has grown from 256 to 512 logical volumes. AIX Version 4.3.3
introduced the -G option, which allows the VGDA to include up to 1016*1024
partitions.

The obvious penalty is that the bigger VGDA is taking up more space on the
physical volume; thus, the usable space on each physical volume in the
volume group is reduced.

The opportunity has also been taken with the expansion of the VGDA to
include some additional information. In particular, if the permissions of the
special logical volume files have been changed, then this information can be
stored in the VGDA. Thus, when a big VGDA volume group is imported, the
modified permissions are preserved.

An important consideration is the movement of physical partitions to handle
the expansion in the VGDA. When the VGDA is expanded, the first few
physical partitions (the number of partitions depends on the partition size)
must be made available. If they are currently allocated for use, they will be
migrated to other free partitions on the same physical volume. The physical
partitions are then renumbered to reflect the loss of the first few partitions for
the bigger VGDA. Hence, the logical to physical partition mappings are also
changed. This is particularly important for those sites that have configured
specific logical volumes on specific regions of the physical volume. Similarly,
if map files are used or backups made with the map option, then they will
have to be updated after the VGDA is changed.

The following should be taken into account before expanding the VGDA:

• The -B and -G flags cannot be used if there are any stale partitions or any
open logical volumes in the volume group.

• Big VGDA volume groups cannot be imported into AIX Version 4.3.1 and
below.

• There must be enough free partitions available on each physical volume to
cater for the expansion of the VGDA.
30 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• The -B and -G flags cannot be used if the volume group is going to be
concurrent capable.

• Every VGDA operation (creating, updating logical volumes, adding
physical volumes, and so on) will take longer, as the VGDA is now bigger.

• Map files must be updated after the change.

• Some logical volumes may have to be repositioned after the change.

• If backups are made with the map option, then it is recommended that
backups be made just before and just after the expansion.

• The big VGDA cannot be converted to a normal VGDA without a backup
and total restore.

1.2.7.6 Concurrent volume groups
A concurrent volume group is a volume group that is configured on creation
as being concurrent capable (mkvg -c). If more than one system can access
the physical volumes, then, through a concurrent capable volume group, they
can now concurrently access the information stored on them. Initially, this was
designed for high-availability systems, with the high-availability software
controlling the sharing of the configuration data between the systems, but the
application must control the concurrent access to the data.

Further information on concurrent capable volume groups is found in Chapter
4, “Concurrent access volume groups” on page 183.

1.2.7.7 Portability of volume groups
One of the great attributes of the LVM is the ability of the user to take the disk
or disks that make up a volume group to another RS/6000 system and access
the information created by the first machine. Obviously, limitations would
apply if one was to try this with the rootvg.

The import procedure is used to make the volume group known to a system
after the group is exported and moved from another system. It is also used to
reintroduce a volume group that was previously used on the system but had
been exported. This ability is provided through the Volume Group Descriptor
Area (VGDA) and the Logical Volume Control Block (LVCB).

Only one physical volume is required to identify the volume group; any
remaining physical volumes (those belonging to the same volume group) are
found by the importvg command (using the VGDA) and included in the import.

When a volume group with file systems is imported, the /etc/filesystems file is
updated with values for the new logical volumes and mount points.
Chapter 1. Components of the logical volume manager 31

However, if the mount point information is longer than 128 characters, it will
be missing from the logical volume control block, and then the
/etc/filesystems file will have to be updated manually.

After import, the volume group can be activated with the varyonvg command
(if not done by default). It is recommended at this time that the fsck be run
against any file systems that were part of the volume group.

The LVM is also designed to handle the accidental duplication of logical
volume or file system names. If the LVM finds that a name already exists on
the machine while the information is being imported, the LVM will create a
new distinct name for the logical volume. It then prints a message and the
new name to standard error and updates the /etc/filesystems file to include
the new logical volume name. The following example shows how an imported
logical volume was renamed by the LVM to avoid conflict.

We have two volume groups (t1vg and t2vg, which have their jfslog and one
logical volume in common).

1. Importvg changed as part of AIX Version 4, such that the volume group
is automatically varied on (activated) after it is imported unless the
volume group is concurrent capable or imported with the -c flag. The -n

flag will also stop this.

2. Volume groups can be shared between AIX Versions 3.2 to 4.3 so long
as:

• Mirroring is not used with striping.

• A big VGDA is not used.

• The partition factor is not changed.

• Partition size of 512 or 1024 is not used.

Notes
32 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Volume group t1vg is active, and the file systems mounted.

The second volume group is imported, and the following warning and error
messages are received.

1.2.7.8 How importvg works
The logical volume manager provides another significant advantage to AIX:
The ability to move a set of physical volumes among different AIX systems.
By running importvg, the other AIX system learns:

1. Which physical volumes constitute the volume group.

2. What logical volumes exist on the physical volumes.

3. What mount points, if any, exist for the logical volumes.

/home # lsvg -l t1vg
t1vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loglv00 jfslog 1 1 1 open/syncd N/A
ulv01 jfs 1 1 1 open/syncd /home/oscar
ulv02 jfs 4 4 1 open/syncd /home/greg
/home #
/home # lsvg -l t2vg
t2vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loglv00 jfslog 1 1 1 open/syncd N/A
ulv01 jfs 1 1 1 open/syncd /home/oscar
ulv03 jfs 4 4 1 open/syncd /home/sue

/home # df
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 16384 2296 86% 1281 32% /
/dev/hd2 884736 11888 99% 14863 14% /usr
/dev/hd9var 245760 81968 67% 170 1% /var
/dev/hd3 81920 44552 46% 109 2% /tmp
/dev/hd1 65536 39680 40% 296 4% /home
/dev/lv00 40009728 34429048 14% 10290 1% /software
/dev/lv05 1310720 1267248 4% 31 1% /logdata
/dev/ulv01 32768 31656 4% 18 1% /home/oscar
/dev/ulv02 32768 31656 4% 18 1% /home/greg
/home #

/home # importvg -yt2vg hdisk11
0516-530 synclvodm: Logical volume name ulv01 changed to fslv00.
0516-530 synclvodm: Logical volume name loglv00 changed to loglv02.
t2vg
imfs: Warning: logical volume fslv00 already exists in /etc/filesystems.
Chapter 1. Components of the logical volume manager 33

The logical volume manager will prevent name duplication between the
existing system and the information imported from the new physical volumes.
Additionally, the logical volume manager creates the appropriate entries in
/etc/filesystems and special files to allow any journaled file systems to be
used. This is done by the LVM using the information that is contained in the
VGDA, and it only needs the VGDA from one physical volume to find all the
other physical volumes in the volume group. The key features of the VGDA in
this regard are:

1. A list of the PVID’s of all the physical volumes in the volume group.

2. A list of the LVIDs of all the logical volumes in the volume group.

3. A list of the preferred logical volume names associated with each of the
LVIDs in the volume group.

4. Mount points for the jfs logical volumes in the volume group (in the big
VGDA only).

Let us take a graphical view of an importvg of a volume group of two disks
into a new AIX system. Here, we have two physical volumes, hdisk2 and
hdisk3, that were part of a volume group on another system. We attach these
two disks to a second RS/6000.

Before anything is done on the second system, it is aware that it has two new
physical volumes but knows nothing about the contents. The importvg

command is then used as follows:

importvg -y newvg hdisk2

Notice, that we only specified the first physical volume in the importvg

command string. This is okay as we discussed above, the VGDA contains a
list of what physical volumes make up the volume group. The LVM queries the
VGDA on the first physical volume, checks VGDA consistency, and then
builds a table of all the volume group and physical volume information. This
data is then used to update the ODM with the key volume group and physical
volume associations. The special files are created in /dev and /etc.

Next, the same action is preformed in regard to the logical volume information
in the VGDA. All the logical volume information from the VGDA is read, the
entries made in the ODM, and the special files created. The LVCB for each
logical volume is also read. Then, each logical volume is checked to see if it
has valid information relating to a journaled file system. If so, the appropriate
stanzas are added to /etc/filesystems and the mount points created.

It is important to remember that, during this process, if the LVM finds any
logical volumes defined in the VGDAs on the new physical volumes, they will
34 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

be renamed so that they do not conflict with the existing system. These new
names will be added back into the VGDA, LVCB, and used in the ODM of the
system.

There is a common problem that occurs at this point if one of the logical
volumes imported is a raw logical volume that has had its LVCB overwritten.
This commonly occurs when the logical volume is used by a database
application. In this instance, the LVM will not be able to fully populate the
ODM with the logical volume information. Its logic will also stop the LVM from
writing any information back to the LVCB, thus, avoiding any potential
corruption of the data in the raw logical volume.

It is also worth noting, at this point, that even though the LVCB is corrupt, the
logical volume is still stable and usable. If the logical volume is mirrored, this
information will be kept in the VGDA, and mirroring through the LVDD will
continue to operate. In previous releases of AIX, commands, such as lslv,
query the ODM for their data and return incorrect data. For example, in the
mirroring example, lslv will report copies as 1 (the default) even though the
LVDD is correctly mirroring the raw logical volume. This has been corrected in
the latest version of AIX, and lslv now correctly reflects the number of
mirrors even if the LVCB has been overwritten.

1.2.7.9 Further options importing volume groups
Two new options have been added to the importvg command:

• Faster importvg

• Learning importvg

The faster import option gives the user the ability to speed up the importing of
a volume group into a system. However, there are some risks in using this
option and, thus, it is not the default option. The user must use the -F (fast
import) option with care.

As discussed previously, the basis of all actions in LVM, when you are dealing
with more than one disk in the volume group, is the volume group descriptor
area. Each VGDA in a volume group is supposed to be identical, apart from
the disk specific information. However, data integrity issues requires LVM to
be particularly careful about the consistency of its data. So, whenever
information is asked of the VGDA, a double-check is performed. LVM goes to
each disk in the volume group and reads the starting and finishing
timestamps in each VGDA. If any of the timestamps differ, then LVM knows
something unusual has occurred the last time the volume group was
accessed. The LVM uses the logic that the VGDA with the latest timestamp
must be the correct one. It will then take this correct one and write over the
Chapter 1. Components of the logical volume manager 35

inconsistent VGDAs. The LVM also checks every disk connected to make
sure there are not any further disks with a matching volume group identifier.
With a large number of disks attached to the system, this will obviously take
time.

What the faster importvg does is, from the information in the VGDA of the disk
supplied, assume that the all the VGDAs are consistent and proceed on the
basis of that information.

Let us look at a specific example and show the difference in behavior
between a normal and faster importvg.

Figure 8 shows the volume group, gromitvg, which consists of three physical
volumes. As yet, hdisk4 has not been assigned.

Figure 8. Three disks make up the volume group gromitvg

In Figure 9, hdisk1 is powered off. This is detected by the LVM, which updates
the VGDA of hdisk2 and hdisk3.

Figure 9. hdisk1 powered off and VGDA updated on disks 2 and 3

gromitvg gromitvg grom itvg

hd isk1 hdisk2 hdisk3 hd isk4

grom itvg grom itvg grom itvg

hdisk1 hdisk2 hdisk3 hdisk4
36 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

In Figure 10, hdisk4, is added to the volume group, and the VGDAs on hdisk2,
hdisk3, and hdisk4 are updated.

Figure 10. hdiks4 added to gromitvg

In Figure 11, we have the situation of all disks now available, but the VGDA on
hdisk1 is out of date and doesn’t know that hdisk4 is part of the volume group.
The VGDAs on hdisk2, hdisk3, and hdisk4 are consistent and record that
hdisk1 has stale information.

Figure 11. All disks now available, with inconsistent VGDAs

We now compare what happens with the normal and faster importvg.

Normal importvg
If the following command is run:

importvg -y gromitvg hdisk4

importvg will examine the VGDA on hdisk4 and get the VGID of gromitvg. It
then activates every disk on the system to check for disks that match that
VGID. As a result, importvg finds that hdisk1, hdisk2, hdisk3, and hdisk4 are
members of gromitvg. The VGDA timestamps are then compared, and it is

grom itvg grom itvg gromitvg

hdisk1 hdisk2 hdisk3 hdisk4

grom itvg

grom itvg grom itvg grom itvg

hdisk1 hdisk2 hdisk3 hdisk4

grom itvg
Chapter 1. Components of the logical volume manager 37

found that there is a problem with the hdisk1 VGDA. Two things are realized:
hdisk1 is now alive, and its VGDA needs to be updated. This is done, and the
VGDAs on all disks are then updated.

Using this logic, it can be seen that the same result would have been
achieved if the importvg command was run against hdisk1. This is because all
that importvg does, initially, is get the VGID, which it uses when it checks all
attached disks.

Faster importvg
If we chose hdisk4 in the importvg command:

importvg -Fy gromitvg hdisk4

the same result as above would be achieved, as the VGDA on hdisk4 knows
of the existence of all disks in gromitvg, and they will all be activated. All
VGDAs will then be checked, the discrepancy found, and all updated.

However, if hdisk1 was chosen, then importvg will use the VGDA of hdisk1 to
activate disks2 and hdisk3, leaving hdisk4 inactive. The VGDA discrepancy
will be noticed and the VGDAs updated, but hdisk4 will not be made active
and, therefore, will be labelled as missing.

This warning is well documented.

This option will save time if there are a large number of physical volumes
connected to the system, but the user has to be aware of the requirement for
all disks to be available and in a good state.

1.2.7.10 The learning importvg
This command was created for multi-tailed systems mostly used in
high-availability cluster multi-processing (HACMP) and Recoverable virtual
shared disk (RVSD). The problem with twin- tailed systems is that a method is
needed to communicate changes performed on one system to other systems
that are connected. The concurrent LVM code takes care of this in a

The importvg -F command provides a fast version of importvg that
checks the Volume Group Descriptor Areas of only the disks that
are members of the same volume group. As a result, if a user
exercises this flag, they must ensure that all physical volumes in
the volume group are in a good and known state. If this flag is used
on a volume group where a disk may be in missing or removed
state, the command may fail, or the results may be inconsistent.

Note
38 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

reasonable manner. However, the concurrent method depends on all nodes
having the volume group varied on in concurrent mode. The learning option
(-L) for importvg was designed to remove the need for all systems that access
the shared physical volumes to export the volume groups and then re-import
the new definitions. It is also used in conjunction with new options on the
varyonvg command that allows the SCSI reserves (disk locks) that are set with
a normal varyonvg to be broken. Details on this option can be found in the
HACMP documentation.

1.2.7.11 Quorum
Quorum is the check used by the LVM to resolve possible data conflicts and
to prevent data corruption. Quorum is a method by which 51 percent or more
quorum votes must be available to a volume group before any LVM actions
can continue. The only exception to this is when quorum is switched off (so
that mirrored volume groups can continue to operate in highly-available
environments) all VGDAs must be available and consistent when the volume
group is made active. After that point, quorum is ignored.

The LVM runs most of its commands and strategies on the assumption of
having the most current copy of the data. Thus, it needs a method to compare
data on two or more physical volumes to determine which contains the most
up to date information. If a quorum is lost during normal operation, and,
therefore, the LVM will have trouble determining which copy is current, then
the user will be notified that there will be no further I/O operations for that
Volume Group, and the Volume Group is varied-off. In this case, you will see
following entry on AIX error logging facility:

root@pukupuku:/ [274] # errpt -tj 91F9700D
Id Label Type CL Description
91F9700D LVM_SA_QUORCLOSE UNKN H QUORUM LOST, VOLUME GROUP CLOSING
root@pukupuku:/ [275] # errpt -taj 91F9700D
--
IDENTIFIER 91F9700D

Label: LVM_SA_QUORCLOSE
Class: H
Type: UNKN
Loggable: YES Reportable: YES Alertable: NO

Description
QUORUM LOST, VOLUME GROUP CLOSING

Probable Causes
PHYSICAL VOLUME UNAVAILABLE

Detail Data
MAJOR/MINOR DEVICE NUMBER
QUORUM COUNT
ACTIVE COUNT
Chapter 1. Components of the logical volume manager 39

The use of quorum does not guarantee that volume groups will be varied-off if
a disk fails, as it is configured to work at the disk level, not the logical volume
level. Imagine the simple case with four disks in the volume group, and one
disk fails. The volume group still has quorum, but logical volumes may have
lost a mirror copy or, if not mirrored, not be available at all.

In some high-availability configurations, a quorum buster disk may be used.
This is an extra disk in the volume group that contains no information and no
logical volumes. It is usually in a separate enclosure and allows quorum to be
left on. With a quorum buster disk, more than 50 percent of the VGDAs will be
available if one mirror copy is missing. Having quorum on allows a simpler
recovery once the problem is fixed.

1.2.7.12 The process of varying on a volume group
The varyonvg and varyoffvg commands activate or deactivate (make available
or unavailable for use) a volume group that you have defined to the system.
The volume group must be varied on before the system can access it.

The vary-on process depends on whether quorum for the volume group is
turned on or off:

On If quorum is on, then a majority of the VGDAs must be available
before the process can complete. This process ensures that at
least one copy of the VGDA is available and was online during the
preceding vary off operation. This ensures the consistency of the
VGDA.

Off All copies of the VDGA must be available before the volume group
can be varied on. This can be over-ridden if the user forces the
vary-on, or if the environment variable MISSINGPV_VARYON is
set to TRUE. However, the user takes full responsibility for the
volume group integrity.

If the vary-on operation cannot access one or more of the physical volumes
defined in the volume group, the command displays the names of all physical
volumes defined for that volume group and their status. This helps you decide
whether to continue operating with this volume group.

It is during the vary-on process that the LVM reads the information in the
VGDA/VGSA to initialize the logical volume device driver structures.

There is one exception to this quorum checking process. The -f flag can be
used in the vary-on process, and this will allow the volume group to become
active even if a majority of VGDAs are not available. All disks that cannot be
put into an active state will be put in a removed state. At least one physical
40 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

volume must be available. The environmental variable MISSINGPV_VARYON
can also be set to TRUE. This must be set in /etc/environment to be effective on
boot.

Let us look at a simple example involving two systems sharing two disks (one
volume group with quorum off) that demonstrates the danger of forcing a
vary-on of a volume group and, in fact, can lead to the loss of data.

Figure 12. Two systems sharing two disks; system A is active.

At some time, due to a multiple failure, the second system becomes isolated.
The first system recognizes this, and the VGDA of hdisk3 is updated with
hdisk4 marked as missing. About this time, a new logical volume is created
and will obviously only be on hdisk3 and the VGDA on hdisk3. The VGDA is
updated with a new timestamp.

Use of the force flag or the MISSINGPV_VARYON environment variable
can result in data inconsistency. The user takes full responsibility for
volume group integrity.

Note

ulv01

Active

System A

Standby

System B

hdisk4

ulv01

hdisk3

timestamp = n timestamp = n
Chapter 1. Components of the logical volume manager 41

Figure 13. Physical problems cause system A and hdisk3 to become isolated

System B assumes that system A has problems; so, it attempts to activate the
volume group containing hdisk3 and hdisk4. hdisk3 is found missing; so, a
vary-on is forced, and the VGDA in hdisk4 is updated with hdisk3 missing and
a later timestamp.

Figure 14. System B attempts to active the volume group

The problem is noted, both systems taken down and then brought up cleanly.
Now System A sees the latest timestamp in the VGDA on disk4; so, any
changes made after hdisk4 was isolated have been lost.

ulv01

Active

System A

Standby

System B

hdisk4

ulv01

hdisk3

ulv02

timestamp = n + 1 timestamp = n

timestamp = n+2

ulv01

Active

System A

Standby

System B

hdisk4

ulv01

hdisk3

ulv02

timestamp = n+1
42 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 15. Systems stopped, then brought up cleanly - hdisk4’s VGDA is used

Although this is an unlikely scenario, it demonstrates that one must
understand the operation of the logical volume manager to ensure that the
system will behave as expected if problems are encountered.

1.2.7.13 Querying the volume group
The lsvg command is useful in querying for configuration of the volume
group.

The lsvg vg_name command will return high-level information about the volume
group. This includes the VGID, the state, maximum number of physical
partitions, physical partition size, and the physical partition usage.

The lsvg -p vg_name command will return information about the physical
volumes that make up the volume group.

ulv01

Active

System A

Standby

System B

hdisk4

ulv01

hdisk3

timestamp = n+2 timestamp = n+2

/home/red # lsvg vikvg
VOLUME GROUP: vikvg VG IDENTIFIER: 00017d377005016c
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 535 (2140 megabytes)
MAX LVs: 512 FREE PPs: 498 (1992 megabytes)
LVs: 3 USED PPs: 37 (148 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 128
Chapter 1. Components of the logical volume manager 43

The lsvg -l vg_name command will return information about the logical
volumes in the volume group.

1.2.8 Logical volumes
A logical volume is a portion of a physical volume or volumes viewed by the
system as a single unit. Logical records are records defined in terms of the
information they contain rather than physical attributes. Logical volumes
consist of logical partitions, each of which will map to one or more physical
partitions.

The logical volume presents a simple contiguous view of data storage to the
application/user while hiding the more complex and possibly non-contiguous
physical placement of data.

Logical volumes can only exist within one volume group. They cannot be
mirrored nor expanded into other volume groups. You will recall from the
discussion earlier in this chapter, that the logical volume information is kept in
the VGDA, and the VGDA only tracks information pertaining to one volume
group.

The creation of logical volumes allows many levels of control by the user:

• No control

• Physical volume specific control

• Partition location control

The command that determines how the physical partitions are allocated to the
user’s request is /usr/sbin/allocp. This binary takes into account the user’s
specific requirements and default values and is called by mklv (see

/home/red # lsvg -p vikvg
vikvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk11 active 535 498 107..70..107..107..107

/home/red # lsvg -l vikvg
vikvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
ulv01 jfs 12 12 1 closed/syncd /home/a_dent
ulv02 jfs 24 24 1 closed/syncd /home/f_prefect
loglv00 jfslog 1 1 1 closed/syncd N/A
44 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

commands). It is also this command that uses map files to lay out the logical
volume onto specific physical partitions.

The Logical Volume Manager subsystem provides flexible access and control
for complex physical storage systems. Logical volumes can be mirrored and
stripped with strip sizes of 4 K, 8 K, 16 K, 32 K, 64 K and 128 K. Mirroring and
stripping was not supported for AIX Version 4.3.2 and below.

There are a number of logical volumes that exist on the system that are
addressed in an atypical manner:

• Log logical volume - Used by jfs.

• Dump logical volume - Used by the system dump facility to copy selected
areas of kernel data when an unexpected system halt occurs.

• Boot logical volume - Contains the initial information required to start the
system.

• Paging logical volumes - Used by the virtual memory manager to swap out
pages of memory. From AIX 4.1 on, the paging and dump devices can be
the same.

Users and applications will only use the following types of logical volume:

Raw Logical Volumes These will be controlled by the application (usually
a database application) and will not use the
journaled file system (JFS).

Journaled file systems Each JFS consists of a pool of page-sized (4 KB)
blocks. When data is to be written to a file, one or
more additional blocks are allocated to that file.
These blocks may or may not be contiguous with
one and another or with other blocks previously
allocated to the file. In AIX 4.1 and above, a given
file system can be defined as having a fragment
size of less than 4 KB (512 bytes, 1 KB, 2 KB).

1.2.8.1 The logical volume identifier
The logical volume identifier (LVID) is the soft serial number that consists of
the VGID of the volume group, a decimal point, and the minor number for the
logical volume special file. This number also represents the order in which the
logical volume was created within the volume group.

1.2.8.2 The logical volume control block
The logical volume control block (LVCB)

• Occupies the first 512 bytes of a logical volume
Chapter 1. Components of the logical volume manager 45

• Can be damaged by direct access to the logical volume.

• LVCB is not required for many LVM operations.

• With the introduction of the big VGDA, a copy of the LVCB is now kept in
the VGDA.

The LVCB holds important information, such as the creation date of the
logical volume, information about mirrored copies and mount points, if the
logical volume is a journaled file system. The command, /usr/sbin/getlvcb,
can be used to interrogate the LVCB.

A number of LVM commands are required to update the LVCB, and to ensure
consistency within the LVM, the old LVCB is read first and analyzed to confirm
its validity. If the information is confirmed, the LVCB is updated. If, however,
there is a problem, the LVCB is not updated, and a warning message is
issued:

Warning, cannot write lv control block data

This most commonly occurs if the user has created a raw logical volume for
direct access by an application. Often, in this instance, the application writes
directly over the LVCB. However, this is not fatal, and the user can still
perform commands on the logical volume, but some LVM commands require
a valid LVCB to complete successfully.

1.2.8.3 Logical partitions
Each logical volume consists of a sequence of numbered partitions. Logical
partitions are how logical volumes handle both the mapping to physical
partitions on one or more physical volumes and multiple copies for mirroring.
As noted before, the logical partitions appear contiguous to the
user/application, while the physical partitions may well not be. Mirroring is
supported by each logical partition being mapped to more than one physical
partition. Figure 2 on page 2 shows this relationship.

The location of the physical partitions is determined by the allocation policies.

1.2.8.4 Control over location of logical volumes
The following terms will need to be understood before we can go on with what
AIX does when creating logical volumes:

Inter physical volume allocation policy
This determines the position of the physical partitions on the
physical volume that will be used by the logical volume. The
options are outer edge, outer middle, center, inner middle, and
inner edge (Figure 3 on page 3). SMIT uses slightly different
46 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

terminology (Table 5). Once this region is full, further partitions
are allocated as near as possible to the first region (details in
Table 6.). The first free physical partitions on the selected region
will be allocated first, ensuring that no holes are left in that
region.

Intra-physical volume allocation policy
This determines the number (or range) of physical volumes that
the physical partitions will be allocated across. The physical
volumes that provide the best match for the inter-physical
volume policy will be used. The number of physical volumes can
be limited by the upper bound variable. This can be set to
minimum or maximum.

Strict allocation policy
This determines whether copies of a logical partition
share the same physical volume or not. There are three
options :

Strict Copies of a logical partition cannot
share the same physical volume.

Not strict Copies of a logical partition can share
the same physical volume.

Super strict Physical partitions from one copy of a
logical partition cannot share the same
physical volume as physical partitions
from another copy of other logical
partitions of the same logical volume.

Scheduling This determines how physical partitions will be
written when there is more than one copy. The
options are parallel (written at the same time) or
sequential (written one after another).

Mirror write consistency Mirror write consistency ensures data consistency
among mirrored copies of a logical volume during
normal I/O processing. If a system or volume
group is not shutdown properly, then mwc will
identify which logical partitions may be
inconsistent.

Write verify This controls the write verify state for the logical
volume. There are two options:

y All writes to the logical volume will be
verified by a following read.
Chapter 1. Components of the logical volume manager 47

n Writes are not verified.

Map files Map files layout the logical partition to physical
volume and physical partition mapping explicitly.
By using map files, the exact location of the logical
volume can be specified.

Bad block relocation This determines if bad block relocation is to take
place. There are two options: y or n.

There are some discrepancies in the disk’s regions naming conventions
between SMIT and the AIX documentation, Table 5 gives you the mapping
between the two groups of description.

Table 5. SMIT region terms for intra-physical allocation policy

Table 6 gives you the regions that will be allocated when you specify one
region but that region doesn’t have enough free partitions to fulfill your
request.

Table 6. Order physical volume regions are searched for free partitions.

While the performance and availability aspects of logical volume placement
will be discussed in detail in later chapters, it is important to understand the
default behavior of logical volume creation. Therefore, we will look at differing
levels of control that can be introduced.

SMIT Description

edge outer edge

middle outer middle

center center

inner middle inner middle

inner edge inner edge

Inter policy region selected Other regions allocated in order

outer edge outer middle, center, inner middle, inner edge

outer middle center, outer edge, inner middle, inner edge

center outer middle, inner middle, outer edge, inner edge

inner middle center, inner edge, outer middle, outer edge

inner edge inner middle, center, outer middle, outer edge
48 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Preference rules
The following table (Table 7) shows the priority that mklv/extendlv commands
will use to allocate physical partitions depending on the different options
selected.

Table 7. Order in which physical partitions are allocated

Thus, if mklv is used, and region is selected, then if a contiguous pool of free
physical partitions cannot be found in the specified region on any of the disks,
as many physical partitions will be allocated from that region on one disk
followed by free partitions in neighboring regions. In this case, the minimum
policy wins out.

Default behavior
The default options shown in Table 8 will be used if a logical volume is
created with no user control.

Table 8. Default configuration of a logical volume

Allocatn
Rule

Disk Contiguous
PPs pool

Region Closest to
selected

Min Intra
policy

mklv options:

default 1 2 3 4

disk 1 2 3 4 5

region 1 2 3

extendlv options:

default 1 3 2 4

disk 1 2 3

region 2 1 4 3

Option Value

Logical volume type jfs

Inter pv allocation policy The physical partitions in the outer middle
(SMIT middle) will be allocated first.

In versions of AIX before 4.2, allocp would chose contiguous partitions over
region specificity.

Note
Chapter 1. Components of the logical volume manager 49

The following screen shows the SMIT screen with the default options.

Intra pv allocation policy The logical volume will be created across
the minimum number of physical volumes
possible.

Max number of PV (Upper bound) Number of physical volumes / number of
copies

Number of copies 1

Mirror write consistency yes

strictness yes

bad block relocation yes

scheduling policy parallel

write verify no

Option Value
50 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Default options for creating a logical volume.

A slightly greater level of control over the placement of the logical volume can
be exercised by using the inter- and intra-physical volume allocation policies.
The greatest level of control can be achieved through the use of a map file.

1.2.8.5 The logical volume map file
A map file is used to specify exactly which physical partitions on which
physical volumes will contain the logical partitions for each copy of a logical
volume. The physical partitions are allocated to logical partitions for a logical
volume copy according to the order in which they appear in the map file. Each
logical volume should have its own map file, and the map files of each logical
volume copy should each allocate the same number of physical partitions.
Hence, it offers very precise control when a logical volume is first created and
when copies are subsequently created in a mirrored environment.

We can see this in an example of the current usage of a physical volume:

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [razlv]

* VOLUME GROUP name big_louvg
* Number of LOGICAL PARTITIONS [12] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
Chapter 1. Components of the logical volume manager 51

lspv -p showing usage of physical volume by region.

Or, the detailed use of each physical partition:

lslv -p hdisk9 showing physical partition usage.

The map file specifies the physical volume and the physical partition (or range
of partitions):

Example of a map file, which allows exact placement.

hdisk9:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-108 free outer edge

109-128 used outer middle tlv jfs N/A
129-215 free outer middle
216-322 free center
323-429 free inner middle
430-537 free inner edge

hdisk9:::
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-10
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 11-20

.............................
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 91-100
FREE FREE FREE FREE FREE FREE FREE FREE 101-108

USED USED USED USED USED USED USED USED USED USED 109-118
USED USED USED USED USED USED USED USED USED USED 119-128
USED USED USED USED USED USED USED USED USED USED 129-138
USED USED USED USED USED USED USED USED USED USED 139-148
USED USED USED USED USED FREE FREE FREE FREE FREE 149-158

.............................

hdisk9:90
hdisk9:93
hdisk9:96-150
hdisk9:230
hdisk9:235
hdisk9:240
hdisk9:244
hdisk9:250
hdisk9:257
hdisk9:160-164
hdisk9:170
hdisk9:175

When using a map file to specify which physical partitions are to be used,
you can ignore the inter-disk allocation and intra-physical volume allocation
policies in SMIT as the map file will take precidence.

Note
52 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If we are creating a mirrored logical volume, then the physical partitions on
each physical volume must be specified. For example, if we are creating a
logical volume with two copies, we would use a map file as follows:

Example map file for a logical volume with two copies.

Then, create the logical volume:

Creating a mirrored logical volume using a map file

with the resulting logical to physical partition mapping:

The resulting logical volume:

1.2.8.6 Reorganizing logical volumes
It is important that the placement of logical volumes and the reorgvg

command is understood and not confused with file system fragmentation. File
system fragmentation affects i-nodes and data blocks within a file system and
will covered in Chapter 5, “The AIX journaled file system” on page 233.

/home/red # cat mapf
hdisk9:90
hdisk9:93
hdisk9:96
hdisk9:230
hdisk9:235
hdisk10:90
hdisk10:93
hdisk10:96
hdisk10:230
hdisk10:235

/home/red # mklv -t jfs -y roslv -c 2 -m ./mapf shazvg 5
roslv

/home/red # lslv -m roslv
roslv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0090 hdisk9 0090 hdisk10
0002 0093 hdisk9 0093 hdisk10
0003 0096 hdisk9 0096 hdisk10
0004 0230 hdisk9 0230 hdisk10
0005 0235 hdisk9 0235 hdisk10

Map files cannot be used to create striped logical volumes.

Note
Chapter 1. Components of the logical volume manager 53

The reorgvg command works only at the logical volume level and rearranges
the physical partitions within the volume group to do its best to conform with
the placement policy for that logical volume.

At least one free physical partition must exist in the specified volume group
for reorgvg to be able to run.

The following example shows how the physical partitions are rearranged for
one of the logical volumes. Two logical volumes are created (suelv and
douglv) from map files and are scattered over the physical volume.

One logical volume (suelv) has the relocate flag set to yes.

One logical volume (douglv) has the relocate flag set to no.

Here, is the layout of the physical partitions for logical volume suelv:

/home/red # lslv suelv
LOGICAL VOLUME: suelv VOLUME GROUP: keovg
LV IDENTIFIER: 00017d376c4734b6.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 13 PPs: 13
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 128
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes

home/red # lslv douglv
LOGICAL VOLUME: douglv VOLUME GROUP: keovg
LV IDENTIFIER: 00017d376c4734b6.2 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 10 PPs: 10
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: no
INTRA-POLICY: middle UPPER BOUND: 128
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes
54 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Here, is the layout of the physical partitions for logical volume douglv:

The volume group is reorganized. Note, in AIX Version 4.2 and above,
partitions belonging to every logical volume in the volume group specified will
be rearranged if no other options are given.

The mapping between the logical partitions and the physical partitions is
changed for logical volume suelv.

/home/red # lslv -m suelv
suelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0090 hdisk11
0002 0093 hdisk11
0003 0096 hdisk11
0004 0230 hdisk11
0005 0235 hdisk11
0006 0240 hdisk11
0007 0244 hdisk11
0008 0250 hdisk11
0009 0257 hdisk11
0010 0160 hdisk11
0011 0164 hdisk11
0012 0170 hdisk11
0013 0175 hdisk11
/home/red #

/home/red # lslv -m douglv
douglv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0100 hdisk11
0002 0104 hdisk11
0003 0106 hdisk11
0004 0110 hdisk11
0005 0113 hdisk11
0006 0118 hdisk11
0007 0094 hdisk11
0008 0097 hdisk11
0009 0128 hdisk11
0010 0124 hdisk11

/home/red # reorgvg keovg
0516-962 reorgvg: Logical volume suelv migrated.
/home/red #
Chapter 1. Components of the logical volume manager 55

The physical partitions for logical volume douglv are not changed.

1.2.8.7 Understanding logical volumes and bad blocks
When a system fails to perform a read or a write due to physical problems
with the physical volume, data relocation typically occurs. With some physical
volumes, data relocation will be handled internally, and the user will not be
notified. In other cases, depending on the error returned, the logical volume
device driver may chose to relocate the data, as it is uncertain of the success
of future I/O to that portion of the physical volume.

When a bad block is detected during I/O, the physical disk driver sets an error
condition to indicate that there was a media surface error. The physical layer
of the LVDD then initiates any bad block processing that must be done.

/home/red # lslv -m suelv
suelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0129 hdisk11
0002 0130 hdisk11
0003 0131 hdisk11
0004 0132 hdisk11
0005 0133 hdisk11
0006 0134 hdisk11
0007 0135 hdisk11
0008 0136 hdisk11
0009 0137 hdisk11
0010 0138 hdisk11
0011 0139 hdisk11
0012 0140 hdisk11
0013 0141 hdisk11
/home/red #

/home/red # lslv -m douglv
douglv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0100 hdisk11
0002 0104 hdisk11
0003 0106 hdisk11
0004 0110 hdisk11
0005 0113 hdisk11
0006 0118 hdisk11
0007 0094 hdisk11
0008 0097 hdisk11
0009 0128 hdisk11
0010 0124 hdisk11
/home/red #
56 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If the operation was a non-mirrored read, then the block is not relocated
immediately, as the data in the relocated block is not initialized until a write is
performed to that block. To support this delayed action, an entry for the bad
block is put in the LVDD defects directory and into the bad block directory on
the disk. These entries contain no relocation block address, and the status is
set to indicate that relocation is required. On subsequent I/O requests, the
physical layer checks to see if there are any bad blocks in the request. If there
is a write to a block in the relocation required state, then the relocation is
done at this point.

If the operation was a mirrored request, a request to read one of the other
mirrors is initiated. If this second read was successful, then the read is turned
into a write request, and the relocation attempted. The user is not notified in
this instance, but the physical device driver does log the permanent I/O
errors.

The LVDD can handle bad block relocation in the following ways:

Hardware relocation directed by the LVDD
In this instance, the LVDD will instruct the physical
volume to relocate the data on one physical
partition to the reserved part of the physical
volume. This reserved part of the disk is a pool of
relocation blocks at the end of the physical
volume. The physical device driver copies the data
to the next available relocation block. The LVDD,
however, continues to refer to the data at its
original physical location and relies on the
physical volume to handle the I/O to the new
location.
This form of relocation is sometimes known as
safe hardware relocation and is not allowed on
non-IBM drives. It is only with IBM drives that the
LVDD is guaranteed a reserved area for possible
relocation (typically 256 blocks per disk)

Software relocation In this instance, the LVDD device driver maintains
a bad block directory, and it will relocate blocks in
the relocation pool at the end of the disk. So,
whenever the LVDD receives a request to access
a specific logical location, it looks up its own bad
block table to find the actual physical location.
Chapter 1. Components of the logical volume manager 57

With all I/O requests, the physical layer of the logical volume device driver
checks to see if there are any known software related bad blocks in the
request.

If a physical volume needs to be formatted, including reinitializing any bad
blocks, the format function supplied by the diag command should be used.

1.2.8.8 Querying the logical volume
The lslv command is useful in querying a configuration of the logical volume.

The lslv lv_name command will return high-level information about the logical
volume. This includes the LVID, the volume group, allocation policies, and
status.

The lslv -l lv_name command will show the distribution of the logical
volume’s physical partitions across the five regions (in order from outside in).

The lslv -m lv_name command will give the detailed map file for the logical
volume.

Bad block relocation only takes place for disks smaller than 128 GB.

Note

/home/red # lslv ulv02
LOGICAL VOLUME: ulv02 VOLUME GROUP: keovg
LV IDENTIFIER: 00017d377005016c.2 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 24 PPs: 24
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 128
MOUNT POINT: /home/kim LABEL: /home/kim
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes

/home/red # lslv -l ulv02
ulv02:/home/kim
PV COPIES IN BAND DISTRIBUTION
hdisk11 024:000:000 100% 000:024:000:000:000
58 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The lslv -m hdiskx command will show the status of each physical partition.

/home/red # lslv -m ulv02
ulv02:/home/kim
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0120 hdisk11
0002 0121 hdisk11
0003 0122 hdisk11
0004 0123 hdisk11
0005 0124 hdisk11
0006 0125 hdisk11
0007 0126 hdisk11
0008 0127 hdisk11
0009 0128 hdisk11
0010 0129 hdisk11
0011 0130 hdisk11
0012 0131 hdisk11
0013 0132 hdisk11
0014 0133 hdisk11
0015 0134 hdisk11
0016 0135 hdisk11
0017 0136 hdisk11
0018 0137 hdisk11
0019 0138 hdisk11
0020 0139 hdisk11
0021 0140 hdisk11
0022 0141 hdisk11
0023 0142 hdisk11
0024 0143 hdisk11

/home/red # lslv -p hdisk11
hdisk11:::
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-10
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 11-20
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 21-30
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 31-40
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 41-50
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 51-60
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 61-70
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 71-80
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 81-90
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 91-100
FREE FREE FREE FREE FREE FREE FREE 101-107

USED USED USED USED USED USED USED USED USED USED 108-117
USED USED USED USED USED USED USED USED USED USED 118-127
USED USED USED USED USED USED USED USED USED USED 128-137
USED USED USED USED USED USED USED FREE FREE FREE 138-147

.................................
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 509-518
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 519-528
FREE FREE FREE FREE FREE FREE FREE 529-535
Chapter 1. Components of the logical volume manager 59

1.2.8.9 Non typical logical volumes
So far, we have seen raw logical volumes and logical volumes that contain a
journaled file system. There are a number of other common types of logical
volume types:

paging This is a logical volume that is used by the system for paging
memory.

jfslog Used as the log for a journaled file system.

boot Used to hold the boot image.

copy Used as the destination logical volume in a "logical volume copy"
process.

sysdump Used by the kernel as the dump space.

1.2.9 Mirroring
AIX supports two types of mirrors:

Sequential There is a distinct primary copy and secondary copy. Writes to
a sequential logical volume are done to each copy at a time,
waiting on the completion of each write before moving onto
the next. Reads are done using the primary copy.

Parallel There is no distinct primary and copy; all copies in a mirrored
set can just be referred to as a copy. This is the most common
type in AIX. As there is no ordering of the copies, a copy can
be removed or added at any time. Writes are done in parallel,
and reads will use the disks with the least number of
outstanding I/Os. This will be a balance between location of
the read/write head and other activity on the physical volume.

If a copy of a physical partition in a mirrored logical volume becomes
unavailable for any reason, the logical volume device driver notifies the VGSA
that a particular physical partition on that physical volume is stale. This will
halt any further reads or writes being issued to that particular physical
volume, and once the physical volume becomes available again, the
re-synchronization code will use this information to bring all copies of the
mirror up-to-date.

1.2.10 Striping
Striping is the technique for spreading the data in a logical volume across
several physical volumes in such a way that the I/O capacity of the physical
volumes can be used in parallel to access the data. This functionality is not
offered before AIX Version 4, and striping and mirroring were only introduced
60 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

in AIX Version 4.3.3. The primary objective of striping is very high
performance I/O for large sequential files.

In an ordinary logical volume, the data addresses correspond to the
sequence of blocks in the underlying physical partitions. In a striped logical
volume, the data addresses follow the sequence of strip units. A complete
strip unit consists of one stripe on each of the physical volumes that contain
part of the striped logical volume. The LVM determines which physical block
on which physical volume corresponds to the block being read or written. If
more than one physical volume is involved, the necessary I/O operations are
scheduled simultaneously.

Further information is contained in Chapter 3, “Striping” on page 137.

1.2.11 The ODM
When volume groups are created or imported, the information that is
contained in the VGDA and LVCB is also stored on the system. There are
some files in /etc that will contain information used by the LVM, such as
/etc/filesystems. Other information is kept in the object data manager (ODM).

Similarly, information about physical volumes is also kept in the ODM

1.2.11.1 How LVM Works with ODM
The main LVM commands, such as lsvg, lspv, and lslv work with both the
ODM and the VGDA to gather their information. For older versions of AIX,
these commands don’t work directly with the VGDA but work with what are
commonly called the vg special files. These special files are located in /etc/vg
and are distinguished by the vg< VGID> naming method.

In the original 3.1 version of LVM, the idea was that a file copy of the VGDA
would be kept in the /etc/ vg/vg* files. The commands used to describe LVM
would then consist of information gathered from ODM and the /etc/ vg files.
This was thought as a quick way of accessing data without disk I/O to the
system. However, two main problems occurred during the use of this design
in 3.1 and 3.2. The first problem was that every so often, the information held
in /etc/vg/vg* would be out of sync with what was truly held in the VGDA. The
second, more common problem, was when /etc would fill up during the

While mirrored copies can be added and removed from existing logical
volumes, an existing logical volume cannot be converted to a striped logical
volume.

Note
Chapter 1. Components of the logical volume manager 61

creation of a new volume group. Every new non-rootvg volume group caused
a file of roughly 1 MB to be created. However, sometimes the /etc directory
would be filled up before the entire /etc/vg special file was completely written.
This caused an ambiguous state within the volume group. It could be
accessed, but certain commands would fail because the vg special file was
“chopped off”. The only solution to this problem was to exportvg the volume,
expand the root directory, and then remake the volume group. But, by the time
this limitation was realized as the full root directory problem of some other
LVM problems, the user already had data sitting in the volume group.

In AIX 4.1, the solution to these two problems was to have the logical volume
manager commands reference both the ODM and the VGDA, with the
/etc/vg/vg* file used purely for locking/synchronization purposes during
configuration. So, the lsvg, lspv, and lslv commands now go to the actual
VGDA on the platter to gather their information. This design frees up /etc
space and guarantees the user the absolute latest data about the volume
group and its attributes.

Another aspect of LVM’s involvement with the ODM is the ODM object known
as the vg- lock. Whenever an LVM modification command is started, the LVM
command will go to the vg’s entry in ODM and put a vg- lock. This tells other
LVM processes that may want to access and change the same volume group.
However, in some cases, the vg- lock gets left behind, and jobs are
inadvertently turned away. There are two solutions to this: The user can
unlock the vg with the simple command:

putlvodm -K <VGID>

(this vg was locked in the first place with putlvodm -k <VGID>)

Or, the user can simply varyonvg the volume group. The varyonvg command
always clears any vg locks, which might explain why leftover locks are never
seen after a system reboot. And to many people’s surprise, varyonvg can be
run on a volume group that is already varied on. No harm done here as long
as the volume group is not part of some twin- tailed configuration (then you’d
have to take locking conditions from the varyon into account).

1.2.11.2 Physical Volume stanzas
The ODM contains information about each physical volume:

• Adapter attributes

• SCSI/SSA attributes

• Size (in MB)
62 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• Physical volume ID

• Major and minor numbers

The following is an example of CuAt stanzas with physical volume
information:

The following is an example of CuAt stanzas with physical volume adapter
information:

CuAt:
name = "hdisk11"
attribute = "size_in_mb"
value = "2255"
type = "R"
generic = "D"
rep = "nr"
nls_index = 60

CuAt:
name = "hdisk11"
attribute = "pvid"
value = "00017d37e671fe4b0000000000000000"
type = "R"
generic = "D"
rep = "s"
nls_index = 15
Chapter 1. Components of the logical volume manager 63

The following is an example of CuDep stanza with physical volume
information:

CuAt:
name = "hdisk11"
attribute = "connwhere_shad"
value = "0006294E6EE600D"
type = "R"
generic = "D"
rep = "s"
nls_index = 55

CuAt:
name = "hdisk11"
attribute = "adapter_a"
value = "ssa0"
type = "R"
generic = "D"
rep = "s"
nls_index = 51

CuAt:
name = "hdisk11"
attribute = "primary_adapter"
value = "adapter_a"
type = "R"
generic = "DU"
rep = "sl"
nls_index = 52

CuAt:
name = "hdisk11"
attribute = "queue_depth"
value = "3"
type = "R"
generic = "DU"
rep = "nr"
nls_index = 1

CuAt:
name = "hdisk11"
attribute = "max_coalesce"
value = "0x20000"
type = "R"
generic = "DU"
rep = "nr"
nls_index = 57

CuDep:
name = "hdisk11"
dependency = "ssa0"
64 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The following is an example of CuDvDr stanzas with physical volume
information:

1.2.11.3 Volume group stanzas
The ODM contains information about each volume group:

• Volume group ID

• Each physical volume ID

• Size (in MB)

• Volume group timestamp

• Each logical volume

• Status

• Major and minor numbers

The following is an example of CuAt stanzas with volume group information:

CuDv:
name = "hdisk11"
status = 1
chgstatus = 2
ddins = "ssadisk"
location = "30-60-L"
parent = "ssar"
connwhere = "0006294E6EE600D"
PdDvLn = "disk/ssar/hdisk"

CuDvDr:
resource = "devno"
value1 = "30"
value2 = "8199"
value3 = "hdisk11"
Chapter 1. Components of the logical volume manager 65

The following is an example of CuDep stanzas with volume group information:

CuAt:
name = "park_vg"
attribute = "pv"
value = "00017d37e671fe4b0000000000000000"
type = "R"
generic = ""
rep = "sl"
nls_index = 0

CuAt:
name = "park_vg"
attribute = "vgserial_id"
value = "00017d378edf7c9d"
type = "R"
generic = "D"
rep = "n"
nls_index = 637

CuAt:
name = "park_vg"
attribute = "timestamp"
value = "37f375a70e77ee20"
type = "R"
generic = "DU"
rep = "s"
nls_index = 0

CuDep:
name = "park_vg"
dependency = "grom_lv"

CuDep:
name = "park_vg"
dependency = "wall_lv"

CuDep:
name = "park_vg"
dependency = "loglv00"
66 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

CuDv stanzas with volume group information

The following is an example of CuDvDr stanzas with volume group
information:

CuDv:
name = "park_vg"
status = 1
chgstatus = 1
ddins = ""
location = ""
parent = ""
connwhere = ""
PdDvLn = "logical_volume/vgsubclass/vgtype"

CuDv:
name = "loglv00"
status = 1
chgstatus = 1
ddins = ""
location = ""
parent = "park_vg"
connwhere = ""
PdDvLn = "logical_volume/lvsubclass/lvtype"

CuDv:
name = "grom_lv"
status = 1
chgstatus = 1
ddins = ""
location = ""
parent = "park_vg"
connwhere = ""
PdDvLn = "logical_volume/lvsubclass/lvtype"

CuDv:
name = "wall_lv"
status = 1
chgstatus = 1
ddins = ""
location = ""
parent = "park_vg"
connwhere = ""
PdDvLn = "logical_volume/lvsubclass/lvtype"
Chapter 1. Components of the logical volume manager 67

1.2.11.4 Logical volume stanzas
The ODM contains information about each logical volume:

• Logical volume ID

• Stripe width

• Size in physical partitions

• Label

• Status

• Major and minor numbers

The following is an example of a CuAt stanzas with logical volume
information:

CuDvDr:
resource = "ddins"
value1 = "park_vg"
value2 = "42"
value3 = ""

CuDvDr:
resource = "devno"
value1 = "42"
value2 = "0"
value3 = "park_vg"
68 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The following is an example of a CuDep stanza with logical volume
information:

The following is an example of a CuDv stanza with logical volume information:

CCuAt:
name = "grom_lv"
attribute = "lvserial_id"
value = "00017d378edf7c9d.1"
type = "R"
generic = "D"
rep = "n"
nls_index = 648

CuAt:
name = "grom_lv"
attribute = "stripe_width"
value = "0"
type = "R"
generic = "DU"
rep = "r"
nls_index = 1100

CuAt:
name = "grom_lv"
attribute = "label"
value = "/home/gromit"
type = "R"
generic = "DU"
rep = "s"
nls_index = 640

CuAt:
name = "grom_lv"
attribute = "size"
value = "12"
type = "R"
generic = "DU"
rep = "r"
nls_index = 647

CuDep:
name = "park_vg"
dependency = "grom_lv"
Chapter 1. Components of the logical volume manager 69

The following is an example of a CuDvDr stanza with logical volume
information:

1.3 Operation of the logical volume manager

The previous section gave an overview of the structure of the logical volume
manager. Now, we will look at the individual components. The LVM consists
of:

• High-level commands

• Intermediate-level commands

• Logical volume manager subroutine interface library

• Logical volume device driver

• Disk device driver

• Adapter device driver

Figure 16 shows path from a high-level command (mklv) to an intermediate
command (lcreatelv) to a library function (lvm_createlv) to the logical volume
device driver to the disk device driver to the SCSI device driver and to the
physical volume. Other applications, for example, the journaled file system,
also talk directly to the LVDD.

CuDv:
name = "grom_lv"
status = 1
chgstatus = 1
ddins = ""
location = ""
parent = "park_vg"
connwhere = ""
PdDvLn = "logical_volume/lvsubclass/lvtype"

CuDvDr:
resource = "devno"
value1 = "42"
value2 = "1"
value3 = "grom_lv"
70 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 16. Flow from high level commands to the physical volume

1.3.1 High-level commands
These are commands that are:

• Used by SMIT

• Used directly by experienced users

• Have a high-level of error checking

Most of the LVM commands reside in /usr/sbin (except /etc/cfgvg), and they
are a combination of shell scripts and C binaries:

cfgvg, chlv, chpv, chvg, cplv, exportvg, extendlv, extendvg, importvg,
lslv*, lsvg*, lsvgfs*, migratepv, mklv, mkvg, reducevg, replacepv,
reorgvg, rmlv, rmlvcopy, syncvg, synclvodm, updatelv, updatevg,
varyoffvg, varyonvg*

* indicates that the command is a binary

1.3.2 Intermediate-level commands
These are commands that are:

• Used by high-level commands

mklv

lcreatelv

lvm_createlv

LVDD

Disk DD

SCSI DD

physical volume

LVDD API

JFS
Chapter 1. Components of the logical volume manager 71

• Provide usage statements

• Some level of error checking provided, but documentation on output

The intermediate commands found in /usr/sbin are designed to be called by
the high-level commands and are all C binaries:

getlvcb, getlvname, getlvodm, getvgname, lvgenmajor, lvgenminor,
lvrelmajor, lvrelminor, putlvcb, putlvodm, lchangelv, lcreatelv,
ldeletelv, lextendlv, lquerylv, lreducelv, lresynclv, lchangepv,
ldeletepv, linstallpv, lquerypv, lresyncpv, lcreatevg, lqueryvg,
lqueryvgs, lvaryonvg, lvaryoffvg, lresynclp, lmigratelv, lmigratepp.

1.3.3 Logical Volume Manager subroutine interface library
The Logical Volume Manager subroutine interface library contains routines
that are used by the system management commands to perform system
management tasks for the logical and physical volumes of a system.

The programming interface for the library is available to anyone who wishes
to expand the function of the system management commands for logical
volumes.

• Library calls can be used as Application Programme Interface.

• Error checking provided.

• Calls documented in the AIX documentation and books.

• Very rarely used.

The LVM library calls are part of the LVM Applications Programmer Interface
(API) that let programmers access the LVM layer directly through the library
layer provided by /usr/lib/liblvm.a. In our experience, very few people use this
API because of the complexity of issues within LVM. Users mostly rely the

As these commands give usage statements when queried from the
command line, it gives users the incorrect impression that these commands
are for general use in LVM. This is not true. These commands have been
“tuned” for use by the high-level shell scripts. As they are designed, only
high-level shell scripts will be calling these intermediate commands.
Certain error checking is not performed by the intermediate commands.
The high-level commands are responsible for screening potentially
dangerous errors or conditions out. The removal of the unintended usage
statements has been considered, but users have asked LVM to leave them,
even if they are not documented.

Note
72 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

high-level commands. The API library functions begin with lvm_ and are
documented within Infoexplorer. These commands are only called in
situations where the user is writing C code and does not want to access the
high-level shell scripts from within a C program. Or, they require a faster
response from LVM than they can achieve with shell scripts. Writing an LVM
specific program using the API certainly does give a performance
improvement to some applications. Note, the LVM library API is not a thread-
safe library. Thus, user programmes written for threads that reference the
LVM API may not work correctly.

The library functions reside in /usr/lib/liblvm.a and /usr/lib/libsm.a.

lvm_changelv This subroutine changes the attributes of an existing
logical volume.

lvm_changepv This subroutine changes the attributes of a physical
volume in a volume group.

lvm_createlv This subroutine creates an empty logical volume in a
specified volume group.

lvm_createvg This subroutine creates a new volume group and installs
the first physical volume. The physical volume cannot be
part of another volume group.

lvm_deletelv This subroutine deletes the logical volume from its volume
group. The logical volume must not be open, and the
volume group must be varied on. Also, all logical partitions
belonging to the logical volume must be removed before it
can be deleted.

lvm_deletepv This subroutine deletes a physical volume from its volume
group. The logical volume must be varied on and on
logical volumes on the physical volume.

lvm_extendlv This subroutine extends a logical volume by the specified
number of partitions. This is done by adding a completely
new logical partition or by adding a copy to an existing
logical partition.

lvm_installpv This subroutine installs a physical volume into a volume
group. The physical volume must not exist in another
volume group.

lvm_migratepp This subroutine moves the specified physical partition
from the first physical volume to the specified physical
partition on the second physical volume within the one
volume group. The volume group must be varied on.
Chapter 1. Components of the logical volume manager 73

lvm_querylv This subroutine queries a logical volume and returns the
current state of the logical volume, the current size in
logical partitions, the physical partition size, the
permission assigned, bad block relocation flag, write verify
flag, mirror write consistency flag, open or closed flag, and
an array of pointers to the partition map lists for each copy
of the logical partitions.

lvm_querypv This subroutine queries a physical volume and returns the
physical partition size, current state, total number of
physical partitions, number of physical partitions
allocated, the number of VGDAs, and an arrary of
information about each physical partition.

lvm_queryvg This subroutine queries a volume group and returns the
maximum number of logical volumes, physical partition
size, free physical partitions, number of logical volumes,
number of physical volumes, number of VGDAs for the
volume group, arrary of LVIDs, names and states and an
array of the PVIDs, and it states and number of VGDAs for
each physical volume

lvm_queryvgs This subroutine queries volume groups and returns the
number of online volume groups and an array of their
VGIDs and major numbers.

lvm_reducelv This subroutine reduces the size of a logical volume by the
specified number of partitions. The logical volume should
be closed and the volume group online. On partial
reductions, all the remaining partitions must have at least
one active (non-stale) copy, and the last active partition
cannot be reduced.

lvm_resynclp This subroutine synchronizes all physical partitions for a
logical partition.
The force parameter can be used:

False A good copy of each partition is propagated to
only the stale copies of the logical partition.

True A good copy of each partitions is propagated to all
other copies of the logical partition. This is
sometimes necessary in cases where mirror write
consistency recovery was not specified for the
logical volume
74 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

lvm_resynclv This subroutine synchronizes all physical copies of all the
logical partitions for a logical volume. The force parameter
(above) can be used.

lvm_resyncpv This subroutine synchronizes all physical partitions on a
physical volume with the related copies of the logical
partition to which they correspond.The volume group must
be varied on at the time. The force parameter (above) can
be used.

lvm_varyoffvg This subroutine varies off a volume group. All logical
volumes in the volume group must be closed.

lvm_varyonvg This subroutine varies on a volume group. The physical
volumes in the volume group are examined and the vgda
restored if necessary.

Further information on these routines can be found in the AIX Version 4.3
Technical Reference: Base Operating System and Extensions , Volume 1,
SC23-4160.

1.3.4 Introduction to device drivers
Whenever an operating system component or an application needs to interact
with a physical device, such as a disk or tape, it does so through services
provided by another element of the operating system known as a device
driver. Device drivers provide a common mechanism for accessing the
devices that they support. Device drivers are treated as though they are
ordinary files; thus, when a process needs to communicate with a device, it
uses the open subroutine to initialize the interface and can then use the read
and write calls to access data. Control of the device is accomplished using
the ioctl calls, and when the task requiring the device is complete, the
interface is ended with the close subroutine.

There are two main types of device driver: Those designed for character
oriented devices, such as terminals, and printers, and those designed for
block devices, such as disks. Storage management devices are usually block
devices, as this is more efficient for transfer of larger quantities of information.

Device drivers normally consist of two parts:

The top half This half is responsible for interacting with requestors,
blocking and buffering data, queuing up requests for
service, and handling error recovery and logging.
Chapter 1. Components of the logical volume manager 75

The bottom half This half is responsible for the actual I/O to and from the
device and can perform some preprocessing on requests,
such as sorting reads from disks for maximum efficiency.

Device drivers provide the primary interface to devices. More information can
be found in the AIX Version 4.3 Technical Reference: Kernel and Subsystems,
SC23-4163.

1.3.5 Logical volume device driver
The Logical Volume Manager consists of the Logical Volume Device Driver
(LVDD) and the Logical Volume Manager subroutine interface library. The
logical volume device driver is a pseudo-device driver that manages and
processes all I/O and operates on logical volumes through the /dev/lvn
special file. It translates logical addresses into physical addresses and sends
I/O requests to specific device drivers.

Like the physical disk device driver, this pseudo-device driver provides
character and block entry points with compatible arguments. Each volume
group has an entry in the kernel device switch table. Each entry contains
entry points for the device driver and a pointer to the volume group data
structure. The logical volumes of a volume group are distinguished by their
minor numbers.

The logical volume device driver comes in two portions: The pinned portion
and the non pinned portion. The driver’s true non-pageable portion is in
hd_pin_bot while the hd_pin portion is pageable. Prior to AIX 4.1, the driver
was just called hd_pin and the entire driver was pinned into memory (that is,
was not pageable).

The logical volume device driver is either called by the jfs file system or lvm
library routines. When a request is received by the LVDD, it calls the physical
disk device driver.

Character I/O requests are performed by issuing a read or write request on a
/dev/rlvn character special file for a logical volume. The read or write is
processed by a file system supervisor call (SVC) handler that calls the LVDD
ddread or ddwrite entry point. The ddread or ddwrite entry point transforms
the character request into a block request. This is done by building a buffer for
the request and calling the LVDD ddstrategy entry point.

Block I/O requests are performed by issuing a read or write on a block special
file /dev/lvn for a logical volume. These requests go through the supervisor
call handler to the bread or bwrite block I/O kernel services. These services
build buffers for the request and call the LVDD ddstrategy entry point. The
76 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

LVDD ddstrategy entry point then translates the logical address to a physical
address (handling bad block relocation and mirroring) and calls the
appropriate physical disk device driver.

On completion of the I/O, the physical device driver calls the iodone kernel
service on the device interrupt level. This service then calls the LVDD I/O
completion handling routine. Once this is completed, the LVDD calls the
iodone service again to notify the requester that the I/O is completed.

The LVDD is logically split into top and bottom halves. The top half contains
the ddopen, ddclose, ddread, ddwrite, ddioctl, and ddconfig entry points. The
top half runs in the context of a process address space and can page fault. It
contains the following entry points as shown in Table 9.

Table 9. LVDD entry points

Entry Point Description

ddopen Called by the file system, when a logical volume is mounted,
to open the logical volume specified.

ddclose Called by the file system, when a logical volume is
unmounted, to close the logical volume specified.

ddconfig Initializes data structures for the LVDD.

ddread Called by the read subroutine to translate character I/O
requests to block I/O requests. This entry point verifies that
the request is on a 512-byte boundary and is a multiple of
512 bytes in length.
When a character request spans partitions or logical tracks
(32 pages of 4 K bytes each), the LVDD ddread routine
breaks it into multiple requests. The routine then builds a
buffer for each request and passes it to the LVDD ddstrategy
entry point, which handles logical block I/O requests.
If the ext parameter is set (called by the readx subroutine),
and the character device is opened. The ddread entry point
passes this parameter to the LVDD ddstrategy routine in the
b_options field of the buffer header.

ddwrite Called by the write subroutine to translate character I/O
requests to block I/O requests. The LVDD ddwrite routine
performs the same processing for a write request as the
LVDD ddread routine does for read requests.
Chapter 1. Components of the logical volume manager 77

The bottom half of the LVDD contains the ddstrategy entry point, which
contains block read and write code. This is done to isolate the code that must
run fully pinned and has no access to user process context. The bottom half
of the device driver runs on interrupt levels and is not permitted to page fault.

In particular, the bottom half of the LVDD:

• Validates I/O requests. Checks requests for conflicts (such as overlapping
block ranges) with requests currently in progress.

• Translates logical addresses to physical addresses.

