<table>
<thead>
<tr>
<th>Chapter 3. The OPCON Process</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4. Using OPCON</td>
<td>27</td>
</tr>
<tr>
<td>Accessing the OPCON Process</td>
<td>27</td>
</tr>
<tr>
<td>OPCON Commands</td>
<td>27</td>
</tr>
<tr>
<td>Breakpoint</td>
<td>28</td>
</tr>
<tr>
<td>Divert</td>
<td>28</td>
</tr>
<tr>
<td>Flush</td>
<td>29</td>
</tr>
<tr>
<td>Halt.</td>
<td>29</td>
</tr>
<tr>
<td>Intercept</td>
<td>30</td>
</tr>
<tr>
<td>Logout</td>
<td>30</td>
</tr>
<tr>
<td>Memory</td>
<td>30</td>
</tr>
<tr>
<td>Pause (EasyStart only)</td>
<td>31</td>
</tr>
<tr>
<td>Reload</td>
<td>32</td>
</tr>
<tr>
<td>Restart</td>
<td>32</td>
</tr>
<tr>
<td>Status</td>
<td>32</td>
</tr>
<tr>
<td>Stop (EasyStart only)</td>
<td>33</td>
</tr>
<tr>
<td>Talk.</td>
<td>34</td>
</tr>
<tr>
<td>Telnet</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2. Understanding, Configuring, and Using Base Services</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 5. The Configuration Process (CONFIG - Talk 6) and Commands</td>
<td>39</td>
</tr>
<tr>
<td>What is CONFIG?</td>
<td>39</td>
</tr>
<tr>
<td>Using EasyStart</td>
<td>40</td>
</tr>
<tr>
<td>Config-Only Mode</td>
<td>41</td>
</tr>
<tr>
<td>Automatic Entry Into Config-Only Mode</td>
<td>41</td>
</tr>
<tr>
<td>Manual Entry Into Config-Only Mode</td>
<td>41</td>
</tr>
<tr>
<td>Quick Configuration</td>
<td>42</td>
</tr>
<tr>
<td>Automatic Entry Into Quick Config Mode</td>
<td>43</td>
</tr>
<tr>
<td>Manual Entry Into Quick Config Mode</td>
<td>43</td>
</tr>
<tr>
<td>Exiting from Quick Config Mode</td>
<td>43</td>
</tr>
<tr>
<td>Configuring User Access</td>
<td>44</td>
</tr>
<tr>
<td>Technical Support Access</td>
<td>44</td>
</tr>
<tr>
<td>Configuring Spare Interfaces</td>
<td>44</td>
</tr>
<tr>
<td>Restrictions for Spare Interfaces</td>
<td>45</td>
</tr>
<tr>
<td>Resetting Interfaces</td>
<td>47</td>
</tr>
<tr>
<td>Restrictions for Resetting Interfaces</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6. Configuring and Monitoring the CONFIG Process</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering and Exiting CONFIG</td>
<td>51</td>
</tr>
<tr>
<td>CONFIG Commands</td>
<td>51</td>
</tr>
<tr>
<td>Add.</td>
<td>52</td>
</tr>
<tr>
<td>Boot</td>
<td>59</td>
</tr>
<tr>
<td>Change</td>
<td>59</td>
</tr>
<tr>
<td>Clear</td>
<td>61</td>
</tr>
<tr>
<td>Delete</td>
<td>63</td>
</tr>
<tr>
<td>Disable</td>
<td>64</td>
</tr>
<tr>
<td>Enable</td>
<td>64</td>
</tr>
<tr>
<td>Environment</td>
<td>66</td>
</tr>
<tr>
<td>Event</td>
<td>67</td>
</tr>
<tr>
<td>Feature</td>
<td>68</td>
</tr>
<tr>
<td>List</td>
<td>68</td>
</tr>
<tr>
<td>Network</td>
<td>72</td>
</tr>
<tr>
<td>Patch</td>
<td>72</td>
</tr>
<tr>
<td>Performance</td>
<td>74</td>
</tr>
</tbody>
</table>
Chapter 7. The Boot CONFIG Process

What is Boot CONFIG? .. 83

Configuring Booting .. 83
Using a Device as a Boot Server ... 84

How the BOOTP Forwarding Process Works ... 84

A Device as a BOOTP Client ... 84
A Device as a BOOTP Relay Agent .. 85
Enabling/Disabling BOOTP Forwarding ... 85
Configuring a BOOTP Server .. 85

Using the Trivial File Transfer Protocol (TFTP) ... 86

Accessing Configuration Files From a Remote Host or Router 87
Filename Definitions for IBD ... 87
IBD Considerations When Transferring a File ... 88

Validating the Configuration Load .. 88

Loading an Image at a Specific Time ... 89

Configuring Dumping ... 89

Dump Files ... 89
TFTP Server, Boot and Dump Directories .. 89

Installing Software/Code ... 90

Chapter 8. Configuring Boot CONFIG

Entering and Exiting Boot CONFIG ... 93
Boot CONFIG Commands ... 93

Add ... 94
Change ... 96
Copy ... 98
Delete ... 99
Describe ... 100
Disable .. 100
Enable ... 101
Erase ... 101
List .. 102
Load ... 104
Store ... 105
Timedload ... 106
TFTP .. 107

Chapter 9. Boot Options

Before you Begin .. 111

Booting From the Integrated Boot Device Using a Console Terminal 111
BOOTP Using a Console Terminal .. 112
Booting from a TFTP host server using a console terminal 113

Boot Options Available .. 113

Accessing the Boot Options .. 113

Boot Option Prompts .. 114

B (Boot) ... 116
BC (Boot in Config-only Mode) .. 116
BM (Boot using console queries) ... 117
BN (Boot, But Do Not Run, Using Console Queries) 119
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (Boot using BOOTP)</td>
<td>119</td>
</tr>
<tr>
<td>D (Dump using stored configuration)</td>
<td>120</td>
</tr>
<tr>
<td>DIAG (Execute IBM Extended Diagnostic Program)</td>
<td>120</td>
</tr>
<tr>
<td>DM (Dump using Console Queries)</td>
<td>121</td>
</tr>
<tr>
<td>UB (Display TFTP Boot Configuration)</td>
<td>121</td>
</tr>
<tr>
<td>UC (Display Hardware Configuration)</td>
<td>122</td>
</tr>
<tr>
<td>UG (Go execute at address in RAM)</td>
<td>122</td>
</tr>
<tr>
<td>LC (Load Configuration Memory)</td>
<td>123</td>
</tr>
<tr>
<td>CC (Clear Configuration Memory)</td>
<td>124</td>
</tr>
<tr>
<td>ZB (ZModem Boot)</td>
<td>124</td>
</tr>
<tr>
<td>ZC (ZModem configuration memory load)</td>
<td>124</td>
</tr>
<tr>
<td>Configuring the 2210</td>
<td>125</td>
</tr>
</tbody>
</table>

Chapter 10. The Operating/Monitoring Process (GWCON - Talk 5) and Commands

- What is GWCON? 127
- Entering and Exiting GWCON 127
- GWCON Commands 127
 - Activate 128
 - Boot 128
 - Buffer 129
 - Clear 130
 - Configuration 130
 - Disable 133
 - Environment 133
 - Error 134
 - Event 135
 - Fault 135
 - Feature 135
 - Interface 136
 - Log 136
 - Memory 137
 - Network 138
 - Performance 139
 - Protocol 139
 - Queue 140
 - Reset 141
 - Statistics 141
 - Test 142
 - Uptime 142

Chapter 11. The Messaging (MONITR - Talk 2) Process

- What is Messaging (MONITR)? 145
- Commands Affecting Messaging 145
- Entering and Exiting the Messaging (MONITR) Process .. 145
- Receiving Messages 145

Chapter 12. Using the Event Logging System (ELS)

- What is ELS? 147
- Entering and Exiting the ELS Configuration Environment 148
- Event Logging Concepts 148
 - Causes of Events 148
 - Interpreting a Message 149
- Using ELS 151
 - Managing ELS Message Rotation 152
 - Capturing ELS Output Using a Telnet Connection on a UNIX Host 152
Chapter 13. Configuring and Monitoring the Event Logging System (ELS) . 167

Accessing the ELS Configuration Environment . 167
ELS Configuration Commands . 167

Add . 168
Advanced . 168
Clear . 168
Default . 169
Delete . 169
Display . 169
Filter . 170
List . 170
Nodisplay . 172
Noremote . 172
Notrace . 174
Notrap . 174
Remote . 175
Set . 177
Trace . 180
Trap . 181
ELS Net Filter Configuration Commands . 181
ELS Message Buffering Configuration Commands . 184

Entering and Exiting the ELS Operating Environment . 187
ELS Monitoring Commands . 188
Advanced . 188
Clear . 188
Display . 189
Files . 189
Filter . 190
List . 190
Nodisplay . 192
Noremote . 193
Notrace . 194
Notrap . 194
Packet Trace . 195
Remote . 195
Remove . 197
Restore . 197
Retrieve . 197
Save . 198
Set . 198
Statistics . 201
Trace . 203
Trap . 204
Chapter 14. Configuring and Monitoring Performance .. 215
Performance Overview ... 215
Performance Reporting Accuracy .. 215
Accessing the Performance Configuration Environment 215
Performance Configuration Commands
 Disable ... 216
 Enable ... 216
 List .. 216
 Set .. 217
Accessing the Performance Monitoring Environment 217
Performance Monitoring Commands
 Disable ... 218
 Enable ... 218
 List .. 218
 Report ... 218
 Set .. 218

Part 3. Understanding, Configuring and Operating Interfaces 221

Chapter 15. Getting Started with Network Interfaces .. 223
Before You Continue ... 223
Network Interfaces and the GWCON Interface Command 223
Accessing Network Interface Configuration and Console Processes 223
Accessing Link Layer Protocol Configuration and Console Processes 224
Defining Spare Interfaces ... 224

Chapter 16. Configuring IEEE 802.5 Token-Ring Network Interfaces 225
Accessing the Token-Ring Interface Configuration Process 225
Token-Ring Configuration Commands
 List .. 225
 LLC .. 226
 Packet-Size .. 226
 Set .. 227
 Source-routing .. 227
 Speed ... 228
Accessing the Interface Monitoring Process ... 228
Token-Ring Interface Monitoring Commands
 Dump ... 229
 LLC .. 230
Token-Ring Interfaces and the GWCON Interface Command................. 230
Statistics Displayed for 802.5 Token-Ring Interfaces 230

Chapter 17. Configuring and Monitoring LLC Interfaces 235
Accessing the Interface Configuration Process 235
LLC Configuration Commands
 List ... 235
 Set .. 236
Accessing the Interface Monitoring Process ... 238
LLC Monitoring Commands
 Clear-Counters ... 239
 List .. 239

viii MRS V3.2 Software User’s Guide
Frame Relay Monitoring Commands ... 432
 Clear .. 433
 Disable .. 433
 Enable .. 433
 List .. 434
 LLC .. 442
 Notrace .. 442
 Set .. 443
 Trace .. 444

Frame Relay Interfaces and the GWCON Interface Command 445
 Statistics Displayed For Frame Relay Interfaces 445

Chapter 32. Using Point-to-Point Protocol Interfaces 449
 PPP Overview .. 449
 PPP Data Link Layer Frame Structure 450
 The PPP Link Control Protocol (LCP) 451
 LCP Packets .. 453
 Link Establishment Packets .. 454
 Link Termination Packets ... 455
 Link Maintenance Packets .. 455
 PPP Authentication Protocols .. 455
 Password Authentication Protocol (PAP) 456
 Challenge-Handshake Authentication Protocol (CHAP) 457
 Microsoft PPP CHAP Authentication (MS-CHAP) 457
 Shiva Password Authentication Protocol (SPAP) 457
 Configuring PPP Authentication 458
 Configuring PPP Callback .. 459
 Using AAA with PPP .. 460
 The PPP Network Control Protocols 460
 AppleTalk Control Protocol .. 461
 Banyan VINES Control Protocol 461
 Bridging Protocols .. 461
 Callback Control Protocol .. 461
 DECnet IV Control Protocol .. 461
 IP Control Protocol ... 462
 IPv6 Control Protocol .. 462
 IPX Control Protocol ... 463
 OSI Control Protocol .. 463
 APPN HPR Control Protocol .. 463
 APPN ISR Control Protocol ... 463
 Using and Configuring Virtual Connections 463
 VC Considerations ... 463
 Configuring a VC .. 464

Chapter 33. Configuring and Monitoring Point-to-Point Protocol Interfaces 465
 Accessing the Interface Configuration Process 465
 Accessing the PPP Interface Configuration Prompt 466
 Point-to-Point Configuration Commands 466
 Disable .. 466
 Enable .. 467
 List .. 470
 LLC ... 474
 Set .. 474
 Accessing the Interface Monitoring Process 483
 Point-to-Point Monitoring Commands 483
 Clear .. 483
Chapter 34. Using the Multilink PPP Protocol

MP Considerations

Multi-Chassis MP

Configuring a Multilink PPP Interface

Configuring MP on PPP Dial Circuits

Configuring MP on PPP Serial Links

Configuring MP on Layer-2-Tunneling Nets

Configuring Multi-Chassis MP

Chapter 35. Configuring and Monitoring Multilink PPP Protocol (MP)

Accessing the MP Configuration Prompt

MP Configuration Commands for Multilink PPP Interfaces

Disable

Enable

Encapsulator

List

Set

Monitoring MP Interface Status

Accessing the MP Monitoring Commands

Multilink PPP Protocol Monitoring Commands

Chapter 36. Configuring SDLC Relay

Basic Configuration Procedure

Accessing the SDLC Relay Configuration Environment

SDLC Relay Configuration Commands

Add

Delete

Disable

Enable

List (for network SRLY)

List (for protocol SDLC)

Set

Accessing the SDLC Relay Monitoring Environment

SDLC Relay Monitoring Commands

Clear-Port-Statistics

Disable

Enable

List

SDLC Relay Interfaces and the GWCON Interface Command

Chapter 37. Using SDLC Interfaces

Basic Configuration Procedure

Configuring Switched SDLC Call-In Interfaces

SDLC Configuration Requirements

Chapter 38. Configuring and Monitoring SDLC Interfaces

Accessing the SDLC Configuration Environment

SDLC Configuration Commands

Add

Delete

Disable
Tables

1. Processes, Their Purpose, and Commands to Access 10
2. Network Architecture and the Supported Interfaces 17
3. OPCON Commands .. 27
4. CONFIG Command Summary ... 51
5. Access Permission ... 58
6. Environment Command Summary .. 66
7. IBM 2210 Feature Numbers and Names ... 68
8. Additional Functions Provided by the Set Prompt Level Command 78
9. Default and Maximum Settings for Interfaces .. 79
10. Conventions for File Name Extensions .. 88
11. Boot CONFIG Commands ... 93
12. Add Boot Entry Parameters ... 95
13. Description of Boot Methods .. 111
14. Boot Options ... 114
15. Boot Option Prompts ... 114
16. GWCON Command Summary .. 127
17. Logging Levels ... 149
18. Packet Completion Codes (Error Codes) ... 150
19. ELS Configuration Command Summary .. 167
20. ELS Net Filter Configuration Commands .. 182
21. ELS Message Buffering Configuration Commands 184
22. ELS Monitoring Command Summary .. 188
23. Packet Trace Monitoring Command Summary ... 205
24. ELS Net Filter Monitoring Commands .. 207
25. ELS Message Buffering Monitoring Commands .. 210
26. PERF Configuration Command Summary ... 216
27. PERF Monitoring Command Summary ... 217
28. Token-Ring Configuration Command Summary ... 225
29. Token-Ring 4/16 Valid Packet Sizes .. 227
30. Token-Ring Monitoring Command Summary .. 229
31. LLC Configuration Command Summary .. 235
32. LLC Monitoring Command Summary ... 239
33. Ethernet Configuration Command Summary .. 251
34. Ethernet monitoring command Summary ... 253
35. ATM Configuration Command Summary ... 278
36. ATM INTERFACE Configuration Command Summary 278
37. ATM Virtual Interface Configuration Command Summary 285
38. ATM monitoring command Summary .. 286
39. ATM INTERFACE monitoring command Summary 287
40. ATM LLC Configuration Command Summary 290
41. LAN EMULATION Client Configuration Commands Summary 293
42. LAN Emulation Client Configuration Commands Summary 295
43. ATM LAN Emulation Client ARP Configuration Commands Summary 295
44. ATM LAN Emulation Client ARP Config Commands Summary 296
45. LE Config monitoring command Summary .. 309
46. Set Command ... 320
47. National Enable Parameters ... 321
48. National Set Parameters ... 321
49. Establishing Incoming X.25 Circuits for Closed User Groups 325
50. X.25 Configuration Commands Summary .. 327
51. Example VC Definitions ... 331
52. X.25 Monitoring Command Summary .. 353
53. XTP Configuration Commands Summary ... 375

© Copyright IBM Corp. 1994, 1998
Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM’s product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property rights may be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any warranty of any kind, and all warranties are hereby disclaimed including the warranties of merchantability and fitness for a particular purpose.
Notice to Users of Online Versions of This Book

For online versions of this book, you are authorized to:

- Copy, modify, and print the documentation contained on the media, for use within your enterprise, provided you reproduce the copyright notice, all warning statements, and other required statements on each copy or partial copy.

- Transfer the original unaltered copy of the documentation when you transfer the related IBM product (which may be either machines you own, or programs, if the program’s license terms permit a transfer). You must, at the same time, destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes, resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the above exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization. Upon termination, you must destroy your machine-readable documentation.
Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

Advanced Peer-to-Peer Networking IBM PS/2
AIX Micro Channel RS/6000
AIXwindows NetView System/370
APPN AS/400 Nways
VTAM BookManager

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or registered trademarks of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks of others.
Preface

This manual contains the information that you will need to use the router user interface for configuration and operation of the Multiprotocol Routing Services base code installed on your Nways device. With the help of this manual, you should be able to perform the following processes and operations:

- Configure, monitor, and use the Multiprotocol Routing Services base code.
- Configure, monitor, and use the interfaces and Link Layer software supported by your Nways device.

This manual contains the information you will need to configure bridging and routing functions on an Nways device. The manual describes all of the features and functions that are in the software. A specific Nways device might not support all of the features and functions described. If a feature or function is device-specific, a notice in the relevant chapter or section indicates that restriction.

This manual supports the IBM 2210 and refers to this product as either “the router” or “the device”. The examples in the manual represent the configuration of an IBM 2210 but the actual output you see may vary. Use the examples as a guideline to what you might see while configuring your device.

Who Should Read This Manual

This manual is intended for persons who install and manage computer networks. Although experience with computer networking hardware and software is helpful, you do not need programming experience to use the protocol software.

To get additional information: Changes may be made to the documentation after the books are printed. If additional information is available or if changes are required after the books have been printed, the changes will be in a file (named README) on diskette 1 of the configuration program diskettes. You can view the file with an ASCII text editor.

About the Software

IBM Nways Multiprotocol Routing Services is the software that supports the IBM 2210 (licensed program number 5801-ARR). This software has these components:

- The base code, which consists of:
 - The code that provides the routing, bridging, data link switching, and SNMP agent functions for the device.
 - The router user interface, which allows you to configure, monitor, and use the Multiprotocol Routing Services base code installed on the device. The router user interface is accessed locally through an ASCII terminal or emulator attached to the service port, or remotely through a Telnet session or modem-attached device.

The base code is installed at the factory on the 2210.

- The Configuration Program for IBM Nways Multiprotocol Routing Services (referred to in this book as the Configuration Program) is a graphical user interface that enables you to configure the device from a stand-alone workstation. The Configuration Program includes error checking and online help information.
The Configuration Program is not pre-loaded at the factory; it is shipped separately from the device as part of the software order.

You can also obtain the Configuration Program for IBM Nways Multiprotocol Routing Services from the IBM Networking Technical Support home page. See Configuration Program User’s Guide for Nways Multiprotocol and Access Services Products, GC30-3830, for the server address and directories.

Conventions Used in This Manual

The following conventions are used in this manual to show command syntax and program responses:

1. The abbreviated form of a command is underlined as shown in the following example:

 reload

 In this example, you can enter either the whole command (reload) or its abbreviation (rel).

2. Keyword choices for a parameter are enclosed in brackets and separated by the word or. For example:

 command [keyword1 or keyword2]

 Choose one of the keywords as a value for the parameter.

3. Three periods following an option mean that you enter additional data (for example, a variable) after the option. For example:

 time host ...

 In this example, you enter the IP address of the host in place of the periods, as explained in the description of the command.

4. In information displayed in response to a command, defaults for an option are enclosed in brackets immediately following the option. For example:

 Media (UTP/STP) [UTP]

 In this example, the media defaults to UTP unless you specify STP.

5. Keyboard key combinations are indicated in text in the following ways:

 - **Ctrl-P**
 - **Ctrl -**

 The key combination **Ctrl -** indicates that you should press the Ctrl key and the hyphen simultaneously. In certain circumstances, this key combination changes the command line prompt.

6. Names of keyboard keys are indicated like this: **Enter**

7. Variables (that is, names used to represent data that you define) are denoted by italics. For example:

 File Name: *filename.ext*

IBM 2210 Nways Multiprotocol Router Publications

The following list shows the books that support the IBM 2210.

Information updates and corrections: To keep you informed of engineering changes, clarifications, and fixes that were implemented after the books were printed, refer to the IBM 2210 home pages at:
Operations and Network Management

SC30-3681
Software User's Guide

This book explains how to:
- Configure, monitor, and use the IBM Nways Multiprotocol Routing Services software shipped with the router.
- Use the Multiprotocol Routing Services command-line router user interface to configure and monitor the network interfaces and link-layer protocols shipped with the router.

SC30-3992
Using and Configuring Features

SC30-3680
Protocol Configuration and Monitoring Reference Volume 1

SC30-3865
Protocol Configuration and Monitoring Reference Volume 2

These books describe how to access and use the Multiprotocol Routing Services command-line router user interface to configure and monitor the routing protocol software and features shipped with the router.

They include information about each of the protocols that the devices support.

SC30-3682
Event Logging System Messages Guide

This book contains a listing of the error codes that can occur, along with descriptions and recommended actions to correct the errors.

Configuration

Online help

The help panels for the Configuration Program assist the user in understanding the program functions, panels, configuration parameters, and navigation keys.

GC30-3830
Configuration Program User’s Guide for Nways Multiprotocol and Access Services Products

This book discusses how to use the Configuration Program.

GG24-4446
IBM 2210 Nways Multiprotocol Router Description and Configuration Scenarios

This book contains examples of how to configure protocols using IBM Nways Multiprotocol Routing Services.

Safety

SD21-0030
Caution: Safety Information - Read This First

This book provides translations of caution and danger notices applicable to the installation and maintenance of an IBM 2210.
The following list shows the books in the IBM 2210 Nways Multiprotocol Router library, arranged according to tasks.

Planning and Installation

GA27-4068
IBM 2210 Introduction and Planning Guide

GC30-3867
IBM 2210 Nways Multiprotocol Router Installation and Initial Configuration Guide

These books are shipped with the 2210. They explain how to prepare for installation, install the 2210, perform an initial configuration, and verify that the installation is successful.

These books provide translations of danger notices and other safety information.

Diagnostics and Maintenance

SY27-0345
IBM 2210 Nways Multiprotocol Router Service and Maintenance Manual

This book is shipped with the 2210. It provides instructions for diagnosing problems with and repairing the 2210.

Summary of Changes for the IBM 2210 Software Library

The following list applies to changes in the software that were made in Version 3.2. The changes consist of:

- **New functions:**
 - IP Version 6
 - TCP6, UDP6, Telnet, PING-6 and traceroute-6, ICMPv6, and IPsec
 - Neighbor discovery protocol (NDP) for host auto-configuration
 - Static routes, RIPng, Protocol Independent Multicast-Dense Mode (PIM-DM), and Multicast Listener Discovery (MLD)
 - Configured or automatic tunneling of IPv6 packets over IPv4 networks
 - Support for Ethernet, Token Ring, and PPP interfaces
 - Resource ReSerVation Protocol (RSVP)
 - Signalling mechanisms that enable applications on IPv4 networks to reserve network resources to achieve a desired quality of service for packet delivery
 - Supported on ATM point-to-point SVCs,PPP, Frame Relay, X.25, Token Ring, and Ethernet
 - Binary Synchronous Relay (BRLY) support for BSC interfaces
 Binary Synchronous Relay (BRLY) support for tunneling Bisync Synchronous (BSC) transmissions over a IPv4 network to a partner 2210 or 2212 router

- **Enhanced functions:**
 - Base Services
 - Event Logging System (ELS) enhancements to capture, format, and offload large volumes of ELS messages
- Timed configuration change support from the configuration tool that is persistent across reloads and restarts
- Packet trace support for PPP, Frame Relay, and V.34 interfaces.
- Bridging support for a multiaccess bridge port for source route bridging over Frame Relay. The multiaccess port incorporates many DLCIs in a single bridge port for improved scalability.

DIALs
- DIALs support for functions supported by Microsoft Dial-Up Network Clients
 - Support for Callback Control Protocol (CBCP)
 - Support for Microsoft Point-to-Point Encryption (MPPE) and Microsoft PPP CHAP (MS-CHAP)
- Virtual connections to suspend and resume dial-up connections when Shiva Password Authentication Protocol (SPAP) is used

IP items
- IP precedence/TOS filter enhancements
- Policy-based routing
- Configuration of the IP MTU by interface
- OSPF Enhancements to allow for easier migration of IBM 6611 router networks
- BGP-4 support for policies per neighbor and additional attributes for path selection
- DVMRPv3 support
- IGMP prune and grafting support

ISDN support for callback based on the caller ID and call blocking

L2TP support for the L2TP client model which allows the 2210 to create an L2TP tunnel between itself and another router. The tunnel can be used for any traffic entering the 2210. The L2TP Network Server (LNS) function has also been enhanced to initiate outgoing calls to the L2TP Network Access Concentrator (LAC).

Network Dispatcher items
- Support for stateless UDP applications
- New protocol advisors for Network News Transfer Protocol (NNTP), Post Office Protocol (POP3), Simple Mail Transfer Protocol (SMTP), and Telnet
- While you are balancing TN3270 servers, one of the TN3270 servers may be in the same 2210 as the Network Dispatcher function

Support for PPP authentication using an ACE/Server

Security Enhancements
- IPsec tunnel-in-tunnel support for creating up to two nested levels of security associations
- IPsec ESP NULL algorithm support
- IPsec support for setting the don’t fragment bit and propagation of Path MTU
- Improved dynamic reconfiguration for IPsec

Mixed media multi-link PPP support for bundling PPP leased line, ISDN, V.25bis, and V.34 connections

APPN enhancements
- APPN SDLC Secondary multipoint support
Summary of Changes

- Configuration of the APPN transmission group (TG) number for all link station types
- Support for the APPN Ping (APING) command in Talk 5
- New trace options
- TN3270 Enhancements
 - Note: These TN3270 enhancements will not be available in the initial release of V3.2, but will be available on the 2210 Web server by 12/31/98.
- TN3270 LU pooling support that allows SNA LUs to be grouped into named pools
- TN3270 IP address to LU name mapping
- Self-Defining Dependent LUs (SDDLU) and Dynamically Defined Dependent LUs (DDDLU) support
- Multiple TCP port support
- DLSw enhancements
 - Support for duplicate MAC addresses
 - Support to delay polling of SDLC devices until contacted by the remote SDLC device
- X.25 enhancements
 - Configuration support for a defining a range of PVCs
- Frame Relay support for switched virtual circuits
- IPXWAN support on Frame Relay permanent virtual circuits (PVCs), including support for numbered RIP, unnumbered RIP, and static routing

• Clarifications and corrections
 The technical changes and additions are indicated by a vertical line (|) to the left of the change.

Editorial Changes

This edition continues a number of editorial changes to this book and the other software books that will:
• Reorganize the material
• Remove any unnecessary and redundant information
• Improve retrievability
• Add additional clarification to some information

The first step in reorganization has been completed as follows:
• The part titled Understanding, Using and Configuring Features has been moved into the Using and Configuring Features book from the Software User’s Guide.
• The chapters on using, configuring, and monitoring the DIALs feature have been moved into the Using and Configuring Features book.

This reorganization will take place over a number of editions. If you would like to comment on these changes, please mail or fax your comments on the form for readers’ comments at the back of this publication.
Part 1. Understanding and Using the Software
Chapter 1. Getting Started

This chapter shows you how to get started with using the following components related to the IBM 2210 Nways Multiprotocol Router (2210) and the Multiprotocol Routing Services:

- Router console terminals
- Router software (Multiprotocol Routing Services)
- Router software user interface

The information in this chapter is divided into the following sections:

- Before You Begin
- Accessing the Software Using Local and Remote Consoles
- Discussing the User Interface System on page 7

Before You Begin

Before you begin, refer to the following checklist to verify that your router is installed correctly.

HAVE YOU...
- Installed all necessary hardware?
- Connected the console terminal (video terminal) to the router?

Attention: If you are using a service port-attached terminal to configure or monitor your IBM 2210 and your service terminal is unreadable, you need to change some parameters in your configuration. (See “Service Terminal Display Unreadable” in IBM 2210 Nways Multiprotocol Router Service and Maintenance Manual.) Refer to your hardware documentation.

- Connected your router to the network using the correct network interfaces and cables?
- Run all necessary hardware diagnostics?

For more information on any of these procedures, refer to the IBM 2210 Nways Multiprotocol Router Installation and Initial Configuration Guide.

Migrating to the Current Release

Refer to the IBM 2210 Nways Multiprotocol Router Service and Maintenance Manual for information about migrating to a new code level.

Accessing the Software Using Local and Remote Consoles

The router console lets you use the router user interface to monitor and change the function of the router’s networking software (Multiprotocol Routing Services). The router supports local and remote consoles.
Local Consoles

Local consoles are either directly connected by an EIA 232 (RS-232) cable, or connected via modems to the router. You may need to use a local console during the initial software installation. After the initial setup connection, you can connect using Telnet, as long as IP forwarding has been enabled. (Refer to Protocol Configuration and Monitoring Reference for more information on enabling IP forwarding.)

When the configured router is started for the first time, a boot message appears on the screen, followed by the OPerator's CONsole or OPCON prompt (*). The * prompt indicates that the router is ready to accept OPCON commands.

Your Multiprotocol Routing Services software may have been pre-configured at the factory. If it was, you do not need to use a local console to perform initial configuration. If, however, your Multiprotocol Routing Services was not pre-configured at the factory, you will need to use an ASCII terminal attached to the 2210 service port to initially configure it.

Important: Garbage, random characters, reverse question marks, or the inability to connect your terminal to the 2210 service port can have many causes. The following list contains some of those causes:

- The most common cause of garbage or random characters on the service console is that the baud rate is not synchronized with the IBM 2210.
 If the 2210 is set to a specific baud rate, the terminal or terminal emulator must be set to the same baud rate.
 If the IBM 2210 is set to autobaud (this is the default), press the terminal break key sequence and press Enter.
 A typical break key sequence for PC terminal emulators is Alt-B (refer to the terminal emulator documentation). Most ASCII terminals have a Break key (often used in conjunction with the Ctrl key).
 Refer to your hardware documentation for more information.
- Defective terminal or device (ac) grounds.
- Defective, incorrectly shielded, or incorrectly grounded EIA 232 (RS-232) cable between the terminal and the IBM 2210.
- Defective terminal or terminal emulator.
- Defective IBM 2210 system board.
- High ambient electromagnetic interference (EMI) levels.
- Power line disturbances.

(See “Service Terminal Display Unreadable” in the IBM 2210 Nways Multiprotocol Router Service and Maintenance Manual.)

Once the 2210 is initially configured, you will not need a local console for router operation, as long as IP is enabled.

The router software automatically handles console activity. When upgrading the software, you might have to use the local console. For information on attaching and configuring local consoles, refer to the IBM 2210 Nways Multiprotocol Router Installation and Initial Configuration Guide.
Remote Consoles

Remote consoles attach to the router using a standard remote terminal protocol. Remote consoles provide the same function as local consoles, except that a local console must be used for initial configuration if your IBM 2210 was not pre-configured at the factory.

Telnet Connections

The router supports both Telnet Client and Server. The remote console on the router acts as a Telnet server. The router acts as a Telnet client when connecting from the router to either another router or a host using the `telnet` command in the OPCON (*) process.

Remote Login Names and Passwords

During a remote login, the router prompts you for a login name and password. You can display the login name when logged in to the router from a remote console by using a router `status` command.

Logging In Remotely or Locally

Logging in to a local console is the same as logging in to a remote console except that you must connect to the router by starting Telnet on your host system. To log in remotely, begin at step 1. To log in locally, begin at step 3.

To log in from a remote console:

1. Connect to the router by starting Telnet on your host system. Your host system is the system to which remote terminals are connected.
2. Supply the router’s name or Internet Protocol (IP) address.
 - To use router names, your network must have a name server. Issue either the router name or the IP address as shown in the following example:
     ```
     % telnet brandenburg
     or
     % telnet 128.185.132.43
     ```
 - At this point, it makes no difference whether you have logged in remotely or locally.
3. If you are prompted, enter your login name and password.
   ```
   login:
   Password:
   ```
 - It is possible that there is a login and no password. The password controls access to the router. If a password has not been set, press the Enter key at the Password: prompt. Logins are not set automatically. For security, you can set up user names and passwords using the `add user` command in the CONFIG process. For additional information, see the `add user` configuration command, on page 57. Remember to restart to activate any changes.
 - **Note:** If you do not enter a login name and valid password within 1 minute of the initial prompt, or if you enter an incorrect password three times in succession, the router drops the Telnet connection.
4. Press the Enter key to display the asterisk (*) prompt.
You may have to press the Enter key more than once or press Ctrl-P to obtain the * prompt.

Once at this level, you can begin to enter commands from the keyboard. Press the Backspace key to delete the last character typed in on the command line. Press the Delete key or Ctrl-U to delete the whole command line entry so that you can reenter a command. See Command History for GWCON and CONFIG Command Line on page 21 for information on how to access previously entered commands.

You can also use local Telnet commands on your Telnet client to close the Telnet connection.

Note: If you use a VT100 terminal, do not press the Backspace key, because it inserts invisible characters. Use the Delete key.

5. Exit the router as described in Exiting the Router.

Reloading or Restarting the Router

Use the reload command to reboot the device and load a new copy of the code into memory.

For example:

```
* reload
```

The configuration has been changed, save it? (Yes or [No] or Abort)

Are you sure you want to reload the gateway? (Yes or [No]): yes

Use the restart command to invoke a new configuration. For example, to change a configuration parameter that is not dynamically configurable, you can make and save the change, then restart the device.

Restart does not reload the code, it simply invokes the new configuration. As a result, restart is much faster than reload.

For example:

```
* restart
```

The configuration has been changed, save it? (Yes or [No]... or Abort)

Are you sure you want to restart the gateway? (Yes or [No]): yes

Exiting the Router

Return to the * prompt and close the Telnet connection. For example:

```
IP Config> exit
Config> Ctrl-P
* logout
```

You can also use local Telnet commands on your Telnet client to close the Telnet connection.
Discussing the User Interface System

The software (Multiprotocol Routing Services) is a multitasking system that schedules use of the CPU among various processes and hardware devices. The router software:

- Provides timing and memory management, and supports both local and remote operator consoles from which you can view and modify the router’s operational parameters.
- Consists of functional modules that include various user interface processes, all network interface drivers, and all protocol forwarders purchased with the router.

Understanding the First-Level User Interface

The user interface to the software consists of the main menu (process) and several subsidiary menus (processes). These menus are related to the multiple levels of processes in the software.

The first level of processes consists of the OPCON and CONFIG-ONLY processes. In most cases, you will use the OPCON process to access the second level to configure or operate the base services, features, interfaces, and protocols you will run on your IBM 2210.

The second level of processes consists of the processes listed by the **status** command. You use the talk *pid* command to access the second-level processes. There are processes that you cannot use in the software. See Table 1 on page 10 for an overview of the processes.

Figure 1 shows the processes and how they fit within the structure of the router software.

![Figure 1. Multiprotocol Routing Services](image-url)
Figure 2 is an example of the relationship between the various process levels.

![Diagram of process levels](image)

Quick Configuration Process

Quick Configuration, or Quick Config, allows you to quickly configure portions of the router without dealing with the specific operating system commands. When you initially load or restart the router with no configuration, you enter Config-Only and you can access Quick Config menus from that process. If the router has devices configured and the devices do not have any protocols configured, the router automatically starts Config-Only and then enters Quick Config.

You can also enter Quick Config from the CONFIG process using the `qconfig` command.

System Security

Multiple users with login permissions can be added using the `add user` command. See [Configuring User Access](#) for details on security issues and for information on the `set password` and `add user` commands.
Chapter 2. Using the Software

This chapter describes how to use the software. It consists of:

- Entering Commands
- Connecting to a Process
- Some Configuration Suggestions on page 11
- Accessing the Second-Level Processes on page 13
- Accessing the Third-Level Processes on page 15
- Command History for GWCON and CONFIG Command Line on page 21

Entering Commands

When typing a command, remember the following:

- Type only enough sequential letters of the command to make it unique among the available commands. For example, to execute the reload command you must enter rel as a minimum. The minimum number of required characters are underlined in the command syntax chapters.
- Commands are not case-sensitive.
- Sometimes, only the first letter of the command (and subsequent options) is required to execute the command. For example, typing s at the * prompt followed by pressing the Enter key causes the status command to be executed.

Connecting to a Process

When you start the router, the console displays a boot message. The OPCON prompt (*) then appears on the screen indicating that you are in the OPCON process and you can begin entering OPCON commands. This is the command prompt from which you communicate with different processes.

To connect your console to a process:

1. Find out the process ID (PID) number of a process by entering the status command at the * prompt.

 The status command displays information about the router processes, such as the process IDs (PIDs), process names and status of the process. Issuing the status command is shown in the following example:

<table>
<thead>
<tr>
<th>Pid</th>
<th>Name</th>
<th>Status</th>
<th>TTY</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COpCn1</td>
<td>RDY</td>
<td>TTY0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monitr</td>
<td>DET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tasker</td>
<td>RDY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MOSDBG</td>
<td>DET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CGWCon</td>
<td>DET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Config</td>
<td>DET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ezystrt</td>
<td>IDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ROpCn1</td>
<td>IDL</td>
<td>TTY1</td>
<td>128.185.210.125</td>
</tr>
<tr>
<td>9</td>
<td>ROpCn2</td>
<td>IDL</td>
<td>TTY2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CES3</td>
<td>IDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TOUT</td>
<td>IDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>LZS3</td>
<td>RDY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>L3L2</td>
<td>RDY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>LLL2</td>
<td>RDY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S3CE</td>
<td>RDY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Use the **talk pid** command, where *pid* is the number of the process to which you want to connect. (For more information about these and other OPCON commands, refer to [Chapter 3. The OPCON Process on page 23](#).)

Note: Not every process listed has a user interface (for example, the **talk 3** process). The **talk 4** command is for use by IBM service representatives.

Identifying Prompts

Each process uses a different prompt. You can tell which process your console is connected to by looking at the prompt. (If the prompt does not appear when you enter the **talk pid** command, press the **Return** key a few times.)

The following list shows the prompts for the five main processes:

<table>
<thead>
<tr>
<th>Process</th>
<th>Level and Purpose</th>
<th>Command to Access</th>
<th>Input Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPCON</td>
<td>Level 1 - access to all secondary levels</td>
<td>Ctrl-P</td>
<td>asterisk (*)</td>
</tr>
<tr>
<td>CONFIG</td>
<td>Level 2 - base services configuration and access to configuration third level</td>
<td>talk 6</td>
<td>Config ></td>
</tr>
<tr>
<td>GWCON</td>
<td>Level 2 - base services operation and monitoring and access to operations and monitoring on third level</td>
<td>talk 5</td>
<td>plus sign (+)</td>
</tr>
<tr>
<td>MONITR</td>
<td>level 2 - message display</td>
<td>talk 2</td>
<td>(none)</td>
</tr>
<tr>
<td>MOSDBG</td>
<td>level 2 - diagnostic environment</td>
<td>talk 4</td>
<td>$</td>
</tr>
</tbody>
</table>

Note: Only enter the **talk 4** command under the direction of a service representative.

At the OPCON prompt level, you can begin to enter commands from the keyboard. Use the **Backspace** key to delete the last character typed in on the command line. Use **Ctrl-U** to delete the whole command line entry so that you can reenter a command. See [Command History for GWCON and CONFIG Command Line on page 21](#) for information on how to access previously entered commands.

Getting Help

At the command prompts, you can obtain help in the form of a listing of the commands available at that level. To do this, type `?` (the **help** command), and then press **Enter**. Use `?` to list the commands that are available from the current level. You can usually enter `a ?` after a specific command name to list its options. For example, the following information appears if you enter `?` at the * prompt:

```
*?
BREAKPOINT
DIVERT output from process
FLUSH output from process
HALT output from process
INTERCEPT character is
LOGOUT
MEMORY statistics
RESTART
```
Exiting a Lower Level Environment

The multiple-level nature of the software places you in secondary, tertiary, and even lower level environments as you configure or operate the 2210. To return to the next higher level, enter the exit command. To get to the secondary level, continue entering exit until you receive the secondary level prompt (either Config> or +).

For example, to exit the IP protocol configuration process:

```
IP config> exit
Config>
```

If you need to get to the primary level (OPCON), enter the intercept character (Ctrl P by default).

Getting Back to OPCON

To get back to the OPCON prompt (*), press Ctrl-P. You must always return to OPCON before you can communicate with another process. For example, if you are connected to the GWCON process and you want to connect to the CONFIG process, you must press Ctrl-P to return to OPCON first. The Ctrl-P key combination is the default intercept character.

If you use the intercept character from a third-level or lower level process to return to the * prompt, the next time you use the talk command, you will reenter the third level process. This link goes away when the router is re-initialized.

Some Configuration Suggestions

Configuring a 2210 is different depending on whether you are configuring for the first time, creating a configuration based on an existing configuration, or just updating a configuration. Use the following sections as a guide to the best procedure to use, depending on your needs.

Creating a First Configuration

This procedure assumes that you have no other 2210 that contains a configuration similar to the one for the 2210 you are configuring. The procedure also assumes that you have just taken the 2210 out of the box. Although this procedure specifies an order, you can perform the actual configuration (after step 3) in any order.

To configure a IBM 2210 for the first time:

1. Examine the 2210 you are configuring to determine which interfaces you need to configure. Note these for later use.
2. Connect to the 2210 as described in “Accessing the Software Using Local and Remote Consoles” on page 3.
3. Initially configure a port on the 2210 and at least an internal IP address for the device using Quick Config as described in “Quick Configuration” on page 43 or “Appendix A. Quick Configuration Reference” on page 65]. Configure the minimum needed to allow you to Telnet into the device.
4. Configure any base services, such as boot options. Access the configuration process as described in Accessing the Configuration Process, CONFIG (Talk 6) on page 14.

5. Configure the interfaces. Access the interface configuration process as described in Accessing the Network Interface Configuration Process on page 15.

6. Configure any required features. Access the feature configuration process as described in Accessing Feature Configuration and Operating Processes on page 19.

7. Configure any protocols that will run through this device. Access the protocol configuration process as described in Accessing Protocol Configuration and Operating Processes on page 19.

 Note: At the very least, you will configure IP in this step.

8. Restart the router as described in Reloading or Restarting the Router on page 6.

Basing a Configuration on an Existing Configuration

This section describes how to:

- Base a configuration on the configuration in an operating 2210
- Permanently update the configuration in a 2210
- Temporarily update the configuration of a 2210 while the 2210 is operating

Basing on an Existing Configuration

If you already have a 2210 that has the same interfaces, features, and protocols that you want to configure on a new 2210, you can save time by basing the configuration on the existing 2210. You can perform this type of configuration either using the command line interface or by using the configuration program that comes with the 2210. In both cases, the procedures assume that the 2210 is not in your production network.

To base a configuration on an existing configuration using the command line interface:

1. Obtain a copy of the configuration you want to use.
 a. Enter talk 6 at the OPCON (*) prompt.
 b. Enter boot at the Config> prompt.
 c. Enter the copy command at the Boot config> prompt. See Chapter 7, The Boot CONFIG Process on page 83 for more information.

2. Connect to the 2210 that you are configuring.

3. Load the configuration you obtained in step 1 into the 2210 using TFTP GET. See Chapter 7, The Boot CONFIG Process on page 83.

4. Update the configuration.

5. Restart the 2210.

To base a configuration on an existing configuration using the configuration program:

1. Start the configuration program.
2. Retrieve the configuration from the 2210 on which you want to base the new configuration.
3. Make the changes you need for the new configuration. These changes include addresses, the host names, users, and other items.
4. Save the configuration with a different name from the name that you used to retrieve the configuration.
5. Send the configuration to the 2210 you are configuring.
6. Restart the 2210.

For more about using the configuration program, see Configuration Program User’s Guide for Nways Multiprotocol and Access Services Products GC30-3830.

Permanently Updating a Configuration
To permanently update a configuration:
1. Access the 2210 you are updating as described in Accessing the Software Using Local and Remote Consoles on page 3. You will see the * prompt.
2. Enter the talk 6 command to access the configuration process.
3. Enter the appropriate commands to access the third-level process that configures the areas that you are changing.
4. Enter exit as many times as needed to return to the configuration process.
5. Restart the 2210.

Temporarily Updating a Configuration
The ability to temporarily update a configuration allows you to make changes to some of the operating characteristics of a 2210 until you can make permanent updates to the configuration. This enables you to implement changes immediately to resolve problems or improve performance and avoid an outage during a peak period. You can then make permanent updates to the configuration and schedule an outage so you can restart to pick up the change.

To temporarily update a configuration:
1. Access the 2210 you are updating as described in Accessing the Software Using Local and Remote Consoles on page 3. You will see the * prompt.
2. Enter the talk 5 command to access the operating/monitoring process.
3. Enter the appropriate commands to access the third-level process that monitors the areas that you are changing.
4. Enter exit as many times as needed to return to the operating/monitoring process.
5. Enter Ctrl-P to return to the * prompt.
6. Exit the router as described in Exiting the Router on page 6

Accessing the Second-Level Processes
All interfaces, features, and protocols have commands that you use to access the following processes:
The configuration process to initially configure and enable the interface, feature, or protocol, as well as perform later configuration changes.

The operating/monitoring process to display information about each interface, feature, or protocol, to make temporary configuration changes, or to activate configuration changes.

You can also configure or operate some base system services through the second-level processes. The commands to perform these functions are described starting in Chapter 5, The Configuration Process (CONFIG - Talk 6) and Commands on page 39.

The next sections describe the procedures for accessing the second-level processes.

Accessing the Configuration Process, CONFIG (Talk 6)

Each protocol configuration process is accessed through the router's CONFIG process. CONFIG is the second-level process of the router user interface that lets you communicate with third-level processes. Protocol processes are examples of third-level processes.

The CONFIG command interface is made up of levels that are called modes. Protocol configuration command interfaces are modes of the CONFIG interface. Each protocol configuration interface has its own prompt. For example, the prompt for the TCP/IP protocol command interface is `IP config>`.

The next sections describe these procedures in more detail.

Entering the CONFIG Process

To enter the CONFIG command process from OPCON and obtain the CONFIG prompt, enter the OPCON `talk` command and the PID for CONFIG. The PID for CONFIG is 6.

`* talk 6`

The console displays the CONFIG prompt (`Config>`). If the prompt does not appear, press the Return key again.

Quick Configuration Process: Quick Configuration, or Quick Config, allows you to quickly configure portions of the router without dealing with the specific operating system commands. You enter the Quick Config menus from the CONFIG process using the `qconfig` command (see Quick Configuration on page 42).

Restarting or Reloading the Router

Changes that you make to the protocol parameters through CONFIG do not take effect until you either activate the net that contains any dynamic changes or the router software.

To restart the router, enter the OPCON `restart` command. For example:

`* restart`

Are you sure you want to restart the router? (Yes or No): yes
Accessing the Operating/Monitoring Process, GWCON (Talk 5)

To view information about the interfaces, features, or protocols or to change parameters while running, you must access and use the operating (monitoring) process. Operating command interfaces are modes of the GWCON interface. Within the GWCON mode, each interface, feature, or protocol interface has its own prompt. For example, the prompt for the TCP/IP protocol is \texttt{IP>}.

\textbf{Note:} Any parameters you change in this process will not remain active across any event that causes the 2210 to reload the operational code, such as a power outage or entering the \texttt{restart} command.

The next sections describe these procedures in more detail.

\textbf{Entering the GWCON Command Process}

To enter the GWCON process from OPCON and obtain the GWCON prompt, enter the \texttt{talk} command and the PID for GWCON. For example:

\texttt{* talk 5}

The GWCON prompt (\texttt{+}) then displays on the console. If the prompt does not appear, press \texttt{Return} again.

\section*{Accessing the Third-Level Processes}

After accessing the second level, you must enter commands on the third level to configure or operate the interfaces, features, and protocols in your IBM 2210. The following sections describe how to access the third level processes.

\section*{Accessing Network Interface Configuration and Operating Processes}

This section describes how to get started with accessing the network interface configuration and operating processes. Accessing these processes lets you change and monitor software-configurable parameters for network interfaces used in your router.

\subsection*{Accessing the Network Interface Configuration Process}

Use the following procedure to access the router’s configuration process. This process gives you access to a specific interface’s configuration process.

1. At the OPCON prompt, enter the OPCON \texttt{talk} command and the PID for \texttt{CONFIG}. (For more details about this command, refer to "Chapter 3. The OPCON Process" on page 25.)

\texttt{* talk 6}

After you enter the \texttt{talk 6} command, the \texttt{CONFIG} prompt (\texttt{Config>}) displays on the console. If the prompt does not appear when you first enter \texttt{CONFIG}, press \texttt{Return} again.

Use the \texttt{add device} command to create a network interface. The \texttt{add device} command automatically assigns the interface number and supports the following types of devices (Enter \texttt{add device ?} to get a list of the supported device types):

a. Dial circuits
The following example adds a dial circuit interface:

```plaintext
Config> add device dial-circuit
Enter the number of PPP Dial Circuit interfaces [1]?
Adding device as interface 8
Base net for this circuit [0]?
4
Defaulting Data-link protocol to PPP
Use "set data-link" command to change the data-link protocol
Use "net 8" command to configure circuit parameters
```

b. The following example adds a dial-in circuit:

```plaintext
Config> add device dial-in
Enter the number of dial-in interfaces [1]?
Adding device as interface 5
Base net for this circuit [0]?
5
Defaulting Data-link protocol to PPP
Use "set data-link" command to change the data-link protocol
Use "net 5" command to configure circuit parameters
```

c. The following example adds a dial-out circuit:

```plaintext
Note: The dial-out device type is only supported if the software load includes the DIALs feature.

Config> add device dial-out
Enter the number of dial-out interfaces [1]?
Adding device as interface 6
Base net for this circuit [0]?
4
Defaulting Data-link protocol to Dial-out
Use "net 6" command to configure circuit parameters
```

d. Multilink PPP

The following example adds a multilink PPP interface:

```plaintext
Config> add device multilink-ppp
Enter the number of Multilink PPP interfaces [1]?
Adding device as interface 7
Defaulting Data-link protocol to PPP
Use "net 7" command to configure circuit parameters
```

Notes:

a. Interfaces are automatically created for the base ports and ports on an adapter inserted into the feature slot for those models that have a feature slot, so you only need to use the `add device` command to create virtual interfaces. The examples below show the types of virtual interfaces that can be added.

b. When you create interfaces for serial adapters or dial circuits, the default data-link type is PPP. However, you can use the `set data-link` command to change the data-link type. Refer to Table 2 on page 17 for the data-link types supported on serial ports and dial circuits, and to the description of the `set data-link` command on page 75.

2. At the Config> prompt, enter the `list devices` command to display the network interface numbers for which the router is currently configured, as follows:

```plaintext
Config> list devices
Ifc 0 EthernetCSR 81600, CSR2 80C00, vector 94
Ifc 1 WAN X.25CSR 81620, CSR2 80D00, vector 93
Ifc 2 WAN X.25CSR 81640, CSR2 80E00, vector 92
Ifc 3 WAN PPPCSR 381620, CSR2 380D00, vector 125
Ifc 4 WAN Frame RelayCSR 381640, CSR2 380E00, vector 124
Ifc 5 Token RingCSR 600000, vector 95
```

3. Record the interface numbers.

4. Enter the `CONFIG network` command and the number of the interface you want to configure. For example:

```plaintext
Config> network 1
```

The appropriate configuration prompt (such as TKR Config> for token-ring), now displays on the console.
Note: Not all network interfaces are user-configurable. For interfaces that cannot be configured, you receive the message:
That network is not configurable

Displaying the Interface Configuration: From the same interface configuration prompts, you can list configuration information specific to that selected interface by using the list command. For example:

```
TKR Config> list
Token-Ring configuration:
PACKET SIZE (INFO FIELD): 4472
Speed: 16 Mb/sec
Media: Shielded
RIF Aging Timer: 120 Source Routing: Enabled
MAC Address: 000000000000
```

Configuring the Network Interface: Refer to the specific chapters in this guide for complete information on configuring your IBM 2210’s network interfaces.

Table 2 lists network architectures and the supported interfaces for each architecture.

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Dual Port Serial Interface (25 Mbps) for IBM 2210</td>
</tr>
<tr>
<td>802.5 Token-Ring</td>
<td>IBM 2210 Token-Ring 4/16 Interface</td>
</tr>
<tr>
<td>Ethernet</td>
<td>IBM 2210 Ethernet Interface</td>
</tr>
</tbody>
</table>
| ISDN | Serial Interfaces for IBM 2210 as follows:
 Basic Rate Interface (BRI)
 PRI/Channelized T1/J1 Interface *
 PRI/Channelized E1 Interface *
 Note: The interfaces marked with an asterisk (*) can be used either as ISDN or channelized interfaces. |
| Point-to-Point | Serial Interface for IBM 2210, dial circuit interface; supported on 4-port and 8-port WAN concentration adapters |
| Frame Relay | Serial Interface for IBM 2210, dial circuit interface; supported on 4-port and 8-port WAN concentration adapters |
| X.25 | Serial Interface for IBM 2210; supported on 4-port and 8-port WAN concentration adapters and dial circuits |
| SDLC Relay | Serial Interface for IBM 2210; supported on 4-port and 8-port WAN concentration adapters, dial circuit interfaces |
| Bisync | Serial Interface for IBM 2210; supported on 4-port and 8-port WAN concentration adapters, dial circuit interfaces |
| SDLC | Serial Interface for IBM 2210; supported on 4-port and 8-port WAN concentration adapters and dial circuits |
| V.25bis | Serial Interface for IBM 2210; supported on 4-port and 8-port WAN concentration adapters |
| V.34 | Serial Interface for IBM 2210; supported on 4-port and 8-port WAN concentration adapters and 4-port and 8-port Dial Access adapters. |
| Dial-Out | Supports DIALs and Telnet dial-out over V.34 base interfaces |
Table 2. Network Architecture and the Supported Interfaces (continued)

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial-In</td>
<td>A PPP dial circuit interface that has configuration parameters defaulted to support DIALs</td>
</tr>
<tr>
<td>Multilink PPP (MP)</td>
<td>Supported on any PPP link</td>
</tr>
<tr>
<td>L2TP</td>
<td>Supports virtual PPP DIALs connections through the Layer 2 Tunneling Protocol (L2TP).</td>
</tr>
</tbody>
</table>

Notes:

1. PPP dial circuit interfaces can use ISDN, a V.34 network, or V.25bis as the base network interface.
2. FR dial circuit interfaces can use an ISDN or a V.25bis network as the base network interface.
3. Dial-Out circuit interfaces use a V.34 network as the base network interface.
4. Dial-In circuit interfaces can use an ISDN or V.34 network as the base network interface.
5. SDLC dial circuits use V.25bis as the base network interface.
6. X.25 uses the ISDN BRI D-channel as the base network interface.

Accessing the Network Interface Console Process

To monitor information related to a specific interface, access the interface console process by using the following procedure:

1. At the OPCON prompt, enter the OPCON `talk` command and the PID for GWCON. For example:

 `*talk 5`

2. The GWCON prompt (+) is displayed on the console. If the prompt does not appear when you first enter GWCON, press Return again.

3. At the GWCON prompt, enter the `configuration` command to see the protocols and networks for which the router is configured. For example:

 `+ configuration`

 Multiprotocol Routing Services
 2210-MRS Feature 3768 V3.2 Mod 0 PTF 0 RPO 0 MRS.E00 cc4.2a
 Boot ROM version 1.20 Watchdog timer enabled Auto-boot enabled

 Time: 13:34:56 Thursday March 9, 1995 Console baud rate: 9600

 Num Name Protocol
 0 IP DOD-IP
 3 ARP Address Resolution
 11 SNMP Simple Network Management Protocol
 12 OSPF Open SPF-Based Routing Protocol
 23 ASRT Adaptive Source Routing Transparent Enhanced Bridge

 Num Name Feature
 1 BRS Bandwidth Reservation
 2 MCF MAC Filtering

 3 Networks:
 Num Name Protocol Hardware State
 0 Eth/0 Ethernet/IEEE 802.3 SCC Ethernet Up
 1 PPP/0 Point to Point SCC Serial Line Up
 2 PPP/1 Point to Point SCC Serial Line Up

4. Enter the GWCON `network` command and the number of the interface you want to monitor. For example:
In this example, the X.25 console prompt is displayed on the console. You can then view information about the X.25 interface by entering the X.25 console commands.

Monitoring the Network Interface: Refer to the specific chapters in this manual for complete information on monitoring your 2210’s network interfaces.

Accessing Feature Configuration and Operating Processes

To help you access the Multiprotocol Routing Services feature configuration and operating processes, this section outlines both of these procedures.

Accessing the Feature Processes

Use the `feature` command from the CONFIG process to access configuration commands for specific Multiprotocol Routing Services features outside of the protocol and network interface configuration processes.

Use the `feature` command from the GWCON process to access console commands for specific features that are outside of the protocol and network interface console processes.

Enter a question mark after the `feature` command to display a listing of the features available for your software release. For example:

```
Config> feature ?
WRS
BRS
MCF
```

To access a particular feature’s configuration or operating prompt, enter the `feature` command at the Config> or + (GWCON) prompt, respectively, followed by the feature number or short name. For example:

```
Config> feature mcf
MAC filtering user configuration
Filter Config>
```

Table 7 on page 68 lists the available feature numbers and names.

Once you access the configuration or operating prompt for a feature, you can begin entering specific commands for the feature. To return to the previous prompt level, enter the `exit` command at the feature’s prompt.

Accessing Protocol Configuration and Operating Processes

This section describes how to access the protocol configuration and operating processes.

Entering a Protocol Configuration Process

To enter the desired protocol configuration process from the CONFIG> prompt:
1. At the CONFIG> prompt, enter the list configuration command to see the numbers and names of the protocols purchased in your copy of the software. See page 69 for sample output of the list configuration command.

2. From the Config> prompt, enter the protocol command with the number or short name (for example, IP, IPX, and ARP) of the protocol you want to configure. The protocol number and short name is obtained from the list configuration command display. In the following example, the command has been entered for accessing the IP protocol configuration process:

 Config> protocol IP

 or

 Config> protocol 0

 The protocol configuration prompt then displays on the console. The following example shows the IP protocol configuration prompt:

 IP config>

 You can now begin entering the protocol’s configuration commands. See the corresponding protocol section of the Protocol Configuration and Monitoring Reference for more information on specific protocol configuration commands.

 In summary, the protocol command lets you enter the configuration process for the protocol software installed in your router. The protocol command enters a protocol’s command process. After entering the protocol command, the prompt of the specified protocol appears. From the prompt, you can enter commands specific to that protocol.

Entering a Protocol Operating Process

To enter a protocol console process from the GWCON prompt:

1. At the GWCON prompt, enter the configuration command to see the protocols and networks configured for the router. For example:

 `+configuration`

 Multiprotocol Routing Services
 2210-MRS Feature 3768 V3.2 Mod 0 PTF 0 RPQ 0 MRS.E00 cc4 Za
 Boot ROM version 1.10 Watchdog timer enabled Auto-boot enabled

 Num Name Protocol
 0 IP DOD-IP
 3 ARP Address Resolution
 7 IPX Netware IPX
 11 SNMP Simple Network Management Protocol
 12 OSPF Open SPF-Based Routing Protocol
 23 ASRT Adaptive Source Routing Transparent Enhanced Bridge
 26 DLS Data Link Switching

 Num Name Feature
 1 BRS Bandwidth Reservation
 2 MCF MAC Filtering

 3 Networks:
 Net Interface MAC/Data-Link Hardware State
 0 TKR/0 Token-Ring/802.5 IBM Token-Ring Up
 1 FR/0 Frame Relay SCC Serial Line Down
 2 PPP/0 Point to Point SCC Serial Line Up

2. Enter the GWCON protocol command with the protocol number or short name of the desired protocol displayed in the configuration information.

 In the following example, the command has been entered for accessing the IP protocol console process.

 `+ protocol 0`
or
+ protocol IP

The protocol console prompt then displays on the console. This example shows the IP protocol console prompt:

IP>

You can now begin entering the protocol’s commands. See the corresponding protocol section of the Protocol Configuration and Monitoring Reference for more information on specific protocol console commands.

Command History for GWCON and CONFIG Command Line

The Command History contains up to the last 50 commands entered by the user in GWCON (Talk 5) or CONFIG (Talk 6) command line menus.

Backward and Forward retrieve keys can be used to recall previously entered commands. In addition, a facility is provided to enable the advanced user to repeat a particular series of commands.

Repeating a Command in the Command History

By pressing **Ctrl-B** (backward) or **Ctrl-F** (forward) at any command line prompt in a GWCON or CONFIG menu, the current command line is replaced by the previous or next command in the Command History. The Command History is common to both GWCON and CONFIG. That is, a command entered while in a GWCON menu can be retrieved from within CONFIG and a command entered while in a CONFIG menu can be retrieved from within GWCON.

The Command History contains the most recently entered commands, up to a maximum of the last 50 commands. If only three commands have been entered since a restart, pressing **Ctrl-F** or **Ctrl-B** circles through only those three commands. If no commands have been entered thus far, **Ctrl-F** or **Ctrl-B** results in a “bell”, the same bell you see when trying to backspace beyond the beginning of a line of text.

Note: A command aborted by pressing **Ctrl-U** will not be entered into the Command History.

To enter two similar commands:

```
  display sub les
  display sub lec
```

Enter:

```
  display sub les, then press Enter
  Ctrl-B for Backward, and the current line is replaced with-
  display sub les
  Press Backspace and replace “s” with “c” to get
  display sub lec and then press Enter
```
Repeating a Series of Commands in the Command History

There is an additional feature for advanced users to facilitate repeating a particular series of GWCON or CONFIG commands. C1, C2,...,Cn in the Command History is referred to as a repeat sequence. This feature may be more convenient than simply using Ctrl-B and Ctrl-F when you must repeat a given task that requires multiple commands. Enter Ctrl-R (repeat) to set the start of the repeat sequence at command C1. Enter Ctrl-N (next) successively to retrieve the next command(s) in the repeat sequence. Commands are not automatically entered, but are placed on the current command line allowing you to modify or enter the command.

To produce the desired behavior of a repeat sequence, the first command retrieved using the first Ctrl-N (next) depends on the manner in which the start of the repeat sequence was set using Ctrl-R (repeat).

Setting the start of the repeat sequence with Ctrl-R can be done in two ways:
1. When C1 is initially entered
2. When C1 is retrieved from the Command History with Ctrl-B or Ctrl-F.

Starting a Repeat Sequence As Commands Are Entered

If you enter Ctrl-R as command C1 is being keyed in, and then enter commands C2, C3... Cn. Ctrl-N will successively bring commands C1, C2, ... Cn, C1, C2, ... Cn, C1, ... to the command line.

In Example 1, the start of the repeat sequence is set as the first command is keyed in. The user knows ahead of time that the same commands to be entered in GWCON need to be repeated in CONFIG.

Example 1
1. As the first command in the sequence is keyed in, use Ctrl-R (repeat) to set the start of the repeat sequence.
 *talk 5
 +event Ctrl-R

 then press Enter to set the start of the repeat sequence.

2. Continue typing the subsequent commands in the sequence:
 Event Logging System user console
 ELS>display sub les
 ELS>display sub lec
 ELS>exit
 +

3. To enter these same commands in CONFIG, press Ctrl-P (the default OPCON intercept character) and go to CONFIG.
 +press Ctrl-P-
 *talk 6
 Config>Ctrl-N for NEXT to retrieve the start of this sequence-
 Config>event Enter
 Event Logging System user configuration
 ELS config>Ctrl-N for NEXT to retrieve the next command in sequence-
 ELS config>display sub les Enter
 ELS config>Ctrl-N for NEXT to retrieve the next command in sequence-
 ELS config>display sub lec Enter

22 MRS V3.2 Software User’s Guide
Starting a Repeat Sequence After All Commands Are Entered

On the other hand, if you first enter C1, C2, ..., Cn, and retrieve C1 via Ctrl-B or Ctrl-F. Entering Ctrl-R, entering Ctrl-N successively brings commands C2, ..., Cn, C1, C2, ..., Cn, C1, ..., Cn to the command line (see Example 2). The first occurrence of C1 is bypassed since C1 is already available on the command line at the time it was retrieved, and does not need to be recalled again by the first Ctrl-N.

In Example 2, all the commands are entered and then the first command in the sequence to be repeated is retrieved. A sequence of commands has been entered in GWCON, and the same sequence needs to be repeated in CONFIG.

Example 2
1. Enter the following commands in GWCON:
 *talk 5
 +event
 Event Logging System user console
 ELS>display sub les
 ELS>display sub lec
 ELS>exit
 +

2. To enter these same commands in CONFIG, press Ctrl-P (the default OPCON intercept character) and go to CONFIG.
 +Ctrl-P-
 *talk 6
 Config>Ctrl-B four times to retrieve the start of the four command sequence in this example-
 Config>event
 Config>event Ctrl-R for REPEAT to set the start of the repeat sequence-
 Config>event Enter
 Event Logging system user configuration
 ELS config>Ctrl-N for NEXT to retrieve the next command in sequence-
 ELS config>display sub les Enter
 ELS config>Ctrl-N for NEXT to retrieve the next command in sequence-
 ELS config>display sub lec Enter
 ELS config>Ctrl-N for NEXT to retrieve the next command in sequence-
 ELS config>exit Enter
 Config>

If the OPCON intercept command described in [Chapter 3. The OPCON Process](#) has been used to redefine the OPCON intercept character from the default character Ctrl-P to one of the Command History control characters, Ctrl-B, Ctrl-F, Ctrl-R, or Ctrl-N, the OPCON intercept character will take priority. For example, if the intercept character has been changed to Ctrl-F, then Ctrl-F will not retrieve Forward in the Command History, but will instead place the user back at the OPCON prompt (*).
Chapter 3. The OPCON Process

The Operator Console process (OPCON) is the root-level process of the router software user interface. The main function of OPCON is to control which processes are connected to consoles. Using OPCON commands, you can:

- Manipulate the output from a process
- Change the intercept character
- Display information about router memory usage
- Restart the router software
- Reload the router software (reboot)
- Telnet to other routers or hosts
- Display status information about all router processes
- Communicate with processes at the secondary level
- Escape to the MOS system debugging tool
Chapter 4. Using OPCON

This chapter describes the OPCON interface configuration and operational commands. It includes the following sections:

- Accessing the OPCON Process
- OPCON Commands

Accessing the OPCON Process

When the router starts for the first time, a boot message appears on the console. Then the OPCON prompt (*) appears on the console, indicating that the OPCON process is active and ready to accept commands.

The OPCON process allows you to configure, change, and monitor all of the router’s operating parameters. While in the OPCON process, the router is forwarding data traffic. When the router is booted and enters OPCON, a copyright logo and an asterisk (*) prompt appears on the locally attached console terminal. This is the OPCON (OPerator’s CONsole) prompt, the main user interface that allows access to second-level processes.

Some changes to the router’s operating parameters made while in OPCON take effect immediately without requiring reinitializing of the router. If the changes do not take effect, use the restart command at the * prompt.

At the * prompt, an extensive set of commands enables you to check the status of various internal software processes, monitor the performance of the router’s interfaces and packet forwarders, and configure various operational parameters.

OPCON Commands

This section describes the OPCON commands. Each command includes a description, syntax requirements, and an example. The OPCON commands are summarized in Table 3. To use them, access the OPCON process and enter the appropriate command at the OPCON prompt (*).

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See “Getting Help” on page 10.</td>
</tr>
<tr>
<td>Breakpoint</td>
<td>Enters the MOS system debugging tool.</td>
</tr>
<tr>
<td>Divert</td>
<td>Sends the output from a process to a console or other terminal.</td>
</tr>
<tr>
<td>Flush</td>
<td>Discards the output from a process.</td>
</tr>
<tr>
<td>Halt</td>
<td>Suspends the output from a process.</td>
</tr>
<tr>
<td>Intercept</td>
<td>Sets the OPCON default intercept character.</td>
</tr>
<tr>
<td>Logout</td>
<td>Logs out a remote console.</td>
</tr>
<tr>
<td>Memory</td>
<td>Reports the router’s memory usage.</td>
</tr>
<tr>
<td>Pause</td>
<td>Suspends EasyStart (for EasyStart only).</td>
</tr>
<tr>
<td>Reload</td>
<td>Reloads the router software.</td>
</tr>
<tr>
<td>Restart</td>
<td>Restarts (but does not reload) the router software.</td>
</tr>
<tr>
<td>Status</td>
<td>Shows information about all router processes.</td>
</tr>
<tr>
<td>Stop</td>
<td>Stops EasyStart and enters Config Only mode (for EasyStart only).</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1994, 1998
Table 3. OPCON Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talk</td>
<td>Connects to another router process and enables the use of its commands.</td>
</tr>
<tr>
<td>Telnet</td>
<td>Connects to another router.</td>
</tr>
</tbody>
</table>

Breakpoint

Use the `breakpoint` command to trap information in the MOS system debugging tool, inspect memory, place breakpoints, or obtain a core dump. This command should be used only by software specialists.

If the watchdog timer is on when you invoke this command, the contents of core memory are dumped (if dumping is enabled) when the watchdog timer fires. All routing processes are halted.

The `breakpoint` command must be issued from a local console.

Note: Do not use this command during normal operations because it completely halts operation of the software. If you accidentally enter the `breakpoint` command, quickly press Esc, and then p.

Syntax:

`breakpoint`

Divert

Use the `divert` command to send the output from a specified process to a specified terminal. This command allows you to divert the output of several processes to the same terminal to simultaneously view the output. The `divert` command is commonly used to redirect MONITR output messages to a specific terminal. The router allows only certain processes to be redirected.

After entering the command, enter the PID and tty# (number of the output terminal). To obtain these values, use the OPCON status command. The terminal number can be the number of either the local console (tty0) or one of the remote consoles (tty1, tty2). The following example shows Event Logging System messages generated by the MONITR process (2) being sent to a remote console tty1 (1).

Event messages are displayed immediately even though you may be in the middle of typing a command. The display and keyboard have separate buffers to prevent command confusion. The following example shows the MONITR process connected to TTY1 after executing the `divert 2 1` command. If you want to stop the output, enter `halt 2`. The `halt` command is described in "Halt" on page 29.

Syntax:

`divert pid tty#`

Example: `divert 2 1`

Copyright Notices:
Copyright IBM Corp. 1994, 1997
MOS Operator Control

* divert 2 1
Flush

Use the `flush` command to clear the output buffers of the MONITR process. This command is generally used before displaying the contents of the MONITR's FIFO buffer to prevent messages from scrolling off the screen. Accumulated messages are discarded.

The router allows only certain processes to be redirected. To obtain the pid and tty#, use the OPCON `status` command. In the following example, after executing the `flush` command, the output of the MONITR process is sent to the SNK (it has been flushed).

Syntax:
```
flush pid
```

Example: `flush 2`

```
* status
Pid Name Status TTY Comments
1 COpCN1 IOW TTY0 gzs
2 Monitr IDL SNK
3 Tasker RDY --
4 MOSDDT DET --
5 CGWCon DET --
6 Config DET --
7 Ezystrt IDL --
8 ROpCN1 IDL TTY1
9 ROpCN2 RDY TTY2 jlg@128.185.40.40
10 CES3 IDL --
11 TOUT IDL --
12 L2S3 IDL --
13 L3L2 IDL --
14 LLL2 IDL --
15 S3CE IDL --
```

Halt

Use the `halt` command to suspend all subsequent output from a specified process until the `divert`, `flush`, or `talk` OPCON command is issued to the process. The router cannot redirect all processes. `Halt` is the default state for output from a process. To obtain the PID for this command, use the OPCON `status` command. In the following example, after executing the `halt` command, the MONITR process is no longer connected to TTY1. Event messages no longer appear.

Syntax:
```
halt pid
```

Example: `halt 2`

```
* status
Pid Name Status TTY Comments
1 COpCN1 IOW TTY0 gzs
2 Monitr IDL TTY0
3 Tasker RDY --
4 MOSDDT DET --
5 CGWCon DET --
6 Config DET --
7 Ezystrt IDL --
8 ROpCN1 IDL TTY1
9 ROpCN2 RDY TTY2 jlg@128.185.40.40
10 CES3 IDL --
11 TOUT IDL --
12 L2S3 IDL --
13 L3L2 IDL --
14 LLL2 IDL --
15 S3CE IDL --
```
Intercept

Use the **intercept** command to change the OPCON intercept character. The intercept character is what you enter from other processes to get back to the OPCON process. The default intercept key combination is **Ctrl-P**.

The intercept character **must** be a control character. Enter the `\` (shift 6) character followed by the letter character you want for the intercept character.

Note: Do not set the intercept character to the return key or to a printable character. If you change the OPCON intercept character from the default, **Ctrl-P**, to one of the Command History control characters, **Ctrl-B**, **Ctrl-F**, **Ctrl-R**, or **Ctrl-N**, the OPCON intercept character will take priority.

For example, if you change the intercept character to **Ctrl-F**, then **Ctrl-F** will not retrieve Forward in the Command History, but will instead return to the OPCON prompt (`*`). See "Command History for GWCON and CONFIG Command Line" on page 21 for information on how to access previously entered GWCON or CONFIG commands.

Syntax:

```
intercept character
```

Example: `intercept \ u`

From this example, the intercept character is now **Ctrl-U**.

Logout

Use the **logout** command to terminate the current session for the user who enters the logout command. If the console login is enabled, this command will require the next user to log in using an authorized userid/password combination. If the console login is not enabled, the OPCON prompt appears again.

Syntax:

```
logout
```

Memory

Use the **memory** command to obtain and display information about the router’s global heap memory usage. The display helps you to determine if the router is being utilized efficiently. For an example of memory utilization, see Figure 3 on page 31.

See "Memory" on page 137 for memory usage via talk 5.

Syntax:

```
memory
```
memory

Example:

memory

Number of bytes: Busy = 319544, Idle = 1936, Free = 1592

- **Busy** Specifies the number of bytes currently allocated.
- **Idle** Specifies the number of bytes previously allocated but freed and available for reuse.
- **Free** Specifies the number of bytes that were never allocated from the initial free storage area.

Note: The sum of the Idle and Free memory equals the total available heap memory.

![Memory Utilization Diagram](image)

Pause (EasyStart only)

Use the `pause` command to suspend the EasyStart function. Use this command only when debugging the router. After completing your debugging session, enter the `restart` command to restart the router and resume the EasyStart function. The router will reenter EasyStart.

Syntax:

`pause`

Example:

`pause`

Entering EasyStart operation. Type 'stop' to terminate. ELS messages are automatically displayed in this mode.

EasyStart>

EZ.001: Starting.
EZ.007: Waiting up to 6 seconds for devices to pass self-test.

`* restart`

Are you sure you want to restart the gateway? (Yes or [No]): yes

Copyright Notices:
Copyright IBM Corp. 1994, 1997

MOS Operator Control
Entering EasyStart operation. Type 'stop' to terminate. ELS messages are automatically displayed in this mode.
Reload

Use the **reload** command to reboot the router by loading in a new copy of the router software. When you use this command from a remote console, you install a new software load without going to the router. This command executes the same functions as pressing the reset button except that the router will not dump (if so configured). Before the reload takes effect, you are prompted to confirm the reload. You are also prompted if you have not saved the configuration changes.

Syntax:
```
reload
```

Example:
```
reload
Are you sure you want to reload the gateway (Yes or No)?
```

Restart

Use the **restart** command to reinitialize the software. After you reinitialize the software, a bus reset occurs. This causes the connected network interfaces to self-test, all routing tables to clear, and any packets in the router to drop. Before the restart takes effect, you are prompted to confirm the restart.

Note: If you use this command from a remote console, your Telnet session will be lost because all router processes are being restarted.

Syntax:
```
restart
```

Example:
```
restart
Are you sure you want to restart the gateway (Yes or No)? Yes
```

Status

Use the **status** command to display information about all router processes. By entering the PID after the **status** command, you can look at the status of only the desired process. The following example shows the total status display.

Syntax:
```
status pid
```

Example:
```
status
```
<table>
<thead>
<tr>
<th>Pid</th>
<th>Name</th>
<th>Status</th>
<th>TTY</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COpCN1</td>
<td>IOW</td>
<td>TTY0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monitr</td>
<td>IDL</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tasker</td>
<td>RDY</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MOSDDT</td>
<td>DET</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CGWCon</td>
<td>IOW</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Config</td>
<td>IOW</td>
<td>TTY1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ezystrt</td>
<td>IDL</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ROpCN1</td>
<td>IOW</td>
<td>TTY1</td>
<td>128.185.46.101</td>
</tr>
<tr>
<td>9</td>
<td>ROpCN2</td>
<td>RDY</td>
<td>TTY2</td>
<td>128.185.46.104</td>
</tr>
</tbody>
</table>

Pid Specifies the PID. This is the process to talk to or from OPCON, or it can be an argument to the STATUS command to request status information about a specific process.

Name Specifies the process name. It usually corresponds to the name of the program that is running in the process.

Status

Specifies one of the following:

- **IDL** Specifies that the process is idle and waiting for completion of some external event, such as asynchronous I/O.
- **RDY** Specifies that the process is ready to run and is waiting to use the CPU.
- **IOW** Specifies that the process is waiting for synchronous I/O, usually its expected standard input, to complete.
- **DET** Specifies that the process has output ready to be displayed and it is either waiting to be attached to a display console or waiting to have its output diverted to a specified console.
- **FZN** Specifies that the process is frozen due to an error. This usually means the process is trying to use a device which is faulty or incorrectly configured.

TTYn Specifies the output terminal, if any, to which the process is currently connected.

- **TTY0** Local console
- **TTY1 or TTY2** Telnet consoles.
- **SNK** Process has been flushed.
- **Two dashes (--)** Process has been halted.

Comments

Specifies the user’s login IP address provided during login when a user is logged in using Telnet (ROpCon).

Stop (EasyStart only)

Use the **stop** command to stop the EasyStart function and enter Config-only mode. For information about Config-only mode, see [Config-Only Mode](#) on page 41.

Syntax:

`stop`

Example:
stop
EasyStart> EZ.001: Starting.
EZ.007: Waiting up to 6 seconds for devices to pass self-test.
stop EZ.006: All dlinks/parameters tried but failed; resetting to def values.
EZ.009: *** Restarting Router ***

No Protocols Configured. Entering Quick Config

Router Quick Configuration for the following:
 o Interfaces
 o Bridging
 Spanning Tree Bridge (STB)
 Source Routing Bridge (SRB)
 Source Routing/Transparent Bridge (SR/TB)
 Source Routing Transparent Bridge (SRT)
 o Protocols
 IP (including OSPF, RIP and SNMP)
 o Booting

Event Logging will be enabled for all configured subsystems
with logging level 'Standard'

**
Interface Configuration
**
Type 'Yes' to Configure Interfaces
Type 'No' to skip Interface Configuration
Type 'Quit' to exit Quick Config Configure Interfaces? (Yes, No, Quit):
[Yes] q

Quick Config Done

Config (only)>

Talk

Use the talk command to connect to other router processes, such as GWCON, MONITR, or CONFIG. After connecting to a new process, you can send specific commands to and receive output from that process. You cannot talk to the TASKER or OPCON process. See [Command History for GWCON and CONFIG Command Line on page 21] for information on how to access previously entered GWCON or CONFIG commands.

To obtain the PID, use the OPCON status command. Once you are connected to the second-level process, such as CONFIG, use the intercept character, Ctrl-P, to return to the * prompt.

Syntax:
talk pid

Example: talk 5

When using third-level processes, such as IP Config or IP, use the exit command to return to the second level.

Telnet

Use the telnet command to remotely attach to another router or to a remote host.
The only optional parameter is the terminal type that you want to emulate.
You can use the `telnet` command with IPv4 or with IPv6 addresses.

A router has a maximum of five Telnet sessions: two servers (inbound to the router), and three clients (outbound from the router).

Note: To use Telnet in a pure bridging environment, enable Host Services.

Syntax:

```
telnet ip-address terminal-type
```

Example 1:

```
telnet 128.185.10.30
```

```
telnet 128.185.10.30 23
```

```
telnet 128.185.10.30 vt100
```

```
Trying 128.185.10.30 ...
Connected to 128.185.10.30
Escape character is '\]'
```

Example 2:

```
telnet 1:9::10
```

```
Trying 1:9::10...
Connected to 1:9::10
Escape character is '\]'
```

When telneting to a non-existent IP address, the router displays:

```
Trying 128.185.10.30 ...
```

To enter the Telnet command mode, type the escape character-sequence, which is `Ctrl-\]`, at any prompt.

```
telnet>
```

If you Telnet into a router,

- Press `← Backspace` to delete the last character typed on the command line.

 Note: When using a VT100 terminal, do not press `← Backspace` because it inserts invisible characters. Press `Delete` to delete the last character.

- Press `Ctrl-U` at the `telnet>` prompt to delete the whole command line entry so that you can reenter a command.

The Telnet command mode consists of the following subcommands:

- `close` Close current connection
- `display` Display operating parameters
- `mode` Try to enter line-by-line or character-at-a-time mode
- `open` Connect to a site
- `quit` Exit Telnet
- `send` Transmit special characters (`send ?` for more)
- `set` Set operating parameters (`set ?` for more)
- `status` Print status information
- `toggle` Toggle operating parameters (`toggle ?` for more)
- `z` Suspend Telnet
- `?` Print help information
The `status` and `send` subcommands have one of two responses depending on whether or not the user is connected to another host. For example:

Connected to a host:

```
telnet> status
Connected to 128.185.10.30 Operating in character-at-a-time mode. Escape character is ^].
```

```
telnet> send ayt
```

Note: The `send` command currently supports only `ayt`.

Not connected to a host:

```
telnet> status
Need to be connected first.
```

```
telnet> send ayt
Need to be connected first.
```

Use the `close` subcommand to close a connection to a remote host and terminate the Telnet session. Use the `quit` subcommand to exit the `telnet` command mode, close a connection, and terminate a Telnet session.

```
telnet> close
```

Or

```
telnet> quit
logout
* 
```
Part 2. Understanding, Configuring, and Using Base Services
Chapter 5. The Configuration Process (CONFIG - Talk 6) and Commands

This chapter describes the CONFIG process and includes the following sections:

- **What is CONFIG?**
- **Using EasyStart** on page 40
- **Config-Only Mode** on page 41
- **Quick Configuration** on page 42
- **Configuring User Access** on page 44
- **Configuring Spare Interfaces** on page 44
- **Resetting Interfaces** on page 47

What is CONFIG?

The Configuration process (CONFIG) is a second-level process of the router user interface. Using CONFIG commands, you can:

- Set or change various configuration parameters
- Add or delete an interface to the hardware configuration
- Enter the Boot CONFIG command mode
- Enter the Quick Configuration mode
- Clear, list, or update configuration information
- Enable or disable console login and modem control
- Communicate with third-level processes, including protocol environments

Note: Refer to the chapter “Migrating to a New Code Level” in IBM 2210 Nways Multiprotocol Router Service and Maintenance Manual for information about migrating to a new code level.

CONFIG lets you display or change the configuration information stored in the router’s nonvolatile configuration memory. Changes to system and protocol parameters do not take effect until you restart the router or reload the router software. (For more information, refer to the OPCON **restart** and **reload** commands in “Chapter 3. The OPCON Process” on page 25).

The CONFIG command interface is made up of levels that are called modes. Each mode has its own prompt. For example, the prompt for the TCP/IP protocol is IP config>.

If you want to know the process and mode you are communicating with, press **Return** to display the prompt. Some commands in this chapter, such as the **network** and **protocol** commands, allow you to access and exit the various levels in CONFIG. See **Table 4 on page 51** for a list of the commands you can issue from the CONFIG process.
Using EasyStart

EasyStart mode automatically downloads the configuration of the router from a BOOTP server. During the process the router displays the EasyStart> prompt and ELS messages which track the process.

1. The Network Administrator sets up the BOOTP server with records for downloading configurations. The Network Administrator must configure the BOOTP server with a valid configuration file for your type of router. For more information about configuring a BOOTP server, see "BOOTP Using a Console Terminal" on page 112.

2. Turn on the router and it loads itself from the IBD or the network using BOOTP. As soon as the operating software starts running, EasyStart begins to work if the router has no devices or protocols configured, as it would for a new router. On startup, devices are entered into the configuration automatically with default parameters.

Note: EasyStart begins when default devices are configured but no protocols are configured.

There is no manual entry into EasyStart but you can cause the router to go into EasyStart by typing the following commands at the Config prompt:

```
Config> clear all
You are about to clear all non Device configuration information.
Are you sure you want to do this (Yes or [No]): yes
non Device configuration cleared

Config> clear device
You are about to clear all Device configuration information
Are you sure you want to do this (Yes or [No]): yes
Device configuration cleared

*restart
Are you sure you want to restart the gateway? (Yes or [No]): yes
```

Copyright Notices:
Copyright IBM Corp. 1994, 1997

MOS Operator Control Entering EasyStart operation.
Type 'stop' to terminate.
ELS messages are automatically displayed in this mode.

EasyStart>
EZ.001: Starting.
EZ.007: Waiting up to 30 seconds for devices to pass self-test.

stop
EZ.009: *** Restarting Router ***

No Protocols Configured. Entering Quick Config

Router Quick Configuration for the following:
 o Interfaces
 o Bridging
 Spanning Tree Bridge (STB)

If you are in EasyStart and you enter stop, the router restarts and puts you into Quick Config automatically. For more information about Quick Config, see "Qconfig" on page 75.

If you are in EasyStart and you enter pause, the router suspends the EasyStart process. Enter restart to resume the process. Only suspend EasyStart for debugging purposes.
Config-Only Mode

Config-Only mode is entered if the configuration file that you are using is empty or no protocols are configured. Config-Only mode can also be entered manually to recover from an invalid configuration that is causing the router to crash during start-up.

Automatic Entry Into Config-Only Mode

Config-Only mode is entered if the router detects a problem during operation or during router initialization.

The following conditions cause the router to enter Config-Only mode:

- The software load does not match the device configuration. Specifically, an attempt is made to configure a device or data link that is not supported by the software load.
- Devices are configured but no protocols are configured.

If the router enters Config-Only mode because an unsupported device is configured:

- Change the device information to match the hardware installed in (and supported by) the router, or change the unsupported device to “null device”.
- Enter the Restart or Reload command from the Config (only)> prompt.
- The router will automatically enter OPCON (*).

If no protocols or devices are configured other than default devices, the router comes up in EasyStart. For additional information, see “Using EasyStart” on page 40.

Manual Entry Into Config-Only Mode

To enter Config-Only mode, do one of the following:

- To reload or restart the router with no configuration.
- To reload or restart the router with no configuration, use the cc command.
- Reload or restart the router with no protocols configured.
- Use the bootstrap monitor bc command to boot to config-only mode.

Note: If autoboot is enabled and if you press Ctrl-C while the software is loading, you go directly to the bootstrap monitor > prompt without seeing the text and you can skip step 1. Otherwise, the following text appears:

```
PROM Load/Dump Program * Revision: 1.15 *
Copyright IBM Corp. 1994, 1997
Host *VL-51* loading
Using Ethernet at ( 81600, 94).
Trying host 128.185.210.125, via 128.185.123.28
file loads/latest-gen.rb2x-multisna.ldc
·loading
·............................................................
·...
```

1. If boot information is missing, the software will load from the IBD. If the first IBD file is invalid, such as a config file, the software will go to the manual load prompt:

```
No valid boot records found, attempting IBD load
Loading using IBD Load Image "vl2-15.cfg"
Bad record header 0
```

No valid server configured -- Entering manual mode
Using the CONFIG (Talk 6) Process

Device types available:

- IBD
- Token Ring
- WAN

Device type:

2. Press Ctrl-C to go to the bootstrap monitor. The > prompt appears.

```
Bootstrap Monitor v1.15
Copyright IBM Corp. 1994, 1997
>
```

3. Boot to Config-Only mode.

```
>bc
PROM Load/Dump Program * Revision: 1.15 *
Copyright IBM Corp. 1994, 1997
Host **VL-51* loading
```

Device types available:

- IBD
- Ethernet
- WAN

```
Device type [Ethernet]:
Connector Type (AUI/RJ45) [AUTO_CONFIG]:
Interface IP address [128.185.123.51]: 10.1.155.22
IP mask [FFFFFF00]:
Boot from host [128.185.210.125]:
Via gateway [128.185.123.28]: 43
Boot file name [loads/latest-gen.rbx2-multisna.ldc]:
```

Using Ethernet at (0, 0).
Trying host 128.185.210.125, via 128.185.123.28
FILE loads/latest-gen.rbx2-multisna.ldc
loading
```

The watchdog timer timed out and/or Autoboot not selected

```
The Standalone Configuration Process. You are here because
the configuration program uses SNMP SET commands to transfer the configuration.
```

Quick Configuration

Quick Configuration (Quick Config) provides a minimal set of commands that allow you to configure various devices (interfaces), bridging protocols, routing protocols, and booting records present in the router load. It also allows configuration of some of the interfaces, booting information, and if the corresponding hardware feature is installed, Console Modem-Control. You can also configure an SNMP community with WRITE_READ_TRAP access. This is useful during initial setup because the configuration program uses SNMP SET commands to transfer the configuration.

Quick Config complements the existing configuration process by offering a shortcut. This shortcut allows you to configure the minimum number of parameters for these devices, bridging protocols, and routing protocols and booting records without having to exit and enter the different configuration processes. The other parameters are set to selected defaults.

Situations that call for the router to be quickly configured are:

- Blank or corrupted configuration memory, such as when one of the following situations occurs:
  - The router is configured for the first time.
  - Voltage fluctuations caused corruption of configuration memory.

See [Chapter 9. Boot Options](#) on page 111 for more information.
Using the CONFIG (Talk 6) Process

- The CPU board, which contains the configuration memory chip, was replaced in the router.
- Demonstration purposes, for which the router needs to be quickly configured to demonstrate its capabilities.
- Bench-marking tests to get the tests going without having to learn the router’s operating system commands.

Quick Config operates as follows:
- It asks a series of questions with default values.
- It offers a short-cut to the detailed configuration of the normal mode command set.

Quick Config sets a number of default parameters based upon how you answer the configuration questions. What cannot be configured with Quick Config can be configured using Config after exiting Quick Config.

You cannot delete Quick Config information from within Quick Config. However, you can correct information either by exiting and returning to Quick Config, or by entering the \texttt{restart} command as a response to some Quick Config questions.

For complete information on using the Quick Config software, see [Chapter 5. The Configuration Process (CONFIG - Talk 6) and Commands](#).

There are two ways to get into Quick Config: automatically from EasyStart or manually.

**Automatic Entry Into Quick Config Mode**

If you are in EasyStart and you type \texttt{stop}, the router enters Quick Config automatically.

What you cannot configure with Quick Config you can configure using CONFIG processes after exiting Quick Config.

You cannot delete Quick Config information; but you can correct it by exiting and returning to Quick Config.

**Manual Entry Into Quick Config Mode**

You might want to run Quick Config manually to demonstrate the router’s capabilities or to reconfigure dynamically to perform benchmark tests without having to learn the router’s operating system commands.

To enter Quick Config, type \texttt{qconfig} at the \texttt{Config>} prompt.

**Exiting from Quick Config Mode**

To exit Quick Config, restart by entering \texttt{r} from any prompt. Follow the queries until you enter \texttt{no} and then enter \texttt{q} to quit. The router returns to either the Config (only)> or the Config> prompt.
Configuring User Access

The router configuration process allows for a maximum of 50 user names, passwords, and levels of permission. Each user needs to be assigned a password and level of permission. There are three levels of permission: Administration, Operation, and Monitoring.

For more information, see the `add user` command.

Technical Support Access

If you are the system administrator, when you add a new user for the first time, you are asked if you want to add Technical Support access. If you answer yes, Technical Support is granted the same access privileges that you have as system administrator.

The password for this account is automatically selected by the software and is known by your service representative. This password can be changed using the `change user` command; however, if you do change the password, customer service cannot provide remote support. For additional information on the use of the `change user` command, see "Change" on page 53.

Configuring Spare Interfaces

Occasionally, you may need to configure a new interface along with its bridging and routing protocols without having to restart the device. You can accomplish this by configuring a number of *spare interfaces* on your device. Spare interfaces are useful if:

- You are adding dial circuits to your device.
  
  Use spare interfaces to add new V.25bis, V.34, or ISDN dial circuits on an existing V.25bis, V.34, or ISDN interface.

- You are adding ATM LAN Emulation clients.
  
  Use spare interfaces to add Token-Ring or Ethernet ATM LAN Emulation clients to an existing ATM interface.

To configure a spare interface:

1. Access the CONFIG process by entering `talk 6`.
2. Configure the number of spare interfaces for the device using the `set spare-interfaces` command.
3. Exit the CONFIG process by pressing Ctrl-P.
4. Restart the device.

Example:

```
talk 6
Config> set spare 2
Config> *restart
Are you sure you want to restart the gateway? (Yes or [No]) yes
```

When the device restarts, the spare interfaces are installed as null devices.

To use one of the spare interfaces:

1. Access the CONFIG process by entering `talk 6`. 
Using the CONFIG (Talk 6) Process

2. Add a dial circuit using the add device command.

3. Configure the spare interface by using the net command to configure the interface or add ATM LAN Emulation clients.

4. Configure the various protocols and features using the protocol and feature commands.

5. Exit the CONFIG process by pressing Ctrl-P.

6. Access the GWCON process by entering talk 5.

7. Bring the new interface online to the network using the activate command.

The following example shows how to configure and activate a new dial circuit on which the IP protocol is enabled. The dial circuit and IP protocol configuration are not shown.

Example:

```plaintext
*talk 6
Config> add device dial-circuit
Config> net 6
Circuit configuration
Circuit config>
:: Here you would configure the dial circuit

Circuit config> exit
Config> protocol ip
IP>
:: Here you would configure the IP protocol on the dial circuit.

IP> exit
Config>
*talk 5
+activate 6
```

Restrictions for Spare Interfaces

The activate command cannot be used to activate a new interface on the network under the following conditions:

- You have already entered a delete interface command. The device must be restarted if any interface has been deleted. You cannot delete a spare interface (indicated by null in list displays).
- The spare interface is the only interface that enables a protocol or feature. The protocol or feature must already be enabled on an existing interface before it can be used by a spare interface.
- The new spare interface has a header size or trailer size greater than the sizes for other interfaces.
- There is not enough memory to allocate receive buffers for the new interface.

In these cases, you must restart the device to bring the new interface online.

You can configure the following interfaces as spare interfaces, but you cannot activate them on the network using the activate command:

- SDLC Relay
- PPP Multilink master and dedicated link nets

You must restart the device to bring these interfaces online.
Using the CONFIG (Talk 6) Process

You can configure the following protocols on spare interfaces, but you cannot activate them on the network using the activate command:

- IPv6
- LNM
- OSI/DECnet V
- XTP

**Note:** When using the configuration program, use the following to work with spare interfaces:

1. Make the configuration changes for the spare interface on the device
2. Enter the **activate** command on the device to bring the spare interface, protocols, and features online
3. Retrieve the configuration using the configuration program
4. Save the retrieved configuration into the configuration program database

There are requirements for certain functions. These are:

**APPN**
To activate this protocol on a spare interface, you must first activate the interface and then configure the protocol on the activated interface.

**Bandwidth Reservation (BRS)**
To configure BRS on a spare interface, you must enable BRS on each network interface where Frame Relay circuits will be active before activating the spare interface. After activating the spare interface, you can then use BRS configuration commands to make changes such as adding a traffic class or assigning a protocol to a traffic class.

**DECnet IV**
To activate this protocol on a spare interface, you must first activate the interface and then configure the protocol on the activated interface. Use the DECnet IV **set** command to activate the configuration changes.

**Frame Relay**
- You cannot activate an FR dial circuit interface unless the dial circuit’s base net is already active.
- An activate for an FR dial circuit will fail if the frame size, MAC header, or trailer required by the spare interface is larger than other dial circuits already assigned to the base net.
- If data compression is not already active in the device, data compression will not work on a spare interface defined for data compression.

**BGP**
Use the BGP **reset neighbor** command to activate new neighbors.

**IPX**
Use the **reset** command to activate static routes, static services, and filter lists on the spare interface.

**PPP**
- If data compression is not already active in the device, data compression does not work on a spare interface defined for data compression.
- You cannot activate a spare PPP interface if the device’s global buffer is too small to support a 1500-byte PPP MRU.
- You cannot activate a PPP dial circuit interface unless the dial circuit’s base net is already active.
- An activate for a PPP dial circuit will fail if the frame size, MAC header, or trailer required by the spare interface is larger than other dial circuits already assigned to the base net.
Bridging

- Bridging was not already active.
- NetBIOS filters are defined on the spare interface.
- The spare interface caused a change to the bridge personality or behavior (for example, adding SR port to pure TB bridge or SR-TB conversion enabled).

IP

Use the reset IP command to bring configuration changes online for access-controls and packet-filters.

WAN Restoral/WAN Reroute

The spare interface cannot be activated if any of the following conditions exist:

- The spare interface is configured as a WRS primary, and its configured WRS secondary is already a WRS primary or WRR primary or WRR alternate.
- The spare interface is configured as a WRS primary, and its configured WRS secondary is already actively restoring some other WRS primary.
- The spare interface is configured as a WRS secondary, and its configured WRS primary is already a WRS secondary or WRR primary or WRR alternate.
- The spare interface is configured as a WRS secondary, and its configured WRS primary is already actively being restored by some other WRS secondary.
- The spare interface is configured as a WRR primary, and its configured WRR alternate is already a WRS primary or WRS secondary or WRR primary or WRR alternate.
- The spare interface is configured as a WRR alternate, and its configured WRR primary is already a WRS primary or WRS secondary or WRR alternate.
- The spare interface is configured as a WRR alternate, and its configured WRR primary is already actively being rerouted by some other WRR alternate.

Resetting Interfaces

Occasionally, you might need to change the configuration of a network interface along with its bridging and routing protocols without restarting the device. The reset command allows you to disable a network interface and then enable it using new interface, bridging and routing configuration parameters.

The interface, protocols and features configuration parameters are changed using the CONFIG process (talk 6) commands. The talk 6 commands affect the contents of the configuration memory. The configuration changes are activated by issuing the GWCON process (talk 5) reset command.

To reset an interface:

1. Access the CONFIG process (talk 6).
2. Use the net command and other commands to change configuration parameters.
3. Use the protocol and feature commands to change the interface-based configuration parameters.
4. Exit the CONFIG process by pressing Ctrl-P.
5. Access the GWCON process (talk 5).
Using the CONFIG (Talk 6) Process

6. Use the reset command to reset the interface and the protocols and features on the interface.

Example:

```
*talk 6
Config=net 1
PPP Config>

... change PPP parameters ...

PPP Config>exit
Config=protocol ipx
IPX Config>

... change IPX parameters on the PPP interface ...

IPX Config>exit
Config>
*talk 5
+reset 1
Resetting net 1 PPP/0...successful
```

Note: When using the configuration program, do the following to make configuration changes to existing interfaces:

1. Make the configuration changes for the interface on the device
2. Enter the reset command to reset interface, protocol and feature parameters
3. Retrieve the configuration using the configuration program
4. Save the retrieved configuration into the configuration program database

Restrictions for Resetting Interfaces

The reset command cannot be used to reset a network interface if:

- You have already entered a delete interface command. The device must be restarted if any interface has been deleted.
- You have changed the hardware or data link type. For example, changing the data link type from PPP to Frame Relay.
- You have configured a larger MTU.
- You have configured a routing protocol or bridging on the interface, but that routing protocol or bridging is not currently active in the device.

In these situations, you must restart the device to activate the configuration changes.

You can change the configuration parameters of the following types of interfaces, but you cannot activate the changes using the reset command:

- ATM
- PPP Multilink master and dedicated link nets
- ISDN
- X.25
- SDLC
- SDLC Relay
- V.25bis

You must restarted the device to activate these configuration changes.
You can change the configuration parameters of the following protocols and features, but you cannot activate the changes using the reset command:

- AppleTalk
- Vines
- OSI/DECnet V
- LNM
- XTP
- WAN Restoral
- WAN Reroute

You must restart the device to activate these configuration changes.

There are also requirements for certain functions. They are:

**PPP dial circuits**
A PPP dial circuit cannot be reset if any of the dial circuit parameters have changed.

**Frame Relay dial circuits**
A Frame Relay dial circuit cannot be reset if any of the dial circuit parameters have changed.

**Compression**
Compression requires large header and trailer sizes. Unless compression is already enabled on some other interface, it is likely that the header and trailer sizes will be too small. In this case, compression is disabled automatically on the interface and an ELS message is logged (rather than causing the entire reset interface to fail).

**Bridging**
- Bridging was not already active.
- NetBIOS filters are defined on the interface you are resetting.
- The reset interface caused a change to the bridge personality or behavior (for example, adding SR port to pure TB bridge or SR-TB conversion enabled).

**BGP**
Use the BGP reset neighbor command to activate neighbor configuration changes.

**APPN**
Use the activate_new_config command to activate configuration changes.

**IPX**
Use the IPX reset command to activate configuration changes for static routes, static services, and filter-lists.

**DNA IV**
Use the DNA IV set command to activate configuration changes.

**SNMP**
Use the SNMP revert command to activate configuration changes.
Using the CONFIG (Talk 6) Process
Chapter 6. Configuring and Monitoring the CONFIG Process

This chapter describes the CONFIG process configuration and operational commands. It includes the following sections:

- Entering and Exiting CONFIG
- CONFIG Commands

Entering and Exiting CONFIG

To enter CONFIG from OPCON (*):

1. At the OPCON prompt, enter the **status** command to find the PID of CONFIG.
   (See page 9 for a sample output of the **status** command.)
   ```
 * status
   ```
2. Enter the OPCON **talk** command and the PID for CONFIG:
   ```
 * talk 6
   ```

The console displays the CONFIG prompt (**Config>**). Now, you can enter CONFIG commands. If the prompt does not appear, press the **Return** key again. To exit CONFIG and return to the OPCON prompt (*), enter the intercept character. (The default is **Ctrl-P**.)

CONFIG Commands

This section describes each of the CONFIG commands. Each command includes a description, syntax requirements, and an example. The CONFIG commands are summarized in Table 4.

After accessing the CONFIG environment, enter the configuration commands at the **Config>** prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds an interface to the router configuration, or a user to the router.</td>
</tr>
<tr>
<td>Boot</td>
<td>Enters Boot CONFIG command mode.</td>
</tr>
<tr>
<td>Change</td>
<td>Changes a user’s password or a user’s parameter values associated with this interface. Also changes a slot/port of an interface.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears configuration information.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes an interface from the router configuration or deletes a configured user.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables login from a remote console.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables login from a remote console.</td>
</tr>
<tr>
<td>Environment</td>
<td>Monitors the operational temperature of the router if it has two service ports.</td>
</tr>
<tr>
<td>Event</td>
<td>Enters the Event Logging System configuration environment.</td>
</tr>
<tr>
<td>Feature</td>
<td>Provides access to configuration commands for independent router features outside the usual protocol and network interface configuration processes.</td>
</tr>
</tbody>
</table>
### CONFIG Commands

**Table 4. CONFIG Command Summary (continued)**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Displays system parameters, hardware configuration, a complete user list (including PPP users).</td>
</tr>
<tr>
<td>Network</td>
<td>Enters the configuration environment of the specified network.</td>
</tr>
<tr>
<td>Patch</td>
<td>Modifies the router’s global configuration.</td>
</tr>
<tr>
<td>Performance</td>
<td>Provides a snapshot of the main processor utilization statistics.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Enters the command environment of the specified protocol.</td>
</tr>
<tr>
<td>Qconfig</td>
<td>Initiates the Quick Config process.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets system-wide parameters for buffers, host name, inactivity timer, packet size, prompt level, number of spare interfaces, baudrate, logging disposition and level, restart count, location, and contact person.</td>
</tr>
<tr>
<td>Time</td>
<td>Keeps track of system time and displays it on the console.</td>
</tr>
<tr>
<td>Unpatch</td>
<td>Restores patch variables to default values.</td>
</tr>
<tr>
<td>Update</td>
<td>Updates the current version of the configuration.</td>
</tr>
</tbody>
</table>

### Add

Use the `add` command to add an interface to the configuration, or user-access. This command also recreates device records if the configuration is inadvertently lost.

**Syntax:**

```
add [callback...]

device
 isdn-address...
 ppp-user
 tunnel-profile
 user...
 v25-bis-address
 v34-address
```

**Callback**

Use the `add callback` command to add, delete, or list information for callback on ISDN.

- **Add** Adds a callback number to the authentication lists.
- **Delete** Deletes a callback number from the authentication list.
- **Lists** Displays the authentication list and other related information.

**device device_type**

The `add device` command is used to create virtual interfaces like dial circuit interfaces. You must enter the interface device type (device_type) and you may be prompted for additional configuration parameters. See [Configuring the Network Interface on page 17] for information about configuration parameters and supported device types.

If you enter `add device ?`, a list of supported device types is displayed.
All device and protocol configuration information related to network interfaces is stored by interface number. Any changes made to interface numbers will invalidate much of the device configuration information in the protocols.

```
Config> add device dial-circuit
Adding device as interface 8
Defaulting Data-link protocol to PPP
Use "set data-link" command to change the data-link protocol
Use "net 8" command to configure circuit parameters
```

`isdn-address address-name network-dial-address network-subdial-address`

Adds the local and remote numbers of the ISDN end-points that will be communicating with your router.

- **address-name**
  - Can be anything (such as a description of the port).

- **network-dial-address**
  - The telephone number of the local or the destination port.

- **network-subdial-address**
  - The additional part of the telephone number, such as an extension, that gets interpreted when the interface connects to a PBX; this parameter is optional.

**Note:** You can use punctuation, such as parentheses and dashes, but the punctuation is not significant (the router uses only the numbers).

Example: add isdn-address line 1 local
Assign network dial address [0 - 32 digits]? 1 2345 67
Assign network subdial address [0 - 19 digits]? 98765

`ppp-user`

Adds the user profile of a remote user to the local PPP user data base. You can add up to 500 users. You add a PPP user for each remote router or DIALs client that can connect to the device you are configuring. You must configure PPP users if either of the following conditions exist:

- You are using PPP authentication protocols, PPP encryption, the Dial-In Access to LANs (DIALs) feature, or allowing users to use the dial-out feature. You need to configure a PPP user for either type of encryption - Encryption Control Protocol (ECP) or Microsoft Point-to-Point Encryption (MPPE); however, MPPE does not require the encryption key.

- You want the PPP user data base to be locally stored and managed by the device. If you want PPP user information to be obtained from a RADIUS, TACACS, or TACACS+ server, then you should configure the Authentication feature instead of configuring local PPP users.

**Note:** MPPE cannot use the RADIUS, TACACS, or TACACS+ server. For MPPE, the PPP user data base must be local.

If ECP has been enabled for the user, you are prompted for the PPP user name, password, IP address, and encryption key.

If the DIALs feature is in the software load, you are asked if this is a DIALs user.

If you are adding a user for a DIALs client, then you are prompted for the hostname, type of route, network mask, connect time, call-back information, and dial-out capability.
A user profile stored locally on the device consists of the following:

**Name**  The userid of the PPP user, used during authentication. See [PPP Authentication Protocols on page 453](#) for more information.

**Password**  The password known to the user and the device, used during authentication. It can be up to 31 characters in length, consist of any alphanumeric character, and is case sensitive. See [PPP Authentication Protocols on page 453](#) for more information.

**Enter again to verify**  Enter the password again for verification.

**Allow inbound access**  Allows inbound access to this user profile.

**Valid values:** yes, no

**Default value:** no

**Will user be tunneled?**  Specifies whether this dial-in user should be tunneled to an LNS destination. If you enter “yes”, you are prompted for information about the LNS.

**Valid values:** yes, no

**Default value:** no

**Number of days before account expiry**  The number of days before the password expires.

**Valid values:** 0 to 360

**Default value:** 180

**Number of grace logins allowed**  The number of login attempts allowed after the password expires.

**Valid values:** 0 to 100

**Default value:** 0

**Hostname to use when connecting to this peer:**  Specifies the local hostname of this LAC that is passed as identification to the LNS during tunnel setup.

**Tunnel Server endpoint:**  Specifies the IP address of the LNS to which this user is tunneled.

**Type of Route**  Either “Host Route” or “Net Route.”

A host route is generally applied for single-user access. A net route is generally applied to a network access. A net route allows you to enter a net mask.

**IP Address**  IP address to be assigned to a user.
A user profile-based IP address to offer to a dial-in client if requested. There are a number of ways for a 2210 to obtain an IP address for a dial-in client. See “IP Control Protocol” on page 463 for more information.

**Valid values:** any valid IP address

**Default value:** none

**Net-Route Mask**

Mask for a network user.

If the dial-in user is connecting to a DIALs-enabled PPP interface, the router automatically adds a temporary static route to that client for the duration of the PPP session. Typically, this static route has a net mask of 255.255.255.255 (the default value), which implies that there is a single IP host at the other end of the PPP link. However, the net mask can be overridden. If configured, this mask is used when adding the temporary route. An example of this is a small router with a single network of hosts that dials into a DIALs-enabled router. The single route to the small office router will be installed automatically based on the user profile, making it unnecessary to configure routing protocols between the two hosts and cutting down on routing traffic overhead over a potentially slow link.

**Hostname**

Hostname to be sent to the Proxy DHCP server for use by Dynamic DNS. See “Using a Dial-In Access to LANs (DIALs) Server” in Using and Configuring Features for more information.

**Time-Allootted**

The length of time a DIALs user can be connected. This is the total for this session, and should not be confused with an inactivity timer.

**Valid Values:** 0 to 71,827,788 minutes (0=unlimited)

**Default Value:** 0

**Callback type**

Call-back method, either “Roaming” or “Required.” The call-back parameters are used to specify whether the router will call back the user and what number to call back. See “Configuring PPP Callback” on page 458 for additional information.

**Dial-Out**

Enables dial-out.

This parameter is specific to clients using the DIALs dial-out client. Enabling dial-out for a ppp-user allows this user to access a modem-pool of dial-out circuits. See “Using a Dial-In Access to LANs (DIALs) Server” in Using and Configuring Features for more information.

**Set encryption key**

Specifies whether ECP encryption is to be enabled for this user/port.

**Valid values:** yes, no

**Default value:** no

**ECP encryption key**

Enter 16-character ECP encryption key.
This parameter is displayed only if PPP Encryption Control Protocol (ECP) has been enabled using the `enable ecp` command. MPPE does not require an encryption key. This ECP encryption key is used by the PPP Encryption Control Protocol (ECP). See “Using and Configuring Encryption Protocols” in Using and Configuring Features.

### Disable user

Allows you to disable a user-profile.

**Valid values:** yes, no

**Default value:** no

**Example:**

```
Config> add ppp-user
Enter name: []? pppusr01
Password:
Enter again to verify:
Allow inbound access for user? (Yes, No): [yes]
Will user be tunneled? (Yes, No): [No]
Number of days before account expiry[0-1000] [0]? 10
Number of grace logins allowed after an expiry[0-100] [0]? 5
IP address: [0.0.0.0]? 1.1.1.1
Set ECP encryption key for this user? (Yes, No): [no]
Disable user ? (Yes, No): [No]

PPP user name: pppusr01
User IP address: 1.1.1.1
Virtual Conn: disabled
Encryption: disabled
Status: enabled
Login Attempts: 0
Login Failures: 0
Lockout Attempts: 0
Account expires: Sun 17 Feb 2036 06:28:16
Account duration: 10 days 00:00:00
Password Expiry: <unlimited>
```

User 'pppusr01' has been added

**Example:**

```
Config> add ppp-user
Enter name: []? tunusr01
Password:
Enter again to verify:
Allow inbound access for user? (Yes, No): [yes]
Will user be tunneled? (Yes, No): [no] yes
Enter hostname to use when connection to this peer: []? host01
Tunnel-Server endpoint address: [0.0.0.0]? 1.1.1.1

PPP user name: tunusr01
Endpoint: 1.1.1.1
Hostname: host01
```

User 'tunusr01' has been added

**Example with ECP encryption:**

```
Config>add ppp-user
Enter name: []? ppp_user2
Password:
Enter again to verify:
Allow inbound access for user? (Yes, No): [yes]
Will user be tunneled? (Yes, No): [No]
Is this a 'DIALs' user? (Yes, No): [Yes]
Type of route? (hostroute, netroute): [hostroute]
Number of days before account expiry[0-1000] [0]? 5
Number of grace logins allowed after an expiry[0-100] [0]? 5
IP address: [11.0.0.185]? 1.1.1.1
Allow virtual connections? (Yes, No): [No]
Give user default time allotted ? (Yes, No): [Yes]
Enable callback for user? (Yes, No): [No]
```

User 'ppp_user2' has been added
Will user be able to dial-out? (Yes, No): [No]
Set ECP encryption key for this user? (Yes, No): [No] y
Encryption key should be 16 characters long.
Encryption Key (16 characters) in Hex (0-9, a-f, A-F):
Encryption Key again (16 characters) in Hex (0-9, a-f, A-F):
ECP encryption key is set.
Disable user? (Yes, No): [No]
PPP user name: ppp_user2
User IP address: 11.0.0.185
Netroute Mask: 255.255.255.255
Hostname: Virtual Conn: disabled
Time allotted: Box Default
Callback type: disabled
Dial-out: disabled
Encryption: enabled
Status: enabled
Login Attempts: 0
Login Failures: 0
Lockout Attempts: 0
Account Expiry: Password Expiry:
Is information correct? (Yes, No, Quit): [Yes]
User 'ppp_user1' has been added

**tunnel** **tunnel-name**

Gives a tunnel peer access through an IP network to the router. The peer is then authorized to initiate tunneled PPP sessions into the router. To configure a tunnel you must specify:

- **Name** The hostname of the tunnel peer.
- **Hostname to use when connecting to this peer**
  The local hostname to use when connecting to this peer. This name is used for identification of the host on the peer.
- **Set shared secret**
  Specifies whether a shared secret is to be used.
- **Shared Secret**
  The secret shared between the LAC and LNS. It must be exactly the same on both ends of the tunnel.
- **Enter again to verify**
  Enter the shared secret again for verification.
- **Tunnel-Server endpoint address**
  The IP address of the tunnel peer (LAC or LNS).

**Example:**

```
Config> add tunnel
Enter name: []? tunnel02
Enter hostname to use when connecting to this peer: []? host02
Set shared secret? (Yes, No): [No] ?Yes
Shared secret for tunnel authentication:
Enter again to verify:
Tunnel-Server endpoint address: [0.0.0.0]? 2.2.2.22

Tunnel name: tunnel02
Endpoint: 2.2.2.22
```

**user** **user_name**

Gives a user access to the router. You can authorize up to 50 users to access the router. Each **user_name** is eight characters and is case-sensitive.
When the first user is added, console login is automatically enabled. Each user added must be assigned one of the permission levels defined in Table 5.

When users are added, set login authentication to local. Otherwise a remote server must be used.

### Table 5. Access Permission

<table>
<thead>
<tr>
<th>Permission Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator (A)</td>
<td>Displays configuration and user information, adds/modifies/deletes configuration and user information. The Administrator can access any router function.</td>
</tr>
<tr>
<td>Operator (O)</td>
<td>Views router configuration, views statistics, runs potentially disruptive tests, dynamically changes router operation, and restarts the router. Operators cannot modify the permanent router configuration. All actions can be undone with a system restart.</td>
</tr>
<tr>
<td>Monitor (M)</td>
<td>Views router configuration and statistics but cannot modify or disrupt the operation of the router.</td>
</tr>
<tr>
<td>Tech Support</td>
<td>Allows your service representative to gain access to the router if a password is forgotten. Cannot be assigned to users.</td>
</tr>
</tbody>
</table>

**Note:** To add a user, you must have administrative permission. You do not have to reinitialize the router after adding a user.

**Example:**

```
add user John
Enter password:
Enter password again:
Enter permission (A)admin, (O)perations, (M)onitor [A]?
Do you want to add Technical Support access? (Yes or [No]):
```

**Enter password**

Specifies the access password for the user. Limited to 80 alphanumeric characters and is case-sensitive.

**Enter password again**

Confirms the access password for the user.

**Enter permission**

Specifies the permission level for the user: A, O, or M (see Table 5).

**Do you want to add Technical Support access?**

This is only an option if the user has a Dial In Access load. See Table 5.

**v25-bis-address**

Adds the local and remote numbers of the V.25bis end-points that communicate with the router. The network address-name can be anything, such as a description of the port. You can use any string of up to 23 printable ASCII characters. The network-dial-address is the telephone number of the local or destination port. For more information, see "Chapter 41. Using the V.25bis Network Interface" on page 579.

**Note:** You can use punctuation, such as parentheses and dashes, but the punctuation is not significant (the router uses only the numbers).

**Example:**

```
add v25-bis-address
remote-site baltimore 1-909-555-0983
```

**v34-address**

Adds the local and remote numbers of the V34 end-points that will be
CONFIG Commands

communicating with the router. The network address-name can be anything, such as a description of the port. You can use any string of up to 23 printable ASCII characters. The network-dial-address is the telephone number of the local or destination port. You can enter up to 31 characters that are in the valid dial characters for the connected modem. For more information, see Chapter 43, Using the V.34 Network Interface on page 595.

Note: You can use punctuation, such as parentheses and dashes, but the punctuation is not significant (the router uses only the numbers).

Example: add v34-address
Assign address name [1-23] chars []? remote-site-baltimore
Assign network dial address [1-20 digits] []? 1-909-555-1234

Boot

Use the boot command to enter the Boot CONFIG command environment. For Boot CONFIG information, see Chapter 7, The Boot CONFIG Process on page 83.

Syntax:
   boot

Change

Use the change command to modify an interface in the configuration, change your own password, or change user information.

Syntax:
   change
   [device...]
   password
   ppp_user...
   tunnel-profile

device dial-circuit
   Allows you to change a device interface into a NULL interface (an interface for which the configuration information is ignored) or to change a NULL interface, that was originally a dial circuit interface, back to a dial circuit interface.

Example:
   change device dial-circuit
   Interface number [0]? 3
   Defaulting Data-link protocol to PPP

Example:
   change device null
   Interface number [0]? 1

password
   Modifies the password of the user who is now logged in.

Note: To change a user password, you must have administrative permission.
CONFIG Commands

Example:

change password
Enter current password:
Enter new password:
Enter new password again:

Enter current password
  Specifies your current password.

Enter new password
  Specifies your new password.

Enter new password again
  Specifies your new password again for confirmation. If your confirmation does not match the previous new password, the old password remains in effect.

ppp_user
  Changes the information for a specific PPP user.

Syntax:

change ppp_user encryption-key
  parameters
  password

encryption-key
  Changes the encryption key for a PPP user. The following example shows the dialog for changing an encryption key.

Example - Change Encryption key:

Config> change ppp_user encryption-key
Enter user name: [ ] ? leslie
Enable encryption for this user/port (y/n) [No]: y
Encryption key should be 16 characters long,
Encryption Key (16 characters) in Hex(0-9, a-f, A-F):
Encryption Key again (16 characters) in Hex(0-9, a-f, A-F):
User 'leslie' has been updated
Config

parameters
  Changes all of the ppp-user options for a user. This parameter works similar to the add ppp_user except that the values shown within the [ ] are the current values and the change command does not verify the changes or list them back to you when you are done. See "Add" on page 53 for details about the add ppp_user command.

password
  Changes the password for the PPP user.

Example - Change password:

Config> change ppp_user password
Enter user name: [ ] ? sam
Password:
Password:
User 'sam' has been updated
Config

user
  Modifies the user information that was previously configured with the add user command.

Note: To change a user, you must have administrative permission.

Example:
change user
User name: []
Change password? (Yes or No)
Change permission? (Yes or [No])

tunnel-profile
Changes the configuration for a tunnel peer.
Config> change tunnel-profile
Enter name: []? lac.org
Enter hostname to use when connecting to this peer: [Ins.org]? [No]
set shared secret? (Yes, No): [No]
Tunnel-Server endpoint address: [11.0.0.1]? 11.0.0.2
profile 'lac.org' has been updated
Config>

Clear

Use the clear command to delete the router’s configuration information from nonvolatile configuration memory.

Attention: Use this command only after calling your service representative.

Syntax:

```plaintext
clear
```

	all
	ap2 (AppleTalk 2)
	arp (ARP)
	asrt (Adaptive Source Route Protocol)
	appn (Advanced Peer-to-Peer Networking)
	atm (Asynchronous Transfer Mode)
	auth (Authentication)
	bgp (Border Gateway Protocol)
	boot
	brly
	brs (Bandwidth Reservation)
	callback
	cmprs (Data Compression)
	dls (Data Link Switching)
	device
	dialer-circuit
	dial-out
	dn (DECnet)
	els (Event Logging System Information)
	environment
	fr (Frame Relay)
	gsm (OSI)
	hdlc
	hostname

Chapter 6. Configuring and Monitoring the CONFIG Process  61
To clear a process from nonvolatile configuration memory, enter the **clear** command and the process name. To clear all information from configuration memory, except for device information, use the **clear all** command. To clear all information, including the device information, use the **clear all** command and then the **clear device** command.

The **clear user** command clears all user information except the router console login information. This is left as enabled (if it was configured as enabled) even though the default value is "disabled".
Notes:
1. To clear user information, you must have administrative permission.
2. There may be other items in the list, depending upon what is included in the software load.

Example: clear els
You are about to clear all Event Logging configuration information
Are you sure you want to do this (Yes or No):

Note: The previous message appears for any parameter configuration you are deleting.

Delete

Use the delete command to remove an interface or range of interfaces from the list of devices stored in the configuration, or to remove a user. To use the delete command, you must have administrative permission.

Syntax:
```
delete

interface . . .
isdn-address
ppp_user . . .
tunnel
user . . .
v25-bis-address
v34-address
```

**interface [intfc# or intfc#range]**
To delete an interface, enter the interface or network number as part of the command. (Only devices that were added with the add device command can be deleted.) To obtain the interface number that the router assigns, use the list device command.

The delete interface command deletes the device configuration and any protocol information for that interface. However, the router will continue to run the previous configuration until it is restarted.

To delete a range of interfaces, specify the first and last interface in the range separated by a hyphen, as shown in the following example:
```
delete interface 13-21
```
You can also enter an interface number or range of interface numbers, when prompted.

**isdn-address address-name**
Removes a previously added ISDN address.

**Note:** If the address-name contains spaces (for example, remote site XYZ), you cannot enter the command on one line. Type delete isdn-address and press Return. Then enter the name when prompted.

**ppp_user user_name**
Deletes a user from the PPP user data base.
**CONFIG Commands**

*tunnel-profile*  
Deletes a tunnel from the tunnel profile database.

**user user_name**  
Removes user access to the router for the specified user.

**v25-bis-address address-name**  
Removes a previously added V25bis address.

*Note:* If the *address-name* contains spaces (for example, *remote site Baltimore*), you cannot enter the command on one line. Type `delete v25-bis-address` and press **Return**. Then enter the name when prompted.

**v34-address address-name**  
Removes a previously added V34 address.

*Note:* If the *address-name* contains spaces (for example, *remote site New York*), you cannot enter the command on one line. Type `delete v34-address` and press **Return**. Then enter the name when prompted.

**Disable**

Use the `disable` command to prevent being prompted for a login from a remote console and to disable modem control. The `disable` command also disables a specified interface. If the router has two service ports and you use the `disable modem-control` command, specify either `service1` or `service2`.

You can also use the disable command to disable an interface.

**Syntax:**

```plaintext
disable
 console-login
 interface . . .
 modem-control
```

**console-login**  
Disables the user from being prompted for a user ID and password on the physical console. The default is disabled.

**interface interface#**  
Causes the specified interface to be disabled after issuing the `restart` command. The default is enabled.

**modem-control [service1 or service2]**  
Disables monitoring of modem control lines on the console port. The default is disable. If the router has two service ports, specify to which service port you connected the modem, either `service1` or `service2`. To disable both service ports, disable them separately.

**Enable**

Use the `enable` command to allow login from a remote console, enable modem control, and enable a specified interface.

Specify `enable modem-control carrier-wait` or `enable modem-control ring-wait`. For routers with two service ports, also specify `service1` or `service2`.

---

64  MRS V3.2 Software User's Guide
Syntax:

```
enable

console-login

interface...

modem-control
```

**console-login**

Enables the user to be prompted for a user ID and password on the physical console. This is useful for security situations. If you do not configure any administrative users and you enable this feature, the following message appears:

```
Warning: Console login is disabled until an administrative user is added.
```

**Attention:** Before enabling console login, save the configuration with console login disabled. If login authentication is set to a remote server using Radius or Tacacs+ and the router is unable to reach the authentication server, then access to the router is denied. By disabling the console login, a lock-out situation is prevented.

**interface interface**

Causes the interface to be enabled after issuing the `restart` command.

**modem-control [carrier-wait or ring-wait] [service1 or service2]**

Sets up the router for login on the physical console, if the physical console is connected to the router through a modem. Before using this command, be sure to:

- Set your modem for auto-answer.
- Verify that the console baud rate is equal to the modem baud rate.
- Verify that the cable connecting the modem to the router is configured correctly.
- Turn echo off by using the `ATE0` command.
- Run in quiet mode by using the `ATQ1` command.
- Verify that any necessary jumpers are set. Refer to your router’s *User’s Guide* for more information.

The router automatically hangs up the modem when you log out. Also, if your modem becomes disconnected from the router while you are using it, the router logs you out.

Specify the service port for both the `enable modem-control carrier-wait` and the `enable modem-control ring-wait` commands. For routers with two service ports, also specify to which service port you connected the modem, either `service1` or `service2`. To enable *both* service ports, enable them separately.

**Note:** No console connection can be made with the router after enabling modem control unless you clear all configuration and restart the router.

You can tell the router to wait for the carrier-detect signal from the modem before sending Request to Send. This is the standard method of modem control.
CONFIG Commands

You can tell the router to wait for the ring-indication signal before raising Request to Send or Data Terminal Ready. This is provided for countries requiring an earlier handshake.

Example:
```
Config> enable modem-control carrier-wait service1
```

Environment

Note: This command is to be invoked only for routers with two service ports.

The Environment System lets you monitor the operational temperature of the router. You can configure high and low temperature thresholds; when the operational temperature of the router exceeds one of these thresholds, the router emits periodic ELS events until the operational temperature of the router falls below (for high temperature conditions) or rises above (for low temperature conditions) the threshold.

Under extremely warm conditions, a chip holds the router in a reset state which prevents it from operating. To ensure correct operation of the router, a temperature chip allows it to operate in the range −55°C to +85°C (−67°F to +185°F). However, only the upper limit affects the operation of the router; a temperature chip shuts off the router at 85°C or above and the router does not come back on until it is at 80°C or below. Although extreme cold does not interrupt the router’s operation, −55°C is the lowest temperature the chip registers.

The `environment` command displays the ENV config> prompt.

Syntax:
```
environment
```

Environment Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help on page 10</a>.</td>
</tr>
<tr>
<td>List</td>
<td>Displays system parameters, hardware configuration, a complete user list (including PPP users).</td>
</tr>
<tr>
<td>Set</td>
<td>Sets system-wide parameters for buffers, host name, inactivity timer, packet size, prompt level, number of spare interfaces, baudrate, logging disposition and level, restart count, location, and contact person.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment on page 11</a>.</td>
</tr>
</tbody>
</table>

**List:** Use the `list` command to display the environment settings.

Syntax:
```
list
```

Example: `list`
```
Current Ambient Temperature: 53°C (127°F)
Recalculate temperature interval: 30 seconds (approx)
```
**High Temperature Alarm Threshold:** 80°C (176°F)  
**Low Temperature Alarm Threshold:** 0°C (32°F)  
*(Hysteresis value: +/- 5°C)*

_Hysteresis_ is the amount the temperature must change past the set alert threshold before the alert condition is cleared. For a device with two service ports, hysteresis value is fixed at ± 5 degrees. For example, if you specify a high-temp-threshold of 75°C, you will get ELS messages from 75 degrees and above. The temperature must go below 70 degrees before the condition is cleared (75 - 5 = 70). If you specify a low-temp-threshold of -10°C, you will get ELS messages from -10 degrees and below. The temperature must move above -5 degrees before you no longer get ELS messages (-10 +5 = -5).

**Set:** Use the `set` command to set the high and low temperatures at which the system raises an alarm condition.

**Note:** The reset temperature level is factory set. You cannot modify it.

**Syntax:**
```
set
 high-temp-threshold
 low-temp-threshold
 recal-c-temp-interval
```

**high-temp-threshold** _degrees_celsius_  
Sets the high temperature at which you will receive ELS messages before the router resets. The value should be about 10°C less than the maximum (85°C) so that you get some ELS messages before the router resets itself.

**low-temp-threshold** _degrees_celsius_  
Sets the low temperature at which you will receive ELS messages. The value should be about 10°C more than the minimum (~-55°C) so that you get some ELS messages. The router does not reset itself on cold temperatures.

**Note:** Temperature ranges vary depending on the environment in which you place the router. Use the `environment` command described on page 66 to determine your router’s natural operating range over time.

**recalc-temp-interval** _seconds_  
Sets the amount of time between successive temperature readings.

**Valid values:** 10 to 86400 seconds  
**Default value:** 60

**Event**

Use the `event` command to enter the Event Logging System (ELS) environment so that you can define the messages that will appear on the console. Refer to Chapter 12, _Using the Event Logging System (ELS)_ on page 147 for information about ELS.

**Syntax:**
```
event
```
Feature

Use the feature command to access configuration commands for specific router features outside of the protocol and network interface configuration processes.

Syntax:
```
feature [feature# or feature-short-name]
```

All 2210 features have commands that are executed by:
- Accessing the configuration process to initially configure and enable the feature, as well as perform later configuration changes.
- Accessing the console process to monitor information about each feature, or make temporary configuration changes.

The procedure for accessing these processes is the same for all features. The following information describes the procedure.

Enter a question mark after the feature command to obtain a listing of the features available for your software release.

To access a feature's configuration prompt, enter the feature command followed by the feature number or short name. Table 7 lists available feature numbers and names.

Table 7. IBM 2210 Feature Numbers and Names

<table>
<thead>
<tr>
<th>Feature Number</th>
<th>Feature Short Name</th>
<th>Accesses the following feature configuration process</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>WRS</td>
<td>WAN Restoral/Reroute</td>
</tr>
<tr>
<td>1</td>
<td>BRS</td>
<td>Bandwidth Reservation</td>
</tr>
<tr>
<td>4</td>
<td>VCRM</td>
<td>Virtual Circuit and Resource Management</td>
</tr>
<tr>
<td>7</td>
<td>CMPRS</td>
<td>Data Compression</td>
</tr>
<tr>
<td>9</td>
<td>DIALs</td>
<td>Dial-In-Access to LANs</td>
</tr>
<tr>
<td>10</td>
<td>AUTH</td>
<td>Authentication</td>
</tr>
<tr>
<td>12</td>
<td>LAYER</td>
<td>Layer 2 Tunneling Protocol</td>
</tr>
</tbody>
</table>

Once you access the configuration prompt for a feature, you can begin entering specific configuration commands for the feature. To return to the CONFIG prompt, enter the exit command at the feature's configuration prompt.

List

Use the list command to display configuration information for all network interfaces, or configuration information for the router.

Syntax:
```
list configuration
_devices
_isdn-address
_patches...
_ppp_users...
```
### tunnel-profile

- `users`...

- `v25-bis-address`

- `v34-address`

### devices [device or devicerange]

Displays the relationship between an interface number and the hardware interface. You can also use this command to check that a device was added correctly issuing the `add` command.

You can also specify a range of devices to list as shown in the following example:

```bash
list dev 2-5
Ifc 2 WAN X.25 CSR 81640, CSR2 80000, vector 92
Ifc 3 WAN PPP CSR 381620, CSR2 380000, vector 125
Ifc 4 WAN Frame Relay CSR 381640, CSR2 380000, vector 124
Ifc 5 Token Ring CSR 600000, vector 95
```

**Note:** If you do not specify an interface number or a range of interfaces, all interfaces are displayed.

#### Example: list devices

```bash
list devices
Ifc 0 Ethernet CSR 81600, CSR2 80000, vector 94
Ifc 1 WAN X.25 CSR 81620, CSR2 80000, vector 93
Ifc 2 WAN X.25 CSR 81640, CSR2 80000, vector 92
Ifc 3 WAN PPP CSR 381620, CSR2 380000, vector 125
Ifc 4 WAN Frame Relay CSR 381640, CSR2 380000, vector 124
Ifc 5 Token Ring CSR 600000, vector 95
```

**Note:** The number of receive buffers noted are exceptions from the receive buffer defaults. The `set receive buffers` command is discussed under "Set" on page 75.

### configuration

Displays configuration information about the router.

#### Example: list configuration