• Handles mirroring and bad-block relocation.

The bottom half of the LVDD runs on interrupt levels and, as a result, is not
permitted to page fault. The bottom half of the LVDD is divided into the
following three layers:

• Strategy Layer

• Scheduler Layer

• Physical Layer

Each logical I/O request passes down through the bottom three layers before
reaching the physical disk device driver. Once the I/O is complete, the
request returns back up through the layers to handle the I/O completion
processing at each layer. Finally, control returns to the original requestor.

ddioctl Supports the following operations:

CACLNUP Causes the mirror write consistency (MWC)
cache to be written to all physical volumes
(PVs) in a volume group.

IOCINFO, XLATE Return LVM configuration information
and PP status information.

LV_INFO Provides information about a logical volume.
This ioctl operation is available beginning
with AIX Version 4.2.1

PBUFCNT Increases the number of physical buffer
headers (pbufs) in the LVM pbuf pool.

Entry Point Description
78 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

1.3.5.1 Strategy layer
The strategy layer deals only with logical requests. The ddstrategy entry point
is called with one or more logical buf structures. A list of buf structures for
requests that are not blocked are passed to the second layer, the scheduler.

1.3.5.2 Scheduler layer
The scheduler layer schedules physical requests for logical operations and
handles mirroring and the MWC cache. For each logical request the
scheduler layer schedules one or more physical requests. These requests
involve translating logical addresses to physical addresses, handling
mirroring, and calling the LVDD physical layer with a list of physical requests.

When a physical I/O operation is complete for one phase or mirror of a logical
request, the scheduler initiates the next phase (if there is one). If no more I/O
operations are required for the request, the scheduler calls the strategy
termination routine. This routine notifies the originator that the request has
been completed.

The scheduler also handles the MWC cache for the volume group. If a logical
volume is using mirror write consistency, then requests for this logical volume
are held within the scheduling layer until the MWC cache blocks can be
updated on the target physical volumes. When the MWC cache blocks have
been updated, the request proceeds with the physical data write operations.

When MWC is being used, system performance can be adversely affected.
This is caused by the overhead of logging or journaling that a write request
does when active in a logical track group (LTG) (32 4K-byte pages or 128K
bytes). This overhead is for mirrored writes only. It is necessary to guarantee
data consistency between mirrors, particularly if the system crashes before
the write to all mirrors has been completed.

Mirror write consistency can be turned off for an entire logical volume. It can
also be inhibited on a request basis by turning on the NO_MWC flag as
defined in the /usr/include/sys/lvdd.h file.

1.3.5.3 The Physical Layer
The physical layer of the LVDD handles startup and termination of the
physical request. The physical layer calls a physical disk device driver's
ddstrategy entry point with a list of buf structures linked together. In turn, the
physical layer is called by the iodone kernel service when each physical
request is completed.

This layer also performs bad-block relocation and detection/correction of bad
blocks, when necessary. If the physical volume is capable, then the LVDD will
Chapter 1. Components of the logical volume manager 79

make use of the hardware function, otherwise, the LVDD will handle it totally.
These details are hidden from the other two layers.

The only variation to this configuration would be if HAGEO/GeoRM (the IBM
products that support geographically remote mirroring) or VSD (Virtual
Shared Disk) are installed.

With the HAGEO/GeoRM products, a new logical device, the GeoMirror
Device (GMD), is added between the application and the Logical Volume
Device Driver. This pseudo-device has a local and remote comment and
controls the replication of data between sites.

The VSD software is used to make AIX logical volumes appear to be located
on more than one node in an SP Cluster. However, only the logical volume
can be accessed using the VSD software, not the mounted file systems.
Further information can be found in the product documentation SP
Administration Guide, GC23-3897.

1.3.6 Disk device driver
There are various disk device drivers in AIX. The most common disk device
driver is the one for SCSI device drivers: scdisk and csdiskpin (in
/usr/lib/drivers). The second most common disk device driver is most often
the one for SSA disks.

1.3.6.1 SCSI disk device drivers
SCSI disk device drivers support the small computer system interface (SCSI)
fixed disk, CD-ROM (compact disk read only memory), and read/write optical
(optical memory) devices. Typical fixed disk, CD-ROM, and read/write optical
drive operations are implemented using the open, close, read, write, and ioctl
subroutines.

The scdisk SCSI device driver uses raw and block special files in performing
its functions.

Table 10 lists the special files used by the scdisk device driver.

Table 10. SCSI device driver special files (in /dev)

Character (raw) access Block access

Fixed disks rhdisk0, rhdisk1,...rhdiskn hdisk0, hdisk1, ... hdiskn

Read write CD romd0, romd1, ... romdn omd0, omd1, ... omdn
80 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

1.3.6.2 SSA disk device drivers
Serial Storage Architecture (SSA) disk drives are represented in AIX as SSA
logical disks (hdisk0, hdisk1.....hdiskN) and SSA physical disks
(pdisk0,pdisk1.....pdiskN). SSA RAID arrays are represented as SSA logical
disks (hdisk0, hdisk1.....hdiskN). SSA logical disks represent the logical
properties of the disk drive or array and can have volume groups and file
systems mounted on them. SSA physical disks represent the physical
properties of the disk drive.

By default:

• One pdisk is always configured for each physical disk drive.

• One hdisk is configured for each disk drive that is connected to the active
system. If the disks are part of an array, then one hdisk is configured for
each array.

SSA physical disks have the following properties:

• Are configured as pdisk0, pdisk1.....pdiskn.

• Have errors logged against them in the system error log.

• Support a character special file (/dev/pdisk0, /dev/pdisk1..../dev/pdiskn).

• Support the ioctl subroutine for servicing and diagnostics functions.

• Do not accept read or write subroutine calls for the character special file.

SSA logical disks have the following properties:

• Are configured as hdisk0, hdisk1.....hdiskn.

• Support a character special file (/dev/rhdisk0, /dev/rhdisk1..../dev/rhdiskn).

• Support a block special file (/dev/hdisk0, /dev/hdisk1..../dev/hdiskn).

• Support the ioctl subroutine call for non service and diagnostics functions
only.

• Accept the read and write subroutine call to the special files.

• Can be members of volume groups and have file systems mounted upon
them.

Multiple Adapters
Some SSA subsystems allow a disk drive to be controlled by up to two
adapters in a particular system. The disk drive has, therefore, two paths to
each using system, and the SSA subsystem can continue to function if an
adapter fails. If an adapter fails, or the disk drive becomes inaccessible from
Chapter 1. Components of the logical volume manager 81

the original adapter, the SSA disk device driver switches to the alternative
adapter without returning an error to any working application.

Once a disk drive has been successfully opened, the takeover by the
alternative adapter does not occur because the drive becomes reserved or
fenced out. However, during an open of a ssa logical disk, the device driver
does attempt to access the disk drive through the alternative adapter if the
path through the original adapter experiences reservation conflict or
fenced-out status.

Configuring SSA disk drive devices.
(SSA) disk drives are represented in AIX as SSA Logical disks (hdisk0,
hdisk1.....hdiskN) and SSA physical disks (pdisk0,pdisk1.....pdiskn).
Normally, all the disk drives connected to the system will be configured
automatically by the system boot process, and the user will need to take no
action to configure them.

Since some SSA devices may be connected to the SSA network while the
system is running without taking the system off-line, it may be necessary to
configure SSA disks after the boot process has completed. In this case, the
devices should be configured by running the configuration manager with the
cfgmgr command.

Device Attributes
SSA logical disks, SSA physical disks, and the SSA router have several
attributes.You can use the lsattr command to display these attributes. Some
of the attributes are

• Names of the connected adapters

• Name of the primary adapter

• pvid

• Queue depth

• max_coalesce

• Reserve lock

Table 11. SSA device driver special files (in /dev)

Character (raw) access Block access

logical SSA drives rhdisk0, rhdisk1,...rhdiskn hdisk0, hdisk1, ... hdiskn

physical SSA drives pdisk1, pdisk2, ... pdiskn
82 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

1.3.7 Adapter device driver

1.3.7.1 SCSI adapter device driver
There are several SCSI device drivers for AIX, and they have the common
name string of "scsi" residing as part of their name. The most common of
them is the original SCSI-1 device driver /usr/lib/drivers/hscsidd. The SCSI
device driver takes a command from a SCSI device, such as tape, disk,
CD-ROM, or scanner, and processes it to be sent to the SCSI device
connected onto the SCSI bus. The SCSI device is device neutral. It does not
know or care which device it sends the command to or even what the
command is. It treats all requests the same and puts them into the same type
of SCSI command packaging required by all SCSI devices.

1.3.7.2 SSA adapter device driver
The SSA adapter device driver provides an interface that allows application
programmes to access SSA adapters and SSA devices that are connected
through these adapters. The SSA adapter has a number of ODM attributes
that can be displayed using the lsattr command, for example, adapter
microcode file name, interrupt levels, and so on.

1.4 Use of the logical volume manager

To achieve the most from the logical volume manager, you will need to
properly plan the configuration of your volume groups, your logical volumes,
and really understand what the logical volume manager offers.

You will also need to be aware of restrictions that are imposed by the logical
volume manager. These will be dealt with in the next section.

1.4.1 Planning your use of volume groups
Disk failure is the most common hardware failure in the storage system,
followed by failure of adapters and power supplies. Protection against disk
failure primarily involves the configuration of the logical volumes. However,
volume group size also plays a part, as will be explained.

To protect against adapter and power supply failure, you need to consider a
special hardware configuration for any specific volume group. Such a
configuration includes two adapters and at least one physical volume per
adapter with mirroring across adapters and a non-quorum volume group
configuration. The additional expense for this kind of configuration is not
appropriate for all sites or systems. It is recommended only where high
(up-to-the-last-second) availability is a priority. Depending on the
configuration, high availability can cover hardware failures that occur between
Chapter 1. Components of the logical volume manager 83

the most recent backup and the current data entry. High availability does not
apply to files deleted by accident.

1.4.1.1 When to Create Separate Volume Groups
You should organize physical volumes into volume groups separate from
rootvg for the following reasons:

• For safer and easier maintenance.

- Operating system updates, reinstallations, and crash recoveries are
safer because you can separate user file systems from the operating
system so that user files are not jeopardized during these operations.

- Maintenance is easier because you can update or reinstall the
operating system without having to restore user data. For example,
before updating, you can remove a user-defined volume group from the
system by un-mounting its file systems and deactivating it (using
varyoffvg). If necessary, the volume could even be exported (using
exportvg). After updating the system software, you can reintroduce the
user-defined volume group (using importvg), active it (varyonvg), then
remount its file systems.

• For different physical-partition sizes. All physical volumes within the same
volume group must have the same physical partition size. To have physical
volumes with different physical partition sizes, place each size in a
separate volume group.

• When different quorum characteristics are required. If you have a file
system for which you want to create a non-quorum volume group, maintain
a separate volume group for that data; all of the other file systems should
remain in volume groups operating under a quorum.

• For security. For example, you might want to de-active a volume group at
night

• To switch physical volumes between systems. If you create a separate
volume group for each system on an adapter that is accessible from more
than one system, you can switch the physical volumes between the
systems that are accessible on that adapter without interrupting the
normal operation of either (see the varyoffvg, exportvg, importvg, and
varyonvg commands).

• To remove physical volumes from the system while the system continues
to run normally. By making a separate volume group for removable
physical volumes, provided the volume group is not rootvg, you can make
removable physical volumes unavailable and physically remove them
during normal operation without affecting other volume groups.
84 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

1.4.1.2 High availability with physical volume failure
The primary methods used to protect against physical volume failure involve
logical volume configuration settings, such as mirroring. While the volume
group considerations are secondary, they have significant economic
implications because they involve the number of physical volumes per volume
group:

• The quorum configuration, which is the default, keeps the volume group
active (varied on) as long as a quorum (51 percent) of the physical
volumes is present. In most cases, you need at least three physical
volumes with mirrored copies in the volume group to protect against
physical volume failure.

• The non-quorum configuration keeps the volume group active (varied on)
as long as one VGDA is available on a physical volume (see "Changing a
Volume Group to Non-quorum Status"). With this configuration, you need
only two physical volumes with mirrored copies in the volume group to
protect against physical volume failure.

When deciding on the number of physical volumes in each volume group, you
also need to plan for room to mirror the data. Keep in mind that you can only
mirror and move data between physical volumes that are in the same volume
group. If the site uses large file systems, finding disk space on which to mirror
could become a problem at a later time. Be aware of the implications on
availability of inter-physical volume settings for logical volume copies and
intra-physical volume allocation for a logical volume.

1.4.1.3 High availability in case of adapter or power supply failure
To protect against adapter or power supply failure, depending on the
stringency of your requirements, do one or more of the following:

• Use two adapters, located in the same or different cabinets. Locating the
adapters in different cabinets protects against losing both adapters if there
is a power supply failure in one cabinet.

• Use two adapters, attaching at least one physical volume to each adapter.
This protects against a failure at either adapter (or power supply if
adapters are in separate cabinets) by still maintaining a quorum in the
volume group, assuming cross-mirroring (copies for a logical partition
cannot share the same physical volume) between the logical volumes on
physical volume A (adapter A) and the logical volumes on physical volume
B (adapter B). This means that you copy the logical volumes that reside on
the physical volumes attached to adapter A to the physical volumes that
reside on adapter B, and also that you copy the logical volumes that reside
Chapter 1. Components of the logical volume manager 85

on the physical volumes attached to adapter B to the physical volumes that
reside on adapter A as well.

• Configure all physical volumes from both adapters into the same volume
group. This ensures that at least one logical volume copy will remain intact
in case an adapter fails, or if cabinets are separate, in case a power
supply fails.

• Make the volume group a non-quorum volume group. This allows the
volume group to remain active as long as one Volume Group Descriptor
Area (VGDA) is accessible on any physical volume in the volume group
(see "Changing a Volume Group to Non-quorum Status").

• If there are two physical volumes in the volume group, implement
cross-mirroring between the adapters. If more than one physical volume is
available on each adapter, implement double-mirroring. In this case, you
create a mirrored copy on a physical volume that uses the same adapter
and one on a physical volume using a different adapter.

1.4.1.4 Decide on the size of physical partitions
The physical partition size is set when the volume group is created. The
default size is 4 MB. The default is designed to suit most sites and systems
but may not be appropriate in every case. You can choose a partition size as
small as 1 MB to gain flexibility in sizing, but this requires more partitions. The
additional partitions create more overhead for the logical volume manager
and are likely to affect performance.

If you make the partitions larger than 4 MB, you lose some sizing flexibility
and may also waste space. For example, if you have 32 MB partitions, then
your JFS log will have to be 32 MB when it only needs 4 MB. Some waste
may be an acceptable trade-off if the particular site or system requires larger
partitions.

1.4.2 Planning your use of logical volumes
The policies described in this section help you set a strategy for logical
volume use that is oriented toward a combination of availability, performance,
and cost that is appropriate for your site.

You may only create and extend physical partitions in increments that are a
factor of their size; for example, 32 MB partitions are created or extended in
32 MB increments.

Note
86 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Availability is the ability to recover data that is lost because of physical
volume, adapter, or other hardware problems. The recovery is made from
copies of the data that are made and maintained on separate physical
volumes and adapters during normal system operation.

Performance is the average speed at which data is accessed. Policies, such
as write-verify and mirroring, enhance availability but add to the system
processing load and, thus, degrade performance. Mirroring doubles or triples
the size of the logical volume. In general, increasing availability degrades
performance. Physical volume striping can increase performance, but
mirroring and striping are only supported at AIX Version 4.3.3 and above.

By controlling the allocation of data on the physical volume and between
physical volumes, you can tune the storage system for the highest possible
performance. See Chapter 7, “Performance” on page 303, or the AIX
Performance Tuning Guide, SC23-2365, for detailed information on how to
maximize storage-system performance.

The sections that follow should help you evaluate the trade-offs between
performance, availability, and cost. Remember that increased availability
often decreases performance, and vice versa. Mirroring may increase
performance; however, the LVM chooses the copy on the least busy physical
volume for reads.

This section discusses:

• Determining the scheduling policy for mirrored writes

• Determining mirror write consistency policy

• Choosing an inter-physical volume allocation policy

• Choosing an intra-physical volume allocation policy

• Combining allocation policies

• Using map files for precise allocation

• Determining a write-verify policy

• Implementing volume group policies

Mirroring does not protect against the loss of individual files that are
accidentally deleted or lost because of software problems. Mirroring is not
a substitute for conventional backup arrangements.

Note
Chapter 1. Components of the logical volume manager 87

The following issues will also need to be kept in mind:

1. Determine whether the data that will be stored in the logical volume is
valuable enough to warrant the processing and disk-space costs of
mirroring.

2. Performance and mirroring are not always opposed. If the different
instances (copies) of the logical partitions are on different physical
volumes, preferably attached to different adapters, the LVM can ensure
that read performance degrades less rapidly by reading the copy on the
least busy disk. Writes, unless physical volumes are attached to different
adapters, always cost the same because you must update all copies.

3. If you have a large sequential-access file system that is
performance-sensitive, you should consider physical volume striping.

4. Normally, whenever data on a logical partition is updated, all the physical
partitions containing that logical partition are automatically updated.
However, physical partitions can become stale (no longer containing the
most current data) because of system malfunctions or because the
physical volume was unavailable at the time of an update. The LVM can
refresh stale partitions to a consistent state by copying the current data
from an up-to-date physical partition to the stale partition. This process is
called mirror synchronization. The refresh can take place when the system
is restarted, when the physical volume comes back online, or when the
syncvg command is issued.

5. Any change that affects the physical partition makeup of a boot logical
volume requires that you run bosboot after that change. This means that
actions, such as changing the mirroring of a boot logical volume, require a
bosboot.

6. A dump to a mirrored logical volume results in an inconsistent dump and
therefore, should be avoided. Since the default dump device is the primary
paging logical volume, you should create a separate dump logical volume
if you mirror your paging logical volumes; and, therefore, if you mirror your
root volume group, you should create a separate dump logical volume
also.

1.4.2.1 Determine scheduling policy for mirrored writes
For data that has only one physical copy, the logical volume device driver
(LVDD) translates a logical read or write request address into a physical
address and calls the appropriate physical device driver to service the
request. This single-copy or non-mirrored policy handles bad block relocation
for write requests and returns all read errors to the calling process.
88 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you use mirrored logical volumes, two different scheduling policies for
writing to disk can be set for a logical volume with multiple copies, sequential
and parallel.

The sequential-scheduling policy performs writes to multiple copies or mirrors
in order. The multiple physical partitions representing the mirrored copies of a
single logical partition are designated primary, secondary, and tertiary. In
sequential scheduling, the physical partitions are written to in sequence; the
system waits for the write operation for one physical partition to complete
before starting the write operation for the next one.

The parallel-scheduling policy starts the write operation for all the physical
partitions in a logical partition at the same time. When the write operation to
the physical partition that takes the longest to complete finishes, the write
operation is completed.

For read operations on mirrored logical volumes with a sequential-scheduling
policy, the primary copy is read. If that read operation is unsuccessful, the
next copy is read. During the read retry operation on the next copy, the failed
primary copy is corrected by the LVM with a hardware relocation. Thus, the
bad block that prevented the first read from completing is patched for future
access.

Specifying mirrored logical volumes with a parallel-scheduling policy may
improve I/O read-operation performance because multiple copies allow the
system to direct the read operation to the disk with the least number of
outstanding I/Os.

1.4.2.2 Determine mirror write consistency policy
Mirror Write Consistency (MWC) identifies which logical partitions may be
inconsistent if the system or the volume group is not shut down properly.
When the volume group is varied back online for use, this information is used
to make logical partitions consistent again.

If a logical volume is using MWC, then requests for this logical volume are
held within the scheduling layer until the MWC cache blocks can be updated
on the target physical volumes. When the MWC cache blocks have been
updated, the request proceeds with the physical data write operations.

When MWC is being used, system performance can be adversely affected.
This is caused by the overhead of logging or journaling that a write request is
active in a Logical Track Group (LTG) (32 4 K-byte pages or 128 K bytes).
This overhead is for mirrored writes only. It is necessary to guarantee data
consistency between mirrors only if the system or volume group crashes
Chapter 1. Components of the logical volume manager 89

before the write to all mirrors has been completed. When MWC is not used,
the mirrors of a mirrored logical volume can be left in an inconsistent state in
the event of a system or volume group crash.

After a crash, any mirrored logical volume that has MWC turned off should do
a forced sync (syncvg -f -l LVname) before the data within the logical volume
is used. With MWC turned off, writes outstanding at the time of the crash can
leave mirrors with inconsistent data the next time the volume group is varied
on. An exception to this is logical volumes whose content is only valid while
the logical volume is open, such as paging spaces.

A mirrored logical volume is really no different to a non-mirrored logical
volume with respect to a write. When LVM completely finishes with a write
request, the data has been written to the drive(s) below LVM. Until LVM
issues an iodone on a write, the outcome of the write is unknown. Any blocks
being written that have not been completed (iodone) when a machine crashes
should be rewritten whether mirrored or not and regardless of the MWC
setting.

MWC only makes mirrors consistent, when the volume group is varied back
online after a crash, by picking one mirror and propagating that data to the
other mirrors. MWC does not keep track of the latest data; it only keeps track
of LTGs currently being written; therefore, MWC does not guarantee that the
latest data will be propagated to all the mirrors. It is the application above
LVM that has to determine the validity of the data after a crash. From the LVM
prospective, if the application always reissues all outstanding writes from the
time of the crash, the possibly inconsistent mirrors will be consistent when
these writes finish (as long as the same blocks are written after the crash as
were outstanding at the time of the crash).

1.4.2.3 Choose an inter-physical volume allocation policy
The inter-physical volume allocation policy specifies the number of physical
volumes on which a logical volume's physical partitions are located. The
physical partitions for a logical volume might be located on a single physical
volume or spread across all the physical volumes in a volume group. Two
options in the mklv and chlv commands are used to determine inter-physical
volume policy:

• The Range option determines the number of physical volumes used for a
single physical copy of the logical volume.

• The Strict option determines whether the mklv operation will succeed if
two or more copies must occupy the same physical volume.
90 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• Striped logical volumes can only have a maximum range and a strict or
super strict inter-physical volume policy.

Inter-physical settings for a single copy of the logical volume
If you select the minimum inter-physical volume setting (range = minimum),
the physical partitions assigned to the logical volume are located on a single
physical volume to enhance availability. If you select the maximum
inter-physical volume setting (Range = maximum), the physical partitions are
located on multiple physical volumes to enhance performance. The allocation
of mirrored copies of the original partitions is discussed in the following
section.

For non-mirrored logical volumes, use the minimum setting to provide the
greatest availability (access to data in case of hardware failure). The
minimum setting indicates that one physical volume should contain all the
original physical partitions of this logical volume, if possible. If the allocation
program must use two or more physical volumes, it uses the minimum
number while remaining consistent with other parameters.

By using the minimum number of physical volumes, you reduce the risk of
losing data because of a disk failure. Each additional physical volume used
for a single physical copy increases that risk. An non-mirrored logical volume
spread across four physical volumes is four times as likely to lose data
because of one physical volume failure than a logical volume contained on
one physical volume.

Shown below (see Figure 17 on page 92) is a minimum inter-physical volume
allocation with all the physical partitions for the logical volume on one
physical volume:
Chapter 1. Components of the logical volume manager 91

Figure 17. Minimum inter-physical volume allocation policy

The maximum setting, considering other constraints, spreads the physical
partitions of the logical volume as evenly as possible over as many physical
volumes as possible. This is a performance-oriented option because
spreading the physical partitions over several physical volumes tends to
decrease the average access time for the logical volume. To improve
availability, the maximum setting should only be used with mirrored logical
volumes.

Shown below (see Figure 18 on page 93) is a maximum inter-physical volume
allocation with all the physical partitions for the logical volume spread over
many physical volumes:

Physical Partitions

Physical Volumes
92 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 18. Maximum inter-physical volume allocation policy

These definitions are also applicable when extending or copying an existing
logical volume. The allocation of new physical partitions is determined by
your current allocation policy and where the existing used physical partitions
are located.

Inter-physical volume settings for logical volume copies
The allocation of a single copy of a logical volume on physical volume is fairly
straightforward. When you create mirrored copies, however, the resulting
allocation is somewhat complex. The figures that follow show minimum and
maximum inter-physical volume (Range) settings for the first instance of a
logical volume along with the available Strict settings for the mirrored logical
volume copies.

For example, if there are mirrored copies of the logical volume, the minimum
setting causes the physical partitions containing the first instance of the
logical volume to be allocated on a single physical volume, if possible. Then,
depending on the setting of the Strict option, the additional copy or copies
are allocated on the same or on separate physical volumes. In other words,
the algorithm uses the minimum number of physical volumes possible within
the constraints imposed by other parameters, such as the Strict option, to
hold all the physical partitions.

Setting the Strict parameter to ymeans that each copy of the logical partition
will be placed on a different physical volume. Setting the Strict parameter to
n means that the copies are not restricted to different physical volumes.

Physical Partitions

Physical Volumes
Chapter 1. Components of the logical volume manager 93

Setting the Strict parameter to s means that the partitions allocated for one
mirror cannot share a physical volume with the partitions from another mirror

Shown in Figure 19 is a minimum inter-physical volume allocation for a
mirrored logical volume with strictness set to "n". All physical partitions for the
logical volume are on one physical volume.

Figure 19. Minimum inter-physical volume policy with strictness set to ’no’

Shown below (see Figure 20 on page 95) is a minimum inter-physical volume
allocation for a mirrored logical volume with strictness set to "y". Each copy of
a logical partition is on a different physical volume, though not all copies are
on the same one.

If there are fewer physical volumes in the volume group than the number of
copies per logical partition you have chosen, you should set Strict to n. If
Strict is set to y or s, an error message is returned when you try to create
the logical volume.

Note

PP2

PP2"

PP2'

PP1

PP1'

PP1"

PP1'PP1 PP1"Copy 1 Copy 2 Copy 3
94 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 20. Minimum inter-physical volume policy with strictness set to ’yes’

Shown in Figure 21 is a minimum inter-physical volume allocation for a
mirrored logical volume with strictness set to "s". Each copy of a logical
partition is on its own physical volume.

Figure 21. Minimum inter-physical volume policy with strictness set to ’strict’

Shown in Figure 22 on page 96 is a maximum inter-physical volume allocation
for a mirrored logical volume with strictness set to "n". Each physical partition
is on a separate physical volume with its copies.

PP2 PP2" PP2'

PP1 PP1' PP1"

PP1'PP1 PP1"Copy 1 Copy 2 Copy 3

PP2 PP2"PP2'

PP1 PP1' PP1"

PP1'PP1 PP1"Copy 1 Copy 2 Copy 3
Chapter 1. Components of the logical volume manager 95

Figure 22. Maximum inter-physical volume policy with strictness set to ’no’

Shown in Figure 23 is a maximum inter-physical volume allocation for a
mirrored logical volume with strictness set to "y". Each physical partition is on
a separate physical volume, separate to its copies.

Figure 23. Maximum inter-physical volume policy with strictness set to ’yes’

Shown Figure 24 on page 97 is a maximum inter-physical volume allocation
for a mirrored logical volume, with strictness set to "s". Each physical partition
is on a separate physical volume; no copy is on a physical volume with a
partition from another copy. That is, primary, secondary, and tertiary mirror
copies for one logical volume are not sharing a physical volume.

PP2

PP2"PP2'PP1

PP1'

PP1"

PP1'PP1 PP1"Copy 1 Copy 2 Copy 3

PP2PP2" PP2'

PP1 PP1' PP1"

PP1'PP1 PP1"Copy 1 Copy 2 Copy 3
96 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 24. Maximum inter-physical volume policy with strictness set to ’strict’

1.4.2.4 Choose an intra-physical volume allocation policy
If the physical volume is less than 4 GB in capacity, then the closer a given
physical partition is to the center of a physical volume, the lower the average
seek time because the center has the shortest average seek distance from
any other part of the physical volume. If the physical volume is greater than 4
GB, then, due to packing and angular velocity, the outer edge is the better
region for performance. There is also the issue of the location of the MWC
cache (see Chapter 7, “Performance” on page 303).

The file system log is a good candidate for allocation at the center/outer edge
of a physical volume because it is used by the operating system so often. At
the other extreme, the boot logical volume is used infrequently and, therefore,
should be allocated at the edge or middle of the physical volume.

The general rule, then, is that the more I/Os, either absolutely or during the
running of an important application, the closer to the center of the physical
volumes the physical partitions of the logical volume should be allocated if the
physical volume is less than 4 GB. If greater than 4 GB, then the outer edge
should be used. This rule has two important exceptions:

PP2"PP2'

PP1"

PP1'PP1 PP1"Copy 1 Copy 2 Copy 3

PP2

PP1 PP1'
Chapter 1. Components of the logical volume manager 97

1. Logical volumes that contain large, sequential files should be at the edge
because sequential performance is better there (there are more blocks per
track at the edge than farther in).

2. Mirrored logical volumes with Mirror Write Consistency (MWC) set to ON
should be at the outer edge because that is where the system writes MWC
data. If mirroring is not in effect, MWC does not apply and does not affect
performance. Otherwise, see Chapter 7, “Performance” on page 303, and
"Performance Implications of Disk Mirroring" in the section on
performance-related installation guidelines in the AIX Performance Tuning
Guide, SC23-2365.

The intra-physical volume allocation policy choices are based on the five
regions of a physical volume where physical partitions can be located. These
regions are discussed in Chapter 1.2.1.1, “The structure of a physical
volume” on page 7.

1.4.2.5 Combining Allocation Policies
If you select inter-physical volume and intra-physical volume policies that are
not compatible, you may get unpredictable results. The system will assign
physical partitions by allowing one policy to take precedence over the other.
For example, if you choose an intra-physical volume policy of center and an
inter-physical volume policy of minimum, the inter-physical volume policy will
take precedence. The system will place all of the partitions for the logical
volume on one physical volume if possible, even if the partitions will not all fit
into the center region. Make sure you understand the interaction of the
policies you choose before implementing them.

1.4.2.6 Using map files for precise allocation
If the default options provided by the inter- and intra-physical volume policies
are not sufficient for your needs, consider creating map files to specify the
exact order and location of the physical partitions for a logical volume.

Chapter 1.2.8.5, “The logical volume map file” on page 51 gives more
information on the use of the map file.

1.4.2.7 Developing a striped logical volume strategy
Striped logical volumes are used for large sequential file systems that are
frequently accessed and performance-sensitive. Striping is intended to
improve performance. On versions of AIX below 4.3.3, the availability of the
striped logical volume is low compared with a mirrored logical volume, as
both striping and mirroring are not supported. However with AIX Version
4.3.3, both mirroring and striping are supported.
98 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

1.4.2.8 Determine a write-verify policy
Using the write-verify option causes all write operations to be verified by an
immediate follow-up read operation to check the success of the write. If the
write operation is not successful, you will get an error message. This policy
enhances availability but degrades performance because of the extra time
needed for the read. You can specify the use of a write-verify policy on a
logical volume either when you create it (mklv) or later by changing it (chlv).

1.4.2.9 Implement volume group policies
1. Use the lspv command to check your allocated and free physical volumes.

In a standard configuration, the more physical volumes that make up a
quorum volume group the better the chance of the quorum remaining
when a disk failure occurs. In a non-quorum group, a minimum of two
physical volumes must make up the volume group.

2. To ensure a quorum,

- Add one or more quorum buster physical volumes

- switch off quorum for the volume group

3. The common configuration is a single volume group that includes multiple
physical volumes attached to the same physical volume adapter and other
supporting hardware. Reconfiguring the hardware is an elaborate step.
Separate hardware is only necessary if your site requires high availability.

1.5 Limits

Table 12 on page 99 lists the limitations for the Logical Volume Manager
components across the various versions of AIX.

Table 12. Logical volume limitations

Limitations for Logical Storage Management

< 4.3.1 4.3.1 4.3.2 / 3 big vgda

Volume groups / system 255 255 255 255

Physical volume / volume group 32 32 128 128

Physical partition / physical volume 1 016 32 512a 32 512 130 048

Logical volume / volume group 256 256 256 512b

Logical partition / Logical volume 32 512 32 512 130 048 130 048

Physical partition size = 2n, where n 20< n <28 20< n <30 20< n <30 20< n <30

Logical to physical partition mapping 1-3 1-3 1-3 1-3
Chapter 1. Components of the logical volume manager 99

Physical block (sector) size 512 512 512 512

Logical volume size 2GB 1TB 1TB 1TB

Mirrored Yes Yes Yes Yes

Striped No Yes Yes Yes

Striped and mirrored No No Yes Yes

File system size 2GB 1024GB 1024GB 1024GB

a. With AIX 4.3.1 one was able to increase the maximum number of physical parti-
tions by factors of 1016. This however implies that the number of disks that can be
added to the volume group is reduced, as the maximum number of Logical Partitions
per Logical Volume is not changed.
b. With -G flag

Limitations for Logical Storage Management

< 4.3.1 4.3.1 4.3.2 / 3 big vgda
100 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Chapter 2. Mirroring

The basic concept of mirroring is simple – keep the data in different locations
to eliminate the possibility of data loss upon disk block failure situation. From
the high-availability point of view, each mirrored data should be located on
separate physical disks, and using separate I/O adapters. Furthermore, put
each disk into a separate disk drawer to protect the data loss upon power
failure situation (but the degree of high-availability depends on the physical
peripheral availability and costs).

This chapter describes the mirroring function (also known as RAID 1
technology) of the AIX Logical Volume Manager, its principle, and its
concepts. It will also provide a practical example on how to create a mirrored
logical volume. The particular case of mirroring the root volume group is also
included. The performance issues of mirrored logical volumes are covered in
detail in Chapter 7, “Performance” on page 303.

2.1 Principles

If you using the AIX LVM mirroring function, here are some basic rules that
you must be aware of:

• Only logical volumes are mirrored.

• Each logical volume may have two or three mirrored instances (called
copy).

• Keep it simple.

The following sections provide explanations about these principles.

2.1.1 Only logical volumes are mirrored
In AIX, the mirroring function is provided by its LVM components. Reading the
section “Mirroring of the rootvg” on page 132 may let you think that entire disk
are mirrored. This is not true. The AIX mirror function does not apply to a
physical disk, only to logical volumes. This is the most important principle to
understand for the AIX LVM mirroring function.

2.1.2 Each logical volume can have up to three copies
The AIX Logical Volume manager allows a total of three copies of the data;
the original one plus two copies.
© Copyright IBM Corp. 2000 101

So, each logical partitions (LP) belonging to the mirrored logical volume may
have up to three copies. These instances are called physical partitions (PP).
To correlate one logical partition to the physical partitions which resides on
the physical volumes, we use a mechanism called mapping. Each logical
partition and physical partition have an instance number for unique
identification.

For example, the logical volume hd9var is created with a four logical partitions
size (See Figure 25). In this example, this logical volume is allocated four
physical partitions on both physical volumes (shown as a hatched rectangle
portion in the figure). The logical partition 1 is mapped to the physical
partition 220 on the physical volume 1, and to the physical partition 190 on
physical volume 2.

Figure 25. Mapping - Relationship between logical partition and physical partitions

To confirm this mapping between the logical partition and the physical
partitions, you can use the lslv command with the -m option as shown below:

root@pukupuku:/ [110] # lslv -m hd9var
hd9var:/var
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0220 hdisk0 0190 hdisk1
0002 0233 hdisk0 0191 hdisk1
0003 0234 hdisk0 0192 hdisk1
0004 0235 hdisk0 0193 hdisk1

In this example, the logical volume hd9var has two copies. The logical
partition 0001 of this logical volume is mapped to the physical partition 0220
on hdisk0 and to the physical partition 0190 on hdisk1.

220

233 234 235

190 191 192 193

1 2 3 4

mirrored logical volume: hd9var

PP number

LP number

PV 1 PV 2

mapping
102 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

2.1.3 Keep it simple
If you create a lot of logical volumes in a volume group, you will make things
too complex and your configuration will rapidly become unmanageable. That
is why you should keep it simple and easy to understand. The following
examples provide some rules that enables you to keep it simple.

• Minimize the number of logical volumes in a volume group as much as
possible, there are some situations where you still have to do that (see
Figure 26).

Figure 26. Minimize the number of logical volumes in a volume group

• Keep your volume group as small as possible, in other words, avoid
creating a logical volume spread over more than two physical volumes
(shown as LV2 in Figure 27). One major exception would be if your logical
volume size does not fit into one physical volume. If you create huge
volume groups involving a lot of disks, you will loose flexibility. For
example, dedicating a volume group to the operating system, then other
volume groups to application and user data, allows you to migrate the
system without having to restore users’ data or to vary offline some
applications and not the users’ data.

PV

jfslog

/fs/...

/fs/data /fs/orig

/fs/logs /fs/back

/fs

/fs/...

/fs/... /fs/...

PV

jfslog

/fs

LVs
Chapter 2. Mirroring 103

Figure 27. Avoid logical volumes spread over multiple physical volumes

• Avoid creating scattered physical partitions in logical volumes. An example
is shown with various patterned rectangles scattered across the physical
volumes in the left rectangle in Figure 28. Usually, scattered logical
volumes are produced by the JFS extension activity. This dynamic
extension of journaled file systems is one of the outstanding features of
AIX but it may sometimes impact manageability and performance. From
that point of view, the best discipline would be to create the logical volume
with the appropriate size at installation time and not extend it further
(shown in the various patterned rectangles on the right side in Figure 28).
The reorgvg command, discussed in the Chapter 5, “The AIX journaled file
system” on page 233, is provided to solve this problem.

Figure 28. Do not scatter physical partitions of logical volumes

PV2PV1

PV4PV3

LV3

LV2

LV1

LV2

LV1

LV3

PV PV
104 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

2.2 Concepts

This section provides detailed information about some important points. It
presents the allocation policy, scheduling policy, and integrity concepts.

2.2.1 The allocation policy
Each logical volume can have up to three copies. To create a mirror for a
logical volume, you must have physical partitions allocated separately on
several physical disks that are part of a volume group. There are some
considerations you must be aware of in order to understand the allocation
scheme for physical partitions of mirrored logical volumes.

2.2.1.1 Strict allocation policy
The default behavior for AIX creating a mirror for a logical volume is to try and
place all the physical partitions containing the same data on separate
physical volumes. In our example shown in Figure 29, all the physical
partitions of the mirrored logical volume are placed on separate physical
volumes (PV1 and PV2). This is a valid and acceptable allocation for the AIX
LVM with the default strict allocation policy.

Figure 29. Default allocation of physical partitions for mirrored logical volume

Suppose that before you decide to create the mirror for the logical volume,
there is already not enough room on the second physical disk to allocate the
necessary copy of the logical partitions (see Figure 30 on page 106). The
attempt to create the mirror will fail with the following error message.

PV1 PV2

LPs

mirrored logical volume

mapped

PPs

mapped

PPs
Chapter 2. Mirroring 105

The reason for this failure is the strict allocation policy of the AIX LVM. With a
mirroring where several copies of the same data are used, a failure of that
disk would result in the complete loss of the mirrored logical volume. In most
circumstances, this is not a safe configuration, therefore, by default, the AIX
LVM does not allow you to place more than one copy of a logical partition on
a given physical volume.

Figure 30. Undesirable allocation of physical partitions for mirrored logical volume

Though this allocation policy exists, if you still want to create the mirror of a
logical volume on the same physical volume (at your own risk) you can
override this policy by using the -s option of the mklv command:

mklv -s n -y notstrictlv 10 mirrorvg

The following descriptions are from the mklv command reference in AIX
Version 4.3.3.

-s Strict Determines the strict allocation policy. Copies of a logical partition
can be allocated to share or not to share the same physical
volume. The Strict variable can be one of the following:

y Sets a strict allocation policy, so copies for a logical
partition cannot share the same physical volume. This is
the default for the -s flag.

n Does not set a strict allocation policy, so copies for a
logical partition can share the same physical volume.

root@pukupuku:/ [103] # mklvcopy hd6 2 hdisk0
0516-404 allocp: This system cannot fulfill the allocation request.

There are not enough free partitions or not enough physical volumes
to keep strictness and satisfy allocation requests. The command
should be retried with different allocation characteristics.

PV1 PV2

PPs are allocated Not enough PPs left to

create the copy
106 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

s Sets a super strict allocation policy, so that the partitions
allocated for one mirror cannot share a physical volume
with the partitions from another mirror.

Actually, the default behavior of the allocation policy is determined by an
attribute of the logical volume you are trying to make a mirror. To check this
attribute, you can use the following SMIT dialog:

smit -C lv
Set Characteristic of a Logical Volume

Change a Logical Volume

Choose the appropriate logical volume name as LOGICAL VOLUME name.

Otherwise, you can examine this from the command line. The field showing
the allocation policy is shown in the rectangle in the following example.

The super strict allocation policy is newly introduced in AIX Version 4.3.3 to
support the mirror and stripe function. For details about this allocation type,
refer to 3.3, “The mirror and stripe function” on page 162.

Note

Change a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Logical volume NAME hd2
Logical volume TYPE [jfs]
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL [/usr]
MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

PERMISSIONS read/write +
Enable BAD BLOCK relocation? yes +
Enable WRITE VERIFY? no +
Mirror Write Consistency? yes +
Chapter 2. Mirroring 107

2.2.1.2 Mirroring with exact mapping
Within a new or empty volume group, creating a mirror usually results in a
mirroring with exact mapping (this comes from the algorithm used but there is
no guarantee that this happens. Using the map files is the only safe way).
Exact mapping is the function that allocates logically and/or physically
identical positions for physical partitions on each physical volume used to
create the mirror, and is divided into two cases; logically identical allocation
and physically identical allocation. The following section describes these
concepts.

Logically identical allocation
If you use different size disks for mirroring, you may have a mirrored logical
volume with a logically identical location using the exact mapping function.
For example, let us take a volume group composed of two different size
physical disks and that have a 16 MB size physical partition. The numbering
scheme of the physical partition may be the same, but the physical location of
the partition on the disk will vary. The physical partition number 233 can be
located in the center of disk A and middle edge of disk B, ruining your effort to
reach best performance.

root@pukupuku:/ [132] # lslv hd2
LOGICAL VOLUME: hd2 VOLUME GROUP: rootvg
LV IDENTIFIER: 00702137e70a7982.5 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 152 PPs: 152
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /usr LABEL: /usr
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
108 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 31. Exact mapping - Logically identical allocation

Physically identical allocation
If you use the same disks type (having the same physical size) for mirroring,
you will obtain a mirrored logical volume with physically identical allocation
using the map files. For example, the volume group is composed of two same
size physical volumes and has 8 MB physical partition size (see Figure 32).
This is the best case (and probably most efficient from the performance and
system management perspective) for the mirrored logical volumes with exact
mapping.

Figure 32. Exact mapping - Physically identical allocation

Mirroring without exact mapping function
If you don’t use an empty volume group and if you already have a logical
volume occupying the corresponding physical locations on the second disk,
you remain with the alternative of not having an exact mapping situation and
locating the partitions in a different region of the disk.

Note that the mirror configuration of this logical volume is still valid from the
data availability perspective.

mirrored logical

volume's PPs

PP number

PV 1 (4.5GB) PV 2 (9.1GB)

1 2 3 4 5 6 7 8

9 10

1 2 3 4 5 6 7 8

910

272

544

mirrored logical

volume's PPs

PP number

PV 1 (4.5GB)

1 2 3 4 5 6 7 8

9 10

537

PV 1 (4.5GB)

1 2 3 4 5 6 7 8

9 10

537
Chapter 2. Mirroring 109

Figure 33. Mirroring without exact mapping

There is a particular case where you cannot reach an exact mapping
situation. This is when you are using different size disks. Imagine that
you have a volume group made of one 4.5 GB disk and one 9.1 GB disk.
You create your first copy of the logical volume on the 9.1 GB disk using the
physical partitions 500 to 510. When to try to create a copy of this logical
volume on the 4.5 GB disk, you realize that there is no physical partition 500
on that disk. Its size limits the number of partitions to 272. This would
reinforce the rule of using comparable disks to create mirrored logical
volumes.

Figure 34. Allocation impossible with exact mapping

2.2.1.3 Map files
To allow the users to fully control the allocation algorithm of physical
partitions for specified logical volumes, the AIX LVM provides the map file
facility with some AIX LVM high-level commands. The map file is a text file
that specifies how the AIX LVM should allocate the physical partitions of the
specified physical volume. The commands that provide this map file
mechanism are mklv, mklvcopy, and extendlv. Another command that uses this

7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10

mirrored logical

volume's PPs

PP number

PV 1 (4.5GB)

537 537

another logical

volume(s) PV 1 (4.5GB)

1 2 3 4 5 6

mirrored logical

volume's PPs

PP number

PV 1 (4.5GB) PV 2 (9.1GB)

1 2 3 4 5 6 7 8

9 10

1 2 3 4 5 6 7 8

910

272

544

272
110 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

facility (but does not take a map file name as a command line option) is
mirrorvg. The savevg and mksysb commands also deal with the map files.

2.2.2 The scheduling policy
If you have multiple copies of a specific logical volume on separate physical
disks, how do you decide how an I/O request (for example, read or write
system call) is made? On which disk do you write first? When is the request
really finished, after the first disk has been written or all of them have? The
answer is included in the concept called scheduling policy, and is determined
by an attribute of the logical volume. There are two types of scheduling policy,
parallel (the AIX default) and sequential.

In general discussion about the mirroring mechanism, we won’t distinguish
between the original copy and its mirrors; that is, the first one and the ones
created after from that master. The exception to this is when we discuss the
read, write request order in sequential scheduling policy. In sequential
scheduling policy, there are distinct primary copy and secondary copies.

The default behavior of this scheduling policy is determined by an attribute of
the logical volume considered. To check the value of this attribute, you can
use the following SMIT dialog:

smit -C lv
Set Characteristic of a Logical Volume

Change a Logical Volume

Choose the appropriate logical volume name as LOGICAL VOLUME name.

mirrorvg is the only command providing a real exact mapping function. The
-m flag allows you to create the mirror of a volume group that has for every
logical volume the same physical partitions.

Note
Chapter 2. Mirroring 111

The scheduling policy is shown in the rectangle in the previous figure.

Otherwise, you can examine this from the command line (the attribute is also
shown in the following rectangle):

2.2.2.1 The parallel scheduling policy
The majority of mirrors created on AIX have the parallel scheduling policy (it
is the default value for a newly created logical volume). With the parallel
scheduling policy, there is no primary or secondary mirror. All copies in a
mirror set are just referred to as copy, regardless of which one was created

Change a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Logical volume NAME hd2
Logical volume TYPE [jfs]
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL [/usr]
MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
SCHEDULING POLICY for reading/writing parallel +

logical partition copies
PERMISSIONS read/write +
Enable BAD BLOCK relocation? yes +
Enable WRITE VERIFY? no +
Mirror Write Consistency? yes +

root@pukupuku:/ [132] # lslv hd2
LOGICAL VOLUME: hd2 VOLUME GROUP: rootvg
LV IDENTIFIER: 00702137e70a7982.5 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 152 PPs: 152
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /usr LABEL: /usr
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
112 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

first. Since the user can remove any copy from any disk, at any time, there
can be no ordering of copies.

With the parallel scheduling policy, all copies are considered equal. Thus,
when a read request arrives at the LVM, there is no first or favorite copy that
is accessed for the read. A search is done on the request queues for the
drives which contain the mirror physical partition that is required. The drive
that has the fewest pending requests is picked as the disk drive that will
service the read request.

On write requests, the LVM driver broadcasts to all drives that have a copy of
the physical partition that needs updating. Only when all write requests return
is the write considered complete and the write complete message is returned
to the calling program (see Figure 35).

Mirroring can improve the read performance of a system, but the price to pay
is the write performance. Of the two mirroring scheduling policies, parallel
and sequential, parallel is the best in terms of disk I/O.

In parallel scheduling policy, when a read request is received, the LVM device
driver looks at the queued requests (read and write) and finds the disk with
the smallest number of requests waiting to execute.

If mirroring can provide an improvement for the read requests, the price to
pay is a longer cycle to write the data. When the LVM disk driver receives a
write request (shown as step 1 in Figure 35 on page 114), it must now
perform separate writes (shown as step 2 in Figure 35), then each disk must
complete its own write operation (shown as step 3 in Figure 35) before the
LVM device driver considers a write request as complete and returns write
acknowledgement to the caller (shown as step 4 in Figure 35).
Chapter 2. Mirroring 113

Figure 35. Parallel scheduling policy - Write sequence

2.2.2.2 The sequential scheduling policy
The sequential scheduling policy (as opposed to parallel) is based on the
idea of an order within the mirrors. All read and write requests (shown as 1 in
Figure 36 on page 115) first go through a primary copy that services the
request in sequential scheduling policy (shown as 2 and 3 in Figure 36). If the
request is a write, then the write request is propagated sequentially to the
secondary drives (shown as 4 and 5 in Figure 36). Once the secondary (and
tertiary, if applicable) drives have serviced the same write request, then the
LVM device driver will consider the write request complete (see Figure 36 on
page 115).

If the request is a read, then the read request is forwarded to the primary
drive. If the read request is successfully returned from the primary drive, it
satisfies the read request from the caller and returns. Otherwise, the
secondary (or tertiary, if applicable) drive is examined.

Obviously, there is a performance disadvantage to using the sequential
scheduling policy rather than the parallel scheduling policy in mirroring. The
question arises why anyone would be interested in using sequential
scheduling policy. The answer is that since there is a definite and defined
primary copy, this will be the first disk always read during a reboot. Thus, it
will be the source mirror copy used when mirror re-synchronization occurs.
The implication of this will become clear in “Mirror Write Consistency” on
page 117.

PV 2

PV 1 PV 3

JFS

LVM device driver

1 4

2 3

2
3 2

3

114 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 36. Sequential scheduling policy - Write sequence

2.2.3 Availability
The AIX LVM allows up to three copies for a logical volume and the sequential
or parallel scheduling policy. Mirrors improve data availability on a system by
providing more than one source of identical data. With multiple copies of a
logical volume, if one copy can not provide the data, one or two secondary
copies may be accessed to provide the desired data.

But how does the AIX LVM maintain the integrity of the data that resides in
mirrored logical volumes after a system crash, for example? If there is no
protection mechanism, you probably have a mirrored logical volume that has
a data divergence. This section focuses on the mechanism provided by AIX
LVM to guarantee the data integrity of a mirrored logical volume.

2.2.3.1 Quorum checking
As discussed in 1.2.7.11, “Quorum” on page 39, quorum checking is the
voting that goes on between disks in a volume group to see if a majority of
disks exist to form a quorum that will allow the disks in a volume group to
become and stay activated. LVM runs many of its commands and strategies
based on having the most current copy of data. Thus, it needs a method to
compare data on two or more disks and figure out which one contains the
most current information.

So, if you have a volume group that has more than two physical volumes, you
may encounter a strange situation. For example, a volume group is composed

PV 2

PV 1 PV 3

JFS

LVM device dr iver

1 8

4 5

2
3 6

7

Chapter 2. Mirroring 115

of four physical volumes, and each physical volume has a copy of a logical
volume (see Figure 37).

Figure 37. Quorum checking dilemma

Suppose that you have not disabled the quorum for this volume group. In this
situation, should PV 1 and PV 3 fail, then this volume group will be closed,
even if valid copies of the PV1 and PV3 are still accessible on PV2 and PV4.
So, you decide to disable the quorum for this volume group. Now, it is PV 1
and PV 2 that fail, the volume group will not be closed, and you will have a
data accessibility problem on the logical volumes LV1 and LV2. This is a
quorum dilemma. To avoid this dilemma, you have to remember the last
principle: Keep it simple. In this case, you could create two volume groups
that are composed of two physical volumes each, instead of one big volume
group.

2.2.3.2 Staleness
The idea of a mirror is to provide an alternate, physical copy of information. If
it is not possible to write to one copy at one point, usually due to a disk failure,
then the AIX LVM refers to that copy of the mirror as going stale. Staleness is
determined by the LVM device driver when a request to the disk device driver
returns with a certain type of error. When this occurs, the AIX LVM device
driver notifies the VGSA of a disk that a particular physical partition on that
disk is stale. This information will prevent further read or writes from being
issued to physical partitions defined as stale by the VGSA of that disk.

PV3 PV4

PV1 PV2

LV1

LV2

LV1

LV2

LV3

LV4

LV3

LV4

mirrored LV

A VG is composed of four PVs.
116 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Additionally, when the disk once again becomes available (suppose it had
been turned off accidentally), the synchronization code knows exactly which
physical partitions must be updated, instead of defaulting to the update of the
entire disk. Certain high-level commands will display the physical partitions
and their stale condition so that the user can be informed of which disks may
be experiencing a physical failure.

Following is a example of how to examine what partitions are stale. The lsvg

-l command shows that the logical volume hd4, which houses the root file
system that has stale partitions. The lslv -p command shows that the logical
partitions number 1 and 2 that reside on physical partitions number 8 and 9
(the far right column shows the physical partition number range) are marked
stale.

root@pukupuku:/ [104] # lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd5 boot 1 2 2 closed/syncd N/A
hd6 paging 16 32 2 open/syncd N/A
hd8 jfslog 1 2 2 open/syncd N/A
hd7 sysdump 4 4 1 open/syncd N/A
hd4 jfs 2 4 2 open/stale /
hd2 jfs 152 304 1 open/syncd /usr
hd9var jfs 4 8 2 open/syncd /var
hd3 jfs 4 8 2 open/syncd /tmp
opt.lotus jfs 32 64 2 open/syncd /opt/lotus
netscape jfs 4 8 2 open/syncd /usr/netscape
usr.share.man jfs 40 80 2 open/syncd /usr/share/man
var.adsmserv jfs 4 8 2 open/syncd /var/adsmserv
root@pukupuku:/ [127] # lslv -p hdisk1 hd4
hdisk1:hd4:/
FREE FREE FREE FREE FREE USED USED 0001? 0002? USED 1-10
USED USED USED FREE FREE USED USED USED USED USED 11-20
(after this line was snipped off)

Mirror Write Consistency
Mirror Write Consistency (MWC) identifies which logical partitions may be
inconsistent if the system or the volume group is not shut down properly.
When the volume group is varied back online for use, this information is used
to make logical partitions consistent again.

If a logical volume is using MWC, then requests for this logical volume are
held within the scheduling layer until the MWC cache blocks can be updated
on the target physical volumes. When the MWC cache blocks have been
updated, the request proceeds with the physical data Write operations.

MWC tracks the last 62 writes to mirrored logical volumes within a volume
group. If the AIX system crashes, upon reboot the last 62 Logical Track Group
(LTG) writes to mirrors are examined and one of the mirrors is used as a
source to synchronize the mirrors (based on the last 62 disk locations that
were written). The LTG is a concept that is used in the write phase. Its size is
Chapter 2. Mirroring 117

always 128 KB (32 pages, 1 page being 4 KB). All the write beyond this size
is divided into multiple LTG size (see Figure 38).

Figure 38. Concept of the logical track group

The MWC is necessary to mirror logical volumes with parallel scheduling
policy. In sequentially mirrored scheduling policy logical volumes, the source
is always picked to be the primary disk. If that disk fails to respond, the next
disk in the sequential ordering will be picked as the source copy.

The AIX LVM does not guarantee that the absolute, latest write request
completed before a crash will be there after the system reboots. But, it
guarantees that the mirrors in parallel scheduling policy will be consistent
with each other. From there, the user will be able to realize which writes were
considered successful before the system crashed and which writes must be
retried.

The point here is not data accuracy, but data consistency. The use of the
primary mirror copy as the source disk is the basic reason that sequential
scheduling policy mirroring is offered. Not only is data consistency
guaranteed with MWC, but the use of the primary mirror as the source disk
increases the chance that all the copies have the latest write that occurred
before the mirrored system crashed. Some users turn off MWC for increased
write performance or if the software product they use requires that MWC be
turned off. You can easily examine this attribute for each logical volume (the
MWC attribute is shown in the rectangle):

smit -C lv
Set Characteristic of a Logical Volume

Change a Logical Volume

Choose the appropriate logical volume name as LOGICAL VOLUME name.

Logical Track Group

=128 KB

PP
118 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Otherwise, you can examine this from the command line (the MWC attribute
is also shown in the rectangle):

In the case where MWC can not guarantee mirror consistency, the user
should run a forced volume group sync (syncvg -f -v <vgname>) immediately
after a system crash.

The following section explains how the MWC works to guarantee data
consistency.

• Before a write to the mirrored logical volume

Change a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Logical volume NAME hd2
Logical volume TYPE [jfs]
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL [/usr]
MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

PERMISSIONS read/write +
Enable BAD BLOCK relocation? yes +
Enable WRITE VERIFY? no +
Mirror Write Consistency? yes +

root@pukupuku:/ [132] # lslv hd2
LOGICAL VOLUME: hd2 VOLUME GROUP: rootvg
LV IDENTIFIER: 00702137e70a7982.5 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 152 PPs: 152
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /usr LABEL: /usr
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
Chapter 2. Mirroring 119

Suppose that we have the following situation: Only even numbered Logical
Track Groups have been the last 62 writes to the mirrored logical volume
(see Figure 39). All disks in the volume group, that store a copy of a logical
volume for which MWC is enabled track this MWC table.

Figure 39. Before the write to the mirrored logical volume

• After a write to the mirrored logical volume

A write to an odd LTG (9) causes the oldest entry in the MWC (2) to be
deleted and the entry to be entered in RAM (see Figure 40 on page 121).
Then, the MWC table must be written to the relevant disks in the volume
group.

PV 1 PV 2 PV 3

2 4 6 8 120122124

MWC in RAM

2 124 2 124 2 124

LV 1(a) LV 1(b)

LTG

This replacement and update only occurs if the new LTG number is not
already one of the last 62 entries in the MWC table.

Note
120 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 40. After the write to the mirrored logical volume

What happens if there is a crash?
Following is a detailed explanation of what happens if there is a crash during
the write I/O.

Case (a): The crash occurs during the write of the MWC table in RAM. This
is totally harmless. In this case, the real write to the disk, case (e)
hasn't been started. The MWC table on the disk hasn't been
altered. During reboot, the old MWC table will be used to
re-synchronize the LTGs, writing the same data over again.

Figure 41. What happens if there is a crash? - Part 1

The solution is to issue parallel writes of the MWC table to each disk tracking
the MWC (Note: This is only a write of 512 bytes of information to each disk).

PV 1 PV 2 PV 3

9 4 6 8 120122124

MWC in RAM

9 124 9 124 9 124

LV 1(a) LV 1(b)

Updates MWC table in RAM

0 1 2 61 RAM
LVM device

driver

LVM device

driver

(a)

(a)
Chapter 2. Mirroring 121

Figure 42. What happens if there is a crash? - Part 2

Case (b): The crash happens before the MWC table update to the disk
platters can start: This case would be identical to case (a).

Case (c): The crash happens while the MWC table is being written to disk
platters. This is harmless. In this case, the real write to the disk,
case (e) hasn't been started. The MWC table may be inconsistent
(all three copies of the MWC table don't match). However, this is a
very low probability since the write was only 512 bytes. But, even
if there is an inconsistent MWC, it doesn't matter. The inconsistent
table will consist of 61 consistent entries and one inconsistent
entry.

Case (d): The crash occurs after the MWC table has been updated. This is
equivalent to case (c) except that the MWC entries on the disk
platter will all be consistent. No LTG has actually changed.

At that point, the parallel MWC table writes all return back to the LVM device
driver. We now have to write the real data. The size of this write is now between
512 bytes and 128 KB.

(c) (c) (c)

LVM device driver LVM device driver

(b)(b)

(b)

(d)(d)

(d)
122 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 43. What happens if there is a crash? - Part 3

Case (e): The crash occurs before the LTG write can be issued to the disks.
This is the same as case (d).

Case (f): The crash occurs during the LTG writes. This is the primary
reason for the MWC to exist. In this case, you have three
potentially large 128 KB writes that are occurring in parallel. There
is no way to guarantee that, during the crash, any one of the
mirrors have finished the write. And, if they didn't finish the write,
they were in the write when the interruption occurred. It should be
assumed that all three copies are in different stages of
completion. Thus, upon reboot, the MWC is used as a guide to
take one of the three copies as a master and copy over the two
other mirror copies. If the one copy chosen is incomplete, it could
theoretically overwrite another mirror copy that is actually
complete! However, it is more important to guarantee consistent
data than to have the most updated mirror write. Since the MWC
table was written first, we know that the very last write issued to
the disks is covered during re-synchronization.

Case (g): A crash occurs after LTG writes complete, but before the driver is
notified of write completion. This is similar to case (f) except in this
case there is no worry that the copy with the most new data is
overwritten upon reboot. They all have completed their writes and
any mirror chosen for the LTG re-synchronize will contain the
latest data.

When all three writes complete and return back to the LVM device driver, then a
write complete is signaled from LVM to the application.

(f) (f) (f)

LVM device driver LVM device driver

(e)(e)

(e)

(g)(g)

(g)

JFS
Chapter 2. Mirroring 123

Case (h): Crash before the LVM driver gets to tell JFS that the write
completed. This is identical to case (g).

2.2.3.3 Ability to detect stale mirror copies and correct
The VGSA tracks the status of 1016 physical partitions per disk per volume
group. During a read or write, if the LVM device driver detects that there was a
failure in fulfilling a write request, the VGSA will note the physical partition(s)
that failed and mark the partition(s) stale. When a partition is marked stale,
this is logged by AIX error logging facility and the LVM device driver will be
instructed not to send further partition data requests to that stale partition.
This saves wasted time in sending I/O requests to a partition that most likely
will not respond. And when this physical problem is corrected, the VGSA will
tell the mirror synchronization code which partitions need to be updated to
have the mirrors contain the same data.

If the operating system crashes in the middle of many writes, it has no time to
mark a partition as stale. This is where MWC comes in; it assumes that the
last 62 LTG writes were inconsistent and performs a sync, even though the
partitions where the LTGs exist are not marked stale by the VGSA.

2.2.3.4 Data relocation
Relocation typically occurs when the system fails to perform a read or a write
due to physical problems with the disk platter. In some cases, the data I/O
request completes but with warnings. Depending on the type of recovered
error, the LVM may order a relocation of the data to be on the safe side.

There are three types of data relocation:

• Physical level (internal to the disk)

• Intermediate level (hardware relocation ordered by LVM)

• Software level (software relocation)

The lowest layer of relocation is the one that is internal to the disk. These
types of relocations are typically private to the disk and there is no notification
to the user that a relocation occurred.

The next level up in terms of relocation complexity is an intermediate level
(hardware relocation called for by the LVM device driver). This type of
relocation is also called bad block relocation in the AIX LVM and will instruct
the disk to relocate the data on one physical block to another block (reserved)
of the disk. The location where the bad block is relocated is dependent on the
disk itself. This bad block relocation information is held in the following area
on the physical volume:
124 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

root@pukupuku:/ [101] # grep BB_ /usr/include/sys/hd_psn.h
#define PSN_BB_DIR 8 /* beginning PSN of bad block directory */
#define LEN_BB_DIR 22 /* length in sectors of bad block dir */
#define PSN_BB_BAK 71 /* PSN of backup bad block directory */

The top layer of data relocation is the software relocation handled by the LVM
device driver. In this case, the LVM device driver maintains a bad block
directory and whenever it receives a request to access a logical location A,
the LVM device driver will look up the bad block table and translate it to
actually send the request to the disk drive at physical location B. The default
behavior of this bad block relocation function is determined by an attribute of
the logical volume. To check this attribute, you can use following SMIT dialog.

smit -C lv

Set Characteristic of a Logical Volume
Change a Logical Volume

Choose an appropriate logical volume name as LOGICAL VOLUME name.