```
Hostname: acctg
Maximum packet size: [autoconfigured]
Maximum number of global buffers: [autoconfigured]
Number of spare interfaces: 0
Number of Restarts before a Reload/Dump: 64
Logging disposition: detached
Console baudrate: 9600 (Autobaud)
Console inactivity timer (minutes): 0
Physical console login: disabled
Modem Control Enabled, using CARRIER-WAIT type control
Contact person for this node: [none]
Location of this node: [none]
```

Configurable Protocols:

<table>
<thead>
<tr>
<th>Num</th>
<th>Name</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IP</td>
<td>DOD-IP</td>
</tr>
<tr>
<td>3</td>
<td>ARP</td>
<td>Address Resolution</td>
</tr>
<tr>
<td>4</td>
<td>DN</td>
<td>DNA Phase IY</td>
</tr>
<tr>
<td>6</td>
<td>VIN</td>
<td>Banyan VINES</td>
</tr>
<tr>
<td>7</td>
<td>IPX</td>
<td>NetWare IPX</td>
</tr>
<tr>
<td>8</td>
<td>OSI</td>
<td>ISO CLNP/ESIS/ISIS</td>
</tr>
<tr>
<td>9</td>
<td>DVM</td>
<td>Distance Vector Multicast Routing Protocol</td>
</tr>
<tr>
<td>10</td>
<td>BGP</td>
<td>Border Gateway Protocol</td>
</tr>
<tr>
<td>11</td>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>12</td>
<td>OSPF</td>
<td>Open SPF-Based Routing Protocol</td>
</tr>
<tr>
<td>20</td>
<td>SDLC</td>
<td>SDLC/HDLC-Relay</td>
</tr>
<tr>
<td>22</td>
<td>AP2</td>
<td>AppleTalk Phase 2</td>
</tr>
<tr>
<td>23</td>
<td>ASRT</td>
<td>Adaptive Source Routing Transparent Enhanced Bridge</td>
</tr>
<tr>
<td>24</td>
<td>HST</td>
<td>TCP/IP Host Services</td>
</tr>
<tr>
<td>25</td>
<td>LNW</td>
<td>Lan Network Manager</td>
</tr>
<tr>
<td>26</td>
<td>DLS</td>
<td>Data Link Switching</td>
</tr>
<tr>
<td>27</td>
<td>XTP</td>
<td>X.25 Transport Protocol</td>
</tr>
<tr>
<td>28</td>
<td>APPN</td>
<td>Advanced Peer-to-Peer Networking [HPR]</td>
</tr>
<tr>
<td>29</td>
<td>NHRP</td>
<td>Next Hop Routing Protocol</td>
</tr>
</tbody>
</table>

Chapter 6. Configuring and Monitoring the CONFIG Process 69
isdn-address
Displays the current ISDN address configurations.

Example: list isdn-address

<table>
<thead>
<tr>
<th>Address assigned name</th>
<th>Network Address</th>
<th>Network Subdial Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote site XYZ</td>
<td>12345 67</td>
<td>98765</td>
</tr>
</tbody>
</table>

patches
Displays the values of patch variables that have been entered using the patch command.

Example:

```
list patches
Patched variable Value
ping-size 60
ping-ttl 59
ip-default-ttl 60
ethernet-security 3
rip-static-suppress 3
```

ppp_users
Lists specific PPP user profile parameters.

Example: List of PPP users when DIALs is not in the software load

```
List (Name, Verb, User, Addr, Encr):
PPP User Name: joe
User IP Address: Interface Default
Encryption: Not Enabled
```

Example: List of PPP users when DIALs is in the software load

```
List (Name, Verb, User, Addr, Call, Time, Dial, Encr):
PPP User Name: joe
User IP Address: Interface Default
Net-Route Mask: 255.255.255.255
Hostname: <undefined>
Time-Allotted: Box Default
Dial-Back Type: Not Enabled
Dial-Out: Not Enabled
Encryption: Not Enabled
```

When you enter `list ppp_users`, the software will prompt you to enter one of the following:

- **Name** List all of the names in the database.
- **Verb** List verbose information about each user. List all information pertaining to each user profile.
- **User** List verbose information about a single user.
- **Addr (address)** List IP address information for each user, including IP Address, net mask and hostname.
**Call (callback)**
List callback information for each user, including the type of callback and number.

**Time**  
List time allowed configured for each user.

**Dial (dialback)**  
List dial out status for each user.

**Encr (encryption)**  
List whether encryption is enabled for each user.

**tunnel-profile**  
Displays the tunnel-profile parameters.

**Example:**
```
Config>list tunnel-profile
Endpoint Tunnel name Hostname
11.0.0.192 lac lns
1 TUNNEL record displayed.
Config>
```

**Endpoint**  
Specifies the configured name for the peer.

**Server Endpoint**  
The IP address of the peer.

**Type**  
Specifies the type of peer connection.

**Medium**  
Specifies the protocol that the tunnel is using.

**Local Host Name**  
Specifies the name configured for use when connecting to the peer.

**users**  
Displays the users configured to access the system.

**Example:**
```
list users
USER PERMISSION
joe operations
mary administrative
peter monitor
```

**v25-bis-address**  
Displays the current V25bis address configurations. The V25bis address configuration consists of the network address and network address name for a local port (serial line interface) or destination port. The network address is the telephone number of the local or destination port. The network address name can be anything, such as the description of the port. See [Chapter 41. Using the V.25bis Network Interface](#) on page 579 for more information.

**Example:**
```
list v25-bis-address
Address assigned name Network Address
----------------- ---------------
v25-1 8982800
v25-2 8980001
delaware 1-666-555-4444
```

**v34-address**  
Displays the current V34 address configurations. For more information, see [Chapter 43. Using the V.34 Network Interface](#) on page 599.
**Config Commands**

Example:
```
list v34-address
Local Network Address Name = v403
Local Network Address = 1-508-898-2403
```

**Network**

Use the **network** command to enter the network interface configuration environment for supported networks. Enter the interface or network number as part of the command. (To obtain the interface number, use the **CONFIG list device** command.) The appropriate configuration prompt (for example, **TKR Config>**) will be displayed. See the network interface configuration chapters in this book for complete information on configuring your types of network interfaces.

**Syntax:**
```
network interface#
```

**Notes:**
1. If you change a user-configurable parameter, you must **restart**
2. Not all network interfaces are user-configurable. For interfaces that you cannot configure, you receive the message: That network is not configurable.

**Patch**

Use the **patch** command for modifying the router’s global configuration. Patch variables are recorded in nonvolatile configuration memory and take effect immediately; you do not have to wait for the next restart of the router. This command should be used only for handling uncommon configurations. Anything that you commonly configure should still be handled by using the specific configuration commands. The following is a list of the current patch variables documented and supported for this release.

**Syntax:**
```
patch
```

```
bgp-subnets
dls-ignore-lfs
ethernet-security
filter-nr
ip-default-ttl
ip-mtu
lnm-link-via-tbport
more-lines
mosheap-lowmark
ospf-import-rate
ping-size
ping-ttl
ppp-echo
relax-jate
rip-static-suppress
```
bgp-subnets new value
If you want the BGP speaker to advertise subnet routes to its neighbors, set new value to 1. The default is 0.

dls-ignore-lfvs new value
When set to 1, DLSw ignores the “largest frame” size bits in source-routed frames when setting up a circuit. This avoids circuit setup problems with some older LAN products that do not set these bits correctly. The default is 0.

ethernet-security new value
When set to a non-zero value, zeros the padding that is applied to Ethernet packets whose data portion is less than the physical minimum of 60 bytes. This may be required for security reasons. Default: 0.

ip-default-ttl #_of_packets
The TTL used in packets that are originated by the router. The default is 64.

Note: It is preferable to set this parameter with the set ttl IP configuration command. (See the “Set” section of the “Using and Configuring IP” chapter of Protocol Configuration and Monitoring Reference Volume 1.) This patch variable remains for compatibility with configurations from older releases.

ip-mtu bytes
This parameter limits the IP MTU size to the specified value. When this parameter is set, the IP MTU size on a given network interface is set to the lesser of the ip-mtu value and the largest value that network interface’s configured frame size can accommodate.

lnm-link-via-tbport new value
Allows LNM to link to a token-ring over an Ethernet transparent bridge (TB) port.

When set to 1, the LNM link is allowed.

When set to 0, the default, the LNM link is not allowed.

more-lines #_of_lines
The number of lines to display on the console when listing the IP routing table, which uses a “more pipe” (|).

mosheap-lowmark new value
This parameter specifies the percentage of free MOS heap memory, at which the device notifies the operator that an out-of-memory error is imminent. This notification allows the operator to take action to free up MOS heap memory before the device receives an error and stops.

When the operator receives notification, the operator can reconfigure the router and then reboot, minimizing the outage to the network. Specifying 0 for this parameter suppresses this warning.

Valid Values: 0 to 100
Default Value: 10

ospf-import-rate rate
Number of routes imported per second.

ping-size bytes
The size of the data portion (that is, excluding IP and ICMP headers) of the ICMP PING packet that is sent via the IP>ping command. Default: 56 bytes. (The size of the PING data can also be entered as a parameter of
CONFIG Commands

the ping command as described in the “Ping” section of the “Monitoring IP” chapter of Protocol Configuration and Monitoring Reference Volume 1.

ping-ttl seconds
The TTL (time-to-live) sent in PINGs by the IP>ping command. Default: 64. (The TTL can also be entered as a parameter of the ping command as described in the “Ping” section of the “Monitoring IP” chapter of Protocol Configuration and Monitoring Reference Volume 1.

ppp-echo new value
When set to 1, the device will not send PPP Echo Requests on any PPP interface. PPP Echo Requests are sent to remote devices as part of PPP maintenance to ensure the remote device is operational. Consider enabling this variable when running PPP on a slow line and using that line to transmit large data packets such that the PPP maintenance packets are not exchanged often enough to keep the PPP interface up.

relax-jate
Relaxes JATE ISDN restriction.

rip-static-suppress new value
When set to a non-zero value, static routes will not be advertised by RIP over a given interface unless the IP config> enable send static command is given for the interface. This changes the semantics of the enable send static command. When rip-static-suppress is equal to 0 (the default), the list of the routes advertised via RIP is the union of those specified by the interface’s RIP flags.

Note: You must specify the complete name of the patch variable that you want to change. You cannot use an abbreviated syntax for the patch name.

Performance

Use the performance command at the GWCON> prompt (+) to enter the configuration environment for performance. See Chapter 14, Configuring and Monitoring Performance on page 215 for more information.

Protocol

Use the protocol command at the Config> prompt to enter the configuration environment for the protocol software installed in the router.

Syntax:

protocol [prot# or prot_name]

The protocol command followed by the desired protocol number or short name lets you enter a protocol’s command environment. After you enter this command, the prompt of the specified protocol appears. From the prompt, you can enter commands specific to that protocol. To return to Config>, enter the exit command.

Notes:

1. To see the names and numbers of the protocols in your software load, at the Config> prompt, enter list configuration.
2. When you change a user-configurable parameter, you must restart the router for the change to take effect. To do so, enter the restart command at the OPCON prompt (*).
CONFIG Commands

The changes you make through CONFIG are kept in a configuration database in nonvolatile memory and are recalled when you restart the router.

Qconfig

Use the qconfig command to initiate Quick Config. Quick Config allows you to configure parameters for interfaces, boot records, and bridging and routing protocols without entering separate configuration environments.

Syntax:
qconfig

Note: For complete information on using the Quick Config software provided with your router, see “Appendix A. Quick Configuration Reference” on page 651.

Set

Use the set command to configure various system-wide parameters.

Syntax:
set _contact-person . . .
_baud-rate
_data-link . . .
down-notify . . .
global-buffers
_hostname
_inactivity-timer
_input-low-water
_location . . .
_logging disposition
_packet-size
_prompt-level
_receive-buffers
_spare-interfaces

_baud-rate
Sets the console baud rate. The valid options are 0 (for autobaud), 300, 1200, 2400, 4800, 9600, 19200, and 38400.

_contact-person sysContact
Sets the name or identification of the contact person for this managed SNMP node. There is a limit of 80 characters for the sysContact name length.

This variable is for information purposes only and has no effect on router operation. It is useful for SNMP management identification of the system.

_data-link type interface#
Select the data link type for a serial interface. The type can be one of:
CONFIG Commands

- BSC
- FRAME-RELAY
- PPP
- SDLC
- SRLY
- V25BIS
- V34
- X25

*Interface#* is the number of the interface you are configuring.

**Note:** The data-link parameter cannot be changed for integrated modems.

`down-notify interface# # of seconds`

Allows the user to specify the number of seconds before declaring an interface as being down. The normal maintenance packet interval is 3 seconds, and it takes four maintenance failures to declare the interface as down.

The `set down-notify` command is used primarily when tunneling LLC traffic over an IP network using OSPF. If an interface goes down, OSPF cannot detect it fast enough because of the length of time that it takes for an interface to be declared down. Therefore, LLC sessions would begin to timeout. You can set the down-notify timer to a lower value, allowing OSPF to sense that an interface is down quicker. This enables an alternate route to be chosen more quickly, which will prevent the LLC sessions from timing out.

**Note:** If the `set down-notify` command is executed on one end of a serial link, the same command must be performed at the other end of the link or the link may not come up and stay up.

*Interface#*

The number of the interface you are configuring.

*# of seconds*

The down notification time value that specifies the maximum time that will elapse before a down interface is marked as such. Large values will cause the router to ignore transient connection problems, and smaller values will cause the router to react more quickly. The range of values is 1 to 300 seconds and the default is 0, which sets the 3-second period. Setting the down notification time to 0 will restore the default time for that interface.

The `list devices` command will show the down notification time setting for any interface that has the default value overridden.

`global-buffers max#`

Sets the maximum number of global packet buffers, which are the packet buffers used for locally originated packets. The default is to autoconfigure for the maximum number of buffers (up to 1000). To restore the default, set the value to 0. To display the setting for global-buffers, use the `list configuration` command.

`hostname name`

Adds or changes the router name. The router name is for identification only; it does not affect any router addresses. The *name* must be:
• Less than 78 characters and is case sensitive
• Set before storing the router’s configuration memory in IBD.

**inactivity-timer #.of_min**
Changes the setting of the Inactivity Timer. The Inactivity Timer logs out a user if the remote or physical console is inactive for the period of time specified in this command. This command affects only consoles that require login. The default setting of 0 turns the inactivity timer off, indicating that no logoff is performed, no matter how long a console remains inactive.

**input-low-water interface# low_#_of_receivebuffers**
Allows you to configure the value of the low number of receive buffers, or packets, on a per-interface basis, thus overriding the default values.

The memory allocation strategy changes to conserve buffers when the number of free buffers is equal to or less than the low or low-water mark value. When a packet is received, and the current value of the interface is less than the low water value, then that packet is eligible for flow control (dropping).

The range of values is 1 to 255. The default is both platform and device specific. Setting the value to 0 restores the autoconfigured default.

*Interface#* is the number of the interface you are configuring.

*Low_#_of_receive_buffers* is the low water value.

Lowering the value will make it less likely that packets from this interface will be dropped when sent on congested networks. However, lowering the value may negatively affect performance if it drops packets to the extent that the receive queue is frequently empty. Raising the value has the opposite effect.

Type the **QUEUE** or **BUFFER** command at the GWCON prompt (+) to show the low setting.

**location sysLocation**
Sets the physical location of an SNMP node. There is a limit of 80 characters for the *sysLocation* name length. This variable is for information purposes only and has no effect on router operation. It is useful for SNMP management identification of the system.

**logging disposition setting**
Changes the SRAM record for the default logging disposition. This command affects the MONITR process (that is, it changes the default setting at startup).

The logging disposition *settings* are as follows:

- **console** writes to the console (equivalent to the OPCON divert 2 0 command).
- **detached** holds the data and does not print it (equivalent to the OPCON halt 2 command).
- **flush** discards the data (equivalent to the OPCON flush 2 command).

If you have a printing terminal attached to the router’s console port, you can obtain a hard copy of the startup messages by setting the logging disposition to **console**, and restarting the router.

**packet-size max_packet_size_in_bytes**
Establishes or changes the maximum size for global buffers and receive buffers. If you specify a value of 0 as the maximum packet size, the size of
receive buffers for an interface is based on that interface’s configured packet size and the packet size of global buffers are autoconfigured. If you specify a non-zero value, the configured value is used as the global buffer packet size and any interfaces that have a configured packet size that is larger than the maximum packet size will use the maximum packet size for their receive buffers. A value of 0 (for autoconfigure) is the default.

**Attention:** Use this command only under direct instructions from your service representative. *Never* use it to reduce packet size — only to increase it.

**prompt-level user-defined-name**

Adds a user-defined name as a prefix to all operator prompts, replacing the hostname.

The user-defined-name can be any combination of characters, numbers, and spaces up to 80 characters. Special characters may be used to request additional functions as described in Table 8.

**Example:**

```
set prompt
What is the new MOS prompt [y]? AnyHost 99
AnyHost 99 Config>
```

### Table 8. Additional Functions Provided by the Set Prompt Level Command

<table>
<thead>
<tr>
<th>Special Characters</th>
<th>Function Provided by the Set Prompt Level Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n</td>
<td>Displays the hostname. This is useful when you want the hostname included in the prompt. For example:</td>
</tr>
<tr>
<td></td>
<td>Config&gt; set prompt</td>
</tr>
<tr>
<td></td>
<td>What is the new MOS prompt [y]? $n</td>
</tr>
<tr>
<td></td>
<td>hostname:: Config&gt;</td>
</tr>
<tr>
<td>$t</td>
<td>Displays the time. For example:</td>
</tr>
<tr>
<td></td>
<td>Config&gt; set prompt.t.</td>
</tr>
<tr>
<td></td>
<td>What is the new MOS prompt [y]? $t</td>
</tr>
<tr>
<td></td>
<td>02:51:08[GMT-300] Config&gt;</td>
</tr>
<tr>
<td>$d</td>
<td>Displays the current date-month-year. For example:</td>
</tr>
<tr>
<td></td>
<td>Config&gt; set prompt.d.</td>
</tr>
<tr>
<td></td>
<td>What is the new MOS prompt [y]? $d</td>
</tr>
<tr>
<td></td>
<td>26-Feb-1997 Config&gt;</td>
</tr>
<tr>
<td>$v</td>
<td>Displays the software VPD information in the following format:</td>
</tr>
<tr>
<td></td>
<td>program-product-name Feature xxxx V.x PTFx RPQx</td>
</tr>
<tr>
<td>$e</td>
<td>Erases one character after this combination within the user-defined prompt.</td>
</tr>
<tr>
<td>$h</td>
<td>Erases one character before this combination within the user-defined prompt.</td>
</tr>
<tr>
<td>$._</td>
<td>Adds a carriage return to the user-defined prompt.</td>
</tr>
</tbody>
</table>
| $$.                | Displays the $.

**Note:** You can combine these commands. For example:

```
Config> set prompt
What is the new MOS prompt [y]? $n::$:d
hostname::26-Feb-1997 Config>
```
receive-buffers interface# max#

Adjusts the number of private receive buffers for most interfaces.

The range is 5 to 1000.

Note: This command is not applicable for ISDN Primary Rate Interfaces. For ISDN PRI, the number of receive buffers is fixed at 5 per B-channel, 115 for T1 and 150 for E1. When in channelized mode, the PRI gets 5 receive buffers per configured timeslot.

(On some devices, the maximum value is restricted further, as shown in Table 9.) To restore the default, set the value to 0. The set receive-buffers command can be used to increase the receive performance of an interface. In addition, this command can be used to reduce flow control drops when the router is forwarding many packets from a fast interface to a slow interface. The effect of this command is visible on the GWCON buffer command.

Attention: Use the set receive-buffer command only under direct instructions from your service representative.

Table 9. Default and Maximum Settings for Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>80</td>
<td>1000</td>
</tr>
<tr>
<td>Ethernet</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Serial</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>ISDN BRI (except 1sx, 1ux models)</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Note: The maximum number of receive numbers for a ISDN-BRI adapter that is running in I-430 mode is 24.

| TKR                           | 40      | 120     |

spare-interfaces n

Defines n, the number of spare interfaces, for this device. See Configuring Spare Interfaces on page 44 for additional information.

Time

Use the time command to set the 2210 system clock and date, and to display the values on the user console. These values can then be used to time-stamp ELS messages.

Note: The 2210 has a hardware clock that maintains the date and time after router reinitialization.

Syntax:

```
time
 host . .
 list
 offset
 set . .
 sync . .
```
CONFIG Commands

host IP_address
Sets the IP address of the RFC 868-compliant host that will be used as the
time source. This is the address of a host which will respond to an empty
datagram on UDP port 37 with a datagram containing the current time.

list
Displays all configured time-related parameters. This includes the current
time (if set) and the source of the time (operator or IP address from which
time was last received).

Example: time list
05:20:27 Wednesday December 7, 1994
Set by: operator
Time Host: 131.210.4.1
Sync Interval: 10 seconds GMT
Offset: -300 minutes

offset minutes
Defines the time zone, in minutes, offset from GMT (Greenwich Mean
Time). Note that values west of GMT are negative. For example, EST is 5
hours earlier than GMT, so the command would be time offset -300.

Valid values: -720 to 720
Default value: 0

set <year month date hour minute second>
Prompts you to set the current time. If you do not specify the entire time in
the command, you are prompted for the remaining values. You can change
the date as shown in the following example.

Example: time set
month [12]? 7
date [6]? 7
hour [11]? 12
minute [3]? 2
second [2]?

sync seconds
Sets the period, in seconds, at which the router will poll the time host for
the current time.

Unpatch

Use the unpatch command to restore the values of the patch variables entered
with the patch command to their default values. See the patch command in [Patch]
on page 72 for details.

Syntax:
unpatch variable_name

Note: You must specify the long name of the patch variable to be restored.

Update

Use the update command to update the configuration memory when you receive a
new software load.

Syntax:
update version-of-SRAM
Follow the instructions on the release notice sent with the software. The `update` command is the last command that you enter when loading new software. After you enter this command, the console displays a message indicating configuration memory is being updated.
CONFIG Commands
Chapter 7. The Boot CONFIG Process

This chapter describes the Boot CONFIG process. This chapter includes the following sections:

- What is Boot CONFIG?
- How the BOOTP Forwarding Process Works
- Using the Trivial File Transfer Protocol (TFTP)
- Validating the Configuration Load
- Loading an Image at a Specific Time
- Configuring Dumping

What is Boot CONFIG?

Router nonvolatile configuration database memory contains the data that controls the router boot and dump capabilities. The Boot CONFIG commands allow you to modify this data.

Using Boot CONFIG commands, you can:

- Add, modify, or remove entries from the boot and dump configuration database.
- Disable or enable network memory dumping and assign a unique name to the dump files.
- Use the TFTP protocol to transfer (using the TFTP command or copy command) configuration information between router memory and remote hosts.
- View the current boot and dump configuration database.
- Store file images to the Integrated Boot Device (IBD).
- Store the current image to the IBD.
- Leave the Boot CONFIG command environment and return to the CONFIG process.
- List the contents of the IBD.
- Delete files from the IBD.
- Copy files to and from the local router memory and another local router memory or host file system.
- Save any changes you have made to system and protocol parameters.

Changes made to system and protocol parameters through Boot CONFIG take effect when you restart the router or when you reload the router software.

Configuring Booting

Boot files are the same as load image files. A boot file contains the software load for the router and resides on a host server, or an IBD. The host server is, for example, any PC, router, or workstation, that is running the IP protocol and TFTP. The boot configuration database can contain an entry for each boot file, configured using the add command. Each entry contains the address of the host server, the next hop router, and the timeout, path, and filenames of the boot files.
Using the Boot CONFIG Process

You can configure more than one boot file in the boot configuration database by specifying the path and name of each boot file (using the `add` command described on page 94). If you have more than one host server, you can use a different host server to boot the router when another host server cannot be reached over the network.

To configure booting:

1. Add an address record, using the `add address` command from the `Boot config>` prompt, that specifies the interface from which you want it to boot.
2. Add the boot record, using the `add boot-entry` command from the `Boot config>` prompt, specifying the host address, next hop router (if necessary), and the path and filename of the host.

Using a Device as a Boot Server

A device can also function as a boot server. Devices that do not have an IBD can obtain their load files or boot files from a router that has an IBD. Use the `add boot-entry` command to designate the location of the router with the boot file. Make sure that you include the entire path name of the load file with this command. On a router with the load in IBD, this is `IBD/filename`.

How the BOOTP Forwarding Process Works

BOOTP (documented in RFC 951) is a bootstrap protocol used by a router or a diskless workstation to learn its IP address, the location of its boot file, and the boot server name. A device can act as a BOOTP client or as a BOOTP relay agent for another device. The following sections describe these two processes.

A Device as a BOOTP Client

A device acts as a BOOTP Client when it needs to find the location of the boot file and boot server. You can specifically configure the device’s boot PROM configuration record so the router can act as a BOOTP Client, or it can become a BOOTP Client if, during booting, it does not contain a valid file name and path to the location of the boot file and server. When either of these two conditions exists, the router broadcasts a UDP packet over one of its LAN interfaces to the BOOTP server that contains the path name of the boot file and server.

The following describes the BOOT client forwarding process:

1. The BOOTP client copies its MAC address (either Ethernet or Token Ring) into a BOOTP packet (UDP packet) and broadcasts it onto the local LAN. BOOTP is running on top of UDP.
2. The BOOTP server receives the request and looks up the client’s Ethernet address in its database. If found, it formats a BOOTP reply containing the client’s IP address, the location of its boot file, and the boot server name. The reply is then sent back over the LAN to the BOOTP client.

   **Note:** If multiple hops are required before reaching the BOOTP server, a BOOTP relay agent receives the packet. BOOTP relay agent is explained in the next section.

3. When the router receives the BOOTP reply packet, it uses the information it contains to initiate a TFTP request to the boot server.
A Device as a BOOTP Relay Agent

If BOOTP request requires multiple hops before reaching the BOOTP server, the BOOTP relay agent routes the packet via IP to all BOOTP servers that it knows about. If any other router receives this packet while it is being routed via IP, it will examine the packet to determine whether it is a BOOTP packet and route that packet toward the BOOTP servers that it knows about. The following describes the BOOTP relay agent forwarding process:

1. A device acting as the local BOOTP relay agent, receives the BOOTP request packet from the BOOTP client, modifies the checksum, places an IP header on the packet with the relay agent's IP address copied into the body of the BOOTP request, and routes the packet to all BOOTP servers.
2. The BOOTP servers receive the request and look up the client's MAC address in their database. If a server finds the client's address, it formats a BOOTP reply containing the client's IP address, the location of its boot file, and the boot server name. The reply is then sent to the BOOTP relay agent.
3. The BOOTP relay agent receives the reply, makes an entry in its ARP table for the client, and then forwards the reply to the BOOTP client.
4. The client then continues to boot using the information that is contained in the BOOTP reply packet to initiate a TFTP request to the boot server.

Enabling/Disabling BOOTP Forwarding

To enable or disable BOOTP forwarding on the router, enter the following appropriate command at the IP configuration prompt:

```
IP Config> enable bootp
IP Config> disable bootp
```

When enabling BOOTP, you are prompted for the following values:

- Maximum number of application hops you want the BOOTP request to go. This is the maximum number of BOOTP relay agents that can forward the packet. This is not the maximum number of IP hops to the BOOTP server. A typical value for this parameter is 4.
- Number of seconds you want the client to retry before you forward the BOOTP request. This parameter is not commonly used. A typical value for this parameter is 0.

After accepting a BOOTP request, the router forwards the BOOTP request to each BOOTP server. If there are multiple servers configured for BOOTP, the transmitting server replicates the packet.

Configuring a BOOTP Server

The BOOTP server is either an AIX or UNIX host with a bootpd daemon, or a DOS host (running software available from FTP Software). The BOOTP server contains a file (maintained by the network administrator) that lists all the BOOTP clients that this server is responsible for, and their associated IP addresses, boot file locations, and boot server names.

When the BOOTP server receives a BOOTP request, it matches the MAC address of the client with the MAC address in its BOOTP file. If a match occurs, the server
Using the Boot CONFIG Process

constructs a BOOTP reply and adds the client's IP address, along with the location of the Boot server and boot filename. If a match does not occur, the packet is dropped.

To add a BOOTP server to the router’s configuration, enter the following command at the IP configuration prompt:

```
IP Config> add BOOTP-SERVER [IP address of server]
```

You can configure multiple servers. In addition, if you know only the network number of the server, or if multiple servers reside on the same network segment, you can configure a broadcast address for the server using the `enable directed-broadcast` command at the IP config> prompt.

Using the Trivial File Transfer Protocol (TFTP)

TFTP is a file transfer protocol that runs over the Internet UDP protocol. This implementation provides multiple, simultaneous TFTP file transfers between a router’s nonvolatile configuration memory, Integrated Boot Device (IBD), and remote hosts.

TFTP allows you to:

- Store a configuration file from a router to a server
- Copy a configuration file from a server to a router
- Copy a configuration or load file to an IBD.

TFTP transfers involve a client node and a server node. The client node generates a TFTP request onto the network. The router acts as a client node by generating TFTP requests from the router console using the Boot Config> process `copy` command.

**Note:** The `tftp` command and the `copy` command have the same function but the syntax is different.

The client can transfer a copy of the configuration file stored in configuration memory, or any file stored in the IBD.

The server is any device (for example, a personal computer (PC), router, or workstation) that receives and services the TFTP requests. When the router acts as a server, transfers are transparent to the user. Use the ELS subsystem tftp message log to view the transfer in progress.

**Note:** A file server or router is not allowed to `copy` any file into another router’s nonvolatile config memory or IBD. To write to the router, use the `copy` command at the destination's local Boot config> prompt.

Before using the `copy` command, note that:

- The device configuration must include the IP protocol and have at least one configured IP address. Also, the router must not be operating in CONFIG-Only mode.
- When a device’s configuration memory is empty (i.e., initially installing the device, corrupted SRAM), you must set the following parameters to restore the device’s configuration.
  1. Set the device’s host name.
Using the Boot CONFIG Process

2. Configure IP so that the device can reach each host with the archived configuration. The Protocol Configuration and Monitoring Reference explains the IP configuration commands.

- The source IP address for TFTP transfers is the device ID. This ID, by default, is a configured IP address for one of the device's network interfaces. To change the router ID, use the `set router ID` command at the IP Config> prompt.
- All TFTP data transfers are 512 bytes long. A data transfer of less than 512 bytes indicates an end to the transfer. A protocol, client, or remote host error generates an error packet which terminates the transfer.
- Download configuration files into the same type of router from which you are uploading the file.

**Note:** This implementation of TFTP does not allow you to copy to other routers.

Every TFTP transfer has a client and server UDP port number. When a client node generates an initial request to the server, an unused UDP port number on the client node is randomly selected as the client port. The server port is the UDP port number 69 (decimal). If a TFTP server is running on the server, it listens on UDP port 69. When the server receives a request from the network, a UDP port number currently unused on the server is randomly selected as the host port. The file transfers then occur on these two UDP ports.

### Accessing Configuration Files From a Remote Host or Router

To access configuration files from a remote host or router:

1. At the Boot config> prompt, type `copy` and press Enter.
2. At the source filename [CONFIG]? prompt, specify the remote IP address and the pathname.
   - This is the TFTP host or another router with the file in its IBD.
3. At the destination filename [Config]? prompt, press Enter.
   - By pressing Enter you are accepting the default filename, CONFIG. For example:

   ```
 Boot config> copy
 destination filename [CONFIG]?
 COPYing from "128.185.210.125:loads/configs/vl-28.cfg" to "CONFIG"
 COPY succeeded
   ```

### Filename Definitions for IBD

Each file or image stored on the IBD must have a unique loadname associated with it. The file name for the IBD can contain the complete path name in addition to the file name.

- **Example 1:** `test.cfg`
- **Example 2:** `/usr/loads/test.ldc`

The following example shows how to store a file to the IBD at the Boot config> prompt:

- **Example:** `copy 128.185.210.125:/usr/config/test.cfg ibd/test.cfg`
Using the Boot CONFIG Process

The router accepts any printable ASCII character as part of the file name definition, with two exceptions:

- The file name cannot begin with a numeric character
- The file name cannot contain a RETURN or LF (line feed) character.

The character string can accept a space, but it is recommended that you avoid using a space character, as this character is invisible. Another user who tries to enter the file name without the required space receives an error message.

**Note:** When using a IBM 2210 as a boot server for other routers, be sure to include the complete path name to the load file with the add boot-entry command on the booting router.

The following table contains the convention for filename extensions.

<table>
<thead>
<tr>
<th>Type of File</th>
<th>Filename Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>.cfg</td>
</tr>
<tr>
<td>Load</td>
<td>.ldc</td>
</tr>
</tbody>
</table>

**IBD Considerations When Transferring a File**

When transferring a file to the IBD consider the following:

- A full load may not fit into one bank of the IBD.
- Any load that needs more than one bank for storage writes only to empty, numerically adjacent banks. For example, when storing a load too large for bank 2, the load is stored in bank 3, as long as bank 3 is empty.
- If an adjacent bank is unavailable to store a large load, a TFTP Disk Full message appears on the console, the load is not stored, and the IBD remains unchanged. Any portion of the load that was stored in a bank is then removed.

**Validating the Configuration Load**

There are two methods for validating an image before it is written into the device's configuration memory:

- In the first method, the device assigns an identifier, called a Magic Number, to each platform type for the image that is archived and the image that is being restored. If the numbers do not match, the transfer is aborted and the console displays the message **Bad Magic Number**.
- In the second method, the host name for the device that originally archived the image is compared to the host name for the device that is restoring the image. If the host names do not match, the transfer is aborted and the console displays the message:

```
COPY error -
Got hostname "<hostname>" - is this okay (Yes or [NO])? no
```

This allows you to bring in the configuration from another device even if the hostname does not match. The configuration needs to be correct for your model device.

When a transfer fails due to a lack of RAM space, the console displays an error message.
Loading an Image at a Specific Time

There may be occasions when you may want to load an image into a device on a specific day and time when you will be unavailable. You can configure the device to perform a timed load using the `timeload activate` command. Other commands allow you to view a device’s scheduled load information or cancel a scheduled load. See [Boot CONFIG Commands](#) on page 93 for information on these commands.

Configuring Dumping

An important feature of the 2210 is the ability to dump the contents of system memory and processor’s registers to another host during a system reset that results from a software crash, hardware failure, or by pressing the reset button.

To configure dumping, do the following from the `Boot config>` prompt:

1. **Add address.**
   This can be the same as the boot address used in configuring booting.

2. **Add a dump entry.**
   This is the location of the host or server that is going to receive the dump file. You can add a dump entry with the `add dump-entry` command. The average size of a dump file is 8 MB.

3. **Enable dumping.**
   Dumping will not work unless you enable it using the `enable dumping` command. Dumping will remain enabled until you use the `disable dumping` command to terminate it.

Dump Files

Dump files contain the contents of the system memory and processor registers.

When the device crashes and dumping is enabled, the contents of memory are written to a remote host using TFTP. Each dump entry contains the location of the host server and the path, timeout, and file names for the dump files.

You can configure the device to automatically append a unique character string to the dump file names. This prevents an existing dump file from being overwritten by subsequent dumps. However, unique naming of the dump files can cause the server’s disk to become full if there are successive dumps. Unique naming may also be incompatible with the security requirements of some TFTP servers. Some servers require that a file already exist on the server to allow writing the dumps.

Dump files are for diagnostic purposes only. Enable the device’s dump and unique-naming capabilities only on the advice of your Customer Service representative.

TFTP Server, Boot and Dump Directories

You must create directories on the destination server to contain the boot and dump files. These directories must reside on a host server and the boot directories must
Using the Boot CONFIG Process

be globally readable and the dump directories globally writable. The boot and dump functions use the TFTP protocol. Your TFTP server may impose additional restrictions.

Installing Software/Code

To download a new load module from a server into the IBD, perform the following steps:

1. Install your load file into a server that is reachable by the device. Make sure the TFTP daemon is running in your server. On the device, issue the following commands at the router console:

2. At the OPCON prompt (*):
   a. Enter **status** to display the Config process ID (PID).
      
   
   b. Enter **talk** and the Config PID to access the Config> command environment.

3. At the Config> prompt, enter **boot**. This will access the Boot config> command environment.

4. At the Boot config> prompt, enter **add address** to specify an IP address over which the device can boot. This needs to be done only once for each interface you want to be able to use. It should not be done each time you want to get a new load module.

   You will then be prompted for the following information:
   - Interface number. This is the number of the interface over which the router will transfer the file.
   - New address. This is the IP address of this interface.
   - Net mask. This is the network mask for this interface.

   **Boot config> add address**
   Which interface is this address for [0]?
   New address [0.0.0.0]?
   Net mask for this interface [255.255.255.0]?

   The next steps are needed only if you added a boot address. If your boot address is already configured, skip these steps and go to step 9.

5. Press **Ctrl-P** to return to the OPCON prompt (*).

6. Enter **restart** at the OPCON prompt.

7. Enter **talk** and the Config PID.

8. Enter **boot** at the Config> prompt to return to the Boot config> command environment.

9. At the Boot config> prompt, enter **tftp get**. This initiates the file transfer of the load module.

   You will be prompted for the following information:
   - Local filename. For the local filename, enter the filename of the new load in the IBD.
   - Remote host. For the remote host, enter the IP address of the server.
   - Host filename. For the host filename, specify the entire path and filename on the host machine.
10. Enter **list boot-entries** at the Boot config> prompt. This lists the load modules in your IBD.

```
Boot config> list boot-entries
```

Note the entry number of the load module in the IBD that you were using prior to receiving this load module.

The boot database is where the router goes to determine where to get the load module from. You may have multiple entries in your database. The first entry is usually a load module in the IBD, and the second is usually a load module on a remote host or router.

11. To change the boot database pointer to the module you just loaded, enter **change boot** at the Boot config> prompt. This is what determines which load module is used the next time you reboot the router.

```
Boot config> change boot
```

You will then be prompted for the entry number of the previous module you were using in IBD. This is the entry number from step 10. The boot entry number will usually be **1**.

```
Change which entry?: 1
```

12. Enter the filename of the new load. This is the name that you specified at step 9 on page 90 to store in the IBD. Filenames are case sensitive.

```
remote host or IBD load name:
```

13. Enter **exit**.

```
Boot config> exit
```

14. Press **Ctrl-P** to return to the OPCON prompt (*)

15. Enter **restart** to make sure the configuration change from the “change boot” command takes effect.

16. Enter **reload** to load the device with the new load module.

17. Once you are confident with the new load, you can create space in your IBD for future loads by erasing the previous load:
   a. Enter **talk 6**.
   b. Enter **boot**.
   c. Enter **list ibd** to list the content of the banks. Note the number of the banks where the previous load is stored.
   d. Enter **erase** and either the previous load name or the bank numbers. For example, to erase from bank 36 to 50, enter:

```
Boot config> erase 36-50
```
Using the Boot CONFIG Process


Chapter 8. Configuring Boot CONFIG

This chapter describes the Boot CONFIG configuration and operational commands. It includes the following sections:

- Entering and Exiting Boot CONFIG
- Boot CONFIG Commands

Entering and Exiting Boot CONFIG

To enter the Boot CONFIG command environment, use the CONFIG boot command. When the router’s software is initially loaded, it is running in the OPCON process, signified by the * prompt. From the * prompt:

1. Enter talk 6.
2. At the Config> prompt, type boot.
3. At the Boot config> prompt, type ?. See Add on page 94 for a list of commands.

To return to the CONFIG process, type exit.

Boot CONFIG Commands

This section describes the Boot CONFIG commands. Each command includes a description, syntax requirements, and an example. Table 11 summarizes the Boot CONFIG commands.

After accessing the Boot CONFIG environment, enter the boot configuration commands at the Boot config> prompt.

Table 11. Boot CONFIG Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a boot interface IP address to a specified interface, host boot entry, or host dump entry.</td>
</tr>
<tr>
<td>Change</td>
<td>Changes the boot interface IP address, network boot entry data, or network dump entry data.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copies boot files and configuration files to or from remote routers and hosts or between resources within the router.</td>
</tr>
<tr>
<td>Describe</td>
<td>Displays information about the stored loadfile images in the IBD.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes a network boot interface address, a host boot entry, or host dump entry.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables memory dump or unique naming of the dump files.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables memory dump or unique naming of dump files.</td>
</tr>
<tr>
<td>Erase</td>
<td>Erases a stored image on an IBD bank.</td>
</tr>
<tr>
<td>List</td>
<td>Displays all network boot addresses, all boot and dump configuration data, the contents of the IBD, BOOTP name settings, and scheduled image load information.</td>
</tr>
<tr>
<td>Load</td>
<td>Copies a boot file from the IBD to RAM or copies a boot file from a remote host to RAM.</td>
</tr>
<tr>
<td>Store</td>
<td>Copies the boot file from RAM to the IBD.</td>
</tr>
</tbody>
</table>
## Table 11. Boot CONFIG Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeload</td>
<td>Schedules an image load into the device on a specific day and time, cancels a scheduled load or displays scheduled load information.</td>
</tr>
<tr>
<td>TFTP</td>
<td>Initiates TFTP file transfers between device memory or IBD and remote hosts.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment</a> on page 11.</td>
</tr>
</tbody>
</table>

## Add

Use the `add` command to enter boot/dump parameters into the device’s configuration database.

### Syntax:

```
add address
boot-entry
bp-device
dump-entry
```

**address**

Specifies the IP address of the interface or device over which the device can boot or dump. When you enter the `add address` command, you must supply or accept the default value of the following information:

- Interface number of the network interface
- IP address
- Network mask

To obtain the interface number (Ifc#), use the `CONFIG list devices` command. [Chapter 5. The Configuration Process (CONFIG - Talk 6) and Commands](#) on page 33 describes this command.

**Note:** Failure to add an address results in the device being unable to boot or dump over the network.

Remember the following:

- The first address you enter corresponds to the first boot-entry entered, the second address to second boot-entry, and so on.
- Multiple boot entries can use the same IP address (interface).
- You must enter this command if you are using the `add boot-entry`, `add dump-entry` and `load remote` commands.

**Example:**

```
add address
Which interface is this address for [0]?
New address [0.0.0.0] ? 128.185.1.2
Net mask for this interface [255.255.255.0]?
```

### boot-entry

Specifies the information needed by the device to locate the TFTP host server and retrieve the boot image file. There are several ways that a device can boot:

- If the router is booting up using software stored in its IBD, then you must specify the IBD loadname as the first boot entry in the configuration. You
can configure more than one boot device. Obtain the loadname using the `list ibd` command. The loadname is case-sensitive.

Example: `add boot-entry`
remote host or IBD loadname [0.0.0.0]? 128.185.30.0
via gateway (0.0.0.0 if none) [0.0.0.0]? 0.0.0.0
timeout in seconds [3]? 10
file name [ ]? loads/Y21.1dc

- If the device is booting using software stored on a TFTP server, then you must specify the IP address of the remote TFTP host server. Note that the TFTP host server can be another device with an IBD.
- If the TFTP host server is on a remote network (not directly connected to the booting router), you must specify the IP address of the next hop (router) towards the host server.

### Table 12. Add Boot Entry Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote host or IBD loadname?</td>
<td>IP address of the remote host or an IBD loadname. Note: An IBD loadname must start with a letter. Otherwise, the system interprets the string as an IP address.</td>
</tr>
<tr>
<td>via gateway?</td>
<td>IP address of the first hop router, if any. If the TFTP host server is on a directly connected network, answer 0.0.0.0.</td>
</tr>
<tr>
<td>timeout in seconds?</td>
<td>Specifies the amount of time the device will wait before retransmission takes place. The default is 3 seconds. This may need to be set to a longer time over exceptionally slow boot paths.</td>
</tr>
</tbody>
</table>
| file name?         | The complete directory path and name of the boot image file on the TFTP host server. (The complete directory path is not necessary on some machines. The default assumes the path is `tftpboot/` which is invisible to you, so if the path is `/tftpboot/loads/name`, you type `loads/name`.)  
  - When referencing a file stored on a UNIX-based operating system use a forward slash `/` and remember that the file name is case-sensitive. If the path requires the leading forward slash (/) use a double forward slash (`//`): `128.185.15.1//tftpboot/loads/name`.  
  - When referencing a file stored on a DOS disk use a backward slash `\` and remember that the file name is not case-sensitive. |

**Note:** To view a list of the current boot configuration, enter the Boot CONFIG `list boot` command.

Example: `list boot-entry`
remote host or IBD loadname [0.0.0.0]? 10.0.0.5
via gateway (0.0.0.0 if none) [0.0.0.0]? 12.0.0.7
timeout in seconds [3] 10
file name [ ]? loads/v1.1dc

### bp-device

Provides a BOOTP boot-up capability as follows for retrieving the device’s software from a BOOTP (Boot Protocol) device.

- If the device has never been configured or is missing it’s automatic boot up configuration information and the auto-boot switch is enabled, the device will automatically attempt to use BOOTP on all LAN interfaces to retrieve its boot-up information.
- During an auto-boot, the device will try to use the information provided in the boot entries to retrieve its load image file first. If the device cannot retrieve its load image file with the information in the boot entries, it will then attempt to boot up using BOOTP.
- The interfaces selected with the `add bp-device` command depend on the locations of the BOOTP servers in the network.
- You cannot use BOOTP to boot over directly connected serial interfaces.

Example: `add bp-device`
Which interface number [0]? 1
**dump-entry**

Specifies the IP address of the remote host that will receive the dump file(s). When you enter the `add dump-entry` command, you must supply the following information:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote host?</td>
<td>IP address of the remote host on which the dump file will be stored, usually same as boot server</td>
</tr>
<tr>
<td>via gateway?</td>
<td>If host is on a remote network (not directly connected to the booting device), you must specify the IP address of the next hop (router) towards the host. If the host is on a directly connected network, answer 0.0.0.0.</td>
</tr>
<tr>
<td>timeout in seconds?</td>
<td>Specifies the amount of time the device will wait before retransmission takes place. The default is 3 seconds. This may need to be set to a longer time over exceptionally slow boot paths.</td>
</tr>
<tr>
<td>file name?</td>
<td>Base dump path and filename (may have unique suffix appended).</td>
</tr>
</tbody>
</table>

To view a list of the dump configurations, enter the `list dump-entries` command.

**Example:**

```bash
add dump-entry
remote host [0.0.0.0]? 128.185.162.30
via gateway [0.0.0.0 if none] [0.0.0.0]? 128.185.160.3
timeout in seconds [3]? [3]
file name []? c:\dump\gertrude.dmp
```

**Change**

Use the `change` command to modify entries in the existing address, boot-entry, and dump-entry information without deleting and re-adding the information. You can delete and reenter information instead of using the `change` command.

**Syntax:**

```bash
change
 address
 boot-entry
 bp-device
 dump-entry
```

**address**

Changes an existing address for a boot interface or device that was previously added. When you enter the `change address` command, you must supply the following information:

- Address entry number
- Interface number of the network interface
- IP address
- Network mask

**Note:** The console displays some of this information, such as the address entry number, when you enter the Boot CONFIG `list` command. To obtain the interface number (Ifc#), use the CONFIG `list devices` command. ([Chapter 5. The Configuration Process (CONFIG - Talk 6) and Commands” on page 38](#) describes this command.)

**Example:**

None
change address
Change which entry [1]? 1
Which interface is this address for [0]? 1
New address [192.9.1.1]? 128.185.162.1
Net mask for this interface [255.255.255.0]? 

boot-entry
Modifies the configuration about a previously added network boot file. When you enter the `change boot-entry` command, you must supply the following information:

- Boot entry number
- IP address of the remote host
- IP address of the first hop router, if any
- TFTP retransmission timer value
- Boot file name, if different from the current file name.

**Note:** The console displays some of this information, such as the boot entry number, when you enter the Boot CONFIG `list boot-entries` command.

**Example:**
```
change boot-entry
change which entry [1]? 1
remote host [18.123.0.16]? 1
via gateway [0.0.0.0 if none] [0.0.0.0]? 1
timeout in seconds [3]? 1
file name [user/lib/gw/gwimage.1db]?
```

bp-device
Changes the interface that is the BOOTP device. To obtain the entry number for an interface, use the `list boot-entries` command.

**Example:**
```
change bp-device
Change which entry [1]? 1
Which interface is this entry for [1]? 1
```

**Note:** For more information on the BOOTP protocol and its related processes, refer to the chapters on configuring and monitoring the IP protocol in the *Protocol Configuration and Monitoring Reference*.

daump-entry
Modifies the configuration about a previously added network dump file. When you enter the `change dump-entry` command, you must supply the following information:

- Dump entry number
- IP address of the remote host
- IP address of the first hop router, if any
- TFTP retransmission timer value
- Base boot file name, if different from the current file name

**Note:** Use the Boot CONFIG `list dump-entries` command to display this information.

**Example:**
```
change dump-entry
change which entry [1]? 1
remote host [18.123.0.16]? 1
via gateway [0.0.0.0 if none] [0.0.0.0]? 1
timeout in seconds [3]? 1
file name [user/lib/gw/gwimage.1db]? c:\dump\debug1.dmp
```
Copy

Use the **copy** command to copy boot files and configuration files to and from remote routers and hosts. To use the **copy** command, the device must have IP configured and running on at least one interface. The device cannot be in Config-only mode.

**Syntax:**

```plaintext
copy config [ibd or filename] [host-ip-address or filename]
```

**Example 1 - Copying from a Remote Router:**

```plaintext
Boot config> copy source filename [CONFIG] 128.185.110.30/ibd/Y17.ldc destination filename IBD/Y17.ldc
```

**Source filename** and **destination filename** must be one of the following:

**config** Configuration memory

**ibd/filename** File name on IBD. Include the complete pathname.

**IP address/remote** Remote file on TFTP host.

**path and filename** Include the complete pathname.

**Note:** When copying a file to the IBD, the file is placed in the largest set of contiguous free banks. If no banks are available the message **COPY error - TFTP Disk Full or IBD full** appears on the console.

In the example above, get the source from a remote router whose IP address is 128.185.110.30. The IBD has a filename Y17.ldc. The colon (:) is used here as the delimiter. The **destination** has a filename of Y17.cfg.

**Example 2 - Copying from a Remote Host:**

```plaintext
Boot config> copy source filename [CONFIG] 128.185.110.30/router/loads/2210.02.cfg destination filename ibd/2210.02.cfg
```

In the example above, the source has a path and filename. The destination is an IBD.

**Example 3 - Copying Within a Device:**

```plaintext
Boot config> copy source filename [CONFIG] config destination filename [CONFIG] ibd/2210.02.cfg
```

In the example above, the source is the configuration memory. The destination is an IBD.

**config** Gets the same result as if you type copy and press the **Enter** key, except that you do not get prompted for the source filename.
[ibd or filename]
Copies a boot file or configuration file from an IBD. You must include the file name.

[host-ip-address or filename]
Copies a boot file or configuration file from a remote host. You must include the file name.

Delete

Use the delete command to remove entries from the boot and dump configuration database.

Syntax:
```
dele ate address
 _boot-entry
 bp-device
 dump-entry
```

address #
Removes an interface address entry from the boot and dump configuration database.

When you enter the delete address command, a prompt appears for the entry you want to delete. The address entry number is the first number that appears on each line when you enter the list address command at the Boot config> prompt.

To verify the deletion, use the list command.

Example:
```
delete address
Delete which entry [1]?
```

boot-entry
Removes a boot entry from the boot and dump configuration database.

When you enter the delete boot-entry command, a prompt appears to enter the boot-entry you want to delete. The boot-entry number is the first number that appears on each line when you enter the list boot-entries command at the Boot config> prompt.

To verify the deletion, use the list command.

Example:
```
delete boot-entry
Delete which entry [1]? 2
```

bp-device
Removes the specified interface as a BOOTP device.

Example:
```
delete bp-device
Delete which entry [1]?
```

Note: For more information on the BootP protocol and its related processes, refer to the chapters on configuring and monitoring the IP protocol in the Protocol Configuration and Monitoring Reference.

dump-entry
Removes a dump entry from the boot and dump configuration database.
When you enter the `delete dump-entry` command, a prompt appears for the entry you want to delete. The dump entry number is the first number that appears on each line when you enter the `list dump-entries` command at the `Boot config>` prompt.

To verify the deletion, use the `list` command.

Example:
```
delete dump-entry
Delete which entry [1]?
```

**Describe**

Use the `describe` command to display information about a stored image in the IBD.

**Syntax:**
```
describe loadname
```

**loadname**
Displays the following information about the specified loadname:
- Copyright information.
- Supported protocols, features, and data-link types.
- Supported network interfaces.

Example:
```
describe ibd/test.ldb
```

```
Copyright Notice
Software configuration: Expanded Multi-Protocol DLSw
Includes:
Internet Protocol - IP & OSPF
Novell - IPX
AppleTalk Phase 2 - AP2
Banyan VINES - VIN
Adaptive Source Routing Transparent Bridge - ASRT
with NETBIOS Name Caching & Filtering
Data Link Switching - DLSw
SDLC Relay - SRLY
Frame Relay
ppp
X.25
V.25bis
WAN Restoral/Reroute - WRS
Bandwidth Reservation - BRS
MAC Filtering - MCF
```

**Disable**

Use the `disable` command to disable memory dumping and the unique naming of dump files.

**Syntax:**
```
disable dumping
 disable unique-naming
```

dumping
Prevents the device from performing a memory dump to the network when a system failure occurs. After entering this command, use the Boot CONFIG
**list all** command to verify the dump settings. Dumping is suppressed until you enter the **enable dumping** command. **Disable dumping** is the default setting.

**unique-naming**
Suppresses the automatic unique naming of dump files. After entering this command, use the Boot CONFIG **list all** command to verify the unique naming settings. Unique naming is suppressed until you enter the **enable unique-naming** command. **Disable unique-naming** is the default setting.

### Enable

Use the **enable** command to enable memory dumping and the unique naming of dump files. This command must be used to turn on the dump operation using the data supplied with the **add dump-entry** command. Dumping should only be enabled if the device is experiencing problems of unknown origin. Dump files can be very large and consume large amounts of disk space. It takes considerable time to transfer the large dump file through the internet to the dump host.

**Syntax:**
```
enable	
dumping
unique-naming
```

**dumping**
Enables the router to perform a memory dump to the network when a system failure occurs. After entering this command, use the Boot CONFIG **list all** command to verify the dump settings. Dumping is enabled until you enter the **disable dumping** command.

**unique-naming**
Enables the automatic unique naming of dump files. A random suffix (hexadecimal) from 1 to 5 characters will be added to the configured dump filename when the dump occurs.

After entering this command, use the Boot CONFIG **list all** command to verify the unique naming settings. Dump files include unique names until you enter the **disable unique-naming** command.

### Erase

Use the **erase** command to erase a stored image or an IBD bank.

**Syntax:**
```
erase	[loadname or bank-number]
```

**loadname OR bank-number**
Erases a stored image or an IBD bank. Enter the loadname or the bank number (1 through 64) that contains the load after the **erase** command. To verify the erase, use the **list ibd** command. If an erase does not succeed after 10 tries, the device marks the bank as faulty.

**IBD parameters:**
- IBD size: 4 MB
- Bank size: 64 KB
- Starting bank number: 1
- Ending bank number: 64
Specifying a bank number may result in a partial erase of the load image file if it is large enough to traverse more than one bank.

**Example 1:**

```bash
erase test
Erasing bank 5 ...
Banks 1-4 contain ...
Banks 5-7 have been erased
```

**Example 2:**

```bash
erase 2
Are you sure you want to erase bank 2? (Yes or [No]): yes
Erasing bank 2 ...
Banks 5-7 has been erased
```

**Example 3:**

```bash
erase
Loadname or Bank Number: 4
Are you sure you want to erase bank 4? (Yes or [No]): yes
Erasing bank 4...
Bank 1 contains load "vl-29.cfg" which use 131094 bytes
Loaded using TFTP over IP
Filename config
Host 0.0.0.0
Banks 2-3 contain load "vl-22.cfg" which uses 1832848 bytes
Manual Booted using TKR-4/16 at (80001000, 72) as 10.1.155.29
Filename loads/latest-gen.c5-multisna.ldc
Host 128.185.210.125, Gateway 10.1.155.43
Bank 4 has been erased
```

If the erase fails, a message indicating the failure appears on the console along with the banks that failed. Failure information will appear in the **list** command until the router has been restarted. The router will **not** automatically delete any boot records referencing the image in the failed banks.

At boot time, if the boot PROM cannot find an image, it will display a message and try the next boot record.

**List**

Use the **list** command to display the current boot and dump configuration database, the contents of the IBD, and scheduled image load information.

**Syntax:**

```bash
list
 addresses
 all
 boot-entries
 bp-device
 dump-entries
 ibd
 view

addresses
 Displays the IP addresses and their subnet masks of all the network boot interfaces entered using the **add address** command.

Example:
```
list addresses
Interface addresses:
1: 192.9.1.1 on interface 0, mask 255.255.255.252
2: 192.9.223.39 on interface 2, mask 255.255.255.0

all
Displays all boot and dump configuration data and the current settings for
the dump, unique-naming capabilities, and scheduled image load
information.

Example:
Interface Addresses:
Boot files:
1: "/u/steve/vl/load/vl060694/vl.X11.ldc" on 216.1.2.100 via 0.0.0.0.

BOOTP over interface(s): 0
Dumping disabled
Unique-naming disabled
Dump to:
Banks 1-19 contain load "vl.X11.ldc" which uses 1199272 bytes
  Loaded using TFTP over IP
  Filename /u/steve/vl/load/vl060694/vl.X11.ldc
  Host 216.1.2.100
Banks 20-48 have been erased
Bank 49 in unknown(AA) state
Banks 50-57 contain load "vl051894.ldc" which uses 508492 bytes
  Loaded using TFTP over IP
  Filename /u/steve/vl/load/vl051894/vl051894.ldc
  Host 216.1.2.100
Banks 58-64 have been erased

Time Activated Load Schedule Information...
The router is scheduled to reload as follows.
Date: April 1, 1997
Time: 13:00
Remote host IP address: 1.1.1.2
Via gateway: 0.0.0.0
Timeout in seconds: 10
Filename: /tftpboot/vl3.img
Interface address: 0
New address: 1.1.1.1
New mask: 255.255.255.0

boot-entries
Displays the boot file configuration.

Example:
1st boot-entries
1: /usr/lib/gw/this-dn.ldb on 192.9.1.2 via 0.0.0.0 for 3 secs
2: /usr/lib/gw/this.ldb on 192.9.2.2 via 192.9.1.4 for 3 secs
3: IBD load "test"

bp-device
Lists the interfaces that were previously added using the add bp-device
command.

Example:
1st bp-device
BOOTP over interface(s): 0 1

dump-entries
Displays the dump file configuration.

ibd
Displays the contents of the IBD. It provides information similar to the
GWCON boot information command and displays the loadname of the file
and the host server from which the file was loaded. In addition, the erased
and faulty banks of the IBD appear along with the faulty chips, if necessary.

Example:
1st ibd
Bank 1 contains load "2210-29.cfg" which uses 131094 bytes
  Loaded using TFTP over IP
  Filename config
  Host 0.0.0.0

Chapter 8. Configuring Boot CONFIG 103
Banks 2-3 contain load "vl/load-ver2.ldc" which uses 1652961 bytes
Loaded using TFTP over IP
Filename loads/vl/load-ver2.ldc
Host 128.185.210.125
Bank 4 contains load "vl/load-ver4.cfg" which uses 131084 bytes
Loaded using TFTP over IP
Filename CONFIG
Host 0.0.0.0

"Loaded using TFTP over IP" implies that you used the copy command to IBD from this local router.

**view**
Displays the time, date, and other information about a scheduled image load.

**Example:**

```plaintext
list view
Time Activated Load Schedule Information...
The router is scheduled to reload as follows.
Date: April 1, 1997
Time: 13:00
Remote host IP address: 1.1.1.2
Via gateway: 0.0.0.0
Timeout in seconds: 10
Filename: /tftpboot/vl3.img
Interface address: 0
New address: 1.1.1.1
Network mask for this interface: 255.255.255.0
```

**Load**

Use the **load** command to copy the boot file into the device’s main memory from either a local or remote source. The result of the **load** command is the same as performing the **reload** command from the * prompt.

**Syntax:**

```
load local...
load remote...
```

**local loadname**
Retrieves a previously stored load image file from the device’s IBD into the router’s memory. The loadname must match one of the loadnames stored in the IBD. The loadname is case-sensitive.

To set up the IBD, use the **add boot-entry** command. This could take up to five minutes.

You must have a load file in the IBD before you can use the **load local** command successfully.

**Example:**

```
load local
Loadname: ibd/softrel.ldc
```

**Note:** If the software does not find the load file, then it will go into the boot monitor and do an auto-boot or manual boot, depending on the setting of your boot switch.

**remote**
Loads the boot file from a remote host into RAM. To perform a remote load:

1. Enter the **load remote** command after the Boot config> prompt and enter the remote host address, remote path name, first hop address, and TFTP timeout value after the prompts.
2. A prompt then asks you to confirm the load. Enter no to cancel the command. Enter yes to load the boot file from the remote host into RAM.

Example:

```
load remote
Remote Host Address [0.0.0.0]? 128.185.210.125
Remote Pathname[]? /loads/vl.1dc
First Hop Address [0.0.0.0]? 128.185.208.38
TFTP Timeout Value [3]? Are you sure you want to reload the gateway(Yes or No): yes
```

Remote Host Address
IP address of the host containing the boot file.

Remote Pathname
Pathname and filename of the boot file you want to load.

First Hop Address
The address of the first-hop router that routes to other networks.
This is needed if the remote host address is not on a directly connected network; otherwise, use the 0.0.0.0 default.

TFTP Timeout Value
The time interval between the TFTP packet retransmissions. Longer values (longer than the default value of 3) may be needed when booting over or across slow networks or serial lines.

Store

Use the store local command to store a compressed image in erased banks of the IBD. The console displays the number of bytes that were stored. To verify that an image was stored, use the list ibd command.

**Note:** The router stores images sequentially from bank 1 to bank 4. When all 4 banks are full, you receive an error message. To create space in a bank, use the erase loadname or erase bank-number command.

As the device’s load image file is stored into the IBD, it is compressed. The load image file will not overwrite a non-erased IBD and will not try to write beyond the end of the IBD. If the compression fails, the operator will be notified and the affected IBD will be erased.

The loadname can be any name up to 80 characters in length, can start with an alphabetic character, and is case-sensitive.

**Syntax:**

```
store local loadname
loadname
```

Stores the specified image in an erased bank of the IBD.

**Example:**

```
store local
Loadname: test
Will start storing at bank #2
.
.
Number (dec) bytes used
Boot config>
```
Timedload

Use the timedload command to schedule an image load on a device, cancel a scheduled load, or to view scheduled load information.

This command allows you to load a software image into the device outside of peak network traffic periods when support personnel may not be present.

Syntax:

```
timedload
 activate
 deactivate
 view
```

activate

Schedules an image load on the device. You will be prompted for information describing the source of the image similar to the add boot-entry and add address commands. See "Add" on page 94 for information about the parameters.

**Time of day to load image**

Specifies the date and time at which the device will load the new image. Specify the value as YYYYMMDDHHMM, where:

- **YYYY** is the four-digit year.
- **MM** is the two digit month.
- **DD** is the two-digit day of the month.
- **HH** is the two-digit hour in 24–hour time.
- **MM** is the two-digit minute of the hour.

**Note**: If the current month on the device is December, the year data must be the current year or the following year. Otherwise, if the current month on the device is January through November, the year data must be the current year.

**MM Valid Values**: 01 to 12 with 01 representing January.

**DD Valid Values**: 01 to 31, depending on the value of MM.

**HH Valid Values**: 00 to 23

**MM Valid Values**: 00 to 59

The following are examples of scheduling a load from different sources.

**Example 1. Load from a remote host:**

```
Boot config> timedload activate
Time Activated Load Processing...
Remote host IP address or IBD load name [0.0.0.0] 1.1.1.2
Via gateway (0.0.0.0 if none) [0.0.0.0]? 0.0.0.0
Timeout in seconds [10]? 10
File name []? /tftpboot/vl3.cce
Do you want to configure an interface address? (Yes, No, Quit): [No] yes
Which interface do you want to configure an address to boot over [0]? 0
New address [0.0.0.0]? 1.1.1.1
Network mask for this interface [255.255.255.0]? 255.255.255.0
Config filename [CONFIG] ? ibd/vl3.cfg
Time of day to load image (YYYYMMDDHHMM) []? 199703191630
The load timer has been activated.
```

**Example 2. Load from the IBD:**
Boot config> timedload activate
Time Activated Load Processing...

Remote host IP address or IBD load name [0.0.0.0] ibd:vl3.cce
Time of day to load image (YYYYMMDDHMM) []? 199703191630
The load timer has been activated.

deactivate
Cancels a scheduled load.

Example 1. Deactivate time activated load:

Boot config> timedload deactivate
Deactivate Load Timer Processing...

Do you want to deactivate the load timer? (Yes, No, Quit) [No]? yes
The load timer has been deactivated

view
Displays scheduled load information.

Example 1. Load image source is a remote host:

Boot Config> timedload view
Time Activated Load Schedule Information...

The router is scheduled to reload as follows.

Date: March 19, 1997
Time: 16:30
Remote host IP address: 1.1.1.2
Via gateway: 0.0.0.0
Timeout in seconds: 10
Filename: /tftpboot/vl3.cce
Interface address: 0
New address: 1.1.1.1
Network mask for this interface: 255.255.255.0
Config filename: ibd/vl3.cfg

Example 2. Load image source is the IBD:

Boot Config> timedload view
Time Activated Load Schedule Information...

The router is scheduled to reload as follows.

Date: March 19, 1997
Time: 16:30
Filename: vl3.cce
Config filename: ibd/vl3.cfg

TFTP

Use the TFTP command to initiate TFTP file transfers between a remote host and the device's nonvolatile configuration memory or IBD. It provides the ability to store/retrieve a load image file into/from a TFTP server or a router with an IBD.

The router acts as a TFTP client. The remote host is any device (for example, router, workstation, PC) that is running IP that acts as a TFTP server node. The router cannot be in Config-only mode.

Entering the TFTP get and put commands locks the CONFIG process for the duration of the operation. The following two keyboard character combinations are recognized during the TFTP operation:

Ctrl-P Displays the OPCON prompt (*).
Ctrl-C Cancels the TFTP operation.

Note: Do not press the reset button or power off the router while it is performing a TFTP get operation. This will leave the destination configuration memory in an inconsistent (and invalid) state. That is, you will have a partial configuration or load and it will appear to be valid.
Syntax:

```
tftp get
 put
```

`get CONFIG address-remote-server path/filename`

Initiates a request to a TFTP server to transfer a file from the server to the device. The server sends a data packet and the client node acknowledges receipt of the data. This cycle continues until the transfer is complete and the following message appears on the console: TFTP transfer complete, Status: OK

If the TFTP transfer is unsuccessful, a detailed error message appear on the screen. While transferring a file to CONFIG, the following message appears on the console: Updating Config: Do Not Interrupt

If you are attempting to transfer a file to IBD, and there is not enough memory in the IBD, the following message appears on the console:

```
No Free IBD Bank
```

Attention: Do not reset or power off the router while updating of the configuration memory is in progress. This may corrupt the data in configuration memory, forcing you to reconfigure the router.

Example:

```
tftp get
local filename [CONFIG]?
remote host [0.0.0.0]? 128.185.163.1
host filename [OA019947.cfg]? configs/v1-28.cfg
TFTP transfer complete, status: OK
```

**Local filename**

Specifies the name that you want the file to appear under after it has been transferred to the local device. When entering the filename, make sure that you specify the complete pathname if you are transferring the file to the IBD. The default is CONFIG.

**Remote Host**

Specifies the address of the host containing the file you want to transfer. The Magic Number stored in the file is compared to the number in static RAM. This prevents cross loading nonvolatile memories between types of devices.

**Host filename**

Specifies the name of the file on the host that you want to transfer. Make sure that you specify the complete pathname. The default is the ASCII representation of one of the host's IP addresses in hexadecimal. This ensures that the file has a unique name.

The hostname must match the hostname in the archive file. The hostname is case-sensitive.

```
put CONFIG address-remote-server path/filename
```

Initiates a request to a TFTP server to transfer a file to the server from the router. The server acknowledges the request and the client transfers the file. This cycle continues until the transfer is complete and the console displays the following message:

```
TFTP transfer complete, Status: OK
```

**Note:** The TFTP put command does not allow you to place a file in another device's configuration memory or IBD. You must be logged into that device and use the TFTP get command.
The console display is the same as the TFTP get command.

Example:

```
tftp put
Local filename [CONFIG]?
Remote host [0.0.0.0]? 128.185.163.1
Host filename [0A019947.cfg]?
TFTP transfer complete, status: Timeout
```

**local filename?**

CONFIG is a filename that refers to the device’s nonvolatile memory.

**remote Host?**

You must specify the IP address of the remote host and filename to be used to store the CONFIG on the remote host.

**host filename?**

Specifies the name of the file on the host to which you want to transfer. Make sure that you specify the complete pathname. The default is the ASCII representation of one of the host’s IP addresses in hexadecimal. This ensures that the file has a unique name. The hostname must match the hostname in the archive file. The hostname is case-sensitive.

Example:

```
tftp put IBD/r151.ldc
Remote host [0.0.0.0]? 140.187.2.100
Host filename [80B9D626.cfg]?
TFTP transfer complete, status: OK
```

To abort a TFTP transaction, press Ctrl-C. Answer yes to Are you sure (yes or no):

The TFTP command generates the following error messages:

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown Error</td>
<td>Protocol failure.</td>
</tr>
<tr>
<td>File Not Found</td>
<td>Specified host file does not exist.</td>
</tr>
<tr>
<td>Access Violation</td>
<td>File protection error.</td>
</tr>
<tr>
<td>Disk Full</td>
<td>File system full during write.</td>
</tr>
<tr>
<td>Illegal Operation</td>
<td>Undefined TFTP operation requested.</td>
</tr>
<tr>
<td>Unknown TID</td>
<td>Unexpected TFTP packet received.</td>
</tr>
<tr>
<td>File Already Exists</td>
<td>File already exists.</td>
</tr>
<tr>
<td>No Such User</td>
<td>TFTP not supported on host.</td>
</tr>
</tbody>
</table>
Chapter 9. Boot Options

This chapter covers the boot options available. Normally, the device boots from the Integrated Boot Device (IBD). You need to use this chapter only for maintenance or diagnostic operations or for software upgrades.

The boot options allow you to boot the 2210 using the following methods:

<table>
<thead>
<tr>
<th>Boot Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBD</td>
<td>Boot from the IBD using queries. Use this method when the 2210 is configured for a different boot method and you want to boot the 2210 from the IBD instead.</td>
</tr>
<tr>
<td>TFTP Host Server</td>
<td>Boot from a load image file on a TFTP host server. Another router can act as a TFTP host server.</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Boot over the LAN port using the Bootstrap Protocol.</td>
</tr>
</tbody>
</table>

Additional options available at the boot monitor prompt let you run diagnostics, display configuration information, load configuration memory from a host on the network or through the Service port, clear configuration in SRAM, and download and upload router code through the Service port.

Included in this chapter are the following sections:

- Before you Begin
- "Boot Options Available" on page 113
- "Boot Option Prompts" on page 114
- "Configuring the 2210" on page 125

Before you Begin

Before booting the 2210, note the following:

- In order to use the procedures in this chapter, you must have a terminal connected directly to the 2210 (Refer to the IBM 2210 Nways Multiprotocol Router Installation and Initial Configuration Guide for an explanation of how to connect a terminal.)
- The 2210 is shipped with the boot file that is stored in the IBD.
- You cannot boot the 2210 over the ISDN interface.
- If you are booting over the Token-Ring interface and there is no Token Ring link active, you receive the following message: lobe media test failed: function failure.

Note: To stop a 2210 boot, press Ctrl-C on the terminal keyboard.

Boot From the Integrated Boot Device Using a Console Terminal

An example of an IBD boot using a console terminal appears at the end of this procedure. Use this boot method when you have a load image stored in the IBD.

1. The following copyright information should be on the console screen. If necessary, press the Reset button, then Ctrl-C to display this information.

Bootstrap Monitor V1.0
(c) Copyright IBM Corp. 1994, 1997
2. Enter **bm** and the console displays the following information and the first boot prompt:

```
PROM Load/Dump Program * Revision: 1.0 *
Copyright IBM Corp. 1994, 1997
IBD has load(s) load image names
Device Slot Number or IBD Load Name:
```

3. Enter the load image name. The IBD load name is case-sensitive. Press **Return**. The software is loading when you see this message:

```
Loading using IBD Load Image "ibmMRNS.ldc"
```

**BOOTP Using a Console Terminal**

BOOTP tries to boot over all of the installed interfaces using all possible hardware configurations starting with the card that passes its self-test first. This generally occurs in the order Ethernet, and then token ring. For additional information about BOOTP, refer to Chapter 7, The Boot CONFIG Process.

A BOOTP boot is successful when the console displays the following information:

```
PROM Load/Dump Program * Revision: 1.0 *
Copyright IBM Corp. 1994, 1997
BOOTP Using interface name at (CSR address, vector address)
Trying connector
Doing BOOTP
Trying host IP address
file name
loading
Copyright IBM Corp. 1994, 1997
Config Only Mode - Switch Selected
*
```

The * indicates that the load image has finished loading.

**Unsuccessful BOOTP**

A BOOTP boot fails under the following conditions:

- When the server does not know about the 2210. The console displays the following information:

```
PROM Load/Dump Program * Revision: 1.0 *
Copyright IBM Corp. 1994, 1997
BOOTP Using interface at (CSR address, vector address)
Trying connector
Doing BOOTP
BOOTP timeout
Auto BOOTP failed
```

The console then displays the prompts to perform a manual boot. Table 15 on page 115 describes these prompts.

- When the server knows about the 2210, but the load file is not present, the console displays the following information:

```
PROM Load/Dump Program * Revision: 1.0 *
Copyright IBM Corp. 1994, 1997
BOOTP Using interface at (CSR address, vector address)
Trying connector
Doing BOOTP
BOOTP got reply but server sent no filename
Manual BOOTP failed - Enter @ at prompt BOOTP again
```

112 MRS V3.2 Software User's Guide
Enter @ to retry BOOTP. If the retry fails, use another method to boot the 2210.

**Booting from a TFTP host server using a console terminal**

You can use a load image file on a TFTP host server to boot the 2210. Another router can act as a TFTP host server. An example of a TFTP boot is shown below.

1. At the boot monitor prompt, (>), enter `bm` to display the following information and the first boot prompt.

   PROM Load/Dump Program * Revision: 1.0 *
   Copyright IBM Corp. 1994, 1997

   Device Types available:
   - IBD
   - Token Ring
   - WAN

   2. The prompts that appear depend on the type of interface you are booting over. See "BM (Boot using console queries)" on page 117 for details on booting an Ethernet, Token Ring, or WAN port. Table 15 on page 115 describes these prompts.

**Boot Options Available**

Table 14 on page 114 lists the boot options available. Detailed descriptions of the boot process and system prompts follow the table.

**Accessing the Boot Options**

1. Begin a load procedure by powering on the device or by typing `reload` at the OPCON (*) prompt and pressing the Enter key.
2. To display the Boot monitor prompt (>), press Ctrl-C during a load procedure.
3. At the boot prompt (>), enter `?` to display the boot options. Table 14 on page 114 describes these options.
Table 14. Boot Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Boot using stored Configuration</td>
<td>Boots automatically using the configuration stored in TFTP or in the IBD.</td>
</tr>
<tr>
<td>BC</td>
<td>Boot to Config-only Mode using console queries</td>
<td>Displays prompts to manually boot the 2210 and then enters Config-only mode, allowing you to begin configuring the 2210.</td>
</tr>
<tr>
<td>BM</td>
<td>Boot using Console Queries</td>
<td>Displays prompts to manually boot the 2210. <a href="#">Table 15 on page 115</a> describes these prompts.</td>
</tr>
<tr>
<td>BN</td>
<td>Boot, but do not run, using console queries</td>
<td>Used by field personnel for debugging. Boots and returns to the Bootstrap Monitor, but does not start the load.</td>
</tr>
<tr>
<td>BP</td>
<td>Boot using BOOTP</td>
<td>Displays the prompts to boot using the Bootstrap Protocol.</td>
</tr>
<tr>
<td>D</td>
<td>Dump using stored Configuration</td>
<td>This feature is not currently available on the 2210.</td>
</tr>
<tr>
<td>DIAG</td>
<td>Initiate IBM extended diagnostics</td>
<td>Starts the internal tests. When internal tests are complete, you have the option of continuing with the System Extended Checkout (Internal and External Tests), the WAN/LAN Wrap Menu, or Diagnostic Utilities. You can exit and reboot at any time.</td>
</tr>
<tr>
<td>DM</td>
<td>Dump using Console Queries</td>
<td>This feature is not currently available on the 2210.</td>
</tr>
<tr>
<td>UB</td>
<td>Display boot Configuration</td>
<td>Displays the static RAM TFTP bootstrap configuration.</td>
</tr>
<tr>
<td>UC</td>
<td>Display Hardware Configuration</td>
<td>Displays the information on the hardware configuration including device types, baud rate, memory sizes, base MAC address, part numbers, serial numbers, and revision levels.</td>
</tr>
<tr>
<td>UG</td>
<td>Go and Execute at Address in RAM</td>
<td>This option is used by field service personnel.</td>
</tr>
<tr>
<td>LC</td>
<td>Load Configuration Memory</td>
<td>Loads configuration memory from a host on the network.</td>
</tr>
<tr>
<td>CC</td>
<td>Clear Configuration Memory</td>
<td>Clears the configuration in SRAM.</td>
</tr>
<tr>
<td>ZB</td>
<td>ZModem Boot</td>
<td>Downloads and uploads router code through the service port.</td>
</tr>
<tr>
<td>ZC</td>
<td>ZModem Configuration Memory Load</td>
<td>Loads configuration memory through the service port.</td>
</tr>
</tbody>
</table>

**Boot Option Prompts**

The following section explains each of the boot options in detail. [Table 15 on page 115](#) describes the prompts that appear when you boot the 2210. These prompts vary depending on your hardware configuration and the software loaded on the 2210.
### Table 15. Boot Option Prompts

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>The device type over which to boot the 2210; either the IBD, the Token-ring, or Ethernet interface.</td>
</tr>
<tr>
<td>IBD Loadname</td>
<td>The IBD loadname, which can include up to 79 characters, digits, and symbols and is case-sensitive. For initial installations, enter the filename in the Release Notes (file README.NTS that is on the backup software diskettes.)</td>
</tr>
<tr>
<td>Interface IP Address</td>
<td>The IP address of the 2210 interface over which you are booting.</td>
</tr>
<tr>
<td>IP Mask</td>
<td>A hexadecimal value that separates the IP network addresses from the other IP address fields. All bits that are part of the network and subnet should be 1.</td>
</tr>
<tr>
<td>Boot From Host</td>
<td>IP address of the host from which you are booting.</td>
</tr>
<tr>
<td>Via gateway</td>
<td>If the host from which you are booting is on another (sub)network, there is an intermediate router. Enter the IP address of the intermediate router.</td>
</tr>
<tr>
<td>Load Image Name</td>
<td>For initial installations, enter the load image name noted in the in the Release Notes (file README.NTS that is on the backup software diskettes.)</td>
</tr>
<tr>
<td>Boot File Name</td>
<td>Full pathname of where the load image file resides on the host server. For example, /usr/local/ibm2210.ldc (UNIX example).</td>
</tr>
</tbody>
</table>

#### Ethernet Prompts

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type (AUI/RJ45)</td>
<td>Enter one of the following to specify the cable type connected to this port:</td>
</tr>
<tr>
<td>AUI</td>
<td>Thick/AUI (10BASE5)</td>
</tr>
<tr>
<td>RJ45</td>
<td>Unshielded Twisted Pair (10BASE-T)</td>
</tr>
<tr>
<td>AUTOCONFIG</td>
<td>Automatically senses the cable type</td>
</tr>
</tbody>
</table>

#### Token Ring Prompts

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (4/16)Mb</td>
<td>Enter 4 or 16 to represent the token ring media transfer rate in Mbps (megabits per second). Note: The value you enter must match the speed of the ring that you are using.</td>
</tr>
<tr>
<td>Media (UTP/STP)</td>
<td>Enter one of the following to specify the cable type connected to this interface:</td>
</tr>
<tr>
<td>UTP</td>
<td>Unshielded Twisted Pair</td>
</tr>
<tr>
<td>STP</td>
<td>Shielded Twisted Pair</td>
</tr>
</tbody>
</table>

#### WAN Prompts

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN port</td>
<td>WAN port over which you are booting the 2210, either 1 or 2.</td>
</tr>
<tr>
<td>Timeout (secs)</td>
<td>How long, in seconds, the interface tries to boot over the network. The timeout must be greater than 5.</td>
</tr>
<tr>
<td>Clock Source (INT/EXT)</td>
<td>To connect to a:</td>
</tr>
<tr>
<td></td>
<td>• Modem or DSU, enter EXT for external clocking.</td>
</tr>
<tr>
<td></td>
<td>• DTE device, use a DCE cable and enter INT for internal clocking.</td>
</tr>
<tr>
<td>Internal Clock Speed</td>
<td>This prompt appears only if you enter INT as the Clock Source. The range is 1 to 10 000 000.</td>
</tr>
</tbody>
</table>
Table 15. Boot Option Prompts (continued)

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Type (X21/Other)</td>
<td>Enter X21 to connect an X.21 cable to this port. Enter other to connect any other cable type to this port.</td>
</tr>
</tbody>
</table>

B (Boot)

Boots the router automatically using the configuration stored in configuration memory. This option causes the router to boot from the IBD unless the configuration is stored on a TFTP host.

BC (Boot in Config-only Mode)

Boots the 2210 and immediately enters Config-only mode. The following examples show how to boot the 2210 over the IBD and over the Token-Ring, Ethernet, and WAN interfaces. User entries are shown in bold. To accept the defaults shown in brackets, press Enter.

Note: In the sample interface dialog shown below, the device’s interface type appears as either Token Ring or Ethernet in the Device Types listing and at the Device Type prompt.

Enter bc at the boot prompt (>). The software prompts you for the following router information:

Device Types available:

IBD
Token Ring/Ethernet
WAN
Device Type [WAN]: IBD

- If you enter IBD, you see the following:

  IBD has load(s) loadname
  IBD Load Name: loadname

  To reload the current configuration, press Enter.

  Loading using IBD Load Image "load name"

If you specify an incorrect or non-existent load name, the system issues the message: No such load and returns you to the IBD Load Name prompt.

- If you enter Token Ring, you see the following:

  Media (UTP/STP) [UTP]:
  Speed (4/16)Mb [16Mb]:
  Interface IP address: 123.175.23.119
  IP Mask (FFFFFF00):
  Boot from host: 123.175.68.190
  Via gateway: 123.175.23.213
  Boot file name: ibmMRNS.ldc

  Using Token Ring at (6000000, 0).
  Trying host 123.175.68.190 via 123.175.23.213
  file ibmMRNS.ldc
  ..................................
  Starting at 1040010
The Standalone Configuration Process. You are here because the watchdog timer timed out and/or Autoboot not selected.

Config (only)>

If there is no Token-Ring link active, you receive the following message:

lobe media test failed: function failure

If you enter Ethernet, you see the following:

- If you enter Ethernet, you see the following:
  
  Connector Type (AUI/RJ45) [AUTO_CONFIG]:
  Interface IP Address: 123.175.56.119
  IP Mask (FFFFFF00):
  Boot from host: 123.175.68.213
  Via Gateway: 123.175.56.190
  Boot File Name: ibmMRNS.ldc

  Using Ethernet at (6000000, 0)
  Trying host 123.175.68.213 via 123.175.56.190
  file ibmMRNS.ldc
  .loading
  ------------------------------
  Starting at 1040010

The Standalone Configuration Process. You are here because the watchdog timer timed out and/or Autoboot not selected.

Config (only)>

- Booting over a WAN

  If there is no CTS signal active on the WAN port that you specify, you will receive the following message: CTS not active on WAN port #

  Note: The PPP protocol is currently the only data link layer protocol that can be used when booting over a WAN interface.

BM (Boot using console queries)

Boots using console queries. The following examples show how to boot the 2210 over the IBD and over the Token Ring, Ethernet, and WAN interfaces. User entries are shown in bold. To accept the defaults shown in brackets, press Enter.

You can also use this option to boot from a load image file on a TFTP host server.

Note: In the sample interface dialog that follows, the interface type specific to the 2210 appears as either Token Ring or Ethernet in the Devices Types listing and at the Device Type prompt.

Enter bm at the boot prompt (>). The software prompts you for the following router information:

Device Types available:

IBD
Token Ring/Ethernet
WAN

Device Type [Token Ring/Ethernet]: IBD

- If you enter IBD, you see the following:

  IBD has load(s) load image name
  IBD Load Name: load image name
To reload the current configuration, press **Enter**. To load another configuration, enter the load name at the prompt.

Loading using IBD Load Image "load name"

If you specify an incorrect or nonexistent load name, the system issues the following message: No such load and returns you to the IBD Load Name prompt.

- If you enter **Token Ring**, a configuration dialog similar to the following appears on your console.

**Note:** If the host you specify is not directly accessible by the router, the software will prompt you to enter the IP address of the gateway. This prompt is shown below in parentheses.

- Media (UTP/STP) [UTP]:
- Speed (4/16)Mb [16Mb]:
- Interface IP address: **123.175.56.119**
- IP Mask (FFFFFFFF):
- Boot from host: **123.175.68.213**
- Via Gateway: **123.175.56.190**
- Boot File Name: **ibmMRNS.ldc**

Using Token Ring at (6000000, 0).
Interface configured for 16Mbps & UTP
Trying host 123.175.68.213 via 123.175.56.190
file ibmMRNS.ldc
loading
....................................................
Starting at 1040000

Copyright Notices:
Copyright IBM Corp. 1994, 1997

MOS Operator Control
*

- If you enter **Ethernet**, you see the following:

- Connector Type (AUI/RJ45) [AUTO_CONFIG]:
- Interface IP Address: **123.175.56.119**
- IP Mask (FFFFFFFF):
- Boot from host: **123.175.68.213**
- Via Gateway: **123.175.56.190**
- Boot File Name: **ibmMRNS.ldc**

Using Ethernet at (6000000, 0)
Trying host 123.175.68.213 via 123.175.56.190
file ibmMRNS.ldc
loading
..................................
Starting at 1040000

Copyright Notices:
Copyright IBM Corp. 1994, 1997

MOS Operator Control
*

- **Booting over a WAN**

If there is no CTS signal active on the WAN port that you specify, you will receive the following message: CTS not active on WAN port #
**Note:** The PPP protocol is currently the only data link layer protocol that can be used when booting over a WAN interface.

**BN (Boot, But Do Not Run, Using Console Queries)**

Do not use this boot option. This option is used by field service personnel only.

**BP (Boot using BOOTP)**

Boots using the Bootstrap Protocol. The following example shows how to boot the 2210. User entries are shown in bold. To accept the defaults shown in brackets, press **Enter**.

**Note:** In the following sample interface dialog, the device’s interface type appears as either Token-Ring or Ethernet in the Device Types listing and at the Device Type prompt.

Enter **bp** at the boot prompt (>). The software prompts you for the following router information:

- **Device Types available:**
  
  Token Ring/Ethernet
  
  Device type (for BOOTP) [Token Ring]:

- **If you enter **Token Ring**, you see the following:**
  
  Media (UTP/STP) [UTP]:
  
  Speed (4/16)Mb [16Mb]:

  BOOTP Using Token Ring at (6000000, 0).
  
  Doing BOOTP o
  
  Interface configured for 16Mbps & UTP
  
  Trying host 123.175.68.213 via 123.175.56.190
  
  file load image name
  
  .loading
  
  ....................................................

  Copyright Notices:
  
  Copyright IBM Corp. 1994, 1997
  
  MOS Operator Control
  
  *

- **If you enter **Ethernet**, you see the following:**
  
  Connector Type (AUI/RJ45)[AUTO_CONFIG]:

  BootP Using Ethernet at (6000000, 0)
  
  Doing BootP o o o o
  
  Trying host 123.175.68.213 via 123.175.56.190
  
  file load image name
  
  .loading
  
  .....................

  Copyright Notices:
  
  Copyright IBM Corp. 1994, 1997
  
  MOS Operator Control
  
  *

A BOOTP boot is successful when the terminal displays the OPCON (*) prompt.
Unsuccessful BOOTP

A BOOTP boot fails if the server is down, if the server cannot find the file you specified, or if TFTP fails. If BOOTP is unsuccessful, the terminal displays the message

Manual BOOTP failed - enter "@" at prompt to BOOTP again.

Enter @ to retry BOOTP. If the retry fails, use another method to boot the 2210.

D (Dump using stored configuration)

Writes the contents of system memory to a file when a system failure occurs. If the unique naming capability is enabled, the router automatically appendes a character string to the dump filename. Using this command prevents an existing dump file from being overwritten by subsequent dumps. For information about how to enable unique naming, refer to page 101.

Enter d at the boot prompt (>). The screen displays the following information:

PROM Load/Dump Program * Revision 1.0
Copyright IBM Corp. 1994, 1997
Host 325.321.62.763 loading

Using Token Ring/Ethernet (00000, 0)
Trying host 235.211.62.243 via 123.192.23.243
file load image name

loading
Starting at 1040000

If the dump fails, you will receive a Dump failed message with a brief explanation of the cause of the failure.

DIAG (Execute IBM Extended Diagnostic Program)

Initiates internal self-test. When internal self-test is complete, you can select any of the extended diagnostics utilities provided. To run any of the extended diagnostics tests, you need the extended diagnostics Service Kit, feature code 2532. The kit includes all the necessary wrap plugs for the LAN, serial, and service ports.

1. Enter diag at the boot prompt (>) to execute the internal self-test. The screen displays a message similar to the following:

   Starting at IFF00

   Starting Hardware Diagnostics
   Version: XXXXXX XXXXXX

   Testing System Internal

   System Checkout: All Systems Pass

   Press space to continue.....

2. Press the space bar to get to the next level of diagnostic tests. To execute these tests you must remove the cables from the network and attach the appropriate wrap plug(s). Follow the instructions included in the extended diagnostics Service Kit for installing the wrap plugs.
If you try to execute one of these tests without the wrap plugs installed, you receive the following message:

You have selected a test that requires external wrap plugs to be present. Remove the cable(s) from the network, and attach the appropriate wrap plug(s).

3. Press the space bar to select one of the diagnostic options available and follow the instructions provided with the extended diagnostics Service Kit.

Diagnostic Main Menu (c) 1994

1) System Checkout (Internal Tests)
2) System Extended Checkout (Internal and External Tests)
3) WAN/LAN Wrap Menu
4) Diagnostic Utilities
x) Exit (and Reboot)

DM (Dump using Console Queries)

Displays prompts to manually configure the network dump information.

Enter dm at the boot prompt (>).

The screen displays the following information:

PROM Load/Dump Program * Revision 1.0
Copyright IBM Corp. 1994, 1997
Host ??? loading

Using Token Ring/Ethernet (00000, 0)
Trying host 0.0.0.0 via 0.0.0.0
    file load image name

loading
Starting at 1040000

If the dump fails, you will receive a Dump failed message with a brief explanation of the cause of the failure.

UB (Display TFTP Boot Configuration)

Displays the static RAM TFTP bootstrap configuration including:
• Host name
• Whether dumping is enabled or disabled
• Whether the unique naming capability is enabled or disabled
• Interface IP address, type of interface, and mask
• Boot file name
• Host IP address
• Gateway IP address

If you have created dump files, UB also displays the dump file name and IP address of the host on which the dump files reside and the IP address of the intermediate gateway, if applicable.
To display this information: Enter `ub` at the boot prompt (`>`). The screen displays information similar to the example shown below.

**TFTP bootstrap configuration:**
- Host `ibmMRNSV1 - .191`, Dumping disabled, Unique dump naming off
- Interface Addresses:
  1: 128.196.145.191 on port 0 (Token Ring/Ethernet), mask FFFFF00

**Boot Files**
1: `ibmMRNS.ldc` on 123.175.68.213 via 123.175.56.190 for 20 secs
2: `r15.1.ldc` on 123.175.68.213 via 123.175.56.190 for 20 secs
3: `ibmMRNS-univ.ldc` on 123.175.68.213 via 123.175.56.190 for 20 secs

**Dump Files:**
1: "gw/ibmMRNS.dmp" on 123.175.68.213 via 123.175.56.190 for 20 secs

> 

**UC (Display Hardware Configuration)**

Displays the following information:
- Device types available
- Console baud rate
- Size of main memory and IBD in number of Mbytes
- Base MAC address
- Router serial number
- System card serial number
- Model number
- System card part number
- System card revision (ECO) level
- Platform revision

**Note:** Each 2210 is programmed at the factory with a Base MAC address in Ethernet order. If you have a Token-Ring unit, the 2210 converts the address to Token-Ring order. However, the `uc` command displays the address in Ethernet order.

Enter `uc` at the boot prompt (`>`). The screen displays information similar to the following:

**Boot device types available:**
- IBD
- Token Ring
- WAN

**Console Baud Rate:** 9600 (Autobaud)
**Main Memory size:** 8 MB
**IBD (flash Memory) size:** 4 MB
**Base MAC Address:** 000093808068
**System Part Number:** 04H7063
**System Serial Number:** 55554000008
**System EC Level:** D50514
**System Card Part Number:** 13H7771
**System Card Serial Number:** 110653
**System EC Level:** C99200B

**UG (Go execute at address in RAM)**

This option is used only by your service representative.
LC (Load Configuration Memory)

Loads configuration memory from a host on the network. To use this option, do the following:

Enter `lc` at the boot prompt (`>`). The screen displays information similar to the following:

Device Types available:

IBD
Token Ring/Ethernet
WAN

Device type [Token Ring]:

- If you enter **Token Ring**, you will see the following:
  
  Media (UTP/STP) [UTP]:
  Speed (4/16)Mb [16Mb]:
  Interface IP address: **123.175.56.119**
  IP Mask (FFFFF00):
  Load Cfg from host: **123.175.68.213**
  Via gateway: **123.175.56.190**
  Config File Name: ibmMRNS.cfg

  Using Token Ring at (6000000, 0).
  Trying host 123.175.68.213 via 123.175.56.190
  file ibmMRNS.cfg

  .loading
  Receiving config memory image
  ....................................................

  Starting at 1040000

  Copyright Notices:
  Copyright IBM Corp. 1994, 1997

- If you enter **Ethernet**, you see the following:

  Connector Type (AUI/RJ45)[AUTO_CONFIG]:
  Interface IP address: **123.175.56.119**
  IP mask (FFFFF00):
  Load Cfg from host: **123.175.68.219**
  Via gateway: **123.175.56.190**
  Config file name: ibmMRNS.cfg

  Using Ethernet at (6000000, 0).
  Trying host 123.175.68.219 via 123.175.56.190
  file ibmMRNS.cfg

  .loading
  Receiving config memory image
  ..................................

  Starting at 1040000

  Copyright Notices:
  Copyright IBM Corp. 1994, 1997

- If you enter **WAN**, you see the following:
WAN port [2]:
Timeout (secs) [20]
Clock Source (INT/EXT) [INT]:
Internal Clock Speed 1
Interface IP address: 123.175.56.119
IP mask [FFFFFF00]
Load Cfg from host: 123.175.68.219
Via gateway: 123.175.56.190
Config file name: ibmMRNS.cfg

Using Serial Line at ( 0, 0).
Trying host 123.175.68.219 via 123.175.56.190
file ibmMRNS.cfg
..loading
Receiving config memory image
............................
Starting at 1040000

Copyright Notices:
Copyright IBM Corp. 1994, 1997

MOS Operator Control
*

CC (Clear Configuration Memory)

Attention: Issuing this command will cause all configuration information to be lost.

This command clears the configuration in memory. Enter cc at the boot prompt (>).
The software prompts you for basic router information as follows:
Are you sure you want to clear config memory?

ZB (ZModem Boot)

Downloads and uploads router code through the console port.
1. Enter ZB at the boot prompt (> and the console displays:
   Are you sure you want to load via the console?
2. Enter y and the console displays the message:
   Okay, GO!!
3. Press Return to start the operation. The operation is completed when the
   system prompt (> appears on the screen.

Note: Refer to the documentation supplied with your ZModem software for the
ZModem commands to use at your console terminal.

ZC (ZModem configuration memory load)

Loads configuration memory through the console port.

Note: This option requires that the remote boot server support ZModem software.
1. Enter ZC at the boot prompt (>). The console displays the following prompt:
   Are you sure you want to load config memory via the console?
2. Enter y. The console displays the message:
   Okay, GO!!
3. Press Return to start the operation. The operation is completed when the boot
   prompt appears on the screen.
4. Enter n to return to the OPCON prompt.

Note: Refer to the documentation supplied with your ZModem software for the ZModem commands to use at your console terminal.

Configuring the 2210

After the 2210 has booted, you can configure it. The sections that follow briefly describe the configuration processes available when using an ASCII terminal.

Note: You can also use the IBM Nways Multiprotocol Routing Services Configuration Program (Configuration Program), to configure the 2210. The Configuration Program is run on a stand-alone workstation and has a graphical user interface. Once pre-configuration or Quick Configuration has taken place, you can use the Configuration Program to configure the 2210 completely.

Begin the configuration process as follows:

1. At the * prompt, enter status to display the PID (process ID) of Config.

<table>
<thead>
<tr>
<th>Pid</th>
<th>Name</th>
<th>Status</th>
<th>TTY</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COpCN1</td>
<td>RDY</td>
<td>TTY0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monitr</td>
<td>DET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tasker</td>
<td>RDY</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MOSDDT</td>
<td>DET</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CGWCon</td>
<td>DET</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Config</td>
<td>DET</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ROpCN1</td>
<td>IDL</td>
<td>TTY1</td>
<td>128.185.133.2</td>
</tr>
<tr>
<td>8</td>
<td>ROpCN2</td>
<td>RDY</td>
<td>TTY2</td>
<td>128.185.134.50</td>
</tr>
</tbody>
</table>

2. Enter talk and the PID. From the output in 1, you would enter

* talk 6

Press Return. This displays the following information:

Gateway user configuration
Config>

3. You can now configure the interfaces, boot records, bridging and routing protocols using one of the following processes:

- The **Quick Configuration Process** allows you to configure selected devices, bridging protocols, and routing protocols by responding to the Quick Configuration prompts. After creating a minimal configuration, you must transfer a complete configuration to the 2210 using TFTP.

  Enter qc at the Config> prompt to begin the Quick Configuration process.

- **CONFIG Process** allows you to configure all bridging and routing protocols, interfaces, and boot records by entering commands at the Config> prompt.

To configure the protocols using the CONFIG process, refer to the specific protocol chapters in the *Protocol Configuration and Monitoring Reference*. To configure other parameters including the interfaces and boot records, refer to the appropriate configuration chapters in this book.
Chapter 10. The Operating/Monitoring Process (GWCON - Talk 5) and Commands

This chapter describes the GWCON process and includes the following sections:
- What is GWCON?
- Entering and Exiting GWCON
- GWCON Commands

What is GWCON?

The Gateway Console (monitoring) process, GWCON (also referred to as CGWCON), is a second-level process of the router user interface.

Using GWCON commands, you can:
- List the protocols and interfaces currently configured in the router.
- Display memory and network statistics.
- Set current Event Logging System (ELS) parameters.
- Test a specified network interface.
- Communicate with third-level processes, including protocol environments.
- Enable and disable interfaces.

The GWCON command interface is made up of levels called modes. Each mode has its own prompt. For example, the prompt for the IP protocol is IP>.

If you want to know the process and mode you are communicating with, press Return to display the prompt. Some commands in this chapter, such as the network and protocol commands, allow you to access the various modes in GWCON.

Entering and Exiting GWCON

To enter the GWCON command environment from OPCON and obtain the GWCON prompt enter the talk 5

* talk 5

The console displays the GWCON prompt (+). If the prompt does not appear, press Return. Now, you can enter GWCON commands.

To return to OPCON, enter the OPCON intercept character. (The default is Ctrl-P.)

GWCON Commands

This section contains the GWCON commands. Each command includes a description, syntax requirements, and an example. The GWCON commands are summarized in Table 16 on page 128.

To use the GWCON commands, access the GWCON process by entering talk 5 and enter the GWCON commands at the (+) prompt.
## GWCON Process

### Table 16. GWCON Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Functiondetails</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the</td>
</tr>
<tr>
<td></td>
<td>options for specific commands (if available). See <a href="#">Getting Help</a> on page 10.</td>
</tr>
<tr>
<td>Activate</td>
<td>Enables a newly configured spare interface.</td>
</tr>
<tr>
<td>Boot</td>
<td>Displays information about how the device was booted last.</td>
</tr>
<tr>
<td>Buffer</td>
<td>Displays information about packet buffers assigned to each interface.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears network statistics.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Lists status of the current protocols and interfaces.</td>
</tr>
<tr>
<td>Disable</td>
<td>Takes the specified interface off line.</td>
</tr>
<tr>
<td>Environment</td>
<td>Enters the Environment system console. Displays the current</td>
</tr>
<tr>
<td></td>
<td>temperature and issues an alert when the temperature threshold, high</td>
</tr>
<tr>
<td></td>
<td>or low, is passed.</td>
</tr>
<tr>
<td>Error</td>
<td>Displays error counts.</td>
</tr>
<tr>
<td>Event</td>
<td>Enters the Event Logging System environment.</td>
</tr>
<tr>
<td>Fault</td>
<td>Displays information about the last system fault.</td>
</tr>
<tr>
<td>Feature</td>
<td>Provides access to console commands for independent router features</td>
</tr>
<tr>
<td></td>
<td>outside the usual protocol and network interface console processes.</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays network hardware statistics or statistics for the specified</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
</tr>
<tr>
<td>Log</td>
<td>Sets or views the logging level for events not included in the Event</td>
</tr>
<tr>
<td></td>
<td>Logging System.</td>
</tr>
<tr>
<td>Memory</td>
<td>Displays memory, buffer, and packet data.</td>
</tr>
<tr>
<td>Network</td>
<td>Enters the console environment of the specified network.</td>
</tr>
<tr>
<td>Performance</td>
<td>Provides a snapshot of the main processor utilization statistics.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Enters the command environment of the specified protocol.</td>
</tr>
<tr>
<td>Queue</td>
<td>Displays buffer statistics for a specified interface.</td>
</tr>
<tr>
<td>Reset</td>
<td>Disables the specified interface and then re-enables it using new</td>
</tr>
<tr>
<td></td>
<td>interface, protocol and feature configuration parameters.</td>
</tr>
<tr>
<td>Statistics</td>
<td>Displays statistics for a specified interface.</td>
</tr>
<tr>
<td>Test</td>
<td>Enables a disabled interface or tests the specified interface.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Displays time statistics for the router.</td>
</tr>
</tbody>
</table>

### Activate

Use the **activate** command to enable a spare interface on this device. See [Configuring Spare Interfaces](#) on page 44 for more information.

**Syntax:**

```
activate interface#
```

### Boot

Use the **boot** command to display boot information for this device.

**Syntax:**

```
boot
```

**Example 1:**

```
boot
Booted using Ethernet, line 0 at (80740000, 4) as 128.185.227.220
Filename vl.1dc
Host 128.185.122.17, Gateway 128.185.227.15
```
In the first example, the router was booted using TFTP over Ethernet. The message indicates the method of booting, the line number, the CSR (Command and Status Register) address, the IP address, the filename, the host, and the gateway. The line number distinguishes one port from another on a multiport board. The CSR address (the first of the two values in parentheses) identifies which interface board slot was used to boot the router.

The IP address listed after “as” (128.185.227.220 in this example) indicates which IP address the router used as its own IP address. The Filename is the name of the file that has the load image. The IP address listed after Host is the IP address of the server where the file is stored. The Gateway, if listed, is the router that routes the requests and responses between the server and the router that is booting.

Example 2:

```
boot
Manual Booted using Integrated Boot Device Loadname vl.ver1
```

In the second example, the router was booted manually using the Integrated Boot Device (IBD). Manual indicates that the boot information was entered manually at boot time.

### Buffer

Use the `buffer` command to display information about packet buffers assigned to each interface or range of interfaces.

**Note:** Each buffer on a device is the same size and is dynamically built. Buffers vary in size from one device to another.

To display information about one interface only, enter the interface or network number as part of the command. To obtain the interface number, use the GWCON configuration command.

**Syntax:**

```
buffer [network# or range_of_network#]
```

To display information about multiple interfaces, specify the `range_of_network#` (or a combination of `network#` and `range_of_network#`). For example, specifying `buffer 0 3 25-50` displays the information for nets 0, 3, and 25 through 50.

**Example:**

```
buffer
Input Buffers: Buffer sizes:
Nt Interface Req Alloc Low Curr Hdr Wrap Data Trail Total Bytes Alloc
0 TKR/0 20 20 7 0 109 92 2052 7 2260 45200
1 PPP/0 20 20 7 20 109 92 2052 7 2260 45200
2 PPP/1 10 10 4 0 108 92 2048 0 2248 22480
```

**Nt**

Network interface number associated with the software.

**Interface**

Type of interface.

**Input Buffers:**

- **Req**
  Number of buffers requested.
- **Alloc**
  Number of buffers allocated.
**GWCON Process**

**Low**  
Low water mark (flow control).

**Curr**  
Current number of buffers on this device. The value will be 0 if the device is disabled. When a packet is received, if the value of Curr is below Low, then the packet is eligible for flow control. (See the `queue` command for conditions.)

**Buffer Sizes:**

**Hdr**  
Sum of the maximum hardware, MAC, and data link headers.

**Wrap**  
Allowance given for MAC, LLC, or Network layer headers due to protocol wrapping.

**Data**  
Maximum data link layer packet size.

**Trail**  
Sum of the largest MAC and hardware trailers.

**Total**  
Overall size of each packet buffer.

**Bytes Alloc**  
Amount of buffer memory for this device. This value is determined by multiplying the values of Alloc x Total.

---

**Clear**

Use the `clear` command to delete statistical information about one or all of the router’s network interfaces. This command is useful when tracking changes in large counters. Using this command does not save space or speed up the router.

Enter the interface (or net) number as part of the command. To get the interface number, use the GWCON `configuration` command.

**Syntax:**

```
clear
```

To clear information about multiple interfaces, specify the `range_of_interface#` (or a combination of `interface#` and `range_of_interface#`). For example, specifying `clear 0 3 25-50` clears the information for nets 0, 3, and 25 through 50.

---

**Configuration**

Use the `configuration` command to display information about the protocols and network interfaces. The output is displayed in three sections, the first section lists the router identification, software version, boot ROM version, and the state of the auto-boot switch. The second and third sections list the protocol and interface information.

**Syntax:**

```
configuration
```

To display information about multiple interfaces, specify the `range_of_network#` (or a combination of `network#` and `range_of_network#`). For example, specifying `configuration 0 3 25-50` displays the information for nets 0, 3, and 25 through 50.
configuration

Multiprotocol Routing Services

2210-MRS Feature 3768 V3.2 Mod 0 PTF 0 RPQ 0 MRS_E00 cc4_2a
Boot ROM version 1.20 Watchdog timer enabled Auto-Boot enabled
Time: 15:46:12 Friday September 20, 1996 Console baud rate: 9600

<table>
<thead>
<tr>
<th>Num</th>
<th>Name</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IP</td>
<td>DOD-IP</td>
</tr>
<tr>
<td>3</td>
<td>ARP</td>
<td>Address Resolution</td>
</tr>
<tr>
<td>11</td>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>12</td>
<td>OSPF</td>
<td>Open SPF-Based Routing Protocol</td>
</tr>
<tr>
<td>23</td>
<td>ASRT</td>
<td>Adaptive Source Routing Transparent Enhanced Bridge</td>
</tr>
<tr>
<td>26</td>
<td>DLS</td>
<td>Data Link Switching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Num</th>
<th>Name</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MCF</td>
<td>MAC Filtering</td>
</tr>
</tbody>
</table>

3 Networks:

<table>
<thead>
<tr>
<th>Net</th>
<th>Interface</th>
<th>MAC/Data-Link</th>
<th>Hardware</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TKR/0</td>
<td>Token-Ring/802.5</td>
<td>Token-Ring</td>
<td>Up</td>
</tr>
<tr>
<td>1</td>
<td>Eth/0</td>
<td>Ethernet/IEEE 802.3</td>
<td>Ethernet/802.3</td>
<td>Up</td>
</tr>
<tr>
<td>2</td>
<td>PPP/0</td>
<td>Point to Point</td>
<td>SCC Serial Line</td>
<td>Up</td>
</tr>
</tbody>
</table>

- The first line gives the product name.
- The second line lists the program/product number, Feature Number, Version, Release, PTF and RPQ information.
- The third line displays the version of the Boot PROM (Programmable Read Only Memory) that is currently installed in the router, and the current settings of the Watchdog Timer and Autoboot switches.
- The fourth line displays the date and time, and the current console baud rate settings for DTE and DCE, respectively.
- The remaining lines list the configured protocols, followed by the configured features.

The following information is displayed for protocols:

**Num** Number that is associated with the protocol.

**Name** Abbreviated name of the protocol.

**Protocol** Full name of the protocol.

The following information is displayed for features:

**Num** Number associated with the feature.

**Name** Abbreviated name of the feature.

**Feature** Full name of the feature.

The following information is displayed for networks:

**Net** Network number that the software assigns to the interface. Networks are numbered starting at 0. These numbers correspond to the interface numbers discussed under the CONFIG process.

**Interface** Name of the interface and instance of this type of interface.

**MAC/Data Link** Type of MAC/Data link configured for the interface.

**Hardware** Specific kind of interface by hardware type.
State

Current state of the network interface.

Testing
Indicates that the interface is undergoing a self-test. Occurs when the router is first started, when a problem is detected on the interface, or when the test command is used.

When an interface is operational, the interface periodically sends out maintenance packets and/or checks the physical state of the port or line to ensure that the interface is still functioning correctly. If the maintenance fails, the interface is declared down and a self-test is scheduled to run in 5 seconds. If a self-test fails, the interface transitions to the down state and the interval until the next self-test is increased up to a maximum of 2 minutes. If the self-test is successful, the network is declared up.

Up
Indicates the interface is operational.

Down
Indicates that the interface is not operational and has failed a self-test. The network will periodically transition to the testing state to determine if the interface can become operational again.

Disabled
Indicates that the interface is disabled. An interface can be disabled by the following methods:

- An interface can be configured as disabled using the CONFIG disable command. Each time the router is reinitialized, the interface's initial state will be disabled. It will remain in the disabled state until an action is taken to enable it.
- An interface can be disabled using the GWCON disable command. This method is temporary because the interface will revert to its configured state (enabled or disabled) when the router is reinitialized.
- The network manager can disable the interface through SNMP. This method is temporary because the interface will revert to its configured state (enabled or disabled) when the router is reinitialized.

When an interface is disabled, it remains disabled until one of the following methods is used to enable it:

- The GWCON test command is used to start a self-test of the interface.
- The network manager initiates a self-test of the interface through SNMP.

WAN Reroute also can change the state of a disabled interface. If an interface is configured as an alternate interface for WAN Reroute and its configured state is disabled, WAN Reroute will start a self-test of the interface when the primary interface goes down. When the primary interface is operational and stable again, WAN Reroute puts the alternate interface back to its configured state. Refer to The WAN Reroute Feature in Using and Configuring Features for more information.

Available
Indicates that the interface has been configured as a secondary WAN Restoral interface and it is available to back up the primary interface.
Not Present
Indicates that the interface’s adapter is not plugged in.
Not Present is also used as the state for a null device. Spare interfaces are displayed as null devices until they are activated.

HW Mismatch
Indicates that the configured adapter type does not match the adapter type that is actually present in the slot.

Disable
Use the `disable` command to take a network interface off-line, making the interface unavailable. This command immediately disables the interface. You are not prompted to confirm, and no verification message displays. If you disable an interface with this command, it remains disabled until you use the GWCON `test` command or an OPCON `restart` command to enable it.

Enter the interface, or net number as part of the command. To obtain the interface number, use the GWCON `configuration` command.

Note: If the interface you are disabling is configured as an alternate WAN Reroute interface, you are asked if you want to disable any WAN Reroute primary/alternate pairings that include this alternate interface. If you answer yes, the interface is disabled and is no longer available to backup a primary interface. If you answer no, the alternate interface is disabled but WAN Reroute will attempt to bring it up if its corresponding primary interface goes down. See [The WAN Reroute Feature](#), [Using WAN Restoral](#), and [Configuring and Monitoring WAN Restoral](#) in the [Using and Configuring Features](#) for additional information.

Syntax:
```
disable interface#
```

Environment

Note: Invoke this command only for routers with two service ports.

Displays the `ENV>` prompt, which has three available commands: `list`, `reset-max-min`, and `exit`. Type `exit` to return to the `+` prompt.

In extreme temperature conditions, the temperature chip holds the router in a reset state, preventing it from operating. To ensure correct operation of the router due to temperature conditions, the temperature chip allows the router to operate in the range −55°C to 85°C. This is not the operational range.

The temperature chip shuts off the router at 85°C (185°F) or above and does not come back on until it is 80°C (176°F) or below. Only heat affects the chip. It does not cause the router to reset on cold conditions. Minus 55°C (−67°F) is the lowest temperature the chip registers.

Syntax:
```
environment
```
GWCON Process

The list command displays a status screen with the current temperature, the amount of time between successive temperature readings, the noted maximum and minimum seen since the last reset/clear, and alerts when the temperature threshold, high or low, has been passed, as well as the hysteresis value.

Example:

```
ENV> list
Time: 14:23:12 Sunday, January 09 2011
Current Ambient Temperature: 44C (111F)
Recalculate temperature approx. every 60 seconds.
Maximum: 48C (118F) at 11:47:32 Friday, January 07 2011
Minimum: 40C (104F) at 15:24:21 Saturday, January 08 2011
Last Max/Min Reset: 09:21:17 Thursday, January 06 2011
High Temperature Alarm Threshold: 85C (185F)
Low Temperature Alarm Threshold: -55C (-67F)
(Hysteresis value: +/- 5C)
```

The reset-max-min command sets the value of the last recorded maximum and minimum to the current temperature. This is similar to resetting a standard high-low thermometer.

Example

```
reset-max-min
```

Maximum and Minimum Temperature reset to current ambient temperature: 44C (111F)

Error

Use the error command to display error statistics for the network. This command provides a group of error counters.

Syntax:

```
error [network# or range_of_network#]
```

To display information about multiple interfaces, specify the range_of_network# (or a combination of network# and range_of_network#). For example, specifying error 0 3 25-50 displays the information for nets 0, 3, and 25 through 50.

Example:

```
error
```

```
Nt Interface Input Discards Input Errors Input Unk Proto Flow Drop Input Discards Output Errors
0 TKR/0 0 0 0 0 0 0
1 PPP/0 0 0 0 0 0 0
2 PPP/1 0 0 0 0 0 0
```

Nt Network interface number associated with the software.

Interface Type of interface.

Input Discards Number of inbound packets which were discarded even though no errors were detected to prevent their being deliverable to a higher-layer protocol. The packets may have been discarded to free buffer space.

Input Errors Number of packets that were found to be defective at the data link.
Input Unk Proto
Number of packets received for an unknown protocol.

Input Flow Drop
Number of packets received that are flow controlled on output.

Output Discards
Number of packets that the router chose to discard rather than transmit due to flow control.

Output Errors
Number of output errors, such as attempts to send over a network that is down or over a network that went down during transmission.

Note: The sum of the discarded output packets is not the same as input flow drops over all networks. Discarded output may indicate locally originated packets.

Event

Use the event command to access the Event Logging System (ELS) console environment. This environment is used to set up temporary message filters for troubleshooting purposes. All changes made in the ELS console environment will take effect immediately, but will go away when the router is reinitialized. See Chapter 12, Using the Event Logging System (ELS) on page 147 for information about the Event Logging System and its commands. Use the exit command to return to the GWCON process.

Syntax:
event

Fault

Use the fault command to display information about the last system fault. This diagnostic information can help your service representative trace recurring system errors. Output that is generated is for use by the service representative only.

Syntax:
fault

Feature

Use the feature command to access console commands for specific 2210 features outside of the protocol and network interface console processes.

Enter a question mark after the feature command to obtain a listing of the features available for your software release.

To access that feature’s console prompt, enter the feature command at the GWCON prompt followed by the feature number or short name. Table 7 on page 68 lists available feature numbers and names.

Once you access the prompt for that feature, you can begin entering specific commands to monitor that feature. To return to the GWCON prompt, enter the exit command at the feature’s console prompt.
GWCON Process

Syntax:
feature feature# or feature-short-name

Interface

Use the interface command to display statistical information about the network interfaces (for example, Ethernet or Token-Ring). This command can be used without a qualifier to provide a summary of all the interfaces (shown in the following output) or with a qualifier to reveal detailed information about one specific interface.

Descriptions of detailed output for each type of interface are provided in the specific interface Monitoring chapters found in this guide. To obtain the interface number, use the GWCON configuration command.

Syntax:
interface [interface# or range_of_interface#]

To display information about multiple interfaces, specify the range_of_network# (or a combination of interface# and range_of_interface#). For example, specifying interface 0 3 25-50 displays the information for nets 0, 3, and 25 through 50.

Example: interface

<table>
<thead>
<tr>
<th>Nt</th>
<th>Nt'</th>
<th>Interface</th>
<th>CSR</th>
<th>Vec</th>
<th>Self-Test</th>
<th>Self-Test</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Eth/0</td>
<td>81600</td>
<td>5E</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>PPP/0</td>
<td>81620</td>
<td>5C</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>PPP/1</td>
<td>81640</td>
<td>5C</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The display varies depending on the device.

Nt  Global interface number.
Nt'  Reserved for dial circuit use. Interface number of the physical network interface that the dial circuit uses.

Interface  Interface name.
CSR  Command and Status Register address.
Vec  Interrupt vector.

Self-Test Passed  Number of times self-test succeeded (state of interface changes from down to up).

Self-Test Failed  Number of times self-test failed (state of interface changes from up to down).

Maintenance Failed  Number of maintenance failures.

Log

Use the log command to view or temporarily change the current logging level of messages that are not included in the Event Logging System. The command is temporary and goes away when the router is reinitialized.
To display the current logging level, do not enter an octal number as part of the command. To change the logging level, enter the octal number of the new logging level as part of the command. The default logging level is 76 (octal).

**Note:** To change the initial logging level (that is, the level that the router uses when it starts), use the CONFIG set logging level command. (Refer to Chapter 5, The Configuration Process (CONFIG - Talk 6) and Commands on page 38 for information about this command.)

**Syntax:**
```
log [octal_#]
```

**Memory**

Use the `memory` command to display the current CPU memory usage in bytes, the number of buffers, and the packet sizes.

To use this command, free memory must be available. The number of free packet buffers may drop to zero, resulting in the loss of some incoming packets; however, this does not adversely affect router operations. The number of free buffers should remain constant when the router is idle. If it does not, contact your service representative.

**Syntax:**
```
memory
```

**Example:**
```
memory
Physical installed memory: 16 MB
Total routing (heap) memory: 12 MB
Routing memory in use: 13 %

Heap memory
12231155 26488 10687312 1438487 104924 432

Number of global buffers: Total = 300, Free = 300, Fair = 77, Low = 60
Global buff size: Data = 2048, Hdr = 17, Wrap = 72, Trail = 65, Total = 2208
```

**Physical installed memory**

The total amount of physical RAM installed in the router.

**Total routing memory**

The amount of memory available to the routing function, not including that allocated to the base operating system, system extensions, or options such as APPN. This is also called “heap” memory, and matches the “Total” heap memory size given in bytes shortly thereafter.

**Routing memory in use**

The percentage of total routing memory that is currently being used by the routing function. Heap memory currently in use is counted under the following headings Perm Alloc and Temp Alloc.

**Heap memory:**

Amount of memory used to dynamically allocate data structures.

**Total**

Total amount of space available for allocation for memory.
**GWCON Process**

**Reserve**
Minimum amount of memory needed by the currently configured protocols and features.

**Never Alloc**
Memory that has never been allocated.

**Perm Alloc**
Memory requested permanently by router tasks.

**Temp Alloc**
Memory allocated temporarily to router tasks.

**Prev Alloc**
Memory allocated temporarily and returned.

Number of global buffers:

**Total**
Total number of global buffers in the system.

**Free**
Number of global buffers available.

**Fair**
Fair number of buffers for each interface. (See “Low”.)

**Low**
The number of free buffers at which the allocation strategy changes to conserve buffers. If the value of **Free** is less than **Low**, then buffers will not be placed on any queue that has more than the **Fair** number of buffers in it.

**Global buff size:**
Global buffer size.

**Data**
Maximum data link packet size of any interface.

**Header**
Sum of the maximum hardware, MAC, and data link headers.

**Wrap**
Allowance given for MAC, LLC, or Network layer headers due to protocol wrapping.

**Trailer**
Sum of the largest MAC and hardware trailers.

**Total**
Overall size of each packet buffer

**Network**

Use the network command to enter the console environment for supported networks, such as X.25 networks. This command obtains the console prompt for the specified interface. From the prompt, you can display statistical information, such as the routing information fields for Token-Ring networks.

**Syntax:**

```
network interface#
```

At the GWCON prompt (+), enter the configuration command to see the protocols and networks for which the router is configured. See "Configuration" on page 130 for more information on the configuration command.

Enter **interface** at the + prompt for a display of the networks for which the router is configured.

Enter the GWCON network command and the number of the interface you want to monitor or change. For example:
In the example, the X.25> prompt is displayed. You can then view information about the X.25 interface by entering the X.25 operating commands.

After identifying the interface number of the interface you want to monitor, for interface-specific information, see the corresponding monitoring chapter in this manual for the specified network or link-layer interface. Console support is offered for the following network and link-layer interfaces:

- Bisync (BSC)
- Ethernet
- Frame Relay
- PPP
- SDLC
- SDLC Relay (SRLY)
- Token-Ring
- V.25bis
- X.25
- ATM
- ISDN
- V.34
- Dial-In
- Dial-Out
- Multilink PPP (MP)
- Layer-2-Tunneling

Performance

Use the performance command at the Config> prompt to enter the monitoring environment for performance. See “Chapter 14. Configuring and Monitoring Performance” on page 215 for more information.

Protocol

Use the protocol command to communicate with the router software that implements the network protocols installed in your router. The protocol command accesses a protocol's command environment. After you enter this command, the prompt of the specified protocol appears. From the prompt, you can enter commands that are specific to that protocol.

Syntax:

```
protocol prot#
```

Enter the protocol number or short name as part of the command. To obtain the protocol number or short name, enter the CONFIG command environment (Config>), and then enter the list configuration command. See “Accessing the Configuration Process, CONFIG (Talk 6)” on page 14 for instructions on accessing Config>. To return to GWCON, enter exit.
Queue

Use the `queue` command to display statistics about the length of input and output queues on the specified interfaces. Information about input and output queues provided by the `queue` command includes:

- The total number of buffers allocated
- The low-level buffer value
- The number of buffers currently active on the interface.

**Syntax:**
```
queue interface# or range_of_interface#
```

To display information about multiple interfaces, specify the `range_of_network#` (or a combination of `interface#` and `range_of_interface#`). For example, specifying `queue 0 3 25-50` displays the information for nets 0, 3, and 25 through 50.

To display information about one interface only, enter the interface or network number as part of the command. To obtain the interface number, use the GWCON configuration command.

**Example:**
```
queue
<table>
<thead>
<tr>
<th>Nt</th>
<th>Interface</th>
<th>Alloc</th>
<th>Low</th>
<th>Curr</th>
<th>Fair</th>
<th>Curr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Eth/0</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>PPP/0</td>
<td>24</td>
<td>4</td>
<td>24</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FR/0</td>
<td>24</td>
<td>4</td>
<td>24</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
```

- **Nt**: Network interface number associated with the software.
- **Interface**: Type of interface.

**Input Queue:**

- **Alloc**: Number of buffers allocated to this device.
- **Low**: Low water mark for flow control on this device.
- **Curr**: Current number of buffers on this device. The value will be 0 if the device is disabled.

**Output Queue:**

- **Fair**: Fair level for the length of the output queue on this device.
- **Curr**: Number of packets currently waiting to be transmitted on this device. For locally originated packets, the eligibility discard depends on the global low water mark described in the `memory` command.

The router attempts to keep at least the Low value packets available for receiving over an interface. If a packet is received and the value of `Curr` is less than Low, then the packet will be subject to flow control. If a buffer subject to flow control is to be queued on this device and the `Curr` level is greater than `Fair`, then the buffer is dropped instead of queued. The dropped buffer is displayed in the Output Discards column of the `error` command. It will also generate ELS event GW.036 or GW.057.
Due to the scheduling algorithms of the router, the dynamic numbers of Curr (particularly the Input Queue Curr) may not be fully representative of typical values during packet forwarding. The console code runs only when the input queues have been drained. Thus, Input Queue Curr will generally be nonzero only when those packets are waiting on slow transmit queues.

**Reset**

Use the `reset` command to disable the specified interface and then re-enable it using new interface, protocol and feature configuration parameters. See "Resetting Interfaces" on page 47 for more information.

**Syntax:**
```
reset
reset interface#
```

**Statistics**

Use the `statistics` command to display statistical information about the network software, such as the configuration of the networks in the router.

**Syntax:**
```
statistics
statistics interface# or range_of_interface#
```

To display information about multiple interfaces, specify the `range_of_interface#` (or a combination of `interface#` and `range_of_interface#`). For example, specifying `statistics 0 3 25-50` displays the information for nets 0, 3, and 25 through 50.

To display information about one interface only, enter the interface or network number as part of the command. To obtain the interface number, use the GWCON `configuration` command.

**Example:**
```
statistics

<table>
<thead>
<tr>
<th>Unicast</th>
<th>Multicast</th>
<th>Bytes</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Pkts</td>
<td>Pkts</td>
<td>Received</td>
<td>Trans</td>
</tr>
<tr>
<td>Nt</td>
<td>Eth/0</td>
<td>137</td>
<td>1</td>
<td>8832</td>
</tr>
<tr>
<td>1</td>
<td>PPP/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PPP/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**Nt**

Network interface number associated with the software.

**Interface**

Type of interface.

**Unicast Pkts Rcv**

Number of non-multicast, non-broadcast specifically-addressed packets at the MAC layer.

**Multicast Pkts Rcv**

Number of multicast or broadcast packets received.

**Bytes Received**

Number of bytes received at this interface at the MAC layer.

**Packets Trans**

Number of packets of unicast, multicast, or broadcast type transmitted.
GWCON Process

Bytes Trans
Number of bytes transmitted at the MAC layer.

Test

Use the test command to verify the state of an interface or to enable an interface that was previously disabled with the disable command. If the interface is enabled and passing traffic, the test command will remove the interface from the network and run self-diagnostic tests on the interface.

Syntax:

```
test interface#
```

**Note:** For this command to work, you must enter the complete name of the command followed by the interface number.

Enter the interface or network number as part of the command. To obtain the interface number, use the GWCON configuration command. For example, when testing starts, the console displays the following message:

```
Testing net 0 TKR/0...
```

When testing completes or fails, or when GWCON times out (after 30 seconds), the following possible messages are displayed:

- Testing net 0 Eth/0 ...successful
- Testing net 0 Eth/0 ...failed
- Testing net 0 Eth/0 ...still testing

Some interfaces may take more than 30 seconds before testing is done.

**Note:** If the interface you are testing is configured as an alternate WAN Reroute interface, you are prompted:

- If you want to enable the interface’s primary-alternate pairings if WAN Reroute is currently disabled for the alternate interface.

  If you answer yes, the same action occurs as when you enter the **enable alternate-circuit WAN reroute** command described in Configuring and Monitoring WAN Restoral in Using and Configuring Features.

- If you want to test the interface.

  Normally an alternate WAN Reroute interface is disabled until it is needed to back up its corresponding primary interface. If you answer yes, a self-test is started for the interface. If you answer no, a self-test does not occur.

See The WAN Reroute Feature, Using WAN Restoral, and Configuring and Monitoring WAN Restoral in the Using and Configuring Features for additional information.

Uptime

Use the uptime command to display time statistics about the router, including the following:

- Number of restarts.
- Number of known crashes.
• Whether the router was last reloaded or restarted.
• Time elapsed since the last reload.
• Time elapsed since the last restart.

Syntax:

_upptime
GWCON Process
Chapter 11. The Messaging (MONITR - Talk 2) Process

This chapter explains how to collect and display messages. (Refer to Chapter 12, Using the Event Logging System (ELS) on page 147 for information about ELS and message formats. Refer also to the IBM Nways Event Logging System Messages Guide for a description of each message. This chapter includes the following sections:

- What is Messaging (MONITR)?
- Commands Affecting Messaging
- Entering and Exiting the Messaging (MONITR) Process
- Receiving Messages

What is Messaging (MONITR)?

The MONITR process provides a view of activity inside the router and the networks. MONITR also displays logging messages from the software.

Commands Affecting Messaging

The following commands affect the messaging process:

- OPCON commands:
  - `divert` temporarily diverts output to a different device.
  - `flush` causes the software to discard the messages it collects.
  - `halt` reverses the action of the `divert` command.
  - `talk` displays message output.
- `CONFIG set logging disposition` command sets the initial device to which the software sends its output.

Entering and Exiting the Messaging (MONITR) Process

To enter the messaging process from OPCON enter the `talk 2` command.

The console displays the messages the software has accumulated.

To exit messaging and return to OPCON, enter the OPCON intercept character (the default is `Ctrl-P`).

Receiving Messages

To receive messages at your console, enter the messaging process as described in the previous section. The software then displays all the messages it has recorded since it was last invoked. While you are connected to the messaging process, it displays all messages as they arrive.

Use the OPCON `divert` and `halt` commands to view software messages while you are doing something else with the router. Permitted devices divert output to TTY0 (the local console), TTY1, or TTY2 (the remote consoles).

© Copyright IBM Corp. 1994, 1998
Messaging (MONITR)

To specify a default device for MONITR, define the device in Static RAM by using the CONFIG set logging disposition command. Specifying a default device is useful if you have a terminal set up to print.
Chapter 12. Using the Event Logging System (ELS)

This chapter describes the Event Logging System (ELS). The ELS continually logs all events, filtering them according to parameters that you select. A combination of operational counters and the ELS provides information for monitoring the health and activity of the system. The information is divided into the following sections:

- What is ELS?
- Entering and Exiting the ELS Configuration Environment on page 148
- Event Logging Concepts on page 148
- Using ELS on page 151
- Using ELS to Troubleshoot a Problem on page 153
- Using ELS Remote Logging on page 155
- Using ELS Message Buffering on page 163

What is ELS?

ELS is a monitoring system and an integral part of the router operating system. ELS manages the messages logged as a result of router activity. Use ELS commands to set up a configuration that sorts out only those messages you feel are important. You can then display the messages on the console terminal screen, log them to a remote workstation, or send the messages to a network management station using Simple Network Management Protocol (SNMP) traps.

The ELS system and the operational counters are the best troubleshooting tools you have to isolate problems in the router. A quick scan of the event messages will tell you whether the router has a problem and where to start looking for it.

In the ELS configuration environment, the commands are used to establish a default configuration. This default configuration does not take effect until the router reinitializes.

Occasionally, it is helpful to temporarily view messages using parameters other than was set up in the ELS configuration environment, without having to reinitialize the router. The ELS operating and monitoring environment is used to:

- Temporarily change the default ELS display settings
  - Changes made in the ELS console environment take effect immediately
  - Changes made in the operating/monitoring environment are not stored in nonvolatile configuration storage.
- View statistical information regarding ELS uses of dynamic RAM

Note: Specific ELS messages are described in the IBM Nways Event Logging System Messages Guide.

ELS is a subprocess that you access from the OPCON process.
Entering and Exiting the ELS Configuration Environment

The ELS configuration environment (available from the CONFIG process) is characterized by the ELS Config> prompt. Commands entered at this prompt create the ELS default state that takes effect after you restart the router. These commands are described in greater detail later in this chapter.

Configuration commands that have subsystem, group, or event as a parameter are executed in the following order:
- Subsystem
- Group
- Event

To set a basic ELS configuration, enter the display subsystem all standard command at the ELS Config> prompt. This command configures the ELS to display messages from all subsystems with the STANDARD logging level (that is, all errors and unusual informational comments).

Note: The router does not have a default ELS configuration. You must enter the ELS configuration environment and set the default state.

To enter the ELS configuration environment from OPCON:
1. Enter the talk 6 command. The console displays the CONFIG prompt (Config>).
   If the prompt does not appear when you first enter CONFIG, press Return.
2. At the CONFIG prompt, enter the following command to access ELS:
   Config> eve

   The console displays the ELS configuration prompt (ELS config>). Now, you can enter ELS configuration commands.

To leave the ELS configuration environment, enter the exit command.

Event Logging Concepts

This section describes how events are logged and how to interpret messages. Also described are the concepts of subsystem, event number, and logging level. A large part of ELS function is based on commands that accept the subsystem, event number, and logging level as parameters.

Causes of Events

Events occur continuously while the router is operating. They can be caused by any of the following reasons:
- System activity
- Status changes
- Service requests
- Data transmission and reception
- Data and internal errors

When an event occurs, ELS receives data from the system that identifies the source and nature of the event. Then ELS generates a message that uses the data received as part of the message.
Interpreting a Message

This section describes how to interpret a message generated by ELS. Figure 4 shows the message contents.

![Figure 4. Message Generated by an Event](image)

The information illustrated in Figure 4 as well as the ELS logging level information displayed with the `list subsystem` command is as follows:

**Subsystem**

*Subsystem* is a predefined short name for a router component, such as a protocol or interface. In Figure 4, GW identifies the subsystem through which this event occurred.

Other examples of subsystems include IP, TKR, and X25. On a particular router, the actual subsystems present depend on the hardware and software configured for that router. You can use the `list subsystem` command described in this chapter to see a list of the subsystems on your router.

Enter the subsystem as a parameter to an ELS command when you want the command to affect the entire subsystem. For example, the ELS command `display subsystem GW` causes all events (except the events with 'debug' logging level) that occur through the GW subsystem to be displayed.

**Event Number**

*Event Number* is a predefined, unique, arbitrary number assigned to each message within a subsystem. In Figure 4, 019 is the event number within the GW subsystem. You can see a list of all the events within a subsystem by using the `list subsystem` command, where `subsystem` is the short name for the subsystem.

The event number always appears with a subsystem identifier, separated by a period. For example: GW.019. The subsystem and event number together identify an individual event. They are entered as a parameter to certain ELS commands. When you want a command to affect only the specified event, enter the subsystem and event number as a parameter for the ELS command.

**Logging Level**

*Logging level* is a predefined setting that classifies each message by the type of event that generated it. Use the `list subsystem` ELS console command to display the setting of the logging level. Table 17 on page 150 lists the logging levels and types. ERROR, INFO, TRACE, STANDARD, and ALL are aggregates of other logging level types. STANDARD is the recommended default.
Using ELS

Table 17. Logging Levels

<table>
<thead>
<tr>
<th>Logging Level</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI ERROR</td>
<td>Unusual internal errors</td>
</tr>
<tr>
<td>CI ERROR</td>
<td>Common internal errors</td>
</tr>
<tr>
<td>UE ERROR</td>
<td>Unusual external errors</td>
</tr>
<tr>
<td>CE ERROR</td>
<td>Common external errors</td>
</tr>
<tr>
<td>ERROR</td>
<td>Includes all error levels above</td>
</tr>
<tr>
<td>UINFO</td>
<td>Unusual informational comment</td>
</tr>
<tr>
<td>CINFO</td>
<td>Common informational comment</td>
</tr>
<tr>
<td>INFO</td>
<td>Includes all comment levels above</td>
</tr>
<tr>
<td>STANDARD</td>
<td>Includes all error levels and all informational comment levels (default)</td>
</tr>
<tr>
<td>PTRACE</td>
<td>Per packet trace</td>
</tr>
<tr>
<td>UTRACE</td>
<td>Unusual operation Trace message</td>
</tr>
<tr>
<td>CTRACE</td>
<td>Common operation Trace message</td>
</tr>
<tr>
<td>TRACE</td>
<td>Includes all trace levels above</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Message for debugging</td>
</tr>
<tr>
<td>ALL</td>
<td>Includes all logging levels</td>
</tr>
</tbody>
</table>

The logging level setting affects the operation of the following commands:

- Display subsystem
- Nodisplay subsystem
- Trap subsystem
- Notrap subsystem
- Remote subsystem
- Noremote subsystem

The logging level is set for a particular command when you specify it as a parameter to one of the above commands. For example:

display subsystem TKR ERROR

Including the logging level on the command line modifies the display command so that whenever an event with a logging level of either UI-ERROR or CI-ERROR occurs through subsystem TKR, the console displays the resulting message.

You cannot specify the logging level for operations affecting groups or events.

Message Text

Message Text appears in short form. In Figure 4 on page 149, Sift tnt nt int ETH/0 is the message generated by this event. Variables, such as source_address or network, are replaced with actual data when the message displays on the console.

The variable error_code is referred to by some of the Event Logging System message descriptions (usually preceded by rsn or reason). They indicate the type of packet error detected. Table 18 describes the error or packet completion codes. Packet completion codes indicate the disposition of the packets received by the router.

Table 18. Packet Completion Codes (Error Codes)

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Packet successfully queued for output</td>
</tr>
</tbody>
</table>
Table 18. Packet Completion Codes (Error Codes) (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Random, unidentified error</td>
</tr>
<tr>
<td>2</td>
<td>Packet not queued for output due to flow control reasons</td>
</tr>
<tr>
<td>3</td>
<td>Packet not queued because network is down</td>
</tr>
<tr>
<td>4</td>
<td>Packet not queued to avoid looping or bad broadcast</td>
</tr>
<tr>
<td>5</td>
<td>Packet not queued because destination host is down (only on networks where this can be detected)</td>
</tr>
</tbody>
</table>

ELS displays network information as follows:

```
nt 1 int Eth/0 (or) network 1, interface Eth/0,
```

where:
- 1 is the network number (each network on the router is numbered sequentially from zero).
- 0 is the unit number (the interfaces of each hardware type are numbered sequentially from zero).

Ethernet and 802.5 hardware addresses appear as a long hexadecimal number.

IP (Internet Protocol) addresses are printed as 4 decimal bytes separated by periods, such as 18.123.0.16.

**Groups**

Groups are user-defined collections of events that are given a name, the group name. Like the subsystem, subsystem and event number, and logging level, use the group name as a parameter to ELS commands. However, there are no predefined group names. You must create a group before you can specify its name on the command line.

To create a group, use the `add` configuration command, specify the name you want to call the group, and then specify the events you want to be part of the group. The events you add to the group can be from different subsystems and have different logging levels.

After creating a group, use the group name to manipulate the events in the group as a whole. For example, to turn off display of all messages from events that have been added to a group named `grouptwo`, include the group name on the command line, as follows:

```
nodisplay group grouptwo
```

To delete a group, use the `delete` command.

**Using ELS**

To use ELS effectively, do the following:
- Know what you want before using the ELS system. Clearly define the problem or events that you want to see before using the MONITR process.
- Execute the command `nodisplay subsystem all all` to turn off all ELS messages.
- Turn on only those messages that relate to the problem you are experiencing.
Using ELS

- Use the *IBM Nways Event Logging System Messages Guide* to determine which messages are not normal.

When initially viewing ELS from the MONITR process, you will see a considerable amount of information. Because the router cannot buffer and display every packet under moderate to heavy loads the buffers are flushed. When this occurs the following message is displayed:

```
xx messages flushed
```

The router does not save these messages. When this message appears, tailor the ELS output to display only that information that is important to the current task you are monitoring, or use the advanced ELS commands to establish a message buffer. See "Using ELS Message Buffering" on page 163.

Managing ELS Message Rotation

It is also important to note that the ELS messages continually rotate through the router’s buffers. To stop and restart the displaying of ELS messages, use the following key combinations:

- **Ctrl-S** to pause scrolling
- **Ctrl-Q** to resume scrolling
- **Ctrl-P** to go back to the last process

You may also want to capture the ELS output to a file. You can do this by starting a script file or log file from your location when Telneting to a router. You can also do this by attaching a PC to the router’s console port and starting a log file from within the terminal emulation package. This information is needed to help Customer Service diagnose a problem.

Capturing ELS Output Using a Telnet Connection on a UNIX Host

Use a Telnet connection on an AIX or UNIX host to capture the ELS messages on your screen to a file on the host. Before beginning, set up ELS for the messages you want to capture using the ELS console commands in "Chapter 13. Configuring and Monitoring the Event Logging System (ELS)" on page 167.

To capture the ELS output to a file on an AIX or UNIX host, follow these steps:

1. From the host, enter `telnet router_ip_addr | tee local_file_name`
   - router_ip_addr is the IP address of the router
   - local_file_name is the name of the file on the host where you want the ELS messages to be saved.
   - The `tee` command displays the ELS messages on your screen and, at the same time, copies them to the local file.

2. From the OPCON prompt (*), enter `t2`. This accesses the MONITR process, which is the process that displays ELS messages on your screen. Depending on which ELS messages you configured, you should see ELS messages appearing on the screen.
   - As long as you are in the MONITR process, all ELS messages will be written to the local file. When you exit the MONITR process (by entering **Ctrl-P**) or terminate the Telnet session, the logging of messages to the local file will stop.
You can also use remote logging instead of capturing ELS output on a UNIX Host. For more information about remote logging, see [Using and Configuring ELS Remote Logging] on page 153.

**Configuring ELS So Event Messages Are Sent In SNMP Traps**

ELS can be configured so that event messages are sent to a network management workstation in an SNMP enterprise-specific trap. These traps are useful for reporting status and diagnostic results, and are often used for remote monitoring of a 2210. When ELS is configured appropriately, an SNMP trap will be generated each time the selected event occurs. For more information about SNMP, see Protocol Configuration and Monitoring Reference.

To tell ELS that a specific event should be activated to be sent as an SNMP trap, at the ELS config> prompt or at the ELS> prompt, using IP as an example, type:

```
trap event ip.007
```

**Note:** If you are at the ELS config> prompt, you will need to reboot.

To enable the ELS enterprise-specific trap, follow these steps:

1. At the SNMP config> prompt, using public as an example, type:

```
SNMP config> add address public <network manager IP address>
SNMP config> enable trap enterprise public
SNMP config> set community access read_trap public
```

   **Note:** You need to reboot to activate these changes.

2. Enable your network management station to receive and properly display the enterprise-specific traps.

Follow these steps to trap groups, subsystems, and events.

**Using ELS to Troubleshoot a Problem**

If you are trying to troubleshoot a particular problem, display the messages related to the problem. For example, if experiencing a problem with bridging, turn on the bridging messages:

```
display subsystem srt all
display subsystem br all
```

Initially, because of the rapid pace of messages scrolling across the screen, you may want to record the numbers you see and look them up in the [Event Logging System Messages Guide] manual. Once you become familiar with different types of messages being displayed for a particular protocol, you can turn on and turn off only those messages that contain the information that you require to troubleshoot a problem. The following sections list specific ELS examples. Keep in mind that different problems may require different steps.

**ELS Example 1**

You are interested in looking at the frequency of polling on a Token-Ring interface, and finding out whether the polls are successful.
Using ELS

ELS> nodisplay subsystem all all
ELS> display subsystem tkr all
Ctrl-P
* t 2

As the messages begin to scroll by, look for ELS message tkr.031.

ELS Example 2

SRB bridging is not working.
1. Check the configuration.
2. Use the GWCON bridging console to verify that the bridging interfaces are enabled.
3. Enter:
   * t 6
   config> event
ELS config> nodisplay subsystem all all
ELS config> display subsystem srb all
ELS config> exit
config> Ctrl-P
4. Restart the routing subsystem. When the subsystem has restarted, enter the following:
   * t 2

ELS Example 3

Router cannot communicate with an IPX server on an Ethernet.
1. Enter the talk command and the PID for GWCON.
   * talk 5

   The console displays the GWCON prompt (+). If the prompt does not appear when you first enter GWCON, press Return.
2. At the GWCON prompt (+), enter IPX to access the IPX console prompt (IPX>).
3. At the IPX console prompt, enter the slist command to verify that the server is listed. (See the section on monitoring IPX in the Protocol Configuration and Monitoring Reference for information on the slist command.)
4. Check the IPX configuration.
5. Enter the following:
   * t 5
   + event
ELS> nodisplay subsystem all all
ELS> display subsystem IPX all
ELS> display subsystem eth all
ELS> Ctrl-P
* t 2

As the messages begin to scroll by, look for ELS message eth.001. This indicates that the server has a bad Ethernet type field.
Using and Configuring ELS Remote Logging

The remotely-logged ELS message contains all of the information that is contained in ELS messages found in the monitor queue, as viewed under talk 2, and also contains additional information as shown in Figure 5.

Note the following differences in the remote log display:

- The month and day of month in addition to the time, which is always displayed as the time-of-day.
- An IP address, which is the user-specified source IP address. If a DNS server resolves the source IP address to a hostname, then the hostname will be displayed instead of the IP address.
- A Sequence number is added to the message by the source device to assist in detecting dropped messages. See "Remote Logging Output" on page 159 for an explanation of dropped messages. When the sequence number of the message reaches 9999, the next sequence number is 0001.
- A "Local Name" for the source router, to assist in distinguishing between messages from multiple sources. If you do not configure a local name, this field is blank.

Syslog Facility and Level

Remotely-logged ELS messages are transmitted over the network in UDP packets with the destination port number in the UDP header always equal to 514, the syslog port. To receive and process the UDP packets, the syslog daemon (syslogd) must be running in the remote workstation that is receiving and logging the ELS messages. See "Remote Workstation Configuration" for details.

Although it is not displayed in the remotely-logged ELS message, every ELS message sent on the network in a UDP packet must be assigned a syslog_facility and a syslog_level. The syslog daemon uses the combination of facility and level to determine where to route the message. Typically, you want the ELS messages to be written to one or more files in the remote host. Other options include displaying the message on the console, sending the message to one or more users, or sending the message to another workstation.

The commands you use to specify the syslog_facility and syslog_level values, along with other remote-logging related console commands, are described in "ELS Monitoring Commands" on page 188 and "ELS Configuration Commands" on page 167. Review these commands before reading through the next section.

Remote Workstation Configuration

The following configuration assumes that a single 2210 is remote-logging to a single remote workstation. You can configure multiple 2210s to remote-log to the same
Using ELS

remote workstation. However, a particular 2210 can log to one and only one remote workstation. The operating system used in this example is AIX 4.2. Your environment may be slightly different. For more information on syslog, refer to the documentation for your operating system.

To perform the configuration on an AIX workstation, you must log in as root. To configure the workstation:

1. Create or edit a syslog.conf file to specify where ELS messages with particular syslog_facility and syslog_level values are to be written. See the bottom of Figure 6 on page 157 for an example of how to specify the message destination. Note that the full pathname of the log files must be specified. The default location for the syslog configuration file is /etc/syslog.conf.

2. Create the files for logging syslog messages that you specified in the syslog.conf file.

3. Start the syslog daemon by entering syslogd. To start the syslog daemon from SRC (System Resource Controller), enter startsrc -s syslogd. If the pathname of the configuration file is not /etc/syslog.conf, then enter syslogd -f pathname.

   To start the syslog daemon in debug mode, enter syslogd -d.

   Note: Running multiple instances of the syslog daemon is not supported.

4. If the syslog daemon is already running when you create or modify the syslog.conf file, it must be restarted so that the daemon reinitializes the configuration from syslog.conf.

5. Verify the setup by using the logger command as follows:

   logger -p user.alert THIS IS A TEST MESSAGE (user.alert)
   logger -p news.info THIS IS A TEST MESSAGE (news.info)

   If the setup is correct, THIS IS A TEST MESSAGE... will be written to the files specified in syslog.conf.
Configuring the 2210 for Remote Logging

To configure a 2210:

1. In talk 6, configure the remote-logging facility as shown in Figure 7 on page 158. The IP address specified as the source-ip-addr should be an IP address that is configured in the 2210 for easier identification when the IP address or the hostname is shown in the remotely-logged ELS message. You should also verify that this IP address resolves quickly into a hostname by the name server or that
Using ELS

the name server at least responds quickly with “address not found.” To
determine whether this happens, issue the `host` command on your workstation
as follows:

```
workstation> host 5.1.1.1
host: address 5.1.1.1 NOT FOUND
workstation>
```

If the response takes more than 1 second, select an IP address which resolves
more quickly.

2. In talk 6 configure events and subsystems for remote-logging, as shown in
   Figure 8 on page 153.

3. Restart the 2210.

```
ELS config> set remote source-ip-addr 5.1.1.1
Source IP Addr = 5.1.1.1
ELS config> set remote remote-ip-addr 192.9.200.1
Remote Log IP Addr = 192.9.200.1
ELS config> set remote local-id ** IBM/2210 **
Remote Log Local ID = ** IBM/2210 **
ELS config> set remote nomsgs-in-buffer 100
Number of messages in Remote Log Buffer must be 100-512
Number of Messages in Remote Buffer = 100
ELS config> set remote facility log_news
Default Syslog Facility = LOG_NEWS
ELS config> set remote level log_info
Default Syslog Level = LOG_INFO
ELS config> set remote on
Remote Logging is ON
ELS config> list remote
------------------ Remote Log Status -----------------
Remote Logging is ON
Source IP Address = 5.1.1.1
Remote Log IP Address = 192.9.200.1
Default Syslog Facility = LOG_NEWS
Default Syslog Priority Level = LOG_INFO
Number of Messages in Remote Log = 100
Remote Logging Local ID = ** IBM / 2210 **
ELS config>
```

Figure 7. Configuring the 2210 for Remote Logging
Remote Logging Output

Figure 9 on page 160 shows a sample from the /tmp/syslog_news_info file. Notice that the first message has a sequence number of 310. This means that the first 309 ELS messages were not sent from the source 2210. There are several reasons for this:

- The remote-logging facility had not completed initialization when the messages were first passed to ELS.
A route from the source 2210 to the remote workstation was not in the routing table.

The interface for the outbound UDP packet containing the ELS messages was not in the “Up” state.

Notice in Figure 1 that messages 311-313 did not get remote-logged. This is because an ARP request was outstanding and until the ARP response is received, all but the first packet is dropped in the source 2210. Additionally, the ARP cache is cleared at a user-configured refresh rate, and a new ARP request is issued. To determine when this is occurring, you can remote log events ARP.002 and ARP.011 in addition to the primary ELS events of interest. Figure 11 on page 161 shows ARP events logged to the syslog_user_alert file that account for events 445 and 446, which were indicated as missing in Figure 9.

If the initial ELS messages that are generated during and immediately after booting are of particular interest, then it is recommended that these messages also be displayed in the monitor queue, which is viewed with talk 2. Figure 10 on page 161 shows the talk 2 output including the initial messages that did not get remote-logged. Note that there is a message in the talk 2 output that indicates that the remote-logging facility is available. This does not indicate that a route exists to the remote workstation, nor that the associated interface is in the “Up” state. It simply provides a reference point before which no messages can be successfully remote-logged.

Also notice that you can account for the messages that were missing (indicated in Figure 9 with ) in the talk 2 output.
You can use the timestamp, which appears in both the remote-logging output file and the talk 2 output, to determine when the first ELS message is successfully remote-logged. To use the timestamp for this purpose, configure ELS such that the timestamp in the monitor queue displays the time-of-day.

Also notice in Figure 9 on page 160 that messages 311-313 did not get remote-logged. This is because an ARP request was outstanding and until the ARP response is received, all but the first packet is dropped in the source IBM 2210. The ARP cache is cleared at a user-configured refresh rate, and the device issues a new ARP request. To determine when ARP requests are occurring, events ARP.002 and ARP.011 can be remote-logged, in addition to the ELS events of interest. Figure 11 shows ARP events logged to the syslog_user_alert file that account for events 445 and 446, which were indicated as missing in Figure 9 on page 160.

You can prevent the loss of ELS messages caused by this ARP sequence by establishing a static relationship between the IP address and the MAC address. The basic steps are outlined below and are illustrated in Figure 12 on page 162.

1. In talk 5, “ping” the remote workstation’s IP address
2. In talk 5, determine the interface (net) number used to send messages to the remote-workstation’s IP address
Using ELS

3. Use the net number from the previous step to determine the associated MAC address.

4. In talk 6, add an ARP entry to establish a static IP address to MAC address relationship.

```
$t 5
+p ip
IP> ping 192.9.200.1
PING 192.9.200.20 -> 192.9.200.1: 56 data bytes, ttl=64, every 1 sec.
56 data bytes from 192.9.200.1: icmp_seq=0. ttl=64. time=0. ms
---192.9.200.1 PING Statistics---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
```

```
IP> dump

Type Dest net Mask Cost Age Next hop(s)
Dir* 192.9.200.0 FFFFFF00 1 102305 Eth/0
```

```
$IP> exit
```

```
+p arp
ARP> dump
Network number to dump [0]? 0
Hardware Address IP Address Refresh
02-60-8C-2D-69-5D 192.9.200.1 2
```

```
Ctrl-P
$t 6
config> p arp
ARP config> add entry
Interface Number [0]? 0
Protocol [IP]? IP
IP Address [0.0.0.0]? 192.9.200.1
Mac Address [00:00:00:00:00:00]? 02608C2D695D
ARP config> list entry
```

```
Mac address translation configuration
IF # Prot # Protocol -> Mac address
0 0 IP 192.9.200.1 -> 02608C2D695D
```

```
config>
```

```
Ctrl-P
$restart
Are you sure you want to reload the gateway? (Yes or [No]): Yes
(after reload, static ARP entry is active)
```

Figure 12. Example of Setting Up a Static ARP Entry

Additional Considerations

ELS Messages Containing IP Addresses

ELS messages containing an IP address which matches the IP address of the remote workstation will not be remote-logged, even if configured for remote-logging, and may appear under talk 2. These messages are discarded instead of being remote-logged in order to prevent excessive UDP packets from being sent on the network.
Duplicate Logging

If a facility value is repeated in syslog.conf, for example:
user.debug /tmp/syslog_user_debug
user.alert /tmp/syslog_user_alert

The syslog daemon will log user.debug messages only to the /tmp/syslog_user_debug file while user.alert messages will be logged to both the /tmp/syslog_user_debug file and the /tmp/syslog_user_alert file. This is consistent with the syslog design that logs the more severe conditions in multiple places.

To prevent this duplicate logging, it is recommended that different facility values be specified in the syslog.conf file. A total of 19 facility values are available.

Recurring Sequence Numbers in Syslog Output Files

Depending upon the configuration of your network, it is possible for duplicate UDP packets containing ELS messages to arrive at the remote host. It is also possible for the packets to arrive in a different order than they were transmitted. An example of this phenomenon is shown in Figure 13. Notice that the messages with sequence numbers 628 through 633 are logged twice. Also notice that after the first occurrence of sequence number 0630, sequence number 0629 occurs again, followed by the second occurrence of 0630.

Figure 13. Example of Recurring Sequence Numbers in Syslog Output

Because neither Syslog nor UDP has the ability to handle duplicate or out of sequence packets, it is important to recognize the possibility of duplicate sequence numbers occurring.

Using ELS Message Buffering

Message buffering is an advanced feature of ELS that can help you with problem determination. You can set up defaults that ELS will use for message buffering or change how messages are buffered while the router is operating. Message buffering can minimize the information lost because messages have wrapped in the default message buffers. Message buffering is accessible through the advanced configuration or monitoring command. It enables you to:

- Specify whether buffering is active.
- Specify what events are written to the message buffer.
- Stop buffering and free the memory allocated for buffering.
- Display the status of the message buffer.
Using ELS

- Specify an event that stops message buffering and what action the system takes when the event occurs.
- Send a formatted version of the buffer to a file at a remote server.
- View a specific number or all of the ELS messages in the buffer.

For specifics about the commands, see "ELS Message Buffering Configuration Commands" on page 184 and "ELS Message Buffering Monitoring Commands" on page 210.

The following example shows how to configure ELS message buffering.

MOS Operator Control
*t 5 :Enter t 5 at the * prompt.

CGW Operator Console
+ev :Enter ev at the + prompt.
Event Logging System user console
ELS>a :Enter a for advanced at the ELS prompt.
Advanced ELS Console
ELS Advanced>li s :Enter li s to list status at the > prompt.
---Advanced ELS Configuration------------------------
Logging Status: OFF Wrap Mode: ON Logging Buffer Size: 0 KB
Stop-Event: NONE Stop-String: NONE
Additional Stop-Action: NONE
---Run-Time Status-------------------------------
Has Stop Condition Occurred? NO Messages currently in buffer: 0

ELS Advanced>s b :Enter s b to set buffer size.
Buffer size set to 0 KB or between 148 and 593 KB 148 ?
Buffer size set to 148 KB
ELS Advanced>s e gw.26 :Enter s e to set stop event eg. gw.26
Stop Event "GW.026" has been set
ELS Advanced>ex :Enter ex to exit Advanced to list gw.26
ELS>list ev gw.26
Level: C-TRACE
Message: Mnt nt %n int %s/%d
Active: Count: 742
ELS>a :Enter a to get back to advanced.
Advanced ELS Console
ELS Advanced>s s s Mnt nt 5 :Enter s s s to set the stop string.
Stop String set to "Mnt nt 5"
ELS Advanced>s a ? :Enter s a ? to query available stop actions.
NONE
APPN-DUMP :Only available if APPN active and in the load image.
SYSTEM-DUMP
ELS Advanced>s s s a s :Enter s s s a s to set SYSTEM-DUMP stop action.
Stop Action has been set to SYSTEM-DUMP
ELS Advanced>s w off to :Enter s w on to set wrap mode off.
Advanced Wrap Mode set to OFF.
ELS Advanced>log sub gw all :Enter to enable the whole gw subsystem
ELS Advanced>s l on :Enter s l on to start the logging process.
Advanced Logging set to ON.
ELS Advanced>li s :Enter to list status of logging.
---Advanced ELS Configuration------------------------
Logging Status: OFF Wrap Mode: OFF Logging Buffer Size: 148 KB
Stop-Event: GW.026 Stop-String: Mnt nt 5
Additional Stop-Action: SYSTEM-DUMP
---Run-Time Status-------------------------------
Has Stop Condition Occurred? YES Messages currently in buffer: 7
ELS Advanced>v a n :Enter to view all messages in buffer. For this trivial example any viewing command suffices.

1 10:52:10 GW.026: Mnt nt 0 int Eth/0
2 10:52:10 GW.026: Mnt nt 5 int Eth/1->This triggers stop action
3 10:52:14 GW.026: Mnt nt 0 int Eth/0 Note that 5 more events
4 10:52:14 GW.026: Mnt nt 5 int Eth/1 get logged before
5 10:52:18 GW.026: Mnt nt 0 int Eth/0 logging stops and
6 10:52:18 GW.026: Mnt nt 5 int Eth/1 the stop action occurs.
7 10:52:22 GW.026: Mnt nt 0 int Eth/0
BugHLT: Dump initiated by ELS Stop Action.

BUGHLT+80; Dump initiated by ELS Stop Action.

Note:
In reality if the stop action is the SYSTEM-DUMP you will not be able to list the final status as above nor view the buffer because the router will be attempting to reload.
Chapter 13. Configuring and Monitoring the Event Logging System (ELS)

This chapter describes how to configure events logged by ELS and how to use the ELS commands. The information includes the following sections:

- Accessing the ELS Configuration Environment
- ELS Configuration Commands
- Entering and Exiting the ELS Operating Environment on page 187
- ELS Monitoring Commands on page 188

For more information on the Event Logging System and how to interpret ELS event messages, refer to Chapter 12. Using the Event Logging System (ELS) on page 147.

Accessing the ELS Configuration Environment

The ELS configuration environment is characterized by the `ELS config>` prompt. Commands entered at this prompt are described in Chapter 13. Configuring and Monitoring the Event Logging System (ELS).

To enter the ELS configuration environment:

1. Enter `talk 6`.
   The monitoring displays the `Config>` prompt. If the prompt does not appear, press `Return`.
2. At the `Config>` prompt, enter the following command to access ELS:
   ```
 event
   ```
   The monitoring displays the ELS configuration prompt (`ELS config>`). Now, you can enter ELS configuration commands.

To leave the ELS configuration environment, enter the `exit` command.

ELS Configuration Commands

Table 19 summarizes the ELS configuration commands. The remainder of this section describes each one in detail. After accessing the ELS configuration environment, you can enter ELS Configuration commands at the `ELS Config>` prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds an event to an existing group or creates a new group.</td>
</tr>
<tr>
<td>Advanced</td>
<td>Places you in the advanced configuration environment in which you can configure message buffering.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears all ELS configuration information.</td>
</tr>
<tr>
<td>Default</td>
<td>Resets the display or trap setting of an event, group, or subsystem.</td>
</tr>
</tbody>
</table>
### ELS Configuration Commands (Talk 6)

#### Table 19. ELS Configuration Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Deletes an event number from an existing group or deletes an entire group.</td>
</tr>
<tr>
<td>Display</td>
<td>Enables message display on the console monitor.</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter ELS messages based upon the net number.</td>
</tr>
<tr>
<td>List</td>
<td>Lists information on ELS settings and messages.</td>
</tr>
<tr>
<td>Nodisplay</td>
<td>Disables message display on the console.</td>
</tr>
<tr>
<td>NoreMOTE</td>
<td>Disables remote logging to a remote workstation.</td>
</tr>
<tr>
<td>Notrace</td>
<td>Controls disablement of packet trace events.</td>
</tr>
<tr>
<td>Notrap</td>
<td>Keeps messages from being sent out in SNMP traps.</td>
</tr>
<tr>
<td>Remote</td>
<td>Allows messages to be logged to a remote workstation.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the pin parameter and the timestamp feature options.</td>
</tr>
<tr>
<td>Trace</td>
<td>Controls enablement of packet trace events.</td>
</tr>
<tr>
<td>Trap</td>
<td>Allows messages to be sent to a network management workstation in SNMP traps.</td>
</tr>
<tr>
<td>View</td>
<td>Allows viewing of traced packets.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 11.</td>
</tr>
</tbody>
</table>

### Add

Use the `add` command to add an individual event to an existing group or to create a new group. Group names must start with a letter and are case sensitive. You cannot append an entire subsystem to a group.

**Syntax:**

```
add group_name subsystem.event_number
```

**Note:** If the specified group does not exist, the following prompt asks you to confirm the creation of a new group:

```
Group not found. Create new group? (yes or no)
```

### Advanced

Use the `advanced` command to enter the advanced configuration environment. In this environment you configure message buffering.

**Syntax:**

```
advanced
```

### Clear

Use the `clear` command to clear all of the ELS configuration information.

**Syntax:**

```
clear
```

**Example:**

```
clear
```

You are about to clear all ELS configuration information. Are you sure you want to do this (Yes or No):
**Default**

Resets the display or trap setting of an event, group, or subsystem back to a disabled state.

**Syntax:**

```
default display
 trap
 remote

display event OR group OR subsystem
 Controls the output of the display of messages to the monitoring.

trap event OR group OR subsystem
 Controls the generation of traps to the network management station.

remote event OR group OR subsystem
 Controls the generation of traps to the remote station.
```

**Delete**

Use the `delete` command to delete an event number from an existing group or to delete the entire group. If the specified event is the last event to be deleted in a group, you will be notified. If `all` is specified instead of `subsystem.event_number`, a prompt asks you to confirm the deletion of the entire group.

**Syntax:**

```
delete group_name subsystem.event_number
```

**Display**

Use the `display` command to enable message displaying on the monitoring monitor for specific events, a range of events for a subsystem, groups, or subsystems.

**Syntax:**

```
display event . . .
 group . . .
 range . . .
 subsystem . . .

event subsystem.event# Displays messages of the specified event (subsystem.event#).

group groupname Displays messages of a specified group (groupname).

range subsystemname first_event_number last_event_number
 Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event in the specified event range.
 Displays a range of messages for the specified subsystem.

Example:
ELS Configuration Commands (Talk 6)

display range gw 19 22

Displays events gw.19, gw.20, gw.21, and gw.22.

subsystem subsystemname

Displays messages associated with the specified subsystem. To find out which subsystems are on the router, type list subsystems.

Note: Although ELS supports all subsystems on the router, not all devices support all subsystems. See Event Logging System Messages Guide for a list of currently supported subsystems.

Filter

Use the filter command to access the filter configuration command environment. See ELS Net Filter Configuration Commands on page 181 for complete command details.

Syntax:
filter net

List

Use the list command to get updated information regarding ELS settings and listings of selected messages.

Syntax:
list all
 filter-status
 groups
 pin
 remote-log status
 status
 subsystem . . .
 subsystems all
 trace-status

all
Lists information from all the list categories.

filter-status
Lists ELS net number filters.

groups
Lists the user-defined group names and contents.

pin
Lists the current number of ELS event messages sent in SNMP traps (per second).

remote-log status
Lists the current values of remote logging options.

Example:
list r

Remote Logging is ON
Source IP Address = 192.67.38.2
Remote Log IP Address = 192.9.200.1
Default Syslog Facility = LOG_DAEMON
Default Syslog Priority Level = LOG_CRIT
Number of Messages in Remote Log = 256
Remote Logging Local ID = MYHOSTNAME

status Lists the subsystems, groups, and events that have been modified by the display, nodisplay, trap, notrap, trace, notrace, remote, and noremote commands.

Example:
list status

Subsystem: TKR
Disp Levels: STANDARD
Trap levels: none
Trace levels: none
Remote levels: ERROR INFO TRACE
Syslog Facility/Level: LOG_USER LOG_INFO

<table>
<thead>
<tr>
<th>Group</th>
<th>Disp</th>
<th>Trap</th>
<th>Trace</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mygroup</td>
<td>Unset</td>
<td>Unset</td>
<td>Unset</td>
<td>On</td>
</tr>
<tr>
<td>Syslog Facility/Level: LOG_DAEMON LOG_CRIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Disp</th>
<th>Trap</th>
<th>Trace</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP.007</td>
<td>Unset</td>
<td>Unset</td>
<td>Unset</td>
<td>On</td>
</tr>
<tr>
<td>Syslog Facility/Level: LOG_CRON LOG_NOTICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Not only is remote logging enabled, but the display includes the Syslog Facility/Level values for each subsystem, group, and event. Ranges of events are listed as individual events.

subsystem

Lists names, events, and descriptions of all subsystems.

(Example output from a list subsystem command can be found beginning on page 191.)

subsystem subsystem

Lists all events in a specified subsystem.

Example:
list subsystem gw

<table>
<thead>
<tr>
<th>Event</th>
<th>Level</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW.001</td>
<td>ALWAYS</td>
<td>Copyright 1984 Mass Institute of Technology</td>
</tr>
<tr>
<td>GW.002</td>
<td>ALWAYS</td>
<td>Portable CGW 9.2 Rel 9.2 strtd</td>
</tr>
<tr>
<td>GW.003</td>
<td>ALWAYS</td>
<td>Unus pkt len %d nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.004</td>
<td>ALWAYS</td>
<td>Sys %s q adv alloc %d excd %d</td>
</tr>
<tr>
<td>GW.005</td>
<td>ALWAYS</td>
<td>Bffrs: %d avail %d idle %d fair %d low %d</td>
</tr>
<tr>
<td>GW.006</td>
<td>C-INFO</td>
<td>Pkt frm nt %d int %s/nt for uninit prr, disc</td>
</tr>
<tr>
<td>GW.007</td>
<td>C-INFO</td>
<td>IP err %x nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.008</td>
<td>U-INFO</td>
<td>Ip ovfl nt %d int %s/nt, disc</td>
</tr>
<tr>
<td>GW.009</td>
<td>UI-ERROR</td>
<td>Nt dwn ip rstrt nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.010</td>
<td>UI-ERROR</td>
<td>Ip q len %d no ip buf nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.011</td>
<td>U-INFO</td>
<td>Op err %x host %wo nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.012</td>
<td>U-INFO</td>
<td>Op err cnt excd host %wo nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.013</td>
<td>U-INFO</td>
<td>Rtrns cnt excd hdr %wo nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.014</td>
<td>UI-ERROR</td>
<td>Nt dwn op rstrt nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.015</td>
<td>UI-ERROR</td>
<td>Nt dwn to host %wo nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.016</td>
<td>U-INFO</td>
<td>Op ovfl to host %wo nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.017</td>
<td>U-ERROR</td>
<td>Intfc hww msgng nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.018</td>
<td>U-ERROR</td>
<td>Slot nt slf tnt %d int %s/nt</td>
</tr>
<tr>
<td>GW.019</td>
<td>C-INFO</td>
<td>Slf tnt %d int %s/nt</td>
</tr>
<tr>
<td>GW.020</td>
<td>U-ERROR</td>
<td>Nt ps s tnt %d int %s/nt</td>
</tr>
<tr>
<td>GW.021</td>
<td>U-ERROR</td>
<td>Nt up nt %d int %s/nt</td>
</tr>
<tr>
<td>GW.022</td>
<td>U-ERROR</td>
<td>Nt st slf tnt %d int %s/nt</td>
</tr>
</tbody>
</table>

subsystems all

Lists all events in all subsystems.
ELS Configuration Commands (Talk 6)

trace-status
Displays information on the status of packet tracing, including configuration and run-time information.

Example:
lst trace-status

```
------------------------- Configuration -----------------------------
Trace Status: ON Wrap Mode: ON Decode Packets: ON HD Shadowing: ON
RAM Trace Buffer Size: 100000 Maximum Trace Buffer File Size: 1000000
Max Packet Bytes Trace: 256 Default Packet Bytes Traced: 100
Trace File Record Size: 2048 Stop Trace Event: TCP.013
Maximum Hours to HD Shadow: 1
```

Nodisplay

Use the `nodisplay` command to select and turn off messages displaying on the console.

Syntax:
```
nodisplay
```

- `event subsystem.event#`
 Suppresses the displaying of a specified event (`subsystem.event#`).

- `group groupname`
 Suppresses the displaying of messages that were previously added to the specified group (`groupname`).

- `range subsystemname first_event_number last_event_number`
 Where `first_event_number` is the number of the first event in the specified event range, and `last_event_number` is the number of the last event of the specified event range.
 Suppresses the displaying of a range of messages for the specified subsystem.

Example:
nodisplay range gw 19 22

Suppresses the display of events gw.19, gw.20, gw.21, and gw.22.

- `subsystem subsystemname`
 Suppresses the displaying of messages associated with the specified subsystem.

Noremove

Use the `noremote` command to suppress the logging of events to a remote workstation based on event number, group, range of events, or subsystem.

Note: With the `noremote` command, there is usually no need to specify a `syslog_facility` and `syslog_level`, such as there is with the `remote` command.
However, for `noremote subsystem` command, there exists the option of selectively suppressing specific message levels (for example, “error” only or “trace” only) rather than turning them all off. (If you do not specify any
particular message level, “all” is assumed). Additionally, with the **noremote subsystem** command, you can set a **syslog_facility** and **syslog_level** for any remaining message levels that have not been turned off.

Syntax:

```plaintext
noremote  
    - event . . .  
    - group . . .  
    - range . . .  
    - subsystem . . 

event subsystem.event#  
    Suppresses the remote logging of messages for the specified event.

group group.name  
    Suppresses the remote logging of messages that were previously added to the specified group (group.name).

range subsystemname first_event_number last_event_number  
    Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

    Suppresses the remote logging of a range of messages for the specified subsystem.

Example:

    noremote range gw 19 22  

    Suppresses the remote logging of events gw.019, gw.020, gw.021, and gw.022

subsystem subsystem.name [syslog_facility syslog_level]  
    Suppresses the remote logging of messages associated with the specified subsystem (subsystem.name).

Example 1:

    noremote subsystem tkr  

    Suppresses the remote logging of all “tkr” messages.

Example 2:

    ELS config> noremote subsystem tkr info  
    ELS config> SYSLOG FACILITY[LOG_USER]?  
    ELS config> SYSLOG LEVEL[LOG_INFO]?

    In this example, “LOG_USER” and “LOG_INFO” were the values last picked for subsystem TKR. The command specified turns off the remote logging for subsystem TKR only for messages coded for “info”. Because **syslog_facility** and **syslog_level** was not specified, the software prompts for **syslog_facility** and **syslog_level**. If you enter another value at the prompts, that value will replace **syslog_facility** and **syslog_level** for the remaining remote-logged messages for the TKR subsystem.

Use the **list all** or **list status** commands to display what you have set with the **noremote** and **remote** commands.

For more information about **syslog_facility** and **syslog_level** see "Remote" on page 175.
ELSA Configuration Commands (Talk 6)

Notrace

Disables packet trace for the specified event/range/subsystem/group.

Syntax:

```
notrace
 event . . .
 group . . .
 range . . .
 subsystem . . .
```

**event subsystem.event#**

Suppresses the sending of packet trace data for the specified event#.

**group groupname**

Suppresses the sending of packet trace data that was previously added to the specified group (groupname).

**range subsystemname first_event_number last_event_number**

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Disables the sending of packet trace data for a range of messages for the specified subsystem.

**Example:**

```
trace range gw 19 22
```

Suppresses the sending of packet trace data for events gw.19, gw.20, gw.21, and gw.22.

**subsystem subsystemname**

Suppresses the sending of packet trace data for the specified subsystem (subsystemname).

Notrap

Use the **notrap** command to select and turn off messages so that they are no longer sent to a network management workstation in SNMP traps.

Syntax:

```
notrap
 event . . .
 group . . .
 range . . .
 subsystem . . .
```

**event subsystem.event#**

Suppresses the sending of the specified message in an SNMP trap (subsystem.event#).

**group groupname**

Suppresses the sending of messages in SNMP traps that were previously added to the specified group (groupname).

**range subsystemname first_event_number last_event_number**
ELS Configuration Commands (Talk 6)

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Suppresses the sending of messages for the events in the specified range for the specified subsystem in SNMP traps.

Example:

```
notrap range gw 19 22
```

Suppresses the sending of messages for events gw.19, gw.20, gw.21, and gw.22 in SNMP traps.

**subsystem subsystemname**

Suppresses the sending of messages in SNMP traps that are associated with the specified subsystem.

**Remote**

Use the `remote` command to select the events to be logged to a remote workstation by event number, range of events, group, or subsystem.

**Syntax:**

```
remote event . . .
 range . . .
 group . . .
 subsystem . . .
```

**event subsystem.event# syslog_facility syslog_level**

Causes the specified event to be logged remotely.

Syslog facility and level values are used by the syslog daemon in the remote workstation to determine where to log the messages. This value overrides the default values that are set with the `set facility` and `set level` commands.

**syslog_facility**

- log_auth
- log_authpriv
- log_cron
- log_daemon
- log_kern
- log_lpr
- log_mail
- log_news
- log_syslog
- log_user
- log_uucp
- log_local0-7

**syslog_level**

- log_emerg
- log_alert
ELS Configuration Commands (Talk 6)

log_crit
log_err
log_warning
log_notice
log_info
log_debug

These values do NOT have any particular association with any daemons on the IBM 2210. They are merely identifiers which are used by the syslog daemon on the remote workstation.

range subsystemname first_event_number last_event_number syslog_facility syslog_level

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Causes the events in the specified range for the specified subsystem to be remotely logged based on the syslog_facility and syslog_level values. See [the remote event command] on page 175.

Example:

remote range gw 19 22 log_user log_info

Causes the event gw.19, gw.20, gw.21, and gw.22 to be logged remotely on the syslog_facility value of log_user and the syslog_level value of log_info.

group group.name syslog_facility syslog_level

Allows events belonging to the specified group to be logged remotely based on the syslog_facility and syslog_level values. See [the remote event command] on page 175.

subsystem subsystem.name message_level syslog_facility syslog_level

Where subsystem.name is the name of the subsystem and message_level is the level of messages selected in the subsystem.

Causes the events within the specified subsystem.name whose message_level agrees with the specified message_level to be logged remotely at the files based on the syslog_facility and syslog_level values. See [the remote event command] on page 175.

Message_level is a value such as “ALL,” “ERROR,” “INFO,” or “TRACE”. See [Logging Level] on page 149. The value specified in the remote command must agree with the value as coded on the particular event within the subsystem, or that event within the subsystem will not be remotely logged.

Example:

remote subsystem TKR all log_user log_info

In the above example, all messages in subsystem TKR (“all” includes any messages coded for “error,” “info,” or “trace”) will be logged remotely based on log_user and log_info values at the remote host.

Use the list all or list status commands to display what you have set with the noremote and remote commands.
Set

Use the set command to set the maximum number of tags per second, the timestamp feature, or to set tracing options.

Syntax:

```
set _pin ...
remote-logging ...
timestamp ...
trace ...
```

**pin max_traps**

Use the set pin command to set the pin parameter to the maximum number of traps that can be sent on a per-second basis. Internally, the pin resets every tenth of a second. (One tenth of the number (max_traps) is sent every tenth of a second.)

**remote-logging**

Use the set remote-logging command to configure remote logging options. When these options are configured from the monitoring environment, the changes take effect immediately, and return to their previously configured settings when the device is rebooted.

Syntax:

```
set remote-logging on
off
facility ...
level ...
no-msgs
remote_ip_addr ...
source_ip_addr ...
local_id
```

**on**

Turns remote logging on. Remote logging is now enabled to allow any messages selected by the remote command to be actively logged.

**off**

Turns remote logging off. All messages selected by the ‘remote’ command will be prevented from being logged.

**facility**

Specifies a value that, in combination with the level value, is used by the syslog daemon in the remote workstation to determine where to log messages. This value is used for all remotely-logged ELS messages unless you specify a different value for a particular ELS event, range, group, or subsystem with the remote command.

These are all possible syslog facility values:

- log_auth
- log_authpriv
- log_cron
- log_daemon
ELS Configuration Commands (Talk 6)

log_kern
log_lpr
log_mail
log_news
log_syslog
log_user
log_uucp
log_local0-7

level Specifies a value that, in conjunction with the facility value, is used by the syslog daemon in the remote workstation to determine where to log messages. This value is used for all remotely-logged ELS messages unless you specify a different value for a particular ELS event, range, group, or subsystem with the remote command.

These are all possible syslog level values:
log_emerg
log_alert
log_crit
log_err
log_warning
log_notice
log_info
log_debug

nomsgs
Specifies the number of messages in the buffer for the remote log before log wraps.

remote_ip_addr
This is an ip address of the form xxx.xxx.xxx.xxx where xxx can be any integer 0 to 255. It represents the ip address of the remote host where the log files reside.

source_ip_addr
This is an ip address of the form xxx.xxx.xxx.xxx where xxx can be any integer 0 to 255.

You should use an IP address that is configured in the 2210 for easier identification when the IP address or the hostname is shown in the remotely-logged ELS message. You should also verify that this IP address is quickly resolved to a hostname by the name server, or at least that the name server responds quickly with “address not found.”

To determine that the IP address resolves properly enter the host command on your workstation as shown:

workstation> host 5.1.1.1
host: address 5.1.1.1 NOT FOUND
workstation>

If the response takes more than 1 second, select an IP address that resolves more quickly.

local_id
This is any character string of up to 32 characters, which is
timestamp [timeofday or uptime or off]

Allows you to turn on message timestamping so that either the time of day or uptime (number of hours, minutes, and seconds, but no date, since the router was last initialized) appears next to each message. Set timestamp can also be turned off.

Use the set timestamp command to enable one of the following timestamp options.

timeofday

Adds an HH:MM:SS prefix to each ELS message indicating the time of the occurrence during a 24-hour day.

uptime

Adds an HH:MM:SS prefix to each ELS message indicating the time of the occurrence during a 100-hour cycle. After 100 hours of uptime, the uptime counter returns to zero to begin another 100-hour cycle.

off

Turns off the ELS timestamp prefix.

trace

Use the set trace command to configure tracing options. If you configure tracing options from the monitoring environment, the changes take effect immediately. They return to their previously configured settings when the device is rebooted.

Note: Tracing should be used only under the direction of trained support personnel. Tracing, especially when used with disk-shadowing enabled, uses device resources and can impact overall performance and throughput.

Syntax:

```
set trace decode
 default-bytes-per-pkt
 max-bytes-per-pkt
 off
 on
 reset
 stop-event
 wrap-mode
```

decode off/on

Turns packet decoding on or off. Packet decoding is not supported by all components.

default-bytes-per-pkt bytes

Sets the default number of bytes traced. This value is used if a value is not specified by the component doing the tracing.

max-bytes-per-pkt bytes

Sets the maximum number of bytes traced for each packet.

off

Disables packet tracing.
ELS Configuration Commands (Talk 6)

- **on**: Enables packet tracing.
- **reset**: Clears the trace buffer and resets all associated counters.
- **stop-event** `event id`
  Stops tracing when an event (event id) occurs. Enter either an ELS event id (for example: TCP.013) or “None”. “None” is the default. Tracing stops only if the display of the particular ELS event is enabled.
  
  When a stop-event occurs, an entry is written to the trace buffer. The `view` command for this trace entry will display “Tracing stopped due to ELS Event Id: TCP.013”.
  
  After tracing stops due to a stop-event, you must re-enable tracing with the `set trace on` command. (A restart will also re-enable tracing if enabled from the ELS Config> prompt.)

- **wrap-mode** `[off or on]`
  Turns the trace buffer wrap mode on or off. If wrap mode is on and the trace buffer is full, previous trace records will be overwritten by new trace records as necessary to continue tracing.

---

**Trace**

Enables packet trace for the specified event/range/subsystem/group. When the `trace` command is used from the ELS Config> prompt, the changes become part of the configuration, and a reboot is required to activate the changes.

**Syntax:**

```
trace
 event . . .
 group . . .
 range . . .
 subsystem . . .
```

- **event** `subsystem.event#`
  Causes the specified trace event (`subsystem.event#`) to be displayed on the system monitoring.

- **group** `groupname`
  Allows trace events that were previously added to the specified group to be displayed on the router monitoring.

- **range** `subsystemname first_event_number last_event_number`
  
  Where `first_event_number` is the number of the first event in the specified event range, and `last_event_number` is the number of the last event of the specified event range.
  
  Causes the trace events in the specified range for the specified subsystem to be displayed on the system monitoring.

**Example:**

```
trace range gw 19 22
```

Causes the trace events gw.19, gw.20, gw.21, and gw.22 to be displayed on the system monitoring.
subsystem subsystemname

Allows trace events associated with the specified subsystem to be displayed on the router monitoring.

Trap

Use the trap command to select the message to be sent to the remote SNMP network management workstation. A remote SNMP network management workstation is an IP host in the network acting as an SNMP manager.

Syntax:

```
trap event...

group...

range...

subsystem...
```

event subsystem.event#

Causes the specified message (subsystem.event#) to be sent to a network management workstation in an SNMP trap.

group groupname

Allows messages that were previously added to the specified group to be sent to a network management workstation in an SNMP trap.

range subsystemname first_event_number last_event_number

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Causes the messages that are in the specified range for the specified subsystem to be sent to a network management workstation in an SNMP trap.

Example:

```
trap range gw 19 22
```

Causes the messages in events gw.19, gw.20, gw.21, and gw.22 to be sent to a network management workstation in an SNMP trap.

subsystem subsystemname

Allows messages associated with the specified subsystem to be sent to a management station in an SNMP trap.

Note: Messages for the IP, ICMP, ARP and UDP subsystems cannot be sent in SNMP traps because these areas are or may be used in the process of sending the SNMP trap. This could lead to an infinite loop of traffic putting an undue strain on the router.

ELS Net Filter Configuration Commands

ELS net filters give you the capability of looking only at ELS messages with certain net numbers and discarding other ELS messages.

When you create a filter, you specify the subsystem, event, or range of events to which the filter applies. You also specify the queue (for example, “DISPLAY”,
ELS Configuration Commands (Talk 6)

“TRAP”, “TRACE”, or “REMOTE-LOGGING”). Finally, you specify the net number (or range of net numbers) that you want to filter.

When you enable the filter, messages that have been turned on by the ELS commands are subject to filtering. The filter allows only messages with the specified net numbers. The filter causes the device to discard messages that do not contain the specified net numbers.

By reducing the number of ELS messages sent, you can more easily locate messages for the interfaces in which you are interested.

This section describes the commands to configure the ELS net filters. To configure these filters, enter the filter net command at the ELS> prompt. Then, enter the configuration commands at the ELS Filter net> prompt.

Table 20. ELS Net Filter Configuration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See [Getting Help on page 10].</td>
</tr>
<tr>
<td>Create</td>
<td>Creates a filter and assigns it a number. A maximum of 64 filters is allowed.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes a specified filter number or all filters.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables a specified filter number or all filters.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables a specified filter number or all filters.</td>
</tr>
<tr>
<td>List</td>
<td>Lists a specified filter number or all filters.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See [Exiting a Lower Level Environment on page 11].</td>
</tr>
</tbody>
</table>

Create

Use the create command to create an ELS net filter.

Syntax:

```
_create queue
 _event event_name net#_start net#_end
 _range event_range net#_start net#_end
 _subsystem subsystem_name net#_start net#_end
queue The queue for which you are setting the filter. The valid queues are:
 Display
 Trace
 Trap
 Remote
event event_name net#_start net#_end
 Specifies the event and net numbers that you are filtering.
 If you specify net#_start and net#_end as the same number, you are filtering on a single net number.
 The command create trap event GW.009 2 10 filters traps for message GW.009 for net numbers 2 through 10.
range event_range net#_start net#_end
 Specifies the range of ELS messages and net numbers that you are filtering.
```
If you specify net#\_start and net#\_end as the same number, you are filtering on a single net number.

The command create remote range ipx 19 22 3 6 filters all ipx messages beginning with IPX.019 and ending with IPX.022 for net numbers 3 through 6 for remote logging.

```
subsystem subsystem_name net#_start net#_end
```

Specifies the subsystem and net numbers that you are filtering.

If you specify net#\_start and net#\_end as the same number, you are filtering on a single net number.

The command create display subsys ip 1 1 filters all ELS messages for the ip subsystem that contain net number 1 to the display. All other ip subsystem messages are discarded.

**Delete**

Use the delete command to delete a specific ELS filter or all ELS filters.

**Syntax:**

```
delete
 all
 filter filter#
```

- **all** Deletes all currently configured filters.
- **filter filter#** Deletes the filter specified by filter#. Use the list command to obtain the number for the filter you want to delete.

**Disable**

Use the disable command to disable a specific ELS filter or all ELS filters.

**Syntax:**

```
disable
 all
 filter filter#
```

- **all** Disables all currently configured filters.
- **filter filter#** Disables the filter specified by filter#. Use the list command to obtain the number for the filter you want to disable.

**Enable**

Use the enable command to enable a specific ELS filter or all ELS filters.

**Syntax:**

```
enable
 all
 filter filter#
```

- **all** Enables all currently configured filters.
- **filter filter#** Enables the filter specified by filter#. Use the list command to obtain the number for the filter you want to enable.
ELS Configuration Commands (Talk 6)

List

Use the list command to list a specific ELS filter or all ELS filters.

Syntax:

```
list [all] filter filter#
```

- `all` Lists all currently configured filters.
- `filter filter#` Lists the filter specified by filter#.

ELS Message Buffering Configuration Commands

Table 21 describes the commands available at the ELS Config Advanced> prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help</a> on page 10.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the configuration settings for message buffering.</td>
</tr>
<tr>
<td>Log</td>
<td>Enables logging of selected messages to the message buffer.</td>
</tr>
<tr>
<td>Nolog</td>
<td>Turns off logging of selected messages to the message buffer.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the size of the message buffer, the wrapping mode, whether logging occurs, which event will end message buffering, and what the system does when message buffering is stopped by an event.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment</a> on page 11.</td>
</tr>
</tbody>
</table>

List

Use the list command to list the ELS message buffering configuration.

Syntax:

```
list status
```

Example:

```
ELS Config Advanced> list status
----------------------------------Configuration-----------------------------------
Logging Status: OFF Wrap Mode: ON Logging Buffer Size: 8500 Kbytes
Stop-Event: APPN.2 Stop-String: netdn for intf 6
Additional Stop-Action: NONE
```

See [Set](#) on page 186 for a description of the commands that change the values in the display.

Log

Use the log command to select which messages will be logged to the message buffer.

Syntax:

```
log event group
```

- `event` Specifies the event for which messages will be logged.
- `group` Specifies the group of messages for which messages will be logged.
**ELS Configuration Commands (Talk 6)**

```
<table>
<thead>
<tr>
<th>range</th>
<th>subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>subsystem.event#</td>
</tr>
<tr>
<td></td>
<td>Causes the specified message (subsystem.event#) to be logged to the message buffer.</td>
</tr>
<tr>
<td>group</td>
<td>groupname</td>
</tr>
<tr>
<td></td>
<td>Allows messages that were previously added to the specified group to be logged to the message buffer.</td>
</tr>
<tr>
<td>range</td>
<td>subsystemname first_event_number last_event_number</td>
</tr>
<tr>
<td></td>
<td>Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.</td>
</tr>
<tr>
<td></td>
<td>Causes the messages that are in the specified range for the specified subsystem to be logged to the message buffer.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>log range gw 19 22</td>
</tr>
<tr>
<td></td>
<td>Causes the messages in events gw.19, gw.20, gw.21, and gw.22 to be logged to the message buffer.</td>
</tr>
<tr>
<td>subsystem</td>
<td>subsystemname</td>
</tr>
<tr>
<td></td>
<td>Allows messages associated with the specified subsystem to be logged to the message buffer.</td>
</tr>
</tbody>
</table>

Nolog

Use the `nolog` command to remove messages from the defined list of messages that are logged to the message buffer.

Syntax:

```
<table>
<thead>
<tr>
<th>nolog</th>
<th>event</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td></td>
</tr>
<tr>
<td>range</td>
<td>subsystem</td>
</tr>
<tr>
<td>event</td>
<td>subsystem.event#</td>
</tr>
<tr>
<td></td>
<td>Causes the specified message (subsystem.event#) not to be logged to the message buffer.</td>
</tr>
<tr>
<td>group</td>
<td>groupname</td>
</tr>
<tr>
<td></td>
<td>Allows messages that were previously added to the specified group not to be logged to the message buffer.</td>
</tr>
<tr>
<td>range</td>
<td>subsystemname first_event_number last_event_number</td>
</tr>
<tr>
<td></td>
<td>Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.</td>
</tr>
<tr>
<td></td>
<td>Causes the messages that are in the specified range for the specified subsystem not to be logged to the message buffer.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>log range gw 19 22</td>
</tr>
</tbody>
</table>
```
Causes the messages in events gw.19, gw.20, gw.21, and gw.22 not to be logged to the message buffer.

subsystem subsystemname
Allows messages associated with the specified subsystem not to be logged to the message buffer.

Set
Use the `set` command to configure various ELS message buffering options.

Syntax:

```
set
  buffer-size Kbytes
  logging [on or off]
  stop action . . .
  stop event subsystem.event#
  stop string text
  wrap on or off
```

buffer-size Kbytes
Specifies the size, in kilobytes, of the message buffer that the system should allocate. The `mem` command displays this memory as “Never Alloc.” Setting this value too high could prevent the router from operating correctly after a reboot because of insufficient memory for protocols and features.

Valid values: 0 KB to 80% of the memory available on the router.

Default value: 0 (no message buffering)

Note: You must allocate a buffer with this command before you can set logging on.

logging [on or off]
Specifies whether message buffering will occur. This command will not take affect until you allocate a buffer using the `set buffer-size` command. The default is off.

stop action [appn-dump or none or system-dump]
Specifies the additional action the system takes when the “stop event” (and if specified, the “stop string”) occurs. The actions are:

appn-dump
 Dumps the APPN protocol, if it is active. The APPN dump will indicate that the dump was taken as the result of a stop action.

none
 No other action is taken after logging stops.

system-dump
 Dumps the entire system. The system dump will indicate that the dump was taken as the result of a stop action.

Default value: none

stop event [subsystem.event# or none]
Specifies the event (subsystem.event#) that stops logging. If you have specified a stop string, the text in the stop string must also match. When the stop event occurs:

1. The next five ELS messages are logged.
2. Logging stops.

3. The system performs the specified “stop action.”

Logging remains stopped until the next time you issue the set logging on command or reboot the router.

If you do not specify the stop event when you enter the command, the system prompts you to enter the stop event. Specifying none disables the stop event function.

Default value: none

stop string text or none

Specifies the string to be used in conjunction with the “stop event” to stop logging. If you have not specified a stop event, the system ignores the “stop string.”

Text can be any ASCII string up to 32 characters in length. If you do not specify text when you enter the command, the system will prompt you for the string. Entering none clears the “stop string.”

Default value: none

wrap [on or off]

Specifies whether to stop the log when the buffer is full (off) or to log the new messages at the beginning of the buffer (on).

Default value: off

Entering and Exiting the ELS Operating Environment

The ELS monitoring environment (available from the GWCON process) is characterized by the ELS> prompt. Commands entered at this prompt modify the current ELS parameter settings. These commands are described in Chapter 13, “Configuring and Monitoring the Event Logging System (ELS)” on page 167.

To enter the ELS monitoring environment from OPCON:

1. Enter the talk 5 command.

   ```
   + talk 5
   ```

 The monitoring displays the GWCON prompt (+). If the prompt does not appear when you first enter GWCON, press Return.

2. At the GWCON prompt, enter the following command to access ELS:

   ```
   + event
   ```

 The monitoring displays the ELS monitoring prompt (ELS>). Now, you can enter ELS monitoring commands.

To leave the ELS monitoring environment, enter the exit command.
ELS Monitoring Commands

This section summarizes and then explains all the ELS monitoring commands. After accessing the ELS Monitoring environment, you can enter ELS monitoring commands at the ELS> prompt.

Table 22. ELS Monitoring Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See [Getting Help] on page 10.</td>
</tr>
<tr>
<td>Advanced</td>
<td>Places you in the advanced configuration environment in which you can configure message buffering.</td>
</tr>
<tr>
<td>Clear</td>
<td>Resets to zero the counts of messages associated with specified events, groups, or subsystems.</td>
</tr>
<tr>
<td>Display</td>
<td>Enables message display on the console.</td>
</tr>
<tr>
<td>Exit</td>
<td>Exits the ELS console process and returns the user to GWCON.</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter ELS messages based upon the net number.</td>
</tr>
<tr>
<td>List</td>
<td>Lists information on ELS settings and messages.</td>
</tr>
<tr>
<td>Nodisplay</td>
<td>Disables message display on the console.</td>
</tr>
<tr>
<td>Noremote</td>
<td>Disables remote logging to file at remote workstation.</td>
</tr>
<tr>
<td>Notrace</td>
<td>Disables trace event display on the console.</td>
</tr>
<tr>
<td>Notrap</td>
<td>Keeps messages from being sent out in SNMP traps to the network management workstation.</td>
</tr>
<tr>
<td>Packet-trace</td>
<td>Provides an enhanced central environment for setting and listing active packet tracing parameters.</td>
</tr>
<tr>
<td>Remote</td>
<td>Allows messages to be logged at a file on a remote workstation.</td>
</tr>
<tr>
<td>Remove</td>
<td>Frees up memory by erasing stored information.</td>
</tr>
<tr>
<td>Restore</td>
<td>Clears current settings and reloads initial ELS configuration.</td>
</tr>
<tr>
<td>Retrieve</td>
<td>Reloads the saved ELS configuration.</td>
</tr>
<tr>
<td>Save</td>
<td>Stores the current configuration.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the pin parameter and the timestamp feature.</td>
</tr>
<tr>
<td>Statistics</td>
<td>Displays available subsystems and pertinent statistics.</td>
</tr>
<tr>
<td>Trace</td>
<td>Enables trace event display on the console.</td>
</tr>
<tr>
<td>Trap</td>
<td>Allows messages to be sent to a network management workstation in SNMP traps.</td>
</tr>
<tr>
<td>View</td>
<td>Allows viewing of traced packets.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See [Exiting a Lower Level Environment] on page 11.</td>
</tr>
</tbody>
</table>

Advanced

Use the advanced command to enter the advanced monitoring environment. In this environment you change message buffering operation.

Syntax:

advanced

Clear

Use the clear command to reset to zero the counts of the display, trace, trap, or remote commands as they relate to specific events, groups or subsystems.
ELS Monitoring Commands (Talk 5)

Syntax:

[event subsystem. event#]
Resets the count of events to zero for displaying, trapping, tracing or remote logging of the specified event (subsystem.event#).

group group.name
Resets the count of events to zero for displaying, trapping, tracing or remote logging of the specified group (group.name).

[subsystem subsystem.name]
Resets the count of events to zero for displaying, trapping, tracing or remote logging of the specified subsystem (subsystem.name).

Display

Use the display command to enable the message display on the monitoring monitor for specific events.

Syntax:

display event . . .
group . . .
[subsystem . . .

[event subsystem.event#]
Displays messages for the specified event (subsystem.event#).

group groupname
Displays messages of a specified group (groupname).

range subsystemname first_event_number last_event_number
Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event in the specified event range.
Displays a range of messages for the specified subsystem.

Example:

display range gw 19 22
Displays events gw.19, gw.20, gw.21, and gw.22.

[subsystem subsystem.name]
Displays any messages associated with the specified subsystem (logging level). If you do not specify a logging level, all messages for that subsystem are turned on.

Files

Use the files command to transfer trace files to another host on the network using TFTP.
ELS Monitoring Commands (Talk 5)

Syntax:
files trace tftp host_IP_addr filename

host_IP_addr
Is the IP address of the host to which you are transferring the files.

filename
Is the target file name. For TFTP, the file name must be fully path specified, and the file name must already exist on the target host.

Filter

Use the filter command to access the filter configuration command environment. See "ELS Net Filter Monitoring Commands" on page 207 for complete command details.

Syntax:
filter net

List

Use the list command to get updated information regarding ELS settings and to get listings of selected messages.

Syntax:
list all
active subsystem.name
event . . .
filter-status . . .
groups . . .
pin . . .
remote-log status . . .
subsystem . . .
trace-status . . .

all
Lists all subsystems, defined groups, enabled subsystems, enabled events, and pins.

active subsystem.name
Displays the events that are active for a specific subsystem and the count of the occurrence of the messages.

Example:
list active ip

EventActiveCount
IP.00798954
ETH.009D10
Subsystem X25: no event active

If Remote logging is turned on, those events displayed as active for a subsystem will have an “R” next to their name.
event subsystem.event#

Displays the logging level, the message, and the count of the specified event.

Example:

```
list event ip.007
```

Level: p-TRACE
Message: source_ip_address -> destination_ip_address
Active: Count: 84182

If Remote-logging had been activated for this event, and the `syslog_facility` and `syslog_level` values were `log_daemon` and `log_crit`, the last lines would look like:

Active: R count:84182
Syslog Facility: log_daemon Syslog Level: log_crit

filter-status

Lists ELS net number filters.

groups group.name

Displays the user-defined group names.

pin

Lists the current number of ELS event messages sent per second in SNMP traps. This is a threshold value that can be used to reduce the amount of SNMP trap traffic.

Example:

```
list pin
```

Pin: 100 events/second

remote-log status

Lists the current values of the remote logging options set in the `set remote-logging` command.

Example:

```
list r
```

Remote Logging is On
Source ip Address = 192.9.200.0
Remote Log IP Address = 192.9.200.1
Default Syslog Facility = LOG_USER
Default Syslog Priority Level = LOG_INFO
Number of Messages in Remote Log = 256
Remote Logging Local ID = SPHINX

subsystem subsystem.name

Lists event names, the total number of events that have occurred, and their descriptions.

Note: Although ELS supports all subsystems on the router, not all devices support all subsystems. See *ELS Messages* for a list of currently supported subsystems.

subsystem subsystem.name

Lists all events, logging levels, and messages for the specified subsystem.

Example:

```
list subsystem eth
```

<table>
<thead>
<tr>
<th>Event</th>
<th>Level</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH.001</td>
<td>P-TRACE</td>
<td>brd rcv unknow type packet_type source_Ethernet_address -> destination_Ethernet_address nt network</td>
</tr>
<tr>
<td>ETH.002</td>
<td>UE-ERROR</td>
<td>rcv unknow typ packet_type source_Ethernet_address -> destination_Ethernet_address nt network</td>
</tr>
<tr>
<td>ETH.010</td>
<td>C-INFO</td>
<td>LLC unk SAP DSAP source_Ethernet_address -> destination_Ethernet_address nt network</td>
</tr>
</tbody>
</table>
ELS Monitoring Commands (Talk 5)

subsystem all
 Lists all events, logging levels, and messages for every event that has occurred on the router.

trace-status
 Displays information on the status of packet tracing, including configuration and run-time information.

Example:
list trace-status
------------------------- Configuration -----------------------------
Trace Status:ON Wrap Mode:ON Decode Packets:OFF HD Shadowing:OFF
RAM Trace Buffer Size:100000 Maximum Trace Buffer File Size:10000000
Default Packet Bytes Traced:100 Max Packet Bytes Traced:256
------------------------ Run-time Status ----------------------------
Packets in RAM Trace Buffer:535 Free Trace Buffer Memory:180
Trace Errors:22 First Packet:23 Last Packet:557
Trace Buffers Shadowed to HD:0 Trace Buffer File Size:0

• “Trace Status” in the LIST TRACE-STATUS display will indicate OFF when STOP-ON-EVENT action occurs.
• “HD Shadowing” in the LIST TRACE-STATUS display will indicate OFF when STOP-ON-EVENT action occurs or when Time Limit is exceeded.
• “Trace Buffer File Size” will display “<wrapped>” when a wraparound has occurred in the trace file.
• If disk-shadowing time limit is exceeded, but there has not been a trace record written since the time expired, then “HD-Shadowing Time Exceeded? NO <Next trace will turn it OFF>” will be displayed. When the next trace record has been written, then “HD-Shadowing Time Exceeded? YES” will be displayed.

ELS Config>LIST TRACE command under talk 6 displays information similar to the following:
------------------------- Configuration -----------------------------
Trace Status:ON Wrap Mode:ON Decode Packets:ON HD Shadowing:ON
RAM Trace Buffer Size:100000 Maximum Trace Buffer File Size:10000000
Max Packet Bytes Trace:256 Default Packet Bytes Traced:100
Trace File Record Size:2048 Stop Trace Event: TCP.013
Maximum Hours to HD Shadow: 1

Nodisplay

Use the nodisplay command to select and turn off messages displaying on the console.

Syntax:

nodisplay

 event ...
 group ...
 range ...
 subsystem ...

 event subsystem.event#
 Suppresses the displaying of messages for the specified event.

 group group.name
 Suppresses the displaying of messages that were previously added to the specified group (group.name).

 range subsystemname first_event_number last_event_number

192 MRS V3.2 Software User's Guide
ELS Monitoring Commands (Talk 5)

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Suppresses the displaying of a range of messages for the specified subsystem.

Example:

nodisplay range gw 19 22

Suppresses the display of events gw.19, gw.20, gw.21, and gw.22.

subsystem subsystem.name
Suppresses the displaying of messages associated with the specified subsystem (logging level).

Noremote

Use the noremote command to select and turn off messages logging to a remote workstation.

Syntax:

noremote

 event . . .
 group . . .
 range . . .
 subsystem . . .

event subsystem.event#
Suppresses the remote logging of messages for the specified event.

group group.name
Suppresses the remote logging of messages that were previously added to the specified group (group.name).

range subsystemname first_event_number last_event_number

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Suppresses the remote logging of a range of messages for the specified subsystem.

Example:

noremote range gw 19 22

Suppresses the remote logging of events gw.19, gw.20, gw.21, and gw.22

subsystem subsystem.name
Suppresses the remote logging of messages associated with the specified subsystem (logging level).

Example:

noremote subsystem tkr

Note: With Noremote, there is no need to specify a Syslog Facility and Level, such as there is with Remote.
Notrace

Use the `notrace` command to stop display of selected trace events at the monitoring.

Syntax:
```
notrace event...
    group...
    range...
    subsystem...
```

- `event subsystem.event#`Suppresses the display of the specified tracing event.
- `group groupname`Suppresses the display of tracing events related to the specified group (groupname).
- `range subsystemname first_event_number last_event_number`Where `first_event_number` is the number of the first event in the specified event range, and `last_event_number` is the number of the last event of the specified event range.
- `subsystem subsystemname [logging-level]`Suppresses the display of tracing events that are associated with the specified subsystem and logging level. If you do not specify a `logging-level` you suppress tracing for all logging levels for the subsystem.

Example:
```
notrace range gw 19 22
```
Suppresses the sending of packet trace data for events gw.19, gw.20, gw.21, and gw.22.

- `subsystem subsystemname [logging-level]` Suppresses the display of tracing events that are associated with the specified subsystem and logging level. If you do not specify a `logging-level` you suppress tracing for all logging levels for the subsystem.

Example:
```
notrace subsystem frl error
notrace subsystem frl
```

Notrap

Use the `notrap` command to select and turn off messages so that they are no longer sent to a network management workstation in SNMP traps.

Syntax:
```
notrap event...
    group...
    range...
    subsystem...
```
ELS Monitoring Commands (Talk 5)

event subsystem.event#
Suppresses the sending of the specified message in an SNMP trap (`subsystem.event#`).

group groupname
Suppresses the sending of messages in SNMP traps that were previously added to the specified group (`groupname`).

range subsystemname first_event_number last_event_number
Where `first_event_number` is the number of the first event in the specified event range, and `last_event_number` is the number of the last event of the specified event range.

Suppresses the sending of messages for the events in the specified range for the specified subsystem in SNMP traps.

Example:
```
notrap range gw 19 22
```
Suppresses the sending of messages for events gw.19, gw.20, gw.21, and gw.22 in SNMP traps.

subsystem subsystemname [logging-level]
Suppresses the sending of messages in SNMP traps that are associated with the specified subsystem and logging level. If you do not specify a `logging-level` you suppress trapping for all logging levels for the subsystem.

Example:
```
notrap subsystem tkr error
```

Packet Trace

Use the `packet-trace` command to display/enable/disable packet tracing information for various subsystems. This command provides function similar to the `Trace` command.

Syntax:
```
packet-trace
```

Use the Exit command when you are finished using Packet Trace.

Remote

Use the `remote` command to select the events to be logged to a remote file by event number, range of events, group, or subsystem.

Syntax:
```
remote event . . .
group . . .
range . . .
subsystem . . .
```

For complete command descriptions, see [Packet-trace Monitoring Commands](#) on page 205.
ELS Monitoring Commands (Talk 5)

```
event subsystem.event# syslog_facility syslog_level
Causes the specified event to be logged remotely.

Syslog facility and level values are used by the syslog daemon in the remote workstation to determine where to log the messages. This value overrides the default values that are set with the `set facility` and `set level` commands.

*syslog_facility*
- log_auth
- log_authpriv
- log_cron
- log_daemon
- log_kern
- log_lpr
- log_mail
- log_news
- log_syslog
- log_user
- log_uucp
- log_local0-7

*syslog_level*
- log_emerg
- log_alert
- log_crit
- log_err
- log_warning
- log_notice
- log_info
- log_debug
```

These values do NOT have any particular association with any daemons on the IBM 2210. They are merely identifiers which are used by the syslog daemon on the remote workstation.

Example:
```
remote event gw.019 log_user log_info
```

group `group.name syslog_facility syslog_level`
Allows events belonging to the specified group to be logged remotely based on the `syslog_facility` and `syslog_level` values. See [the remote event command](#)

range `subsystemname first_event_number last_event_number syslog_facility syslog_level`

Where `first_event_number` is the number of the first event in the specified event range, and `last_event_number` is the number of the last event of the specified event range.

Causes the events in the specified range for the specified subsystem to be remotely logged based on the `syslog_facility` and `syslog_level`. See [the remote event command](#).
Example:
remote range gw 19 22 log_user log_info

Causes the event gw.19, gw.20, gw.21, and gw.22 to be logged remotely to the files specified by the syslog_facility value of log_user and the syslog_level value of log_info.

subsystem subsystem.name message_level syslog_facility syslog_level
Where subsystem.name is the name of the subsystem and message_level is the level of messages selected in the subsystem.

Causes the events within the specified subsystem.name whose message_level agrees with the specified message_level to be logged remotely based on the syslog_facility and syslog_level. See "The remote event command" on page 196.

Message_level is a value such as "ALL," "ERROR," "INFO," or "TRACE". See "Logging Level" on page 149. The value specified in the remote command must agree with the value as coded on the particular event within the subsystem, or that event within the subsystem will not be remotely logged.

Example:
remote subsystem TKR all log_user log_info

In the above example, all messages in subsystem TKR ("all" includes any messages coded for "error," "info," or "trace") will be logged remotely to files specified by log_user and log_info at the remote host.

Use the list event and list active commands to verify what you set with the remote and noremote commands.

Remove

Use the remove command to free up memory by erasing stored information. If you have previously saved the current configuration with the save command, remove allows you to erase the saved configuration.

Syntax:
remove

Restore

Use the restore command to clear all current settings (except counters) and reload the initial ELS configuration. To retain the current settings, use the save command before restoring the initial configuration.

Syntax:
restore

Retrieve

Use the retrieve command to reload the saved ELS configuration. If you have previously saved the current configuration with the save command, use retrieve to reload it. Retrieve does not erase the saved configuration after it executes. To erase the saved configuration, use the remove command.
ELS Monitoring Commands (Talk 5)

Syntax:
retrieve

Save

Use the save command to store the current configuration (except counters). Save does not affect the default configuration (the one you set with the configuration commands). Use save after modifying the configuration with the monitoring commands with the intention of saving this configuration over a restart. There can be only one saved configuration at a time. To reload the saved configuration, use the retrieve command.

Syntax:
save

Set

Use the set command to set the maximum number of traps per second, to set the timestamp feature, or to set the tracing options.

Syntax:
set
pin . . .
remote-logging . . .
timestamp . . .
trace . . .

pin Use the set pin command to set the pin parameter to the maximum number of traps that can be sent on a per-second basis. Internally, the pin resets every tenth of a second. (One tenth of the number max_traps is sent every tenth of a second.)

remote-logging Use the set remote-logging command to configure remote logging options. When these options are configured from the monitoring environment, the changes take effect immediately, and return to their previously configured settings when the device is rebooted.

Syntax:
set remote-logging on
off
facility . . .
level . . .
local_id
remote_ip_addr . . .
source_ip_addr ...
on Turns remote logging on. Remote logging is now enabled to allow any messages selected by the remote command to be actively logged.
off Turns remote logging off. All messages selected by the `remote` command will be prevented from being logged.

facility Specifies a value that, in combination with the `level` value, is used by the syslog daemon in the remote workstation to determine where to log messages. This value is used for all remotely-logged ELS messages unless you specify a different value for a particular ELS event, range, group, or subsystem with the `remote` command.

These are all possible syslog facility values:

- log_auth
- log_authpriv
- log_cron
- log_daemon
- log_kern
- log_lpr
- log_mail
- log_news
- log_syslog
- log_user
- log_uucp
- log_local0-7

level Specifies a value that, in conjunction with the `facility` value, is used by the syslog daemon in the remote workstation to determine where to log messages. This value is used for all remotely-logged ELS messages unless you specify a different value for a particular ELS event, range, group, or subsystem with the `remote` command.

These are all possible syslog level values:

- log_emerg
- log_alert
- log_crit
- log_err
- log_warning
- log_notice
- log_info
- log_debug

local_id Specifies a 1-32 character identifier that appears in the remote logging message that you can use to identify which machine logged a particular message.

remote_ip_addr This is an IP address of the remote host where the log files reside.

source_ip_addr Specifies the IP address of the machine that originated the message that is being remotely-logged.

You should use an IP address that is configured in the 2210 for easier identification when the IP address or the hostname is shown in the remotely-logged ELS message. You should also verify that
ELS Monitoring Commands (Talk 5)

This IP address is quickly resolved to a hostname by the name server, or at least that the name server responds quickly with “address not found.”

To determine that the IP address resolves properly enter the host command on your workstation as shown:

```
workstation>host 5.1.1.1
host: address 5.1.1.1 NOT FOUND
workstation>
```

If the response takes more than 1 second, select an IP address that resolves more quickly.

timestamp

Allows you to turn on message timestamping so that either the time of day or uptime (number of hours, minutes, and seconds, but no date, since the router was last initialized) appears next to each message, or to turn off message timestamping.

Note: If you turn on timestamping, you must remember to go back into the CONFIG process and set the router’s date and time using the time command. Otherwise, all messages will come out with 00:00:00, or negative numbers in the hours, minutes, and/or seconds, for example 00:-4:-5.

Use the `set timestamp` command to enable one of the following timestamp options:

timeofday

Adds an HH:MM:SS prefix to each ELS message indicating the time of the occurrence during a 24-hour day.

uptime

Adds an HH:MM:SS prefix to each ELS message indicating the time of the occurrence during a 100-hour cycle of uptime for the router. After 100 hours of uptime, the uptime counter returns to zero to begin another 100-hour cycle.

off

Turns off the ELS timestamp prefix.

Syntax:

```
set timestamp [timeofday or uptime or off]
```

trace

Use the `set trace` command to configure tracing options. When tracing options are configured from the monitoring environment, the changes take effect immediately, and return to their previously configured settings when the device is rebooted.

Syntax:

```
set trace decode . . .
default-bytes-per-pkt . . .
max-bytes-per-pkt . . .
off
on
reset
stop-event . . .
```
wrap-mode...

decode [off or on]
 Turns packet decoding on or off. Packet decoding is not supported by all components.

default-bytes-per-pkt bytes
 Sets the default number of bytes traced. This value is used if a value is not specified by the component doing the tracing.

max-bytes-per-pkt bytes
 Sets the maximum number of bytes traced for each packet.

off
 Disables packet tracing.

on
 Enables packet tracing.

reset
 Clears the trace buffer and resets all associated counters.

stop-event event id
 Stops tracing when an event (event id) occurs. Enter either an ELS event id (for example: TCP.013) or “None”. “None” is the default. Tracing stops only if the display of the particular ELS event is enabled.

 When a stop-event occurs, an entry is written to the trace buffer. The view command for this trace entry will display “Tracing stopped due to ELS Event Id: TCP.013”.

 After tracing stops due to a stop-event, you must re-enable tracing with the set trace on command. (A restart will also re-enable tracing if enabled from the ELS Config> prompt.)

 Example:
 set trace stop-event TCP.013

wrap-mode off/on
 Turns the trace buffer wrap mode on or off. When wrap mode is enabled and the trace buffer is full, previous trace records will be overwritten by new trace records as necessary to continue tracing.

Statistics

Use the statistics command to display a list of all of the available subsystems and their statistics.

Note: The following example may not match your display exactly. The output of the command depends on the version and release of the installed software.

Syntax:

statistics

Example:

statistics

Subsys Vector Exist String Active Heap
GW 105 101 3411 0 0
FLT 20 7 184 0 0
BRS 50 5 201 0 0
ARP 150 142 7030 0 0
IP 100 100 2463 2 20
ICMP 30 21 529 0 0

Chapter 13. Configuring and Monitoring the Event Logging System (ELS) 201
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Count</th>
<th>Value</th>
<th>Total</th>
<th>Loss</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>60</td>
<td>57</td>
<td>2420</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UDP</td>
<td>10</td>
<td>6</td>
<td>179</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BTP</td>
<td>40</td>
<td>13</td>
<td>695</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>30</td>
<td>22</td>
<td>474</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>80</td>
<td>73</td>
<td>2859</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MSFP</td>
<td>40</td>
<td>17</td>
<td>593</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TFTP</td>
<td>35</td>
<td>29</td>
<td>819</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SNMP</td>
<td>30</td>
<td>28</td>
<td>821</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DVM</td>
<td>30</td>
<td>21</td>
<td>589</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DN</td>
<td>140</td>
<td>115</td>
<td>5842</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RN</td>
<td>35</td>
<td>21</td>
<td>780</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPX</td>
<td>110</td>
<td>110</td>
<td>4705</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLNP</td>
<td>80</td>
<td>58</td>
<td>1763</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESIS</td>
<td>40</td>
<td>24</td>
<td>716</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ISIS</td>
<td>80</td>
<td>58</td>
<td>2422</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DNA</td>
<td>50</td>
<td>26</td>
<td>1314</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP2</td>
<td>80</td>
<td>70</td>
<td>1755</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZIP2</td>
<td>60</td>
<td>51</td>
<td>1859</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RZMP</td>
<td>50</td>
<td>38</td>
<td>1185</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VIN</td>
<td>90</td>
<td>79</td>
<td>3159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRT</td>
<td>120</td>
<td>94</td>
<td>5040</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>60</td>
<td>32</td>
<td>1590</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BR</td>
<td>50</td>
<td>30</td>
<td>1616</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRLLY</td>
<td>30</td>
<td>28</td>
<td>1409</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ETH</td>
<td>60</td>
<td>47</td>
<td>1098</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SL</td>
<td>50</td>
<td>35</td>
<td>584</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TRK</td>
<td>60</td>
<td>45</td>
<td>2031</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X25</td>
<td>70</td>
<td>53</td>
<td>1909</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FDDI</td>
<td>30</td>
<td>27</td>
<td>1155</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SDLC</td>
<td>100</td>
<td>95</td>
<td>4263</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FRL</td>
<td>130</td>
<td>97</td>
<td>6068</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPP</td>
<td>190</td>
<td>186</td>
<td>6394</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X251</td>
<td>50</td>
<td>16</td>
<td>546</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X252</td>
<td>50</td>
<td>34</td>
<td>996</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X253</td>
<td>50</td>
<td>42</td>
<td>1649</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ISDN</td>
<td>50</td>
<td>43</td>
<td>1994</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IP</td>
<td>20</td>
<td>4</td>
<td>132</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WRS</td>
<td>40</td>
<td>33</td>
<td>1938</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LNM</td>
<td>70</td>
<td>60</td>
<td>3137</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LLC</td>
<td>170</td>
<td>168</td>
<td>9840</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>80</td>
<td>74</td>
<td>2477</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MCF</td>
<td>15</td>
<td>9</td>
<td>244</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DLS</td>
<td>500</td>
<td>497</td>
<td>24340</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2SB</td>
<td>30</td>
<td>28</td>
<td>1058</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BAN</td>
<td>30</td>
<td>29</td>
<td>1223</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COMP</td>
<td>80</td>
<td>26</td>
<td>1050</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NBS</td>
<td>100</td>
<td>50</td>
<td>5029</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ATM</td>
<td>300</td>
<td>216</td>
<td>10808</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LEC</td>
<td>200</td>
<td>174</td>
<td>7258</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>APPN</td>
<td>100</td>
<td>28</td>
<td>467</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ILMI</td>
<td>150</td>
<td>23</td>
<td>487</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SAAL</td>
<td>30</td>
<td>26</td>
<td>621</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SVC</td>
<td>30</td>
<td>26</td>
<td>465</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LES</td>
<td>400</td>
<td>361</td>
<td>22333</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LEC</td>
<td>150</td>
<td>145</td>
<td>5666</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EVLOG</td>
<td>1</td>
<td>1</td>
<td>105</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDRP</td>
<td>25</td>
<td>15</td>
<td>508</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NHRP</td>
<td>250</td>
<td>211</td>
<td>8193</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>XTP</td>
<td>64</td>
<td>58</td>
<td>2271</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESC</td>
<td>150</td>
<td>67</td>
<td>3122</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LCS</td>
<td>40</td>
<td>22</td>
<td>858</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSA</td>
<td>70</td>
<td>61</td>
<td>3506</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MPC</td>
<td>130</td>
<td>30</td>
<td>1677</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>SCSP</td>
<td>40</td>
<td>34</td>
<td>1234</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALLC</td>
<td>50</td>
<td>36</td>
<td>1842</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDR</td>
<td>50</td>
<td>38</td>
<td>1150</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MLP</td>
<td>100</td>
<td>93</td>
<td>4006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SEC</td>
<td>50</td>
<td>30</td>
<td>688</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ENCR</td>
<td>100</td>
<td>4</td>
<td>194</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM</td>
<td>25</td>
<td>6</td>
<td>120</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DGW</td>
<td>20</td>
<td>9</td>
<td>238</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>QLLC</td>
<td>55</td>
<td>54</td>
<td>2411</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>6490</td>
<td>4942</td>
<td>215805</td>
<td>5</td>
<td>64</td>
</tr>
</tbody>
</table>
Maximum: 7976 vector, 155 subsystem
Memory: 71784/620 vector+ 81256/217714 data+ 64 heap=371438

Subsys
- Name of subsystem

Vector
- Maximum size of subsystem

Exist
- Number of events defined in this subsystem

String
- Number of bytes used for message storage in this subsystem

Active
- Number of active (displayed, trapped, or counted) events in the subsystem

Heap
- Dynamic memory in use by subsystem

Trace

Use the `trace` command to select the trace events to be displayed on the system monitoring. This command provides function that is similar to the `packet trace` command described in "Packet-trace Monitoring Commands" on page 205.

Syntax:

```
trace
    event...  # Causes the specified trace event (subsystem.event#) to be displayed on the system monitoring.
    group...  # Allows trace events that were previously added to the specified group to be displayed on the router monitoring.
    range...  # Causes the trace events in the specified range for the specified subsystem to be displayed on the system monitoring.
    subsystem...  # Allows trace events associated with the specified subsystem to be displayed on the router monitoring.
```

event subsystem.event#
Causes the specified trace event (subsystem.event#) to be displayed on the system monitoring.

group groupname
Allows trace events that were previously added to the specified group to be displayed on the router monitoring.

range subsystemname first_event_number last_event_number
Where `first_event_number` is the number of the first event in the specified event range, and `last_event_number` is the number of the last event of the specified event range.
Causes the trace events in the specified range for the specified subsystem to be displayed on the system monitoring.

Example:
```
trace range gw 19 22
```
Causes the trace events gw.19, gw.20, gw.21, and gw.22 to be displayed on the system monitoring.

subsystem subsystemname
Allows trace events associated with the specified subsystem to be displayed on the router monitoring.
Trap

Use the `trap` command to select the message to be sent to the remote SNMP network management workstation. A remote SNMP network management workstation is an IP host in the network acting as an SNMP manager.

Syntax:

```plaintext
trap
  event . .
  group . .
  range . .
  subsystem . .

event subsystem.event#
  Causes the specified message (subsystem.event#) to be sent to a network management workstation in an SNMP trap.

group groupname
  Allows messages that were previously added to the specified group to be sent to a network management workstation in an SNMP trap.

range subsystemname first_event_number last_event_number
  Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.
  Causes the messages that are in the specified range for the specified subsystem to be sent to a network management workstation in an SNMP trap.

Example:
  trap range gw 19 22
  Causes the messages in events gw.19, gw.20, gw.21, and gw.22 to be sent to a network management workstation in an SNMP trap.

subsystem subsystemname
  Allows messages associated with the specified subsystem to be sent to a management station in an SNMP trap.

Note: Messages for the IP, ICMP, ARP and UDP subsystems cannot be sent in SNMP traps because these areas are or may be used in the process of sending the SNMP trap. This could lead to an infinite loop of traffic putting an undue strain on the router.

View

Use the `view` command to view traced packets.

**Syntax:**

```plaintext
view
 current
 first
 jump
 last
```
Packet-trace Monitoring Commands

This section describes the Packet-trace Monitoring commands. After accessing the Packet-trace Monitoring environment, you can enter Packet-trace Monitoring commands at the ELS Packet Trace> prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>Off</td>
<td>Disables packet tracing.</td>
</tr>
<tr>
<td>On</td>
<td>Enables packet tracing. Prompts for memory trace buffer size if not previously set.</td>
</tr>
<tr>
<td>Reset</td>
<td>Clears the trace buffer and resets all associated counters.</td>
</tr>
<tr>
<td>Set</td>
<td>Configures tracing options.</td>
</tr>
<tr>
<td>Subsystems</td>
<td>Activates tracing for the subsystems that support packet tracing, or displays a summary.</td>
</tr>
<tr>
<td>Trace-status</td>
<td>Displays information on the status of packet tracing, including configuration and run-time.</td>
</tr>
<tr>
<td>View</td>
<td>Provides View Captured Packet Trace Buffers Console</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 11.</td>
</tr>
</tbody>
</table>

Off

Use the off command to disable packet tracing.

Syntax:

```
off
```

On

Use the on command to enable packet tracing.

Syntax:
ELS Monitoring Commands (Talk 5)

**Reset**

Use the `reset` command to clear the trace buffer and reset all associated counters.

Syntax:

```
reset
```

**Set**

Use the `set` command to configure tracing options.

Syntax:

```
set [decode]
 default-bytes-per-pkt
 disk-shadowing
 max-bytes-per-pkt
 memory-trace-buffer-size
 stop-event
 wrap-mode
 exit
```

For an explanation of the `set` command, see "Set" on page 198.

**Subsystems**

Use the `subsystems` command to activate tracing for the subsystems that support packet tracing, or to display a summary.

Syntax:

```
subsystems [atm | lec] [summary]
```

Example:

```
subsystems atm
Network number? 0
ATM Interface is selected
on | off | list [list]? on
Note that SVC uses VPI = 0, VCI = 5
and ILMI uses VPI = 0, VCI = 16
Beginning of VPI range [0]?
End of VPI range [0]?
Beginning of VCI range [0]?
End of VCI range [0]?
16
16
Tracing event ATM.88: ATM frames
```

Example:

```
subsystems lec
Network number? 1
ATM Emulated LAN is selected
on | off | list [list]? on
Trace which types of frames (data, control, both) [both]?
Tracing event LEC.11: data frames over ATM Forum LEC: interface 1
```
Tracing event LEC.12: control frames over ATM Forum LEC: interface 1
Note that if the user DISABLEs and TESTs this LEC interface, the LEC trace settings from Talk 6 Config will take effect.

Example:
```
subsystems summary
Subsystems Being Traced
ATM net number = 0, VPI Range: 0 - 0
 VCI Range: 16 - 16
LEC net number = 1
```

Trace-Status

Use the `trace-status` command to get updated information regarding packet trace.

Syntax:
```
trace-status
```

Example:
```
trace-status
------------------------- Configuration -----------------------------
Trace Status:OFF Wrap Mode:OFF Decode Packets:OFF HD Shadowing:OFF
RAM Trace Buffer Size:0 Maximum Trace Buffer File Size:10000000
Max Packet Bytes Trace:256 Default Packet Bytes Traced:100
Trace File Record Size:2048 Stop Trace Event: None
Maximum Hours to HD Shadow: 24
------------------------ Run-time Status ----------------------------
Packets in RAM Trace Buffer:0 Free Trace Buffer Memory:0
Trace Errors:0 First Packet:0 Last Packet:0
Trace Records Stored on HD:0 Trace Buffer File Size:0
HD-Shadowing Time Exceeded? NO
Has Stop Trace Event Occurred? NO
```

View

Use the `view` command to enter the View Captured Packet Trace Buffers Monitoring.

For an explanation of the `view` commands, see "View" on page 204.

Syntax:
```
view current
 first
 jump
 last
 next
 prev
 search hexstring
 exit
```

ELS Net Filter Monitoring Commands

This section describes explains the commands to manipulate ELS net filters. To enter the filter environment, enter the `filter net` command at the ELS> prompt. Enter the monitoring commands at the ELS Filter net> prompt.
Table 24. ELS Net Filter Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>Create</td>
<td>Creates a filter and assigns it a number. A maximum of 64 filters is allowed.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes a specified filter number or all filters.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables a specified filter number or all filters.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables a specified filter number or all filters.</td>
</tr>
<tr>
<td>List</td>
<td>Lists a specified filter number or all filters.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 11.</td>
</tr>
</tbody>
</table>

Create

Use the create command to create an ELS net filter.

Syntax:

```latex
create queue event event_name net#_start net#_end
range event_range net#_start net#_end
subsystem subsystem_name net#_start net#_end
```

- **queue** The queue for which you are setting the filter. The valid queues are:
  - Display
  - Trace
  - Trap
  - Remote

- **event event_name net#_start net#_end** Specifies the event and net numbers that you are filtering.
  - If you specify `net#_start` and `net#_end` as the same number, you are filtering on a single net number.
  - The command `create trap event GW.009 2 10` filters traps for message GW.009 for net numbers 2 through 10.

- **range event_range net#_start net#_end** Specifies the range of ELS messages and net numbers that you are filtering.
  - If you specify `net#_start` and `net#_end` as the same number, you are filtering on a single net number.
  - The command `create remote range ipx 19 22 3 6` filters all ipx messages beginning with IPX.019 and ending with IPX.022 for net numbers 3 through 6 for remote logging.

- **subsystem subsystem_name net#_start net#_end** Specifies the subsystem and net numbers that you are filtering.
  - If you specify `net#_start` and `net#_end` as the same number, you are filtering on a single net number.
  - The command `create display subsys ip 1 1`, filters all ELS messages for the ip subsystem that contain net number 1 to the display. All other ip subsystem messages are discarded.
ELS Monitoring Commands (Talk 5)

Delete

Use the `delete` command to delete a specific ELS filter or all ELS filters.

Syntax:
```
delete all
filter filter#
```

- `all` Deletes all currently configured filters.
- `filter filter#` Deletes the filter specified by `filter#`. Use the `list` command to obtain the number for the filter you want to delete.

Disable

Use the `disable` command to disable a specific ELS filter or all ELS filters.

Syntax:
```
disable all
filter filter#
```

- `all` Disables all currently configured filters.
- `filter filter#` Disables the filter specified by `filter#`. Use the `list` command to obtain the number for the filter you want to disable.

Enable

Use the `enable` command to enable a specific ELS filter or all ELS filters.

Syntax:
```
enable all
filter filter#
```

- `all` Enable all currently configured filters.
- `filter filter#` Enable the filter specified by `filter#`. Use the `list` command to obtain the number for the filter you want to enable.

List

Use the `list` command to list a specific ELS filter or all ELS filters.

Syntax:
```
list all
filter filter#
```

- `all` Lists all currently configured filters.
- `filter filter#` Lists the filter specified by `filter#`. 

Table 25 describes the commands available at the ELS Config Advanced> prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See [Getting Help] on page 10</td>
</tr>
<tr>
<td>Flush</td>
<td>Clears the message buffer and turns off logging to the message buffer.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the operational settings for message buffering.</td>
</tr>
<tr>
<td>Log</td>
<td>Enables logging of selected messages to the message buffer.</td>
</tr>
<tr>
<td>Nolog</td>
<td>Turns off logging of selected messages to the message buffer.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the size of the message buffer, the wrapping mode, whether logging occurs, which event will end message buffering, and what the system does when message buffering is stopped by an event.</td>
</tr>
<tr>
<td>Tftp</td>
<td>Sends the ELS message buffer to a file at a remote host.</td>
</tr>
<tr>
<td>View</td>
<td>Displays all or a specific number of messages in the message buffer. You can also control how the messages scroll off the screen.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See [Exiting a Lower-Level Environment] on page 11</td>
</tr>
</tbody>
</table>

Flush

Use the flush command to set logging off, clear the messages from the buffer, and release the buffer memory for other use by the system.

Syntax:

```
flush buffer
```

List

Use the list command to list the ELS message buffering configuration.

Syntax:

```
list status
```

Example:

```
ELS Advanced> list status
-------------------------------------Configuration-------------------------------------
Logging Status: OFF Wrap Mode: ON Logging Buffer Size: 8500 Kytes
Stop-Event: APPN.2 Stop-String: netdn for intf 6
Additional Stop-Action: APPN DUMP
------------------------------------Run-Time Status----------------------------------
Has Stop Condition Occurred ? YES Messages currently in buffer: 1222
```

See [Set] on page 212 for a description of the commands that change the values in the display.

Log

Use the log command to select which messages will be logged to the message buffer.

Syntax:
**ELS Monitoring Commands (Talk 5)**

**log**

**event**

**group**

**range**

**subsystem**

**event subsystem.event#**

Causes the specified message (subsystem.event#) to be logged to the message buffer.

**group** **groupname**

Allows messages that were previously added to the specified group to be logged to the message buffer.

**range** **subsystemname** **first_event_number** **last_event_number**

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Causes the messages that are in the specified range for the specified subsystem to be logged to the message buffer.

**Example:**

```
log range gw 19 22
```

Causes the messages in events gw.19, gw.20, gw.21, and gw.22 to be logged to the message buffer.

**subsystem** **subsystemname**

Allows messages associated with the specified subsystem to be logged to the message buffer.

**Nolog**

Use the nolog command to remove messages from the defined list of messages that are logged to the message buffer.

**Syntax:**

```
nolog event
group
range
```

**subsystem** **subsystemname**

**event subsystem.event#**

Causes the specified message (subsystem.event#) not to be logged to the message buffer.

**group** **groupname**

Allows messages that were previously added to the specified group not to be logged to the message buffer.

**range** **subsystemname** **first_event_number** **last_event_number**

Where first_event_number is the number of the first event in the specified event range, and last_event_number is the number of the last event of the specified event range.

Causes the messages that are in the specified range for the specified subsystem not to be logged to the message buffer.
ELS Monitoring Commands (Talk 5)

Example:

log range gw 19 22

Causes the messages in events gw.19, gw.20, gw.21, and gw.22 not to be logged to the message buffer.

subsystem subsystemname

Allows messages associated with the specified subsystem not to be logged to the message buffer.

Set

Use the set command to change configured ELS message buffering options.

Syntax:

set
  logging [on or off]
  buffer-size Mbytes
  stop action . . .
  stop event subsystem.event#
  stop string text
  wrap [on or off]

buffer-size Mbytes

Specifies the size, in megabytes, of the message buffer that the system should allocate. The mem command displays this memory as “Never Alloc.” Setting this value too high could prevent the router from operating correctly after a reboot because of insufficient memory for protocols and features.

Valid values: 0 MB to 80% of the memory available on the router.

Default value: 0 (no message buffering)

Note: You must allocate a buffer with this command before you can set logging on.

logging [on or off]

Specifies whether message buffering will occur. This command will not take affect until you allocate a buffer using the set buffer-size command. The default is off.

stop action [appn-dump or none or system-dump]

Specifies the additional action the system takes when the “stop event” (and if specified, the “stop string”) occurs. The actions are:

  appn-dump
  Dumps the APPN protocol, if it is active. The APPN dump will indicate that the dump was taken as the result of a stop action.

  none
  No other action is taken after logging stops.

  system-dump
  Dumps the entire system. The system dump will indicate that the dump was taken as the result of a stop action.

Default value: none
**stop event** [subsystem.event# or none]

Specifies the event (subsystem.event#) that stops logging. If you have specified a stop string, the text in the stop string must also match. When the stop event occurs:

1. The next five ELS messages are logged.
2. Logging stops.
3. The system performs the specified “stop action.”

Logging remains stopped until the next time you issue the **set logging on** command or the router reboots.

If you do not specify the stop event when you enter the command, the system prompts you to enter the stop event. Specifying **none** disables the stop event function.

Default value: **none**

**stop string** text or none

Specifies the string to be used in conjunction with the “stop event” to stop logging. If you have not specified a stop event, the system ignores the “stop string.”

Text can be any ASCII string up to 32 characters in length. If you do not specify *text* when you enter the command, the system will prompt you for the string. Entering **none** clears the “stop string.”

Default value: **none**

**wrap** [on or off]

Specifies whether to stop the log when the buffer is full (off) or to log the new messages at the beginning of the buffer (on).

Default value: **off**

**Tftp**

Use the **tftp** command to send the ELS message buffer to a remote host as a formatted file. You can also send a file that was created with the **write-buffer** command to a remote host.

Syntax:

```plaintext
tftp _buffer [formatted] dest_ip_address dest_filename
```

buffer [formatted ] dest_ip_address dest_filename

Specifies that the ELS message buffer is to be sent to the remote host indicated by **dest_ip_address** as file **dest_filename**. The buffer can be either formatted. If you do not enter the **dest_ip_address** and **dest_filename**, the system prompts you for it.

**View**

Use the **view** command to view all of the messages or a specific number of messages in the message buffer.

Syntax:

```plaintext/view all [scroll/noscroll]  
/view last [scroll/noscroll number]
```
ELS Monitoring Commands (Talk 5)

```
all scroll/noscroll
Displays all of the messages in the message buffer.
[scroll]
 Specifies that the screen pauses until you hit the spacebar.

Note: If you are displaying a large number of messages, specify scroll so you do not miss any critical messages.

noscroll
 Specifies that the messages will scroll off the screen if the number of messages exceeds the screen length.

last scroll/noscroll number
Display the last number messages in the message buffer.
[scroll]
 Specifies that the screen pauses after displaying a full screen of messages and waits for the user to hit the space bar to get the next screen.

Note: If you are displaying a large number of messages, specify scroll so you do not miss any critical messages.

noscroll
 Specifies that the messages will scroll off the screen if the number of messages exceeds the screen length.

number
Specify a number from 1 to the total number of messages in the message buffer. To display the total number of messages in the buffer, use the list status monitoring command.
```
Chapter 14. Configuring and Monitoring Performance

This chapter describes how to use the Performance configuration and monitor operating commands and includes the following sections:

- Performance Overview
- Performance Reporting Accuracy
- Accessing the Performance Configuration Environment
- Performance Configuration Commands on page 216
- Accessing the Performance Monitoring Environment on page 217
- Performance Monitoring Commands on page 217

Performance Overview

Configuring performance allows you to monitor your CPU load. In the idle (non-work load) state, performance reflects operations that the router continuously performs as a part of managing external interfaces. The CPU load registered in the idle state is dependent upon:

- Number of protocols running.
- Number of interfaces/cards installed.
- Type of interfaces installed.

The performance function can be used as a tool for trend analysis, bottleneck evaluation, and capacity planning. By collecting the CPU utilization information on the router, a network manager can monitor:

- CPU load versus time of day.
- CPU load versus location of the router in the network.
- CPU load versus traffic throughput.
- CPU load versus user load (for example: TN3270 sessions, ISDN dial in clients)

Performance Reporting Accuracy

If you request a performance analysis when the 2210 first comes online, you will see values that reflect an initialization state that has little or no network traffic, so it is of little use in helping to balance your network load.

It is best to use performance reports that are generated under normal loads after approximately 2 minutes of operation.

Accessing the Performance Configuration Environment

Use the following procedure to access the Performance monitor configuration process.

1. At the OPCON prompt, enter talk 6. (For more detail on this command, see “Chapter 5. The Configuration Process (CONFIG - Talk 6) and Commands” on page 38.) For example:
After you enter the **talk 6** command, the **CONFIG** prompt (**Config>**) displays on the terminal. If the prompt does not appear when you first enter configuration, press **Return** again.

2. At the **CONFIG** prompt, enter the **perf** command to get to the **PERF Config>** prompt.

### Performance Configuration Commands

To configure Performance, enter the commands at the **PERF Config>** prompt.

#### Table 26. PERF Configuration Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help</a> on page 10</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables the collection of CPU utilization statistics or <em>Talk 2</em> ELS monitor output.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables the collection of CPU utilization statistics or <em>Talk 2</em> ELS monitor output.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the configuration.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the reporting period.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment</a> on page 13</td>
</tr>
</tbody>
</table>

#### Disable

Use the **disable** command to disable collection of CPU utilization statistics and disable the *Talk 2* ELS monitor output.

**Syntax:**

```plaintext
disable cpu statistics
 _t2 output
```

#### Enable

Use the **enable** command to enable collection of CPU utilization statistics and enable the *Talk 2* ELS monitor output.

**Syntax:**

```plaintext
enable cpu statistics
 _t2 output
```

#### List

Use the **list** command to display the performance monitor configuration.

**Syntax:**

```plaintext
list
```
Set

Use the `set` command to set the reporting period.

**Syntax:**
```plaintext
set time
```
- `time` Specifies the short window time.

**Valid Values:** 2 - 30 seconds
**Default Value:** 2

---

**Accessing the Performance Monitoring Environment**

Use the following procedure to access the Performance monitoring commands. This process gives you access to the Performance monitoring process.

1. **At the OPCON prompt, enter `talk 5`**. (For more detail on this command, see "Chapter 10. The Operating/Monitoring Process (GWCON - Talk 5) and Commands" on page 127.) For example:
   ```plaintext
 * talk 5
 +
   ```

   After you enter the `talk 5` command, the GWCON prompt (+) displays on the terminal. If the prompt does not appear when you first enter configuration, press Return again.

2. **At the + prompt, enter the `perf` command to get you to the PERF Console> prompt.**

   **Example:**
   ```plaintext
 + perf
 PERF Console>
   ```

---

**Performance Monitoring Commands**

This section describes the Performance monitoring commands.

**Table 27. PERF Monitoring Command Summary**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help on page 10</a>.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clear the CPU utilization high water statistics and resets the reporting period to a new cycle.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables the collection of CPU utilization statistics or Talk 2 ELS monitor output.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables the collection of CPU utilization statistics or Talk 2 ELS monitor output.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the configuration.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the reporting period.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment on page 11</a>.</td>
</tr>
</tbody>
</table>
Performance Monitoring Commands (Talk 5)

Disable

Use the `disable` command to disable collection of CPU utilization statistics and disable the talk 2 ELS monitor output.

Syntax:
```
disable cpu statistics t2 output
```

Enable

Use the `enable` command to enable collection of CPU utilization statistics and enable the talk 2 ELS monitor output.

Syntax:
```
enable cpu statistics t2 output
```

List

Use the `list` command to display the performance monitor configuration.

Syntax:
```
list
```

Report

Use the `report` command to display performance monitor statistics.

Syntax:
```
report
```

Example:
```
PERF Console>report
--
KEY: SW = Short Window = 9 seconds
KEY: LW = Long Window = 9.0 minutes (60 x SW)
CPU UTIL : Most recent SW = 38%
 Most recent LW = 33%
 Highest for all SW's = 92%
 Highest for all LW's = 52%
 % of time cpu util (SW) was > 60% = 16%
 % of time cpu util (SW) was > 70% = 15%
 % of time cpu util (SW) was > 80% = 1%
 % of time cpu util (SW) was > 90% = 0%
 % of time cpu util (SW) was > 95% = 0%
--
```

Set

Use the `set` command to set the reporting period.

Syntax:
set time

time Specifies the short window time.

Valid Values: 2 - 30 seconds

Default Value: 2
Part 3. Understanding, Configuring and Operating Interfaces
Chapter 15. Getting Started with Network Interfaces

The chapters of this book describe how to configure and monitor network interfaces and link layer protocols supported by the Router. The purpose of this chapter is to give you some basic configuration and monitoring guidelines. This chapter also provides you with basic procedures and information needed for monitoring the interfaces via the GWCON interface command. This chapter includes the following sections:

- **Before You Continue**
- **Network Interfaces and the GWCON Interface Command**
- **Accessing Network Interface Configuration and Console Processes**
- **Accessing Link Layer Protocol Configuration and Console Processes** on page 224
- **Defining Spare Interfaces** on page 224

**Before You Continue**

Before you continue, make sure that you have familiarized yourself with the procedures necessary for accessing the network interface configuration processes.

For more information on these procedures, refer to the sections that follow in this chapter.

**Network Interfaces and the GWCON Interface Command**

When configuring network interfaces, you may find it necessary to display certain information about specific interfaces. While some interfaces have their own console processes for monitoring purposes, the router displays statistics for all installed network interfaces when you use the **interface** command from the GWCON environment. (Refer to **Interface** on page 136.)

**Accessing Network Interface Configuration and Console Processes**

The follow references contain the background information and examples of how to access the configuration and console prompts for interfaces.

Refer to **Accessing Network Interface Configuration and Operating Processes** on page 15, **Accessing the Network Interface Configuration Process** on page 15, and **Accessing the Network Interface Console Process** on page 15 for complete information on accessing interface configuration and console processes. Accessing these processes allows you to change and monitor software configurable parameters for network interfaces used in your router.
Accessing Link Layer Protocol Configuration and Console Processes

Refer to "Chapter 1. Getting Started" on page 3 for complete information on accessing the protocol configuration and console processes. Accessing these processes allows you to change and monitor configurable parameters for Link Layer protocols supported by your router.

Defining Spare Interfaces

There may be occasions when you will need to define interfaces on your device that do not currently exist. You accomplish this dynamic reconfiguration of a device by defining spare interfaces while you are configuring the device and then using the console process to activate the interfaces when they are present. See "Configuring Spare Interfaces" on page 44 and "Activate" on page 128 for details.
Chapter 16. Configuring IEEE 802.5 Token-Ring Network Interfaces

This chapter describes Token-Ring interfaces configuration and operational commands. It includes the following sections:

- Accessing the Token-Ring Interface Configuration Process
- Token-Ring Configuration Commands
- Accessing the Interface Monitoring Process on page 228
- Token-Ring Interface Monitoring Commands on page 229
- Token-Ring Interfaces and the GWCON Interface Command on page 230

Accessing the Token-Ring Interface Configuration Process

To display the TKR config> prompt, enter the network command followed by the interface number of the Token-Ring interface. For example:

```
Config>network 0
Token-Ring interface configuration
TKR Config>
```

Use the list devices command at the Config> prompt to display a list of interface numbers configured on the router.

Note: Whenever you change a parameter, you must restart the router for the changes to take effect.

Token-Ring Configuration Commands

This section describes the Token-Ring configuration commands. Enter the commands at the TKR config> prompt. Table 28 lists Token-Ring configuration commands.

Table 28. Token-Ring Configuration Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the</td>
</tr>
<tr>
<td></td>
<td>options for specific commands (if available). See Getting Help on page</td>
</tr>
<tr>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the selected Token-Ring interface configuration.</td>
</tr>
<tr>
<td>LLC</td>
<td>Accesses the LLC configuration environment and subcommands.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the aging timer for the RIF cache and the physical (MAC) address.</td>
</tr>
<tr>
<td>Source-routing</td>
<td>Enables or disables source-routing on the interface.</td>
</tr>
<tr>
<td>Speed</td>
<td>Sets the interface speed in Mbps.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level.</td>
</tr>
<tr>
<td></td>
<td>See Exiting a Lower Level Environment on page 13.</td>
</tr>
</tbody>
</table>

List

Use the list command to display the current configuration for the Token-Ring interface.
Configuring Token-Ring Network Interfaces

**Note:** If the MAC address is 0, the default station address is used.

**Syntax:**

```
list
```

**Example:**

```
list
Token-Ring configuration:
 Packet size (INFO field): 2052
 Speed: 16 Mb/sec
 RIF Aging Timer: 120
 Source Routing: Enabled
 MAC Address: 000000000000
```

**Packet size**

Size of the Token-Ring packet.

**Speed**

Speed of the network.

**RIF Aging Timer**

Amount of time that the router holds the information contained in the Routing Information Field (RIF).

**Source Routing**

Status of the source-routing feature, enabled or disabled.

**MAC Address**

Configured MAC address that was set with the `set physical-address` command. If all zeros are displayed, the MAC address is the default address.

**LLC**

Use the `llc` command to access the LLC configuration environment. See "LLC Configuration Commands" on page 235 for an explanation of each of these commands.

**Syntax:**

```
llc
```

**Note:** If APPN is not included in your router software load, you will receive the following message if you try to use this command:

```
LLC configuration is not available for this network.
```

The LLC configuration environment is only available if APPN is included in the software load.

**Packet-Size**

Use the `packet-size` command to change maximum packet-size for all Token-Ring networks. Enter the `packet-size` command followed by the desired number of bytes.

**Syntax:**

```
packet-size bytes
```
Table 29. Token-Ring 4/16 Valid Packet Sizes

<table>
<thead>
<tr>
<th>Network Data Speed</th>
<th>Values (# of bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Mbps</td>
<td>516 to 4498</td>
</tr>
<tr>
<td>Note:</td>
<td>If a value greater than 4498 is defined for a 4 Mb TR then the software will set it to 4498. If the user does not specify a value, then the default is 2052.</td>
</tr>
<tr>
<td>16 Mbps</td>
<td>516 to 18144</td>
</tr>
<tr>
<td>Note:</td>
<td>If you do not specify a value, then the default is 2052.</td>
</tr>
</tbody>
</table>

Note: If packet sizes are increased, buffer memory requirements will also increase.

Set

Use the `set` command to set the Routing Information Field (RIF) timer and the physical (MAC) address.

Syntax:

```
set physical-address
 rif-timer
```

**physical-address**

Indicates whether you want to define a locally administered address for the Token-Ring interface's MAC sublayer address, or use the default factory station address (indicated by all zeroes). The MAC sublayer address is the address that the Token-Ring interface uses to receive and transmit frames.

**Note:** Pressing Return leaves the value the same. Entering 0 and pressing Return causes the router to use the factory station address. The default is to use the factory station address.

**Valid values:** Any 12-digit hexadecimal address.

**Default value:** burned-in address (indicated by all zeroes).

**Example:**

```
set physical-address
```

```
MAC address in 00:00:00:00:00:00 form []?
```

**rif-timer**

Sets the maximum amount of time (in seconds) that the information in the RIF is maintained before it is refreshed. The default is 120.

**Example:**

```
set rif-timer
```

```
RIF aging timer value [120]? 120
```

Source-routing

Use the `source-routing` command to enable or disable end station source routing.

Source routing is the process by which end stations determine the source route to use to cross source routing bridges. Source routing allows the IP, IPX, and AppleTalk Phase 2 protocols to reach nodes on the other side of the source routing bridge.
Configuring Token-Ring Network Interfaces

This switch is completely independent of whether this interface is providing source routing via the SRT forwarder. The default setting is enabled.

Some stations cannot properly receive frames with a Source Routing RIF on them. This is especially common among NetWare drivers. Disabling source routing in this situation will allow you to communicate with these stations.

Source routing should be enabled only if there are source-routing bridges on this ring that you want to bridge IP, IPX, and AppleTalk Phase 2 packets through. Source routing must also be enabled so LLC test response messages can be returned.

Syntax:

```plaintext
source-routing
 enable
 disable
```

Speed

Use the `speed` command to change data speed. The default speed is 4 Mbps. Enter the `speed` command followed by the speed-value (in Mbps).

Syntax:

```plaintext
speed
 speed-value
```

speed-value

The speed to which you are setting the token-ring interface.

Valid values: 4 or 16 Mbps

Default value: 4 Mbps

Accessing the Interface Monitoring Process

To display the Token-Ring monitoring prompt (`TKR>`), enter the network command followed by the interface number of the Token-Ring interface. For example:

```plaintext
+network 0
TKR>
```

Use the `list devices` command at the Config> prompt to display a list of interface numbers configured on the router.

Follow the procedure described in "Accessing the Network Interface Configuration Process" on page 15 to access the interface monitoring process for the interface described in this chapter. Once you have accessed the desired interface monitoring process, you can begin entering monitoring commands.
Token-Ring Interface Monitoring Commands

This section summarizes the Token-Ring monitoring commands. Enter commands at the TKR> monitoring prompt. Table 30 lists the monitoring commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>Dump</td>
<td>Displays a dump of the RIF cache.</td>
</tr>
<tr>
<td>LLC</td>
<td>Displays the LLC monitoring prompt.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 11.</td>
</tr>
</tbody>
</table>

Dump

When source routing is enabled in the tkr config> process, you can use the dump command to request a dump of the RIF cache contents.

Syntax:

dump

Example:

dump

MAC address State Usage RIF
0000C90B1A57 ON_RING Yes 0220

MAC address
Displays the MAC address of the Token-Ring interface.

State
Displays one of the interface states:

On_ring - indicates that a RIF was found for a node on the ring.
Have_route - indicates that a RIF was found for a node on a remote ring.
No_route - is displayed for a brief period of time as an explorer frame is sent out and the router is waiting for a return.
Discovering - indicates that the router sent an explorer frame to rediscover the RIF.
St_route - indicates that a route obtained from a Spanning tree explorer.

Usage
Indicates that a RIF was used in a packet. The number is arbitrary and has no functional significance.

RIF
Displays a code that indicates the RIF in hexadecimal.

Note: The RIF is displayed only if Source Route Bridging is enabled on the Token-Ring interface.

• NetBIOS RIF data can be displayed using the following sequence of commands: talk 5, protocol ASRT, name-caching, list cache rifs.
• Data Link Switching RIF data can be displayed using the following sequence of commands: talk 5, protocol dlsw, list llc2 session all.
Configuring Token-Ring Network Interfaces

LLC

Use the LLC command to access the LLC monitoring prompt. LLC commands are entered at this new prompt. See "LLC Monitoring Commands" on page 239 for an explanation of each of these commands.

Syntax:

llc

Token-Ring Interfaces and the GWCON Interface Command

While Token-Ring interfaces have their own monitoring processes for monitoring purposes, the router also displays complete statistics for installed network interfaces when you use the interface command from the GWCON environment.

Statistics Displayed for 802.5 Token-Ring Interfaces

The following statistics display when you enter the interface <net#> command for a Token-Ring interface from the GWCON environment.

<table>
<thead>
<tr>
<th>Nt</th>
<th>Interface</th>
<th>CSR</th>
<th>Vec</th>
<th>Passed</th>
<th>Failed</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TKR/0</td>
<td>6000000</td>
<td>1C</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Token-Ring/802.5 MAC/data-link on IBM Token-Ring interface
Microcode version: 000VL00A0 (050394)

Physical address 000C90820C7
Network speed 16 Mbps
Max packet size (INFO) 2052
Handler state Ring open
Ring status SERR | CO
Interface Restarts 0
# times Signal lost 0  # times Beaconing 0
Hard errors 0 Lobe wire faults 0
Auto-removal errors 0 Removes received 0
Ring recovery actions 0
Line errors 0 Burst errors 0
ARI/FCI errors 0 Inputs dropped 0
Frame copy errors 0 Token errors 0
Lost frames 0

The following section describes general interface statistics:

Nt  Global interface number
Nt’ Applies only to dial circuits
Interface  Interface name and Number of this interface within interfaces of type “intrfc”
CSR  COMM and Status Registers address
Vec  Interrupt vector
Self-Test: Pass  Number of times self-test succeeded
Self-Test: Fail  Number of times self-test failed
Using the GWCON Interface Command

Maint: Fail
Number of maintenance failures

The following section describes the statistics displayed that are specific to the Token-Ring interfaces:

**Physical address**
- Specifies the physical address of the Token-Ring interface.

**Network speed**
- Specifies the speed of the Token-Ring network that connects to the interface. The Network Speed counter displays the number of packets that the interface can pass per second.

**Max packet size (info)**
- Displays the maximum packet size configured for that interface. The Max Packet Size counter displays the maximum length, in bytes, of a packet that the interface transmits or receives. This counter is user-defined.

**Handler state**
- Displays the current state of the Token-Ring handler. The Handler state counter displays the state of the handler after the self-test runs.

**Ring status**
- Last Ring Status of the Token Ring interface.
  - **SIGL** SIGNAL_LOSS: The interface has detected a loss of signal on the ring.
  - **HERR** HARD_ERROR: The interface is presently transmitting or receiving beacon frames on the ring.
  - **SERR** SOFT_ERROR: The interface has transmitted a report error MAC frame.
  - **BEAC** TRANSMIT_BEACON: The interface is transmitting beacon frames to or from the ring.
  - **LWF** LOBE_WIRE_FAULT: The interface has detected an open or short circuit in the cable between the interface and the wiring concentrator. The interface is closed and is at the state following initialization.
  - **ARMV** AUTO_REMOVAL_ERROR: The interface has failed the lobe wrap test, which resulted from the beacon auto-removal process, and has removed itself from the ring. The interface has closed and is at the state following initialization.
  - **RMVD** REMOVED_RECEIVED: The interface has received a remove ring station MAC frame request and has removed itself from the ring. The interface is closed and is at the state following initialization.
  - **CO** COUNTER_OVERFLOW: One of the following error counters has incremented from 254 to 255: Line, A1/FCl, Frame Copy, Lost Frames, Burst, Lobe wire faults, Removes received. This display shows these error counters.
  - **SSTA** SINGLE_STATION: The interface has sensed that it is the only station on the ring.
  - **RR** RING_RECOVERY: The interface observes claim Token MAC
Using the GWCON Interface Command

frames on the ring. The interface may be transmitting the claim Token frames. This status remains until the interface transmits a ring purge frame.

Interface Restarts
Specifies the number of times the Token Ring chip timed out, or the Token Ring driver received a bad command from the handler. For information about why a restart occurred, see messages TKR.37, TKR.38, TKR.39, TKR.40, and TKR.41. in Event Logging System Messages Guide

# of times signal lost
Specifies the total number of times that the router was unable to transmit a packet due to loss of signal.

Hard errors
Displays the number of times the interface transmits or receives beacon frames from the network.

Auto-removal errors
Displays the number of times the interface, due to the beacon auto-removal process, fails the lobe wrap test and removes itself from the network.

Ring recovery actions
Displays the number of times the interface detects claim token medium access control (MAC) frames on the network.

Line errors
The Line Errors counter increments when a frame is repeated or copied and the Error Detected Indicator (EDI) is zero for the incoming frame:

One of the following conditions must also exist:
• A token with a code violation exists.
• A frame has a code violation between the starting and ending delimiter.
• A Frame Check Sequence (FCS) error occurs.

ARI/FCI errors
The ARI/FCI (Address Recognized Indicator/Frame Copied Indicator) Errors counter increments if the interface receives either of the following:

An Active Monitor Present (AMP) MAC frame with the ARI/FCI bits equal to zero and a Standby Monitor Present (SMP) MAC frame with the ARI/FCI bits equal to zero.
More than one SMP MAC frame with the ARI/FCI bits equal to zero, without an intervening AMP MAC frame.
This error indicates that the upstream neighbor copied the frame but is unable to set the ARI/FCI bits.

Frame copy errors
Displays the number of times the interface in receive/repeat mode recognizes a frame addressed to its specific address but finds the address recognize indicator (ARI) bits not equal to zero. This error indicates a possible line hit or duplicate address.

Lost frames
Displays the number of times the interface is in transmit mode (stripping) and fails to receive the end of a transmitted frame.

# times beaconing
Displays the number of times the interface transmits a beacon frame to the network.
Lobe wire faults
Displays the number of times the network detects an open or short circuit in the cable between the interface and the wiring concentrator.

Removes received
Displays the number of times the interface receives a remove ring station MAC frame request and removes itself from the network.

Burst errors
Displays the number of times the interface detects the absence of transitions for five half-bit times between the start delimiter (SDEL) and the end delimiter (EDEL) or between the EDEL and the SDEL.

Inputs dropped
Displays the number of times an interface in repeat mode recognizes a frame addressed to it but has no buffer space available to copy the frame.

Token errors
The token errors counter increments when the active monitor detects a token protocol with any of the following errors:

- The MONITOR_COUNT bit of token with nonzero priority equals one.
- The MONITOR_COUNT bit of a frame equals one. No token or frame is received within a 10-ms window.
- The starting delimiter/token sequence has a code violation in an area where code violations must not exist.
Using the GWCON Interface Command
Chapter 17. Configuring and Monitoring LLC Interfaces

This chapter describes how to configure specific LLC interfaces in the router by using either the interface commands or the GWCON interface command.

Logical Link Level can be thought of as a “sub-protocol”. It is not accessed directly from either the Talk 6 (configuration) or the Talk 5 (monitoring) environment. Instead, it is accessed from the Token Ring, Point-to-Point (PPP), or Frame Relay protocols by entering an LLC command.

This chapter includes the following sections:
- “Accessing the Interface Configuration Process”
- “Accessing the Interface Monitoring Process” on page 238
- “LLC Monitoring Commands” on page 239
- “LLC Configuration Commands”

Accessing the Interface Configuration Process

Access the configuration commands for the protocol you wish to configure over LLC:

- Token Ring, as described in “Chapter 16. Configuring IEEE 802.5 Token-Ring Network Interfaces” on page 225
- Point-to-Point, as described in “Chapter 32. Using Point-to-Point Protocol Interfaces” on page 449
- Frame Relay, as described in “Chapter 30. Using Frame Relay Interfaces” on page 387

Each of these prompt levels has an LLC command. Enter LLC to access the LLC configuration commands and perform LCC configuration. When you are finished, enter Exit to return to the prompt level for the protocol you are configuring.

LLC Configuration Commands

LLC configuration is required when you need to pass packets over an SNA network. To enter these commands, you must first enter the LLC configuration environment (see “Accessing the Token-Ring Interface Configuration Process” on page 225).

This section summarizes and then explains all of the LLC configuration commands. These commands, shown in Table 31, enable you to configure LLC when you need to pass packets over a SNA network.

Table 31. LLC Configuration Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See “Getting Help” on page 10</td>
</tr>
<tr>
<td>List</td>
<td>Displays the selected LLC configuration.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the timers associated with LLC, and the size of the transmit and receive windows.</td>
</tr>
</tbody>
</table>
Table 31. LLC Configuration Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment</a> on page 11</td>
</tr>
</tbody>
</table>

**List**

Use the `list` command to display the current configuration for the LLC.

**Syntax:**

`list`

**Example:**

```
list
Reply Timer (T1): 1 seconds
Receive ACK Timer (T2): 100 milliseconds
Inactivity Timer (Ti): 30 seconds
Max Retry value (N2): 8
Rcvd I-frames before ACK (N3): 1
Transmit Window (Tw): 2
Receive Window (Rw): 2
Acks needed to increment Ww (Nw): 1
```

**Reply Timer (T1)**

This timer expires when the LLC fails to receive a required acknowledgment or response from the other LLC station.

**Receive ACK Timer (T2)**

This timer is used to delay sending of an acknowledgment for a received I-format frame.

**Inactivity Timer (Ti)**

This timer expires when the LLC does not receive a frame for a specified time period. When this timer expires the LLC transmits an RR until the other LLC responds or the N2 retry count is exceeded. Default is 30 seconds.

**Max Retry value (N2)**

The maximum number of retries by the LLC protocol. Default is 8.

**Rcvd I-frames before ACK (N3)**

This value is used with the T2 timer to reduce acknowledgment traffic for received I-frames. This counter sets a specified value and decrements each time an I-frame is received. When this counter reaches 0 or the T2 timer expires, an acknowledgment is sent. Default is 1.

**Receive Window (Rw)**

Indicates the maximum number of unacknowledged sequentially numbered I-frames that an LLC can receive from a remote host.

**Transmit Window (Tw)**

Indicates the maximum number of I-frames that can be sent before receiving an RR.

**Acks needed to increment Ww (Nw)**

This field is set to a default value of 1.
Use the `set` command to configure the LLC.

**Attention:** Changing LLC parameters from the defaults can affect how the LLC protocol works.

**Syntax:**
```
set
 n2-max-retry count
n3-frames-rcvd-before-ack count
nw-acks-to-inc-window count
rw-receive-window count
t1-reply-timer seconds
t2-receive-ack-timer seconds
ti-inactivity-timer seconds
tw-transmit-window count
```

- **n2-max-retry**
  The maximum number of retries by LLC protocol. For example, N2 is the maximum number of times the LLC transmits an RR without receiving an acknowledgment when the inactivity timer expires. Default is 8. Minimum is 1. Maximum is 127.

  **Example:**
  ```
 set n2-max-retry
 Max Retry value (N2) [8]?
  ```

- **n3-frames-rcvd-before-ack**
  This value is used with the T2 timer to reduce acknowledgment traffic for received I-frames. Set this counter to a specified value. Each time an I-frame is received, this value decrements. When this counter reaches 0 or the T2 timer expires, an acknowledgment is sent. Default is 1. Minimum is 1. Maximum is 255.

  **Example:**
  ```
 set n3-frames-rcvd-before-ack
 Number I-frames received before sending ACK(N3) [1]?
  ```

- **rw-receive-window**
  Indicates the maximum number of unacknowledged sequentially numbered I-frames that an LLC can receive from a remote LLC peer. This value must be equal to or less than 127.

  **Example:**
  ```
 set rw-receive-window
 Receive Window (Rw), 127 Max. [2]?
  ```

- **nw-acks-to-inc-ww**
  This field is set to a default value of 1.

- **t1-reply-timer**
  This timer expires when the LLC fails to receive a required acknowledgment or response from the other LLC station. When this timer expires, an RR is sent with the poll bit set and T1 is started again. If the LLC receives no response after the configured maximum number of retries (N2), the link underneath is declared inoperative. Default is 1. Minimum is 1. Maximum is 256.
Configuring LLC

Example:

*set t1-reply-timer*

Reply Timer (T1) in sec. [1]?

**t2-receive-ack-timer**

This timer is used to delay sending of an acknowledgment for a received I-format frame. This timer is started when an I-frame is received. The timer is reset when an acknowledgment is sent. If this timer expires, LLC2 sends an acknowledgment as soon as possible. Set this value so that it is less than that of T1. This insures that the remote LLC2 peer receives the delayed acknowledgment before the T1 timer expires. Default is 1 (100 ms). Minimum is 1. Maximum is 2560.

Example:

*set t2-receive-ack-timer*

Receive Ack timer (T2) in 100 millisec. [1]?

**Note:** If this timer is set to 1 (the default) it will not run (for example, n3-frames_rcvd-before-ack =1).

**ti-inactivity-timer**

This timer expires when the LLC does not receive a frame for a specified time period. When this timer expires the LLC transmits an RR until the other LLC responds or the N2 retry count is exceeded. Default is 30 seconds. Minimum is 1 second. Maximum is 256 seconds.

Example:

*set ti-inactivity-timer*

Inactivity Timer (Ti) in sec. [30]?

**tw-transmit-window**

Sets the maximum number of I-frames that can be sent before receiving an RR. Assuming that the other end of the LLC session can actually receive this many consecutive I-frames, and the router has enough heap memory to keep copies of these frames until an acknowledgment is received, increasing this value may increase the throughput. Default is 2. Minimum is 1. Maximum is 127.

Example:

*set tw-transmit-window*

Transmit Window (Tw), 127 Max. [2]?

---

Accessing the Interface Monitoring Process

Access the monitoring commands for the protocol you wish to monitor over LLC:

- **Token Ring**, as described in [Chapter 16. Configuring IEEE 802.5 Token-Ring Network Interfaces](#) on page 225
- **Point-to-Point**, as described in [Chapter 33. Configuring and Monitoring Point-to-Point Protocol Interfaces](#) on page 465
- **Frame Relay**, as described in [Chapter 31. Configuring and Monitoring Frame Relay Interfaces](#) on page 405

Each of these prompt levels has an LLC command. Enter **LLC** to access the LLC monitoring commands to monitor LLC. When you are finished, enter **Exit** to return to the prompt level for the protocol you are monitoring.
LLC Monitoring Commands

This section summarizes and then explains all of the LLC monitoring commands. These commands, shown in Table 32, let you monitor the LLC while passing packets over an SNA network.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?</code> (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Clear-counters</td>
<td>Clears all statistical counters.</td>
</tr>
<tr>
<td>List</td>
<td>Displays interface, SAP, and session information.</td>
</tr>
<tr>
<td>Set</td>
<td>Allows the user to dynamically configure LLC parameters that are valid for the life of the session.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Table 32. LLC Monitoring Command Summary

Clear-Counters

Use the `clear-counters` command to clear all the LLC statistical counters.

Syntax:

```
 clear-counters
```

List

Use the `list` command to display interface, service access point (SAP), and session information.

Syntax:

```
 list

 interface
 sap ...
 session
```

Example:

```
 list interface
 SAP Number of Sessions
 F4 1
```

sap sap_number

Displays information for the specified SAP on the interface.

Example:

```
 list sap
 SAP value in hex (0FE) [1] = F4
```

Interface 0, TKR/0
Reply Timer(T1) 1 sec
Receive ACK Timer (T2) 100 millisec
Inactivity Timer (T1) 30 sec
MAX Retry Value (N2) 8
MAX I-Field Size (N1) 2052
Rcvd I-frames before ACK (N3) 1
Transmit Window Size (Tw) 2
Acks Needed to Inc Ww (Nw) 1
Monitoring LLC

Frames Xmt and Rcvd
UI-frames 4 5
TEST-frames 0 1
XID-frames 0 0
I-frames 291 26
RR-frames 81 291
RNR-frames 0 0
SABME-frames 1 0
UA-frames 0 1
DISC-frames 0 0
DM-frames 0 0
FRMR-frames 0 0
I-frames discarded by LLC 0
I-frames Refused by LLC user 0
Cumulative number of sessions 1
Number of active sessions 1

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Local MAC</th>
<th>Remote MAC</th>
<th>SAP value in hex (0FE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00F40000</td>
<td>00:00:C9:08:41:DB</td>
<td>10:00:5A:F1:02:37</td>
<td>F4 OPENED</td>
</tr>
</tbody>
</table>

SAP value in hex (0FE)
The SAP value of the session.