Otherwise, you can examine this from the command line:

Change a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Logical volume NAME hd2
Logical volume TYPE [jfs]
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL [/usr]
MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

PERMISSIONS read/write +
Enable BAD BLOCK relocation? yes +
Enable WRITE VERIFY? no +
Mirror Write Consistency? yes +
Chapter 2. Mirroring 125

By default, AIX will not allow the execution of the intermediate-level data
relocation on non-IBM drives. On IBM drives, the AIX LVM relies on the
guarantee that there are reserved areas for possible hardware relocation
(typically 256 blocks per disk). However, on non-IBM drives, AIX LVM cannot
predict what spare blocks may or may not exist for possible relocation. So,
assuming the worst, AIX LVM only allows the internal disk relocation and the
top layer software relocation to occur on non-IBM drives.

The non-IBM disk discussed previously also include the drive manufactured
by IBM but not designed for RS/6000 and AIX. Usually, these disks are
classified as osdisk in AIX:

root@pukupuku:/ [288] # lsdev -Cc disk -t osdisk
hdisk5 Available 04-01-00-0,0 Other SCSI Disk Drive
root@pukupuku:/ [289] # lscfg -vl hdisk5
DEVICE LOCATION DESCRIPTION

hdisk1 04-01-00-1,0 Other SCSI Disk Drive

Manufacturer................IBM
Machine Type and Model......DDRS-39130W
Part Number.................Corp. 1997.
ROS Level and ID............53393742
Serial Number...............REFD7615
EC Level....................All rights
FRU Number.................. reserved.
Device Specific.(Z0)........000002029F00003A
Device Specific.(Z1)........
Device Specific.(Z2)........) Co
Device Specific.(Z3)........pyrig
Device Specific.(Z4)........t IB
Device Specific.(Z5)........M
Device Specific.(Z6)........

root@pukupuku:/ [132] # lslv hd2
LOGICAL VOLUME: hd2 VOLUME GROUP: rootvg
LV IDENTIFIER: 00702137e70a7982.5 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 152 PPs: 152
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /usr LABEL: /usr
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
126 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The above example shows that some VPD (Vital Product Data) attributes for
this drive cannot be parsed (or accepted) correctly (for example, you can see
it on the Data Specific lines from Z0 to Z4, where it should read Copyright
IBM) by the device driver during the SCSI probe phase, thus this drive is
classified as osdisk.

2.2.3.5 Write verify
The AIX LVM provides the possibility to specify that you wish an extra level of
data integrity to be achieved every time you write data to the disk. This is the
ability known as write verify. This capability is given to each logical volume in
a volume group.

Actually, the default behavior of this write verify function is determined by an
attribute of the logical volume. To check this attribute, you can use the
following SMIT dialog.

smit -C lv

Set Characteristic of a Logical Volume
Change a Logical Volume

Choose the appropriate logical volume name as LOGICAL VOLUME name.

Otherwise, you can examine this from the command line:

Change a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Logical volume NAME hd2
Logical volume TYPE [jfs]
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL [/usr]
MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

PERMISSIONS read/write +
Enable BAD BLOCK relocation? yes +
Enable WRITE VERIFY? no +
Mirror Write Consistency? yes +
Chapter 2. Mirroring 127

When you have the write verify attribute enabled, every write to a physical
portion of a disk that is part of a logical volume causes the disk device driver
to issue the Write and Verify SCSI command to the disk. This means that after
each write, the disk will reread the data and do an IOCC (I/O Channel
Controller; SCSI command protocol) parity check on the data to see if what
the platter wrote exactly matched what the write request buffer contained.
This type of extra check understandably adds more time to the completion
length of a write request, but it adds to the integrity of the system.

2.3 Practical examples

This section shows real examples of managing the mirrored logical volumes.

2.3.1 Example configurations
All the examples shown in this section are examined with the following
configurations:

root@itsosrv1:/ [104] # lsdev -Cc disk
(many lines are snipped out)
hdisk6 Available 30-60-L SSA Logical Disk Drive
hdisk9 Available 30-60-L SSA Logical Disk Drive
root@itsosrv1:/ [107] # mkvg -s 8 -y mirrorvg hdisk6 hdisk9
root@itsosrv1:/ [108] # lspv
hdisk6 00017d37914ed685 mirrorvg
hdisk9 00017d37628265fc mirrorvg

2.3.1.1 Create copies of pre-existing logical volumes
Suppose the logical volume already exists on one physical volume.

root@itsosrv1:/ [109] # mklv -y mirrorlv mirrorvg 10 hdisk6
mirrorlv
root@itsosrv1:/ [110] # lsvg -l mirrorvg
mirrorvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
mirrorlv jfs 10 10 1 closed/syncd N/A

root@pukupuku:/ [132] # lslv hd2
LOGICAL VOLUME: hd2 VOLUME GROUP: rootvg
LV IDENTIFIER: 00702137e70a7982.5 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 152 PPs: 152
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /usr LABEL: /usr
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
128 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The following example shows how to create a copy of this logical volume
using SMIT.

root@itsosrv1:/ [111] # smit -C lv
Set Characteristic of a Logical Volume

Add a Copy to a Logical Volume

Enter the logical volume name as LOGICAL VOLUME name. Then press
Enter.

Press the F4 key on the NEW TOTAL number of logical partition copies line,
then choose the copy number (1, 2, 3). In this case, we choose 2 as the copy
number. Then press Enter.

If you prefer the command line interface, you can use the following command
line:

root@itsosrv1:/ [116] # mklvcopy mirrorlv 2

As a result, you will have the following output:

root@itsosrv1:/ [114] # lsvg -l mirrorvg

Add Copies to a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name [mirrorlv] +

Add Copies to a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name mirrorlv
* NEW TOTAL number of logical partition 2 +

copies
PHYSICAL VOLUME names [] +
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

File containing ALLOCATION MAP []
SYNCHRONIZE the data in the new no +
logical partition copies?
Chapter 2. Mirroring 129

mirrorvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
mirrorlv jfs 10 20 2 closed/stale N/A

Note that the physical partitions are just allocated, and the data on this logical
volume is not synchronized among the copies at this point (therefore, it is
marked as stale). To synchronize the staled mirrored logical volumes, you
have to issue the following command:

root@itsosrv1:/ [117] # syncvg -l mirrorlv
root@itsosrv1:/ [118] # lsvg -l mirrorvg
mirrorvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
mirrorlv jfs 10 20 2 closed/synced N/A

If you want to synchronize the copies at the creation time, then you have to
set the ‘SYNCHRONIZE the data in the new logical partition copies’ message
to yes.

If you attempt to synchronize huge logical volumes, this operation will take
some time. During hat operation, any update operation of the LVM metadata
(VGDA, VGSA and so on) in this volume group is prohibited. To minimize the
synchronization time, it is recommended to create the copies of the logical
volumes first, then to issue the syncvg or the mirrorvg command to
synchronize all the copies at one time.

Add Copies to a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name mirrorlv
* NEW TOTAL number of logical partition 2 +

copies
PHYSICAL VOLUME names [] +
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

File containing ALLOCATION MAP []
SYNCHRONIZE the data in the new yes +
logical partition copies?
130 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

2.3.1.2 Create copies during the creation of the logical volume
You can create several copies of a logical volumes during its initial creation.
The following example shows how to create the copy of the logical volume
using SMIT.

root@itsosrv1:/ [117] # smit -C lv
Add a Logical Volume

Enter the volume group name and press Enter.

Enter the following necessary information and press Enter:

• Logical volume NAME

• Number of LOGICAL PARTITIONS

• Number of COPIES of each logical partition

Add a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [mirrorvg] +
Chapter 2. Mirroring 131

If you prefer the command line interface, you can use the following command
line:

root@itsosrv1:/ [119] # mklv -y mirror2lv -c 2 mirrorvg 10

As a result, you will have the following output:

root@itsosrv1:/ [119] # lsvg -l mirrorvg
mirrorvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
mirrorlv jfs 10 20 2 closed/stale N/A
mirror2lv jfs 10 20 2 closed/syncd N/A

2.4 Mirroring of the rootvg

This section will attempt to show in detail why the rootvg mirroring has such
special treatment in the AIX system management.

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [mirror2lv]

* VOLUME GROUP name mirrorvg
* Number of LOGICAL PARTITIONS [10] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 2 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]
132 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

2.4.1 Brief explanation about the AIX boot sequence
Before describing the AIX boot sequence, several key definitions are given
here:

blv It is the abbreviation for boot logical volume also known as hd5. It
contains the minimal file system needed to begin the boot of a
system (This file system is held in compressed format, and only a
limited number of commands, like savebase and bosboot can
manipulate it). An important portion of this minimal file system is the
mini-ODM.

bootrec It is the first disk block on the boot disk that the Initial Program Load
Read Only Storage (IPL ROS) reads to find the reference to the blv.
It is defined in /usr/include/sys/hd_psn.h as follows:

root@pukupuku:/ [320] # grep IPL /usr/include/sys/hd_psn.h
#define PSN_IPL_REC 0 /* PSN of the IPL record */

savebase This command will update the mini-ODM that resides on the same
disk as /dev/ipldevice.

The relationship between the bootrec, the blv, and the mini-ODM is illustrated
in Figure 44.

Figure 44. Three important components for booting rootvg

The bootrec is read by the IPL ROS code, it tells the ROS that it needs to
jump X bytes into the disk platter to read the boot logical volume, hd5.

bootrec

savebase will

update the mini-ODM
mini-ODM

X bytes

hd5

hdisk0

This is the first reason why the rootvg mirroring requires special treatment.
The bootrec is not synchronized by AIX LVM, since it is not a logical
volume.

Important
Chapter 2. Mirroring 133

The processor starts reading in the mini file system to start the AIX system
boot. Note that this is a very simplified view of the boot process, but enough
for a basic understanding of the upcoming conflicts.

During the processing of the mini-AIX file system, there is a mini-ODM read
into the RAM. When the real rootvg file system comes online, AIX merges the
data held in the mini-ODM with the real ODM held in /etc/objrepos in the root
file system.

Whenever an LVM command is executed that will change the mini-ODM,
there is a command called savebase that is run at the successful completion of
the LVM command (represented as a) in Figure 44 on page 133). The
savebase takes a snapshot of the main ODM and compresses it and picks out
only what is needed for boot, such as LVM information concerning logical
volumes in rootvg, and so on. It takes this compressed boot image and looks
at /dev/ipldevice and finds out what disk this represents. Typically on most
systems, /dev/ipldevice is a hard link to /dev/hdisk0 (which contains the
rootvg volume group):

root@pukupuku:/ [323] # ls -l /dev/ipldevice /dev/*hdisk0
brw------- 1 root system 15, 1 Sep 03 07:50 /dev/hdisk0
crw------- 2 root system 15, 1 Apr 24 18:38 /dev/ipldevice
crw------- 2 root system 15, 1 Apr 24 18:38 /dev/rhdisk0

The /dev/ipldevice is really needed to indicates which disk holds hd5.

2.4.2 Contiguity of the boot logical volume
As described in earlier, the blv (boot logical volume or hd5) is read by the IPL
ROS code directly during the boot phase. The IPL ROS code will completely
bypass the LVM access routines, and access the memory in sequence,
assuming that all this code is stored in a unique place. With the increase of
the IPL code, it may happen that one partition is not enough. If you add a new
partition to the blv, you must make sure that the second partition will be next
to the first one, the IPL code won’t be able to jump from partition 1 to partition
10, for example.

To confirm that the partitions of the blv are contiguous, you have to use
following command:

root@pukupuku:/ [128] # lslv -m hd5
hd5:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0001 hdisk0
134 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

In our case, the blv is made of one logical partition and resides in the first
physical partition on hdisk0. If this output shows multiple lines (this means
that the blv was composed of multiple logical partitions), you may have to
organize it to occupy contiguous regions.

2.4.3 Dump device
The dump device is a raw logical volume (usually having sysdump as its
logical volume type) for the sake of the AIX kernel writing its memory image
(also known as core image) upon system crash phase.

In AIX, the dump device should reside in rootvg, and it is set to /dev/hd6 by
default. The /dev/hd6 is also the initial paging device. After the system has
crashed, during the reboot phase, the boot procedure will copy this dump
image from the dump device to the /var/adm/ras directory as a file named
vmcore to prevent the VMM (virtual memory manager) from overwriting its
space. Further details about the system dump, please consult the AIX Version
4.3 Problem Solving Guide and Reference, SC23-4123.

In this section, the following assumptions are made (actually, these
assumptions are reasonable from a system management perspective):

• The rootvg is mirrored using two physical volumes (hdisk0, hdisk1) which
have same size.

• You have made /dev/hd7 a primary dump device on hdisk0, and
/dev/sysdumpnull the second dump device using following command:

sysdumpdev -p /dev/hd7 -P
sysdumpdev -s /dev/sysdumpnull -P
sysdumpdev -K (it enables the user initiated system dump)
shutdown -Fr (to take effects above change)

Then, you will see the following system dump configuration:

root@pukupuku:/ [336] # sysdumpdev -l
primary /dev/hd7
secondary /dev/sysdumpnull
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump TRUE
dump compression OFF

Before AIX Version 4.3.3, there is no complete support for the mirrored dump
device. Since, if the system dumped, the dump image was written to the first
mirror copy only without any staleness, bypassing the LVM device driver. The
dump image is certainly written in the first mirror copy, but when it was read,
Chapter 2. Mirroring 135

LVM simply started to pass back randomly-selected mirror copies for each
logical partition, so the data came back in a corrupted state.

Actually, these work-arounds are performed by the mirrorvg command
automatically after AIX Version 4.2.1 (before this release, there was no
mirrorvg command provided. Thus, you had to follow the official step-by-step
method shown in Appendix A, “Mirroring of the rootvg” on page 353).

With AIX Version 4.3.3, you can use the readlvcopy command to read an
individual mirror copy of any logical volumes. Hence, readlvcopy is now used
in the snap command to copy the dump data from the first mirror copy only,
and thus obtain the original dump data without corruption.
136 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Chapter 3. Striping

This chapter describes the striping function included in the AIX Logical
Volume Manager. We will see the concepts and study real examples.The
mirroring and striping function, introduced in AIX Version 4.3.3, is also
described. The performance issues of using striped logical volumes are
covered in Chapter 7, “Performance” on page 303.

3.1 Concept

The striping mechanism, also known as RAID 0, is a technology that was
developed to achieve I/O performance gain. The basic concept of striping is
that in the write phase, each data is chopped into small pieces (called striped
unit, or chunk) and these chunks are written to separate physical volumes in
parallel. In the read phase, these chunks are read from those separate
physical volumes in parallel, and re-assembled into the actual data. From the
high-availability point of the view, the striping function does not provide
redundancy by any means (except for the mirroring and striping function
introduced by AIX Version 4.3.3, refer to 3.3, “The mirror and stripe function”
on page 162). The striping function support was introduced in AIX Version
4.1.

This section describes the concept for the striping function and covers the
necessary information for managing striped logical volumes in AIX.

3.1.1 Basic schema of the striped logical volumes
This section attempts to provide basic schema for the striped logical volumes
using graphical explanations. In Figure 45, you have a volume group
(stripevg) that is composed of three physical volumes having the same size
(PV1, PV2, and PV3). A striped logical volume (stripelv) is created on this
volume group, which spreads over the three physical volumes.

Figure 45. The striped logical volume outline

PV2

VG: stripevg

LV: stripelv

PV3PV1
© Copyright IBM Corp. 2000 137

3.1.1.1 The logical partitions mapping scheme
In the striped logical volumes, all the logical partitions are mapped to physical
partitions on these physical volumes in a round-robin fashion (see Figure 46).
In this example, the logical partition 2 is mapped to physical partition 1 on the
first physical volume (PV1), and the logical partition 2 is mapped to the
physical partition 1 on the second physical volume (PV2), and so on. In other
words, the physical partitions are equally allocated on each physical volume.

This logical partitions to physical partitions mapping scheme is achieved by
the inter-physical volume allocation set to maximum. For further information
about the inter-physical volume allocation, refer to 3.1.2, “Inter physical
volume allocation policy” on page 141.

Figure 46. The striped logical volume - Physical partition mapping

3.1.1.2 The physical partitions are divided into many chunks
When your applications access the striped logical volumes, the storage area
for each physical partition is not used contiguously. These physical partitions
are divided into chunks. The chunks size may be 4 KB, 8 KB, 16 KB, 32 KB,
64 KB, or 128 KB. This size is determined at the creation of the striped logical
volumes, and cannot be changed after.

The chunk size is also called stripe unit size or stripe length. The number of
the physical volumes that accommodate the striped logical volume is also
called stripe width.

In Figure 47, each physical partition is divided into chunks. Each of them is
represented as X-Y, where X is the physical partition number, and Y is the
chunk occurrence number in the physical partition.

LV: stripelv 1 2 3 4 119 120 LPs

PV1 PV2 PV3

LV: stripelv

1 2 3 1 2 3 1 2 3

LP number
LP number

PPs
138 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 47. Physical partitions are divided into many chunks

If your applications access this striped logical volume, then the AIX LVM
supplies the chunks in the following order: 1-1, 2-1, 3-1, 1-2, and so on, in a
round-robin fashion.

3.1.1.3 Write phase
In the write phase, a caller (like the journaled file system device driver) issues
one write I/O request to the AIX LVM device driver (step 1 in Figure 48). This
request is chopped into several chunks (step 2), and they are written to each
physical disk in parallel (step 3).

Since these three writes (to the chunks 1-1, 2-1, and 3-1) are achieved on
separate drives, these writes are executed in parallel. It improves the write
performance compared to one drive. Subsequently, if all the writes to each
physical volume return with no error (step 4), then the LVM device driver
returns a success to the caller (step 5). Otherwise, it returns an error to the
caller.

str iped LV

1-11-2 1 -3 2-12-2 2 -3 3-13-2 3 -3

LP 1

LP 7

LP 4 LP 2

LP 8

LP 5 LP 3

LP 9

LP 6

Chunks

X -Y

In the striped logical volumes, not only the allocation of the physical
partitions, but also the chunks, are accessed on each physical volume in
this round-robin fashion.

Note
Chapter 3. Striping 139

Figure 48. The striped logical volume - Write phase behavior

3.1.1.4 Read phase
In the read phase, a caller (like the journal file system device driver) issues
one read I/O request to the AIX LVM device driver (step 1 in Figure 49 on
page 141). This request is split into several read calls for chunks (step 2), and
these small reads are sent to each physical disk in parallel. Since these three
reads (from the chunks 1-1, 2-1, and 3-1) are achieved on separate drives,
these reads are executed in parallel (step 3). It improves the read
performance compared to one physical drive.

Subsequently, if all the reads to each physical volume return with no error
(step 4), the LVM device driver directly passes the memory pointers for all the
chunks that compose the data into the user’s memory area without
re-assembly (step 5). If one of the read calls for chunks failed, then the AIX
LVM device driver would return an error to the caller.

striped LV

1-11-2 1-3 2-12-2 2-3 3-13-2 3-3

LP 1

LP 7

LP 4 LP 2

LP 8

LP 5 LP 3

LP 9

LP 6

LVM device driver

3

4

3

4

3

4

1 5

2

4

140 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 49. The striped logical volume: The read phase

3.1.2 Inter physical volume allocation policy
The inter-physical volume allocation policy is one of the attributes of the
logical volumes. It stipulates how many physical volumes are used for the
allocation of the physical partitions for the logical volume. Usually (meaning
non-striped logical volume case) it is set to m (minimum) by default to
minimize the physical volumes that are used for the allocation of the physical
partitions of the logical volume. It is adequate, since if one of the physical
volumes that accommodates this logical volume fails, then the entire logical
volume will be lost.

striped LV

1-11-2 1-3 2-12-2 2-3 3-13-2 3-3

LP 1

LP 7

LP 4 LP 2

LP 8

LP 5 LP 3

LP 9

LP 6

3

4

3

4

3

4

1 5

2

5 5

LVM device driver

The AIX LVM does not re-assemble these chunks into one read request.
The chunks are read from each physical volume, then write into the caller’s
memory area directly.

Note
Chapter 3. Striping 141

To confirm the inter-physical volume allocation policy of the logical volume,
you can use the lslv command as shown:

In this example, the inter-physical volume allocation policy is set to minimum
(shown as minimum in the rectangle). Since this is not a striped logical
volume, there is no reason to set the inter-physical volume allocation policy to
maximum. It is the default value for non-striped logical volumes.

3.1.2.1 How does the inter-physical volume allocation policy work?
In most circumstances, there is no need to set the inter-physical volume
allocation policy set to maximum (x). However, you might want to know how it
works. The answer is described in the following sections.

Example of configurations
All the examples shown in this section are examined with the following
configuration:

• AIX Version 4.3.3

• RS/6000 model F50

• PPC604e 332MHz x 4 ways

• 512MB RAM

• 2 x 9.1GB SCSI2 F/W disk (hdisk0 and hdisk3)

• 4 x 4.5GB Ultra SCSI F/W disk (the other LVD connection disks)

Here is the listing of the disks on our system:

root@lorraine:/ [121] # lsdev -Cc disk
hdisk0 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 10-60-00-9,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 10-60-00-10,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk4 Available 30-58-00-9,0 16 Bit LVD SCSI Disk Drive

root@lorraine:/ [113] # lslv hd6
LOGICAL VOLUME: hd6 VOLUME GROUP: rootvg
LV IDENTIFIER: 00041631ae592047.2 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: paging WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 64 PPs: 64
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV?: yes
142 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

hdisk5 Available 30-58-00-10,0 16 Bit LVD SCSI Disk Drive

Here is the creation of the volume group, which will contain the striped logical
volumes:

root@lorraine:/ [122] # mkvg -y pmstripevg -s 8 -t 2 hdisk1
0516-1193 mkvg: WARNING, once this operation is completed, volume group pmstripevg

cannot be imported into AIX 430 or lower versions. Continue (y/n)?
y
pmstripevg
root@lorraine:/ [137] # lsvg pmstripevg
VOLUME GROUP: pmstripevg VG IDENTIFIER: 00041631540cc083
VG STATE: active PP SIZE: 8 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 537 (4296 megabytes)
MAX LVs: 256 FREE PPs: 537 (4296 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 2032 MAX PVs: 16
root@lorraine:/ [129] # extendvg -f pmstripevg hdisk2
root@lorraine:/ [130] # extendvg -f pmstripevg hdisk4
root@lorraine:/ [131] # extendvg -f pmstripevg hdisk5
root@lorraine:/ [132] # lsvg
pmstripevg
rootvg

Here is the resulting volume group:

root@lorraine:/ [133] # lsvg pmstripevg
VOLUME GROUP: pmstripevg VG IDENTIFIER: 00041631540cc083
VG STATE: active PP SIZE: 8 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 2148 (17184 megabytes)
MAX LVs: 256 FREE PPs: 2148 (17184 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 3
TOTAL PVs: 4 VG DESCRIPTORS: 4
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 4 AUTO ON: yes
MAX PPs per PV: 2032 MAX PVs: 16

3.1.2.2 The poor man’s stripe
To create the logical volume with the inter-physical volume allocation policy
set to maximum (x), you can use following SMIT panel.

root@lorraine:/ [141] # smit lv
Add a Logical Volume

Enter the volume group name in the following dialog.

Add a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [pmstripevg] +
Chapter 3. Striping 143

Now enter the necessary information. In this example, we specified the
information shown in the rectangles in the following SMIT dialog panel
screen.

If you prefer the command line interface, you can use the following command:

root@lorraine:/ [146] # mklv -y pmstripelv -e x pmstripevg 8

To examine how the physical partitions are allocated, we use the lslv

command:

root@lorraine:/ [147] # lslv -m pmstripelv
pmstripelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk1
0002 0109 hdisk2
0003 0109 hdisk4
0004 0109 hdisk5
0005 0110 hdisk1
0006 0110 hdisk2
0007 0110 hdisk4
0008 0110 hdisk5

Figure 50 on page 145 shows the same information in a graphical output.

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [pmstripelv]

* VOLUME GROUP name pmstripevg
* Number of LOGICAL PARTITIONS [8] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]
144 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 50. The physical partition allocation of the poor man’s stripe

At first look, it looks like a striped logical volume. But, there is a distinct
difference between this logical volume and a striped logical volume since
there is no chunk level I/O striping benefit. Also, this physical volume
allocation does not provide any I/O performance gain, but also it provides
vulnerability (any disk fails and the logical volume is lost). This configuration
is not beneficial in most circumstances, and it is called a poor man’s stripe
(not an actual striped logical volume).

3.1.2.3 Pre-defined allocation policy
In a striped logical volume, the inter-physical volume allocation policy is
forcibly pre-defined as maximum to achieve the logical partitions mapping
scheme described in 3.1.1.1, “The logical partitions mapping scheme” on
page 138. It cannot be changed after the initial creation. If you try to force this
value, then you would see the error message described in “Prohibited options
of the mklv command with striping” on page 150.

For real examples of managing striped logical volumes, please refer to 3.2,
“Real examples” on page 152.

3.1.3 The reorganization relocation flag
The reorganization relocation flag is also one of the attributes of the logical
volumes. It stipulates whether the logical volume can be relocated or not. For

logical volume: pmstripely

PP number

LP number

PV 1: hdisk1 PV 2: hdisk2 PV 3: hdisk4

190 110

PV 4: hdisk5

1 2 3 4 5 6 7 8

190 110 190 110190 110
Chapter 3. Striping 145

non-striped logical volume case, it is set to y (relocatable) to allow the
relocation of the logical volume during the reorganization process.

The following descriptions are from the command reference of the mklv

command.

-r Relocate Sets the reorganization relocation flag. For striped logical
volumes, the Relocate parameter must be set to n (the default for
striped logical volumes). The Relocate parameter can be one of
the following:

y Allows the logical volume to be relocated during
reorganization. This is the default for relocation.

n Prevents the logical volume from being relocated during
reorganization.

To confirm the reorganization relocation flag, you can use the lslv command:

In this example, the reorganization relocation flag is set to yes (as shown in
the rectangle). Since this is not a striped logical volume, it is useful to allow
relocation during the reorganization process. This is the default value for
non-striped logical volumes.

3.1.3.1 Relocation flag for striped logical volumes
On the striped logical volumes, the reorganization relocation flag is forcibly
pre-defined as no (as shown in the rectangle).

root@lorraine:/ [113] # lslv hd6
LOGICAL VOLUME: hd6 VOLUME GROUP: rootvg
LV IDENTIFIER: 00041631ae592047.2 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: paging WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 64 PPs: 64
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV?: yes
146 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you try to force its value to yes, you will see following error message.

root@lorraine:/ [151] # chlv -r y stripelv
0516-1042 chlv: Cannot change a striped logical volume to relocatable.
0516-704 chlv: Unable to change logical volume stripelv.

This means that the striped logical volumes are never reorganized during the
execution of the reorgvg command. If the striped logical volume was
reorganized, then the physical partitions allocation policy might not fit the
logical partitions mapping scheme described in 3.1.1.1, “The logical partitions
mapping scheme” on page 138. It would cause the loss of the performance
benefit of the striped logical volumes.

3.1.3.2 Reorganization and migration
Reorganization and migration of physical partitions are two different tasks
and shouldn’t be confused. The reorganization (executed by the reorgvg

command) is a procedure that repacks the actual location of physical
partitions in one physical volume to generate contiguous allocation of the
physical partitions. The migration of physical partitions (executed by the
migratepv command) is a procedure that moves the entire physical partition
from one physical volume to another within a volume group.

This reorganization relocation flag does not prohibit the migration of the
physical disk that accommodates the striped logical volume.

3.1.4 Creation and extension of the striped logical volumes
This section provides some information and guidelines about the creation and
extension of the striped logical volumes.

• Specify a multiple of the strip width as logical partition number during the
initial creation of the striped logical volume.

root@lorraine:/ [106] # lslv stripelv
LOGICAL VOLUME: stripelv VOLUME GROUP: stripevg
LV IDENTIFIER: 000416313d5cbeb6.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 1024 PP SIZE: 8 megabyte(s)
COPIES: 1 SCHED POLICY: striped
LPs: 600 PPs: 600
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: maximum RELOCATABLE: no
INTRA-POLICY: middle UPPER BOUND: 3
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
STRIPE WIDTH: 3
STRIPE SIZE: 64K
Chapter 3. Striping 147

• You cannot change the stripe width after the initial creation.

• Extension is made by multiples of the strip width.

3.1.4.1 Specify a multiple of the strip width during initial creation
If you attempt to create a striped logical volume, you can only specify a
number of the logical partition that is a multiple of the strip width.

For example, in Figure 51, if you attempt to create a striped logical volume on
three physical volumes, you can only specify multiplies of three as the logical
partition number. If you specified anything else than these values, then it will
round up to the next multiple of the width. If you specified two as the logical
partition number, then it is round up to three.

Figure 51. The LP allocation of the striped logical volume

These logical partitions allocated must be equally located on every physical
volume composing the striped logical volume. In our example, we have a
volume group composed of two physical volumes (see Figure 52). One is 4.5
GB (named hdisk2) and the other 9.1 GB (named hdisk3). We choose 4 MB
as the physical partition size for this volume group, then there are 537 PPs on
disk 2 and 1084 PPs on disk 3.

LV: stripelv

LP1 LP2 LP3

width = 3
148 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 52. The impossible LP allocation in a striped logical volume

In this example, if we create a striped logical volume in this volume group,
then only 1074 logical partitions (537 physical partitions per each physical
volume) can be allocated to this striped logical volume. Otherwise, the
attempt to create the striped logical volumes will fail (see “Erroneous
situations” on page 161). The remaining space of the physical volume hdisk3
(shown as the hatched portion under the horizontal bold line in Figure 52)
cannot be used in striped logical volume. You can still use this space for
non-striped logical volumes, but this can affect the I/O performance of the
striped logical volumes.

3.1.4.2 Cannot change the stripe width
You cannot add new physical volumes to an already created striped volume
(see Figure 53). To do this, you have to recreate it (you have to create a
backup of it and restore it). Because the actual data is already striped on the
physical volumes, if new physical volumes are added to this striped logical
volume, all the data that reside on physical volumes have to be re-striped to
the newly added physical volume physical partitions.

1 2 3 4 5 6 7 8

9 10

1 2 3 4 5 6 7 8

910

537 537

hdisk2 (4.5GB) hdisk3 (9.1GB)

PP number

1084

You cannot add new physical volume to already-created striped logical
volumes. In another words, you cannot change the stripe width of an
existing striped logical volume.

Note
Chapter 3. Striping 149

Figure 53. Impossible extension of the striped logical volume

3.1.4.3 Extension is made by stripe width base
To extend the striped logical volumes, you have to specify a multiple of the
stripe width as logical partition number (see “How to extend the striped logical
volumes” on page 158). Otherwise the attempt to extend the striped logical
volumes will fail (see Figure 54). In this case, since the striped logical volume
scatters over three physical volumes, the stripe width is three. Therefore, you
have to specify a multiple of three as the extension logical partition number.

Figure 54. Impossible extension of the striped logical volume with wrong width

3.1.5 Prohibited options of the mklv command with striping
To create the striped logical volume, you must use the -S option of the mklv

command. This optional flag specifies that the logical volume is designated
as a striped logical volume. There is a fundamental difference between the
mirroring and striping function, of course, other than the functionality itself.
You can always mirror an existing non-mirrored logical volume (including a
striped logical volume from AIX Version 4.3.3), and also remove the mirror

LV: stripelv

 VG: stripevg

PV1 PV2 PV3 PV4

PV1 PV2 PV3

LV: stripelv

 VG: stripevg
150 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

from the mirrored logical volumes. But, you cannot convert a non-striped
logical volume to a striped logical volume, or vice versa. The only way to
create the striped logical volumes is to explicitly specify the -S flag on the
mklv command line or use the corresponding SMIT panel.

The AIX LVM provides many ways to control the physical partitions allocation
of the logical volumes. They are forced by optional flags of the mklv command.
But, if you attempt to create a striped logical volume, some of these optional
flags cannot be used with the -S flag. For example:

• On AIX Version 4.3.3:

root@lorraine:/ [168] # mklv -y stripelv -e x -S 64K workvg 2 hdisk2 hdisk4
0516-1240 mklv: The -e, -d, -m, -s options cannot be

used with striped logical volumes.
Usage: mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]

[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate] [-s Strict]
[-t Type] [-u UpperBound] [-v Verify] [-w MWC] [-x MaxLPs] [-y LVname]
[-Y Prefix] [-S StripeSize] [-U userid] [-G groupid] [-P modes]
VGname NumberOfLPs [PVname...]

Makes a logical volume.
Note: You must be a root user to set the IDs and modes

and these are applicable for big volume group format LVs only.

• On AIX Version 4.3.2:

root@pukupuku:/ [251] # mklv -y stripelv -e x -S 64K workvg 2 hdisk2 hdisk4
0516-1032 mklv: The -e, -m, -s, -u, -w, -d and -c options cannot be

used with striped logical volumes (-S option).
Usage: mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]

[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate] [-s Strict]
[-t Type] [-u UpperBound] [-v Verify] [-w MWC] [-x MaxLPs] [-y LVname]
[-Y Prefix] [-S StripeSize] [-U userid] [-G groupid] [-P modes]
VGname NumberOfLPs [PVname...]

Makes a logical volume.
Note: You must be a root user to set the IDs and modes

and these are applicable for big volume group format LVs only.

The exclusive optional flags of the -S flag for the mklv command are:

Table 13. The prohibited optional flags with -S of the mklv command

The differences shown for Version 4.3.3 come from the support of the
mirroring and striping function (see 3.3, “The mirror and stripe function” on
page 162).

As a result of these exclusive optional flags, you do not have the ability to
precisely control the physical partitions allocation of the logical volumes.

AIX Version Prohibited optional flags with -S

4.1 to 4.3.2 -c, -d, -e, -m, -s, -u, -w

4.3.3 -e, -d, -m, -s
Chapter 3. Striping 151

3.1.6 Prohibited options of the extendlv command with striping
Some limitations also apply to the extendlv command, used to extend the
logical volume size. If you attempt to extend the striped logical volumes, the
following two command options are prohibited.

• -m mapfile option

• Physical volume names

3.1.7 Summary
As a conclusion for this section, it is recommended that you keep in mind the
following rules.

• Due to the lack of precise control for the physical partitions allocation, you
may not place the striped logical volumes as you want. The best way to
avoid this situation is to dedicate a volume group that accommodates the
striped logical volumes. It also benefits the I/O performance.

• If you create a striped logical volume, then you should choose disks that
have same characteristics (especially size). Otherwise, you cannot use the
entire surface of the physical volumes for the striped logical volumes.

• If you cannot avoid using different sized physical volumes for creating the
striped logical volumes, and, if you have to use the rest of the space of the
larger size physical volume(s), you should minimize the I/O activity on that
portion. Otherwise, that activity might affect the striped logical I/O
performance and you might loose the benefit of the striped logical
volumes.

3.2 Real examples

This section focuses on real examples about managing striped logical
volumes.

3.2.1 Example configurations
All the examples shown in this section are examined in the same environment
as the one seen in“Example of configurations” on page 142.

root@lorraine:/ [259] # lsdev -Cc disk
hdisk0 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 10-60-00-9,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 10-60-00-10,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk4 Available 30-58-00-9,0 16 Bit LVD SCSI Disk Drive
hdisk5 Available 30-58-00-10,0 16 Bit LVD SCSI Disk Drive
root@lorraine:/ [260] # mkvg -y stripevg -s 8 -t 2 hdisk2
0516-1193 mkvg: WARNING, once this operation is completed, volume group stripevg

cannot be imported into AIX 430 or lower versions. Continue (y/n)?
152 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

y
stripevg
root@lorraine:/ [261] # extendvg stripevg hdisk4
root@lorraine:/ [262] # extendvg stripevg hdisk5
root@lorraine:/ [272] # lsvg
stripevg
rootvg
root@lorraine:/ [273] # lspv
hdisk0 0004163128f3de5a rootvg
hdisk1 000416314bd724bc None
hdisk2 0004163192b1d7f5 stripevg
hdisk3 000416314bd749f8 None
hdisk4 000416314bdada38 stripevg
hdisk5 0004163192b1d297 stripevg
root@lorraine:/ [274] # lsvg stripevg
VOLUME GROUP: stripevg VG IDENTIFIER: 000416313d581469
VG STATE: active PP SIZE: 8 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 1611 (12888 megabytes)
MAX LVs: 256 FREE PPs: 1611 (12888 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 3 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 3 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32

3.2.2 How to create the striped logical volumes
To create a striped logical volume, you can use the SMIT interface or the mklv

command directly. In either case, there are three ways to specify the
necessary information to create a striped logical volume.

• Specify all physical volume names directly.

• Specify the maximum number of physical volumes allocated to the striped
logical volume.

• Specify both of the options above.

The -u option of the mklv command is used to specify the maximum number of
physical volumes used for the physical partition allocation of this striped
logical volume. It is described in the command reference of the mklv

command as follow:

-u UpperBound Set the maximum number of physical volumes for new
allocation. The value of the Upperbound variable should
be between one and the total number of physical volumes.
When using striped logical volumes or super strictness,

In this example, the stripevg volume group is created with the -t factor as 2.
You can see this from the mkvg command line options.

Note
Chapter 3. Striping 153

the upper bound indicates the maximum number of
physical volumes allowed for each mirror copy.

You might get confused on which options are taken if both options are
specified during the initial creation of a striped logical volume. However, the
rule is simple. The -u option is just ignored if both options are specified.

3.2.2.1 Specifying the physical volume names
In this case, you have to explicitly specify the physical volume names for the
striped logical volume. The following example shows how to create a logical
volume using SMIT.

root@lorraine:/ [288] # smit lv
Add a Logical Volume

In the following dialog, you have to specify the following values in addition to
the logical volume name.

• Number of LOGICAL PARTITIONS

• PHYSICAL VOLUME names

• Stripe size

When creating a super strict logical volume, you must specify physical
volumes or use the -u flag.

Note

Add a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [stripevg] +
154 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you prefer the command line interface, you can use the following command:

root@lorraine:/ [290] # mklv -y stripelv -S 64K stripevg 300 hdisk2 hdisk4 hdisk5

After the execution of this command, you will have the following physical
partition allocation map for the striped logical volume. This result is also
represented in Figure 55 on page 156.

root@lorraine:/ [292] # lslv -m stripelv
stripelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk2
0002 0109 hdisk4
0003 0109 hdisk5
0004 0110 hdisk2
0005 0110 hdisk4
0006 0110 hdisk5
(snipped many lines)
0295 0207 hdisk2
0296 0207 hdisk4
0297 0207 hdisk5
0298 0208 hdisk2
0299 0208 hdisk4
0300 0208 hdisk5

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [stripelv]

* VOLUME GROUP name stripevg
* Number of LOGICAL PARTITIONS [300] #
PHYSICAL VOLUME names [hdisk2 hdisk4 hdisk5] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [64K] +

[BOTTOM]
Chapter 3. Striping 155

Figure 55. The LVs and the PVs mapping on the striped LV

3.2.2.2 Specifying the maximum number of physical volumes
In this case, you can specify the number of physical volumes that compose
the logical volume. If you specify a number smaller than the number of the
physical volumes in the volume group, the AIX LVM sequentially selects
physical volumes up to the number specified. The following example shows
how to create the logical volume using SMIT.

root@lorraine:/ [288] # smit lv
Add a Logical Volume

In the following dialog, you have to specify the following values in addition to
the logical volume name.

• Number of LOGICAL PARTITIONS

• MAXIMUM NUMBER of PHYSICAL VOLUMES to use for allocation

• Stripe size

 190 110 111 112

 205 206 207 208

 190 110 111 112

 205 206 207 208

 190 110 111 112

 205 206 207 208

striped logical volume: stripelv

PP number

LP number

PV 1: hdisk2 PV 2: hdisk4 PV 3: hdisk5

1 2 3 4 297 298 299 300

Add a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [stripevg] +
156 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you prefer the command line interface, you can use the following command:

root@lorraine:/ [290] # mklv -y stripelv -u 2 -S 64K stripevg 300

Here is the result of the execution of this command:

root@lorraine:/ [294] # lslv -m stripelv
stripelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk2
0002 0109 hdisk4
0003 0110 hdisk2
0004 0110 hdisk4
(snipped many lines)
0297 0257 hdisk2
0298 0257 hdisk4
0299 0258 hdisk2
0300 0258 hdisk4

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [stripelv]

* VOLUME GROUP name stripevg
* Number of LOGICAL PARTITIONS [300] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [2] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [64K] +

[BOTTOM]
Chapter 3. Striping 157

Figure 56. The LVs and the PVs mapping on the striped LV (2 PV case)

If you specify both the -u option and the physical volume names at the mklv

command execution, then the -u option is ignored. For example, if you invoke:

root@lorraine:/ [290] # mklv -y stripelv -u 2-S 64K stripevg 300 hdisk2 hdisk4 hdisk5

The result of the above execution will show the same physical partition
allocation map than the striped logical volume shown in 3.2.2.1, “Specifying
the physical volume names” on page 154.

3.2.3 How to extend the striped logical volumes
To extend the logical volumes (not only the striped one), you may have to
increase the maximum logical partition number first (if the new logical volume
size is greater than 512 logical partitions).

In the following example, the maximum number of logical partition is
increased to 1024 using the SMIT interface.

root@lorraine:/ [288] # smit lv
Set Characteristic of a Logical Volume
Change a Logical Volume

 190 110 111 112

 255 256 257 258

 190 110 111 112

 255 256 257 258

striped logical volume: stripelv

PP number

LP number

PV 1: hdisk2 PV 2: hdisk4 PV 3: hdisk5

1 2 3 4 297 298 299 300
158 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Then enter the appropriate number as MAXIMUM NUMBER of LOGICAL
PARTITIONS. This number should be equal or greater than the logical
partition number of the striped logical volumes after its extension. In this
example, we specified 1024.

If you prefer the command line interface, you can use the following command:

root@lorraine:/ [331] # chlv -x 1024 stripelv

You can examine the result of this execution (shown as MAX LPs):

root@lorraine:/ [332] # lslv stripelv
LOGICAL VOLUME: stripelv VOLUME GROUP: stripevg
LV IDENTIFIER: 000416313d5cbeb6.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 1024 PP SIZE: 8 megabyte(s)
COPIES: 1 SCHED POLICY: striped
LPs: 300 PPs: 300

Change a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name [stripelv] +

Change a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Logical volume NAME stripelv
Logical volume TYPE [jfs]
POSITION on physical volume middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [3] #
to use for allocation

Allocate each logical partition copy s +
on a SEPARATE physical volume?

RELOCATE the logical volume during no +
reorganization?

Logical volume LABEL [None]
MAXIMUM NUMBER of LOGICAL PARTITIONS [1024] #
SCHEDULING POLICY for reading/writing parallel +

logical partition copies
PERMISSIONS read/write +
Enable BAD BLOCK relocation? yes +
Enable WRITE VERIFY? no +
Mirror Write Consistency? yes +

[BOTTOM]
Chapter 3. Striping 159

STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: maximum RELOCATABLE: no
INTRA-POLICY: middle UPPER BOUND: 3
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
STRIPE WIDTH: 3
STRIPE SIZE: 64K

The following example presents how to extend the striped logical volume by
300 logical partitions (it is a hundred times the stripe width, 3).

root@lorraine:/ [288] # smit lv
Set Characteristic of a Logical Volume
Increase the Size of a Logical Volume

Then input the appropriate number as Number of ADDITIONAL logical
partitions. In this example, we input 300.

If you prefer the command line interface, you can use the following command:

root@lorraine:/ [106] # extendlv stripelv 300

You can examine the result of this execution like this (shown as LPs):

Increase the Size of a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name [stripelv] +

Increase the Size of a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name stripelv
* Number of ADDITIONAL logical partitions [300] #
PHYSICAL VOLUME names [] +
POSITION on physical volume middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [3] #
to use for allocation

Allocate each logical partition copy s +
on a SEPARATE physical volume?

File containing ALLOCATION MAP []
160 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

3.2.4 Erroneous situations
To extend the striped logical volumes, you have to specify a multiple of the
stripe width as the logical partition number. Otherwise, you will see following
the error message.

root@lorraine:/ [101] # extendlv stripelv 1
0516-1036 extendlv: Striped logical volume size can only be an even

multiple of the striping width.
0516-788 extendlv: Unable to extend logical volume.
Usage: extendlv [-a IntraPolicy] [-e InterPolicy] [-m MapFile]

[-s Strict] [-u UpperBound] LVname NumberOfLPs [PVname...]
Extends the size of a logical volume.

You cannot specify the physical volume names as command line options of
the extendlv command either. Otherwise, you will see following the error
message.

root@lorraine:/ [103] # extendlv stripelv 4 hdisk2
0516-1040 extendlv: Physical volumes cannot be specified when extending the
striped logical volume.
Usage: extendlv [-a IntraPolicy] [-e InterPolicy] [-m MapFile]

[-s Strict] [-u UpperBound] LVname NumberOfLPs [PVname...]
Extends the size of a logical volume.

To overcome this situation, you have to remove the physical volume name on
the command line.

root@lorraine:/ [104] # extendlv stripelv 4

If you attempt to create and/or extend striped logical volumes beyond the
point where physical partitions cannot be allocated anymore (shown as bold
line in Figure 57 on page 162), then you will see the following error message.

root@lorraine:/ [123] # mklv -y stripe2lv -S 64K stripevg 1076 hdisk2 hdisk3
0516-1034 mklv: Not enough physical partitions in physical volume hdisk2.
0516-822 mklv: Unable to create logical volume.

root@lorraine:/ [106] # lslv stripelv
LOGICAL VOLUME: stripelv VOLUME GROUP: stripevg
LV IDENTIFIER: 000416313d5cbeb6.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 1024 PP SIZE: 8 megabyte(s)
COPIES: 1 SCHED POLICY: striped
LPs: 600 PPs: 600
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: maximum RELOCATABLE: no
INTRA-POLICY: middle UPPER BOUND: 3
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
STRIPE WIDTH: 3
STRIPE SIZE: 64K
Chapter 3. Striping 161

To overcome this situation, you should not specify more than 1074 logical
partition size on the command line.

root@lorraine:/ [124] # mklv -y stripe2lv -S 64K stripevg 1074 hdisk2 hdisk3

Figure 57. Erroneous situation

3.3 The mirror and stripe function

AIX Version 4.3.3 introduces the new mirroring and striping function (also
known as RAID 0+1 or RAID 10 technology). This function provides better
data availability at the cost of extra disks.

In the case of non-mirrored and striped logical volume, failure of one physical
volume causes the loss of the whole striped logical volume. There is no
redundancy. The mirroring and striping function prevents this situation from
happening by adding up to three mirrors to the striped logical volumes. One
failing disk in a striped mirror copy does not bring down the entire logical
volume. The remaining (working) disks in the striped mirror copy continue to
service striped units. Although the striped units on the failed disk are
inaccessible, the mirrored copies of these units are available from another
mirror. In this case, users are unaware that a disk is unavailable.

To support the mirroring and striping function, a new partition allocation policy
(super strict) is introduced in AIX Version 4.3.3. This policy prohibits
partitions from one mirror from sharing a disk with a second or third mirror.
But, why is the super strict allocation policy needed for the mirror and stripe
function?

1 2 3 4 5 6 7 8

910

537 537

1 2 3 4 5 6 7 8

9 10

hdisk2 (4.5GB) hdisk3 (9.1GB)

PP number

1084
162 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

3.3.1 Super strict allocation policy
AIX Version 4.3.3 introduces this new allocation policy type, super strict. This
option is specified to the mklv command as the s flag for the -s option. Here
are the possible flags for the strict option:

-s Strict Determines the strict allocation policy. Copies of a logical
volume can be allocated to share or not to share the same
physical volume. The strict parameter is represented by one of
the following:

y Sets a strict allocation, so copies for a logical partition
cannot share the same physical volume. This is the
default for allocation policy.

n Does not set a strict allocation policy. So copies for a
logical partition cannot share the same physical volume.

s Sets a super strict allocation policy, so that the partitions
allocated for one mirror copy cannot share a physical
volume with the partitions from another mirror copy.

3.3.1.1 Create the poor man’s stripe first, then mirror
Let us go back to the poor man’s stripe (3.1.2.2, “The poor man’s stripe” on
page 143). If you create the poor man’s striped logical volume (which scatters
over two physical volumes), then create a mirror copy, you will have the
following allocation for the physical partitions (see Figure 58 on page 164).

root@lorraine:/ [159] # mklv -y pmstripelv -e x pmstripevg 300 hdisk1 hdisk2
pmstripelv
root@lorraine:/ [163] # mklvcopy pmstripelv 2 hdisk4 hdisk5
root@lorraine:/ [164] # lslv -m pmstripelv
pmstripelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk1 0109 hdisk4
0002 0109 hdisk2 0109 hdisk5
0003 0110 hdisk1 0110 hdisk4
0004 0110 hdisk2 0110 hdisk5
(many lines are snipped off)
0297 0257 hdisk1 0257 hdisk4
0298 0257 hdisk2 0257 hdisk5
0299 0258 hdisk1 0258 hdisk4

The super strict policies and the mirroring and striping function are not
supported on AIX releases prior to AIX Version 4.3.3. You cannot import
volume groups to AIX Version 4.3.2 and lower if the volume group includes
this function.

Note
Chapter 3. Striping 163

From a system management perspective, this configuration is not bad
(actually, this allocation is the same as the one shown in Figure 62 on page
174). If either PV1 and PV2, or PV3 and PV4 fail, there is still a valid copy.

Figure 58. Create the poor man’s stripe with width 2, then mirror it

3.3.1.2 Create poor man’s stripe with mirror upon initial creation
However, if you create the poor man’s striped logical volume (which scatters
over two physical volumes) with mirror during the initial creation, then you will
have the following allocation of the physical partitions (see Figure 59 on page
165).

root@lorraine:/ [170] # mklv -y mpmstripelv -e x -c 2 pmstripevg 4 hdisk1 hdisk2 hdisk4
hdisk5
root@lorraine:/ [172] # lslv -m mpmstripelv
mpmstripelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk1 0110 hdisk2
0002 0109 hdisk2 0110 hdisk4
0003 0109 hdisk4 0110 hdisk5
0004 0109 hdisk5 0110 hdisk1

 190 110 111 112

 255 256 257 258

 190 110 111 112

 255 256 257 258

 190 110 111 112

 255 256 257 258

mirrored poor man'sstriped logical volume: pmstripelv

PP number

LP number

PV 1: hdisk1 PV 2: hdisk2

PV 3: hdisk3

1 2 3 4 297 298 299 300

 190 110 111 112

 255 256 257 258

PV 4: hdisk4
164 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 59. Create poor man’s stripe with width 2 with mirror upon initial creation

This is a very bad configuration. Any two disks failing will cause the loss of
the entire logical volume. It is difficult to add or remove a mirror to or from this
allocation, since each copy shares its physical volumes with another mirror
(each mirror is represented with rectangles of different patterns in Figure 59).

The reason for this allocation is very simple; you instructed the system to do
so. Since you specified both the -e x option (inter-physical volume allocation
set to maximum) and the -c 2 option (create two copy upon initial creation),
then AIX LVM attempts to do its best. This bad configuration is not desirable,
but it still conforms to the strict allocation policy (shown in the rectangle in the
following example), since every copy of the specific logical partition exists on
a separate physical volume.

mirrored poor man'slogical volume: mpmstripelv

PP number

LP number

PV 1: hdisk1 PV 2: hdisk2 PV 3: hdisk4

190 110

PV 4: hdisk5

190 110 190 110190 110

1 2 3 4

root@lorraine:/ [173] # lslv mpmstripelv
LOGICAL VOLUME: mpmstripelv VOLUME GROUP: pmstripevg
LV IDENTIFIER: 00041631540cc083.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 8 megabyte(s)
COPIES: 2 SCHED POLICY: parallel
LPs: 4 PPs: 8
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: maximum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes
Chapter 3. Striping 165

In another words, the strict allocation policy cannot prohibit this bad
configuration. This is the reason why supporting the mirror and stripe function
requires a super strict allocation policy.

3.3.1.3 Initial creation with mirror and super strict allocation policy
If you specified the super strict allocation policy in the previous example, you
will have the following allocation of the physical partitions (see Figure 60).
You can force the super strict allocation policy with the -S s option on the
command line.

root@lorraine:/ [180] # mklv -y ssmpmstripelv -e x -c 2 -s s pmstripevg 4 hdisk1 hdisk2
hdisk4 hdisk5
root@lorraine:/ [180] # lslv -m ssmpmstripelv
smpmstripelv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk1 0109 hdisk2
0002 0109 hdisk4 0109 hdisk5
0003 0110 hdisk1 0110 hdisk2
0004 0110 hdisk4 0110 hdisk5

To confirm the super strict allocation policy, you can use the lslv command:

root@lorraine:/ [281] # lslv ssmpmstripelv
LOGICAL VOLUME: ssmpmstripelv VOLUME GROUP: pmstripevg
LV IDENTIFIER: 00041631540cc083.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 8 megabyte(s)
COPIES: 2 SCHED POLICY: parallel
LPs: 4 PPs: 8
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: maximum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 2
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes
166 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 60. Mirror with super strict allocation policy

This allocation is almost the same as the one shown in “Create the poor
man’s stripe first, then mirror” on page 163, except for the allocated physical
partition number. This allocation is not only desirable, but also necessary for
a correct management of a mirror and stripe logical volume.

The only way to guarantee the allocation of the physical partition represented
in Figure 60 is by adopting the super strict allocation policy for the mirrored
and striped logical volumes. In fact, this is the default value for the newly
created striped logical volume, and it forces the super strict style allocation.
Using this facility, each mirror (shown with a different pattern of rectangles in
Figure 61) does not share the physical volumes with other mirrors. It enables
you to add or remove mirror(s) from the striped logical volumes.

 190 110

 190 110

 190 110

 190 110

PP number

LP number

PV 1: hdisk1 PV 2: hdisk2

PV 3: hdisk3

1 2 3 4

PV 4: hdisk4
Chapter 3. Striping 167

Figure 61. Striped logical volume (mirrored with super strict)

3.3.2 How to manage a mirrored and striped logical volume
This section shows real examples of managing mirrored and striped logical
volumes.

3.3.2.1 Example configurations
All the examples shown in this section are run with the same environment as
the one used in “Example of configurations” on page 142. The following
configurations are also made.

root@lorraine:/ [390] # lsdev -Cc disk
hdisk0 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 10-60-00-9,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 10-60-00-10,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk4 Available 30-58-00-9,0 16 Bit LVD SCSI Disk Drive
hdisk5 Available 30-58-00-10,0 16 Bit LVD SCSI Disk Drive
root@lorraine:/ [391] # mkvg -y raid10vg -s 8 -t 2 hdisk1
0516-1193 mkvg: WARNING, once this operation is completed, volume group raid10vg

cannot be imported into AIX 430 or lower versions. Continue (y/n)?
y
raid10vg
root@lorraine:/ [392] # extendvg raid10vg hdisk2
root@lorraine:/ [393] # extendvg raid10vg hdisk4
root@lorraine:/ [394] # extendvg raid10vg hdisk5

 2' 5' 8' 11'

 1 2 3 4

 1' 4' 7' 10'

PV1

PV4 PV5

 3' 6' 9' 12'

 2 5 8 11 3 6 9 12

PV2 PV3

PV6

striped

LV

Mirror 1

Mirror 2
168 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

root@lorraine:/ [395] # lsvg
stripevg
rootvg
root@lorraine:/ [396] # lspv
hdisk0 0004163128f3de5a rootvg
hdisk1 000416314bd724bc raid10vg
hdisk2 0004163192b1d7f5 raid10vg
hdisk3 000416314bd749f8 temp
hdisk4 000416314bdada38 raid10vg
hdisk5 0004163192b1d297 raid10vg
root@lorraine:/ [397] # lsvg raid10vg
VOLUME GROUP: raid10vg VG IDENTIFIER: 000416313d5cbeb6
VG STATE: active PP SIZE: 8 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 2148 (17184 megabytes)
MAX LVs: 256 FREE PPs: 2148 (17184 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 3
TOTAL PVs: 4 VG DESCRIPTORS: 4
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 4 AUTO ON: yes
MAX PPs per PV: 2032 MAX PVs: 16

3.3.2.2 Real example of the creation
To create a mirrored and striped logical volume, you can choose one of the
following ways:

• Create the striped logical volume, then mirror and synchronize it.

Create the striped logical volume (not mirrored yet) first, then create the
mirror of this logical volume later. In this case, you have to instruct to
synchronize each copy explicitly.

• Specify to create the mirrors during the initial creation.

Specify to create the mirrors of the striped logical volume upon the initial
creation time.

The second way is the easiest to achieve this task. But in the striped logical
volume case, due to the lack of ability to precisely control the physical
partitions allocation, it is hard to achieve the physical partition allocation that
you want to reach, except for a brand new installation.

Thus, the recommended way is the first one. Carefully plan the physical
partition allocation of the striped logical volume, then create it, and, finally,
mirror it.

Create the striped logical volume, then mirror and synchronize it
1. Create the striped logical volume.

To create a striped logical volume, you have to explicitly specify the
following information.

a. Where you want to create the striped logical volumes
Chapter 3. Striping 169

You have to choose one of the followings.

1. The physical volume names.

You have to specify the physical volume names explicitly.

2. The maximum physical volume number.

You have to specify this number explicitly using the -u option of the
mklv command or in the SMIT dialog.

3. Both of the above.

b. The stripe unit size.

You have to specify this number explicitly using the -S option of the mklv

command or in the SMIT dialog.

The following example shows this procedure using SMIT.

root@lorraine:/ [53] # smit lv
Add a Logical Volume

Enter the volume group name in the following dialog.

Input the necessary information. In this example, we specified the
information shown in the rectangles in the following SMIT dialog panel
screen.

Add a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [raid10vg] +
170 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Then, you will see the following warning message. Press y and Enter.

If you prefer the command line interface, you can use the following
command:

root@lorraine:/ [378] # mklv -y raid10lv -S 64K raid10vg 300 hdisk1 hdisk2

2. Create the mirror of the striped logical volume.

To create the striped logical volume, you have to explicitly specify the
following information:

a. Where you want to create the mirror

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [raid10lv]

* VOLUME GROUP name raid10vg
* Number of LOGICAL PARTITIONS [300] #
PHYSICAL VOLUME names [hdisk1 hdisk2] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [64K] +

COMMAND STATUS

Command: running stdout: yes stderr: no

Before command completion, additional instructions may appear below.

0516-1224 mklv: WARNING, once this operation is completed, volume group raid10vg
cannot be imported into AIX 4.3.2 or lower versions. Continue (y/n)?

y

Chapter 3. Striping 171

You have to choose one of the following:

1. The physical volume names.

You have to specify the physical volume name list explicitly.

2. The maximum physical volume number.

You have to specify this number explicitly using the -u option of the
mklvcopy command or in the SMIT dialog.

3. Both of the above.

b. The copy number.

You have to specify this number explicitly using the -c option of the
mklvcopy command or in the SMIT dialog.

The following example shows this procedure using SMIT.

root@lorraine:/ [54] # smit lv
Set Characteristic of a Logical Volume

Add a Copy to a Logical Volume

Enter the logical volume name on the following dialog.

Input the necessary information. In this example, we specify the
information shown in the rectangles in the following SMIT dialog panel
screen.

Add Copies to a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGCAL GROUP name [raid10lv] +
172 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you prefer the command line interface, you can use the following
command:

root@lorraine:/ [386] # mklvcopy raid10lv 2 hdisk4 hdisk5
0516-1224 mklvcopy: WARNING, once this operation is completed, volume group raid10vg

cannot be imported into AIX 4.3.2 or lower versions. Continue (y/n)?

3. Examine the physical partitions allocation of the striped and mirrored
logical volume.

To perform this step, you can use the following command option -m of the
lslv command. It is also graphically represented in Figure 62 on page
174.

root@lorraine:/ [388] # lslv -m raid10lv
raid10lv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk1 0109 hdisk4
0002 0109 hdisk2 0109 hdisk5
0003 0110 hdisk1 0110 hdisk4
0004 0110 hdisk2 0110 hdisk5
(many lines are snipped off)
0297 0257 hdisk1 0257 hdisk4
0298 0257 hdisk2 0257 hdisk5
0299 0258 hdisk1 0258 hdisk4
0300 0258 hdisk2 0258 hdisk5

Add Copies to a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name raid10lv
* NEW TOTAL number of logical partition 2+

copies
PHYSICAL VOLUME names [hdisk4 hdisk5] +
POSITION on physical volume middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [2] #
to use for allocation

Allocate each logical partition copy s +
on a SEPARATE physical volume?

File containing ALLOCATION MAP []
SYNCHRONIZE the data in the new no +
logical partition copies?
Chapter 3. Striping 173

Figure 62. LVs and PVs mapping of a mirrored and striped logical volume

4. Synchronize the mirror

To synchronize the copies of the specific logical volume, you have to
explicitly specify the logical volume name.

You can specify the concurrency during synchronization (maximum
number of partitions synchronize in parallel). To force this, you have to
explicitly specify the -P option in the syncvg command or in the SMIT
dialog.

The following example shows this procedure using the SMIT.

root@lorraine:/ [55] # smit vg
Synchronize LVM Mirrors

Synchronize by Logical Volume

Enter the necessary information. In this example, we specify the
information shown in the rectangles in the following SMIT dialog.

PV2: hdisk2

109110 111112

255256 257258

PV1: hdisk1

1 2 3 4 297298 299300

109110 111112

PP number

LP number

255256 257258

PV3: hdisk3

109110 111112

255256 257258

PV4: hdisk4

109110 111112

255256 257258
174 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you prefer the command line interface, you can use the following
command:

root@lorraine:/ [410] # syncvg -l -P 6 raid10lv

Specify to create the mirrors during the initial creation
1. If you would like to specify to create the mirrors of the striped logical

volume upon initial creation time, then you have to explicitly specify the
following information.

a. Where you want to create the striped logical volumes

You have to choose one of the following:

1. The physical volume names

You have to specify the physical volume names explicitly.

2. The maximum physical volume number

You have to specify this number explicitly using the -u option of the
mklv command or in the SMIT dialog.

3. Both of the above

b. The copy number

You have to specify this number explicitly using the -c option of the mklv

command or in the SMIT dialog.

c. The stripe unit size

Specify this number explicitly using the -S option of the mklv command
or in the SMIT dialog.

Synchronize by Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name [raid10lv] +
Number of Partitions to Sync in Parallel [6] #
Synchronize All Partitions no +
Delay Writes to VG from other cluster nodes during no +
this Sync

The -P option of the syncvg command is introduced in AIX Version 4.3.2.
It specifies the concurrency during synchronization to enhance the
synchronization speed. The option takes from 1 to 32 as a value. In our
experience, the best performance value is six in most circumstances.

Note
Chapter 3. Striping 175

The following example shows this procedure using SMIT.

root@lorraine:/ [178] # smit lv
Add a Logical Volume

Enter the volume group name in the following dialog.

Input the necessary information. In this example, we specified the
information shown in the rectangles in the following SMIT dialog panel
screen.

Then, you will see the following warning message. Press y and Enter.

Add a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [raid10vg] +

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [raid10lv]

* VOLUME GROUP name raid10vg
* Number of LOGICAL PARTITIONS [300] #
PHYSICAL VOLUME names [hdisk1 hdisk2 hdisk4 hisk5] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 2 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [64K] +
176 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you prefer the command line interface, you can use the following
command:

root@lorraine:/ [188] # mklv -c 2 -y raid10lv -S 64K raid10vg 300 hdisk1 hdisk2 hdisk4
hdisk5

3.3.2.3 Real example of the extension
To extend the striped and mirrored logical volume, you have to explicitly
specify how many logical partitions will be extended.

The following example shows this procedure using SMIT.

root@lorraine:/ [60] # smit lv
Set Characteristic of a Logical Volume

Increase the Size of a Logical Volume

Enter the logical volume name on the following dialog, then press Enter.

Input the necessary information. In this example, we specify the information
shown in the rectangles in the following SMIT dialog panel screen.

COMMAND STATUS

Command: running stdout: yes stderr: no

Before command completion, additional instructions may appear below.

0516-1224 mklv: WARNING, once this operation is completed, volume group raid10vg
cannot be imported into AIX 4.3.2 or lower versions. Continue (y/n)?

y

In this case, the mklv command synchronizes all the copies
automatically. Therefore, you do not have to issue synchronize. In
exchange for this ease, you cannot have the concurrency of the
synchronization.

Note

Increase the Size of a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name [raid10lv] +
Chapter 3. Striping 177

If you prefer the command line interface, you can use the following command:

root@lorraine:/ [459] # extendlv raid10lv 100

After the extension of this mirrored striped logical volume, you will have the
following physical partition allocation (see Figure 63).

Increase the Size of a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name stripelv
* Number of ADDITIONAL logical partitions [300] #
PHYSICAL VOLUME names [] +
POSITION on physical volume middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [3] #
to use for allocation

Allocate each logical partition copy s +
on a SEPARATE physical volume?

File containing ALLOCATION MAP []
178 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 63. Extension of the mirrored and striped logical volume

3.3.2.4 Real example of the removing of a mirror
To remove one mirror of this mirrored and striped logical volume, you have to
explicitly specify the following information.

1. How many copies will be removed

You have to specify 1 or 2 as the value.

2. From what physical disks the copies will be removed (optional

You have to specify the physical disk names explicitly.

The following example shows this procedure using SMIT:

root@lorraine:/ [60] # smit lv
Set Characteristic of a Logical Volume

Remove a Copy from a Logical Volume

Input the logical volume name on the following dialog, then press Enter.

 190 110 111 112

 255 256 257 258

 190 110 111 112

 255 256 257 258

 190 110 111 112

 255 256 257 258

mirrored striped logical volume: raid10lv

PP number

LP number

PV 1: hdisk1 PV 2: hdisk2

PV 3: hdisk3

1 2 3 4 397 398 399 400

 190 110 111 112

 255 256 257 258

PV 4: hdisk4

 305 306 307 308 305 306 307 308

 305 306 307 308 305 306 307 308
Chapter 3. Striping 179

Input the necessary information. In this example, we specify the information
shown in the rectangles in the following SMIT dialog panel screen.

If you prefer the command line interface, you can use the following command
line:

root@lorraine:/ [462] # rmlvcopy raid10lv 1 hdisk4 hdisk5

After removing the mirror from this mirrored and striped logical volume, you
will have the following physical partition allocation (see Figure 64 on page
181).

Remove Copies from a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name [raid10lv] +

Remove Copies from a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name raid10lv
* NEW maximum number of logical partition 1 +

copies
PHYSICAL VOLUME names [hdisk4 hdisk5] +
180 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 64. Removal of one mirror from the mirrored and striped logical volume

 190 110 111 112

 255 256 257 258

 190 110 111 112

 255 256 257 258

mirrored striped logical volume: raid10lv

PP number

LP number

PV 1: hdisk1 PV 2: hdisk2

PV 3: hdisk3

1 2 3 4 297 298 299 300

PV 4: hdisk4

 190 110 111 112

 255 256 257 258

 190 110 111 112

 255 256 257 258
Chapter 3. Striping 181

182 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Chapter 4. Concurrent access volume groups

This chapter will discuss concurrent access volume groups and the related
software product from the concepts, real examples, shared disk environment
solutions, and the history of concurrent access.

4.1 Concept

The concurrent access volume group is a volume group that can be accessed
from more than one host system simultaneously (therefore it is called
concurrent access). This capability is achieved by applying the following
concepts and functional elements.

4.1.1 Basic schema of the concurrent access
Usually, in non-concurrent access mode, volume groups can be varied online
from only one host system. While one host system can access the physical
volumes, these are put into a reserved status. This means the physical
volumes are used by only one disk adapter. The reserved status disk drives
refuse the order issued from any other disk adapter (see Figure 65 on page
183).

Figure 65. Varied online with non-concurrent mode

In other words, the disk drives that compose the non-concurrent access mode
volume groups are put into reserved status permanently until varied offline.

Non-concurrent

access VG

System A System B

I'm reserved!

Sorry.
© Copyright IBM Corp. 2000 183

In concurrent access mode, the disk drives are not put into this reserved
state. The disk drives are not protected from any order from other adapters.
Any systems that share the same external I/O buses (usually, SCSI or SSA
buses), can send any I/O request to that disk drive (see Figure 66). Of
course, since actual physical disk drives are not multi-task capable, there is
always a possibility that the other system is using the physical disk drive at a
particular instant. The I/O requests that are issued later (shown as the arrow
with the check mark in Figure 66), could be suspended, blocked, or even
worse returned with time-out. The actual behavior depends on the hardware
related timing issue. Hence, in the concurrent access environment, the
supported hardware are limited as described in 4.1.4, “Limitations” on page
193.

Figure 66. Varied online with concurrent mode

Generally speaking, from the LVM perspective, there are two categories of
access models to the volume groups (including the concurrent access mode),
although there are no distinct differences in the hardware level I/O request.

• LVM configuration operations

• I/O operations to the logical volumes

In the concurrent access volume groups, the first category of operations is
under the control of the concurrent logical volume manager (CLVM). For

In SCSI terminology, the adapters that initiates the I/O operation to the disk
drives are called initiators, and the disk drives are called targets.

Note

Non-concurrent

access VG

System A System B

Connection

possible
184 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

detailed information about the CLVM, please refer to 4.1.3, “Concurrent
Logical Volume Manager (CLVM)” on page 187.

On the other hand, the second category of operations is not ruled by the AIX
LVM on the concurrent access volume groups. It is completely up to the
applications that access concurrent access volume groups to control who
does what with the logical volumes. The lack of this control could immediately
result in the data divergence problems among the systems that are sharing
the concurrent access volume groups. For further detailed information about
the HACMP cluster lock manager, please refer to 4.3.2, “Cluster lock
manager” on page 223.

4.1.2 Concurrent access capable and concurrent mode
Here is the first element to understand the concurrent access volume group:
There are two different attributes to designate the behavior of the concurrent
access volume group. They are called concurrent access capable and
concurrent mode. These are attributes of the volume group, but never show
up in normal (non-concurrent access) volume groups. See the following two
examples.

• Case of a normal volume group:

• Case of a concurrent access volume group:

The attributes shown in the rectangle in the following example are only
displayed for a concurrent access volume group. In this case, this volume
group is created as concurrent access capable and varied online with
non-concurrent mode.

- Concurrent access capable, with non-concurrent mode

root@goofy:/ # lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 0000107319fd31ee
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 159 (636 megabytes)
MAX LVs: 256 FREE PPs: 2 (8 megabytes)
LVs: 8 USED PPs: 157 (628 megabytes)
OPEN LVs: 7 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32
Chapter 4. Concurrent access volume groups 185

But, the concurrent access volume group can be varied online with
concurrent mode enabled:

- Concurrent access capable, with concurrent mode

The concurrent access volume groups can be accessed from multiple nodes
concurrently, if they are brought online with concurrent mode. If the
concurrent access volume groups are varied online with non-concurrent
mode, then only the node that issued the varyonvg command can access it.

To summarize these two attributes, we use the following table.

Table 14. Concurrent access capable and concurrent mode

Normal volume groups Concurrent access
volume groups

Concurrent access
capable

No (never displayed) Yes

root@goofy:/ # lsvg concvg
VOLUME GROUP: concvg VG IDENTIFIER: 000010736127caf7
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 203 (812 megabytes)
MAX LVs: 256 FREE PPs: 152 (608 megabytes)
LVs: 2 USED PPs: 51 (204 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: no
Concurrent: Capable Auto-Concurrent: Disabled
VG Mode: Non-Concurrent
Node ID: 1 Active Nodes: 2
MAX PPs per PV: 1016 MAX PVs: 32

root@goofy:/ # lsvg concvg
VOLUME GROUP: concvg VG IDENTIFIER: 000010736127caf7
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 203 (812 megabytes)
MAX LVs: 256 FREE PPs: 152 (608 megabytes)
LVs: 2 USED PPs: 51 (204 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: no
Concurrent: Capable Auto-Concurrent: Disabled
VG Mode: Concurrent
Node ID: 1 Active Nodes: 2
MAX PPs per PV: 1016 MAX PVs: 32
186 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

4.1.3 Concurrent Logical Volume Manager (CLVM)
The concurrent logical volume manager (CLVM) is a daemon subsystem that
is a part of the fileset bos.rte.lvm (after AIX Version 4.2. Please refer to 4.4,
“History of the concurrent access” on page 231). It has the following file path
name:

root@mickey:/ # whence clvmd
/usr/sbin/clvmd
root@mickey:/ # lslpp -w /usr/sbin/clvmd
File Fileset Type
--
/usr/sbin/clvmd bos.rte.lvm File

and the following ODM definition:

root@mickey:/ # odmget -q subsysname=clvmd SRCsubsys

SRCsubsys:
subsysname = "clvmd"
synonym = ""
cmdargs = ""
path = "/usr/sbin/clvmd"
uid = 0
auditid = 0
standin = "/dev/console"
standout = "/dev/console"
standerr = "/dev/console"
action = 2
multi = 0
contact = 2
svrkey = 0
svrmtype = 0
priority = 20
signorm = 15
sigforce = 15
display = 1
waittime = 20
grpname = ""

The CLVM has the responsibility for the following LVM configuration
operations on the concurrent access volume groups:

• Device configuration operation through the LVM device driver (varyon with
concurrent mode).

• Operations that require ODM updates:

- Adding and deleting the logical volumes

- Extending and reducing the logical volume sizes

Concurrent mode No (never displayed) Concurrent or
Non-Concurrent

Normal volume groups Concurrent access
volume groups
Chapter 4. Concurrent access volume groups 187

- Changing attributes of the logical volume

- Adding and removing copies of the mirrored logical volumes

4.1.3.1 Vary on with concurrent mode
To vary on the concurrent access volume group with concurrent mode, you
must have the following prerequisite conditions in addition to the CLVM
software installed.

• Supported physical shared disk configurations:

This condition is required by the HACMP/CRM product (High Availability
Cluster Multi-Processing for AIX, Concurrent Resource Manager feature).
For further detailed information about this product, please refer 4.3.1,
“HACMP and HACMP Enhanced Scalability (ES)” on page 219. Note that
we use the word HACMP to express both the HACMP and the HACMP/ES
products through this chapter.

• Installation of HACMP/CRM.

This installation is necessary for enabling the CLVM to have the ability to
vary on the concurrent access volume groups with concurrent mode. For
further detailed information about this installation, please refer to 4.2.3,
“Installing the HACMP concurrent resource manager (CRM)” on page 200.

• Necessary HACMP definition for the concurrent access volume group
(called concurrent resource group). For further detailed information about
this definition, please refer to 4.2.4, “Installing HACMP cluster
configurations: Standard method” on page 203.

The last prerequisite condition is officially documented in the command
reference of the mkvg and varyonvg command. The following descriptions are
excerpts from these command references.

•mkvg

-c Creates a Concurrent Capable volume group. Only use the -c flag
with the HACMP. It has no effect on volume groups and systems
not using the HACMP product. This flag only applies to AIX
Version 4.2 or later.

•varyonvg

-c Varies the volume group on in concurrent mode. This is only
possible if the volume group is Concurrent Capable and the
system has the HACMP product loaded and available. If neither is
true, the volume group will fail the varyon. This flag only applies to
AIX Version 4.2 or later. If the varyon process detects that there is
a new logical volume in the volume group whose name is already
188 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

being used for one of the existing logical volumes, then the varyon
will fail. You will need to rename the existing logical volume before
attempting the varyon again.

Suppose that there are three nodes that share the same external I/O bus, and
only two nodes (represented as the System A and the System B in Figure 67)
have the necessary HACMP definition (represented as the small black
rectangles). In this case, the System C, which does not have the necessary
HACMP definition, can not vary online this volume group in concurrent mode.

Figure 67. One system does not have any ODM definition

Note that the ability of the CLVM which prevents the unnecessary I/O access
is based on the LVM. If you bypass the LVM to access to the physical volumes
that compose the concurrent access volume group (for example, access the
/dev/hdiskX block device special file directly), there is no protection
mechanism provided anymore.

Usually, the concurrent access volume group is varied online by the HACMP
software upon the cluster manager startup using the cl_mode3 script which is
called in the node_up_local event. So, it is not necessary to vary online the

HACMP should always be configured to vary on concurrent volume
groups. Under normal runtime conditions, concurrent volume groups
should never be started at boot time or by hand.

Note

System A System CSystem B

Connection Possible

Please Join!

HACMP definition

Concurrent

access VG

You can't talk with me.

Since you don't know

correct access method.
Chapter 4. Concurrent access volume groups 189

concurrent access volume group manually, except for the troubleshooting
purpose in the initial setup and the problem determination phase.

For example, if you issue the varyonvg command using the -c option to vary
online the concurrent access volume group with concurrent mode manually,
then you will see the following startup message and find out that the clvmd is
automatically invoked.

root@goofy:/ # varyonvg -c concvg
0513-059 The clvmd Subsystem has been started. Subsystem PID is 13530.
root@goofy:/ # ps -ef | grep [c]lvmd

root 13530 3646 0 22:01:42 - 0:00 /usr/sbin/clvmd

The clvmd can be restarted using the varyonvg -c command or the startsrc

-s clvmd command.

4.1.3.2 Vary on with concurrent mode without prerequisites
If you create the concurrent access volume group and just attempt to vary it
online with concurrent mode forcibly without installing the HACMP/CRM, you
will see the following error message. The concurrent mode is forced using the
-c option of the varyonvg command.

root@goofy:/ # varyonvg -c concvg
0516-945 varyonvg: The library /usr/lib/libclstr.a is not found on the system.
Concurrent operations not allowed.
0516-008 varyonvg: LVM system call returned an unknown error code (-1).

You can not vary it online with concurrent mode. The library archive file is a
part of the fileset named cluster.base.client.lib which is included in the
HACMP product.

root@mickey:/ # lslpp -w /usr/lib/libclstr.a
File Fileset Type
--
/usr/lib/libclstr.a

cluster.base.client.lib File

Installing this fileset is still not enough. You have to create the necessary
definition with HACMP (called concurrent resource group). If you tried to bring
this volume group online without this definition, you will see the following
message.

root@goofy:/ # lslpp -L cluster.base.client.rte
cluster.base.client.lib 4.3.1.0 C HACMP Base Client Libraries.
root@goofy:/ # ls -l /usr/lib/libclstr.a
-r--r--r-- 1 bin system 140949 Jun 15 11:57 /usr/lib/libclstr.a
root@mickey:/ # varyonvg -c concvg
0513-059 The clvmd Subsystem has been started. Subsystem PID is 12680.
PV Status: hdisk1 0000098547779f9a PVACTIVE
0516-078 varyonvg: Incomplete device driver configuration. Probable

cause is the special file for the VG is missing. Execute
varyoffvg followed by varyonvg to build correct environment.

To fix this erroneous situation, you have to issue the following commands:
190 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

root@mickey:/ # varyonvg concvg
root@mickey:/ # varyoffvg concvg

In our experience with this test, the varyonvg and varyoffvg commands are not
enough to fix this situation. We have to issue the exportvg command and
re-create the volume group.

4.1.3.3 LVM configuration operations that require ODM updates
These operations include the following tasks and require ODM updates on
each node that shares the concurrent access volume groups.

• Adding and deleting the logical volumes

• Extending and reducing the logical volume sizes

• Changing some attributes of the logical volume

• Adding and removing the copy of the mirrored logical volumes

To enable these ODM updates on each node, two essential components, the
CLVM and the concurrent configuration scratch record, exist. The CLVM is a
daemon subsystem named clvmd that is invoked automatically upon the vary
on of the concurrent access volume group on each machine that shares the
same external I/O bus.

The concurrent configuration scratch record is eight sectors long and is
located in the first 128 sectors of the LVM reserved area. This reserved area
is located at the very beginning of each physical disk drive. The concurrent
configuration scratch records are defined in the /usr/include/sys/hd_psn.h
header file (shown in the rectangle in the following example).
Chapter 4. Concurrent access volume groups 191

If you attempt the LVM configuration operations that require ODM updates
(for example making the logical volume) on one system (called initiator node),
the instruction is then captured by the clvmd on that system.

If the clvmd on the other system (called passive node) is notified that there is a
LVM configuration operation attempt, it also read additional information along
with the operation message on the concurrent configuration scratch record.
Note that some hardware like the 9333 disk subsystem has a special
hardware register mechanism that is used for notification in this
communication process.

The clvmd performs the processing necessary to make the passive node's
view of the shared volume group consistent with the initiator node's view,
including updating the in-kernel copies of data structures related to the
volume group.

The ODM definition on the passive node is also updated as part of this step.
When this has been successfully completed, the passive node sends an
acknowledgement message back to the initiator node through the same
communication method. The progress of this update procedure can be
tracked on all nodes by monitoring the /tmp/clvmd.log file as shown below:

BEGIN:
VGID:1073 6127caf7 0 0
dev: 144000 (20/16384)
vgmajor = 51, op=62 node=1
Config op 62 (HD_CONFIG_TAKECONCH)
lvm_config(16958092, 0, HD_CONFIG_TAKECONCH) returns 0

/*
* This file contains the physical sector number (PSN) layout of
* reserved space on the hardfile.
*/
(some lines are snipped out)
#define PSN_BB_BAK 71 /* PSN of backup bad block directory */
#define PSN_CFG_TMP 120 /* PSN of concurrent config work record */
#define PSN_NONRSRVD 128 /* PSN of first non-reserved sector */

/*
* The concurrent config scratch sectors (120-128)
* are accessible thru LV0 as a negative offset from
* the VGSA area, which starts at PSN_NONRSRVD.
* Note that there is one config scratch area
* per pvol. When a config operation is sent across,
* We need to write each of them in turn.
* When reading them, we stop once we hit a match--
* (one which contains the same OP/NODEID/HINT as the config message)
*/
#define GETCFG_LSN(Vg, copy) \

(GETSA_LSN(Vg, copy<<1) - (PSN_NONRSRVD - PSN_CFG_TMP))
192 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

BEGIN:
VGID:1073 6127caf7 0 0
dev: 144000 (20/16384)
vgmajor = 51, op=80 node=1
Default config op 80
config op 80 succeeded
lvm_config(16958092, 0, HD_CONFIG_ACK) returns 0

BEGIN:
VGID:1073 6127caf7 0 0
dev: 144000 (20/16384)
vgmajor = 51, op=20 node=1
Config op 20 KADDLV SUCCESSFUL
Updating ODM...lvm_config(16958092, 0, HD_CONFIG_ACK) returns 0

BEGIN:
VGID:1073 6127caf7 0 0
dev: 144000 (20/16384)
vgmajor = 51, op=30 node=1
Config op 30 KEXTEND
VGID: 1073/6127caf7/0/0
lv_minor = 2
copies = 1
num lps = 50
num extred = 50

lp_num = 1, pv_num = 1, start_addr = 348416, mask = 0x0
lp_num = 2, pv_num = 1, start_addr = 356608, mask = 0x0
lp_num = 3, pv_num = 1, start_addr = 364800, mask = 0x0
lp_num = 4, pv_num = 1, start_addr = 372992, mask = 0x0
lp_num = 5, pv_num = 1, start_addr = 381184, mask = 0x0
lp_num = 6, pv_num = 1, start_addr = 389376, mask = 0x0
lp_num = 7, pv_num = 1, start_addr = 397568, mask = 0x0
lp_num = 8, pv_num = 1, start_addr = 405760, mask = 0x0
lp_num = 9, pv_num = 1, start_addr = 413952, mask = 0x0
lp_num = 10, pv_num = 1, start_addr = 422144, mask = 0x0

4.1.4 Limitations
The use of the concurrent access volume groups has some limitation listed as
follow:

• The hardware support is limited.

From the HACMP Version 4.3 AIX: Installation Guide, SC23-4278, only the
following external disk subsystems are supported by the HACMP/CRM:

- IBM 7135-110 and 210 RAIDiant disk array

- IBM 7137 disk array

- IBM 9333 serial disk subsystem

- IBM 7133 or 7131-405 SSA disk subsystem

- IBM 2105-B09 and 100 Versatile Storage Server
Chapter 4. Concurrent access volume groups 193

For new hardware support information, please consult the appropriate
HACMP service update information.

• Big VGDA format is not supported on the concurrent volume group.

In the big VGDA format volume groups, the additional information to
update the ODM on passive nodes is bigger than the normal VGDA format
volume groups. Therefore, the big VGDA format is not supported by the
concurrent access on the current implementation.

• JFS is not supported on the concurrent access volume groups.

All the UNIX implementations, including the AIX one, have the super block
cached in memory to accelerate access to the file system created on the
physical disk drive. There is no way to synchronize this super block cache
on each node that shares the concurrent access volume group. Hence,
JFS is not supported in the concurrent access volume groups.

• MWCC should be disabled on the concurrent access volume group.

The above explanation about the super block cache is also valid for the
MWCC (Mirror Write Consistency Checking) cache held in the memory on
each node that shares the concurrent access volume group. Therefore,
the MWCC should be disabled with the logical volume in concurrent
access volume group. It also implies that if all the cluster nodes failed at
the same time, there is no way to determine which copy is the correct one.

• Bad block relocation should be disabled on the concurrent access volume
groups.

The bad block relocation falls in the same category. Since the bad block
relocation record is also kept as a cache in the LVM device driver’s own
memory area on each node, there is no way to prohibit the LVM device
driver on each node from overwriting the bad block relocation records
used by other nodes. Therefore, the bad block relocation should be
disabled for every logical volume on the concurrent access volume group
as well.

The SCSI RAID systems do not offer online concurrent volume group
management.Those systems are not eligible either for the mirrorvg

command.

Note
194 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

4.2 Real examples

This section provides real examples about the following tasks:

• Creating the concurrent access volume groups

• Defining the concurrent resource group on HACMP

• Managing the shared LVM components for concurrent access

Actually, these tasks are organized to conform with the HACMP installation
steps which are explained indepth in the HACMP Version 4.3 AIX: Installation
Guide, SC23-4278.

4.2.1 Example configuration
All the examples shown in this section are tested on the following
configuration. This configuration consists of two RS/6000 model 520s. Each
node has its own rootvg (hdisk0), and shares three external 9333 serial link
disk subsystems (shown as hdisk1, hdisk2, hdisk3 in Figure 68 on page 196).
This section provides the results that are detailed in the following chapters of
HACMP Version 4.3 AIX: Installation Guide, SC23-4278.

• Chapter 4, “Configuring Networks”

• Chapter 5, “Installing Shared Disk Devices”

The last two limitations are not described (or at least not well explained) in
most AIX publications, even in the HACMP Installation Guide and
Administration Guide. Keep these limitations in mind.

Note
Chapter 4. Concurrent access volume groups 195

Figure 68. The mickey and goofy configuration

Figure 68 on page 196 presents the connections between the two machines
of our cluster. These nodes have the following devices configured.

• Machine A: mickey:

root@mickey:/ # lsdev -Cc adapter
(many lines are snipped out)
sa0 Available 00-00-S1 Standard I/O Serial Port 1
sa1 Available 00-00-S2 Standard I/O Serial Port 2
ent0 Available 00-01 Ethernet High-Performance LAN Adapter (8ef5)
tok0 Available 00-02 Token-Ring High-Performance Adapter (8fc8)
tok1 Available 00-04 Token-Ring High-Performance Adapter (8fc8)
serdasda0 Available 00-05 Serial-Link Disk Adapter
scsi0 Available 00-08 SCSI I/O Controller
serdasdc0 Defined 00-05-01 Serial-Link Four Port Controller
serdasdc1 Available 00-05-02 Serial-Link Four Port Controller
root@mickey:/ # lsdev -Cc disk
hdisk0 Available 00-08-00-0,0 1.0 GB SCSI Disk Drive
hdisk1 Available 00-05-02-01 857MB Serial-Link Disk Drive
hdisk2 Available 00-05-02-02 2.0GB Serial-Link Disk Drive
hdisk3 Available 00-05-02-03 2.0GB Serial-Link Disk Drive
root@mickey:/ # lspv
hdisk0 000147320d630b6e rootvg
hdisk1 0000098547779f9a None
hdisk2 000009854777a091 None
hdisk3 000009854777a5c6 None

mickey goofy

hdisk1

hdisk1

hdisk1

10Base2 Ethernet

RS/232C

/dev/tty0 /dev/tty0

en0 en0

tr0 tr1 tr0 tr1

Token Ring
196 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

root@mickey:/ # lsdev -Cc if
en0 Available Standard Ethernet Network Interface
et0 Defined IEEE 802.3 Ethernet Network Interface
lo0 Available Loopback Network Interface
tr0 Available Token Ring Network Interface
tr1 Available Token Ring Network Interface
root@mickey:/ # netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 2955 0 2990 0 0
lo0 16896 127 127.0.0.1 2955 0 2990 0 0
lo0 16896 ::1 2955 0 2990 0 0
en0 1500 link#2 2.60.8c.2f.46.db 199269 0 199644 0 0
en0 1500 100.100.100 100.100.100.1 199269 0 199644 0 0
tr0 1492 link#3 10.0.5a.a8.b4.84 295171 0 196023 0 0
tr0 1492 9.3.187.128 9.3.187.184 295171 0 196023 0 0
tr1 1492 link#4 10.0.5a.a8.3c.35 301283 0 172607 0 0
tr1 1492 9.3.187.192 9.3.187.251 301283 0 172607 0 0
root@mickey:/ # lsdev -Cc tty
tty0 Available 00-00-S1-00 Asynchronous Terminal
tty1 Available 00-00-S2-00 Asynchronous Terminal

• Machine: goofy:

root@goofy:/ # lsdev -Cc adapter
(many lines are snipped out)
sa0 Available 00-00-S1 Standard I/O Serial Port 1
sa1 Available 00-00-S2 Standard I/O Serial Port 2
serdasda0 Available 00-06 Serial-Link Disk Adapter
scsi0 Available 00-08 SCSI I/O Controller
ent0 Available 00-02 Ethernet High-Performance LAN Adapter (8ef5)
tok0 Available 00-01 Token-Ring High-Performance Adapter (8fc8)
tok1 Available 00-03 Token-Ring High-Performance Adapter (8fc8)
serdasdc0 Available 00-06-02 Serial-Link Four Port Controller
root@goofy:/ # lsdev -Cc disk
hdisk0 Available 00-08-00-0,0 670 MB SCSI Disk Drive
hdisk1 Available 00-06-02-01 857MB Serial-Link Disk Drive
hdisk2 Available 00-06-02-02 2.0GB Serial-Link Disk Drive
hdisk3 Available 00-06-02-03 2.0GB Serial-Link Disk Drive
hdisk0 000122180006c324 rootvg
hdisk1 0000098547779f9a None
hdisk2 000009854777a091 None
hdisk3 000009854777a5c6 None
root@goofy:/ # lsdev -Cc if
en0 Defined Standard Ethernet Network Interface
et0 Defined IEEE 802.3 Ethernet Network Interface
lo0 Available Loopback Network Interface
tr0 Available Token Ring Network Interface
tr1 Defined Token Ring Network Interface
root@goofy:/ # netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 85636 0 85670 0 0
lo0 16896 127 127.0.0.1 85636 0 85670 0 0
lo0 16896 ::1 85636 0 85670 0 0
en0 1500 link#2 2.60.8c.2f.47.42 199642 0 199269 0 0
en0 1500 100.100.100 100.100.100.2 199642 0 199269 0 0
tr0 1492 link#3 10.0.5a.a8.3b.fa 295082 0 189004 0 0
tr0 1492 9.3.187.128 9.3.187.186 295082 0 189004 0 0
tr1 1492 link#4 10.0.5a.a8.d1.f3 293320 0 172268 0 0
tr1 1492 9.3.187.192 9.3.187.252 293320 0 172268 0 0
root@goofy:/ # lsdev -Cc tty
tty0 Available 00-00-S1-00 Asynchronous Terminal
tty1 Available 00-00-S2-00 Asynchronous Terminal
Chapter 4. Concurrent access volume groups 197

Both nodes have the following local host table, and are already assigned the
IP addresses shown in Figure 69 to conform with the HACMP IP addressing
rule. Please note that the service, boot and standby addresses of the token
ring segment have 255.255.255.192 as subnet mask.

• The /etc/hosts file

/etc/hosts -- local host table.
#
127.0.0.1 loopback localhost # loopback (lo0) name/address
#
Node: mickey
#
100.100.100.1 mickey_en0 mickey # host alias trick.
netmask: 255.255.255.192
9.3.187.183 mickey mickey.itsc.austin.ibm.com
9.3.187.184 mickey_boot mickey_boot.itsc.austin.ibm.com
9.3.187.251 mickey_stby mickey_stby.itsc.austin.ibm.com
#
Node: goofy
#
100.100.100.2 goofy_en0 goofy # host alias trick.
netmask: 255.255.255.192
9.3.187.185 goofy goofy.itsc.austin.ibm.com
9.3.187.186 goofy_boot goofy_boot.itsc.austin.ibm.com
9.3.187.252 goofy_stby goofy_stby.itsc.austin.ibm.com
#
end of /etc/hosts -- file was not truncated.
#

Figure 69. IP address assignment

4.2.2 Defining shared LVM components for concurrent access
This section shows how to create the concurrent access volume group and
how to vary it online manually. These tasks are prerequisites for the actual
HACMP configuration steps. This section provides the results that are

mickey goofy

10Base2 Ethernet

RS/232C
/dev/tty0 /dev/tty0

en0 en0

tr0 tr1 tr0 tr1

Token Ring

mickey_boot mickey_stby goofy_boot goofy_stby

mickey_en0

mickey_stby

goofy_en0
198 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

explained in Chapter 6 of the HACMP Version 4.3 AIX: Installation Guide,
SC23-4278.

4.2.2.1 Creating a concurrent access volume group
To create a concurrent access volume group, you can use the following SMIT
panel:

root@goofy:/ # smitty vg
Add a Volume Group

In this panel, you have to specify the following necessary information:

• VOLUME GROUP name
• PHYSICAL VOLUME names
• Create VG Concurrent Capable

You have to set this flag to yes (as shown in the rectangle in this screen).

Then press Enter.

If you prefer the command line interface, you can use the following command
line.

root@goofy:/ # mkvg -c -y concvg hdisk1
concvg
mkvg: This concurrent capable volume group must be varied on manually.

As stated by the result of the mkvg command, this volume group is not varied
online upon the initial creation or system startup time.

4.2.2.2 Manual varyon with concurrent mode
To manually vary a concurrent access volume group online in concurrent
mode using an AIX command, you can use the following SMIT panel.

root@goofy:/ # smitty vg

Add a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
VOLUME GROUP name [concvg]
Physical partition SIZE in megabytes 4 +

* PHYSICAL VOLUME names [hdisk1] +
Activate volume group AUTOMATICALLY no +
at system restart?

Volume Group MAJOR NUMBER [] +#
Create VG Concurrent Capable? yes +
Auto-varyon in Concurrent Mode? no +
Chapter 4. Concurrent access volume groups 199

Activate a Volume Group

In this panel, you have to specify the following mandatory information:

• VOLUME GROUP name
• Varyon VG in Concurrent Mode?

You have to set this flag to yes (as shown in the rectangle in this screen).

Then press Enter.

If you prefer the command line interface, you can use the following command
line:

root@goofy:/ # varyonvg -c concvg

Please note that if you have a concurrent access volume group on non-SCSI
RAID devices (like 7135, 7137, 2105 Versatile Storage Server), then you have
to use the special command convaryonvg that is a part of the HACMP fileset
cluster.base.server.events to bring it online manually with concurrent mode.
To invoke this command, you can issue it like this:

/usr/sbin/cluster/events/utils/convaryonvg concvg

For further information about this command, please refer following
publication, HACMP for AIX Administration Guide Version 4.3.1, SC23-4279.

4.2.3 Installing the HACMP concurrent resource manager (CRM)
This section provides the results explained in Chapter 8 of the HACMP
Version 4.3 AIX: Installation Guide, SC23-4278.

To install the concurrent access feature of HACMP, you must install the
following fileset using SMIT:

Activate a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [concvg] +
RESYNCHRONIZE stale physical partitions? yes +
Activate volume group in SYSTEM no +
MANAGEMENT mode?

FORCE activation of the volume group? no +
Warning--this may cause loss of data
integrity.
Varyon VG in Concurrent Mode? yes +
200 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

root@mickey:/ # smitty install_latest

Input the source device or directory name of the installation image, then
press Enter.

Press the F4 key on the SOFTWARE to install line:

Choose the following package with the F7 key, then press Enter twice.

Note that the fileset, cluser.hc.rte (shown as the rectangle in the above
screen example), should be selected only if you have a configuration with a
standalone RS/6000 cluster environment (not RS/6000 SP systems) and with
Oracle Parallel Server running. For further detailed information about this
fileset, please refer to 4.3.4, “What is the HC daemon?” on page 228.

After completion of this task, you will have the following filesets installed. The
other filesets (except for the cluster.clvm.rte) are selected automatically.

Install and Update from ALL Available Software

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* INPUT device / directory for software [/dev/cd0] +

Install and Update from ALL Available Software

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* INPUT device / directory for software /dev/cd0
* SOFTWARE to install [] +
PREVIEW only? (install operation will NOT occur) no +
COMMIT software updates? yes +
SAVE replaced files? no +
AUTOMATICALLY install requisite software? yes +
EXTEND file systems if space needed? yes +
OVERWRITE same or newer versions? no +
VERIFY install and check file sizes? no +
DETAILED output? no +
Process multiple volumes? yes +

x cluster.clvm ALL x+
x + 4.3.1.0 HACMP for AIX Concurrent Access x+

x cluster.hc ALL x+
x + 4.3.1.0 HACMP HC Daemon x+
Chapter 4. Concurrent access volume groups 201

root@mickey:/ # lslpp -L cluster.*
Fileset Level State Description
--
cluster.adt.client.demos 4.3.1.0 C HACMP Client Demos
cluster.adt.client.include

4.3.1.0 C HACMP Client Include Files
cluster.adt.client.samples.clinfo

4.3.1.0 C HACMP Client CLINFO Samples
cluster.adt.client.samples.clstat

4.3.1.0 C HACMP Client Clstat Samples
cluster.adt.client.samples.demos

4.3.1.0 C HACMP Client Demos Samples
cluster.adt.client.samples.libcl

4.3.1.0 C HACMP Client LIBCL Samples
cluster.adt.server.demos 4.3.1.0 C HACMP Server Demos
cluster.adt.server.samples.demos

4.3.1.0 C HACMP Server Sample Demos
cluster.adt.server.samples.images

4.3.1.0 C HACMP Server Sample Images
cluster.base.client.lib 4.3.1.0 C HACMP Base Client Libraries
cluster.base.client.rte 4.3.1.0 C HACMP Base Client Runtime
cluster.base.client.utils 4.3.1.0 C HACMP Base Client Utilities
cluster.base.server.diag 4.3.1.0 C HACMP Base Server Diags
cluster.base.server.events

4.3.1.0 C HACMP Base Server Events
cluster.base.server.rte 4.3.1.0 C HACMP Base Server Runtime
cluster.base.server.utils 4.3.1.0 C HACMP Base Server Utilities
cluster.clvm.rte 4.3.1.0 C HACMP for AIX Concurrent Access
cluster.cspoc.cmds 4.3.1.0 C HACMP CSPOC Commands
cluster.cspoc.dsh 4.3.1.0 C HACMP CSPOC dsh and perl
cluster.cspoc.rte 4.3.1.0 C HACMP CSPOC Runtime Commands
cluster.man.en_US.client.data

4.3.1.0 C HACMP Client Man Pages - U.S.
English

cluster.man.en_US.cspoc.data
4.3.1.0 C HACMP CSPOC Man Pages - U.S.

English
cluster.man.en_US.es.data 4.3.1.0 C ES Man Pages - U.S. English
cluster.man.en_US.server.data

4.3.1.0 C HACMP Server Man Pages - U.S.
English

cluster.msg.En_US.client 4.3.1.0 C HACMP Client Messages - U.S.
English IBM-850

cluster.msg.En_US.cspoc 4.3.1.0 C HACMP CSPOC Messages - U.S.
English IBM-850

cluster.msg.En_US.server 4.3.1.0 C HACMP Server Messages - U.S.
English IBM-850

cluster.msg.en_US.client 4.3.1.0 C HACMP Client Messages - U.S.
English

cluster.msg.en_US.cspoc 4.3.1.0 C HACMP CSPOC Messages - U.S.
English

cluster.msg.en_US.server 4.3.1.0 C HACMP Server Messages - U.S.
English

The concurrent resource manager fileset contains following files.

root@mickey:/ # lslpp -f cluster.clvm.rte
Fileset File
--

Path: /usr/lib/objrepos
cluster.clvm.rte 4.3.1.0

/usr/sbin/cluster/clvm/.mode3_install
/usr/sbin/cluster/clvm/mode3_install
202 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

/usr/sbin/cluster
/usr/sbin/cluster/clvm

Path: /etc/objrepos
cluster.clvm.rte 4.3.1.0

NONE

After the installation of the cluster.clvm fileset, the necessary modifications
are made automatically by the post_i shell script (shown in the following
example) called from the installp process. It releases the trigger that enables
the concurrent mode varyon using the CLVM. In other words, without
installing this fileset, CLVM does not have the capability to vary on the
concurrent access volume group in concurrent mode.

root@mickey:/usr/sys/inst.images # strings cluster.clvm | sed '1,/post_i/d' | sed
'/^24/,$d'
#!/bin/ksh
IBM_PROLOG_BEGIN_TAG
This is an automatically generated prolog.
Licensed Materials - Property of IBM
(C) COPYRIGHT International Business Machines Corp. 1995,1998
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
IBM_PROLOG_END_TAG
@(#)15 1.7 src/packages/cluster/clvm/rte/usr/cluster.clvm.rte.post_i.sh, pkg
hacmp, 43pkgha_rtr2, rtr2t3fa1 8/10/98 09:54:39
COMPONENT_NAME: pkghacmp
FUNCTIONS: if_failed
onintr
ORIGINS: 27
CLUSTDIR="/usr/sbin/cluster"
if_failed() {

status=$1
errmsg=$2
if [$status -ne 0]; then

echo Failed $errmsg
exit 99

fi
onintr()

echo Aborted by User.
trap onintr 1 2 3
###################### Begin CLVM license modifications ######################
/var/tmp/mkmode3_install > $CLUSTDIR/clvm/.mode3_install
if_failed $? "Configuring for Mode 3"
rm -f /var/tmp/mkmode3_install >/dev/null 2>&1
###################### End CLVM license modifications ######################
exit 0

4.2.4 Installing HACMP cluster configurations: Standard method
This section provides a summary of the HACMP configuration steps
described in the HACMP Version 4.3 AIX: Installation Guide, SC23-4278. The
number represented in brackets matches the corresponding chapter number
in the documentation. Some steps are covered in previous sections, and for
others, we will only show the results instead of the full explanation of the
installation step, since the HACMP configuration steps are not the primary
Chapter 4. Concurrent access volume groups 203

goal of this book (these steps are marked as Skipped or Omitted). Only the
steps related to concurrent access volume groups are covered.

1. Configuring networks [4]

Covered in 4.2.1, “Example configuration” on page 195.

2. Installing Shared Disk Devices [5]

Covered in 4.2.1, “Example configuration” on page 195.

3. Defining Shared LVM Components [6]

Covered in 4.2.2, “Defining shared LVM components for concurrent
access” on page 198.

4. Additional AIX administrative tasks [7]

Omitted.

5. Installation HACMP for AIX software [8]

Covered in 4.2.3, “Installing the HACMP concurrent resource manager
(CRM)” on page 200.

6. Upgrading an HACMP Cluster [9]

Omitted, since this installation is a brand new installation.

7. Verifying cluster software [10]

Omitted.

8. Defining the cluster topology [11]

Done as follows (actually, this step is done using the shell script shown in
Appendix B.1, “Define-Cluster-Topology” on page 357):

a. Defining the cluster

root@mickey:/ # cllsclstr
ID Name Security

1 disney Standard

b. Defining nodes

root@mickey:/ # odmget HACMPnode | grep name | sort | uniq
name = "goofy"
name = "mickey"

c. Defining adapters

root@mickey:/ # cllsif
Adapter Type Network Net Type Attribute Node IP
Address Hardware Address

goofy_en0 service ETHER_ITSC ether public goofy
100.100.100.2
goofy_tty service RS232_ITSC rs232 serial goofy
/dev/tty0
204 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

goofy_boot boot TRN_ITSC token public goofy
9.3.187.186
goofy service TRN_ITSC token public goofy
9.3.187.185
goofy_stby standby TRN_ITSC token public goofy
9.3.187.252
mickey_en0 service ETHER_ITSC ether public mickey
100.100.100.1
mickey_tty service RS232_ITSC rs232 serial mickey
/dev/tty0
mickey_boot boot TRN_ITSC token public mickey
9.3.187.184
mickey service TRN_ITSC token public mickey
9.3.187.183
mickey_stby standby TRN_ITSC token public mickey
9.3.187.251

d. Configuring network modules

Omitted.

e. Synchronizing the cluster definition across nodes

mickey:/ # clconfig -s -t

As a result of this step, we have the following HACMP topology definitions:

root@mickey:/ # cllsnode

NODE goofy:
Interfaces to network ETHER_ITSC

service Interface: Name goofy_en0, Attribute public, IP address
100.100.100.2

Interfaces to network RS232_ITSC
service Interface: Name goofy_tty, Attribute serial, IP address

/dev/tty0
Interfaces to network TRN_ITSC

boot Interface: Name goofy_boot, Attribute public, IP address
9.3.187.186

service Interface: Name goofy, Attribute public, IP address 9.3.187.185
standby Interface: Name goofy_stby, Attribute public, IP address

9.3.187.252

NODE mickey:
Interfaces to network ETHER_ITSC

service Interface: Name mickey_en0, Attribute public, IP address
100.100.100.1

Interfaces to network RS232_ITSC
service Interface: Name mickey_tty, Attribute serial, IP address

/dev/tty0
Interfaces to network TRN_ITSC

boot Interface: Name mickey_boot, Attribute public, IP address
9.3.187.184

service Interface: Name mickey, Attribute public, IP address
9.3.187.183

standby Interface: Name mickey_stby, Attribute public, IP address
9.3.187.251

9. Configuring Cluster Resources [12]

Done as follows (actually, this step is done using the script shown in
Appendix B.2, “Configuring-Cluster-Resources” on page 360):
Chapter 4. Concurrent access volume groups 205

a. Configuring application servers

Omitted.

b. Configuring AIX Fast Connect resources

Skipped. This cluster does not have AIX Fast Connect application
installed.

c. Configuring AIX Connections services

Skipped. This cluster does not have AIX Connections application
installed.

d. Configuring CS/AIX Communications links

Skipped. This cluster does not have CS/AIX application installed.

e. Creating Resources Groups

To create the concurrent resource group, you can use the following
SMIT panel:

root@mickey:/ # smitty hacmp
Cluster Configuration

Cluster Resources
Define Resource Groups

Add a Resource Group

Specify the necessary information. In this example, we input the
following values:

• conc_rg as Resource Group Name
• concurrent as Node Relationship
• mickey and goofy as Participating Node Names

Then press Enter.

f. Configuring Resources for Resource Groups

To add resources to a resource group, you can use the following SMIT
panel:

root@mickey:/ # smitty hacmp
Cluster Configuration

Cluster Resources

Add a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Resource Group Name [conc_rg]
* Node Relationship concurrent +
* Participating Node Names [mickey goofy] +
206 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Change/Show Resources for a Resource Group

Choose the conc_rg as Resource Group, then press Enter.

Specify the necessary information. In this example, input concvg as
Concurrent Volume Groups (shown as the rectangle). Then press
Enter.

lqqk
x Select a Resource Group x
x x
x Move cursor to desired item and press Enter. x
x x
x conc_rg x
x x

Configure Resources for a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Resource Group Name conc_rg
Node Relationship concurrent
Participating Node Names mickey goofy

Service IP label [] +
Filesystems [] +
Filesystems Consistency Check fsck +
Filesystems Recovery Method sequential +
Filesystems to Export [] +
Filesystems to NFS mount [] +
Volume Groups [] +
Concurrent Volume groups [concvg] +
Raw Disk PVIDs [] +
AIX Fast Connect Services [] +
Application Servers [] +
Highly Available Communication Links [] +
Miscellaneous Data []

Inactive Takeover Activated false +
9333 Disk Fencing Activated false +
SSA Disk Fencing Activated false +
Filesystems mounted before IP configured false +

[BOTTOM]

You should not input anything except for the concurrent access
volume group names in the concurrent resource group. The service
address and file system resources can not be the resource of the
concurrent resource group.

Note
Chapter 4. Concurrent access volume groups 207

g. Synchronizing cluster resources

clconfig -s -r

h. Configuring run-time parameters

Omitted.

As a result of this step, we have the following HACMP concurrent resource
group definitions.

root@mickey:/ # cllsres -g conc_rg
CONCURRENT_VOLUME_GROUP="concvg"
DISK_FENCING="false"
FSCHECK_TOOL="fsck"
FS_BEFORE_IPADDR="false"
INACTIVE_TAKEOVER="false"
RECOVERY_METHOD="sequential"
SSA_DISK_FENCING="false"

In addition to this concurrent resource group, the following two cascading
resource groups are also defined:

root@mickey:/ # cllsgrp
1_2_rg
2_1_rg
conc_rg
root@mickey:/ # cllsres -g 1_2_rg
SERVICE_LABEL="mickey"
root@mickey:/ # cllsres -g 2_1_rg
SERVICE_LABEL="goofy"

These resource group definitions are also shown in graphical format in
Figure 70.
208 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 70. Defined resource groups

10.Customizing cluster events and log files [13]

Omitted.

11.Setting up clinfo on server nodes [14]

Omitted.

12.Supporting AIX error notification [15]

Omitted.

4.2.5 Managing shared logical volumes for concurrent access
The managing tasks of shared logical volumes for concurrent access are
categorized in the following list.

• Creating a logical volume in a concurrent access volume group

mickey

concvg

hdisk1

hdisk1

hdisk1

10Base2 Ethernet

RS/232C

/dev/tty0 /dev/tty0

en0 en0

tr0 tr1 tr0 tr1

Token Ring

service address
mickey

service address
mickey

1_2_rg 2_1_rg

goofy

conc_rg
Chapter 4. Concurrent access volume groups 209

• Deleting a logical volume in a concurrent access volume group

• Changing some attributes of a logical volume in a concurrent access
volume group

• Adding or removing copies of mirrored logical volume in concurrent access
volume group

To perform the above tasks, you have the three following choices:

• Static ODM update method (apply to SCSI RAID system management).

This method creates the logical volumes on one system that vary online
the concurrent access volume group with non-concurrent mode, then
propagates this configuration to the other nodes statically.

Every release of AIX and HACMP/CRM support this traditional method.
This was the only supported way before AIX Version 4.3.0 and
HACMP/CRM Version 4.3.0.

• Dynamic ODM update method.

This method creates the logical volumes on one system (initiator node)
that vary online the concurrent access volume group with concurrent
mode, then immediately propagates this configuration to the other nodes
dynamically.

You need at least AIX Version 4.3.0 and HACMP Version 4.3.0 to use this
method. It exploits the enhancement brought to the AIX LVM for the
concurrent access discussed in 4.1.3.2, “Vary on with concurrent mode
without prerequisites” on page 190.

These two methods are described in the following sections.

4.2.6 Static ODM update method
As described before, this traditional method was the only officially supported
one prior to AIX Version 4.3.0 and the HACMP/CRM Version 4.3.0. In earlier
versions of AIX, the LVM does not provide the function that enables
dynamically creating, removing, and changing the logical volumes on the
concurrent access volume group with concurrent mode (it also includes the
dynamic updates of the LVM definition in the ODM among the cluster nodes).
This method is also valid for SCSI RAID systems.

It requires the shutdown of the concurrent access volume group with
concurrent mode, but it is a safe method and remains valid even with the
latest versions of the AIX and HACMP/CRM software.
210 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The brief work flow is presented in the following list, but the basic activity of
this method is the same as the method managing the shared LVM
components on non-concurrent access volume group. Therefore detailed
explanation about this method is omitted here. For complete information
about this method, please consult the HACMP for AIX Version 4.3.1
Installation Guide.

1. Vary offline the volume group on all the cluster nodes. This step is also
achieved by stopping the cluster manager on all the cluster nodes.

2. Export the volume group from all the cluster nodes except for one node
(called the source node).

3. On the source node:

a. Vary online the volume group in non-concurrent mode.

b. Create, remove, and change the logical volumes in the volume group.

c. Change the autovaryon attribute set to no on this volume group.

d. Vary offline the volume group.

4. On the other nodes, process the following steps:

a. Import the volume group.

b. Examine the necessary LVM definition in the ODM.

c. Change the autovaryon attribute set to no on this volume group.

d. Vary offline the volume group.

4.2.7 Dynamic ODM update method
As described before, from AIX Version 4.3.0, the AIX LVM provides the
necessary function for this method. If you have installed the HACMP/CRM,
there are two ways for this method. One uses the standard AIX LVM function,
and the other is using the HACMP C-SPOC (Cluster-Single Point Of Control)
function.

We are providing the brief examples that treat creating and removing the
shared logical volume using those two methods.

Note that the C-SPOC is an administrative utility provided by the HACMP
product to enable system administration tasks consistently on all the cluster
nodes. Basically, it consists of some scripts and rsh facility. For further
detailed information about the C-SPOC, refer to HACMP for AIX Version 4.3.1
Concepts and Facilities, SC23-4276.
Chapter 4. Concurrent access volume groups 211

4.2.7.1 Managing the shared logical volume using standard function
In the following example, all the cluster nodes have to vary the concurrent
access volume group online with concurrent mode. Otherwise, the necessary
ODM updates are not performed on that node.

Creating the shared logical volume using standard function
To create the shared logical volume with concurrent mode using the standard
AIX LVM function, you can use the following SMIT interface on one of the
cluster nodes (called the initiator node).

root@mickey:/ # smitty lvm
Logical Volumes

Add a Logical Volume

Choose the concvg as Volume Group name, then press Enter.

Specify the following mandatory information:

• Number of LOGICAL PARTITIONS

• Logical Volume NAME

Then press Enter.

lqqk
x Concurrent Volume Group Names x
x x
x Move cursor to desired item and press Enter. x
x x
x conc_rg concvg x
x x

You should change the following attribute to ‘no’ in the following example:

• Mirror Write Consistency

• Enable BAD Block relocation

These are shown in the rectangle in the following display.

Note
212 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Then you will see the following processes (shown in the rectangles) running
on the other cluster node(s).

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [conclv]

* VOLUME GROUP name concvg
* Number of LOGICAL PARTITIONS [20] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? no +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? no +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]

root@goofy:/ # ps -ef
(many lines are snipped off)

root 8778 3646 0 Sep 22 - 0:00 /usr/sbin/rpc.mountd
root 9050 1 0 Sep 22 - 0:03 /usr/sbin/cron
root 9300 3646 0 Sep 22 - 0:01 /usr/sbin/rpc.lockd
root 9574 1 0 Sep 22 - 0:00 /usr/lpp/diagnostics/bin/diagd
root 9868 13530 0 17:07:19 - 0:00 ksh /usr/sbin/synclvodm -c -F -
root 10326 3646 0 Sep 22 - 0:00 /usr/sbin/qdaemon
root 10594 3646 0 Sep 22 - 0:00 /usr/sbin/writesrv
root 11096 1 0 Sep 23 lft0 0:00 /usr/sbin/getty /dev/console
root 11352 1 0 Sep 22 - 0:00 /usr/lpp/csd/bin/hc
root 12000 7118 24 17:07:26 pts/0 0:00 ps -ef
root 12310 9868 21 17:07:20 - 0:00 ksh /usr/sbin/updatelv -c conc1
root 13530 3646 0 22:01:42 - 0:00 /usr/sbin/clvmd
root 15414 12310 3 17:07:25 - 0:00 getlvcb -aceLrsSPtu conc1lv
Chapter 4. Concurrent access volume groups 213

After completion of this task, you can see that the logical volume is defined on
both nodes. It is a proof that the necessary LVM definition in the ODM is
dynamically updated on the passive node (node goofy).

• On mickey

root@mickey:/ # lslv conclv
LOGICAL VOLUME: conclv VOLUME GROUP: concvg
LV IDENTIFIER: 000010736127caf7.3 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 20 PPs: 20
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV?: yes

• On goofy

root@goofy:/ # lslv conclv
LOGICAL VOLUME: conclv VOLUME GROUP: concvg
LV IDENTIFIER: 000010736127caf7.3 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 20 PPs: 20
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV?: yes

Note that you should not confuse this behavior with the lazy update function
provided by HACMP since HACMP Version 4.2.2.

Accessing the shared logical volume from both nodes
You can confirm the accessibility of this logical volume using the dd command
from both nodes.

• Write from goofy

root@goofy:/ # dd if=/etc/hosts of=/dev/conc1lv seek=1
1+1 records in.
1+1 records out.

• Read from mickey

Do not overwrite the LVCB of the logical volume (you have to skip the first
disk block of the logical partition if accessing it as a raw device).

Note
214 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

root@mickey:/ # dd if=/dev/conc1lv skip=1 count=1
/etc/hosts -- local host table.
127.0.0.1 loopback localhost # loopback (lo0) name/address
##
Lab Cluster
##
#
mickey
#
#100.100.101.21 mickey_atboot
100.100.100.1 mickey_en0 mickey
100.100.101.1 mickey_at0
100.100.102.1 mickey_at1
9.3.187.183 mickey
9.3.187.184 mickey_boot
9.3.187.251 mickey_stby
#
goofy
#
#100.100.101.22 goofy_atboot
100.100.1+0 records in.
1+0 records out.

Removing the shared logical volume using standard function
To remove the shared logical volume with concurrent mode using the
standard AIX LVM function, you can use the following SMIT interface on one
of the cluster nodes (called initiator node).

root@mickey:/ # smitty lvm
Logical Volumes

Remove a Logical Volume

Choose the conclv as LOGICAL VOLUME name, then press Enter.

After completion of this task, you can see that the logical volume has been
removed on both nodes.

4.2.7.2 Managing the shared logical volume using C-SPOC
Strictly speaking, there is no distinct functional difference with using the
standard AIX LVM function or the C-SPOC function to create or remove the
shared logical volumes, since the C-SPOC just utilizes the standard AIX LVM
function for this purpose (though it has a capability to invoke another process
on all the cluster nodes concurrently). But, remember that the C-SPOC gives

Remove a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
LOGICAL VOLUME name [conclv] +
Chapter 4. Concurrent access volume groups 215

you the following various administrative functions that can be performed on all
the cluster nodes in a consistent manner:

• Maintain user and group accounts

• Managing the shared LVM components

• Control HACMP services on a cluster-wide basis

So, using the C-SPOC is a good discipline for managing the cluster.
Therefore, we include the following example that produces the same result as
the example shown in the previous section.

Creating the shared logical volume using C-SPOC
To create the shared logical volume with concurrent mode and C-SPOC, you
can use the following SMIT interface on one of the cluster nodes (called the
initiator node).

root@mickey:/ # smitty hacmp
Cluster System Management

Cluster Concurrent Logical Volume Manager
Concurrent Logical Volumes

Add a Concurrent Logical Volume

Choose the concvg as Concurrent Volume Group Names, then press Enter.

Choose the hdisk1 as Physical Volume Names, then press enter.

Specify the following necessary information.

• Number of LOGICAL PARTITIONS

lqqk
x Concurrent Volume Group Names x
x x
x Move cursor to desired item and press Enter. x
x x
x conc_rg concvg x
x x

lqqk
x Physical Volume Names x
x x
x Move cursor to desired item and press Esc+7. x
x ONE OR MORE items can be selected. x
x Press Enter AFTER making all selections. x
x x
x None x
x mickey hdisk1 x
x x
216 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• Logical Volume NAME

Then press Enter.

After completion of this task, you can see the logical volume is defined on
both nodes.

• On mickey

root@mickey:/ # lslv conclv
LOGICAL VOLUME: conclv VOLUME GROUP: concvg

You should change the following attribute to ‘no’ in the following example.

• Mirror Write Consistency?

• Enable BAD Block relocation?

These are shown in the rectangle in the following display.

Note

Add a Concurrent Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Resource Group Name conc_rg
VOLUME GROUP name concvg
Reference node mickey

* Number of LOGICAL PARTITIONS [20] #
PHYSICAL VOLUME names hdisk1
Logical volume NAME [conclv]
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? no +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
Enable BAD BLOCK relocation? no +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? no +
Stripe Size? [Not Striped] +

[BOTTOM]
Chapter 4. Concurrent access volume groups 217

LV IDENTIFIER: 000010736127caf7.3 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 20 PPs: 20
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV?: yes

• On goofy

root@goofy:/ # lslv conclv
LOGICAL VOLUME: conclv VOLUME GROUP: concvg
LV IDENTIFIER: 000010736127caf7.3 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 20 PPs: 20
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV?: yes

Removing the shared logical volume using C-SPOC
To remove the shared logical volume with concurrent mode and C-SPOC, you
can use the following SMIT interface on one of the cluster nodes (called
initiator node).

root@mickey:/ # smitty hacmp
Cluster System Management

Cluster Concurrent Logical Volume Manager
Concurrent Logical Volumes

Remove a Concurrent Logical Volume

Choose the conclv as Concurrent Logical Volume Names, then press Enter.

Confirm the logical volume name to be removed, then press Enter.

lqqk
x Concurrent Logical Volume Names x
x x
x Move cursor to desired item and press Enter. x
x x
x conc_rg conclv x
x x
218 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

It requests your confirmation, then press y and Enter.

After completion of this task, you can see the logical volume has been
removed on both nodes.

4.3 Shared disk environment solutions

This section provides a brief summary for the shared disk environment
solutions available on RS/6000 platforms. Roughly categorized, there are two
platform types.

• RS/6000 cluster systems

• RS/6000 Scalable Parallel (SP) systems

On RS/6000 SP systems, in addition to the concurrent access, you can select
another shared disk environment solution as discussed in 4.3.3, “Shared disk
solution on an RS/6000 SP system” on page 226.

4.3.1 HACMP and HACMP Enhanced Scalability (ES)
As stated before, the Concurrent Resource Manager (CRM) feature of the
HACMP product is a mandatory component to enable concurrent access.
Besides the CRM feature, current HACMP products have two different
implementation branches. The first one is the original HACMP (also called,
HACMP classic). The other is HACMP Enhanced Scalability (abbreviated
HACMP/ES, also known as HAES). Why was HACMP/ES developed when
there was already an HACMP? The answer scalability. There was a huge

Remove a Concurrent Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Resource Group Name conc_rg
* LOGICAL VOLUME name conclv

COMMAND STATUS

Command: running stdout: yes stderr: no

Before command completion, additional instructions may appear below.

Warning, all data contained on logical volume conclv will be destroyed.
cl_rmlv: Do you wish to continue? y(es) n(o)? y
Chapter 4. Concurrent access volume groups 219

demand to extend the maximum number of nodes in one cluster. To address
this functional enhancement, the HACMP/ES has a different communication
method among the cluster nodes compare with HACMP classic, called NIM
(Network Interface Module). In the HACMP/ES, it is called Topology
Service/ES or RSCT (Risc System Cluster Technology), depending on the
version. To use this communication method, the current HACMP/ES extends
the maximum cluster node number from the eight of the HACMP to 32.

The following tables are provided to show the functional difference about the
concurrent access, based on the software, HACMP or HACMP/ES, and the
platforms, RS/6000 cluster or RS/6000 SP, for the HACMP Version 4.1.0 and
later.

Table 15. HACMP Version 4.1.0, 4.1.1 (Program Number 5696-933)

• There was no HACMP/ES in HACMP Version 4.1.0, 4.1.1.

• Supported on AIX Version 4.1.

Table 16. HACMP Version 4.2.0, 4.2.1, 4.2.2 (Program Number 5765-A86)

• There was no HACMP/ES derivative in HACMP Version 4.2.0.

• Supported on AIX Version 4.2.

HACMP
product

RS/6000 cluster
systems

RS/6000 SP systems

HACMP VG mode normal concurrent normal concurrent

Supported Yes Yesa

a. Requires the CRM feature of HACMP

Yes Yesa

HACMP
product

RS/6000 cluster
systems

RS/6000 SP systems

HACMP VG mode normal concurrent normal concurrent

Supported Yes Yesa

a. Requires the CRM feature of HACMP

Yes Yesa

HACMP/
ES

VG mode normal concurrent normal concurrent

Supported No No Yes No
220 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• This version HACMP/ES depends on Topology Service/ES function
provided by PSSP (Parallel System Support Program) Version 2.3 and 2.4.
Therefore, there is no support on RS/6000 cluster platforms.

Table 17. HACMP Version 4.3.0, 4.3.1 (Program Number 5765-D28)

• Supported on AIX Version 4.3.

• This version of HACMP/ES depends on the RSCT function that is a
separate package from the PSSP Version 3.1. (The HACMP/ES also
includes the RSCT. Therefore, HACMP/ES does not have prerequisite with
PSSP.)

We chose the HACMP/CRM to avoid complexity in this chapter example, but,
if you want to use the HACMP/ES/CRM, you have to install the following
filesets:

• Select the rsct.* filesets that are components of the RSCT function.

• Select the cluster.es.clvm.rte instead of the cluster.clvm.rte fileset.

• Select the cluster.es.hc.rte instead of cluster.hc.rte fileset (if applicable).