Interface
The interface number and type over which the session is running.

Reply Timer (T1)
Indicates the time it takes for this timer to expire when the LLC fails to receive an acknowledgment or response from the other LLC station.

Receive ACK Timer (T2)
Indicates the time delay the LLC uses before sending an acknowledgment for a received I-frame.

Inactivity Timer (Ti)
Indicates the time the LLC waits during inactivity before issuing an RR.

MAX Retry Value (N2)
The maximum number of retries by the LLC protocol.

MAX I-field Size (N1)
Maximum amount of data (in bytes) allowed in the I-field of an LLC2 frame.

Rcvd I-frame before ACK (N3)
Indicates the value that is used with T2 timer to reduce acknowledgment traffic for received I-frames.

Transmit Window Size (Tw)
Indicates the maximum number I-frames that can be sent before receiving an RR.

Acks Needed to Inc Ww (Nw)
This field is set to a default value of 1.

Frames Xmt and Rcvd
Counter that displays the total number of frame types transmitted (Xmt) and (Rcvd).

I-frames discarded by LLC
Counter that displays the total number of I-frames discarded by the LLC, usually because the sequence number is out of sequence.

I-frames refused by LLC user
Counter that displays the number of I-frames discarded by the software above the LLC. For example, DLSw (Data Link Switching).

Cumulative number of sessions
The total number of sessions that were opened over this SAP.

Number of active sessions
The total number of currently active sessions that are running over the interface.

Session ID (int-sap-id)
The session ID for the monitoring interface.

Local MAC
The router’s LLC MAC address.

Remote MAC
The remote LLC’s MAC address.

Remote SAP
The remote SAP of the LLC connection.

Remote State
The finite state(s) that results from interaction between the LLC peers. There are 21 states that are described below.

Link_Closed
The remote LLC peer is not known to the local LLC peer and is considered as not existing.

Disconnected
The local LLC peer is known to the other peer. This LLC peer can send and receive XID, TEST, SABME, and DISC commands; and XID TEST, UA, and DM responses.

Link_Opening
The state of the local LLC peer after sending a SABME or UA in response to a received SABME.

Disconnecting
The state of the local LLC after sending a DISC command to the remote LLC peer.

FRMR_Sent
The local LLC peer has entered the frame reject exception state and has sent a FRMR response across the link.

Link_Opened
The local LLC peer is in the data transfer phase.

Local_Busy
The local LLC peer is unable to receive additional I-frames.

Rejection
A local LLC peer that has received one or more out-of-sequence I-frames.

Checkpointing
The local LLC peer has sent a poll to the remote LLC peer and is waiting for an appropriate response.

CKPT_LB
A combination of checkpointing and local busy states.
Monitoring LLC

**CKPT_REJ**
A combination of the checkpointing and rejection states.

**Resetting**
The local LLC peer has received a SABME and is reestablishing the link.

**Remote_Busy**
The state that occurs when an RNR is received from the remote LLC peer.

**LB_RR**
A combination of local_busy and remote_busy states.

**REJ_LB**
A combination of rejection and local_busy states.

**REJ_RB**
A combination of rejection and remote_busy states.

**CKPT_REJ_RB**
A combination of checkpointing, rejection, and remote_busy states.

**CKPT_CLR**
A combination state resulting from the termination of a local_busy condition while the LLC peer is CKPT_LB.

**CKPT_REJ_CLR**
A combination state resulting from the transfer of an unconfirmed local busy clear while the link station is in the CKPT_REJ_LB state.

**REJ_LB_RB**
A combination of the rejection, local_busy, and remote_busy states.

**FRMR_Received**
The local LLC peer has received an FRMR response from the remote LLC peer.

**Session**
Displays information on the specified LLC session that is open on the interface.

**Example:**

```bash
list session
Session Id: [0]? 00-F4-0000
Interface0, TKR/0
Remote MAC addr 10:00:5A:F1:02:37
Source MAC addr 00:00:C9:08:35:47
Remote SAP F4
Local SAP F4
RIF (089E 0101 0022 0010)
Access Priority 0
State LINK_OPENED
Replay Timer 1 sec
Receive ACK Timer (T2) 100 millisecond
Inactivity Timer (T1) 30 sec
MAX I-field Size (N1) 2052
MAX Retry Value (N2) 8
Rcvd I-frames before ACK (N3) 1
Transmit Window Size (Tw) 2
Working Transmit Size (Ww) 2
Acks Needed to Inc Ww (Nw) 1
Current Send Seq (Vs) 9
Current Rcv Seq (Vr) 7
Last ACK'd sent frame (Va) 9
No. of frames in ACK pend q 0
No. of frames in Tx pend q 0
Local Busy NO
Remote Busy NO
Poll Retry count 8
Appl output flow stopped NO
Send process running YES
Frame Xmt Rcvd
I-frames 1456 2678
```

242 MRS V3.2 Software User's Guide
### Session Id
Indicates the session ID number.

### Interface
Indicates the number of the interface over which this session is running.

### Remote MAC addr
Indicates the MAC address of the remote LLC peer.

### Source MAC addr
Indicates the MAC address of the local LLC.

### Remote SAP
The remote side SAP of the LLC connection.

### Local SAP
The local side SAP of the LLC connection.

### RIFF
The actual RIFF of the frame.

### Access Priority
Priority of the packet. 07 for upper layer control.

### State
The finite state(s) that results from interaction between the LLC peers. Refer to the list sap command on page 238 for more information.

### Receive ACK timer (T2)
Indicates the time delay the LLC uses before sending an acknowledgment for a received I-frame.

### Inactivity timer (Ti)
Indicates the time the LLC waits during inactivity before issuing an RR.

### MAX I-field size (N1)
Maximum size of the data field (in bytes) of a frame. Default is the size of the interface.

### MAX Retry Value (N2)
The maximum number of times the LLC transmits an RR without receiving an acknowledgment.

### Rcvd I-frames before ACK (N3)
Indicates the value that is used with T2 timer to reduce acknowledgment traffic for received I-frames.

### Transmit window size (Tw)
Indicates the maximum number of I-frames that can be sent before receiving an RR.

### Working transmit size (Ww)
The maximum number of I-frames that are sent before receiving an RR.

### Acks Needed to Inc Ww (Nw)
This field is set to a default value of 1.
Monitoring LLC

Current send seq (Vs)
Send state variable (Ns value for the next I-frame to be transferred).

Current Rcv seq (Vr)
Receive state variable (next in-sequence Ns to be accepted).

Last ACK’d sent frame (Va)
Acknowledged state variable (last valid Nr received).

No. of frames in ACK pend q
Number of transmitted I-frames waiting for acknowledgment.

No. of frames in transmit pend q
Number of frames waiting to be transmitted.

Local Busy
The local side of the LLC connection is sending RNRs.

Remote Busy
The remote side of the LLC is receiving RNRs.

Poll Retry count
Indicates the current value of the retry of the counter (counts down) in the LLC protocol.

Appl output flow stopped
The LLC has told the application to stop giving it outgoing data frames.

Send process running
This process runs concurrently with all other frame actions and takes I-frames in the transmit queue and sends them.

Frames Xmt and Rcvd
Displays the total number of frame types transmitted (Xmt) and (Rcvd).

I-frames discarded by LLC
Counter that displays the total number of I-frames discarded by the LLC, usually because the sequence number is out of sequence.

I-frames refused by LLC user
Counter that displays the number of I-frames discarded by the software above the LLC. For example, DLSw (Data Link Switching).

Set

Use the set command to dynamically configure the LLC parameters on a current LLC session. Any changes that you make to the parameters are effective for the life of session. These parameters are the same as those listed in "Set" on page 237.

Attention: Changing LLC parameters from the default can affect how the LLC protocol works.

Syntax:

cmd  
set
  n2-max_retry count
  n3-frames-rcvd-before-ack count
  nw-acks-to-inc-ww count
n2-max_retry
The maximum number of retries by LLC protocol. For example, N2 is the maximum number of times the LLC transmits an RR without receiving an acknowledgment when the inactivity timer expires. Default is 8. Minimum is 1. Maximum is 127.

n3-frames-rcvd-before-ack
This value is used with the T2 timer to reduce acknowledgment traffic for received I-frames. Set this counter to a specified value. Each time an I-frame is received, this value is decremented. When this counter reaches 0 or the T2 timer expires, an acknowledgment is sent. Default is 1. Minimum is 1. Maximum is 255.

nw-acks-to-inc-ww
This field is set to a default value of 1.

t1-reply-timer
This timer expires when the LLC fails to receive a required acknowledgment or response from the other LLC station. When this timer expires, an RR is sent with the poll bit set and T1 is started again. If the LLC receives no response after the configured maximum number of retries (N2), the link underneath is declared inoperative. Default is 1. Minimum is 1. Maximum is 256.

Note: If this timer is set to 1 (the default) it will not run (for example, n3-frames-rcvd-before-ack=1).

t2-receive-ack-timer
This timer is used to delay sending of an acknowledgment for a received I-format frame. This timer is started when an I-frame is received and reset when an acknowledgment is sent. If this timer expires, LLC2 sends an acknowledgment as soon as possible. Set this value so that it is less than that of T1. This insures that the remote LLC2 peer receives the delayed acknowledgment before the T1 timer expires. Default is 1 (100 ms). Minimum is 1. Maximum is 2560.

tw-transmit-window
Sets the maximum number of I-frames that can be sent before receiving an RR. Assuming that the other end of the LLC session can actually receive this many consecutive I-frames, and the router has enough heap memory to keep copies of these frames until an acknowledgment is received, increasing this value may increase the throughput. Default is 2. Minimum is 1. Maximum is 127.
Chapter 18. Using the Ethernet Network Interface

This chapter describes how to use the Ethernet interface. It includes Displaying Ethernet Statistics through the Interface Command.

Displaying Ethernet Statistics through the Interface Command

You can also use the interface command from the GWCON environment to display the following statistics.

+ interface 0

<table>
<thead>
<tr>
<th>Nt</th>
<th>Nt'</th>
<th>Interface</th>
<th>CSR</th>
<th>Vec</th>
<th>Passed</th>
<th>Failed</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Eth/0</td>
<td>81600</td>
<td>5E</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Ethernet/IEEE 802.3 MAC/data-link on SCC Ethernet interface

<table>
<thead>
<tr>
<th>Physical address</th>
<th>000093808000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROM address</td>
<td>000093808000</td>
</tr>
</tbody>
</table>

Input statistics:
- failed, frame too long 0
- failed, alignment error 0
- internal MAC rcv error 0

Output statistics:
- deferred transmission 6
- multiple collisions 0
- failed, excess collisions 0
- failed, carrier sense err 0
- late collision 0
- single collision 2
- total collisions 2
- SQE test error 0
- internal MAC trans errors 0

RISC Microcode Revision: 1

These statistics have the following meaning:

Nt  Global network number.
Nt'  This field is for the serial interface card. Disregard the output.
Interface  Interface name and its instance number.
CSR  Command and status register address.
Vec  Interrupt vector

Self-Test: Passed
Number of self-tests that succeeded.

Self-Test: Failed
Number of self-tests that failed.

Maintenance: Failed
Number of maintenance failures.

Physical address
The Ethernet address of the device currently in use. This may be the PROM address or an address overwritten by some other protocol.

PROM address
The permanent unique Ethernet address in the PROM for this Ethernet interface.

Interface restarts
The number of times the Ethernet chip timed out, or the Ethernet driver

© Copyright IBM Corp. 1994, 1998
Using Ethernet Network Interfaces

received a bad command from the handler. For information about why a
restart occurred, refer to messages Eth.043 and Eth.044 in the *IBM Nways
Event Logging System Messages Guide*

**Interface type**
This specifies the connector type as AUI or RJ45.

**Input statistics:**

**failed, packet too long or failed, frame too long**
The Failed, Packet Too Long counter increments when the interface
receives a packet that is larger than the maximum size of 1518 bytes for an
Ethernet frame. This data is exported via SNMP as the
dot3StatsFrameTooLongs counter.

**failed, CRC error or failed, FCS (Frame Check Sequence) error**
The Failed, CRC (Cyclic Redundancy Check) Error counter increments
when the interface receives a packet with a CRC error. This data is
exported via SNMP as the dot3StatsFCSErrors counter.

**failed, framing error or failed, alignment error**
The Failed, Framing Error counter increments when the interface receives a
packet whose length in bits is not a multiple of eight.

**failed, FIFO over-run or failed, FIFO overrun**
The Failed, FIFO (First In, First Out) Overrun counter increments when the
Ethernet chipset is unable to store bytes in the local packet buffer as fast as
they come off the wire.

**collision in packet**
The counter increments when a packet collides as the interface attempts to
receive a packet, but the local packet buffer is full. This error indicates that
the network has more traffic than the interface can handle.

**short frame**
The counter increments when the interface receives a packet with a short
frame.

**buffer full warnings**
The Buffer Full Warnings counter increments each time the local packet
buffer is full.

**packets missed**
The Packets Missed counter increments when the interface attempts to
receive a packet, but the local packet buffer is full. This error indicates that
the network has more traffic than the interface can handle.

**internal mac rcv errors**
Receive errors that are not late, excessive, or carrier check collisions. This
data is exported via SNMP as the dot3StatsInternalMacReceiveErrors
counter. This statistic is the sum of the FIFO Overruns.

**Output statistics:**

**initially deferred or deferred transmission**
The Initially Deferred counter increments when the carrier sense
mechanism detects line activity causing the interface to defer transmission.
This data is exported via SNMP as the dot3StatsDeferredTransmissions
counter.

**single collision**
The Single Collision counter increments when a packet has a collision on
the first transmission attempt, and then successfully sends the packet on
Using Ethernet Network Interfaces

the second transmission attempt. This data is exported via SNMP as the dot3StatsSingleCollisionFrames counter.

**multiple collisions**
The Multiple Collisions counter increments when a packet has multiple collisions before being successfully transmitted. This data is exported via SNMP as the dot3MultipleCollisionFrames counter.

**total collisions**
The Total Collisions counter increments by the number of collisions a packet incurs.

**failed, excess collisions**
The Failed, Excess Collisions counter increments when a packet transmission fails due to 16 successive collisions. This error indicates a high volume of network traffic or hardware problems with the network. This data is exported via SNMP as the dot3StatsExcessiveCollisions counter.

**failed, FIFO underrun**
The Failed, FIFO Underrun counter increments when packet transmission fails due to the inability of the interface to retrieve packets from the local packet buffer fast enough to transmit them onto the network.

**failed, carrier check or failed, carrier sense error**
The Failed, Carrier Check counter increments when a packet collides because carrier sense is disabled. This error indicates a problem between the interface and its Ethernet transceiver. This data is exported via SNMP as the dot3StatsCarrierSenseErrors counter.

**CD heartbeat error or SQE test error**
The CD (Collision Detection) Heartbeat Error or SQE (Signal Quality Error) counter increments when the interface sends a packet but detects that the transceiver has no heartbeat. The packet is treated as successfully transmitted because some transceivers do not generate heartbeats. This data is exported via SNMP as the dot3StatsSQETestErrors counter.

**internal mac tx errors or internal MAC trans errors**
Transmit errors that are not late, excessive, or carrier check collisions. This data is exported via SNMP as the dot3StatsInternalMacTransmitErrors counter. This statistic is the sum of the FIFO Underruns.

**RISC Microcode Version:**
This gives the version of the microcode running in the RISC controller of the communications processor module.
Using Ethernet Network Interfaces
Chapter 19. Configuring and Monitoring the Ethernet Network Interface

This chapter describes Ethernet interface configuration and operational commands. It includes the following sections:

- Accessing the Ethernet Interface Operating Process on page 253
- Ethernet Interface Monitoring Commands on page 253

Accessing the Ethernet Interface Configuration Process

Use the following procedure to access the configuration process. This process gives you access to an Ethernet interface's configuration process.

1. At the OPCON prompt, enter talk 6. (For more detail on this command, refer to Chapter 3. The OPCON Process on page 25.) For example:

```
* talk 6
Config>
```

The CONFIG prompt (Config>) displays on the console. If the prompt does not appear when you first enter configuration, press Return again.

2. At the CONFIG prompt, enter the list devices command to display the network interface numbers for which the router is currently configured. For example:

```
Config> list devices
Ifc 0 Ethernet CSR 81600, CSR2 80C00, vector 94
Ifc 1 WAN X.25 CSR 81620, CSR2 80000, vector 93
Ifc 2 WAN X.25 CSR 81640, CSR2 80E00, vector 92
Ifc 3 WAN PPP CSR 381620, CSR2 380D00, vector 125
Ifc 4 WAN Frame Relay CSR 381640, CSR2 380E00, vector 124
Ifc 5 Token Ring CSR 600000, vector 95
```

3. Record the interface numbers.
4. Enter the network command and the number of the Ethernet interface you want to configure. For example:

```
Config> network 0
ETH Config>
```

The Ethernet configuration prompt (ETH Config>), is displayed.

Ethernet Configuration Commands

This section summarizes and then explains the Ethernet configuration commands. Enter the commands at the ETH config> prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10</td>
</tr>
<tr>
<td>Connector-Type</td>
<td>Sets the connector type.</td>
</tr>
<tr>
<td>IP-Encapsulation</td>
<td>Sets the IP encapsulation as Ethernet (type X’0800’) or IEEE (802.3 with SNAP).</td>
</tr>
<tr>
<td>List</td>
<td>Displays the current connector-type, NetWare IPX encapsulation, and IP encapsulation.</td>
</tr>
</tbody>
</table>
Table 33. Ethernet Configuration Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical-Address</td>
<td>Sets the physical MAC address.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Table 33. Ethernet</td>
</tr>
<tr>
<td></td>
<td>Configuration Command Summary (continued) on page 11.</td>
</tr>
</tbody>
</table>

**Connector-Type**

Use the `connector-type` command to set the connector type. 2210s support AUI (10BASE5) and RJ-45 (10BASE-T) connectors, and auto-config options.

Syntax:

```
connector-type name
```

**IP-Encapsulation**

Use the `ip-encapsulation` command to select Ethernet (Ethernet type X'0800') or IEEE 802.3 (Ethernet 802.3 with SNAP). Enter e or i.

Syntax:

```
ip-encapsulation type
```

**List**

Use the `list` command to display the current configuration for the Ethernet interface including the connector-type, IPX encapsulation type, and IP encapsulation type.

Syntax:

```
list all
```

Example:

```
list all
Connector type: AUI (10BASE5)
MAC Address: 12:15:00:FA:00:FE
```

**Physical-Address**

Use the `physical-address` command to set the physical (MAC) address.

`physical-address`

This command lets you indicate whether you want to define a locally administered address for the Ethernet interface’s MAC sublayer address, or use the default burned-in address (indicated by all zeros). The MAC sublayer address is the address that the Ethernet interface uses to receive and transmit frames.

**Note:** Pressing Enter leaves the value the same. Entering 0 causes the router to use the burned-in address. The default is to use the burned-in address.

**Valid Values:** Any 12-digit hexadecimal address.

**Default Value:** burned-in address (indicated by all zeros).
Accessing the Ethernet Interface Operating Process

To monitor information related to the Ethernet Network Interface, access the interface monitoring process by doing the following:

1. At the OPCON prompt, enter talk 5. For example:
   
   * talk 5
   
   The GWCON prompt (+) is displayed on the console. If the prompt does not appear when you first enter GWCON, press Return again.

2. At the GWCON prompt, enter the configuration command to see the protocols and networks for which the router is configured. For example:
   
   + configuration
   
   See page “Configuration” on page 130 for sample output of the configuration command.

3. Enter the network command and the number of the Ethernet interface. In this example:
   
   + network 0
   
   ETH>

   The Ethernet monitoring prompt is displayed. You can now view information about the Ethernet interface by entering monitoring commands.

Ethernet Interface Monitoring Commands

This section summarizes and explains the Ethernet monitoring commands. Enter commands at the ETH> prompt. Table 34 lists the monitoring commands.

Table 34. Ethernet monitoring command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See “Getting Help” on page 10</td>
</tr>
<tr>
<td>Collisions</td>
<td>Displays collision statistics for the specified Ethernet interface.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See “Exiting a Lower Level Environment” on page 11</td>
</tr>
</tbody>
</table>

Collisions

This command shows the counts of transmissions for packets that incurred collisions before successful transmission. Counters are given for packets sent after the collision XXXXx packets sent after 15 collisions. Increasing numbers of packets transmitting with collisions and higher numbers of collision per packet are signs of transmitting onto a busy Ethernet.

These counters are cleared by the OPCON clear command. This data is exported via SNMP as the dot3CollTable counter.
Syntax:

```
collisions
```

Example:

Eth> coll
Transmitted with 1 collisions:0
Transmitted with 2 collisions:0
Transmitted with 3 collisions:0
Transmitted with 4 collisions:0
Transmitted with 5 collisions:0
Transmitted with 6 collisions:0
Transmitted with 7 collisions:0
Transmitted with 8 collisions:0
Transmitted with 9 collisions:0
Transmitted with 10 collisions:0
Transmitted with 11 collisions:0
Transmitted with 12 collisions:0
Transmitted with 13 collisions:0
Transmitted with 14 collisions:0
Transmitted with 15 collisions:0
Chapter 20. Overview of LAN Emulation

Note: See the glossary for definitions of the acronyms and terms used in this chapter.

The IBM 2210 implements the *LAN Emulation Over ATM: Version 1.0 Specification* which is widely accepted as the industry standard for multivendor multiprotocol interoperability. This chapter introduces basic LAN emulation (LE) concepts in the context of the MSS implementation. It begins by examining the motivation for installing emulated LANs (ELANs).

**LAN Emulation Benefits**

LAN emulation protocols allow ATM networks to provide the appearance of Ethernet and Token-Ring LANs. Although LAN emulation does not exploit all of the benefits of ATM, it is useful in migrating to ATM technology and lowering network management costs. It enables you to utilize high-speed ATM links and still protect your software and hardware investments.

Software investments are protected because application interfaces are unchanged (LAN emulation is implemented within the data link control layer, which is below the device driver interface of end stations). Hardware investments are protected with forwarding engines that bridge LAN and ATM networks so that existing adapters and wiring can continue to be used.

LAN emulation allows incremental installation of ATM adapters in stations with high-bandwidth requirements, for example, servers and engineering or multimedia workstations. Physical and logical views of a simple LAN emulation example are illustrated in [4].
The network management benefits of emulated LANs (ELANs) come from increased flexibility in handling moves, adds, and changes. Membership in an ELAN is not based on physical location; instead, logically-related stations are grouped to form an ELAN (stations can also be members of multiple ELANs).

As long as ELAN memberships are retained, no reconfiguration is needed when stations move to new physical locations. Similarly, no wiring modifications are needed to move stations from one ELAN to another.

**LAN Emulation Components**

The following components implement an ELAN:

**LAN emulation (LE) clients (LECs)**
LAN emulation components that represent users of the Emulated LAN.

**LE configuration server (LECS)**
A LAN emulation service component that centralizes and disseminates configuration data.

**LE server (LES)**
A LAN emulation service component that resolves LAN destinations to ATM addresses.
Overview of LAN Emulation

Broadcast and Unknown Server (BUS)
A LAN emulation service component responsible for the delivery of multicast and unknown unicast frames.

The LES, BUS, and LECS are collectively referred to as the LE service components. Each ELAN has a dedicated LES and BUS. LE clients reside in end systems, either in ATM-attached hosts or in bridges or LAN switches. The bridges or LAN switches represent hosts that are connected to Ethernet or Token-Ring LANs. LE clients provide a MAC-level service to higher level software. Either Ethernet IEEE 802.3 or IEEE 802.5 Token-Ring LANs can be emulated, but all stations on an ELAN must be of the same type.

The function that bridges between Token-Ring or Ethernet LAN segments and ELANs is called a Proxy LEC. To emulate a LAN, LE clients request services from the LECS, LES, and BUS. The following sections briefly review ATM addressing and pertinent Interim Local Management Interface (ILMI) functions. You need to understand these concepts before you can understand how the LE components function in the network.

Addressing in ATM

ATM uses 20-byte hierarchical addressing:

```
+-----------------+-----------------+-----------+
| Network Prefix | End System | Selector |
| | Identifier (ESI)| |
+-----------------+-----------------+-----------+
| 1 | 13 14 | 19 20 |
```

The first 13 octets of an ATM address are the Network Prefix. Each switch in your ATM network must have a unique Network Prefix. ATM switches use the Network Prefix to route VCC setup requests the destination ATM switch. End systems, like this router, retrieve their Network Prefix from their ATM switch when they activate.

Octets 14–19 of an ATM address are the End System Identifier (ESI). Each end system attached to the same switch must use a disjoint set of ESIs. When an end system activates, it attempts to register its ESIs with its ATM switch using the Interim Local Management Interface (ILMI).

The ILMI defines a set of SNMP-based procedures used to manage the interface between an end system and an ATM switch. End systems use ILMI to:
- Obtain the network prefix from the switch
- Register their ESIs with the switch
- Dynamically determine the UNI version of the ATM switch
- LECs may get a list of LECS addresses from the switch

The switch forces all of its registered ESIs to be unique.

Octet 20 of an ATM address is the selector.
Overview of LAN Emulation

End stations obtain their Network Prefix from the switch and form their own addresses by appending an ESI and selector. These addresses must then be registered with the switch, which rejects the registration if the ATM address is not unique.

ESI

Each ATM interface on the router has a universally administered, or burned-in, MAC address. You can use the MAC address as an ESI for some or all of the router’s ATM addresses. Alternatively, you can define up to 64 locally administered ESIs on each interface. If every end system uses its universally administered MAC address as its ESI, then ATM addresses are guaranteed to be unique. This eases the configuration burden. However, using locally administered ESIs can ease problem determination. You can use any combination of universal or locally administered ESIs.

One way to obtain a unique ATM address is to use a burned-in IEEE MAC address as the ESI and to locally choose a unique selector. By default, the router uses the MAC address of the ATM interface as the ESI in its ATM addresses. Additional ESIs can be configured on each ATM interface.

Each ESI can have up to 255 associated selectors (0x00 through 0xff). The range of selectors is partitioned into two subranges, a configured selector range and an automatically assigned selector range. The ATM interface parameter max-configured-selector gives the upper bound on the configured selector range.

The ATM components on the router have various ways of choosing a selector. Some components require you to explicitly configure a selector from the configured selector range. LES/BUSs are an example of such a component. Other components, such as Classical IP clients, allow the selector to be automatically assigned at run-time. You do not have to choose the selector because the router does this when it activates. This selector is not guaranteed to be consistent across router restarts. Automatic selector assignment is useful only for those ATM components whose ATM address does not have to be already known by other network devices.

You must configure ATM before you configure emulated LANs, bridging or routing.

ATM Addresses of LAN Emulation Components

In general, ATM addresses must be unique among LAN emulation components. The only exception is that a LES and BUS serving the same ELAN can share an ATM address, as is the case on the router.

LAN emulation components are configured for a particular ATM interface. You can decide to use the burned-in MAC address as the ESI portion of the ATM address of the component or you can select one of the locally-administered ESIs that have been defined for the ATM interface. Multiple LE components can share the same ESI if they have unique selectors. By default, the configuration interface assigns each LE component a unique selector value for the configured ESI; however, you can override this assignment and explicitly configure a particular selector value.

An ATM interface parameter determines the number of selectors per ESI reserved for explicit assignment. The remainder are available for dynamic assignment by the ATM interface at run-time. LE components use only the selectors reserved for
explicit assignment; by default, 200 of the 256 possible selectors per ESI are reserved for explicit assignment. Run-time selector assignment is beneficial when you do not need to control the assigned selector, for example, when you are configuring clients in Classical IP that are not paired with an ARP server.

While ATM addresses must be unique among LE components, LE components can use the same ATM addresses as non-LE components, such as Classical IP servers.

Overview of Related ILMI Functions

ILMI defines a set of SNMP-based procedures used to manage the user-network interface (UNI) between an ATM end system and an ATM switch. The following three ILMI functions are particularly relevant to LAN emulation:

1. ATM address registration, which is described in Addressing in ATM on page 257.
2. Dynamic determination of the signaling version being run at the switch.
3. Acquisition of the LECS ATM addresses.

As mentioned in Addressing in ATM on page 257, ATM address registration is a joint effort between ATM end systems and switches. ATM addresses must be registered with the switch before calls can be placed or received.

By default, the ATM interfaces of a router use ILMI procedures to query the switch MIB in an attempt to determine the signaling version (UNI 3.0 or 3.1) being run at the switch. If the query succeeds, the ATM interface runs the same UNI version as the switch; if the query fails, the ATM interface runs UNI 3.0. Alternatively, you can override the default and explicitly configure the UNI version that will run on the ATM interface.

Manual Configuration of the Signaling Version

You need to configure the signaling version manually if the ATM switch runs UNI 3.1 and has no UNI Version MIB variable. In this case, the ATM interface cannot dynamically determine the UNI version. Because the ATM interface in the router uses UNI 3.0 by default, you should manually configure the ATM interface to use UNI 3.1.

Locating the LECS Using ILMI

ILMI is the method of choice for locating the LECS. The ILMI MIB at the ATM switch includes a list of LECS ATM addresses that can be retrieved by LE clients. This method is useful because the LECS ATM addresses need only be configured at ATM switches, not at LE clients, and there are fewer switches than LE clients. Clients attempt to connect to the first LECS on this list. If the connection fails, they try the next LECS address in succession until a connection is established.
Overview of the LECS Function

LE clients are not required to use the LECS, although it is recommended. If the LECS is not used, each LE client must be configured with the ATM address of the LES that serves its ELAN. The LECS reduces the network management burden by serving as a centralized repository for configuration data, minimizing configuration of the LE clients.

Note: At most, one LECS is configurable on each router.

Clients connect to the LECS using well-defined procedures. The following steps are attempted by a client, in order, until a virtual channel connection (VCC) to the LECS is established:

1. Connect to the LECS using any configured LECS address information (configuration of an LECS ATM address at LE clients is optional and is not recommended).
2. Obtain a list of LECS addresses using ILMI and attempt to connect to each LECS on the list, in order, until a VCC is established.
3. Establish a VCC to the well-known LECS ATM address as defined by the ATM Forum.

As previously stated, ILMI is the preferred method for LE clients to locate the LECS. The well-known LECS address is needed because some switches do not support the ILMI method. Configuring the LECS address at the LE clients should be done only when the switch does not support the ILMI method and the LE service does not support the well-known LECS address.

The router and the IBM ATM switch support all three methods: the pre-configured LECS address, ILMI connection, and the well-known LECS ATM address.

The LECS must provide initial configuration data to LE clients. The most crucial piece of data is the ATM address of the LES. To provide this information to an LE client, the LECS must be able to identify the LE client and to determine the correct LES for that LE client. The LECS identifies an LE client using information in the LE_CONFIGURATION_REQUEST frame sent by the LE client. The configuration request can also contain information to identify the ELAN that the LE client is seeking to join. The following information can be included in the configuration request:

1. Primary ATM address of the LE client
   This field is required and uniquely identifies the LE client.
2. LAN destination associated with the LE client
   This field can contain a MAC address or a route descriptor that uniquely identifies the LE client or it can be unspecified.
3. ELAN Name
   This field can contain a name identifying the requested ELAN or the requesting LE client. In the router implementation, ELAN names are standard ASCII strings. The ELAN name can be unspecified in the request.
4. ELAN Type
   This field can specify that the LE client belongs to an Ethernet or Token-Ring ELAN, or it can be unspecified. If the LE client specifies the type of ELAN, the LECS cannot assign the client to an ELAN of a different type.
5. Maximum frame size supported by the LE client
Overview of LAN Emulation

This field can specify the upper bound on the size of a data frame that can be processed by the LE client, or it can be unspecified. The LECS cannot assign a client to an ELAN with a maximum frame size larger than that specified by the client. If the ELAN allows frames too large for the client to handle, the client cannot function on that ELAN.

Given this information, the LECS assigns the LE client to a LES. This is accomplished through the use of policies and policy values. A policy is a criterion that the LECS uses to make LE client-to-LES assignment decisions. A policy value is a (value, LES) pair that indicates that the specified value should be assigned to the specified LES. For example, a policy could be the MAC address of the LE client, and a policy value could be (MAC ADDR_A, LES_1). An LE client with MAC ADDR_A will be assigned to LES_1 if the LE client has not already been assigned to another LES because of a higher-priority policy. One set of policies and policy values applies to all the ELANs.

In accordance with the LE service MIB Specification of the ATM forum, these are the six policies defined:

1. ATM address
2. MAC address
3. Route descriptor
4. ELAN type
5. Max frame size
6. ELAN name

Policies also have priorities. The LECS examines policies in prioritized order. Policies with smaller values in the priority field are considered before policies with larger values in the priority field. Policies with equal values in the priority field are considered at the same time and ANDed together.

The LECS assigns an LE client to a LES when all of the policies at the current priority level are satisfied and in agreement. The policies are satisfied when there is a policy value that matches the corresponding field in the configuration request for each policy at the current level. The policies are in agreement when the set of matches include a LES that is common to all the policies. If these conditions are not met, the LECS considers the policies at the next priority level. If the LECS is unable to find a LES at any priority level, an unsuccessful configuration response is returned to the LE client.

To understand the meaning of agreement of the policies, consider this example of policies not in agreement. Suppose that the policies at priority 1 are a MAC address and an ELAN name. One of the policy values is (X'400000121225', LES_A) and one is (ELAN 1, LES_B). If the LE client provides a LAN destination of X'400000121225', the MAC address policy is satisfied. If the LE client provides an ELAN name of ELAN 1, then the ELAN name policy is also satisfied. In this case the policies at priority 1 are not in agreement because they refer to different LESs. In this example, the LECS would examine the policies at the next priority level.

After determining the correct LES for an LE client, the LECS returns a configuration response to the LE client that includes the following information: LES ATM address, ELAN type, max frame size, and ELAN name. The configuration response can also include type/length/value (TLV) parameters. TLVs provide a method to download optional or user-defined parameters to the LE client.
The following section offers examples of various LECS assignment policies.

**ATM Address Policy**

The LECS permits two types of ATM address policy values. The first type is a variable length ATM address prefix. For example, the policy value (3999999999999900000102, LES_A) means that all LE clients whose ATM address begins with 3999999999999900000102 should be assigned to LES_A.

The second type of ATM address policy value is an ESI and Selector of an ATM address. For example, the policy value (10002345003281, LES_A) means that the LE client with an ESI of 100023450032 and a selector of 81 should be assigned to LES_A.

When given the ATM address of an LE client, the LECS searches first for a matching ESI and selector. If no match is returned, the LECS searches for the ATM address prefix policy value with the longest matching prefix. Thus, for example, the above policy value (399999999999990000, LES_B).

ATM address ESI and selector policy values can be used to assign clients to LESs in a manner independent of the LE clients physical location (the ESI and selector is defined locally to the client). ATM address prefixes are the only policy values which indicate any geographic information.

**LAN Destination Policy**

LE clients can be assigned to LESs based upon a MAC address or a route descriptor. Because a LAN destination uniquely identifies an LE client in a manner that is independent of geographic location, this policy is useful in ensuring that the LE client is assigned to the correct ELAN regardless of its physical location, for example, retaining the ELAN memberships of a workstation when it is moved from one switch to another.

**ELAN Name Policy**

ELAN names are perhaps the most flexible of the assignment criteria. Some of the ways that ELAN name policy values can be used are:

- Use the actual name of the ELAN
  
  If LES_A serves Elan 1, then create the policy value (Elan 1, LES_A). LE clients specifying Elan 1 in configuration requests will then be assigned to LES_A.

- Use aliases for the ELAN
  
  For example, all LE clients belonging to members of the Accounting Department could be configured to use the ELAN name *Accounting*, while those belonging to the Engineering Department could use the ELAN name *Engineering*. Depending upon the number of LE clients on the ELANs, these names could be directed to the same ELAN by configuring these policy values:

  (Accounting, LES_A)
  (Engineering, LES_A)

  or to different ELANs by configuring these policy values:

  (Accounting, LES_A)
  (Engineering, LES_B)
This setup requires configuring the LE clients with the correct ELAN Name.

- Use names for the LE clients

Each LE client can be given its own name. For example, you could create the policy values (Joe, LES_A) and (Mary, LES_A). Then, the LE clients configured with these names would be directed to the same LES. This method requires configuring the ELAN name at each LE client and at the LECS. However, it allows Joe and Mary to move the client to a new location. Even though moving causes the client to have a new ATM address or MAC address, as long as you configure the new LE client with the same ELAN name, you retain membership in the original ELAN. This technique also offers a moderate amount of security if the names of each LE client are considered to be passwords.

**ELAN Type Policy**

ELAN type policy values are most useful for providing default ELANs. For example, the following policy values would ensure that every LE client is assigned to one of the LESs:

- (Token-ring ELAN Type, LES_A)
- (Ethernet ELAN Type, LES_B)
- (Unspecified ELAN Type, LES_C)

In general, policies used for providing default ELAN assignments should be given a low priority, so that the more specific policies are considered first.

**Max Frame Size Policy**

The max frame size policy can also be used to provide default ELAN assignments.

**Duplicate Policy Values**

Duplicates occur when the same policy value is associated with multiple LESs for a given policy. Duplicate policy values are allowed for the ELAN type and max frame size policies, but are not allowed for other policies. Duplicate values are useful only when combined with a different policy of the same priority.

For example, assume that there are three ELANs: an Ethernet ELAN with a max frame size of 4544 bytes, a Token-Ring ELAN with a max frame size of 4544 bytes, and another Token-Ring ELAN with a max frame size of 18190 bytes. LE clients could be assigned to the appropriate ELAN by setting the ELAN type and max frame size policies to the same priority level and defining the following policy values:

- (Ethernet ELAN Type, LES_1) (Max Frame Size = 4544, LES_1)
- (Token-Ring ELAN Type, LES_2) (Max Frame Size = 4544, LES_2)
- (Token-Ring ELAN Type, LES_2) (Max Frame Size = 18190, LES_2)

**More Information About TLVs**

TLVs are defined on an ELAN basis; therefore, the same set of TLVs is returned to all LE clients that are assigned to a particular ELAN. When a TLV is included in a configuration response, the LE client must use the value specified in the TLV as an operating parameter (if the LE client recognizes the ELAN type). A few examples of situations where TLVs might be beneficial are as follows:

- When ELANs are spread over large geographic locations, the default timeout values for LE clients may be insufficient. These timeouts can be controlled for all LE clients by specifying their value in a TLV at the LECS.
Overview of LAN Emulation

- By default, ELANs use best-effort connections to connect to the BUS. For ELANs where BUS traffic is heavy, better performance can be obtained by using reserved bandwidth connections to the BUS. The characteristics of the Multicast Send VCC between the LE client and the BUS can be controlled with TLVs.
- A TLV can be used to download the ELAN segment number to source route bridges.

In addition to fine-tuning the configuration, TLVs force all clients on the ELAN to operate with consistent parameters. The IBM 2210 supports all ATM Forum-defined TLVs along with arbitrary, user-defined TLVs.

Connecting to the LES

After obtaining the ATM address of the LES, the LE client initiates a Control Direct VCC to the LES. When this VCC has been established, the LE client sends an LE_JOIN_REQUEST to the LES. The LES responds by adding the LE client to the appropriate point-to-multipoint Control Distribute VCC and returning an LE_JOIN_RESPONSE. By default, the LES partitions proxy and non-proxy clients onto separate Control Distribute VCCs as illustrated in Figure 15; however, you can configure the LES to use a single Control Distribute VCC for all LE clients in order to reduce the number of point-to-multipoint VCCs that are required. Partitioning the VCCs is generally useful because it reduces the amount of nuisance traffic that is sent to non-proxy clients. No LE_ARP_REQUESTs are sent to non-proxy LE clients, as described in "Address Resolution" on page 265.

The following ATM connections are established between the LE client and the LES:

**Control Direct VCC (bidirectional point-to-point)**
- From LE client to LES

**Control Distribute VCC (point-to-multipoint)**
- From LES to LE client
Address Registration

LE clients register LAN destinations with the LES to ensure uniqueness and to allow the LES to answer LE_ARP_REQUESTs, which LE clients issue to learn the ATM address associated with a particular LAN destination. Registrations include the LAN destination and the ATM address that the LE client associates with the LAN destination. A LAN destination can be either a MAC address or a route descriptor.

Proxy LE clients do not register the MAC addresses of stations on LAN segments that they are bridging to the ELAN. On the other hand, non-proxy LE clients must register all the LAN destinations that they represent. All route descriptors must be registered, regardless of whether they are associated with a proxy or a non-proxy LE client. Route descriptors are applicable only to proxy LECs that are performing source route bridging. A route descriptor contains the bridge number of the proxy LE client and the segment number of a ring that the LE client is bridging to that is equivalent to one hop away.

Address Resolution

LAN communications are based upon source and destination MAC addresses. To enable such communication on an ATM network, MAC addresses must be resolved to ATM addresses. An LE client sends an LE_ARP_REQUEST to the LES to learn the ATM address of a particular LAN destination. If the LAN destination is registered, the LES responds with the ATM address associated with the LAN destination. Otherwise, the request is forwarded to all proxy LE clients on the Control Distribute VCC. There is no need to forward the request to non-proxy LECs because all of their LAN destinations are registered; however, if the LES is configured to use a single Control Distribute VCC, both proxy and non-proxy LE clients will receive the request. Control Distribute VCCs provide an efficient way for the LES to distribute control frames to multiple LE clients.

Proxy LE clients respond to LE_ARP_REQUESTs for unregistered MAC addresses that they represent. The LE_ARP_RESPONSE is sent to the LES on the Control Direct VCC, and the LES forwards the response to the LE client that issued the request.

Connecting to the BUS

After connecting to the LES, an LE client issues an LE_ARP_REQUEST for the all 1s broadcast MAC address. The LES responds with the ATM address of the BUS. The LE client then initiates the establishment of a Multicast Send VCC to the BUS. The BUS responds by adding the LE client to the appropriate point-to-multipoint Multicast Forward VCC. By default, the BUS partitions proxy and non-proxy clients onto separate Multicast Forward VCCs; however, as was the case with the Control Distribute VCC, you can configure the BUS to use a single Multicast Forward VCC for all LE clients. Figure 16 on page 266 shows partitioned Multicast Forward VCCs.
Overview of LAN Emulation

This list is provided to help you clarify the ATM connections that are established between the LE client and the BUS:

**Multicast Send VCC (bidirectional point-to-point)**
From LE client to BUS

**Multicast Forward VCC (point-to-multipoint)**
From BUS to LE client

**BUS Functions**

The BUS has two basic functions:
1. Distribute multicast frames to all the LE clients in the ELAN
2. Forward unicast frames to the appropriate destinations

An LE client sends unicast frames to the BUS if it does not have a direct connection to the LE client that represents the destination. To avoid creating a bottleneck at the BUS, the rate at which an LE client can send unicast frames to the BUS is limited.

In the router implementation, the BUS has two modes of operation: partitioning the unicast frame domain and not partitioning the unicast frame domain. If you partition the unicast frame domain, the BUS uses two Multicast Forward VCCs. Otherwise, the BUS uses a single Multicast Forward VCC.

If a single Multicast Forward VCC is used, the BUS operation is very simple; all received frames are simply forwarded to all LE clients. If two Multicast Forward VCCs are used, the BUS will not broadcast unicast frames to all LE clients; instead, unicast frames destined for non-proxy LE clients will be transmitted directly to the destination LE client on a Multicast Send VCC, and all other unicast frames will be transmitted only to proxy LE clients, using the Proxy Multicast Forward VCC. When two multicast VCCs are used, the router is considered to be in intelligent BUS (IBUS) mode.

IBUS mode reduces nuisance unicast frames, which are unicast frames not destined for the client; proxy clients do not receive unicast frames destined for non-proxy clients, and non-proxy clients never receive nuisance unicast frames. Network bandwidth devoted to nuisance frames is also reduced. On the other hand,
BUS processing requirements are increased and multicast frames must be transmitted twice (once on each Multicast Forward VCC). In general, IBUS operation is recommended; however, this option should be disabled in configurations that have source route bridges that join the ELAN as non-proxies.

Establishing Data Direct VCCs

Data Direct VCCs connect two LE clients, and are used to exchange unicast frames without involving the BUS. The LE client uses the address resolution procedures to determine the ATM address associated with the required LAN destination. If the LE client already has a Data Direct VCC to the ATM address (perhaps for another LAN destination represented by the target LE client), unicast data frames are subsequently transmitted on the existing VCC; otherwise, the LE client invokes the signaling protocol to establish a new VCC.

The LE client maintains an LE_ARP cache containing LAN destination-to-ATM address mappings. Entries in this cache are aged and must be periodically refreshed. The entries are refreshed when a data frame is received from the LAN destination. The LE client also attempts to refresh entries in the absence of data traffic.

Utilization of Data Direct VCCs is also monitored and the VCCs are released if there is no traffic for the VCC time-out period, which is configurable. Additionally, Data Direct VCCs are released in a least-recently used manner when establishment of a new Data Direct VCC fails due to insufficient resource availability.

Overview of Extensions for LAN Emulation

IBM has made value-add extensions to ATM Forum LAN Emulation available on the router. These extensions offer improved performance, reliability, security, and manageability:

**Broadcast Manager (BCM)**
This function can improve overall network performance by reducing ELAN broadcasts.

**Redundancy**
The redundancy mechanism improves reliability by allowing backup servers to take over if failures occur at primary servers.

**Security**
Security is improved by letting the LECS control ELAN memberships.

**BUS Monitor**
This function enhances manageability by identifying the top users of the BUS.

The following sections describe each of these extensions.

Broadcast Manager

Broadcast Manager (BCM) is an extension to LAN emulation that consists of IBM enhancement of the LAN emulation BUS. Without BCM, the following events occur:
- A multicast frame sent to the BUS is forwarded to all LE clients on the ELAN.
Overview of LAN Emulation

- LE clients that include the proxy function to provide bridging support forward the broadcast frame on to other LAN segments.
- All end stations receive and process every broadcast frame.

BCM can be enabled on individual ELANs for any of these protocols:
- IP
- IPX
- NetBIOS

When BCM is enabled, a minimal amount of layer 2 and layer 3 information is decoded for specific types of broadcast frames sent to the BUS. Whenever possible, BCM transforms broadcast frames into unicast frames, and sends them only to interested LE clients and end stations. BCM reduces both network traffic and associated end-station overhead by filtering nuisance broadcast frames. These functions can improve overall system performance and enable practical deployment of larger ELANs.

BCM Support for IP

When enabled for IP, BCM scans all IP ARP requests and replies to learn the location of IP addresses in the IP subnet that contains this ELAN. The objective is for BCM to take each broadcast ARP request frame and forward it as a unicast frame directly to the LE client representing the target IP station. Both network traffic and end-station processing time are reduced when the request is forwarded directly to the appropriate LE client on the Multicast Send VCC instead of being broadcast to all LE clients on the Multicast Forward VCCs. When the destination station is located behind a bridge function, the LAN that the destination station belongs to also benefits from the reduced broadcast traffic.

BCM Support for IPX

For IPX, BCM limits the scope of advertisements and other broadcast requests. IPX routers and servers periodically broadcast their known network and service information. IPX clients send broadcast requests to locate a particular service or router. Generally, these broadcasts, called Routing Information Protocol (RIP) and Service Advertising Protocol (SAP) packets, need to be received only by other IPX routers and servers.

When it is enabled for IPX, BCM dynamically identifies the set of IPX routers and servers based on advertisement transmissions, and only forwards RIP and SAP advertisements and other broadcast requests to other IPX routers and servers. A broadcast frame managed by BCM IPX is sent as a series of unicast frames to the dynamically-learned set of IPX routers and servers.

When BCM IPX Server Farm Detection is enabled, BCM IPX will detect an IPX server farm when the number of IPX routers and servers discovered behind a given LEC exceeds a configurable threshold, the BCM IPX Server Farm Threshold. When a server farm is detected, BCM IPX broadcasts a managed frame to each LEC representing a server farm, rather than transmitting multiple unicast frames to each downstream IPX router and server in the server farm. BCM IPX can now intelligently use the broadcast mechanism in areas of the network where it is desirable to do so.
With BCM IPX enabled, any quiet device (that is, a device that does not transmit IPX advertisements) that needs to receive IPX advertisements has to be configured as a BCM static target. An example of such a device is a station running software that discovers the IPX network topology by monitoring IPX advertisements.

If BCM IPX Server Farm detection is enabled and you wish to prevent a particular LEC from being treated by BCM IPX as a Server Farm, configure a BCM static target with the LEC’s ATM address and a MAC address of 00.00.00.00.00.00. This forces BCM IPX to send frames managed by BCM as multiple unicast frames to each downstream IPX router and server detected behind this LEC, even if the number of routers and servers detected exceeds the BCM IPX Server Farm Threshold.

**BCM Support for NetBIOS**

NetBIOS is considered to be a broadcast-abusive protocol and therefore an excellent candidate for BCM. NetBIOS communication is based on names. Transmitting stations can learn the MAC address associated with a particular destination name by broadcasting a query or by having the frame multicasted to the NetBIOS functional address. In the latter case, every NetBIOS device in the network must receive the frame and determine whether the destination name on the frame applies to itself. To make things even worse, NetBIOS devices tend to repeat transmission of certain types of frames as much as 10 times. Historically, this was to ensure that all devices receive the frame in cases where the network is heavily congested.

The BCM strategy is to associate unique NetBIOS names with MAC addresses and LE clients by learning names from NetBIOS frames sent to the BUS. After a unique NetBIOS name is learned, subsequent NetBIOS broadcast frames destined for that name are forwarded to a single LE client as a unicast frame. BCM also filters certain NetBIOS frames that are broadcast repeatedly.

BCM provides support for NetBIOS Namesharing. That is, BCM NetBIOS handles OS/2 LANServer stations with multiple LAN adapters sharing the same NetBIOS name.

**BCM Support for Source Route Bridging**

Source Route Management (SRM) is an additional BCM feature that can be configured for 802.5 ELANs. When enabled, this feature will further process frames managed by BCM IP or BCM NetBIOS and, whenever possible, transform All Routes Explorer (ARE) or Spanning Tree Explorer (STE) frames into Specifically Routed Frames (SRF). Once a frame is transformed into an SRF, the frame no longer needs to be transmitted onto each ring in the bridged network.

The Token-Ring topology behind each LE client is learned by recording the routing information field (RIF) of frames received by the BUS. Because SRM dynamically learns Token-Ring topology information, an aging mechanism is used to remove information that has not been refreshed recently.

To decide whether to enable BCM or SRM (or both), you should compare the net system-wide benefit with the inevitable reduction in the rate at which packets are forwarded when BCM or SRM is enabled.
LAN Emulation Reliability

A perceived lack of robustness has been one of the most widely proclaimed criticisms of LAN emulation. While the ATM Forum is addressing this issue with specifications for distributing the LE service, the router offers an answer in the interim. Figure 17 provides a framework for describing the MSS redundancy solution.

Each LES/BUS may be independently configured for redundancy (the default is no redundancy). If redundancy is enabled, the LES/BUS is configured to assume the role of a primary or a backup LES/BUS. Unless it has been configured as a redundant LES/BUS, the LES/BUS is primary. The primary LES/BUS is typically the only LES/BUS visible to the LE clients. It is responsible for setting up and maintaining a Redundancy VCC to the backup LES. The presence of this VCC indicates that the primary LES/BUS is operational. The backup LES will not accept Control Direct VCC calls while the Redundancy VCC is established. However, if the Redundancy VCC is not present, the backup LES/BUS services ELAN requests in the usual manner.

For the redundancy protocol to be effective, LE clients must detect the failure of the primary LES/BUS and connect to the backup. LE clients detect server failures by means of released VCCs. Connection to the backup LES/BUS is accomplished through the LECS.

Upon receiving an LE_CONFIGURE_REQUEST, the LECS assigns the LE client to the appropriate LES and ELAN. If this LES has configured a backup, then the LECS returns the ATM address of the LES. If the LES is configured with a backup LES, then the LECS returns either the primary or backup LES address.

The LECS returns the backup LES address if the backup LES exists on the same MSS Server as the LECS and is currently serving the ELAN, if the primary LES exists on the same MSS Server as the LECS and it is not currently serving the ELAN, or if neither LES exists on the same MSS Server as the LECS and the client was last assigned to the primary LES (within the past 5 minutes). Otherwise, it returns the primary LES address to the LE client.
Overview of LAN Emulation

The LECS retains a short-term memory of all client assignments so that it can alternately direct an LE client to a primary and backup LES. This simple heuristic makes the correct assignment in the nominal case of no failure and is self-correcting. At worst, the heuristic causes the LE client to repeat the configuration phase of joining an ELAN.

LECS robustness can be achieved by establishing duplicate LECSs on multiple platforms and including their ATM addresses in the ILMI database. LE clients will then connect to the backup LECS if the primary is unavailable.

LAN Emulation Security

Traditional LANs offer security in the sense that a physical connection implies that two stations are on the same LAN. Because multiple emulated LANs can exist on a single ATM network, stations that are not on the ELAN can be physically connected to stations that are on the ELAN. This situation presents a security risk in that unauthorized stations can connect to the LES and attempt to use its services.

To control ELAN membership, an MSS LES can be configured to validate LE_JOIN_REQUESTs with the LECS. In this mode the LES forms an LE_CONFIGURE_REQUEST on behalf of the LE client using information from the LE_JOIN_REQUEST. These LE_CONFIGURE_REQUESTs include the source LAN destination, source ATM address, ELAN type, max frame size, and ELAN name from the LE_JOIN_REQUEST, along with an IBM Security TLV. The security requests are transmitted to the LECS by a multiplexing component called the LECS interface, and the LECS must validate the requests using its ELAN assignment database before LE clients are allowed to join the ELAN.

A LECS interface is associated with an ATM interface, and all LESs configured on the ATM interface use the same LECS interface. The LECS interface conserves VCC resources by multiplexing security requests from multiple LESs onto a single VCC to the LECS. The LECS interface locates the LECS dynamically using the ILMI and well-known LECS address mechanisms. After the VCC to the LECS is established, the LECS interface issues a local query to determine whether the LECS is located on the same router. If the LECS is located on the same router, a local interface is used to confirm requests to join without transmitting requests onto the ATM network.

With the LECS interface, the router may ensure that an LE Client joins an ELAN only if the LECS approves of the join. This shifts the security burden from the LES to the LECS. Unfortunately, the LECS is also non-secure. The LECS accepts connections and queries from any station without verification. An intruder station may connect to the LECS and repeatedly query it for various configurations. The intruder may also pose as some other station and download another station’s configuration.

LECS Access Controls permit the user to configure a list of ATM address prefixes which are not allowed access to the LECS configuration database. All LECS connection attempts and LE_CONFIGURE_REQUESTs from matching ATM addresses are automatically rejected. When used in conjunction with the LECS interface, a secure LANE environment is provided.

To maximize the security of an ELAN, the following steps are recommended:
Overview of LAN Emulation

1. At the LECS, use ATM addresses to assign clients to the LES. See "Overview of the LECS Function" on page 260 for more information.

2. Activate the LECS Interface on the router.

3. Activate the security option of the LESs.

4. Activate LECS Access Controls for any ATM address prefixes that should not be allowed to access the LECS.

5. Use Address Screening at the ATM switches. This option causes switches to validate that calling stations use their actual ATM addresses in the call setup. Thus, stations cannot impersonate other stations.

These steps ensure that stations are correctly identified and that only authorized stations join the ELAN.

Key Configuration Parameters for LAN Emulation

This section briefly describes the required configuration parameters of the router LAN emulation components. The ATM interface for the LAN emulation components must be defined before the components can be created.

1. LEC:

   To create an LE client, you only need to specify the ELAN type. If you define two LE clients on a single ATM interface and bridge them together, then one of the LE clients must use a non-default MAC address. By default, LE clients use the burned-in MAC address of the ATM interface. The default maximum frame size is 1516 bytes for Ethernet LE clients and 4544 bytes for token-ring LE clients.
Chapter 21. Using ATM

This chapter describes how to use the ATM interface. It includes the following sections:

- ATM and LAN Emulation
- How to Enter Addresses
- ATM-LLC Multiplexing on page 274
- ATM Virtual Interface Concepts on page 274

ATM and LAN Emulation

LAN emulation provides support for virtual Token-Ring and Ethernet LANs over an ATM network. Refer to How to Enter Addresses for a discussion of ATM addressing.

How to Enter Addresses

Enter addresses in two ways, depending upon whether the address represents (1) an IP address, or (2) an ATM address, MAC address, or route descriptor, as follows:

1. IP address
   Enter IP addresses in dotted decimal format, a 4-byte field represented by four decimal numbers (0 to 255) separated by periods (.).
   **Example of IP Address:**
   01.255.01.00

2. ATM or MAC address or route descriptor
   Enter ATM addresses, MAC addresses, and route descriptors as strings of hexadecimal characters with or without optional separator characters between bytes. Valid separator characters are dashes (-), periods (.), or colons (::).
   **Examples of ATM address, MAC address or route descriptor**
   A1FF01020304
   or
   A1-FF-01-02-03-04
   or
   A1.FF.01.02.03.04
   or
   39.84.00.00.00.00.00.00.00.00.00.03.10.00.5A.00.DE.AD.08
   or
   A1:FF:01:02:03:04
   or even
   A1-FF:01:02:03:04
   
   Each type of address requires a different number of hexadecimal characters:
   - ATM 40
   - MAC 12
   - ESI 12
   - Route descriptor 4
Configuring ATM and LAN Emulation

This information applies to addresses entered for ATM; LAN emulation; Classical IP and ARP over ATM; and IPX and ARP over ATM.

ATM-LLC Multiplexing

Protocols that run natively over an ATM interface can use ATM-LLC multiplexing to share ATM addresses and both SVC and PVC channels between users. ATM-LLC is implicitly configured when the protocols are configured and can be monitored using the \texttt{ATM Config+} command prompt from t5. There are no explicit configuration options for the ATM-LLC multiplexing function. For example, if two protocols which use ATM-LLC multiplexing are configured to use the same local ATM address (local endpoint), this implicitly configures ATM-LLC to use the same shared ATM address for both protocols.

See \textit{ATM-LLC Monitoring Commands} on page 290 for additional information.

Sharing of ATM addresses or SVC/PVC channels is not possible between protocols that use the ATM-LLC multiplexing function and those that do not use the ATM-LLC multiplexing function (such as Classical IP). Currently, Server Cache Synchronization Protocol (SCSP) and APPN are the only two protocols that use the ATM-LLC multiplexing function.

ATM Virtual Interface Concepts

An ATM Virtual Interface (AVI) creates the appearance of multiple ATM interfaces when, in fact, there is only one physical ATM interface. One or more AVIs can be configured for each physical ATM interface on the router. AVIs have the following characteristics:

- Each AVI must be defined on one (and only one) physical ATM interface. ATM real interface (ARI) will be used to mean a physical ATM interface.
- One or more AVIs can be configured on each ARI on a router.
- Higher layer protocols treat ARIs and AVIs equally. The protocols see the total number of ATM interfaces as the sum of the number of ARIs and AVIs configured on the router.
- Protocols can be configured on each ATM interface (real or virtual) independently of other interfaces.

For example, one can configure IP on interface 0 (which is a real ATM interface) with IP address 9.1.1.1 and another instance of IP with address 9.2.1.1 on interface 1 (which is an AVI). Whether an interface is a real ATM interface or a virtual interface configured on a real interface makes no difference to the protocol (IP in the example). In addition, whether virtual interface 1 is configured on top of real ATM interface 0 or some other physical ATM interface is also transparent to the protocols.

Advantages of Using ATM Virtual Interfaces

Major advantages of using the ATM Virtual Interfaces are:

- Using the ATM Virtual Interface feature increases the number of protocol instances that can be supported on a physical ATM interface.

The actual number of AVIs that can be configured on an ARI is limited by physical resources, such as memory, available on the router. The total number of
interfaces that can be created depends on the data packet size for the interfaces and is limited to a maximum number of 253 per router.

The use of AVIs significantly improves the configuration options for protocols such as IPX that are limited to one instance or address per ATM interface. By configuring an appropriate number of AVIs, several IPX addresses can be supported on each physical ATM interface.

- The ATM Virtual Interface feature is crucial for supporting multicast routing protocols (such as MOSPF) over ATM networks.

In order for multicast to operate correctly, each logical subnet must be configured on a different interface because multicast routing protocols typically function in such a way that a packet coming in from a router interface will never be sent out over the same interface. Thus, if more than one subnet is configured on an interface and a source in one subnet sends a multicast packet to a member in another subnet defined on the same interface, this member will never receive the packet.

By creating an individual virtual interface for each subnet, packet multicasting can be performed successfully. Typically, the number of ATM interfaces on a router will be limited, in turn limiting the number of subnets that can be correctly configured for multicast operation. However, by creating as many AVIs as needed (according to the number of subnets that are required to be configured on the router), the number of physical ATM interfaces will no longer limit the number of subnets that can be configured on a router for correct multicast operation.

For example, the “one-armed” router cannot support multicast traffic over interfaces other than ELANs without the AVI feature, because incoming packets will never be sent out the same interface and will be discarded instead.

- Creating multiple AVIs on an ARI and configuring each different protocol instance (for example, each IP subnet) on a different AVI on the same ARI, can improve performance.

For example, when multiple subnets are configured on a single physical ATM interface, the interface will have to reduce the maximum transmission unit or MTU (the maximum packet size that can be sent or received over that interface) to the smallest MTU of all subnets sharing the same interface. However, if multiple AVIs are created on that ARI and each IP subnet is configured on a different AVI, every subnet can continue to use its existing MTU size without consideration of other subnets configured on the same physical ATM interface. This avoids possible reduction in throughput and delays due to packet fragmentation and reassembly caused by MTU size reduction.

Another performance improvement can be achieved by distributing the number of protocol addresses configured on a physical interface over different virtual interfaces configured on the same physical interface. The per-interface protocol lists get shortened, resulting in faster searches and reduced processing time.

Disadvantages of using ATM Virtual Interfaces

The disadvantages of using ATM Virtual Interfaces are:

- Because AVIs do not have any physical resources of their own, each virtual interface may have fewer Virtual Connections (VCs) than a single physical interface. The available resources (in this example VCs) are partitioned among the different virtual interfaces configured on a single ARI and the ARI itself.

In the current implementation, resource allocation is on demand. Each physical ATM interface has a pool of resources that are available for use by all AVIs and the single ARI itself.
ATM Virtual Interface Configuration Concepts

Note: Because all resources are shared among the ARI and all its AVIs, an ESI added on an ARI is automatically available to all AVIs configured on the ARI. You should not assign the same ESI and selector combination to two different protocol clients using the same ARI even though they are configured on different AVIs.

Limited PVC sharing is allowed across the ARI and the AVIs configured on the ARI. PVC sharing is limited to different protocol instances. Multiple instances of the same protocol are not allowed to share the same PVC.
Chapter 22. Configuring and Monitoring ATM

This chapter describes the ATM interface configuration and operational commands. It includes the following sections:

- [Accessing the ATM Interface Configuration Process]
- [ATM Configuration Commands] on page 278
- [ATM Interface Configuration Commands] on page 278
- [ATM Virtual Interface Configuration Commands] on page 285
- [ATM Virtual Interface Monitoring Commands] on page 290
- [Accessing the ATM Monitoring Process] on page 286
- [ATM Monitoring Commands] on page 286
- [ATM Interface Monitoring Commands (ATM INTERFACE+ Prompt)] on page 287
- [ATM-LLC Monitoring Commands] on page 290

Accessing the ATM Interface Configuration Process

The ATM carrier card and the 25 Mbps Charm Adapter must be in the feature slot before ATM can be configured. You must reload the router after the feature slot has the ATM carrier card/25 Mbps Charm Adapter combination in place.

Use the following procedure to access the configuration process.

1. At the OPCON prompt, enter talk 6. (For more detail on this command, refer to "Chapter 3. The OPCON Process" on page 25.) For example:

   `talk 6
   Config>`

   The CONFIG prompt (Config>) displays on the console. If the prompt does not appear when you first enter configuration, press Return again.

2. At the CONFIG prompt, enter the list devices command to display the network interface numbers for which the router is currently configured.

3. Record the interface numbers.
   If ATM is not specified as an interface, then execute the quick configuration process, qconfig to dynamically add the ATM interface.

4. Enter the network command and the number of the ATM interface you want to configure. For example:
   The ATM configuration prompt (ATM Config>), is displayed.
ATM Configuration Commands (Talk 6)

ATM Configuration Commands

This section summarizes the ATM configuration commands. Enter the commands at the ATM config> prompt.

Table 35. ATM Configuration Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help on page 10</a></td>
</tr>
<tr>
<td>INTERFACE</td>
<td>Displays the ATM Interface Config&gt; prompt from which you can list, change, or configure the ATM Interface.</td>
</tr>
<tr>
<td></td>
<td>• Add an ESI.</td>
</tr>
<tr>
<td></td>
<td>• List the current configuration or list ESIs.</td>
</tr>
<tr>
<td></td>
<td>• Remove an ESI.</td>
</tr>
<tr>
<td></td>
<td>• Set parameters of the ATM network.</td>
</tr>
<tr>
<td></td>
<td>• Enable or disable an ESI.</td>
</tr>
<tr>
<td></td>
<td>• Exit</td>
</tr>
<tr>
<td>LE-CLIENT</td>
<td>Displays the LE Client Config&gt; prompt from which you can list, change, or configure the LAN Emulation Client Interface as described in <a href="#">Chapter 23. Using LAN Emulation Clients</a> on page 291.</td>
</tr>
<tr>
<td></td>
<td>• Add a LAN Emulation Client (LEC) for a token-ring or Ethernet emulated LAN.</td>
</tr>
<tr>
<td></td>
<td>• Configure a LEC by network #. This command displays the LE Config&gt; prompt, from which you can configure a specific LAN Emulation Client (LEC).</td>
</tr>
<tr>
<td></td>
<td>• List LAN Emulation Clients (LECs).</td>
</tr>
<tr>
<td></td>
<td>• Remove a LAN Emulation Client (LEC).</td>
</tr>
<tr>
<td>VIRTUAL ATM</td>
<td>Displays the ATM Virtual Interface Config&gt; prompt from which you can list, add, or remove the ATM Virtual Interface as described in <a href="#">ATM Virtual Interface Configuration Commands</a> on page 285.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment</a> on page 11.</td>
</tr>
</tbody>
</table>

ATM Interface Configuration Commands

This section summarizes and then explains the commands for configuring a specific ATM interface.

Enter the commands at the ATM INTERFACE> prompt.

Table 36. ATM INTERFACE Configuration Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help on page 10</a></td>
</tr>
<tr>
<td>Add</td>
<td>Adds an ESI.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the current configuration or list ESIs.</td>
</tr>
<tr>
<td>Qos</td>
<td>Displays the ATM I/F 0 QOS Config&gt; prompt from which you can configure Quality of Service as described in <a href="#">QoS Configuration</a> on page 280.</td>
</tr>
</tbody>
</table>
Table 36. ATM INTERFACE Configuration Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove</td>
<td>Removes an ESI.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets parameters of the ATM network.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables an ESI.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables an ESI.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See [Exiting a Lower Level Environment] on page 11.</td>
</tr>
</tbody>
</table>

Add

Use the `add` command to add an ESI to your ATM configuration.

Octets 14–19 of an ATM address are the End System Identifier (ESI). Each end system attached to the same switch must use a disjoint set of ESIs. When an end system activates, it attempts to register its ESIs with its ATM switch using ILMI. The switch forces all of its registered ESIs to be unique.

**Syntax:**
```
add esi esi-address
```

- `esi` `esi-address`
  - Address of End System Identifier.
  - **Valid Values:** Any 12 hexadecimal digits
  - **Default Value:** none

List

Use the `list` command to list the configuration of this ATM device or to list the set of configured ESIs.

**Syntax:**
```
list configuration
list esi
```

- `configuration`
  - Lists the ATM device configuration. For an explanation of the listed fields, see "Set" on page 280.

**Example:** `list con`
```
ATM Configuration
Interface (net) number = 0
Maximum VCC data rate Mbps = 155
Maximum frame size = 9234
Maximum number of callers = 209
Maximum number of callcs = 1024
Maximum number of parties to a multipoint call = 512
Maximum number of Selectors that can be configured = 200
UNI Version = UNI 3.0
Packet trace = OFF
```

- `esi`
  - Lists the ESIs in the ATM configuration.

**Example:** `list esi`
```
ATM INTERFACE> list esi
ESI Enabled
```
ATM Interface Configuration Commands (Talk 6)

QoS Configuration

Use the `qos-configuration` command to display the ATM I/F 0 QOS Config> prompt from which you can configure Quality of Service as described in "QoS Configuration".

Syntax:

```
qos-configuration
```

Remove

Use the `remove` command to remove an ESI from your ATM configuration. All ATM components using this ESI should be reconfigured to use a different ESI. An ATM component that attempts to use a removed ESI may not activate on the next router restart.

Syntax:

```
remove esi esi-address
```

<table>
<thead>
<tr>
<th>esi</th>
<th>Address of End System Identifier.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Values:</td>
<td>Any 12 hexadecimal digits</td>
</tr>
<tr>
<td>Default Value:</td>
<td>none</td>
</tr>
</tbody>
</table>

Set

Use the `set` command to specify ATM network parameters.

Syntax:

```
set max-data-rate
max-frame
max-config-selectors
max-calls
max-callers
max-mp-parties
trace
uni-version
network-id
```

```
max-data-rate speed
```

Sets the default and upper bound for VCC traffic parameters of most LANE and CIP connections. For example, this is the default PCR for best-effort VCCs initiated by LE Clients. Signaled SCRs and PCRs cannot exceed this...
The default value should be satisfactory in most situations. An example of a situation where it is beneficial to change this value would be if the majority of the stations use 25-Mbps adapters. In this case, it may be desirable to limit the data rate on VCCs to 25 Mbps so that the lower speed stations are not overwhelmed with frames from the router. The units for this parameter are Mbps.

Valid Values:
- 25
- 100
- 155

Default Value:
25

Example:
```
ATM INTERFACE> set speed 25
```

**max-calls**
Sets the maximum number of switched virtual circuits (SVCs) that can exist on this ATM device. Every point-to-point and point-to-multipoint SVC uses system resources. This parameter helps limit the system resources reserved for signaling and switched connections. Increasing this parameter will allow more simultaneous SVCs. However, more system memory will be required to manage these connections.

Valid Values:
- An integer in the range 64 - 10500

Default Value:
1024

Example:
```
ATM INTERFACE> set max-calls 500
```

**max-callers**
Sets the maximum number of entities on the router that use the ATM interface. Each LEC, Classical IP Client, and 1483 bridge interface qualifies as a user of the ATM interface. Increasing this parameter allows more users of the interface and uses more system memory.

Valid Values:
- An integer in the range 64 – 1024

Default Value:
209

Example:
```
ATM INTERFACE> set max-callers 25
```

**max-config-selectors**
Sets the maximum number of selectors under your specific control.

The selector is used to distinguish different users on the same end system. VCC setup requests are routed in the following hierarchical fashion: ATM switches route to the destination ATM switch using the Network Prefix, the destination ATM switch routes to the destination end system using the ESI, and the end system notifies the destination user based on the selector.
Each ESI can have up to 255 associated selectors (0x00 through 0xff). The range of selectors is partitioned into two subranges, a configured selector range and an automatically assigned selector range. The ATM interface parameter max-configured-selector gives the upper bound on the configured selector range.

The ATM components on the router have various ways of choosing a selector. Some components require you to explicitly configure a selector from the configured selector range. Other components, such as Classical IP clients, allow the selector to be automatically assigned at run-time. You do not have to choose the selector because the router does this when it activates. This selector is not guaranteed to be consistent across router restarts. Automatic selector assignment is useful only for those ATM components whose ATM address does not have to be already known by other network devices.

The relative sizes of the selector range can be modified to conform to the types and numbers of ATM users on the router.

**Valid Values:**

0 – 255 (0x00 – 0xFF)

**Default Value:**

200

**Note:** The selector is byte 20 of a 20-byte ATM address.

**Example:**

ATM INTERFACE> set max-config-selectors 225

**max-frame**

Sets the maximum number of octets permitted in any data frame sent or received on the ATM interface. System memory is allocated based upon this parameter. Increasing the max-frame requires more system memory, but allows processing of larger frames.

All router entities using the ATM interface must use a maximum frame size less than or equal to the max-frame-size of the ATM interface. This includes all LECs and 1483 bridge interfaces.

**Valid Values:**

An integer in the range 16 – 32000

**Default Value:**

9234

**Example:**

ATM INTERFACE> set max-frame 1000

**max-mp-parties**

Sets the maximum number of leaves on a point-to-multipoint connection initiated by the router. This parameter affects system memory allocation. Increasing this value is necessary if the router must set up point-to-multipoint connection(s) to a large number of destinations.

**Valid Values:**

An integer in the range 1 – 5000

**Default Value:**

512
Example:

ATM INTERFACE> set max-mp-parties 300

**trace**

Sets the packet tracing parameters on the interface. Packet tracing can be enabled or disabled on a range of VPI/VCI values. Common VPI/VCI values to trace are:

- 0/5 for signalling packets
- 0/16 for ILMI packets.

**Valid Values:**

ON or OFF

**Default Value:**

ON

You are prompted for the VPI/VCI range you want to trace.

**Beginning VPI Valid Values:**

0 – 255

**Default Value:**

0

**Ending VPI Valid Values:**

0 - 255

**Default Value:**

255

**Beginning VCI Valid Values:**

0 - 65535

**Default Value:**

0

**Ending VCI Valid Values:**

0 - 65535

**Default Value:**

65535

Example:

ATM INTERFACE> set trace on
beginning of VPI range [0]? 0
end of VPI range [255]? 0
beginning of VCI range [0]? 5
end of VCI range [65535]? 5

**uni-version**

Sets the User Network Interface (UNI) version used by the ATM interface with communicating with the attached ATM switch. If the UNI versions are configured on the ATM switch and ATM device interface to a specific version (not AUTO-DETECT), the UNI versions must match.

If the UNI version is configured as AUTO, the ATM device attempts to learn the UNI version to use from the switch.

In UNI AUTO-DETECT mode, if the switch does not respond to the query for UNI version, the default is UNI 3.0. If the switch responds with a value other than UNI 3.0 or UNI 3.1, the default is UNI 3.1.

**Valid Values:**

[UNI 3.0|UNI 3.1|AUTO-DETECT|None]
ATM Interface Configuration Commands (Talk 6)

**Default Value:**

UNI 3.0

**Note:** Must be compatible with the ATM switch.

**Example:**

```
ATM INTERFACE> set uni-version 3.0
```

**network-id**

Sets the network id of the ATM interface. Multiple ATM interfaces should have the same network id if there is ATM connectivity between the interfaces.

**Valid Values:**

0 - 255

**Default Value:**

0

### Enable

Use the **enable** command to enable an ESI in the configuration of your ATM device. The ATM interface attempts to register only enabled ESIs when it activates.

**Syntax:**

```
enable esi esi-address
```

esi esi-address

Address of End System Identifiers.

**Valid Values:**

Any 12 hexadecimal digits

**Default Value:**

none

**Example:**

```
ATM INTERFACE> enable esi 00:00:00:00:00:09
```

### Disable

Use the **disable** command to disable an ESI in the configuration. ATM components using disabled ESIs will not become active on the next router restart.

**Syntax:**

```
disable esi esi-address
```

esi esi-address

Address of End System Identifiers.

**Valid Values:**

Any 12 hexadecimal digits

**Default Value:**

none

**Example:**

```
ATM INTERFACE> disable esi 00:00:00:00:00:09
```
Accessing the Virtual ATM Interface Configuration Process

From the ATM Config> prompt of a selected real ATM interface, use the Virtual ATM command to enter the Virtual ATM configuration command mode.

ATM Virtual Interface Configuration Commands

This section summarizes the ATM virtual interface configuration commands. Enter the commands at the ATM virtual interface config> prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See “Getting Help” on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a virtual ATM interface.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the current configured virtual ATM interfaces.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes the virtual ATM interface from the current configuration.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See “Exiting a Lower Level Environment” on page 11.</td>
</tr>
</tbody>
</table>

Add

Use the add command to add an ATM virtual interface. A new ATM virtual interface is added to the corresponding ATM real interface (the configuration menu from which this ATM virtual interface configuration menu is accessed). The net/interface number assigned to the newly created ATM virtual interface is displayed and it is one number greater than the current largest interface number.

**Syntax:**

`add`

**Example:**

```
ATM Virtual Interface config> add
Added ATM Virtual Interface Net as interface 5 on physical ATM interface 0
ATM Virtual Interface config>
```

List

Use the list command to list configured ATM virtual interfaces defined on the current real ATM interface.

**Syntax:**

`list`

**Example:**

```
ATM Virtual Interface config> list
ATM Virtual Interface Nets
--
ATM interface number = 0
ATM Virtual Interface Net interface number = 5
ATM Virtual Interface config>
```
ATM Virtual Interface Configuration Commands (Talk 6)

Remove

Use the remove command to delete an ATM virtual interface. The virtual ATM interface on the real ATM interface with the specified interface number will be removed from the SRAM configuration records. If you do not specify an interface number, the last ATM virtual interface on this real ATM interface will be deleted. If you enter a question mark (?), all ATM virtual interfaces on the current real ATM interface will be listed and you can select from that list the interface you want to remove.

Syntax:
remove  

Example: remove 5
Virtual ATM 5 deleted successfully.
ATM Virtual Interface config>

Accessing the ATM Monitoring Process

Use the following procedure to access the ATM monitoring commands. This process gives you access to an ATM’s monitoring process.

1. At the OPCON prompt, enter talk 5. (For more detail on this command, refer to “Chapter 3. The OPCON Process” on page 25.) For example:

   + talk 5

   The GWCON prompt (+) is displayed on the console. If the prompt does not appear when you first enter the console, press Return again.

2. Enter interface at the + prompt to display a list of configured interfaces.

3. Record the interface numbers.

4. Enter network followed by the number of the ATM interface.

   + network 5

   ATM+

   The ATM monitoring prompt (ATM+) is displayed.

ATM Monitoring Commands

This section summarizes the ATM monitoring commands for monitoring ATM interfaces. Enter the commands at the ATM+ prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See “Getting Help” on page 10</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays the ATM Interface+ prompt from which you can monitor the ATM Interface, as described in “ATM Interface Monitoring Commands (ATM INTERFACE+ Prompt)” on page 287</td>
</tr>
<tr>
<td>Atm-Ilc</td>
<td>Displays the ATM LLC+ prompt from which you can monitor endpoints, a set of user clients, and a set of ATM channels.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See “Exiting a Lower Level Environment” on page 11</td>
</tr>
</tbody>
</table>
Interface

Displays the ATM Interface+ prompt, described in ATM Interface Monitoring Commands (ATM INTERFACE+ Prompt).

Syntax:
interface

ATM-LLC

Displays the ATM-LLC+ prompt, described in ATM-LLC Monitoring Commands on page 290.

Syntax:
atm-llc

ATM Interface Monitoring Commands (ATM INTERFACE+ Prompt)

This section summarizes and then explains the commands for monitoring a specific ATM interface.

Enter the commands at the ATM INTERFACE+ prompt.

Table 39. ATM INTERFACE monitoring command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>List</td>
<td>Lists ATM addresses and VCCs.</td>
</tr>
<tr>
<td>Trace</td>
<td>Starts/ Stops packet tracing on a specified VPI/VCI range. Trace can be viewed by ELS.</td>
</tr>
<tr>
<td>Wrap</td>
<td>Starts/ Stops a loopback test on the VCC.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level.</td>
</tr>
</tbody>
</table>

List

Use the list command to list various categories of ATM data.

Syntax:
list addresses
      all
      _circuit
      vccs
      reserved-bandwidth

addresses

Lists the ATM addresses, along with a descriptive name, in use on the device.

Example:
ATM INTERFACE+ list addresses

ATM Address	Name
3999999999999900009999020000041347391804 | LEC 1 'eth1'
3999999999999900009999020000041347391802 | LES/BUS 'eth1'

all
Lists all of the following:
- Addresses
- Circuit statistics
- VCCs
- Reserved Bandwidth

circuit
Lists the statistics for a particular VCC by specifying the particular VCI-VPI pair. You can also specify the circuit on the command line; for example: list circuit 33.

Example:
```
ATM INTERFACE+ list circuit
VPI [0]?
VCI [32]?33
```
```
Frames transmitted = 2 Bytes transmitted = 216
Frames received = 2 Bytes received = 216
```

vccs
Lists all the VCCs established by the router. The VCCs may be permanent (PVC) or switched (SVC), point-to-point or point-to-multipoint, and each is identified by a unique VPI/VCI. The trace command uses the VPI/VCI value for a VCC to perform packet tracing over a particular VCC.

Example:
P-P point to point VCC
P-MP point to multipoint VCC
ILMI Interim Local Management Interface VCC
SAAL signalling VCC
Bx-y Internally bound VCC to VPI x, VCI y
Sx-y Internally spliced VCC to VPI x, VCI y

reserved-bandwidth
Lists the reserved bandwidth on the ATM Interface.

Example:
```
ATM INTERFACE+ list reserved-bandwidth
Line Rate : 155000 Kbps
Peak Reserved Bandwidth : None
Sustained Reserved Bandwidth : None
```

Trace

Use the `trace` command activate packet tracing over a specified range of VPI/VCI values. You can view trace data by using ELS as described in "View" on page 204.

Syntax:
```
trace [list] [on] [off]
```
ATM Interface Monitoring Commands (Talk 5)

list Displays the current packet tracing options on the ATM interface.

Example:
```
ATM Interface+ trace
on | off | list []? list
Packet trace is ON
Range of VPIs to be traced: 0 - 0
Range of VCs to be traced: 32 - 39
```

on Starts packet tracing on all active VCCs within the specified VPI/VCI range.

Example:
```
ATM Interface+ trace on
beginning of VPI range [0]?
end of VPI range [0]?
beginning of VCI range [32]?
end of VCI range [65535]?
```

off Stops packet tracing on all VCCs.

Example:
```
ATM Interface+ trace off
ATM Interface+ trace list
Packet trace is OFF
```

Wrap

Use the **wrap** command to perform a loopback data test on the ATM interface of the adapter. Wrap can be issued on a per VC basis by specifying VPI-VCI pairs. Data is looped back internally.

You can selectively start a wrap, stop a wrap, or display the current wrap settings.

If you stop or display a wrap, the following statistics will be displayed:
- Wrap transmits
- Wrap receives
- Wrap transmit errors
- Wrap receive errors
- Wrap receive timeouts

For display, the current wrap statistics are displayed.

For stop, the final wrap statistics are displayed.

Syntax:
```
wrap display
 start
 stop
```

**display** Displays the current wrap settings.

**start** Starts the wrap procedure and specifies the VPI-VCI length of pattern and the pattern itself.

Example:
```
ATM Interface+ wrap start
VPI [0]?
VCI [32]?
wrap pattern length [32]?
Enter 32-byte wrap pattern: [ABCDEFGHIJKLMNOPQRSTUVWXYZ123456]?
```
ATM Interface Monitoring Commands (Talk 5)

**stop**  Stops the wrap procedure and displays final wrap statistics.

### ATM-LLC Monitoring Commands

This section explains the commands for monitoring ATM LLC multiplexing.

Enter the commands at the ATM-LLC+ prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>List</td>
<td>Lists various options</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 11</td>
</tr>
</tbody>
</table>

### List

Use the list command to list various categories of ATM LLC monitoring data.

**Syntax:**

```
list endpoints
list channels
```

**endpoints**

Lists the ATM addresses in use by protocols using the ATM-LLC multiplexing function on the device. The endpoint is displayed as the End System Identifier and the Selector.

**Example:** `list endpoints`

```
ATM-LLC+ list endpoints
```

**channels**

Lists the channels in use by protocols using the ATM-LLC multiplexing function on the device.

**Example:** `list channels`

```
ATM-LLC+ list channels
```

### ATM Virtual Interface Monitoring Commands

Monitoring the ATM virtual interface is done using the ATM LLC monitoring commands. See [ATM-LLC Monitoring Commands] for additional information.
Chapter 23. Using LAN Emulation Clients

This chapter describes LAN Emulation Clients (LECs). It includes the following sections:

- [LAN Emulation Client Overview]

LAN Emulation Client Overview

On the router, LECs serve the purpose of “ports” or “interfaces” on traditional routers and bridges. The router bridges and routes traffic between ports by receiving and transmitting traffic through its LECs.

LEC has two prompt levels:

1. LE Client Config> lets you enter commands that control the environment of all your LECs. The commands for this prompt level are described in [Configuring LAN Emulation Clients] on page 293.

2. One of the commands, config, gets you to another prompt level, LEC Config>, at which you can enter commands to configure a specific LEC.

An explanation of commands for LAN Emulation Clients follows.
Chapter 24. Configuring and Monitoring LAN Emulation Clients

This chapter describes how to configure LAN Emulation Clients (LECs). It includes the following sections:

- Configuring LAN Emulation Clients
- Configuring an ATM Forum-Compliant LE Client on page 295
- Accessing the LEC Monitoring Environment on page 308
- LEC Monitoring Commands on page 309

Configuring LAN Emulation Clients

This section summarizes and explains the commands for configuring and using the set of LE Clients on a particular ATM interface.

To get to the LE Client Config prompt, enter le-c at the ATM Config prompt as described in ATM Configuration Commands on page 278.

Enter the commands at the LE Client Config prompt under the ATM Config prompt, as described in ATM Configuration Commands on page 278.

Table 41. LAN EMULATION Client Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a LEC for the following types of ATM Forum-compliant Emulated LANs architectures:</td>
</tr>
<tr>
<td></td>
<td>• Ethernet</td>
</tr>
<tr>
<td></td>
<td>• Token Ring</td>
</tr>
<tr>
<td>Config</td>
<td>Gets you to the LEC Config prompt, from which you can configure a specific LAN Emulation Client.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the LEC.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes a LEC.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Add

Use the add command to add a LEC for a Token-Ring or Ethernet emulated LAN.

Syntax:

```
add Ethernet
add Token Ring
token-ring
```

Example: add token ring

LE Client Config> add token-ring
Added Emulated LAN as interface 3
LE Client Config>

ethernet

Ethernet emulated LAN

Example: add ethernet

LE Client Config> add ethernet
Added Emulated LAN as interface 2

Config

Use the config command to get you to the LEC Config> prompt, from which you can configure the details of a specific LAN Emulation Client.

Syntax:

`config` interface#

interface#

An integer number assigned by the router when the LEC was added to the configuration. Use the list command to determine the interface number assigned to the LEC.

Example: config

LE Client Config> config 3
ATM LAN Emulation Client configuration

List

Use the list command to list the LAN emulation clients.

Syntax:

list

Example:

LE Client Config> list
ATM Forum Compliant Emulated LANs

------------------------------------------------------
Physical ATM interface number = 0
LEC interface number = 1
Emulated LAN type = Token Ring Forum Compliant
Emulated LAN name =

Remove

Use the remove command to remove a LEC. You must specify the interface number that was assigned when the LEC was added to the configuration. Use the list command to determine the interface number assigned to the LEC.

Syntax:

`remove` interface#

interface#

An integer number assigned by the router.
Configuring an ATM Forum-Compliant LE Client

This section explains the commands for configuring an ATM Forum-compliant LAN Emulation Client. Enter the appropriate commands at either the Ethernet Forum Compliant LEC Config> prompt or the Token Ring Forum Compliant LEC Config> prompt. Commands in the following table apply to both Token-Ring and Ethernet LECs except where indicated.

Enter the commands at the LEC Config> prompt after entering the config command at the LE Client Config> prompt.

Table 42. LAN Emulation Client Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>ARP-Configuration</td>
<td>Allows you to configure the LE-ARP configuration for the ATM Forum-compliant client</td>
</tr>
<tr>
<td>RIF-Timer</td>
<td>Sets the maximum amount of time that information in the RIF is maintained before it is refreshed. Applies only to Token-Ring LECs.</td>
</tr>
<tr>
<td>Source-routing</td>
<td>Used to enable or disable source-route bridging. Applies only to Token-Ring LECs.</td>
</tr>
<tr>
<td>IP-Encapsulation</td>
<td>Sets the IP encapsulation as Ethernet (type X'0800') or IEEE (802.3 with SNAP). Applies only to Ethernet LECs.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the LAN Emulation Client configuration.</td>
</tr>
<tr>
<td>QoS-Configuration</td>
<td>Gets you to the elan-x LEC QoS Config&gt; prompt from which you can configure Quality of Service as described in LE Client QoS Configuration Commands in Using and Configuring Features.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the LAN Emulation Client parameters.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

ARP Configuration

Use the arp-configuration command to configure the static LE-ARP entries for the ATM forum-compliant LAN Emulation Client.

Syntax:

arp-configuration

Example:

Token Ring Forum Compliant LEC Config> arp-configuration
ATM LAN Emulation Clients ARP configuration

Table 43. ATM LAN Emulation Client ARP Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds an LE-ARP cache entry using a MAC or route descriptor ARP.</td>
</tr>
<tr>
<td>Config</td>
<td>Sets cache entry QoS parameter values.</td>
</tr>
<tr>
<td>List</td>
<td>Lists configured ARP cache entries.</td>
</tr>
</tbody>
</table>
Table 43. ATM LAN Emulation Client ARP Configuration Commands Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove</td>
<td>Removes an ARP cache entry.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 11.</td>
</tr>
</tbody>
</table>

Add

Use the `add` command to add an ARP cache entry using the MAC address or a route descriptor.

MAC addresses, and route descriptors are entered as strings of hexadecimal characters with or without optional separator characters between bytes. Valid separator characters are dashes (–), periods (.), or colons (:).

Syntax:
```
add [mac] [route-descriptor]
```

Example 1:
```
ARP config for LEC> add mac
MAC address of LE ARP Entry []? 123456789098
ATM address in 00.00.00.00.00.00:... form []? 390f0000000000000000000000000000123456789098
Destination Type - REMOTE or LOCAL [Remote]?
```

Example 2:
```
ARP config for LEC> add route 12.34
ATM address in 00.00.00.00.00.00:... form []? 390f0000000000000000000000000000123456789098888
```

Config

Use the `config` command to configure the permanent ARP cache entry QoS parameters for the ATM forum-specific LAN Emulation Client.

Syntax:
```
config [arp-entry-number]
```

Example:
```
ARP config for LEC> config
ARP entry number [1] Configure LEC ARP entry
```

Table 44. ATM LAN Emulation Client ARP Config Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets QoS parameter values.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 11.</td>
</tr>
</tbody>
</table>

Set:

Use the `set` command to configure the permanent ARP cache entry QoS parameters for the ATM forum-specific LAN Emulation Client.
Configuring Forum LE Clients

Syntax:

```
set max-reserved-bandwidth
traffic-type
peak-cell-rate
sustained-cell-rate
qos-class
max-burst-size
```

Example:

ARP entry 'identifier' config> set ?
MAX-RESERVED-BANDWIDTH
TRAFFIC-TYPE
PEAK-CELL-RATE
SUSTAINED-CELL-RATE
QOS-CLASS
MAX-BURST-SIZE

See Configuring and Monitoring Quality of Service (QoS) in Using and Configuring Features for detailed information about the QoS parameters.

List

Use the list command to display information about ARP configuration.

Remove

Use the remove command to remove an configured MAC address or Route Descriptor LE-ARP entry.

Select the ARP entry number to be removed from the list provided.

Syntax:

```
remove arp-entry-number
```

RIF-Timer (for Token-Ring Forum-compliant LEC only)

Use the RIF-Timer command to set the maximum amount of time that information in the RIF is maintained before it is refreshed. Range is 0 to 4096. The default is 120 seconds.

```
 rif-timer value
```

Example:

```
 rif-timer 100
```

Source-Routing (for Token-Ring Forum-Compliant LEC only)

Use the source-routing command to enable or disable end station source-routing. Source routing is the process by which end stations determine the source route to use to cross source routing bridges. Source routing allows the IP, IPX, and AppleTalk Phase 2 protocols to reach nodes on the other side of the source route bridge.
Configuring Forum LE Clients

This function of the device is not changed whether source routing is enabled or disabled. The default setting is enabled.

Some stations cannot properly receive frames with Source Routing RIF on them. This is especially common among NetWare drivers. Disabling source routing in this situation will allow you to communicate with these stations.

Source routing should be enabled only if there are source-routing bridges on this ring through which you want to bridge IP, IPX, and AppleTalk Phase 2 packets. Source routing must also be enabled so that LLC test response messages can be returned.

Syntax:
```
source-routing enable
disable
```

Example:
```
source-routing disable
```

IP-Encapsulation (for Ethernet ATM Forum-Compliant LEC only)

Use the `IP-encapsulation` command to select Ethernet (Ethernet type X'0800') or IEEE 802.3 (Ethernet 802.3 with SNAP). Specify either type `Ethernet` or `IEEE-802.3`.

Syntax:
```
IP-encapsulation Ethernet
IEEE-802.3
```

List

Use the `list` command to list the LE client configuration.

Syntax:
```
list
```

QoS

Use the `qos-configuration` command to get you to the LEC QoS Config> prompt from which you can configure Quality of Service as described in LE Client QoS Configuration Commands in Using and Configuring Features.

Syntax:
```
qos-configuration
```

Set

Use the `set` command to set LE Client parameters.

Syntax:
set

arp-aging-time
arp-cache-size
arp-queue-depth
arp-response-time
auto-config
best-effort-peakrate
bus-connect-retries
conn-completion-time
control-timeout
elan-name
esi-address
flush-timeout
forward-delay
forward-disconnect-timeout
frame-size
initial-control-timeout
lecs-atm-address
les-atm-address
mac-address
multicast-send-avg
multicast-send-peak
multicast-send-type
multiplier-control-timeout
path-switch-delay
reconfig-delay-min
reconfig-delay-max
retry-count
selector
trace
unknown-count
unknown-time
vcc-timeout

arp-aging-time

Sets ARP aging time. This is the maximum time that a LEC will maintain an entry in its LE_ARP cache in the absence of a verification of that relationship. A larger aging time may result in a faster session setup time, but may also use more memory and reacts slower to changes in network configuration.
Valid Values:
An integer number of seconds in the range of 10 to 300.

Default Value:
300

Example:
LEC Config> set arp-aging-time 200

**arp-cache-size**
Sets the number of entries in the ARP cache. The size of the ARP cache limits the number of simultaneous data direct VCCs. Larger ARP caches require more memory, but permit the client to simultaneously converse with a larger number of destinations.

Valid Values:
An integer number in the range of 10 to 65535.

Default Value:
5000

Example:
LEC Config> set arp-cache-size 10

**arp-queue-depth**
Sets the maximum number of queued frames per ARP cache entry. The LEC enqueues frames when switching the data path from the Multicast Send VCC to a Data Direct VCC. Frames passed to the LEC for transmission will be discarded if the queue is full. A larger queue requires more memory, but results in fewer discarded frames during the data path switch.

Valid Values:
An integer number in the range of 0 to 10.

Default Value:
5

Example:
LEC Config> set arp-queue-depth 10

**arp-response-time**
Sets expected ARP response time. This value controls how frequently an unanswered LE ARP request is retried. Larger values result in fewer LE ARPs, which causes less traffic and possibly increase the amount of time before a Data Direct VCC is established.

Valid Values:
An integer number of seconds in the range of 1 to 30.

Default Value:
1 second

Example:
LEC Config> set arp-response-time 20

**auto-config**
Specifies whether this LEC uses LECS auto-config mode. Specify YES or NO. The LEC may contact the LECS to obtain the address of its LES and various other configuration parameters.
Valid Values:
If YES, then you do not have to configure the ATM address of the LES.

If NO, then you must configure the ATM address of the LES using the set les-atm-address command as described on page 303.

Default Value:
NO

Example:
LEC Config> set auto-config yes

**best-effort-peakrate**
Sets the Best Effort Peak Rate. Used when establishing best effort multicast send connections.

The maximum peak rate depends on the maximum data rate of the ATM device.

Specify an integer from 1 to the maximum peak rate in Kbps (the definition is the maximum data rate) as follows:

- If ATM maximum data rate is 25 Mbps, the maximum peak rate is 25,000 Kbps.
- If ATM maximum data rate is 155 Mbps, the maximum peak rate is 155,000 Kbps.

Valid Values:
An integer number in the range of 1 - device maximum data rate.

Default Value:
155000

Example:
LEC Config> set best-effort-peakrate 24000

**bus-connect-retries**
This parameter sets the maximum number of times that the LEC will attempt to reconnect to the BUS before returning to the initial state.

Valid Values:
0 - 2

Default Value:
1

**connection-completion-time**
Sets the connection completion time. This is the time interval in which data or a READY_IND message is expected from a calling party.

When a Data Direct VCC is established to the client, the LEC expects data or a READY_IND message within this time period. The LEC will not transmit frames over a Data Direct VCC established to it until receiving data or a READY_IND. This parameter value controls the amount of time which passes before the LEC issues a READY QUERY (in hopes of receiving a READY_IND). Smaller values lead to faster response times, but also to unnecessary transmissions.

Valid Values:
An integer number of seconds in the range of 1 to 10.
Default Value:
4

Example:
LEC Config> set connection-completion-time 5

control-timeout
This parameter sets the maximum cumulative control timeout of a request.

A current timeout value is initialized to the value of initial-control-timeout.
If a response to a request is not received within the current timeout value, the current timeout is multiplied by the value of the multiplier-control-timeout and the request is reissued. Each time the current timeout value expires, this process is repeated until the current timeout value exceeds the value of control-timeout.

Valid Values:
An integer number of seconds in the range of 10 to 300.

Default Value:
30

Example:
LEC Config> set control-timeout 100

elan-name
Specifies name of the ELAN that the LEC wishes to join. This is the ELAN name sent to the LECS in the configure request (if the LEC autoconfigures) or to the LES in the join request. The LECS or LES may return a different ELAN name in the response.

Valid Values:
Any character string length of 0 - 32 bytes.

Default Value:
Blank

Note: A blank name (0 length string) is valid.

Example:
LEC Config> set elan-name FUZZY

esi-address
Sets the ESI portion of the LEC’s ATM address.

Specify the ESI portion (octets 13 through 19) of the LEC’s ATM address. The ESI and selector combination of the LEC must be unique among all LAN emulation components on the device.

Valid Values:
Any 12 hexadecimal digits.

Default Value:
Burned-in ESI

Example:
set esi
Select ESI
(1) Use burned in ESI
(2) 11.22.33.44.55.66
Enter selection [1]?
flush-timeout

Sets the flush timeout. This is the time limit to wait to receive the LE_FLUSH_RESPONSE after the LE_FLUSH_REQUEST has been sent before taking recovery action. During recovery, any queued frames are dropped and a new flush request is sent.

When switching from the multicast send to a data direct data path, the client sends a flush request over the multicast send VCC. Until a flush response is received, or until the path switch delay expires, frames are queued for the destination.

Valid Values:
An integer number of seconds in the range of 1 to 4.

Default Value:
4

Example:
LEC Config> set flush-timeout 3

forward-delay

Sets the forward delay. Entries in the LE ARP cache must be periodically re-verified. The forward delay time is the maximum amount of time a remote entry may remain in the cache during a network topology change. Larger aging times may result in stale (invalid) entries, but also cause less re-verification traffic.

Valid Values:
An integer number of seconds in the range of 4 to 30.

Default Value:
15

Example:
LEC Config> set forward-delay 10

forward-disconnect-timeout

This parameter sets the amount of time that a LEC will wait after losing its last Multicast Forward VCC from the BUS before returning to the initial state. This delay permits the BUS to attempt to reconnect to the client without returning to the initial state.

Valid Values:
10 - 300 seconds

Default Value:
60

frame-size

Sets the frame size.

The value specified for frame-size must be equal to or less than the value specified for ATM max-frame using the ATM INTERFACE> set max-frame command as described on page 282.

Valid Values:
1516
4544
9234
18190
Configuring Forum LE Clients

Default Value:
If the ELAN type is token ring, the default is 4544. If the ELAN type is Ethernet, the default is 1516.

Example:
LEC Config> set frame-size 4544

initial-control-timeout
This parameter sets the value of the initial control timeout used in the control timeout algorithm described in 302.

Valid Values:
1 - 10

Default Value:
5

Example:
LEC Config> set initial-control-timeout 10

lecs-atm-address
Specifies the ATM address of the LECS.
If the client is set to auto configure, it attempts to connect to a LECS. If it is unable to connect to a LECS, then it may try another LECS ATM address.
The LECS ATM addresses that are tried, in order, are:
1. This configured LECS address
2. Any LECS address obtained through ILMI
3. The well-known LECS address defined by the ATM Forum.
No default is provided.

Note: This command should be entered on one command line. It is shown here on two lines because of spacing.

Example:
LEC Config> set lecs-atm-address 39.84.0F.00.00.00.00.00.00.00.00.00.00.00.00.00.00.01.10.00.5A.00.DE.AD.01

les-atm-address
Sets the LES ATM address. This command may be optional or required depending upon the setting of lecs-auto-config as described in the set auto-config command on page 302.
- If auto-config is YES, the les-atm-address is not configurable.
- If auto-config is NO, then the les-atm-address is required.

Specify the ATM address of the LES. No default is provided.

Note: This command should be entered on one command line. It is shown here on two lines because of spacing.

Example:
LEC Config> set les-atm-address 39.84.0F.00.00.00.00.00.00.00.00.00.00.01.10.00.5A.00.DE.AD.02

mac-address
Sets the MAC address for this LE client. You may specify that the client use the burned-in MAC address of the ATM interface, or you may specify a
different MAC address. If you have two clients that are bridged together, they should use different MAC addresses.

This MAC address is registered with the LES when the client joins the ELAN.

**Valid Values:**
- Any valid MAC address.

**Default Value:**
- none

**Example:**
```
LEC Config> set mac-address
Use adapter address for MAC? [No]
MAC address []: 10.00.5a.00.00.01
```

### multicast-send-avg
Sets the multicast send VCC average rate in Kbps. Used by the LEC for reserving bandwidth on the VCC to the BUS. It specifies the forward and backward sustained cell rate used when setting up a reserved bandwidth multicast send VCC.

This parameter is only applicable when the multicast-send-type is reserved bandwidth. If multicast-send-avg equals multicast-send-peak, then a constant bit rate (CBR) multicast send is signalled. Otherwise, a variable bit rate (VBR) multicast send is signalled. Multicast-send-avg must be less than or equal to multicast-send peak.

A reserved bandwidth multicast send VCC may improve data transfer rates in congested networks, but reserving bandwidth and not using it wastes network resources.

When the multicast-send-type is reserved, then multicast-send-avg and multicast-send-peak must be specified.

**Example:**
```
LEC Config> set multicast-send-avg 4000
```

### multicast-send-peak
Sets the multicast send peak rate in Kbps. Used by LEC for reserving bandwidth on the VCC to the BUS. It specifies the forward and backward peak cell rate used when establishing a reserved bandwidth multicast send VCC.

This parameter is only applicable when the multicast-send-type is reserved bandwidth. If multicast-send-avg equals multicast-send-peak, then a constant bit rate (CBR) multicast send is signalled. Otherwise, a variable bit rate (VBR) multicast send is signalled. Multicast-send-avg must be less than or equal to multicast-send peak.

A reserved bandwidth multicast send VCC may improve data transfer rates in congested networks, but reserving bandwidth and not using it wastes network resources.

When the multicast-send-type is reserved, then multicast-send-avg and multicast-send-peak must be specified.

**Example:**
```
LEC Config> set multicast-send-peak 155
```

### multicast-send-type
Sets the multicast send type. Specifies the method used by the LEC when establishing the multicast send VCC.
If multicast-send-avg equals multicast-send-peak, then a constant bit rate (CBR) multicast send is signalled. Otherwise, a variable bit rate (VBR) multicast send is signalled. Multicast-send-avg must at least equal multicast-send peak.

A reserved bandwidth multicast send VCC may improve data transfer rates in congested networks, but reserving bandwidth and not using it wastes network resources.

When the multicast-send-type is reserved, then multicast-send-no and multicast-send-peak must be specified.

**Valid Values:**
Best Effort or Reserved

**Default Value:**
Best Effort

**Example:**
LEC Config> set multicast-send-type best-effort

**multiplier-control-timeout**
This parameter sets the value of the control timeout multiplier used in the control timeout algorithm described on page 302.

**Valid Values:**
2 - 5

**Default Value:**
2

**Example:**
LEC Config> set multiplier-control-timeout 5

**path-switch-delay**
Sets the path switch delay.

The LEC must ensure that all frames sent through the BUS to a destination have arrived at the destination before it can start using a Data Direct VCC. This is accomplished using the flush protocol, or by waiting path-switch-delay seconds after sending the last packet to the BUS. Smaller values improve performance, but may result in out-of-order packets in a heavily congested network.

**Valid Values:**
An integer number of seconds in the range of 1 to 8.

**Default Value:**
6

**Example:**
LEC Config> set path-switch-delay 5

**reconfig-delay-min**
This parameter sets the minimum delay time when LEC returns to the initial state. This value must be ≤ reconfig-delay-max.

**Valid Values:**
1 - the value of reconfig-delay-max

**Default Value:**
1
### reconfig-delay-max
This parameter sets the maximum delay time when LEC returns to the initial state. This value must be \( \geq \) reconfig-delay-min.

**Valid Values:**
- \( 1 - 10 \)

**Default Value:**
- 5

**Example:**
```
LEC Config> set reconfig-delay-max 9
```

### retry-count
Sets the retry count. This is maximum number of times that the LEC retries an LE_ARP_REQUEST for a specific frame's LAN destination. If no ARP response is received after the specified number of retries, then the entry is purged from the LE ARP cache.

**Valid Values:**
- 0, 1, or 2

**Default Value:**
- 1

**Example:**
```
LEC Config> set retry-count 2
```

### selector
Specifies the selector portion of the client's ATM address. The combination of ESI and selector must be unique among all LANE components on the device. By default, a unique selector is selected for the configured ESI.

**Valid Values:**
- Any octet, in hexadecimal, that is not in use by another LANE component with the same ESI.

**Example:**
```
LEC Config> set selector 01
```

### trace
Enables tracing for the LEC. To perform packet tracing, three steps are required:

1. Enable packet tracing system (under ELS)
2. Enable tracing on the LEC subsystem (under ELS)
3. Enable packet tracing on the desired LECs (using this command).

**Valid Values:**
- Enable or Disable

**Default Value:**
- Disable

**Example:**
```
Token Ring LEC config> set trace
Trace packets on the LEC? [No]/yes
```

### unknown-count
Sets the unknown frame count. This is the maximum number of frames for
Configuring Forum LE Clients

A specific unicast MAC address or route descriptor that may be sent to the BUS within the time specified by the unknown-time parameter. Larger values decrease the number of discarded frames while increasing the load on the BUS.

Valid Values:
An integer number of frames in the range of 1 to 255.

Default Value:
10

unknown-time

Sets the unknown frame time. This is the time interval during which the maximum number of frames for a specific unicast MAC address or route descriptor (specified by the unknown-count parameter) may be sent to the BUS. Larger values increase the number of discarded frames while decreasing the load on the BUS.

Valid Values:
An integer number of seconds in the range of 1 to 60.

Default Value:
1

Example:
LEC Config> set unknown-time 5

vcc-timeout

Sets the VCC timeout. Data direct VCCs over which no traffic has been sent for this period of time should be released.

Valid Values: 0 to 31536000 seconds (1 year).

Default Value: 1200

Note: This parameter is meaningful only for SVC connections.

Example:
LEC Config> set vcc-timeout 1000

Accessing the LEC Monitoring Environment

Use the following procedure to access the LEC monitoring commands. This process gives you access to the LEC monitoring process.

1. At the OPCON prompt, enter talk 5. (For more detail on this command, refer to "Chapter 3. The OPCON Process" on page 25.) For example:

   + talk 5
   +

   After you enter the talk 5 command, the GWCON prompt (+) displays on the console. If the prompt does not appear when you first enter configuration, press Return again.

2. At the + prompt, enter the network ? command to display the network interface numbers for which the router is currently configured, and enter the interface number for the LEC you wish to monitor. For example:

   + network ?
   1 : ATM Ethernet LAN Emulation: ETH
   2 : IP Protocol Network
The LEC monitoring prompt (LEC+), is displayed.

If you know the interface number of the LEC you wish to monitor, enter the `network` command followed by the `interface number` of the LEC.

```
+ network 1
```

### LEC Monitoring Commands

This section summarizes and then explains the LEC monitoring commands. You can access LEC monitoring commands at the `LEC+` prompt. Table 45 shows the commands.

**Table 45. LEC Config monitoring command Summary**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help</a> on page 10.</td>
</tr>
<tr>
<td>List</td>
<td>Lists:</td>
</tr>
<tr>
<td></td>
<td>• LEC Address Resolution Table (ARP)</td>
</tr>
<tr>
<td></td>
<td>• LEC configuration</td>
</tr>
<tr>
<td></td>
<td>• Data Direct VCC information</td>
</tr>
<tr>
<td></td>
<td>• LEC statistics</td>
</tr>
<tr>
<td></td>
<td>• VCC table.</td>
</tr>
<tr>
<td>MIB</td>
<td>Displays LEC MIB objects including:</td>
</tr>
<tr>
<td></td>
<td>• LEC MIB Configuration Table</td>
</tr>
<tr>
<td></td>
<td>• LEC MAC ARP Table</td>
</tr>
<tr>
<td></td>
<td>• LEC Route Descriptor Table</td>
</tr>
<tr>
<td></td>
<td>• LEC MIB Server VCC Tables</td>
</tr>
<tr>
<td></td>
<td>• LEC MIB Statistics Table</td>
</tr>
<tr>
<td></td>
<td>• LEC MIB Status Table</td>
</tr>
<tr>
<td>QoS</td>
<td>Gets you to the LEC x QoS+ prompt from which you can monitor Quality of Service as described in <a href="#">Quality of Service Monitoring Commands</a> in <a href="#">Using and Configuring Features</a>.</td>
</tr>
<tr>
<td>Trace</td>
<td>Sets packet tracing on or off.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment</a> on page 11.</td>
</tr>
</tbody>
</table>

### List

Use the `list` command to list the LEC Address Resolution Table (ART), list the LEC configuration, list Data Direct VCC information, or list LEC statistics.

**Syntax:**

```
list arp-table
 configuration
 data-direct-vccs
```
Configuring Forum LE Clients
statistics
vcc-table
arp

Lists the LEC Address Resolution Table (entries in the ARP cache).
Example:
LEC+ list arp
LEC Address Resolution (LE ARP Cache) Table
Max Table Size
Free Table Entries
Current Mac Entries
Current RD Entries
Arp Aging Time
Verify Sweep Interval

=
=
=
=
=
=

10
10
0
0
300
60

Xmit BUS Arp
Conn Queue Frame Retry Aging
MAC Address
Remote Handle Depth Count Count Timer Destination ATM Ad
dress
-----------------------------------------------------------------------40.00.00.00.00.09 False 652 0
0
0
60
99.00.00.99.99.30.02.40.00.00.00.00.09.81

Note: The Sweep Interval is always one-fifth of the ARP Aging Timer value.
Max Table Size
The total number of entries available
Free Table Entries
The number of free entries
Current MAC Entries
Current RD Entries
Route Descriptor ATM entries
ARP Aging Time
Time for an entry to be aged out
Verify Sweep Interval
MAC Address
Remote
Connection Handle
Queue Depth
Xmit Frame Count
BUS Retry Count
ARP Aging Timer
Destination ATM Address

310

MRS V3.2 Software User’s Guide


configuration
Lists the LEC configuration.

For Ethernet:

Example:

IBM LEC+ list config
ATM IBM LEC Configuration
Physical ATM interface number = 0
LEC interface number = 7
Primary ATM address
ESI address = Use burned in addr
Selector byte = 0x3
Emulated LAN type = Ethernet IBM
Maximum frame size = 1523
LE Client MAC address = Use burned in addr
LE Server ATM address = 00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00
Forward Peak Rate = 25000
Backward Peak Rate = 25000
MAC cache size = 32
MAC cache aging period = 60
Route Descriptor cache size = 32
Route Descriptor aging period = 60
LES Registration interval = 60
LES Registration retry count = 3
LES keep alive count = 10
Packet trace = No
IP Encapsulation = ETHER

For Token Ring:

Example:

IBM LEC+ list config
ATM IBM LEC Configuration
Physical ATM interface number = 0
LEC interface number = 10
Primary ATM address
ESI address = Use burned in addr
Selector byte = 0x6
Emulated LAN type = Token Ring IBM
Maximum frame size = 4551
LE Client MAC address = Use burned in addr
LE Server ATM address = 39.84.07.00.00.00.00.00.00.00.00.00.00.01.10.00.5A.DD.DA.02
Forward Peak Rate = 25000
Backward Peak Rate = 25000
MAC cache size = 32
MAC cache aging period = 60
Route Descriptor cache size = 32
Route Descriptor aging period = 60
LES Registration interval = 60
LES Registration retry count = 3
LES keep alive count = 10
Packet trace = No
RIF Aging Timer = 120
Source Routing = Enabled

Example:

LEC+ list config
Physical ATM interface number = 0
LEC interface number = 9
LEC ATM address = 39.99.99.99.99.99.99.00.00.99.99.31.01.09.FC.DD.D0.32.70.0A
LEC MAC address = 40.00.82.10.17.09
lecConfigMode = Manual
lecConfigLanType = 802.5 - Token Ring
lecConfigMaxDataFrameSize = 4544
lecConfigLesAtmAddress = 39.99.99.99.99.99.99.00.00.99.99.31.01.40.00.82.10.17.00.09
lecControlTimeout = 30
lecMaxUnknownFrameCount = 10
lecMaxUnknownFrameTime = 1
lecVccTimeoutPeriod = 1200
lecMaxRetryCount = 1
lecAgingTime = 300
lecForwardDelayTime = 15
lecExpectedArpResponseTime = 1
lecFlushTimeout = 4
lecPathSwitchingDelay = 6
lecLocalSegmentId = 0x0
Configuring Forum LE Clients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecMulticastSendType</td>
<td>= 1</td>
</tr>
<tr>
<td>lecMulticastSendAvgRate</td>
<td>= 365566</td>
</tr>
<tr>
<td>lecMulticastSendPeakRate</td>
<td>= 365566</td>
</tr>
<tr>
<td>lecConnectionCompleteTimer</td>
<td>= 4</td>
</tr>
<tr>
<td>lecInitialControlTimeout</td>
<td>= 5</td>
</tr>
<tr>
<td>lecControlTimeoutMultiplier</td>
<td>= 2</td>
</tr>
<tr>
<td>V2 Capable</td>
<td>= TRUE</td>
</tr>
<tr>
<td>lecForwardDisconnectTimeout</td>
<td>= 60</td>
</tr>
<tr>
<td>lecMinReconfigDelay</td>
<td>= 1</td>
</tr>
<tr>
<td>lecMaxReconfigDelay</td>
<td>= 5</td>
</tr>
<tr>
<td>lecMaxBusConnectRetries</td>
<td>= 0</td>
</tr>
<tr>
<td>lecElanId</td>
<td>= 0</td>
</tr>
<tr>
<td>ExplorerExclude</td>
<td>= TRUE</td>
</tr>
<tr>
<td>LE ARP queue depth</td>
<td>= 5</td>
</tr>
<tr>
<td>LE ARP cache size</td>
<td>= 5000</td>
</tr>
<tr>
<td>Forward peakrate</td>
<td>= 365566</td>
</tr>
<tr>
<td>Backward peakrate</td>
<td>= 365566</td>
</tr>
<tr>
<td>Packet trace</td>
<td>= Off</td>
</tr>
<tr>
<td>RIF aging timer</td>
<td>= 120</td>
</tr>
<tr>
<td>Source Routing</td>
<td>= enabled</td>
</tr>
</tbody>
</table>

See “Set” on page 298 for a definition of the parameters shown in the above examples.

data
Lists the LEC Data Direct VCC information.

Example:
LEC+ list data

LEC Data Direct VCC Table

<table>
<thead>
<tr>
<th>Max Table Size</th>
<th>Max no of SVC connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Size</td>
<td>Currently used</td>
</tr>
<tr>
<td>Inactivity Timeout</td>
<td>No Data Xfer Timeout before connection is closed (seconds)</td>
</tr>
<tr>
<td>Sweep Interval</td>
<td></td>
</tr>
<tr>
<td>Conn</td>
<td>Inactive User</td>
</tr>
<tr>
<td>Handle</td>
<td>VPI VCI Timer Count Destination ATM Address</td>
</tr>
</tbody>
</table>

| 652 | 0 | 7241 | 300 | 1 | 39.99.99.99.99.99.99.00.00.00.00.99.99.30.02.40.00.00.00.00.09.81 |

statistics
Lists LEC statistics.

Example:
LEC+ list stat

LEC Statistics

<table>
<thead>
<tr>
<th>In Octets.high</th>
<th>No of Bytes received</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Octets.low</td>
<td>= 346</td>
</tr>
<tr>
<td>In Discards</td>
<td>= 2</td>
</tr>
<tr>
<td>In Errors</td>
<td>= 0</td>
</tr>
<tr>
<td>In Unknown Protos</td>
<td>Unknown protocols received</td>
</tr>
<tr>
<td>Out Octets.high</td>
<td>No of Bytes xmitted.</td>
</tr>
<tr>
<td>Out Octets.low</td>
<td>= 0</td>
</tr>
<tr>
<td>Out Discards</td>
<td>= 0</td>
</tr>
<tr>
<td>Out Errors</td>
<td>= 0</td>
</tr>
<tr>
<td>In Frames</td>
<td>= 0</td>
</tr>
<tr>
<td>Out Frames</td>
<td>= 0</td>
</tr>
<tr>
<td>In Bytes</td>
<td>= 0</td>
</tr>
<tr>
<td>Out Bytes</td>
<td>= 0</td>
</tr>
</tbody>
</table>

VCC table
Lists VCC table.

Example:
LEC+ list vcc
Use the `mib` command to display MIB objects.

**Note:** Some of this information may be displayed in a different format using the `list` command.

**Syntax:**

```
 mib config-table
 mac-arp-table
 rd-arp-table
 server-vcc-table
 statistics-table
 status-table
```

`config` Displays the LEC MIB Configuration Table.

**Example:**

```
LEC+ mib config

lecConfigTable: = Manual
lecConfigMode = 802.3 - Ethernet
lecConfigMaxDataFrameSize = 1516
lecConfigLanName =
lecConfigLesAtmAddress = 39.84.0F.00.00.00.00.11.23.24.24.24.24.55.66.77.88.99.00
lecControlTimeout = 120
lecMaxUnknownFrameCount = 1
lecMaxUnknownFrameTime = 0
lecVccTimeoutPeriod = 1200
lecMaxRetryCount = 1
lecAgingTime = 300
lecForwardDelayTime = 15
lecExpectedArpResponseTime = 1
lecFlushTimeout = 4
lecPathSwitchingDelay = 6
lecLocalSegmentId = 0
lecMulticastSendType = 1
lecMulticastSendAvgRate = 25000000
lecMulticastSendPeakRate = 25000000

lecConnectionCompleteTimer = 4

lecConfigMode
LEC config mode: AUTO or MANUAL. If AUTO, LEC Uses LECS to get the LES ATM address.

lecConfigLanType
LAN type, either Ethernet or token-ring

lecConfigMaxDataFrameSize
Maximum frame size

lecConfigLanName
ELAN Name

lecConfigLesAtmAddress
LE Server ATM address

lecControlTimeout
Timeout for request/response control frame

lecMaxUnknownFrameCount
Maximum number of unknown frames
```
Configuring Forum LE Clients

**lecMaxUnknownFrameTime**
Period in which LEC will send a maximum of MaxUnknownFrameCount frames to the BUS for a given unicast LAN Destination, and it must also initiate the address resolution protocol to resolve that LAN Destination.

**lecVccTimeoutPeriod**
Inactivity timeout of SVC Data Direct VCCs

**lecMaxRetryCount**
LE ARP retry count

**lecAgingTime**
Life of unverified entry in the ARP table

**lecForwardDelayTime**

**lecExpectedArpResponseTime**
ARP Request/Response cycle time

**lecFlushTimeout**
LE Flush Request/Flush Reply timeout period

**lecPathSwitchingDelay**

**lecLocalSegmentId**
Segment ID of emulated LAN. Only for 802.5 clients

**lecMulticastSendType**
Signaling parameter used by LEC for multicast send VCC

**lecMulticastSendAvgRate**
Signaling parameter used by LEC for multicast send VCC

**lecMulticastSendPeakRate**
Signaling parameter used by LEC for multicast send VCC

**lecConnectionCompleteTimer**

**mac**
Displays the LEC MAC ARP Table

**rd**
Displays the LEC Route Descriptor Table

**server**
Displays the LEC MIB Server VCC Tables

**Example:**
LEC+ mib server

lecServerVccTable:
lecConfigDirectInterface = 0
lecConfigDirectVpi = 0
lecConfigDirectVci = 0
lecControlDirectInterface = 1
lecControlDirectVpi = 0
lecControlDirectVci = 38
lecControlDistributeInterface = 1
lecControlDistributeVpi = 0
lecControlDistributeVci = 37
lecMulticastSendInterface = 1
lecMulticastSendVpi = 0
lecMulticastSendVci = 34
lecMulticastForwardInterface = 1
lecMulticastForwardVpi = 0
lecMulticastForwardVci = 33

**lecConfigDirectInterface**
The interface associated with the Configuration Direct VCC
Configuring Forum LE Clients

\texttt{lecConfigDirectVpi}
\begin{itemize}
  \item VPI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecConfigDirectVci}
\begin{itemize}
  \item VCI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecControlDirectInterface}
\begin{itemize}
  \item The interface associated with the Control Direct VCC
\end{itemize}

\texttt{lecControlDirectVpi}
\begin{itemize}
  \item VPI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecControlDirectVci}
\begin{itemize}
  \item VCI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecControlDistributeInterface}
\begin{itemize}
  \item The interface associated with the Control Distribute VCC
\end{itemize}

\texttt{lecControlDistributeVpi}
\begin{itemize}
  \item VPI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecControlDistributeVci}
\begin{itemize}
  \item VCI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecMulticastSendInterface}
\begin{itemize}
  \item The interface associated with the Multicast Send VCC
\end{itemize}

\texttt{lecMulticastSendVpi}
\begin{itemize}
  \item VPI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecMulticastSendVci}
\begin{itemize}
  \item VCI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecMulticastForwardInterface}
\begin{itemize}
  \item The interface associated with the Multicast Forward VCC
\end{itemize}

\texttt{lecMulticastForwardVpi}
\begin{itemize}
  \item VPI which identifies the above VCC if it exists
\end{itemize}

\texttt{lecMulticastForwardVci}
\begin{itemize}
  \item VCI which identifies the above VCC if it exists
\end{itemize}

\texttt{statistics}
\begin{itemize}
  \item Displays the LEC MIB Statistics Table.
\end{itemize}

\texttt{Example:}
\begin{verbatim}
LEC+ mib statistics

lecStatisticsTable:
  lecArpRequestsOut = 1
  lecArpRequestsIn = 0
  lecArpRepliesOut = 0
  lecArpRepliesIn = 1
  lecControlFramesOut = 2
  lecControlFramesIn = 2
  lecSvcFailures = 1

lecArpRequestsOut
  No. of LE ARP requests sent by this LEC

lecArpRequestsIn
  No. of LE ARP requests received by this LEC

lecArpRepliesOut
  No. of LE ARP responses sent by this LEC

lecArpRepliesIn
  No. of LE ARP responses received by this LEC
\end{verbatim}
Configuring Forum LE Clients

**lecControlFramesOut**
No. of Control Packets sent by this LEC

**lecControlFramesIn**
No. of Control Packets received by this LEC

**lecSvcFailures**
The total number of:
- Outgoing LAN Emulation SVCs which this client tried but failed, to open
- Incoming LAN Emulation SVCs which this client tried, but failed to establish
- Incoming LAN Emulation SVCs which this client rejected for protocol or security reasons

**status** Lists MIB status.

**Example:**

```
LEC+ mib status
lecStatusTable:
lecPrimaryAtmAddress = 30.04.0F.00.00.00
Client ATM address= = 00.00.00.00.01.00.01.00.00.00.03
lecId = 1 Assigned by LES
lecInterfaceState = Operational State of the LEC
lecLastFailureRespCode = None Error code from last failed ConfigJoin resp.
lecLastFailureState = Initial State State of LEC when updating above field.
lecProtocol = 1 Protocol specified by LEC in Join requests.
lecVersion = 1 LEC Protocol Version of above
lecTopologyChange = False
lecConfigServerAtmAddress = 00.00.00.00.00.00.
lecConfigSource = Did not use LECS
lecActualLanType = 802.3 - Ethernet Frame format currently used by LEC
lecActualMaxDataFrameSize = 1516
lecActualLanName = ETH Name of emulated LAN that LEC joined.
lecActualLesAtmAddress = 39.84.0F.00.00.00.
lecProxyClient = False Is LES acting like a proxy ?
```

**QoS Information**

Use the `qos-information` command to get to the LEC x QoS prompt from which you can monitor Quality of Service as described in **Quality of Service Monitoring Commands** in [Using and Configuring Features](#).

**Syntax:**

```
qos-information
```
Chapter 25. Configuring Serial Line Interfaces

This chapter describes the interface configuration process for a serial interface and includes the following sections:

- [Accessing the Interface Configuration Process]
- [Network Interfaces and the GWCON Interface Command] on page 318

IMPORTANT: To configure Frame Relay, PPP, X.25, V.25bis, V.34, Bisync, SDLC Relay, and SDLC protocols on the serial interface, use the commands in this chapter and then refer to the commands in the chapters that describe the specific protocol.

See [Configuring the Network Interface] on page 17 for a table of protocols and the interfaces that support those protocols.

Accessing the Interface Configuration Process

To access the interface configuration process for a serial interface, first access the Config> prompt and issue the command set data-link. Next, at the Config> prompt, enter the interface type and number to access the configuration environment for the interface.

For example, to configure a serial interface for X.25, you must access the X.25 config> environment by issuing the following commands:

```
Config> set data-link X25 2
Config> network 2
```

From the X.25 config> environment, you can complete your configuration of X.25 on the serial interface. See [Chapter 26. Using the X.25 Network Interface] on page 313.

When you are done configuring the serial interface, enter the restart command after the OPCON prompt (*) and respond yes to the prompt to enable the new configuration.

Clocking and Cable Type

This section applies to all uses of a serial port for: FR, PPP, X.25, SDLC Relay, Bisync, and SDLC.

If a modem or CSU/DSU is attached to the serial port then the router is taking on the DTE role in terms of clocking on the line, so configure a DTE cable type and external clocking.

If you want to attach two routers directly without a modem, CSU/DSU, or modem eliminator, then one of the routers will take on the DCE role in terms of clocking on the line. Connect a direct attach cable to the router that will act as the DCE and configure the following parameters for its serial interface.

1. A DCE cable type
2. Internal clocking
3. The clocking/line speed
Configuring Serial Line Interfaces

The other router will take on the DTE role in terms of clocking and should be configured as if it were attached to a modem or CSU/DSU.

**Note:** Configuring a DTE as opposed to a DCE cable has no impact on whether or not the WAN net handler takes on the peer device. For example, the router always acts as a Frame Relay DTE device and uses a FR UNI interface even when a Frame Relay interface is configured to use a DCE cable.

Network Interfaces and the GWCON Interface Command

While serial line interfaces do not have their own console process for monitoring purposes, routers can display complete statistics for all installed network interfaces when you use the `interface` command from the GWCON environment. For more information on the `interface` command and displaying statistics, see Chapter 10, *The Operating/Monitoring Process (GWCON - Talk 5) and Commands.*
Chapter 26. Using the X.25 Network Interface


This chapter includes the following sections:
- Basic Configuration Procedures
- X.25 Support Over ISDN BRI D-Channel (X.31) on page 322
- Null Encapsulation on page 322
- Understanding Closed User Groups on page 324

For information on configuring X.25 Transport Protocol (XTP) for transporting X.25 traffic over TCP/IP, see Chapter 28. Using XTP on page 361.

For information about X.31 traffic, see X.31 Support on page 626.

Basic Configuration Procedures

This section outlines the minimal configuration steps required to get the X.25 interface up and running. The X.25 parameters must be consistent with the X.25 network the interface on the router will connect to. For more information, refer to the configuration commands described in this chapter.

Note: You must restart the router for the configuration changes to take effect.

1. At the OPCON prompt (*), type talk 6.
   The Config> prompt appears.

2. Type list devices to display a list of the interfaces from which you can select.
   Use the appropriate interface number in the following step.

3. Type set data-link x25.
   The Interface Number [0]? prompt appears.

4. Type the appropriate interface number.

5. Connect to the network by typing net # at the Config> prompt.
   The X.25 Config [#]> prompt appears.

6. At this prompt, type set address x.25-node-address.
   The X.25 address is a unique X.121 address that is used during call establishment. For DDN networks, use the add htf-addr and the set htf-addr commands to convert the protocol address associated with this interface to the X.121 address format required for DDN address translation. Failure to set the network address prevents the X.25 interface from joining the attached network.

7. Type set equipment-type and specify whether the frame and packet levels act as DCE or DTE. The default for this command is DTE.

8. Type set svc and define the lowest and highest SVCs that you are using. The default is for 1 SVC.
Using the X.25 Network Interface

9. Type `add protocol protocol_name` to add the protocols that will be running over the X.25 interface. You will be prompted for window size, default packet size, maximum packet size, circuit idle time, and max VCs.

   **Note:** You need to add the protocols only once for all X.25 networks on the router.

10. Type `add address protocol_name` to add an address translation for each protocol's destination address reachable over this interface.

11. Type `exit` to return to the `Config>` prompt.

12. Press Ctrl-P to return to the OPCON prompt (*).

13. Type `restart` and respond `yes` to the prompt.

Setting the National Personality

Each public data network, such as GTE's Telenet or DDN's Defense Data Network, has its own standard configuration. The term **National Personality** specifies a group of variables used to define a public data network's characteristics. The configuration information in the National Personality provides the router with control information for packets being transferred over the link. The National Personality option defines 27 default parameters for each public data network.

To view the configuration values that are in your X.25 National Personality, execute the X.25 configuration `list detailed` command. Configure each public data network connected to the router by executing the X.25 configuration `national-personality set` command.

The National Personality is a generalized template for network configuration. If necessary, you can individually configure each frame and packet layer parameter.

Understanding the X.25 Defaults

The following tables list the defaults for the various parameters for the X.25 `set`, `national set` and `national enable` commands.

**Table 46. Set Command**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>none</td>
</tr>
<tr>
<td>cable</td>
<td>none</td>
</tr>
<tr>
<td>calls-out</td>
<td>4</td>
</tr>
<tr>
<td>clocking</td>
<td>external</td>
</tr>
<tr>
<td>default-window-size</td>
<td>2</td>
</tr>
<tr>
<td>encoding</td>
<td>NRZ</td>
</tr>
<tr>
<td>equipment-type</td>
<td>DTE</td>
</tr>
<tr>
<td>htf addr</td>
<td>none</td>
</tr>
<tr>
<td>inter-frame-delay</td>
<td>0</td>
</tr>
<tr>
<td>mtu</td>
<td>1500</td>
</tr>
<tr>
<td>national-personality</td>
<td>GTE Telenet</td>
</tr>
<tr>
<td>pvc</td>
<td>low=0 high=0</td>
</tr>
<tr>
<td>speed</td>
<td>9600</td>
</tr>
</tbody>
</table>
### Table 46. Set Command (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>svc</strong></td>
<td>low inbound=0, high inbound=0</td>
</tr>
<tr>
<td></td>
<td>low 2-way=1, high 2-way=64</td>
</tr>
<tr>
<td></td>
<td>low outbound=0, high outbound=0</td>
</tr>
<tr>
<td>throughput-class ...</td>
<td>inbound=outbound=2400</td>
</tr>
<tr>
<td>vc-idle ...</td>
<td>30</td>
</tr>
</tbody>
</table>

### Table 47. National Enable Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DDN Default</th>
<th>GTE Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-reverse-charges</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>bi-cug</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>bi-cug-with-outgoing-access</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>cug</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>cug-deletion</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>cug-insertion</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>cug-with-incoming-access</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>cug-with-outgoing-access</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>cug-zero-override</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>flow-control-negotiation</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>frame-ext-seq-mode</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>packet-ext-seq-mode</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>request-reverse-charges</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>suppress-calling-addresses</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>throughput-class-negotiation</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>truncate-called-addresses</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>

### Table 48. National Set Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DDN Default</th>
<th>GTE Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>call-req</td>
<td>20 decaseconds</td>
<td>20 decaseconds</td>
</tr>
<tr>
<td>clear-req ...</td>
<td>retries=1</td>
<td>retries=1</td>
</tr>
<tr>
<td>disconnect-procedure ...</td>
<td>18 decaseconds</td>
<td>18 decaseconds</td>
</tr>
<tr>
<td>dp-timer</td>
<td>500 milliseconds</td>
<td>500 milliseconds</td>
</tr>
<tr>
<td>frame-window-size</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>n2-timeouts</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>packet-size ...</td>
<td>128, max=256</td>
<td>128, max=256</td>
</tr>
<tr>
<td>reset ...</td>
<td>retries=1</td>
<td>retries=1</td>
</tr>
<tr>
<td>restart ...</td>
<td>retries=1</td>
<td>retries=1</td>
</tr>
<tr>
<td>min-recall</td>
<td>10 seconds</td>
<td>10 seconds</td>
</tr>
<tr>
<td>min-connect</td>
<td>90 seconds</td>
<td>90 seconds</td>
</tr>
</tbody>
</table>
Using the X.25 Network Interface

Table 48. National Set Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DDN Default</th>
<th>GTE Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>collision-timer</td>
<td>10 seconds</td>
<td>10 seconds</td>
</tr>
<tr>
<td>standard-version</td>
<td>1984</td>
<td>1984</td>
</tr>
<tr>
<td>t1-timer</td>
<td>4 seconds</td>
<td>4 seconds</td>
</tr>
<tr>
<td>t2-timer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>truncate-called-addr-size</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

X.25 Support Over ISDN BRI D-Channel (X.31)

X.25 provides the same protocol support over ISDN BRI D-channel (X.31) with the following restrictions:
- The packet size must not exceed 256 bytes.
- The frame extended sequence mode must be enabled.
- X.31 must be configured as a DTE.