Fileset Name Level I/U Q Content
==

cluster.adt.es.client.demos 4.3.1.0 I N usr
ES Client Demos

cluster.adt.es.client.include 4.3.1.0 I N usr
ES Client Include Files

cluster.adt.es.client.samples.clinfo 4.3.1.0 I N usr
ES Client CLINFO Samples

cluster.adt.es.client.samples.clstat 4.3.1.0 I N usr
ES Client Clstat Samples

cluster.adt.es.client.samples.demos 4.3.1.0 I N usr
ES Client Demos Samples

cluster.adt.es.client.samples.libcl 4.3.1.0 I N usr
ES Client LIBCL Samples

HACMP
product

RS/6000 cluster
systems

RS/6000 SP systems

HAS VG mode normal concurrent normal concurrent

Supported Yes Yesa

a. Requires the CRM feature of HACMP

Yes Yesa

HAES VG mode normal concurrent normal concurrent

Supported Yes Yesb

b. Requires the CRM feature of HACMP/ES

Yes Yesb
Chapter 4. Concurrent access volume groups 221

cluster.adt.es.java.demo.monitor 4.3.1.0 I N usr
ES Web Based Monitor Demo

cluster.adt.es.server.demos 4.3.1.0 I N usr
ES Server Demos

cluster.adt.es.server.samples.demos 4.3.1.0 I N usr
ES Server Sample Demos

cluster.adt.es.server.samples.images 4.3.1.0 I N usr
ES Server Sample Images

cluster.es.client.lib 4.3.1.0 I N usr
ES Client Libraries

cluster.es.client.rte 4.3.1.0 I N usr,root
ES Client Runtime

cluster.es.client.utils 4.3.1.0 I N usr
ES Client Utilities

cluster.es.server.diag 4.3.1.0 I N usr
ES Server Diags

cluster.es.server.events 4.3.1.0 I N usr
ES Server Events

cluster.es.server.rte 4.3.1.0 I N usr,root
ES Base Server Runtime

cluster.es.server.utils 4.3.1.0 I N usr,root
ES Server Utilities

cluster.es.clvm.rte 4.3.1.0 I N usr,root
ES for AIX Concurrent Access

cluster.es.cspoc.cmds 4.3.1.0 I N usr
ES CSPOC Commands

cluster.es.cspoc.dsh 4.3.1.0 I N usr
ES CSPOC dsh and perl

cluster.es.cspoc.rte 4.3.1.0 I N usr
ES CSPOC Runtime Commands

cluster.es.hc.rte 4.3.1.0 I N usr,root
ES HC Daemon

cluster.es.taskguides.shrvolgrp 4.3.1.0 I N usr
ES Shr Vol Grp Task Guides

cluster.man.en_US.client.data 4.3.1.0 I N share
HACMP Client Man Pages - U.S. English

cluster.man.en_US.cspoc.data 4.3.1.0 I N share
HACMP CSPOC Man Pages - U.S. English

cluster.man.en_US.server.data 4.3.1.0 I N share
HACMP Server Man Pages - U.S. English

cluster.man.en_US.es.data 4.3.1.0 I N share
ES Man Pages - U.S. English
222 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

cluster.msg.en_US.es.client 4.3.1.0 I N usr
ES Client Messages - U.S. English

cluster.msg.en_US.es.server 4.3.1.0 I N usr
ES Recovery Driver Messages - U.S. English

cluster.vsm.es 4.3.1.0 I N usr
ES VSM Configuration Utility

rsct.basic.hacmp 1.1.1.0 I N usr
RS/6000 Cluster Technology basic function (HACMP domain)

rsct.basic.rte 1.1.1.0 I N usr,root
RS/6000 Cluster Technology basic function (all domain)

rsct.basic.sp 1.1.1.0 I N usr
RS/6000 Cluster Technology basic function (SP domain)

rsct.clients.hacmp 1.1.1.0 I N usr
RS/6000 Cluster Technology client function (HACMP domain)

rsct.clients.rte 1.1.1.0 I N usr
RS/6000 Cluster Technology client function (all domain)

rsct.clients.sp 1.1.1.0 I N usr
RS/6000 Cluster Technology client function (SP domain)

For further detailed information about the HACMP product and its features,
please consult with appropriate announcement letters.

4.3.2 Cluster lock manager
The cluster lock manager is a daemon subsystem that provides advisory
locking services that allow concurrent applications running on multiple nodes
in an HACMP cluster to coordinate their use of shared resources (mainly the
shared logical volumes accessed using raw I/O on the concurrent access
volume groups).

The cluster lock manager provides two distinct locking models: The CLM
locking model and the UNIX System V locking model. Both of these locking
models exist in separate name spaces and do not interact. The usage of
these locking models are provided by an application programming interface
(API) made of a set of C language routines, which enables you to acquire,
manipulate, and release locks. To use this API, the concurrent applications
running on multiple nodes in an HACMP cluster can see and handle the lock
resources across the cluster. The shared resources are divided into a
lockable entity. A lockable entity is associated with a lock resource.

The cluster lock manager provides a single, unified lock image shared among
all nodes in the cluster. Each node runs a copy of the lock manager daemon.
These lock manager daemons communicate with each other to maintain a
Chapter 4. Concurrent access volume groups 223

cluster-wide database of locked resources and the locks held on these locked
resources (see Figure 71).

Figure 71. Cluster lock manager

Note that all locks are advisory. The system does not enforce locking.
Instead, applications running on the cluster must cooperate to work together.
An application that wants to use a shared resource is responsible for first
obtaining a lock on that resource, then, attempting to access it.

4.3.2.1 Starting the cluster lock manager
To start the cluster lock manager, you have to specify the necessary option
during the cluster manager startup. You can use the following SMIT panel for
this purpose:

root@goofy:/ # smit -C hacmp
Cluster Services

Start Cluster Services

Specify true as Startup Cluster Lock Services (shown in the rectangle of the
following SMIT panel). Then press Enter.

1 2

1

2

cluster base lock table

cllockd

node 2

cllockd

node 1
224 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you prefer the command line interface:

root@goofy: / #/usr/sbin/cluster/etc/rc.cluster -boot -N -l -i

Then, you will see the following start up messages:

0513-059 The clstrmgr Subsystem has been started. Subsystem PID is 13844.
0513-059 The cllockd Subsystem has been started. Subsystem PID is 11582.
0513-059 The clsmuxpd Subsystem has been started. Subsystem PID is 13276.
0513-059 The clinfo Subsystem has been started. Subsystem PID is 7772.

You can check the existence of the cllockd daemon process as shown in the
rectangle:

4.3.2.2 Stopping the cluster lock manager
To stop the cluster lock manager, you have to specify the necessary option
during the cluster manager shutdown. You can use the following SMIT panel
for this purpose.

root@goofy:/ # smit -C hacmp
Cluster Services

Stop Cluster Services

Then press enter twice.

Start Cluster Services

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Start now, on system restart or both now +

BROADCAST message at startup? false +
Startup Cluster Lock Services? true +
Startup Cluster Information Daemon? true +

root@goofy:/ # ps -ef | grep [c]luster
root 7772 3646 0 21:41:32 - 0:00 /usr/sbin/cluster/clinfo
root 11582 3646 0 21:41:24 - 0:00 /usr/sbin/cluster/cllockd
root 13276 3646 0 21:41:28 - 0:00 /usr/sbin/cluster/clsmuxpd
root 13844 3646 0 21:41:19 - 0:00 /usr/sbin/cluster/clstrmgr
Chapter 4. Concurrent access volume groups 225

If you prefer the command line interface:

root@goofy: / # /usr/sbin/cluster/utilities/clstop -y -N -s -g

Then you will see the following shutdown messages:

0513-044 The stop of the clstrmgr Subsystem was completed successfully.
0513-044 The stop of the clsmuxpd Subsystem was completed successfully.
0513-044 The stop of the clinfo Subsystem was completed successfully.

You can again check the non-existence of the cllockd daemon process:

4.3.3 Shared disk solution on an RS/6000 SP system
On an RS/6000 SP system, you can select the following shared disk
environment solutions. They are based on completely different technology,
but can emulate the concurrent access environment.

• VSD (Virtual Shared Disk)

• RVSD (Recoverable Virtual Shared Disk)

• GPFS (General Parallel File System)

The VSD supplies a pseudo device layer on top of the LVM. If the target disk
devices are attached to the local node, each I/O is simply passed to the LVM.
If the target disk devices are attached to a remote node, each I/O is sent to
the remote node’s VSD using the UDP protocol, then handled in the remote
node and returned using the same communication path (see Figure 72 on
page 227). To achieve high I/O bandwidth, the VSD exploits the high speed
inter-connect switch (SP Switch) that is a feature of the RS/6000 SP system.

Stop Cluster Services

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Stop now, on system restart or both now +

BROADCAST cluster shutdown? false +
* Shutdown mode graceful +

(graceful or graceful with takeover, forced)

root@goofy:/ # ps -ef | grep [c]luster
(nothing appeared)
226 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 72. Concept of the Virtual Shared Disk

The VSD device appeared as a raw I/O type device, such as a raw logical
volume. From the application point of view, there is no distinct difference
between the VSD and the logical volume device.

The RVSD is a separate daemon subsystem named hc that handles the
failure situation of the remote node, since, in the shared disk environment
provided by the VSD on RS/6000 SP systems, only one node failure can
cause the stop of the service. The RVSD is running on each nodes among the
VSD configuration, and sends heartbeat packets to each other. If a
predefined number of heartbeat packets are dropped, then the hc daemon
initiates the take over of the shared disk devices like the HACMP cluster
manager daemon (see Figure 73 on page 228). Therefore, the use of RVSD
is highly recommended in a VSD configuration.

Application Application

LVM LVM

VSD VSD

SPSwitch

UDP
Chapter 4. Concurrent access volume groups 227

Figure 73. Concept of the Recoverable Virtual Shared Disk

Prior to PSSP Version 3.1, the VSD was a function of the PSSP, although the
RVSD was a separately orderable priced feature of PSSP. In PSSP Version
3.1, these two functions are combined together, so it is not necessary
anymore to order them separately.

The GPFS is a separately ordered software product that enables the file
system access on top of VSD devices among the nodes of the SP system.
The file system created on the GPFS file server node (also a VSD/RVSD
server and/or client node) can be mounted by a GPFS client node, and
appears like a local attached file system.

For further technical detailed information about these software function and
products, please consult the following publications and redbooks.

• PSSP for AIX Version 3.1 Managing Shared Disks, SA22-7349

• RS/6000 SP System Management Guide, SG24-5628

• GPFS: A Parallel file system, SG24-5165

4.3.4 What is the HC daemon?
The HC daemon is included in the fileset cluster.hc.rte for HACMP, or
cluster.es.hc.rte for HACMP/ES, and provides a way to send information and

LVM LVM

VSD VSD

HC HC

Node 1 Node 2
228 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

keep the heartbeat between members of a cluster. The reason HACMP/CRM
provides this daemon is to provide the equivalent functional support for the
Oracle Parallel Server (also known as OPS). This fact is officially documented
in HACMP Version 4.3 AIX:Programming Locking Applications, SC23-4281.
So, if you do not use the OPS on the RS/6000 cluster systems, then you don’t
need, and should not install, this fileset.

The hc program is installed under the /usr/lpp/csd directory. The RVSD is also
installed under the /usr/lpp/csd directory. As stated in the
/usr/sbin/cluster/hc/README file, the cluster.hc.rte and cluster.es.hc.rte
filesets are mutually exclusive.

root@mickey:/ # lslpp -f cluster.hc.rte
Fileset File
--

Path: /usr/lib/objrepos
cluster.hc.rte 4.3.1.0

/usr/sbin/cluster/hc
/usr/lpp/csd/bin
/usr/lpp/csd/bin/hc_members -> /usr/sbin/cluster/hc/hc_members
/usr/sbin/cluster/hc/hc_members
/usr/sbin/cluster/hc/hc.h
/usr/sbin/cluster/hc/hc
/usr/sbin/cluster/hc/hacmp_hc_start
/usr/lpp/csd/bin/hacmp_vsd_up1 ->

/usr/sbin/cluster/hc/hacmp_vsd_up1
/usr/lpp/csd/bin/hacmp_vsd_up2 -> /usr/lpp/csd/bin/hacmp_vsd_up1
/usr/lpp/csd/bin/hc -> /usr/sbin/cluster/hc/hc
/usr/lpp/csd/bin/hacmp_hc_start ->

/usr/sbin/cluster/hc/hacmp_hc_start
/usr/lpp/csd
/usr/sbin/cluster/hc/README

/usr/lpp/csd/bin/hacmp_vsd_down1 -> /usr/lpp/csd/bin/hacmp_vsd_up1
/usr/lpp/csd/bin/hacmp_vsd_down2 -> /usr/lpp/csd/bin/hacmp_vsd_up1
/usr/sbin/cluster/hc/hacmp_vsd_up1

Path: /etc/objrepos
cluster.hc.rte 4.3.1.0

NONE

If you install the cluster.hc.rte fileset, then you will have the following entry in
the /etc/inittab file, and the hc daemon process is automatically started during
the system startup phase.

hc:2:respawn:/usr/lpp/csd/bin/hacmp_hc_start # start the hc daemon

If you installed the cluster.hc.rte fileset, then you have to make some
modification in the /usr/lpp/csd/bin/machines.lst file. It is generated by the HC
daemon at startup, and should be updated with service IP addresses of the
cluster nodes.

root@mickey:/ # ls -l /usr/lpp/csd/bin/machines.lst
-rw-r--r-- 1 root system 14 Sep 22 15:22 /usr/lpp/csd/bin/machines.lst

By default, it contains only the loopback address definition.
Chapter 4. Concurrent access volume groups 229

root@mickey:/ # cat /usr/lpp/csd/bin/machines.lst
1 127.0.0.1 0

Without the necessary configuration, the startup of the cluster manager will
fail with the following message (from the /tmp/hacmp.out file):

Sep 22 15:27:27 EVENT START: node_up_complete mickey

+ + basename /usr/sbin/cluster/events/node_up_complete
PROGNAME=node_up_complete
+ + cl_get_path
HA_DIR=
+ NODENAME=mickey
+ VSD_CMD=/usr/lpp/csd/bin/hacmp_vsd_up2
+ STATUS=0
+ [! -n]
+ EMULATE=REAL
(many lines are snipped off)
hacmp_vsd_up2[360] grep -v grep
hacmp_vsd_up2[360] grep /usr/lpp/csd/bin/hc
hacmp_vsd_up2[360] awk {print $2}
HCPID=12386
hacmp_vsd_up2[361] [-n 12386 -a 12386 != -1]
hacmp_vsd_up2[362] break
hacmp_vsd_up2[374] sleep 2
hacmp_vsd_up2[374] [[-n 1 1 1 1 1 1 1 1]]
hacmp_vsd_up2[377] hc_members 1 1 1 1 1 1 1 1
/usr/lpp/csd/bin/hacmp_vsd_up2[377]: hc_members: not found.
hacmp_vsd_up2[378] [127 -ne 0]
hacmp_vsd_up2[379] echo hacmp_vsd_up2: Error passing Membership 1 1 1 1 1 1 1 1
to HC
hacmp_vsd_up2: Error passing Membership 1 1 1 1 1 1 1 1 to HC
hacmp_vsd_up2[380] exit 1
+ [1 -ne 0]
+ exit 1
Sep 22 15:27:33 EVENT FAILED:1: node_up_complete mickey

To avoid this erroneous situation, you have to update this file using the
following description.

• N ADDR 0

N Node number of the cluster nodes.

ADDR Service addresses of the cluster nodes used by the heartbeat
interchange.

0 Instance number (not used).

There are two APARs that address this problem, IX83325 for HACMP Version
4.2.2 and IX85575 for HACMP Version 4.3, but they were not finished when
this book was written.
230 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

4.4 History of the concurrent access

Historically, the CLVM is a part of the HACMP product. Prior to AIX Version
4.1, users essentially had to have two separate versions of the LVM on their
systems (one for non-concurrent provided by the base AIX operating system
and one concurrent provided by HACMP/CRM). In AIX Version 4.1, there is a
separate fileset introduced named prpq.clvm, where the functionality of the
CLVM code has been integrated into the regular LVM code. This allows users
to run the standard non-concurrent volume groups and concurrent logical
volume groups on the same system. Most users, however, will not notice the
difference except for some more options in the LVM.

This package was called prpq.clvm to emphasize that the user benefits from
a PRPQ (Program Request for Pricing Quotation) product (program number
5799-FTZ), which is subject to very specific levels of support. After this
product has been put onto a system, the old LVM fileset (bos.rte.lvm) is
removed. Thus only prpq.clvm fixes will go on the system. Additionally, the
prpq.clvm cannot be rejected or taken off the system. There is no separate
fileset CLVM after AIX Version 4.2.0.

In the logical volume manager prior to AIX Version 4.3.0, there was a
restriction on volume groups running in concurrent mode. If a volume group
was running in concurrent mode, then no action that constituted an addition
was allowed. As a concurrent volume group is one that is shared between two
or more RS/6000s, then the complication was to keep each version of the
ODM consistent with respect to the shared volume group. It was a design
issue on how to correctly propagate changes in the ODM to the other
machines that share the volume group.

With AIX Version 4.3.0, you can now create logical volumes while the volume
group is varied on in concurrent mode. In earlier versions, you had to vary off
the volume group on all systems sharing this volume group, create a logical
volume with one node, then import that concurrent volume group into the
other nodes and see if there was a name clash. If there was a name clash,
then the import of the concurrent volume group would fail. In the new method,
when you try to create a concurrent logical volume while the volume group is
varied on in concurrent mode, there is a very complex negotiation that is
attempted. The creating node sends a signal and asks all the nodes that are
registered for permission (this registration was done during the concurrent
varyon time).

Then, each AIX system will search its ODM and see if that name already
exists. Note that it does not just search the ODM for that name within the
concurrent volume group, it searches for that name in all volume groups.
Chapter 4. Concurrent access volume groups 231

While one machine might not have lvxx as a pre-existing logical volume,
another machine might. If all the nodes, or at least those that can respond,
come back with an okay for that possible name, then the concurrent logical
volume is created and all the nodes sharing the logical volumes have their
ODMs updated. Implied with this update is the fact that a special file,
/dev/lvxx, is also created on each concurrent node.

But what happens if there is a node that was off-line and that node happens
to have a logical volume that will clash with the newly created logical volume?
As stated in the previous paragraph, the node creating the logical volume will
wait for a reasonable time for all the nodes to respond. If a node stayed
off-line that whole time, it would not get a chance to reply and disagree with a
name addition to the shared volume group. So, a restriction was added to the
varyonvg code. If during varyonvg of a shared volume group a name conflict
between the node varying on and the shared volume group is detected, the
node performing the varyonvg -c will fail with a message that a name conflict
has been detected. It will then be up to the administrator to rename the
clashing logical volume or go to one of the legal nodes and remove the logical
volume.

The removal of a concurrent logical volume is also allowed now. The logic
behind this is fairly simple, except a poll is done on all the shared nodes to
make sure that this shared logical volume is not in an open state. The open
state indicates that some program or file system has it open and in use. If any
node has the logical volume open, a concurrent rmlv will fail.
232 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Chapter 5. The AIX journaled file system

This chapter is dedicated to the AIX journaled file system (also referred to as
JFS in this chapter). The JFS is not really an integral part of the Logical
Volume Manager, but it is certainly one of the applications that uses it the
most. The chapter will provide some knowledge about the way the AIX JFS
file system works and how it is constructed.

5.1 What is a journaled file system?

A file system is a hierarchical structure (file tree) of files and directories. This
type of structure resembles an inverted tree with the root at the top and
branches at the bottom. The branches represent the directories and the
leaves represents files. This file tree uses directories to organize data and
programs into groups, allowing the management of several directories and
files at one time. You can store all kinds of data in a file system. Figure 74
shows you an example of a directory structure.

Figure 74. A file system structure

A file system is a set of files, directories, and other structures. File systems
maintain information and identify where a file or directory's data is located on
the disk. Besides files and directories, file systems consist of:

• The superblock

• The i-nodes

cron

/usr /appl /home /var /tmp

Files

/

© Copyright IBM Corp. 2000 233

• The data blocks

• The allocation bitmaps

Journaled file systems are created on top of a logical volume.

5.2 The JFS structure

This section describes the components of a file system. We have seen that
the parts that would be of interest to the users would be the directories and
files, but other elements are present to make the retrieval of information
possible and efficient.

5.2.1 The superblock
The superblock maintains information about the entire file system. The
superblock is 4096 bytes in size and starts at byte offset 4096 on the logical
volume it includes the following fields:

• Size of the file system

• Number of data blocks in the file system

• A flag indicating the state of the file system

• Allocation group sizes

The dumpfs command shows you the superblock as well as the i-node map,
and disk map information for the file system or special device specified. An
example of the dumpfs command is shown below.

brenzef[root] # dumpfs /dev/hd4

/dev/hd4:
magic 0x65872143 cpu type 0x0
file system type 0 file system version 1
file system size 65536 fragment size 4096
block size 4096 allocation group size 2048 (frags)
inodes/allocation grp 4096 compress 0
file system name / volume name root
log device 0xa0003 log serial number 0x29
file system state 1 read only 0
last change Tue Aug 17 18:37:17 CDT 1999

At the end of the chapter, you should be comfortable enough with the JFS to
understand each of the fields presented in the example above.
234 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

5.2.2 Logical blocks
A logical block contains a file or directory data. These units are 4096 bytes in
size. Logical blocks are not tangible entities; however, the data in a logical
block consumes physical storage space on the disk. Each file or directory
consists of 0 or more logical blocks. Fragments, as opposed to logical blocks,
are the basic units for allocated disk space in the journaled file system (JFS).
Each logical block allocates fragments for the storage of its data.

5.2.3 Disk i-nodes
Each file and directory has an i-node that contains access information such
as file type, access permissions, owner's user ID and group ID (UID & GID),
and number of links to that file. These i-nodes also contain addresses for
finding the location on the disk where the data for a logical block is stored.

Each i-node has an array of numbered sections. Each section contains an
address for one of the file or directory's logical blocks. These addresses
indicate the starting fragment and the total number of fragments included in a
single allocation. For example, a file with a size of 4096 bytes has a single
address on the i-node's array. Its 4096 bytes of data are contained in a single
logical block. A larger file with a size of 6144 bytes has two addresses. One
address contains the first 4096 bytes and a second address contains the
remaining 2048 bytes (a partial logical block). If a file has a large number of
logical blocks, the i-node does not contain the disk addresses. Instead, the
i-node points to an indirect block that contains the additional addresses.
Indirect blocks are discussed in Section 5.2.5.2, “Single indirect addressing”
on page 239, and in Section 5.2.5.3, “Double indirect addressing” on page
240.

The number of disk i-nodes available to a file system depends on the size of
the file system, the allocation group size (8 MB by default), and the ratio of
bytes per i-node (4096 by default). These parameters are given to the mkfs

command at file system creation. When enough files have been created to
use all the available i-nodes, no more files can be created, even if the file
system has free space. The number of available i-nodes can be determined
by using the df -v command. Disk i-nodes are defined in the
/usr/include/jfs/ino.h file. A sample of the df -v command would be:
Chapter 5. The AIX journaled file system 235

The sixth column gives the number of i-nodes used and the eighth column
gives the percentage.

5.2.4 Disk i-node structure
Each disk i-node in the journaled file system is a 128-byte structure. The
offset of a particular i-node within the i-node list of the file system produces
the unique number (i-number) by which the operating system identifies the
i-node. A bit map, known as the i-node map, tracks the availability of free disk
i-nodes for the file system. Disk i-nodes include the following information:

Field Contents

i_mode Type of the file and access permission mode bits

i_size Size of the file in bytes

i_uid Access permissions for the user

i_gid Access permissions for the group

i_nblocks Number of blocks allocated to the file

i_mtime Last time the file was modified

i_atime Last time the file was accessed

i_ctime Last time the i-node was modified

i_nlink Number of hard links to the file

i_rdaddr[8] Real disk addresses of the data

i_rindirect Real disk address of the indirect block, if any

It is impossible to change the data of a file without changing the i-node, but it
is possible to change the i-node without changing the contents of the file. For
example, when permission is changed, the information within the i-node
(i_ctime) is modified, but the data in the file remains the same. An example
below shows this. We create a file with the name disk-config by entering the
following command:

brenzef[root] # df -v
Filesystem 1024-blocks Used Free %Used Iused Ifree %Iused Mounted on
/dev/hd4 32768 25484 7284 78% 1459 14925 9% /
/dev/hd2 737280 691064 46216 94% 23552 160768 13% /usr
/dev/hd9var 16384 6552 9832 40% 314 3782 8% /var
/dev/hd3 49152 7608 41544 16% 49 12239 1% /tmp
/dev/lv1 1638400 52320 1586080 4% 18 409582 1% /ronal
236 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

brenzef[root] # df -k >disk-config

The file disk-config contains the following information:

brenzef[root] # cat disk-config
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 32768 6244 81% 1700 11% /
/dev/hd2 753664 18504 98% 25150 14% /usr
/dev/hd9var 16384 9448 43% 316 8% /var
/dev/hd3 49152 22884 54% 51 1% /tmp
/dev/inner 884736 840488 6% 21 1% /inner
/dev/ronald 1015808 885692 13% 65 1% /home/ronald

When we run the istat command on the file besides the permissions, user
and group information, we see when this file was:

• Last updated

• Last modified

• Last accessed

brenzef[root] # istat disk-config
Inode 1107 on device 10/4 File
Protection: rw-r--r--
Owner: 0(root) Group: 0(system)
Link count: 1 Length 454 bytes

Last updated: Wed Oct 06 12:11:48 1999
Last modified: Wed Oct 06 12:11:48 1999
Last accessed: Wed Oct 06 12:11:51 1999

When we display the file using the cat command and run the istat command
again we see that the last access time has changed, but not the contents of
the file.

brenzef[root] # istat disk-config
Inode 1107 on device 10/4 File
Protection: rw-r--r--
Owner: 0(root) Group: 0(system)
Link count: 1 Length 454 bytes

Last updated: Wed Oct 06 12:11:48 1999
Last modified: Wed Oct 06 12:11:48 1999
Last accessed: Wed Oct 06 12:44:00 1999

Disk i-nodes do not contain file or path name information. Directory entries
are used to link file names to i-nodes. Any i-node can be linked to many file
names by creating additional directory entries with the link or symlink
subroutine. To discover the i-node number assigned to a file, use the ls -i
Chapter 5. The AIX journaled file system 237

command. More on links can be found in Section 5.5.5, “Links” on page 264.
The i-nodes that represent files that define devices contain slightly different
information from i-nodes for regular files. Files associated with devices are
called special files. There are no data block addresses in special device files,
but the major and minor device numbers are included in the i_rdev field. For
more information on special files, see Section 5.5.3, “Special or device files”
on page 260.

In normal situations, a disk i-node is released when the link count (i_nlink) to
the i-node equals 0. Links represent the file names associated with the
i-node. When the link count is set to 0, all the data blocks associated with the
i-node are released to the bit map of free data blocks for the file system. The
JFS will mark this i-node number as free in the i-node map.

5.2.5 i-node addressing
The JFS uses the indirect blocks to address the disk space allocated to larger
files. Indirect blocks allow greater flexibility for file sizes. The indirect block is
assigned using the i_rindirect field of the disk i-node. This field allows three
methods for addressing the disk space:

• Direct

• Single indirect

• Double indirect

The exact same methods are used to address disk space in compressed and
fragmented file systems.

5.2.5.1 Direct addressing
When the direct method of disk addressing is used, each of the eight
addresses listed in the i_rdaddr field of the disk i-node points directly to a disk
fragments. The maximum size of a file using the direct method is 8 x 4096
bytes (or 32,768 bytes). The direct disk address method is illustrated in
Figure 75 on page 239.
238 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 75. The direct method

5.2.5.2 Single indirect addressing
When a file requires more than 32KB, an indirect block is used to address the
file's disk space. The i_rindirect field contains an address that points to either
a single indirect block or a double indirect block. When the single indirect disk
addressing method is used, the i_rindirect field contains the address of an
indirect block containing 1024 addresses. These addresses point to the disk
fragments for each allocation. Using the single indirect block geometry, the
file can be up to 1024 x 4096 bytes (or 4,194,304 bytes, that is 4 MB). The
indirect disk address method is illustrated in Figure 76 on page 240.

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Not used
i_rindirect field

inode 4Kb Fragments

i_rdaddr
Chapter 5. The AIX journaled file system 239

Figure 76. The single indirect method

5.2.5.3 Double indirect addressing
The double indirect addressing method illustrated in Figure 77 on page 241
uses the i_rindirect field to point to a double indirect block. The double
indirect block contains 512 addresses that point to indirect blocks, which
contain pointers to the fragment allocations. The largest file size that can be
used with the double indirect geometry in a file system not enabled for large
files is 512 * (1024 x 4096) bytes (or 2,147,483,648 bytes, that is 2 GB).

Beginning in Version 4.2, file systems enabled for large files allow a maximum
file size of slightly less than 64 gigabytes (68,589,453,312 bytes). The first
single indirect block points to 4096 byte fragments, and all subsequent single
indirect blocks point to (32 X 4096) byte fragments. The following produces
the maximum file size for file systems enabling large files:

(1 * (1024 * 4096)) + (511 * (1024 * 131072))

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Address

i_rindirect field

inode

Fragments

i_rdaddr

Single indirect block
240 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 77. The double indirect method

5.2.6 Fragments
The journaled file system fragment support allows disk space to be divided
into allocation units that are smaller than the default size of 4096 bytes.
Smaller allocation units or fragments minimize wasted disk space by more
efficiently storing the data in a file or directory's partial logical blocks. The
functional behavior of journaled file system fragment support is based on that
provided by Berkeley Software Distribution (BSD) fragment support. Similar
to BSD, the JFS fragment support allows users to specify the number of
i-nodes that a file system has.

5.2.6.1 Disk utilization
Many UNIX file systems only allocate contiguous disk space in units equal in
size to the logical blocks used for the logical division of files and directories.
These allocation units are typically referred to as disk blocks and a single disk
block is used exclusively to store the data contained within a single logical
block of a file or directory.

There are two ways to reduce the number of disk I/O operations:

• Using a relatively large block size

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Address

inode

Fragments

Single indirects

double indirect block

512 addresses
Chapter 5. The AIX journaled file system 241

• Maintaining disk block allocation equal in size to the logical block

For example, a file with a size of 4096 bytes or less would be allocated a
single 4096 byte disk block if the logical block size is 4096 bytes. A read or
write operation would, therefore, only have to perform a single disk I/O
operation to access the data on the disk. If the logical block size were smaller,
requiring more than one allocation for the same amount of data, then more
than one disk I/O operation would be required to access the data. A large
logical block and equal disk block size are also advantages for reducing the
amount of disk space allocation.

Restricting the disk space allocation unit to the logical block size can,
however, lead to wasted disk space in a file system containing numerous files
and directories of a small size. Wasted disk space occurs when a a logical
block is partially used. The remaining portion remains unused since no other
file or directory can write its contents to disk space that has already been
allocated. The total amount of wasted disk space can be large for file systems
containing a large number of small files and directories.

5.2.6.2 Optimizing disk utilization
In the JFS, however, the disk space allocation unit, referred to as a fragment,
can be smaller than the logical block size of 4096 bytes. With the use of
fragments smaller than 4096 bytes, the data contained within a partial logical
block can be stored more efficiently by using only as many fragments as are
required to hold the data. For example, a partial logical block that only has
500 bytes could be allocated a fragment of 512 bytes (assuming a fragment
size of 512 bytes), thus greatly reducing the amount of wasted disk space. If
the storage requirements of a partial logical block increase, one or more
additional fragments will be allocated.

5.2.7 Fragments and number of bytes per i-node (NBPI)
The fragment size for a file system is specified during its creation. The
allowable fragment sizes for journaled file systems are 512, 1024, 2048, and
4096 bytes. For consistency with previous versions of AIX, the default
fragment size is 4096 bytes. Different file systems can have different fragment
sizes, but only one fragment size can be used within a single file system.
Different fragment sizes can also coexist on a single system (machine) so
that users can select the fragment size most appropriate for each file system.
Figure 78 on page 243 shows block and fragments.
242 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 78. Logical blocks and fragments

The journaled file system fragment support provides a view of the file system
as a contiguous series of fragments rather than as a contiguous series of
(logical) disk blocks. To maintain the efficiency of disk operations, however,
disk space is often allocated in units of 4096 bytes so that the disk blocks or
allocation units remain equal in size to the logical blocks. A disk block
allocation in this case can be viewed as an allocation of 4096 bytes of
contiguous fragments.

Both operational overhead (additional disk seeks, data transfers, and
allocation activity) and better utilization of disk space increase as the
fragment size for a file system decreases. To maintain the optimum balance
between increased overhead and increased usable disk space, the following
factors apply to JFS fragment support:

• Disk space allocations of 4096 bytes of fragments are maintained for a file
or directory's logical blocks where possible.

• Only partial logical blocks for files or directories less than 32 KB in size
can be allocated less than 4096 bytes of fragments.

Maintaining 4096 byte disk space allocations allows disk operations to be
more efficient, as previously described in Section 5.2.6.1, “Disk utilization” on
page 241.

As the files and directories within a file system grow beyond 32 KB in size, the
benefit of maintaining disk space allocations of less than 4096 bytes for
partial logical blocks diminishes. The disk space savings as a percentage of
total file system space would become negligible, while the extra performance
cost of maintaining small disk space allocations remains constant. Since disk
space allocations of less than 4096 bytes provide the most effective disk
space utilization when used with small files and directories, the logical blocks

Logical blocks

Fragments

File system FS1
Chapter 5. The AIX journaled file system 243

of files and directories equal to or greater than 32 KB are always allocated
4096 bytes of fragments. Any partial logical block associated with such a
large file or directory is also allocated 4096 bytes of fragments.

5.2.7.1 Full and partial logical blocks
A file or directory may contain full or partial logical blocks. A full logical block
contains 4096 bytes of data. Partial logical blocks occur when the last logical
block of a file or directory contains less than 4096 bytes of data.

For example, a file of 8192 bytes is two logical blocks. The first 4096 bytes
reside in the first logical block and the following 4096 bytes reside in the
second logical block. Likewise, a file of 6144 bytes consists of two logical
blocks. However, the last logical block is a partial logical block containing the
last 2048 bytes of the file's data. Only the last logical block of a file can be a
partial logical block. Figure 79 shows a file with a size of 4096 bytes that fills
one logical block and a file that occupies 6144 bytes, thus six fragments.

Figure 79. Logical blocks and fragments partially filled

5.2.7.2 Variable number of i-nodes
Since fragment support optimizes disk space utilization, it increases the
number of small files and directories that can be stored within a file system.
However, disk space is only one of the file system resources required by files
and directories; each file or directory also requires a disk i-node. The JFS
allows the number of disk i-nodes created within a file system to be specified
in case more or fewer than the default number of disk i-nodes is desired. The
number of disk i-nodes can be specified at file system creation as the number
of bytes per i-node (NBPI). For example, an NBPI value of 1024 causes a disk
i-node to be created for every 1024 bytes of file system disk space. Another
way to look at this is that a small NBPI value (512 for instance) results in a

Logical blocks

Fragments

File system FS1

file 2file 1
244 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

large number of i-nodes, while a large NBPI value (such as 16,384) results in
a small number of i-nodes.

The set of allowable NBPI values vary according to the allocation group size
(agsize). The default is 8 MB. In AIX Version 4.1, allocation group size is fixed
at 8MB. The allowable NBPI values are 512, 1024, 2048, 4096, 8192, and
16,384, with an allocation group size of 8 MB. More about these values can
be found in Figure 81 on page 250.

5.2.7.3 Specifying fragment size and NBPI
Fragment size and the number-of-bytes-per-i-node (NBPI) value are specified
during the file system's creation with the crfs and mkfs commands or by using
the System Management Interface Tool (SMIT). The decision of fragment size
and how many i-nodes to create for the file system should be based on the
projected number of files contained by the file system and their size.

5.2.7.4 Identifying fragment size and NBPI
The file system fragment size and the number-of-bytes-per-i-node (NBPI)
value can be identified through the lsfs command or the System
Management Interface Tool (SMIT). For application programs, the statfs

subroutine can be used to identify the file system fragment size.

5.2.7.5 Performance costs
Although file systems that use fragments smaller than 4096 bytes as their
allocation unit may require substantially less disk space than those using the
default allocation unit of 4096 bytes, the use of smaller fragments may incur
due to performance costs.

5.2.7.6 Increased allocation activity
Since disk space is allocated in smaller units for a file system with a fragment
size other than 4096 bytes, allocation activity may occur more often when
files or directories are repeatedly extended in size. For example, a write
operation that extends the size of a zero-length file by 512 bytes results in the
allocation of one fragment to the file, assuming a fragment size of 512 bytes.
If the file size is extended further by another write of 512 bytes, an additional
fragment must be allocated to the file. Applying this example to a file system
with 4096-byte fragments, disk space allocation would occur only once, as
part of the first write operation. No additional allocation activity must be
performed as part of the second write operation, since the initial 4096 byte
fragment allocation is large enough to hold the data added by the second
write operation.
Chapter 5. The AIX journaled file system 245

Allocation activity adds performance overhead to file system operations.
However, allocation activity can be minimized for file systems with fragment
sizes smaller than 4096 bytes if files are extended by 4096 bytes at a time
when possible.

5.2.7.7 Free space fragmentation
Using fragments smaller than 4096 bytes may cause greater fragmentation of
the disk's free space. For example, consider an area of the disk that is divided
into eight fragments of 512 bytes each. Suppose that different files, requiring
512 bytes each, have written to the first, fourth, fifth, and seventh fragments
in this area of the disk, leaving the second, third, sixth, and eighth fragments
free. Although four fragments representing 2048 bytes of disk space are free,
no partial logical block requiring four fragments (or 2048 bytes) will be
allocated for these free fragments, since the fragments in a single allocation
must be contiguous.

Since the fragments allocated for a file or directory's logical blocks must be
contiguous, free space fragmentation may cause a file system operation that
requests new disk space to fail even though the total amount of available free
space is large enough to satisfy the operation. For example, a write operation
that extends a zero-length file by one logical block requires 4096 bytes of
contiguous disk space to be allocated. If the file system free space is
fragmented and consists of 32 non-contiguous 512 byte fragments or a total
of 16 KB of free disk space, the write operation will fail, since eight
contiguous fragments (or 4096 bytes of contiguous disk space) are not
available to satisfy the write operation.

A file system with an unmanageable amount of fragmented free space can be
de-fragmented with the defragfs command. The execution of defrags has an
impact on performance. The use of defragfs is also described in Section
7.10.1.3, “defragfs” on page 338.

5.2.7.8 Increased fragment allocation map size
More virtual memory and file system disk space may be required to hold
fragment allocation maps for file systems with a fragment size smaller than
4096 bytes.

Fragments serve as the basic unit of disk space allocation, and the allocation
state of each fragment within a file system is recorded in the file system's
fragment allocation map.
246 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

5.2.7.9 Journaled file system log size issues
Another size-related issue is the size of the JFS log. In most instances,
multiple journaled file systems use a common log configured to be one
physical partition in size. For example, after initial installation, all file systems
within the root volume group use logical volume hd8 as a common JFS log.
When file systems exceed 2 GB or when the total amount of file system space
using a single log exceeds 2 GB, the default log size may not be sufficient. In
either case, the log sizes should be scaled upward as the file system size
increases. The JFS log is limited to a maximum size of 256 MB. A rule of
thumb is 2 MB log for 4 GB of journaled file system. This does not mean that
you need a 50 MB log logical volume if you have 100 GB of file systems in a
particular volume group. It also depends on the amount of write activity
performed. If you have 100 GB of file systems, and the applications do not
write huge amounts of data, you will not need a big log logical volume.

5.2.8 Allocation bitmaps
Some administration must be done within the file system, because a lot of
logical blocks and fragments reside within a file system. That is why two
allocation bitmaps exists:

• The fragment allocation map

• The disk i-node allocation

The fragment allocation bitmap records the allocation state of each fragment.
The disk i-node bitmap records the status of each i-node.

5.2.9 Allocation groups
The file system space is divided in chunks called allocation groups. Every
allocation group contains i-nodes and data blocks. This permits i-nodes and
data blocks to be dispersed throughout the file system, and allows file data to
lie in closer proximity to its i-node. Despite the fact that the i-nodes are
distributed through the disk, a disk i-node can be located using a trivial
formula based on the i-number and the allocation group information
contained in the super block. The number of allocation groups grow when the
file system grows. When an allocation group is added, the file system
contains more i-nodes and data blocks.

The first allocation group begins at the start of the file system and contains a
reserved area occupying the first 2 x 4096 bytes of the group. The first 4096
bytes of this area are reserved for the logical volume control block (LVCB)
block and the second 4096 bytes hold the file system superblock.
Chapter 5. The AIX journaled file system 247

Each allocation group contains a static number of contiguous disk i-nodes
which occupy some of the group's fragments. These fragments are set aside
for the i-nodes at file system creation and extension time. For the first
allocation group, the disk i-nodes occupy the fragments immediately following
the reserved block area. For subsequent groups, the disk i-nodes are found at
the start of each group. See Figure 80. Disk i-nodes are 128 bytes in size and
are identified by a unique disk i-node number or i-number. The i-number
maps a disk i-node to its location on the disk or to an i-node within its
allocation group.

Figure 80. Allocation groups

File system's allocation groups are described by three sizes:

• The fragment allocation group size

• The disk i-node allocation group size (specified as the number of
fragments)

• Disk i-nodes that exist in each allocation group.

The default allocation group size is 8 MB. Beginning in Version 4.2, it can be
as large as 64 MB. These three values are stored in the file system
superblock, and they are set at file system creation.

inodes inodes inodes

LVCB Superblock
A 4Kb block

File system
FS1

The allocation groups shown in Figure 80 are bigger in a real file system.
The groups shown in Figure 80 are meant as an example.

Note
248 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Allocation groups allow the JFS resource allocation policies to use effective
methods for achieving good file system I/O performance. These allocation
policies try to cluster disk blocks and disk i-nodes for related data to achieve
good locality for the disk. Files are often read and written sequentially, and
files within a directory are often accessed together. Also, these allocation
policies try to distribute unrelated data throughout the file system in an
attempt to minimize free space fragmentation.

The screen shot above shows a file systems superblock. The superblock
shows you the fragment size and the allocation group size (number of
fragments) This file system has a allocation group size of 4096 * 4096
=16MB.

AIX Version 4.2 or later supports various allocation group sizes. The JFS
segregates file system space into groupings of i-nodes and disk blocks for
user data. These groupings are called allocation groups. The allocation group
size can be specified when the file system is created. The allocation group
sizes are 8 M, 16 M, 32 M, and 64 M. Each allocation group size has an
associated NBPI range. The ranges are defined by the following table:

brenzef[root] # dumpfs /ronald
/ronald:

magic 0x65872143 cpu type 0x0
file system type 0 file system version 2
file system size 10256384 fragment size 4096
block size 4096 allocation group size 4096 (frags)
inodes/allocation grp 4096 compress 0
file system name /ronal volume name lv00
log device 0xffffffff log serial number 0x0
file system state 0 read only 0
last change Thu Sep 23 10:53:20 CDT 1999
Chapter 5. The AIX journaled file system 249

Figure 81. AIX JFS ranges

The lsfs command can be used to evaluate the ranges:

brenzef[root] # lsfs -q /ronald-std

Name Nodename Mount Pt VFS Size Options Auto Accounting

/dev/lv01 -- /ronald-std jfs 32768 rw no no

(size: 32768, fs size: 32768, frag size: 4096, nbpi: 4096, compress: no, bf

: false, ag: 8)

The fields corresponds with the fields in Figure 81.

When we run the same command on another fileset, notice the different
allocation groups size and NBPI.

brenzef[root] # lsfs /ronald-large

Name Nodename Mount Pt VFS Size Options Auto Accounting

/dev/lv02 -- /ronald-large jfs 32768 rw no no

(lv size: 32768, fs size: 32768, frag size: 4096, nbpi: 16384, compress:
no, bf: false, ag: 16)

AIX Versions NBPI AG Size Fragment Size
4.3 4.2 4.1 3.x 4096 8

512, 1024, 2048, 4096

512

4096

2048

4096

8192

16384

32768

65536

131072

8

8

8

8

8

8

16

32

64

512, 1024, 2048, 4096

512, 1024, 2048, 4096

512, 1024, 2048, 4096

512, 1024, 2048, 4096

512, 1024, 2048, 4096

1024, 2048, 4096

2048, 4096

4096

Max FSsize

8

16

32

64

128

256

512

1024

1024

in MBin Byte
250 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

5.2.9.1 Maximum journaled file system size
The maximum JFS size is defined when the file system is created. For
example, selecting an NBPI ratio of 512 will limit the file system to a size of 8
GB (512 * 224 =8 GB). When creating a JFS file system, the factors listed
above (NBPI, fragment size, and allocation group size) need to be weighed
carefully. The fileset size limitations can be found in Figure 81 on page 250.

5.2.10 Allocation in compressed file systems
In a file system that supports data compression, directories are allocated disk
space. Data compression also applies to regular files and symbolic links
whose size is larger than that of their i-nodes.

The allocation of disk space for compressed file systems is the same as that
of fragments in fragmented file systems. A logical block is allocated 4096
bytes when it is modified. This allocation guarantees that there will be a place
to store the logical block if the data does not compress. The system requires
that a write or store operation report an out-of-disk-space condition into a
memory-mapped file at a logical block's initial modification. After modification
is complete, the logical block is compressed before it is written to a disk. The
compressed logical block is then allocated only the number of fragments
required for its storage.

In a fragmented file system, only the last logical block of a file (not larger than
32KB) can be allocated less than 4096 bytes. The logical block becomes a
partial logical block. In a compressed file system, every logical block can be
allocated less than a full block.

A logical block is no longer considered modified after it is written to a disk.
Each time a logical block is modified, a full disk block is allocated again
according to the system requirements. Reallocation of the initial full block
occurs when the logical block of compressed data is successfully written to a
disk.

5.2.11 Allocation in file systems with another fragment size
The default fragment size is 4096 bytes. You can specify smaller fragment
sizes with the mkfs command during a file system's creation. Allowable
fragment sizes are: 512, 1024, 2048, and 4096 bytes. You can use only one
fragment size in a file system. Read Section 5.2, “The JFS structure” on page
234, for more information on the file system structure.

To maintain efficiency in file system operations, the JFS allocates 4096 bytes
of fragment space to files and directories that are 32 KB or larger. A fragment
that covers 4096 bytes of disk space is allocated to a full logical block. When
Chapter 5. The AIX journaled file system 251

data is added to a file or directory, the kernel allocates disk fragments to store
the logical blocks. Thus, if the file system's fragment size is 512 bytes, a full
logical block is the allocation of 8 fragments.

The kernel allocates disk space so that only the last bytes of data receive a
partial block allocation. As the partial block grows beyond the limits of its
current allocation, additional fragments are allocated. If the partial block
increases to 4096 bytes, the data stored in its fragments are reallocated into
4096-byte allocations. A partial logical block that contains less than 4096
bytes of data is allocated the number of fragments that best matches its
storage requirements.

Fragment reallocation also occurs if data is added to logical blocks that
represent file holes. A file hole is an empty logical block located prior to the
last logical block that stores data. (File holes do not occur within directories.)
These empty logical blocks are not allocated fragments. However, as data is
added to file holes, allocation occurs. Each logical block that was not
previously allocated disk space is allocated 4096 byte of fragment space.

Additional fragment allocation is not required if existing data in the middle of a
file or directory is overwritten. The logical block containing the existing data
has already been allocated fragments.

JFS tries to maintain contiguous allocation of a file or directory's logical
blocks on the disk. Maintaining contiguous allocation lessens seek time
because the data for a file or directory can be accessed sequentially and
found on the same area of the disk. However, disk fragments for one logical
block are not always contiguous to the disk fragments for another logical
block. The disk space required for contiguous allocation may not be available
if it has already been written to by another file or directory. An allocation for a
single logical block, however, always contains contiguous fragments.

The file system uses a bitmap called the fragment allocation map to record
the status of every fragment in the file system. When the file system needs to
allocate a new fragment, it refers to the fragment allocation map to identify
which fragments are available. A fragment can only be allocated to a single
file or directory at a time.

5.2.12 Allocation in file systems enabled for large files
In a file system enabled for large files, the JFS allocates two sizes of
fragments for regular files.

• A large fragment (32 X 4096) 128 KB

• A 4096 byte fragment
252 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

A large block is allocated for logical blocks after the 4 MB boundary; a 4096
byte fragment for logical blocks before the 4 MB boundary.

All non regular files allocate 4096 byte fragments. This geometry allows a
maximum file size of slightly less than 64 gigabytes (68.589.453,312 bytes).

A large fragment is made up of 32 contiguous 4096 byte fragments. Because
of this requirement, it is recommended that file systems enabled for large files
have predominantly large files in them. Storing many small files (files less
than 4 MB) can cause free-space fragmentation problems. This can cause
large allocations to fail with ENOSPC (no space left on device) or EDQUOT
(disc quota exceeded) because the file system does not contain 32
contiguous disk addresses.

5.3 How do we use a journaled file system?

Besides the JFS file system, other components are involved when application
are using the file system. In this section we focus on these components, like
the JFS log, types of files, directory’s etc.

5.3.1 The JFS log
AIX uses a special logical volume called the log device as a circular journal
for recording modifications to file system meta-data. File system meta-data
include the superblock, i-nodes, indirect data pointers, and directories. When
meta-data is modified, a duplicate transaction is made to the JFS log. When a
sync() / fsync() occurs, commit records are written to the JFS log to indicate
that modified pages in memory have been committed to disk.

The following are examples of when JFS log transactions occur:

• When a file is being created or deleted

• When a write() occurs for a file opened with O_SYNC

• When fsync() or sync() is called

• When a file is opened with O_APPEND

• When a write causes an indirect or double-indirect block to be allocated

The Journaled File System uses a database journaling technique to
maintain a consistent file system structure. This involves duplicating
transactions that are made to file system meta-data to the JFS log.

Note
Chapter 5. The AIX journaled file system 253

The use of a JFS log allows for rapid and clean recovery of file systems if a
system goes down. However, there may be a performance trade-off here. If
an application is doing synchronous I/O or is creating and/or removing many
files in a short amount of time, then there may be a lot of I/O going to the JFS
log logical volume. If both the JFS log logical volume and the file system
logical volume are on the same physical disk, then this could cause an I/O
bottleneck. The recommendation would be to migrate the JFS log device to
another physical disk.

Information about I/Os to the JFS log can be recorded using the filemon

command. If you notice that a file system and its log device are both heavily
utilized, it may be better to put each one on a separate physical disk
(assuming that there is more than one disk in that volume group). This can be
done using the migratepv command or via SMIT. For tuning details we refer to
Chapter 7, “Performance” on page 303, or the AIX Performance and Tuning
Guide, SC23-2365.

5.4 File handling

To understand the way files are handled, and to understand the actions
started for these operations, a detailed description of the way the journaled
file system works is necessary. This section will cover the following topics:

• The system call handler

• The logical file system (LFS)

• the virtual file system (VFS)

• The v-nodes

• The g-nodes

• The i-nodes

• The fragmentation

• The allocation bitmaps and groups

5.4.1 Understanding system call execution
The first layer that is used during file handling is the system call handler,
shown in Figure 82 on page 255.
254 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 82. Kernel I/O layers

The system call handler gains control when a user program starts a system
call, like open(), close(), write(), etc.. The system call handler changes the
protection domain from the caller protection domain, user, to the system call
protection domain, kernel.

The system call function returns to the system call handler when it has
performed its operation. The system call handler then restores the state of
the process and returns to the user program.

5.4.2 The logical file system
The logical file system (LFS) is the level of the file system at which users can
request file operations by system call. This level of the file system provides
the kernel with a consistent view of what may be multiple physical file
systems and multiple file system implementations. As far as the logical file
system is concerned, file system types, whether local, remote, or strictly
logical, and regardless of implementation, are indistinguishable. The logical
file system is located as shown in Figure 82.

A consistent view of file system implementation is made possible by the
virtual file system abstraction. This abstraction specifies the set of file system
operations that an implementation must include in order to carry out logical
file system requests. Physical file systems can differ in how they implement
these predefined operations, but they must present a uniform interface to the

System calls

System call handler

Logical File System

Virtual File System

r-node

vnode

inode cdr-node ?-node ?-node

gnode
Chapter 5. The AIX journaled file system 255

logical file system. The logical file system and the virtual file system switch
support other operating file system access semantics.

Each set of predefined operations implemented constitutes a virtual file
system. As such, a single physical file system can appear to the logical file
system as one or more separate virtual file systems.

Virtual file system operations are available at the logical file system level
through the virtual file system switch. This array contains one entry for each
virtual file system, with each entry holding entry point addresses for separate
operations. Each file system type has a set of entries in the virtual file system
switch.

The logical file system and the virtual file system switch support other
operating system file system access semantics. This does not mean that only
other operating system file systems can be supported. It does mean,
however, that a file system implementation must be designed to fit into the
logical file system model. Operations or information requested from a file
system implementation need be performed only to the extent possible.

Logical file system can also refer to the tree of known path names in force
while the system is running. A virtual file system that is mounted onto the
logical file system tree itself becomes part of that tree. In fact, a single virtual
file system can be mounted onto the logical file system tree at multiple points,
so that nodes in the virtual subtree have multiple names. Multiple mount
points allow maximum flexibility when constructing the logical file system
view.

5.4.2.1 Component structure of the logical file system
The logical file system is divided into the following components:

• System calls

Implement services exported to users. System calls that carry out file system
requests do the following:

- Map the user's parameters to a file system object. This requires that
the system call component use the v-node (virtual node) component to
follow the object's path name. In addition, the system call must resolve
a file descriptor or establish implicit (mapped) references using the
open file component.

- Verify that a requested operation is applicable to the type of the
specified object.
256 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

- Dispatch a request to the file system implementation to perform
operations.

• Logical file system file routines

Manage open file table entries and per-process file descriptors. An open file
table entry records the authorization of a process's access to a file system
object.

A user can refer to an open file table entry through a file descriptor or by
accessing the virtual memory to which the file was mapped. The logical file
system routines are those kernel services, such as fp_ioctl and fp_select, that
begin with the prefix fp_.

• v-nodes0

Provides system calls with a mechanism for local name resolution. Local
name resolution allows the logical file system to access multiple file system
implementations through a uniform name space.

5.4.3 Virtual file system overview
The virtual file system is an abstraction of a physical file system
implementation. It provides a consistent interface to multiple file systems,
both local and remote. This consistent interface allows the user to view the
directory tree on the running system as a single entity, even when the tree is
made up of a number of diverse file system types. The interface also allows
the logical file system code in the kernel to operate without regard for the type
of file system being accessed.

A virtual file system can also be viewed as a subset of the logical file system
tree, that part belonging to a single file system implementation. A virtual file
system can be physical (the instantiation of a physical file system), remote
(NFS), or strictly logical, like a RAM file system. In the latter case, for
example, a virtual file system need not actually be a true file system or entail
any underlying physical storage device.

A virtual file system mount point grafts a virtual file system subtree onto the
logical file system tree. This mount point ties together a mounted-over v-node
(virtual node) and the root of the virtual file system subtree. A mounted-over,
or stub, v-node points to a virtual file system, and the mounted VFS points to
the v-node it is mounted over.
Chapter 5. The AIX journaled file system 257

5.4.4 Understanding virtual nodes (v-nodes)
A virtual node (v-node) represents access to an object within a virtual file
system. v-nodes are used only to translate a path name into a generic node
(g-node).

A v-node is either created or used again for every reference made to a file by
path name. When a user attempts to open or create a file, if the VFS
containing the file already has a v-node representing that file, a use count in
the v-node is incremented and the existing v-node is used. Otherwise, a new
v-node is created.

Every path name known to the logical file system can be associated with, at
most, one file system object. However, each file system object can have
several names. Multiple names appear in the following cases:

• The object can appear in multiple virtual file systems. This can happen if
the object (or an ancestor) is mounted in different virtual file systems using
a local file-over-file or directory-over-directory mount.

• The object does not have a unique name within the virtual file system.
(The file system implementation can provide synonyms. For example, the
use of links causes files to have more than one name. However, the
opening of synonymous paths does not cause multiple v-nodes to be
created.)

5.4.5 Understanding generic i-nodes (g-nodes)
A generic i-node (g-node) is the representation of an object in a file system
implementation. There is a one-to-one correspondence between a g-node
and an object in a file system implementation. Each g-node represents an
object owned by the file system implementation.

Each file system implementation is responsible for allocating and destroying
g-nodes. The g-node then serves as the interface between the logical file
system and the file system implementation. Calls to the file system
implementation serve as requests to perform an operation on a specific
g-node.

A g-node is needed, in addition to the file system i-node, because some file
system implementations may not include the concept of an i-node. Thus, the
g-node structure substitutes for whatever structure the file system
implementation may have used to uniquely identify a file system object.

The logical file system relies on the file system implementation to provide
valid data for the following fields in the g-node:
258 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• gn_type - Identifies the type of object represented by the g-node.

• gn_ops - Identifies the set of operations that can be performed on the
object.

5.4.6 Understanding the virtual file system interface
Operations that can be performed upon a virtual file system and its
underlying objects are divided into two categories:

• Operations upon a file system implementation as a whole (not requiring
the existence of an underlying file system object) are called vfs operations.

• Operations upon the underlying file system objects are called v-node
(virtual node) operations. Before writing specific virtual file system
operations, it is important to note the requirements for a file system
implementation.

5.4.7 Accessing files
So, now we have discussed the layered structures from the system call level
to the i-node level; so, we can explain what happens when we use open()
system call.

The information from the open() system call is passed on to the logical file
system (LFS). The logical file system determines if the type of system call is
valid for the object. Then, it creates a file table entry for the object and passes
the pointer to the virtual file system. The virtual file system creates a v-node
for the object and maps it to a g-node. When the object is a NFS file system,
an r-node will be mapped to a g-node. When the object belongs to a JFS file
system, the object will be mapped to an i-node. When the object is on a
CD-ROM file system, a cdrnode will be mapped to the g-node.

5.5 File types

This section describes the type of file you can encounter in the AIX operating
system.

5.5.1 Regular files
A regular file is a file that is not in the following categories:

• A special file

• A symbolic link

• A FIFO
Chapter 5. The AIX journaled file system 259

• A directory

• A socket

The first bit of the mode field contains the character - . A regular file can,
however, be sparse. Sparse files are described in Section 5.5.2, “Sparse files”
on page 260. Regular files can be identified by issuing the ls -l command
and look for the first bit in the mode field. The output should looks similar to
the one shown below:

brenzef[root] # ls -al employees
total 32
drwxr-xr-x 2 root system 512 Oct 06 17:02 ./
drwxr-xr-x 32 root system 4608 Oct 06 17:03 ../
-rw-r--r-- 1 root system 11 Nov 25 17:02 Laurent.Vanel
-rw-r--r-- 1 root system 702 Oct 06 17:06 Hans.Timmers
-rw-r--r-- 1 root system 11 Nov 25 17:02 Ronald.van.der.Knaap
-rw-r--r-- 1 root system 11 Nov 25 17:02 Inge.Wisselink

5.5.2 Sparse files
Files that do not have disk blocks allocated for each logical block are called
sparse files. Sparse files are created by seeking a file offset and writing data.
If the file offsets are greater than 4 MB, then a large disk block of 128 KB is
allocated. Applications using sparse files larger than 4 MB may require more
disk blocks in a file system enabled for large files than in a regular file system.

5.5.3 Special or device files
A special file is associated with a particular hardware device or other
resource of the computer system. The operating system uses special files,
sometimes called device files, to provide file I/O access to specific character
and block device drivers. Special files, at first glance, appear to be just like
ordinary files, in that they:

• Have path names that appear in a directory

• Have the same access protection as ordinary files

• Can be used in almost every way that ordinary files can be used

However, there is an important difference between the two. An ordinary file is
a logical grouping of data recorded on disk. A special file, on the other hand,
corresponds to a device entity. Examples are:

• An actual device, such as a line printer

• A logical subdevice, such as a large section of the disk drive
260 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• A pseudo device, such as the physical memory of the computer
(/dev/mem) or the null file (/dev/null)

Special files are distinguished from other files by having a file type (c or b for
character or block) stored in the i-nodes to indicate the type of device access
provided. The i-node for the special file also contains the device major and
minor numbers assigned to the device at device configuration time.

Several special files are provided with the operating system. By convention,
special files are located in the /dev directory or its subdirectories.

5.5.3.1 Character device special files
Character I/O requests are performed by issuing a read or write request on a
/dev/xXx character special file for a device, such as /dev/hdisk44 of /dev/rmt0.

Character devices can be identified by issuing the ls -l command and
looking for the first bit in the mode field. The output should looks similar as
the one shown below:

brenzef[root] # ls -l /dev/rmt* /dev/tty*

crw-rw-rw- 1 root system 21, 0 Aug 17 18:37 /dev/rmt0
crw-rw-rw- 1 root system 21, 1 Aug 17 18:37 /dev/rmt0.1
crw-rw-rw- 1 root system 21, 2 Aug 17 18:37 /dev/rmt0.2
crw-rw-rw- 1 root system 21, 3 Aug 17 18:37 /dev/rmt0.3
crw-rw-rw- 1 root system 21, 4 Aug 17 18:37 /dev/rmt0.4
crw-rw-rw- 1 root system 1, 0 Oct 06 11:42 /dev/tty
crw-rw--w- 1 uucp uucp 18, 1 Aug 30 07:37 /dev/tty0
crw-rw-rw- 1 root system 18, 2 Aug 28 14:59 /dev/tty1
crw-rw-rw- 1 root system 30, 0 Aug 17 18:55 /dev/ttyp0
crw-rw-rw- 1 root system 30, 1 Aug 17 18:55 /dev/ttyp1
crw-rw-rw- 1 root system 30, 2 Aug 17 18:55 /dev/ttyp2

The first character in the permission field of ls is a c, which means that this
device is a character device.

Character devices are capable of doing sequential I/O, like disk tape drives
and tty devices.

5.5.3.2 Block device special files
Block I/O requests are performed by issuing a read or write on a block special
file like /dev/rxxx.

Block devices can be identified by issuing the ls -l command and looking for
the first bit in the mode field. The output should looks similar as the one
shown below:
Chapter 5. The AIX journaled file system 261

brenzef[root] # ls -l /dev/rhdisk*
brw------- 1 root system 14, 5 Aug 30 20:17 /dev/rhdisk0
brw------- 1 root system 14, 2 Sep 23 16:16 /dev/rhdisk1
brw------- 1 root system 14, 6 Sep 23 16:16 /dev/rhdisk2
brw------- 1 root system 14, 4 Sep 23 16:16 /dev/rhdisk3
brw------- 1 root system 14, 1 Sep 23 16:16 /dev/rhdisk4
brw------- 1 root system 14, 3 Sep 23 16:16 /dev/rhdisk5

The first character in the permission field of ls is a b, which means that this
device is a block device.

Block devices can only do random I/O, such as disk devices.

5.5.3.3 Sockets
Sockets were developed in response to the need for sophisticated
inter-process facilities to meet the following goals:

• Provide access to communications networks such as the Internet

• Enable communication between unrelated processes residing locally on a
single host computer and residing remotely on multiple host machines

Sockets provide a sufficiently general interface to allow network-based
applications to be constructed independently of the underlying
communication facilities. They also support the construction of distributed
programs built on top of communication primitives.

5.5.3.4 FIFO special files
FIFO or first-in-first-out files are unnamed objects created to allow two
processes to communicate. One process reads and the other process writes
to the FIFO file. This unique type of file is also called a named pipe. The data
blocks of the FIFO are manipulated in a circular queue, maintaining read and
write pointers internally to preserve the FIFO order of data.

The shell uses unnamed pipes to implement command pipelining. Most
unnamed pipes are created by the shell. The | (vertical) symbol represents a
pipe between processes.

5.5.3.5 Creating a special file (mknod or mkfifo subroutine)
You can use the mknod and mkfifo subroutines to create new special files.
The mknod subroutine handles named pipes (FIFO), ordinary, and device files.
It creates an i-node for a file identical to that created by the creat subroutine.
When you use the mknod subroutine, the file-type field is set to indicate the
type of file being created. If the file is a block or character-type device file, the
names of the major and minor devices are written into the i-node. The mkfifo
262 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

subroutine is an interface for the mknod subroutine and is used to create
named pipes.

The first character in the permission field of ls is a p, which means that this
device is a FIFO or a named pipe.

5.5.4 Directories
Directories provide a hierarchical structure to the file system and link file and
subdirectory names to i-nodes. There is no limit on the depth of nested
directories. Disk space is allocated for directories in 4096 byte blocks, but the
operating system allocates directory space in 512 byte records.

5.5.4.1 Directory structures
Directories contain a sequence of directory entries. Each directory entry
contains three fixed-length fields (the index number associated with the file's
i-node, the length of the file name, and the number of bytes for the entry) and
one variable length field for the file name. The file name field is
null-terminated and padded to 4 bytes. File names can be up to 255 bytes
long.

No directory entry is allowed to span 512 byte sections of a directory. When a
directory requires more than 512 bytes, another 512 byte record is appended
to the original record. If all of the 512 byte records in the allocated data block
are filled, an additional data block (4096 bytes) is allotted.

When a file is removed, the space the file occupied in the directory structure
is added to the preceding directory entry. The information about the directory
remains until a new entry fits into the space vacated.

Every well-formed directory contains the entries . (dot) and .. (dot, dot). The .
(dot) directory entry points to the i-node for the directory itself. The .. (dot,
dot) directory entry points to the i-node for the parent directory. The mkfs
program initializes a file system so that the . (dot) and .. (dot, dot) entries in
the new root directory point to the root i-node of the file system.

Access modes for directories have the following meanings:

• Read

Allows a process to read directory entries:

• Write

Allows a process to create new directory entries or remove old ones by using
the creat, mknod, link, and unlink subroutines:
Chapter 5. The AIX journaled file system 263

• Execute

Allows a process to use the directory as a current working directory or to
search below the directory in the file tree.

The example below shows you a directory using the ls command.

brenzef[root] # ls -l
total 24
drwxr-xr-x 2 root system 512 Oct 06 16:53 ./
drwxr-xr-x 32 root system 4608 Oct 06 16:53 ../

This example shows an empty directory. The first bit in the mode field is a d,
meaning this is a directory entry.

5.5.5 Links
Links are connections between a file name and an index node reference
number (i-node), the internal representation of a file. Because directory
entries contain file names paired with i-nodes, every directory entry is a link.
The i-node number actually identifies the file, not the file name. By using
links, any i-node or file can be known by many different names.

For example, i-node 798 contains a memo regarding November sales in the
Amsterdam office. Presently, the directory entry for this memo is:

i-node Number File Name

798 memo

Because this information relates to information stored in the sales and
Amsterdam directories, linking is used to share the information where it is
needed. Using the ln command, links are created to these directories. Now
the file has three file names:

i-node Number File Name

798 memo

798 sales/November

798 Amsterdam/november-sales

When you use the pg or cat command to view the contents of any of the three
file names, the same information is displayed. You can edit the contents of the
i-node from any of the three file. When you use the pg or cat command to view
the contents of any of the three file names, the same information is displayed.
264 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

If you edit the contents of the i-node from any of the three filenames, the
contents of the data displayed by all of the file names will reflect any changes.
The contents of the data displayed by all of the file names will reflect any
changes.

5.5.5.1 Types of links
Links are created with the ln command. There are two kinds of links:

Hard link
Allows access to the data of a file from a new file name. Hard or regular links
ensure the existence of a file. When the last hard link is removed, the i-node
and its data are deleted.

Symbolic link
Allows access to data in other file systems from a new file name. The
symbolic link is a special type of file that contains a path name. When a
process encounters a symbolic link, the process may search that path.

A regular link can be shown with the ls -li command. The i-node number for
the original file and the link is the same; only the link count is increased. A
symbolic link, however, is shown differently when you use the ls command.
Since symbolic links can reside in other file systems, the i-node number is
different. An example of a symbolic link is shown below.

brenzef[root] # ls -l link*
-rw-r--r-- 2 root system 0 Oct 06 12:39 link1
lrwxrwxrwx 1 root system 4 Oct 06 12:39 link2@ -> joop

The file link1 is a regular link that has a link count of 2. The file link2 is a
symbolic link to the file joop. The first bit in the mode field is shown as the
letter l.

Hard or regular links can be created only between files that are in the same
file system.

Note
Chapter 5. The AIX journaled file system 265

The user who creates a file retains ownership of that file, no matter how
many links are created. Only the owner of the file or the root user can set
the access mode for that file. However, changes can be made to the file
from a linked file name with the proper access mode.

A file or directory exists as long as there is one hard link to the i-node for
that file. In the long listing displayed by the ls -l command, the number of
links to each file and subdirectory is given. All hard links are treated equally
by the operating system, regardless of which link was created first.

Note
266 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Chapter 6. Backups

This chapter will not deal with the logic or requirements for a system
administrator to back up their system. However, we will deal with the facilities
that the LVM provides to make this job easier. We will focus on the new facility
brought with AIX Version 4.3.3 that allows the user to perform online backup.
Although this is not the goal of this book, we will cover some of the
commands used to back up files and volume groups. However, we will not
cover the ADSM product. Other redbooks (for example, Getting Started with
ADSM: A Practical Implementation Guide, SG24-5416) cover these topics in
some detail. Similarly, we have not covered sysback.

6.1 Online backups for 4.3.3 and above

The idea of online backup started with customers who realized that if you had
a mirrored logical volume, there might be a possibility of using one of the
mirrors as a snapshot of the system. The user could use this snapshot, take it
off- line, and do a backup of one of the mirrors of the mirrored logical volume.
The good and bad thing about LVM is that it is very flexible. It is good because
it is designed so that it does not have too many lockouts or sections of code
that would prevent a clever programmer from making alterations. This type of
design allows for constant evolution and design enhancements. The bad thing
about this type of design is that some people manipulate LVM in a manner it
wasn’t designed for. Then, when things blow up, some programmers blame
LVM. The logic seems to be that if the code wasn’t meant to be manipulated
and tweaked, then code to lock out certain actions should be in place. An
example is that a majority of commands in LVM are written in shell script. So,
the argument goes that if IBM didn’t want hackers going in and customizing
their copy of LVM, then all commands should be in binaries.

That said, this is the history behind the new online backup feature. First,
some customers asked a vendor to design a system where they could take a
mirror off-line and back it up. Since the LVM mklv, mklvcopy, rmlv, and syncvg

commands are all in shell script, it was easy to figure out how to split up a
mirrored logical volume. So, some companies were running this script with
the incorrect assumption that this was an IBM supported product. Eventually,
some customers became quite concerned when they realized that it was not
an IBM supported product, but that it was just a very complicated shell script
cooked up by some hackers. As a result of this problem, the LVM developers
did an analysis of the action of splitting up a mirror and doing an online
backup. Note, that an online backup could be a backup of the raw logical
volume or a backup of a journaled file system. Taking the whole AIX system in
© Copyright IBM Corp. 2000 267

consideration, the LVM team detected some flaws in the original code.
Considerations such as major/minor number conflicts, system locking, mirror
resynchronization time, and data integrity were not taken into full account in
the original code. Some problems were easy to solve through design, but
other problems are much more sophisticated and not easily coded out.

As a result of this problem, a new LVM command, splitlvcopy, was created. It
is an officially supported AIX command. This command is a stopgap measure
to replace the homecooked code used by some customers. It has checks that
prevent some potential system conflicts, but it still has some limitations in
terms of performance and data synchronization. Even after splitlvcopy, there
still existed two main problems. The first one is the performance of trying to
resync the broken off mirror. The complaint is that if you have two mirrors, A
and B, and you take B offline to do a backup, then returning B back to be a
partner with A is tedious. Since B has gone away, when it comes back, A
thinks that B is a stale mirror; so, the entire mirror must be resynchronized
even if nothing has really changed between mirror A and mirror B. And, the
main reason that B was split off was so that a snapshot could be taken and so
that I/O load on the RS/ 6000 could be lightened. But, the resync of B with A
causes the I/O load to go up. The second complaint was that some files
(when doing a jfs backup) on the B copy seemed to be missing. This is a very
important problem within online backup, and that part of the equation has yet
to be solved. The problem is metadata of the jfs. To put it in layman’s terms,
think of metadata as a cloud of information floating above the jfs. This
metadata controls file actions and locations. Now there exists windows where
some data is still “in the clouds” when mirror B is split off. The metadata has
not been completely written to the mirrored logical volume. One method to
help get more metadata written to the disk is to use system syncs. However,
there is no guarantee that some metadata didn’t change between the time the
syncs complete and then split off of the mirror. Many customers ask for a
guarantee that no data will be lost. The answer is that even with many syncs,
we can’t guarantee that some user somewhere doesn’t alter the metadata
right before the splitlvcopy is run. The only way to guarantee that metadata is
flushed to the disk and remains unchanged is to close the file system. In other
words, you must unmount the file system. However, this is contradictory to the
original need for online backup, that is, a method to take a snapshot of the
system without bringing down the application running on the mirrored logical
volume. Because of this known problem, the following warning is inserted into
the splitlvcopy man pages:

Attention: Although the splitlvcopy command can split logical volumes that
are open, including logical volumes containing mounted file systems, this is
not recommended. You may lose consistency between LogicalVolume and
268 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

NewLogicalVolume if the logical volume is accessed by multiple processes
simultaneously. When splitting an open logical volume, you implicitly accept
the risk of potential data loss and data corruption associated with this action.
To avoid the potential corruption window, close logical volumes before
splitting, and unmount file systems before splitting.

This sounds pretty scary, but it is usually not the case. What typically
happens is that during the backup of the system via jfs, the backup program
will print out a message that a few files cannot be found. It was decided that
this would be equivalent to taking a snapshot of a file system that was having
users add and delete files right in the middle of the snapshot. But, as
mentioned before, a way to guarantee that the snapshot of the system has
true data quiescence, the logical volume should be closed, which implies that
the journaled file system be unmounted.

The current modification to online backup does not close the window with the
possible in-flight metadata. That is reserved for another, more involved,
design. The online backup offered in AIX 4.3 delivers a faster
resynchronization method. There are two different options delivered. The first
one, with no new special file, was delivered in AIX 4.3.1. The second one,
with a new special file name for the backup copy, was introduced in AIX 4.3.2.
This gets a little complicated; so, we must first discuss what was available
prior to AIX 4.3. In the earlier versions of AIX, a user could write a READX()
system call with the options for mirror avoidance placed in the READX() call;
so, if one had mirrors A and B, and one wanted to read mirror B, then a
programmer would make a system READX() call and put in the option to
avoid mirror 1. But, during this time, any writes to copy A will automatically
get copied over to copy B. There is no “snapshot” here.

In AIX 4.3.1 when the user runs the chlvcopy -b command, no new special file
is created for copy B, as it would have been for the splitlvcopy command.
Instead, the driver is notified that copy B is going to temporarily be a backup
logical volume. During this time, all writes to copy A do not get propagated to
copy B. But with no new special file, how does a user read from copy B to do
the backup? The answer is the readlvcopy command, which allows you to
simply read from the backup copy when you are reading from the shared /dev
special file. This readlvcopy is really a glorified READX() call that does the
equivalent of a “dd” data dump. But, we stress again, that this method differs
from the previously mentioned READX() call by not propagating changes
from A to B. Note, one behavior of this option is that after a reboot of the AIX
system, the LVM code forgets about that the chlvcopy command was ever run.
The logical volume mirrors that were temporarily, logically separated, become
rejoined. Of course, during the varyonvg step of the boot, the stale logical
volumes on copy B get reintegrated back into the mirror pair.
Chapter 6. Backups 269

In AIX 4.3.2, a temporary new logical volume is created from one of the
mirrors, just as in the splitlvcopy command. The difference with this logical
volume is that it is smart enough to track changes in the mirrored copies. As
in the previous paragraphs, suppose you have a mirror made up of copy A
and copy B. The 7chlvcopy -bl <lvname> command is used to split off copy B
into a new logical volume. This new logical volume has a special file entry in
/dev. The user can then have a program access the data via the /dev special
file entry or the readlvcopy command can be used. Now, copy A is considered
the “original” and copy B is considered the split off copy. If the user reads
from copy A, nothing happens except a normal read. If the user reads from
copy B, nothing happens except a normal read. Suppose then, that the user
writes to copy A at physical partition 100, then the same partition number on
copy B is marked stale. However, the user reading from copy B is allowed to
continue reading the stale partition 100. This is a departure from the default
LVM mirroring case. Normally, you can’t read from a stale partition, but in this
special condition you are allowed to do so. If, for some odd reason, you
perform a write on copy B, the partitions on copy B get marked stale but not
those on copy A. Put in another way, copy A will never be marked stale during
this split operation. However, consider the consequences of writing to copy B.
If you do that, then during resync the stale copy will be overwritten by those
on copy A and changes you made to copy B will be lost. A major point to this
option is that it is persistent across reboots. The -l option will remember that
the logical volume mirrors were split off and will still act in that manner after a
system reboot. When it comes time to remerge the mirrors, the user runs the
chlvcopy -B option to remerge the mirrors. The user will still have to manually
run the syncvg command to clear up stale partitions.

But now, the benefit of this new chlvcopy command is that the resync time
between copy A and copy B can be very quick. If only a few files changed
between A and B, then the resynchronization only has to recopy a few
physical partitions from copy A over copy B. However, suppose that every
single directory and every single file was somehow changed during the
duration of the backup. In this case, there is a possibility that every partition
from copy A must now be used to master copy B.
270 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

A summation of the three option types is shown:

Table 18. The three possible methods

6.2 Practical examples

We are now going to see three practical examples of:

• A concurrent online mirror backup with AIX Version 4.3.2

• An online JFS backup with AIX Version 4.3.3

• An online backup prior to AIX Version 4.3.2 (the hack)

6.2.1 Concurrent online mirror backup
This was introduced in AIX Version 4.3.2, extending the 4.3.1 online support
for raw logical volumes to support:

• Concurrent mode volume groups

• File system and database access

For our three situations, we will consider a volume group, asgard_lv, with a a
logical volume, loki_lv, hosting a file system /home/loki. loki_lv is a mirrored
logical volumes and has three copies spread across three disk.

splitlvcopy READX() chlvcopy -b chlvcopy -b -l
<lvname>

Creates a new
special file.

AIX 4.1, 4.2, 4.3

Reads from
common special file
via avoidance flags.

All versions of AIX

Reads from
common special file
via READX() or
readlvcopy
command.
AIX 4.3.1 and higher

Creates a new
special file.

AIX 4.3.2

Persistent across
reboots.
Very slow resync
time.

Not persistent
across reboot. No
mirror staleness
enforcement, no
resync.

Not persistent
across reboot.
Mirror staleness is
enforced. No special
file for backup
persistent across
reboot.

Mirror staleness is
enforced. Special
file does exist for
backup.
Chapter 6. Backups 271

Here is a list of the mounted file systems. You can see the /home/loki file
system at the bottom of the screen.

The first step would be to unmount the file system from the mirrored and to
run the chlvcopy command.

The result of this command is a new logical volume, called loki_bup (specified
as argument). We can check that with the lsvg command.

We now have to use the two different file systems, /home/loki and
/home/backup, the read-only version of /home/loki. Let us remount the file
system.

/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/syncd /home/loki
loglv00 jfslog 1 1 1 open/syncd N/A

/home/red # df -kI
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/hd4 8192 7960 232 98% /
/dev/hd2 466944 444684 22260 96% /usr
/dev/hd9var 122880 82340 40540 68% /var
/dev/hd3 40960 27904 13056 69% /tmp
/dev/hd1 32768 17664 15104 54% /home
/dev/lv00 20004864 3055816 16949048 16% /software
/dev/stripelv 12288 560 11728 5% /stripefs
/dev/loki_lv 163840 6768 157072 5% /home/loki

/home/red # umount /home/loki
/home/red # chlvcopy -b -c 3 -l loki_bup loki_lv
loki_bup

/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 closed/syncd /home/loki
loglv00 jfslog 1 1 1 closed/syncd N/A
loki_bup jfs 0 0 0 closed??????? N/A
272 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

As you can see, right now the characteristics of the two file systems are
similar, with the same size, the same number of i-nodes free, and so on. They
also have the same files and directories, Let us change that by creating a new
file in the /home/loki file system. Of course, this file shows up in the home/loki
file system, but will not be present in our backup.

Now that we have finished our backup, it is time to put things back together.
First, unmount the /home/backup file system. We can now run the chlvcopy

command again with the -B option to merge back the separated copy. As you
can see from the lsvg command, the extra loki_bup logical volume has
disappeared.

/home/red # mount /home/loki
/home/red # mount -o ro /dev/loki_bup /home/backup
/home/red # df -kI
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/hd4 8192 7960 232 98% /
/dev/hd2 466944 444684 22260 96% /usr
/dev/hd9var 122880 82340 40540 68% /var
/dev/hd3 40960 27904 13056 69% /tmp
/dev/hd1 32768 17664 15104 54% /home
/dev/lv00 20004864 3055816 16949048 16% /software
/dev/stripelv 12288 560 11728 5% /stripefs
/dev/loki_lv 163840 6768 157072 5% /home/loki
/dev/loki_bup 163840 6768 157072 5% /home/backup

/home/red # ls -l /home/loki
total 3176
-rw-r--r-- 1 root sys 1620000 Jan 08 19:04 file1
drwxrwx--- 2 root system 512 Jan 08 19:03 lost+found
/home/red # ls -l /home/backup
total 3176
-rw-r--r-- 1 root sys 1620000 Jan 08 19:04 file1
drwxrwx--- 2 root system 512 Jan 08 19:03 lost+found
/home/red # echo "blah blah blah blah blah" > /home/loki/new_file
/home/red # ls -l /home/loki
total 3184
-rw-r--r-- 1 root sys 1620000 Jan 08 19:04 file1
drwxrwx--- 2 root system 512 Jan 08 19:03 lost+found
-rw-r--r-- 1 root sys 25 Jan 08 19:29 new_file
{should do fsck here}
/home/red # #{Do backup thingies here}
Chapter 6. Backups 273

We still have the newly created file, new_file, in our file system.

6.2.2 The online JFS backup
This version is available with AIX Version 4.3.3. Making an online backup of a
mounted JFS file system creates a snapshot of the logical volume that
contains the file system while applications are still using the file system. Be
aware, though, that since the file writes are asynchronous, the snapshot may
not contain all data that was written immediately before the snapshot is taken.
Modifications that start after the snapshot begins may not be present in the
backup copy. Therefore, it is recommended that file system activity be
minimal while the split is taking place.

Split off a mirrored copy

In order to make an online backup of a mounted file system, the logical
volume that the file system resides on must be mirrored. The JFS log logical
volume for the file system must also be mirrored. The number of copies of the
jfs log must be equal to the number of copies of the file system’s logical
volume.

/home/red # umount /home/backup
/home/red # chlvcopy -B loki_lv
Warning, all data contained on logical volume loki_bup will be destroyed.
rmlv: Do you wish to continue? y(es) n(o)? y
rmlv: Logical volume loki_bup is removed.
/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/stale /home/loki
loglv00 jfslog 1 1 1 open/syncd N/A

/home/red # ls -l /home/loki
total 3184
-rw-r--r-- 1 root sys 1620000 Jan 08 19:04 file1
drwxrwx--- 2 root system 512 Jan 08 19:03 lost+found
-rw-r--r-- 1 root sys 25 Jan 08 19:29 new_file
/home/red # syncvg -v asgard_vg
/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/syncd /home/loki
loglv00 jfslog 1 1 1 open/syncd N/A
274 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

To split off the mirrored copy of the file system, use the chfs command, and
you can control which copy is used as the backup by using the copy attribute.
The second copy is the default if a copy value is not specified.

The following example shows a copy of the file system /home/loki split off.
The example assumes that there are three copies of the file system and three
copies of the jfs log, as you can verify by using:

Issuing the chfs command, we can use the third copy of /home/loki to produce
a new /home/backup file system.

Once this command completes successfully, a copy of the file system is
available read-only in /home/backup. Remember that additional changes
made to the original file system after the copy is split off are not reflected in
the backup copy.

/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/syncd /home/loki
loglv00 jfslog 1 3 3 open/syncd N/A
/home/red # df -kI
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/hd4 8192 7960 232 98% /
/dev/hd2 466944 444684 22260 96% /usr
/dev/hd9var 122880 82340 40540 68% /var
/dev/hd3 40960 27904 13056 69% /tmp
/dev/hd1 32768 17664 15104 54% /home
/dev/lv00 20004864 3055816 16949048 16% /software
/dev/stripelv 12288 560 11728 5% /stripefs
/dev/loki_lv 163840 6772 157068 5% /home/loki

Splitting a mirrored copy of a file systems means that one copy is
temporarily dedicated to backup activities and is not available to provide
data availability. It is recommended that you have three mirrored copies of
the file system so you can recover a disk problem before the backup copy
has been reintegrated on the file system.

Note
Chapter 6. Backups 275

The /home/backup file system has been created pointing to the third copy of
the original file system.

The /home/loki file system is still made by a logical volume with three copies,
but now it has stale partitions, since one copy is no longer kept in sync with
the other and is made available for read-only access through the
/home/backup mount point. Note the new loki_lvcopy00 logical volume; it is in
an open state, it cannot be in sync or in stale so that’s why there are the
question marks and no logical partitions are assigned to it since it only points
to a specific copy of lv00.

/home/red # chfs -a splitcopy=/home/backup -a copy=3 /home/loki
loki_lvcopy00
backup requested(0x100000)...
log redo processing for /dev/loki_lvcopy00
syncpt record at 3028
end of log 3488
syncpt record at 3028
syncpt address 3028
number of log records = 12
number of do blocks = 2
number of nodo blocks = 0

/home/red # df -kI
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/hd4 8192 7960 232 98% /
/dev/hd2 466944 444684 22260 96% /usr
/dev/hd9var 122880 82340 40540 68% /var
/dev/hd3 40960 27904 13056 69% /tmp
/dev/hd1 32768 17664 15104 54% /home
/dev/lv00 20004864 3055816 16949048 16% /software
/dev/stripelv 12288 560 11728 5% /stripefs
/dev/loki_lv 163840 6772 157068 5% /home/loki
/dev/loki_lvcopy00 163840 6772 157068 5% /home/backup

/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/stale /home/loki
loglv00 jfslog 1 3 3 open/syncd N/A
loki_lvcopy00 jfs 0 0 0 open??????? /home/backup
276 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The /backup file system has been mounted and is available to use. If you
issue the mount command, you can see it mounted with read-only
permissions and without any jfslog.

Now it is possible to read the data in /backup.

When a copy of a file system is split off, some activity is made on the jfslog in
order to keep the structure of the original file system and the read-only copy
consistent. During such an operation, no other splitting must be done on the
file system that uses the same jfslog. They must be delayed until the previous
split is finished.

For example, consider the case of two file systems, /team1 and /team2, that
use the same jfslog. If you want to make an online backup of both on the
same tape drive, you have to first split /team1, wait for the read-only copy to
be available, and then you may split /team2. Finally, you can do the backup. If,
for some reason, you split both file systems in the same moment, one split will
succeed and the other will fail.

Right now, the contents of /home/loki and /home/backup are identical. Let us
modify that by creating a new file in /home/loki. As you can see, this new file
is not propagated to /home/backup:

/home/red # mount
node mounted mounted over vfs date options

-------- --------------- --------------- ------ ------------ ---------------
/dev/hd4 / jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd2 /usr jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd9var /var jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd1 /home jfs Dec 31 18:54 rw,log=/dev/hd8
/dev/lv00 /software jfs Dec 31 18:54 rw,log=/dev/log
/dev/stripelv /stripefs jfs Jan 04 23:36 rw,log=/dev/str
/dev/loki_lv /home/loki jfs Jan 08 19:27 rw,log=/dev/log
/dev/loki_lvcopy00 /home/backup jfs Jan 08 22:45 ro

/home/red # #{do backup thingies here}
Chapter 6. Backups 277

It is time now to merge back our separated copy of the logical volume. This
step is easy, we just have to umount the /home/backup file system and
destroy this file system. The logical volume does not show up anymore in the
volume group, and we can check that even the file created while the copies
were split is still there.

Reintegrate a mirrored copy.

/home/red # echo "blah blah blah blah blah" > /home/loki/newer_file
/home/red # ls -l /home/loki
total 3192
-rw-r--r-- 1 root sys 1620000 Jan 08 19:04 file1
drwxrwx--- 2 root system 512 Jan 08 19:03 lost+found
-rw-r--r-- 1 root sys 25 Jan 08 19:29 new_file
-rw-r--r-- 1 root sys 25 Jan 08 19:45 newer_file
/home/red # ls -l /home/backup
total 3184
-rw-r--r-- 1 root sys 1620000 Jan 08 19:04 file1
drwxrwx--- 2 root system 512 Jan 08 19:03 lost+found
-rw-r--r-- 1 root sys 25 Jan 08 19:29 new_file
/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/stale /home/loki
loglv00 jfslog 1 3 3 open/syncd N/A
loki_lvcopy00 jfs 0 0 0 open??????? /home/backup

/home/red # umount /home/backup
/home/red # rmfs /home/backup
rmlv: Logical volume loki_lvcopy00 is removed.
/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/syncd /home/loki
loglv00 jfslog 1 3 3 open/syncd N/A
/home/red # ls -l /home/loki
total 3192
-rw-r--r-- 1 root sys 1620000 Jan 08 19:04 file1
drwxrwx--- 2 root system 512 Jan 08 19:03 lost+found
-rw-r--r-- 1 root sys 25 Jan 08 19:29 new_file
-rw-r--r-- 1 root sys 25 Jan 08 19:45 newer_file
278 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

6.2.3 Online backups prior to 4.3.2 (the hack)
The last method is not officially supported by IBM. The trick here is to reuse
the physical partition of one of the copies of a mirror logical volume. Let us
see this step by step.

We start with the same volume group, asgard_vg, including loki_lv, hosting
/home/loki. loki_lv is mirrored with three copies.

Here is the physical allocation of the loki_lv logical volume. As you can see
there are three copies.

/home/red # lsvg -l asgard_vg
asgard_vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loki_lv jfs 20 60 3 open/syncd /home/loki
loglv00 jfslog 1 3 3 open/syncd N/A

/home/red # lslv -m loki_lv
loki_lv:/home/loki
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0055 hdisk9 0055 hdisk10 0055 hdisk11
0002 0056 hdisk9 0056 hdisk10 0056 hdisk11
0003 0057 hdisk9 0057 hdisk10 0057 hdisk11
0004 0058 hdisk9 0058 hdisk10 0058 hdisk11
0005 0059 hdisk9 0059 hdisk10 0059 hdisk11
0006 0060 hdisk9 0060 hdisk10 0060 hdisk11
0007 0061 hdisk9 0061 hdisk10 0061 hdisk11
0008 0062 hdisk9 0062 hdisk10 0062 hdisk11
0009 0063 hdisk9 0063 hdisk10 0063 hdisk11
0010 0064 hdisk9 0064 hdisk10 0064 hdisk11
0011 0065 hdisk9 0065 hdisk10 0065 hdisk11
0012 0066 hdisk9 0066 hdisk10 0066 hdisk11
0013 0067 hdisk9 0067 hdisk10 0067 hdisk11
0014 0068 hdisk9 0068 hdisk10 0068 hdisk11
0015 0069 hdisk9 0069 hdisk10 0069 hdisk11
0016 0070 hdisk9 0070 hdisk10 0070 hdisk11
0017 0071 hdisk9 0071 hdisk10 0071 hdisk11
0018 0072 hdisk9 0072 hdisk10 0072 hdisk11
0019 0073 hdisk9 0073 hdisk10 0073 hdisk11
0020 0074 hdisk9 0074 hdisk10 0074 hdisk11
/home/red # lslv -m loglv00
loglv00:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0075 hdisk9 0075 hdisk10 0075 hdisk11
Chapter 6. Backups 279

From this information, we have to create a map file; let us call it
/home/red/ok_newmap. The second step is to remove one copy from loki_lv.
This is done using smit.

We now create a new logical volume, loki_bup, reusing the physical partitions
freed by the previous step. This is where the map file /home/red/ok_newmap
becomes handy. We can physically match the new logical volume on top of
the old copy of loki_lv.

Remove Copies from a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name loki_lv
* NEW maximum number of logical partition 2

copies
PHYSICAL VOLUME names [hdisk11]

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
280 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

We can check that the creation of our new logical volume with the exact fit
worked, using the lslv command:

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [loki_bup]

* VOLUME GROUP name asgard_vg
* Number of LOGICAL PARTITIONS [10]
PHYSICAL VOLUME names [hdisk11]
Logical volume TYPE []
POSITION on physical volume middle
RANGE of physical volumes minimum
MAXIMUM NUMBER of PHYSICAL VOLUMES []
to use for allocation

Number of COPIES of each logical 1
partition

Mirror Write Consistency? yes
Allocate each logical partition copy yes
on a SEPARATE physical volume?

RELOCATE the logical volume during yes
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
Enable BAD BLOCK relocation? yes
SCHEDULING POLICY for reading/writing parallel
logical partition copies

Enable WRITE VERIFY? no
File containing ALLOCATION MAP [/home/red/lok_newmap]
Stripe Size? [Not Striped]

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
Chapter 6. Backups 281

We now have to create a file system on top of our newly created logical file
system. This is a trivial step:

The new file system is now mounted and we can backup the data and do
whatever we want with this file system.

/home/red # lslv -m loki_bup
loki_bup:/home/backup
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0055 hdisk11
0002 0056 hdisk11
0003 0057 hdisk11
0004 0058 hdisk11
0005 0059 hdisk11
0006 0060 hdisk11
0007 0061 hdisk11
0008 0062 hdisk11
0009 0063 hdisk11
0010 0064 hdisk11
0011 0065 hdisk11
0012 0066 hdisk11
0013 0067 hdisk11
0014 0068 hdisk11
0015 0069 hdisk11
0016 0070 hdisk11
0017 0071 hdisk11
0018 0072 hdisk11
0019 0073 hdisk11
0020 0074 hdisk11

/home/backup:
dev = /dev/loki_bup
vfs = jfs
mount = true
options = ro
account = false
282 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

It is now time to merge the third copy of loki_lv again. This is done by using
the exact same method. We remove the logical volume we created for the
backup purpose and we recreate a new copy of loki_lv specifying the
/home/red/ok_newmap map file.

We now have to resynchronize the third copy of loki_lv with the syncvg -l

loki_lv command and check that the physical partitions for the three copies
are identical to what we had before this operation:

/home/backup # mount
node mounted mounted over vfs date options

-------- --------------- --------------- ------ ------------ ---------------
/dev/hd4 / jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd2 /usr jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd9var /var jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Dec 31 18:53 rw,log=/dev/hd8
/dev/hd1 /home jfs Dec 31 18:54 rw,log=/dev/hd8
/dev/lv00 /software jfs Dec 31 18:54 rw,log=/dev/log
/dev/stripelv /stripefs jfs Jan 04 23:36 rw,log=/dev/str
/dev/loki_lv /home/loki jfs Jan 08 19:27 rw,log=/dev/log
/dev/loki_bup /home/backup jfs Jan 08 23:43 ro

/home/red # rmlv -f loki_bup
rmlv: Logical volume loki_bup is removed.

mklvcopy -m'/home/red/lok_newmap' loki_lv 3 hdisk11
Chapter 6. Backups 283

6.3 Files and system backups

Once your system is in use, your next consideration should be backing up file
systems, directories, and files. Files and directories represent a significant
investment of time and effort. At the same time, all computer files are
potentially easy to change or erase, either intentionally or by accident. If you
take a careful and methodical approach to backing up your file systems, you
should always be able to restore recent versions of files or file systems with
little difficulty. When a hard disk crashes, the information contained on that
disk is destroyed. The only way to recover the destroyed data is to retrieve the
information from your backup copy.

For these reasons, the system administrator should develop and implement a
backup strategy that meets the requirements of the particular site.

The following backup and restore procedures are also provided:

• Developing a backup strategy

• Compressing Files

• Backing up user files or file systems

• Backing up the system image and user-defined volume groups

• Backing up a user volume group

• Implementing scheduled backups

• Restoring from backup image individual user files

/home/red # lslv -m loki_lv
loki_lv:/home/loki
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0055 hdisk9 0055 hdisk10 0055 hdisk11
0002 0056 hdisk9 0056 hdisk10 0056 hdisk11
0003 0057 hdisk9 0057 hdisk10 0057 hdisk11
0004 0058 hdisk9 0058 hdisk10 0058 hdisk11
0005 0059 hdisk9 0059 hdisk10 0059 hdisk11
0006 0060 hdisk9 0060 hdisk10 0060 hdisk11
0007 0061 hdisk9 0061 hdisk10 0061 hdisk11
0008 0062 hdisk9 0062 hdisk10 0062 hdisk11
0009 0063 hdisk9 0063 hdisk10 0063 hdisk11
0010 0064 hdisk9 0064 hdisk10 0064 hdisk11
0011 0065 hdisk9 0065 hdisk10 0065 hdisk11
0012 0066 hdisk9 0066 hdisk10 0066 hdisk11
0013 0067 hdisk9 0067 hdisk10 0067 hdisk11
0014 0068 hdisk9 0068 hdisk10 0068 hdisk11
284 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

6.3.1 Backup methods
Several different methods exist for backing up information. One of the most
frequently used methods is called backup by name, also called file name
archive. This method of backup is done when the i flag is specified and is
used to make a backup copy of individual files and directories. It is a method
commonly used by individual users to back up their accounts.

Another frequently used method is called backup by file system, also called
backup by i-node or file system archive. This method of backup is done when
the i flag is not specified. It is used to make a backup copy of an entire file
system and is the method commonly used by system administrators to back
up large groups of files, such as all of the user accounts in /home. A file
system backup allows incremental backups to be performed easily. An
incremental backup will back up all files that have been modified since a
specified previous backup.

The compress and pack commands enable you to compress files for storage,
and the uncompress and unpack commands unpack the files once they have
been restored. The process of packing and unpacking files takes time, but
once packed, the data uses less space on the backup medium.

Several commands create backups and archives. Because of this, data that
has been backed up needs to be labeled as to what command was used
when doing the backup and how the backup was made (by name or by file
system). The backup command is the most frequently used, but other
commands serve specific purposes:

backup Backs up files by name or by file system.

mksysb Creates an installable image of the rootvg volume group.

cpio Copies files into and out of archive storage. Can usually
read data archived on another platform provided it is in
cpio format.

dd Converts and copies a file. Commonly used to convert and
copy data to and from non-AIX systems, for example,
mainframes. dd does not group multiple files into one
archive; it is used to manipulate and move data.

tar Manipulates tar format archives.

rdump A network command that backs up files by file system onto
a remote machine's device.

pax POSIX-compliant archive utility that can read and write tar
and cpio archives.
Chapter 6. Backups 285

6.3.2 Deciding on a backup policy
No single backup policy can meet the needs of all users. A policy that works
well for a system with one user, for example, could be inadequate for a
system that serves hundreds or thousands of users. Likewise, a policy
developed for a system on which many files are changed daily would be
inefficient for a system on which data changes infrequently. Whatever the
appropriate backup strategy for your site, it is very important that one exist
and that backups be done frequently and regularly. It is difficult to recover
from data loss if a good backup strategy has not been implemented.

Only you can determine the best backup policy for your system, but the
following points should be noted:

• Make sure that you can recover from major losses. Work through
possible (albeit unlikely scenarios) and ensure that your strategy
would work

• Check your backups periodically. Make sure that you can read the
information on the backup media, it is also a good idea to check
that the backup media is readable on another device.

• The cron facility can be used to schedule and verify backups out of
hours. Different types of backup can also be scheduled for
different times of the day/month.

• Keep old backups. Even if you use a regular cycle for re-using
media, make sure that you keep some old copies, particularly for
those occasions when the absence of an important file takes
months to notice. It is also a good idea to have some backup
media kept off site.

• Check what you are backing up. Not only check that you are
making a backup of the correct information, but ensure it’s integrity
at the time. This also means checking that the files are not in use
at the time.

• Fully back up systems prior to changes. This is rather self evident,
and vitally important.

6.3.3 Restoring data
Once data has been properly backed up, there are several different methods
of restoring the data based upon the type of backup command you used.

You need to know how your backup or archive was created to restore it
properly. Each backup procedure gives information about restoring data. For
example, if you use the backup command, you can specify a backup either by
286 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

file system or by name. That backup must be restored the way it was done, by
file system or by name.

Several commands restore backed up data, such as:

restore Copies files created by the backup command.

rrestore Network command that copies file systems backed up on a
remote machine to the local machine.

cpio Copies files into and out of archive storage.

tar Manipulates archives. Used only for directories.

6.4 Backup commands

We will briefly examine some of the commands used to back up files and
systems:

• backup

• restore

• cpio

• tar

6.4.1 The backup command
The backup command creates copies of your files on a backup medium, such
as a magnetic tape or a diskette. Use the backup command when you want to
back up large and multiple file systems. A level number can be specified to
control how much data is backed up (full, 0; incremental, 1-9). Using the
backup command is the only way you can specify the level number on
backups.

The copies are in one of the two backup formats:

• Specific files backed up by name using the -i flag.

• Entire file system backed up by i-node using the Level and FileSystem
parameters. One advantage of i-node backup is that the backup is
defragmented when restored.

A single backup can span multiple volumes.

It should be noted that:

• Running the backup command results in the loss of all material previously
stored on the selected output medium.
Chapter 6. Backups 287

• Data integrity of the archive may be compromised if a file is modified
during system backup. Keep system activity at a minimum during the
system backup procedure.

• If a backup is made to a tape device with the device block size set to 0, it
might be difficult to restore data from the tape unless the default write size
was used with the backup command. The default write size for the backup
command can be read by the restore command when the tape device
block size is 0. In other words, the -b flag should not be specified when the
tape device block size is 0. If the -b flag of the backup command is specified
and is different from the default size, the same size must be specified with
the -b flag of the restore command when the archived files are restored
from the tape.

6.4.1.1 Backing up files by name
To back up by name, use the -i flag. The backup command reads
standard input for the names of the files to be backed up. File
types can be special files, regular files, or directories. When the
file type is a directory, only the directory is backed up. The files
under the directory are not backed up unless they are explicitly
specified.

1. Files are restored using the same path names as the archived
files. Therefore, to create a backup that can be restored from
any path, use full path names for the files that you want to back
up.

2. When backing up files that require multiple volumes, do not
enter the list of file names from the keyboard. Instead, pipe or
redirect the list from a file to the backup command. When you
enter the file names from the keyboard and the backup process
needs a new tape or diskette, the command "loses" any file
names already entered but not yet backed up. To avoid this
problem, enter each file name only after the archived message
for the previous file has been displayed. The archived message
consists of the character followed by the file name.

3. If you specify the -p flag, only files of less than 2 GB are
packed.

6.4.1.2 Backing up file systems by i-node
To back up a file system by i-node, specify the Level and
FileSystem parameters. When used in conjunction with the -u flag,
the Level parameter provides a method of maintaining a hierarchy
of incremental backups for each file system. Specify the -u flag
288 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

and set the Level parameter to n to back up only those files that
have been modified since the n-1 level backup. Information
regarding the date, time, and level of each incremental backup is
written to the /etc/dumpdates file. The possible backup levels are 0
to 9. A level 0 backup archives all files in the file system. If the
/etc/dumpdates file contains no backup information for a particular
file system, specifying any level causes all files in that file system
to be archived.

The FileSystem parameter can specify either the physical device
name (block or raw name) or the name of the directory on which
the file system is mounted. The default file system is the root (/)
file system.

Users must have read access to the file system device (such as
/dev/hd4) or have backup authorization in order to perform
backups by i-node.

You must first unmount a file system before backing it up by
i-node. If you attempt to back up a mounted file system, a warning
message is displayed. The backup command continues, but the
created backup may contain inconsistencies because of changes
that may have occurred in the file system during the backup
operation.

Backing up file systems by i-node truncates the uid or gid of files
having a uid or gid greater than 65535. When restored, these files
may have different values for the uid and gid attributes. To retain
the values correctly, always back up by name files having a uid or
gid greater than 65535.

You can archive only JFS (journaled file system) file systems when
backing up by i-node. Back up any non-JFS file systems by file
name or by using other archive commands, such as pax, tar, or
cpio.

It should be noted that backing up by i-node does not work
properly for files that have UID (user ID) or GID (group ID) greater
than 65535. These files are backed up with UID or GID truncated
and will, therefore, have the wrong UID or GID attributes when
restored. Backing up by name works properly for files that have a
UID or GID greater than 65535.

As always, it is advisable to clean the media writing device (for
example tape head) prior to writing the backup.
Chapter 6. Backups 289

6.4.2 The restore command
The restore command reads archives created by the backup command and
extracts the files stored on them. These archives can be in either file name or
file system format. An archive can be stored on disk, diskette, or tape. Files
must be restored using the same method by which they were archived. This
requires that you know the format of the archive. The archive format can be
determined by examining the archive volume header information that is
displayed when using the -T flag. When using the -x, -r, -T, or -t flags, the
restore command automatically determines the archive format.

Individual files can be restored from either file name or file system archives
by using the -x flag and specifying the file name. The file name must be
specified as it exists on the archive. Files can be restored interactively from
file system archives using the -i flag. The names of the files on an archive can
be written to standard output using the -T flag.

Users must have write access to the file system device or have Restore
authorization in order to extract the contents of the archive.

The diskette device, /dev/rfd0, is the default media for the restore command.
To restore from standard input, specify a - (dash) with the -f flag. You can also
specify a range of devices, such as /dev/rmt0-2.

Here are some of the main features of the restore commands:

• If you are restoring from a multiple-volume archive, the restore

command reads the volume mounted, prompts you for the next
volume, and waits for your response. After inserting the next
volume, press Enter to continue restoring files.

• If an archive, created using the backup command, is made to a tape
device with the device block size set to 0, it may be necessary for
you to have explicit knowledge of the block size that was used
when the tape was created in order to restore from the tape.

• Multiple archives can exist on a single tape. When restoring
multiple archives from tape, the restore command expects the

restore actively sparses files that are being restored. If a file has block
aligned and sized areas that are NULL populated, then restoredoes not
cause physical space for those filesystem blocks to be allocated. The size
in bytes of the file remain the same, but the actual space taken within the
filesystem is only for the non-NULL areas.

Note
290 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

input device to be a no-retension-on-open, no-rewind-on-close
tape device. Do not use a no-rewind tape device for restoring
unless either the -B, -s, or -X flag is specified. For more
information on using tape devices, see the rmt special file.

6.4.2.1 File system archives
File system archives are also known as i-node archives due to the
method used to archive the files. A file system name is specified
with the backup command, and the files within that file system are
archived based on their structure and layout within the file system.
The restore command restores the files on a file system archive
without any special understanding of the underlying structure of
the file system.

When restoring file system archives, the restore command creates
and uses a file named restoresymtable. This file is created in the
current directory. The file is necessary for the restore command to
do incremental file system restores.

6.4.2.2 File-Name Archives
File-name archives are created by specifying a list of file names to
archive to the backup command. The restore command restores
the files from a file-name archive without any special
understanding of the underlying structure of the file system. The
restore command allows for metacharacters to be used when
specifying files for archive extraction. This provides the capability
to extract files from an archive based on pattern matching. A
pattern filename should be enclosed in single quotations, and
patterns should be enclosed in brackets.

6.4.3 The cpio command
The cpio command is another command commonly used to copy files to
backup media and back again. Like tar, cpio is not an AIX-specific command.

6.4.3.1 cpio -o Command
The cpio -o command reads file path names from standard input
and copies these files to standard output, along with path names
and status information. Avoid giving the cpio command path
names made up of many uniquely linked files, as it may not have
enough memory to keep track of them and would lose linking
information.
Chapter 6. Backups 291

6.4.3.2 cpio -i Command
The cpio -i command reads from standard input an archive file
(created by the cpio -o command) and copies from it the files with
names that match the Pattern parameter. These files are copied
into the current directory tree.

You can list more than one Pattern parameter, using the file name
notation described in the ksh command. Note that in this
application the special characters * (asterisk), ? (question mark),
and [...] (brackets and ellipses) match the / (slash) in path names,
in addition to their use as described in the ksh command. By
default, all files from the input archive file are selected.

It is important to redirect the output from the cpio command to a raw file
(device) and not the block device. This is because writing to a block device is
done asynchronously and there is no way to know if the end of the device is
reached.

6.4.4 The tar command
The tar command is also used to write and retrieve files from an archive file
or device.

When writing to an archive, the tar command uses a temporary file (the
/tmp/tar* file) and maintains in memory a table of files with several links. You
receive an error message if the tar command cannot create the temporary file
or if there is not enough memory available to hold the link tables.

The tar command manipulates archives by writing files to, or retrieving files
from an archive storage medium. The files used by the tar command are
represented by the File parameter. If the File parameter refers to a directory,
then that directory and recursively all files and directories within it are
referenced as well.

Due to limitations on header block space in the tar command, user numbers
(UIDs) and group identification numbers (GIDs) larger than 65,535 will be

The cpio command is not enabled for files greater than 2 GB in size due to
limitations imposed by XPG/4 and POSIX.2 standards.

cpio does not preserve the sparse nature of any file that is sparsely
allocated. Any file that was originally sparse before the restoration will have
all space allocated within the filesystem for the size of the file.

Note
292 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

corrupted when restored to certain systems. The size constraint affects only
the ownership and permissions, causing no damage to the data.

6.4.5 Block sizes and performance
When data is written to tape it is written in blocks. The blocks on a tape are
separated by inter-record gaps. It is important to understand the structure of
the written tape in order to understand the problems that can occur with
changing block sizes.

In fixed block-size mode all blocks on the tape are the same size. They are
the size of the block size set in the device configuration. All read()s and
write()s to the tape drive must be a multiple of the fixed block size. Also
aread() will return as many blocks as needed to satisfy the read() request. If a
file mark is encountered during the read, only the data up to the file mark will
be returned. It is not possible for the tape drive to read a tape whose block
size is not the same as the block size in the device configuration.

In variable block-size (0) mode, the blocks written on the tape are the size of
the read() and write() requests to the device driver. In this case, the actual
block sizes on the tape can be changed using options of the backup
commands:

• tar -b

• cpio -C

• backup -b

In variable mode, read() requests greater than the size of the block on the
tape will return only the data from the next block on the tape. It is this feature
that allows tapes written in any block size (fixed or variable) to read with the
dd command (the output from the dd command may be piped to restore, tar, or
cpio, for example.)

The tar command is not enabled for files greater than 2 GB in size due to
limitations imposed by XPG/4 and POSIX.2 standards.

tar does not preserve the sparse nature of any file that is sparsely
allocated. Any file that was originally sparse before the restoration will have
all space allocated within the file system for the size of the file.

tar has no recovery from tape errors

Note
Chapter 6. Backups 293

There are some recommendations for particular tape drives:

8 mm tape drive The use of a fixed block size that is not a multiple
of 1 K is inefficient. The 8 mm tape drive always
writes internally in 1 K blocks. It simulates the effect
of variable block sizes. For example, using a fixed
block size of 512 bytes (or using variable block size
and writing 512 bytes at a time) wastes one half of
the tape capacity and decreases the maximum
transfer rate.

Magstar tape drive It is recommended that the block size be set to
262144 or 0. Otherwise, the commands can be used
to set the block size:

• mksysb -b512

• sysback -b256

• savevg -b512

• backup -b512

• tar -N512

• dd isb=512, obs=512, or bs=512

• cpio -C512

-IBM 9348 Magnetic Tape Unit Model 12:

• Default block size of 32 k

6.5 Backing up and restoring volume groups

AIX provides two commands that will backup and restore volume groups.
Thus, a whole volume group can be recovered without the administrator
needing to understand the principles of creating volume groups, logical
volumes and file systems.

The commands are:

• savevg

The backup, tar, and cpio commands cannot read all tapes by using a large
block size because they assume there is an error if they get a short read().

Note
294 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• restvg

6.5.1 The savevg command
The savevg command finds and backs up all files belonging to a specified
volume group. A volume group must be varied-on, and the file systems must
be mounted. The savevg command uses the data file created by the mkvgdata

command. This file can be one of the following:

/image.data Contains information about the root volume group (rootvg).
The savevg command uses this file to create a backup
image that can be used by Network Installation
Management (NIM) to reinstall the volume group to the
current system or to a new system.

/tmp/vgdata/vgname/vgname.data
Contains information about a user volume group. The
vgname variable reflects the name of the volume group.
The savevg command uses this file to create a backup
image that can be used by the restvg command to remake
the user volume group.

The savevg command can be run either from the command line or through the
smit vgbackup menu shown in the following screen.

smit vgbackup

The smit savevg options are shown below.

The savevg command will not generate a bootable tape if the volume group
is not the root volume group.

Note

Back Up a Volume Group

Move cursor to desired item and press Enter.

Back Up a Volume Group to Tape/File
Back Up a Volume Group to CD

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do
Chapter 6. Backups 295

A new command has been added that will allow a user to copy an existing
savevg image or create a new one onto a recordable CD-ROM. Here is the
smit menu associated with the backup of a volume group on a CDR.

Back Up a Volume Group to Tape/File

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
WARNING: Execution of the savevg command will

result in the loss of all material
previously stored on the selected
output medium.

* Backup DEVICE or FILE []
* VOLUME GROUP to back up []
List files as they are backed up? no
Generate new vg.data file? yes
Create MAP files? no
EXCLUDE files? no
EXPAND /tmp if needed? no
Disable software packing of backup? no
Number of BLOCKS to write in a single output []

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
296 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

6.5.2 The restvg command
The restvg command restores the user volume group and all its containers
and files, as specified in the /tmp/vgdata/vgname/vgname.data file (where
vgname is the name of the volume group) contained within the backup image
created by the savevg command.

The restvg command restores a user volume group. The bosinstall routine
reinstalls the root volume group (rootvg). If the restvg command encounters a
rootvg volume group in the backup image, the restvg command exits with an
error.

Back Up a Volume Group to CD

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
CD-R Device []

* Volume Group to back up []

savevg creation options:
Create map files? no
Exclude files? no

File system to store savevg image []
(If blank, the file system
will be created for you.)

File system to store CD file structure []
(If blank, the file system
will be created for you.)

File system to store final CD images []
(If blank, the file system
will be created for you.)

If file systems are being created:
Volume Group for created file systems [rootvg]

Advanced Customization Options:
Remove final images after creating CD? yes
Create the CD now? yes
Debug output? no

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
Chapter 6. Backups 297

If a yes value has been specified in the EXACT_FIT field of the
logical_volume_policy stanza of the /tmp/vgdata/vgname/vgname.data file,
the restvg command uses the map files to preserve the placement of the
physical partitions for each logical volume. The target disks must be of the
same size or larger than the source disks specified in the source_disk_data
stanzas of the vgname.data file.

The restvg command can be executed from the command line or through
smit. This particular option will recreate the volume group, logical volumes
and file systems. Then restore all the files.

smit restvg

There is also a smit menu to list the files on a file system backup image.

To view the files in the backup image or to restore individual files from the
backup image, the user must use the restore command with the -T or -x
flag, respectively. (Refer to the restore command for more information.)

Note

Remake a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Restore DEVICE or FILE [/dev/rmt0]
SHRINK the filesystems? no
PHYSICAL VOLUME names []

(Leave blank to use the PHYSICAL VOLUMES listed
in the vgname.data file in the backup image)

Use existing MAP files? yes
Physical partition SIZE in megabytes []

(Leave blank to have the SIZE determined
based on disk size)

Number of BLOCKS to read in a single input []
(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
298 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

smit lsbackvg

Individual files can also be restored from a savevg backup.

smit restsavevg

6.6 The mksysb command

The mksysb command creates a backup of the operating system (that is, the
root volume group). You can use this backup to reinstall a system to its
original state after it has been corrupted. If you create the backup on tape, the
tape is bootable and includes the installation programs needed to install from
the backup.

List Files in a Volume Group Backup

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* DEVICE or FILE [/dev/rmt0]
Number of BLOCKS to read in a single input []

(Leave blank to use a system default)
Verify BLOCK size if tape device? no

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Restore Files in a Volume Group Backup

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Restore DEVICE or FILE [/dev/rmt0]
FILES to restore []

(Leave blank to restore entire archive)
Number of BLOCKS to read in a single input []

(Leave blank to use a system default)
Verify BLOCK size if tape device? no

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
Chapter 6. Backups 299

The file system image is in backup-file format. The tape format includes a
boot image, a bosinstall image, and an empty table of contents followed by
the system backup (root volume group) image. The root volume group image
is in backup-file format (it used to be in tar format in an earlier release of AIX,
Version 3.2), starting with the data files and then any optional map files.

The mksysb command also creates the /bosinst.data file from the system
default file if the /bosinst.data file does not exist.

The mksysb command uses a file (/image.data) to rebuild the rootvg and
associated logical volumes and file systems. This file is created by the
mkszfile command. In AIX Version 3.x, this file was called /.fs.size.

It should be noted that:

• The image the mksysb command creates does not include data on
raw devices or in user-defined paging spaces.

• If you are using a system with a remote-mounted /usr file system,
you cannot reinstall your system from a backup image.

• The mksysb command may not restore all device configurations for
special features, such as /dev/netbios and some device drivers not
shipped with the product.

• Some rspc systems do not support booting from tape. When you
make a bootable mksysb image on an rspc system that does not
support booting from tape, the mksysb command issues a warning
indicating that the tape will not be bootable. You can install a
mksysb image from a system that does not support booting from
tape by booting from a CD and entering maintenance mode. In
maintenance mode you will be able to install the system backup
from tape.

The smit menus allow users to:

• Create a mksysb backup

• List the files

• Restore particular files

The root volume group can be rebuilt by booting either from the mksysb tape,
or installing media at the same level as the mksysb image.

With the latest version of AIX, 4.3.3, the mksysb command also support a
Recordable CD-ROM as a output media.
300 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

6.6.1 Smit fast path for the mksysb related menus
smit includes several menus associated with backing up the rootvg volume
group. Here is a list of the fast path associated with those menus:

backsys Choice between back up the system, list files in a system
backup, or restore files from the backup image.

sysbackup Choice between back up the system to a tape or a file,
back up the system on a CD, or create a generic backup
CD.

mksysb Back up the system on a tape or a file.

mkcd Back up the system on a recordable CD-ROM.

lsmksysb List the files included in a system image.

restmksysb Restore files from a system image.
Chapter 6. Backups 301

302 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Chapter 7. Performance

All kinds of applications, such as a Journaled File System (JFS) or a
Relational DataBase Management System (RDBMS), are using logical
volumes for storing their data. These applications often have a need for fast
disk access. But how can you achieve this? How can you achieve the best
LVM performance?

This chapter discusses the performance of your system from the Logical
Volume Manager perspective. If you suspect that the LVM configuration is not
optimal, this is the chapter to read. You will find here advice on how to
configure the logical volumes to achieve the best performance.

7.1 Introduction

By far the slowest operation for a running program (other than waiting on
human interaction) is reading from, or writing data to, a disk. Several factors
play a role in this:

• The disk controller must be directed to access the specified blocks
(queuing delay).

• The disk arm must seek to the correct cylinder (seek latency).

• The read/write heads must wait until the correct block rotates under them
(rotational latency).

• The data must be transmitted to the controller (transmission time) and
then conveyed to the application program (interrupt handling time).

• Disk operations can have many causes besides explicit read or write
requests in the program. System tuning activities frequently turn out to be
hunts for unnecessary disk I/O.

When a user application is installed on your system, it generates read and
write actions to fixed disk drives. When read and write actions occur, they
trigger disk head movements. The goal is to make sure reading and writing is
done efficiently; thus, when trying to reduce the number of disk head
movements, make sure that seek time is as minimal as possible. In general,
applications do I/O operations on a regular basis. If your I/O subsystem is not
fast enough due to a bad configuration or slow disks, the application will not
perform the way you want it to. The I/O operations will be put in an I/O queue
and wait until their turn to be processed has come. Users will have to wait
until the I/O request they submitted is handled by the I/O subsystem. And, in
general, users do not like to wait. Of course, performance is not only
© Copyright IBM Corp. 2000 303

dependent on the I/O subsystem. If you are tuning your entire system, you
should consider the rules mentioned in the AIX Performance and Tuning
Guide, SC23-2365. As a reminder, the tuning process is shown in Figure 83.

Figure 83. The tuning process

Remember that the tuning process is an ongoing process. If you change
something, you have to start again at the beginning of the tuning process.

This chapter only covers tuning on the third level, which is the I/O section on
the logical volume and the journaled file system level. The issues we cover in
this chapter are mentioned below. We discuss logical volume manager
performance issues starting with the physical layer as shown in Figure 84.

• The physical layer

• The logical layer

- Mirroring

- Striping

• The application layer

• Reorganizing elements

Do I have a CPU bottleneck?
Yes

Tune

No

Do i have a memory bottleneck?

No

Yes
Tune

Do i have a disk I/O bottleneck?

No

Yes
Tune

Do i have a network bottleneck?
Yes

Tune
304 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7.2 The physical layer

In the first chapter, we talked about the logical volume manager as a layered
structure. The first layer within that structure is the physical layer that is made
out of cabling, disk adapters, system busses, fixed-disk drives, and the AIX
device drivers. Because this redbook does not focus on performance in
general, detailed information about these components is beyond the scope of
this book. For detailed performance issues on the physical level, please read
the AIX Performance and Tuning Guide, SC23-2365. Some basic tips,
however, will be mentioned.

Figure 84. LVM components, the physical layer

When adding disk drives to your system, these are some things you should
keep in mind:

• The placement of adapters

• The number of disk adapters used

• The configuration of the adapters

• The type of disks used

• The cabling configuration

7.2.1 Adapters
At this time, several high-speed adapters for connecting disk drives are
available; however, if you build a configuration with a lot of these adapters on
one system bus, you may have fast adapters, but the bus becomes the
performance bottleneck. Therefore, it is always better to spread these fast
adapters across several busses. When you use PCI adapters, make sure you
check the PCI Adapter Placement Guide, SA23-2504, for the proper adapter
locations.

Application layer (JFS, RDBMS)

Logical layer (logicial volume)

Physical layer (disk drive)
Chapter 7. Performance 305

When you use the SSA adapters, you should look at the size of the read/write
operations. An SSA Enhanced Raid adapter (feature code #-6215) can
handle as many as 2200 - 3100 I/Os per second (30 - 40 MBps). An IBM
Advanced Serial RAID SSA adapter (feature code #6225) can handle as
many as 7000 I/Os per second (90 MBps). Read or write operation with a
relative small I/O buffer size leads to a lower throughput than one with a
larger buffer size. This is due to both the CPU and the adapter congestion.

7.2.2 The number of disk adapters used
Attaching forty fast disks to one disk adapter may result in low disk
performance. Although the disks are fast, all the data must go through that
one adapter. This adapter gets overloaded, resulting in low performance.
Adding more disk adapters is a good thing to do when a lot of disks are used,
especially if those disks are used intensively.

7.2.3 The configuration of the adapter
Just adding disks to several adapters across several busses does not give
you maximum performance in every case. For SCSI peripherals, several
adjustments can be made to improve performance. AIX has the ability to
enforce limits on the number of I/O requests that can be outstanding from the
SCSI adapter to a given SCSI bus or disk drive. Detailed information about
these setting are beyond the scope of this book and can be found in the AIX
Performance and Tuning Guide, SC23-2365.

7.2.4 Type of disks used
Several physical disks are available, and all have different performance
specifications. Older disks can transfer up to 7 MBps while newer disks can
transport up to 20 MBps. Mixing disks with variable performance
specifications may lead to confusion when measuring performance.

7.2.5 The cabling configuration
Cabling is very important, especially in SSA configurations. An SSA adapter
can have more than one loop, and dividing the fixed-disk drives across those
loops will give you more bandwidth. Figure 85 shows you a configuration that
is not recommended because the disk drives are not spread across the SSA
adapter.
306 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 85. Non-recommended SSA cabling configuration

Figure 86 shows a better way of spreading the SSA disk drives across the two
SSA ports.

Figure 86. Better SSA cabling configuration

7.3 The logical layer

The logical layer, as shown in Figure 87, is also referred to as the Logical
Volume Manager (LVM). Besides volume groups and logical volumes, the
software handling mirroring and striping is also part of this layer.

SSA adapter

Disk drives

SSA adapter

Disk drives
Chapter 7. Performance 307

Figure 87. LVM components, the logical layer

7.3.1 Volume groups
When you want to store data on a physical disk, you will need to add this
physical disk into a volume group. Once this is done, you can create a logical
volume on the physical disk. Only logical volumes can be used for storing
data. There are no performance related options when creating a volume
group with mkvg

Avoid adding disks with various performance characteristics into a single
volume group, because the logical volume manager does not distinguish what
type of physical disk you add to a volume group, you are allowed to add a
slow SCSI-1 disks to a volume group together with faster SSA physical disk
drives. Reading or writing a lot of data to such a volume group may be slowed
down if you use a striped or mirrored configuration.

7.3.2 Logical volumes
Creating a logical volume can be done in several ways. However if you want
the best performance, you should consider the following performance issues
before creating them.

7.3.2.1 Logical volume placement
When you create a logical volume, the application on top of it will use this
logical volume to store data. This means read and write actions will occur
which implicates disk head movements. Fixed-disk drives are able to
transport data faster and faster these days but are still slow compared to
memory. Therefore, make sure reading and writing is done efficientlty, thus
trying to reduce the number of disk head movements. Storing data contiguous
on the disk platter is generally a good start.

Application layer (JFS, RDBMS)

Physical layer (disk drive)

Logical layer (logicial volume)
308 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7.3.2.2 Creating logical volumes
When you create a logical volume using the mklv command, there are several
options that affect performance. One of them is the placement of the logical
volume. Five locations are available on the physical disk. We will explain the
implacation of choosing one over another later. Another way to minimize disk
overloading is to spread a logical volume across several physical disks. You
may also want to configure your logical volumes on exact disk locations. For
this, you need to use map files. To make sure that the reorgvg command does
not change the placement of the logical volumes, you could prevent relocation
of the logical volume. All these options can be passed to the mklv command.
Here is the syntax of the mklv command:

mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]
[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate]
[-s Strict] [-t Type] [-u UpperBound] [-v Verify] [-w MWC]
[-x MaxLPs] [-y LVname][-Y Prefix] [-S StripeSize] [-U userid]
[-G groupid] [-P modes] VGname NumberOfLPs [PVname...]