See "X.31 Support" on page 626 for more information.

Null Encapsulation

Null Encapsulation allows the user to multiplex multiple network layer protocols over one X.25 circuit. This function may be used to avoid using an unreasonable number of virtual circuits.

Limitations

Null Encapsulation is not supported for QLLC. This function is supported for Switched Virtual Circuits (SVCs), but not for Permanent Virtual Circuits (PVCs).

Configuration Changes

The encapsulation option NULL has been added for the following T6 commands:
Under X25 config: add address IP (may input enc type = NULL)
Under X25 config: add address IPX (may input enc type = NULL)
Under X25 config: add address DNA (may input enc type = NULL)
Under X25 config: add address VINES (may input enc type = NULL)
Under X25 config: list addr will show active enc type = NULL if the priority 1 type is NULL.

T5 commands:
Under X25 int: List SVCS will include enc type = NULL

Configuring Null Encapsulation and Closed User Groups (CUG)

Since More than one Protocol can run over one virtual circuit while using Null Encapsulation, the CUG(s) defined for each protocol over that circuit must be the same. It is strongly suggested that the user configure multiple Protocols same destination as follows:
Using the X.25 Network Interface

Configure CUG using the add address. The CUG(s) defined must be the same for each protocol defined at the same address.

If the CUG is defined at the add protocol level, The CUG(s) must be the same for all peers. (This method is more restrictive).

Configure CUG at the interface level. This insures all peers have the same CUG values. (This method is the most restrictive)

Any of the above methods may be used as long as any incoming call CUG definition must be valid for all protocols sharing that circuit. Valid means that the CUG was defined for the specific address or was defaulted to use either the protocol or interface circuit definition.

CASE 1: Incoming Closed User Groups (CUG)
valid for both peers.

CASE 2: Incoming Closed User Groups (CUG)
not valid for both peers.

Figure 18. Closed User Group Null Encapsulation
Understanding Closed User Groups

A closed user group (CUG) is a group of X.25 DTEs allowed to establish connections with other specific DTEs. CUG numbers are defined by your network provider and you can only use the CUGs the provider assigns you. You can configure an address-specific CUG, a protocol-specific CUG, or an interface-specific CUG. If all of three types of CUG numbers are configured for a DTE, the closed user group facility uses the address-specific destination CUG in a call request when contacting another DTE. If only a protocol-specific and an interface-specific CUG are configured for a DTE, the closed user group facility uses the protocol-specific CUG in a call request when contacting another DTE.

A single DTE can belong to multiple CUGs. You must specify a preferred CUG for that DTE. The preferred CUG is used when the router initiates calls to other DTEs. A single DTE cannot have more than a total of 5 preferred or normal closed user groups.

Bilateral Closed User Groups

A bilateral closed user group (BCUG) is a closed user group consisting of only two DTEs. The DTEs within the BCUG can originate calls to members of the BCUG and any DTEs that are not members of any CUG or BCUG. A single DTE cannot have more than a total of 5 preferred or normal bilateral CUGs.

A DTE uses a BCUG to establish circuits in the same way the DTE uses CUGs to establish circuits (see Table 49 on page 325), however, if both a BCUG and a CUG is defined for an interface, protocol, or address, the BCUG is used to establish the circuit.

Types of Extended Closed User Groups

The following extensions to closed user groups are supported:

**CUG with Outgoing Access**

The DTE can belong to one or more CUGs. The DTE can originate calls to members of the CUG and to any DTE belonging to other CUGs with Incoming Access.

**CUG with Incoming Access**

The DTE can belong to one or more CUGs. The DTE can receive calls from DTEs not belonging to any CUG or from DTEs belonging to other CUGs with Outgoing Access.

**BCUG with Outgoing Access**

The DTE can belong to one or more BCUGs. The DTE can originate calls to members of the BCUG and to any DTE not belonging to any BCUG.

Establishing X.25 Circuits with Closed User Groups on a Device

When you have enabled the closed user group facility, and a DTE receives a call request, it uses the CUG in the call request to determine whether to accept or reject the call from the DTE. If the CUG in the call request does not match a configured CUG on the interface, protocol, or on the destination associated with the calling DTE, the request is rejected. Table 49 on page 325 summarizes how X.25 circuits are established based on CUGs, if the interface, protocol, and address CUG numbers are different and incoming access is not enabled.
### Establishing Incoming X.25 Circuits for Closed User Groups

<table>
<thead>
<tr>
<th>Incoming Call Request Contains</th>
<th>Receiving DTE CUG Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface CUG Only</td>
<td>Protocol CUG Only</td>
</tr>
<tr>
<td>Address Specific CUG</td>
<td>Interface and Protocol CUG</td>
</tr>
<tr>
<td>Address and Protocol CUG</td>
<td>Protocol and Address CUG</td>
</tr>
<tr>
<td>All CUGs</td>
<td>No CUGs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No CUG</th>
<th>Reject</th>
<th>Reject</th>
<th>Reject</th>
<th>Reject</th>
<th>Reject</th>
<th>Reject</th>
<th>Reject</th>
<th>Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface CUG</td>
<td>Accept</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
</tr>
<tr>
<td>Protocol CUG</td>
<td>Reject</td>
<td>Accept</td>
<td>Reject</td>
<td>Accept</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
</tr>
<tr>
<td>Address Specific CUG</td>
<td>Reject</td>
<td>Reject</td>
<td>Accept</td>
<td>Reject</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>Reject</td>
</tr>
</tbody>
</table>

For outgoing calls on an interface, if you have enabled either the CUG or the BCUG facility, each call request will contain the configured preferred CUG (if any) for the destination or, if no address-specific CUG is configured, the CUG used is the CUG defined for the protocol, or if no protocol-specific CUG is configured, the CUG used is the CUG defined for the interface. If no CUG number has been configured, the CUG facility is not included in any outgoing call request.

### Overriding Closed User Group Processing for CUG 0

You can configure the DTE such that it does not validate incoming calls with a CUG of 0 in the call request. This ability allows you to permit specific calls to complete even when you have not enabled incoming access. Using the **national enable cug 0 override** command forces the device to ignore the CUG facility if the CUG number is 0. The call request will not be compared with any configured CUG number.

### Configuring X.25 Closed User Groups

To use closed user groups on X.25 interfaces:

1. Request CUG numbers from your network provider. You will need these numbers when configuring X.25.
2. Enable the closed user group facility using the **national enable cug** command and related commands.
3. Enable the bilateral closed user group facility, if desired, using the **national enable bi-cug** command and related commands.
4. Configure the appropriate CUG numbers for the DTEs. Specify the preferred CUG, CUG, preferred bilateral CUG, and bilateral CUG, as needed. This is done through the **add address** command.
5. Configure the appropriate CUG and bilateral CUG for the protocol, if required. This is done through the **add protocol** command.

   **Note:** You should only configure these CUGs if you are restricting all X.25 circuits established over the X.25 interface for this protocol to DTEs belonging to this set of unique CUGs or BCUGs unless you override it with an address-specific CUG.

6. Configure the appropriate CUG and bilateral CUG for the interface, if required. This is done through the **add cug** command.
Using the X.25 Network Interface

**Note:** You should only configure these CUGs if you are restricting all X.25 circuits established over the X.25 interface to DTEs belonging to this set of unique CUGs or BCUGs unless you override it with an address or protocol-specific CUG.
Chapter 27. Configuring and Monitoring the X.25 Network Interface

This chapter describes the X.25 configuration and operational commands and includes the following sections:

- X.25 Configuration Commands
- Accessing the Interface Monitoring Process on page 353
- X.25 Monitoring Commands on page 353
- X.25 Network Interfaces and the GWCON Interface Command on page 356

X.25 Configuration Commands

This section summarizes and explains all the X.25 configuration commands.

The X.25 configuration commands allow you to specify network parameters for router interfaces that transmit X.25 packets. The information you specify with the configuration commands activates when you restart the router.

Enter the X.25 configuration commands at the X.25 config prompt. Table 50 shows the commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the local and DDN X.25 node addresses, window size for packet levels, identifies the National personality, the MTU, and the maximum number of calls. Defines the PVC and SVC channel ranges, the number of seconds that a switched circuit can be idle before it is cleared, and specifies whether one router needs to act as a DCE (when two routers are directly connected without an intervening X.25 network) or the more normal method of acting at a DTE connected to an X.25 network. Sets speed, encoding, clocking, throughput class, and cable type.</td>
</tr>
<tr>
<td>Enable/Disable</td>
<td>Enables/Disables incoming-calls-barred feature, outgoing-calls-barred feature, dynamic DDN address translations, and lower-dtr feature.</td>
</tr>
<tr>
<td>National Enable or Disable</td>
<td>Enables/Disables the parameters defined by the National Personality configuration.</td>
</tr>
<tr>
<td>National Set</td>
<td>Sets parameters defined by the National Personality configuration.</td>
</tr>
<tr>
<td>National Restore</td>
<td>Restores the National Personality configuration to its default values.</td>
</tr>
<tr>
<td>Add/Change/Delete</td>
<td>Adds/Changes/Deletes an address translation, a protocol encapsulation, or a PVC definition.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the defined address translations, National Personality parameters, protocol encapsulation, or PVC definitions.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>
Set

Use the set command to configure local X.25 node addresses, maximum number of calls, frame and packet level window size, lowest to highest PVC and SVC channels, and the idle time for a switched circuit.

Syntax:

```
set
 address . .
 cable
 calls-out . .
 clocking . .
 default-window-size . .
 encoding
 equipment-type . .
 htf addr . .
 inter-frame-delay . .
 mtu
 national-personality . .
 pvc . .
 speed . .
 svc
 throughput-class . .
 vc-idle . .
```

**address** *x.25-node-addr*

Sets the local X.25 interface address (*x.25-node-addr*). Set the X.25 node address to 0, not to 00, to delete the local X.25 address.

Example: **set address 8982800**

**cable** *type*

Sets the cable type as follows:

- RS-232 DTE
- RS-232 DCE
- V35 DTE
- V35 DCE
- V36 DTE
- X21 DTE
- X21 DCE

A DTE cable is used when you are attaching the router to some type of DCE device (for example, a modem or a DSU/CSU).

A DCE cable is used when the router is acting as the DCE and providing the clocking for direct attachment.

**calls-out** *value*

Sets the maximum number of locally initiated, simultaneously active SVCs.
Valid Values: 1 to 239
Default Value: 4

clocking external or internal
To connect to a modem or DSU, configure clocking as external. To connect directly to another DTE device, use a DCE cable, set the clocking to internal, and configure the line speed.
Default: external

default-window-size value
Sets the window size for the packet level assigned by the router if there is no window-size facility in the Call-Request packet. The range is determined by the National Personality packet modulus (PACKET-EXT-SEQ-MODE).
Default: 2
Example: set default-window-size 3

counting NRZ or NRZI
Sets the HDLC transmission encoding scheme for the interface. Encoding may be set for NRZ (non-return to zero) or NRZI (non-return to zero inverted). NRZ is the more widely used encoding scheme while NRZI is used in some IBM configurations.
Default: NRZ

equipment-type DCE or DTE
Specifies whether the frame and packet levels act as DCE or DTE. This command has no relation to the cable type in use.
Default: DTE (must be DTE for X.31)

htf addr x.25-node-addr
Sets the local DTE address when DDN is used. It converts the IP address to an X.121 address as opposed to the set address command, which is used to set the local DTE address when CCITT is used.

inter-frame-delay value
This parameter defines the minimum delay between transmitted frames. Setting this parameter is useful when interfacing directly to older equipment. This parameter is the amount of time between frames in seconds.
Default: 0

mtu value
Sets the Maximum Transmit Unit (MTU) in bytes. This is the maximum message size that will be delivered to the X.25 interface to package and transmit over the serial line. The range is 576 to 16384.
Default: 1500

If you are encountering packet reassembly timeouts when transferring data over the X.25 interface, you should determine what the minimum packet size is for all LAN or serial interfaces that lead to the end-point, then calculate a more suitable X.25 MTU. You should not directly consider the actual X.25 packet size in this calculation because X.25 tends to use a smaller packet size. X.25 usually sends up to 7 packets at one time before waiting for an acknowledgment.

For example, consider a network topology that includes:
- A Token-Ring LAN having a packet size of 4000
Configuring the X.25 Network Interface

- An X.25 serial line having a packet size of 128 with a window size of 7 and a bit rate of 9600 bps
- An Ethernet LAN with a packet size of 1500

In this case, you should probably set the X.25 MTU to 1500. That means that about 12 packets will be sent over the X.25 interface. (MTU / X.25 packet size = number of X.25 packets to be sent).

When using an MTU of 4096, 32 packets must be sent over the X.25 interface. (4000 / 128 = 31.25). In this case, packet reassembly timeouts will probably occur if the X.25 modem speed is 9600 bps. Using an X.25 modem speed of 56 Kbps would probably solve this problem.

Notes:
1. The MTU parameter has significant impact on the memory requirements and memory utilization of the device. Use an MTU value of 8192 or less for devices with less than 8M of memory.
2. The amount of memory available while the device is running limits the number of SVCs that can be established and still maintain optimal performance. For recommendations on the maximum number of SVCs see the product home page on the World Wide Web.

**national-personality**  *GTE-Telenet or DDN*

Sets the 28 default parameters for either GTE-Telenet or DDN National Personality.

Default: GTE-Telenet

**pvc low/high**  *value*

Defines the lowest to the highest Permanent Virtual Circuit channel number. Zero indicates no PVCs. By default there are no PVCs.

- **pvc low**
  - 0

- **pvc high**
  - 0

The range is 1 to 4095. These values are setting boundaries of a given VC range. There is a maximum of 400 PVCs.

Example: set pvc low 40

Note: Values must not overlap values set for SVCs.

**speed**  *speed-setting*

For internal clocking, this command specifies the speed of the transmit and receive clock lines.

Valid values: 2400 to 2048000 bps.

For external clocking, this command does not affect the hardware but it sets the speed for some protocols, such as IPX, used to determine routing cost parameters. In these cases, set the speed to match the actual line speed. The maximum line speed that can be configured if using external clocking is 6 312 000 bps.

Default: 9600

Note: The X.25 software is supported only at speeds up to 256 000 bps.
svc low/high *inbound* or *two-way* or *outbound value*
Defines the lowest to the highest switched virtual circuit channel number. When low=high=0, no VCs in this category are defined.

**Example:** set SVC low-two-way 1

**Inbound**
Specifies the range of logical channel numbers to be assigned to inbound SVCs. By default, there are no inbound-only SVCs.

**Valid values:** 0 to 4095

**Default values:** 0

**Two-way**
Specifies the range of logical channel numbers to be assigned to two-way SVCs. By default, there are sixty-four 2-way SVCs.

**Valid values:** 0 to 4095

**Default values:**

```
svc low
 1

svc high
 64
```

**Outbound**
Specifies the range of logical channel numbers to be assigned to outbound SVCs. By default, there are no outbound-only SVCs.

**Valid values:** 0-4095

**Default:** 0

**Note:** Values in each range must not overlap other SVC ranges nor the PVC range. Table 51 shows a possible VC configuration.

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>inbound</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>two-way</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td>outbound</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

**throughput-class inbound** or **outbound bit-rate**
Defines the throughput class requested when making a call request while throughput negotiation is enabled.

**Default:** 2400 bps

This setting is ignored when processing incoming call requests.

**vc-idle value**
Defines the number of seconds that a switched circuit can be idle before it is cleared by the router. Zero indicates that the router never clears an idle circuit.

**Valid values:** 1 to 255

**Default:** 30 seconds
Enable

Use the `enable` command to enable DDN address translations, interface resets, or the incoming-calls-barred, outgoing-calls-barred, and lower-dtr features.

**Syntax:**

```
enable ddn—address-translations
```

**Note:** Enabling `ddn-address-translations` is no longer allowed. This feature defaults to enabled when the national personality selected is DDN, and defaults to disabled in all other cases.

- `incoming-calls-barred`
- `lower-dtr`
- `outgoing-calls-barred`

**incoming-calls-barred**

Specifies that the router will not accept incoming calls. The default setting for this parameter is disabled or `off`, which allows incoming calls.

**lower-dtr**

This parameter determines the way the data terminal ready (DTR) signal is handled for leased serial-line interfaces that are disabled. If this parameter is set to “disabled” (the default), the DTR signal will be raised when the interface is disabled.

If `lower-dtr` is set to “enabled,” the DTR will be lowered when the interface is disabled. This behavior may be desirable in situations where the interface has been configured as an alternate link for WAN Reroute and the interface is connected to a dial-out modem which maintains its dial connection based on the state of the DTR signal.

When `lower-dtr` is enabled and the interface is disabled, the DTR signal is low and the modem keeps the dial connection down. When the interface is enabled, due to a WAN Reroute backup scenario, DTR is raised and the modem dials a stored number to the backup site. When the primary interface is restored, the alternate interface is disabled, DTR is lowered, and the modem hangs up the dial connection.

The following cable types are supported:

- `RS-232`
- `V.35`
- `V.36`

The default setting is disabled.

**outgoing-calls-barred**

Specifies that the router will not allow outgoing calls. The default setting for this parameter is disabled or `off`, which allows outgoing calls.

Disable

Use the `disable` command to disable DDN address translations, interface resets as part of network certification, or the incoming-calls-barred or outgoing-calls-barred features.
Configuring the X.25 Network Interface

**Note:** If you set DDN as the national personality, DDN address translation is enabled automatically and this parameter has no effect.

** Syntax:**

```plaintext
disable ddn-address-translations
```

**Note:** Disabling ddn-address-translations is no longer allowed. This feature defaults to enabled when the national personality selected is DDN, and defaults to disabled in all other cases.

```plaintext
incoming-calls-barred
lower-dtr
outgoing-calls-barred
```

**National Enable**

Use the `national enable` command to enable a feature defined in the National Personality configuration.

**Syntax:**

```plaintext
national enable accept-reverse-charges bi-cug bi-cug-outgoing-access cug cug-deletion cug-incoming-access cug-insertion cug-outgoing-access cug-zero-override flow-control-negotiation frame-ext-seq-mode (required for X.31) packet-ext-seq-mode request-reverse-charges suppress-calling-addresses throughput-class-negotiation truncate-called-addresses
```

**accept-reverse-charges**

Accepts reverse charge calls during call establishment. This option is not available for DDN.

**DDN Default**

- off

**GTE Default**

- on
Configuring the X.25 Network Interface

**bi-cug** Enables the bilateral closed user group facility on this device. By default, this facility is disabled.

*Note:* You cannot add any bilateral CUGs unless this parameter is enabled.

**bi-cug-outgoing-access**
Enables the bilateral CUG with outgoing access facility on this device. By default, this facility is disabled.

**cug** Enables the closed user group facility on this device. By default, this facility is disabled.

*Note:* You cannot add any CUGs unless this parameter is enabled.

**cug-deletion**
Deletes a CUG facility from a call packet received from XTP before transmitting it over X.25. By default, this function is disabled.

**cug-incoming-access**
Enables the CUG with incoming access facility on this device. By default, this facility is disabled.

**cug-insertion**
Inserts the appropriate (address-specific, protocol-specific, or interface-specific) preferred cug number into a call request received by XTP from the X.25 interface before transmitting the request over IP. If there is already a CUG facility in the call packet, it will not be replaced. By default, this function is disabled.

**cug-outgoing-access**
Enables the CUG with outgoing access facility on this device. By default, this facility is disabled.

**cug-zero-override**
Causes the closed user group facility to ignore any CUG facility in call request packets with a CUG number of 0. By default, this function is disabled.

**flow-control-negotiation**
Enables the negotiation of packet and window size during call setup of SVCs.

*DDN Default* on

*GTE Default* on

**frame-ext-seq-mode**
Sets the frame layer sequence numbering to modulo 128 (i.e., 0 through 127).

*DDN Default* off (must be on for X.31)

*GTE Default* off

**packet-ext-seq-mode**
Enables the packet layer to use extended sequence numbers (0 through 127).
National Disable

Use the `national disable` command to disable a feature defined by the National Personality configuration.

Syntax:

- `national disable` _accept_reverse-charges_  
  _bi-cug_  
  _bi-cug-outgoing-access_  
  _cug_  
  _cug-deletion_  
  _cug-incoming-access_  
  _cug-insertion_  
  _cug-outgoing-access_  
  _cug-zero-override_
Configuring the X.25 Network Interface

flow-control-negotiation
frame-ext-seq-mode
packet-ext-seq-mode
request-reverse-charges
suppress-calling-addresses
throughput-class-negotiation
truncate-called-addresses

National Set

Use the **national set** command to set one or all of the default values made to the National Personality configuration.

**Syntax:**
```
 national set
 call-req
 clear-req . .
 disconnect-procedure . .
 dp-timer
 frame-window-size
 n2-timeouts
 packet-size . .
 reset . .
 restart . .
 min-recall
 min-connect
 collision-timer
 standard-version
 t1-timer
 t2-timer
 truncate-called-addr-size

 call-req
 Specifies the number of 10-second intervals permitted before giving up on a call request and clearing it. A zero indicates an infinite wait. In a list command output, this is displayed as the t21 timer.

 DDN Default
 20 decaseconds

 GTE Default
 20 decaseconds

 clear-req **retries** or **timer**
 Specifies the number of clear request retransmissions.
Retries
Number of clear request transmissions permitted before action is taken. In a list command output, this is displayed as the r23 retry count.

DDN Default
retries=1

GTE Default
retries=1

Timer
Number of 10–second intervals to wait before retransmitting a clear request packet. A zero in the timer value indicates an indefinite wait. In a list command output, this is displayed as the t23 timer.

DDN Default
18 decaseconds

GTE Default
18 decaseconds

disconnect-procedure *passive* or *active*

Specifies the type of connect procedure to use when connecting.

DDN Default
passive

GTE Default
passive

Passive
Specifies that SABM frames are not initiated by the router when connecting.

Active
Specifies that SABM frames are initiated by the router when connecting.

dp-timer
Specifies the number of milliseconds that the frame level remains in a disconnected state. Zero indicates immediate transition from disconnected phase to link setup state.

DDN Default
500 milliseconds

GTE Default
500 milliseconds

frame-window-size
Specifies the number of frames that can be outstanding before acknowledgment.

DDN Default
7

GTE Default
7

n2-timeouts
Specifies the number of times the retransmit timer (T1) can expire before the interface is recycled.

DDN Default
20
Configuring the X.25 Network Interface

packet-size default or maximum or window
Specifies the size of the packet.

default
Number of bytes in the data portion of the packet. Possible options include 128, 256, 512, 1024, 2048, and 4096. This value is used in the absence of packet size negotiation. Default cannot be greater than maximum.

DDN Default
128

GTE Default
128

maximum
Maximum number of bytes in the data portion of the packet. Possible options include 128, 256, 512, 1024, 2048, and 4096.

DDN Default
256

GTE Default
256

window
Number of outstanding I-frames permitted before acknowledgment is required. The range is determined by the National Personality Packet Modulus.

Related configuration parameters are
• Protocol max default window
• Set default window size

reset retries or timer
Specifies the number of reset request retransmissions.

Example: national set reset retries 2

retries
Number of reset request transmissions permitted before the call is cleared. The range is 0 to 255. In a list command output, this is displayed as the r22 retry count.

DDN Default
1

GTE Default
1

timer
Number of 10-second intervals to wait before retransmitting a reset request packet. The range is 0 to 255. A zero in the timer value indicates an indefinite wait. In a list command output, this is displayed as the t22 timer.

DDN Default
18 decaseconds

GTE Default
18 decaseconds
Configuring the X.25 Network Interface

restart retries or timer
Specifies the number of restart request transmissions.

retries
Number of restart request transmissions permitted before the interface is recycled. The range is 0 to 255. In a list command output, this is displayed as the r20 retry count.

DDN Default
1

GTE Default
1

timer
Number of 10-second intervals to wait before retransmitting a restart request packet. The range is 0 to 255. A zero in the timer value indicates an indefinite wait. In a list command output, this is displayed as the t20 timer.

DDN Default
18 decaseconds

GTE Default
18 decaseconds

min-recall
Specifies the minimum number of seconds to wait prior to reinitiating a call to open an SVC. The range is 0 to 255 seconds.

DDN Default
10 seconds

GTE Default
10 seconds

min-connect
 Specifies in seconds, the minimum amount of time an SVC will remain established once the connection is made barring any error conditions. The range is 0 to 255 seconds.

DDN Default
90 seconds

GTE Default
90 seconds

collision-timer
Specifies in seconds, the time delay used prior to reinitiating a call to open an SVC if the original attempt resulted in a call collision. The range is 0 to 255 seconds.

DDN Default
10 seconds

GTE Default
10 seconds

standard-version

DDN Default
1984

GTE Default
1984
Configuring the X.25 Network Interface

t1-timer

Specifies the frame retransmit time in seconds. The range is 1 to 255.

DDN Default

4 seconds

GTE Default

4 seconds

t2-timer

Specifies the amount of time in seconds to delay before acknowledging an I-frame. This is an optimization parameter. Setting the timer to 0 disables it. The range is 0 to 255.

DDN Default

0

GTE Default

0

truncate-called-addr-size

Specifies the number of characters truncated from the end of a called address. This parameter pertains only to XTP circuits. The range is 0 to 10.

DDN Default

2

GTE Default

2

National Restore

Use the `national restore` command to restore one or all of the default values made to the National Personality configuration via the `national set`, `national enable`, or `national disable` command.

Syntax:

```
  national restore
  all
  accept-reverse-charges
  bi-cug
  bi-cug-outgoing-access
  call-req
  clear-req ...
  cug
  cug-deletion
  cug-incoming-access
  cug-insertion
  cug-outgoing-access
  cug-zero-override
  disconnect-procedure ...
  dp-timer
  flow-control-negotiation
```
Add

Use the `add` command to add an X.121 address, a DDN X.25 Address, a protocol configuration, or a PVC definition.

Syntax:
```
add address
   bi-cugs
   cugs
   htf-address
   protocol
   pvc
```

address
Add an X.121 address translation for a protocol supported in the configuration of the router. The prompts that appear depend on the protocol address that you are adding. (See the following examples.) The protocol address and X.121 address being entered represent the protocol and X.121 DTE address of the remote DTE connecting to the router X.25 interface. The mapping of a protocol address and the X.121 address must be unique unless the protocol is APPN or DLSw. A protocol address cannot map to more than one X.121 address. Also, a specific X.121 address cannot map to more than one protocol address. The `set address` command is used to set the local X.25 address. After setting the local X.25 address, you can use...
Configuring the X.25 Network Interface

an X.25 remote address to dial out and an optional incoming remote address for call ID. If only remote called address is entered, then this address will be used for outgoing calls and incoming call verification.

Example: add address

IP example:

Protocol [IP]? IP
IP Address [0.0.0.0]? 128.185.1.2
Enc Priority 1 []? CC
Enc Priority 2 []? SNAP
Enc Priority 3 []? Null
X.25 Address []? 1234590
Remote address []?
Pref CUG []? 11
CUG (2) []? 12
CUG (3) []? 13
CUG (4) []? 14
CUG (5) []? 15
Pref Bi-CUG []? 21
Bi-CUG (2) []? 22
Bi-CUG (3) []?

IPX example:

Protocol [IP]? IPX
CUD Field Usage (Standard or Proprietary) IPX Host Number (in hex) []?
Enc Priority 1 []? SNAP
Enc Priority 2 []? Null
X.25 Address []?
Pref CUG []?
Pref Bi-CUG []? 1
Bi-CUG (2) []? 3
Bi-CUG (3) []?

Protocol
Specifies the protocol type of the address mapping you are adding. The valid values are APPN, DECnet, DLSw, IP, IPX and VINES. The default is IP.

Enc Priority
Determines the encapsulation type, as defined in RFC 1356, that will be put in the CUD. For IP, valid choices are CC, SNAP or Null. For IPX, valid choice is SNAP or Null. Enc Priority 1 is used in the first call attempt; if this fails, then Priority 2 is used and so on.

IP Address
Specifies the destination's IP address.

CUD Field Usage
This field is for IPX to X.25 address mapping only. It determines how the Call User Data (CUD) field is filled in when call request packets are received for IPX. The CUD field can be either Standard or Proprietary. Standard indicates that the usage is protocol multiplexing used in RFC 1356. Proprietary indicates a proprietary CUD field that can only be used with 2210 or compatible routers. The default is Standard.

IPX Host Number
Specifies the IPX host number of the destination.

X.25 Address
Specifies the X.121 DTE address of the remote DTE connecting to the router X.25 interface. The maximum address length is 15 digits.
pref cug
Specifies the preferred closed user group number for this DTE. The DTE uses this CUG when placing outgoing calls.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the closed user group facility using the national enable command.

CUG
Specifies the closed user group numbers for this DTE. Up to five CUGs may be defined, including the pref CUG.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the closed user group facility using the national enable command.

pref bi-cug
Specifies the bilateral closed user group number for this DTE. The DTE uses this CUG when placing outgoing calls.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the bilateral closed user group facility using the national enable command.

bi-cug
Specifies the bilateral closed user group numbers for this DTE. Up to five CUGs may be defined.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the bilateral closed user group facility using the national enable command.

cugs
Specifies the closed user group number for this X.25 interface.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the closed user group facility using the national enable command.

Example:

```
add cugs
Pref CUG []? 23
CUG (2) []? 24
CUG (3) []? 25
CUG (4) []? 26
CUG (5) []? 27
```
Configuring the X.25 Network Interface

pref cug
Specifies the preferred closed user group number for this DTE. This DTE uses this CUG when placing outgoing calls.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the closed user group facility using the national enable command.

cug
Specifies the closed user group numbers for this DTE. Up to five CUGs may be defined.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the closed user group facility using the national enable command.

bi-cugs
Specifies the closed user group number for this DTE.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the closed user group facility using the national enable command.

Example:
add bi-cugs
Pref BI-CUG [] ? 23
BI-CUG (2) [] ? 24
BI-CUG (3) [] ? 25
BI-CUG (4) [] ? 26
BI-CUG (5) [] ? 27

pref bi-cug
Specifies the preferred closed user group number for this DTE. This DTE uses this BI-CUG when placing outgoing calls.

Valid values: 0 to 9999

Default value: None

Note: You will not be prompted for this value if you have not enabled the bilateral closed user group facility using the national enable command.

bi-cug
Specifies the closed user group numbers for this DTE. Up to five BI-CUGs may be defined.

Valid values: 0 to 9999

Default value: None
Configuring the X.25 Network Interface

Note: You will not be prompted for this value if you have not enabled the bilateral closed user group facility using the **national enable** command.

htf-address

Adds a Defense Data Network (DDN) X.25 address translation.

Example:

```
add htf-address
Protocol [IP]
Convert HTF address
```

Protocol

Specifies the protocol that you are running over the X.25 interface. DDN supports IP only.

Convert HTF address

Converts the protocol address to a destination X.121 address in Host Table Format (HTF) format. Also see ddn-address-translations in the Enable/Disable commands section.

protocol

Enables a protocol encapsulation and defines the associated parameters.

Example:

```
add protocol
Protocol [IP]?
Window Size [2]?
Default Packet Size [128]?
Maximum Packet Size [256]?
Circuit Idle Time [30]?
Max VCs [4]?
Pref CUG [1]?
CUG (2) [2]
CUG (3) [3]
CUG (4) [4]
CUG (5) [5]
Pref BI-CUG [11]
BI-CUG (2) [12]
BI-CUG (3) [13]
BI-CUG (4) [14]
BI-CUG (5) [15]
```

QLLC example:

```
 X.25 Config> add protocol
 Protocol [IP]? dls
 Idle timer [30]?
 QLLC response timer (in decaseconds) [2]?
 QLLC response count [3]?
 Accept Reverse Charges [N]?
 Request Reverse Charges [N]?
 Station Type (1) PRI (2) SEC (3) (PEER) [3]?
 Max Packet Size [128]?
 Packet window size [7]?
 Max Message Size [1500]?
 Call User Data (in hex, 0 for null) []?
 Pref CUG [1]?
 CUG (2) [21]
 CUG (3) [3]
 Pref BI-CUG []?
```

Protocol

Specifies which protocol's encapsulation parameters you want to add: APPN, XTP, IP, DECnet, IPX, DLSw, or Banyan VINES. The default is IP.

Window Size

Specifies the maximum negotiable packet window size, the number
of packets that can be outstanding before requiring packet confirmation. The default is 2. The window size can be negotiated down to 1 by the called DTE.

Related configuration parameters are:

- Set Default Window

Default Packet Size

Specifies the default requested packet size for SVCs. This value serves as the lowest negotiable packet size and must be equal to or less than the maximum packet size specified with the `national set packet-size` command. The maximum default packet size is 4096 bytes. The default value for this parameter is 128 bytes.

Related configuration parameters are:

- National Set Packet Size Default
- National Set Packet Size Maximum

Maximum Packet Size

Specifies the maximum negotiable packet size for SVCs. This value must be equal to or less than the maximum packet size specified with the `national set packet-size` command. The default value for this parameter is 256 bytes. The maximum value that can be configured for this parameter is 4096 bytes. This value is utilized in calculating the maximum frame size for this X.25 interface.

Related configuration parameters are:

- National Set Packet Size Default
- National Set Packet Size Maximum

Circuit Idle Time

Specifies the number of seconds that an SVC can be idle before it is cleared by the router. The range is 0 to 65365. The default is 30 seconds. A 0 (zero) specifies that the circuit is never cleared by the router.

Maximum VCs

Specifies the maximum number of circuits that are open to the same DTE address for a protocol. Refer to RFC 1356 for information on utilizing this parameter. The Valid range is 1 to 10. The default is 4.

Accept Reverse Charges

Allows this protocol to override the setting of this National Personality parameter. This does not affect the National Personality parameter.

pref CUG, CUG, pref bi-cug, bi-cug

See `add address` command.

The following are QLLC unique parameters:

QLLC response timer

The number of seconds to wait for a Q-response packet before retransmitting.

QLLC response count

The maximum number of times QLLC will retransmit. Upon exhausting this number of retries, the upper layer is notified which may result in the circuit being cleared or reset by the router.
Configuring the X.25 Network Interface

Request Reverse Charges
Allows this protocol to override the setting of this National Personality parameter. This does not affect the National Personality parameter.

Station Type
Specifies the default station type for this protocol:
- Pri Primary Station
- Sec Secondary Station
- Peer Peer Station

Max message size
The maximum message size for this protocol. Specify a value that is less than, or equal to, the Max MTU size of the interface.

Call User Data
Specifies the default CUD field used in call packets for this protocol. Specify from 1-to-16 characters. If you do not specify characters, the default 0xC3 is used.

pvc Adds PVC, window size, and packet size definitions.

Example: add pvc

IP example:

Protocol [IP]? IP
Packet Channel Range Start [1]? Destination X.25 Address[]?
Packet Channel Range End [1]? Window Size [2]?
Packet Size [128]?

Protocol
Specifies which protocol’s encapsulation you want to modify: APPN, XTP, DECnet, Banyan Vines, DLSw, IP or IPX. The default is IP.

Packet Channel Range Start
Specifies the starting circuit number of this range of PVCs.

Packet Channel Range End
Specifies the last circuit number of this range of PVCs. Defaults to the value of the Packet Channel Range Start.

Destination X.25 Address
Specifies the X.25 address of the PVC’s destination.

Remote Address
Specifies the remote address for caller ID on received calls.

Window Size
Specifies the number of packets that can be outstanding before requiring packet confirmation. The default is 2.

Related configuration parameters are:
- Set Default Window

Packet Size
Specifies the maximum negotiable packet size for PVCs. This value must be equal to or less than the maximum packet size specified with the national set packet-size command. The default value for this parameter is 128 bytes. The maximum value that may be
Configuring the X.25 Network Interface

configured for this parameter is 4096 bytes. The maximum for X.31 is 256 bytes. This value is utilized in calculating the maximum frame size for this X.25 interface.

Related configuration parameters are:

- Nat Set Packet Size Default
- Nat Set Packet Size Maximum

Change

Use the change command to change an X.121 address, an DDN X.25 Address, a protocol configuration, or a PVC definition.

Note: To change an IP address that is associated with an X.121 address, you must delete the record that contains the address correlation, then redefine the address mapping.

Syntax:
```plaintext
change
  address
    htf-address
    protocol
    pvc
address
```

address

Modifies a X.121 address translation. The prompts that appear depend on the protocol that is changing.

Example: change address

IP example:
```
Protocol [IP]  IP
IP Address [0.0.0.0]? 
Enc Priority []?
X.25 Address [00000124040000]? 
```

IPX example:
```
Protocol [IP]  IPX
CUD Field Usage (Standard or Proprietary) [Standard]?
IPX Host number (in hex) []?
Enc Priority []?
X.25 Address [00000124040000]?
```

htf address

Changes a Defense Data Network (DDN) X.25 address translation.

Example:
```
change htf-address
Protocol [IP]
Change HTF address [0.0.0.0]?
New HTF address [10.4.0.124]?
```

protocol

Changes a protocol configuration definition.

Example:
```
change protocol
Protocol [IP]
Window Size [2]
```
Default Packet Size [128]
Maximum Packet Size [256]
Circuit Idle Time [30]
Maximum VCs [6]

QLLC example:
X.25 Config> change prot
Protocol [IP]?
dls
Idle Timer [30]?
QLLC response timer (in decaseconds) [15]?
QLLC response count [255]?
Accept Reverse Charges [N]?
Request Reverse Charges [N]?
Station Type (1) PRI (2) SEC (3) PEER [3]?
Max Packet Size [256]?
Packet Window size [7]?
Max message size [2048]?
Call User Data (in HEX, 0 for Null) []? C3010000525450

pvc Changes PVC, window size, and packet size definitions.

Note: To change the protocol, packet channel or destination X.25 address, you must delete the record which contains the definition, then add it back with the changed parameters. A change will apply to all PVCs in the range of circuits defined by the Packet Channel Range Start parameter.

Example:
change pvc
Protocol [IP]?
Packet Channel Range Start[1]?
Destination X.25 Address []?
Packet Channel Range End [1]
Window Size [2]?
Packet Size [128]?

Delete

Use the delete command to delete an X.121 address, a protocol configuration definition, or a PVC definition.

Syntax:
delete address
 bi-cugs
cugs
 protocol ...
pvc

Example: delete address

IP example:
Protocol [IP]?
IP Address [0.0.0.0]?

IPX example:
Protocol [IP]?
IPX Host Number (in hex) [2]?
Configuring the X.25 Network Interface

bi-cugs

Deletes a bilateral closed user group number used by this interface.

Valid values:

- **Y**: Deletes the current CUG.
- **N**: Does not delete the current CUG.
- **ALL**: Deletes all remaining CUGs.
- **Q**: Stops deleting any remaining CUGs.

Example:

```
delete bi-cugs
Delete Pref BI-CUG [Y]? Y
Delete BI-CUG (2) [Y]? N
Delete BI-CUG (3) [Y]? q
```

cugs

Deletes the closed user group numbers used by this interface. This command works similar to the `delete bi-cug` command.

Example:

```
del cug
Delete Pref CUG [Y]? Y
Delete CUG (2) [Y]? Y
Delete CUG (3) [Y]? q
```

protocol prot-type

Deletes a protocol encapsulation configuration definition. `Prot-type` is the name or number of the protocol encapsulation that is currently defined in the router’s configuration.

pvc

Deletes a PVC definition. All PVCs in the range of circuits defined by the Packet Channel Range Start parameter will be deleted.

Example:

```
delete pvc
Protocol [IP]? 1
Destination X.25 Address [ ]?
Packet Channel Range Start [ ]?
```

List

Use the `list` command to display the current configuration for the specified parameter.

Syntax:

```
list  address
      all
      cugs
      detailed
      protocols
      pvc
      summary
```

address

Lists all the X.121 address translations.
Example:

```
list address
```

<table>
<thead>
<tr>
<th>IF#</th>
<th>Prot #</th>
<th>Active Enc</th>
<th>Protocol</th>
<th>X.25 address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0(IP)</td>
<td>CC</td>
<td>10.1.2.3</td>
<td>1238765742</td>
</tr>
<tr>
<td>1</td>
<td>7(IPX)</td>
<td>SNAP</td>
<td>10</td>
<td>12389</td>
</tr>
</tbody>
</table>

CUGS: 11 12 13 14 15
BI-CUGS: 21 22

all

Lists all the X.25 addresses, National Personality parameters, all defined protocols and their values, and all defined PVCs.

Example:

```
list all
```

X.25 Configuration Summary

Node Address: 313131
Max Calls Out: 4
Inter-Frame Delay: 0 Encoding: NRZ
Speed: 64000 Clocking: Internal
MTU: 2048 Cable: V.35 DCE
Lower DTR: Disabled
Default Window: 2 SVC idle: 30 seconds
National Personality: GTE Telenet (DTE)
PVC Low: 1 High: 1
Inbound Low: 0 High: 0
Two-Way Low: 2 High: 64
Outbound Low: 0 High: 0
Throughput Class in bps Inbound: 2400
Throughput Class in bps Outbound: 2400

X.25 National Personality Configuration

Request Reverse Charges: on Accept Reverse Charges: on
Incoming Calls Barred: off Outgoing Calls Barred: off
Throughput Negotiation: on Flow Control Negotiation: on
Suppress Calling Addresses: off DDN Address Translation: off
Truncate Called Addresses: off
Number of digits to truncate called addresses to: 2
CUG Support: off BI-CUG Support: off
CUG Outgoing Access: off CUG Incoming Access: off
BI-CUG Outgoing Access: off CUG 0 Override: off
CUG Insertion: off CUG Deletion: off
Call Request Timer: 20 decaseconds
Clear Request Timer: 18 decaseconds
Reset Request Timer: 18 decaseconds (1 retries)
Restart Request Timer: 18 decaseconds (1 retries)
Min Recall Timer: 10 seconds
Min Connect Timer: 90 seconds
Collision Timer: 5 seconds
T1 Timer: 4.00 seconds N2 Timeouts: 20
T2 Timer: 2.00 seconds DP Timer: 500 milliseconds
Standard Version: 1984 Network Type: CCITT
Disconnect Procedure: passive
Window Size Frame: 7 Packet: 2
Packet Size Default: 128 Maximum: 256

X.25 protocol configuration

No protocols defined

X.25 PVC configuration

No PVCs defined

X.25 address translation configuration

No address translations defined

```
cugs
```

Lists the CUG and BI-CUG numbers for each X.25 interface in this device.

Example:

```
l cugs
```

CUGS: 23 24 25 26 27
Configuring the X.25 Network Interface

detailed

Lists the value of all the default parameters that the national set command modifies. Descriptions of the screen display are listed in the national set command described later in this chapter.

Example:

di

X.25 National Personality Configuration

Follow CCITT: on OSI 1984: on OSI 1988: off
Request Reverse Charges: off Accept Reverse Charges: off
Frame Extended seq mode: off Packet Extended seq mode: off
Incoming Calls Barred: off Outgoing Calls Barred: off
Throughput Negotiation: on Flow Control Negotiation: off
Suppress Calling Addresses: off DDN Address Translation: off
Truncate Called Addresses: off
Number of digits to truncate called address to: 2
CUG Support: off BI-CUG Support: off
CUG Outgoing Access: off CUG Incoming Access: off
BI-CUG Outgoing Access: off CUG 0 Override: off
CUG Insertion: off CUG Deletion: off
T21 (Call Request Timer): 20 decaseconds
T23 (Clear Request Timer): 18 decaseconds (1 retries)
T22 (Reset Request Timer): 18 decaseconds (1 retries)
T20 (Restart Request Timer): 18 decaseconds (1 retries)
Min Recall Timer: 10 seconds
Min Connect Timer: 90 seconds
Collision Timer: 8 seconds
T1 Timer: 4.00 seconds NZ timeouts: 20
T2 Timer: 0.00 seconds DP Timer: 500 milliseconds
Standard Version: 1984 Network Type: CCITT
Disconnect Procedure: active
Window Size Frame: 7 Packet: 2
Packet Size Default: 256 Maximum: 256

protocols

Lists all the defined protocol configurations. See "Add" on page 341 for a description of the parameters.

Example:

di

X.25 protocol configuration

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Window Size</th>
<th>Packet Size</th>
<th>Idle Time</th>
<th>Max Time</th>
<th>VCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(IP)</td>
<td>128</td>
<td>256</td>
<td>30</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CUGS:</td>
<td>11 12 13 14 15 BI-CUGS: 21 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QLLC Protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Packet Size</th>
<th>Idle Time</th>
<th>Max Time</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>26(DLSM)</td>
<td>256</td>
<td>30</td>
<td>255</td>
<td>N</td>
</tr>
<tr>
<td>CUGS:</td>
<td>11 12 13 14 15 BI-CUGS: 21 22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pvc

Lists all the defined PVCs.

Example:

di

X.25 PVC configuration

<table>
<thead>
<tr>
<th>Prtcl</th>
<th>X.25 Address</th>
<th>Active Enc</th>
<th>Window</th>
<th>Pkt len</th>
<th>Pkt chan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8383838383 CC 4 1024 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

summary

Lists all the values established by the set and enable commands. These values modify the X.25 configuration.
Example:

list summary

X.25 Configuration Summary

Node Address: 313131
Max Calls Out: 4
Inter-Frame Delay: 0 Encoding: NRZ
Speed: 64000 Clocking: Internal
MTU: 2048 Cable: V.35 DCE
Lower DTR: Disabled
Default Window: 2 SVC idle: 30 seconds
National Personality: GTE Telenet (DTE)
PVC low: 1 high: 1
Inbound low: 0 high: 0
Two-Way low: 2 high: 64
Outbound low: 0 high: 0
Throughput Class in bps Inbound: 2400
Throughput Class in bps Outbound: 2400

Accessing the Interface Monitoring Process

To monitor information related to the X.25 network interface, access the interface monitoring process as follows:

1. At the OPCON prompt, enter talk 5. For example:

 `* talk 5
 +`

 The GWCON prompt (+) is displayed on the console. If the prompt does not appear when you first enter GWCON, press Return again.

2. At the GWCON prompt, enter the configuration command to see the protocols and networks for which the router is configured. For example:

 `+ configuration`

 See page [Configuration on page 130](#) for sample output of the configuration command.

3. Enter the network command and the number of the X.25 interface.

 `+ network 2
 X.25>`

 The X.25 monitoring prompt is displayed on the console. You can then view information about the X.25 interface by entering the X.25 monitoring commands.

X.25 Monitoring Commands

This section summarizes and explains all the X.25 monitoring commands. The X.25 monitoring commands allow you to view the parameters and statistics of the interfaces and networks that transmit X.25 packets. Monitoring commands display configuration values for the physical, frame, and packet levels. You also have the option of viewing the values for all three protocol levels at once.

Enter the X.25 monitoring commands at the X.25> prompt. [Table 52](#) shows the commands.

<table>
<thead>
<tr>
<th>Monitoring Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 101</td>
</tr>
</tbody>
</table>
Configuring the X.25 Network Interface

Table 52. X.25 Monitoring Command Summary (continued)

<table>
<thead>
<tr>
<th>Monitoring Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Lists individual PVC or SVC statistics and general information.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Displays the current parameters for any level of the X.25 configuration.</td>
</tr>
<tr>
<td>Statistics</td>
<td>Displays the current statistics for any level of the X.25 configuration.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11</td>
</tr>
</tbody>
</table>

List

Use the list command to display the current active PVCs and SVCs.

Syntax:

```plaintext
list pvc
svc
```

- `pvc` Displays the configured permanent virtual circuits.
- `svc` Displays the active switched virtual circuits.

Example:

```
list svc
LCN/ Destination Originate Transmits Protocol Totals
State Address Call Queued Encapsulated Xmts Rcvs Resets
13 D 89828077113 YES 0 IP 894 261 1
20 D 89828077114 NO 0 IP 943 43 0
42 P 89828077116 YES 6 IP 0 0 0
23 C 89828077117 YES 0 IP 3054 110 0
```

D - Data Transfer P - Call Progressing
C - Call Clearing

Parameters

Use the parameters command to display the current parameters for any level of the X.25 configuration.

Syntax:

```plaintext
parameters all
                        frame
                        packet
                        physical
```

- `all` Displays the parameters for the packet, frame, and physical levels.
- `frame` Displays the parameters for the frame level.
- `packet` Displays the parameters for the packet level.

Example:

```
parameters frame
Frame Layer Parameters:
  Maximum Frame Size = 262 Maximum Window Size = 7
  Protocol Enabled = YES Equipment Type = DTE
  T1 Retransmit Timer = 4 T2 Acknowledge Timer = 2
  N2 Retry Counter = 20 Disconnect Procedure = PASSIVE
  Disconnect Timer = 500 Network Type = GTE
  Protocol Options: Inhibit Idle RRs No MOD 128 No Enable SARM No
```

```
parameters packet
```

Displays the parameters for the packet level.
Configuring the X.25 Network Interface

Example:

parameters packet
Packet Layer Parameters:
Default Packet Size = 128 Maximum Packet Size = 256
Log 2 Packet size = 2 Acknowledge Delay = 0
Layer Enabled = YES Default Window Size = 2
Lowest SVC = 1 Highest SVC = 64
Lowest PVC = 0 Highest PVC = 0
T20 (Restart) = 18 R20 (Retry) = 1
T21 (Call) = 20 R22 (Retry) = 1
T23 (Clear) = 18 R23 (Retry) = 1
Network Type = GTE Equipment Type = DTE
Recall Timer = 10 seconds
Collision = 5 seconds

physical
Displays the parameters for the physical level.

Example:

parameters physical
Physical Layer Parameters:
Interface Type = V.35
Maximum Frame Size = 264 InterFrame Delay = 2
Configured Speed = 0 Clocking = External
Encoding = NRZ
Protocol Enabled = Yes

Statistics

Use the statistics command to display the current statistics of any level of the X.25 configuration.

Syntax:

statistics

 all

 frame

 packet

 physical

 all

 Displays the statistics for the packet, frame, and physical levels.

 frame

 Displays the statistics for the frame level.

Example:

statistics frame
Frame Layer Counters: Received Transmitted
Information Frames 0 0
RR Command 0 0
RR Response 0 0
RNR Command 0 0
RNR Response 0 0
REJ Command 0 0
REJ Response 0 0
SABM 0 71
SABME 0 0
UA 0 0
DISC 0 0
DM 0 0
FRMR 0 0
Total Bytes 0 0
T1 Timeouts 0 T2 Timeouts 0 NZ Timeouts 1
Bad Address 0 Unsolicited F-Bit 0 Invalid Ctl 0
Frame Layer Miscellaneous:
Queued Output Frames 0 Protocol Layer State = Link Setup
Send Sequence N(S) = 0 Receive Sequence N(R)= 0

packet
Displays the statistics for the packet level.
Configuring the X.25 Network Interface

Example:

```
statistics packet
Packet Counters: Received Transmitted
Call Request 0 0
Call Accepted 0 0
Clear Request 0 0
Clear Confirm 0 0
Interrupt Request 0 0
Interrupt Confirm 0 0
RR Packet 0 0
RNR Packet 0 0
REJ Packet 0 0
Reset Request 0 0
Reset Confirm 0 0
Restart Request 0 0
Restart Confirm 0 0
Diagnostic 0 0
Data Packet 0 0
Data Bytes 0 0
Buffers Queued 0 0
Invalid Packets Received = 0
Switched Circuits Opened = 0
```

```
statistics physical
Displays the statistics for the physical level.
```

Example:

```
statistics physical
X.25 Physical Layer Counters:
Rx Bytes 0 Tx Bytes 0
Adapter cable: V.35 DTE
V.24 circuit: 106 106 107 100 109 125 141
Nicknames: RTS CTS DSR DTR DCD RI LL
PUB 41450: CA CB CC CD CF
State: ON ON ON ON ON OFF OFF
Line speed: unknown
Last port reset: 12 minutes, 21 seconds ago
Input frame errors:
crc error 0 alignment (byte length) 0
missed frame 0 too long (> 0 bytes) 0
aborted frame 0 DMA/FIFO overrun 0
L & F bits not set 0
Output frame counters:
DMA/FIFO underrun errors 0 Output aborts sent 0
```

X.25 Network Interfaces and the GWCON Interface Command

While X.25 interfaces have their own monitoring processes for monitoring purposes, the router also displays complete statistics for installed network interfaces when you use the `interface` command from the GWCON environment. (For more information on the `interface` command, refer to Chapter 10, The Operating/Monitoring Process [GWCON - Talk 5] and Commands).

Statistics Displayed for X.25 Interfaces

The following statistics display when you run the `interface` command from the GWCON environment for X.25 interfaces:

```
+interface
2
Nt Nt' Interface CSR Vec Passed Failed Failed
2 2 X25/0 81640 5C 0 0 0
X.25 MAC/data-link on SCC Serial Line interface
Interface State: DCD CTS Packet Layer Frame Layer
OFF OFF DOWN DOWN
Packet Counters: Received Transmitted
Data Packet 0 0
Data Bytes 0 0
```

356 MRS V3.2 Software User's Guide
The following list describes the interface statistics:

Nt Global interface number

Nt’ Reserved for future dial circuit use

Interface Interface name and number (within interfaces of the same type)

CSR COMM and Status Registers address

Vec Interrupt vector

Self-Test Passed Number of times self-test succeeded

Self-Test Failed Number of times self-test failed

Maintenance Failed Number of maintenance failures

Interface state Display the current state of the input modem control signals, the packet layer (X.25 layer 3), and the frame layer (X.25 layer 2).

Packet Counters Provides statistics on packets received and transmitted.

Data Packets Displays the number of data packets the interface transmits receives on the network

Data Bytes Displays the number of data bytes the interface transmits receives on the network.

Buffers Queued Displays the number of buffers currently queued for transmission over the network. These may be frame or packet layer supervisory messages as well as forwarder packets.
Invalid Packets Received
Displays the number of invalid X.25 packets received from the network.

Switched Circuits Open
Displays the number of switched circuits currently open.

Frame Layer Counters
Provides statistics generated from Frame Layer counters.

Information Frames
Displays the number of X.25 Information frames the interface has transmitted and received.

X.25 Physical Layer Counters
Provides statistics generated from Physical Layer counters.

RX Bytes
Display the number of bytes received by the Physical layer.

TX Bytes
Displays the number of bytes transmitted by the Physical layer.

V.24 circuit Nicknames State
The circuits, control signals, pin assignments and their state (ON or OFF).

Note: The symbol - - - in monitoring output indicates that the value or state is unknown.

Line speed
The transmit clock rate.

Last port reset
The length of time since the last port reset.

Input frame errors:

CRC error
The number of packets received that contained checksum errors and as a result were discarded.

Alignment
The number of packets received that were not an even multiple of 8 bits in length and as a result were discarded.

Too short
The number of packets that were less than 2 bytes in length and as a result were discarded.

Too long
The number of packets that were greater than the configured size, and as a result were discarded.

Aborted frame
The number of packets received that were aborted by the sender or a line error.

DMA/FIFO overrun
The number of times the serial interface card could not send data fast enough to the system packet buffer memory to receive them from the network.
Missed frame
When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

L & F bits not set
On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame upon arrival, the hardware sets both the last and first bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.

Note: It is unlikely that the L & F bits not set counter will be affected by traffic.

Output frame counters:

DMA/FIFO underrun errors
The number of times the serial interface card could not retrieve data fast enough from the system packet buffer memory to transmit them onto the network.

Output aborts sent
The number of transmissions that were aborted as requested by upper-level software.
Configuring the X.25 Network Interface
Chapter 28. Using XTP

This chapter describes the X.25 Transport Protocol (XTP) for transporting X.25 traffic over TCP/IP. Included are the following sections:

- "The X.25 Transport Protocol"
- "DTE Address Wildcards" on page 363
- "XTP Backup Peer Function" on page 364
- "Local XTP" on page 365
- "XTP and Closed User Groups" on page 365
- "Configuring XTP" on page 366
- "Configuration Procedures" on page 366

The X.25 Transport Protocol

X.25 Transport Protocol (XTP) provides you with the services of a “protocol forwarder.” A protocol forwarder is the focal point for inbound and outbound protocol packet processing. Forwarders receive packets on one network interface and send them to another interface.

XTP is designed to work with X.25 devices that are situated at multiple remote sites. In such environments, XTP can eliminate the use of X.25 packet-switched networks for communicating with servers at one or more centralized locations.

To enable this, you use routers at the server and remote locations to encapsulate the data and deliver the X.25 packets between the clients and server via TCP/IP.

Figure 19 on page 362 illustrates a network configuration before and after using XTP.
Using XTP

Figure 19. Configuration Before and After XTP

Configuration Information

X.25 recognizes an incoming call for XTP based on the node addresses configured for XTP. Therefore, in order to transport X.25 traffic between the X.25 nodes, you must configure X.25 to map to the data terminal equipment (DTE) address and IP addresses of the routers to which the nodes are connected.

For example, in Figure 19, you configure X.25 clients on remote routers and on the concentrator router. Remote routers in this example are the routers that connect the X.25 clients to the TCP/IP network that is used to access the X.25 server; the concentrator router connects the X.25 server to the TCP/IP network that is used to access the remote routers.

Note: When you configure XTP, if a router is connected to an X.25 switch, it is considered to be DTE. If it is not connected to a switch, it is considered to be DCE (Data Circuit-Terminating Equipment).

To configure a router for XTP, define the following information from the XTP config> prompt and then restart the router:

- Local DTEs
- Peer routers
Remote DTEs

X.25 nodes connected to the X.25 interfaces on the router.

To configure local DTEs, use the X.121 address that is assigned to the local DTE. Multiple local DTEs can be configured on an interface.

Peer Routers

Routers with which you communicate over TCP/IP.

Peer routers can differ depending on “point of view”. For example, in Figure 19 on page 362, the two remote routers are the peer routers from the perspective of the concentrator router. However, the concentrator router is the peer router from the perspective of the two remote routers.

You designate the peer router by its internal IP address.

Remote DTEs

Remote X.25 nodes to which the local X.25 nodes open connections and exchange data. Use the X.121 address that is assigned to the remote DTE.

Configure a unique IP address for each peer router. For example, in Figure 19 on page 362, the concentrator router must know the unique IP address of each remote router, and each remote router must know the IP address of the concentrator router.

PVC

A permanent channel that remains connected after X.25 restarts.

PVCs, because they are constant channels, are similar to leased telephone lines. A PVC, in the XTP context, is a PVC from a local X.25 DTE node to a remote X.25 DTE.

When you configure a router for PVCs, map the IP address of the peer router and the PVC number of the remote and local DTE. A PVC is identified by four pieces of information which are the:

- Logical channel numbers of the local PVCs
- X.121 address of the local DTE
- Logical channel numbers of the PVCs on the remote (peer) router
- X.121 address of the remote DTE

CUGS

The closed user groups for the XTP protocol. See Understanding Closed User Groups on page 324.

Additional configuration information can be found at Configuring XTP on page 366 and at XTP Configuring Commands on page 375.

DTE Address Wildcards

The "**" wildcard is available for DTE address configuration. This is in addition to the "?" character that can be specified in a DTE address to represent any one digit in that position in the address. For example, a specification of "1?2?3" can match address 18243 where the first, third, and fifth digits are 1, 2, and 3, respectively.

The "**" wildcard character can represent any string of zero or more digits. Its use is limited to the end of a DTE address specification. For example: “123**”, “5555**”, “9**"
Using XTP

or "*". The special case of a DTE address of "*" represents any DTE address, even a null address. The null address is useful for handling incoming calls with no calling address in the X.25 Call Request packet.

Use of the "*" wildcard increases the chances for adding a local or a remote DTE address that conflicts with an existing address. The add local-dte and add remote-dte commands are enhanced to provide the conflicting address when the user attempts to add a DTE address that conflicts with an existing address.

Example: xtp config> add local-dte
 Interface number [0]? 1
 DTE address [] 123456
 DTE address []?

XTP config> add local-dte
 Interface number [0]? 1
 DTE address [] 1*
 DTE address conflicts with existing DTE address 123456

XTP Backup Peer Function

The Backup Peer Function allows the association of multiple peer routers with a remote DTE. The user specifies a list of peer routers associated with a remote DTE.

Example:

XTP config> add rem
 DTE address []? 123456
 Peer router’s internal IP Address [0.0.0.0]? 10.0.0.2
 Peer router’s internal IP Address [0.0.0.0]? 10.0.0.4
 Peer router’s internal IP Address [0.0.0.0]? 11.0.0.1
 Peer router’s internal IP Address [0.0.0.0]?

When an incoming call for the remote DTE is received, a connection is attempted through each router in the list in the same order that they appear for the remote DTE.

Searching for a Remote DTE

When a DTE initiates a call for a remote DTE, both DTE addresses are inspected to determine if they are acceptable for X.25 transport. If they are acceptable, the X.25 Transport protocol forwarder determines through which peer router to attempt to complete the call. It starts with the first router in the remote DTE’s list of peer routers in its search. The first condition that must be met is an active TCP connection to the peer router. If there is not an active TCP connection to the peer, the next router in the list is checked. When an active TCP connection is found, an attempt is made to complete the call. The Connection Request Timer is started to time the call connection process.

The remote DTE search is terminated by one of the following events:
 • Successful completion of the call through the peer router
 This completes call setup processing and ends the search for the remote DTE.
 • Rejection of the call by the peer router
 This causes the search for the remote DTE to proceed to the next router in the peer router list.
 • Expiration of the Connection Request Timer
This causes the search for the remote DTE to proceed to the next router in the peer router list.

If a pass through the list of peer routers is completed without a successful connection through any of the peer routers, the call to the local DTE is cleared.

Connection Request Timer

The Connection Request Timer is used to ensure that no call setup procedure hangs for an indeterminable time. There is a timer configured for each peer router.

Example:

```
XTP config>add peer-router
Router's internal IP Address [0.0.0.0]? 10.0.0.2
Connection setup timeout [230]? 60
```

The Connection Request Timer can be configured from 10 to 480 seconds. The default is 230 seconds. This default was determined based on the fact that the default setting for the X.25 Call Request Timer is 200 seconds.

The timer is started when an attempt is made to complete a call through a peer router. It is stopped when the call attempt is either accepted or rejected by the peer router.

Local XTP

Local XTP allows you to route incoming X.25 traffic to the same or different interfaces on the current router. To configure local XTP, specify the router’s internal IP address as a peer address on the `add peer` command.

XTP and Closed User Groups

XTP supports closed user groups through the local DTE address defined by the `add local` or the `add cug` command. To enable XTP to use closed user groups, you must:

- Enable CUG or BI-CUG on the appropriate X.25 interfaces.
- Supply the XTP protocol-specific CUGs using the `add cug` and `add bi-cug` commands, if desired.
- Supply the appropriate closed user group numbers in the `add local` command. These include:
 - Closed user group number
 - Preferred closed user group number
 - Bilateral closed user group number
 - Preferred bilateral closed user group number
- Enable CUG insertion or deletion for the interface in the `national enable cug_insertion` or `national enable cug_deletion` commands, if desired.
- Enable the CUG 0 override option on the `national enable cug 0 override` command, if desired.
XTP is a protocol forwarder used to transport X.25 traffic over TCP/IP. XTP allows existing X.25 devices to communicate over a TCP/IP backbone and migrate from an X.25 network to a network of your choice.

Configuration Procedures

This section defines the detail for configuring the network displayed in Figure 20.

Figure 20. Sample XTP Configuration

This configuration shows three routers, the Concentrator router, Remote 1 router, and Remote 2 router. To make XTP operational on this network, perform the following steps for each of these routers:

- Set the data link
- Configure the IP interface
- Configure X.25
- Set the National Personality values
- Define the IP address
Setting the Data Link

The data link defines the protocol you are using to send data packets over the network. Define the data link between the router you are configuring and each serial interface. The example in Figure 20 on page 366 configures a concentrator router with three serial interfaces, two for X.25 and one for PPP.

Set the data-link protocol for the serial interfaces:

- `Config> set data-link x25 1`
- `Config> set data-link x25 2`
- `Config> set data-link ppp 3`

Configuring the IP Interface

In Figure 20 on page 366, the IP interface is PPP; enter `network 3` at the `Config>` prompt to configure this PPP interface:

- `Config> network 3`
- `PPP interface configuration`

Note: This procedure does not include details about the configuration of PPP. For details, refer to Software User’s Guide

Configuring X.25

Before configuring XTP, configure the X.25 parameters for each interface. The following example configures the basic parameters for X.25 and is based on the topology in Figure 20 on page 366.

The parameters you need to configure depend on your network topology. For details about all the X.25 parameters, refer to Software User’s Guide

Interface 1

Use the following instructions to configure Interface 1 on the concentrator router as defined in Figure 20 on page 366.

1. At the `Config>` prompt, enter `network` followed by the number of the X.25 interface. In this example, it is interface 1.

- `Config> network 1`
- `X.25 User Configuration`
- `X.25 Config>

2. Add the XTP protocol to the X.25 interface and define general interface values. Enter `add protocol xtp` at the X.25 `Config>` prompt. This command needs to be entered one time only:

- `X.25 Config> add protocol xtp`
- `Window Size [2]?
- `Default Packet Size [128]?
- `Maximum Packet Size [256]?

3. Specify the network address by entering `set address` X.25 node address. In Figure 20 on page 366, the node address (DTE address) is 100.

- `X.25 Config> set address 100`
Using XTP

4. Enter `set clocking` followed by `internal` or `external` based on your router type.
   ```
   X.25 Config> set clocking internal
   ```

5. Enter `set speed` followed by the access rate (line speed).
   ```
   X.25 Config> set speed
   Access rate in bps [9600]? 19200
   ```

6. Enter `set equipment-type` and specify whether the frame and packet levels act as DCE or DTE.
   ```
   X.25 Config> set equipment-type dce
   ```

7. Enter `set pvc` and define the lowest and the highest PVC you are using.
   ```
   X.25 Config> set pvc low 1
   X.25 Config> set pvc high 1
   ```

8. Enter `add pvc` to define individual PVCs.
   ```
   X.25 Config> add pvc
   Protocol [IP]? xtp
   Packet Channel [1]? 1
   Destination X.25 Address [ ]? 101
   Window Size [2]? 1
   Packet Size [128]
   ```

9. (Optional) Enter `national enable truncate-called-addresses`. If you want to truncate the called address size, enter `national set truncate-called-addr-size` followed by the number of digits to truncate the called DTE address to.

10. (Optional) Enable CUG support, CUG insertion, and CUG deletion as required.

Interface 2

Use the following instructions to configure interface 2.

1. At the Config> prompt, enter `network` followed by the number of the X.25 interface. In Figure 20 on page 366, it is 2.
   ```
   Config> network 2
   ```

2. Use the same procedures as defined in “Interface 1” on page 367 to set the following parameters for interface 2:
 - address = 200
 - clocking = internal
 - speed = 19200
 - equipment = dce

3. Enter `set svc` and define the lowest and highest SVC you are using.
 There are three types of SVCs: two-way, inbound and outbound. The defaults are “svc low-two-way = 1” and “svc high-two-way = 64.” All other SVC types default to 0. For additional information on SVCs and PVCs, refer to Software User’s Guide.
   ```
   X.25 Config> set svc ?
   X.25 Config> set svc low-inbound 0
   X.25 Config> set svc high-inbound 0
   X.25 Config> set svc low outbound 0
   X.25 Config> set svc high outbound 0
   X.25 Config> set svc low-two-way 2
   X.25 Config> set svc high-two-way 2
   ```

4. Exit the X.25 Config> prompt.
   ```
   X.25 Config> exit
   ```
Setting the National Personality

Each X.25 public network has its own standard configuration. The National Personality refers to a group of 28 variables that define the characteristics of the public data network. These variables provide the router with control information for packets transferred over the link and influence the X.25 facilities used between and XTP router and its local DTE.

All facilities contained in incoming call requests are passed on to the peer router, regardless of whether the local router was configured to support that facility. For example, when packet size negotiation is requested in the incoming call and flow control negotiation is not configured in the router.

The router will insure any packet size and window size being negotiated is within the range specified when defining the X.25 interface. For example, a packet window greater than 7 is negotiated down to 7 if packet-ext-seq-mode has not been defined for the X.25 interface.

To view the configuration values, enter `list detailed` at the X.25 Config> prompt. To set the default values for the national personality, enter `set national-personality` at the X.25 Config> prompt. For further information, refer to Software User’s Guide.

Defining the IP Address

Before you configure the Concentrator router (as displayed in Figure 20 on page 366) for XTP, define the IP address for this router. Enter `protocol ip` at the Config> prompt and enter `add address` at the IP config> prompt.

```
Config>protocol ip
IP config>add address
Which net is this address for [0]? 3
New address [0.0.0.0]? 128.185.100.7
Address mask [255.255.0.0]? 255.255.255.0
```

Setting the Internal IP Address

Each router identifies its peer routers by the internal IP address of the peer routers.

To set the internal IP address of the peer router, enter `set internal IP address` at the IP Config> prompt.

```
IP config>set internal-ip-address
Internal IP address [0.0.0.0]? 128.185.100.1
```

Configuring XTP

After you have configured X.25 and defined the IP address, you are ready to configure XTP for the router.

If you need further configuration information when configuring XTP, see XTP Configuring Commands” on page 375.

Note: When configuring your network for XTP, remember that the peer routers are always the routers you are communicating with over TCP/IP. Therefore, the peer router can differ depending on the point of view. When configuring the routers defined as Remote 1 router and Remote 2 router in Figure 20 on page 366 , to them the peer router is the Concentrator router.
Using XTP

Implement the following steps to configure XTP for the router:

1. To access the XTP config> prompt, enter `protocol xtp` at the Config> prompt.

2. Add interface 1 to the XTP configuration. Enter `add local-dte` at the XTP Config> prompt.

   ```
   XTP config>add local-dte
   Interface number [0]? 1
   Allow inbound calls without calling DTE address? (Y or N) [N]? n
   DTE address [ ]? 101
   Pref CUG []? 18
   CUG (2) []? 2
   CUG (3) []?
   Pref BI-CUG [0]?
   DTE address [ ]?
   ```

 Entering a null DTE address ends the command input.

3. Add interface 2 to the XTP configuration. Enter `add local-dte` at the XTP Config> prompt.

   ```
   XTP config>add local-dte
   Interface number [0]? 2
   Allow inbound calls without calling DTE address? (Y or N) [N]? n
   DTE address [ ]? 201
   DTE address [ ]?
   ```

 Entering a null DTE address ends the command input.

4. (Optional) Add XTP protocol-specific CUGs.

   ```
   add cug
   Pref CUG []? 11
   CUG (2) []? 12
   CUG (3) []? 13
   CUG (4) []? 14
   CUG (5) []? 15
   ```

 add bi-cug

   ```
   Pref BI-CUG []? 21
   BI-CUG (2) []? 22
   BI-CUG (3) []?
   ```

5. Add Remote 1 router as the peer router. Enter `add peer-router` and enter the IP address of this router.

   ```
   XTP config>add peer-router
   Router's internal IP Address [0.0.0.0]? 128.185.100.2
   Connection setup timeout [230]?
   ```

6. Add the remote DTE for Remote 1 router. Enter `add remote-dte` and enter the IP and DTE address of this DTE.

   ```
   XTP config>add remote-dte
   DTE address [ ]? 301
   Peer router's internal IP Address [0.0.0.0]? 128.185.100.2
   Peer router's internal IP Address [0.0.0.0]?
   ```

Note: A remote DTE is required only if one of the following applies:
- The Concentrator Router will be initiating XTP connections to the remote DTE due to incoming calls from its local DTEs.
- The DTE is part of an XTP PVC definition.

7. Add Remote 2 router (as the peer router). Enter `add peer-router` and enter the IP address of this router.

   ```
   XTP config>add peer-router
   Router's internal IP Address [0.0.0.0]? 128.185.100.3
   Connection setup timeout [230]?
   ```

8. Add the remote DTEs for Remote 2 router. Enter add remote-dte and enter the IP and DTE addresses of this DTE.

   ```
   XTP config>add remote-dte
   DTE address [ ]? 401
   Peer router's internal IP Address [0.0.0.0]? 128.185.100.3
   Peer router's internal IP Address [0.0.0.0]?
   ```
9. Add an XTP PVC to logically associate the local PVC to Server 1 with the remote DTE 301.

```
XTP config>add pvc
Local PVC Range Start [1]?
Local PVC Range End [1]?
Local X.25 DTE address [ ]? 101
Remote PVC Range Start [1]?
Remote PVC Range End [1]?
Remote X.25 DTE address [ ]? 301
```

When entering DTE addresses, you can specify either of the following:
- A '?' in place of any digit. The '?' means any single digit in this digit position.
- An '*' as the last digit of an address to represent any combination of zero or more digits.

Sample Configuration of Remote Routers

The following is a sample configuration of Remote 1 router and Remote 2 router (see Figure 20 on page 366). The process is the same as that defined in the section at "Configuration Procedures" on page 366.

Remote 1 router

```
talk 6
Config>set data-link x25 1
Config>set data-link ppp 2
Config>network 1

X.25 Config>set address 300
X.25 Config>set clocking internal
X.25 Config>set speed 19200
X.25 Config>set equipment-type dce
X.25 Config>set pvc low 1
X.25 Config>set pvc high 1
X.25 Config>add pvc
Protocol [IP]?xtp
Packet Channel [1]?1
Destination X.25 Address [ ]?301

Window Size [2]?
Packet Size [128]?
X.25 Config>exit
Config>
```

```
Config>protocol ip
IP config>add address
Which net is this address for [0]?2
New address [0.0.0.0]?128.185.100.8
Address mask [255.255.0.0]?255.255.255.0

IP config>set internal-ip-address
Internal IP address [0.0.0.0]?128.185.100.2
IP Config>exit
Config>
```
Using XTP

Config> protocol xtp
XTP config> add local-dte
Interface number [0]? 1
Allow inbound calls without calling DTE address? (Y or N) [N]? n
DTE address []? 301
DTE address []?

XTP config> add peer-router
Router’s IP address? 128.185.100.1

XTP config> add remote-dte
DTE address []? 101
Peer router’s internal IP address [0.0.0.0]? 128.185.100.1
Peer router’s internal IP address [0.0.0.0]?

XTP config> add pvc
Local PVC Range Start [1]? 101
Local PVC Range End [1]? Remote PVC Range Start [1]? Remote PVC Range End [1]? Remote X.25 DTE address []? 301

Remote 2 router

*talk 6

Config> set data-link x25 1
Config> set data-link ppp 2
Config> network 1

X.25 Config> set address 400
X.25 Config> set clocking external
X.25 Config> set speed 19200
X.25 Config> set equipment-type dte
X.25 Config> set svc low-inbound 0
X.25 Config> set svc high-inbound 0
X.25 Config> set svc low-outbound 0
X.25 Config> set svc high-outbound 0
X.25 Config> set svc low-two-way 1
X.25 Config> set svc high-two-way 64
X.25 Config> add protocol
Protocol [IP]? xtp
Window Size [2]? Default Packet Size [128]?
Maximum Packet Size [256]?
X.25 Config> exit

Config> protocol ip
IP config> add address
Which net is this address for [0]? 2
New address [0.0.0.0]? 128.185.100.9
Address mask [255.255.0.0]? 255.255.255.0

IP config> set internal-ip-address
Internal IP address [0.0.0.0]? 128.185.100.3
IP Config> exit
Config>

Config> protocol xtp
XTP config> add local-dte
Interface number [0]? 1
Allow inbound calls without calling DTE address? (Y or N) [N]? n
DTE address []? 401
Pref CUG []? 23
CUG (2) []? 24
CUG (3) []? 25
CUG (4) []? 26
CUG (5) []? 27

DTE address []? 402
Pref CUG []?
DTE address []? 403
Pref CUG []?
DTE address []? 404
Pref CUG []?
DTE address []?
XTP Config> add peer-router
Router's IP address? 128.185.100.1

XTP config> add remote-dte
DTE address []? 201
Peer router's internal IP Address [0.0.0.0]? 128.185.100.1
Peer router's internal IP Address [0.0.0.0]?
XTP config> exit

Config>
Using XTP
Chapter 29. Configuring and Monitoring XTP

This chapter describe the XTP configuring and monitoring commands. It includes the following sections:

- XTP Configuring Commands
- XTP Monitoring Commands on page 382

XTP Configuring Commands

This section describes the XTP configuring commands.

To access the XTP configuring environment, enter the `protocol xtp` command at the `Config>` prompt.

```
Config> p xtp
XTP config>
```

Enter the XTP configuring commands at the `XTP config>` prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See “Getting Help” on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds an interface, peer router, closed user groups, remote DTE or PVC definitions.</td>
</tr>
<tr>
<td>Change</td>
<td>Changes a peer router, remote DTE or PVC definition.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes a local DTE, peer router, closed user groups, remote DTE or PVC definition.</td>
</tr>
<tr>
<td>Enable-XTP</td>
<td>Activates the XTP forwarder.</td>
</tr>
<tr>
<td>Disable-XTP</td>
<td>Deactivates the XTP forwarder.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the value of the XTP Keepalive Timer.</td>
</tr>
<tr>
<td>List</td>
<td>Lists interfaces, peer routers, remote DTEs and PVC definitions.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See “Exiting a Lower Level Environment” on page 11.</td>
</tr>
</tbody>
</table>

Add

Adds a local X.25 node, a peer router, a remote X.25 node with corresponding routers, or a PVC from a local X.25 node to a remote X.25 node.

Wild card addressing is included in the XTP forwarder. When the local or remote DTE addresses are entered, they can contain a wild card character (? or *). For additional information on the use of wildcards, see “DTE Address Wildcards” on page 363.

Syntax:

```
add bi-cug cug local-dte peer-router
```
XTP Configuring Commands (Talk 6)

- **remote-dte**
 - **pvc**

cug Specifies the closed user group numbers for the XTP protocol. The first CUG you are prompted for is the preferred cug.

Valid values: 0 to 9999

Default value: None

Example:
```
add cug
Pref CUG []? 114
CUG (2) []? 314
CUG (3) []? 478
```

bi-cug Specifies the bilateral closed user group numbers for the XTP protocol. The first bi-cug you are prompted for is the preferred bi-cug.

Valid values: 0 to 9999

Default value: None

Example:
```
add bi-cug
Pref BI-CUG []? 50
BI-CUG (2) []? 51
BI-CUG (3) []? 52
BI-CUG (4) []? 53
BI-CUG (5) []? 54
```

local-dte

Adds the X.25 DTE addresses, or the X.25 nodes, that communicate with the router on the specified interface. The valid interface numbers for use with XTP are 0 to 255.

You can configure multiple local nodes. However, if the option to allow incoming calls without a calling DTE address has been selected and such a call is received, the last local DTE address added becomes the calling DTE address for that call.

Example:
```
add local-dte
Interface number [0]4
Allow inbound calls without calling DTE address? (Y or N) [N]? y
DTE address []? 101
Pref CUG []? 23
CUG (2) []? 24
CUG (3) []? 25
CUG (4) []? 26
CUG (5) []? 27
Pref BI-CUG []? 6
BI-CUG (2) []? 7
BI-CUG (3) []? 8
BI-CUG (4) []? 9
BI-CUG (5) []? 10
DTE address []? 101
```

peer-router

Adds peer routers. Enter the internal IP addresses of the routers to which the remote X.25 nodes are connected. You can use these IP addresses to open TCP connections and transport X.25 packets that contain connection requests and X.25 data.

If the internal IP address you configure for the peer-router is this router’s internal IP address, the software establishes a local XTP connection.
Example:
add peer-router
Router's internal IP Address [0.0.0.0]? 128.185.100.2
Connection setup timeout [230]?

remote-dte
Adds remote X.25 nodes and corresponding routers. You can connect remote nodes with local X.25 nodes so they can exchange data. You must configure an IP address for each remote X.25 node you configure. Any request or data sent to this remote node goes to the router. The router then uses one of its local X.25 interfaces to forward the data to the X.25 node.

Define a remote DTE if this router is to initiate XTP connections to the remote DTE due to incoming calls from its local DTEs, or if the remote DTE is part of an XTP PVC definition.

To use Local XTP, the peer router address must be the internal address of the local router and that DTE address must be previously defined using the add local command.

Example:
add remote-dte
DTE address []? 301
Peer router's internal IP Address [0.0.0.0]? 128.185.100.2
Peer router's internal IP Address [0.0.0.0]?

pvc
Adds a PVC from a local X.25 node to a remote X.25 node.

Three things need to exist in order to activate a PVC configuration:
- An X.25 PVC from the router to the local X.25 node
- An X.25 PVC from the peer router to the remote X.25 node
- A TCP connection to the peer router where the remote node is resident

Example:
XTP config> add pvc
Local PVC Range Start [1]?
Local PVC Range End [1]?
Local X.25 DTE address []? 101
Remote PVC Range Start [1]?
Remote PVC Range End [1]?
Remote X.25 DTE address []? 301

Notes:
1. When you add PVCs to the router configuration, you also must configure the PVC in X.25. For details on configuring X.25 interfaces, refer to Software User’s Guide
2. For Local XTP, you must define the PVC in both directions. You need this definition because the router is performing both local and remote functions. For example, to define Local PVC 8 and Remote PVC 10 when you are using Local XTP, you would do the following:

```
XTP config> add pvc
Local PVC Range Start [1]?
Local PVC Range End [1]?
Local X.25 DTE address [ ]? 108
Remote PVC Range Start [1]?
Remote PVC Range End [1]?
Remote X.25 DTE address [ ]? 301
XTP config> add pvc
Local PVC Range Start [1]?
Local PVC Range End [1]?
Local X.25 DTE address [ ]? 8
Remote PVC Range Start [1]?
Remote PVC Range End [1]?
```
3. A PVC range can be defined through the PVC range start and PVC range end parameters. The same number of circuits must be defined in the local PVC range as in the remote PVC range. For example, if one circuit is defined in the local PVC range, one circuit must be defined in the remote PVC range.

4. The PVCs defined must fall within the range of 1 to 255.

Note: When you add PVCs to the router configuration, you also must configure the PVC in X.25. For details on configuring X.25 interfaces, refer to the Software User’s Guide

Change

Changes a peer router, remote DTE, or PVC from the XTP configuration.

Syntax:

```plaintext
change peer-router
remote-dte
pvc
```

peer-router

Changes specific peer routers from the XTP configuration.

Example:

```plaintext
change peer-router
Router IP Address [0.0.0.0]? 128.185.100.2
```

remote-dte

Changes specific remote DTEs in the XTP configuration.

Example:

```plaintext
change remote-dte
DTE address [ ]?401
Peer router's internal IP Address [0.0.0.0]?128.185.100.2
Peer router's internal IP Address [0.0.0.0]?
```

pvc

Changes PVC definitions for all PVCs in the range defined by the Local PVC Range Start parameter.

Example:

```plaintext
change pvc
Local PVC Range Start [1]?1
Local DTE address [ ]?301
```

Delete

Deletes a local DTE, peer router, remote DTE, or PVC from the XTP configuration.

Syntax:

```plaintext
delete bi-cug
cug
local-dte
peer-router
```
bi-cug Deletes a bilateral closed user group number used by this interface.

Valid values:

Y Deletes the current CUG.
N Does not delete the current CUG.
ALL Deletes all remaining CUGs.
Q Stops deleting any remaining CUGs.

Example:

```
delete bi-cug
Delete Pref BI-CUG [Y]?
Delete BI-CUG (2) [Y]? N
Delete BI-CUG (3) [Y]? q
```

cug Deletes the closed user group numbers used by this interface. This command works similar to the delete bi-cug command.

Example:

```
delete cug
Delete Pref CUG [Y]?
Delete CUG (2) [Y]?
Delete CUG (3) [Y]? q
```

local-dte Deletes specific local interfaces from the XTP configuration.

Example:

```
delete local-dte
Interface number [0]?1
DTE address [ ]?101
Record deleted
```

peer-router Deletes specific peer routers from the XTP configuration.

Example:

```
delete peer-router
Router IP Address [0.0.0.0]?128.185.100.2
Record deleted
```

remote-dte Deletes specific remote DTEs from the XTP configuration.

Example: delete remote-dte

```
DTE address [ ]?401
```

pvc Deletes PVC definitions for all PVCs in the range defined by the Local PVC Range Start parameter.

Example:

```
delete pvc
Local PVC Range Start [1]?1
Local DTE address [ ]?301
Record deleted
```
XTP Configuring Commands (Talk 6)

Enable

Activates the XTP forwarder.

Syntax: enable-xtp

Example: enable-xtp

Disable

Deactivates the XTP forwarder.

Syntax: disable-xtp

Example: disable-xtp

Set

Sets the XTP Keepalive Timer.

Syntax: keep-alive-timer

Example:

```
set keep-alive-timer
Keepalive timer in seconds [10]? 60
```

List

Lists the interfaces, peer routers, remote DTEs, or PVCs.

Syntax:

```
list
  all
  cugs
  keep-alive-timer
  local-dtes
  peer-routers
  remote-dtes
  pvcs
  xtp-status
```

Example:

```
list all
STATUS: XTP-DISABLED
Local DTEs:
   Interface    DTE Address
   1             44444
Calling DTE address is optional
   Pref CUG       : 7777  Others : 9999 0
   Pref BI-CUG    : 0    Others :
```
cugs Lists the CUG and BI-CUG numbers defined for the XTP protocol.

keep-alive-timer Displays all the Keepalive time configured for XTP.

local-dtes Displays all the local DTEs configured for XTP.

Example:
```
list local-dtes
```

peer-routers Displays all the peer routers configured for XTP.

Example:
```
list peer-routers
```

pvcs Displays all the PVCs configured for XTP.

Example:
```
list pvcs
```

remote-dtes Displays all the remote DTEs configured for XTP.

Example:
```
list remote-dtes
```

xtp-status Displays the status of XTP indicating whether it is enabled or disabled.

Example:
```
list xtp-status
```
XTP Monitoring Commands

This section describes the XTP monitoring commands. These commands allow you to display the current active interfaces, peer routers, remote DTE, PVCs and SVCs. They also allow you to dynamically add or delete interfaces, DTEs, or peer routers.

To display the XTP> prompt, enter `protocol xtp` at the monitoring (+) prompt:

```
+protocol xtp
X.25 Transport Console
XTP>
```

Enter the XTP monitoring commands at the XTP> prompt.

Table 54. XTP Monitoring Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Dynamically adds local DTEs, remote DTEs, or peer routers</td>
</tr>
<tr>
<td>Delete</td>
<td>Dynamically deletes configurations for local DTEs, remote DTEs, or peer routers</td>
</tr>
<tr>
<td>List</td>
<td>Displays individual PVC or SVC statistics and general information</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Add

Adds an interface, peer router, or remote DTE to the XTP configuration.

Syntax:

```
add
```

- `local-dtes` Adds a local interface to the XTP configuration.

 Example:

  ```
  add local-dtes
  Interface number [0]?1
  DTE address [ ]?101
  ```

- `peer-router` Adds a peer router to the XTP configuration.

 Example:

  ```
  add peer-router
  Router's IP Address [0.0.0.0]?128.185.100.2
  ```

- `remote-dtes` Adds a remote DTE to the XTP configuration.

 Example:

  ```
  add remote-dtes
  Peer router's IP Address [0.0.0.0]?128.185.100.2
  DTE address [ ]?301
  DTE address [ ]?
  ```
Delete

Deletes a local DTE, peer router, or remote DTE from the router configuration.

Syntax:
_delete
 _local-dtes
 _peer-router
 _remote-dtes

local-dtes
 Deletes a local interface from the XTP configuration.

 Example:
 delete local-dtes
 Interface Number [0]?1
 DTE address []101
 DTE address []?

peer-router
 Deletes a peer router from the XTP configuration.

 Example: delete peer-router
 Router's IP Address [0.0.0.0]?123.185.100.2

remote-dtes
 Deletes a remote DTE from the XTP configuration.

 Example:
 delete remote-dtes
 DTE address []401
 DTE address []?

List

Displays the current active interfaces, peer routers, remote DTEs, PVCs, and SVCs.

Syntax:
_list
 _all
 _xtp-status
 _local-dtes
 _peer-routers
 _remote-dtes
 _pvcs
 _pvc-detailed
 _pvcs-all-detailed
 _svcs
 _svc-detailed
 _svc-all-detailed

all Displays output of all list command options.

 Example:
XTP Monitoring Commands (Talk 5)

list all

STATUS: XTP-ENABLED
KEEP-ALIVE TIMER = 20 seconds

LIST OF LOCAL DTES

<table>
<thead>
<tr>
<th>Interface</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>DTE</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>201</td>
</tr>
</tbody>
</table>

Calling DTE address is required

LIST OF PEER ROUTERS

<table>
<thead>
<tr>
<th>Router</th>
<th>CNN</th>
<th>Number</th>
<th>Received</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.185.100.3</td>
<td>Active</td>
<td>15</td>
<td>60</td>
<td>63</td>
</tr>
<tr>
<td>128.185.100.2</td>
<td>Active</td>
<td>12</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>

LIST OF REMOTE DTES

<table>
<thead>
<tr>
<th>Remote DTE</th>
<th>Router IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>128.185.100.3</td>
</tr>
<tr>
<td>402</td>
<td>128.185.100.3</td>
</tr>
<tr>
<td>403</td>
<td>128.185.100.3</td>
</tr>
<tr>
<td>404</td>
<td>128.185.100.3</td>
</tr>
<tr>
<td>301</td>
<td>128.185.100.2</td>
</tr>
</tbody>
</table>

LIST OF PVCs

<table>
<thead>
<tr>
<th>Index</th>
<th>Int No</th>
<th>PVC State</th>
<th>Local LCN</th>
<th>Remote DTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Active</td>
<td>100</td>
<td>301</td>
</tr>
</tbody>
</table>

LIST OF SVCS (list svcs)

<table>
<thead>
<tr>
<th>Index</th>
<th>Int No</th>
<th>Logical SVC State</th>
<th>Local DTE</th>
<th>Remote DTE</th>
<th>Peer Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>ACT</td>
<td>333333333333</td>
<td>444444444444</td>
<td>3.3.3.3</td>
</tr>
</tbody>
</table>

SVC 1 IN DETAIL (list svc-detailed)

<table>
<thead>
<tr>
<th>Int No</th>
<th>Log Chn</th>
<th>SVC State</th>
<th>Received Pkts</th>
<th>Sent Pkts</th>
<th>Dropped Pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>ACT</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

LIST OF SVCS (svcs-all-detailed)

<table>
<thead>
<tr>
<th>Int No</th>
<th>Log Chn</th>
<th>SVC State</th>
<th>Received Pkts</th>
<th>Sent Pkts</th>
<th>Dropped Pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>ACT</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

xtp-status
Displays whether XTP is enabled/disabled, and the time specified for the Keepalive Timer.

Example:

list xtp-status

STATUS: XTP-ENABLED
KEEP-ALIVE-TIMER = 20 seconds

local-dtes
Displays all the interfaces configured for XTP.

Example:

list local-dtes

LIST OF LOCAL DTES

<table>
<thead>
<tr>
<th>Interface</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>DTE</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>201</td>
</tr>
</tbody>
</table>

Calling DTE address is required
peer-routers
Displays all the peer routers configured for XTP.

Example:
list peer-routers

remote-dtes
Displays all the remote interfaces configured for XTP.

Example:
list remote-dtes

pvcs
Displays all the PVCs configured for XTP.

Example:
list pvcs

pvc-detailed
Displays detailed information for a specific PVC definition. For a listing of Index numbers, enter list all at the xtp> prompt.

Example:
list pvc-detailed

pvcs-all-detailed
Displays detailed information for all PVC definitions.

Example:
list pvcs-all-detailed

svcs
Displays all the SVCs definitions.

Example:
XTP Monitoring Commands (Talk 5)

list svcs

List of SVCS

<table>
<thead>
<tr>
<th>Index</th>
<th>Int</th>
<th>LOG</th>
<th>SVC</th>
<th>Local</th>
<th>Remote</th>
<th>Peer</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>Chan</td>
<td>State</td>
<td>DTE</td>
<td>DTE</td>
<td>Router</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>Active</td>
<td>200</td>
<td>401</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>Active</td>
<td>200</td>
<td>402</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Active</td>
<td>200</td>
<td>403</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>Active</td>
<td>200</td>
<td>404</td>
<td>3.3.3.3</td>
</tr>
</tbody>
</table>

svc-detailed
Displays information for specific SVC definitions.

Example:

```
list svc-detailed
```

```
SVC Index Number [1]?1
SVC 1 IN DETAIL
```

<table>
<thead>
<tr>
<th>Int</th>
<th>LOG</th>
<th>SVC</th>
<th>Received</th>
<th>Sent</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Chan</td>
<td>State</td>
<td>Pkts</td>
<td>Bytes</td>
<td>PKTs</td>
</tr>
<tr>
<td>1</td>
<td>ACTIVE</td>
<td>75</td>
<td>4220</td>
<td>55</td>
<td>3350</td>
</tr>
</tbody>
</table>

svcs-all-detailed
Displays information for all the SVC definitions.

Example:

```
list svcs-all-detailed
```

List of SVCS

<table>
<thead>
<tr>
<th>Index</th>
<th>Int</th>
<th>LOG</th>
<th>SVC</th>
<th>Received</th>
<th>Sent</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>Chan</td>
<td>State</td>
<td>Pkts</td>
<td>Bytes</td>
<td>PKTS</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>ACTIVE</td>
<td>4220</td>
<td>55</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>ACTIVE</td>
<td>3220</td>
<td>40</td>
<td>2350</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>ACTIVE</td>
<td>4003</td>
<td>50</td>
<td>3692</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>ACTIVE</td>
<td>3967</td>
<td>58</td>
<td>4167</td>
</tr>
</tbody>
</table>
Chapter 30. Using Frame Relay Interfaces

This chapter describes how to use the Frame Relay interface and includes the following sections:

- Frame Relay Overview
- Frame Relay Network Management on page 395
- Frame Relay Data Rates on page 396
- Circuit Congestion on page 399
- Bandwidth Reservation over Frame Relay on page 402
- Displaying the Frame Relay Configuration Prompt on page 402
- Frame Relay Basic Configuration Procedure on page 402
- Enabling Frame Relay PVC Management on page 403
- Enabling Frame Relay SVC Management on page 404

Frame Relay Overview

The Frame Relay (FR) protocol is a method of transmitting internetworking packets by combining the packet switching and port sharing of X.25 with the high speed and low delay of time division multiplexing (TDM) circuit switching. FR allows you to connect multiple LANs to a single high-speed (1.54 Mbps) WAN link with multiple point-to-point virtual circuits (VCs). FR offers the following features:

- **High throughput and low delay.** Utilizing the core aspects (error detection, addressing, and synchronization) of the Link Access Protocol, D-Channel (LAPD) datalink protocol, FR eliminates all network layer (Layer 3) processing. By using only the core aspects, FR reduces the delay of processing each frame.

- **Congestion detection.** Upon receiving Backward Explicit Congestion Notification (BECN) or a Forward Explicit Congestion Notification (FECN), the router initiates a controlled slowdown of traffic, thereby avoiding a complete FR network shutdown. The router can also initiate a slowdown of traffic when it receives a Consolidated Link Layer Management (CLLM) congestion message. CLLM is an optional part of the Frame Relay standards that provides additional management information about the operation of the frame relay network to attaching DTEs.

- **Circuit access and control.** As the router dynamically learns about the availability of non-configured circuits (orphan circuits), you can control access to those new circuits.

- **Network management option.** As your network requires, the FR protocol can operate with or without a local network management interface.

- **Multiplexing protocols.** Using one VC to pass multiple protocols.

- **Data compression** that supports the FRF.9 standard. See Using the Data Compression Subsystem in Using and Configuring Features for details.

- **Data encryption** using a proprietary encryption scheme. See Overview of Encryption in Using and Configuring Features for details.

FR provides no error correction or retransmission function. To provide error–free end-to-end transmission of data, FR relies on the intelligence of the host devices.
Frame Relay Network

The FR network consists of the FR backbone (consisting of FR switches provided by the FR carrier) providing the FR service. The router functions as the FR connection device. The router encapsulates FR frames and routes them through the network based on a Data Link Connection Identifier (DLCI). The DLCI is the medium access control (MAC) address that identifies the PVC or SVC between the router and the FR destination device. For example, in Figure 21, a packet destined to go from router B to router D would have a DLCI of 19 to reach router D; however, a packet destined to go from router D to router B would have a DLCI of 16.

A DLCI can have either local or global significance. Local DLCIs are significant at the point of entry to the network, but global DLCIs are significant throughout the network. To the user, however, the DLCI that the router uses to route a packet is the DLCI that the user associates with the frame’s global or local destination. DLCIs are configured through the FR configuration process or learned through FR management.

FR PVCs are predefined connections used to route data through a FR network. The bandwidth allocated for a PVC within the network is a subscription option and must be allotted to the PVC whether or not the PVC uses it.

A Frame Relay network has the following characteristics:

- Transports frames transparently. The network can modify only the DLCI, congestion bits, and frame check sequence. High-Level Data Link Control (HDLC) flags and zero bit insertion provide frame delimiting, alignment, and transparency.
- Detects transmission, format, and operational errors (frames with an unknown DLCI)
Frame Relay Switched Virtual Circuits

Frame Relay Switched Virtual Circuits (SVCs) provide the ability to implement "cut-through" routing in a Frame Relay network, minimizing or eliminating intermediate router hops between DTEs. Network complexity can be simplified and the DTE may experience improved performance.

SVCs may replace PVCs to conserve network bandwidth, reducing bandwidth cost.

FR SVC standards are a subset of ISDN standards and provide many of the same advantages as ISDN with less complexity.

The following protocols are supported over FR SVCs:
- AppleTalk 2
- ARP
- Bridging
- DECnet IV
- DLSw
- IP/OSPF/RIP/BGP4
- IPX

SVCs cannot be required and cannot belong to a required group.

Frame Relay Interface Initialization

Local Management Interface (LMI) is used to determine the status of PVCs on a Frame Relay interface. If an LMI is enabled, the FR interface is active when a successful exchange of LMI frames occurs between the router and the FR switch; however, no data can be received from or transmitted to another router until an LMI status message indicates that the PVC status for the DLCI to the other router is active. Also, there are instances where the FR interface state is tied to PVC states and the interface does not come up even if LMI or Q.922 exchanges are successfully occurring (for additional information, see Configuring PVC States to Affect the Frame Relay Interface State on page 391).

If LMI is not enabled and SVCs are enabled, the Frame Relay interface is active when a successful exchange of Q.922 frames occurs between the router and the adjacent device. All PVCs are considered active at this point. However, SVCs are active only after a successful Q.933 activation exchange.

PVC status appears for all PVCs as either active or inactive. An active PVC has a completed connection to an end system. An inactive PVC does not have a completed connection to an end system because either an end system or an FR switch is off-line.

For example, in Figure 22 on page 390 router B has a configured PVC to router D. Router B is successfully interacting with FR management through FR switch B. Because either another FR switch is down or the end system is down, the
end-to-end PVC connection is not established. Router B receives an inactive status for that PVC.

When the LMI and SVCs are disabled, the FR interface is running on a serial line and a DTE cable is being used, the FR protocol asserts the DTR and RTS modem control signals. (The Control signal is asserted for X.21). The FR interface goes up once the DSR, CTS, and DCD modem control signals are on. (When X.21 is used, the FR interface goes up once the Indication modem control signal is on.) The FR interface is down or in the testing state if either DSR, CTS, or DCD are off or, when X.21 is used, the Indication signal is off. Therefore, you need to ensure that the modem, modem eliminator, or DSU that is used drops one or more of these signals when the physical connection to the FR switch or the other FR DTE (if configured for FR DTE to DTE connectivity) is lost.

Orphan Circuits

An orphan permanent virtual circuit is any PVC that is not configured for your router but is learned indirectly through the actions of the network management entity. For example, Figure 23 on page 391 assumes that router B has a configured PVC to router D, but none to router A. Router A configures a PVC to router B. Router B would then learn about the PVC to router A from LMI messages and classify it as an orphan.

Orphan PVCs are treated the same as configured circuits except that you may enable or disable their use with the `enable orphan-circuit` and `disable orphan-circuit` commands.

By disabling orphan circuits, you add a measure of security to your network by preventing any unauthorized entry into your network from a non-configured circuit.
By enabling orphan circuits, you allow the router to forward packets over circuits you did not configure. Packets that would normally be dropped are now forwarded.

An orphan switched virtual circuit is an SVC that is not configured for your router but is created when a call-in is received for it. This is similar to Figure 23. However, Q.933 messages are used instead of LMI to generate the circuit and associate the appropriate parameters with it. Orphan SVCs are treated the same as configured SVCs except that you may enable or disable their use with the call-in option of the enable switched-virtual-circuit command.

Figure 23. Orphan Circuit

You can control the operation of your Frame Relay interface by
1. Enabling the “No-PVC” feature or
2. Configuring “required PVCs” or
3. Configuring “required PVC groups”.

By enabling the Frame Relay “No-PVC” feature, the Frame Relay interface becomes inactive when there are no active PVCs on the interface. If at least one PVC is active, the Frame Relay interface becomes active when a successful LMI exchange occurs between the router and the FR switch.

You can configure a PVC as a “required PVC”. If a PVC is required but not in a group, the Frame Relay interface becomes inactive when the PVC becomes inactive. When the PVC becomes active, the interface is activated following a successful exchange of LMI frames between the router and the Frame Relay switch.
Using Frame Relay

If multiple PVCs are required and are not in a PVC group, the interface is not activated until all required PVCs are active.

If a required PVC belongs to a PVC group, the Frame Relay interface becomes inactive when all PVCs in the PVC group are inactive. If at least one PVC in the group is active, the interface becomes active following a successful exchange of LMI frames between the router and the FR switch. If there are multiple PVC groups, the interface does not become active until at least one PVC in each group is active.

A “required PVC group” is a group of circuits associated by name, where “name” is the name of the required PVC group.

These features can be used with WAN Reroute so that an alternate link can be brought up if all PVCs, required PVCs, or a group of PVCs become inactive on the primary FR link.

Frame Relay Frame

An FR frame consists of a fixed size address field with variable sized encapsulated user data. Figure 24 illustrates a Frame-Relay frame format.

<table>
<thead>
<tr>
<th>Octet</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HDLC Flag = 0x7e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Data Link MSB/LSB (DL) C/R EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Connection ID (CI) FECN BECN DE EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>user data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frame Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>HDLC Flag = 0x7e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 24. Frame-Relay Frame Format

HDLC Flags

Located in the first and last octet, these flags indicate the beginning and end of the frame.

Data Link Connection Identifier (DLCI)

This 10-bit routing ID resides in bits 3 to 8 of octet 2 and bits 5 to 8 of octet three. The DLCI is the MAC address of the circuit. The DLCI allows the user and network management to identify the frame as being from a particular PVC. The DLCI enables multiplexing of several PVCs over one physical link.
Command/Response (C/R)

This field's use is not defined within the Frame-Relay standards and the field is passed transparently across the network.

Extended Address

This version of FR does not support extended addressing.

Forward Explicit Congestion Notification (FECN)

The FR backbone network sets this bit to 1 to notify the user receiving the frame that congestion is occurring for the PVC in the direction the frame is being sent. You can configure the device to slow down data transmission in the direction from which it receives a FECN using the `enable throttle-transmit-on-fecn` command. You can also set the BECN bit in data frames sent to the originator of the FECN using the `enable notify-fecn-source` command.

APPN High Performance Routing (HPR) uses detection of this bit set to allow Rapid Transport Protocol’s adaptive rate-based flow and congestion control algorithm to adjust the data send rate. This algorithm prevents traffic bursts and congestion, maintaining a high level of throughput.

Backward Explicit Congestion Notification (BECN)

The FR backbone network sets this bit to 1 to notify the user that the frames sent by this router for this PVC have encountered congestion. The router then initiates a throttle down to a rate equal to or less than the user-defined CIR when CIR or congestion monitoring are enabled. The CIR for a PVC is supplied by the FR service provider and is configured using the `add permanent-virtual-circuit` command.

Discard Eligibility (DE)

The Frame Relay network may discard transmitted data exceeding CIR on a PVC. The DE bit can be set by the router to indicate that some traffic should be considered discard eligible. If appropriate, the Frame Relay network will discard frames marked as discard eligible which may allow frames that are not marked discard eligible to make it through the network. To identify traffic that is discard eligible:

1. Configure BRS on the Frame Relay interface and any FR circuits that has traffic that you are making discard eligible.
2. Assign a protocol or filter to a BRS traffic class using the `assign` command. You specify whether the DE bit should be set on for this protocol or filter traffic.

User Data

This field contains the protocol packet being transmitted. This field can contain a maximum of 8188 octets; however, the frame check sequence (FCS) can effectively detect errors only on a maximum of 4096 octets of data. The protocol data is preceded by a Frame Relay encapsulation header as defined in RFC 1490.

Frame Check Sequence

This field is the standard 16-bit cyclic redundancy check (CRC) that HDLC and LAPD frames use. This field detects bit errors occurring in the bits of the frame between the opening flag and FCS.
Using Frame Relay

Frame Forwarding over the Frame Relay Network

When the FR protocol receives a packet for encapsulation, it compares the packet’s network address to the entries in the Address resolution Protocol (ARP) cache. If the ARP cache contains the DLCI number that matches the network address, the FR protocol encapsulates that packet into a frame and transmits the frame over its specified local DLCI. If the ARP cache does not contain a match, the FR protocol sends out an ARP request over all configured PVCs on the interface. When the appropriate end-point responds with an ARP response, the FR protocol adds its local DLCI that received the ARP response to the ARP cache. Subsequent data packets directed to the same network address are then encapsulated into a frame and sent out over its local DLCI.

Protocol Addresses

Protocol addresses can be either mapped statically to FR network PVC addresses or SVCs using locally configured names or discovered dynamically through Inverse ARP or ARP. (For more information on ARP and Inverse ARP, see the Protocol Configuration and Monitoring Reference.) Either method is protocol-dependent as illustrated in Table 55.

Note: Static protocol addresses are also referred to as static ARP entries. A static ARP entry is added to the configuration with the `add protocol-address` command.

Table 55. Protocol Address Mapping

<table>
<thead>
<tr>
<th>Protocol Type</th>
<th>ARP and Inverse ARP Usage</th>
<th>Static Mapping</th>
<th>VC Configured at Protocol Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IPX</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Banyan VINES**</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DNA IV</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>OSI*, **</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* You must configure OSI at the protocol level to map the protocol address to the FR PVC.

** Not supported using SVCs.

Multicast Emulation and Protocol Broadcast

Multicast emulation is an optional feature that allows protocols requiring multicast such as ARP to function properly over the FR interface. With multicast emulation, a multicast frame is transmitted on each active PVC. By using the `enable` and `disable multicast` commands, you can turn this feature on or off. Protocols that utilize multicast are AP2, ARP, Banyan VINES, DNA4, IP, and IPX.

Protocol broadcast is another optional feature that allows the IP RIP protocol to function properly over the FR interface. By using the `enable protocol-broadcast` and `disable protocol-broadcast` commands, you can turn this feature on or off.

For protocols that support ARP/InARP over Frame Relay, Frame Relay will only multicast a protocols packets over a circuit if a protocol address was either learned or configured for that circuit.
Multicast can also be enabled or disabled for an individual SVC. Use the multicast option on `add switched-virtual-circuit`.

Frame Relay Network Management

The supplier of the FR network backbone provides FR network management. It is management's responsibility to provide FR end-stations (routers) with status and configuration information concerning PVCs available at the interface.

For PVCs, the FR protocol supports the ANSI T1.617 Annex D, ITU-T Q.933 Annex A (also referred to as CCITT Q.933 Annex A), and the Interim Local Management Interface (LMI) management entities. You can turn these entities on or off using the `enable` and `disable` LMI configuration commands. Specifically, FR LMI provides the following information:

- Notification of additional PVCs (orphans) and whether they are active or inactive, or notification of any PVC deletions.
- Notification of the availability of a configured PVC. The availability of a PVC is indirectly related to the successful participation of the PVC end-point in the heartbeat polling process, which is detailed in [Link Integrity Verification Report](#) on page 396.
- Verification of the integrity of the physical link between the end-station and network by using a *keep alive* sequence number interchange.

Although the FR interface supports PVC network management, it is not necessary for management to run on the FR backbone for the interface to operate over the FR backbone. For example, you may want to disable management for back-to-back configurations.

For SVCs, the FR protocol supports FRF 4 (Frame Relay Forum Implementation Agreement 4). This includes an implementation of ANSI Q.922 and a subset of ANSI Q.933. Q.922 provides verification of the integrity of the physical link between the router and the network. Q.933 provides the means for establishing and disconnecting SVCs across the network. Q.922 and Q.933 are always enabled when SVCs are used.

Management Status Reporting

Upon request, FR LMI provides two types of status reports, a full status report and a link integrity verification report. A full status report provides information about all PVCs the interface knows about. A link integrity verification report verifies the connection between a specific end station and a network switch. All status inquiries and responses are sent over DLCI 0 for ANSI T1.617 Annex D and ITU-T Q.933 Annex A, or DLCI 1023 for interim LMI management.

Full Status Report

When the FR interface requires a full status report, the router’s FR protocol sends a status enquiry message to the FR network backbone requesting a full status report. A status enquiry message is a request for the status of all PVCs on the interface. Upon receiving this request, FR management must respond with a full status report consisting of the link integrity verification element and a PVC status information element for each PVC. (See [Link Integrity Verification Report](#) on page 396.)
Using Frame Relay

The PVC status information element contains the following information: the local DLCI number for the particular PVC; the state of the PVC (active or inactive); and whether the PVC is new or an existing PVC that management already knows about.

Note: The number of PVCs supplied at the FR interface is restricted by the network frame size and the amount of individual PVC information elements that can fit into a full status report. For example, 202 is the maximum number of PVCs for a network with a 1K frame size.

Link Integrity Verification Report

The link integrity verification report, sometimes referred to as heartbeat polling, contains the link integrity verification element. This element is where the exchange of the send and receive sequence numbers takes place. By exchanging sequence numbers, management and the end station can evaluate the integrity of the synchronous link. The send sequence number is the current send sequence number of the message originator. The receiver looks at this number and compares it to the last send sequence number to verify that this number is incrementally correct. The receive sequence number is the last send sequence number that the originator sent out over the interface. It is the receiver’s responsibility to place a copy of the send sequence number into the receive sequence number field. This way the originator can ensure that the receiver receives and interprets the frames correctly.

When an end-station fails to participate in this polling process, all remote end-stations with logically attached PVCs are notified through management’s full status report mechanism that the PVC is inactive.

Consolidated Link Layer Management (CLLM)

CLLM is an optional FR management function that is not widely supported by the industry but it has been adopted by some Frame Relay switch manufacturers. CLLM provides some of the same management information provided by LMI, in particular, outage notification. CLLM’s main use is to provide asynchronous congestion notification of PVCs to attaching devices. A single CLLM message may indicate outage or congestion for multiple PVCs. The Frame Relay protocol supports the following standards for CLLM: ANSI T1.618, ITU-T (CCITT) Q.922 Annex A, and ITU-T (CCITT) X.36 Annex C.

Frame Relay Data Rates

This section introduces data rates for Frame Relay permanent virtual circuits (PVCs).

Committed Information Rate (CIR)

The CIR is the data rate that the network commits to support for the VC under normal, uncongested conditions. Any VC that is configured or is learned is provided a CIR (by the FR service provider). The CIR is a portion of the total bandwidth of the physical link of either 0 or between 300 bps and 2 Mbps reserved for the VC. 64 Kbps or a single DS0 channel is most common.

You define the CIR with the add permanent-virtual-circuit, change permanent-virtual-circuit, add switched-virtual-circuit, or change
switched-virtual-circuit configuration command. You can also dynamically change the CIR with the set circuit console command. You can also set the default CIR for all Frame Relay circuits on this interface using the set CIR-defaults command.

Some Frame Relay switches allow a value of 0 to be configured for CIR. When CIR is equal to 0, little or no bandwidth is reserved in the Frame Relay network backbone for the VC, and the VC’s traffic uses non-reserved bandwidth.

Orphan Permanent Virtual Circuit CIR

The router assigns a CIR to orphan circuits based on the CIR defaults configured at the interface level. If you are relying on the orphan circuit to route important data and the CIR, Bc, and Be values from the network provider are different from the values configured at the interface level, it is recommended that you define a PVC instead of an orphan circuit. Doing this, you can assign a CIR that the network commits to support.

Committed Burst (Bc) Size

The committed burst (Bc) size is the maximum amount of data (in bits) that the network commits to deliver during a calculated time (Tc) interval. The Tc is equal to the Bc divided by the CIR (Tc = Bc / CIR). If you configure 0 for CIR, Frame Relay uses a value of 1 second for Tc.

For example, if you set a VC’s CIR to 9600 bps and the committed burst size to 14 400 bits, the time period is 1.5 sec. (14 400 bits / 9600 bps = 1.5 sec). This means that the VC is allowed to transmit a maximum of 14 400 bits in 1.5 seconds.

Note: The minimum Tc supported by FR is .1 second.

This parameter is important because of the relationship between the committed burst size and the maximum frame size. If the maximum frame size in bits is greater than the committed burst size, the network may discard frames whose size exceeds the committed burst size. Therefore, the committed burst size should be greater than or equal to the maximum frame size. It should also equal the burst size set up with the network provider.

Use the add permanent-virtual-circuit, change permanent-virtual-circuit, add switched-virtual-circuit or change switched-virtual-circuit configuration commands to set the committed burst size. The set circuit console command can be used to dynamically change the committed burst size. You can also set the default committed burst size for all Frame Relay circuits on this interface using the set CIR-defaults command.

The device assigns orphan circuits a committed burst size based on the default you set with the set CIR-defaults command. If you configure 0 for CIR, then the committed burst (Bc) size also equals 0.

Excess Burst (Be) Size

The excess burst (Be) size is the maximum amount of uncommitted data the router can transmit on a PVC in excess of the Bc during the Tc (Tc = Bc / CIR) when CIR and Bc are nonzero. When CIR = 0, Frame Relay used a value of 1 second for Tc.
Using Frame Relay

The network delivers this excess data with a lower probability of success than committed burst size data. Set the Be to a value greater than zero only if you are willing to accept the risk of discarded data and its effect on higher-layer protocol performance. The Be should equal the value set up with the network provider.

Use the `add permanent-virtual-circuit`, `change permanent-virtual-circuit`, `add switched-virtual-circuit` or `change switched-virtual-circuit` commands during frame-relay configuration to set the excess burst size. You can also use the `set circuit` console command to dynamically change the excess burst size. Orphan circuits will receive a default excess burst size equal to the value set in the `set CIR-defaults` command. If you configure 0 for CIR, then you must configure a nonzero value for the excess burst (Be) size. You can also set the default excess burst size for all Frame Relay circuits on this interface using the `set CIR-defaults` command.

Line Speed

The `line speed` is the interface’s line speed.

The FR interface’s line speed is configured using the `set line-speed` configuration command. The line speed must be configured when internal clocking is used. However, it is recommended that you configure a line speed for external clocking since the router uses the line speed as the maximum information rate when congestion monitoring is enabled. Also some of the protocols use an interface’s configured line speed when calculating a route’s cost.

The line speed is not configurable on a Frame Relay dial circuit interface. If the dial circuit is mapped to an ISDN base interface, 64 Kbps is used as the line speed.

For dial circuits using Channelized T1/E1 as the base net, the line speed is 64 Kbps times the number of timeslots assigned or 56 Kbps if you set the bandwidth of the Channelized circuit to 56 Kbps. For example, if you set the number of timeslots for a Channelized circuit to 3, the line speed is 192 Kbps (3 * 64 Kbps).

If the dial circuit is mapped to a V.25bis base interface, the line speed of the V.25bis interface is used for the FR dial circuit.

Minimum Information Rate

The `minimum information rate (IR)` is the minimum data rate for a VC that the router throttles down to when it is notified of congestion. You set the minimum IR as a percentage of CIR using the `set ir-adjustment` configuration command. It can be dynamically changed using the `set ir-adjustment` console command. If you configure CIR equal to 0, the minimum IR is 1500 bps.

Maximum Information Rate

The `maximum information rate` is the maximum data rate at which the router transmits for a VC. If the CIR monitoring feature is enabled and CIR and Bc are nonzero, the maximum information rate is calculated using CIR, Bc, and Be as follows:

\[(Bc + Be) \text{ per } Tc \text{ interval}\]

If the CIR monitoring feature is enabled and CIR and Bc are configured equal to 0, the maximum information rate is equal to the excess burst size (Be) per second.
If the CIR monitoring feature is not enabled the maximum information rate is equal to the line speed.

Variable Information Rate

The variable information rate (VIR) ranges from the configured minimum IR to the calculated maximum IR when the CIR monitoring or congestion monitoring features are enabled. The VIR is gradually decreased down to the minimum information rate when the router is notified of congestion on a circuit and is gradually increased to the maximum information rate when the router stops receiving congestion notifications. Using the `set ir-adjustment` configuration command, you configure the percentage of the information rate by which the VIR should decrease when the router is notified of congestion. You also use this command to configure the percentage of the information rate by which the VIR should be gradually increased when the congestion ends.

To avoid impulse loading of the network, the router initially sets the VIR to CIR when the VC becomes active. If you configure 0 for CIR, VIR is initially set to excess burst (Be) times the MIR adjustment percentage. For example, if Be is set to 64 000 and the MIR adjustment percentage is set to 25%, then the initial VIR would be equal to 16 000 bps.

The VIR can actually exceed the maximum value in one case. If the length of a frame in bits is greater than the maximum IR, Frame Relay transmits the frame anyway.

Circuit Congestion

Circuit congestion occurs for one of the following reasons:

- The sender is transmitting faster than the allowable throughput
- The receiver is too slow when processing the frames
- An intermediate backbone link is congested, resulting in the sender transmitting faster than the available throughput allows.

When circuit congestion happens, the network must drop packets and/or shut down.

In response to circuit congestion, the router implements a *throttle down*, which is a step-wise slowing of packet transmission to the configured minimum IR. Throttle down occurs during the following conditions:

- Circuit congestion is occurring.
- The router is the sender of frames.
- CIR monitoring or congestion monitoring is enabled.

This section discusses monitoring of Frame Relay data rates and circuit congestion.

CIR Monitoring

CIR monitoring is an optional Frame Relay feature that you can set for each interface to prevent the router from creating congestion conditions in the FR network. CIR monitoring allows the VIR for a VC to range between the configured minimum and maximum IR.

CIR monitoring is configured with the `enable cir-monitor` configuration command and is disabled by default. CIR monitoring, when enabled, overrides congestion...
Congestion Monitoring

Congestion monitoring is an optional feature, set per interface, that allows the VIR of VCs to vary in response to network congestion. The VIR assumes values between the minimum IR and a maximum IR of the line speed. Congestion monitoring is enabled by default. It can be disabled with the `disable congestion-monitor` configuration command and re-enabled with the `enable congestion-monitor` command. You can also dynamically enable and disable congestion monitoring using the `enable congestion-monitor` and `disable congestion-monitor` console commands.

CIR monitoring, if enabled, overrides congestion monitoring. If both CIR monitoring and congestion monitoring are disabled, the VIR for each VC on the interface is set to the line speed and does not decrease in response to network congestion.

Note: Even with compression enabled, the device uses the uncompressed size of frames to determine if the VIR is being exceeded.

Congestion Notification and Avoidance

When congestion occurs, the FR backbone network is responsible for notifying the sender and receiver by sending out a FECN or a BECN signal. FECN and BECN are bits that are set in a frame to notify the DTEs at each end of a VC that congestion is occurring. FECN indicates that congestion is occurring in the same direction from which the frame was received; the sender is causing the congestion. BECN indicates that the frames sent by this DTE are causing network congestion.

Optionally, the network can use CLLM messages to convey congestion information for PVCs. CLLM messages are sent only to the congestion source and should be treated similarly to BECN messages by the DTE.

The example in [Figure 25 on page 401](#) shows a congestion condition at switch B when frames are sent from router X to router Y. The FR backbone network notifies router X that frames it sends are encountering congestion by setting the BECN bit in frames sent to router X. The FR backbone network also notifies router Y that frames it receives encountered congestion by setting the FECN bit.

When the router receives a frame containing BECN, it is the router’s responsibility to throttle down the VC’s VIR (variable information rate) if either CIR monitoring or congestion monitoring is enabled. The router does this gradually as it receives consecutive frames with BECN until either the minimum IR is reached or a frame without BECN arrives. FR switches often set BECN in multiple frames after reaching a congestion threshold. In order for FR to avoid overreacting to network congestion when the network is setting multiple frames with BECN, FR will decrease a VC’s VIR at most once every second. This allows the VIR to decrease gradually. As the router receives consecutive frames without BECN, the VIR gradually rises to the maximum IR.

Depending on the operation of the FR network, it may be necessary for the device to throttle down the VC’s VIR when the device receives a FECN to minimize the overall amount of traffic being offered to the network as quickly as possible. Reducing the overall load on the network reduces the number of packets discarded...
for all VCs to relieve congestion. Enabling the `throttle-transmit-on-fecn` parameter, along with either the CIR or congestion monitoring options, causes the device to treat a FECN like a BECN thus reducing overall FR network congestion when any congestion notification is received. Use the throttle-transmit-on-fecn parameter only in FR networks whose queuing methods do not provide dedicated buffers for both input and output. If the `throttle-transmit-on-fecn` is enabled, FR will decrease a VC’s VIR at most once every second for each BECN or FECN received.

Some FR network switches set FECN to indicate congestion but do not set BECN. To provide congestion notification to the source of the congestion, enable the `notify-fecn-source` parameter allowing the device to set BECN in frames that it transmits over a VC on which it has received a FECN. This action provides a signal to the device that is causing the network congestion to throttle down its VC’s VIR.

![Diagram](image)

Figure 25. Congestion Notification and Throttle Down

Note: If multiple DLCIs are configured between two end-stations when congestion occurs, it is possible that a second DLCI may be used to transmit data at a higher throughput until the congestion condition on the first DLCI is corrected.

Similarly, if the network provider supports CLLM, you can configure Frame Relay to throttle down its transmit rate for PVCs contained in a CLLM message. CLLM messages contain a cause code that indicates the type and severity of the problem being reported. The device reacts differently depending on the cause code and the CIR configured for each PVC contained in the CLLM message. When the device receives a CLLM message that indicates:

- A short-term condition, and the configured CIR for the PVC is nonzero, the Frame Relay protocol will throttle the transmit rate for the affected PVCs by the configured IR decrement percentage.
Using Frame Relay

- A long-term condition, the Frame Relay protocol will set the transmit rate for the affected PVCs to the calculated minimum information rate.
- Facility or equipment failure or maintenance action, or if the CIR was configured as zero, the FR protocol will continue to transmit any queued data for the affected PVCs but will not accept any more outgoing packets from the upper layer protocols until the congestion condition is cleared.

Once a CLLM message for a PVC has been received, if the device does not receive any CLLM messages or BECNs within the T_y timer period or if a frame without a BECN is received, the device will consider the congestion condition cleared and gradually return the PVC to its configured transmission rates. If you are using CLLM to control congestion, you must not configure DLCI 1007 for any other use.

Bandwidth Reservation over Frame Relay

For information on bandwidth reservation over Frame Relay, refer to Using Bandwidth Reservation and Priority Queuing and Configuring and Monitoring Bandwidth Reservation in Using and Configuring Features.

Displaying the Frame Relay Configuration Prompt

To access the Frame Relay configuration environment:

1. At the OPCON prompt (+), type `talk 6`.
2. At the configuration prompt (`Config>`), enter the `list devices` command to see a list of interfaces configured on the router.
3. Enter the `network` command to display the Frame Relay configuration prompt. The network number is the number of the Frame Relay interface.

 `Config>network`
 What is the network number [0] 2
 Frame Relay user configuration
 FR 2 Config>`

4. At the Frame Relay interface configuration prompt (`FR Config>`), use the commands discussed in this chapter to configure Frame Relay parameters.

Frame Relay Basic Configuration Procedure

This section outlines the minimum configuration steps that you are required to perform to get the Frame Relay protocol up and running. If you desire any further configuration information and explanation, refer to the configuration commands described in this chapter.

Note: You must restart the router for new configuration changes to take effect.

- Select FR management. The FR Local Management Interface (LMI) protocol defaults to ANSI. You have the option of connecting to a network using the Interim LMI (REV1), ANSI T1.617 Annex D management, or ITU-T/CCITT Q.933 Annex A management. Use the `enable` and `set` commands to enable and set the required management.
- Add a PVC. Add any required PVCs that are needed if FR management is disabled or orphan circuits are disabled. If you want to bridge over a FR PVC, or if you want to run APPN over a FR PVC, you also must configure that PVC. Use the `add permanent-virtual-circuit` command.
Using Frame Relay

- **Configure FR destination addresses.** If you are running a protocol such as IP or IPX over the FR interface, and are interconnecting with devices not supporting the Address Resolution Protocol (ARP) or Inverse ARP on FR, use the `add protocol-address` command to add the static protocol and address mapping.

- **Configure Bandwidth Reservation over Frame Relay.** In addition to the basic Frame Relay configuration, which must be done, you can also configure Bandwidth Reservation (an optional feature) over Frame Relay. For information on configuring Bandwidth Reservation, refer to [Using Bandwidth Reservation and Priority Queuing](#) in Using and Configuring Features.

- **Configure Discard Eligibility.** You can configure Discard Eligibility (DE) congestion control using Bandwidth Reservation. For information on configuring Discard Eligibility, refer to [Using Bandwidth Reservation and Priority Queuing](#) in Using and Configuring Features.

- **Configure Data Compression.** You can configure data compression for Frame Relay. For information on configuring data compression, refer to [Using Data Compression](#) in Using and Configuring Features.

Enabling Frame Relay PVC Management

There are three management options under Frame Relay:

- Interim Local Management Interface Revision 1
- ANSI T1.617 Annex D management
- ITU-T/CCITT Q.933 Annex A management.

Frame Relay defaults to ANSI enabled. If you want to change management types, or if you want to re-enable ANSI management, use the following procedure. Enabling management over Frame Relay is a two-step process:

1. Enter the `enable lmi` command at the `FR Config>` prompt to enable management activity.

2. Enter the `set lmi-type` command to select the type of management for the interface.

 See Table 56 for details of the management types available using the `set` command.

 An example of how to set these management types is shown after the table. Also, refer to the `enable` and `set` command sections in this chapter for more information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>lmi-type rev1</td>
<td>Conforms to LMI Revision 1 (Stratacom’s Frame Relay Interface Specification)</td>
</tr>
<tr>
<td>set</td>
<td>lmi-type ansi</td>
<td>Conforms to ANSI T1.617 ISDN-DSS1-Signalling Specification for Frame Relay Bearer Service (known as Annex D)</td>
</tr>
<tr>
<td>set</td>
<td>lmi-type ccitt</td>
<td>Conforms to Annex A of ITU-T/CCITT Recommendation Q.933 - DSS1 Signalling Specification for Frame Mode Basic Call Control.</td>
</tr>
</tbody>
</table>

Example:

```
enable lmi
set lmi-type ansi
```
Enabling Frame Relay SVC Management

Frame Relay SVC management is automatically enabled when SVCs are enabled.
Chapter 31. Configuring and Monitoring Frame Relay Interfaces

This chapter describes the Frame Relay configuration and operational commands and includes the following sections:

- Frame Relay Configuration Commands
- Accessing the Frame Relay Monitoring Prompt on page 432
- Frame Relay Monitoring Commands on page 432
- Frame Relay Interfaces and the GWCON Interface Command on page 445

Note: For information on monitoring bandwidth reservation over Frame Relay, refer to Configuring and Monitoring Bandwidth Reservation in Using and Configuring Features.

Frame Relay Configuration Commands

This section describes the Frame Relay configuration commands. Enter all commands at the Frame Relay> prompt.

You must restart the router for new configuration changes to take effect.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds PVCs, Required PVC groups, SVCs, and destination protocol addresses to the Frame Relay interface.</td>
</tr>
<tr>
<td>Change</td>
<td>Modifies a PVC, SVC or Required PVC group previously defined by the add command.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables any enabled Frame Relay features.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables Frame Relay features such as circuit monitoring, management options, multicast, protocol-broadcast, and orphans.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the current configuration of the LMI, PVCs, Required PVC groups, SVCs, HDLC information, and protocol addresses.</td>
</tr>
<tr>
<td>LLC</td>
<td>Configures LLC parameters on the Frame Relay interface. These LLC parameters are required when running APPN over the Frame Relay interface.</td>
</tr>
<tr>
<td>Remove</td>
<td>Deletes any previously added PVCs, SVCs, or required PVC groups (if empty), or protocol addresses.</td>
</tr>
<tr>
<td>Set</td>
<td>Configures the Frame Relay management options and parameters (N1-parameter, N2-parameter, N3-parameter, P1 parameter, and T1-parameter). Configures the physical-layer parameters for FR serial interfaces. Sets the maximum frame size.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11.</td>
</tr>
</tbody>
</table>

Note: In this section, the terms circuit number and PVC are synonymous with the term DLCI (Data Link Circuit Identifier).
Configuring Frame Relay Interfaces

Add

Use the `add` command to add a PVC, Required PVC group, or destination protocol address supported by the Frame Relay interface.

Syntax:
```
add permanent-virtual-circuit...
protocol-address...
pvc-group...
switched-virtual-circuit...
```

permanent-virtual-circuit

Adds a PVC to the Frame Relay interface beyond the reserved range 0 through 15. The maximum number of PVCs that can be added is approximately 992, but the actual number of PVCs that the interface can support depends on the throughput required for each PVC, the line speed, the type of protocols running on the interface, and the number of local management interface PVC information elements that can fit in the maximum frame size.

Example:
```
add permanent-virtual-circuit
Circuit Number [16]? 
Committed Information Rate (CIR) in bps [64000]? 
Committed Burst Size (Bc) in bits [64000]? 
Excess Burst Size (Be) in bits [0]? 
Assign Circuit name []? 
Is circuit required for interface operation [N]? 
Does the circuit belong to a required PVC group [N]? 
What is the group name []? 
Do you want to have data compression performed [y]? 
Do you want to have data encryption performed [N]? y
```

Data encryption requires a key that is 16 hexadecimal characters long
You will be asked to enter the key twice for security reasons

Please enter the key for the first time now

A valid encryption key has been entered

Please confirm the key by entering it again

The encryption keys match - the key has been accepted

Circuit Number

Indicates the circuit number for this PVC.

Valid Values: 16 to 1007.

Committed Information Rate

Indicates the committed information rate (CIR). The CIR can be either 0 or a value in the range 300 bps to 2 048 000 bps. For more information, see [Committed Information Rate (CIR)] on page 396

The maximum is the value of the default CIR configured for the interface.

Committed Burst Size

The maximum amount of data in bits that the network agrees to deliver during a measurement interval equal to committed burst (Bc) size / CIR seconds. The range is 300 to 2048000 bits. The maximum value is value of the default committed burst configured for the interface.
Notes:
1. If CIR is configured as 0 then the committed burst size is set to 0 and you are not prompted for a value. For additional information, see "Committed Burst (Bc) Size" on page 397.

Excess Burst Size
The maximum amount of uncommitted data in bits in excess of committed burst size that the network attempts to deliver during a measurement interval equal to (Committed Burst Size/CIR) seconds. Range is 0 to 2 048 000 bits. The maximum value is the value configured for excess burst size for the interface. For additional information, see "Excess Burst (Be) Size" on page 397.

Assign Circuit Name
Indicates the ASCII string that is assigned to describe the circuit. The default is unassigned.

Is the circuit required for operation
Specify Y or N to indicate whether the circuit is required for interface operation.

Does the circuit belong to a required PVC group
This prompt is displayed only for circuits that are required. Specify Y or N to indicate whether the circuit should belong to a required PVC group.

What is the group name
Enables you to specify the name of the required PVC group when the PVC is defined as belonging to a required group. Enter a question mark (?) for a list of currently defined groups.

Do you want to have compression performed
Enables you to specify whether or not the circuit will compress data packets. This question appears only if compression is enabled on the interface.

Note: If you enable compression on a PVC and exceed the interface’s compression circuit limit, you will get a message. Compression will be performed on the circuit, if possible – that is, the active compression limit has not been exceeded when the circuit becomes active. Compression limit includes the number of compression contexts allocated to SVCs as well as PVCs.

Do you want to have data encryption performed
Enables you to specify whether or not the circuit will encrypt data packets. This question appears only if encryption is enabled on the interface. The prompts for the encryption key will only appear if you respond “yes” (or “y”) to this question.

Specifying the Encryption Key: The encryption key is 16 hexadecimal characters long. You must specify the encryption key as a value between X'0000000000000000' and X'FFFFFFFFFFFFFFFF'.

protocol-address
This command adds statically configured destination protocol (protocol-name) addresses to the Frame Relay interface. Statically configured destination protocol addresses are useful if neither Inverse ARP
nor ARP is an option, or for other reasons such as security. Adding protocol name and address mappings (static ARP) is less efficient than Inverse ARP or ARP.

- Inverse ARP is the preferred, efficient method because of dynamic address mapping with no broadcasts.
- ARP is recommended if Inverse ARP is not an option. It is less efficient than Inverse ARP because it uses address broadcast and mappings are relearned at regular intervals.

This parameter prompts you for different information depending on the type of protocol that you are adding.

Example:
```
add protocol-address
Protocol name or number [0]?
```

IP protocol:
```
IP protocol:
IP Address [0.0.0.0]?
Circuit Number or name [16]?
```

IPX protocol:
```
IPX protocol:
Host Number (in hex)[]?
Circuit Number or name [16]?
```

AppleTalk Phase 2 protocol:
```
AppleTalk Phase 2 protocol:
Network Number (1-65279) []?
Node Number (1-253) []?
Circuit Number or name[16]?
```

DN protocol:
```
DN protocol:
Node address [0.0]?
Circuit Number or name[16]?
```

Protocol name or number
Defines the name or number of the protocol that you are adding. If you should specify an unsupported protocol, the system will prompt you with the error message:
```
Unknown protocol name, try again
```

For example, you may have erroneously specified one of the following:
```
Prot# Name
  0 IP
  4 DN
  7 IPX
 22 AP2
```

To see a list of supported protocol types, type `?` at the Protocol name or number [IP]? prompt.

IP Address
Defines the 32-bit Internet address in dotted-decimal notation of the remote IP host.

Host Number
Defines the 48-bit IPX node address of the remote IPX host.

Network Number
Defines the AppleTalk Phase 2 network number of the remote AppleTalk host.
Node Number
Defines the node number of the interface attached to the remote AppleTalk host.

Node address
Defines the DECnet node address of the remote DECnet host. Configure the node address in the format $x.y$, where x is a 6-bit area address and y is a 10-bit node number.

Circuit Number or name
Defines the PVC by DLCI or name or SVC by name that this remote protocol address is associated with.

pvc-group $groupname$
Adds a required PVC group name.

Note: SVCs may not belong to a required PVC group.

switched-virtual-circuit
Adds a switched virtual circuit (SVC). The SVC will act similar to a PVC except that the SVC’s bandwidth will be allocated for it dynamically by the FR network only when the SVC is active. The number of SVCs that can be added is similar to the number of PVCs that can be added in that the number depends on the throughput required for each circuit, the line speed, etc. However, since the bandwidth for an SVC is only reserved when the SVC is active, it may be possible to support more SVCs over an interface than PVCs.

FR 4 Config>add switched-virtual-circuit
Circuit name []? svc01
Remote party number []? 12345
Remote party number numbering plan (E.164 or X.121) [E.164]? E.164
Remote party number type (Unknown or International) [International]? International
Remote party subaddress in hexadecimal []? 01
Remote party subaddress format (private or NSAP) [private]? private
Minimum acceptable outgoing Committed Information Rate (CIR) in bps [64000]? 64000
Requested outgoing Committed Information Rate (CIR) in bps [64000]? 64000
Minimum acceptable incoming Committed Information Rate (CIR) in bps [64000]? 64000
Requested incoming Committed Information Rate (CIR) in bps [64000]? 64000
Requested outgoing Committed Burst size (Bc) in bits [64000]? 64000
Requested incoming Committed Burst size (Bc) in bits [64000]? 64000
Requested outgoing Excess Burst size (Be) in bits [0]? 0
Requested incoming Excess Burst size (Be) in bits [0]? 0
Idle timer in seconds [60]? 60
Establish circuit to learn remote protocol addresses [Y]? Y
Is multicast required for this circuit [Y]? Y
Are call-ins allowed for this circuit [Y]? Y

Circuit name
Specifies the circuit name for the SVC. This name will be used to associate the call with both a protocol and a BRS definition and will be used to identify a connection instead of a circuit number.

Valid Values: A 1 - 32 character ASCII string

Default Value: The name is required and must be unique for this interface

Remote party number
Specifies the remote destination’s Frame Relay address.

Valid Values: A 1 - 20 character string of decimal digits

Default Value: None
Configuring Frame Relay Interfaces

Remote party numbering plan
- Specifies the format of the remote party number. The numbering plan must match that used by the FR network.
 - **Valid Values**: E.164 (ISDN) or X.121 (Data)
 - **Default Value**: E.164

Remote party number type
- Specifies the destination Frame Relay party number type. The number type must match that used by the FR network.
 - **Valid Values**: International or Unknown
 - **Default Value**: International

Remote party subaddress
- Specifies the party entity (for example, protocol) within the destination node. If the subaddress is used, it will be matched to the remote device’s subaddress. The subaddress at both ends of the connection must be the same.
 - The format of the **remote party subaddress** can be:
 - NSAP
 - The number of digits entered must be even and in the range of X'0' - X'F'.
 - Private
 - If the encoding is BCD, then an odd number of digits in the range of 0 - 9 can be entered.
 - If the encoding is not BCD, then an even number of digits in the range of X'0' - X'F' can be entered.

 - The combination of **remote party number** and **remote party subaddress** must be unique on this interface. If parallel connections between two router interfaces is required, the subaddress must be used to uniquely identify each switched virtual connection definition.
 - **Valid Values**: 1 - 40 character hexadecimal string
 - **Default Value**: None

Requested outgoing throughput (CIR)
- Specifies the requested outgoing CIR. The network will provide this bandwidth, if available.
 - **Valid Values**: The CIR can be either 0 or a value in the range 300 bps to 2 048 000 bps.
 - **Default Value**: Default value is determined according to CIR-defaults at the interface level

Minimum acceptable outgoing Committed Information Rate (CIR)
- Specifies the minimum CIR that will be accepted if the network cannot provide the requested CIR.
 - **Valid Values**: The CIR can be either 0 or a value in the range 300 bps to 2 048 000 bps with a maximum of the **requested outgoing throughput (CIR)**.
Requested incoming CIR
Specifies the requested incoming CIR.

Valid Values: The CIR can be either 0 or a value in the range 300 bps to 2,048,000 bps.

Default Value: Value of the requested outgoing CIR

Minimum acceptable incoming Committed Information Rate (CIR)
Specifies the minimum CIR that will be accepted if the network cannot provide the requested CIR.

Valid Values: The CIR can be either 0 or a value in the range 300 bps to 2,048,000 bps with a maximum of the requested incoming CIR.

Default Value: Same as minimum acceptable outgoing CIR

Requested outgoing committed burst size (Bc)
Specifies the requested outgoing committed burst size.

Valid Values: The CIR can be either 0 or a value in the range 300 bps to 2,048,000 bps.

Default Value: Value determined according to CIR-defaults at the interface level

Requested incoming committed burst size (Bc)
Specifies the requested incoming committed burst size.

Valid Values: The CIR can be either 0 or a value in the range 300 bps to 2,048,000 bps.

Default Value: Value equal to requested outgoing Bc

Outgoing excess burst size (Be)
Specifies the requested outgoing burst size.

Valid Values: The CIR can be either 0 or a value in the range 300 bps to 2,048,000 bps.

Default Value: Value determined according to CIR-defaults at the interface level

Requested incoming excess burst size (Be)
Specifies the requested incoming excess burst size.

Valid Values: The CIR can be either 0 or a value in the range 300 bps to 2,048,000 bps.

Default Value: Same as requested outgoing excess burst size (Be)

Idle timer
Specifies the time period that a SVC will remain active in the absence of traffic. Specifying 0 designates this SVC as a fixed circuit that will be established the first time data arrives for it and will not be disconnected even if no traffic flows over it.

Valid Values: 0 - 65535 seconds

Default Value: 60
Configuring Frame Relay Interfaces

Establish circuit to learn remote protocol addresses
Specifies whether this SVC should be established when the interface comes up to learn the protocol addresses of the adjacent node. This option can be used in place of statically configured destination protocol names and addresses for protocols that support dynamic address discovery, such as IP, IPX, AppleTalk2, and DECnet IV to force the router to learn the protocol addresses associated with the remote device via directed InARP. Using this option may help reduce ARP broadcasts. The idle timer will be used to disconnect the SVC once the protocol addresses are learned.

Valid Values: yes or no

Default Value: yes

Is multicast required for this circuit
Specifies whether or not this SVC should be used to transmit multicast packets on this interface even if it means setting the SVC up just to do so. You may use static routes to keep from requiring multicast over SVCs so that the SVCs will not be established just to exchange routing information.

Valid Values: yes or no

Default Value: Defaults according to the multicast emulation setting at the interface level

Are call-ins allowed
Specifies whether or not a call-in from this remote DTE should be accepted. Specifying no can be used to block call-ins from specific users and help eliminate call-in/call-out race conditions.

Valid Values: yes or no

Default Value: yes

Compression capable
Specifies whether Frame Relay compression is supported

Valid Values: yes or no

Default Value: yes, if compression is enabled for the interface. Otherwise, no.

Encryption capable
Specifies whether encryption is supported for this SVC.

Valid Values: yes or no

Default Value: yes, if encryption is enabled for the interface. Otherwise, no.

Change

Use the `change permanent-virtual-circuit` command to change any previous PVCs that were added with the `add permanent-virtual-circuit` command.

Syntax:
```
change permanent-virtual-circuit . . .
switched-virtual-circuit . . .
```
Configuring Frame Relay Interfaces

Example:

change permanent-virtual-circuit
Circuit Number [16]?
Committed Information Rate in bps [64000]?
Committed Burst Size (Bc) in bits [64000]?
Excess Burst Size (Be) in bits [0]?
Assign Circuit Name: []?
Is the circuit required for interface operation [N]?
Does the circuit belong to a required group [N]?
What is the group name []?
Do you want to have data compression performed []?
Do you want to have data encryption performed []?

permanent virtual circuit
See page 406 for a description of the parameters.

switched-virtual-circuit

FR 4 Config change switched-virtual-circuit
Circuit name []? svc01
Remote party number []? 12345
Remote party number numbering plan (E.164 or X.121) [E.164]?
Remote party number type (Unknown or International) [International]?
Remote party subaddress in hexadecimal []? 01
Remote party subaddress format (private or NSAP) [private]?
Requested outgoing Committed Information Rate (CIR) in bps [64000]?
Minimum acceptable outgoing Committed Information Rate (CIR) in bps [64000]?
Requested incoming Committed Information Rate (CIR) in bps [64000]?
Minimum acceptable incoming Committed Information Rate (CIR) in bps [64000]?
Requested outgoing Committed Burst size (Bc) in bits [64000]?
Requested incoming Committed Burst size (Bc) in bits [64000]?
Requested outgoing Excess Burst size (Be) in bits [0]?
Requested incoming Excess Burst size (Be) in bits [0]?
Idle timer in seconds [60]?
Establish circuit to learn remote protocol addresses [Y]?
Is multicast required for this circuit [Y]?
Are call-ins allowed for this circuit [Y]?

See page 409 for a description of the parameters.

Disable

Use the disable command to disable those features previously enabled using the enable command.

Syntax:

 disable cir-monitor
cclm
 compression
congestion-monitor
dn-length-field
 encryption
 lmi
 lower-dtr
 multicast-emulation
 no-pvc
 notify-fecn-source
 orphan-circuits
 protocol-broadcast
Configuring Frame Relay Interfaces

- switched-virtual-circuits
- throttle-transmit-on-fecn

cir-monitor
Disabling this feature allows the circuit's information rate to exceed the maximum information rate that is calculated using the parameters configured with the `add permanent-virtual-circuit` or `add switched-virtual-circuit` command. The default setting for this feature is disabled. See "Circuit Congestion" on page 399 for more information.

cllm
Disables the device from throttling down in response to a CLLM message. The default is disabled. See "Circuit Congestion" on page 399 for details.

compression
Disables compression on the interface. Compression will not be performed for any VC.

congestion-monitor
Disables the congestion monitoring feature. Disabling this feature prevents a circuit's information rate from varying in response to congestion between the minimum information rate and the line speed. See "Circuit Congestion" on page 399 for more information. The default setting for this feature is enabled.

dn-length-field
Prevents inter-operation with implementations of DECnet Phase IV over Frame Relay that require a length field to precede DECnet packets in Frame Relay frames, but allows inter-operation with DECnet Phase IV Frame Relay software that does not use a length field before the DECnet packet. Disabling dn-length-field causes Frame Relay not to insert a length field into transmitted frames containing DECnet packets and not to attempt to remove the length field from received frames containing DECnet packets.

Note: This option is presented as a configuration option only

encryption
Disables encryption on the interface. Even though the PVCs on this interface may be encryption capable, encryption will not take place.

lmi
Disabling this parameter allows for normal operation or end-to-end Frame Relay testing in the absence of a real network or management interface. With end-to-end Frame Relay testing, it is necessary to add like PVCs (the same PVC number, such as 16 and 16) on both ends of the link.

lower-dtr
This parameter determines how the data terminal ready (DTR) signal is handled for leased serial-line interfaces on the router. It is not supported on Frame Relay dial circuit interfaces. See the `enable lower-dtr` command for a more complete description of the lower-dtr parameter.

The following cable types are supported:

- EIA 232 (RS-232)
- V.35
- V.36

The default setting is disable lower-dtr.
multicast-emulation
Disables multicast emulation on each active VC. The default setting for this feature is enabled. If you disable this feature, you are required to add protocol static address maps.

Some protocols, such as IPX RIP, will not function on the Frame Relay interface if multicast-emulation is disabled. The protocol-broadcast feature also requires multicast-emulation in order to function properly. For more information, see "Multicast Emulation and Protocol Broadcast" on page 394.

no-pvc
Controls whether the interface is considered active or inactive. If no-pvc is disabled, the presence of active PVCs on the interface does not affect whether the Frame Relay interface is considered active or inactive.

notify-fecn-source
Disables setting a BECN bit on the first packet destined to a device from which the router received a packet with the FEcn bit set. See "Circuit Congestion" on page 399 for more information.

orphan-circuits
Prohibits the use of all non-configured PVC orphan circuits at the interface. The default setting for orphan circuits is enabled. Disabling orphan circuits adds a measure of security to your network by preventing unauthorized entry from a non-configured circuit. However, if you disable orphan circuits, you are required to add PVCs that will be used on the interface.

protocol-broadcast
Prohibits protocols such as IP RIP from functioning over the Frame Relay interface. For more information, see "Multicast Emulation and Protocol Broadcast" on page 394. The default setting for this feature is enabled.

switched-virtual-circuits
Prohibits the use of SVCs.

throttle-transmit-on-fecn
Prohibits the device from throttling down the transmission of packets in response to a packet with a FEcn bit set on. The default is disabled. See "Circuit Congestion" on page 399 for more information.

Enable

Use the enable command to enable Frame Relay features.

Syntax:
enable
__cir-monitor
__cllm
__compression
__congestion-monitor
__dn-length-field
__encryption
__lmi
__lower-dtr
__multicast-emulation
cir-monitor

Enables the circuit monitoring feature. The circuit monitoring feature ensures that the circuit’s information rate varies between the minimum information rate and the maximum information rate, calculated using the parameters configured with the `add permanent-virtual-circuit` command or the `change permanent-virtual-circuit` command.

Note: The circuit monitoring feature overrides the congestion monitoring feature if there is a conflict when both are enabled. The default setting for this feature is disabled.

For additional information on CIR monitoring, see "CIR Monitoring" on page 399.

Note: To maximize throughput for circuits running data compression, you should not enable CIR monitoring on the same interface on which you have enabled compression. Because the device uses the uncompressed size of frames to determine if the VIR of a PVC is being exceeded and compressed frames will require less bandwidth, the CIR of a PVC will be under-utilized if the device strictly monitors and does not exceed the configured CIR. Instead, congestion monitoring can be used to allow the device to react to congestion indications sent by the FR network to avoid frame loss.

cclm

Enables the device to *throttle down* in response to a CLLM message. Contact your FR network provider to see whether this support is available. See "Circuit Congestion" on page 399 for more information.

compression

Enables compression on the interface. All compression-capable VCs on the interface can compress data packets, provided that contexts are available and the active compression circuit limit has not been exceeded. (See Using the Data Compression Subsystem in Using and Configuring Features for details.)

Note: To maximize throughput for circuits running data compression, you should not enable CIR monitoring on the same interface on which you have enabled compression. Because the device uses the uncompressed size of frames to determine if the VIR of a VC is being exceeded and compressed frames will require less bandwidth, the CIR of a VC will be under-utilized if the device strictly monitors and does not exceed the configured CIR. Instead, congestion monitoring can be used to allow the device to react to congestion indications sent by the FR network to avoid frame loss.
congestion-monitor

Enables the congestion monitoring feature. This feature allows a circuit’s information rate to vary in response to congestion between the minimum information rate and the line speed.

Note: The circuit monitoring feature overrides the congestion monitoring feature if there is a conflict when both are enabled. The default setting for this feature is enabled.

For additional information on congestion monitoring, see "Congestion Monitoring" on page 400.

dn-length-field

Supports inter-operation with implementations of DECnet Phase IV over Frame Relay that require a length field to precede DECnet packets in Frame Relay frames. Enabling dn-length-field causes Frame Relay to insert a length field into transmitted frames containing DECnet packets and to remove the length field from received frames containing DECnet packets. This option is disabled by default. By default, Frame Relay will neither insert nor attempt to remove the length field.

Note: This option is presented as a configuration option only when the router software contains the DECnet Phase IV protocol.

encryption

Enables encryption on the interface. All VCs that are configured as encryption enabled, will encrypt all transmitted data.

lmi

Enables management activity.

After issuing the `enable lmi` command, use the `set lmi-type` command to select the management mode for your Frame Relay interface. See "Enabling Frame Relay PVC Management" on page 403. The system defaults to ANSI T1.617 Annex D management.

Use the `enable lmi` command to resume LMI management if you have previously disabled Frame Relay management.

LMI only provides information about PVCs on an interface, so it does not need to be enabled if only SVCs are used unless it is required by the network. Q.922 determines the usability of all SVCs on an interface and is an indicator of the state of the interface itself. When both PVCs and SVCs are on an interface, LMI and Q.922 may be active at the same time.

lower-dtr

This parameter determines how the data terminal ready (DTR) signal is handled for leased serial-line interfaces that are disabled. It is not supported on Frame Relay dial circuit interfaces. If this parameter is set to “disabled” (the default), the DTR signal will remain raised when the interface is disabled.

When lower-dtr is enabled, DTR will be lowered when the interface is disabled. This behavior may be desirable in situations where the interface has been configured as an alternate link for WAN Reroute and the interface is connected to a dial-out modem which maintains its dial connection based on the state of the DTR signal.

If this feature is enabled and the interface is disabled, the DTR signal is low and the modem keeps the dial connection down. When the interface is enabled, due to a WAN Reroute backup scenario, DTR is raised and the
Configuring Frame Relay Interfaces

modem dials a stored number to the backup site. When the primary interface is restored, the alternate interface is disabled, DTR is lowered, and the modem hangs up the dial connection.

The following cable types are supported:

- EIA 232 (RS-232)
- V.35
- V.36

The default setting is disable lower-dtr.

multicast-emulation

Enables multicast emulation. This allows a multicast/broadcast frame to be transmitted on each active VC. Protocols such as ARP, IPX RIP, and IP RIP require multicast emulation to be enabled to function correctly over a Frame Relay interface. For more information, see [Multicast Emulation and Protocol Broadcast](#) on page 394. The default for this parameter is enabled.

no-pvc

Controls whether the interface is considered active or inactive. When this feature is enabled, the Frame Relay interface becomes inactive when there are no active PVCs on the interface. If at least one PVC is active, the Frame Relay interface becomes active when a successful LMI exchange occurs between the router and the FR switch.

notify-fecn-source

Enables setting a BECN bit on the first packet destined to a device from which the router received a packet with the FECN bit set. Use this parameter to enhance the congestion control mechanisms of the device in a network whether the FR switches do not themselves set BECN but set FECN. See [Circuit Congestion](#) on page 399 for more information.

orphan-circuits

Enables the use of all non-configured orphan circuits. The default for this feature is enabled. See [Orphan Permanent Virtual Circuit CIR](#) on page 397 for information about the default CIR values.

protocol-broadcast

Allows protocols such as IP RIP to function correctly over the Frame Relay interface. The multicast emulation feature must be enabled for the protocol-broadcast feature to function correctly. The default setting for this feature is enabled.

switched-virtual-circuits

Allows the use of SVCs and prompts you for the local SVC network number, the numbering plan, whether call-ins from orphan SVCs are allowed, the number of dial-out retries performed for all SVCs on the interface, and whether network emulation mode, which is used in back-to-back (for example, dial circuit) router configurations, is required.

You can also use the `enable switched-virtual-circuits` command to change configured SVC interface parameters if SVCs have already been enabled.

Example:

```
FR1 Config> enable switched
Local party number []? 4141990
Local party number numbering plan (E.164 or X.121) [E.164]?
```
Local party number type (Unknown or International) [International]?
Are call-ins allowed on this interface [Y]?
Call-out redial attempts [2]?
Network emulation mode [N]?

Local party number
Specifies the destination’s Frame Relay address.

Valid Values: A 1 - 20 character string of decimal digits
Default Value: None

Local party numbering plan
Specifies the format of the party number. The numbering plan must match that used by the FR network.

Valid Values: E.164 (ISDN) or X.121 (Data)
Default Value: E.164

Local party number type
Specifies the destination Frame Relay party number type. The number type must match that used by the FR network.

Valid Values: International or Unknown
Default Value: International

Call-ins allowed
Specifies whether calls from unconfigured (orphan) SVCs are allowed on this interface.

Call-out redial attempts
Specifies the number of call-out redial attempts that will be performed for each SVC in case of a call-out timeout on this interface.

Default Value: 2

Network emulation mode
Specifies whether this SVC is in network emulation mode. It is used for a back-to-back router configuration.

throttle-transmit-on-fecn
Enables the device to throttle down the transmission of packets in response to a packet with a FECN bit set on. Use this parameter to minimize overall FR network congestion whenever a congestion indication is received. It causes the device to react to a FECN in the same way that it reacts to a BECN.

List

Use the list command to display currently configured management and PVC information.

Syntax:

```
list
   all
   hdlc
   lmi
   permanent-virtual-circuits
   protocol-address
```
Configuring Frame Relay Interfaces

pvc-groups

switched-virtual-circuits

all

Displays the Frame Relay configuration. The display is a combination of the list hdlc, the list lmi, and the list permanent virtual circuits commands.

See list hdlc and list lmi for descriptions of the parameters.

hdlc

Displays the Frame Relay High-Level Data Link Control (HDLC) configuration.

Example:

```plaintext
list hdlc
```

Frame Relay HDLC Configuration

- **Maximum frame size** = 2048
- **Encoding** = NRZ
- **Idle state** = Flag
- **Clocking** = External
- **Cable type** = V.35 DTE
- **Line speed (bps)** = 64000
- **Transmit delay** = 0
- **Lower DTR** = Enabled

Encoding

The transmission encoding scheme for the serial interface. Encoding is NRZ (non-return to zero) or NRZI (non-return to zero inverted).

Idle

The data link idle state: flag or mark.

Clocking

The type of clocking: internal or external.

Cable type

Line Speed (bps)

Indicates the physical data rate for the Frame Relay interface.

Maximum frame size

Indicates the maximum frame size that can be transmitted or received over the network at any given time.

Transmit delay

Indicates the number of additional flag bytes sent between frames.

Lower DTR

Indicates whether the router will drop the DTR signal when a WAN Reroute alternate link is no longer needed. Dropping the DTR signal causes the modem to terminate the leased-line connection for the alternate link. Lower DTR does not appear when the cable type is X.21.

Notes:

1. For a FR dial circuit interface, only the maximum frame size is displayed.

lmi

Displays logical management and related configuration information about the Frame Relay interface.

Example:

```plaintext
list lmi
```

Frame Relay Configuration

- **LMI enabled** = Yes
- **LMI DLCI** = 0
Configuring Frame Relay Interfaces

<table>
<thead>
<tr>
<th>LMI type</th>
<th>ANSI</th>
<th>LMI Orphans OK</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLLM enabled</td>
<td>Yes</td>
<td>Timer Ty seconds</td>
<td>10</td>
</tr>
<tr>
<td>SVC network number</td>
<td>4141990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVC Number type</td>
<td>International</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVC Numbering plan</td>
<td>E.164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVC Call-ins allowed</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVC Network emulation mode</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol broadcast</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emulate multicast</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notify FECN Source</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data compression</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression circuit limit</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of compression circuits</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVCs P1 allowed</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface down in no PVCs</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer T1 seconds</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter N1 increments</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMI N2 error threshold</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMI N3 error threshold window</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIR % of CIR</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR % Increment</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR % Decrement</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default CIR</td>
<td>64000</td>
<td>Default Burst Size</td>
<td>64000</td>
</tr>
<tr>
<td>Default Excess Burst</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. This line appears only when data compression is on (yes).
2. This line appears only when data encryption is on (yes).

LMI enabled
Indicates whether the management features are enabled on the Frame Relay interface, yes or no.

LMI DLCI
Indicates the management circuit number. This number reflects the LMI type: 0 for ANSI and ITU-T/CCITT and 1023 for REV1.

LMI Type
Indicates the LMI type: REV1, ANSI, or CCITT.

LMI Orphans OK
Indicates if non-configured circuits are available for use, yes or no.

CLLM Enabled
Indicates whether CLLM is enabled on the Frame Relay interface.

Timer Ty seconds
Indicates the amount of time that must elapse without the device receiving any CLLM messages or BECNs before the device considers a congestion condition cleared and gradually return the PVC to its configured transmission rate.

SVC network number
Specifies the network number for the SVCs on this interface.

SVC number type
Specifies the SVC number type, unknown or international.

SVC numbering plan
Specifies whether the numbering plan is E.164 or X.121.

SVC call-out redial attempts
Specifies the number of call-out redial attempts on this interface.

SVC network emulation mode
Specifies whether this interface operates in network emulation mode for SVCs.

SVC call-ins allowed
Specifies whether call-ins are allowed on this interface.
Configuring Frame Relay Interfaces

Protocol Broadcast
Indicates whether protocols such as IP RIP can function over the Frame Relay interface, yes or no.

Emulate multicast
Indicates whether the multicast emulation feature is enabled on each active PVC, yes or no.

Congestion Monitoring
Indicates whether the congestion monitoring feature that responds to network congestion is enabled, yes or no.

CIR monitoring
Indicates whether the circuit monitoring feature that enforces the transmission rate is enabled, yes or no.

Notify FECN Source
Indicates whether this device sets a BECN bit on the first packet destined to a device from which the router received a packet with the FECN bit set.

Throttle Transmit on FECN
Indicates whether the device will throttle down the transmission of packets in response to a packet with a FECN bit set on.

Data compression
Indicates whether this interface has data compression enabled.

Data encryption
Indicates whether this interface has data encryption enabled and the number of circuits that are encryption capable.

Orphan compression
Indicates whether orphan circuits on this interface will have data compression enabled.

Note: Enabling compression on orphan circuits will decrease the number of available compression contexts available for the native PVCs on the device.

Orphan compression applies to both PVCs and SVCs.

Compression circuit limit
Indicates the maximum number of circuits that can participate in data compression.

Number of compression VCs
Indicates the current number of VCs supporting data compression.

P1 allowed
Indicates the number of allowable PVCs and SVCs for use with this interface.

Timer T1 seconds
Indicates the frequency with which the Frame Relay interface performs a sequence number exchange with the Frame Relay switch LMI entity.

Counter N1 increments
Indicates the number of T1 timer intervals which must expire before a complete PVC LMI status enquiry is made.
Configuring Frame Relay Interfaces

LMI N2 error threshold
Indicates the number of management event errors occurring within the N3 window that will cause a reset of the Frame Relay interface.

LMI N3 error threshold window
Indicates the number of monitored management events used to measure the N2 error threshold.

MIR % of CIR
Minimum IR, expressed as a percentage of CIR.

IR % Increment
Percentage by which the router increments the IR each time it receives a frame without BECN until it reaches the maximum IR.

IR % Decrement
Percentage by which the router decrements the IR each time it receives a frame that contains BECN until it reaches the minimum IR.

Default CIR
The committed information rate, in bits per second, used as the default for VCs on this interface.

Default Burst Size
The committed burst size, in bits, used as the default for VCs on this interface.

Default Excess Burst Size
The excess burst size, in bits, used as the default for VCs on this interface.

permanent-virtual-circuits
Displays all the configured PVCs on the Frame Relay interface.

Example:
```
FR Config> li perm
Maximum circuits allowable = 64
Total circuits configured = 9
Total PVCs configured = 7

<table>
<thead>
<tr>
<th>Circuit Name</th>
<th>Circuit Number</th>
<th>Type</th>
<th>CIR in bps</th>
<th>Burst Size</th>
<th>Excess Burst</th>
</tr>
</thead>
<tbody>
<tr>
<td>cir16</td>
<td>16</td>
<td>Permanent</td>
<td>64000</td>
<td>64000</td>
<td>0</td>
</tr>
<tr>
<td>cir244</td>
<td>244</td>
<td>Permanent</td>
<td>64000</td>
<td>64000</td>
<td>0</td>
</tr>
<tr>
<td>cir33</td>
<td>33</td>
<td>Permanent</td>
<td>64000</td>
<td>64000</td>
<td>0</td>
</tr>
<tr>
<td>cir1005</td>
<td>1005</td>
<td>Permanent</td>
<td>64000</td>
<td>64000</td>
<td>0</td>
</tr>
<tr>
<td>cir55</td>
<td>55</td>
<td>Permanent</td>
<td>64000</td>
<td>64000</td>
<td>0</td>
</tr>
<tr>
<td>cir22</td>
<td>22</td>
<td>Permanent</td>
<td>64000</td>
<td>64000</td>
<td>0</td>
</tr>
<tr>
<td>cir66</td>
<td>66</td>
<td>Permanent</td>
<td>64000</td>
<td>64000</td>
<td>0</td>
</tr>
</tbody>
</table>
```

* = circuit is required
= circuit is required and belongs to a Required PVC group
@ = circuit is data compression capable
$ = circuit is data encryption capable

Maximum circuits allowable
Indicates the number of PVCs and SVCs that can exist for this interface. This number includes any PVCs that you added with the **add permanent-virtual-circuit** command and any SVCs that you added with the **add switched-virtual-circuit** command and dynamically learned through the management interface.

Total PVCs configured
Indicates the total number of currently configured PVCs that can exist for this interface.
Configuring Frame Relay Interfaces

Circuit Name
Indicates the ASCII designation of the configured PVC.

Circuit Number
Indicates the DLCI of a currently configured PVC.

Circuit Type
Indicates the type of virtual circuit currently configured. This release of Frame Relay only supports permanent virtual circuits.

Committed Information Rate
Indicates the information rate at which the network agrees to transfer data under normal conditions.

Committed Burst Size
The maximum amount of data in bits that the network agrees to deliver during a measurement interval equal to (Committed Burst Size/CIR) seconds.

Excess Burst Size
The maximum amount of uncommitted data in bits in excess of Committed Burst Size that the network attempts to deliver during a measurement interval equal to (Committed Burst Size/CIR) seconds.

pvc-groups
Displays all the Required PVC groups on the Frame Relay interface.

Example:
```
list pvc-groups
Required PVC group = group1
  Circuit # 16
```

protocol-addresses
Displays all the statically configured protocol addresses of circuit mappings at the Frame Relay interface.

Example:
```
list protocol-addresses
Frame Relay Protocol Address Translations

<table>
<thead>
<tr>
<th>Protocol Type</th>
<th>Protocol Address</th>
<th>Circuit Number or Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>125.2.29.4</td>
<td>21</td>
</tr>
<tr>
<td>IPX</td>
<td>0000000004503</td>
<td>16</td>
</tr>
</tbody>
</table>
```

Protocol Type
Displays the name of the protocol running over the interface.

Protocol Address
Displays the protocol address of the device at the other end of the circuit.

Circuit Number or Name
Displays the DLCI of the PVC or the name of the SVC that is handling the protocol.

switched-virtual-circuits
```
FR 4 Config>list s
Maximum circuits allowable = 64
Total circuits configured = 9
Total SVCs configured = 2

<table>
<thead>
<tr>
<th>Circuit Name</th>
<th>Opt- Idle</th>
<th>Outgoing</th>
<th>Incoming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
```

424 MRS V3.2 Software User’s Guide
Configuring Frame Relay Interfaces

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Remote party number</th>
<th>Remote subaddress</th>
<th>Committed Information Rate</th>
<th>Committed Burst Size</th>
<th>Excess Burst Size</th>
<th>Idle Timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>circ01</td>
<td>ILM 60</td>
<td>None</td>
<td>64000 64000</td>
<td></td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>svc01</td>
<td>ILM 60</td>
<td>None</td>
<td>64000 64000</td>
<td></td>
<td>0 0</td>
<td></td>
</tr>
</tbody>
</table>

Options: I - call-ins allowed, L - learn protocols, M - Multicast required, c - compression capable, e - Encryption capable
Address type: I - International, U - Unknown
Numbering plan: E - E.164, X - X.121
Subaddress format: N - NSAP, P - private

FR 4 Config>

Maximum circuits allowable
Indicates the number of circuits that can exist for this interface.

Total SVCs configured
Indicates the total number of currently configured SVCs for this interface.

Circuit Name
Indicates the ASCII designation of the configured circuit.

Committed Information Rate
Indicates the information rate at which the network agrees to transfer data under normal conditions.

Committed Burst Size
The maximum amount of data in bits that the network agrees to deliver during a measurement interval equal to (Committed Burst Size/CIR) seconds.

Excess Burst Size
The maximum amount of uncommitted data in bits in excess of Committed Burst Size that the network attempts to deliver during a measurement interval equal to (Committed Burst Size/CIR) seconds.

Idle Timer
Time period that the SVC will remain active in the absence of traffic.

Options
Indicates the options configured for the circuit.

Remote party number
Remote destination FR address. This address is prefixed by the address type and numbering plan used.

Remote subaddress
Remote party subaddress assigned to this connection. The subaddress is prefixed by the subaddress format.

LLC

Use the LLC command to access the LLC configuration environment. See LLC Configuration Commands on page 235 for an explanation of each of these commands.

Note: The LLC command is supported only if APPN is in the software load.
Configuring Frame Relay Interfaces

Syntax:
llc

Remove

Use the remove command to delete any PVC, Required PVC group, or protocol-address previously added using the add command.

Syntax:
_remove permanent-virtual-circuit...
_protocol-address
_pvc-group

permanent-virtual-circuit pvc#

Deletes any configured PVC in the range 16 to 1007.

Notes:
1. When you delete a PVC that is running compression, the interface decreases the count of active compression PVCs. If this action brings the count of compression PVCs below the limit, you will receive a message to that effect.
2. When you delete a PVC that is running encryption, the interface decreases the count of active encryption PVCs.

Note: Encryption support is optional. If your software load does not include encryption, you will not see encryption-related parameters.

protocol-address

Deletes any configured protocol addresses (static ARP entries). This parameter prompts you for different information depending on the type of protocol that you are adding.

Example:
remove protocol-address
Protocol name or number [IP]?

IP protocol:
IP Address [0.0.0.0]?
Circuit Name or Number [16]?

IPX protocol:
Host Number (in hex)[]?
Circuit Name or Number [16]?

AppleTalk Phase 2 protocol:
Network Number [1-65279] []?
Node Number [1-253] []?
Circuit Name or Number [16]?

DN protocol:
Node address [0.0]?
Circuit Name or Number [16]?
Protocol name or number
Defines the name or number of the protocol that you are deleting. If you try to delete an unsupported protocol the system will display the error message:

```
Unknown protocol name, try again
```

To see a list of supported protocols, type `?` at the Protocol name or number [IP]? prompt.

IP Address
Defines the 32-bit internet address of the remote IP host in dotted-decimal notation.

Host Number
Defines the 48-bit node address of the remote IPX host.

Network Number
Defines the AppleTalk Phase 2 network number.

Node Number
Defines the node number of the interface attached to the remote AppleTalk host.

Node address
Defines the DECnet node address of the remote DECnet host. Configure the node address in the format x,y, where x is a 6-bit area address and y is a 10-bit node number.

Circuit Number
Defines the name of a PVC or SVC that the protocol runs over.

pvc-group

```
pvc-group groupname
```
Deletes any configured PVC group by name. The group is removed only if it has no member circuits.

Example: remove pvc-group PVC group name [IP]?

switched-virtual-circuit

```
switched-virtual-circuit
```
Deletes any configured SVC by circuit name.

Set

Use the `set` command to configure the interface to run the Frame Relay protocol.

Set Command Considerations

Two parameters, the n2-parameter and the n3-parameter, require further explanation before you configure them. The n2-parameter sets the error threshold for management events, and the n3-parameter sets the number of events that are monitored in the event window. If the number of management errors in the event window equals n2, the Frame Relay interface resets. For example:

```
set n3-parameter 4
set n2-parameter 3
```

You now have a window size of 4 (n3 = 4) and an error threshold of 3 (n2 = 3). That means the system is monitoring 4 management events and checking to determine if any of those are in error. If the number of events in error equals 3 (the n2 parameter), the Frame Relay interface is reset and the status of the network is considered *network down.*
For the status of the network to be considered network up, the number of events in error within the window must be less than n2 prior to any change in status.

Syntax:

```plaintext
set -- cable*
    -- cir-defaults
    -- clocking*
    -- encoding*
    -- frame-size
    -- idle...
    -- ir-adjustment...
    -- line-speed*
    -- lmi-type
    -- n1-parameter
    -- n2-parameter
    -- n3-parameter
    -- p1-parameter
    -- t1-parameter
    -- transmit-delay...
    -- type-parameter
```

* **Note:** The commands with an * following them are not available for FR dial circuit interfaces.

cable

physical-interface-link-type data-connection-type

Sets the cable type for the network physical link.

A DTE cable is used when you are attaching the router to some type of DCE device (for example, a modem or a DSU/CSU). A DCE cable is used when the router is acting as the DCE and providing the clocking for direct attachment.

The available options are:

<table>
<thead>
<tr>
<th>Physical Interface Link Type</th>
<th>Data Connection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA 232 (RS-232)</td>
<td>DTE, DCE</td>
</tr>
<tr>
<td>V35</td>
<td>DTE, DCE</td>
</tr>
<tr>
<td>V36</td>
<td>DTE</td>
</tr>
<tr>
<td>X21</td>
<td>DTE, DCE</td>
</tr>
</tbody>
</table>

cir-defaults

Sets the default values for the circuit congestion parameters. The parameters are:

- **cir** Sets the default value of cir to the value provided by a Frame Relay network provider.

 Valid Values: 0 or 300 to 204 800 bps

 Default Value: 64 000

- **bc** Sets the default value of bc to the value provided by a Frame Relay network provider.
Valid Values: See "Committed Burst (Bc) Size" on page 397

Default Value: 64 000

be Sets the default value of be to the value provided by a Frame Relay network provider.

Valid Values: See "Excess Burst (Be) Size" on page 397

Default Value: 0

Example:
FR 6 config> set cir-default
Default Committed Information Rate (CIR) in bps [64000]? 48000
Default Committed Burst Size (Bc) in bits [64000]? 40000
Default Excess Burst Size (Be) in bits [0]? 52000

clocking [external or internal]
To connect to a modem or DSU, configure clocking as external. To connect directly to another DTE device, use a DCE cable and set the clocking to internal. For internal clocking, you must enter the set line-speed command to configure a clock speed between 2400 and 2048000 bps. If you want to use a line speed greater than 2048000, you can only do this on:

- interface 1.
- port 1 of a 4-port WAN concentration adapter.
- ports 1 and 5 of an 8-port WAN concentration adapter.

The other WAN ports must be clocked at 64 Kbps or less.

For external clocking the maximum line speed is 6 312 000 bps.

encoding [NRZ or NRZI]
Sets the HDLC transmission encoding scheme as NRZ (non-return to zero) or NRZI (non-return to zero inverted). Most configurations use NRZ, which is the default.

frame-size #
Sets the maximum size of the network layer portion of the frames transmitted and received on the interface. This maximum size includes the 2-byte DLCI address and the user data shown in figure 39-4. The size you configure must be consistent with the maximum frame size supported by the Frame Relay switch and by the other FR DTEs in the Frame Relay network. Values are 262 to 8190. The default is 2048. Since the configured frame size includes the DLCI address and the FR RFC 1490 multi-protocol encapsulation header, the maximum protocol packet size that can be transmitted is less than the configured frame size and is protocol dependent. The following table shows how many bytes to subtract from the configured frame size to determine the maximum protocol packet size that can be transmitted and received on the interface.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Subtracted Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>4</td>
</tr>
<tr>
<td>IPX</td>
<td>10</td>
</tr>
<tr>
<td>Appletalk Phase 2</td>
<td>10</td>
</tr>
<tr>
<td>DECnet Phase IV (DNA IV)</td>
<td>12</td>
</tr>
<tr>
<td>Banyan Vines</td>
<td>10</td>
</tr>
<tr>
<td>OSI</td>
<td>10</td>
</tr>
<tr>
<td>Bridging</td>
<td>10</td>
</tr>
</tbody>
</table>
Configuring Frame Relay Interfaces

APPN

58 bytes (see note)

Note: Assumes worst case for APPN BAN where a T/R MAC address header and LLC header are added in addition to the FR header bytes.

If FR data encryption is enabled then you must subtract up to an additional 12 bytes.

When using Frame Relay SVCs, the maximum information field size must be the same at both ends of the virtual circuit. To determine the maximum information field size, subtract 16 bytes from the frame size if encryption is enabled on the SVC and subtract 4 bytes if encryption is not enabled on the SVC.

idle [flag or mark]

Sets the transmit idle state for HDLC framing. The default value is **flag**, which provides continuous flags (7E hex) between frames. The mark option puts the line in a marking state (OFF, 1) between frames. Flag idle causes the transmit LED to be dark between frames. Flag idle partially lights the transmit LED between frames.

ir-adjustment increment-% decrement-% minimum-IR

Sets the minimum information rate (IR) and the percentages for incrementing and decrementing the IR in response to network congestion.

The minimum IR, expressed as a percentage of CIR, is the lower limit of the information rate. The minimum percentage is 1 and the maximum percentage is 100. The default is 25.

When network congestion clears, the information rate is gradually incremented by the IR adjustment increment percentage until the maximum information rate is reached. The minimum percentage is 1 and the maximum percentage is 100. The default is 12.

When network congestion occurs, the information rate is decremented by the IR adjustment decrement percentage each time a frame containing BECN is received until the minimum information rate is reached. The minimum percentage is 1, and the maximum percentage is 100. The default is 25.

Example:

```
set ir-adjustment
IR adjustment % increment [12]?
IR adjustment % decrement [25]?
Minimum IR as % of CIR [25]?
```

line-speed rate

For internal clocking, this command specifies the speed of the transmit and receive clock lines. The range is 2400 to 2 048 000 bps.

For external clocking, this command does not affect the hardware (in other words, the actual speed of the line) but it sets the speed of some protocols, such as IPX, used to determine routing cost parameters. Congestion monitoring also uses the configured line speed to determine the maximum information rate. Therefore, it is recommended that you set the speed to match the actual line speed. If the speed is not configured, the protocols and congestion monitoring assume a speed of 1 000 000 bps.

Notes:

1. When using external clocking, the maximum line speed is 6 312 000.
2. When using internal clocking, the maximum line speed is 2 048 000.
Configuring Frame Relay Interfaces

If you want to use a line speed greater than 2048000, you can only do this on:

- interface 1.
- port 1 of a 4-port WAN concentration adapter.
- ports 1 and 5 of an 8-port WAN concentration adapter.

The other WAN ports must be clocked at 64 Kbps or less.

lmi-type [rev1 or ansi or ccitt]

Sets the management type for the interface. See [Enabling Frame Relay PVC Management](#) for details on setting Frame Relay management. The default is type *ansi* enabled.

Table 58. Frame Relay Management Options

<table>
<thead>
<tr>
<th>Command</th>
<th>Management Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>lmi-type rev1</td>
<td>Conforms to LMI Revision 1, (Stratacom’s Frame Relay Interface Specification)</td>
</tr>
<tr>
<td>set</td>
<td>lmi-type ansi</td>
<td>Conforms to ANSI T1.617 ISDN-DSS1-Signalling Specification for Frame Relay Bearer Service (known as Annex D)</td>
</tr>
<tr>
<td>set</td>
<td>lmi-type ccitt</td>
<td>Conforms to Annex A of ITU-T/CCITT Recommendation Q.933 - DSS1 Signalling Specification for Frame Mode Basic Call Control.</td>
</tr>
</tbody>
</table>

n1-parameter count

Configures the number of T1 timer intervals which must expire before a complete PVC status enquiry is made. *Count* is the interval in the range 1 to 255. The default is 6.

n2-parameter max#

Configures the number of errors that can occur in the management event window monitored by the n3-parameter before the Frame Relay interface resets. *Max#* is a number in the range 1 to 10. The default is 3. This parameter must be less than or equal to the n3-parameter or you will receive an error message.

n3-parameter max#

Configures the number of monitored management events for measuring the n2-parameter. *Max#* is a number in the range 1 to 10. The default is 4.

p1-parameter max#

Configures the maximum number of PVCs supported by the Frame Relay interface. This includes active, inactive, removed, and congested PVCs. *Max#* is a number in the range 0 to 992. The default is 64. 0 (zero) implies that the interface supports no PVCs.

t1-parameter time

Configures the interval (in seconds) between sequence number exchanges with Frame Relay management. The management’s T2 timer is the allowable interval for an end station to request a sequence number exchange with the manager. The T1 interval must be less than the T2 interval of the network. *Time* is a number in the range 5 to 30. The default is 10.

transmit-delay #

Allows the insertion of a delay between transmitted packets. The purpose of this command is to slow the serial line so that it is compatible with older, slower serial devices at the other end. It can also prevent the loss of serial
line hello packets between the lines. \# is between 0 and 15 extra flags. The default is zero (0). Setting this parameter provides 0 to 15 extra flags between transmit frames. Table 59 lists the units and range values for serial interfaces.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra Flags</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

ty-parameter time

Configures the interval after which the device considers an existing congestion condition indicated by the receipt of a CLLM message to be cleared. If the device receives a CLLM message before the timer expires, the device resets this timer.

Valid Values: 5 to 30 seconds.

Default Value: 11 seconds.

Accessing the Frame Relay Monitoring Prompt

To access the Frame Relay operating commands and to monitor Frame Relay on your router, perform the following steps:

1. At the OPCON prompt (+), type `talk 5`.
2. At the GWCON prompt (+), enter the `interface` command to see a list of interfaces configured on the router.
3. Enter the `network` command followed by the network number of the frame relay interface. For example:

   ```
   + net 2
   Frame Relay Monitoring
   FR 2 >
   ```

Frame Relay Monitoring Commands

This section summarizes and then explains the Frame Relay Monitoring commands. Use these commands to gather information from the database. Table 60 shows the commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 113.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears statistical information on the Frame Relay interface.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables CIR monitoring and congestion monitoring on the Frame Relay interface.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables CIR monitoring and congestion monitoring on the Frame Relay interface.</td>
</tr>
<tr>
<td>List</td>
<td>Displays statistics specific to the data-link layer and Frame Relay management.</td>
</tr>
<tr>
<td>LLC</td>
<td>Displays the LLC monitoring prompt.</td>
</tr>
<tr>
<td>Notrace</td>
<td>Disables packet tracing capability for individual circuits or for the entire interface.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets CIR, Committed Burst Size, and Excess Burst Size for a Frame Relay VC.</td>
</tr>
</tbody>
</table>
Table 60. Frame Relay Monitoring Commands Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td>Enables packet tracing capability for individual circuits or for the entire interface.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Note: In this section, the terms *circuit number* and *PVC* are equivalent to the term *data link circuit identifier (DLCI)*.

Clear

Use the `clear` command to zero statistical counters on the Frame Relay interface.

Note: Statistics can also be cleared by using the OPCON `clear` command.

Syntax:

```
clear
```

Disable

Use the `disable` command to disable the Frame Relay CIR monitoring and congestion monitoring features.

The `disable` command dynamically changes the router configuration. These changes will be lost when the router is restarted.

Syntax:

```
disable
```

Enable

Use the `enable` command to enable the Frame Relay CIR monitoring and congestion monitoring features.

The `enable` command dynamically changes the router configuration. These changes will be lost when the router is restarted.

Syntax:

```
enable
```
Monitoring Frame Relay Interfaces

List

Use the list command to display statistics specific to the data-link layer and the Frame Relay interface.

Syntax:

```
list
   all
   circuit ...
   lmi
   permanent-virtual-circuits
   pvc-groups
   switched-virtual-circuit
   svcs
   virtual-circuits
```

- **all**: Displays circuit, management, and VC statistics on the Frame Relay interface. The output displayed for this command is a combination of the list lmi and list permanent-virtual-circuit commands.

- **circuit name or number**: Displays detailed virtual circuit configuration and statistical information for the specified VC using the input circuit name or DLCI.

Example:

```
list circuit 347
```

```
Circuit name = Valencia

Circuit state = Active  Circuit is orphan = No
Frames transmitted = 0  Bytes transmitted = 0
Frames received = 0  Bytes received = 0
Total FECNs = 0  Total BECNs = 0
Times congested = 0  Times Inactive = 0
CIR in bits/second = 64000  Potential Info Rate = 56000
Committed Burst (BC) = 1200  Excess Burst (Be) = 54800
Minimum Info Rate = 16000  Maximum Info Rate = 64000
Required = Yes  PVC group name = group1
Compression capable = Yes  Operational = Yes
R-As received = 0  R-As transmitted = 0
R-R mode discards = 0  Enlarged frames = 0
Decompress discards = 0  Compression errors = 0
Compression ratio = 1.72 to 1  Decompression ratio = 1.10 to 1
Encryption capable = Yes  Operational = Yes
Encryption errors = 0  Decryption errors = 0
Rcv error discards = 0
Current number of xmit frames queued = 0
Xmit frames dropped due to queue overflow = 0
```

Circuit state

Indicates the state of the circuit: inactive, active, or congested. Inactive indicates that the circuit is not available for traffic because either the Frame Relay interface is down or the Frame Relay management entity has not notified the Frame Relay protocol that the circuit is active. Active indicates that data is being transferred. Congested indicates that data flow is being controlled.

Circuit is orphan

Indicates if the circuit is a non-configured PVC learned through LMI management or a call-in for a non-configured SVC.
Monitoring Frame Relay Interfaces

Frames/Bytes transmitted
Indicates how many frames and bytes this VC has transmitted.

Frames/Bytes received
Indicates how many frames and bytes this VC has received.

Total FECNS
Indicates the number of times that this VC has been notified of inbound or downstream congestion.

Total BECNS
Indicates the number of times that this VC has been notified of outbound or upstream congestion.

Times congested
Indicates the number of times that this VC has become congested.

Times inactive
Indicates the number of times that this VC was inoperable.

CIR in bits/sec
Indicates the information rate of the VC between the range 300 bps to 2048000 bps. A value of 0 is also supported.

Potential Info Rate
Indicates the current maximum rate in bits per second at which data will be transmitted for the circuit. The actual data rate will depend on the queue depths and priorities associated with the circuit.

If this field has a value of “Line Speed”, then the maximum data rate is the actual line speed even if the line speed was not configured or was configured incorrectly for this interface.

Committed Burst (BC)
Maximum amount of data, in bits, that the router can transmit during the time interval (Tc). (Tc=Bc/CIR.)

Excess Burst (Be)
Maximum amount of uncommitted data in bits the router can transmit on a VC in excess of the Bc during the time interval (Tc).

Minimum Info Rate
Minimum Information Rate. The minimum data rate for a VC that the router throttles down to when it is notified of congestion.

Maximum Info Rate
Maximum Information Rate. The maximum data rate at which the router transmits for a VC.

Required
Yes or No. If yes, the PVC is a Required PVC.

PVC group name
If the PVC is a member of a required PVC group, the name appears here; otherwise, “Unassigned” appears.

Compression capable
Indicates whether the circuit can compress data packets.

Operational
Indicates whether compression is active on the circuit. When this is yes, data is being compressed on this link.
Monitoring Frame Relay Interfaces

- **R-Rs received**
 Indicates the number of Reset-Request packets sent by the peer decompressor. A peer decompressor sends a Reset-Request whenever the peer detects that it is out of sync with its peer compressor. If this number increases rapidly, packets are being lost or corrupted on this circuit.

- **R-Rs transmitted**
 Indicates the number of Reset-Request packets sent since compression started on the circuit. If this number increases rapidly, packets are being lost or corrupted on this circuit.

- **R-As received**
 Indicates the number of Reset-Acknowledgements received in response to Reset-Requests. The compressor also sends out this packet to signal that it has reset its compression history.

- **R-As transmitted**
 This is the number of Reset-Acknowledgements sent to the peer.

- **R-R mode discards**
 Indicates the number of compressed data frames that were discarded while waiting for an R-A after sending out an R-R.

- **Enlarged frames**
 This is a count of the frames that could not be compressed. Usually an incompressible frame is sent in its uncompressed format within a special compression frame type allowing the compressor and decompressor to remain synchronized.

- **Decompress discards**
 Indicates the number of compressed frames that were discarded because of decompression errors.

- **Compression errors**
 Indicates the number of frames that had compression errors which were transmitted in an uncompressed form.

- **Compression ratio**
 Indicates the approximate effectiveness of the compressor.

- **Decompression ratio**
 Indicates the approximate effectiveness of the decompressor.

- **Encryption capable**
 Indicates whether this circuit is encryption enabled.

- **Operational**
 Indicates whether encryption is active on the circuit. When this is yes, data is being encrypted on this link.

- **Encryption errors**
 Indicates the number of frames that had encryption errors.

- **Decryption errors**
 Indicates the number of frames that had decryption errors.

- **Rcv error discards**
 Indicates the number of compressed frames that were discarded because of reception problems.

- **Current number of xmit frames queued**
 Indicates the number of frames currently queued for this circuit.
Monitoring Frame Relay Interfaces

These frames are waiting for space to become available on the serial device handler transmit queue for this interface.

Xmit frames dropped due to queue overflow

Indicates the number of frames that could not be transmitted for this VC due to output queue overflow.

lmi

Displays statistics relevant to the logical management on the Frame Relay interface.

Example:

```
list lmi
```

Management Status:

```
------------------
LMI enabled      = Yes
LMI DLCI         = 0
LMI Orphans OK   = Yes
CLLM enabled     = No
SVC local net number = 12345678
SVC Number type  = International
SVC Numbering plan = E.164
SVC Call-out retries = 2
SVC Call-ins allowed = Yes
Protocol broadcast = Yes
Emulate multicast = Yes
Notify FECN source = No
Number VCs P1 allowed = 64
Interface down if no PVCs = No
Line speed (bps) = 1000000
Maximum frame size (bytes) = 2048
Timer T1 seconds = 10
Counter N1 increments = 6
LMI NZ threshold = 3
LMI NS threshold window = 4
MIR % of CIR = 25
IR % Increment = 12
IR % Decrement = 25
DECnet length field = No
Default CIR = 64000
Default Burst Size = 64000
Default Excess Burst = 0
Current receive sequence = 0
Current transmit sequence = 1
Total status enquiries = 9
Total status responses = 0
Total sequence requests = 0
Total responses = 0
Data compression enabled = No
Data encryption enabled = No
------------------
```

Virtual Circuit Status:

```
-----------------------
Total allowed = 64
Total configured = 2
Total active = 0
Total congested = 0
Total PVCs left net = 0
Total PVCs join net = 0
-----------------------
```

Management Status:

LMI enabled

Indicates if Frame Relay management is active (yes or no).

LMI DLCI

Indicates the management circuit number. This number is either 0 (ANSI default or ITU-T/CCITT) or 1023 (interim LMI REV1).

LMI type

Indicates the type of frame relay management being used, ANSI, ITU-T/CCITT, or LMI Revision 1.

LMI orphans OK

Indicates if all non-configured circuits learned from Frame Relay LMI management are available for use (yes or no).

CLLM enabled

Specifies whether this circuit will throttle transmission on receiving CLLM frames.
Monitoring Frame Relay Interfaces

Timer Ty seconds
Indicates the value of the CLLM Ty timer. This field is only displayed if CLLM is enabled.

Last CLLM cause code
Indicates the congestion cause code given in the last CLLM message received or *None* if no CLLM messages have been received. This field is only displayed if CLLM is enabled.

SVC network number
Specifies the network number for the SVCs on this interface.

SVC number type
Specifies the SVC number type, unknown or international.

SVC numbering plan
Specifies whether the numbering plan is E.164 or X.121.

SVC call-out redial attempts
Specifies the number of call-out redial attempts on this interface.

SVC network emulation mode
Specifies whether this interface operates in network emulation mode for SVCs.

SVC call-ins allowed
Specifies whether call-ins are allowed on this interface.

Protocol broadcast
Indicates if protocols such as IP RIP are able to operate over the Frame Relay interface.

Congestion monitoring
Indicates whether the congestion monitor feature that responds to network congestion is enabled (yes or no).

Emulate multicast
Indicates whether the multicast emulation feature is enabled on each active PVC (yes or no).

CIR monitoring
Indicates whether the circuit monitoring feature that enforces the transmission rate is enabled (yes or no).

PVCs P1 allowed
Indicates the number of allowable VCs for use with this interface. This number is the maximum number of active, congested, inactive, and removed VCs that can be supported on the interface.

Interface down if no PVCs
Indicates whether the router considers the interface unavailable when there are no active PVCs.

Line speed (bps)
Indicates the configured data rate of the Frame Relay interface.

Timer T1 seconds
Indicates the frequency with which the Frame Relay interface performs a sequence number exchange with the Frame Relay switch LMI entity.

Counter N1 increments
Indicates the number of T1 timer intervals which must expire before a complete PVC LMI status enquiry is made.
LMI N2 error threshold
Indicates the number of management event errors occurring within the N3 window that will cause a reset of the Frame Relay interface.

LMI N3 error threshold window
Indicates the number of monitored management events used to measure the N2 error threshold.

MIR % of CIR
Minimum IR, expressed as a percentage of CIR.

IR % Increment
Percentage by which the router increments the IR each time it receives a frame without BECN until it reaches the maximum IR.

IR % Decrement
Percentage by which the router decrements the IR each time it receives a frame that contains BECN until it reaches the minimum IR.

DECnet length field
Indicates whether or not the DECnet length field feature is enabled. Some Frame Relay DECnet Phase IV implementations require a length field between the Frame Relay multiprotocol encapsulation header and the DECnet packet. A length field is inserted if the DECnet length field feature is enabled.

Default CIR
Specifies the default CIR for this interface.

Default Burst Size
Specifies the default burst size for this interface.

Default Excess CIR
Specifies the default excess burst size for this interface.

Current receive sequence
Indicates the current receive sequence number that the Frame Relay interface has received from the Frame Relay management entity.

Current transmit sequence
Indicates the current transmit sequence number that the Frame Relay interface has sent to the Frame Relay management entity.

Total status enquiries
Indicates the total number of status enquiries that the Frame Relay interface has made of the Frame Relay management entity.

Total status responses
Indicates the total number of responses that the Frame Relay interface has received from the Frame Relay management entity in response to status enquiries.

Total sequence requests
Indicates the total number of sequence number requests that the Frame Relay interface has sent to the Frame Relay management entity.

Total responses
Indicates the total number of sequence number responses that the Frame Relay interface has received from the Frame Relay management entity.
Monitoring Frame Relay Interfaces

Data compression enabled
Indicates whether data compression is enabled on this interface.

Orphan compression
Indicates whether orphan circuits on this interface will have data compression enabled.

Note: Enabling compression on orphan circuits will decrease the number of available compression contexts available for the native VCs on the device.

Orphan compression applies to both PVCs and SVCs.

Compression circuit limit
Specifies the maximum number of VCs that can compress data on this interface.

Active compression circuits
Specifies the number of VCs currently compressing data on this interface.

Data encryption enabled
Indicates whether data encryption is enabled on this interface.

Active encryption circuits
Indicates the number of VCs that are currently encrypting data.

Virtual Circuit Status:

Total allowed
Indicates the number of allowable VCs (including orphans) whose state is active, congested, removed, or inactive for use with this interface.

Total configured
Indicates the total number of currently configured VCs for this interface.

Total active
Indicates the number of active VCs on this interface.

Total congested
Indicates the number of VCs that are throttled down because of congestion within the network.

Total PVCs left net
Indicates the total number of PVCs that have been removed from the network.

Total PVCs joined net
Indicates the total number of PVCs that have been added to the network.

permanent-virtual-circuit
Displays general link-layer statistics and configuration information for all configured PVCs on the Frame Relay interface.

Example:

<table>
<thead>
<tr>
<th>Circuit#</th>
<th>Circuit Name</th>
<th>Orphan Circuit</th>
<th>Type/State</th>
<th>Frames Transmitted</th>
<th>Frames Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Valencia</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Raleigh</td>
<td>No</td>
<td>15</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>
Monitoring Frame Relay Interfaces

<table>
<thead>
<tr>
<th>Circuit#</th>
<th>Indicates the DLCI of the PVC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Name</td>
<td>Name of the circuit, an ASCII string.</td>
</tr>
<tr>
<td>Orphan Circuit</td>
<td>Indicates whether the PVC is a non-configured circuit (yes or no).</td>
</tr>
<tr>
<td>Type/State</td>
<td>Indicates the state of the circuit, A (active), I (inactive), P (permanent), C (congested), or R (removed).</td>
</tr>
<tr>
<td>Frames Transmitted</td>
<td>Indicates how many frames this PVC has transmitted.</td>
</tr>
<tr>
<td>Frames Received</td>
<td>Indicates how many frames this PVC has received.</td>
</tr>
</tbody>
</table>

pvc-groups
Displays required PVC group information for all required PVC groups. For each group this consists of the group name, the circuits in the group and the state (active, inactive, or removed) of each circuit.

Example:
```
list pvc-groups
--------- ----------------- --------------
Group name Circuits in group Circuit status
---------- ----------------- --------------
group1 16 active
44 inactive
240 removed
```

svcs
Displays all SVCs, either configured or orphaned, on the interface regardless of state.

Example:
```
FR 1>list svcs
```

switched-virtual-circuit
The following example displays configuration and operational information for a single SVC by name.

Example:
```
FR 1>list switched-virtual-circuit flotsam
```
virtual-circuits
Displays all PVCs and all active SVCs with associated information that is identical to the list permanent-virtual-circuit command.

<table>
<thead>
<tr>
<th>Circuit Number</th>
<th>Circuit Name</th>
<th>Orphan Type/ State</th>
<th>Frames Transmitted</th>
<th>Frames Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>circ16</td>
<td>No P/A</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>Unassigned</td>
<td>Yes @ P/I</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>flotsam</td>
<td>No S/A</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>Unassigned</td>
<td>Yes @ P/A</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>circ24</td>
<td>No P/R</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

P - PVC S - SVC A - Active I - Inactive R - Removed C - Congested

* - Required # - Required and belongs to a PVC group
@ - Data compression capable but not operational
& - Data compression capable and operational

LLC

Use the LLC command to access the LLC monitoring prompt. LLC commands are entered at this new prompt. See "LLC Monitoring Commands" on page 239 for an explanation of each of these commands.

Syntax:

```
llc
```

Note: The LLC command is supported only if APPN is in the software load.

Notrace

Use the notrace command to disable packet tracing for individual circuits or the entire interface. This command can be used as a filter when tracing specific circuits or interfaces is required. The default setting is to trace all circuits.

Syntax:

```
notrace circuit#
circuitname
all
```
Example:

notrace 16
 Disables packet tracing on circuit (PVC or SVC) with DLCI 16.
notrace circuit phoenix
 Disables packet tracing on circuit (PVC or SVC) named phoenix.
notrace circuit all
 Disables packet tracing on all circuits on this interface.

Set

Use the `set` command to set the values for Committed Information Rate (CIR), Committed Burst Rate, and Excess Burst Rate for the specified VC. You also can set values for IR adjustment rates.

Changes made with this command do not affect the configuration data. They are in effect only until the router is restarted.

Syntax:

```
set   circuit . .
  ir-adjustment . .
```

- `circuit circuit# or name cirvol bcval beval`
 Sets the values for Committed Information Rate (CIR), Committed Burst Rate, and Excess Burst Rate for the specified VC and can be used to change the operational outgoing CIR, Bc, and Be for a PVC or an active SVC.

Example:

```
set circuit
Circuit number [16]?
Committed Information Rate (CIR) in bps [1200]?
Committed Burst Size (Bc) in bits [1200]?
Excess Burst Size (Be) in bits [56000]?
```

- **Circuit Number**
 Indicates the circuit number in the range 16 to 1007.

- **Committed Information Rate**
 Indicates the committed information rate (CIR). The CIR can be either 0 or a value in the range 300 bps to 2048000 bps. The default is 64000 bps. For more information, see [Committed Information Rate (CIR)] on page 396.

- **Committed Burst Size**
 The maximum amount of data in bits that the router will send during a measurement interval equal to committed burst (Bc) size / CIR seconds. The range is 300 to 2048000 bits. The default value is 64000 bits.

 Note: If CIR is configured as 0 then the committed burst size is set to 0 and you are not prompted for a value. For additional information, see [Committed Burst (Bc) Size] on page 397.

- **Excess Burst Size**
 The maximum amount of uncommitted data in bits in excess of committed burst size that the router attempts to deliver during a measurement interval equal to (Committed Burst Size/CIR) seconds. Range is 0 to 2048000 bits. Default is 0. For additional
ir-adjustment increment-% decrement-% minimum-IR

Sets the minimum information rate (IR) and the percentages for incrementing and decrementing the IR in response to network congestion.

The minimum IR, expressed as a percentage of CIR, is the lower limit of the information rate. The minimum percentage is 1 and the maximum percentage is 100. The default is 25.

When network congestion clears, the information rate is gradually incremented by the IR adjustment increment percentage until the maximum information rate is reached. The minimum percentage is 1 and the maximum percentage is 100. The default is 12.

When network congestion occurs, the information rate is decremented by the IR adjustment decrement percentage each time a frame containing BECN is received until the minimum information rate is reached. The minimum percentage is 1, and the maximum percentage is 100. The default is 25.

Example:

set ir-adjustment
IR adjustment % increment [12]?
IR adjustment % decrement [25]?
Minimum IR as % of CIR [25]?

Trace

Use the **Trace** command to enable packet tracing for individual circuits or the entire interface and to list the tracing capability of all circuits on this interface. This command can be used as a filter when tracing specific circuits or interfaces is required. The default setting is to trace all circuits.

Syntax:

trace all
circuitname
circuit#
list

Example:

trace 16
Enables packet tracing on circuit (PVC or SVC) with DLCI 16.

trace circuit phoenix
Enables packet tracing on circuit (PVC or SVC) named phoenix.

trace circuit all
Enables packet tracing on all circuits on this interface.

trace list
The following circuits are available for packet trace
Circuit Name Circuit Number
Unassigned 16
phoenix 25
jetsam 0

Lists the packet tracing capability of all circuits on this interface.
Frame Relay Interfaces and the GWCON Interface Command

While Frame Relay interfaces have a monitoring process for monitoring purposes, the router also displays complete statistics for installed interfaces when you use the \texttt{interface} command from the GWCON environment. (For more information on the \texttt{interface} command, refer to Chapter 10. The Operating/Monitoring Process (GWCON - Talk 5) and Commands on page 127)

Statistics Displayed For Frame Relay Interfaces

Statistics similar to the following are displayed when you execute the \texttt{interface} command from the GWCON environment for Frame Relay interfaces:

```
+interface 1
          Nt Nt' Interface  CSR  Vec  Passed  Failed  Failed
 1      1  FR/0  81620  5D  1      0       0
Frame Relay MAC/data-link on SCC Serial Line interface
Adapter cable: V.35 DTE RISC Microcode Revision:
1
V.24 circuit: 105 106 107 108 109 125 141
Nicknames: RTS CTS DSR DTR DCD RI LL
PUB 41450: CA CB CC CD CF CE
State: ON ON ON ON ON OFF OFF
Line speed: unknown
Last port reset: 5 hours, 8 minutes, 11 seconds ago
Input frame errors:
CRC error 0 alignment (byte length) 0
missed frame 0 too long (> 2062 bytes) 0
aborted frame 0 DMA/FIFO overrun 0
L & F bits not set 0
Output frame counters:
DMA/FIFO underrun errors 0 Output aborts sent 0
```

\textbf{Nt} Indicates the interface number as assigned by software during initial configuration.

\textbf{Nt'} Indicates the interface number as assigned by software during initial configuration.

\textbf{Note:} For FR dial circuit interfaces, Nt' is different from Nt. Nt' indicates the base interface (ISDN) that the dial circuit is running over.

\textbf{Interface} Indicates the type of interface and its instance number. Frame relay has a FR designation.

\textbf{CSR} Indicates the memory location of the control status register for the Frame Relay interface.

\textbf{Vec} Indicates the vector number for the Frame Relay interface.

\textbf{Self-test Passed} Indicates the total number of times the Frame Relay interface passed self-test.

\textbf{Self-test Failed} Indicates the total number of times the Frame Relay interface failed self-test.
Monitoring Frame Relay Interfaces

Maintenance Failed
Indicates the total number of times the interface was unable to communicate with Frame Relay management.

V.24 circuit, Nicknames, and State
The circuits, control signals, pin assignments and their state (ON or OFF).
Note: The symbol --- in monitoring output indicates that the value or state is unknown.

Line speed
The transmit clock rate.

Last port reset
The length of time since the last port reset.

Input frame errors:

CRC error
The number of packets received that contained checksum errors and as a result were discarded.

Alignment
The number of packets received that were not an even multiple of 8 bits in length and a result were discarded.

Too short
The number of packets that were less than 2 bytes in length and as a result were discarded.

Too long
The number of packets that were greater than the configured size, and as a result were discarded.

Aborted frame
The number of packets received that were aborted by the sender or a line error.

DMA/FIFO overrun
The number of times the serial interface could not send data fast enough to the system packet buffer memory to receive them from the network.

Missed frame
When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

L & F bits not set
On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame upon arrival, the hardware sets both the last and first bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.

Note: It is unlikely that the L & F bits not set counter will be affected by traffic.

Output frame counters:

DMA/FIFO underrun errors
The number of times the serial interface could not retrieve data fast enough from the system packet buffer memory to transmit them to the network.
Output aborts sent
The number of transmissions that were aborted as requested by upper-level software.

Statistics similar to the following are displayed for Frame Relay dial circuits when you execute the interface command from the GWCON environment:

```
+interface
4
Nt Nt' Interface  CSR  Vec  Passed  Failed  Failed  Self-Test  Self-Test  Maintenance
4  3  FR/0  81040  5C  0  4  0

Frame Relay MAC/data-link on ISDN Basic Rate interface
```
Monitoring Frame Relay Interfaces
This chapter describes how to use the Point-to-Point Protocol for interfaces on the device. Sections in this chapter include:

- **PPP Overview**
- "The PPP Link Control Protocol (LCP)" on page 451
- "PPP Authentication Protocols" on page 455
- "Using AAA with PPP" on page 460
- "The PPP Network Control Protocols" on page 460
- "Using and Configuring Virtual Connections" on page 463

PPP Overview

PPP provides a method for transmitting protocol datagrams at the Data Link Layer over serial point-to-point links. PPP provides the following services:

- Link Control Protocol (LCP) to establish, configure, and test the link connection.
- Encapsulation protocol for encapsulating protocol datagrams over serial point-to-point links.
- Authentication protocols (APs) to validate the identity of a peer (remote) unit, and to submit your own identity to the peer for validation.
- Network Control Protocols (NCPs) for establishing and configuring different network layer protocols. PPP allows the use of multiple network layer protocols.

Figure 26 on page 450 shows some examples of point-to-point serial links.
PPP currently supports the following control protocols:

- AppleTalk Control Protocol (ATCP)
- DECnet Protocol Control Protocol (DNCP)
- Banyan VINES Control Protocol (BVCP)
- Bridging protocols (BCP, NBCP, and NBFCP)
- Internet Protocol Control Protocol (IPCP)
- Internet Protocol Version 6 Control Protocol (IPv6CP)
- IPX Control Protocol (IPXCP)
- APPN HPR Control Protocol (APPN HPRCP)
- APPN ISR Control Protocol (APPN ISRCP)
- OSI Control Protocol (OSICP)

Each end starts by sending LCP packets to configure and test the data link. After the link has been established, PPP sends NCP packets to choose and configure one or more network layer protocols. After network layer protocols have been configured, datagrams from each network layer can be sent over the link. The next sections explain these concepts in more detail.

PPP Data Link Layer Frame Structure

PPP transmits data frames that have the same structure as High-level Data Link Control (HDLC) frames. PPP uses a byte-oriented transmission method with a single-frame format for all data and control exchanges. Figure 27 on page 452 illustrates the PPP frame structure and is followed by a detailed description of each field.
The PPP Link Control Protocol (LCP)

PPP’s Link Control Protocol (LCP) establishes, configures, maintains, and terminates the point-to-point link. This process is carried out in four phases:

The PPP Link Control Protocol (LCP)

PPP's Link Control Protocol (LCP) establishes, configures, maintains, and terminates the point-to-point link. This process is carried out in four phases:
Using PPP

1. Before exchanging any network layer datagrams, PPP first opens the connection through an exchange of LCP configuration packets. As part of this negotiation process, the PPP processes at each end of the link agree on various basic link level parameters such as the maximum packet size that can be transferred and whether the ends must use an authentication mechanism to identify themselves to their peers before carrying network traffic.

 If this negotiation is unsuccessful, the link is considered to be “down” and incapable of carrying any network traffic. If the negotiation is successful, LCP goes to an “Open” state and PPP goes on to the next phase.

2. After LCP successfully reaches an Open state, the next step in establishing the link is to perform authentication where each end of the link identifies itself to the other end using the “authentication protocol” that the other end dictated as part of the LCP negotiation.

 If authentication fails, the link is marked “down” and cannot carry any network traffic. If authentication succeeds or if authentication is not required, the PPP link moves to the next phase.

3. After authentication is negotiated, the peers negotiate encryption for the link. After authentication phase is complete, the router negotiates the use of encryption using Encryption Control Protocol (ECP) packets where each end of the link negotiates which encryption algorithm will be used to encrypt the data over this PPP link. If ECP did not reach “Open” state then the link is marked “down” and cannot carry any network traffic. If ECP successfully reaches “Open” state, or if encryption is not required, the PPP link moves to the next phase, NCP negotiation (except ECP, which is technically also an NCP). The link is considered to be “open” or “up” at this time, though it cannot yet carry layer-3 protocol datagrams.

4. Once the link is open, the router negotiates the use of various layer-3 protocols (for example, IP, IPX, DECnet, Banyan Vines) using Network Control Protocol (NCP) packets. Each layer-3 protocol has its own associated network control protocol. For example IP has IPCP and IPX has IPXCP. The basic format and mechanisms for all these NCP packets is the same for all protocols, and is basically a superset of the LCP mechanisms as described later in this section.

 Each layer-3 protocol is negotiated independently. When a particular NCP successfully negotiates, the link is “up” for that protocol’s traffic. As with LCP, configuration information can be exchanged as part of this negotiation; for example, IPCP can exchange IP addresses or negotiate the use of “Van Jacobson IP header compression”.

 As with LCP, it is possible for an NCP to fail to negotiate successfully with its peer. This might happen because the peer does not support a particular protocol or because some configuration option was unacceptable. If an NCP fails to reach the “Open” state, no layer-3 protocol packets can be exchanged for that protocol even though other layer-3 protocols are successfully passing traffic across the PPP link.

5. Finally, LCP has the ability to terminate the link at any time. This is usually done at the request of the user but may occur for other reasons such as: an administrative closing of the link, idle timer expiration, or failure to re-authenticate on a CHAP rechallenge.

For complete details about PPP LCP, authentication, and the general NCP negotiation mechanisms, consult RFCs 1331, 1334, 1570, and 1661.
LCP Packets

LCP packets are used to establish and manage a PPP link and can be loosely divided into three categories:

- **Link establishment packets** that exchange configuration information and establish the link.
- **Link termination packets** that shut down the link or signal that a link is not accepting connections at a particular time. They also can be used to signal that a particular protocol is unrecognized (for example, during NCP negotiations).
- **Link maintenance packets** that monitor and debug a link.

Exactly one LCP packet is encapsulated in the information field of PPP Data Link Layer frames. In the case of LCP packets, the protocol field reads “Link Control Protocol” (C021 hexadecimal). Figure 28 illustrates the structure of the LCP packet and is followed by a detailed description of each field.

<table>
<thead>
<tr>
<th>Code</th>
<th>Identifier</th>
<th>Length</th>
<th>Data (option)</th>
</tr>
</thead>
</table>

Figure 28. LCP Frame Structure (in PPP Information Field)

Code
The code field is one octet in length and identifies the type of LCP packet. The codes in Table 61 distinguish the packet types. They are described in more detail in later sections.

<table>
<thead>
<tr>
<th>Code</th>
<th>Packet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Configure-Request (Link Establishment)</td>
</tr>
<tr>
<td>2</td>
<td>Configure-Ack (Link Establishment)</td>
</tr>
<tr>
<td>3</td>
<td>Configure-Nak (Link Establishment)</td>
</tr>
<tr>
<td>4</td>
<td>Configure-Reject (Link Establishment)</td>
</tr>
<tr>
<td>5</td>
<td>Terminate-Request (Link Termination)</td>
</tr>
<tr>
<td>6</td>
<td>Terminate-Ack (Link Termination)</td>
</tr>
<tr>
<td>7</td>
<td>Code-Reject (Link Establishment)</td>
</tr>
<tr>
<td>8</td>
<td>Protocol-Reject (Link Establishment)</td>
</tr>
<tr>
<td>9</td>
<td>Echo-Request (Link Maintenance)</td>
</tr>
<tr>
<td>10</td>
<td>Echo-Reply (Link Maintenance)</td>
</tr>
<tr>
<td>11</td>
<td>Discard-Request (Link Maintenance)</td>
</tr>
</tbody>
</table>

Identifier
The identifier field is one octet in length and is used to match packet requests to replies.

Length
The length field is two octets in length and indicates the total length (that is, including all fields) of the LCP packet.

Data (Option)
The data field is zero or more octets as indicated by the length field. The format of this field is determined by the code.

NCP packets are structured identically to LCP packets and are distinguished by having different PPP “Protocol” values. Each LCP packet type (distinguished by the code field) has the same meaning for each NCP, though an individual NCP may not implement all possible LCP packet types. NCPs normally implement all of the link...
Using PPP

establishment type packets that LCP defines. They may implement some of the
additional LCP packet types, and they also may define additional packet types
beyond what LCP uses. Unlike LCP packets, the structure of an NCP frame may be
modified according to options negotiated by LCP during the link establishment
phase.

Link Establishment Packets

Link Establishment Packets establish and configure a point-to-point link including
the following packet types:

Configure-Request
 LCP packet code field is set to 1. LCP transmits this packet type when it
 wants to open a point-to-point link. Upon receiving a Configure-Request, a
 peer station’s LCP entity sends an appropriate reply, depending on whether
 it is ready to process packets.

Configure-Ack
 LCP packet code field is set to 2. The peer transmits this packet type when
 every configuration option in a Configure-Request packet is acceptable.
 Upon receiving the Configure-Ack (ack = acknowledgment), the originating
 station checks the Identifier field. This field must match the one from the
 last-transmitted Configure-Request or the packet is invalid.

 Both ends send Configure-Request and both ends must receive a
 Configure-Ack before the link opens. Options negotiated for one direction
 may differ from that negotiated for the other direction. There is no
 “master-slave” relationship. Rather, each end works symmetrically.

Configure-Nak
 LCP packet code field is set to 3. The peer transmits this packet type when
 some part of the configuration option in a Configure-Request packet is
 unacceptable. The Identifier field is copied from the received
 Configure-Request and the Data (option) field is filled with the received
 unacceptable configuration options. The Identifier field must match the one
 from the last-transmitted Configure-Request or the packet is invalid and is
discarded.

 When the originator receives a Configure-Nak packet, a new
 Configure-Request packet is sent that includes modified, acceptable
 configuration options.

Configure-Reject
 LCP packet code field is set to 4. The peer transmits this packet type when
 some part of the configuration options in a Configure-Request packet is
 unacceptable. The Identifier field is copied from the received
 Configure-Request and the Data (option) field is filled with the received
 unacceptable configuration options. The Identifier field must match the one
 from the last-transmitted Configure-Request or the packet is invalid and is
discarded.

 When the originator receives a Configure-Reject packet, a new
 Configure-Request packet is sent that does not include any of the
 configuration options received in the Configure-Reject packet.

Code-Reject
 LCP packet code field is set to 7. The transmission of this packet type
 indicates that the LCP “code” field on a received packet is not recognized
 as a valid value. While this can indicate an error, it also can indicate that
 the peer does not implement some feature that you are trying to use.
Protocol-Reject
LCP packet code field is set to 8. The transmission of this packet type indicates that a PPP frame has been received that contains an unsupported or unknown protocol (the PPP “protocol” field was unrecognized for some packet). This usually occurs if you try to negotiate some NCP for a protocol that the other end doesn’t support. For example, if DECnet CP (DNCP) sends a Config-Request and the other end does not know about DECnet, the other end replies with an LCP Protocol-Reject on DNCP. Upon receiving a Protocol-Reject packet, the link stops transmitting the incorrect protocol.

Note: NCP packet types and structure are the same as LCP, although there are a few additional “code” fields associated with some NCPs.

Link Termination Packets

Link Termination Packets terminate a link and include the following packet types:

Terminate-Request
LCP packet code field is set to 5. LCP transmits this packet type when a point-to-point link needs to be closed. These packets are sent until a Terminate-Ack packet is sent back, or until a retry counter is exceeded while waiting for an Ack.

Terminate-Ack
LCP packet code field is set to 6. Upon receiving a Terminate-Request packet, this packet type must be transmitted with the code field set to 6. Reception of an Terminate-Ack packet that was not expected indicates that the link has been closed.

Link Maintenance Packets

Link Maintenance Packets manage and debug a link, and include the following packet types:

Echo-Request and Echo-Reply
LCP packet code fields are set to 9 and 10 respectively. LCP transmits these packet types in order to provide a Data Link Layer loopback mechanism for both directions on the link. This feature is useful, for example, in debugging a faulty link to determine link quality. These packets are sent only when the link is in the Open state.

Discard-Request
LCP packet code field is set to 11. LCP transmits this packet type to provide a data sink for Data link Layer testing. A peer that receives a Discard-Request must throw away the packet. This is useful in debugging a link. These packets are sent only when the link is in the Open state.

PPP Authentication Protocols

PPP authentication protocols provide a form of security between two nodes connected via a PPP link. If authentication is required on a box, then immediately after the two boxes successfully negotiate the use of the link at the LCP layer (LCP packets are exchanged until LCP goes into an “open” state), they go into an “authentication” phase where they exchange authentication packets. A box is neither able to carry network data packets nor negotiate the use of a network protocol (NCP traffic) until authentication negotiation completes successfully.
There are different authentication protocols in use: Password Authentication Protocol (PAP) and Challenge/Handshake Authentication Protocol (CHAP). Microsoft PPP CHAP (MS-CHAP) is also available to authenticate Windows workstations and peer routers. PAP and CHAP are described in detail in RFC 1334, and briefly described later in this section. MS-CHAP is described in RFC 1994.

On remote dial-in access ports, a third authentication protocol is available. This is Shiva Password Authentication Protocol (SPAP), which is a Shiva proprietary protocol. See "Shiva Password Authentication Protocol (SPAP)" on page 457 for more information.

Whether a box requires the other end to authenticate itself (and if so, with what protocol) is determined during the LCP negotiation phase. Authentication could be considered to “fail” even at the link establishment phase (LCP negotiation), if one end does not know how, or refuses to use, the authentication protocol the other end requires.

Each end of a link sets its own requirements for how it wants the other end to authenticate itself. For example, given two routers “A” and “B”, connected over a PPP link, side A may require that B authenticate itself to A using PAP, and side B may require that A similarly identify itself using CHAP. It is valid for one end to require authentication while the other end requires none.

In addition to initial authentication during link establishment, with some protocols an authenticator may demand that the peer reestablish its credentials periodically. With CHAP, for example, a rechallenge may be issued at any time by the authenticator and the peer must successfully reply - or lose the link.

If more than one authentication protocol is enabled on a link, the router initially attempts to use them in the following priority order:

1. MS-CHAP
2. CHAP
3. PAP
4. SPAP

Note: SPAP is only available on interfaces that have IBM DIALs Dial-In circuits configured.

If the remote side responds to the authentication request with NAK and suggests an alternative, the router uses the alternative, provided that it is enabled on the link. If the remote side continues responding to the router’s suggestions with NAK but does not provide an alternative that the router has enabled, the link is terminated.

Password Authentication Protocol (PAP)

The Password Authentication Protocol (PAP) provides a simple method for the peer to establish its identity using a two-way handshake. This is done only upon initial link establishment. Following link establishment, the peer sends an ID/Password pair to the authenticator until authentication is acknowledged or the connection is terminated. Passwords are sent over the circuit “in the clear,” and there is no protection from playback or repeated trial and error attacks. The peer controls the frequency and timing of the attempts.
Challenge-Handshake Authentication Protocol (CHAP)

The Challenge-Handshake Authentication Protocol (CHAP) is used to periodically verify the identity of the peer using a three-way handshake. This is done upon initial link establishment, and may be repeated anytime after the link has been established. After the initial link establishment, the authenticator sends a “challenge” message to the peer. The peer responds with a value calculated using a “one-way hash” function. The authenticator checks the response against its own calculation of the expected hash value. If the values match, the authentication is acknowledged; otherwise the connection is terminated.

Microsoft PPP CHAP Authentication (MS-CHAP)

Note: MS-CHAP is not available in 4M V2L images.
MS-CHAP is an extension to PPP CHAP that is used to authenticate remote Windows workstations and peer routers. Both MS-CHAP and CHAP use PPP’s Link Control Protocol (LCP) to negotiate the desired authentication protocol in one or both directions; both use the CHAP protocol identifier as the PPP protocol; and each protocol uses a random challenge which is encrypted as part of the response.

MS-CHAP permits remote Windows workstations to change their passwords; however, MS-CHAP requires that the remote peer’s password has expired before the remote user is prompted to change the password.

MS-CHAP can be used with the internal PPP user Local List database, but not with the external AAA authentication server that is described in the chapter “Using Local or Remote Authentication” in [Using and Configuring Features]. If you plan to use Microsoft PPP Encryption (MPPE) on a PPP interface, you must enable MS-CHAP on that interface before you configure MPPE. Use the talk 6 command enable mschap to enable MS-CHAP.

Shiva Password Authentication Protocol (SPAP)

Note: SPAP is only available on interfaces that have IBM DIALs Dial-In circuits configured.

The Shiva Password Authentication Protocol (SPAP) provides a simple method for the peer to establish its identity using a 2-way handshake similar to PAP. After the Link Establishment phase is complete, an Id/Password is repeatedly sent by the peer to the authenticator until authentication is acknowledged, the connection is terminated, or a retry counter expires.

SPAP is a moderately strong authentication protocol that uses a proprietary encryption algorithm for the password. In addition to authentication, SPAP offers:

- The ability to change a password.

Note: SPAP change password support is only available when the local PPP user list is used for authentication.

- The ability for the router to send a configurable banner requiring acknowledgment from the client after password authentication.

- The ability to use callback as an additional security feature.

- Virtual connections.
Configuring PPP Authentication

The following sections describe configuring PPP authentications for two situations:

- Configuring the 2210 to authenticate a remote device.
- Configuring the 2210 to be authenticated by a remote device.

These two situations are independent. You can do one or the other.

Configuring a PPP Interface to Authenticate a Remote Device

To authenticate a remote device or dial-in client:

1. Enable authentication on the PPP interface
 - At the `Config>` prompt, enter the `network` command to select the PPP interface to configure.
 - At the PPP `Config>` prompt, enable the authentication protocol you want to use.

 You can use any of the following protocols:
 - PAP
 - MS-CHAP
 - CHAP
 - S-CHAP

 Note: MS-CHAP can use the PPP local database to authenticate, but cannot use an authentication server.

 - SPAP

 Note: SPAP is only available on interfaces that have IBM DIALs Dial-In circuits configured.

2. Decide whether to authenticate locally or through an authentication server.
 - To authenticate locally, enter the name and password into the PPP user database.

 At the `Config>` prompt, use the `add ppp_user` command. See "Add" on page 52 for more information.

 A 2210 maintains a single PPP user database. When the remote router or device sends its name and password to the device during the authentication phase, the device checks to see if that name and password are in the PPP user database.

 - To authenticate through an authentication server using TACACS, TACACS+, or RADIUS, you must configure the device to reach the authentication server and the name and password must be in the server's database. Refer to "Using Local or Remote Authentication" in [Using and Configuring Features](#).

Configuring a PPP Interface to be Authenticated by a Remote Device

To configure the device to be authenticated by a remote device or dial-in client, configure the device's name and password:

1. At the `Config>` prompt, select the interface you are configuring using the `network` command.

2. At the PPP `Config>` prompt, type the `set name` command and provide the name and password that the device will use to identify itself to the remote router or device during the authentication phase.
Using PPP

Attention: Do not use the following commands unless you want the device to perform authentication as described in [Using Local or Remote Authentication] in [Using and Configuring Features].

- `enable pap`
- `enable chap`
- `enable spap`

Note: SPAP is only available on interfaces that have IBM DIALs Dial-In circuits configured.

- `enable mschap`

Configuring PPP Callback

Callback is a PPP feature associated with single user dial-in solutions. It attempts to accomplish two objectives. These objectives are:

- Callback can be used as a form of security. When used in this way, callback is generally referred to as required callback. When required callback is negotiated the user will be dialed back at a predetermined number. Only then will the PPP link be allowed to come up.
- Callback can also be implemented as a toll-saver feature. When used in this way, callback is generally referred to as roaming callback. Unlike required callback, roaming callback is requested by the client. The primary function of roaming callback is to bill the company maintaining the DIALs Server the toll charges instead of the user.

Callback is supported only on dial-in dial circuits over V.34 or ISDN networks.

Example 1: Required callback enabled

```
Config> add PPP
Enter user name: [ ]? nocallback
Password:
Enter password again:
Is this a Single-User or a Network? (Single-User, Network): [Single-User]

IP address for user nodcallback [0.0.0.0]? Enter HostName: [ ]?
Give 'nocallback' default time allotted? (Yes, No): [Yes]
Enable Callback for 'nocallback'? (Yes, No): [Yes]
Type of Callback (Roaming Callback, Required Callback): [Roaming Callback] Requ
Dialback number for this user [ ]? 555-1234
Will 'nocallback' be able to dial-out? (Yes, No): [No]

PPP User Name: nocallback
Type: Single User
User IP Address: Interface Default
SubNetMask: 255.255.255.255
Hostname: <undefined>
Time-Alotted: Box Default
Call-Back Type: Required Callback
Phone Number: 543-3186
Dial-Out: Not Enabled
Encryption: Not Enabled

Is information correct? (Yes, No, Quit): [No] yes
```

Example 2: Callback disabled

```
Config> add PPP
Enter user name: [ ]? sallydooe
Password:
Enter password again:
Is this a Single-User or a Network? (Single-User, Network): [Single-User]

IP address for user nodcallback [0.0.0.0]? Enter HostName: [ ]?
Give 'no callback' default time allotted? (Yes, No): [Yes]
Enable Callback for 'no callback'? (Yes, No): [No]
Will 'no callback' be able to dial-out? (Yes, No): [No]
```
Using PPP

PPP User Name: no callback
Type: Single User
User IP Address: Interface Default
SubNetMask: 255.255.255.255
Hostname: <undefined>
Time-Alotted: Box Default
Call-Back Type: Not Enabled
Dial-Out: Not Enabled
Encryption: Not Enabled

Is information correct? (Yes, No, Quit): [No] yes

Example 3: Roaming callback enabled

Config>add PPP roaming_callback
Password:
Enter password again:
Is this a Single-User or a Network? (Single-User, Network): [Single-User]

IP address for user roaming_callback [0.0.0.0]?
Enter HostName: []
Give 'roaming_callback' default time allotted ? (Yes, No): [Yes]
Enable Callback for 'roaming_callback' ? (Yes, No): [No] yes
Type of Callback (Roaming Callback, Required Callback): [Roaming Callback]

Will 'roaming_callback' be able to dial-out ? (Yes, No): [No]m

PPP User Name: roaming_callback
Type: Single User
User IP Address: Interface Default
SubNetMask: 255.255.255.255
Hostname: <undefined>
Time-Alotted: Box Default
Call-Back Type: Roaming Callback
Dial-Out: Not Enabled
Encryption: Not Enabled

Is information correct? (Yes, No, Quit): [No]yes

Using AAA with PPP

See [Using Local or Remote Authentication] and [Configuring Authentication] in Using and Configuring Features for this information.

The PPP Network Control Protocols

PPP has a family of Network Control Protocols (NCPs) for establishing and configuring different network layer protocols. The NCPs are responsible for configuring, enabling, and disabling the network layer protocols on both ends of the point-to-point link. NCP packets cannot be exchanged until LCP has opened the connection and the link reaches the OPEN state.

PPP supports the following Network Control Protocols:

- AppleTalk Control Protocol (ATCP)
- Banyan VINES Control Protocol (BVCP)
- Bridging protocols (BCP, NBCP, and NBFCP)
- Callback Control Protocol
- DECnet Control Protocol (DNCP)
- IP Control Protocol (IPCP)
- IPv6 Control Protocol (IPv6CP)
- IPX Control Protocol (IPXCP)
- OSI Control Protocol (OSICP)
- APPN High Performance Routing Control Protocol (APPN HPRCP)
Appletalk Control Protocol

ATCP is specified in Request for Comments (RFC) 1378. IBM's implementation of ATCP supports the AppleTalk-Address option. The implementation supports both full router mode and half router mode. For additional information, refer to "AppleTalk over PPP" in Protocol Configuration and Monitoring Reference Volume 2.

Banyan VINES Control Protocol

RFC 1763 describes BVCP. IBM's implementation of BVCP does not support any options.

Bridging Protocols

Bridging Control Protocol (BCP) is specified in RFC 1638. IBM's implementation of BCP supports the IEEE 802.5 Line Identification Option and the Tinygram Compression Option.

NetBIOS Control Protocol (NBCP) is a proprietary NCP developed by Shiva Corporation and used by the IBM Dial In Access to LAN Client for OS/2, DOS and Windows for single-user dial-in. NBCP is used to transport NetBIOS and LLC/802.2 bridged traffic from these clients, dialed into a 2210 DIALs Server, onto an attached LAN. IBM's implementation of NBCP supports the MAC-Address and NetBIOS Name Projection options.

NetBIOS Frame Control Protocol (NBFCP) is specified in RFC 2097. NBFCP is used by Microsoft Windows 95 and Windows NT Dial-Up Networking clients for single-user dial-in. NBFCP is used to transport NetBIOS bridged traffic from these clients, dialed into a 2210 DIALs Server, onto an attached LAN. IBM's implementation of NBFCP supports the Name-Projection, Peer-Information and IEEE-MAC-Address-Required options.

Callback Control Protocol

Note: CBCP is only available on interfaces that have IBM DIALs Dial-in circuits configured.

Callback Control Protocol (CBCP) is used by Microsoft Dial-Up Networking clients to negotiate callback. The 2210 supports callback to a single user-specified number (roaming callback) and callback to an administrator-specified number (required callback). The CBCP option of calling a list of numbers is not supported.

PPP users that want to use CBCP callback must have some form of authentication enabled (like PAP, CHAP, SPAP or MS-CHAP). There are no configuration parameters for CBCP. (The client determines when it is used.) See "Configuring PPP Callback" on page 459 for information about configuring PPP users for callback.

DECnet IV Control Protocol

DNCP is specified in RFC 1762. IBM's implementation does not support any DNCP options.
Using PPP

IP Control Protocol

IPCP is specified in RFC 1332. IBM’s implementation supports the following options:

- Van Jacobsen IP Header Compression as described in RFC 1144.
- IP Address

The router can send its IP address, as well as accept an IP address, from a peer, or supply an IP address to a peer, if requested. If the router is configured to “Send Our Address” on a particular interface, and that interface has a valid, numbered IP address, then IPCP sends the address in its initial Configure-Request as option 3 (IP Address). IPCP also sends its address if the peer sends a Configure NAK with 0.0.0.0 for option 3 (IP Address), if a valid numbered address is configured for that PPP interface. IPCP will not send an unnumbered address to its peer.

A peer may specify its address (referred to as “Client Specified”), or request an address from the router by sending 0.0.0.0 for Option 3 in its initial Configure Request. The router may obtain this address from: the authenticated user profile (referred to as “User ID”), the interface itself (referred to as “Interface”), or the Dynamic Host Configuration Protocol (referred to as “Proxy DHCP”). Any one of these four methods for specifying the peer’s IP address may be disabled or enabled at the 2210 level. For more information on enabling and disabling these items, see [Using a Dial-In Access to LANs (DIALs) Server] in the [Using and Configuring Features].

The router automatically adds a static route directed to the PPP interface for the address that is successfully negotiated, allowing data to be routed properly to the dial-in client. When the IPCP connection is ended for any reason, this static route is subsequently removed. By default, the net mask for this route is 255.255.255.255 (hostroute); however, if a net mask is specified in the authenticated user’s profile (see [Configuring PPP Authentication] on page 458) a net mask other than this may be used to allow routing to more than a single host across the PPP link (RIP or other routing protocols could also be used to discover routes if desired).

IPv6 Control Protocol

IPv6 Control Protocol is specified in RFC 2023. In IBM’s implementation of IPv6CP, the router can send its IP address, as well as accept an IP address, from a peer, or supply an IP address to a peer, if requested. If the router is configured to “Send Our Address” on a particular interface, and that interface has a valid, numbered IP address, then IPv6CP sends the address in its initial Configure-Request as option 3 (IP Address). IPv6CP also sends its address if the peer sends a Configure NAK with ::/0 for option 3 (IP Address), if a valid numbered address is configured for that PPP interface. IPv6CP will not send an unnumbered address to its peer.

A peer may specify its address (referred to as “Client Specified”), or request an address from the router by sending ::/0 for Option 3 in its initial Configure Request. The router may obtain this address from: the interface itself (referred to as “Interface”) or the Dynamic Host Configuration Protocol (referred to as “Proxy DHCP”). Any one of these methods for specifying the peer’s IP address may be disabled or enabled at the 2210 level. For more information on enabling and disabling these items, see [Using a Dial-In Access to LANs (DIALs) Server] in the [Using and Configuring Features].
The router automatically adds a static route directed to the PPP interface for the address that is successfully negotiated, allowing data to be routed properly to the dial-in client. When the IPv6CP connection is ended for any reason, this static route is subsequently removed. By default, the prefix length for this route is 128 (hostroute).

IPX Control Protocol

IPXCP is specified in RFC 1552. IBM’s implementation does not support any IPXCP options.

OSI Control Protocol

OSICP is specified in RFC 1377. IBM’s implementation of OSICP does not support any options.

APPN HPR Control Protocol

Advanced Peer-to-Peer Networking (APPN) High Performance Routing (HPR) control protocol is specified in RFC 2043. No options are negotiated for this control protocol.

APPN ISR Control Protocol

Advanced Peer-to-Peer Networking (APPN) Intermediate Session Routing (ISR) control protocol is specified in RFC 2043. No options are negotiated for this control protocol.

See “Overview of Encryption” in Using and Configuring Features for information about configuring encryption for a PPP interface.

Using and Configuring Virtual Connections

Virtual Connections (VC) are DIALs dial-in circuits that can be suspended when they become inactive for a predetermined period of time. The ability to suspend the connections can help control your networking costs by saving line charges for DIALs dial-in clients that are not active; instead of keeping the connections active, the system saves information about the session and then closes the call. When the same DIALs dial-in client reconnects to the server, the session information is restored and the connection resumes as if there were no interruption. See “Configuring a VC” on page 464 for more information.

You can configure DIALs servers to end VCs that have been suspended for a specified amount of time. You can also manually end a VC at any time. See the set DIALs command and DIALs Global Monitoring Commands in Using and Configuring Features for related commands.

VC Considerations

Keep the following in mind as you configure VCs:

- You can only use AAA local-list or RADIUS authentication when using VCs.
- A VC will not support IPX. When you configure a user to use VCs, IPX support for that user is disabled.
The client configuration controls the suspension and resumption of a VC. The DIALs server cannot control that aspect of the connection.

A VC can be established through an MP bundle.

VCs cannot run over L2TP.

Suspended VCs cannot be displayed with current network management tools.

Do not assign an IP address to remote users by interface. Because another client could use an interface with which a client establishes a VC, when the VC attempts to reconnect with the server the connection will fail because the IP address is in use.

A dial-in client must use SPAP for authentication.

Configuring a VC

Configure VCs when you add a DIALs client at the `Config>` prompt. When you configure the user, you can either use the DIALs dial-in defaults (see the `set DIALs` command in the [Using and Configuring Features](#)) for the maximum suspend time and inactivity timeout, or configure specific values for the particular client. The following example shows the minimum configuration for a VC for DIALs dial-in client "jose."

```
Config>
Config> add ppp
Enter user name: []? jose
Password:
Enter password again:
Is this a 'DIALs' user? (Yes, No): [Yes]
Type of route? (hostroute, netroute): [hostroute]
IP address: [0.0.0.0]? Enter hostname for dynamic DNS: []?
Allow Virtual Connections ? (Yes, No): [No]
  Use Box Default inactivity timeout value and maximum suspended time? (Yes, No): [Yes] No
  User-based Max Suspend Time (hours)
  0-48 0=unlimited: [12] ? 10
  User-based Inactivity Timeout (seconds)
  10-1024: [30] ? 60
Give 'jose' default time allotted ? (Yes, No): [Yes]
Enable callback for 'jose'? (Yes, No): [No]
Will 'jose' be able to dial-out ? (Yes, No): [No]
```

```
PPP user name: jose
User IP address: Interface Default
Netroute Mask: 255.255.255.255
  Hostname:
  Time allotted: Box Default
  Callback type: Not Enabled
  Dial-out: Not Enabled

Is information correct? (Yes, No, Quit): [Yes]

User 'jose' has been added
Config>
```

To display the box-level default values for maximum virtual connections, idle timeout period, and the global default maximum suspend time, use the DIALs `config=list vc-parameters` command in the DIALs feature. To display these parameters along with the maximum suspend time and inactivity timeout for all virtual connections, use the `list all` command in the DIALs feature. See [DIALs Global Monitoring Commands](#) in [Using and Configuring Features](#).
Chapter 33. Configuring and Monitoring Point-to-Point Protocol Interfaces

This chapter describes Point-to-Point Protocol interface configuration and operational commands in the device. Sections in this chapter include:

- "Accessing the Interface Configuration Process"
- "Point-to-Point Configuration Commands" on page 466
- "Accessing the Interface Monitoring Process" on page 483
- "Point-to-Point Monitoring Commands" on page 483
- "Point-to-Point Protocol Interfaces and the GWCON Interface Command" on page 506

Accessing the Interface Configuration Process

Use the following procedure to access the router's configuration process. This process gives you access to a specific interface's configuration process.

1. At the OPCON prompt (*), enter the status command to find the PID for CONFIG. (See page 9 for sample output of the status command.)

2. At the OPCON prompt, enter the OPCON talk command and the PID for CONFIG. (For more detail on this command, refer to "Chapter 3. The OPCON Process" on page 25.) For example:
 * talk 6

 After you enter the talk 6 command, the CONFIG prompt (Config>) displays on the console. If the prompt does not appear when you first enter CONFIG, press Return again.

3. At the CONFIG prompt, enter the list devices command to display the network interface numbers for which the router is currently configured. For example:
 Config> list devices
 Ifc 0 Ethernet CSR 81600, CSR2 80C00, vector 94
 Ifc 1 WAN X.25 CSR 81620, CSR2 80D00, vector 93
 Ifc 2 WAN X.25 CSR 81640, CSR2 80E00, vector 92
 Ifc 3 WAN PPP CSR 381620, CSR2 380D00, vector 125
 Ifc 4 WAN Frame Relay CSR 381640, CSR2 380E00, vector 124
 Ifc 5 Token Ring CSR 600000, vector 95

4. Record the interface numbers.

5. Enter the CONFIG network command and the number of the interface you want to configure. For example:
 Config> network 1

 The appropriate configuration prompt (such as TKR Config> for token-ring), now displays on the console.

Note: Not all network interfaces are user-configurable. For interfaces that cannot be configured, you receive the message:

That network is not configurable
Accessing the PPP Interface Configuration Prompt

To display the PPP config> prompt:
1. Enter list devices at the Config> prompt to display a list of interfaces.
2. If you have not already done so, set the data link protocol on one of the serial interfaces to PPP by entering set data-link ppp at the Config> prompt. For example:

 Config> set data-link ppp
 Interface Number [0]? 2

3. Enter network followed by the number of the PPP interface. For example:

 Config> network 2
 PPP config>

Point-to-Point Configuration Commands

Table 62 summarizes the PPP configuration commands, and the rest of this section explains these commands. Enter the commands at the PPP config> prompt.

Table 62. Point-to-Point Configuration Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables data compression (CCP), DTR line handling, CHAP, PAP, ECP. Also disables SPAP authentication in Remote LAN Access Features images.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables data compression (CCP), DTR line handling, CHAP, PAP, ECP. Also enables SPAP authentication in Remote LAN Access Features images.</td>
</tr>
<tr>
<td>List</td>
<td>Lists all information related to the point-to-point interfaces protocols, parameters, and options.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets physical line (HDLC) parameters, LCP parameters, generic NCP parameters, and various NCP-specific options.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Disable

Disables data compression, authentication protocols, the DIALs feature, and SPAP authentication (SPAP authentication is supported only in DIALs Server images).

Syntax:

```plaintext
disable  
   _ccp  
   _chap  
   _dials  
   _enp  
   _lower-dtr  
   _mp  
   _mppe  
   _mschap
```
Configuring PPP Interfaces (Talk 6)

- **pap**
 - Disables the use of the Password Authentication Protocol. Refer to "Password Authentication Protocol (PAP)" on page 456 for more information.

- **spap**
 - Disables the use of the Shiva Password Authentication Protocol (SPAP). Note: SPAP is only available on interfaces that have IBM DIALs Dial-In circuits configured.

CCP
- Disables the use of data compression on the interface. Refer to "Using the Data Compression Subsystem" in the Using and Configuring Features for more information.

CHAP

DIALS
- Disables the DIALs feature on this interface. Refer to "Using a Dial-In Access to LANs (DIALs) Server" in the Using and Configuring Features for more information.

ECP
- This allows the router not to force the use of ECP encryption on this interface. The interface will still accept and execute Encryption Control Protocol (ECP) if the peer is using ECP.

 Note: Encryption support is optional. If your software load does not include encryption, you will not see encryption-related parameters.

LOWER-DTR
- Determines the way the data terminal ready (DTR) signal is handled for leased serial-line interfaces that are disabled. If this parameter is set to “disabled” (the default) and the interface is disabled, the DTR signal is not dropped.

MP
- Disables the Multilink Protocol (MP) on this interface. See "Chapter 34. Using the Multilink PPP Protocol" on page 505 for more information.

 Example:
  ```
  disable mp
  Disabled as a MP link
  ```

MPPE
- Disables Microsoft Point-to-Point Encryption (MPPE) on this interface.

MSCHAP
- Disables MS-CHAP authentication on this interface. Disabling MS-CHAP has two effects upon MPPE, depending upon whether MPPE is configured as mandatory or optional. If MPPE is mandatory, disabling MS-CHAP brings down the link. If MPPE is optional, disabling MS-CHAP disables MPPE over the link. See "Microsoft PPP CHAP Authentication (MS-CHAP)" on page 457 for more information.

 Note: MS-CHAP is not supported in 4M V2L models.

PAP
- Disables the use of the Password Authentication Protocol. Refer to "Password Authentication Protocol (PAP)" on page 456 for more information.

SPAP
- Disables the use of the Shiva Password Authentication Protocol (SPAP). Note: SPAP is only available on interfaces that have IBM DIALs Dial-In circuits configured.

Enable

Enables data compression, encryption, authentication protocols, lower-DTR, multilink PPP protocol and the DIALs feature on this PPP interface. If multiple authentication protocols are enabled, the device attempts to use them in the following priority order:
Configuring PPP Interfaces (Talk 6)

1. MS-CHAP
2. SPAP
3. CHAP
4. PAP

Syntax:
```
enable
    ccp
    chap
    dials
    ecp
    lower-dtr
    mp
    mppe
    mschap
    pap
    spap
```

<table>
<thead>
<tr>
<th>ccp</th>
<th>Enables the use of data compression on the interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chap</td>
<td>Enables the use of the Challenge-Handshake Authentication Protocol. You are prompted for a rechallenge interval. Specify 0 if you do not want to rechallenge periodically after the initial authentication phase is complete. Refer to Challenge-Handshake Authentication Protocol (CHAP) on page 457 for more information.</td>
</tr>
<tr>
<td>dials</td>
<td>Enables the DIALs feature on this interface. Refer to Using a Dial-In Access to LANs (DIALs) Server in the Using and Configuring Features for more information.</td>
</tr>
<tr>
<td>ecp</td>
<td>Enables the use of data encryption on this interface by negotiating Encryption Control Protocol (ECP). Once this is done, all PPP users with encryption enabled and with a valid encryption key must use ECP to connect to this port unless MS-CHAP is the active authentication protocol for the link. If the authentication protocol is MS-CHAP, ECP cannot be used; encryption must be accomplished using MPPE. PPP users without encryption enabled will still be able to connect to this interface. When you enable ECP, you are prompted to enter the ECP encryption key for the local router. You must also provide the encryption key for the remote user when you use the talk 6 add ppp-user command at the Config prompt to configure the remote user. MPPE does not require you to configure an encryption key on either the local or the remote user.</td>
</tr>
<tr>
<td>lower-dtr</td>
<td>Determines the way the data terminal ready (DTR) signal is handled for leased serial-line interfaces that are disabled. If this parameter is set to “disabled” (the default) and the interface is disabled, the DTR signal is not dropped.</td>
</tr>
</tbody>
</table>
Configuring PPP Interfaces (Talk 6)

If Lower DTR is set to “enabled”, then the DTR signal will be dropped when
the interface is disabled. This behavior may be desirable in situations where
the interface has been configured as an alternate link for WAN Reroute and
the interface is connected to a dial-out modem which maintains its dial
connection based on the state of the DTR signal.

When the interface is disabled, the DTR signal is low and the modem
keeps the dial connection down. When the interface is enabled, due to a
WAN Reroute backup scenario, DTR is raised and the modem dials a
stored number to the backup site. When the primary interface is restored,
the alternate interface is disabled, DTR is lowered, and the modem hangs
up the dial connection.

The following cable types are supported:

- RS-232
- V.35
- V.36

Note: The `enable lower-dtr` command is not supported on PPP dial circuit
interfaces.

mp

Enables the Multilink Protocol (MP) on this interface. See "Chapter 33.
Using the Multilink PPP Protocol" on page 503 for more information.

Example:

```
enable mp
Enabled as a MP link
Is this link a dedicated MP link? [no] yes
MP interface for this MP link? [0] 3
```

mppe

[mandatory/optional] [stateless/stateful]

Enables Microsoft Point-to-Point Encryption (MPPE). If MS-CHAP is not
enabled on the interface, then MPPE cannot be enabled on that interface.
See "Microsoft Point-to-Point Encryption (MPPE)" in the chapter "Overview
of Encryption" in Using and Configuring Features for more information.

mandatory

The client and the server must negotiate MPPE or the link will drop.

optional

The client will attempt to negotiate MPPE, but if the negotiation
fails, the PPP link will remain active.

stateless

Session keys will be regenerated after transmitting each packet.
This function is currently not supported by Microsoft Dial-Up
Networking (DUN) clients.

stateful

Session keys will be regenerated after transmitting every 256
packets.

mschap

Enables MS-CHAP authentication. When you enable MS-CHAP, you are
prompted to provide the authenticator rechallenge interval. This value in
seconds defines the length of time that will pass before the authenticator
sends another challenge to the receiver of the authentication request to
reconfirm the authentication. The value 0 indicates that no further
challenges will be sent after the initial authentication.
Configuring PPP Interfaces (Talk 6)

Use the `set name` command to configure the name of the 2210 if the peer router is configured to authenticate the 2210’s local name.

Note: MS-CHAP is not supported on 4M V2L models.

Note that MS-CHAP cannot be enabled if an external authentication server, as described in the chapter “Using Local or Remote Authentication” in [Using and Configuring Features](#), has been configured. See [Microsoft PPP CHAP Authentication (MS-CHAP)](#) on page 457 for more information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pap</td>
<td>Enables the use of the Password Authentication Protocol. Refer to Password Authentication Protocol (PAP) on page 456 for more information.</td>
</tr>
<tr>
<td>spap</td>
<td>Enables the use of the Shiva Password Authentication Protocol (SPAP). Refer to Shiva Password Authentication Protocol (SPAP) on page 457 for more information. The <code>enable spap</code> command is available only in software loads with the DIALs feature.</td>
</tr>
</tbody>
</table>

List

Use the `list` command to display information related to the PPP interface and its protocol parameters and options.

Syntax:

```
list
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Lists all options and parameters related to the PPP interface. The <code>list all</code> command displays the output of all the individual <code>list...</code> parameters described below.</td>
</tr>
<tr>
<td>bcp</td>
<td>Lists the Bridging Network control protocol options.</td>
</tr>
<tr>
<td>ccp</td>
<td>Displays the currently selected data compression options if data compression has been enabled. For additional information, see Using the Data Compression Subsystem in Using and Configuring Features.</td>
</tr>
</tbody>
</table>

Example:

```
list bcp
BGP Options
--------
Tinygram Compression:DISABLED

Tinygram Compression:
Displays whether Tinygram Compression is enabled/disabled.
```

If Microsoft Point-to-Point Encryption (MPPE) and data compression are both enabled, the type of data compression is MPPC.
Configuring PPP Interfaces (Talk 6)

ecp Displays the current Encryption Control Protocol state.

Example:
```
list ecp
ECP Options
---------
Data Encryption enabled
Algorithm list: DESE-CBC
DESE (Data Encryption Standard Encryption Protocol)
```

Data Encryption Enabled/Disabled Indicates whether data encryption is enabled or disabled on interface.

Algorithm List
Displays the supported encryption algorithms. DES, as described by RFC 1969, is the only encryption algorithm currently supported.

hdlc Lists parameters related to the High-Level Data Link Control (HDLC) protocol. On PPP dial circuit interfaces, the “list hdmc” option is not available. For dial circuits, hardware data link parameters are a function of the base net rather than the PPP dial circuit. For additional information, see [Chapter 47. Configuring and Monitoring Dial Circuits](#) on page 643.

Example:
```
list hdlc
Encoding: NRZ
Idle State: Flag
Clocking: Internal
Cable type: V.35 DCE
Speed (bps): 6400
Transmit Delay Counter: 0
Lower DTR: Disabled
```

Encoding:
HDLC transmission encoding scheme, either NRZ (non-return to zero) or NRZI (non-return to zero inverted).

Idle State:
Bit pattern, either Flag or Mark, transmitted on the point-to-point link when the interface is not transmitting data.

Clocking:
Interface clocking, either external or internal.

Cable type:
Specifies the type of cable in use (RS-232, V.35, or V.36).

Speed (bps):
The physical data rate of the interface. When clocking is internal, this is the data rate generated by the internal clock.

Transmit Delay Counter:
Number of flags sent between frames.

Lower DTR:
Enabled or Disabled. If Lower DTR is enabled, the router drops the DTR signal when a WAN Reroute alternate link is no longer needed. Dropping the DTR signal causes the modem to terminate the leased-line connection for the alternate link.

Notes:
1. The **list hdlc** command is not supported on PPP dial circuit interfaces.
2. This command displays the Lower DTR state only if Lower DTR is supported for the configured cable type.
ipcp Lists the Internet Protocol control protocol options.

Example:

```
  list ipcp
  IPCP Options
  ---------------
  IPCP Compression: None
  Send Our IP Address: No
  Remote IP Address to Offer if Requested: 10.0.0.3
```

IPCP compression

Indicates whether the PPP handler accepts compressed IP headers. PPP supports Van Jacobson TCP/IP header compression (RFC 1144). Enable this option when the point-to-point link is running at a low baud rate.

A value of “Van Jacobson” indicates that header compression is supported. A value of “NONE” indicates that compressed headers are not being accepted.

Send Our IP Address

Indicates whether IPCP is configured to send the local IP address for this PPP interface to the remote end of the link in our initial “Configure Request”. Some PPP implementations require this information.

ipv6cp Lists the Internet Protocol version 6 control protocol options.

Example:

```
  list ipv6cp
  IPv6CP Options
  ---------------
  Send Our IP Address: Yes
```

Send Our IP Address

Indicates whether IPv6CP is configured to send the local IP address for this PPP interface to the remote end of the link in our initial “Configure Request”. Some PPP implementations require this information.

lcp Lists the parameters and options for the Link Control Protocol.

Example:

```
PPP 7 Config>list lcp
```

LCP Parameters

```
  Config Request Tries: 20  Config Nak Tries: 10
  Terminate Tries: 10  Retry Timer: 3000
```

LCP Options

```
  Max Receive Unit: 1522  Magic Number: Yes
  Peer to Local (RX) ACCM: A0000
  Protocol Field Comp(PFC): No  Addr/Cntl Field Comp(ACFC): No
```

Authentication Options

```
  Authenticate remote using: none
  Identify self as: ibm
```

Link Control Protocol includes the authentication protocols used to authenticate the remote peer. If the authentication protocol is either CHAP or Microsoft PPP CHAP (MS-CHAP), the rechallenge interval is displayed.
Example:

PPP 7 Config>list lcp

LCP Parameters

Config Request Tries: 20 Config Nak Tries: 10
Terminate Tries: 10 Retry Timer: 3000

LCP Options

Max Receive Unit: 1522 Magic Number: Yes
Peer to Local (RX) ACCM: A0000 Addr/Cntl Field Comp (ACFC): No
Protocol Field Comp (PFC): No MSCHAP Rechallenge Interval: 0

Authentication Options

Authenticate remote using: MSCHAP or SPAP or CHAP or PAP [Listed in priority order]
CHAP Rechallenge Interval: 0
MSCHAP Rechallenge Interval: 0
Identify self as: ibm

Config Request Tries:
Number of times that LCP sends configure-request packets to a peer station while attempting to open a PPP link.

Config Nak Tries:
Number of times that LCP sends configure-nak ("not acknowledged") packets to a peer station while attempting to open a PPP link.

Terminate Tries:
Number of times that LCP sends terminate-request packets to a peer station to close a PPP link.

Retry Timer:
Number of milliseconds that elapse before packet transmission continues according to the number of times set by the “Config tries” parameter.

Max Receive Unit:
Displays the maximum information field (packet) size handled by the link.

Peer to Local (RX) ACCM
Displays the characters that the peer must “escape” when transmitting packets to the router on asynchronous lines.

Magic Number:
Indicates whether the magic number loopback detection option is enabled.

Protocol Field Comp (PFC):
Indicates whether the PFC option is enabled.

Addr/Cntl Field Comp (ACFC):
Indicates whether ACFC is enabled.

Authenticate remote using:
A list of enabled authentication protocols.

Identify Self As:
The name set with the set name command.

ncp Lists the parameters for all Network Control Protocols.

Example:
Configuring PPP Interfaces (Talk 6)

List ncp

NCP Parameters

```
---
Config Request Tries: 20  Config Nak Tries: 10
Terminate Tries: 10  Retry Timer: 3000
```

Config Request Tries:
Number of times NCP sends configure-request packets to a peer station while attempting to open a PPP link.

Terminate Tries:
While awaiting a Terminate-Ack, the number of times NCP sends Terminate-Request before it closes a PPP link.

Config Nak Tries:
Number of times NCP sends configure-nak (not acknowledged) packets to a peer station while attempting to open a PPP link.

Retry Timer:
Number of milliseconds that elapse before timing out of NCP’s transmission of configure-request packets (to open the link) and terminate-request packets (to close the link).

LLC

Use the **LLC** command to access the LLC configuration environment (available only if APPN is included in the software load). See “LLC Configuration Commands” on page 235 for an explanation of each of these commands.

Syntax:

```
llc
```

Set

Use the **set** command to set HDLC parameters, LCP options and parameters, IPCP options, BCP options, and NCP parameters. “Parameters” are related to internal operations for such things as retry counts. “Options” are things that are negotiated with the other end.

Notes:
1. Values immediately following the command option prompts reflect the current setting of that option. They are not always the default values illustrated in this chapter.
2. The **set hdlc** commands are not supported on PPP dial circuit interfaces.

Syntax:

```
set
  _bcp
  _ccp_options
  _ccp_algorithms
  _hdlc...
  _ipcp
  _ipv6cp
  _lcp...
  _name...
```
Configuring PPP Interfaces (Talk 6)

ncp...

bcp
Sets the Bridging Control Protocol (BCP) parameters.

Example:
```
set bcp
TINYGRAM COMPRESSION [no]:
```

Tinygram Compression
Specifies whether or not Tinygram Compression is used. This option is useful for protocols that are prone to problems when bridged over low-speed (64 Kbps and below) lines. These protocols add zeroes between the data and the frame checksum to pad the Protocol Data Unit (PDU) to the minimum size. Tinygram compression removes the zeroes and preserves the frame checksum at the transmitting end. At the receiving end, it restores the packet to the minimum length.

ccp options
Prompts you for the configurable options of the compression algorithms. Some of the options may be modified later by PPP negotiations with the peer router on the WAN link. For additional information, see [“Using the Data Compression Subsystem”](#) in [Using and Configuring Features](#).

Example:
```
set ccp options
STAC: # histories [1]?  
STAC: check mode (0=none, 1=LCB, 2=CRC, 3=Seq) [3]?
```

STAC: # histories
This sets the number of compression “contexts” or “histories” that are used by the STAC compression engine.

A nonzero value means that the compression engine maintains the specified number of histories where it keeps information about previous data sent in packets. This historical data is used to improve the effectiveness of the compression.

The receiver maintains a similar history and as long as the transmitter and receiver keep their histories in sync, the receiver can properly decompress the packets it receives. If the histories get out of sync, packets are discarded as unusable data. Normally, you should set the number of histories to 1 unless the link quality is very poor.

A value of zero means that each packet sent is compressed without regard to any past packets sent and may always be reliably decompressed by the receiver. However, because the compressor cannot exploit any information derived from examining prior packets, the effectiveness of the compression usually is not as good.

Some implementations support more than one history, subdividing the data stream into separate streams that are compressed independently. The router does not support the use of more than one history on a PPP link.

STAC: check mode (0=none, 1=LCB, 2=CRC, 3=Seq)
STAC compressed datagrams normally include a check value used by the two ends of the link to recognize when a compressed packet has been lost or corrupted, and some action is needed to re-synchronize the sender’s and receiver’s histories.
Configuring PPP Interfaces (Talk 6)

Note:
Failure to detect a bad packet can cause all subsequent data to be decompressed incorrectly.

This option sets the exact form of check value used. Choose one of the following:

0 **None**: No check value is used. Without a check value, there is no way to determine that a packet has been lost, out-of-sequence, or corrupted. Do not use this mode unless the underlying data link provides reliable, sequenced packet delivery.

1 **LCB**: A “Longitudinal Control Byte” is used. This is a simple, 8-bit exclusive–OR checksum. *Its usage is strongly discouraged* because the receiver cannot detect a lost or an out-of-sequence packet, and the PPP frame checksum is a more reliable test of the packet’s integrity.

2 **CRC**: A 16-bit cyclic redundancy checksum is used. Although this is a better test of a packet’s integrity than the LCB, its use is still discouraged because the receiver still cannot use it to detect lost or out of sequence packets, and otherwise it becomes largely redundant with the frame checksum.

3 **SEQ**: An 8-bit sequence number is used (default). This is the preferred method of operation. If the number of histories is not 0, use of any other mode is strongly discouraged though another mode may be necessary for interoperability with certain non-RFC-compliant routers.

4 **EXT**: An extended mode that is similar to the sequence number mode, in that each packet includes a sequence number, but the compressed frame format is altered more radically. In extended mode, re-synchronization with a peer is performed differently than with the other modes; the signaling between the two nodes is based upon flags passed in the headers of compressed datagrams rather than distinct CCP control packets.

Extended mode is provided for compatibility with certain non-RFC-compliant implementations. It should be used only with clients that do not support mode 3.

ccp algorithms list-of-algorithms

Specifies an exact list of compression protocols to use. The order of preference depends on the order of entry in the list. When MPPE is activated on the link, the order of the CCP algorithms is ignored and only Microsoft Point-to-Point Compression (MPPC) is used.

When the link negotiates compression with another node, it offers the entire list of protocols to the peer node in preference order. The peer node should select the first protocol it can use from the preference list. Enabling multiple protocols allows the peer to dictate which compression algorithm will be used on the link. If you need to avoid an algorithm, do not specify the algorithm in the list.

Specifying **none** disables the use of any protocol effectively disabling compression. The valid compression algorithms are:
STAC-LZS
The STAC-LZS algorithm as described in RFC 1974

MPPC The Microsoft Point-to-Point Compression algorithm as described in RFC 2118.

Example:
set ccp protocols
Enter a prioritized list of enabled compressors (first is preferred), all on one single line.
Choices (can be abbreviated) are:
Stac-LZS, MPPC
Compressor list [Stac-LZS]?

hdlc cable cable type
Set the HDLC cable type (that is connected to the interface) to one of the following types:
RS-232 DTE
RS-232 DCE
V35 DTE
V35 DCE
V36 DTE
X21 DTE
X21 DCE

Example: set hdlc cable rs-232 dce
A DTE cable is used when you are attaching the router to some type of DCE device (for example, a modem or a DSU/CSU).
A DCE cable is used when the router is acting as the DCE and providing the clocking for direct attachment.

hdlc clocking external or internal
To connect to a modem or DSU, configure clocking as external. To connect directly to another DTE device, use a DCE cable and set the clocking to "internal" at one end and to "external" at the other.
For internal clocking, you are prompted to enter a line speed in the range 2400 to 2048000, if you have not already set the line speed.

Example: set hdlc clocking internal

hdlc encoding NRZ or NRZI
Sets the HDLC transmission encoding scheme for an interface. Encoding may be set for NRZ (non-return to zero) or NRZI (non-return to zero inverted). NRZ is the more widely used encoding scheme while NRZI is used in some IBM configurations. The default value is NRZ.

Example: set hdlc encoding nrz

hdlc idle flag or mark
Sets the data link idle state to either Flag or Mark.
The flag option provides continuous flags (7E hex) between frames.
The mark option puts the line in a marking state (OFF, 1) between frames.

Example: set hdlc idle flag
For internal clocking, this command specifies the speed of the transmit and receive clock lines. The range is 2400 to 2 048 000 bps.

For external clocking, this command does not affect the hardware but it sets the speed of some protocols, such as IPX, used to determine the routing parameters. In these cases, set the speed to match the actual line speed. If speed is not configured or is set to 0, the protocol assumes a speed of 1 000 000 bps. The maximum speed that can be configured if external clocking is used can be 6 312 000 bps. If you want to use a line speed greater than 2048000, you can only do this on:

- interface 1.
- port 1 of a 4-port WAN concentration adapter.
- ports 1 and 5 of an 8-port WAN concentration adapter.

The other WAN ports must be clocked at 64 Kbps or less.

Example: set hdlc speed 56000

Sets the number of flags sent between frames. The purpose of this command is to slow the serial line so that it is compatible with older, slower serial devices at the other end.

The range is 0 to 15. The default is 0.

Example: set hdlc transmit-delay 15

Sets all Internet Protocol Control Protocol options for that link.

Example:

set ipcp
IP COMPRESSION [yes]:
Number of Slots: [16]?
Send our IP address [yes]:
Note: unnumbered interface addresses will not be sent.
Interface remote IP address to offer if requested (0 for none) [0.0.0.0]? 10.0.0.3

Selects whether or not the PPP handler will accept compressed IP data. PPP supports Van Jacobson (VJ) TCP/IP header compression as described in RFC 1144. You should enable this option when the point-to-point link is running at a low baud rate.

Setting this value to yes enables the compression option. Setting this value to no disables the option. The default setting is no.

Sets the number IP headers that are saved for referential purposes when determining the type of compression that is enabled. The range is 1 to 16. The default is 16.

Send Our IP address

Specifies whether or not to send the local IP address to the remote end of the link. You should set this option to yes if the other end of the link requires the IP address.

If this value is set to yes, IPCP will send the IP address of the PPP interface, if the interface is configured with a numbered IP address, (that is, the address does not begin with 0). If this option is set to no and the peer sends us a Configure NAK with 0.0.0.0 for the IP Address option, the 2210 will respond with the address of the PPP interface if it is configured with a numbered address.
ipv6cp
Sets the IPv6 Control Protocol option for the link.

Example:
set ipv6cp
Send Our IP address [no]:

Send Our IP address
Specifies whether or not to send the local IPv6 address to the remote end of the link. Set this option to yes if the other end of the link requires the IPv6 address.

If this parameter is set to yes, IPv6CP will send the IPv6 address of the PPP interface, if the interface is configured with a numbered IPv6 address, (that is, the address does not begin with 0). If this option is set to no and the peer sends us a Configure NAK with ::/0 for the IPv6 address option, the 2210 will respond with the address of the PPP interface if it is configured with a numbered address.

lcp options or parameters
Sets the Link Control Protocol options and parameters for the PPP link.

Example:
set lcp options
Maximum Receive Unit (bytes) [2048]? Magic Number [yes]: Peer-to-Local Async Control Character Map (RX ACCM) [A0000] ? Protocol Field Compression (PFC) [no]? Addr/Cntl Field Compression (ACFC) [no]?

Maximum receive unit
Sets the maximum size of the information field that are transferred in a single datagram. The range is 576 to 4089 bytes. The default is 2048.

Magic number
Specifies whether or not the magic number option is enabled. The magic number provides a way of detecting looped back links in serial line configurations. When this option is enabled, the link uses the system clock as a random number generator. The random numbers that are generated referred to as magic numbers.

When the LCP receives a Configure Request with a magic number present (i.e., the magic number option is enabled), the received magic number is compared with the magic number in the last Configure-Request sent to the peer. If the two magic numbers are different, the link is not considered looped back. If the two numbers are the same, the PPP handler attempts to bring the link down and up again to renegotiate magic numbers.

Setting this value to Yes enables the magic number option. Setting this value to No disables the option. The default setting is Yes.

Async Control Character Map
Indicates which characters that the peer must “escape” when transmitting packets to the router on asynchronous lines. This allows certain sensitive ASCII control characters, such as XON and XOFF, to be transmitted transparently over the link.
Specify a 32-bit bit mask in hexadecimal. If a bit in position 'N' of the mask is set, the corresponding ASCII character 'N' must be escaped (the LSB is bit number 0, corresponding to the ASCII NUL character).

The default value for this option is '0A0000', indicating that XON and XOFF (control-Q and control-S) need to be escaped. This is for the benefit of modems that use XON/XOFF to perform software handshaking. If this is not an issue, then it is recommended that you change the ACCM to zero (no characters escaped).

LCP is always willing to negotiate the ACCM, even on synchronous lines, and the `list lcp` command in the PPP monitoring process will display the negotiated value. However, synchronous lines employ a “bit-stuffing” mechanism rather than an “escaping” mechanism, so the ACCM is not normally meaningful on synchronous lines. It may be meaningful if the router is connected to a modem that performs sync-to-async conversion, in which case its value should reflect the requirements of the attached modem on the asynchronous side.

Addr/Cntl Field Compression (ACFC)

Specifies whether the peer can employ address and control field compression.

If the ACFC option is successfully negotiated by LCP, it means that the Address and Control field bytes which start off each packet may be omitted in the datagrams sent back and forth on the link. These bytes are always 0xFF 03, so there is no real information provided by them, and enabling ACFC means that the datagrams that are transmitted will be two bytes shorter.

To be precise, if you enable ACFC, you are indicating a receive-side capability. If you enable ACFC and LCP successfully negotiates it, the other end can employ ACFC in the packets it transmits to the local end (most PPP options work like this). The local end will only transmit packets without the address and control fields if the other end also indicates its ability to handle such packets.

Enabling ACFC does not obligate the other end to send packets without the address and control fields, even if it accepts the option. Enabling ACFC merely tells the peer that it optionally may use ACFC, and the router will be able to handle the incoming packets. If the peer indicates that it can handle ACFC, then the router always performs ACFC on the packets it transmits regardless of whether ACFC is enabled locally.

LCP packets always are sent with address and control fields present. This guarantees that LCP packets will be recognized even if there is a loss of link synchronization.

Protocol Field Compression (PFC)

 Specifies whether the peer is to employ protocol field compression.

When you specify “yes”, if the PFC option is negotiated successfully by LCP, the leading zero byte may be omitted from the “Protocol” field for those protocol values in the range '0x0000'–'0x00FF', for a one byte savings in the packets being transmitted. This range includes the majority of layer-3 protocol datagrams.
PPP protocol values are all assigned such that the upper byte of the protocol is an even value and the lower byte is an odd value (a limited use of the more generalized mechanism described by the ISO 3309 extension mechanism for address fields). Thus, the receiver can readily detect when the leading byte of a protocol value has been omitted (the first byte of the protocol field is odd rather than even), so there is no ambiguity interpreting frames in the presence of PFC.

PFC, like ACFC, is a receive side capability and the previous description of ACFC applies to PFC.

Example:

```
set lcp parameters
Config tries [20]?
NAK tries [10]?
Terminate tries [10]?
Retry timer (mSec) [3000]?
```

Note: The value immediately following the command option prompt is the current setting of that option. It is not always the default value illustrated in this chapter.

Retry timer
Sets the amount of time in milliseconds that elapses before LCP’s transmission of configure-request (to open the link) and terminate-request (to close the link) packets is timed out. Expiration of this timer causes a timeout and the halting of configure-request and terminate-request packet transmission. The range is 200 to 30000 milliseconds. The default setting is 3000 milliseconds.

Config tries
Sets the number of times that LCP sends configure-request packets to a peer station to establish the opening of a PPP link. The default value is 20. The range is 1 to 100.