The options of mklv that are relevant from a performance point of view are:

-a Position

If you create a logical volume either using SMIT or the command line
interface with its default parameters, the -a flag is not passed to the mklv

command. What happens is that this logical volume is placed in the outer
middle location as shown in Figure 88. The command used to create the
logical volume is:

brenzef[root] # mklv -y ronaldlv rootvg 10
Chapter 7. Performance 309

Figure 88. A disk with one logical volume

If you create just one logical volume on the disk, this should not be a problem,
but it would be a waste of disk space since you probably want to create more
logical volumes on that drive. If you create another logical volume without
supplying the mklv command with the appropriate -a location option, again
mklv creates it in the outer middle location. But, since you already created a
logical volume in this location, no physical partitions are available to fulfill
allocation anymore. So, what mklv does is allocate the physical partitions
close to the desired location as shown in Figure 89 on page 311.

outer middle

free space

logical volume in outer middle
310 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 89. Fragmented disk distribution

You can see in Figure 89 that the second logical volume is fragmented. This
can cause extra disk head movements when a process does a read or write
operation on the edges of both the outer edge and center locations. A better
way to create a logical volume is to instruct the mklv command by using the -a

Position flag to select another region. If you pass the -a im option to mklv, the
logical volume will be created in the inner-middle location as shown in Figure
90. An example on how to create a logical volume on the inner middle
location would be:

brenzef[root] # mklv -y ronaldlv -a im rootvg 10

Finding fragmented logical volumes is described in Section 7.8, “Finding
fragmented logical volumes” on page 329.

free space

logical volume in outer middle

second logical volume
Chapter 7. Performance 311

Figure 90. Disk distribution with mklv location flag used

The mklv -a options for selecting these regions are:

im Allocates logical partitions in the inner-middle section of each physical
volume.

ie Allocates logical partitions in the inner-edge section of each physical
volume.

c Allocates logical partitions in the center section of each physical volume.

m Allocates logical partitions in the outer-middle section of each physical
volume. (This is the default position.)

e Allocates logical partitions in the outer edge section of each physical
volume.

Selecting another region can be done by either using the command line or by
using the popup list of SMIT. If you want to use SMIT, you should enter the
following:

brenzef[root] # smit mklv

Select Add A Logical Volume.

free space

logical volume in outer middle

second logical volume
312 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Enter the volume group name.

All mklv options can be set by using the SMIT menu as shown in the following
screen.

7.3.3 Where should you create logical volumes?
Where to create a logical volume depends on the application if it uses the
logical volume for sequential or random access, and if the application does
many reads or writes.

• Sequential writing

Add a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [rootvg] +

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME []

* VOLUME GROUP name rootvg
* Number of LOGICAL PARTITIONS [] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +

[MORE...11]

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do
Chapter 7. Performance 313

A logical volume used for sequential writing should be located on the outer
edge because that is where the track’s density is higher. In a mirrored
configuration the logical volume should be close to the MWCC (Mirror
Write Consistency Check region), that makes this location most suitable
for these kind of operations.

• Random writing

If you do random writes the outer edge is the best location. The tracks
density on the outer edge is higher, so more data is located in that region.
If the space in the outer edge is not enough for the logical volume and it
has to be extended to outer middle or middle the performance, the gain is
reduced to zero. If you consider a mirrored configuration. These random
writes will probably be in different logical track groups, so in a mirrored
configuration the MWCC is updated more frequently. Creating a logical
volume close to the MWCC location will reduce disk head movements.
Creating a mirrored random written logical volume on the inner edge gives
you a substantial performance degradation.

• Random/Sequential reads

For random and sequential reads the center location is the best location.
The head is statistical the quickest in the center location, that makes this
location favorable compared to the other regions.

These recommendations are fine when you have an application that does
only lots of sequential/random reads and writes, but if I have an application
that does both? sometimes sequential and sometimes random?

The logical volumes for applications that do a mixture of sequential/random
read/write should be placed on the outer edge location. If the majority is
random write place this logical volume on the edge. If the majority is
sequential read place them in the outer middle or on the center.

Logical volumes that are only read from can be placed on the inner edge and
inner middle.

Do not place write mirrored sequential accessed logical volume on the
inner edge.

Note
314 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7.4 Fragmentation

When you create a logical volume it should be contiguous. And if you create a
logical volume on an unused disk, the logical volume will be contiguous in
most cases.

7.4.1 Fragmentation example 1
Imagine the following situation where we create a logical volume and do
some extension and removal.

Figure 91. Logical volume LV1

We create a logical volume, LV1, which consists of fifteen logical partitions
(see Figure 91). Logical partition LP1 is the first logical partition in the logical
volume. Every logical partition points to one physical partition. We create
another logical volume, LV2. LV2 has ten logical partitions (see Figure 92).

Figure 92. Logical volume LV1+2

We extend logical volume LV1 with ten physical partitions. As you can see,
logical volume LV1 is fragmented (see Figure 94).

Logical volume LV1

LP1

 LP15

Logical partition

Logical volume LV1

LP1 Logical partitions

Logical volume LV2
Chapter 7. Performance 315

Figure 93. logical volume LV1 and LV2 with LV1 fragmented

Now, we remove LV2 and extend LV1 again (see Figure 94). LV1 seems to be
contiguous when you look with lspv -l hdiskX, but is not. If you consider that
LV2 was a big logical volume, applications doing large sequential I/O on LV1
will suffer from this configuration since there is a huge gap to cross between
partition 10 and partion 25 or 25 and 26 (shown in Figure 94). Such
sequential I/O cannot be done without many disk head movements.

Figure 94. logical volume with LV1 and LV2

7.4.2 Fragmentation example 2
We show another example of a non-recommended way of creating logical
volumes. We create a logical volume on a 9.1 GB physical volume in the
center location. The logical volume is exactly 108 physical partitions in size
(the maximum number of physical partitions available on this location, see
Figure 95). It occupies the complete center location of the disk.

Logical volume LV1

LP1 Logical partitions LP16

Logical volume LV2 Logical volume LV1

Logical volume LV1

LP1 File LP26 LP16 File LP25
316 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 95. A disk with one logical volume in the center location

Now, we decide that this logical volume is not big enough; so, we extend it
with an extra 108 physical partitions. When you look at the distribution with
lspv -l hdiskX, as shown below, it seems like a contiguous logical volume.

But, when we look with lsvg -M ronaldvg, it is not contiguous at all. The first
part looks fine, but after the first 108 physical partitions, you see that it’s not
contiguous anymore.

First, the logical partitions are in sequence with the physical partitions, but at
physical partition 218, things change. Physical partition 218 is the start of the
logical volume ronaldlv. Creating contiguous logical volumes can be forced

outer middle

free space

logical volume in outer middle

outer edge

center

inner middle

inner edge

brenzef[root] # lspv -l hdisk3
hdisk3:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
ronaldlv 216 216 00..108..108..00..00 N/A
Chapter 7. Performance 317

using map files, which is described in Section 2.2.1.3, “Map files” on page
110.

7.4.3 The range of the logical volume
If you have more than one physical disk in your volume group, you can spread
the logical volume across the physical disks. The -e (Range) flag tells the
mklv command the number of physical volumes to use to spread the logical
volume using the regions that provide the best allocation. Configuring a
logical volume across more physical disks means that more disk heads can
do the work; so, performance will be better. If possible, span a logical volume
across more physical disks, keeping in mind that other logical volumes
(configured on the same physical disk) may be intensively used. Therefore,
make sure that two intensively used logical volumes are not placed on the
same physical disk drive. The maximum number of disks you can use for the

brenzef[root] # lsvg -M ronaldlv
First part
ronaldvg
hdisk3:1-109
hdisk3:110 ronaldlv:109
hdisk3:111 ronaldlv:110
hdisk3:112 ronaldlv:111
hdisk3:113 ronaldlv:112
hdisk3:114 ronaldlv:113
hdisk3:115 ronaldlv:114
hdisk3:116 ronaldlv:115

At the 107th physical partition

hdisk3:216 ronaldlv:215
hdisk3:217 ronaldlv:216
hdisk3:218 ronaldlv:1
hdisk3:219 ronaldlv:2
hdisk3:220 ronaldlv:3
hdisk3:221 ronaldlv:4
hdisk3:222 ronaldlv:5
hdisk3:223 ronaldlv:6
hdisk3:224 ronaldlv:7
hdisk3:225 ronaldlv:8
hdisk3:226 ronaldlv:9

Both situations shown in the previous examples will not cause many
problems in a random read of a write environment. But, they will cause
problems in an environment where big files are read and written
sequentially.

Note
318 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

logical volume is limited by the -u upperbound flag. Figure 96 shows you a
logical volume that is nicely spread across three disks.

Figure 96. A logical volume across three disks

An example on how to create a logical volume on the outer edge on three
disks using an upperbound of three would be:

brenzef[root] # mklv -y ronaldlv -a e -e x -u 3 rootvg 30 hdisk0 hdisk1
hdisk2

7.4.4 Exact mapping
If you want to specify exactly which physical partitions you want to use for
allocation, you must use a map file. With a map file, you tell mklv with the -m

<mapfile> flag which physical volume should be used and which physical
partitions should be allocated. The use of map files is described in detail in
Section 2.2.1.3, “Map files” on page 110. An example of creating a logical
volume using a map file would be:

brenzef[root] # mklv -y ronaldlv -m /tmp/ronaldlv.map rootvg 3

7.4.5 Write verify
In mirrored configurations, a feature is available for users who want to make
sure that data is written and is readable. This option is called write verify.
Write verify means that after every write, a read operation is executed to read

Logical volume

hdisk1 hdisk2 hdisk3
Chapter 7. Performance 319

the data that has just been written. This guarantees the user that the write
action took place correctly. You must keep in mind that enabling write verify
slows down the I/O process. The write call returns after the written data is
read. It returns an error when the read operation fails. Detailed information on
how to activate write verify can be found in Section 2.2.3.5, “Write verify” on
page 127. An example on how to create a logical volume on the center
location with write verify enabled would be:

brenzef[root] # mklv -y ronaldlv -a c -v y rootvg 3

If you want to activate write verify using the SMIT interface, you should enter:

brenzef[root] # smitty lvm

Select logical volumes

Select Add A Logical Volume

Enter the name of the volume group

Change Enable WRITE VERIFY to Yes.

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...11] [Entry Fields]
Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during yes +
reorganization?

Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [512] #
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for reading/writing parallel +
logical partition copies

Enable WRITE VERIFY? yes +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]
F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do

Write verify is disabled by default, which is shown as no in the smit panels.

Note
320 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7.5 Mirroring

Mirroring is a powerful feature of the AIX LVM. If you create more than one
copy, you increase data availability. If one copy fails, the system can continue
working using the other copy. But, from a performance point of view, mirroring
does not give you the best performance. It is simple to understand that when
you have extra copies, these copies must be maintained also, and writing to
two or three copies takes longer than writing to one. You might think that
reading is much faster on a parallel mirrored configuration than on a one copy
configuration because more copies are available for reading. Section 7.5.1,
“The mirror read algorithm” on page 321 explains why this is not always the
case.

7.5.1 The mirror read algorithm
You might expect that the use of mirroring speeds up the read performance.
The following example shows you why this is not always the case

If you have the fix, APAR IX58267/APAR IX59519 on AIX Version 4.1 (later
release of AIX does not need any fix), the algorithm reads as follows:

number_of_outstanding_ios = I/O count of the disks holding
the first mirror in mirror array

mirror_to_read = first copy
for (loop = second copy; loop <= third copy; loop++) {

if (this loop copy’s outstanding I/Os < number_of_outstanding_ios) {
number_of_outstanding_ios = this loop copy’s outstanding I/O’s
mirror_to_read = this mirror (loop)

}
}

Let us assume that an application executes a number of reads. Initially, the
first mirror copy will be chosen. But, if the primary disk is busy processing the
read the other reads will be scheduled across drives that have the least
outstanding requests. When the primary disk has finished, this disk is used
again as the first disk to read from.

So, this example shows that reading from a mirrored logical volume is done
often using the first copy. If you use sequential mirroring, the primary copy is
always the first one used. So, to be able to benefit from mirroring read, you
should select the parallel scheduling policy. If you bypass the logical volume
manager by using the disk driver directly, you do not benefit from the mirror
read performance.
Chapter 7. Performance 321

In this new example, we create a logical volume with a hundred 16 MB
physical partitions on hdisk1. This logical volume is mirrored to another
physical disk hdisk2. We start a dd and read from the logical volume and
dump the data in /dev/null:

dd if=/dev/ronaldlv of=/dev/null bs=102400

The iostat output shows that the reads are spread across the two physical
volumes.

If we remove the mirror copy from hdisk2, the data can only be read from
hdisk1. The amount of data read in the same time interval is lower that the
mirrored situation. The example below show this. In the first example, an
average total of 8 Kbps was read, in the second example, 7 Kbps was read in
the same time interval. We could read in the same time interval more data
from the mirrored configuration than from the non-mirrored configuration.

7.5.2 Mirror write consistency
The LVM always makes sure that the data is consistent among mirrored
copies of a logical volume during normal I/O. If a write is generated, this write
will be send to all the mirror copies. But what if the system crashes in the
middle of writing such a request to a mirror copy? This is where the mirror
write consistency comes in place.

brenzef[root] # iostat -d hdisk1 hdisk2
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 76.5 4130.0 1032.5 8260 0
hdisk2 71.5 4128.0 1032.0 8256 0
hdisk1 69.3 4095.8 1023.9 8212 0
hdisk2 69.8 4095.8 1024.4 8212 0
hdisk1 75.0 4648.0 1161.5 9296 0
hdisk2 78.5 4646.0 1161.5 9292 0
hdisk1 82.0 5272.0 1318.5 10544 0
hdisk2 85.0 5274.0 1318.0 10548 0

brenzef[root] # iostat -d hdisk1 hdisk2
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 99.5 7054.0 1763.5 14108 .0
hdisk2 0.0 0.0 0.0 0 0
hdisk1 100.0 7022.0 1755.5 14044 0
hdisk2 0.0 0.0 0.0 0 0
hdisk1 100.0 7106.0 1776.5 14212 0
hdisk2 0.0 0.0 0.0 0 0
322 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

An example of this is when you create your logical volume on the inner edge,
and perform many random writes, they will be probably in different logical
track groups. Every write will cause the mirror write consistency cache to be
updated. This area is located on the outer edge of the disk, which will cause
many disk head movements. Having mirror write consistency enabled in this
situation will cause a serious performance degradation. So, make sure that in
the case of random writes, these areas are close to each other, that is, on the
outer edge. Using big physical volumes also has a performance implication.
There are more logical track groups per inch since a logical track group has a
fixed size of 128 KB. Random writes causes more logical track groups to be
updated. Updating more logical track groups causes more writes to the mirror
write consistency cache. Again, the outer edge is the most suitable location
for these logical volumes.

For a detailed explanation about the mirror write consistency cache, refer to
“Mirror Write Consistency” on page 117.

7.6 Reorganizing volume groups

After a logical volume is created, a journaled file system or a RDBMS is put
on top. But, often there is a need for more free space because the file system
needs to be enlarged, or the RDBMS needs more space to store data. The
chlv and the chfs commands are used to create extra space. The problem,
though, is that sometimes there are not enough physical partitions close to
the created logical volume available due to creation of other logical volumes
on the same disk. The logical volume that needs to be enlarged can not be
kept contiguous. This is where the LVM fragmentation comes from. In this
section, we describe how to handle LVM fragmentation issues using the
reorgvg command.

7.6.1 reorgvg
If you are not satisfied with the placement of the logical volumes on the disk,
or the logical volumes are fragmented as shown in Figure 89 on page 311 you
can reorganize the volume group by running the reorgvg command.

The reorgvg command reorganizes the placement of allocated physical
partitions within a volume group according to the allocation characteristics of
each logical volume. You can use the logical volume parameter to reorganize
specific logical volumes; highest priority is given to the first logical volume
name in the logical volume parameter list, and lowest priority is given to the
last logical volume in the parameter list. The volume group must be varied on
and must have free partitions before you can use the reorgvg command.
Chapter 7. Performance 323

The relocatable flag of each logical volume must be set to y with the chlv -r

command for the reorganization to take effect for that volume; otherwise, it is
ignored. The following example would reorganize logical volume ronaldlv
using reorgvg:

brenzef[root] # reorgvg rootvg ronaldlv

Before the reorgvg command, the placement of the logical volume could look
as shown in Figure 97.

Figure 97. Fragmented logical volume before reorgvg

During reorganization, the logical partitions will be relocated if possible.
Figure 98 shows the picture during reorganization.

Figure 98. Fragmented logical volume during reorgvg

LP1

Logical volume LV1

Logical partitions LP26 LP16

Physical patitions

LP1

Logical volume LV1

Logical partitions LP26 LP26

Physical patitions
324 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

After reorganization, the logical partitions will be contiguous (if possible).

Things to keep in mind:

• The reorgvg command does not reorganize the placement of allocated
physical partitions for any striped logical volumes.

• At least one free physical partition must exist on the specified volume
group for the reorgvg command to run successfully (the more, the faster).

• To use this command, you must either have root user authority or be a
member of the system group.

7.7 Striping

Striping is a technique for spreading the data in a logical volume across
several disk drives in such a way that the I/O capacity of the disk drives can
be used in parallel to access data on the logical volume. The primary
objective of striping is high-performance reading and writing of large
sequential files. Detailed information about how to create and use striped
logical volumes can be found in Chapter 3, “Striping” on page 137.

7.7.1 Using disks not equal in size
Creating a striped logical volume on disks that differ in size may cause a
performance degradation if you make configuration mistakes. Imagine the
situation as shown in Figure 99.
Chapter 7. Performance 325

Figure 99. Striping on different size disks

In Figure 99, the striped logical volume consists of three disks; one disk is a
9.1 GB drive; the two other drives are 4.5 GB. The 4.5 GB drives do not have
free physical partitions left. Now, we add another logical volume (see Figure
100) on the 9.1GB disk. If this new logical volume is also extensively used,
the striped logical volume will suffer. The performance gain you expected
from striping the logical volume is now reduced because of the extra I/O that
is done on the second logical volume. So, if there is a need for creating an
extra logical volume, make sure is does not interfere with the striped logical
volume. Another issue is that you cannot extend the striped logical volume
using only the 9.1 GB disk because the other two 4.5 GB physical disks do
not have free physical partitions available.

Striped logical volume

4.5GB 9.1GB 4.5GB
326 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Figure 100. Striping on different size disks with extra logical volume

7.7.2 Striping in a random read/write environment
Initially, striping was developed to get a performance gain in sequential
read/write environments. When the right stripesize is chosen, there is a
benefit when you use a striped logical volume. In a random read/write
environment, the benefit is reduced because a seek time must be added to
the time for the I/O operation to complete, just as random read/writes on a
“regular disk” would not give you optimal performance.

7.7.3 The stripe width
The number of disks used for a striped logical volume is also referred to as
the stripe width. Using a bigger stripe width could increase the performance.
But there are some considerations. If you for example striped across 20 disks,
you might expect a fast disk I/O response time. However, the adapter and bus
must be able to transport the requested reads and writes. The throughput of a
disk can be with the current technology as much as 14 to 20 MB. An
sequential read from a striped logical volume with a stripe width of 20 could
be 20*(14-20 MB); so, a total of 280 MB to 400 MB per second. The PCI
busses used these days are not fast enough to transport that amount of data.

Striped logical volume

4.5GB 9.1GB 4.5GB

Another logical volume

Striping is not a the ultimate solution for every environment.

Note
Chapter 7. Performance 327

Also, the throughput is dependent of the I/O size in an SSA configuration.
Since a SSA adapter can only handle a certain amount of I/O’s per second
(see Section 7.2.1, “Adapters” on page 305).

7.7.4 pbufs
The Logical Volume Manager (LVM) uses a construct called a "pbuf" to
control a pending disk I/O. A single pbuf is used for each I/O request,
regardless of the number of pages involved. AIX creates extra pbufs when a
new physical volume is added to the system. But, when you use striping, you
need more pbufs because one I/O operation causes I/O operations to more
disks and, thus, more pbufs. And, when you stripe and mirror, you need even
more pbufs. Running out of pbufs reduces performance drastically. When no
more pbufs are available, the I/O process is suspended until pbufs are
available again. Increasing the number of pbufs can be done with vmtune;
however, pbufs are pinned so that allocating many pbufs will increase the use
of memory. When you suspect you have run out of pbufs, you can do the
following using the crash command:

On the command line enter:

brenzef[root] # crash

To find the address where the number of pbuf requests denied are stored
enter:

> knlist hd_pendqblked

hd_pendqb: 0x01311738

Next do an od on that address.

> od 01311738

01311738: 00000027

The output shows the number of requests denied since boot time. This
example shows that this system had 39 (27 is expressed in hexadecimal)
times a request for pbuf was denied because no pbufs where available.

Use the crash command with caution in a production environment. Certain
crash commands could change the contents of the system’s internal
memory and could crash the system.

Note
328 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7.7.5 Checking the number of pbufs
The vmtune command can tune the LVM parameter: hd_pbuf_cnt.
hd_pbuf_cnt specifies number of pbufs and pbufs control pending disk I/O
requests at the LVM layer. Systems with many sequential I/O requests could
benefit from a higher value of hd_pbuf_cnt. pbufs are pinned; so, do not set
this value too high since the value cannot be lowered without a system
reboot. The default value is 96.

Changing the number of pbufs:

brenzef[root] # /usr/samples/kernel/vmtune -B 128

will set the number of pbufs to 128.

When you issue the command:

brenzef[root] # /usr/samples/kernel/vmtune -B 100

the system will respond with: hd_pbuf_cnt must be greater than 128.

7.8 Finding fragmented logical volumes

Most performance problems arise when the system is used for a while.
Applications are added, users are added, and the disk configuration is
changed several times. If there is a disk I/O bottleneck, you could look at the
disk layout to see if one or more logical volumes are fragmented. If you want
to know how the logical volumes are configured across the physical volumes,
you can use the following commands.

Assuming you want to investigate hdisk1, run the lspv command to see the
disk distribution.

The vmtune command should be used with care. Setting incorrect values
could cause unexpected system behavior.

Note
Chapter 7. Performance 329

Figure 101. Example of a disk distribution

When you look at the DISTRIBUTION column in Figure 101, you see five
columns and the location they represent.

The columns show you how many physical partitions are allocated on these
locations. There are no fragmented logical volumes on this disk. Another
example shows you a physical volume with a fragmented logical volume on it,
as you can see in the following example.

Looking at the logical volume name ronaldlv, you see that 50 physical
partitions are located on the outer edge and 46 and 52 on the inner-middle
and the inner edge.

brenzef[root] # lspv -l hdisk1

hdisk1:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

lv00 11 11 11..00..00..00..00 /home/pcbackup

hd9var 1 1 01..00..00..00..00 /var

hd2 13 13 03..00..00..10..00 /usr

hd6 31 31 00..31..00..00..00 N/A

vardce 3 3 00..03..00..00..00 /var/dce

hd1 109 109 00..18..51..40..00 /home

hd4 1 1 00..00..00..01..00 /

ronald 1 1 00..00..00..00..01 N/A

inner edgeouter edge center inner middleouter middle

brenzef[root] # lspv -l hdisk44
hdisk44:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
appldata 50 50 50..00..00..00..00 /ronald/appldata
ronaldlv 148 148 50..00..00..46..52 /ronald/database
paging00 14 14 00..14..00..00..00 N/A
330 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Another, more detailed, view of the physical partition’s locations can be seen
with the lspv -pcommand in the following:

You can see a logical volume of ten physical partitions with the name ronaldlv

are allocated at the beginning of the inner edge. The lslv -p hdisk0 ronaldlv

command can be used to prove this. The lslv -p hdisk0 ronaldlv command
shows all the locations as shown in the following example. The output
consists of five sections. Each section represents a disk region, such as outer
edge, inner-middle, and so on. The first block is the outer edge; the last block
is the inner edge. The output shows the inner-middle and the inner edge
location only.

If the field shows a number, it means the partition is used by the logical
volume passed to the lslv command. If the field shows FREE, it means that
this physical partition is unused. USED means that this physical partition is in
use by another logical volume other than the one passed to the lslv

command. The last column tells you in which physical partition range it is on
the physical disk.

brenzef:[root] # lspv -p hdisk0
hdisk0:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
1-1 used outer edge hd5 boot N/A
2-108 free outer edge

109-215 used outer middle hd6 paging N/A
216-216 used center hd8 jfslog N/A
217-217 used center hd4 jfs /
218-222 used center hd2 jfs /usr
223-223 used center hd9var jfs /var
224-225 used center hd3 jfs /tmp
226-226 used center hd1 jfs /home
227-240 used center hd2 jfs /usr
241-261 used center hd6 paging N/A
262-294 used center hd2 jfs /usr
295-297 used center raid10 jfs /raid10
298-299 used center hd2 jfs /usr
300-322 free center
323-429 free inner middle
430-440 used inner edge ronaldlv jfs N/A
441-537 free inner edge
Chapter 7. Performance 331

7.9 Performance considerations

In this section, we give some performance considerations in general in
striped situations and in mirroring situations.

7.9.1 General performance considerations
The following are general performance considerations:

1. Spread hot logical volumes across multiple physical volumes so that
parallel access is possible.

2. Create your logical volumes big enough to avoid fragmentation when the
logical volumes have to be increase later.

3. Place sequential write intensive logical volumes on the outer edge of the
physical volumes.

4. Place sequential read-intensive logical volumes in the center of the
physical volumes. Place moderate sequential read-intensive logical
volumes in the outer-middle of physical volumes and place least
sequential read-intensive logical volumes on inner-middle or inner edge of
the physical volumes.

brenzef:[root] # lslv -p hdisk0 ronaldlv
hdisk0:ronaldolv:N/A
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 323-332
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 333-342
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 343-352
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 353-362
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 363-372
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 373-382
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 383-392
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 393-402
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 403-412
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 413-422
FREE FREE FREE FREE FREE FREE FREE 423-429

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 430-439
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 440-449
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 450-459
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 460-469
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 470-479
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 480-489
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 490-499
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 500-509
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 510-519
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 520-529
FREE FREE FREE FREE FREE FREE FREE FREE 530-537
332 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

5. Make logical volumes contiguous to reduce access time.

6. Set inter-policy to maximum. This will spread each logical volume across
as many physical volumes as possible, allowing reads and writes to be
shared among several physical volumes.

7. Set write verify to no so that there is no follow-up read performed following
a write.

8. Implement striping for heavily used sequential accessed logical volumes.

7.9.2 Performance considerations for striping
The following are performance considerations for striping:

1. The stripe size you use depends on the read/write size of the application.
A stripe size of 64 K is a good start.

2. Set max_coalesce equal or as a multiple of the stripe unit size but not
smaller.

3. Set minpgahead on 2.

4. Set maxpgahead to 16 * N (where N is the number of disk drives). This
causes the page-ahead read to be done in the stripe unit size (64 KB)
times the number of disk drives, resulting in the reading of one stripe unit
from each disk drive for each read-ahead operation.

5. I/O requests for striped disks (64 KB times the number of disk drives). This
is equal to the maxpgahead value.

6. Modify maxfree to accommodate the change in maxpgahead so that the
difference between minfree and maxfree is maxpageahead.

7. 64-byte aligned I/O buffers. If the logical volume will occupy physical
drives that are connected to two or more disk adapters, the I/O buffers
used should be allocated on 64-byte boundaries. This avoids having the
LVM serialize the I/Os to the different disks.

8. If the striped logical volumes are raw logical volumes, and the writes larger
than 1.125 MB are being done to these striped raw logical volumes,
increasing the lvm_bufcnt parameter of vmtune might increase throughput
of the write activity.

9. Do not create intensively used logical volumes on a disk with a striped
logical volume on it.

10.Check with crash if you have enough pbufs for a striped or
mirrored/striped logical volume (see Section 7.7.5, “Checking the number
of pbufs” on page 329).

11.Tune the number of pbufs with vmtune -B.
Chapter 7. Performance 333

7.9.3 Performance considerations for mirroring
The following are performance considerations for mirroring:

1. Do not use mirroring, if possible, since writing a mirror performs multiple
writes that will affect performance in writing. If mirroring is needed, set the
scheduling policy to parallel and allocation policy to strict. The parallel
scheduling policy will enable reading from the disk that has the least
outstanding requests, and strict allocation policy allocates each copy on
separate physical volume(s).

2. Locate intensive mirrored logical volumes on the outer edge because, in
that situation, the mirror write consistency cache must be updated on a
regular basis.

7.10 The application layer

We will now concentrate on the last layer between the use and the disk, the
application layer. This layer can be a journaled file system or an RDBMS
using the RAW logical volume beneath it. Since there is a complete redbook
covering performance in RDBMS, Database Performance on AIX in DB2 UDB
and Oracle Environments, SG24-5511, we will focus on the JFS aspect of
performance.

Figure 102. LVM components, the application layer

7.10.1 The journaled file system
Journaled file systems have several options that affect performance, and
most of them are covered in the AIX Performance and Tuning Guide,
SC23-2365. We will discuss here only the JFS fragmentation and the use of
more JFS log logical volumes.

Physical layer (disk drive)

Application layer (JFS, RDBMS)

Logical layer (logical volume)
334 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7.10.1.1 Journaled file system fragmentation
While an AIX file is conceptually a sequential and contiguous string of bytes,
the physical reality may be very different. Fragmentation may arise from
multiple extensions to logical volumes as well as an allocation / release /
reallocation activity within a file system. We say a file system is fragmented
when its available space consists of large numbers of small chunks of space,
thus, making it impossible to write out a new file in contiguous blocks.

Access to files in a highly-fragmented file system may result in a large
number of seeks and longer I/O response time (seek latency dominates I/O
response time). For example, if the file is accessed sequentially, a file
placement that consists of many, widely separated chunks requires more
seeks than a placement that consists of one large, contiguous chunk. If the
file is accessed randomly, a placement that is widely dispersed requires
longer seeks than a placement in which the file blocks are close together.

The effect of a file placement on I/O performance diminishes when the file is
buffered in memory. When a file is opened in AIX, it is mapped to a persistent
data segment in virtual memory. The segment represents a virtual buffer for
the file. The file blocks map directly to segment pages. The VMM manages
the segment pages, reading file blocks into segment pages upon demand (as
they are accessed). There are several circumstances that cause the VMM to
write a page back to its corresponding block in the file on disk; but, in general,
the VMM keeps a page in memory if it has been accessed recently. Thus,
frequently accessed pages tend to stay in memory longer, and logical file
accesses to the corresponding blocks can be satisfied without physical disk
accesses.

At some point, the user or system administrator may choose to reorganize the
placement of files within logical volumes and the placement of logical
volumes within physical volumes to reduce fragmentation and to more evenly
distribute the total I/O load. More about defragfs can be found in Section
7.10.1.3, “defragfs” on page 338.

7.10.1.2 Finding fragmented files.
When you think your file or files are fragmented, you can use the fileplace

command to investigate the file. The fileplace command displays the
placement of a specified file within the AIX logical or physical volumes
containing the file.

By default, the fileplace command lists to standard output the ranges of
logical volume fragments allocated to the specified file.
Chapter 7. Performance 335

The order in which the logical volume fragments are listed corresponds
directly to their order in the file. A short header indicates the file size (in
bytes), the name of the logical volume in which the file lies, the block size (in
bytes) for that volume, the fragment size in bytes, and the compression
mechanism, indicating if the file system is compressed or not.

Occasionally, portions of a file may not be mapped to any fragments in the
volume. These areas, whose size is an integral number of fragments, are
implicitly zero-filled by the file system. The fileplace command will indicate
which areas in a file have no allocated fragments.

Optionally, the fileplace command will also display:

• Statistics indicating the degree to which the file is spread within the
volume.

• The indirect block addresses for the file.

• The file placement on physical (as opposed to logical) volume, for each of
the physical copies of the file.

The syntax of fileplace is:

fileplace [-l] [-p] [-i] [-v] <filename>

-l: display logical blocks

-p: display physical blocks

-i: display indirect blocks

-v: verbose mode (show efficiency and sequentiality)

An example of the fileplace command would be:
336 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The output of the fileplace command shows the location of the logical
fragments on the file system. The wtmp file in /var/adm is spread across 816
fragments but only uses 112 fragments, which is not space efficient. The
space efficiency is then 13.7 percent. The fragments, however, are placed
sequentially for 91.9 percent.

Another example is as follows:

brenzef[root] # fileplace -v wtmp

File: wtmp Size: 56000 bytes Vol: /dev/hd9var
Blk Size: 4096 Frag Size: 512 Nfrags: 112 Compress: no
Inode: 27 Mode: -rw-rw-r-- Owner: adm Group: adm

Logical Fragment

0002952 8 frags 4096 Bytes, 7.1%
0002975-0002983 16 frags 8192 Bytes, 14.3%
0003008-0003024 24 frags 12288 Bytes, 21.4%
0003045-0003053 16 frags 8192 Bytes, 14.3%
0003085 8 frags 4096 Bytes, 7.1%
0003107 8 frags 4096 Bytes, 7.1%
0002768 8 frags 4096 Bytes, 7.1%
0003115 8 frags 4096 Bytes, 7.1%
0003179 8 frags 4096 Bytes, 7.1%
0003576 8 frags 4096 Bytes, 7.1%

112 frags over space of 816 frags: space efficiency = 13.7%
10 fragments out of 112 possible: sequentiality = 91.9%

brenzef[root] # fileplace -v /smit.log

File: /smit.log Size: 73378 bytes Vol: /dev/hd4
Blk Size: 4096 Frag Size: 4096 Nfrags: 18 Compress: no
Inode: 71 Mode: -rw-r--r-- Owner: root Group: system

Logical Fragment

0000018 1 frags 4096 Bytes, 5.6%
0000607 1 frags 4096 Bytes, 5.6%
0000621 1 frags 4096 Bytes, 5.6%
0000619-0000620 2 frags 8192 Bytes, 11.1%
0000624-0000625 2 frags 8192 Bytes, 11.1%
0000623 1 frags 4096 Bytes, 5.6%
0000628-0000630 3 frags 12288 Bytes, 16.7%
0000633-0000634 2 frags 8192 Bytes, 11.1%
0000631-0000632 2 frags 8192 Bytes, 11.1%
0000636-0000638 3 frags 12288 Bytes, 16.7%

18 frags over space of 621 frags: space efficiency = 2.9%
10 fragments out of 18 possible: sequentiality = 47.1%
Chapter 7. Performance 337

The smit.log is a file that is often written to and could be fragmented. The
fileplace command shows that this file consists of 18 fragments and is
placed across 621 fragments, which gives a space affiancing of 2.4 percent.
The start of this file is on logical fragment 18, and the end of the file is logical
fragment 618. Because of that, this file is 47.1 percent sequential.

7.10.1.3 defragfs
The defragfs command increases a file system’s contiguous free space by
reorganizing a file’s allocations to be contiguous rather than scattered across
the disk. You can specify the name of the file system, as stated in
/etc/filesystems, or you can specify the name of the logical volume, such as
/data or /dev/datalv.

The defragfs command is written for de-fragmenting regular and compressed
file systems. You can use the defragfs command to increase contiguous free
space in non-fragmented file systems.

Running defragfs does not solve the problem of fragmented files. The
Defragfs command only reorganizes the free disk blocks so more contiguous
free space is available. An example of running defragfs -r would be:

The -r flag does not change anything; so, no reorganizing is done. It only
reports the current status and what would be done if defragfs was run. When
we run defragfs without any flag, the result is:

Some free space is necessary to allow the defragfs command to operate.

Note

brenzef[root] # defragfs -r /ronald
statistics before running defragfs:
number of free fragments 12557
number of allocated fragments 3827
number of free spaces shorter than a block 23
number of free fragments in short free spaces 53

statistics after running defragfs:
number of free spaces shorter than a block 2
number of free fragments in short free spaces 4

other statistics:
number of fragments moved 229
number of logical blocks moved 55
number of allocation attempts 49
number of exact matches 29
338 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

As mentioned previously, defragfs will not defragment your files on the file
system, it will only defragment the free space within the file system. If you
have a file that is sequentially read and written, and discovered that it is
fragmented, the only way to de-fragment this file is to back up the file and
restore it after you have run a defragfs to make sure the free space is not
fragmented.

7.10.1.4 Creating an additional log logical volume
In some cases, it could be useful to create extra log logical volumes for
journaled file systems in a volume group. If you have a JFS that is write
extensive, the use of the log logical volume might cause an I/O bottleneck if it
is placed on the same disk. So, in such cases, it is useful to create another
log logical volume for that file system on another disk. This will spread the
amount of I/O. The following are the steps used to change the log logical
volume for the file system data-fs. The data-fs file system is located on
hdisk2.

1. Unmount the file system for which you want to create the new log logical
volume:

brenzef[root] # umount /data-fs

2. Create a new log logical volume:

brenzef[root] # mklv -t jfslog -y datafsloglv datavg 1 hdisk1

3. Format the log:

brenzef[root] # /usr/sbin/logform /dev/datafsloglv

brenzef[root] # defragfs /ronald
statistics before running defragfs:
number of free fragments 12557
number of allocated fragments 3827
number of free spaces shorter than a block 24
number of free fragments in short free spaces 53

statistics after running defragfs:
number of free spaces shorter than a block 4
number of free fragments in short free spaces 12

other statistics:
number of fragments moved 261
number of logical blocks moved 56
number of allocation attempts 48
number of exact matches 28
Chapter 7. Performance 339

4. Modify /etc/filesystems with chfs:

brenzef[root] # chfs -a log=/dev/datafsloglv /data-fs

In /etc/filesystems, the following stanza should be visible:

/data-fs:
dev= /dev/datalv
vfs= jfs
log= /dev/datafsloglv
mount= true
options= rw
account= false

You can also check if the logical volume control block is updated by entering
the following command:

brenzef[root] # getlvcb -AT datalv

The output is shown as follows:

4. Mount the changed file system:

brenzef[root] # mount /data-fs

Placing the log logical volume on a physical volume different from your most
active file system logical volume will increase parallel resource usage. You
are allowed to have a separate log for each file system. When creating your
logical volumes, remember that the performance of drives differs. Try to
create a logical volume for a hot file system on a fast drive. and do not put this
log logical volume on another hot physical disk.

brenzef[root] # getlvcb -AT datalv
AIX LVCB
intrapolicy = m
copies = 1
interpolicy = m
lvid = 000416316c642fa6.4
lvname = lv00
label = /datalv
machine id = 416314C00
number lps = 2
relocatable = y
strict = y
stripe width = 0
stripe size in exponent = 0
type = jfs
upperbound = 32
fs = log=/dev/datafsloglv:options=rw:account=false
time created = Fri Sep 24 09:05:57 1999
time modified = Fri Sep 24 09:06:01 1999
340 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Mounting a file system using the -o nointegrity command could improve
performance substantially. If you have a file system where only temporary
files are stored, and you do not care about the integrity of these files
(because they are just temporary), you could use this flag to improve JFS
performance. If the system crashes and was not able to write the buffers to
disk, a fsck should be run to ensure the file system integrity.

Mounting file system /ronald with no integrity would be:

brenzef[root] # mount -o nointegrity /ronald

7.10.2 JFS compression
File systems using data compression have the following performance
consideration:

In order to perform data compression, approximately 50 CPU cycles per byte
are required, and about 10 CPU cycles per byte for decompression.
Therefore, compression gives you more CPU load, which can be a problem in
situations where there already is a CPU bottleneck. Check how much time the
kernel process jfsc uses when you suspect that compression causes a
performance bottleneck.

To find the kernel process, do the following:

brenzef[root] # pstat |grep jfsc

If jfsc is running, the output will be something like the following:

68 a 4486 0 2bba 0 0 1 jfsc

Convert the process id 4486 to decimal, which would be 17542:

Do not change the /etc/filesystems file with vi or another editor. These
changes will not be written into the VGDA and may cause problems after
the volume group is exported and imported (for example in HACMP
environments).

Note

The kernel process, jfsc, only comes to live when you create a
compressed file system.

Note
Chapter 7. Performance 341

brenzef[root] # ps aux |grep 17542

The time column shows you the CPU time used.

7.11 Filemon example

The filemon command may be the first performance tool to use to investigate
I/O related performance. The syntax of the command can be found in the AIX
documentation or in the Performance and Tuning Guide. This section
provides a practical example with a detailed explanation for the fields
included in the output file.

In our example, we will create a dump of the /var file system into a file,
/inner/datafile.1. We want to run filemon to see where the huge amounts of
I/O’s are going to. We run the command:

brenzef[root] filemon -O all -o filemon.out

The filemon command tells us what to do to stop filemon from monitoring.

Enter the trcstop command to complete filemon processing.

Just after issuing the filemon command, we start a dd copy from /dev/hd9var
to /inner/datafile.1:

brenzef[root] # dd if=/dev/hd9var of=/inner/datafile.1

As soon as the copy has finished, we stop filemon by entering:

brenzef[root] # trcstop

Filemon responds by issuing the message:

[filemon: Reporting started]
[filemon: Reporting completed]
[filemon: 11.232 secs in measured interval]

Now, we can examine the output file, filemon.out, to see what information is
collected. The exhibits shown in this topic are parts of the filemon.out file. The
complete file can be found in Appendix D, “The filemon.out file” on page 369.

brenzef[root] # vi filemon.out

The header
The header shows the following data:

• The time and date
342 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• The system name

• The measured interval

• The CPU utilization

Most active files
The next section (Most Active Files Report), shows the most active files
during this measurement. It tells you:

• How many MBs are transferred from or to that particular file.

• The number of times the file was opened.

• The number of read system calls made against the file.

• The number of write system calls made against the file.

• The name of the file.

• The name of the volume which contains the file and the files i-node
number.

In the example, the following data was gathered:

In the above screen, we can see that 16 MB is read from file hd9var. This file
is opened once, and 32769 read system calls where made against that file.
No write system calls where made against the hd9var file. Also, 16 MB is
transferred from or to file datafile.1. The file was opened once; no read
system calls where made against the file datafile.1, but 32768 write system
calls where made against that file. The file, datafile.1, is located on /dev/inner
and has i-node number 17. If we want to confirm that i-node 17 is indeed

Mon Oct 4 15:19:46 1999
System: AIX brenzef Node: 4 Machine: 000416314C00
11.323 secs in measured interval
Cpu utilization: 24.6%

Most Active Files
--
#MBs #opns #rds #wrs file volume:inode

--
16.0 1 32769 0 hd9var
16.0 1 0 32768 datafile.1 /dev/inner:17
0.1 12 14 0 group /dev/hd4:4110
0.0 1 11 0 cmdnfs.cat /dev/hd2:41871
0.0 1 6 0 user /dev/hd4:39
0.0 1 6 0 limits /dev/hd4:30
0.0 1 6 0 environ /dev/hd4:26
0.0 8 7 0 passwd /dev/hd4:4145
Chapter 7. Performance 343

datafile.1, we can use the ncheck command. The ncheck command scans the
i-node table and looks for the i-node supplied and returns the filename:

brenzef[root] # ncheck -i 17 /dev/inner

The ncheck command returns:

/dev/inner:
17 /datafile.1

Most active segments
The next section in the filemon output file is “Most Active Segments”. The
most active segment section gives you information about:

• The total amount of MB transferred from and to the segment.

• The number of 4096-byte pages read into the segment from disk.

• The number of 4096-byte pages written from segment to the disk.

• The internal segment ID.

• The type of the segment.

• The name of the volume.

We can see that, in total, 16 MB have been transferred from the segment with
the ID 3f66. 4092 pages of 4096-bytes where written from that segment to the
disk.

Most active logical volume
The next section in the filemon.out file is “Most Active Logical Volumes”. This
section tell us which logical volumes where used the most during the
measured time interval. It show us:

• The utilization of the logical volume (fraction of time busy)

• The number of 512-byte blocks read from the logical volume

• The number of 512-bytes blocks written to the logical volume

• The number of KB per second transferred from and to the logical volume

Most Active Segments
--
#MBs #rpgs #wpgs segid segtype volume:inode

--
16.0 0 4092 3f66 page table
0.0 0 6 b877 log
0.0 0 2 41e8 page table
0.0 0 1 86f1 page table
0.0 0 1 af54 log
344 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• The name of the volume

• The description of the volume

As shown above, the file system /inner is utilized for 52 percent, which is
shown as 0.52 in the exhibit. The /var file system is also used for 51 percent,
which is shown as 0.51 in the exhibit. 32776 512-byte block are read from
/dev/hd9var, which is about 16 MB.

Most active physical volumes
The next section in the filemon.out file is the “Most Active Physical Volumes”
section. This section provides the following information:

• The utilization of the physical volume

• The number of 512-byte blocks read form the physical volume

• The number of 512-byte blocks written to the physical volume

• The amount of data per second read from and written to the physical
volume

• The name of the volume

• The description of the volume

The exhibit above shows a 40 percent utilization, shown as 0.40 of hdisk1 and
hdisk2. Hdisk0 is 27 percent utilized. From this sample, we could conclude
that hdisk1 and hdisk2 are mirrored (because the amount of data written to
both volumes is equal). The lslv -l inner shows that this is true:

Most Active Logical Volumes
--
util #rblk #wblk KB/s volume description

--
0.52 0 32744 1445.9 /dev/inner /inner
0.51 32776 16 1448.0 /dev/hd9var /var Frag_Sz.= 512
0.01 0 48 2.1 /dev/hd8 jfslog
0.00 0 8 0.4 /dev/loglv00 jfslog

Most Active Physical Volumes
--
util #rblk #wblk KB/s volume description

--
0.40 0 32867 1451.4 /dev/hdisk2 N/A
0.40 0 32867 1451.4 /dev/hdisk1 N/A
0.27 32768 64 1449.8 /dev/hdisk0 N/A
0.00 0 8 0.4 /dev/hdisk3 N/A
Chapter 7. Performance 345

brenzef[root] # lslv -l inner
inner:/inner
PV COPIES IN BAND DISTRIBUTION
hdisk1 054:000:000 98% 000:000:000:053:001
hdisk2 054:000:000 98% 000:000:000:053:001

Detailed file statistics
The next section is “Detailed File Statistics”. It gives you detailed information
on file usage. The following information is gathered by filemon:

• The filename (if possible)

• The name of the logical volume

• The i-node number for files in a file system

• The number of times the file was opened during measurement

• The total amount of bytes transferred from and to the file

• The number of read calls issued against the file

• The read transfer size statistics (avg/min/max/sdev) in bytes

• The read response statistics (avg/min/max/sdev) in milliseconds

• The number of write calls issued against the file

• The write transfer size statistics (avg/min/max/sdev) in bytes

• The write response statistics (avg/min/max/sdev) in milliseconds

• The write response time statistics

• The number of lseek subroutine calls

The sample of the filemon.out file shows you the statistics for the file
accessed during the measurement.
346 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

When we look to the file /dev/hd9var, it is opened one time. 16777728 bytes
where transferred from and to the file, and 32769 read system calls where
made against this file. The read size averaged 512-bytes. The maximum read
size was 512-bytes, as was the maximum read size. The average read
response was 0.112 milliseconds. The minimum read response was 0.006
milliseconds, and the maximum was 30.543 milliseconds.

Detailed Virtual Memory Segment Statistics
This section covers detailed virtual memory statistics. It gives you detailed
information on virtual memory segment usage. The following information is
gathered by filemon:

• The internal AIX segment ID number

• The type of the segment

• The various segment attributes

• The name of the logical volume (persistent segments only)

• The number of 4096-byte pages read into the segment

• The read response-time statistics (avg/min/max/sdev) in milliseconds

• The number of read sequences (a string of pages that are read in)

• The statistics describing the length of the read sequences

• The number of pages written from the segment (page out)

• The write response time statistics.

• The number of write sequences (a string of pages that are written)

• The statistics that describe the length of the write sequences

--
Detailed File Stats
--
FILE: /dev/hd9var
opens: 1
total bytes xfrd: 16777728
reads: 32769 (0 errs)
read sizes (bytes): avg 512.0 min 512 max 512 sdev 0.0
read times (msec): avg 0.112 min 0.006 max 30.543 sdev 0.604

FILE: /inner/datafile.1 volume: /dev/inner (/inner) inode: 17
opens: 1
total bytes xfrd: 16777216
writes: 32768 (0 errs)
write sizes (bytes): avg 512.0 min 512 max 512 sdev 0.0
write times (msec): avg 0.029 min 0.008 max 1.459 sdev 0.048

lseeks: 1
Chapter 7. Performance 347

The screen shot above shows another part of the filemon.out file, the virtual
memory statistics part. From segment 3f66, 4092 4K pages are written (page
out). The write response time has an average of 74.073 milliseconds. The
fastest write was 6.809 milliseconds, and the slowest write was 172.287
milliseconds. The standard deviation was 35.678 milliseconds. The number of
write sequences was 29, meaning that the 4092 writes where done in 29
sequences. The average write sequence length was 1411 pages; the
minimum 1 page, and the maximum 4064 pages. The standard deviation in
this measurement was 741.4 pages.

Detailed logical volume statistics
The next section in the filemon.out file shows us detailed information about
the logical volume usage. This section shows the following information:

• The name of the volume

• The description of the volume

• The number or reads against the volume

• The read size statistics (avg/min/max/sdev) in units of 512-byte blocks

• The read response time (avg/min/max/sdev) in milliseconds

• The number of read sequences

• The length of the read sequences

• The number of writes against the volume

• The write transfer size

• The write response time

• The number of write sequences

--
Detailed VM Segment Stats (4096 byte pages)
--

SEGMENT: 3f66 segtype: page table
segment flags: pgtbl
writes: 4092 (0 errs)
write times (msec): avg 74.073 min 6.809 max 172.287 sdev 35.678
write sequences: 29
write seq. lengths: avg 141.1 min 1 max 4064 sdev 741.4

SEGMENT: b877 segtype: log
segment flags: log
writes: 6 (0 errs)
write times (msec): avg 16.460 min 7.008 max 28.417 sdev 6.266
write sequences: 5
write seq. lengths: avg 1.2 min 1 max 2 sdev 0.4
348 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

• The length of the write sequences

• The percentage of the reads and writes that required seeks

• The seek distance in units of 512-byte blocks

• The seek distance in units of disk cylinders

• The time to the next read or write request

• The troughput in KB per second

• The utilization of the volume

The following shows the part from the filemon.out file:

Looking at volume /dev/inner, we see that 1118 writes where made against
the volume. The average write size was 29,3 blocks. Minimum write size was
8 blocks, and the maximum 32 blocks. The standard deviation is 6, meaning

--
Detailed Logical Volume Stats (512 byte blocks)
--
VOLUME: /dev/inner description: /inner
writes: 1118 (0 errs)
write sizes (blks): avg 29.3 min 8 max 32 sdev 6.6
write times (msec): avg 74.969 min 6.785 max 172.230 sdev 35.819
write sequences: 9
write seq. lengths: avg 3638.2 min 8 max 8192 sdev 3189.3

seeks: 9 (0.8%)
seek dist (blks): init 9064,

avg 1164.0 min 8 max 8216 sdev 2674.3
time to next req(msec): avg 7.877 min 0.007 max 2843.664 sdev 84.943
throughput: 1445.9 KB/sec
utilization: 0.52

VOLUME: /dev/hd9var description: /var Frag_Sz.= 512
reads: 4097 (0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec): avg 0.793 min 0.363 max 30.601 sdev 1.561
read sequences: 2
read seq. lengths: avg 16388.0 min 9736 max 23040 sdev 6652.0

writes: 2 (0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec): avg 15.011 min 10.704 max 19.318 sdev 4.307
write sequences: 2
write seq. lengths: avg 8.0 min 8 max 8 sdev 0.0

seeks: 3 (0.1%)
seek dist (blks): init 0,

avg 8384.7 min 4785 max 12569 sdev 3204.6
time to next req(msec): avg 2.149 min 0.012 max 2876.785 sdev 44.934
throughput: 1448.0 KB/sec
utilization: 0.51
Chapter 7. Performance 349

that the average write size is high. The average write response time is 74.969
milliseconds; the minimum response time is 6.895 milliseconds, and the
standard deviation is 35.819 milliseconds, meaning that the response times
are average. The number of seeks is 9. The number of write sequences is
also 9, meaning that for every write sequence, a seek was issued. The seek
distance (seek dist) was 9064. Seek distance is in units of 512-byte blocks.
The time to the next request is an average of 7.877 milliseconds, maximum
0.007 milliseconds, and maximum 2843.664 milliseconds. It tells you the rate
at which the volume is being accessed; so, on average, every 7.877
milliseconds, a request was issued. The volume throughput in this
measurement was 1445.9 KB per second, which gives a utilization of 52
percent, shown as 0.52.

Detailed physical volume statistics
The next section in the filemon.out file shows detailed information about the
logical volume usage. This section shows the following information:

• The name of the volume

• The description of the volume

• The number or reads against the volume

• The read size statistics (avg/min/max/sdev) in units of 512-byte blocks

• The read response time (avg/min/max/sdev) in milliseconds

• The number of read sequences

• The length of the read sequences

• The number of writes against the volume

• The write transfer size

• The write response time

• The number of write sequences

• The length of the write sequences

• The percentage of the reads and writes that required seeks

• The seek distance in units of 512-byte blocks

• The seek distance in units of disk cylinders

• The time to the next read or write request

• The troughput in KB per second

• The utilization of the volume

The following shows the last part from the filemon.out file.
350 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

The last section gives you detailed information about physical volume
statistics. You can see the volume (/dev/hdisk2), which is the most active
during the measurement. 515 reads where made against this volume. The
average write size was 64.3 blocks; the minimum write size was 1 block, and
the maximum write size was 128 blocks. The standard deviation was 53.5.
The average write response time in the sample was 16.386 milliseconds; the
minimum response time was 0.005 milliseconds, the maximum response time
was 59.821 milliseconds. The standard deviation was 14.104. The number of
512 blocks written in sequence (write sequences) was 228. The length of the
write sequence in units of 512 bytes was 144.2; the minimum 1, and the
maximum 768 512 byte blocks. The standard deviation was 191.2. The
number of write sequences was 228. The length of the average write
sequences (shown as write seq.) was 144.2, a minimum of 1, and a maximum
of 768 512 byte blocks. The standard deviation was 191.2. The number of
seeks was 228 meaning that for every write sequence, a seek was done. The

--
Detailed Physical Volume Stats (512 byte blocks)
--
VOLUME: /dev/hdisk2 description: N/A
writes: 511 (0 errs)
write sizes (blks): avg 64.3 min 1 max 128 sdev 53.5
write times (msec): avg 16.386 min 0.005 max 59.821 sdev 14.104
write sequences: 228
write seq. lengths: avg 144.2 min 1 max 768 sdev 191.2

seeks: 228 (44.6%)
seek dist (blks): init 5289064,

avg 4573452.9 min 1 max 5314558 sdev 1818766.1
seek dist (%tot blks):init 60.00842,

avg 51.88927 min 0.00001 max 60.29767 sdev 20.63527
time to next req(msec): avg 20.418 min 0.009 max 2843.826 sdev 137.186
throughput: 1451.4 KB/sec
utilization: 0.40

VOLUME: /dev/hdisk1 description: N/A
writes: 515 (0 errs)
write sizes (blks): avg 63.8 min 1 max 128 sdev 53.3
write times (msec): avg 15.540 min 0.005 max 70.753 sdev 14.057
write sequences: 229
write seq. lengths: avg 143.5 min 1 max 768 sdev 190.3

seeks: 229 (44.5%)
seek dist (blks): init 5289064,

avg 4600014.3 min 1 max 5314558 sdev 1790467.7
seek dist (%tot blks):init 60.00842,

avg 52.19063 min 0.00001 max 60.29767 sdev 20.31421
time to next req(msec): avg 20.417 min 0.012 max 2843.725 sdev 137.179
throughput: 1451.4 KB/sec
utilization: 0.4
Chapter 7. Performance 351

seek distance (seek dist) in 512 blocks was 5289064. The time to the next
request averaged 20.418 milliseconds (minimum 0.009 milliseconds and
maximum 2843.826 milliseconds). It tells you the rate at which the volume is
being accessed; so, on average, every 20.418 milliseconds, a request was
issued. The volume through-put in this measurement was 1441.4 KB per
second, which gives a utilization of 40 percent, shown as 0.40.
352 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Appendix A. Mirroring of the rootvg

These procedures only apply to AIX Version 4.2.1 and Version 4.3. With AIX
Version 4.3.3, the remaining restrictions of the mirroring the rootvg white
paper have been completely removed.

A.1 Function

Mirroring rootvg is a function that has been requested for a long time. Here
are the two main reasons to implement the mirroring of rootvg:

• To provide the continuous operation of the AIX operating system in
the event that a disk that is part of the operating system
experiences failure, and there exists an active mirrored copy of the
operating system on some other disk.

• To provide the ability to boot more than one disk of the rootvg in
the event that another boot disk has failed. In some cases, the
ability to boot from an alternate disk may require some user
intervention.

A.2 Procedure

The following steps assume that the user has a rootvg that contains hdisk0,
and the user is attempting to mirror the rootvg to a new disk hdisk1.

1. Extend rootvg to hdisk1:

extendvg rootvg hdisk1

If the user encounters the error message:
0516-050 Not enough descriptor space left in this volume group, Either try

adding a smaller PV or use another volume group.

the user, in this case, will not be allowed not add hdisk1 to the rootvg volume
group.

The user has the following options:

• The user may attempt to mirror the rootvg volume group to another
empty disk already in the rootvg.

• The user may attempt to use a smaller disk.
Appendix A. Mirroring of the rootvg 353

• The user may attempt to change the number of partitions
supported per physical volume via chvg -t. (available on AIX 4.3.1
and later).

4. Mirror the rootvg by using the mirrorvg command with the exact
mapping option:

mirrorvg -m rootvg hdisk1

Mirrorvg will turn off quorum if the volume group is rootrvg.

5. Bosboot to initialize all boot records and devices: bosboot -a

6. Initialize the boot list: bootlist -m normal hdisk0 hdisk1

Disks where the boot logical volume reside must be supported by AIX as
boot devices. Check this by running the following command:

bootinfo -B hdiskX

If the command returns a "1", then it will be bootable by AIX. Any other
value indicates that this disk is not a candidate for rootvg mirroring.

Note

If you do not use the exact mapping option of mirrorvg, then you must verify
that the new copy of boot logical volume, hd5, is made of contiguous
partitions.

Note

Even though this command identifies the list of possible boot disks, it does
not guarantee that the system will boot from the alternate disk in all cases
involving failures of the first disk. In such situations, it may be necessary for
the user to boot from the installation/maintenance media, select
maintenance, reissue the bootlist command leaving out the failing disk,
and then reboot. On some models, firmware provides a utility for electing
the boot device at boot time. This may also be used to force the system to
boot from the alternate disk.

Some hardware models do not support the bootlist command. This does
not prevent the rootvg from being mirrored. This will require user
intervention to select an alternate boot disk if the original disk is
unavailable at the next reboot.

Note
354 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

7. Shut down and reboot the system: shutdown -Fr

This is so that the QUORUM OFF functionality takes effect.
Appendix A. Mirroring of the rootvg 355

356 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Appendix B. Sample scripts for HACMP configurations

This appendix provides some of the scripts discussed in the concuurent
volume group chapter. You may want to refer to them during the lecture of this
chapter.

B.1 Define-Cluster-Topology
#!/bin/ksh -x
#
Define-Cluster-Topology -- used in Chap.11 of HACMP installation.
#
See: SC23-4278-01 High Availabitily Cluster Multi-Processing for AIX
Installation Guide Version 4.3.1
#
Chapter.11 Defining the Cluster Topology.
#

##
#
Step.0: define PATH,LANG,ODMDIR environment values and export it.
#
##

USER_PATH=/admin/bin
SYS_PATH=/usr/bin:/usr/bin/X11:/usr/ucb
ADMIN_PATH=/usr/sbin:/sbin:/etc
HACMP_ES_DIR=/usr/es/sbin/cluster
HACMP_ES_PATH=${HACMP_ES_DIR}:${HACMP_ES_DIR}/utilities:${HACMP_ES_DIR}/diag:${HACMP_ES_
DIR}/events:${HACMP_ES_DIR}/events/utils
HACMP_DIR=/usr/sbin/cluster
HACMP_PATH=${HACMP_DIR}:${HACMP_DIR}/utilities:${HACMP_DIR}/diag:${HACMP_DIR}/events:${H
ACMP_DIR}/events/utils
PSSP_PATH=/usr/lpp/ssp/bin:/usr/lpp/ssp/kerberos/bin:/usr/lpp/ssp/rcmd/bin
PATH=${HACMP_ES_PATH}:${HACMP_PATH}:${USER_PATH}:${PSSP_PATH}:${SYS_PATH}:${ADMIN_PATH}:
.

LANG=en_US

ODMDIR=/etc/objrepos

export PATH
export LANG
export ODMDIR

##
#
Step.1: Check this host is SP nodes or not.
#
##

#SSP_INSTALL=”/usr/lpp/ssp/install/bin”
#
#${SSP_INSTALL}/node_number > /dev/null 2>&1
#RC=$?
#
#if [${RC} -ne 0]; then
echo “This script works on SP nodes only.”
© Copyright IBM Corp. 2000 357

exit 1
#fi
#
#NODE_NUMBER=‘$SSP_INSTALL/node_number‘

#case ${NODE_NUMBER} in
#1|3)
do following steps.
;;
#*)
wrong node.
print -u2 “This script runs on node#1,3 only.”
exit 1
;;
#esac

##
#
Step.2:
Defining the Cluster ID and Name.
#
##
claddclstr -i 1 -n disney
^ ^
| |
| cluster name.
cluster ID.
RC=$?
echo “return value from claddclstr command is $RC.”

##
#
Step.3:
Defining Nodes.
#
##
clnodename -a mickey
RC=$?
echo “return value from clnodename command is $RC.”
clnodename -a goofy
RC=$?
echo “return value from clnodename command is $RC.”

##
#
Step.4:
Defining Adapters.
#
##
#
Step.4.1: node#1 (mickey)
#

ITSC_TRN (service).
claddnode -a mickey : token : TRN_ITSC : public : service : \

9.3.187.183 : -n mickey
RC=$?
echo “return value from claddnode command is $RC.”
ITSC_TRN (boot).
claddnode -a mickey_boot : token : TRN_ITSC : public : boot : \

9.3.187.184 : -n mickey
RC=$?
echo “return value from claddnode command is $RC.”
358 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

ITSC_TRN (stby).
claddnode -a mickey_stby : token : TRN_ITSC : public : standby : \

9.3.187.251 : -n mickey
RC=$?
echo “return value from claddnode command is $RC.”
ITSC_ETHER (service).
Note: this network used for KA packet only.
claddnode -a mickey_en0 : ether : ETHER_ITSC : public : service : \

100.100.100.1 : -n mickey
RC=$?
echo “return value from claddnode command is $RC.”
ITSC_RS232 (service).
Note: this network used for KA packet only.
claddnode -a mickey_tty : rs232 : RS232_ITSC : serial : service : \

/dev/tty0 : -n mickey
RC=$?
echo “return value from claddnode command is $RC.”
#
Step.4.2: node#2 (goofy)
#

ITSC_TRN (service).
claddnode -a goofy : token : TRN_ITSC : public : service : \

9.3.187.185 : -n goofy
RC=$?
echo “return value from claddnode command is $RC.”
ITSC_TRN (boot).
claddnode -a goofy_boot : token : TRN_ITSC : public : boot : \

9.3.187.186 : -n goofy
RC=$?
echo “return value from claddnode command is $RC.”
ITSC_TRN (stby).
claddnode -a goofy_stby : token : TRN_ITSC : public : standby : \

9.3.187.252 : -n goofy
RC=$?
echo “return value from claddnode command is $RC.”
ITSC_ETHER (service).
Note: this network used for KA packet only.
claddnode -a goofy_en0 : ether : ETHER_ITSC : public : service : \

100.100.100.2 : -n goofy
RC=$?
echo “return value from claddnode command is $RC.”
ITSC_RS232 (service).
Note: this network used for KA packet only.
claddnode -a goofy_tty : rs232 : RS232_ITSC : serial : service : \

/dev/tty0 : -n goofy
RC=$?
echo “return value from claddnode command is $RC.”

##
#
Step.6: Setting All nodes to Enhanced Security Mode
#
!!! Note !!!
#
In standard security mode, this step should be done in after the
“Configuring-Cluster-Resources” shell script issued.
If you use the enhanced security mode on SP systems, then the
default security mode value “standard” will cause the failure
of this script in step.7 with error code 2504-002.
In that case, we set security mode to “Enhanced” here explicitly.
#
##
Appendix B. Sample scripts for HACMP configurations 359

#clchparam -n sp01e VERBOSE_LOGGING=high\
#NAME_SERVER=false
#RC=$?
#echo “return value from clchparam command is $RC.”
#clchparam -n sp03e VERBOSE_LOGGING=high\
#NAME_SERVER=false
#RC=$?

#clchclstr -s Enhanced
#RC=$?
#echo “return value from clchparam command is $RC.”

##
#
Step.7: Synchronize the Cluster Definition Across Nodes
#
!!! Note !!!
#
1. This step should be done manually on one node in cluster.
#
2. Actually, this step is done via SMIT with “cldare” command.
We define cluster topology in cold method (with out dynamic
resource definition), so DARE function does not needed.
#
##
#clconfig -s -t
#RC=$?
#echo “return value from clconfig command is $RC.”
echo “you have to syncronize the cluster topology now.”
echo “issue \”clconfig -s -t\” on only one node.”

#
end of Define-Cluster-Topology
#

B.2 Configuring-Cluster-Resources
#!/bin/ksh -x
#
Configuring-Cluster-Resources -- used in Chap.12 of HACMP installation.
#
See: SC23-4278-01 High Availabitily Cluster Multi-Processing for AIX
Installation Guide Version 4.3.1
#
Chapter.12 Configuring Cluster Resources.
#

##
#
Step.0: define PATH,LANG,ODMDIR environment values and export it.
#
##

USER_PATH=/admin/bin
SYS_PATH=/usr/bin:/usr/bin/X11:/usr/ucb
ADMIN_PATH=/usr/sbin:/sbin:/etc
HACMP_DIR=/usr/sbin/cluster
HACMP_PATH=${HACMP_DIR}:${HACMP_DIR}/utilities:${HACMP_DIR}/diag:${HACMP_DIR}/events:${H
ACMP_DIR}/events/utils
PSSP_PATH=/usr/lpp/ssp/bin:/usr/lpp/ssp/kerberos/bin:/usr/lpp/ssp/rcmd/bin
PATH=${HACMP_PATH}:${USER_PATH}:${PSSP_PATH}:${SYS_PATH}:${ADMIN_PATH}:.
360 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

LANG=en_US

ODMDIR=/etc/objrepos

export PATH
export LANG
export ODMDIR
export CONFIG_PATH

##
#
Step.1: Check this host is SP nodes or not.
#
##

#SSP_INSTALL=”/usr/lpp/ssp/install/bin”
#
#${SSP_INSTALL}/node_number > /dev/null 2>&1
#RC=$?
#
#if [${RC} -ne 0]; then
echo “This script works on SP nodes only.”
exit 1
#fi
#
#NODE_NUMBER=‘$SSP_INSTALL/node_number‘

#case ${NODE_NUMBER} in
#1|3)
do following steps.
;;
#*)
wrong node.
print -u2 “This script runs on node#1,3 only.”
exit 1
;;
#esac

##
#
Step.2:
Creating Resource Groups
#
##
#
Step.2.1: node#1, 2 concurrent resource group.
#
claddgrp -g conc_rg -r concurrent -n ‘mickey goofy’
RC=$?
echo “return value from claddgrp command is $RC.”

#
Step.2.2: node#1 -> 2 cascading resource group.
#
claddgrp -g 1_2_rg -r cascading -n ‘mickey goofy’
RC=$?
echo “return value from claddgrp command is $RC.”

#
Step.2.3: node#2 -> 1 cascading resource group.
#
claddgrp -g 2_1_rg -r cascading -n ‘goofy mickey’
Appendix B. Sample scripts for HACMP configurations 361

RC=$?
echo “return value from claddgrp command is $RC.”

##
#
Step.3:
Configuring Application Servers
#
##
#
Step.3.1: development server (node#01 -> 05).
#
#claddserv -s develop_1_5.server \
-b “/admin/HACMP/APPL/develop_1_5.server.start”\
-e “/admin/HACMP/APPL/develop_1_5.server.stop”
#RC=$?
#echo “return value from claddserv command is $RC.”
##
#
Step.4:
Configuring Resources for Resource Groups
#
##
#
Step.4.1: define node#1, 2 concurrent resource group.
#
claddres -g ‘conc_rg’\

SERVICE_LABEL=\
ILESYSTEM=\
FSCHECK_TOOL=’fsck’\
RECOVERY_METHOD=’sequential’\
EXPORT_FILESYSTEM=\
MOUNT_FILESYSTEM=\
VOLUME_GROUP=\
CONCURRENT_VOLUME_GROUP=’concvg’\
DISK=\
AIX_CONNECTIONS_SERVICES=\
AIX_FAST_CONNECT_SERVICES=\
APPLICATIONS=\
SNA_CONNECTIONS=\
MISC_DATA=\
INACTIVE_TAKEOVER=’false’\
DISK_FENCING=’false’\
SSA_DISK_FENCING=’false’\
FS_BEFORE_IPADDR=’false’

RC=$?
echo “return value from claddres command is $RC.”

#
Step.4.2: define node#1 -> 2 cascading resource group.
#
claddres -g ‘1_2_rg’\

SERVICE_LABEL=’mickey’
FILESYSTEM=\
FSCHECK_TOOL=’fsck’\
RECOVERY_METHOD=’sequential’\
EXPORT_FILESYSTEM=\
MOUNT_FILESYSTEM=\
VOLUME_GROUP=\
CONCURRENT_VOLUME_GROUP=\
DISK=\
AIX_CONNECTIONS_SERVICES=\
AIX_FAST_CONNECT_SERVICES=\
362 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

APPLICATIONS=\
SNA_CONNECTIONS=\
MISC_DATA=\
INACTIVE_TAKEOVER=’false’\
DISK_FENCING=’false’\
SSA_DISK_FENCING=’false’\
FS_BEFORE_IPADDR=’false’

RC=$?
echo “return value from claddres command is $RC.”

#
Step.4.3: define node#2 -> 1 cascading resource group.
#
claddres -g ‘2_1_rg’\

SERVICE_LABEL=’goofy’
FILESYSTEM=\
FSCHECK_TOOL=’fsck’\
RECOVERY_METHOD=’sequential’\
EXPORT_FILESYSTEM=\
MOUNT_FILESYSTEM=\
VOLUME_GROUP=\
CONCURRENT_VOLUME_GROUP=\
DISK=\
AIX_CONNECTIONS_SERVICES=\
AIX_FAST_CONNECT_SERVICES=\
APPLICATIONS=\
SNA_CONNECTIONS=\
MISC_DATA=\
INACTIVE_TAKEOVER=’false’\
DISK_FENCING=’false’\
SSA_DISK_FENCING=’false’\
FS_BEFORE_IPADDR=’false’

RC=$?
echo “return value from claddres command is $RC.”
##
#
Step.5:
Configuring Run-Time Parameters
#
!!! Note !!!
This step should be done in Defing-Cluster-Topology, if you use
the enhanced security mode in the cluster (used in SP systems only).
##
clchparam -n mickey VERBOSE_LOGGING=high\

NAME_SERVER=true
RC=$?
echo “return value from clchparam command is $RC.”
clchparam -n goofy VERBOSE_LOGGING=high\

NAME_SERVER=true
RC=$?

##
Step.9:
Synchronizing Cluster Nodes
Note: After this, modificatin to /etc/inittab and /etc/rc.net is permanent.
These modification is documented on SC23-4278-01,
Appendix.A Supporting IP address Takeover.
##
clconfig -s -r
RC=$?
echo “return value from clchparm command is $RC.”
Appendix B. Sample scripts for HACMP configurations 363

#
end of Configuring-Cluster-Resources
#

B.3 Unconfigure-Cluster
#!/bin/ksh -x
#
Unconfigure-Cluster -- Unconfigure HACMP cluster configuration.
#
See: SC23-4278-00 High Availabitily Cluster Multi-Processing for AIX
Installation Guide Version 4.3
#

##
#
Step.0: define PATH,LANG,ODMDIR environment values and export it.
#
##

USER_PATH=/admin/bin
SYS_PATH=/usr/bin:/usr/bin/X11:/usr/ucb
ADMIN_PATH=/usr/sbin:/sbin:/etc
HACMP_DIR=/usr/sbin/cluster
HACMP_PATH=${HACMP_DIR}:${HACMP_DIR}/utilities:${HACMP_DIR}/diag:${HACMP_DIR}/events:${H
ACMP_DIR}/events/utils
PSSP_PATH=/usr/lpp/ssp/bin:/usr/lpp/ssp/kerberos/bin:/usr/lpp/ssp/rcmd/bin
PATH=${HACMP_PATH}:${USER_PATH}:${PSSP_PATH}:${SYS_PATH}:${ADMIN_PATH}:.

LANG=en_US

ODMDIR=/etc/objrepos

export PATH
export LANG
export ODMDIR
export CONFIG_PATH

##
#
Step.1: Check this node has HACMP cluster configuration or not.
If have it, remove cluster configuration using “clrmclstr”.
#
##

cllsclstr > /dev/null 2>&1
RC=$?

if [${RC} -ne 0]; then
print -u2 “This node does not have HACMP cluster configuration.”
exit 1

else
clrmclstr

fi

##
#
Step.2: Check this node has HACMP application server or not.
If have it, remove all application server using “clrmserv”.
#

364 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

##

cllsserv > /dev/null 2>&1
RC=$?

if [${RC} -ne 0]; then
print -u2 “This node does not have HACMP cluster configuration.”

else
clrmserv All

fi

##
#
Step.3: remove topology service stanza from HACMPtopsvcs class.
#
Note: used in HACMP/ES cluster only.
#
##

#ODMDIR=/etc/objrepos odmdelete -o HACMPtopsvcs -q hbInterval=1

#
end of Unconfigure-Cluster
#

Appendix B. Sample scripts for HACMP configurations 365

366 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Appendix C. /usr/sbin/cluster/hc/README

The HC daemon provided with HACMP 4.1.1 is essentially the same as that
provided as part of the IBM Recoverable Virtual Shared Disk Licensed
Program Product (program number 5765-444) described in IBM Recoverable
Virtual Shared Disk User’s Guide and Reference, GC23-3849. The only
changes were those necessary to make it function in an HACMP as opposed
to an RVSD environment. The description below is based on the content of
the relevant section of the redbook IBM Recoverable Virtual Shared Disk
User’s Guide and Reference, GC23-3849. The HC daemon and supporting
utilities and shell scripts are installed in the directory /usr/lpp/csd/bin.
HACMP 4.1.1 will not install this support if the RVSD is already present in the
system. If HACMP 4.1.1 is installed, and the RVSD is to be installed later, the
cluster.hc.rte fileset should be removed to prevent possible incompatibilites.

You can code your program to use the HC application programming interface
of the IBM Recoverable Virtual Shared Disk software to aid in application
recovery.

Your program should include the following hc.h header file, which is installed
in the /usr/sbin/cluster/hc directory:

#include “hc.c”

Your program connects to a socket where HC is listening. If a node fails, or
the client application on a node fails, HC sends a reconfiguration message
according to the protocol defined in the hc.h header file. Your program should
check for messages from that socket and react accordingly. Note, that only
one application can use HC’s services. This application should be the only
application using HC on any node.

The HC daemon was originally developed to support the Oracle Fault Tolerant
Distributed Lock manager. Consult Oracle documentation for the appropriate
release of Oracle Parallel Server to make use of this facility in HACMP 4.1.1.

As a convenience, the HC program will run an optional script:

/usr/lpp/csd/bin/hc.activate

once it initializes. The hc.activate script is passed two parameters: The local
node number and the path name of the UNIX domain stream socket that it
serves. You can start your recoverable application from this script. (Node
numbers correspond to the sequence in which nodes are given in the output
of the /usr/sbin/cluster/utilities/cllsif utility.)
© Copyright IBM Corp. 2000 367

The HC program also runs an optional script:

/usr/lpp/csd/bin/hc.deactivate

upon detecting failure of its client. The same parameters are passed as are
passed to /usr/lpp/csd/bin/hc.activate, letting you restart the client if you
desire. The client may fail either by exiting or by failure to respond to a ping
message within 10 seconds.

Ten seconds is the default for the PING_DELAY. That is, if a client
application fails to respond to a ping sent from the hc program within 10
seconds, HC will consider the application, or the node it is running on, to
have failed. Some application programs running under some system loads
may require a longer PING_DELAY time frame. To change the
PING_DELAY, place a new value in /usr/lpp/csd/bin/hacmp_hc_start. For
example, add the following line:

export PING_DELAY=30

If HC should fail, the application will receive a zero-length message over
the socket and should shut itself down.

Note
368 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Appendix D. The filemon.out file

Mon Oct 4 15:19:46 1999
System: AIX lorraine Node: 4 Machine: 000416314C00
11.323 secs in measured interval
Cpu utilization: 24.6%

Most Active Files
--
#MBs #opns #rds #wrs file volume:inode

--
16.0 1 32769 0 hd9var
16.0 1 0 32768 datafile.1 /dev/inner:17
0.1 12 14 0 group /dev/hd4:4110
0.0 1 11 0 cmdnfs.cat /dev/hd2:41871
0.0 1 6 0 user /dev/hd4:39
0.0 1 6 0 limits /dev/hd4:30
0.0 1 6 0 environ /dev/hd4:26
0.0 8 7 0 passwd /dev/hd4:4145
0.0 1 4 0 config /dev/hd4:699
0.0 2 4 0 ksh.cat /dev/hd2:41602
0.0 1 3 0 methods.cfg /dev/hd2:6300
0.0 1 2 0 cmdtrace.cat /dev/hd2:41470
0.0 8 2 0 passwd /dev/hd4:32
0.0 1 2 0 environment /dev/hd4:4108
0.0 1 2 0 resolv.conf /dev/hd4:4346
0.0 1 1 0 NIS_COLD_START /dev/hd9var:2234
0.0 1 1 0 dd.cat /dev/hd2:41493
0.0 1 0 1 active_list.tmp
0.0 1 0 1 active_file.rpc.nispasswdd.18878
0.0 1 0 1 error

Most Active Segments
--
#MBs #rpgs #wpgs segid segtype volume:inode

--
16.0 0 4092 3f66 page table
0.0 0 6 b877 log
0.0 0 2 41e8 page table
0.0 0 1 86f1 page table
0.0 0 1 af54 log

Most Active Logical Volumes
--
util #rblk #wblk KB/s volume description

--
0.52 0 32744 1445.9 /dev/inner /inner
0.51 32776 16 1448.0 /dev/hd9var /var Frag_Sz.= 512
0.01 0 48 2.1 /dev/hd8 jfslog
0.00 0 8 0.4 /dev/loglv00 jfslog

Most Active Physical Volumes
© Copyright IBM Corp. 2000 369

--
util #rblk #wblk KB/s volume description

--
0.40 0 32867 1451.4 /dev/hdisk2 N/A
0.40 0 32867 1451.4 /dev/hdisk1 N/A
0.27 32768 64 1449.8 /dev/hdisk0 N/A
0.00 0 8 0.4 /dev/hdisk3 N/A

--
Detailed File Stats
--

FILE: /dev/hd9var
opens: 1
total bytes xfrd: 16777728
reads: 32769 (0 errs)
read sizes (bytes): avg 512.0 min 512 max 512 sdev 0.0

read times (msec): avg 0.112 min 0.006 max 30.543 sdev 0.604

FILE: /inner/datafile.1 volume: /dev/inner (/inner) inode: 17
opens: 1
total bytes xfrd: 16777216
writes: 32768 (0 errs)
write sizes (bytes): avg 512.0 min 512 max 512 sdev 0.0
write times (msec): avg 0.029 min 0.008 max 1.459 sdev 0.048

lseeks: 1

FILE: /etc/group volume: /dev/hd4 (/) inode: 4110
opens: 12
total bytes xfrd: 57344
reads: 14 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.015 min 0.004 max 0.047 sdev 0.010

FILE: /usr/lib/nls/msg/en_US/cmdnfs.cat volume: /dev/hd2 (/usr) inode: 41871
opens: 1
total bytes xfrd: 45056
reads: 11 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.040 min 0.023 max 0.092 sdev 0.019

lseeks: 9

FILE: /etc/security/user volume: /dev/hd4 (/) inode: 39
opens: 1
total bytes xfrd: 41480
reads: 6 (0 errs)
read sizes (bytes): avg 6913.3 min 76 max 16383 sdev 6877.7
read times (msec): avg 0.030 min 0.005 max 0.124 sdev 0.043

lseeks: 10

FILE: /etc/security/limits volume: /dev/hd4 (/) inode: 30
opens: 1
total bytes xfrd: 41144
reads: 6 (0 errs)
370 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

read sizes (bytes): avg 6857.3 min 81 max 16383 sdev 6931.3
read times (msec): avg 0.010 min 0.005 max 0.029 sdev 0.009

lseeks: 10

FILE: /etc/security/environ volume: /dev/hd4 (/) inode: 26
opens: 1
total bytes xfrd: 40962
reads: 6 (0 errs)
read sizes (bytes): avg 6827.0 min 1 max 16383 sdev 6960.9
read times (msec): avg 0.007 min 0.005 max 0.014 sdev 0.003

lseeks: 10

FILE: /etc/passwd volume: /dev/hd4 (/) inode: 4145
opens: 8
total bytes xfrd: 28672
reads: 7 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.031 min 0.016 max 0.052 sdev 0.013

lseeks: 10

FILE: /etc/security/audit/config volume: /dev/hd4 (/) inode: 699
opens: 1
total bytes xfrd: 24594
reads: 4 (0 errs)
read sizes (bytes): avg 6148.5 min 17 max 16383 sdev 6139.2
read times (msec): avg 0.011 min 0.003 max 0.032 sdev 0.012

lseeks: 5

FILE: /usr/lib/nls/msg/en_US/ksh.cat volume: /dev/hd2 (/usr) inode: 41602
opens: 2
total bytes xfrd: 16384
reads: 4 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.052 min 0.015 max 0.088 sdev 0.036

lseeks: 10

FILE: /usr/lib/security/methods.cfg volume: /dev/hd2 (/usr) inode: 6300
opens: 1
total bytes xfrd: 12288
reads: 3 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.022 min 0.003 max 0.055 sdev 0.023

lseeks: 54

FILE: /usr/lib/nls/msg/en_US/cmdtrace.cat volume: /dev/hd2 (/usr) inode: 41470
opens: 1
total bytes xfrd: 8192
reads: 2 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.063 min 0.044 max 0.081 sdev 0.019

lseeks: 8

FILE: /etc/security/passwd volume: /dev/hd4 (/) inode: 32
opens: 8
Appendix D. The filemon.out file 371

total bytes xfrd: 8192
reads: 2 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.015 min 0.015 max 0.016 sdev 0.001

lseeks: 12

FILE: /etc/environment volume: /dev/hd4 (/) inode: 4108
opens: 1
total bytes xfrd: 8192
reads: 2 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.021 min 0.004 max 0.039 sdev 0.017

FILE: /etc/resolv.conf volume: /dev/hd4 (/) inode: 4346
opens: 1
total bytes xfrd: 8192
reads: 2 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.023 min 0.004 max 0.041 sdev 0.019

FILE: /var/nis/NIS_COLD_START volume: /dev/hd9var (/var) inode: 2234
opens: 1
total bytes xfrd: 4096
reads: 1 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.047 min 0.047 max 0.047 sdev 0.000

FILE: /usr/lib/nls/msg/en_US/dd.cat volume: /dev/hd2 (/usr) inode: 41493
opens: 1
total bytes xfrd: 4096
reads: 1 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.113 min 0.113 max 0.113 sdev 0.000

lseeks: 5

FILE: /var/adm/SRC/active_list.tmp
opens: 1
total bytes xfrd: 2041
writes: 1 (0 errs)
write sizes (bytes): avg 2041.0 min 2041 max 2041 sdev 0.0
write times (msec): avg 0.163 min 0.163 max 0.163 sdev 0.000

FILE: /var/adm/SRC/active_file.rpc.nispasswdd.18878
opens: 1
total bytes xfrd: 173
writes: 1 (0 errs)
write sizes (bytes): avg 173.0 min 173 max 173 sdev 0.0
write times (msec): avg 0.109 min 0.109 max 0.109 sdev 0.000

FILE: /dev/error
opens: 1
total bytes xfrd: 92
writes: 1 (0 errs)
write sizes (bytes): avg 92.0 min 92 max 92 sdev 0.0
372 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

write times (msec): avg 5.672 min 5.672 max 5.672 sdev 0.000

--
Detailed VM Segment Stats (4096 byte pages)
--

SEGMENT: 3f66 segtype: page table
segment flags: pgtbl
writes: 4092 (0 errs)
write times (msec): avg 74.073 min 6.809 max 172.287 sdev 35.678
write sequences: 29
write seq. lengths: avg 141.1 min 1 max 4064 sdev 741.4

SEGMENT: b877 segtype: log
segment flags: log
writes: 6 (0 errs)
write times (msec): avg 16.460 min 7.008 max 28.417 sdev 6.266
write sequences: 5
write seq. lengths: avg 1.2 min 1 max 2 sdev 0.4

SEGMENT: 41e8 segtype: page table
segment flags: sys pgtbl
writes: 2 (0 errs)
write times (msec): avg 15.046 min 10.745 max 19.347 sdev 4.301
write sequences: 2
write seq. lengths: avg 1.0 min 1 max 1 sdev 0.0

SEGMENT: 86f1 segtype: page table
segment flags: pers log pgtbl
writes: 1 (0 errs)
write times (msec): avg 17.895 min 17.895 max 17.895 sdev 0.000
write sequences: 1
write seq. lengths: avg 1.0 min 1 max 1 sdev 0.0

SEGMENT: af54 segtype: log
segment flags: log
writes: 1 (0 errs)
write times (msec): avg 8.203 min 8.203 max 8.203 sdev 0.000
write sequences: 1
write seq. lengths: avg 1.0 min 1 max 1 sdev 0.0

--
Detailed Logical Volume Stats (512 byte blocks)
--

VOLUME: /dev/inner description: /inner
writes: 1118 (0 errs)
write sizes (blks): avg 29.3 min 8 max 32 sdev 6.6
write times (msec): avg 74.969 min 6.785 max 172.230 sdev 35.819
write sequences: 9
write seq. lengths: avg 3638.2 min 8 max 8192 sdev 3189.3

seeks: 9 (0.8%)
seek dist (blks): avg 1164.0 min 8 max 8216 sdev 2674.3

time to next req(msec): avg 7.877 min 0.007 max 2843.664 sdev 84.943
Appendix D. The filemon.out file 373

throughput: 1445.9 KB/sec
utilization: 0.52

VOLUME: /dev/hd9var description: /var Frag_Sz.= 512
reads: 4097 (0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec): avg 0.793 min 0.363 max 30.601 sdev 1.561
read sequences: 2
read seq. lengths: avg 16388.0 min 9736 max 23040 sdev 6652.0

writes: 2 (0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec): avg 15.011 min 10.704 max 19.318 sdev 4.307
write sequences: 2
write seq. lengths: avg 8.0 min 8 max 8 sdev 0.0

seeks: 3 (0.1%)
seek dist (blks): avg 8384.7 min 4785 max 12569 sdev 3204.6

time to next req(msec): avg 2.149 min 0.012 max 2876.785 sdev 44.934
throughput: 1448.0 KB/sec
utilization: 0.51

VOLUME: /dev/hd8 description: jfslog
writes: 6 (0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec): avg 16.411 min 6.846 max 28.393 sdev 6.301
write sequences: 4
write seq. lengths: avg 12.0 min 8 max 16 sdev 4.0

seeks: 4 (66.7%)
seek dist (blks): avg 16.0 min 8 max 24 sdev 6.5

time to next req(msec): avg 792.633 min 6.876 max 4652.208 sdev 1726.078
throughput: 2.1 KB/sec
utilization: 0.01

VOLUME: /dev/loglv00 description: jfslog
writes: 1 (0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec): avg 8.193 min 8.193 max 8.193 sdev 0.000
write sequences: 1
write seq. lengths: avg 8.0 min 8 max 8 sdev 0.0

seeks: 1 (100.0%)
seek dist (blks): init 160

time to next req(msec): avg 2861.933 min 2861.933 max 2861.933 sdev 0.000
throughput: 0.4 KB/sec
utilization: 0.00

--
Detailed Physical Volume Stats (512 byte blocks)
--

VOLUME: /dev/hdisk2 description: N/A
writes: 511 (0 errs)
write sizes (blks): avg 64.3 min 1 max 128 sdev 53.5
write times (msec): avg 16.386 min 0.005 max 59.821 sdev 14.104
write sequences: 228
write seq. lengths: avg 144.2 min 1 max 768 sdev 191.2
374 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

seeks: 228 (44.6%)
seek dist (blks): avg 4573452.9 min 1 max 5314558 sdev 1818766.1
seek dist (%tot blks):avg 51.88927 min 0.00001 max 60.29767 sdev 20.63527

time to next req(msec): avg 20.418 min 0.009 max 2843.826 sdev 137.186
throughput: 1451.4 KB/sec
utilization: 0.40

VOLUME: /dev/hdisk1 description: N/A
writes: 515 (0 errs)
write sizes (blks): avg 63.8 min 1 max 128 sdev 53.3
write times (msec): avg 15.540 min 0.005 max 70.753 sdev 14.057
write sequences: 229
write seq. lengths: avg 143.5 min 1 max 768 sdev 190.3

seeks: 229 (44.5%)
seek dist (blks): avg 4600014.3 min 1 max 5314558 sdev 1790467.7
seek dist (%tot blks):avg 52.19063 min 0.00001 max 60.29767 sdev 20.31421

time to next req(msec): avg 20.417 min 0.012 max 2843.725 sdev 137.179
throughput: 1451.4 KB/sec
utilization: 0.40

VOLUME: /dev/hdisk0 description: N/A
reads: 4096 (0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec): avg 0.754 min 0.050 max 65.644 sdev 1.748
read sequences: 8
read seq. lengths: avg 4096.0 min 8 max 22936 sdev 7799.3

writes: 8 (0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec): avg 15.927 min 0.185 max 62.117 sdev 19.553
write sequences: 8
write seq. lengths: avg 8.0 min 8 max 8 sdev 0.0

seeks: 16 (0.4%)
seek dist (blks): avg 127079.6 min 4769 max 156792 sdev 59367.5
seek dist (%tot blks):avg 0.71497 min 0.02683 max 0.88213 sdev 0.33401

time to next req(msec): avg 2.147 min 0.164 max 2876.820 sdev 44.910
throughput: 1449.8 KB/sec
utilization: 0.27

VOLUME: /dev/hdisk3 description: N/A
writes: 1 (0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec): avg 8.155 min 8.155 max 8.155 sdev 0.000
write sequences: 1
write seq. lengths: avg 8.0 min 8 max 8 sdev 0.0

seeks: 1 (100.0%)
seek dist (blks): init 3576224
seek dist (%tot blks):init 20.12035

time to next req(msec): avg 2861.948 min 2861.948 max 2861.948 sdev 0.000
throughput: 0.4 KB/sec
utilization: 0.00
Appendix D. The filemon.out file 375

376 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Appendix E. Filemon syntax

Filemon monitors the performance of the file system and reports the I/O
activity on behalf of logical files, virtual memory segments, logical volumes,
and physical volumes.

Syntax
filemon [-d] [-i File] [-o File] [-O Levels] [-P] [-T n] [-u
] [-v]

Description
The filemon command monitors a trace of file system and I/O system events
and reports on the file and I/O access performance during that period.

In its normal mode, the filemon command runs in the background, while one
or more application programs or system commands are being executed and
monitored. The filemon command automatically starts and monitors a trace of
the program's file system and I/O events in real time. By default, the trace is
started immediately; optionally, tracing may be deferred until the user issues
a trcon command. The user can issue trcoff and trcon commands while the
filemon command is running in order to turn off and on monitoring as desired.
When tracing is stopped by a trcstop command, the filemon command
generates an I/O activity report and exits.

The filemon command can also process a trace file that has been previously
recorded by the AIX trace facility. The file and I/O activity report will be based
on the events recorded in that file.

To provide a more complete understanding of file system performance for an
application, the filemon command monitors file and I/O activity at four levels.

Logical file system
The filemon command monitors logical I/O operations on logical files. The
monitored operations include all read, write, open, and lseek system calls,
which may or may not result in actual physical I/O, depending on whether or
not the files are already buffered in memory. I/O statistics are kept on a
per-file basis.

Virtual memory system
The filemon command monitors physical I/O operations (that is, paging)
between segments and their images on disk. I/O statistics are kept on a
per-segment basis.
© Copyright IBM Corp. 2000 377

Logical volumes
The filemon command monitors I/O operations on logical volumes. I/O
statistics are kept on a per-logical-volume basis.

Physical volumes
The filemon command monitors I/O operations on physical volumes. At this
level, physical resource utilizations are obtained. I/O statistics are kept on a
per-physical-volume basis.

Any combination of the four levels can be monitored, as specified by the
command line flags. By default, the filemon command only monitors I/O
operations at the virtual memory, logical volume, and physical volume levels.
These levels are all concerned with requests for real disk I/O.

The filemon command writes its report to standard output or to a specified
file. The report begins with a summary of the I/O activity for each of the levels
being monitored and ends with detailed I/O activity statistics for each of the
levels being monitored. Summary and detailed report contents are described
in the "Reports " section.

When using the filemon command from within a shell script, allow for a slight
delay prior to viewing the contents of the filemon output file. The filemon

command may take a few seconds to produce this report.

The reports produced by the filemon command can be quite long.
Consequently, the -o option should usually be used to write the report to an
output file. When a physical device is opened and accessed directly by an
application, only reads and writes of complete 512-byte blocks are
reflected in the report. "Short" reads and writes, used by the device driver
to issue device commands and read device status, are ignored. CD-ROMs
do not have concentric "tracks" or "cylinders," as in hard files. (There is one
spiral track.) Consequently, it is not possible to report seek distance
statistics for CD-ROMs in terms of cylinders. The -u flag is used to
generate reports on files opened prior to the start of the trace daemon.
Some of this data can be useful, but much of it applies to daemons and
other unrelated activity. This background information can be overwhelming,
especially on large systems. If the /unix file and the running kernel are not
the same, then the kernel addresses will be incorrect, thus, causing the
filemon command to exit.

Note
378 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

System Trace Facility
The filemon command obtains raw I/O performance data using the AIX
system trace facility. Currently, the trace facility only supports one output
stream. Consequently, only one filemon or trace process can be active at a
time. If another filemon or trace process is already running, the filemon

command will respond with the message:

/dev/systrace: Device busy

While monitoring very I/O-intensive applications, the filemon command may
not be able to consume trace events as fast as they are produced in real time.
When that happens, the error message:

Trace kernel buffers overflowed, N missed entries

will be displayed on stderr, indicating how many trace events were lost while
the trace buffers were full. The filemon command will continue monitoring I/O
activity, but the accuracy of the report will be diminished to some unknown
degree. One way to prevent overflow is to monitor fewer levels of the file and
I/O subsystems: The number of trace events generated is proportional to the
number of levels monitored. Additionally, the trace buffer size can be
increased using the -T option to accommodate larger bursts of trace events
before overflow. Remember that increasing the trace buffer size will result in
more pinned memory and, therefore, may effect I/O and paging behavior.

In memory-constrained environments (where demand for memory exceeds
supply), the -P option can be used to pin the text and data pages of the
real-time filemon process in memory so that the pages cannot be swapped
out. If the -P option is not used, allowing the filemon process to be swapped
out, the progress of the filemon command may be delayed to the point where
it cannot process trace events fast enough. This situation leads to trace buffer
overflow as described above. Of course, pinning this process takes memory
away from the application (although the filemon command is not a large
program; its process image can consume up to 500 KB).

Before using the filemon command to process an existing trace data file, you
must use the -r option of the trcrpt command to rewrite the trace data
sequentially to a new file. Otherwise, the filemon command produces the
following error message and then exits:

error: run 'trcrpt -r' on logfile first
Appendix E. Filemon syntax 379

Reports
Each report generated by the filemon command has a header that identifies
the date, the machine ID, and the length of the monitoring period in seconds.
The CPU utilization during the monitoring period is also reported.

Next, summary reports are generated for each of the file system levels being
monitored. By default, the logical file and virtual memory reports are limited to
the 20 most active files and segments, respectively, as measured by the total
amount of data transferred. If the -v flag has been specified, activity for all
files and segments is reported. There is one row for each reported file,
segment, or volume. The columns in each row for the four summary reports
are described in the following lists:

Most Active Files Report
Column Description

#MBS Total number of megabytes transferred to/from file. The
rows are sorted by this field in decreasing order.

#opns Number of times the file was opened during
measurement period.

#rds Number of read system calls made against file

#wrs Number of write system calls made against file.

file Name of file (full path name is in detailed report).

volume:i-node Name of volume that contains the file and the file's
i-node number. This field can be used to associate a file
with its corresponding persistent segment shown in the
virtual memory I/O reports. This field may be blank for
example, for temporary files created and deleted during
execution.

Most Active Segments Report
Column Description

#MBS Total number of megabytes transferred to/from segment.
The rows are sorted by this field in decreasing order.

#rpgs Number of 4096-byte pages read into segment from disk
(that is, page).
380 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

#wpgs Number of 4096-byte pages written from segment to
disk (page out).

segid Internal ID of segment.

segtype Type of segment: Working segment, persistent segment
(local file), client segment (remote file), page table
segment, system segment, or special persistent
segments containing file system data (log, root directory,
.inode, .inodemap, .inodex, .inodexmap, .indirect,
.diskmap).

volume:i-node For persistent segments, name of volume that contains
the associated file and the file's i-node number. This
field can be used to associate a persistent segment with
its corresponding file shown in the file I/O reports. This
field will be blank for non-persistent segments.

Most Active Logical Volumes Report
Column Description

util Utilization of the volume (fraction of time busy). The
rows are sorted by this field in decreasing order.

#rblk Number of 512-byte blocks read from the volume.

#wblk Number of 512-byte blocks written to the volume.

KB/sec Total transfer throughput in Kilobytes per second.

volume Name of volume.

description Contents of volume: Either a file system name or logical
volume type (paging, jfslog, boot, or sysdump). Also,
indicates if the file system is fragmented or compressed.

Most Active Physical Volumes Report
Column Description

The virtual memory analysis tool, svmon, can be used to display more
information about a segment, given its segment ID (segid), as follows:

svmon -S <segid>

Note
Appendix E. Filemon syntax 381

util Utilization of the volume (fraction of time busy). The
rows are sorted by this field in decreasing order.

#rblk Number of 512-byte blocks read from the volume.

#wblk Number of 512-byte blocks written to the volume.

KB/sec Total volume throughput in Kilobytes per second.

volume Name of volume.

description Type of volume, for example, 120 MB disk, 355 MB
SCSI, or CDROM SCSI.

Finally, detailed reports are generated for each of the file system levels being
monitored. By default, the logical file and virtual memory reports are limited to
the 20 most active files and segments, respectively, as measured by the total
amount of data transferred. If the -v flag has been specified, activity for all
files and segments is reported. There is one entry for each reported file,
segment, or volume. The fields in each entry are described below for the four
detailed reports are described in the following lists.

Some of the fields report a single value; others report statistics that
characterize a distribution of many values. For example, response time
statistics are kept for all read or write requests that were monitored. The
average, minimum, and maximum response times are reported as well as the
standard deviation of the response times. The standard deviation is used to
show how much the individual response times deviated from the average.
Roughly two-thirds of the sampled response times are between average -
standard deviation and average + standard deviation. If the distribution of
response times is scattered over a large range; the standard deviation will be
large compared to the average response time.

Detailed File Stats Report
Column Description

FILE Name of the file. The full path name is given if possible.

Logical volume I/O requests start before, and end after, physical volume
I/O requests. For this reason, total logical volume utilization will appear to
be higher than total physical volume utilization.

Note
382 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

volume Name of the logical volume/file system containing the
file.

i-node I-node number for the file within its file system.

opens Number of times the file was opened while monitored.

total bytes xfrd Total number of bytes read/written to/from the file.

reads Number of read calls against the file.

read sizes (bytes) The read transfer-size statistics (avg/min/max/sdev) in
bytes.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

writes Number of write calls against the file.

write sizes (bytes) The write transfer-size statistics.

write times (msec) The write response-time statistics.

seeks Number of lseek subroutine calls.

Detailed VM Segment Stats Report
Column Description

SEGMENT Internal AIX segment ID.

segtype Type of segment contents.

segment flags Various segment attributes.

volume For persistent segments, the name of the logical volume
containing the corresponding file.

i-node For persistent segments, the i-node number for the
corresponding file.

reads Number of 4096-byte pages read into the segment (that
is, paged in).

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.
Appendix E. Filemon syntax 383

read sequences Number of read sequences. A sequence is a string of
pages that are read (paged in) consecutively. The
number of read sequences is an indicator of the amount
of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences
in pages.

writes Number of pages written from the segment (that is,
paged out).

write times (msec) Write response time statistics.

write sequences Number of write sequences. A sequence is a string of
pages that are written (paged out) consecutively.

write seq. lengths Statistics describing the lengths of the write sequences
in pages.

Detailed Logical/Physical Volume Stats Reports
Column Description

VOLUME Name of the volume.

description Description of the volume. (Describes contents if
discussing a logical volume; describes type if dealing
with a physical volume.)

reads Number of read requests made against the volume.

read sizes (blks) The read transfer-size statistics (avg/min/max/sdev) in
units of 512-byte blocks.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

read sequences Number of read sequences. A sequence is a string of
512-byte blocks that are read consecutively and indicate
the amount of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences
in blocks.

writes Number of write requests made against the volume.

write sizes (blks) The write transfer-size statistics.
384 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

write times (msec) The write-response time statistics.

write sequences Number of write sequences. A sequence is a string of
512-byte blocks that are written consecutively.

write seq. lengths Statistics describing the lengths of the write sequences
in blocks.

seeks Number of seeks that preceded a read or write request,
also expressed as a percentage of the total reads and
writes that required seeks.

seek dist (blks) Seek distance statistics in units of 512-byte blocks. In
addition to the usual statistics (avg/min/max/sdev), the
distance of the initial seek operation (assuming block 0
was the starting position) is reported separately. This
seek distance is sometimes very large; so, it is reported
separately to avoid skewing the other statistics.

seek dist (cyls) (Hard files only) Seek distance statistics in units of disk
cylinders.

time to next req Statistics (avg/min/max/sdev) describing the length of
time, in milliseconds, between consecutive read or write
requests to the volume. This column indicates the rate
at which the volume is being accessed.

throughput Total volume throughput in Kilobytes per second.

utilization Fraction of time the volume was busy. The entries in this
report are sorted by this field in decreasing order.

Flags
-i File Reads the I/O trace data from the specified File instead

of from the real-time trace process. The filemon report
summarizes the I/O activity for the system and period
represented by the trace file.
Appendix E. Filemon syntax 385

-o File Writes the I/O activity report to the specified File instead
of to the stdout file.

-d Starts the filemon command, but defers tracing until the
trcon command has been executed by the user. By
default, tracing is started immediately.

-T n Sets the kernel's trace buffer size to n bytes. The default
size is 32,000 bytes. The buffer size can be increased to
accommodate larger bursts of events, if any. (A typical
event record size is 30 bytes.)

-P Pins monitor process in memory. The -P flag causes the
filemon command's text and data pages to be pinned in
memory for the duration of the monitoring period. This
flag can be used to ensure that the real-time filemon

process is not paged out when running in a
memory-constrained environment.

-v Prints extra information in the report. The most
significant effect of the -v flag is that all logical files and
all segments that were accessed are included in the I/O

Trace data files are usually written in a circular manner. If the trace data
has wrapped around, the chronological beginning and end of the trace may
occur in the middle of the file. Use the raw mode of the trcrpt command to
rewrite the data sequentially before invoking the filemon command as
follows:

trcrpt -r file > new.file

For the report to be accurate, the trace file must contain all the hooks
required by the filemon command.

Note

The trace driver in the kernel uses double buffering; so, in fact, there will be
two buffers allocated of size n bytes. Also, note that these buffers are
pinned in memory so that they are not subject to paging. Large buffers may
affect the performance of paging and other I/O.

Note
386 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

activity report instead of only the 20 most active files
and segments.

-O levels Monitors only the specified file system levels. Valid level
identifiers are:

lf Logical file level

vm Virtual memory level

lv Logical volume level

pv Physical volume level

all Short for lf,vm,lv,pv

-u Reports on files that were opened prior to the start of the
trace daemon. The process ID (PID) and the file
descriptor (FD) are substituted for the file name.

Examples

1) To monitor the physical I/O activity of the virtual memory, logical volume,
and physical volume levels of the file system, enter:

brenzef[root] # filemon

The filemon command automatically starts the system trace and puts itself in
the background. After this command, enter the application programs and
system commands to be run at this time, then enter:

brenzef[root] # trcstop

After the trcstop command is issued, the I/O activity report is displayed on
standard output (but will probably scroll off the screen). The virtual memory
I/O report will be limited to the 20 segments that incurred the most I/O.

The vm, lv, and pv levels are implied by default.

Note

Since PIDs and FDs are reusable, it is possible to see different files
reported with the same name field.

Note
Appendix E. Filemon syntax 387

2) To monitor the activity at all file system levels and write the report to the
filemon.out file, enter:

brenzef[root] # filemon -o filemon.out -O all

The filemon command automatically starts the system trace and puts itself in
the background. After this command, enter the application programs and
system commands to be run at this time, then enter:

brenzef[root] # trcstop

After the trcstop command is issued, the I/O activity report is written to the
filemon.out file. All four levels of the file and I/O system (the logical file, virtual
memory, logical volume, and physical volume levels) will be monitored. The
logical file and virtual memory I/O reports will be limited to the 20 files and
segments (respectively) that incurred the most I/O.

3) To monitor the activity at all file system levels and write a verbose report
to the filemon.out file, enter:

brenzef[root] # filemon -v -o filemon.out -O all

The filemon command automatically starts the system trace and puts itself in
the background. After this command, enter the application programs and
system commands to be run at this time, then enter:

brenzef[root] # trcstop

This example is similar to the previous example, except a verbose report is
generated on the filemon.out file. The primary difference is that the filemon

command will indicate the steps it is taking to start up the trace, and the
summary and detailed reports will include all files and segments that incurred
any I/O (there may be many) instead of just the top 20.

4) To report on I/O activity captured by a previously recorded trace
session, enter:

brenzef[root] filemon -i trcfile | more

In this example, the filemon command reads file system trace events from the
input file trcfile. The input file must already be in raw trace format as a result
of running the trcrpt -r command. Since the trace data is already captured
on a file, the filemon command does not put itself in the background to allow
application programs to be run. After the entire file is read, an I/O activity
report for the virtual memory, logical volume, and physical volume levels will
be displayed on standard output (which, in this example, is piped to more).
388 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

5) To monitor the I/O activity for logical and physical volumes only while
controlling the monitored intervals using the trcon and trcoff

commands, enter:

brenzef[root] # filemon -d -o fmon.out -O pv,lv

The filemon command automatically starts the system trace and puts itself in
the background. After this command, you can enter the unmonitored
application programs and system commands to be run at this time, then
enter:

brenzef[root] # trcon

After this command, you can enter the monitored application programs and
system commands to be run at this time, then enter:

brenzef[root] # trcoff

After this command, you can enter the unmonitored application programs and
system commands to be run at this time, then enter:

brenzef[root] # trcon

After this command, you can enter the monitored application programs and
system commands to be run at this time, then enter:

brenzef[root] # trcstop

In this example, the -O flag is used to restrict monitoring to logical and
physical volumes only. Only those trace events that are relevant to logical
and physical volumes are enabled. Also, as a result of using the -d flag,
monitoring is initially deferred until the trcon command is issued. System
tracing can be intermittently disabled and reenabled using the trcoff and
trcon commands so that only specific intervals are monitored.
Appendix E. Filemon syntax 389

390 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Appendix F. Special notices

This publication is intended to help customers and systems engineers to
better understand the AIX logical volume manager in order to make better
proposals or to develop their storage strategy on RS/6000 systems. See the
PUBLICATIONS section of the IBM Programming Announcement for AIX
Version 4.3.3 for more information about what publications are considered to
be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
© Copyright IBM Corp. 2000 391

guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other

AIX IBM
392 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix F. Special notices 393

394 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Appendix G. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

G.1 IBM Redbooks publications

For information on ordering these publications see “How to get IBM
Redbooks” on page 397.

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

• An HACMP Cookbook, SG24-4553

• RS/6000 SP System Management Guide, SG24-5628

• GPFS: A Parallel file system, SG24-5165

• Getting Started with ADSM: A Practical Implementation Guide,
SG24-5416

• Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511

G.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 395

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

G.3 Other resources

These publications are also relevant as further information sources:

• AIX Version 4.3 Technical Reference: Base Operating System and
Extensions Volume 2, SC23-4160.

• AIX Versions 4.1 and 4.2 Technical Reference, Volume 2: Base Operating
System and Extensions, SC23-2615

• AIX Commands Reference, Version 4.3, SBOF-1877

• AIX Versions 4.1 and 4.2 Commands Reference, SBOF-1851

• AIX Versions 3.2 and 4 Performance and Tuning Guide, SC23-2365

• AIX Version 4.3 Technical Reference: Kernel and Subsystems Technical
Reference, Volume 1, SC23-4163.

• AIX Version 4.3 Problem Solving Guide and Reference, SC23-4123

• HACMP Version 4.3 AIX: Installation Guide , SC23-4278

• PSSP for AIX Version 3.1 Managing Shared Disks, SA22-7349

• HACMP Version 4.3 AIX:Programming Locking Applications, SC23-4281

• PCI Adapter Placement Guide, SA23-2504

• IBM Recoverable Virtual Shared Disk User’s Guide and Reference,
GC23-3849
396 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 397

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
398 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Glossary

AIX. Advanced Interactive eXecutive.

BSD. Berkeley Software Distribution.

C-SPOC. Cluster-Single Point of Control.

CD-ROM. Compact Disc Read Only Memory.

CLVM. Concurrent Logical Volume Manager.

DASD. Direct Access Storage Devices.

FC-AL. Channel arbitrated loop.

GPFS. General Parallel File System.

HACMP. High Availability Cluster
Multi-Processing.

HACMP/CRM. High Availability Cluster
Multi-Processing, Concurrent Resource
Manager.

HACMP/ES. High Availability Cluster
Multi-Processing, Enhanced Scalability.

HiPPI. High Performance Parallel Interface
Adapter.

I/O. Input/Output.

IBM. International Business Machines.

IPL. Initial Program Load.

ITSO. International Technical Support
Organization.

JFS. Journaled File System.

LPSN. Last Physical Sector Number.

LTG. Logical Track Group.

LVDD. Logical Volume Device Driver.

LVID. Logical Volume Identifier.

LVM. Logical Volume Manager.

MWC. Mirror Write Consistency.

MWCC. Mirror Write Consistency Checking.

NBPI. Number of Bytes Per Inode.

ODM. Object Database Manager.

PVID. Physical Volume Identifier.

RAID. Redundant Array of Independent Disks.
© Copyright IBM Corp. 2000
RDBMS. Relational Database Management
System.

RSCT. Risc System Cluster Technology.

ROS. Read Only Storage.

RVSD. Recoverable Virtual Shared Disk.

SCSI. Small Computer Systems Interface.

SSA. Serial Storage Architecture.

VGDA. Volume Group Descriptor Area.

VGID. Volume Group Identifer.

VGSA. Volume Group Status Area.

VMM. Virtual Memory Manager.

VSD. Virtual Shared Disk.
399

400 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

Index

Symbols
/dev/lvn 76
/etc/filesystems 34
/usr/lib/drivers 80
/usr/lib/drivers/hscsidd 83
/usr/lib/liblvm.a 73
/usr/lib/libsm.a 73
__vgnn 22

A
actuator 8
adapter 11, 305
addressing

double indirect 240
single indirect 239

allocation
logically identical 108
physically identical 109

allocation bitmap 247
allocation group 247
allocation policy 105

exact mapping 108
inter physical volume 46, 141
intra physical volume 47
strict 105
super strict 47, 107, 163

allocp 44
API 72
application layer 1
autovaryon 26
availability 115

B
backup 267, 285, 287

online 267
strategy 284

bad block directory 15
bad block relocation 26, 48, 57, 194

hardware relocation 57
software relocation 57

banding 8
Big VGDA 194
block 6
boot 60
boot logical volume 134
© Copyright IBM Corp. 2000
bootrecord 15, 133
bosboot 88

C
cabling configuration 306
center 2, 48
chlv 90
chlvcopy 269, 270
chvg 17
clconfig 205
cllsgrp 208
cluster lock manager 223, 224
command 71

defragfs 338
extendvg 3
filemon 342
fileplace 336
mklv 106, 311
mkvg 3
putlvodm 62
reorgvg 323
varyoffvg 40
varyonvg 40

compressed file system 251
compression 341
concurrency

flag 27
Concurrent access

capable 185
concurrent access

history 231
concurrent access volume group 183
Concurrent Logical Volume Manager 187
concurrent mode 185, 188
convaryonvg 200
copy 60
cpio 287, 291
C-SPOC 216
CuAt 63, 65, 68
CuDep 64, 66, 69
CuDv 69
CuDvDr 65, 67, 70
cylinder 7

D
DASD 6
401

descriptor 6
dd 13, 285
ddclose 77
ddconfig 77
ddioctl 78
ddopen 77
ddread 77
ddwrite 76, 77
device driver 1, 75
df 235
direct addressing 238
directory 260
disk inode 235
dump device 135
dumpfs 234

E
elevator sorting 8
ESCON 11
exact mapping 108, 319
exportvg 62, 84
extendlv 152
extendvg 21

F
fault tolerance 13
FC-AL 12
FIFO 259
file tree 233
fragment 241
fragmentation 315, 335

G
General Parallel File System 226
gnodes 258
GPFS 226

H
HACMP 14
HACMP/CRM 188
HACMP/ES 188
HAGEO/GeoRM 80
hd_pin 76
hd_pin_bot 76
hdf 14
head 7
high availability 85

high level command 71
HiPPI 11
hot spare 2

I
IBM 3514 High Availability External Disk Array 10
IBM 7135 RAIDiant array 10
IBM 9570 Disk Array Subsystem 10
importvg 33, 34, 84

faster 35
learning 35
normal 37

initiator node 192
inner edge 2, 48
inner middle 2, 48
intermediate level command 71
istat 237

J
JFS 4

extension activity 104
jfslog 32, 60
journaled file system 45, 233, 334

log 253
structure 234

L
link

hard 265
symbolic 265

logical block 235
full 244
partial 244

logical file system 255
logical layer 307
logical partition 4, 46
logical sector number 15
logical track group 89
logical volume 4, 5, 44

boot 45
control block 27
creating 309
dump 45
map file 51
paging 45
placement 308
raw 135
402 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

reorganizing 53
structured 4
unstructured 4

logical volume control block 45
logical volume identifier 45
Logical Volume Manager 1, 2, 5
low level diagnostics 14
lpquerypv 14
LPSN 14
lslv 21, 58, 61, 117
lspv 20, 61, 99
lsvg 43, 61, 117
LVCB 31, 34, 46
LVDD 77
lvm_changelv 73
lvm_changepv 73
lvm_createlv 73
lvm_createvg 73
lvm_deletelv 73
lvm_deletepv 73
lvm_extendlv 73
lvm_installpv 73
lvm_migratepp 73
lvm_querylv 74
lvm_querypv 74
lvm_queryvg 74
lvm_queryvgs 74
lvm_reducelv 74
lvm_resynclp 74
lvm_resynclv 75
lvm_resyncpv 75
lvm_varyoffvg 75
lvm_varyonvg 75

M
map file 110
map files 48
max_coalesce 82
mirror

resynchronization time 268
mirror and stripe 162
mirror read algorithm 321
mirror write consistency 15, 47, 89, 117, 322
Mirror Write Consistency Checking 194
Mirroring

rootvg 132
mirroring 60, 101, 304, 321
mirrorvg 111

MISSINGPV_VARYON 40, 41
mkfifo 262
mklv 49, 90
mklvcopy 129
mknod 262
mksysb 111, 285, 299
mkvg 21, 188
MWC

flag 26
MWCC 194

N
NBPI 242
NFS 22

O
object database manager 6
ODM 13, 24, 61
outer edge 2, 48
outer middle 2, 48

P
paging 60
partition 6
passive node 192
pax 285
pbufs 328
performance 303
physical layer 1, 78, 305
physical partition 16

allocation 20
maximum number 16
size 16

physical volume 2, 5
physical volume identifier 7
platter 7
poor man’s stripe 143
primary copy 114
PSSP 228
PVID 13, 14

Q
queuing delay 303
quorum 39, 115

R
RAID 3, 13
403

RAID 0 9, 137
RAID 1 9, 101
RAID 2 10
RAID 3 10
RAID 4 10
RAID 5 10
raw logical volume 45
rdump 285
read ahead 8
Read Only Storage 15
readlvcopy 136, 269
Recoverable Virtual Shared Disk 226
reducevg 21
region 7
relocation flag 146
reorgvg 54
reserve lock 82
restore 287, 290
restvg 297
rmdev 14
rootvg 3, 21
rotational latency 12, 303
rrestore 287
RVSD 227

S
savevg 111, 294
scheduler layer 78
scheduling 47, 112
scheduling policy 88, 111

parallel 112
sequential 114

SCSI 11, 13
sector 7
seek latency 303
seek time 12
SMIT 4
splitlvcopy 269, 270
SSA 11, 13, 80, 82
SSA logical disk 82
staleness 116
strategy layer 78
Stripe

flag 26
stripe

length 138
unit size 138
width 138

stripe width 327
striping 60, 137, 304, 325

extension 150
mapping scheme 138
predefined allocation policy 145
read phase 140
stripe width 149
write phase 139

subroutine 72
superblock 234
supervisor call 76
synchronize 130
syncvg 119, 270
sysdump 60
sysdumpdev 135

T
tar 285, 287, 292
track 7

V
varyoffvg 84, 191
varyonvg 84, 188, 191
VGDA 24, 27, 36, 40, 46

big VGDA 30
expansion 30

VGID 22
VGSA 17, 22, 23, 40
vgsa

factor 25
virtual file system 257

interface 259
Virtual Shared Disk 226
vnodes 258
volume group 2, 5, 21, 308

concurrent 31
header 24
locked 62
major number 22
portability 31
query 43
reorganizing 323

volume group descriptor area 24
volume group identifier 22
volume group status area 22, 23
VSD 227
404 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

W
Web System Management 5
write verify 26, 47, 127, 319
405

406 AIX Logical Volume Manager, From A to Z: Introduction and Concepts

© Copyright IBM Corp. 2000 407

IBM Redbooks evaluation

AIX Logical Volume Manager, from A to Z: Introduction and Concepts
SG24-5432-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other Redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Printed in the U.S.A.

SG24-5432-00

A
IX

L
ogicalV

olum
e

M
anager,from

A
to

Z
:

In
troduction

and
C

oncepts
S

G
24-5432-00

®

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Components of the logical volume manager
	1.1 Overview
	1.2 The logical volume storage concepts
	1.2.1 Physical volumes
	1.2.2 Disk Independence
	1.2.3 The physical volume identifier (PVID)
	1.2.4 Physical Volume Layout
	1.2.5 Maximum number of physical partitions per physical volume
	1.2.6 Increasing number of physical partitions per physical volume
	1.2.7 Volume groups
	1.2.8 Logical volumes
	1.2.9 Mirroring
	1.2.10 Striping
	1.2.11 The ODM

	1.3 Operation of the logical volume manager
	1.3.1 High-level commands
	1.3.2 Intermediate-level commands
	1.3.3 Logical Volume Manager subroutine interface library
	1.3.4 Introduction to device drivers
	1.3.5 Logical volume device driver
	1.3.6 Disk device driver
	1.3.7 Adapter device driver

	1.4 Use of the logical volume manager
	1.4.1 Planning your use of volume groups
	1.4.2 Planning your use of logical volumes

	1.5 Limits

	Chapter 2. Mirroring
	2.1 Principles
	2.1.1 Only logical volumes are mirrored
	2.1.2 Each logical volume can have up to three copies
	2.1.3 Keep it simple

	2.2 Concepts
	2.2.1 The allocation policy
	2.2.2 The scheduling policy
	2.2.3 Availability

	2.3 Practical examples
	2.3.1 Example configurations

	2.4 Mirroring of the rootvg
	2.4.1 Brief explanation about the AIX boot sequence
	2.4.2 Contiguity of the boot logical volume
	2.4.3 Dump device

	Chapter 3. Striping
	3.1 Concept
	3.1.1 Basic schema of the striped logical volumes
	3.1.2 Inter physical volume allocation policy
	3.1.3 The reorganization relocation flag
	3.1.4 Creation and extension of the striped logical volumes
	3.1.5 Prohibited options of the mklv command with striping
	3.1.6 Prohibited options of the extendlv command with striping
	3.1.7 Summary

	3.2 Real examples
	3.2.1 Example configurations
	3.2.2 How to create the striped logical volumes
	3.2.3 How to extend the striped logical volumes
	3.2.4 Erroneous situations

	3.3 The mirror and stripe function
	3.3.1 Super strict allocation policy
	3.3.2 How to manage a mirrored and striped logical volume

	Chapter 4. Concurrent access volume groups
	4.1 Concept
	4.1.1 Basic schema of the concurrent access
	4.1.2 Concurrent access capable and concurrent mode
	4.1.3 Concurrent Logical Volume Manager (CLVM)
	4.1.4 Limitations

	4.2 Real examples
	4.2.1 Example configuration
	4.2.2 Defining shared LVM components for concurrent access
	4.2.3 Installing the HACMP concurrent resource manager (CRM)
	4.2.4 Installing HACMP cluster configurations: Standard method
	4.2.5 Managing shared logical volumes for concurrent access
	4.2.6 Static ODM update method
	4.2.7 Dynamic ODM update method

	4.3 Shared disk environment solutions
	4.3.1 HACMP and HACMP Enhanced Scalability (ES)
	4.3.2 Cluster lock manager
	4.3.3 Shared disk solution on an RS/6000 SP system
	4.3.4 What is the HC daemon?

	4.4 History of the concurrent access

	Chapter 5. The AIX journaled file system
	5.1 What is a journaled file system?
	5.2 The JFS structure
	5.2.1 The superblock
	5.2.2 Logical blocks
	5.2.3 Disk i-nodes
	5.2.4 Disk i-node structure
	5.2.5 i-node addressing
	5.2.6 Fragments
	5.2.7 Fragments and number of bytes per i-node (NBPI)
	5.2.8 Allocation bitmaps
	5.2.9 Allocation groups
	5.2.10 Allocation in compressed file systems
	5.2.11 Allocation in file systems with another fragment size
	5.2.12 Allocation in file systems enabled for large files

	5.3 How do we use a journaled file system?
	5.3.1 The JFS log

	5.4 File handling
	5.4.1 Understanding system call execution
	5.4.2 The logical file system
	5.4.3 Virtual file system overview
	5.4.4 Understanding virtual nodes (v-nodes)
	5.4.5 Understanding generic i-nodes (g-nodes)
	5.4.6 Understanding the virtual file system interface
	5.4.7 Accessing files

	5.5 File types
	5.5.1 Regular files
	5.5.2 Sparse files
	5.5.3 Special or device files
	5.5.4 Directories
	5.5.5 Links

	Chapter 6. Backups
	6.1 Online backups for 4.3.3 and above
	6.2 Practical examples
	6.2.1 Concurrent online mirror backup
	6.2.2 The online JFS backup
	6.2.3 Online backups prior to 4.3.2 (the hack)

	6.3 Files and system backups
	6.3.1 Backup methods
	6.3.2 Deciding on a backup policy
	6.3.3 Restoring data

	6.4 Backup commands
	6.4.1 The backup command
	6.4.2 The restore command
	6.4.3 The cpio command
	6.4.4 The tar command
	6.4.5 Block sizes and performance

	6.5 Backing up and restoring volume groups
	6.5.1 The savevg command
	6.5.2 The restvg command

	6.6 The mksysb command
	6.6.1 Smit fast path for the mksysb related menus

	Chapter 7. Performance
	7.1 Introduction
	7.2 The physical layer
	7.2.1 Adapters
	7.2.2 The number of disk adapters used
	7.2.3 The configuration of the adapter
	7.2.4 Type of disks used
	7.2.5 The cabling configuration

	7.3 The logical layer
	7.3.1 Volume groups
	7.3.2 Logical volumes
	7.3.3 Where should you create logical volumes?

	7.4 Fragmentation
	7.4.1 Fragmentation example 1
	7.4.2 Fragmentation example 2
	7.4.3 The range of the logical volume
	7.4.4 Exact mapping
	7.4.5 Write verify

	7.5 Mirroring
	7.5.1 The mirror read algorithm
	7.5.2 Mirror write consistency

	7.6 Reorganizing volume groups
	7.6.1 reorgvg

	7.7 Striping
	7.7.1 Using disks not equal in size
	7.7.2 Striping in a random read/write environment
	7.7.3 The stripe width
	7.7.4 pbufs
	7.7.5 Checking the number of pbufs

	7.8 Finding fragmented logical volumes
	7.9 Performance considerations
	7.9.1 General performance considerations
	7.9.2 Performance considerations for striping
	7.9.3 Performance considerations for mirroring

	7.10 The application layer
	7.10.1 The journaled file system
	7.10.2 JFS compression

	7.11 Filemon example

	Appendix A. Mirroring of the rootvg
	A.1 Function
	A.2 Procedure

	Appendix B. Sample scripts for HACMP configurations
	B.1 Define-Cluster-Topology
	B.2 Configuring-Cluster-Resources
	B.3 Unconfigure-Cluster

	Appendix C. /usr/sbin/cluster/hc/README
	Appendix D. The filemon.out file
	Appendix E. Filemon syntax
	Appendix F. Special notices
	Appendix G. Related publications
	G.1 IBM Redbooks publications
	G.2 IBM Redbooks collections
	G.3 Other resources

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks evaluation