The retry timer starts after the first configure-request packet is transmitted. This is done to guard against packet loss.

NAK tries
Sets the number of times that LCP sends configure-nak (nak = not acknowledged) packets to a peer station while attempting to open a PPP link. The default value is 10. The range is 1 to 100.

LCP sends configure-nak packets upon receiving configure-request packets with some unacceptable configuration options. These packets are sent to refuse the offered configuration options and to suggest modified, acceptable values.

Terminate tries
Sets the number of times that LCP sends terminate-request packets to a peer station to close a PPP link. The default value is 10. The range is 1 to 100.

The retry timer starts after the first terminate-request packet is transmitted. This is done to guard against packet loss.

name
Sets the name that the router uses when responding to authentication requests from another router.
Confignng PPP Interfaces (Talk 6)

Notes:
1. While the “case” that you use for names and passwords sent to the peer on the link are preserved for this product, interoperability with other vendor products is easier if all names and passwords are entered in lowercase.

2. Other implementations may not handle names with the same maximum length as supported in this product. The only indication is a message from the authenticator stating that there is a bad name. If you receive this type of message, try shortening the routerid.

3. This command sets the name of the local router. Use the talk 6 add ppp-user command at the Config> prompt to add each remote user to the local database, if you want to use the local database to track the remote users. The alternative is to configure the external AAA authentication server that is described in the chapter “Using Local or Remote Authentication” in [Using and Configuring Features].

 Note: The external AAA authentication server cannot be used by MS-CHAP.

Example:

```
set name
PPP 7 Config> set name
Enter Local Name: [ ]? newyork
Password:
Enter password again:
PPP Local Name = newyork
```

ncp parameters
Sets the basic operational parameters for most NCPs.

 Note: Although you access this command through a particular interface, this command will reset the parameters for all PPP interfaces.

Example:

```
set ncp parameters
Config tries [20]
NAK tries [10]?
Terminate tries [10]?
Retry timer (mSec) [3000]?
```

Config tries
Sets the number of configure-request packets sent by NCP to a peer station to attempt to open a PPP link. The range is 1 to 100. The default is 20.

This action indicates the desire to open an NCP connection with a specified set of configuration options. The retry timer starts after a configure-request packet is transmitted. This is done to guard against packet loss.

NAK tries
Sets the number of configure-nak (nak = not acknowledged) packets that NCP sends to a peer station while attempting to open a PPP link. The range is 1 to 100. The default value is 10.

Upon receiving configure-request packets with some unacceptable configuration options, NCP sends configure-nak packets. These packets are sent to refuse the offered configuration options and to suggest modified, acceptable values.
Terminate tries
Sets the number of terminate-request packets sent by NCP to a peer station to close a PPP link. The range is 1 to 100. The default value is 10.

This action indicates the desire to close an NCP connection. The retry timer is started after a terminate-request packet is transmitted. This is done to guard against packet loss.

Retry timer
Sets the amount of time, in milliseconds, that elapses before NCP’s transmission of configure-request (to open the link) and terminate-request (to close the link) packets is timed out. Expiration of this timer causes a timeout and the halting of configure-request and terminate-request packet transmission. The range is 200 to 30000 milliseconds. The default is 3000 milliseconds.

Accessing the Interface Monitoring Process

To access the PPP interface monitoring process, do the following:
1. Enter `interface` at the `+` prompt to display a list of configured interfaces.
2. Enter `network` followed by the number of the PPP interface.

PPP>

Point-to-Point Monitoring Commands

This section summarizes and then explains the Point-to-Point monitoring commands. Enter the commands at the `PPP>` prompt. Table 63 shows the commands.

Note: The options available for these commands depend on what protocols are available in the router software. For example, when the router software (image) does not contain APPN support, the `list isrcp`, `list isr`, `list hprcp`, `list hpr`, and `llc` commands are not available.

Table 63. Point-to-Point Monitoring Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 10.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears all statistics from point-to-point interfaces.</td>
</tr>
<tr>
<td>List</td>
<td>Displays information and counters related to the point-to-point interface and PPP parameters and options.</td>
</tr>
<tr>
<td>LLC</td>
<td>Displays the LLC monitoring prompt.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11.</td>
</tr>
</tbody>
</table>

Clear

Use the `clear` command to clear all statistics from point-to-point interfaces.

Syntax:

```
clear
```
Use the list command to display information and counters related to the point-to-point interface and PPP parameters and options.

Syntax:

```
list
  all
  cbcp callback cp
  control
  errors
  interface
  lcp - PPP link CP
  pap - PAP Authentication CP
  chap - CHAP Authentication CP
  mschap - MS-CHAP Authentication CP
  ecp - Encryption Control Protocol
  edp - Encrypted packet statistics
  mppe - Microsoft PPP Encryption (MPPE)
  spap - SPAP Authentication CP
  ccp - PPP Compression CP
  cdp - PPP compression
  compression - PPP compression
  bcp - Bridging (ASRT) CP
  brg - Bridging (ASRT)
  stp - Spanning Tree Protocol
  nbcp - NetBios
  nbfcp - NetBios Frame
  ipcp - Internet Protocol CP
  ip - Internet Protocol
  ipv6cp - Internet Protocol version 6 CP
  ipv6 - Internet Protocol version 6
  ipxcp - Novell IPX CP
  ipx - Novell IPX
  atcp - AppleTalk (Phase 2) CP
  ap2 - AppleTalk (Phase 2)
  dncp - DECnet IV CP
  dn - DECnet IV
  osicp - ISO's OSI CP
  osi - ISO's OSI
```
Monitoring PPP Interfaces (Talk 5)

all Lists all information and counters related to the point-to-point interface and PPP options and parameters. The output displayed for this command is a combination of the displays from all of the individual list item commands.

Note: If a network control protocol is not available on an interface, a message is displayed indicating that no protocol or statistics information is available for that network control protocol’s list commands.

cbcp Lists statistics for the Callback Control protocol.

Example: list cbcp

<table>
<thead>
<tr>
<th>CBCP Statistics</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Octets:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Callback attempts:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Successful callbacks:</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Packets Indicates the total number of CBCP packets transmitted (out) and received (in) over the current point-to-point interface.

Octets For CBCP frames, indicates the total number of bytes in Octets transmitted and received over the current point-to-point interface.

Callback attempts The number of CBCP callbacks attempted, including those in progress.

Successful callbacks The number of successful callbacks completed.

control Lists negotiated options or other state information for a control protocol.

ccp
ecp
lcp
bcp
nbcp
nbfcp
ipcp
ipxcp
atcp
dncp
osicp
bvcp
Examples of the List Control CCP Command

Example for STAC-LZC compression:
```
list control ccp
CCP State: Open
Previous State: Ack Sent
Time Since Change: 264 hours, 56 minutes and 58 seconds
Compressor: STAC-LZS histories 1, check_mode SEQ
Decompressor: STAC-LZS histories 1, check_mode SEQ
Max size of compression dictionary: 12494,
Max size of decompression dictionary: 4424.
```

Example for MPPC compression:
```
list control ccp
CCP State: Open
Previous State: Listen
Time Since Change: 167 minutes
Compressor: none
Decompressor: none
MPPE: Negotiated 40 bit stateful
```

Definitions of Terms in the List Control CCP Example

CCP state
The current state of the point-to-point link. If “Open”, then compression was successfully negotiated on this link. If not open, compression is not running on the link. It will also show as “Open” if MPPE has been successfully negotiated.

Previous State
The state of the point-to-point link before the state displayed in the current state field.

Compressor
Shows which compressor was negotiated and the options it is using.

Decompressor
Shows which decompressor was negotiated and the options it is using.

Max size of compression dictionary
The size of the data space allocated for the compression “context” or “history”.

Max size of decompression dictionary
The size of the data space allocated for the decompression “context” or “history”.

MPPE
MPPE options negotiated. See the talk 6 enable mppe command for descriptions of these parameters and [Microsoft Point-to-Point Encryption (MPPE)](http://microsoft.com) in the chapter “Overview of Encryption” in [Using and Configuring Features](http://microsoft.com) for more information.

Example of the List Control ECP Command

Example:
Definitions of Terms in the List Control ECP Example

ECP State:
The current state of the point-to-point link. If “Open” then encryption was successfully negotiated on this link. If not “Open”, encryption is not running on the link.

Previous State:
The state of the point-to-point link before the state displayed in the current state field.

Time Since Change:
The elapsed time between the above two state changes.

Local (transmit) encrypter:
This encryption algorithm is used for encrypting the data being sent on this PPP interface.

Remote (receive) encrypter:
The encryption algorithm is used for decrypting the received data on this interface.

Example of the List Control LCP Command

Example:

```
list control lcp
```

Version: 1

<table>
<thead>
<tr>
<th>Link phase:</th>
<th>Establishing connection (LCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP State:</td>
<td>Listen</td>
</tr>
<tr>
<td>Previous State:</td>
<td>Req Sent</td>
</tr>
<tr>
<td>Time Since Change:</td>
<td>1 minute and 57 seconds</td>
</tr>
<tr>
<td>Remote Username:</td>
<td>- No Authentication -</td>
</tr>
<tr>
<td>Last Identification Rx'd:</td>
<td>- No Connection -</td>
</tr>
<tr>
<td>Time Connected:</td>
<td>- No Connection -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCP Option</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Receive Unit:</td>
<td>2048</td>
<td>1500</td>
</tr>
<tr>
<td>Async Char Mask:</td>
<td>FFFFFFFF</td>
<td>FFFFFFFF</td>
</tr>
<tr>
<td>Authentication:</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Magic Number:</td>
<td>7ABCBD7</td>
<td>None</td>
</tr>
<tr>
<td>Protocol Field Comp:</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Addr/Cntl Field Comp:</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>32-Bit Checksum:</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Definitions of Terms in the List Control LCP Example

Version
Displays the current version of the Point-to-Point Protocol.

Link phase
Displays the current activity on the link. This can have one of the following values:

- **Dead** There is no activity on the link; the interface is down.
Monitoring PPP Interfaces (Talk 5)

LCP
The link is in LCP negotiation. This state occurs when first bringing up an interface. The interface may be in self-test at this time.

Authenticate
The link is performing initial authentication.

ECP
The link is negotiating an ECP encryption algorithm.

Note: Encryption support is optional. If your software load does not include encryption, you will not see encryption-related parameters.

Ready
Link is operating normally. NCPs can negotiate and data traffic associated with can flow after successful NCP negotiation.

Terminate
The link is being shut down.

LCP State
Displays the current state of the point-to-point link. These states include the following:

OPEN - Indicates that a connection has been made and data can be sent. The retry timer does not run in this state.

CLOSED - Indicates that the link is down and no attempt is being made to open it. In this state, all connection requests from peers are rejected.

LISTEN - Indicates that the link is down and no attempt is being made to open it. In contrast to the CLOSED state, however, all connection requests from peers are accepted.

REQUEST-SENT - Indicates that an active attempt is being made to open the link. A Configure-request packet has been sent but a Configure-Ack has not yet been received nor has one been sent. The retry timer is running at this time.

ACK-RECEIVED - Indicates that a Configure-request packet has been sent and a Configure-Ack packet has been received. The retry timer is still running since a Configure-Ack packet has not been transmitted.

ACK-SENT - Indicates that a Configure-Ack packet and a Configure-request packet have been sent but a Configure-Ack packet has not been received. The retry timer always runs in this state.

CLOSING - Indicates that an attempt is being made to close the connection. A Terminate-request packet has been sent but a Terminate-Ack packet has not been received. The retry timer is running in this state.

Previous State
Displays the state of the point-to-point link prior to the state displayed in the Current state field. These states are the same as those described in the Current state field.

Time since change
Displays the amount of time that has elapsed since the last link state change.
Remote Username
When authentication is required on the link, this field shows the name that the peer supplied.

Last Identification Rx’d
An optional packet type that is defined for LCP is an “Identification” packet. The contents of this packet are undefined but are normally expected to be a human-readable string provided by the peer to give some identifying information such as a name, manufacturer, model number, or other information the manufacturer wishes to provide. If the router receives such a packet, the contents of the last such packet received are displayed here.

Time Connected
Indicates how long the peer has been connected on this link.

LCP Option
These fields indicate the values of options that have been negotiated with the peer when LCP is in the Open state. When LCP is not open, these values represent initial defaults or configured values that will be used in subsequent LCP negotiations.

Max Receive Unit
Indicates the maximum length for the packet size that the local and remote ends can transmit. This is the maximum length of the payload portion of a PPP packet and it does not include PPP header and trailer bytes.

When LCP is in an Open state, the values indicate the lengths that have been negotiated with the peer. The router does not support differing MRU lengths for the peer and local end, so these values will be the same.

Async Character Mask
This indicates the asynchronous control character mask that has been negotiated. The router accepts ACCM negotiation even on synchronous lines, although this does not affect the actual packet data sent. See the `set lcp options` command on page 479 for more information about the ACCM.

Authentication
Indicates which authentication protocol, if any, each end of the link requires. Multiple protocols may be available at each end; this value indicates which protocol the units agreed to use.

Magic number
Displays the current magic number being used for both the local and remote ends of the link for loopback detection.

Protocol compression
Indicates whether PFC has been negotiated.

Address/Control compression
Indicates whether ACFC has been negotiated.

32-bit checksum
Not currently supported. PPP will reject this option if it is received.

Example of the List Control BCP Command

Example:
Monitoring PPP Interfaces (Talk 5)

list control bcp
BCP State: Closed
Previous State: Closed
Time Since Change: 5 hours, 25 minutes and 3 seconds

BCP Option Local Remote
Tinygram Compression DISABLED DISABLED
Source-route Info:
 Remote side does not support source-route bridging

Definitions of Terms in the List Control BCP Example

The BCP State fields are the same as those described under the list control lcp command.

Tinygram Compression
Displays whether or not Tinygram Compression is enabled or disabled on the local and remote ends of the link.

Source-route Info
Displays whether or not source route bridging is enabled for the local and remote ports that correspond to this interface.

Example of the List Control NBCP Command

Example:

list control nbcp
NBCP State: Closed
Previous State: Closed
Time Since Change: 3 hours, 48 minutes and 24 seconds

NetBIOS Control Protocol Info:
Local MAC Address = 0x000000000000
Remote MAC Address = 0x000000000000
Remote NetBIOS Names: (0)

Definitions of Terms in the List Control NBCP Example

The NBCP State fields are the same as those described under the list control lcp command.

Local MAC Address
The Local MAC Address is the MAC Address that is used by the DOS/Win DIALs client. It is a pseudo-random number, or a Locally Administered Address (LAA), if you configured an LAA in the client.

Remote MAC Address
The Remote MAC Address is the MAC Address that the 2210 DIALs Server has assigned to this client for use on the LAN.

Remote NetBIOS Name
The list of NetBIOS names of LAN resources to which the client has requested access.

Example of the List Control NBFCP Command

Example:

list control nbfcp
NBFCP State: Closed
Previous State: Closed
Time Since Change: 4 hours, 5 minutes and 58 seconds

NetBIOS Frame Control Protocol Info:
Local MAC Address = 0x000000000000
Remote MAC Address = 0x444553540000
Remote NetBIOS Names: (0)
Definitions of Terms in the List Control NBFCP Example

The NBFCP State fields are the same as those described under the list control lcp command.

Local MAC Address
The Local MAC Address is the MAC Address that is used by the Win 95/NT Dial-Up Networking client. It is a pseudo-random number, or a Locally Administered Address (LAA), if you configured an LAA in the client.

Remote MAC Address
The Remote MAC Address is the MAC Address that the 2210 DIALs Server has assigned to this client for use on the LAN.

Remote NetBIOS Name
The list of NetBIOS names of LAN resources to which the client has requested access.

Remote Peer
The Remote Peer Class, Version Major, and Version Minor is the information passed back to the 2210 by the NBFCP Peer Information option.

Example of the List Control IPCP Command

Example:
```
list control ipcp
IPCP State: Listen
Previous State: Closed
Time Since Change: 1 hour, 57 minutes and 52 seconds
IPCP Option
----------- ----- ------
IP Address 0.0.0.0 10.0.0.152
Compression Slots None None
DHCP State: BOUND
Lease Server: 10.0.0.111
Leased IP Address: 10.0.0.152
Lease Time: 4 minutes and 0 seconds
Renewal Time: 2 minutes and 0 seconds
Rebind Time: 3 minutes and 30 seconds
Lease Time Elapsed: 1 second
Lease Time Remaining: 3 minutes and 59 seconds
DHCP Client ID: 0100120B0000
```

Definitions of Terms in the List Control IPCP Example

The IPCP state fields are the same as those described under the list control lcp command.

IP Address:
Indicates if this interface’s IP address (Local) and the negotiated address of the remote (Remote), if any.

Compression Slots
Indicates the number of IP headers saved for referential purposes when determining the type of compression that is enabled.
DHCP State
This is the Proxy DHCP as described in RFC 1541.

Lease Server
The server from which the lease was acquired.

Leased IP address
The address leased to the client. This address should be equivalent to the “Remote IP Address” listed above.

Lease Time
Length of lease from the DHCP server for this address. When “Lease Time Elapsed” equals this time, the lease will expire and the IPCP connection closed.

Renewal Time
Time after which Proxy DHCP attempts to extend this lease from the server. When “Lease Elapsed Time” equals this time, Proxy DHCP attempts to renew the lease, resetting the “Lease Time,” “Lease Elapsed Time,” and “Lease Time Remaining,” if successful.

Rebind Time
Time before Proxy DHCP attempts to obtain a new lease from any configured DHCP server. When “Lease Elapsed Time” equals this time, Proxy DHCP attempts to obtain a new lease, resetting the “Lease Time,” “Lease Elapsed Time,” and “Lease Time Remaining,” if successful.

Leased Time Elapsed
Time elapsed for this lease. This is not necessarily the time for this particular dial-in session, as the lease may have been renewed. When the lease is renewed, this timer is set back to 0.

Leased Time Remaining
Time remaining for this lease. This parameter is equal to “Lease Time” minus “Lease Time Elapsed.”

DHCP client ID
A unique ID for this client (dial-in user). All DHCP messages are identified to and from the DHCP server by this client ID.

Example of the List Control IPXCP Command

Example:
```
list control ipxcp
IPXCP State: Closed
Previous State: Closed
Time Since Change: 2 hours, 9 minutes and 9 seconds
```

The IPXCP state fields are the same as those described under the list control lcp command.

Example of the List Control ATCP Command

Example:
```
list control atcp
ATCP State: Closed
Previous State: Closed
Time Since Change: 6 hours, 27 minutes and 7 seconds
```

AppleTalk Address Info:
Common network number = 12
Local node ID = 49
Remote node ID = 76

Definitions of Terms in the List Control ATCP Example
The ATCP State fields are the same as those described under the list control lcp command.

Common Network Number
Network number of the two ends of the point-to-point link. (You must statically configure both ends of the link to have the same network number.)

Local Node ID
Unique node number of the local end of the link.

Remote Node ID
Unique node number of the remote end of the link.

Example:
```
list control dncp
DNCP State: Closed
Previous State: Closed
Time Since Change: 2 hours, 2 minutes and 58 seconds
```

The DNCP state fields are the same as those described under the list control lcp command.

Example:
```
list control osicp
OSICP State: Closed
Previous State: Closed
Time Since Change: 6 hours, 28 minutes and 32 seconds
```

The OSICP State fields are the same as those described under the list control lcp command.

Example of the List Control BVPC Command

Example:
```
list control bvcp
BVCP State: Open
Previous State: Ack Sent
Time Since Change: 403 hours, 49 minutes and 2 seconds
```

The BVCP State fields are the same as those described under the list control lcp command.

Note: The command word bvcp and the acronym BVCP stand for the Banyan VINES Control Protocol (BVCP).

Example of the List Control ISRCP Command

Example:
```
list control isrcp
APPN ISRCP State: Open
Previous State: Ack Rcvd
Time Since Change: 1 hour, 48 minutes and 5 seconds
```

The APPN ISR control protocol (ISRCP) state fields are the same as those described under the list control lcp command.

Example of the List Control HPRCP Command

Example:
```
list control hprcp
APPN HPRCP State: Open
Previous State: Ack Rcvd
Time Since Change: 1 hour, 48 minutes and 10 seconds
```

The APPN HPR control protocol (HPRCP) state fields are the same as those described under the list control lcp command.
Monitoring PPP Interfaces (Talk 5)

error Lists information related to all error conditions tracked by the PPP software.

Example:

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Count</th>
<th>Last One</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Address</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bad Control</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Protocol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Invalid Protocol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Config Timeouts</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminate Timeouts</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bad address
Indicates the total number of bad addresses encountered over the point-to-point link. “Bad addresses” refers to the HDLC framing byte at the start of the packet.

Bad control
Indicates the total number of bad control packets encountered over the point-to-point link. “Bad control” refers to the 0x03 prefix on HDLC encapsulated PPP packets (“UI” value that follows the 0xFF).

Unknown protocol
Indicates the total number of unknown protocol packets encountered by the current link.

Invalid protocol
Indicates the total number of invalid protocol packets encountered by the current link.

Config timeouts
Indicates the total number of configuration timeouts experienced by the link.

Terminate timeouts
Indicates the total number of link termination timeouts experienced by the link.

interface
Lists PPP interface statistics.

Example:

<table>
<thead>
<tr>
<th>Interface Statistic</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Octets:</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Packets
Indicates the number of packets received and transmitted on this interface.

Octets
Indicates the number of octets received and transmitted on this interface.

lcp
Lists statistics for the Link Control Protocol.

Example:

<table>
<thead>
<tr>
<th>LCP STATISTIC</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets:</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Octets:</td>
<td>1260</td>
<td>1260</td>
</tr>
<tr>
<td>CFG REQ:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CFG ACK:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CFG NAK:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CFG REJ:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TERM REQ</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Packets
Indicates the total number of LCP packets transmitted (out) and received (in) over the current point-to-point interface.

Octets
For LCP frames, indicates the total number of bytes in octets transmitted and received over the current point-to-point interface.

CFG REQ
Indicates the total number of configure-request LCP packets transmitted and received over the current point-to-point interface.

CFG ACK
Indicates the total number of configure-ack (acknowledged) LCP packets transmitted and received over the current point-to-point interface.

CFG NAK
Indicates the total number of configure-nak (not acknowledged) LCP packets transmitted and received over the current point-to-point interface.

CFG REJ
Indicates the total number of configure-reject LCP packets transmitted and received over the current point-to-point interface.

TERM REQ
Total number of terminal request LCP packets transmitted and received over the current point-to-point interface.

TERM ACK
Total number of terminal ack LCP packets transmitted and received over the current point-to-point interface.

ECHO REQ
Indicates the total number of echo-request LCP packets transmitted and received over the current point-to-point interface.

ECHO RESP
Indicates the total number of echo-response LCP packets transmitted and received over the current point-to-point interface.

DISC REQ
Indicates the total number of discard-request LCP packets transmitted and received over the current point-to-point interface.

CODE REJ
Indicates the total number of code-reject LCP packets transmitted and received over the current point-to-point interface.

pap

Example:

```
list pap
PAP Statistics In Out
-------------- -- ---
Packets: 0 0
Octets: 0 0
Requests: 0 0
Acks: 0 0
Naks: 0 0
```
Packets
The total number of PAP packets sent or received.

Octets
The number of bytes of data that were sent or received in those packets.

Requests
The number of PAP "Request" packets sent or received. These are the packets which contain the PAP name/password pairs.

Acks
The number of Acks (success replies) sent or received for the PAP requests (for example, if the peer sends a valid Request packet, the router replies with an Ack).

Naks
The number of Naks sent or received for the PAP requests (for example, if the peer sends an invalid Request packet, the router replies with a Nak).

chap

Example:

```
list chap
CHAP Statistics          In             Out
------------------------ --             --
Packets:          0             0
Octets:           0             0
Challenges:       0             0
Responses:        0             0
Successes:        0             0
Failures:         0             0
```

Packets
The total number of CHAP packets sent or received.

Octets
The number of bytes of data that were sent or received in the packets.

Challenges
The number of CHAP "Challenge" packets sent or received. A CHAP Challenge packet includes a randomly generated encryption key and is a demand on the peer to generate a suitable response based on that key and on stored password information.

Responses
The number of CHAP "Response" packets sent or received. A Response packet contains a peer’s answer to a “Challenge” request.

Successes/Failures
The number of Success or Failure packets sent or received. A unit sends out a Challenge packet and waits for the peer’s Response reply. It then examines the Response packet and sends a Success or Failure packet to indicate whether the Response was valid.

These counters reflect the number of Success or Failure packets sent. A peer gets several tries to respond successfully before authentication is considered to have failed.

mschap
Lists MS-CHAP statistics for each direction.
Packets
Total number of MS-CHAP packets.

Octets
Total number of bytes contained in MS-CHAP packets.

Challenges
Number of MS-CHAP challenge packets.

Responses
Number of MS-CHAP response packets.

Successes
Number of MS-CHAP success packets.

Failures
Number of MS-CHAP failure packets.

Failure: Restricted Hours
Number of failure packets sent due to the PPP user’s attempt to access the 2210 outside of that user’s permitted hours. This counter is not supported and will always be 0.

Failure: Account Disabled
Number of failure packets sent because the PPP user’s ID has been disabled at the 2210.

Failure: Password Expired
Number of failure packets sent because the PPP user’s password has expired.

Failure: No Dialin Permission
Number of failure packets sent because the PPP user is not authorized to dial in to this 2210.

Failure: Authentication
Number of failure packets sent because the PPP user’s credentials (ID or password) are not known to the 2210.

Failure: Change Password
Number of failure packets sent as a result of error encountered while processing the Change Password packet.

Change Password
Number of change password packets. The router will never send a change password packet; therefore, the outbound counter will always be 0.

ecp
Lists statistics for ECP (encryption control protocol) packets sent or received on the interface.

Example:
PPP >list ecp

<table>
<thead>
<tr>
<th>ECP Statistic</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets:</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>octets:</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>reset reqs:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>reset acks:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>prot rejects:</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>local (transmit) encrypter:</td>
<td>DES</td>
<td></td>
</tr>
<tr>
<td>remote (receive) encrypter:</td>
<td>DES</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring PPP Interfaces (Talk 5)

Packets
Indicates the total number of ECP packets transmitted (out) and received (in) over the current point-to-point interface.

Octets
Indicates the total number of bytes transmitted and received in the ECP packets.

Reset Reqs
Indicates the number of Reset requests transmitted and received on this interface. A Reset Request will be sent whenever ECP discard an EDP packet.

Note: Because DES, the only supported encryption algorithm, does not send reset requests this number will be zero.

Reset Acks
Indicates the reset acknowledgments transmitted and received on this interface. A Reset Ack packet will be sent for every Reset Request packet received.

Note: Because DES, the only supported encryption algorithm, does not send any Reset Requests this number will be zero.

Prot Rejects
Indicates the total number of protocol reject packets transmitted and received over the current point-to-point interface.

Local (transmit) encrypter
This encryption algorithm will be used to encrypt the data being sent on this point-to-point interface.

Remote (receive) encrypter
This encryption algorithm will be used to decrypt the received data on this point-to-point interface.

edp
Lists statistics associated with the ECP-encrypted packets being sent or received on the interface.

Example:
```
PPP x>list edp
```

<table>
<thead>
<tr>
<th>Encryption Statistic</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets:</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Octets:</td>
<td>29164</td>
<td>44790</td>
</tr>
<tr>
<td>Encrypted Octets:</td>
<td>29280</td>
<td>44880</td>
</tr>
<tr>
<td>Discarded Packets:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prot Rejects:</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Packets
Indicates the total number of IP packets transmitted (out) and received (in) over the current point-to-point interface.

Octets
Indicates the total number of octets of data bytes transmitted and received over the current IP connection.

Encrypted Octets
Indicates the number of encrypted octets transmitted or received on this interface.

Discarded Packets
Indicates the number of packets that were discarded because they could not be successfully decrypted.
Prot Rejects
Indicates the total number of protocol reject packets transmitted and received over the current point-to-point interface.

mppe Displays encryption data statistics for Microsoft PPP Encryption (MPPE) configuration.
Example:
```
list mppe
MPPE Statistic   In   Out
---------------  --  ---
Encrypted Octets :  0   0
Encrypted Packets :  0   0
Discarded Packets :  0   0
```

Example:
```
list spap
SPAP Statistic   In   Out
-------------  --  ---
Packets:         0   0
Octets:         0   0
Requests:       0   0
Acks:           0   0
Naks:           0   0
Dialbacks:      0   0
PleaseAuthent.  0   0
Change Passwords:  0   0
Alerts:         0   0
MCCP Call Regs  0   0
MCCP Callbacks  0   0
MCCP ACKs       0   0
MCCP NAKs       0   0
```

Packets
The total number of SPAP packets sent or received.

Octets
The number of bytes of data that were sent or received in those packets.

Requests
The number of SPAP “Request” packets sent or received. These are the packets which contain the SPAP name/password pairs.

Acks
The number of Acks (success replies) sent or received for the SPAP requests (for example, if the peer sends a valid Request packet, the router replies with an Ack).

Naks
The number of Naks sent or received for the SPAP requests (for example, if the peer sends an invalid Request packet, the router replies with a Nak).

Dialbacks
The number of times a user:
- Requested a callback (roaming callback) and it was granted.
- Dialed-in and they were configured for required callback and dialed back at the predetermined number stored in the user profile.

PleaseAuthenticates
The number of SPAP please authenticate packets that have been sent or received on this interface. An SPAP please authenticate packet is sent as the result of a timeout when waiting for the other end to send an SPAP authenticate request.
Change Passwords
The number of change password requests that sent or received on
this interface.

Alerts
The number of SPAP banners that have been sent or received.

MCCP Call Req
Indicates that the sender requested another phone number to dial a
second MP link.

MCCP Callbacks
Indicates that the sender supplied a phone number on which to be
called back to establish a second MP link.

MCCP ACKs
The number of acknowledgments sent or received by MCCP.

MCCP NAKs
The number of negative acknowledgments sent or received by
MCCP.

cp
Lists statistics for compression control protocol.

Example:

```
list ccp
CP Statistic In Out
------------------ --- ---
Packets: 25 24
Octets: 177 174
Reset Reqs: 0 0
Reset Acks: 0 0
Prot Rejects: 0 0
```

Packets
Indicates the number of packets received and transmitted on this
interface.

Octets
Indicates the number of octets received and transmitted on this
interface.

Reset Reqs
The number of CCP dictionary “Reset Requests” that were
transmitted or received.

Reset Acks
The number of CCP dictionary “Reset Acknowledgments” that were
transmitted or received.

Reset Request and Reset Acknowledgment packets are control
packets passed between the CCP entities at each end, used to
maintain synchronization of the data dictionaries at each end of the
link.

Prot Rejects
Indicates the number of protocol rejects of CCP packets sent by the
peer (reception of a protocol reject would signify that the peer does
not support CCP).

cdp
Displays statistics associated with compressed data packets sent or
received on this interface.

Example:

```
list cdp
Compression Statistic In Out
--------------------- --- ---
```

Monitoring PPP Interfaces (Talk 5)
Packets: 31035 46550
Octets: 1614885 2421137
Compressed Octets: 931416 1521039
Incompressible Packets: 0 0
Discarded Packets: 0 0
Copied Packets: 1 0
Prot Rejects: 0 -

Compressor (transmit) statistics:
Recent compression ratio: 1.7:1
Decompressor (receive) statistics:
Recent compression ratio: 1.7:1

Packets
These counters indicate the number of compressed datagrams sent and received. On the output side, the count includes only those packets that were actually sent as PPP compressed datagrams; it does not include packets that were found to be incompressible and sent in their original uncompressed form.

These counters count the packets sent or received that had the PPP protocol type of X‘00FD’ (CDP). When STAC extended mode or MPPC has been negotiated, incompressible packets may be encapsulated in CDP datagrams. This encapsulation would include the incompressible packets in these counts.

Octets
These counters indicate the number of bytes effectively transmitted or received in compressed form. These counts reflect the lengths of the original datagrams before compression or after decompression.

Compressed octets
These counters indicate the number of bytes for all of the compressed datagrams sent and received. These counts are the lengths of the actual CDP packets after compression or before decompression.

Incompressible packets
These counters indicate the number of packets that were incompressible and therefore sent in original uncompressed form.

Discarded packets
These counters indicate how many packets were discarded because they could not be successfully decompressed. Typically these packets will be packets that the peer was transmitting just after the router has sent a Reset-Request, but before the peer has received and processed the Reset-Request. Packets are also dropped if the router detects that data in the packets is incorrect. An example of incorrect data is a packet that contains a bad sequence number.

If the number of discarded packets increases too rapidly, then packets are being lost or corrupted on the line, probably due to noise on the line, and the link performance may be degraded.

Protocol rejects
This counter indicates the number of Protocol-Rejects of CDP packets that have been received from a peer. This count should be zero, because the link will not send CDP packets if the use of compression has not already been negotiated.

Compression ratios
The ratios give an approximate indication of the effectiveness of the compressor and decompressor. These ratios are based on the number of plain-text bytes divided by the number of corresponding
compressed bytes, so values greater than 1 are preferable for both input and output. The higher the number, the more effective the compression.

The output ratio is computed as the ratio of the number of original plain-text bytes divided by the number of bytes sent as a result of attempting compression - whether the packet actually was compressed or sent as a CDP packet. If a data stream does not compress well and most of the packets are sent in their original form or in enlarged CDP packets, the compression output ratio will drop. If the ratio drops below 1.0, the compressor is actually reducing the effective bandwidth of the line rather than increasing it, and should be disabled on that interface if the state persists for a long time.

The input ratio is computed based on the number of bytes received in CDP frames divided into the number of decompressed bytes. Unlike the output ratio, this count does not include any packets that were incompressible and sent in plain-text form. This is because the router cannot determine if a received non-CDP packet was an incompressible packet that the peer sent in plain-text form, or just a packet that the peer did not attempt to compress.

Because of the method of calculation, the output ratio on one end of the link does not necessarily match the input ratio at the other end.

compression
This command displays the same information as list cdp.

bcp Lists statistics for the Bridging control protocol. These fields are the same as those described under the list ip command. (See list ip on page 503.)

Example:

```
list bcp
BCP Statistic       In       Out
------------------- ------- -----
Packets: 0          0        0
Octets: 0           0        0
Prot Rejects: 0     0        -
```

brg Lists statistics on the bridge packets received and transmitted over the PPP interface. These fields are the same as those described under the list ip command. (See list ip on page 503.)

Example:

```
list brg
BRG Statistic       In       Out
------------------- ------- -----
Packets: 0           0        0
Octets: 0            0        0
Prot Rejects: 0      0        -
```

stp Lists statistics for the spanning tree protocol. These fields are the same as those described under the list ip command. (See list ip on page 503.)

Example:

```
list stp
Spanning Tree Statistic  In       Out
------------------------- ------- -----
Packets: 0               0        0
Octets: 0                0        0
```

nbcp Lists NetBIOS Control Protocol statistics for the point-to-point interface. These fields are the same as those described under the list ip command. (See list ip on page 503.)
Example:

```
list nbcp
NBCP Statistic In Out
----------- -- ---
Packets: 0 0
Octets: 0 0
Prot Rejects: 0 -
```

nbfcp Lists NetBIOS Frame Control Protocol statistics for the point-to-point interface. These fields are the same as those described under the **list ip** command. (See [ip](#)).

Example:

```
list nbfcp
NBFCP Statistic In Out
----------- -- ---
Packets: 0 0
Octets: 0 0
Prot Rejects: 0 -
```

ipcp Lists Internet Protocol Control Protocol statistics for the point-to-point interface. These fields are the same as those described under the **list ip** command. (See [ip](#)).

Example:

```
list ipcp
IPCP STATISTIC IN OUT
-------------- -- ---
PACKETS: 0 0
OCTETS: 0 0
PROT REJECTS: 0 -
```

ip Lists all information related to IP packets over the point-to-point link.

Example:

```
list ip
IP Statistic In Out
---------- -- ---
Packets: 349 351
Octets: 128488 129412
Prot Rejects: 0 -
```

Packets Indicates the total number of IP packets transmitted (out) and received (in) over the current point-to-point interface.

Octets Indicates the total number of octets transmitted and received over the current IP connection.

Prot Rejects Indicates the total number of protocol reject packets transmitted and received over the current point-to-point interface.

ipv6cp Lists Internet Protocol version 6 Control Protocol statistics for the point-to-point interface. These fields are the same as those described under the **list ip** command. (See [ip](#)).

Example:

```
list ipv6cp
IPv6CP STATISTIC IN OUT
------------ -- ---
PACKETS: 0 0
OCTETS: 0 0
PROT REJECTS: 0 -
```

Chapter 33. Configuring and Monitoring Point-to-Point Protocol Interfaces 503
Monitoring PPP Interfaces (Talk 5)

ipv6 Lists all information related to IPv6 packets over the point-to-point link. These fields are the same as those described under the list ip command. (See "ip" on page 503.)

Example:

```
list ipv6
IPv6 Statistic       In    Out
--------------------- ----   ----
Packets: 0             0
Octets: 0              0
Prot Rejects: 0
```

ipxcp Lists statistics for the IPX control protocol. These fields are the same as those described under the list ip command. (See "ip" on page 503.)

Example:

```
list ipxcp
IPXCP Statistic       In    Out
---------------------- ----   ----
Packets: 0             0
Octets: 0              0
Prot Rejects: 0
```

ip Lists IPX statistics for the point-to-point interface. These fields are the same as those described under the list ip command. (See "ip" on page 503.)

Example:

```
list ip
IPX Statistic       In    Out
--------------------- ----   ----
Packets: 0             0
Octets: 0              0
Prot Rejects: 0
```

atcp Lists statistics for the AppleTalk control protocol. These fields are the same as those described under the list ip command. (See "ip" on page 503.)

Example:

```
list atcp
ATCP Statistic       In    Out
--------------------- ----   ----
Packets: 0             0
Octets: 0              0
Prot Rejects: 0
```

ap2 Lists AppleTalk Phase 2 statistics for the point-to-point interface. These fields are the same as those described under the list ip command. (See "ip" on page 503.)

Example:

```
list ap2
AP2 Statistic       In    Out
--------------------- ----   ----
Packets: 349           351
Octets: 128488         129412
Prot Rejects: 0
```

dncp Lists statistics on the DECnet control protocol packets. These fields are the same as those described under the list ip command. (See "ip" on page 503.)

Example:

```
list dncp
DNCP Statistic       In    Out
--------------------- ----   ----
Packets: 0             0
Octets: 0              0
Prot Rejects: 0
```

dn Lists statistics on the DECnet packets received and transmitted over the PPP interface. These fields are the same as those described under the list ip command. (See "ip" on page 503.)
Example:

```
list dn
DN Statistic In Out
------------ -- ---
          -- --
Packets:  0  0
Octets:   0  0
Prot Rejects:  0  -
```

osicp Lists statistics for the OSI control protocol. These fields are the same as those described under the `list ip` command. (See `ip` on page 503.)

Example:

```
list osicp
OSICP Statistic In Out
--------------- -- ---
Packets:  0  0
Octets:   0  0
Prot Rejects:  0  -
```

osi Lists statistics on the OSI packets received and transmitted over the PPP interface. These fields are the same as those described under the `list ip` command. (See `ip` on page 503.)

Example:

```
list osi
OSI Statistic In Out
------------- -- ---
Packets:  0  0
Octets:   0  0
Prot Rejects:  0  -
```

bvcp Lists statistics on the Banyan VINES control protocol. These fields are the same as those described under the `list ip` command. (See `ip` on page 503.)

Example:

```
list bvcp
BVCP Statistic In Out
-------------- -- ---
Packets:  0  0
Octets:   0  0
Prot Rejects:  0  -
```

vines Lists statistics for the Banyan VINES packets received and transmitted over the PPP interface. These fields are the same as those described under the `list ip` command. (See `ip` on page 503.)

Example:

```
list vines
Vines Statistic In Out
------------- -- ---
Packets:  10 13
Octets:   320 340
Prot Rejects:  0  -
```

isrcp Lists statistics for APPN ISR Control Protocol packets. These fields are the same as those described under the `list ip` command. (See `ip` on page 503.)

Example:

```
list isrcp
APPN ISRCP Statistic In Out
------------------------ -- ---
Packets:  3  3
Octets:   12 12
Prot Rejects:  0  -
```

isr Lists statistics on the APPN ISR packets received and transmitted over the PPP interface. These fields are the same as those described under the `list ip` command. (See `ip` on page 503.)

Example:
Monitoring PPP Interfaces (Talk 5)

`list isr`

<table>
<thead>
<tr>
<th>APPN ISR Statistic</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Packets:</td>
<td>220</td>
<td>219</td>
</tr>
<tr>
<td>Octets:</td>
<td>1266</td>
<td>1157</td>
</tr>
<tr>
<td>Prot Rejects:</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

`hprcp`

Lists statistics for APPN HPR Control Protocol packets. These fields are the same as those described under the `list ip` command. (See “ip” on page 503.)

Example:

```
list hprcp
```

<table>
<thead>
<tr>
<th>APPN HPRCP Statistic</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Packets:</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Octets:</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Prot Rejects:</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

`hpr`

Lists statistics on the APPN HPR packets received and transmitted over the PPP interface. These fields are the same as those described under the `list ip` command. (See “ip” on page 503.)

Example:

```
list hpr
```

<table>
<thead>
<tr>
<th>APPN HPR Statistic</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Packets:</td>
<td>780</td>
<td>715</td>
</tr>
<tr>
<td>Octets:</td>
<td>131907</td>
<td>69685</td>
</tr>
<tr>
<td>Prot Rejects:</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

LLC

Use the `llc` command to access the LLC monitoring prompt. LLC commands are entered at this new prompt. See “LLC Monitoring Commands” on page 239 for an explanation of each of these commands.

Note: This command is available only when APPN is included in the software load.

Syntax:

`llc`

Point-to-Point Protocol Interfaces and the GWCON Interface Command

The PPP interface traffic is carried by an underlying data-link level device driver. Additional statistics that can be useful when monitoring PPP links may be obtained from the device driver statistics which are displayed using the `interface` command from the GWCON environment. (For more information on the `interface` command, refer to “Chapter 10. The Operating/Monitoring Process (GWCON - Talk 5) and Commands” on page 127.)

The statistics in this section are displayed when you run the `interface` command from the GWCON environment (talk 5) for the following interfaces used in point-to-point configurations:

```
+int 1
Net  Net' Interface              Self-Test  Self-Test Maintenance
1 1  PPP/0          Passed     Failed       Failed
0
```

506 MRS V3.2 Software User’s Guide
Monitoring PPP Interfaces (Talk 5)

Point to Point MAC/data-link on SCC Serial Line interface

<table>
<thead>
<tr>
<th>Adapter cable:</th>
<th>V.35 DCE RISC Microcode Revision:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

V.24 circuit:	105 106 107 108 109
Nicknames:	RTS CTS DSR DTR DCD
PUB 41450:	CA CB CC CD CF
State:	ON ON ON ON ON

| Line speed: | unknown |
| Last port reset: | 1 minute, 54 seconds ago |

<table>
<thead>
<tr>
<th>Input frame errors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC error 0 alignment (byte length)</td>
</tr>
<tr>
<td>missed frame 0 too long (> 2182 bytes)</td>
</tr>
<tr>
<td>aborted frame 0 DMA/FIFO overrun</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output frame counters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA/FIFO underrun errors 0</td>
</tr>
<tr>
<td>Output aborts sent 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net</th>
<th>Interface number as assigned by software during initial configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net'</td>
<td>Base interface number as assigned by software during initial configuration.</td>
</tr>
</tbody>
</table>

Note: For dial circuit interfaces, Net' is different from Net. For dial circuit interfaces, Net' indicates the base interface (ISDN or V.25bis) that the dial circuit uses.

<table>
<thead>
<tr>
<th>Interface No</th>
<th>Type of interface and its instance number. The Point-to-Point interface type is PPP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR</td>
<td>Command and status register addresses of the base network.</td>
</tr>
<tr>
<td>Vec</td>
<td>Interrupt vector address.</td>
</tr>
</tbody>
</table>

Self-Test: Passed
Total number of times the point-to-point interface passed its self-test.

Self-Test: Failed
Total number of times the point-to-point interface failed its self-test.

Maintenance: Failed
Total number of maintenance failures.

<table>
<thead>
<tr>
<th>Adapter cable</th>
<th>Type of adapter cable that has been configured; for example, V.35 DTE.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>V.24 circuit</th>
<th>Circuits being used on the V.24. Note: The symbol - - - in monitoring output indicates that the value or state is unknown.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nicknames</th>
<th>Control signals Note: The symbol - - - in monitoring output indicates that the value or state is unknown.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PUB 41450</th>
<th>Pin assignments Note: The symbol - - - in monitoring output indicates that the value or state is unknown.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>State of the V.24 circuits (on or off). Note: The symbol - - - in monitoring output indicates that the value or state is unknown.</th>
</tr>
</thead>
</table>
Monitoring PPP Interfaces (Talk 5)

Line speed
Configured line speed or default value assumed (if line speed is configured as 0).

Last port reset
Length of time since the port was reset.

CRC error
The number of packets received that contained checksum errors and as a result were discarded.

Alignment (byte length)
The number of packets received that were not an even multiple of 8 bits in length and as a result were discarded.

Too long (> 2048 bytes)
The number of packets that were greater than the configured frame size, and as a result were discarded.

Aborted frame
The number of packets received that were aborted by the sender or a line error.

DMA/FIFO overrun
The number of times the serial interface could not send data fast enough to the system packet buffer memory to receive them from the network.

Missed frame
When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

L & F bits not set
On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame information for arriving frames, the hardware sets both the last and first bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.

Note: It is unlikely that the L & F bits not set counter will be affected by traffic.

Output Frame Counters:

DMA/FIFO underrun errors
The number of times the serial interface could not retrieve data fast enough from the system packet buffer memory to transmit them onto the network.

Output aborts sent
The number of transmissions that were aborted as requested by upper-level software.
Chapter 34. Using the Multilink PPP Protocol

This chapter describes how to use the Multilink PPP Protocol (MP). It includes the following sections:

- **MP Considerations** on page 510
- **Multi-Chassis MP** on page 511
- **Configuring a Multilink PPP Interface** on page 514

The Multilink PPP Protocol allows you to increase the bandwidth of:

- PPP leased lines, including channelized and I43x ISDN circuits
- PPP ISDN dial circuits
- PPP V.25bis dial circuits
- PPP V.34 dial circuits
- PPP Layer 2 Tunneling circuits

Increased bandwidth is accomplished by defining a virtual link made up of multiple links. The bandwidth of the resulting MP bundle is almost equal to the sum of the bandwidths of the individual links. The advantage is that large data packets transmitted across a single link can now be fragmented, transmitted across multiple links, and rebuilt at the receiving end station. MP uses both the Bandwidth Allocation Protocol and the Bandwidth Allocation Control Protocol to dynamically add and drop PPP dial circuits to a virtual link. MP also uses Bandwidth-On-Demand (BOD) to add “dedicated” MP dial links to an existing bundle.

There are two types of MP links: those that are dedicated and those that are simply enabled. A dedicated MP link is an MP-enabled interface configured as a link to a particular MP interface. If the link attempts to join another MP bundle, or if MP is not negotiated at all, the software terminates the link. All PPP links except for layer-2-tunneling interfaces can be configured as dedicated MP links. PPP leased links must be configured as dedicated MP links.

PPP dial-circuits and Layer 2-Tunneling can be configured as MP enabled. An MP-enabled link that is not dedicated can become a link in any MP bundle. If MP is not negotiated, the link operates as an independent interface using the link’s configured protocols.

You can configure a Multilink PPP interface that consists of multiple PPP dial circuits as part of the MP bundle.

There are also two types of MP interfaces: those that have a dedicated link and those that do not. An MP interface needs a dedicated link in any one of the following situations:

- The link is only for the MP interface
- The MP interface is configured for outbound calls. The dedicated link must then be configured with the destination phone number and caller identification.
- The MP interface is configured to receive a particular inbound call. In this case, the dedicated link is configured with the inbound destination phone number and caller identification.
- The MP interface needs to perform outbound authentication. In this case, all links use the same authentication name.
Using MP

MP interfaces that do not have a dedicated link must be inbound-only interfaces. These interfaces are similar to the any inbound dial circuit.

The Bandwidth Allocation Protocol (BAP) and its control protocol (BACP) allow an MP interface to increase and decrease its bandwidth by adding and dropping dial circuits. When the bandwidth utilization algorithm determines that a link should be added to the bundle, if there is an available PPP dial-circuit, and the peer agrees, an additional call is placed.

BAP first searches for any idle dedicated PPP dial circuits for the MP interface, and then for any MP-enabled PPP dial circuit. It will not, however, use a dedicated PPP dial circuit of another MP circuit. The configured maximum number of links on the MP interface will never be exceeded.

BOD uses configured dial-circuit phone numbers to place calls when needed to add dedicated MP dial links to an existing bundle. Links are added to the bundle one at a time, if needed, during a polling period. BOD adds any PPP serial links to the bundle first and will retain the serial links throughout the life of the bundle. BOD only drops dial links.

MP supports the following features:

- BRS
- WRR
- WRS
- Dial-on-Demand
- DIALs

However, WRS, Dial-on-Demand, and DIALs are only supported on MP bundles that contain only dial circuits.

MP Considerations

When configuring an MP bundle, keep the following in mind:

- Mixing dial circuits with “leased” lines causes the software to disable BAP on the bundle and use BOD instead. Only mix dial circuits with “leased” circuits when you desire to use BOD to manage the bundle.
- You cannot use Dial-on-Demand or WRS for MP bundles that contain either PPP “leased” lines or Layer 2 Tunneling circuits.
- You cannot use DIALs on bundles that contain PPP “leased” lines.
- All devices joining an MP bundle must have link speed configured.

Important:

1. Do not configure a bundle with media with extremely dissimilar properties. The largest link should have no more than 4 times the capacity of the smallest link. If the speeds of the links in an MP bundle differ greatly, you may need to add receive buffers to the faster link.

2. When bundling ISDN B-channels with slower media types, you may need to increase the number of ISDN buffers. Bundling ISDN B-channels with slower links is not recommended for ISDN primary.

- Adding a V.34 dial circuit to a bundle disables BAP and causes the software to use BOD instead.
Multi-Chassis MP

An MP bundle with a Layer 2 Tunnel that contains a phone hunt group that spans multiple physical Network Access Servers is known as a multi-chassis MP. Multi-chassis MP uses rhelm or user-based tunneling (see "Using Local or Remote Authentication" in Using and Configuring Features) to establish the MP endpoint destination. See "Using Layer 2 Tunneling Protocol (L2TP)" in Using and Configuring Features for more information about L2TP.

Configuring a Multilink PPP Interface

Configuring an MP interface depends on the type of interface used in the MP bundle. The following sections contain examples of the various configurations.

After configuring the MP interface, you may configure bandwidth-on-demand (BOD). The following example configures BOD on existing MP interface 17:

```
Config> net 17
MP config: 17> enable bod
Enable BAP? [N]
```

```
MP config: 17> set bandwidth-on-demand parameters
Add bandwidth % [90]:
Drop bandwidth % [70]:
Bandwidth test interval (sec) [15]
```

Configuring MP on PPP Dial Circuits

This section shows how to configure a Multilink PPP interface by using an example that configures Multilink PPP with two ISDN dial circuits.

1. Add the two dial circuits and the multilink PPP interface.

```
+* 6
Config> add dev dial-circuit
Adding device as interface 7
Defaulting Data-link protocol to PPP
Use "net 7" command to configure circuit parameters
Config> add dev dial-circuit
Adding device as interface 8
Defaulting Data-link protocol to PPP
Use "net 8" command to configure circuit parameters
Config> add dev multilink-ppp
Enter the number of multilink PPP interfaces [1]? Adding device as interface 9
Defaulting Data-link protocol to PPP
Use "net intf" command to configure circuit parameters
```

2. Configure each PPP dial circuit. (See Chapter 47, Configuring and Monitoring Dial Circuits" on page 643) In this example, the destination, call direction, and LIDs are set for one of the dial circuits.

```
Config> net 7
Circuit configuration
Circuit config: 7> set dest out
Circuit config: 7> set calls outbound
Circuit config: 7> set net 6
Circuit config: 7>
```

3. Enable MP on each dial circuit to be used for MP as follows:

```
Circuit config: 7> encapsulator
Point-to-Point user configuration
PPP 7 Config> enable mp
```
Using MP

Enabled as a Multilink PPP Link.

User as a dedicated Multilink PPP link? [No]: yes
Multilink PPP net for this Multilink PPP link [1]? 9
NOTE: PPP configuration will be obtained from the Multilink PPP net. It is NOT necessary to configure PPP for this net!

Note: You cannot configure PPP parameters for dedicated links from this prompt. Dedicated links use the existing MP interface's PPP configuration.

By answering “Yes” to the question “Use as a dedicated Multilink PPP link?” the link becomes dedicated to the specified Multilink PPP interface (9 in this example). In this case, the link must be used for an MP bundle and must join the specified MP interface. The link cannot be used as a regular PPP dial circuit.

Answering “No” to “Use as a dedicated Multilink PPP link?” will allow this PPP dial-circuit to join any MP interface. At least one PPP dial-circuit must be a dedicated link to an outbound MP interface.

A dedicated PPP dial circuit obtains all PPP parameters (LCP options, authentication, and others) from its MP interface. MP enabled PPP dial circuits joining the same MP bundle must negotiate the same LCP parameters and authentication name.

4. Configure the MP interface. The “Dialout MP link net” should be a dedicated PPP dial circuit.

 Config> net 9
 Circuit configuration
 MP config: 9> set calls out
 Dialout MP link net for this MP Net [0]? 7
 MP config: 9>

Protocols, BAP, BRS, WAN restoral, WAN reroute, and dial-on-demand are all run on the MP interface and not the PPP dial circuits.

Configuring MP on PPP Serial Links

To configure MP on a PPP serial link, you enable MP on the interface using the net command. The link obtains its PPP configuration from the MP net.

Example:

 Config> net 1
 PPP 1 Config> enable MP

 Multilink PPP net for this Multilink PPP link [1]? 8
 NOTE: PPP configuration will be obtained from the Multilink PPP net. It is NOT necessary to configure PPP for this net!
 PPP 1 Config>

Configuring MP on Layer-2-Tunneling Nets

To configure MP on an L2TP net, you enable MP through the L2TP encapsulator. You then must configure the same PPP negotiation parameters (see Configuring L2TP in Using and Configuring Features) for information about all nets joining in a single bundle.

Example:
Configuring Multi-Chassis MP

To configure MP for Multi-Chassis MP, configure the DIALs feature for multi-chassis MP. The software prompts you for the endpoint discriminator to use.

Example:

```
Config> feature DIALs
DIALs Config> set multi-chassis-mp
    Enter Endpoint Discriminator to use from stacked group (0 for box S/N): 2345
DIALs Config>
```

The following example shows multichassis MP when ports RTR-2 and RTR-3 are in a hunt group.

Because there is a many-to-many relationship between access routers and MP-concentrators, all access routers (RTR-A, RTR-B) should be kept on a separate administrative domain from “MP concentrator” routers (RTR-Z). This applies if you want to use remote authentication (that is, RADIUS), you will need two RADIUS servers, one for access routers and one for MP concentrators. If you are using local-list, you are already using separate administrative domains.

In this scenario, you can choose to tunnel based on PPP username or “rhelm” name. It is less rigorous to use rhelm-based tunneling. The idea is to configure a tunnel-profile for RTR-Z on both RTR-A and RTR-B. No additional PPP users are required on these routers. RTR-Z would require 2 tunnel-profiles: one for RTR-A and one for RTR-B and a PPP username (in the form <username>@RTRZ) for each anticipated user. All dial-in circuits are configured on the “access” routers. The “MP concentrators” would have layer-2-tunneling devices and multilink-PPP devices.

At this point, we have “statically configured” multi-chassis MP. This means that a particular PPP username will always terminate MP on a preconfigured router as opposed to supporting an additional protocol which dynamically finds MP bundle heads and tunnels when needed. This network implementation will also help avoid

Figure 29. Multichassis MP
Using MP

client PPP negotiation idiosyncrasies when using different media types for each link in a bundle (for example, tunnel one link and not the other). For example, DIALs clients cannot renegotiate LCP at any point. Also, Microsoft DUN clients do not fully support LCP renegotiation.
Chapter 35. Configuring and Monitoring Multilink PPP Protocol (MP)

This chapter describes how to configure specific Multilink PPP interfaces in a device. The chapter includes:

- Accessing the MP Configuration Prompt
- MP Configuration Commands for Multilink PPP Interfaces
- Monitoring MP Interface Status on page 519
- Accessing the MP Monitoring Commands on page 519
- Multilink PPP Protocol Monitoring Commands on page 519

Accessing the MP Configuration Prompt

To access the MP config> prompt:

1. Enter talk 6 at the * prompt.
2. Enter net n, where n is the number of the dial circuit or MP interface that you enabled to use MP.

Note: You are now configuring the Multilink PPP interface and not the PPP dial circuit that is part of the MP bundle.

MP Configuration Commands for Multilink PPP Interfaces

Table 64 lists the commands available at the MP config> prompt.

Table 64. MP Configuration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 10.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables the negotiation of bandwidth on demand.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables the negotiation of bandwidth on demand.</td>
</tr>
<tr>
<td>Encapsulator</td>
<td>Places you in the PPP config> prompt so you can change the data-link protocol configuration.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the MP interface configuration parameters.</td>
</tr>
<tr>
<td>Set</td>
<td>Configures MP interface for inbound or outbound traffic. Also allows you to set the idle timeout and other MP and BAP parameters.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11.</td>
</tr>
</tbody>
</table>

Disable

Use the disable command to disable the negotiation of bandwidth-on-demand (BOD). Disabling BOD prevents the link from allocating additional bandwidth when necessary.

Syntax:

```
disable bod
```
Enable

Use the `enable` command to enable the negotiation of BOD. Enabling BOD allows the link to allocate additional bandwidth when necessary.

Syntax:

```plaintext
enable bod
```

Encapsulator

Use the `encapsulator` command to access the PPP link-layer configuration for the Multilink PPP interface.

Syntax:

```plaintext
encapsulator
```

Example:

```
encapsulator
Point-to-Point user configuration
PPP config>
```

List

Use the `list` command to display the current MP configuration.

Syntax:

```plaintext
list
```

Example:

```
list
Idle timer = 0 (fixed circuit)
Outbound calls = allowed
Dialout MP Link net = 7
Max fragment size = 750
Min fragment size = 375
Maximum number of active links = 2
Links associated with this MP bundle:
  net number 7
  net number 8
BAP enabled
Add bandwidth percentage = 90
Drop bandwidth percentage = 70
Bandwidth test interval (sec) = 15
```

Idle timer

The setting of the idle timer for this circuit in seconds.

A setting of 0 indicates a fixed circuit. A nonzero setting configures a dial-on-demand MP circuit that will be brought down when the circuit is idle for the specified number of seconds The circuit is reactivated when network traffic resumes.

Outbound calls

Specifies whether the interface is configured to initiate outbound calls. If the interface cannot initiate outbound calls, this line is not displayed.

Inbound calls

Specifies whether the interface is configured to initiate inbound calls. If the interface cannot accept inbound calls, this line is not displayed.
Dialout MP link net
The dial circuit configured to place the first call for an outbound MP circuit.

Max fragment size
Specifies the largest number of bytes of data a packet can contain before the packet is fragmented to be sent over MP links.

Min fragment size
This is the minimum size of the fragments (in bytes) the software creates when a packet exceeds Max fragment size.

Maximum number of active links
Specifies the configured maximum number of links in the MP virtual link (also known as bundle).

Links associated with this MP bundle
Displays the links dedicated to this MP interface.

BAP enabled
Specifies whether BAP is enabled on this interface.

Add bandwidth percentage
The amount of bandwidth utilization at which the software will try to add a new link if BAP is enabled.

Drop bandwidth percentage
The amount of bandwidth utilization at which the software will remove a link from the MP bundle if BAP is enabled.

Bandwidth test interval
The time, in seconds, after which the software will check the bandwidth utilization to determine whether to add or drop a link from the bundle.

Set

Use the set command to configure:
• The MP interface for inbound or outbound calls
• The idle timeout
• The MP parameters
• The BAP parameters

Syntax:
set bod parameters
set calls
set idle
set mp parameters

bod parameters
Prompts you to specify the BOD add and drop bandwidth percentages and the BOD test interval.

Example:
set bod parameters
Add bandwidth % [90]? 80
Drop bandwidth % [70]? 50
Bandwidth test interval (sec) [15]? 25
Add bandwidth %
The amount of bandwidth utilization at which the software will try to add a new link.

Valid Values: 1 to 99
Default Value: 90

Drop bandwidth %
The amount of bandwidth utilization at which the software will remove a link from the MP bundle.

Valid values: 1 to 99
Default value: 70

Bandwidth test interval (sec)
The time, in seconds, after which the software will check the bandwidth utilization to determine whether to add or drop a link from the bundle.

Valid Values: 10 to 200 seconds
Default Value: 15

calls Specifies whether this MP interface will initiate outbound calls, only accept outbound calls, or participate in both types of calls.

Valid values: inbound, outbound, or both
Default value: inbound

Note: If you specify outbound or both, the software will request the net number of the dedicated MP link that will place the first call.

Example:
set calls outbound
Dialout MP link net for this MP net []? 4

idle Specifies the time period in seconds that an interface can have no protocol traffic at which the MP interface will end calls on all the links.

Valid Values: 0 to 65535
Default Value: 0

mp parameters Prompts you to enter the maximum and minimum fragment sizes and the maximum number of active links.

Example:
set mp parameters
Max frag size [750]? 675
Min frag size [375]? 300
Max number of active links [2]? 4

Max frag size
Specifies the largest of number of bytes of data a packet can contain before the packet is fragmented to be sent over MP links.

Valid Values: 100 to 3 000
Default Value: 750
Min frag size
This is the minimum size of the fragments (in bytes) the software creates when a packet exceeds Max fragment size.
Valid Values: 100 to 3 000
Default Value: 375

Max number of active links
Specifies the configured maximum number of links in the MP virtual link (also known as bundle).
Valid Values: 1 to 64
Default Value: 2

Monitoring MP Interface Status
To determine the status of all the MP interfaces in your device, use the configuration command in talk 5 (see "Configuration" on page 130).

Accessing the MP Monitoring Commands
To access the MP monitoring commands:
1. Enter talk 5 at the * prompt.
2. Enter net n, where n is the number of the MP interface that was created in talk 6 using add device multilink-ppp command.

Multilink PPP Protocol Monitoring Commands
Table 65 shows the monitoring commands available for an MP interface.

Table 65. MP Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 10</td>
</tr>
<tr>
<td>List</td>
<td>Displays BAP, BACP, BOD, and MP statistics, errors, and other information.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11</td>
</tr>
</tbody>
</table>

List
Use the list command to display information about the MP interface including bandwidth allocation statistics.

Syntax:

```
list  bacp
   bap
   control bacp
   control bod
```
Monitoring MP

Note: The examples that follow assume that the MP interface on this device is net number 6.

bacp The list bacp command lists the statistics for bandwidth allocation control packets which have been sent or received on this MP circuit.

Example:

```
PPP 6> list bacp

BACP Statistic In Out
------------- -- ---
Packets: 6 8
Octets: 60 80
Rejects: 0 -
```

bap The list bap command lists the statistics for bandwidth allocation protocol packets which have been sent or received on this MP circuit.

Example:

```
PPP 6> list bap

BAP Statistic In Out
------------- -- ---
Packets: 3 3
Octets: 22 37
Call Requests: 1 0
Call Response(ACK): 0 1
Call Resp(NK & FLNNK): 0 0
Call Response(Rej): 0 0
Callback Requests: 0 0
Callback Response(ACK): 0 0
Callback Resp(NK & FLNNK): 0 0
Callback Response(Rej): 0 0
Drop Requests: 0 1
Drop Response(ACK): 1 0
Drop Resp(NK & FLNNK): 0 0
Drop Response(Rej): 0 0
Call Status(Success): 1 0
Call Status(Fail): 0 0
```

There are four different responses to a peer’s request: ACK, NAK, FULL-NAK, and REJECT.

ACK Indicates the peer’s request has been granted.

NAK (NK) Indicates that the peer’s request is supported but not desired at this time. Try again later.

FULL-NAK (FLNNK) Indicates that the peer’s request is supported but because of a resource condition, cannot be granted at this time. The request should not be sent again until the total bandwidth across the MP bundle changes.

REJECT (REJ) Indicates that the request is not supported.

control bacp The list control bacp command lists the current state of the BACP state-machine within PPP. The state information is identical to that produced for all of the PPP control protocols. Information about favored peer is also listed. Favored peer is used to alleviate BAP packet collisions (when both sides simultaneously initiate requests). During BACP negotiations, each side sends a magic-number and the one with the smallest magic number is the favored peer and should take precedence in the event of a collision.
Typically, the call initiator will choose a magic number of X'1' and the call receiver will choose a magic number of X'FFFFFFFF' establishing the call initiator as the favored peer.

PPP 6> 1ist control bapc

<table>
<thead>
<tr>
<th>BACP State:</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACP Option</td>
<td>Local</td>
</tr>
<tr>
<td>Magic Number:</td>
<td>FFFFFFFF</td>
</tr>
<tr>
<td>Favorite Peer:</td>
<td>NO</td>
</tr>
</tbody>
</table>

control bod

The list control bod command lists the current state of bandwidth-on-demand (BOD). This information includes BAP state, configured bandwidth-on-demand parameters for adding and subtracting bandwidth, current bandwidth, and information from the last bandwidth poll.

Valid BAP states are:

Closed
BACP is not opened – BAP is either not enabled or not supported by the peer.

Ready
BACP is opened and there is no outstanding request being processed.

Call Req Sent
There is an outstanding call-request that was sent from the local machine.

Callback Req Sent
There is an outstanding callback-request that was sent locally.

Call Placed
As a result of a BAP request to add bandwidth, a call has been placed.

Retry Status Sent
The outgoing call failed to join the MP bundle, a retry status was sent.

No Retry Status Sent
The outgoing call either succeeded or exhausted all retries, a no retry status was sent.

Drop Req Sent
There is an outstanding drop request that was sent locally.

Configured bandwidth-on-demand parameters include add percentage, drop percentage, maximum number of active links in the MP bundle, and the bandwidth polling interval.

A BAP request to add a link to the bundle will be initiated if both the following conditions are met:

- The current number of active links is less than the configured maximum number of links.
- The bandwidth utilization across all links in the MP bundle is greater than the add percentage of the total available bandwidth for the MP bundle.

A BAP request to drop a link from the MP will be initiated if both the following conditions are met:

- The number of active links is greater than one.
Monitoring MP

- The bandwidth utilization across all links in the MP bundle is less than the drop percentage of the total available bandwidth for the MP bundle for the number of links minus one.

Bandwidth can be polled only when BAP is in the ready state. The information listed from the previous poll will give you an idea of the bandwidth utilization across the MP bundle.

These two sets of information are displayed when a drop can be initiated:

- Bandwidth utilization across the entire bundle
- Bandwidth utilization across number of links minus one

To prevent thrashing, the second set of information is used when determining whether to drop a link.

Example:

PPP 11> list control bod

BOD : Disabled
BAP : Disabled
Bandwidth test interval (sec): 15
Add bandwidth percentage: 90
Drop percentage (links-1): 70
Max # active links in MP bundle: 2
Time since last Bandwidth check (sec): 19
Currently:
 # active links in MP bundle: 0
 Total MP bandwidth (Bytes/sec): 0
Last Bandwidth Check:
 # active links in MP bundle: 0
 Avg Inbound bandwidth util (%): 0
 Avg Outbound bandwidth util (%): 0

Control mp

The list control mp command lists the current state of this MP circuit including the number of active links and bandwidth, the configured maximum number of links, and statistics for number of dropped packets. Dropped MP packets are classified into four categories:

M The packet is dropped because a sequence number has not been received and it is less than the minimum sequence number across all links’ last received sequence number.

Timeout The packet is dropped because a sequence number has not been received during a timeout period.

Q depth The packet is dropped because the maximum queue depth was exceeded.

Seq order The packet is dropped because the sequence number received was not expected. This occurs when MP receives delayed packet that it has already declared lost.

If a packet is dropped at the network layer, it can be either an M, Timeout, or Q depth packet. These counters are incremented appropriately when a packet is dropped.

PPP 11> list control mp

Current # active links in MP bundle: 0
Max # active links in MP bundle: 2
Total MP bandwidth (Bytes/sec): 0
The `list mp` command lists the statistics for packets which have been sent or received on this MP circuit. The number of bytes displayed is for pre-decompressed packets if compression was negotiated for the multilink PPP bundle.

```
PPP 6> list mp
MP Statistic      In    Out
---------------  ---  ---
Bytes (Compressed):  61230  60259
```
Chapter 36. Configuring SDLC Relay

This chapter describes the Synchronous Data Link Control (SDLC) Relay configuration and operational commands.

For further information on when to use DLSw SDLC versus SDLC Relay, refer to “Relationship to the SDLC Relay Function” in the “Using and Configuring DLSw” chapter of Protocol Configuration and Monitoring Reference Volume 1.

The chapter includes the following sections:

- Basic Configuration Procedure
- Accessing the SDLC Relay Monitoring Environment on page 532
- SDLC Relay Monitoring Commands on page 532
- SDLC Relay Interfaces and the GWCON Interface Command on page 535

Basic Configuration Procedure

This section outlines the minimum configuration steps required to get the SDLC Relay protocol up and running. For further configuration information and explanation, refer to the configuration commands described in this chapter.

Note: You must restart the router for new configuration changes to take effect.
- Add a number. You must add a number to a group of primary or secondary ports using the add group command. The default number for this command is 1.
- Add a local port. This identifies the interface that you are using for the local port. This also assures that no IP address is configured for the interface that you select. Use the add local-port command.
- Add a remote port. This identifies the port directly connected to the remote side of the serial line. Use the add remote-port command.

Accessing the SDLC Relay Configuration Environment

To access the SDLC relay (SRLY) configuration environment:
1. At the Config> prompt, enter set data-link srl.
2. Enter the interface number.
3. To configure the SRLY interface, enter the network interface# command. The SRLY interface# Config> prompt is displayed when network interface# is entered:
 - Config>network 2
 - SDLC relay interface user configuration
 - SRLY 1 Config>
4. To configure the SRLY protocol parameters, enter the protocol sdlc command. The SDLC Relay config> prompt is displayed when protocol sdlc is entered:
 - Config>protocol sdlc
 - SDLC Relay protocol user configuration
 - SDLC Relay config>
SDLC Relay Configuration Commands

This section summarizes the SDLC Relay configuration commands. Both the network and protocol parameters for SDLC relay are documented in this chapter.

The SDLC Relay configuration commands allow you to specify router parameters for interfaces transmitting SDLC Relay frames. Restart the router to activate the configuration commands. Table 66 shows the commands for both the network sdlc and protocol sdlc.

Table 66. SDLC Relay Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Network SRLY</th>
<th>Protocol SDLC</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>yes</td>
<td>yes</td>
<td>Lists all of the SDLC Relay configuration commands or lists the options associated with specific commands.</td>
</tr>
<tr>
<td>Add</td>
<td>yes</td>
<td></td>
<td>Adds groups, local ports, and remote ports.</td>
</tr>
<tr>
<td>Delete</td>
<td>yes</td>
<td></td>
<td>Deletes groups, local ports, and remote ports.</td>
</tr>
<tr>
<td>Disable</td>
<td>yes</td>
<td></td>
<td>Disables groups and ports.</td>
</tr>
<tr>
<td>Enable</td>
<td>yes</td>
<td></td>
<td>Enables groups and ports.</td>
</tr>
<tr>
<td>List</td>
<td>yes</td>
<td>yes</td>
<td>Displays entire SDLC Relay and group specific configurations.</td>
</tr>
<tr>
<td>Set</td>
<td>yes</td>
<td></td>
<td>Sets the link parameters and remote station parameters.</td>
</tr>
<tr>
<td>Exit</td>
<td>yes</td>
<td>yes</td>
<td>Exits the SDLC Relay configuration environment and returns to the CONFIG environment.</td>
</tr>
</tbody>
</table>

Add

Use the add command to add group numbers, local ports, and remote ports.

Syntax:

```
add        group group#
           local-port
           remote-port
```

group Assigns a number to a group of primary or secondary ports added to the router.

Example: add group

```
Group number: [1]? 1
```

Group number
The group number that you are designating for the port.

local–port
Identifies the interface that you are using for the local port.

Example: add local–port

```
Group number: [1]? 1
Interface number: [0]? 2
(P)rimary or (S)econdary:[5]? p
```

Group number
The group number for the port. This number must match one of the add group parameters configured previously.
Interface number
The interface number of the router that designates the local port.

Primary or Secondary
Designates the port type, primary (P) or secondary (S).

remote–port
Identifies the IP address of the port directly connected to the serial line on the remote router.

Example: add remote–port
```
Group number: [1]? 1
IP address of remote router:[0.0.0.0]? 128.185.121.97
(P)imary or (S)econdary:[S]? s
```

Group number
The group number for the port. This number must match one of the add group parameters configured previously.

IP address of remote router
Identifies the IP address of the interface on the remote router.

Primary or Secondary
Designates the port type, primary (P) or secondary (S).

Delete
Use the delete command to remove group numbers, local ports, and remote ports.

Syntax:
```
delete
    group . . .
    local-port . . .
    `-remote–port
```

group group#
Removes a group (group#) of SDLC Relay configured ports.

Example: delete group 1

local–port interface#
Removes the local port for the specified interface (interface#).

Example: delete local–port 2

remote–port
Removes the remote port for the specified group.

Example: delete remote–port
```
Group number: [1]? 1
(P)imary or (S)econdary:[S]? s
```

Group number
The group number for the remote port.

Primary or Secondary
Designates the port type, primary (P) or secondary (S).

Disable
Use the disable command to suppress relaying for an entire relay group or a specific relay port.
Configuring and Monitoring SDLC Relay

Syntax:

disable group ... port
group group#
 Suppresses transfer of SDLC Relay frames to or from a specific group (group#).

Example: disable group 1

port
 Suppresses transfer of SDLC Relay frames to or from a specific local port.

Example: disable port

Group number
 The group number of the port that you want to disable.

Primary or Secondary
 Designates the port type, primary (P) or secondary (S).

Enable

Use the `enable` command to turn on data transfer for an entire group or a specific local interface port.

Syntax:

enable group ... port
group group# Allows transfer of SDLC Relay frames to or from the specified group (group#).

Example: enable group 1

port Allows transfer of SDLC Relay frames to or from the specified local port.

Example: enable port

Group number
 The group number of the port that you want to enable.

Primary or Secondary
 Designates the port type, primary (P) or secondary (S).

List (for network SRLY)

Use the `list` command to display the configuration of a specific group or of all groups.

Syntax:

list
List (for protocol SDLC)

Use the list command to display the configuration of a specific group or of all groups.

Syntax:
```plaintext
list all
group ...
```

- **all**: Displays the configurations of all local ports.

Example: `list all`

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Port Status</th>
<th>Net Number</th>
<th>SDLC Station address (hex)</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (E)</td>
<td>Local PRIMARY (D)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (E)</td>
<td>Remote SCNRDY (E)</td>
<td></td>
<td>128.185.452.11</td>
<td></td>
</tr>
<tr>
<td>2 (D)</td>
<td>Local PRIMARY (D)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (D)</td>
<td>Remote SCNRDY (D)</td>
<td></td>
<td>128.185.450.31</td>
<td></td>
</tr>
</tbody>
</table>

Group Number
Indicates the group number and the status of the group, enabled (E) or disabled (D).

Port Status
Indicates the type of port (local/remote primary/secondary) and its status, enabled (E) or disabled (D).
Configuring and Monitoring SDLC Relay

Net Number
Indicates the device number of the local port. This number matches the number displayed using the Config list devices command.

IP Address
Indicates the IP address of the remote port.

group group#
Displays the configuration of a specified group.

Example: list group 1

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Port Status</th>
<th>Net Number</th>
<th>SDLC Station address (hex)</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (E)</td>
<td>Local PRMRY (D)</td>
<td>2</td>
<td>128.185.452.11</td>
<td></td>
</tr>
</tbody>
</table>

Group Number
Indicates the group number and the status of the group, enabled (E) or disabled (D).

Port Status
Indicates the type of port (local/remote primary/secondary) and its status, enabled (E) or disabled (D).

Net Number
Indicates the device number of the local port. This number matches the number displayed using the Config list devices command.

IP Address
Indicates the IP address of the remote port.

Set

Use the set command to configure the SRLY parameters.

Syntax:

set cable
clocking
encoding
frame-size
idle
speed
transmit-delay

cable Sets the cable used on the serial interface. The options are:
- RS-232 DTE
- RS-232 DCE
- V35 DTE
- V35 DCE
- V36 DTE
- X21 DTE
- X21 DCE
A DTE cable is used when you are attaching the router to some type of DCE device (for example, a modem or a DSU/CSU).

A DCE cable is used when the router is acting as the DCE and providing the clocking for direct attachment.

clocking internal or external
- Configures the SRLY link’s clocking. To connect to a modem or DSU, configure clocking as external. To connect directly to another DTE device, use a DCE cable, set the clocking to internal, and configure the clock speed. For internal clocking, you must enter a valid line speed in the range 2400 - 2048000 bits per second.

Example:
```
set clocking internal
```

encoding nrz or nrzi
- Configures the SRLY interface’s encoding scheme as NRZ (Non-Return to Zero) or NRZI (Non-Return to Zero Inverted). NRZ is the default.

Example:
```
set encoding nrz
```

frame-size
- Configures the maximum size of the frames that can be transmitted and received on the data link. If this value is set to a larger value than that specified with the add remote-secondary command, then this value is changed to reflect that maximum. The IBM 2210 generates an ELS message warning the user that this value is changing. The user will continue receiving this ELS message until it is changed in the SRAM configuration. Valid entries are shown in Table 67.

Note: The frame size must be large enough to accommodate the largest frame received plus a 15-byte SRLY header.

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>18000</td>
<td>2048</td>
</tr>
</tbody>
</table>

idle flag
- Configures the transmit idle state for framing on the SRLY interface. The default is the flag option which provides continuous flags (7E hex) between frames.

The link will receive a flag idle transparently.

idle mark
- Configures the transmit idle state for framing on the SRLY interface. The mark option puts the line in a marking state (OFF, 1) between frames.

The link will receive a mark idle transparently.

speed
- For internal clocking, this command specifies the speed of the transmit and receive clock lines. The range of speeds supported is 2400 - 2048000 bits per second. If you want to use a line speed greater than 2048000, you can only do this on:
 - interface 1.
 - port 1 of a 4-port WAN concentration adapter.
 - ports 1 and 5 of an 8-port WAN concentration adapter.
Configuring and Monitoring SDLC Relay

The other WAN ports must be clocked at 64 Kbps or less.

transmit-delay value
Allows the insertion of a delay between transmitted packets. This command ensures a minimum delay between frames so that it is compatible with older, slower serial devices at the other end. This value is specified as the number of flag bytes that should be sent between consecutive frames. The range is 0 - 15. The default is 0.

Accessing the SDLC Relay Monitoring Environment

To monitor information related to the SDLC Relay interface, access the interface monitoring process by doing the following:

1. Enter the status command to find the PID for GWCON. (See page 3 for sample output of the status command.)

2. At the OPCON prompt, enter the talk command and the PID for GWCON. For example:
 + talk 5
 +

 The GWCON prompt (+) is displayed on the console. If the prompt does not appear when you first enter GWCON, press Return again.

3. At the GWCON prompt, enter the configuration command to see the protocols and networks for which the router is configured. For example:
 + configuration

 See page 130 for more sample output from the configuration command.

4. Enter the protocol sdlc command. For example:
 + prot sdlc
 SDLC Relay>

 The SDLC Relay prompt is displayed on the console. You can then view information about the SDLC Relay ports by entering the SDLC Relay monitoring commands.

SDLC Relay Monitoring Commands

This section summarizes and then explains the SDLC Relay monitoring commands. The SDLC Relay monitoring commands allow you to view parameters for interfaces transmitting SDLC Relay frames. The SDLC Relay> prompt is displayed for all SDLC Relay monitoring commands. Table 68 shows the commands.

Table 68. SDLC Relay Monitoring Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
</table>
| ? (Help) | Displays all the commands available for this command level or lists the options for specific commands (if available). See [Getting Help](#)
| Clear-Port-Statistics | Clears SDLC Relay statistics for the specified port. |
| Disable | Temporarily suppresses groups and ports. |
| Enable | Temporarily turns on groups and ports. |
| List | Displays entire SDLC Relay and group specific configurations. |
| Exit | Returns you to the previous command level. |

Table 68. SDLC Relay Monitoring Commands Summary

532 MRS V3.2 Software User’s Guide
Clear-Port-Statistics

Use the **clear-port-statistics** command to discard the SDLC Relay statistics for all ports. The statistics include counters for packets forwarded and packets discarded.

Syntax:
```
clear-port-statistics
```

Clears port statistics gathered since the last time you restarted the router or cleared statistics.

Example:
```
clear-port-statistics
Clear all port statistics? (Yes or No): Y
```

Disable

Use the **disable** command to suppress data transfer for an entire group or a specific relay port. SRAM (static read access memory) does not permanently store the effects of the **disable** monitoring command. Therefore when you restart the router, the effects of this command are erased.

Syntax:
```
disable

 disable group . .
   port

group group#
  Suppresses transfer of SDLC Relay frames to or from a specific group (group#).

port interface# primary-or-secondary
  Suppresses transfer of SDLC Relay frames to or from a specific local port.
```

Example:
```
disable port
  Interface number: [0]? 2
       (P)rimary or (S)econdary: [s]? P

 Interface number
  Indicates the interface number of the local port that you want to disable.

 Primary or Secondary
  Indicates whether the port is a primary or secondary.
```

Enable

Use the **enable** command to turn on data transfer for an entire group or a specific local interface port. SRAM does not permanently store the effects of the **enable** monitoring command. Therefore when you restart the router, the effects of this command are erased.

Syntax:
```
enable

 enable group . .
   port
```
Configuring and Monitoring SDLC Relay

group group#
Allows transfer of SDLC Relay frames to or from the specified group (group#).

port
Allows transfer of SDLC Relay frames to or from the specified local port.

Example:
```
enable port
Interface number: [0]? 2
(P)rimary or (S)econdary: [s]? P
```

Interface number
Indicates the interface number of the local port that you want to enable.

Primary or Secondary
Indicates whether the port is a primary or secondary.

List

Use the **list** command to display the configuration of a specific group or of all groups.

Syntax:
```
list
   all
     group ...
```

all
Displays the configurations of all local ports.

Example:
```
list all
SDLC Relay Configuration
Group Port Status Net Packets IP Address
  Num  Num  fwrd disc Num
1  (E) Local PRMRY (E) 2 2880 57
1  (E) Remote SCNRDY (E) 4860 13 128.185.452.11
2  (D) Local PRMRY (D) 1 0 0
2  (D) Remote PRMRY (D) 0 0 128.185.450.31
```

Group Number
Indicates the group number and the status of the group, enabled (E) or disabled (D).

Port Status
Indicates the type of port (local/remote primary/secondary) and its status, enabled (E) or disabled (D).

Net Number
Indicates the device number of the local port. This number matches the number displayed using the **Config> list devices** command.

Packets (fwrd and disc)
Indicates how many packets were forwarded (fwrd) and discarded (disc) for that port.

IP Address
Indicates the IP address of the remote port.

group group#
Displays the configurations of a specified group.

Example:
SDLC Relay Configuration

<table>
<thead>
<tr>
<th>Group</th>
<th>Port Status</th>
<th>Net Packets</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num</td>
<td></td>
<td>Num</td>
<td></td>
</tr>
<tr>
<td>fwrd</td>
<td>disc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(E) Local PMRY (D)</td>
<td>2 2880 57</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(E) Remote SCNRY (E)</td>
<td>4860 13 128.185.452.11</td>
<td></td>
</tr>
</tbody>
</table>

SDLC Relay Interfaces and the GWCON Interface Command

While SDLC Relay interfaces have their own monitoring processes for monitoring purposes, the router also displays complete statistics for installed network interfaces when you use the `interface` command from the GWCON environment. (For more information on the `interface` command, refer to Chapter 10, The Operating/Monitoring Process (GWCON - Talk 5) and Commands.)
Chapter 37. Using SDLC Interfaces

This chapter how to use the SDLC interface and includes the following sections:

- **Basic Configuration Procedure**
- **Configuring Switched SDLC Call-In Interfaces**
- **SDLC Configuration Requirements** on page 538

You enter SDLC configuration commands at the SDLC # Config> prompt, where # identifies the interface you specify with the network command. Changes made to the routers configuration do not take effect immediately, but become part of the router’s static configuration memory when it is restarted.

Basic Configuration Procedure

This section outlines the minimum configuration required for SDLC to be usable by DLSw or by APPN.

Before beginning any configuration procedure, use the list device command from the config process to list the interface numbers of different devices. At the config prompt, select the interface you want to configure by entering either: network interface number or n interface number. If you need any further configuration command explanations, refer to the configuration commands described in this chapter.

Configuring Switched SDLC Call-In Interfaces

A switched SDLC call-in interface allows a PU type 2.0 device to dial into a 2210 using a switched SDLC line, providing an additional connectivity option to your network. The interface is restricted to PU type 2.0 devices and can run DLSw only.

Note: You cannot configure APPN over a switched SDLC call-in interface.

To configure a switched SDLC call-in interface:

1. Configure a V.25bis base network:

   ```
   Config> set data-link v25bis 2
   Config> net 2
   V25bis Config>
   ```

 (configure the V25bis net)

 See **”Chapter 41. Using the V.25bis Network Interface” on page 579** for more information about configuring V25bis.

 Note: Any physical layer parameters such as the encoding type and full vs. half duplex are configured on the V.25bis interface and not on the Switched SDLC dial circuit interface.

2. Add a dial circuit device:

   ```
   Config> add device dial
   ```

3. Set the data link for the dial circuit interface to SDLC. In this example, the dial circuit is interface 3.

   ```
   Config> set data-link sdlc 3
   ```

4. Configure the dial circuit:
Using SDLC Interfaces

Config> net 14
Dial circuit config> set net 2
Dial circuit config> encapsulator
sdlc config> (configure SDLC)
sdlc config> exit
Dial circuit config> exit
Config>

5. Configure DLSw:

Config> prot dls
DLSw protocol user configuration
DLSw config> add sdlc
Interface # [0]? 3
SDLC Address or 'sw' (switched dial-in) [sw]? sw
Source MAC address [4000112402C1]? 4000003174d2
Source SAP in hex [#]? 2
Destination MAC address [000000000000]? 400000000004
Destination SAP in hex [#]? 4
XID0 block num in hex (0-0xffff) [0]? 017
XID0 id num in hex (0-0xffff) [0]? 00001
For a switched dial-in link station
- PU type is forced to be 2
- Configured XID block/id num is used to override fields in the XID0 from the SDLC station
- if block/id set to zeroes, XID0 is not modified
- otherwise configured fields are put into XID0
- Poll type is not configured (not used)
DLSw config> li sdlc all
Net Addr Status Source SAP/MAC Dest SAP/MAC PU Blk/IdNum PollFrame
3 FF(sw) Enabled 04 4000003174d2 04 400000000004 2 017/00001 TEST
DLSw config> exit
Config>

1 You will not be able to set any other dial circuit parameters as the software will take defaults for all other parameter values. For information about the defaults, see “Encapsulator” on page 644.

2 Specifying “sw” indicates that this is a switched SDLC call-in interface.

3 The destination MAC address cannot be all 0s. If you specify or default to a value of 0, the software will prompt you for a valid address.

4 The destination SAP cannot be 0. If you specify or default to a value of 0, the software will prompt you for a valid address.

See the “Using and Configuring DLSw” and the “Monitoring DLSw” chapters of Protocol Configuration and Monitoring Reference Volume 1 for additional information about configuring DLSw.

SDLC Configuration Requirements

In addition to the SDLC-specific configuration procedures and commands described in this chapter, you need to configure SDLC in the DLSw or APPN protocol. Only one protocol at a time, DLSw or APPN, may run over a given SDLC interface. In other words, link stations on a given SDLC interface cannot be divided between APPN and DLSw. If a DLSw configuration and an APPN configuration exist for the same SDLC interface, the first protocol to come active will own the SDLC interface.
Chapter 38. Configuring and Monitoring SDLC Interfaces

This chapter describes the SDLC configuration and operational commands.

This chapter includes the following sections:

- "Accessing the SDLC Configuration Environment"
- "SDLC Configuration Commands" on page 540
- "Accessing the SDLC Monitoring Environment" on page 549
- "SDLC Monitoring Commands" on page 550
- "SDLC Interfaces and the GWCON Interface Command" on page 557
- "Statistics Displayed for SDLC Interfaces" on page 557

Changes made at the configuration command console (SDLC CONFIG>) become part of the SRAM configuration when you restart the router.

Conversely, SDLC monitoring commands entered within the SDLC monitoring process take effect immediately. However, changes made with monitoring commands do not become part of the router's static configuration. When the router is restarted, the effects of the monitoring commands are overwritten by the router's static configuration. Monitoring consists of these actions:

- Monitoring the protocols and network interfaces that are currently in use by the router
- Making real-time changes to the SDLC configuration without permanently affecting the SRAM configuration
- Displaying ELS (Event Logging System) messages relating to router activities and performance

Accessing the SDLC Configuration Environment

Use the CONFIG process to change the configuration of the router. The new configuration takes effect when the router is restarted.

To enter the configuration process:

1. Enter **talk 6** (or **t 6**), at the OPCON (*) prompt. This brings you to the CONFIG> prompt as shown in the following example:

```
MOS Operator Control
* talk 6
CONFIG>
```

If the CONFIG> prompt does not appear immediately, press the Enter key again. All SDLC configuration commands are entered at the SDLC config> prompt.

2. At the Config> prompt, enter the **set data-link sdlc** command. When prompted, enter the name of the interface to associate with the SDLC device.

```
Config>set data-link sdlc
Interface number [0]? 2
Config>
```

3. Next, enter the **network** command, plus the number of an SDLC interface that you entered earlier.

```
Config>network 2
SDLC 2 Config>
```
Configuring SDLC Interfaces

Refer to [Chapter 1. Getting Started” on page 3](#) for information related to the configuration environment.

SDLC Configuration Commands

The SDLC configuration commands allow you to create or modify the SDLC interface configuration. This section summarizes and describes the commands you can issue from the SDLC Config> prompt within the network configuration console. Defaults for any command and its parameters are displayed on the console, they are enclosed in brackets immediately following the prompt.

Note: In addition to configuring SDLC using the commands described in this chapter, you also need to configure SDLC in the DLSw or APPN protocol.

2210 supports SDLC connections over RS-232, X.21, and V.35 serial interfaces. Table 69 lists SDLC configuration commands and their function.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds an SDLC end station.</td>
</tr>
<tr>
<td>Delete</td>
<td>Removes an SDLC end station.</td>
</tr>
<tr>
<td>Disable</td>
<td>Prevents connections to one of the SDLC link stations.</td>
</tr>
<tr>
<td>Enable</td>
<td>Allows connections to one of the SDLC link stations.</td>
</tr>
<tr>
<td>List</td>
<td>Displays configured information for one of the SDLC link stations.</td>
</tr>
<tr>
<td>Set</td>
<td>Configures specific interface and link-station information.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment” on page 11.</td>
</tr>
</tbody>
</table>

Add

Use the add command to add an end station. The router, by default the primary end station. If you do not use this command and if you configured an SDLC station in DLSw or in APPN, the end station is added for you. The software assigns the following defaults to the station:

- Maximum BTU is maximum allowable by the interface
- Tx and Rx Windows are 7 for MOD 8, 127 for MOD 128

If the defaults are satisfactory, you do not need to add SDLC station.

Syntax:

```
add station
```

Example:

```
add station
Enter station address (in hex) [C3]? 
Enter station name [SDLC_C3]?
Include station in group poll list ([Yes] or No): 
Enter max packet size [2009]?
Enter receive window [7]?
Enter transmit window [7]?
```

Enter station address

The station’s SDLC address in the range 01 - FE.
Configuring SDLC Interfaces

Enter station name
The name designation of the SDLC station (maximum characters is 8).

Include station in group poll list
Select whether or not to include this station in the group poll list for this link. The SDLC software supports the IBM 3174 group poll function for SDLC secondary station. You must add a group poll address using the set link group-poll command for this parameter to have an affect.

Enter max packet size
The maximum packet size that can be sent to or received from the remote link station. This value cannot be greater than that specified for the link. This value is configured with the set link frame-size command.

Enter receive window
The maximum number of packets that the router can receive without sending a response.

Enter transmit window
The maximum number of packets that the router can transmit without receiving a response.

Delete
Use the delete command to remove the specified end station (station name or address) from the SDLC configuration. The router is considered the primary end station (default).

Syntax:
```
delete  station name or address
```

Disable
Use the disable command to prevent connections from being created with a SDLC link station.

Syntax:
```
disable  link
    station . . .
```

link Prevents the transmitting and receiving of data to all configured SDLC link stations on the interface.

station name or address Prevents the transmitting and receiving of data to the specified end station (station name or address).

Enable
Use the enable command to enable connections to remote SDLC link stations.

Syntax:
```
enable  link
    station
```

Chapter 38. Configuring and Monitoring SDLC Interfaces 541
Configuring SDLC Interfaces

link Allows subsystems in the router (for example, DLSw) to use SDLC’s facilities.

station name or address Allows connections to the specified secondary remote end station (link station name).

List

Use the `list` command to display configuration information on one or all SDLC link stations.

Syntax:

```
list [link] [station name or all]
```

Example:

```
list link
Link configuration for: LINK_2 (ENABLED)
Role: SECONDARY Type: POINT-TO-POINT
Duplex: FULL Modulo: 8
Idle state: FLAG Encoding: NRZ
Clocking: EXTERNAL Frame Size: 2048
Speed: 0 Group Poll: F3
Cable V.36 DTE
Timers: XID/TEST response: 2.0 sec
SNRM response: 2.0 sec
Poll response: 0.5 sec
Inter-poll delay: 0.2 sec
Inter-frame delay: DISABLED
Inactivity timeout 30.0 sec
Counters: XID/TEST retry: 8
SNRM retry: 6
Poll retry: 10
```

Link configuration
The name and status of SDLC link station that are in the router’s configuration.

Role The primary, secondary, or negotiable role for link stations that you configure using the `set link role` command.

Type The type of link, MULTIPOINT or POINT-TO-POINT.

Duplex

Duplex configuration, HALF or FULL.

Modulo
The sequence number range to use on the link: MOD 8 (0-7) or MOD 128 (0 - 127).

Idle state
The bit pattern (FLAG or MARK) transmitted on the line when the interface is not transmitting data.

Speed The physical data rate of the interface. When the clocking is internal, this is the data rate generated by the internal clock.
Group Poll
Address used for the group poll feature for multipoint link configurations. Secondary stations having group inclusion coded as yes will respond to unnumbered polls received from this address. This address must be non-null for the group poll feature to be in effect for any secondary stations under this link. Each secondary station will still have a unique station address in addition to the group address.

Cable Specifies the type of cable in use (RS-232, V.35, V.36, or X.21).

Encoding Configures the SDLC transmission encoding scheme as NRZ (Non-Return to Zero) or NRZI (Non-Return to Zero Inverted).

Clocking Interface clocking, EXTERNAL or INTERNAL.

Frame Size The maximum frame size that can be sent over the interface.

Timers:
All the timers listed below have a 100ms resolution.

XID/TEST resp. The time to wait for an XID or TEST response message before retransmitting the XID or TEST frame. A value of 0 indicates that the router will continue to retry indefinitely.

SNRM response The maximum time to wait for an UA response message before the station retransmits SNRM(E).

Poll response The maximum time to wait for a response from any polled station before retrying.

Inter-poll delay The amount of time the router (configured with a primary role) waits after receiving a response, before polling the next station.

RTS hold delay The amount of time that the primary router waits before dropping RTS low after the transmission of a frame. The RTS hold delay parameter is specific to half-duplex operation.

Interframe delay The number of flags sent between frames.

Inactivity timeout For idle NRM/E secondary stations, sets the time after which the interface changes the station to its recovery state. A 0 (zero) causes the station to remain idle indefinitely.

Counters:

XID/TEST retry The maximum number of times the router sends an XID or TEST frame without receiving a response before timing out. A value of 0 indicates that the router will retry indefinitely.
Configuring SDLC Interfaces

SNRM The maximum number of times the router will send an SNRM(E) frame without receiving a response before timing out. A value of 0 indicates that the router will retry indefinitely.

Poll retry
The maximum number of times the router polls the station without receiving a response before timing out. A value of 0 indicates that the router will continue to retry indefinitely.

Note: Physical layer parameters such as **duplex type**, **speed**, **cable type**, **encoding**, **clocking**, and **inter-frame delay** do not apply for SDLC dial circuit interfaces and are not displayed by the **list link** command.

station all or address or link station name
Displays information for the specified SDLC link station or for all link stations.

Example:
```
list station c1
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Status</th>
<th>Max BTU</th>
<th>Rx Window</th>
<th>Tx Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1(00)</td>
<td>SDLC_C1</td>
<td>Enabled</td>
<td>2005</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Example:
```
list station all
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Status</th>
<th>Max BTU</th>
<th>Rx Window</th>
<th>Tx Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1(00)</td>
<td>SDLC_C1</td>
<td>ENABLED</td>
<td>2005</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>c3(f3)</td>
<td>SDLC_C3</td>
<td>DISABLED</td>
<td>2009</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Address
The address of the SDLC link station. The address in parentheses is the group address of the station. A (00) indicates that a group address is not defined.

Name
The character string name designation of SDLC link station.

Status
The status of the SDLC link station, ENABLED or DISABLED.

Max BTU
The frame size limit of the station. This frame size must not be larger than the maximum Basic Transmission Unit (BTU) packet size configured with the **set link frame-size** command.

Rx Window
The size of the receive window.

Tx Window
The size of the transmit window.

Set

Use the **set** command to configure specific information for one or all SDLC link stations.

Syntax:
```
set link cable*
set link clocking*
set link duplex*
set link encoding*
```
Configuring SDLC Interfaces

- link frame-size
- link group poll
- link idle
- link inactivity
- link inter-frame delay
- link modulo
- link name
- link poll
- link role
- link rts-hold
- link snrm
- link speed
- link type
- link xid/test
- station address

*Note: These commands are not available for SDLC dial circuit interfaces.

link cable *type*
Sets the cable connected to this interface. The options are V.36 and the following DCE and DTE types: RS-232, V.35, and X.21.

A DTE cable is used when you are attaching the router to some type of DCE device (for example, a modem or a DSU/CSU).

A DCE cable is used when the router is acting as the DCE and providing the clocking for direct attachment.

link clocking *internal* or *external*
Configures the SDLC link’s clocking. To connect to a modem or DSU, set clocking external. To connect directly to another DTE device, use a DCE cable, set the clocking to internal, and configure the clock speed. For internal clocking, you must set the line speed in the range 2400 to 2048000 bits per second.

link duplex *full* or *half*
Configures the SDLC line for full-duplex or half-duplex signalling. *Half-duplex* means that the 2210 raises RTS and expects to see CTS before it will transmit data. *Full-duplex* means that the 2210 does not wait for CTS to be raised before it transmits data.

Note: The duplex type does not control how SDLC operates at the SDLC protocol level. The 2210 only supports two-way alternating mode which is sometimes also referred to as SDLC half-duplex.

link encoding *nrz* or *nrzi*
Configures the SDLC transmission encoding scheme as NRZ (Non-Return to Zero) or NRZI (Non-Return to Zero Inverted). NRZ is the default.

link frame-size
Configures the maximum size of the frames that can be transmitted and received on the data link. Valid entries are shown in Table 70 on page 546.
Configuring SDLC Interfaces

Table 70. Valid Values for Frame Size in Link Frame-Size Command

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>18000</td>
<td>2048</td>
</tr>
</tbody>
</table>

Set the link frame size greater than the maximum packet size that you configured with the `set station xxx max packet` command. Otherwise, the router automatically resets the maximum packet size to the link frame size and issues the following ELS message:

SDLC.054: nt 3 SDLCL/0 Stn xx-MaxBTU too large for Link adjusted (4096->2048)

Example: set link frame-size
Frame size in bytes (128 - 18000)[2048]?

link group-poll
Sets a group poll address for secondary stations on the link. The SDLC software supports the IBM 3174 group poll function. Use the `add station` or the `set station group inclusion` command to include a station in the group poll list.

Example:
```text
set link group-poll
Enter group poll address (in hex) [00:]:f3
Group poll support enabled
```

link idle flag
Configures the transmit idle state for SDLC framing. The default is the flag option which provides continuous flags (7E) between frames.

Example: set link idle flag
The link will receive a flag idle transparently.

link idle mark
Configures the transmit idle state for SDLC framing. The mark option puts the line in a marking state (OFF, 1) between frames.

link inactivity #-of-seconds
For idle NRM/E secondary stations, sets the time after which the interface changes the station to its recovery state. The range is 0 to 7200 seconds. The default is 30. A 0 (zero) causes the station to remain idle indefinitely.

Example:
```text
set link inactivity
Enter secondary link station inactivity timeout :[30.0]?
```

link inter-frame delay seconds
Allows the insertion of a delay between transmitted packets. This command ensures a minimum delay between frames for compatibility with older, slower serial devices at the other end. This parameter is the amount of time between frames in seconds.

Valid values: 0 to 120
Default value: 0

Example:
```text
set link inter-frame delay
Transmit Delay Counter [0]?
```

link leading flags
Sets the number of leading flags. Use this command when the inter-frame
Configuring SDLC Interfaces

delay is not sufficient to allow a response from the 2210 to another device. You cannot set leading flags to a non-zero value if inter-frame delay is 0.

Valid values: 0 to 15
Default value: 0

Example:
```
set link leading flags
 Leading flag counter [0]? 
```

link modulo 8 or 128
Specifies the sequence number range to use on the link: MOD 8 (0-7) or MOD 128 (0 - 127). Default is 8.

Note: When you change this value, the window sizes become invalid. Use the set station command to change the receive window and transmit window sizes. Valid window sizes for mod 8 are 0 through 7; for mod 128 they are 8 through 127.

Also, at connection start-up, an SNRME rather than a SNRM is used and supervisory frame headers are expanded by an additional byte.

link name
Establishes a character string for the link that you are configuring. This parameter is for informational purposes only.

Example:
```
set link name
 Enter link name: [LINK_0]? 
```

link poll delay
Configures the time delay between each poll that is sent over the interface.

Example:
```
set link poll delay
 Enter delay between polls [0.2]? 
```

link poll retry
Configures the number of times the interface retries to poll the secondary SDLC link station before it closes the connection.

Example:
```
set link poll retry
 Enter poll retry count (0 = forever) [10]? 
```

link poll timeout
Configures the amount of time the interface waits for a poll response before timing out.

Example:
```
set link poll timeout
 Enter poll timeout [2.0]? 
```

link role primary or secondary or negotiable
Configures the interface as an SDLC primary, secondary, or negotiable link station (default is primary).

Notes:
1. For DLSw, negotiable uses X'FF' (broadcast address) for the initial poll. When using broadcast address to negotiate the role, the link uses a default SDLC configuration.
When primary is the link role, the link performs an initial poll to a specific address.
Configuring SDLC Interfaces

2. For APPN point-to-point or negotiable, the broadcast address is used for the initial poll. For primary multipoint, the specific address is used.

3. For switched SDLC, the device must be primary, so link role type is not configurable for SDLC dial circuit interfaces.

link rts-hold

The time to hold Request-to-Send (RTS) high after transmitting a frame. This setting is for half-duplex mode. This setting has no effect in full-duplex mode.

Example:

```plaintext
set link rts-hold
Enter RTS hold duration after transmit complete [0.0]?
```

link snrm timeout or retry

Configures the following SNRM(E) information for primary stations:

timeout

The time to wait for an Unnumbered Acknowledgements (UA) response before retransmitting an SNRM(E).

retry

The number of times to retransmit an SNRM(E) without receiving a response before giving up.

Example:

```plaintext
set link snrm timeout
Enter SNRM response timeout [2.0]?
```

```plaintext
set link snrm retry
Enter SNRM retry count (0=forever) [6]?
```

link speed

For internal clocking, this command specifies the speed of the transmit and receive clock lines. The supported range is 2400 to 2048000 bps. If you want to use a line speed greater than 2048000, you can only do this on:

- interface 1.
- port 1 of a 4-port WAN concentration adapter.
- ports 1 and 5 of an 8-port WAN concentration adapter.

The other WAN ports must be clocked at 64 Kbps or less.

Example:

```plaintext
set link speed
Line Speed [64000]?
```

link type multipoint or point-to-point

Configures the SDLC link to either a multipoint link or a point-to-point link.

Note: For switched SDLC, the link is always point-to-point, so link type is not configurable for SDLC dial circuit interfaces.

link xid/test timeout or retry

Configures the following XID/test information for primary stations:

timeout

The maximum amount of time to wait for an XID or TEST frame response before retransmitting the XID or TEST frame.

retry

The maximum number of times an XID or TEST frame is resent before giving up. A 0 (zero) causes the router to retry indefinitely.
Configuring SDLC Interfaces

remote-secondary address or link_station_name address <argument>
Changes the remote station’s SDLC address in the range 02 - FE.

Example: set remote-secondary SDLC_C1 address ce

station address or name address
Changes the station’s SDLC address in the range 01 to FE.

Example:
```
set station cl address
Enter station address (in hex) [C1]?
```

station address or link_station_name name group-inclusion no or yes
For SDLC secondary stations, set whether to include this station in the group poll list for this link. For this to be effective, add a group poll address using the **set link group-poll** command.

Example: set station cl group-inclusion yes

station address or name max-packet
The maximum size of the packet that the station can receive (default: 2048). Do not set the maximum packet size larger than the link frame size that is configured with the **set link frame-size** command; if you do, the router automatically resets the maximum packet size to the link frame size and issues the following ELS message:

```
SDLC.054: nt 3 SDLC/0 Stn xx-MaxBTU too large for Link adjusted (4096->2048)
```

Example:
```
set station cl max-packet
Enter max packet size [2048]?
```

station address or name name
The name of the SDLC station.

Example:
```
set station cl name
Enter station name [SDLC_C1]?
```

station address or name receive-window
The maximum number of frames the router can receive before sending a response. The range is 1 to 7. The default is 7.

Example:
```
set station cl receive-window
Enter receive window [7]?
```

station address or name transmit-window
The maximum number of frames the router can transmit before receiving a response frame. The range is 1 to 7. The default is 7.

Example:
```
set station cl transmit-window
Enter transmit window [7]?
```

Accessing the SDLC Monitoring Environment

The monitoring environment is the GWCON process. To enter the GWCON process:

1. Enter **talk 5** (or **t 5**) at the OPCON (*) prompt. This brings you to the GWCON (+) prompt as shown in the following example:
2. Next, enter the `network #` command using the number that identifies the interface that you previously configured for the SDLC device.

```
+ network 2
SDLC Console
SDLC-2>
```

You enter all GWCON (Monitoring) commands at the + prompt.

Refer to "Chapter 1. Getting Started" on page 3 for information related to the monitoring environment.

SDLC Monitoring Commands

This section summarizes and then explains the SDLC console and related commands. Use these commands to gather information from the database. Table 71 lists SDLC monitoring commands and their function.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 10.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds an SDLC link station</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears the counters on the SDLC interface.</td>
</tr>
<tr>
<td>Delete</td>
<td>Dynamically removes an SDLC link station.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disables connections to one SDLC link station.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enables connections to one SDLC link station.</td>
</tr>
<tr>
<td>List</td>
<td>Displays SDLC link stations configurations and link station information.</td>
</tr>
<tr>
<td>Set</td>
<td>Configures specific interface and link station information.</td>
</tr>
<tr>
<td>Test</td>
<td>Tests the link between the router and the SDLC link station.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11.</td>
</tr>
</tbody>
</table>

Add

Use the `add` command to add an end station. The router is, by default, the primary end station. If you do not use this command and if you configured an SDLC station in DLSw or APPN, the end station is added for you.

Syntax:

```
add station
```

For an example and for additional information on the `add` command, see "Add" on page 540.

Clear

Use the `clear` command to clear counters for the interface, for a station, or for all stations. Use the `list all stations` command to list stations.
Configuring SDLC Interfaces

Syntax: clear

 link

 station ...

 link name or address
 Clears the counters for an SDLC interface.

 station name or address or all
 Clears counters for a specific station or for all stations.

Delete

Use the delete command to terminate an existing SDLC connection without affecting the SDLC configuration in SRAM. This command terminates any SDLC session that may be in progress on the link station. The router is considered the primary end station by default.

Syntax:

delete

 station name or address

Disable

Use the disable command to disable connection establishment on one or all SDLC link stations without affecting the SDLC configuration in SRAM. The disable command also terminates any existing connection to the station.

Syntax: disable

 link

 station . . .

 link
 Prevents connection on all configured SDLC link stations on the interface by terminating all connections.

 station name or address
 Prevents connection to the specified end station (link station name) by terminating any existing connection.

Enable

Use the enable command to enable connection establishment with remote SDLC link stations without affecting the SDLC configuration SRAM.

Syntax:

 enable

 link

 station . . .

 link
 Allows subsystems (for example, DLSw) to use SDLC’s facilities.

 station name or address
 Allows connections to the specified end station.

List

Use the list command to display statistics specific to the data link layer and the interface.

Syntax:
Configuring SDLC Interfaces

list

- link configuration
- link counters
- station...

link configuration
Displays information for all configured SDLC link stations on the interface.

For an example and for additional information on the list command, see [List on page 542].

link counters
Displays information for the SDLC counters since the last router restart or the last clear counters.

I-Frames
Total number of Information frames received and transmitted.

I-Bytes
Total number of Information bytes received and transmitted.

Re-Xmit
Total number of frames that were retransmitted.

UI-Frames
Total number of Unnumbered Information frames received and transmitted.

UI-Bytes
Total number of Unnumbered Information bytes received and transmitted.

RR
Total number Receive-Ready (RRs) received and transmitted.

RNR
Total number Receive-Not-Ready (RNRs) received and transmitted.

REJ
Total number of Rejects received and transmitted.

UP
Unnumbered Polls (group poll) received and transmitted.

station all or address or link station name
Displays the status of the specified SDLC link station or all stations. The software displays an * next to the stations that were not explicitly configured using the add station command but were added to the configuration because they were defined and activated in the protocol layer (DLSw or APPN).

Displays information for the specified SDLC link station (link station name) on the interface.

Address
The address of the SDLC link station. The address in parentheses is the group address of the station. A (00) indicates that a group address is not defined.

Name
The character string name designation of SDLC link station.

Status
The status of the SDLC link station:
Configuring SDLC Interfaces

Enabled
 Enabled, but not allocated
Idle Allocated, but not in use
Connected
 Connected
Disconnected
 Disconnected
Connecting
 Connection establishment in progress.
Disconnecting
 Disconnection in progress
Recovering
 Attempting to recover from a temporary data link error.

Max BTU
 The frame size limit of the remote station. This frame size must not be larger than the maximum Basic Transmission Unit (BTU) packet size configured with the set link frame-size command. The default is 2048 bytes.

Rx Window
 The size of the receive window.

Tx Window
 The size of the transmit window.

station name or address counters
 Displays frame transmit and receive counts for the specified link station.

I-Frames
 Number of information frames received and transmitted
I-Bytes
 Number of information bytes received and transmitted
Re-Xmit
 Number of frames retransmitted
UI-Frames
 Number of Unnumbered Information frames received and transmitted
UI-Bytes
 Number of Unnumbered Information bytes received and transmitted
XID-Frames
 Number of Exchange Identification frames received and transmitted
RR
 Number of Receive Ready frames received and transmitted
RNR
 Number of Receive Not Ready frames received and transmitted
REJ
 Number of Rejects received and transmitted
TEST
 Number of Test frames received and transmitted
Configuring SDLC Interfaces

SNRM Number of Set Normal Response Mode frames received and transmitted
DISC Number of Disconnect frames received and transmitted
UA Number of Unnumbered Acknowledgment frames received and transmitted
DM Number ofDisconnected Mode frames received and transmitted
FRMR Number of Frame Reject frames received and transmitted
UP Unnumbered Polls (group poll) received and transmitted.

Example:

list link counters

<table>
<thead>
<tr>
<th>I-Frames</th>
<th>I-Bytes</th>
<th>Re-Xmit</th>
<th>UI-Frames</th>
<th>UI-Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recv</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RR</th>
<th>RNR</th>
<th>REJ</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recv</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example:

list station all

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Status</th>
<th>Max BTU</th>
<th>Rx Window</th>
<th>Tx Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1(00)</td>
<td>SDLC_C1</td>
<td>IDLE</td>
<td>2048</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>C2(F3)</td>
<td>SDLC_C2</td>
<td>ENABLED</td>
<td>2048</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Example:

list station c1

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Status</th>
<th>Max BTU</th>
<th>Rx Window</th>
<th>Tx Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>* C1(00)</td>
<td>SDLC_C1</td>
<td>ENABLED</td>
<td>2048</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Example:

list station c1 counters

<table>
<thead>
<tr>
<th>I-Frames</th>
<th>I-Bytes</th>
<th>Re-Xmit</th>
<th>UI-Frames</th>
<th>UI-Bytes</th>
<th>XID-Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send</td>
<td>9</td>
<td>384</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recv</td>
<td>29</td>
<td>42792</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RR</th>
<th>RNR</th>
<th>REJ</th>
<th>TEST</th>
<th>SNRM</th>
<th>DISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send</td>
<td>598</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Recv</td>
<td>587</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UA</th>
<th>DM</th>
<th>FRMR</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recv</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Set

Use the set command to dynamically configure specific information for one or all SDLC link stations without affecting the SRAM configuration. In the SDLC monitoring environment, the set command can be executed only on disabled links or stations. All time values are entered in seconds, with a 0.1 second resolution.

Syntax:
set

link modulo . . .

link name

link poll . . .

link role* . . .

link rts-hold

link snrm(e)

link type* . . .

link xid/test

station . . .

*Note: These commands are not supported on SDLC dial circuit interfaces.

link modulo
Dynamically changes the range of sequence numbers to be used on the data link without affecting the SRAM configuration. Modulo 8 specifies a sequence number range 0 - 7, and modulo 128 specifies 0 - 127. Default is 8.

Note: When you change this value, the transmit and receive window sizes become invalid. Use the set station command to change the receive-window and transmit-window sizes.

link name
Dynamically changes the name of the link without affecting the SRAM configuration. A maximum of 8 characters can be entered. This parameter is for informational purposes only.

Example:
set link name
Enter link name: [LINK_0]?

link poll delay or timeout or retry
Dynamically changes the following poll information without affecting the SRAM configuration.

delay Configures the delay between each poll that is sent over the interface.

timeout Configures the amount of time the router waits for a poll response before timing out.

retry Configures the number of times the interface retries to poll the remote SDLC link station before it closes the connection.

Example:
set link poll delay
Enter delay between polls [0.2]?

link role primary, secondary, or negotiable
Configures the interface as an SDLC primary, secondary, or negotiable link station. The default is primary. Use of this command does not affect the SRAM configuration.

Notes:
1. For DLSw, negotiable uses X'FF' (broadcast address) for the initial poll.
When using broadcast address to negotiate the role, the link uses a default SDLC configuration.

When primary is the link role, the link performs an initial poll to a specific address.

2. For APPN point-to-point or negotiable, the broadcast address is used for the initial poll. For primary multipoint, the specific address is used.

3. For switched SDLC, the device must be primary, so link role type is not configurable for SDLC dial circuit interfaces.

link rts-hold
Dynamically changes the time to hold Request to Send (RTS) high after transmitting a frame without affecting the SRAM configuration. This setting is for half-duplex mode. This setting has no effect in full-duplex mode.

Example:
set link rts-hold
Enter RTS hold duration after transmit complete [0.0]?

link snrm timeout or retry
For primary stations, dynamically changes the following SNRM(E) information without affecting the SRAM configuration.

timeout
The time to wait for an Unnumbered Acknowledgment (UA) response before retransmitting an SNRM(E).

retry
The number of times to retransmit an SNRM(E) without receiving a response before giving up.

Example:
set link snrm timeout
Enter SNRM response timeout [2.0]?

link type multipoint or point-to-point
Dynamically changes the SDLC link to either a multipoint link or a point-to-point link without affecting the SRAM configuration.

Note: For switched SDLC, the link is always point-to-point, so link type is not configurable for SDLC dial circuit interfaces.

link xid/test timeout or retry
For primary stations, dynamically changes the following XID/test information without affecting the SRAM configuration.

timeout
The maximum amount of time to wait for an XID or TEST frame response before retransmitting the test frame.

retry
The maximum number of times an XID or TEST frame is resent before giving up. A 0 (zero) causes the router to retry indefinitely.

Note: Examples for, and explanations of, the following parameters can be found in the SDLC configuration chapter at Set on page 544.

station address or name address
Changes the station’s SDLC address.

station address or name max-packet
Maximum size of packet that this station can receive.
Configuring SDLC Interfaces

station address or name name
 Name of the SDLC station.

station address or name receive-window
 Maximum number of frames router sends before responding.

station address or name transmit-window
 Maximum number of frames router transmits before receiving a response frame.

Test

Transmits a specified number of TEST frames to the specified station and waits for a response. Use this command to test the integrity of the connection. Press any key to cancel the test.

Note: Disable the specified link station before using this command

Syntax:

test
 station name or address #frames-to-send
 Frame-size

Example:

test station c1
 Number of frames to send [1]? 5
 Frame length [265]?
 Starting echo test -- press any key to abort
 5 frames sent, 5 frames received, 0 compare errors, 0 timeouts

Number of test frames to send
 Total number of frames to send.

Frame length
 Length of frames to be sent. Frame length cannot be larger than the maximum frame length of the specified station.

The test may be aborted by pressing any key.

SDLC Interfaces and the GWCON Interface Command

While the SDLC interface has a console process for operational purposes, the 2210 also displays complete statistics for installed interfaces when you use the interface command from the GWCON environment. (For more information on the interface command, refer to "Chapter 10. The Operating/Monitoring Process (GWCON - Talk 5) and Commands" on page 127.)

Statistics Displayed for SDLC Interfaces

Using the interface command, you can display statistics for SDLC devices without entering the SDLC monitoring process. To do this, enter the interface command and an interface number at the + prompt.

Nt Indicates the interface number as assigned by software during initial configuration.

Nt' Indicates the interface number as assigned by software during initial configuration.
Configuring SDLC Interfaces

Note: For SDLC interfaces, the Nt' interface number is always the same as the Nt interface number.

CSR Indicates the memory location of the control status register for the SDLC interface.

Self-test passed Indicates the total number of times the SDLC interface passed its self-test.

Self-test failed Indicates the total number of times the SDLC interface was unable pass its self-test.

Maintenance failed Indicates the number of maintenance failures.

The following parameters are displayed only if a cable is connected. The information displayed depends on the cable that is connected. Different parameters are displayed with other cables.

Adapter cable Indicates the type of adapter cable that the level converter is using.

V.24 circuit Indicates the circuits being used on the V.24.

Nicknames Indicates the signals being used on the V.24 circuit.

RS-232 The EIA 232 (RS 232) circuit names.

State Indicates the state of V.24 circuits, signals, and pin assignments (ON or OFF).

Line speed (configured) Indicates the currently configured line speed for the SDLC interface.

Last port reset Indicates how long ago the port was last reset.

Input frame errors Indicates the input frame error type (CRC error, too short, aborted, alignment, too long, DMA/FIFO overrun) and the total number of errors that have occurred.

Output frame counters Indicates the total number of DMA/FIFO overruns and output aborts sent for output frames.

Missed frame When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

L & F bits not set On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame upon arrival, the hardware sets both the Last and First bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.
Note: It is unlikely that the L & F bits not set counter will be affected by traffic.
Configuring SDLC Interfaces
Chapter 39. Using Binary Synchronous Relay (BRLY)

This chapter describes how to use the Binary Synchronous Relay (BRLY) protocol. It includes the following sections:

- **BRLY Overview**
- **BRLY Considerations** on page 564

Binary Synchronous Relay (BRLY) is a protocol that encapsulates binary synchronous communications (BSC) traffic and transmits the traffic across IP connections. This function permits BSC traffic to flow between BSC peers as if a BSC connection exists between the peers. The following sections describe BRLY, some common configurations, and how to configure a BRLY scenario.

BRLY Overview

BSC connections are similar to SDLC connections in that they consist of a primary end-point (polling) and a secondary end-point (polled). The connections can be either point-to-point, where the primary communicates with a single secondary, or multipoint, where the primary communicates with multiple secondaries. BRLY supports both physical and virtual multipoint connections.

In this implementation, the primary and secondary BSC devices are connected to routers which then connect to each other through IP. Figure 30 is a diagram of a point-to-point and a physical multipoint BRLY configuration. A physical multipoint connection is one where all of the secondary devices are on the same physical connection.

![Diagram of BSC Relay Configurations](image)

Figure 30. Physical BSC Relay Configurations. The numbers in the figure represent the group numbers for BSC Relay.

A virtual multipoint connection connects a single BSC primary and multiple BSC secondaries by using different BRLY groups (different physical connections). Figure 31 on page 564 is a diagram of a virtual multipoint configuration.
BSC Relay also supports a combination of virtual and physical multipoint connections. Figure 32 is a diagram of a combination of virtual and physical multipoint connections.

Sample BRLY Configuration

The following examples illustrate configuring a BRLY network similar to the network in Figure 32. These examples use the following assumptions:

- Interface 1 on Routers A, B, and C have already been configured as BSC interfaces.
- The IP address for the Primary BSC Device’s local port is 6.6.6.4.
- The IP address for the Router B’s Secondary BSC devices local port is 6.6.6.1.
- The IP address for the Router C’s Secondary BSC devices local port is 6.6.6.2.
Config> protocol brly
BSC Relay protocol user configuration
BRLY config> add group 1
Local group number: [1]?
Point to Point connection? (Yes or [No]):
BRLY config> add local
Local group number: [1]?
Interface number: [0]? 1
(P)rimar or (S)econdary: [S]?
Does this interface communicate with multiple remote groups [N]? y
BRLY config> add remote
Local group number: [1]?
IP address of remote router: [0.0.0.0]? 6.6.6.1
Remote router group number: [1]?
(P)rimar or (S)econdary: [S]?
Station address in hexadecimal (1 - FF): [1]? c1
BRLY config> li all
BSC Relay Configuration

<table>
<thead>
<tr>
<th>Local Group Type</th>
<th>Port Status</th>
<th>Net Number</th>
<th>Remote Group Address</th>
<th>Station Address</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (E) MULTI</td>
<td>Local PRMRY (E)</td>
<td>1</td>
<td></td>
<td>1 C1</td>
<td>6.6.6.1</td>
</tr>
<tr>
<td></td>
<td>Remote SCNDRY (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E = enabled, D = disabled

BRLY config> add group 2
Local group number: [1]? 2
Point to Point connection? (Yes or [No]):
BRLY config> add local
Local group number: [1]? 2
Interface number: [0]? 1
(P)rimar or (S)econdary: [S]?
Does this interface communicate with multiple remote groups [N]? y
BRLY config> add remote
Local group number: [1]? 2
IP address of remote router: [0.0.0.0]? 6.6.6.2
Remote router group number: [1]? 2
(P)rimar or (S)econdary: [S]?
Station address in hexadecimal (1 - FF): [1]? c5
BRLY config> li all
BSC Relay Configuration

<table>
<thead>
<tr>
<th>Local Group Type</th>
<th>Port Status</th>
<th>Net Number</th>
<th>Remote Group Address</th>
<th>Station Address</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (E) MULTI</td>
<td>Local PRMRY (E)</td>
<td>1</td>
<td></td>
<td>1 C1</td>
<td>6.6.6.1</td>
</tr>
<tr>
<td></td>
<td>Remote SCNDRY (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (E) MULTI</td>
<td>Local PRMRY (E)</td>
<td>1</td>
<td></td>
<td>2 C5</td>
<td>6.6.6.2</td>
</tr>
<tr>
<td></td>
<td>Remote SCNDRY (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E = enabled, D = disabled

Figure 33. BRLY Configuration for Router A (Commands entered at Router A)

Notes:
1. The configuration for group 1 starts at 1.
2. The configuration for group 2 starts at 2.
When configuring BRLY, keep the following in mind:

Figure 34. BRLY Configuration for Router B (Commands entered at Router B)

Figure 35. BRLY Configuration for Router C (Commands entered at Router C)
- Enabling BRLY will result in an increase of polling in the network which will reduce the total network throughput.
- BSC devices automatically disconnect if their inactivity timer expires. By default, this occurs after three seconds. An extremely busy network could result in BSC devices that disconnect frequently.
Chapter 40. Configuring and Monitoring BSC Relay

This chapter describes the binary synchronous communications (BSC) Relay configuration and operational commands. It also includes a procedure for configuring a BSC interface.

The chapter includes the following sections:
- [Basic Configuration Procedure]
- [BSC Relay Configuration Commands]
- [BSC Relay Monitoring Commands] on page 575
- [BSC Relay Interfaces and the GWCON Interface Command] on page 578

Basic Configuration Procedure

This section outlines a procedure to configure a BSC interface and the BSC Relay protocol. Refer to the configuration commands that are described in this chapter for further configuration information and explanation.

To configure a BSC relay interface and run BRLY over that interface:
1. Configure an interface as a BSC interface.
 a. Enter `set data-link bsc` at the `Config>` prompt.
 b. Enter the interface number when prompted.
 c. Access the BSC interface configuration prompt:
      ```
      Config> network 2
      BSC interface user configuration
      BSC 2 Config>
      ```
 d. Display the current interface settings using the `list` command and change, if necessary, using the `set` command.
 e. Repeat until you have configured all of the BSC interfaces you need.
2. Configure the BRLY protocol.
 a. Access the BRLY protocol.
      ```
      Config> protocol brly
      BSC Relay protocol user configuration
      BSC Relay config>
      ```
 b. Add a group using the `add group` command.
 c. Add a local port using the `add local-port` command.
 d. Add a remote port using the `add remote-port` command. This identifies the port that is directly connected to the remote side of the serial line and specifies the IP address for the connection.
 e. Repeat steps 2.b through 2.d until you have configured all of the groups, local ports, and remote ports needed.

BSC Relay Configuration Commands

This section describes the BSC Relay configuration commands. This chapter describes both network and protocol parameters for BSC relay.

The BSC Relay configuration commands allow you to specify router parameters for interfaces that transmit BSC Relay frames. Restart the router to activate the
configuration commands. Table 72 shows the commands for both the network BSC and protocol BRLY.

<table>
<thead>
<tr>
<th>Command</th>
<th>Network BSC</th>
<th>Protocol BRLY</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>yes</td>
<td>yes</td>
<td>Lists all of the configuration commands or lists the options associated with specific commands.</td>
</tr>
<tr>
<td>Add</td>
<td>yes</td>
<td></td>
<td>Adds groups, local ports, and remote ports.</td>
</tr>
<tr>
<td>Delete</td>
<td>yes</td>
<td></td>
<td>Deletes groups, local ports, and remote ports.</td>
</tr>
<tr>
<td>Disable</td>
<td>yes</td>
<td></td>
<td>Disables groups and ports.</td>
</tr>
<tr>
<td>Enable</td>
<td>yes</td>
<td></td>
<td>Enables groups and ports.</td>
</tr>
<tr>
<td>List</td>
<td>yes</td>
<td>yes</td>
<td>Displays entire BSC Relay, group-specific, and interface configurations.</td>
</tr>
<tr>
<td>Set</td>
<td>yes</td>
<td></td>
<td>Sets the link parameters and remote station parameters.</td>
</tr>
<tr>
<td>Exit</td>
<td>yes</td>
<td>yes</td>
<td>Exits the BSC Relay configuration environment and returns to the CONFIG environment.</td>
</tr>
</tbody>
</table>

Add

Use the `add` command to add groups, local ports, and remote ports.

Syntax:

```
add group group#
```

group group#

Defines a primary to secondary connection. Each different connection requires a different group number.

Example: `add group`

```
Group number: [1]? 1
Group type: [multipoint]
```

Group number

The group number that you are designating for the group.

Valid values: 1 to 16

Default value: 1

Group type

Specifies the type of BSC connection this group supports.

Valid values: point-to-point or multipoint

Default value: multipoint

local-port

Identifies the interface that you are using as the local port for a specific group. The local port is a connection to a BSC device that is connected directly to the 2210 you are configuring. The following example adds a primary local port.

Example: `add local-port`

```
Group number: [1]? 1
Interface number: [0]? 2
(P)rimary or (S)econdary:[S]? p
```
Configuring and Monitoring BSC Relay

Group number
The group number for the port. This number must be configured previously using the **add group** command.

Interface number
The interface number of the router that designates the local port.

Primary or Secondary
Designates the port type, primary (P) or secondary (S).

Default value: S

Station Address Character
Specifies the character that the system displays for a secondary port. You will be prompted for this only if you configure the local port as a secondary.

Valid values: X'01' to X'FF'

Default value: None

Note: This value is used for display purposes only and identifies a group of secondaries.

remote−port
Identifies the IP address of the port that is directly connected to the serial line on the remote (peer) router. The following example shows the configuration of a remote port as a secondary.

Example: add remote−port

```
Group number: [1]? 1
IP address of remote router: [0.0.0.0]? 128.185.121.97
(P)rimary or (S)econdary: [S]? s
Remote group number: [1]? 2
Station address character: ? cd
```

Group number
The group number for the port. This number must be configured previously using the **add group** command.

IP address of remote router
Identifies the IP address of the interface that communicates with the remote router.

Primary or Secondary
Designates the port type, primary (P) or secondary (S).

Remote group number
Specifies the group number for the remote port as it is defined at the remote router.

Station Address Character
Specifies the character that the system displays for a secondary port. You will be prompted for this only if you configure the local port as a secondary.

Valid values: X'01' to X'FF'

Default value: None

Note: This value is used for display purposes only and identifies a group of secondaries.
Configuring and Monitoring BSC Relay

Delete

Use the `delete` command to remove groups, local ports, and remote ports.

Syntax:
```
delete group group#
  local-port
  remote-port
```

- `group group#`
 - Removes a group (group#).
 - **Example:** `delete group 1`

- `local–port group#`
 - Removes the local port for the specified group.
 - **Example:** `delete local–port`
 - **Group number:** [1]? 2
 - **Group number**
 - The group number for the local port.

- `remote–port`
 - Removes the remote port for the specified group.
 - **Example:** `delete remote–port`
 - **Group number:** [1]? 1
 - **Group number**
 - The group number for the remote port.

Disable

Use the `disable` command to suppress relaying for an entire relay group or a specific relay port.

Syntax:
```
disable group group#
  port
```

- `group group#`
 - Suppresses transfer of BSC Relay frames to or from a specific local group.
 - **Example:** `disable group 1`

- `port`
 - Suppresses transfer of BSC Relay frames to or from a specific local or remote relay port.
 - **Example:** `disable port`
 - **Group number:** [1]? 2
 - **Local or Remote:** [local]? remote
 - **Group number**
 - The group number of the port that you want to disable.
 - **Local or Remote**
 - Specifies whether to disable the local or remote port.
 - **Default value:** local
Enable

Use the `enable` command to turn on data transfer for an entire relay group or a specific relay port.

Syntax:

```
enable group group#
```

<table>
<thead>
<tr>
<th><code>group group#</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows transfer of BSC Relay frames to or from the specified group.</td>
</tr>
</tbody>
</table>

Example: `enable group 1`

<table>
<thead>
<tr>
<th><code>port</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows transfer of BSC Relay frames to or from the specified local port.</td>
</tr>
</tbody>
</table>

Example: `enable port`

<table>
<thead>
<tr>
<th><code>Group number</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>The group number of the port that you want to enable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>Local or Remote</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies whether to enable the local or remote port.</td>
</tr>
</tbody>
</table>

Default value: local

List (for network BSC)

Use the `list` command to display the configuration of a specific BSC interface.

Syntax:

```
list
```

Example:

```
list
Maximum frame size in bytes: 2048
Encoding: NRZI
Idle State: Sync
Clocking: Internal
Cable type: V.35 DCE
Speed (bps): 2048000
Code: ASCII
Link EDT: No
Number of pairs of SYNs: 1
```

Maximum frame size in bytes

Maximum frame size that can be sent over the link. The maximum frame size must be large enough to accommodate the largest frame and the 15 byte BRLY header.

Encoding

The transmission encoding scheme for the serial interface. Scheme is NRZ (non-return to zero) or NRZI (non-return to zero inverted).

Idle State

The data link idle state: sync or mark.

Clocking

The type of clocking: internal, external.
Configuring and Monitoring BSC Relay

Cable Type
The serial interface cable type.

Speed (bps)
Lists the speed of the transmit and receive clocks.

Code
The code type used by this device.

Link EOT
Specifies whether EOT transmissions are combined with poll and select transmissions when the transmissions occur back-to-back.

Number of pairs of SYNs
The number of pairs of synchronization characters the system sends before any data.

List (for protocol BRLY)

Use the list command to display the configuration of a specific group or of all groups.

Syntax:
list all

group group#

all Displays the configurations of all groups.

Example: list all

<table>
<thead>
<tr>
<th>Local Group Type</th>
<th>Port Status</th>
<th>Net Number</th>
<th>Remote Station</th>
<th>Group Address</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (E) MULTI</td>
<td>PRMRY (E)</td>
<td>1</td>
<td>1</td>
<td>C1</td>
<td>6.6.6.1</td>
</tr>
<tr>
<td></td>
<td>Remote SCNDY (E)</td>
<td></td>
<td>2</td>
<td>C5</td>
<td>6.6.6.2</td>
</tr>
</tbody>
</table>

E = enabled, D = disabled

Note: The system does not display the remote port's net number at the local port as it is not part of the local group's configuration.

Group Number
Indicates the group number and the status of the group, enabled (E) or disabled (D).

Port Status
Indicates the type of port (local/remote primary/secondary) and its status, enabled (E) or disabled (D).

Net Number
Indicates the interface number of the local port.

Remote Group
The number of the group at the remote router.

Address Character
The address character assigned to one secondary station.

IP Address
Indicates the IP address of the remote port.
group group#
 Displays the configuration of a specified group.

Set

Use the set command to configure the BSC interface parameters.

Syntax:

```
set                     cable
  clocking [internal or external]
  code [ebcdic or ascii]
  encoding [nrz or nrzi]
  eotlink [yes or no]
  frame-size
  idle [sync or mark]
  speed bps
  syns number
```

cable Sets the cable used on the serial interface. The options are:
 - RS-232 DTE
 - RS-232 DCE
 - V35 DTE
 - V35 DCE
 - V36 DTE
 - X21 DTE
 - X21 DCE

 Use a DTE cable when you are attaching the router to some type of DCE device (for example, a modem or a DSU/CSU).

 A DCE cable is used when the router is acting as the DCE and providing the clocking for direct attachment.

clocking [internal or external]
 Configures the BSC link’s clocking. To connect to a modem or DSU, configure clocking as external. To connect directly to another DTE device, use a DCE cable, set the clocking to internal, and configure the clock speed. For internal clocking, you must enter a valid line speed in the range 2400 - 2048000 bits per second.

 Example:

```
set clocking internal
```

code [ebcdic or ascii]
 Specifies the code type that is used by this BSC device.

 Default value: ebcdic

encoding [nrz or nrzi]
 Configures the BSC interface’s encoding scheme as NRZ (Non-Return to Zero) or NRZI (Non-Return to Zero Inverted). NRZ is the default.
Configuring and Monitoring BSC Relay

Example:

```
set encoding nrz
```

eotlink [yes or no]

Specifies whether to combine EOT transmissions with poll and select transmissions when the transmissions occur back-to-back.

Default value: yes

frame-size

Configures the maximum size of the frames that the system can transmit and receive on the data link. If this value is set to a value larger than the value specified with the `add remote-secondary` command, the system changes this value to reflect that maximum. The IBM 2210 generates an ELS message that warns the user. The user will continue receiving this ELS message until it is changed in the SRAM configuration. Valid entries are shown in Table 73.

Note: The frame size must be large enough to accommodate the largest frame that is received plus a 15-byte BRLY header.

```
<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>8190</td>
<td>2048</td>
</tr>
</tbody>
</table>
```

idle [sync or mark]

Specifies which character the system sends in between BSC data transmissions.

- **sync** Specifies that the BSC synchronizing character is sent. (See the `syns` parameter.)
- **mark** Specifies that the all ones bits character (X'FF') is sent.

Default value: mark

speed bps

For internal clocking, this command specifies the speed of the transmit and receive clock lines. The range of speed supported are 2400 to 2048000. If you want to use a line speed greater than 2048000, you can only do this on:

- interface 1.
- port 1 of a 4-port WAN concentration adapter.
- ports 1 and 5 of an 8-port WAN concentration adapter.

The other WAN ports must be clocked at 64 Kbps or less.

syns

Specifies the number of pairs of SYN characters the system sends before any data. SYNs are the BSC synchronizing characters. (See the `idle` parameter.)

Accessing the BSC Relay Monitoring Environment

To monitor information that is related to the BSC Relay protocol, access the interface monitoring process by:

1. At the OPCON prompt, enter the `talk` command and the PID for GWCON. For example:

```
```
Configuring and Monitoring BSC Relay

* talk 5 *

The system displays the GWCON prompt (+) on the console. If the prompt does not appear when you first enter GWCON, press Return again.

2. At the GWCON prompt, enter the configuration command to see the protocols and networks for which the router is configured. For example:

* configuration *

See page 130 for more sample output from the configuration command.

3. Enter the protocol BRLY command. For example:

* prot brly *

BSC Relay>

The system displays the BSC Relay prompt on the console. You can then view information about the BSC Relay ports by entering the BSC Relay monitoring commands.

BSC Relay Monitoring Commands

This section summarizes, and then explains the BSC Relay monitoring commands. The BSC Relay monitoring commands allow you to view parameters for interfaces that transmit BSC Relay frames. The system displays the BSC Relay> prompt for all BSC Relay monitoring commands. Table 74 shows the commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears BSC Relay statistics.</td>
</tr>
<tr>
<td>Disable</td>
<td>Suppresses groups and ports.</td>
</tr>
<tr>
<td>Enable</td>
<td>Turns on groups and ports.</td>
</tr>
<tr>
<td>List</td>
<td>Displays entire BSC Relay and group specific configurations.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Clear

Use the clear command to discard the BSC Relay statistics for all ports. The statistics include counters for packets forwarded, and packets discarded. The command clears local and remote port statistics that is gathered since the last time you restarted the router or cleared statistics.

Syntax:

clear

e x a m p l e:

clear
Clear all port statistics? (Yes or No): Y
Disable

Use the `disable` command to suppress data transfer for an entire group or a specific relay port. SRAM (static read access memory) does not permanently store the effects of the `disable` monitoring command. Therefore when you restart the router, the effects of this command are erased.

Syntax:

```bash
disable group group#
    group group#
        port

Group group#
    Suppresses transfer of BSC Relay frames to or from a specific group.

port
    Suppresses transfer of BSC Relay frames to or from a specific local or remote port.
```

Example:

```bash
disable port
    Group number: [1]? 2
    Local or Remote: [local]? remote
```

Group number
- Indicates the group number of the port that you want to disable.

Local or Remote
- Specifies whether to disable the local or remote port.
- **Default value:** local

Enable

Use the `enable` command to turn on data transfer for an entire group or a specific local interface port. SRAM does not permanently store the effects of the `enable` monitoring command. Therefore when you restart the router, the effects of this command are erased.

Syntax:

```bash
enable group group#
    group group#
        port

Group group#
    Allows transfer of BSC Relay frames to or from the specified group.

port
    Allows transfer of BSC Relay frames to or from the specified local port.
```

Example:

```bash
enable port
    Group number: [0]? 2
    Local or Remote: [local]? remote
```

Group number
- Indicates the group number of the port that you want to enable.

Local or Remote
- Specifies whether to disable the local or remote port.
- **Default value:** local
List

Use the list command to display the configuration of a specific group or of all groups.

Syntax:

```
list    all
        group group#
```

all Displays the statistics of all local groups. See the list group command for a sample output.

group group# Displays the statistics of a specified group.

Example:

```
list group 1
```

<table>
<thead>
<tr>
<th>Local Group Type</th>
<th>Port Status</th>
<th>Net Number</th>
<th>Remote Group Type</th>
<th>Station Address</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (E) MULTI</td>
<td>Local PRMRY (E)</td>
<td>1</td>
<td>Local SCNDRY (E)</td>
<td>C1</td>
<td>6.6.6.1</td>
</tr>
</tbody>
</table>

Local port statistics:
Packets forwarded = 0
Packets discarded = 0

Remote port statistics:
Packets forwarded = 0
Packets discarded = 0

Local Group
Indicates the group number and the status of the group, enabled (E) or disabled (D).

Group Type
Specifies the type of BSC connection this group supports: point-to-point or multipoint.

Port Status
Indicates the type of port (local/remote primary/secondary) and its status, enabled (E) or disabled (D).

Net Number
Indicates the device number of the local port.

Station Address
The character that the system displays for a secondary port.

IP Address
Indicates the IP address of the remote port.

Remote Group
The number of the group at the remote router.

Packets Forwarded
Indicates how many packets the system forwarded for the port.

Packets Discarded
Indicates how many packets the system discarded for the port.

The following example displays the configuration built for Router A in the figure for [Sample BRLY Configuration on page 562](#)
Configuring and Monitoring BSC Relay

Ctrl-P
* talk 5
+p brly
BSC Console
BSC>li all

BSC Relay Configuration

<table>
<thead>
<tr>
<th>Local Group</th>
<th>Type</th>
<th>Port Status</th>
<th>Net Number</th>
<th>Remote Station</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (E)</td>
<td>MULTI</td>
<td>Local PRMRY (E)</td>
<td>1</td>
<td></td>
<td>6.6.6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote SCNDRY (E)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Local port statistics:
Packets forwarded = 0
Packets discarded = 0

Remote port statistics:
Packets forwarded = 0
Packets discarded = 0

<table>
<thead>
<tr>
<th>Local Group</th>
<th>Type</th>
<th>Port Status</th>
<th>Net Number</th>
<th>Remote Station</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (E)</td>
<td>MULTI</td>
<td>Local PRMRY (E)</td>
<td>1</td>
<td></td>
<td>6.6.6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote SCNDRY (E)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Local port statistics:
Packets forwarded = 0
Packets discarded = 0

Remote port statistics:
Packets forwarded = 0
Packets discarded = 0

E = enabled, D = disabled

BSC>exit

BSC Relay Interfaces and the GWCON Interface Command

While BSC Relay interfaces have their own monitoring processes, the router also displays complete statistics for installed network interfaces when you use the `interface` command from the GWCON environment. (For more information on the `interface` command, refer to Chapter 10, The Operating/Monitoring Process (GWCON - Talk 5) and Commands.)
Chapter 41. Using the V.25bis Network Interface

The V.25bis interface allows routers to establish serial connections over switched telephone lines using V.25bis modems. This chapter describes how to use the V.25bis interface. It includes the following sections:

- "Before You Begin"
- "Configuration Procedures"

Note: You can assign a destination name to a connection list and assign a destination number to each line in the list. When that destination name is called, the numbers in the list are tried one by one until a connection is made or the list is exhausted.

Before You Begin

Before you configure V.25bis on the router, make sure you have the following:

- If your modem does not automatically detect answer originate, you must:
 - Configure the modem at one end of the link to originate calls.
 - Configure the modem at the other end of the link to answer calls.
 - Set up the modem on the answering end to auto-answer.

Configuration Procedures

This section describes how to configure your router for V.25bis. The tasks you need to perform are:

1. Adding V.25bis addresses
2. Configuring V.25bis parameters
3. Adding dial circuits
4. Configuring dial circuits

Note: You must restart the router for changes to the V.25bis configuration to take effect.

Adding V.25bis Addresses

You need to add a V.25bis address for each local V.25bis interface as well as for each destination. The V.25bis address includes:

- **Address Name.** The address name is a description of the address. You can use any string of up to 23 printable ASCII characters.
- **Network Dial Address.** Telephone number of the local or destination port. You can enter up to 30 characters that are in the valid format of the connected V.25bis modem. For additional information consult your modem manual.

Note: The valid character set for telephone numbers as defined by the CCITT and supported by the IBM 2210 includes:

- The decimal digits 0 through 9
Using V.25bis

- Colon (:) — “Wait Tone”
- Left-angled bracket (<) — “Pause”, used for inserting a fixed delay (dependent on modem) between digit sequences. For example, when going through a PBX or PTN.
- Equal (=) — “Separator 3”, which is “for national use.” (Consult your modem manual.)
- The letter P — “Dialing to be continued in Pulse mode.” (Not supported by some modems.)
- The letter T — “Dialing to be continued in DTMF mode.” (Not supported by some modems.)

To add a V.25bis address, enter the **add v25-bis-address** command at the Config> prompt. For example:

```
Config>add v25-bis-address
Assign address name [1-23] chars []? remote-site-baltimore
Assign network dial address [1-30 digits][]? 19095551234
```

Configuring the V.25bis Interface

This section explains how to configure the V.25bis interface. To configure, do the following:

1. To set up a serial line interface for V.25bis, set the data-link protocol for the serial line interface. From the Config> prompt, use the **set data-link v25bis** command. For example:

   ```
   Config>set data-link v25bis
   Interface Number [0]? 2
   ```

2. Display the V.25bis Config> prompt by entering the **network** command followed by the number of the interface. For example:

   ```
   Config>network 2
   V.25bis Data Link Configuration
   V25bis Config>
   ```

 You can use the **list devices** command at the Config> prompt to display a list of interface numbers configured on the router.

3. Use the **set local-address** command to specify the network address name of the local port. You must enter one of the address names you defined using the **add v25bis-address** command. For example:

   ```
   V25bis Config>set local-address
   Local network address name []? remote-site-baltimore
   ```

Note: You must restart the router for configuration changes to take effect.

Optional V.25bis Parameters

The following are optional V.25bis parameters you can set. For a complete description of these commands, see “V.25bis Configuration Commands” on page 583.

- You can limit the number of successive calls to an address that is inaccessible or that refuses those calls. To do so, use the **set retries-no-answer** and the **set timeout-no-answer** commands.
- The **set disconnect-timeout** command controls the amount of time the router waits to initiate a call after dropping a signal from the previous call.
- The **set command-delay-timeout** command specifies the amount of time the router waits to initiate or answer a call after it turns on DTR.
The `set connect-timeout` command specifies the number of seconds allowed for a call to be established.

- The `set duplex` command specifies the duplexing mode for the call.
- The `set encoding` command sets the encoding for the call.
- When you have finished configuring the interface, you can use the `list` command to display your configuration.

Adding Dial Circuits

Dial circuits are mapped to V.25bis serial line interfaces. You can map multiple dial circuits to one serial line interface.

To add a dial circuit, use the `add device dial-circuit` command from the `Config>` prompt. The software assigns an interface number to each circuit. You will use this number to configure the dial circuit.

Example:

```
Config> add device dial-circuit
Adding device as interface 6
```

Note: Dial circuits default to the Point-to-Point protocol (PPP). You can also set the dial circuit to use Frame Relay (FR) or SDLC.

Configuring Dial Circuits

This section describes how to configure a dial circuit. For a complete description of the dial circuit commands, see "Chapter 47. Configuring and Monitoring Dial Circuits" on page 643.

Note: If the encapsulator type is SDLC, the only dial circuit parameter that you can set is the base net number.

To configure the dial circuit, do the following:

1. Display the `Circuit Config>` prompt by entering the `network` command followed by the interface number of the dial circuit. You can use the `list devices` command at the `Config>` prompt to display a list of the dial circuits that you added. For example:

```
Config> network 6
Circuit configuration
Circuit Config>
```

2. Map the dial circuit to a V.25bis interface. The Base net is the V.25bis interface number. For example:

```
Circuit Config> set net
Base net for this circuit [0]? 0
```

3. Specify the address name of the remote router to which the dial circuit will connect. You must use one of the names you defined using the `add v25-bis-address` command. For example:

```
Circuit Config> set destination
Assign destination address name []? newyork
```

4. Configure the dial circuit to initiate outbound calls only, accept inbound calls only, or both initiate and accept calls.

Use the `set calls` command. To avoid a conflict if both ends of the link attempt to establish a call at the same time, configure the dial circuit at one end of the link to accept inbound calls only, and configure the dial circuit at the other end of the link to initiate outbound calls only. For example:
Using V.25bis

Circuit Config> set calls outbound
Circuit Config> set calls inbound

Note: For WAN Restoral operations or another dial-on-demand application, you should set up the circuit for either inbound or outbound calls.

5. Specify the timeout period for the circuit.
 Use the set idle command. If there is no traffic over the circuit for this specified time period, the dial circuit hangs up. To configure the circuit as a dedicated circuit, set the idle timer to zero. To configure the circuit to dial on demand, set the idle timer to a value other than zero. The range is 0 to 65535 and the default is 60 seconds. For example:

 Circuit Config> set idle
 Idle timer (seconds, 0 means always active) [60]? 0

 Note: For WAN Restoral or WAN Reroute operations you must set the idle time to 0.

6. Optionally, you can delay the time between when a call is established and the initial packet is sent.
 Use the set selftest-delay command. Setting a selftest delay can prevent initial packets from being dropped. If your modems take extra time to synchronize, adjust this delay. For example:

 Circuit Config> set selftest-delay
 Selftest delay(milli-seconds,0 means no delay)[150]? 200

7. Set the inbound address name.
 Use the set inbound command. You need to use this command only if you set up the circuit for both inbound and outbound calls and if the router’s destination address is different from the destination address that the remote router dials. For example, the numbers would be different if one of the routers must go through a PBX, international, or inter-LATA exchange. For example:

 Circuit Config> set inbound
 Assign destination inbound address name []? newyork

 The inbound address name must match one of the names that you defined using the add v25-bis-address command.

8. Set the duplexing mode for the circuit using the set duplex command.

9. Set the encoding mode for the circuit using the set encoding command.

10. Optionally, you can enter the configuration process for the data-link layer protocol that is running on the dial circuit (PPP or Frame Relay). Use the encapsulator command. For example:

 Circuit Config> encapsulator
Chapter 42. Configuring and Monitoring the V.25bis Network Interface

This chapter describes the V.25bis configuration and operational commands and GWCON commands. It includes the following sections:

- Accessing the Interface Configuration Process
- V.25bis Configuration Commands
- Accessing the Interface Monitoring Process on page 587
- V.25bis Monitoring Commands on page 587
- V.25bis and the GWCON Commands on page 592

Accessing the Interface Configuration Process

Use the following procedure to access the V.25bis configuration process.

1. At the OPCON prompt, enter the talk command and the PID for CONFIG. (For more detail on this command, refer to Chapter 3. The OPCON Process.) For example:

   ```
   * talk 6
   Config>
   ```

 After you enter the talk 6 command, the CONFIG prompt (Config>) displays on the console. If the prompt does not appear when you first enter CONFIG, press Return again.

2. At the CONFIG prompt, enter the list devices command to display the network interface numbers for which the router is currently configured. For example:

   ```
   Config> list devices
   Ifc 0 Ethernet CSR 81600, CSR2 80C00, vector 94
   Ifc 1 V.25bis CSR 81620, CSR2 80D00, vector 93
   Ifc 2 WAN X.25 CSR 81640, CSR2 80E00, vector 92
   Ifc 3 WAN PPP CSR 381620, CSR2 380D00, vector 125
   Ifc 4 WAN Frame Relay CSR 381640, CSR2 380E00, vector 124
   Ifc 5 Token Ring CSR 600000, vector 95
   ```

3. Record the interface numbers.

4. Enter the CONFIG network command and the number of the interface you want to configure. For example:

   ```
   Config> network 1
   V.25bis Config>
   ```

 The V.25bis configuration prompt now displays on the console.

V.25bis Configuration Commands

Table 75 on page 584 summarizes and the rest of the section explains the V.25bis configuration commands. These commands allow you to display, create, or modify a V.25bis configuration. Enter the V.25bis configuration commands at the V.25bis Config> prompt.
Table 75. V.25bis Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See [Getting Help] on page 10.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the V.25bis configuration.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the local address, connect, disconnect, and no answer timeouts, number of retries after no answer, the duplexing mode, command delay timeout, and encoding.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See [Exiting a Lower Level Environment] on page 11.</td>
</tr>
</tbody>
</table>

List

Use the list command to display the current V.25bis configuration.

Syntax:

```
list
```

Example:

```
list

V.25bis Configuration

Duplex = Full
Encoding = NRZ
Local Network Address Name = v403
Local Network Address = 15088982403

Non-Responding addresses:
Retries = 1
Timeout = 0 seconds

Call timeouts:
Command Delay = 0 ms
Connect = 60 seconds
Disconnect = 2 seconds
Cable type = V.35 DTE
Speed = 9600

Duplex
Displays the duplex mode for the interface once the dial connection has been established.

Encoding
Displays the transmission encoding scheme for the interface once the dial connection has been established. Encoding is either NRZ (non-return to zero) or NRZI (non-return to zero inverted).

Local Network Address Name:
Displays the network address name of the local port.

Local Network Address:
Displays the network dial address of the local port.

Non-responding addresses:

Retries
Maximum number of calls the router attempts to make to a non-responding address during the timeout period.

Timeout
If the router reaches the maximum number of retries to a
V.25bis Configuration Commands

non-responding address, it does not attempt to establish the call until this time has expired. This timeout period begins when the router attempts the first call.

**Call timeouts:**
Number of call timeouts.

**Command Delay**
Amount of time, in milliseconds, that the router waits to initiate or answer a call after it turns on DTR (Data Terminal Ready). If you set this parameter to 0, the router waits for the modem to respond to DTR with the CTS (Clear to Send) signal before it issues commands.

**Connect**
Number of seconds allowed for a call to be established. If this parameter is set to 0, the modem controls the connection establishment timeout.

**Disconnect**
After the router drops DTR it waits this amount of time before it initiates further calls. If you set this parameter to 0, the router waits for the modem to respond to the DTR drop by dropping CTS and DSR before it initiates the next call.

<table>
<thead>
<tr>
<th><strong>Set</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the <strong>set</strong> command to configure local addresses, timeouts and delays for calls, retries and timeouts for non-responding addresses, and the HDLC cable type.</td>
</tr>
</tbody>
</table>

**Syntax:**
```
set

 command-delay-timeout timeout
 connect-timeout timeout
 disconnect-timeout timeout
 duplex
 hdlc cable
 hdlc encoding
 hdlc speed
 local-address
 retries-no-answer
 timeout-no-answer
```

**command-delay-timeout # of milliseconds**
After the router turns on DTR (Data Terminal Ready), it waits this amount of time before it initiates or answers a call. If you set this parameter to 0, the router waits for the modem to respond to DTR with the CTS (Clear to Send) signal before it issues commands. The range is 0 to 65535 milliseconds, and the default is 0.

**connect-timeout # of seconds**
Sets the number of seconds allowed for a call to be established. The range is 0 to 65535 seconds, and the default is 60. If you set this parameter to 0, the modem controls the connection timeout. You should initially set this parameter to 0 and then use ELS event V25B.027 to find out how long it
V.25bis Configuration Commands

takes to establish connections to various destinations. You can then set this parameter to a number slightly higher than the longest connect time.

**Note:** Normally government regulation limits modem manufacturers to a maximum length for call setup. This value is merely an optimization, although inter-operation with some DSUs may require that you change this parameter.

**disconnect-timeout # of seconds**
Specifies the amount of time, in seconds, that the router waits after dropping DTR before it initiates further calls. The range is 0 to 65535 seconds, and the default is 2. If you set this parameter to 0, the router waits for the modem to respond to the DTR drop by dropping CTS and DSR before it initiates the next call.

duplex
Specifies the duplex type of the line.

When full-duplex is configured, the RTS modem signal remains asserted once the dial connection has been established.

When half-duplex is configured, the router raises RTS when it is time to transmit and waits for CTS to be asserted by the modem. After CTS is asserted, the router transmits data packets and then drops RTS when the router is through transmitting to let the peer device respond.

Only configure half-duplex when using the V.25bis interface to handle switched SDLC and the attached modem requires the half-duplex mode of operation.

**Note:** Duplex must be full for PPP or Frame Relay circuits.

**Valid values:** full or half

**Default value:** full

**hdlc cable rs232 dte**
Specifies the type of cable connected to this interface. Setting this parameter allows you to view the cable type when you enter the `interface` command at the GWCON (+) prompt and when you enter the `statistics` command at the V.25bis> monitoring prompt. This parameter does not affect operation of the router.

**hdlc encoding**
Sets the HDLC transmission encoding scheme as NRZ (non-return to zero) or NRZI (non-return to zero inverted). Most configurations use NRZ. The configured encoding is used for the end-to-end connection.

**Note:** Although you might configure NRZI, the exchange between the DTE and the modem (as described by CCITT recommendation, V.25bis) uses NRZ as the encoding scheme.

**Valid values:** NRZ or NRZI

**Default value:** NRZ

**hdlc speed**
Specifies the line speed for this interface. Setting this parameter allows you to view the line speed when you enter the interface command at the
V.25bis Configuration Commands

GWCON (+) prompt and when you enter the statistics command at the v.25bis> monitoring prompt. The range is 300 to 2 048 000 bps.

**Note:** This command does not affect the actual line speed but it sets the speed some protocols, such as IPX, use when calculating routing cost parameters for dial circuits mapped to the V.25bis interface.

**local-address address name**
Specifies the network address name of the local port. This address name must match one of the names that you defined at the Config> using the add v25-bis-address command.

**Example:** set local-address line-1-local

**retries-no-answer value**
Some telephone service providers impose restrictions on automatic recalling devices to limit the number of successive calls to an address that is inaccessible or that refuses those calls. This parameter specifies the maximum number of calls the router attempts to make to a non-responding address during the timeout period. The range is 0 to 10, and the default is 1.

**Note:** Government regulation may also impose limits on the modem manufacturer that would supersede this parameter.

**timeout-no-answer # of seconds**
After the router reaches the maximum number of retries-no-answer to a non-responding address, it does not initiate further calls to that address until this time has expired. This timeout period begins when the router attempts the first call to an address. The range is 0 to 65535 seconds, and the default is 0. If you set this parameter to 0, the modem controls the timeout period.

---

**Accessing the Interface Monitoring Process**

To access the interface monitoring process for V.25bis, enter the following command at the GWCON (+) prompt:

```
+ network #
```

Where # is the number of the V.25bis serial line. You cannot directly access the V.25bis monitoring process for dial circuits, but you can monitor the dial circuits that are mapped to the serial line interface.

**Note:** V.25bis interfaces also have ELS troubleshooting messages that you can use to monitor V.25bis related activity. See the IBM Nways Event Logging System Messages Guide for further details.

---

**V.25bis Monitoring Commands**

This section summarizes and explains the V.25bis operating commands. These commands allow you to view the calls, circuits, parameters, and statistics of the V.25bis interfaces.

Enter the V.25bis monitoring commands at the V.25bis> prompt. Table 76 on page 588 shows the commands.
Table 76. V.25bis Monitoring Command Summary

<table>
<thead>
<tr>
<th>Monitoring Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help on page 10</a>.</td>
</tr>
<tr>
<td>Calls</td>
<td>List the number of completed and attempted connections made for each dial circuit mapped to this interface since the last time statistics were reset on the router.</td>
</tr>
<tr>
<td>Circuits</td>
<td>Shows the status of all data circuits configured on the V.25bis interface.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Displays the current parameters for the V.25bis interface. (This command is similar to the V.25bis Config&gt; list command.)</td>
</tr>
<tr>
<td>Statistics</td>
<td>Displays the current statistics for the V.25bis interface.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment on page 11</a>.</td>
</tr>
</tbody>
</table>

**Calls**

Use the **calls** command to list the number of completed and attempted connections made for each dial circuit mapped to this interface since the last time statistics were reset on the router.

**Syntax:**

```
calls
```

**Example:**

```
calls
Net Interface Site Name In Out Rfsd Blckd
1 PPP/0 v4032000 2 0 0 0
```

**Unmapped connection indications:** 0

**Net** Number of the dial circuit mapped to this interface.

**Interface**

Type of interface and its instance number.

**Site Name**

Network address name of the dial circuit.

**In** Number of inbound connections accepted for this dial circuit.

**Out** Number of completed connections initiated by this dial circuit.

**Rfsd** Number of connections initiated by this dial circuit that were refused by the network or the remote destination port.

**Blckd** Number of connection attempts that the router blocked. The router blocks connection attempts if the local port is already in use, the maximum number of retries to a non-responding address is reached, or a modem is not responding.

**Unmapped connection indications:**

Number of connection attempts that were refused by the router because there were no enabled dial circuits that were configured to accept the incoming calls.
Circuits

The circuits command shows the status of all dial circuits configured on the V.25bis port.

**Syntax:**

```
circuits
```

**Example:**

```
circuit
Net Interface MAC/Data-Link State Reason Duration
2 PPP/0 Point to Point Avail Rmt Disc 1:02:25
```

- **Net:** Number of the dial circuit mapped to this interface
- **Interface:** Type of interface and its instance number.
- **MAC/DataLink:** Type of datalink protocol configured for this dial circuit.
- **State:** Current state of the dial circuit:
  - Up - currently connected
  - Available - not currently connected, but is available
  - Disabled - dial circuit was disabled
  - Down - failed to connect because of a busy dial circuit or because the link-layer protocol is down
- **Reason:** Reason for the current state:
  - nnn_Data - (where nnn is the name of a protocol) the circuit is Up because a protocol had data to send.
  - Remote Disconnect - the circuit is either Down or Available because the remote destination disconnected the call.
  - Operator Request - the circuit is Available because the last call was disconnected by a monitoring command.
  - Inbound - the circuit is Up because the circuit answered an inbound call.
  - Restoral - the circuit is Up because of a WAN Restoral operation.
  - Self Test - the circuit was configured as static (idle time=0) and successfully connected once it was enabled.
- **Duration:** Length of time that the circuit has been in the current state.

**Parameters**

Use the parameters command to display the current V.25bis serial line configuration. Note that this is the same information displayed in the V.25bis Config> list command.

**Syntax:**

```
parameters
```

**Example:**

---

Chapter 42. Configuring and Monitoring the V.25bis Network Interface 589
V.25bis Operating Commands

parameters
V.25bis port Parameters

Local Network Address Name = v402
Local Network Address = 15088982402

Non-Responding addresses:
Retries = 1
Timeout = 0 seconds

Call timeouts:
Command Delay = 0 ms
Connect = 0 seconds
Disconnect = 0 seconds

Local Network Address Name:
Network address name of the local port.

Local Network Address:
Network dial address of the local port.

Non-responding addresses:

Retries
Maximum number of calls the router attempts to make to a non-responding address during the timeout period.

Timeout
If the router reaches the maximum number of retries to a non-responding address, it does not attempt to establish the call until this time has expired. This timeout period begins when the router attempts the first call to an address.

Call timeouts:

Command Delay
Amount of time, in milliseconds, that the router waits to initiate or answer a call after it turns on DTR (Data Terminal Ready). If you set this parameter to 0, the router waits for the modem to respond to DTR with the CTS (Clear to Send) signal before it issues commands.

Connect
Number of seconds allowed for a call to be established. If this parameter is set to 0, the modem controls the connection establishment timeout.

Disconnect
After the routers drops DTR it waits this amount of time before it initiates further calls. If you set this parameter to 0, the router waits for the modem to respond to the DTR drop by dropping CTS and DSR before it initiates the next call.

Statistics

Use the statistics command to display the current statistics for this V.25bis interface.

Syntax:

statistics

Example:
V.25bis Operating Commands

statistics

V.25bis port Statistics

Adapter cable: RS-232 DTE RISC Microcode Revision: 1

V.24 circuit: 105 106 107 108 109 125 141
Nicknames: RTS CTS DSR DTR DCD RI LL
RS-232 CA CB CC CD CF CE
State: OFF OFF OFF OFF OFF OFF OFF

Line speed: 4800
Last port reset: 24 seconds ago

Input frame errors:
CRC error 0 alignment (byte length) 0
missed frame 0 too long (> 2182 bytes) 0
aborted frame 0 DMA/FIFO overrun 0
L & F bits not set 0

Output frame counters:
DMA/FIFO underrun errors 0 Output aborts sent 0

Adapter cable:
Type of adapter cable being used.

V.24 circuit:
Circuit numbers as identified by V.24 specifications.

Nicknames:
Common names for the circuits.

RS-232
EIA 232 (also known as RS-232) names for the circuits.

State: Current state of the circuits: ON, OFF, or "---", which means that the state is undefined for this type of interface.

Line speed:
The transmit clock speed (approximate).

Last port reset:
Length of time since the port was reset.

Input frame errors:

CRC error
Number of packets received that contained checksum errors and as a result were discarded.

Alignment (byte length)
Number of packets received that were not an even multiple of 8 bits in length and as a result were discarded.

Missed Frame
When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

too long (> nnnn bytes)
Number of packets received that were greater than the configured frame size (nnnn) and as a result were discarded.

aborted frame
Number of packets received that were aborted by the sender or a line error.
V.25bis Operating Commands

**DMA/FIFO overrun**

The number of times the serial interface card could not send data fast enough to the system packet buffer memory to receive packets from the network.

**L & F bits not set**

On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame upon arrival, the hardware sets both the last and first bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.

*Note:* It is unlikely that the L & F bits not set counter will be affected by traffic.

**Output frame counters:**

**DMA/FIFO underrun errors**

Number of times the serial interface card could not retrieve data fast enough from the system packet buffer memory to transmit packets onto the network.

**Output aborts sent**

Number of transmissions that were aborted as requested by upper-level software.

---

V.25bis and the GWCON Commands

While V.25bis has its own monitoring process for monitoring purposes, the router also displays configuration information and complete statistics for devices and circuits when you use the interface, statistics, and error commands from the GWCON environment. You can also use the GWCON `test` command to test DCEs and circuits.

*Note:* Issuing the `test` command to the V.25bis serial interface causes the current call to be dropped and re-dialed.

For more information on the GWCON command, see [Chapter 10. The Operating/Monitoring Process (GWCON - Talk 5) and Commands](#) on page 127.

---

Statistics for V.25bis Interfaces and Dial Circuits

Use the `interface` command at the GWCON (+) prompt to display statistics for V.25bis serial line interfaces and dial circuits.

To display the following statistics for a V.25bis serial line interface, use the `interface` command followed by the `interface number` of the V.25bis serial line interface.

**Example:** `interface 1`

```plaintext
Nt Nt' Interface CSR Vec Passed Failed Failed
1 1 V.25/0 80000000 44 0 0
V.25bis MAC/data-link on SCC Serial Line interface
```

`Adapter cable: RS-232 DTE RISC Microcode Revision: 1`

`V.24 circuit: 105 106 107 108 109 125`

`Nicknames: RTS CTS DSR DTR DCD R1 LL`

---

592  MRS V3.2 Software User’s Guide
RS-232: CA CB CC CD CF CE
State: OFF OFF OFF OFF OFF OFF OFF
Line Speed: 14.400 Kbps
Last port reset: 1 hour, 28 minutes, 25 seconds ago
Input frame errors:
- CRC error: 0
- missed frame: 0
- aborted frame: 0
Output frame counters: DMA/FIFO underrun errors 0

To display the following statistics for a dial circuit, use the interface command followed by the interface number of the dial circuit.

Example:

```
interface 3
```

```
Nt Nt' Interface CSR Vec Passed Failed Failed
3 2 PPP/1 91640 5C 0 5 0
```

Point to Point MAC/data-link on V.25bis Dial Circuit interface

The following list describes the output for both serial line interfaces and dial circuits.

- **Nt**: Serial line interface number or dial circuit interface number.
- **Nt'**: If “Nt” is a dial circuit, this is the interface number of the V.25bis serial line interface to which the dial circuit is mapped.

**Interface**
- Interface type and its instance number.

**CSR**
- Command and status register addresses of base network.

**Vec**
- Interrupt vector address.

**Self-Test Passed**
- Number of self-tests that succeeded.

**Self-Test Failed**
- Number of self-tests that failed.

**Maintenance: Failed**
- Number of maintenance failures.

**Adapter cable**:
- Type of adapter cable that is being used.

**V.24 circuit**:
- Circuit numbers as identified by V.24 specifications.

**Nicknames**
- Common names for the circuits.

**RS-232**
- EIA 232 (also known as RS-232) names for the circuits.

**State**
- Current state of the circuits (ON or OFF).

**Line speed**
- The transmit clock speed (approximate).

**Last port reset**
- Length of time since the port was reset.

**Input frame errors**:
V.25bis Operating Commands

CRC error
Number of packets received that contained checksum errors and as a result were discarded.

Alignment (byte length)
Number of packets received that were not an even multiple of 8 bits in length and as a result were discarded.

Missed Frame
When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

too long (> nnnn bytes)
Number of packets received that were greater than the configured frame size and as a result were discarded.

DMA/FIFO overrun
The number of times the serial interface card could not send data fast enough to the system packet buffer memory to receive packets from the network.

L & F bits not set
On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame upon arrival, the hardware sets both the last and first bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.

Note: It is unlikely that the L & F bits not set counter will be affected by traffic.

aborted frame
Number of packets received that were aborted by the sender or a line error.

Output frame counters:

DMA/FIFO underrun errors
Number of times the serial interface card could not retrieve data fast enough from the system packet buffer memory to transmit packets onto the network.

Output aborts sent
Number of transmissions that were aborted as requested by upper-level software.
Chapter 43. Using the V.34 Network Interface

The V.34 interface allows routers to establish serial connections over switched telephone lines using externally attached modems that support the standard AT command set or integrated modem adapters. This chapter describes how to use a V.34 interface. It includes the following sections:

- **Before You Begin**
- **Configuration Procedures**

**Note:** You can assign a destination name to a connection list and assign a destination number to each line in the list. When that destination name is called, the numbers in the list are tried one by one until a connection is made or the list is exhausted.

### Before You Begin

If you are using externally attached modems, make sure that you have asynchronous modems that support the Hayes AT command set. Also, you must know the maximum DTE speed of each modem.

### Configuration Procedures

This section describes how to configure your router for V.34. The tasks you need to perform are:

1. Adding V.34 addresses
2. Configuring V.34 parameters
3. Adding dial circuits
4. Configuring dial circuits

**Note:** You must restart the router for changes to the V.34 configuration to take effect.

### Adding V.34 Addresses

A default V.34 address is created when V.34 interfaces are initially configured (called “default_address”). Dial circuits configured on the V.34 interface default to the same address allowing some dial-in applications to work without modification of the V.34 address.

You need to add a V.34 address (or modify the default_address) if you plan to use dial-out applications. The V.34 address includes:

- **Address Name.** The address name is a description of the address. You can use any string of up to 23 printable ASCII characters.
- **Network Dial Address.** Telephone number of the local or destination port. You can enter up to 31 characters that are in the valid dial characters for the connected modem.

**Note:** The valid character set for telephone numbers as defined by the CCITT and supported by the IBM 2210 includes:

- The decimal digits 0 through 9
Using V.34

- Colon (:) – “Wait Tone”
- Left-angled bracket (<) – “Pause”, used for inserting a fixed delay (dependent on modem) between digit sequences. For example, when going through a PBX or PTN.
- Equal (=) – “Separator 3”, which is “for national use.” (Consult your modem manual.)
- The letter P – “Dialing to be continued in Pulse mode.” (Not supported by some modems.)
- The letter T – “Dialing to be continued in DTMF mode.” (Not supported by some modems.)

V.34 addresses are not interface specific so they are added from the main Config> prompt. For example:

```
Config> add v34-address
Assign address name [1-23] chars []? remote-site-baltimore
Assign network dial address [1-20 digits][]? 1-909-555-1234
```

Configuring the V.34 Interface

This section explains how to configure the V.34 interface. To configure, do the following:

1. To set up a serial line interface for V.34, set the datalink protocol for the serial line interface. From the Config> prompt, use the `set data-link v34` command. For example:

```
Config> set data-link v34
Interface Number [0]? 2
```

**Note:** The datalink is automatically set for integrated modem and cannot be changed.

2. Display the V.34 Config> prompt by entering the `network` command followed by the number of the interface. For example:

```
Config> network 2
V.34 Data Link Configuration
V34 System Net Config 2>
```

You can use the `list devices` command at the Config> prompt to display a list of interface numbers configured on the router.

3. Use the `set local-address` command to specify the network address name of the local port. You must enter one of the address names you defined using the `add v34-address` command. For example:

```
V34 System Net Config 2> set local-address
Local network address name []? remote-site-baltimore
```

**Note:** You must restart the router for configuration changes to take effect.

Optional V.34 Parameters

The following are optional V.34 parameters you can set. For a complete description of these commands, see [V.34 Configuration Commands](#) on page 599.

- You can limit the number of successive calls to an address that is inaccessible or that refuses those calls. To do so, use the `set retries-no-answer` and the `set timeout-no-answer` commands.
- The `set disconnect-timeout` command controls the amount of time the router waits to initiate a call after dropping a signal from the previous call.
The `set command-delay-timeout` command specifies the amount of time the router waits to initiate or answer a call after it turns on DTR.

The `set connect-timeout` command specifies the number of seconds allowed for a call to be established.

The `speed` command sets the maximum DTE speed for the modem.

The `modem-init-string` command allows flexibility in modem configuration to accommodate user or external equipment requirements.

When you have finished configuring the interface, you can use the `list` command to display your configuration.

**Adding Dial Circuits**

Dial circuits are mapped to V.34 serial line interfaces. You can map multiple dial circuits to one serial line interface.

The V.34 interface supports multiple types of dial circuits. To add a dial circuit use one of the following commands from the `Config>` prompt:

- `add device dial-circuit`
- `add device dial-in`
- `add device dial-out`

The software assigns an interface number to each circuit. You will use this number to configure the dial circuit.

**Example:**

```
Config> add device dial-circuit
Adding device as interface 6
```

**Note:** Dial circuits default to the Point-to-Point protocol (PPP). Although the `set data-link` command can be used to set the datalink of a dial circuit to Frame Relay, only PPP dial circuits are supported over V.34.

**Configuring Dial Circuits**

This section describes how to configure a dial circuit. For a complete description of the dial circuit commands, see [Chapter 47. Configuring and Monitoring Dial Circuits](#) on page 643. To configure the dial circuit, do the following:

1. Display the Circuit `Config>` prompt by entering the `network` command followed by the interface number of the dial circuit. You can use the `list devices` command at the `Config>` prompt to display a list of the dial circuits that you added. For example:

```
Config> network 6
Circuit configuration
Circuit Config>
```

2. Map the dial circuit to a V.34 interface. The Base net is the V.34 interface number. For example:

```
Circuit Config> set net
Base net for this circuit [0]? 0
```

3. Specify the address name of the remote router to which the dial circuit will connect. You must use one of the names you defined using the `add v34-address` command. For example:

```
Circuit Config> set destination
Assign destination address name []? newyork
```
4. Configure the dial circuit to initiate outbound calls only, accept inbound calls only, or both initiate and accept calls.

Use the `set calls` command. To avoid a conflict if both ends of the link attempt to establish a call at the same time, configure the dial circuit at one end of the link to accept inbound calls only, and configure the dial circuit at the other end of the link to initiate outbound calls only. For example:

```
Circuit Config> set calls outbound
Circuit Config> set calls inbound
```

**Note:** For WAN Restoral operations or another dial-on-demand application, you should set up the circuit for either inbound or outbound calls.

5. Specify the timeout period for the circuit.

Use the `set idle` command. If there is no traffic over the circuit for this specified time period, the dial circuit hangs up. To configure the circuit as a dedicated circuit, set the idle timer to zero. To configure the circuit to dial on demand, set the idle timer to a value other than zero. The range is 0 to 65535 and the default is 60 seconds. For example:

```
Circuit Config> set idle
Idle timer (seconds, 0 means always active) [60]? 0
```

**Note:** For WAN Restoral operations you must set the idle time to 0.

6. Optionally, you can delay the time between when a call is established and the initial packet is sent.

Use the `set selftest-delay` command. Setting a self-test delay can prevent initial packets from being dropped. If your modems take extra time to synchronize, adjust this delay. For example:

```
Circuit Config> set selftest-delay
Selftest delay(milli-seconds, 0 means no delay)[150]? 200
```

7. Set the inbound address name.

Use the `set inbound` command. You need to use this command only if you set up the circuit for both inbound and outbound calls and if the router’s destination address is different from the destination address that the remote router dials. For example, the numbers would be different if one of the routers must go through a PBX, international, or inter-LATA exchange. For example:

```
Circuit Config> set inbound
Assign destination inbound address name []? newyork
```

The inbound address name must match one of the names that you defined using the `add v34-address` command.

8. Optionally, you can enter the configuration process for the datalink layer protocol that is running on the dial circuit (PPP or Frame Relay). Use the `encapsulator` command. For example:

```
Circuit Config> encapsulator
```
Chapter 44. Configuring and Monitoring the V.34 Network Interface

This chapter describes the V.34 configuration and operational commands and GWCON commands. It includes the following sections:

- Accessing the Interface Configuration Process
- V.34 Configuration Commands
- Accessing the Interface Monitoring Process on page 602
- V.34 Monitoring Commands on page 603
- V.34 and the GWCON Commands on page 607

Accessing the Interface Configuration Process

Use the following procedure to access the V.34 configuration process.

1. At the OPCON prompt, enter the **talk** command and the PID for CONFIG. (For more detail on this command, refer to Chapter 3, The OPCON Process.) For example:

   ```
 * talk 6
 Config>
   ```

   After you enter the **talk 6** command, the CONFIG prompt (Config>) displays on the console. If the prompt does not appear when you first enter **CONFIG**, press **Return** again.

2. At the CONFIG prompt, enter the **list devices** command to display the network interface numbers for which the router is currently configured. For example:

   ```
 Config> list devices
 Ifc 0 Ethernet CSR 81600, CSR2 80C00, vector 94
 Ifc 1 V.34 Base Net CSR 81620, CSR2 80000, vector 93
 Ifc 2 WAN X.25 CSR 81640, CSR2 80E00, vector 92
 Ifc 3 WAN PPP CSR 381620, CSR2 380D00, vector 125
 Ifc 4 WAN Frame Relay CSR 381640, CSR2 380E00, vector 124
 Ifc 5 Token Ring CSR 380000, vector 95
 Ifc 6 4-port Modem Adapter CSR 8001600, CSR2 800000, vector 158
 Ifc 7 4-port Modem Adapter CSR 8001620, CSR2 800000, vector 157
 Ifc 8 4-port Modem Adapter CSR 8001640, CSR2 800000, vector 156
 Ifc 9 4-port Modem Adapter CSR 8001660, CSR2 800000, vector 155
   ```

3. The V.34 interfaces are listed as “V.34 Base Net”, or 4-port Modem Adapter, or 8-port Modem Adapter. Record the interface numbers of interfaces to configure.

4. Enter the CONFIG **network** command and the number of the interface you want to configure. For example:

   ```
 Config> network 1
 V.34 System Net Config >
   ```

   The V.34 configuration prompt now displays on the console.

V.34 Configuration Commands

[Table 77 on page 600](#) summarizes and the rest of the section explains the V.34 configuration commands. These commands allow you to display, create, or modify a V.34 configuration. Enter the V.34 configuration commands at the V.34 Config> prompt.
Table 77. V.34 Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See &quot;Getting Help&quot; on page 10.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the V.34 configuration.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the local address, connect, disconnect, and no answer timeouts, number of retries after no answer, and command delay timeout.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See &quot;Exiting a Lower Level Environment&quot; on page 13.</td>
</tr>
</tbody>
</table>

List

Use the list command to display the current V.34 configuration.

Syntax:

```
list
```

Example:

```
list
V.34 System Net Configuration:
Local Network Address Name = v403
Local Network Address = 1-508-898-2403
Non-Responding addresses:
Retries = 1
Timeout = 0 seconds
Call timeouts:
Command Delay = 0 ms
Connect = 60 seconds
Disconnect = 2 seconds
Modem strings:
Initialization string = at&f&s111&d2&c1x3
Speed (bps) = 115200
```

Local Network Address Name:
Displays the network address name of the local port.

Local Network Address:
Displays the network dial address of the local port.

Non-responding addresses:

- **Retries**
  
  Maximum number of calls the router attempts to make to a non-responding address during the timeout period.

- **Timeout**
  
  If the router reaches the maximum number of retries to a non-responding address, it does not attempt to establish the call until this time has expired. This timeout period begins when the router attempts the first call.

Call timeouts:

- **Command Delay**
  
  Amount of time, in milliseconds, that the router waits to initiate or answer a call after it turns on DTR (Data Terminal Ready). If you
set this parameter to 0, the router waits for the modem to respond to DTR with the CTS (Clear to Send) signal before it issues commands.

**Connect**
Number of seconds allowed for a call to be established. If this parameter is set to 0, the modem controls the connection establishment timeout.

**Disconnect**
After the router drops DTR it waits this amount of time before it initiates further calls. If you set this parameter to 0, the router waits for the modem to respond to the DTR drop by dropping CTS and DSR before it initiates the next call.

**Modem strings:**
Command strings sent to the attached modem.

**Initialization string**
This is the last AT command string sent to the modem during initialization (before a call is accepted or attempted). A default string is provided which should work for most modems.

**Speed (bps)**
This is the DTE speed. The default should work for most modems, but you may need to set the speed lower to operate properly or higher to achieve maximum data speeds supported by the modem.

**Set**

Use the `set` command to configure local addresses, timeouts and delays for calls, retries and timeouts for non-responding addresses, and the HDLC cable type.

**Syntax:**

```
set command-delay-timeout . . .
connect-timeout . . .
disconnect-timeout . . .
speed . . .
local-address . . .
modem-init-string . . .
retries-no-answer . . .
timeout-no-answer . . .
```

**command-delay-timeout # of milliseconds**
After the router turns on DTR (Data Terminal Ready), it waits this amount of time before it initiates or answers a call. If you set this parameter to 0, the router waits for the modem to respond to DTR with the CTS (Clear to Send) signal before it issues commands. The range is 0 to 65535 milliseconds, and the default is 0.

**connect-timeout # of seconds**
Sets the number of seconds allowed for a call to be established. The range is 0 to 65535 seconds, and the default is 60. If you set this parameter to 0, the modem controls the connection timeout. You should initially set this parameter to 0 and then use ELS event V34B.027 to find out how long it
Configuring V.34

takes to establish connections to various destinations. You can then set this parameter to a number slightly higher than the longest connect time.

**Note:** Normally government regulation limits modem manufacturers to a maximum length for call setup. This value is merely an optimization, although inter-operation with some DSUs may require that you change this parameter.

**disconnect-timeout # of seconds**
Specifies the amount of time, in seconds, that the router waits after dropping DTR before it initiates further calls. The range is 0 to 65535 seconds, and the default is 2. If you set this parameter to 0, the router waits for the modem to respond to the DTR drop by dropping CTS and DSR before it initiates the next call.

**speed # bits per second**
Specifies the DTE speed in bits per second for the modem. You should try to use the maximum speed supported by the modem, although some modems may not autobaud properly at all supported speeds. If you suspect there is a problem, try a lower speed.

**local-address address name**
Specifies the network address name of the local port. This address name must match one of the names that you defined at the `Config>` using the `add v34-address` command.

**modem-init-string value**
This is an AT command string sent to the modem at the end of successful interface initialization. It can be used to tailor modem parameters for your application.

**retries-no-answer value**
Some telephone service providers impose restrictions on automatic recalling devices to limit the number of successive calls to an address that is inaccessible or that refuses those calls. This parameter specifies the maximum number of calls the router attempts to make to a non-responding address during the timeout period. The range is 0 to 10, and the default is 1.

**Note:** Government regulation may also impose limits on the modem manufacturer that would supersede this parameter.

**timeout-no-answer # of seconds**
After the router reaches the maximum number of `retries-no-answer` to a non-responding address, it does not initiate further calls to that address until this time has expired. This timeout period begins when the router attempts the first call to an address. The range is 0 to 65535 seconds, and the default is 0. If you set this parameter to 0, the modem controls the timeout period.

---

**Accessing the Interface Monitoring Process**

To access the interface monitoring process for V.34, enter the following command at the GWCON (+) prompt:

```
+ network
```
Where \# is the number of the V.34 interface. You cannot directly access the V.34 monitoring process for dial circuits, but you can monitor the dial circuits that are mapped to the serial line interface.

**Note:** V.34 interfaces also have ELS troubleshooting messages that you can use to monitor V.34 related activity. See the *IBM Nways Event Logging System Messages Guide* for further details.

## V.34 Monitoring Commands

This section summarizes and explains the V.34 monitoring commands. These commands allow you to view the calls, circuits, parameters, and statistics of the V.34 interfaces.

Enter the V.34 monitoring commands at the V.34> prompt. Table 78 shows the commands.

<table>
<thead>
<tr>
<th>Monitoring Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See <a href="#">Getting Help on page 10</a>.</td>
</tr>
<tr>
<td>Calls</td>
<td>List the number of completed and attempted connections made for each dial circuit mapped to this interface since the last time statistics were reset on the router.</td>
</tr>
<tr>
<td>Circuits</td>
<td>Shows the status of all data circuits configured on the V.34 interface.</td>
</tr>
<tr>
<td>Reset</td>
<td>Clears connections and resets the interface.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Displays the current parameters for the V.34 interface. (This command displays the same information as the interface configuration &quot;list&quot; command.)</td>
</tr>
<tr>
<td>Statistics</td>
<td>Displays the current statistics for the V.34 interface.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See <a href="#">Exiting a Lower Level Environment on page 11</a>.</td>
</tr>
</tbody>
</table>

### Calls

Use the **calls** command to list the number of completed and attempted connections made for each dial circuit mapped to this interface since the last time statistics were reset on the router.

**Syntax:**

calls

**Example:**

calls

```plaintext
Net Interface Site Name In Out Rfsd Blckd
1 PPP/0 v4032000 2 0 0 0 0
```

Unmapped connection indications: 0

<table>
<thead>
<tr>
<th>Net</th>
<th>Number of the dial circuit mapped to this interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Type of interface and its instance number.</td>
</tr>
<tr>
<td>Site Name</td>
<td>Network address name of the dial circuit.</td>
</tr>
</tbody>
</table>
Configuring V.34

In	Number of inbound connections accepted for this dial circuit.
Out	Number of completed connections initiated by this dial circuit.
Rfsd	Number of connections initiated by this dial circuit that were refused by the network or the remote destination port.
Blckd	Number of connection attempts that the router blocked. The router blocks connection attempts if the local port is already in use, the maximum number of retries to a non-responding address is reached, or a modem is not responding.

Unmapped connection indications:
Number of connection attempts that were refused by the router because there were no enabled dial circuits that were configured to accept the incoming calls.

Circuits

The circuits command shows the status of all dial circuits configured on the V.34 port.

Syntax:
circuits

Example:
circuit
Net Interface MAC/Data-Link State Reason Duration
2  PPP/0 Point to Point Avail Rmt Disc 1:02:25

Net Number of the dial circuit mapped to this interface

Interface Type of interface and its instance number.

MAC/DataLink Type of datalink protocol configured for this dial circuit.

State Current state of the dial circuit:

- Up - currently connected
- Available - not currently connected, but is available
- Disabled - dial circuit was disabled
- Down - failed to connect because of a busy dial circuit or because the link-layer protocol is down

Reason Reason for the current state:

- nnn_Data - (where nnn is the name of a protocol) the circuit is Up because a protocol had data to send.
- Remote Disconnect - the circuit is either Down or Available because the remote destination disconnected the call.
- Operator Request - the circuit is Available because the last call was disconnected by a monitoring command.
- Inbound - the circuit is Up because the circuit answered an inbound call.
- Restoral - the circuit is Up because of a WAN Restoral operation.
- Self Test - the circuit was configured as static (idle time=0) and successfully connected once it was enabled.
Duration

Length of time that the circuit has been in the current state.

Parameters

Use the parameters command to display the current V.34 serial line configuration. Note that this is the same information displayed in the V.34 Config> list command.

Syntax:
parameters

Example:
parameters
V.34 port Parameters

Local Network Address Name = v402
Local Network Address = 1-508-898-2402

Non-Responding addresses:
Retries = 1
Timeout = 0 seconds

Call timeouts:
Command Delay = 0 ms
Connect = 0 seconds
Disconnect = 0 seconds

Modem strings:
Initialization string = at&f&s1l1&c1x3

Local Network Address Name:
Network address name of the local port.

Local Network Address:
Network dial address of the local port.

Non-responding addresses:

Retries
Maximum number of calls the router attempts to make to a non-responding address during the timeout period.

Timeout
If the router reaches the maximum number of retries to a non-responding address, it does not attempt to establish the call until this time has expired. This timeout period begins when the router attempts the first call to an address.

Call timeouts:

Command Delay
Amount of time, in milliseconds, that the router waits to initiate or answer a call after it turns on DTR (Data Terminal Ready). If you set this parameter to 0, the router waits for the modem to respond to DTR with the CTS (Clear to Send) signal before it issues commands.

Connect
Number of seconds allowed for a call to be established. If this parameter is set to 0, the modem controls the connection establishment timeout.

Disconnect
After the routers drops DTR it waits this amount of time before it
Configuring V.34

initiates further calls. If you set this parameter to 0, the router waits for the modem to respond to the DTR drop by dropping CTS and DSR before it initiates the next call.

Statistics

Use the statistics command to display the current statistics for this V.34 interface.

Syntax:

```
statistics
```

Example:

```
statistics
V.34 port Statistics
Adapter cable: RS-232 DTE RISC Microcode Revision: 1
V.24 circuit: 105 106 107 108 109 125 141
 Nicknames: RTS CTS DSR DTR DCD RI LL
 RS-232 CA CB CC CD CF CE
 State: OFF OFF OFF OFF OFF OFF OFF
 Line speed: 115200 Kbps
 Last port reset: 24 seconds ago

Input frame errors:
 CRC error 0 alignment (byte length) 0
 missed frame 0 too long (> 2182 bytes) 0
 aborted frame 0 DMA/FIFO overrun 0
 L & F bits not set 0

Output frame counters:
 DMA/FIFO underrun errors 0 Output aborts sent 0

Adapter cable:
 Type of adapter cable being used.

V.24 circuit:
 Circuit numbers as identified by V.24 specifications.

Nicknames:
 Common names for the circuits.

RS-232
 EIA 232 (also known as RS-232) names for the circuits.

State:
 Current state of the circuits: ON, OFF, or "---," which means that the state is undefined for this type of interface.

Line speed:
 The transmit clock speed (approximate).

Last port reset:
 Length of time since the port was reset.

Input frame errors:

 CRC error
 Number of packets received that contained checksum errors and as a result were discarded.

 Alignment (byte length)
 Number of packets received that were not an even multiple of 8 bits in length and as a result were discarded.
Missed Frame
When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

too long (> nnnn bytes)
Number of packets received that were greater than the configured frame size (nnnn) and as a result were discarded.

aborted frame
Number of packets received that were aborted by the sender or a line error.

DMA/FIFO overrun
The number of times the serial interface card could not send data fast enough to the system packet buffer memory to receive packets from the network.

L & F bits not set
On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame upon arrival, the hardware sets both the last and first bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.

Note: It is unlikely that the L & F bits not set counter will be affected by traffic.

Output frame counters:

DMA/FIFO underrun errors
Number of times the serial interface card could not retrieve data fast enough from the system packet buffer memory to transmit packets onto the network.

Output aborts sent
Number of transmissions that were aborted as requested by upper-level software.

V.34 and the GWCON Commands

While V.34 has its own monitoring process for monitoring purposes, the router also displays configuration information and complete statistics for devices and circuits when you use the interface, statistics, and error commands from the GWCON environment. You can also use the GWCON test command to test DCEs and circuits.

Note: Issuing the test command to the V.34 serial interface causes the current call to be dropped and re-dialed.

For more information on the GWCON command, see Chapter 10, The Operating/Monitoring Process (GWCON - Talk 5) and Commands” on page 127.

Statistics for V.34 Interfaces and Dial Circuits

Use the interface command at the GWCON (+) prompt to display statistics for V.34 serial line interfaces and dial circuits.
To display the following statistics for a V.34 serial line interface, use the `interface` command followed by the `interface number` of the V.34 serial line interface.

Example:

```
interface 1
Nt Nt' Interface  CSR  Vec  Passed  Failed  Failed
 1  1  V.34/0   80000000  44  1   0   0
V.34 MAC/data-link on SCC Serial Line interface
Adapter cable:  RS-232 DTE  RISC Microcode Revision: 1
  V.24 circuit:  105 106 107 108 109 125
  Nicknames:  RTS CTS DSR DTR DCD R1 LL
  RS-232:  CA CB CC CD CF CE
  State:  OFF OFF OFF OFF OFF OFF OFF
  Line Speed:  115.200 Kbps
  Last port reset:  1 hour, 28 minutes, 25 seconds ago
Input frame errors:
  CRC error                     0  alignment (byte length)  0
  missed frame                   0  too long (> 2182 bytes)  0
  aborted frame                  0  DMA/FIFO overrun           0
Output frame counters:
  DMA/FIFO underrun errors      0  Output aborts sent        0
```

To display the following statistics for a dial circuit, use the `interface` command followed by the `interface number` of the dial circuit.

Example:

```
interface 3
Nt Nt' Interface  CSR  Vec  Passed  Failed  Failed
 3  2  PPP/1     81640  5C  0   5   0
Point to Point MAC/data-link on V.34 Dial Circuit interface
```

The following list describes the output for both serial line interfaces and dial circuits.

- **Nt** Serial line interface number or dial circuit interface number.
- **Nt’** If “Nt” is a dial circuit, this is the interface number of the V.34 serial line interface to which the dial circuit is mapped.
- **Interface** Interface type and its instance number.
- **CSR** Command and status register addresses of base network.
- **Vec** Interrupt vector address.
- **Self-Test Passed** Number of self-tests that succeeded.
- **Self-Test Failed** Number of self-tests that failed.
- **Maintenance: Failed** Number of maintenance failures.
- **Adapter cable:** Type of adapter cable that is being used.
- **V.24 circuit:** Circuit numbers as identified by V.24 specifications.
Nicknames
Common names for the circuits.

RS-232
EIA 232 (also known as RS-232) names for the circuits.

State
Current state of the circuits (ON or OFF).

Line speed
The transmit clock speed (approximate).

Last port reset
Length of time since the port was reset.

Input frame errors:

CRC error
Number of packets received that contained checksum errors and as a result were discarded.

Alignment (byte length)
Number of packets received that were not an even multiple of 8 bits in length and as a result were discarded.

Missed Frame
When a frame arrives at the device and there is no buffer available, the hardware drops the frame and increments the missed frame counter.

too long (> nnnn bytes)
Number of packets received that were greater than the configured frame size and as a result were discarded.

DMA/FIFO overrun
The number of times the serial interface card could not send data fast enough to the system packet buffer memory to receive packets from the network.

L & F bits not set
On serial interfaces, the hardware sets input-descriptor information for arriving frames. If the buffer can accept the complete frame upon arrival, the hardware sets both the last and first bits of the frame, indicating that the buffer accepted the complete frame. If either of the bits is not set, the packet is dropped, the L & F bits not set counter is incremented, and the buffer is cleared for reuse.

Note: It is unlikely that the L & F bits not set counter will be affected by traffic.

aborted frame
Number of packets received that were aborted by the sender or a line error.

Output frame counters:

DMA/FIFO underrun errors
Number of times the serial interface card could not retrieve data fast enough from the system packet buffer memory to transmit packets onto the network.

Output aborts sent
Number of transmissions that were aborted as requested by upper-level software.
Configuring V.34
Chapter 45. Using the ISDN Interface

This chapter describes the Integrated Services Digital Network (ISDN) interfaces on the IBM 2210. It includes the following sections:

- ISDN Overview
- ISDN Cause Codes on page 614
- Sample ISDN Configurations on page 616
- Channelized T1/E1 on page 617
- Requirements and Restrictions for ISDN Interfaces on page 618
- Before You Begin on page 619
- Configuration Procedures on page 619
- ISDN I.430 and I.431 Switch Variants on page 625
- X.31 Support on page 626

ISDN Overview

The ISDN interface software allows you to interconnect routers over ISDN. You can set up the interface to act as a dedicated link or to initiate and accept switched-circuit connections, either on demand, automatically from restart, or on command by the operator.

I.430, I.431, and Channelized T1/E1 are not switched. They are permanent leased-line type connections.

ISDN Adapters and Interfaces

The following ISDN adapters are available for the 14T, 24T, 24E, and 24M models:

- 1-Port S/T ISDN-BRI
- 4-Port S/T ISDN-BRI
- 4-Port U ISDN-BRI
- 1-Port Channelized E1 120-ohm ISDN-PRI
- 1-Port Channelized T1/J1 ISDN-PRI

The PRI/Channelized adapters have an integrated CSU/DSU, so an external CSU/DSU is not required.

The interfaces are:

- Basic Rate Interface (BRI)

 The Basic Rate Interface provides two 64-Kbps (Kilobits per second) bearer (B) channels and one 16-Kbps data (D) channel. The B-channels are used as HDLC frame delimited 64-Kbps pipes. The D-channel is used to set up calls. The D-channel can also be used for X.25 traffic.

- Primary Rate Interface (PRI)

 The Primary Rate Interface provides functions that are similar to those provided by the Basic Rate Interface. However, there are some important differences:
 - The PRI adapter does not support multipoint. The BRI adapter does.
Using ISDN

- The PRI adapter provides T1/J1 or E1 support.
 - T1/J1 supports twenty-three 64-Kbps B-channels and one 64-Kbps D-channel.
 - E1 supports thirty 64-Kbps B-channels and one 64-Kbps D-channel.

- Channelized T1/E1
 - T1/J1 supports up to twenty-four 64-Kbps time slots.
 - E1 supports up to thirty-one 64-Kbps time slots.
 - You can group time slots in 64-Kbps chunks to aggregate bandwidth.

Note: If you are upgrading from BRI to PRI from talk 6, you must clear the ISDN and dial configurations first, then bring up PRI and configure for PRI.

- The PRI adapter does not support multipoint.
- The PRI adapter provides T1/J1 and E1 support.
 - T1/J1 supports twenty-three 64-Kbps B-channels and one 64-Kbps D-channel.
 - E1 supports thirty 64-Kbps B-channels and one 64-Kbps D-channel.
- The PRI adapter provides enhanced line ID (LID) support.

Dial Circuits

There are four types of dial circuits:

- Static circuits (or link)

Notes:

1. I.430, I.431, and Channelized T1/E1 are leased line connections and therefore do not dial.

2. ISDN considers X.25 traffic over the D-channel as a static circuit. However, you could configure the X.25 circuit as a PVC or SVC using the `encapsulator` command under the dial circuit configuration.

- Switched circuits that dial on demand and hang up after a specified idle time
- WAN restoral circuits that are used only when an assigned primary leased line fails
- Dial-in circuits are used to provide remote clients access to resources on the network.

When bridging over a dial on demand interface it is recommended that you disable spanning tree for that interface and create MAC filters to filter out all undesired traffic. (The MAC filters would drop all frames that are not destined specific MAC addresses.) This keeps the dial circuit from staying connected due to unwanted traffic.

Note: You don’t need to add any MAC filters when running BAN traffic on a FR dial-on-demand interface. The BAN software always performs filtering such that the only bridging traffic that will keep a dial-on-demand circuit from hanging up is traffic whose destination MAC address matches the BAN DLCI MAC address.

Add a dial circuit for each potential destination. You can map multiple dial circuits to one ISDN interface. Each dial circuit is a normal serial line network, running Point-to-Point Protocol (PPP), Frame Relay or X.25 (for D-channels only). These protocols are configured to operate over the dial circuits.
Note: You can assign a destination name to a **connection list** (add ISDN address) and assign a destination number to each line in the list. When that destination name is called, the numbers in the list are tried one by one until a connection is made or the list is exhausted.

Routable protocols and bridging and routing features cannot communicate directly with an ISDN interface. You need to configure these protocols to run on the dial circuits. This implementation supports the following protocols and features for ISDN dial circuits:

- APPN
- Banyan VINES
- DECnet
- DLSw
- IP
- IPX
- AppleTalk 2
- Bridging (SRB, STP, SR-TB, and SRT)
- Bandwidth reservation
- WAN restoral
- DIALS

Addressing

To place an ISDN call, specify the telephone number of the destination. To identify yourself to the switch, you need to specify your own telephone number. For ISDN, telephone numbers are called network dial addresses and, for convenience, they are given names called network address names that represent the telephone number.

When you set up an ISDN interface, you add addresses for each potential destination as well as for your own telephone number, which is called the local network address. When you configure a dial circuit, the local network address is obtained from the physical interface configuration and you set a destination addresses for the circuit.

Oversubscribing and Circuit Contention

An ISDN PRI T1/J1 interface can support a maximum of 23 active calls, and an ISDN PRI E1 interface can support a maximum of 30 active calls. An ISDN BRI interface can support a maximum of two active calls. Normally, an ISDN BRI can have two active calls, except on the 1S4/1S8/1U4/1U8 models when the WAN is also active. There can be more dial circuits configured on an ISDN interface than active calls supported. This is called oversubscribing. If a dial circuit attempts a call when the ISDN interface has all calls active, there are two possibilities: 1) If the dial circuit has a higher priority than a dial circuit with an active call, the active call will be terminated for the low priority dial circuit and a call will be attempted for the low priority dial circuit and a call will be attempted for the higher priority dial circuit. 2) If the dial circuit does not have a higher priority than any dial circuits with active calls, no call will be made. The router will drop packets sent by protocols on dial circuits that cannot connect to their ISDN destination.

Note: There is no circuit contention when you are running X.25 over the D-channel because the D-channel is always available for the X.25 connection.
Cost Control Over Demand Circuits

Dial-on-demand circuits always appear to be in the Up state to the protocols. Most protocols send out periodic routing information that could cause the router to dial out each time the routing information is sent over dial-on-demand circuits. To limit periodic routing updates, configure IP and OSI to use only static routes and disable the routing protocols (RIP, OSPF) over the dial circuits. If you are using IPX, configure static routes and services and disable the routing protocols (RIP, SAP) over the dial circuits. Another option is to configure low-frequency RIP and SAP update intervals, although this does not prevent RIP and SAP from broadcasting routing information changes as they occur. You should also enable IPX Keepalive filtering, which prevents keepalive and serialization packets from continually activating the dial-on-demand link.

Caller ID and LIDS

If the ISDN service provides the ANI or CallerID (CLID) service by providing the Calling Party Number (CPN) in the ISDN setup message, you can use it to match up dial circuits to the appropriate caller. Otherwise, you must either use a proprietary line identification protocol (LID) or provide circuits that are “ANY INBOUND”.

The LID protocol uses the inbound destination in the dial circuit configuration and LID received to match the calling dial circuit to the receiving dial circuit. The LID protocol is a brief identification protocol initiated by the caller and answered by the receiver. If the caller does not provide the LID message, the receiver may reject the call, if any_inbound dial circuit is not configured. LID exchanges occur on the B-channel.

When connecting to routes that do not support logical ids (LIDS), you can suppress the LID exchange using the config option under the individual dial circuit.

```
config> set lid_used no
```

On the incoming side, if `lid_used=no`, the call is completed and the IBM 2210 does not wait for the LID to come on the B-channel. Instead, the IBM 2210 tries to use the callerID received. If there is no match on the callerID the IBM 2210 checks to see if an any_inbound dial circuit is available. If no any_inbound circuit is available the call is rejected.

On the outgoing side, PPP/FR selftest starts immediately, after B-Channel is allocated.

ISDN Cause Codes

This ISDN implementation specifies a cause code that will stop the router from attempting to establish a connection through an ISDN interface. If the application retries, the router again attempts to establish a connection through this interface and will succeed if the original problem has been corrected. If during the retry the router encounters the same cause code, the application will not attempt further connection processing through this interface.

Cause code interpretations:
1. If cause0 is not "0x5" ignore the cause code.
2. If cause0 is "0x5" look at cause1. If the high-order (most significant) bit of cause1 is ON, set it to OFF.
3. Convert the result to decimal and look up the meaning in the following table, which is taken from ITU-T Recommendation Q.850.

Table 79. ISDN Q.931 Cause Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unallocated (unassigned number)</td>
</tr>
<tr>
<td>2</td>
<td>No route to specified transit network</td>
</tr>
<tr>
<td>3</td>
<td>No route to destination</td>
</tr>
<tr>
<td>6</td>
<td>Channel unacceptable</td>
</tr>
<tr>
<td>7</td>
<td>Call awarded and is being delivered in an established channel</td>
</tr>
<tr>
<td>16</td>
<td>Normal call clearing</td>
</tr>
<tr>
<td>17</td>
<td>User busy</td>
</tr>
<tr>
<td>18</td>
<td>No user responding</td>
</tr>
<tr>
<td>19</td>
<td>No answer from user (user alerted)</td>
</tr>
<tr>
<td>21</td>
<td>Call rejected</td>
</tr>
<tr>
<td>22</td>
<td>Number changed</td>
</tr>
<tr>
<td>26</td>
<td>Non-selected user clearing</td>
</tr>
<tr>
<td>27</td>
<td>Destination out of order</td>
</tr>
<tr>
<td>28</td>
<td>Invalid number format (address incomplete)</td>
</tr>
<tr>
<td>29</td>
<td>Facility rejected</td>
</tr>
<tr>
<td>30</td>
<td>Response to STATUS ENQUIRY</td>
</tr>
<tr>
<td>31</td>
<td>Normal, unspecified</td>
</tr>
<tr>
<td>34</td>
<td>No circuit/channel available</td>
</tr>
<tr>
<td>38</td>
<td>Network out of order</td>
</tr>
<tr>
<td>41</td>
<td>Temporary Failure</td>
</tr>
<tr>
<td>42</td>
<td>Switching equipment congestion</td>
</tr>
<tr>
<td>43</td>
<td>Access information discarded</td>
</tr>
<tr>
<td>44</td>
<td>Requested circuit/channel not available</td>
</tr>
<tr>
<td>47</td>
<td>Resource unavailable, unspecified</td>
</tr>
<tr>
<td>49</td>
<td>Quality of Service not available</td>
</tr>
<tr>
<td>50</td>
<td>Requested facility not subscribed</td>
</tr>
<tr>
<td>57</td>
<td>Bearer capability not authorized</td>
</tr>
<tr>
<td>58</td>
<td>Bearer capability not presently available</td>
</tr>
<tr>
<td>63</td>
<td>Service or option not available, unspecified</td>
</tr>
<tr>
<td>65</td>
<td>Bearer capability not implemented</td>
</tr>
<tr>
<td>66</td>
<td>Channel type not implemented</td>
</tr>
<tr>
<td>69</td>
<td>Requested facility not implemented</td>
</tr>
<tr>
<td>70</td>
<td>Only restricted digital information bearer capability is available</td>
</tr>
<tr>
<td>79</td>
<td>Service or option not implemented, unspecified</td>
</tr>
<tr>
<td>81</td>
<td>Invalid call reference value</td>
</tr>
</tbody>
</table>
Using ISDN

Table 79. ISDN Q.931 Cause Codes (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>Identified channel does not exist</td>
</tr>
<tr>
<td>83</td>
<td>A suspended call exists, but this call identity does not</td>
</tr>
<tr>
<td>84</td>
<td>Call identity in use</td>
</tr>
<tr>
<td>85</td>
<td>No call suspended</td>
</tr>
<tr>
<td>86</td>
<td>Call having the requested call identity has been cleared</td>
</tr>
<tr>
<td>88</td>
<td>Incompatible destination</td>
</tr>
<tr>
<td>91</td>
<td>Invalid transit network selection</td>
</tr>
<tr>
<td>95</td>
<td>Invalid message, unspecified</td>
</tr>
<tr>
<td>96</td>
<td>Mandatory information element is missing</td>
</tr>
<tr>
<td>97</td>
<td>Message type nonexistent or not implemented</td>
</tr>
<tr>
<td>98</td>
<td>Message not compatible with call state or message type nonexistent or not implemented</td>
</tr>
<tr>
<td>99</td>
<td>Information element nonexistent or not implemented</td>
</tr>
<tr>
<td>100</td>
<td>Invalid information element contents</td>
</tr>
<tr>
<td>101</td>
<td>Message not compatible with call state</td>
</tr>
<tr>
<td>102</td>
<td>Recovery on timer expiry</td>
</tr>
<tr>
<td>111</td>
<td>Protocol error, unspecified</td>
</tr>
<tr>
<td>127</td>
<td>Interworking, unspecified</td>
</tr>
</tbody>
</table>

Sample ISDN Configurations

The following topics show several typical ISDN configurations.

Frame Relay over ISDN Configuration

Figure 36 shows how you can connect to a Frame Relay network through an ISDN network. In this configuration, you set the data link on your dial circuits to Frame Relay.

Note: Dial circuits default to point-to-point (PPP) protocol. To change the protocol to Frame Relay, enter set data-link fr at the Config> prompt. A connection will only be usable if the data link on both ends matches (for example, either FR to FR, or PPP to PPP).

Note: N could be either an ISDN TA connected to the FR switch, or an ISDN card in a FR switch.
WAN Restoral Configuration

Figure 37 shows how you can use an ISDN connection to back up a failed dedicated WAN link (WAN restoral). In this example, Router A normally uses the WAN link to communicate with Router B. If that connection fails, the ISDN dial-up link reconnects the two routers. When the WAN link recovers, the secondary link automatically disconnects. For more information on how to configure the router for WAN restoral, see Using WAN Restoral in Using and Configuring Features.

For WAN Restoral, only dial circuits configured for PPP can be used as the secondary link. For WAN Reroute, either a PPP dial circuit or a FR dial circuit can be used as the alternate link.

Channelized T1/E1

When configured for channelized, the Channelized/PRI adapter allows you to get Fractional/Channelized T1/J1/E1 support. You can have channels of 56-Kbps or N*64-Kbps. This will let you multiplex multiple leased lines connections (for example: using V.35 at 56-Kbps) into one physical connection.

To configure a T1 or E1 Primary adapter as channelized:
1. Select “Channelized” as the switch variant for the ISDN interface.
2. Configure the time slots to be used for this ISDN interface when you configure the dial circuit. See Set on page 648 for more information.

Example of configuring a Channelized T1 interface:

```
Config>n 6
ISDN Config>set switch chan
ISDN Config>list

ISDN Configuration
Maximum frame size in bytes = 2048
Switch Variant/Service Type = Channelized
Available Timeslots: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
```

Config>n 7
Using ISDN

Circuit config: ?>set net 6
Circuit config: ?>set timeslot 2 3 4 24
Circuit config: ?>list

Base net = 6
Idle character = 7E
Bandwidth = 64 Kbps
Timeslot = 2 3 4 24

Note: If this were an E1 circuit, the available timeslots would be 1 to 31.

Requirements and Restrictions for ISDN Interfaces

Router

The ISDN software requires the following models of the IBM 2210:
- 127
- 128
- 14T
- 24E - requires an ISDN adapter
- 24T - requires an ISDN adapter
- 24M - requires an ISDN adapter
- 1S4
- 1S8
- 1U4
- 1U8

Switches/Services Supported

The ISDN Basic Rate Interface (BRI) supports the following switches/services:
- AT&T 5ESS (North America)
- DMS100 (North America)
- USNI1 (North America National ISDN1)
- USNI2 (North America National ISDN2)
- NET 3 (European ETSI)
- INS-Net 64 (Japan)
- VN3 (France Telecom)
- AUS TS 013 (Australia)
- I.430 (See "ISDN I.430 and I.431 Switch Variants" on page 625.)

The ISDN Primary Rate Interface (PRI) supports the following switches/services:

<table>
<thead>
<tr>
<th>Switch names</th>
<th>Valid command</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT&T 5ESS (North America)</td>
<td>5ESS</td>
</tr>
<tr>
<td>AT&T 4ESS (North America)</td>
<td>4ESS</td>
</tr>
<tr>
<td>Australia (AUSTEL)</td>
<td>AUSPRI</td>
</tr>
<tr>
<td>INS-Net 1500 (Japan, NTT)</td>
<td>INSPRI</td>
</tr>
<tr>
<td>National ISDN 2 (North America)</td>
<td>USNI2</td>
</tr>
<tr>
<td>NET 5 (Euro-ISDN, ETSI)</td>
<td>NET5</td>
</tr>
<tr>
<td>Northern Telecom DMS (DMSPRI)</td>
<td>DMSPRI</td>
</tr>
</tbody>
</table>
| Native I.431 | I.431 (See "ISDN I.430 and I.431 Switch Variants" on page 625.)
ISDN Interface Restrictions

- You cannot boot or dump the router over an ISDN interface.
- Except for BRI, which allows you to use the D-channel for X.25 packet data, you cannot use the D-channel for data traffic. Normally the D-channel is used only for setting up and taking down B-channel connections.

Dial Circuit Configuration Requirements

You need to consider the following when you configure PPP or Frame Relay with ISDN:

- The ISDN interface will not enforce transmit delay counters that you set in the PPP configurations.
- Do not enable pseudo-serial-ethernet on the dial circuit.

Before You Begin

Before you configure ISDN, you need the following information:

- Telephone number of the local ISDN port.
- Destination telephone numbers, including any telephone extensions.
- Type of switch to which the ISDN interface is connected. See "Switches/Services Supported" on page 618 for the list of switches.

Note: Additional parameters, such as TEI and SPID may be required based on your Switch Type and your service provider.

Configuration Procedures

This section describes how to configure your ISDN interface and its associated dial circuits. Specifically, the tasks you need to perform are:

1. Adding ISDN addresses
2. Configuring ISDN parameters
3. Configuring the ISDN Interface (PRI only)
4. Adding dial circuits
5. Configuring dial circuits

Note: You must restart the router for configuration changes to take effect.

Adding ISDN Addresses

You need to add an ISDN address for each ISDN interface as well as for each destination. The ISDN address includes:

- **Address Name.** The address name is a description of the address. You can use any string of up to 23 printable ASCII characters.
- **Network Dial Address.** Telephone number of the local or destination port. You can enter up to 25 numbers as well as 6 characters, including punctuation. The router uses only the numbers.
Using ISDN

- *Network Subdial Address*. Optional. This is an additional part of telephone number, such as an extension, that is interpreted once the interface connects to a PBX. You can enter up to 20 numbers, as well as 11 additional spaces and punctuation. The router uses only the numbers.

To add an ISDN address, enter the **add isdn-address** command at the `Config>` prompt. For example:

```
Config> add isdn-address
Assign address name [23] chars []? baltimore
Assign network dial address [1-15 digits] []? 1-555-0983
Assign network subdial address [1-20 digits] []? 23
```

To see a list of your ISDN addresses, enter **list isdn-address** at the `Config>` prompt.

To delete an ISDN address from your list, enter the **delete isdn-address** command at the `Config>` prompt.

Configuring ISDN Parameters

Access the ISDN `Config>` prompt. To access the ISDN `Config>` prompt, enter the `network` command followed by the interface number of the ISDN interface at the `Config>` prompt. For example:

```
Config> network 3
ISDN user configuration
ISDN Config>
```

You can use the **list devices** command at the `Config>` prompt to display a list of interface numbers configured on the router. See [*ISDN Configuration Commands*](#) on page 627 for more information about configuration commands.

1. Specify the type of switch/service to which this ISDN interface is connected.

 Use the **set switch-variant** command to specify the type of switch to which this ISDN interface is connected. See [*Switches/Services Supported*](#) for the list of switches/services. For example:

   ```
   ISDN Config> set switch net5
   ```

 This is the software type running at the switch (for example, DMS100 means running DMS100 Custom software).

2. Specify the network address name of the local port.

 Use the **set local-address-name** command to specify the network address name of the local port. You must use one of the address names you defined using the **add isdn-address** command. For example:

   ```
   ISDN Config> set local-address-name
   Assign local address name []? baltimore
   ```

 Note: This is what we will send in the Calling Party Number field of the ISDN Setup message.

3. Set the directory number of the local port.

 DN0 is what the ISDN service provider is placing in the Called Party Number field in an ISDN setup message. This field is used for incoming calls only. If no DN0 is configured, the router will answer any call made to it without checking the DN0 field. If you have added a DN0 field, you must use the **remove dn0** command to remove it. You cannot just blank it out with another set command.

   ```
   ISDN Config> set dn0
   Enter DN0 (Directory-Number-0) []? 15550983
   ```
4. For BRI only, set the ISDN interface to either point-to-point (pp) or multipoint (mp).

Point-to-point is one ISDN device on an ISDN line. Multipoint is two or more ISDN devices sharing an ISDN line. With some switch variants, you must configure the line as multipoint regardless of how many devices are on it. Check with your ISDN service provider.

```
ISDN Config> set multi-point-selection
Multipoint Selection [MP]? pp
```

Note: PRI is not configurable, it is always point-to-point.

5. For BRI only, if you are connected to a U.S. switch variant, your service provider may require a Service Profile ID (SPID).

The SPID is a number up to 20 digits long that uniquely identifies the ISDN device. Your ISDN service provider assigns SPIDs. You must get the SPID number from your service provider.

```
ISDN Config> set spid
Enter BChannel Number [1]? 1
Enter Service Profile ID (SPID) []? 91955555550101
```

6. For BRI only, set the Terminal Endpoint Identifier (TEI) to match the signalling TEI number of your ISDN switch.

Check with your service provider to find out which TEI signalling the switch supports. The default TEI is auto. If the switch to which your ISDN interface is connected does not support automatic TEI signalling, you must set the TEI to a value from 0 to 63, assigned by your provider.

If you are connected to a 5ESS or USNI1 BRI switch, you must set the TEI for each B-channel. The **set tei** command prompts you for a B-channel number.

```
ISDN Config> set tei
TEI [AUTO]? 10
```

Note: TEI for a PRI is always 0.

If you are using X.25 on the D-channel, you must configure a separate TEI for the D-channel. For example:

```
ISDN Config> set tei 2
TEI 2 []? 21
```

7. To set the frame size, use the **set framesize** command. For example:

```
ISDN Config> set framesize
Framesize in bytes (1024/2048/4096/8192) [1024]? 2048
```

Note: If you choose a frame size of 1024, PPP will not work over the ISDN dial circuit, since the minimum frame size for PPP is 1500.

For more information about setting the ISDN framesize, see "Set" on page 629.

Optional ISDN Parameters

This section describes optional ISDN parameters you can set. For a complete description of these commands see "ISDN Configuration Commands" on page 627.

- For all ISDN switches except INS64, you can configure the limit for the number of calls to an address. Use the **set retries-call-address** command to set the number of calls to a non-responding destination. Use the **set timeout-call-address** command to set the time period to wait before trying the call again.
Using ISDN

When you have finished configuring the ISDN interface, you can use the **list** command to display your configuration.

Configuring the ISDN Interface

T1/J1 PRI Interface

Specify the following T1/J1 parameters:

1. For the T1/J1 PRI interface, line build out specifies the attenuation of the signal transmitted by the router’s T1 port. Specify the lbo (line build out) based on the information provided by the service provider.

 a= -00.0 dB
 b= -07.5 dB
 c= -15.0 dB
 d= -22.5 dB

 For example:
   ```
   set int lbo a
   ```

2. Specify the **code**, either B8ZS or AMI. B8ZS is default. The service provider provides this information.

 For example:
   ```
   set int code AMI
   ```

3. Specify **ZBTSI** - Zero Byte Time Slot Inversion, either **ENABLED** or **DISABLED**. The default is **DISABLED**. The service provider provides this information.

 For example:
   ```
   set int ZBTSI enabled
   ```

4. Specify the **esf-data-link**. Select one of the following based on the service subscription:

 ANSI-T1.403 ANSI-IDLE AT&T-IDLE

 Default is ANSI-T1.403

 For example:
   ```
   set int esf-data-link ansi-idle
   ```

E1 PRI Interface

For the E1 PRI interface, specify the following parameters:

1. Specify the **code**, either HDB3 or AMI. HDB3 is default. The service provider provides this information.

 For example:
   ```
   set int code HDB3
   ```

2. Specify the **crc4**, either **ENABLED** or **DISABLED**. Default is **ENABLED**. The service provider provides this information.

 For example:
   ```
   set int crc4 enabled
   ```

Adding Dial Circuits

Dial circuits are mapped to ISDN interfaces. You can map multiple dial circuits to one ISDN interface.
To add a dial circuit, enter the `add device dial-circuit` command at the `Config>` prompt. The software assigns an interface number to each circuit. You will use this number to configure the dial circuit. For example:

```
Config> add device dial-circuit
Enter the number of PPP Dial Circuit interfaces [1]? 1
Adding device as interface 6
Base net for the circuit(s)? 0
```

The number of dial circuits that can be configured depends on the total number of parameters to be configured and the size of the resulting configuration file.

Note: Dial circuits default to point-to-point (PPP) protocol. To change the dial circuit protocol to Frame Relay, enter the `set data-link fr` command at the `Config>` prompt. To change the dial circuit protocol to X.25, enter the `set data x25` command at the `Config>` prompt. Other data-link types (SDLC and SRLY) are not supported over ISDN.

Configuring Dial Circuits

This section describes how to configure a dial circuit.

1. Display the Circuit Config> prompt by entering the `network` command followed by the interface number of the dial circuit. You can enter the `list devices` command at the `Config>` prompt to display a list of the interface numbers configured on the router. For example:

   ```
   Circuit Config>
   ```

2. Map the dial circuit to an ISDN interface. Use the `set net` command. The Base net is the ISDN interface number. (This is needed only if you are changing the base net.) For example:

   ```
   Circuit Config> set net
   Base net for this circuit? 3
   ```

 Note: If the dial circuit data link type is X.25 or the base net switch variant is I.43x or channelized, the following steps (3-11 on page 624) do not apply.

3. Specify the address name of the remote router to which the dial circuit will connect. You must use one of the names you defined using the `add isdn-address` command. For example:

   ```
   Circuit Config> set destination
   Assign destination address name []? baltimore
   ```

4. Configure the dial circuit to initiate outbound calls only, accept inbound calls only, or to both initiate and accept calls.

 Use the `set calls` command. For example:

   ```
   Circuit Config> set calls outbound
   Circuit Config> set calls inbound
   Circuit Config> set calls both
   ```

 Note: For WAN-Restoral operations or dial-on-demand applications, you should set up the circuit for either inbound or outbound calls.

5. Specify the timeout period for the circuit.

 Use the `set idle` command. If there is no traffic over the circuit for this specified time period, the dial circuit hangs up. To configure the circuit as a dedicated circuit, set the idle timer to zero. To configure the circuit to dial on demand, set the idle timer to a value other than zero. The range is 0 to 65535 and the default is 60 seconds. For example:
Circuit Config> set idle
Idle timer (seconds, 0 means always active) [0]? 0

Note: WAN restoral/reroute must be fixed.

6. Optionally, you can provide a LID name to send (instead of the default LID, which is the destination name) by specifying a lid_out_addr. When more than one circuit is configured between two routers (parallel circuits), there must be a way to know which dial circuit connects them. For this purpose, a lid_out_addr is sent from the router at one end (the caller). The receiving router must have an inbound destination address that matches the lid_out_addr on the sending router in order for the dial circuits to connect. The lid_out_addr must be an address name that has been previously added using “ADD ISDN-ADDRESS” at the **config>** prompt.

Circuit Config> set lid_out_addr router2

7. Optionally, you can set the relative priority of dial circuits. The priority field allows a circuit to preempt another when no channels are available. If an outbound call is made and all the channels are in use, then the priority of the requesting dial circuit is checked against all the active dial circuits. If there is one whose priority is lower than this, then that circuit is disconnected and a call is made for the higher priority dial circuit.

Note: Only outbound dial-on-demand circuits will be brought down.

See “Set” on page 646 for more information about priority.

Circuit Config> set priority 1

8. Optionally, you can delay the time between when a call is established and the initial packet is sent. Use the **set selftest-delay** command. Some ISDN switches start to send data before receiving a signal indicating the complete establishment of the circuit at the destination. Setting a selftest delay can prevent initial packets from being dropped. For example:

```bash
Circuit Config> set selftest-delay
Selftest delay [milli-seconds, 0 means no delay] [150]? 200
```

9. Set the inbound address name.

Use the **set inbound** command. This command is for inbound circuits only. For example:

```bash
Circuit Config> set inbound
Assign destination inbound address name []? newyork
```

The inbound destination number is used to match the incoming LID or CallerID with the dial circuit. If there is a match that dial circuit gets the call.

10. Optionally, you can enter the configuration process for the data-link layer protocol that is running on the dial circuit (PPP or Frame Relay).

Use the **encapsulator** command. For example:

```bash
Circuit Config> encapsulator
```

11. Optionally, you can use the **set bandwidth** command to set the line speed at which to make the call (either 56-Kbps or 64-Kbps). This provides per-call control for ISDN interfaces. For example:

```bash
Circuit Config> set bandwidth 56Kbps
```

624 MRS V3.2 Software User's Guide
ISDN I.430 and I.431 Switch Variants

To use the Native I.430 mode that is supported in Japan and is known as D64S in Germany, you must code the ISDN switch variant as I.430. This treats the ISDN interface like a leased line. There is no D-channel signalling traffic in this mode.

Code the switch variant as I.431 when running a leased line over ISDN PRI (T1/J1 only).

Native I.430 Support

Only one dial circuit is allowed per I.430 base net. You can configure the speed to either 64-Kbps, 80-Kbps, 128-Kbps, or 144-Kbps using the set bandwidth command. On models 1S4, 1S8, 1U4, and 1U8, if WAN and ISDN are both active, this is restricted to 64-Kbps only. See “Set” on page 623 to configure the bandwidth command.

Example: Base ISDN Net

```
Config> n 6
ISDN Config> set switch i430
ISDN Config> list all
```

ISDN Configuration

- Maximum frame size in bytes = 2048
- Switch Variant = I430 BRI
- PSI detect = Enabled

Example: Dial Circuit

```
Config> n 7 ------------------ DIAL CIRCUIT (CAN ONLY BE ONE FOR I430)
Circuit config: 7>
Circuit config: 7>set net 6
Circuit config: 7>set bandwidth 128
Circuit config: 7>list all
```

Base net = 6
I430 BRI Bandwidth = 128 kbs

Native I.431 Support

When configuring for Native I.431 support, only one dial circuit should be used. It should be attached to the base net. The I.431 only runs on the ISDN PRI T1 adapter. The speed is fixed at 1.5 Mbps.

Note: The multiport ISDN PRI adapters do not support the I.431 switch variant. To utilize a full PRI line, select the channelized variant and assign all the timeslots to one dial circuit.

Example: Base ISDN net

```
Config> n 5
ISDN Config> set sw i431
ISDN Config> list all
```

ISDN Configuration

- Maximum frame size in bytes = 2048
- Switch Variant = I431 PRI

Example: Dial Circuit
The ITU Standard X.31 is for transmitting X.25 packets over ISDN. This standard provides support for X.25 with Unconditional Notification on the ISDN BRI D-channel.

X.31 is available from service providers in several countries. It gives the router a 9600bps X.25 circuit. Since the D-channel is always present, this condition can be an X.25 PVC or SVC.

An X.31 example is, when a packet handler is provided by the ISDN service provider, the X.25 packets and LAP/B frames (RRs, SABMEs, etc.) will be transmitted and received on the D-channel along with the ISDN signaling (Q931/Q921) messages. The D-channel provides a connection that enables the ISDN user terminal to access the packet handler function within the ISDN by establishing a link layer connection (SAPI=16) to that function which can then be used to support packet communications according to X.25 layer 3 procedures. Maximum frame transfer size is 260 bytes.

Example:
```
Config>n 6
Config>set data x25 6
Circuit config: 6>set net 5
Circuit config: 6>list all

Base net = 5
```

Note: You should assign an X.25 TEI or specify Auto on the BRI base net. The default value is none.
Chapter 46. Configuring and Monitoring the ISDN Interface

This chapter describes the ISDN commands and GWCON commands. It includes the following sections:

- ISDN Configuration Commands
- Accessing the Interface Monitoring Process on page 635
- ISDN Monitoring Commands on page 635
- ISDN and the GWCON Commands on page 641

Notes:

1. ISDN interfaces have both ELS messages and cause codes that you can use to monitor ISDN-related activity. See Event Logging System Messages Guide.
2. The ISDN, Q931, CEME, LAPD, and DIAL ELS subsystems are available.

ISDN Configuration Commands

Table 80 describes the ISDN configuration commands, and the following sections explain the commands. Enter these commands at the ISDN Config> prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Block-calls</td>
<td>Blocks incoming calls from a specific caller.</td>
</tr>
<tr>
<td>Disable</td>
<td>Valid only for BRI. Disables Power Source 1 detection.</td>
</tr>
<tr>
<td>Enable</td>
<td>Valid only for BRI. Enables Power Source 1 detection.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the ISDN configuration.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes DN0 entries from the ISDN configuration.</td>
</tr>
<tr>
<td>Set</td>
<td>Sets the frame size, local address, no-answer timeouts, number of retries after no answer, type of ISDN switch, directory numbers, SPIDS, TEI and bandwidth.</td>
</tr>
<tr>
<td>Cause Code</td>
<td>Stops further processing attempts to establish a connection through an interface.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Block-Calls

Use the block-calls commands to block incoming calls. Caller numbers to be blocked must be added to the authentication list. The maximum number of caller blocked calls is 16 per interface.

Call block can be used for:

- An unsolicited call being constantly received.
- Network bringup/test where you need to ignore certain calls.

Syntax:

```
block-calls
   add
   list
```
ISDN Configuration Commands

- **remove**
 - **Add** Adds a caller's number to be blocked.
 - **List** Lists the callers' numbers to be blocked.
 - **Remove** Removes a caller's number for the list to be blocked.

Disable

The **disable** command disables Power Source 1 detection. If your switch does not supply Power Source 1, you should disable PS1.

Note: This command is valid only for BRI.

Syntax:

```
   disable ps1
```

Note: On the U interface ISDN BRIs, there is no ps1 detect circuitry and the value of this field is ignored.

Enable

The **enable** command enables Power Source 1 detection. If your ISDN switch supplies Power Source 1 (PS1), you should enable PS1 on the interface. This causes the interface to detect when the switch shuts down and to clear all information about the last call before it reestablishes the connection. For Euro-NET3 switches supporting restricted power mode, PS1 must be enabled.

Do not enable PS1 if your switch does not supply Power Source 1.

Note: This command is valid only for BRI.

Syntax:

```
   enable ps1
```

Note: On the U interface ISDN BRIs, there is no ps1 detect circuitry and the value of this field is ignored.

List

The **list** command displays the current ISDN configuration.

Syntax:

```
   list
```

Example:

```
   List
   ISDN Configuration
   Local Network Address Name = line-1-local
   Local Network Address = 1-508-555-1234
   Local Network Subaddress = 21
   Maximum frame size in bytes = 2048
   Outbound call address Timeout = 180  Retries = 2
   Switch-Variant-Model = US National ISDN-1
   Multipoint Selection = Point-to-Point
```
Remove

The **remove** command lets you remove DN0 or DN1 entries that you set previously with the **set DN0** or **set DN1** command.

Syntax:
```
remove DN0-entry...
```

Example:
```
remove DN0
```

Set

The **set** command configures frame size, addresses, and timeouts. It also specifies the switch-variant and TEI number. For PRI, the terminal endpoint identifier (TEI) is always zero (0).

Syntax:
```
set framesize...
  frame-type\(^2\)
  interface
  local-address-name...
  multipoint-selection\(^1\)...
  RAI-type\(^2\)
  retries-call-address...
  service-profile-id\(^1\)...
  timeout-call-address\(^1\)...
  switch-variant...
  dn0...
  dn1...\(^3\)
  tei\(^1\)...
```

framesize 1024 or 2048 or 4096 or 8192
Sets the size of the network layer portion of frames transmitted and received on the ISDN interface. Data link and MAC layer headers are not

1. BRI only
2. Channelized only
3. PRI only
ISDN Configuration Commands

You must set the ISDN frame size so that it is greater than or equal to the frame size configured for the dial circuits using the ISDN interface.

For PPP dial circuit interfaces, you can change the PPP MRU using the `set lcp options` command. The ISDN frame size must include enough bytes for the PPP MRU and the PPP header.

Note: If you choose a frame size of 1024, PPP will not work over the ISDN dial circuit, since the minimum frame size for PPP is 1500.

For FR dial circuit interfaces, you can change the frame size using the `set framesize` command. The ISDN frame size must be greater than or equal to the FR frame size.

If a dial circuit's frame size is greater than the ISDN frame size, then the dial circuit's frame size is decreased at router initialization.

Example:
```
set framesize
Framesize in bytes (1024/2048/4096/8192) [1024]? 2048
```

frame-type

Choices are D4 or ESF. This specifies the T1 multiframe format. Only ESF is supported for non-channelized mode. Frame type is configured under the base ISDN net menu.

Example:
```
set frame-type
Circuit config: 10>set frame-type
```

interface

For PRI only. Sets the following interface parameter values for T1 and E1 lines.

For T1 PRI:

Ibo

The attenuation of the signal transmitted by the router’s T1 port. This information is provided by the service provider.

Valid Values:
- a = -00.0 dB
- b = -07.5 dB
- c = -15.0 dB
- d = -22.5 dB

Default Value: a

code

This information is provided by the service provider.

Valid Values: B8ZS or AMI

Default Values: B8ZS

ZBTSI

Zero Byte Time Slot Inversion. This information is provided by the service provider.

Valid Values: Enabled or Disabled

Default Value: Disabled
esf-data-link

The service subscription. This information is provided by the service provider.

Valid Values:
- ANSI-T1.403
- ANSI-IDLE
- AT&T-IDLE

Default Value: ANSI-T1.403

For E1 PRI:

code

This information is provided by the service provider.

Valid Values: HDB3 or AMI

Default Value: HDB3

crc4

Specifies whether the router’s E1 port will transmit crc4 code words and check them in the received frames. This information is provided by the service provider.

Valid Values: Enabled or Disabled

Default Value: Disabled

local-address-name address name

This is the network address name of the local ISDN interface. This address name must match one of the names that you defined at the Config> prompt using the add isdn-address command.

Valid Values: Any valid address

Default Value: None

Example:

```
set local-address-name
Assign local address name []? line-1-local
```

multipoint-selection [mp or pp]

For BRI only. Sets the ISDN physical bus to either point-to-point (pp) or multipoint (mp) configuration. Point-to-point is one ISDN device on an ISDN line. Multipoint is two or more ISDN devices sharing an ISDN line.

Some service providers require that you configure the line as multipoint regardless of how many devices are on the line. Check with your ISDN service provider.

Example:

```
set multipoint-selection
Multipoint Selection [PP]? mp
```

RAI-type

Choices are ANSI or Japanese. This specifies the method of indicating RAI on the T1 line when using D4 framing. ANSI RAI is indicated by a value of 0 in bit 2 of all channels. Japanese RAI is indicated by a value of 1 in the S-bit position of frame 12. RAI type is configured under the base ISDN net menu.

retries-call-address value

Some telephone service providers impose restrictions on automatic recalling devices to limit the number of successive calls to an address that is inaccessible or that refuses those calls. Retries-call-address specifies the
ISDN Configuration Commands

maximum number of calls the router attempts to make at one time. Setting
retries-call-address to 0 causes the router to bring up all circuits at once.

If you set the switch-variant to INS64, you cannot change
the **retries-call-address** default. It is fixed at 2.

Valid Values: 0 to 30

Default Value: 23 (2 for BRI)

service-profile-id B-channel# spid#
For BRI only. Sets the service profile ID (SPID) for each B-channel. SPIDs are used in the United States to uniquely identify a particular ISDN device. This ID is a number up to 20 digits long and is assigned by ISDN service providers. SPIDs are used predominantly in a multipoint bus configuration where multiple ISDN devices share a single ISDN line. Check with your service provider to determine whether or not you are required to use a SPID.

Example:
```
set spid
Enter B-Channel Number [1]? 1
Enter Service Profile ID (SPID) [123]? 91955555550100
```

timeout-call-address # of seconds
After the router reaches the maximum number of **retries-call-address** to a non-responding address, it does not make further calls to that address until this time has expired. The timeout period begins when the router attempts the first call to an address. Setting **timeout-call-address** to 0 causes the router to retry until the call is established.

If you set the switch-variant to INS64, you cannot change **timeout-call-address**. It is fixed at 180.

Valid Values: 0 to 65535 seconds

Default Value: 180 seconds

Example:
```
set timeout-call-address
Outbound call address Time-out (secs) [0]? 180
```

switch-variant
Specifies the model of the switch to which this ISDN interface is connected. You can choose switch-variants/service type for the ISDN Basic Rate interface or the ISDN Primary Rate interface from the following lists.

Valid Values Basic Rate Interface (BRI):
- AT&T 5ESS (North America)
- DMS100 (North America)
- USNI1 (North America National ISDN1)
- USNI2 (North America National ISDN2)
- NET 3 (European ETSI)
- INS 64 (Japan)
- VN3 (France Telecom)
- AUS TS 013 (Australia)
- Native I.430

Default Value: NET 3

Valid Values ISDN Primary Rate Interface (PRI)/Channelized T1/E1:
ISDN Configuration Commands

- AT&T 5ESS (North America)
- AT&T 4ESS (North America)
- Australia (AUSTEL)
- INS-Pri (Japan, NTT)
- National ISDN 2 (North America)
- NET 5 (Euro-ISDN, ETSI)
- Northern Telecom 250 (DMSPRI)
- Native I.431
- Channelized T1/E1

Default Value: DMSPRI

dn0 directory number 0

To accept inbound calls **DN0** must match the network dial address (telephone number) you configured using the `set local-address-name` command. If DN0 is not configured no check is made and all calls will be accepted. If the switch does not provide the called party number in the incoming setup message, DN0 should not be configured. See on page 633 for additional information.

Example:

```
set dn0
Enter DN0 (Directory-Number-0) [ ]? 5088981234
```

dn1 directory number 1

DN1 is a secondary directory number supported by NET3, VN3 and AUS, switch variants. If DN1 is not configured no check is made and all calls will be accepted. If the switch does not provide the called party number in the incoming setup message, DN1 should not be configured. See on page 633 for additional information.

tei auto or none or value

For BRI or X.25 over D-Channel only. This command sets the signalling TEI (terminal endpoint identifier) for the ISDN interface. This setting must match the signalling TEI of your switch. For PRI, the TEI is always set to zero (0). Check with your service provider to find out the correct TEI signal. The default is auto. Change this setting only if your switch does not support automatic TEI signalling. The valid settings for TEI are auto or a value from 0 to 63. If you set the TEI to none, you will disable the ISDN interface.

USNI-1 and 5ESS switches require that you set the TEI for each B-channel. If you set the switch variant to one of those switches, the `set tei` command prompts you for a B-channel number. See on page 633 for additional information.

Example 1:

```
set tei
TEI [AUTO]? 60
```

Example 2:

```
set tei
TEI 0 or TEI 1 [1]? 1
TEI [AUTO]?
```

Example 3:

```
set tei 2
TEI []? 21
```

Note: This applies to all Basic Rate ISDN switch variants:
ISDN Configuration Commands

- DN0, and DN1 are used to verify that the incoming call is being delivered to the correct ISDN destination.
- If the destination number (Called Party Number) in the ISDN call being delivered does not match either DN0 or DN1, then the call is rejected.
- If the user wishes to bypass the destination verification checking, then do not configure either DN0, or DN1. If the ISDN line provisioning has only one DN, and the user wishes to use the destination verification then you must configure DN0. Do not configure DN1 unless the ISDN line is provisioned for two DNs.
- When configuring the SPIDs and TEIs, always be sure to configure the first SPID (SPID[0]) and TEI (TEI[0]). It will cause errors if you have a SPID[1] or TEI[1] configured without SPID[0] or TEI[0] configured.

Cause Code

Use the **Cause Code** command to prevent the router from retrying to establish a connection through the ISDN interface when it receives a “specified” (valid value) response. Enter these commands at the **Cause Config>** prompt.

Syntax:

```plaintext
cause code
    ? (Help)
    add
    list
    remove
    exit
```

Table 81. ISDN Cause Codes Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 634.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds cause code entries to the ISDN configuration.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the cause code lists for the ISDN configuration.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes cause code entries from the ISDN configuration.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11.</td>
</tr>
</tbody>
</table>

Add

Use the **add** command to add a cause code to an ISDN configuration.

Valid Values: Any hexadecimal value between 01 and FF

Default Value: None

Syntax: cause code add value

Example: add FF

List

Use the **list** command to show the cause code list of an ISDN configuration.

Syntax: cause code list

Remove

Use the **remove** command to remove a cause code from an ISDN configuration.

Valid Values: Any hexadecimal value between 01 and FF
ISDN Configuration Commands

Default Value: None
Syntax: _cause code remove value
Example: remove FF

Accessing the Interface Monitoring Process

To access the interface monitoring process for ISDN, enter the following command at the GWCON (+) prompt:

+ network #

Where # is the number of the ISDN interface. You cannot directly access the monitoring process for dial circuits, but you can monitor the dial circuits that are mapped to the ISDN interface.

ISDN Monitoring Commands

The following sections explain the ISDN operating commands which allow you to view the accounting entries, calls, circuits, parameters, and statistics of the ISDN interfaces. Enter these commands at the ISDN> prompt.

<table>
<thead>
<tr>
<th>Monitoring Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See "Getting Help" on page 10.</td>
</tr>
<tr>
<td>Block-calls</td>
<td>Blocks incoming calls from a specific caller.</td>
</tr>
<tr>
<td>Calls</td>
<td>Displays the number of completed and attempted connections made for each dial circuit mapped to this interface since the last time statistics were reset on the router.</td>
</tr>
<tr>
<td>Channels</td>
<td>Displays the statistics for the channels on the ISDN Primary Rate Interface.</td>
</tr>
<tr>
<td>Circuits</td>
<td>Displays the status of all data circuits configured on the ISDN interface.</td>
</tr>
<tr>
<td>Dial-dump</td>
<td>Displays the operation characteristics of the specified dial circuit.</td>
</tr>
<tr>
<td>L2_counters</td>
<td>Lists the L2/L1 states along with some L2 counters.</td>
</tr>
<tr>
<td>L3_counters</td>
<td>Lists counters of set ups sent/received/accepted.</td>
</tr>
<tr>
<td>TEI</td>
<td>Lists status of TEI’s (BRI only)</td>
</tr>
<tr>
<td>Parameters</td>
<td>Displays the current parameters for the ISDN interface.</td>
</tr>
<tr>
<td>Signaling-L3</td>
<td>This command is to be used only by product support personell.</td>
</tr>
<tr>
<td>Statistics</td>
<td>Displays the current statistics for the ISDN interface.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11.</td>
</tr>
</tbody>
</table>

Block-Calls

Use the block-calls commands to block incoming calls. Caller numbers to be blocked must be added to the authentication list. The maximum number of caller blocked calls is 16 per interface.

Syntax:

block-calls add list

Chapter 46. Configuring and Monitoring the ISDN Interface 635
ISDN Monitoring Commands

<table>
<thead>
<tr>
<th>Add</th>
<th>Adds a caller’s number to be blocked.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Lists the callers’ numbers to be blocked.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes a caller’s number for the list to be blocked.</td>
</tr>
</tbody>
</table>

Calls

Use the `calls` command to list the number of completed and attempted connections made for each dial circuit mapped to this interface since the last time statistics were reset on the router.

Syntax:
```
calls
```

Example:
```
calls
Net Interface Site Name In Out Rfsd Blckd
4 PPP/1 v403 2 0 0 0
Unmapped connection indications: 0
```

- **Net**: Number of the dial circuit mapped to this interface.
- **Interface**: Type of interface and its instance number.
- **Site Name**: Network address name of the dial circuit.
- **In**: Inbound connections accepted for this dial circuit.
- **Out**: Completed connections initiated by this dial circuit.
- **Rfsd**: Connections initiated by this dial circuit that were refused by the network or the remote destination port.
- **Blckd**: Connection attempts that the router blocked. The router blocks connection attempts if all available channels are in use, if the maximum retries are used up and the router is waiting for the timer to count down, or if layer 1 is up, but layer 2 is down.

Unmapped connection indications:
Connection attempts that were refused by the router because there were no enabled dial circuits that were configured to accept the incoming calls.

Channels

The `channels` command lists the statistics for a channel on the ISDN Primary Rate Interface.

Syntax:
```
channels
```
The circuits command shows the status of the dial circuits configured on the ISDN interface that are in the state of “Up” or “Available”.

Syntax:

circuits

Example:

<table>
<thead>
<tr>
<th>Net</th>
<th>Interface</th>
<th>MAC/Data-Link</th>
<th>State</th>
<th>Reason</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PPP/1</td>
<td>Point to Point</td>
<td>Up</td>
<td>B1 SelfTest</td>
<td>00:09:24</td>
</tr>
<tr>
<td>5</td>
<td>PPP/2</td>
<td>Point to Point</td>
<td>Up</td>
<td>Inbound</td>
<td>00:09:55</td>
</tr>
</tbody>
</table>

Net Number of the dial circuit mapped to this interface

Interface Type of interface and its instance number.

MAC/Data-Link Type of data-link protocol configured for this dial circuit.

State Current state of the dial circuit:

- **Up** Currently connected.
- **Available** Not currently connected, but available.
- **Disabled** Dial circuit disabled.
- **Down** Failed to connect because of a busy dial circuit or because the link-layer protocol is down.

Reason Reason for the current state:

- **nnn_Data** (Where nnn is the name of a protocol.) The circuit is up because a protocol had data to send.
- **Rmt Disc** Remote Disconnect. The circuit is either down or available because the remote destination disconnected the call.
- **Opr Req** Operator Request. The circuit is available because the last call was disconnected by a monitoring command.
- **Inbound** The circuit is up because the circuit answered an inbound call.
- **Restoral** The circuit is up because of a WAN-Restoral operation.
- **Self Test** The circuit was configured as static (idle time=0) and successfully connected once it was enabled.

Duration Length of time that the circuit has been in the current state.
ISDN Monitoring Commands

Dial-dump

Use the `dial-dump` command to display the operation characteristics of the specified dial circuit.

Syntax:

```
dial-dump circuitname
```

L2_Counters

Use the `L2_counters` command to list the L2/L1 states along with some L2 counters.

Syntax:

```
L2_counters
```

L3_Counters

Use the `L3_Counters` command to list counters of set ups sent/received/accepted.

Syntax:

```
L3_counters
```

TEI

Use the `TEI` command to list the status of TEIs. For BRI only.

Syntax:

```
parameters
```

Example:

```
parameters
ISDN Port parameters:
Local Address Name: vl233
Local Network Address: 20
Local Network Subaddress: Frame Size: 2048
TEI 0: Automatic
TEI 1: Automatic
X.25 TEI: 21
Switch Variant: AT&T 5ESS (United States)
Multipoint Selection: Multipoint
Directory Number 0: 20
Outbound call address Timeout: 180  Retries: 0
```

Parameters

Use the `parameters` command to display the current ISDN configuration.

Syntax:

```
parameters
```
Example:

parameters
ISDN Port parameters:

Local Address Name: vl233
Local Network Address: 20
Local Network Subaddress:
Frame Size: 2048
TEI 0: Automatic
TEI 1: Automatic
X.25 TEI: 21
Switch Variant: AT&T 5ESS (United States)
Multipoint Selection: Multipoint
Directory Number 0: 20
Outbound call address Timeout: 180 Retries: 0

Statistics

Use the statistics command to display the current statistics for this ISDN interface.

Syntax:

statistics

Example for BRI:

statistics
Link: Active ISDN Firmware: 1.0 Handler State: Running
D Channel B1 Channel B2 Channel
Total Transmits 32788 230217 164336
Total Receives 32789 164342 208255
Transmit Bytes 196767 22797579 6572177
Receive Bytes 196785 6572411 9517221
Invalid Interrupts 0 0 0
Error 0 0 0 Error 0 5 0
Overflow 0 0 0 Overflow 0 0 0
Underrun 0 0 0 Overrun 0 0 0
Abort 0 0 0 Abort 0 5 0
CRC Error 0 0 0

Example for BRI using I.430:

statistics
Link: Active ISDN Firmware: 0.0 Handler State: Running
Total Transmits 32788
Total Receives 32789
Transmit Bytes 196767
Receive Bytes 196785
Invalid Interrupts 0
Transmit: Receive:
Error 0 0
Overflow 0 0
Underrun 0 0
Abort 0 0
CRC Error 0

Example for PRI with E1:

statistics
Link: Active ISDN Firmware: 1.0 Handler State: Running
Transmit: D Channel Receive: D Channel
Packets 68422 Packets 68419
Bytes 411656 Bytes 413592
ISDN Monitoring Commands

<table>
<thead>
<tr>
<th>Issue</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflow</td>
<td>23</td>
</tr>
<tr>
<td>Underrun</td>
<td>0</td>
</tr>
<tr>
<td>Too Long</td>
<td>6</td>
</tr>
<tr>
<td>Abort</td>
<td>4</td>
</tr>
<tr>
<td>CRC error</td>
<td>8</td>
</tr>
<tr>
<td>Misaligned</td>
<td>3</td>
</tr>
</tbody>
</table>

Transmit B Channels & Receive B Channels

<table>
<thead>
<tr>
<th>Issue</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>1499094</td>
</tr>
<tr>
<td>Bytes</td>
<td>59955660</td>
</tr>
<tr>
<td>Overflow</td>
<td>0</td>
</tr>
<tr>
<td>Underrun</td>
<td>0</td>
</tr>
<tr>
<td>Too Long</td>
<td>171</td>
</tr>
<tr>
<td>Abort</td>
<td>139</td>
</tr>
<tr>
<td>CRC error</td>
<td>232</td>
</tr>
<tr>
<td>Misaligned</td>
<td>72</td>
</tr>
</tbody>
</table>

E1 Status Register & E1 Error Count Registers

<table>
<thead>
<tr>
<th>Issue</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive AIS</td>
<td>Off</td>
</tr>
<tr>
<td>CRC6 Errors</td>
<td>4</td>
</tr>
<tr>
<td>Receive RAI</td>
<td>Off</td>
</tr>
<tr>
<td>LCV Errors</td>
<td>0</td>
</tr>
<tr>
<td>Receive Carrier Loss</td>
<td>Off</td>
</tr>
<tr>
<td>FEB Errors</td>
<td>11</td>
</tr>
<tr>
<td>Receive Loss of Sync</td>
<td>Off</td>
</tr>
<tr>
<td>FAS Errors</td>
<td>24</td>
</tr>
</tbody>
</table>

Example for PRI with T1 using I.431:

statistics

<table>
<thead>
<tr>
<th>Link</th>
<th>Transmit</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bytes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overflow</td>
<td>68480</td>
<td>0</td>
</tr>
<tr>
<td>Underrun</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

T1 Status Register & T1 Error Count Registers

<table>
<thead>
<tr>
<th>Issue</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive AIS</td>
<td>Off</td>
</tr>
<tr>
<td>CRC6 Errors</td>
<td>0</td>
</tr>
<tr>
<td>Receive RAI</td>
<td>Off</td>
</tr>
<tr>
<td>LCV Errors</td>
<td>0</td>
</tr>
<tr>
<td>Receive Carrier Loss</td>
<td>Off</td>
</tr>
<tr>
<td>FEB Errors</td>
<td>11</td>
</tr>
<tr>
<td>Receive Loss of Sync</td>
<td>Off</td>
</tr>
</tbody>
</table>

Example for Channelized T1:

statistics

<table>
<thead>
<tr>
<th>Link</th>
<th>Transmit</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>Bytes</td>
<td>1600</td>
<td>1520</td>
</tr>
<tr>
<td>Overflow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Underrun</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

T1 Status Register & T1 Error Count Registers

<table>
<thead>
<tr>
<th>Issue</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC Error</td>
<td>0</td>
</tr>
<tr>
<td>Controlled Slip</td>
<td>0</td>
</tr>
<tr>
<td>Line Code Violation</td>
<td>0</td>
</tr>
<tr>
<td>Frame Sync Bit Error</td>
<td>0</td>
</tr>
<tr>
<td>Severely Errored Frame</td>
<td>0</td>
</tr>
<tr>
<td>Payload Loopback Active</td>
<td>0</td>
</tr>
<tr>
<td>PRMs Processed (1/sec)</td>
<td>46</td>
</tr>
</tbody>
</table>

Example for PRI with T1 using I.431:

statistics

<table>
<thead>
<tr>
<th>Link</th>
<th>Transmit</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bytes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overflow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Underrun</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

T1 Status Register & T1 Error Count Registers

<table>
<thead>
<tr>
<th>Issue</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC Error</td>
<td>0</td>
</tr>
<tr>
<td>Controlled Slip</td>
<td>0</td>
</tr>
<tr>
<td>Line Code Violation</td>
<td>0</td>
</tr>
<tr>
<td>Frame Sync Bit Error</td>
<td>0</td>
</tr>
<tr>
<td>Severely Errored Frame</td>
<td>0</td>
</tr>
<tr>
<td>Payload Loopback Active</td>
<td>0</td>
</tr>
<tr>
<td>PRMs Processed (1/sec)</td>
<td>46</td>
</tr>
</tbody>
</table>

Example for Channelized T1:

statistics

<table>
<thead>
<tr>
<th>Link</th>
<th>Transmit</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bytes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overflow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Underrun</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

T1 Status Register & T1 Error Count Registers

<table>
<thead>
<tr>
<th>Issue</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC Error</td>
<td>0</td>
</tr>
<tr>
<td>Controlled Slip</td>
<td>0</td>
</tr>
<tr>
<td>Line Code Violation</td>
<td>0</td>
</tr>
<tr>
<td>Frame Sync Bit Error</td>
<td>0</td>
</tr>
<tr>
<td>Severely Errored Frame</td>
<td>0</td>
</tr>
<tr>
<td>Payload Loopback Active</td>
<td>0</td>
</tr>
<tr>
<td>PRMs Processed (1/sec)</td>
<td>46</td>
</tr>
</tbody>
</table>
ISDN and the GWCON Commands

While ISDN has its own monitoring process for monitoring purposes, the router also displays configuration information and complete statistics for devices and circuits when you use the `interface`, `statistics`, and `error` commands from the GWCON environment. You can also use the GWCON `test` command to test DCEs and circuits.

Note: Issuing the `test` command to the ISDN interface causes the current calls to be dropped and re-dialed.

Interface — Statistics for ISDN Interfaces and Dial Circuits

Use the `interface` command at the GWCON prompt (+) to display statistics for ISDN interfaces and dial circuits.

To display statistics for a dial circuit, enter the `interface` command followed by the interface number of the dial circuit. For ISDN interfaces, information is displayed on a D and B channel basis. (This is the same information that is displayed by the ISDN `statistics` command.)

Example:

```
interface 3
```

<table>
<thead>
<tr>
<th>Nt</th>
<th>Nt'</th>
<th>Interface</th>
<th>CSR</th>
<th>Vec</th>
<th>Self-Test Passed</th>
<th>Self-Test Failed</th>
<th>Maintenance Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>ISDN/0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ISDN Base Net MAC/data-link on ISDN Basic Rate Interface interface

Link: Active ISDN Firmware: 1.0 Handler State: Running

<table>
<thead>
<tr>
<th>D Channel</th>
<th>B Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Transmits</td>
<td>591</td>
</tr>
<tr>
<td>Total Receives</td>
<td>601</td>
</tr>
<tr>
<td>Transmit Bytes</td>
<td>3981</td>
</tr>
<tr>
<td>Receive Bytes</td>
<td>4050</td>
</tr>
<tr>
<td>Invalid Interrupts</td>
<td>0</td>
</tr>
</tbody>
</table>

Transmit: D B Channels Receive: D B Channels

<table>
<thead>
<tr>
<th>Error</th>
<th>Overflow</th>
<th>Underrun</th>
<th>Abort</th>
<th>CRC Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

To display the following statistics for a dial circuit, use the `interface` command followed by the interface number of the dial circuit.

Example:

```
interface 4
```

<table>
<thead>
<tr>
<th>Nt</th>
<th>Nt'</th>
<th>Interface</th>
<th>CSR</th>
<th>Vec</th>
<th>Self-Test Passed</th>
<th>Self-Test Failed</th>
<th>Maintenance Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>PPP/1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Point to Point MAC/data-link on ISDN Basic Rate Interface

The following list describes the output for both ISDN and dial circuits.

- **Nt** Serial line interface number or dial circuit interface number.
- **Nt'** If Nt is a dial circuit, this is the interface number of the ISDN interface to which the dial circuit is mapped.
ISDN and the GWCON Commands

- **Interface**
 Interface type and its instance number.
- **CSR**
 Command and status register addresses of base network.
- **Vec**
 Interrupt vector address.
- **Self-Test Passed**
 Number of self-tests that succeeded.
- **Self-Test Failed**
 Number of self-tests that failed.
- **Maintenance: Failed**
 Number of maintenance failures.

Configuration - Information on Router Hardware and Software

Enter the `configuration` command at the GWCON (+) prompt to display information about the router hardware and software. It includes a section that displays the interfaces configured on the router along with the state of the interface.

If a dial circuit is configured to dial-on-demand, the state of the dial circuit is always displayed as Up whether or not it is connected. In this case Up means that the dial circuit is either connected or available.

If a dial circuit is configured as a static circuit, the state indicates Up only if the dial circuit is connected. (Refer to “[Configuration](#)” on page 130 for a sample output from the `configuration` command.)
Chapter 47. Configuring and Monitoring Dial Circuits

This chapter describes how to configure dial circuits on a dial circuit interface mapped to a V.25bis, V.34, or ISDN interface. It contains the following sections:

- Dial Circuit Configuration Commands
- Dial Circuit Monitoring Commands on page 650

Dial-in and Dial-out interfaces are special types of dial circuit interfaces.

Notes:

1. PPP dial circuit interfaces can use an ISDN, V.25bis, or V.34 network as the base-network interface.
2. FR dial circuit interfaces can use an ISDN or a V.25bis network as the base network interface.
3. Switched SDLC Call-In dial circuit interfaces use a V.25bis network as the base-network interface.
4. X.25 circuits can be used over ISDN D-channels for BRI.
5. Dial-Out circuit interfaces use a V.34 network as the base-network interface.
6. Dial-In circuit interfaces can use an ISDN or V.34 network as the base-network interface.

For information on how to configure dial circuits for use with:

- ISDN interfaces, see Chapter 45. Using the ISDN Interface on page 611.
- V.25bis interfaces, see Chapter 41. Using the V.25bis Network Interface on page 579.
- V.34 interfaces, see Chapter 43. Using the V.34 Network Interface on page 595.

Dial Circuit Configuration Commands

Table 83 describes the dial circuit configuration commands. Enter the dial circuit configuration commands at the Circuit Config> prompt. You must restart the router for configuration changes to take effect.

To access the Circuit Config> prompt, enter the network command followed by the interface number of the “dial circuit”. (The dial circuit number was assigned when you entered the add device dial-circuit command.) You can enter the list devices command at the Config> prompt to display a list of the dial circuits that you added.

Table 83. Dial Circuit Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes the inbound call settings from the dial circuit configuration.</td>
</tr>
<tr>
<td>Encapsulator</td>
<td>Allows you to change the data-link protocol configuration.</td>
</tr>
<tr>
<td>List</td>
<td>Displays the dial circuit configuration parameters.</td>
</tr>
</tbody>
</table>
Configuring Dial Circuits

Table 83. Dial Circuit Configuration Commands Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Configures the dial circuit for inbound or outbound calls, maps the dial circuit to a serial line interface, and sets addresses, idle timeout, priority, lid_out address, inbound destination, and self-test delay.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See "Exiting a Lower Level Environment" on page 11.</td>
</tr>
</tbody>
</table>

Delete

Use the `delete` command to remove the inbound call settings from the dial circuit configuration.

Syntax:
```
delete inbound destination
```

- `inbound destination`: Removes both the INBOUND destination and the ANY_INBOUND settings from the dial circuit configuration. This causes the dial circuit to accept calls only from callers that have a phone number that matches the `destination` parameter.

Encapsulator

Use the `encapsulator` command to enter the configuration process for the link-layer protocol (for example. PPP, Frame Relay, X.25, dial-out, SDLC) that is running on the dial circuit interface.

Note: The default for a dial circuit interface created via the `add device dial-circuit` command is PPP. To change the link layer type, at the `Config>` prompt:
- For Frame Relay, enter `set data-link frame-relay`.
- For SDLC, enter `set data-link sdlc`.
- For X.25 on the ISDN BRI D-channel, enter `set data-link x25`.

Syntax:
```
encapsulator
```

The following example shows that the PPP configuration process is entered when the encapsulator command is used for a PPP dial circuit or dial-in interface.

Example:
```
encapsulator
```
```
Point-to-Point user configuration
```
```
PPP Config>
```

Be aware of the following when you configure a dial circuit that uses a V.25bis interface as the base network:
- The V.25bis interface pre-defines clocking as external. The modem (DCE) controls the clock speed. You cannot configure clocking, encoding, and other HDLC parameters as part of the dial circuit configuration.
Be aware that you cannot configure HDLC parameters of the dial circuit configuration when you configure PPP or Frame Relay for ISDN. Physical layer parameters are configured on the ISDN interface.

For information on configuring the PPP protocol, refer to Chapter 25, Configuring Serial Line Interfaces or refer to Chapter 32, Using Point-to-Point Protocol Interfaces.

For information on configuring the Frame Relay protocol, see Chapter 30, Using Frame Relay Interfaces or Chapter 31, Configuring and Monitoring Frame Relay Interfaces.

For information on configuring or monitoring SDLC interfaces, see Chapter 37, Using SDLC Interfaces or Chapter 38, Configuring and Monitoring SDLC Interfaces.

For more information on configuring dial-in and dial-out interfaces, see Using a Dial-In Access to LANs (DIALs) Server in the Using and Configuring Features.

For information on configuring or monitoring X.25 interface, see Chapter 27, Configuring and Monitoring the X.25 Network Interface.

To return to the Circuit Config> prompt, use the exit command.

List

Use the list command to display the current dial circuit configuration.

Syntax:

```
list
```

Example:

```
list
```

Note: Options listed depend upon the type of interface used. All options may not be shown for all interface types.

```
list
Any inbound set
Bandwidth: 64
Base net: 1
Callback: yes
Calls: inbound
Destination name: remote-site-sanfrancisco
Idle char: 7E
Idle timer: = 60 sec
Inbound calls allowed
Inbound dst name: local-1
LID out address: 1234
LID used: enabled
Net #: 2
Outbound calls allowed
Priority: 8
SelfTest Delay Timer: = 0 ms
Time slot: 1 4 5 8
```

Any inbound

Displays this setting when inbound calls that do not match any other dial circuit are mapped to this circuit and accepted as inbound calls.
Configuring Dial Circuits

Bandwidth	Displays the bandwidth value in Kbps.
Base net	Displays the name of the serial line interface to which this dial circuit is mapped.
Callback	Displays the setting of this option.
Calls	Displays the setting of this option.
Destination name	Displays the network address name to be called for outbound circuits, and the default comparison address used by the LID mechanism for inbound calls.
Idle char	Displays the idle character used for I.43x or channelized circuits.
Idle timer	Displays the idle timer setting in seconds. The range is 0 to 65535; 0 indicates that this is a dedicated circuit (leased line).
Inbound calls allowed	Displays this parameter when the circuit is configured to accept inbound calls.
Inbound dst name	Displays this parameter if the circuit is configured to accept inbound calls that do not match any other addresses. This is an alternate comparison address name used by the LID mechanism for inbound calls.
LID out address	Displays the name of the dial circuit connecting the routers.
LID used	Displays the setting of this option.
Net #	Displays the base circuit number.
Outbound calls allowed	Displays this parameter when the circuit is configured to initiate outbound calls.
Priority	Displays the setting of this parameter.
SelfTest Delay Timer	Displays the self-test delay timer setting in milliseconds. The range is 0 to 65535; 0 indicates no delay.
Time slot	Displays the list of slots to use for this dial circuit.

Set

Use the `set` command to map the dial circuit to an interface (for example: ISDN, V.34, or V.25bis), configure the dial circuit for inbound and/or outbound calls, and set destination addresses, inbound addresses, idle timeout, and self-test delay.

Note:
Notes:
1. If you are running SDLC, I.430, I.431, Channelized, or X.25 on a dial circuit, you will be unable to use the `set` command to change the following parameters as the software will use specific defaults:
 - Any_inbound - any_inbound is set
 - Calls - inbound
 - Destination - default address
 - Inbound destination - no destination inbound address
 - Idle - 0
 - Lid_out_addr - no LID name
 - Lid_used - disabled
 - Priority - 8
 - Self_test_delay

2. If you are running a dial circuit on V.34, you will be unable to change the following parameters:
 - Bandwidth
 - Callback
 - Idle-char
 - lid_out_addr
 - timeslot

Syntax:
```
set any_inbound
bandwidth...
callback...
calls...
destination...
idle...
idle-char...
inbound destination...
lid_out_addr...
lid_used...
et...
priority...
seltest-delay...
timeslot...
```

any_inbound
Specifies that inbound calls that do not match any other dial circuit will be mapped to this circuit and accepted as inbound calls.

bandwidth kbps
Sets the bandwidth, in Kbps, for I.430 and Channelized T1/E1 circuits.

Valid values:
For I.430: 64 or 128
For Channelized: 56 or 64

Default value: 64

callback [Yes or No]

The callback feature uses the callers telephone number to verify the call against an authentication table and then disconnects the incoming call. Callback then makes an outgoing call to the same caller. Callback should always be disabled. The default is no.

calls [outbound or inbound or both]

Restricts this dial circuit to initiating outbound calls only, accepting inbound calls only, or both initiating and accepting calls. The default is both.

destination address_name

This parameter is required for the dial circuit to operate. It specifies the network dial address of the remote router to which this dial circuit will connect. The LID protocol uses this parameter as the default comparison address for incoming calls. This parameter must match an address name that you assigned using the `Config>` prompt with either the `add isdn address` command, the `add v25-bis address` command, or the `add v34-address` command.

Example: set destination remote-site-sanfrancisco

idle # of seconds

Specifies a timeout period for the circuit. If there is no protocol traffic over the circuit for this specified time period, the dial circuit hangs up. The range is 0 to 65535, and the default is 60 seconds. A setting of zero specifies that there is no timeout period and that this is a dedicated circuit.

Notes:
1. For WAN Restoral operations, you must set the idle timeout to 0.
2. On a I.43x, X.25 or Channelized circuit, you cannot set this parameter.

idle-char

Specifies the idle character used for I.43x or channelized circuits.

Note: You cannot configure this parameter for regular ISDN circuits.

Valid values: 7E or FF

Default value: 7E

Example: set idle-char 7E

inbound-destination address_name

Set this parameter if the dial circuit is set up for both inbound and outbound calls and if this router’s local dial address is different from the destination dial address that the remote router dialed. For example, the numbers would be different if one of the routers must go through a PBX, international, or inter-LATA exchange. This parameter must match an address name that you assigned at the `Config>` prompt with either the `add isdn address` command, the `add v25-bis address` command, or the `add v34-address` command. The inbound destination number is used to match the incoming LID or CallerID with the dial circuit. If there is a match that dial circuit gets the call.

Example: set inbound destination remote-site-1
The lid_out_addr is the name of a dial circuit between two routers. When more than one circuit is configured between two routers (parallel circuits), then there needs to be a way to unambiguously know which dial circuit connects between them. For this purpose, a lid_out_addr is sent from the router at one end (the caller). At the receiving end the other router configures the same string as the inbound destination name. The lid_out_addr must be an address name that has previously been added using ADD ISDN-ADDRESS from the config> prompt.

lid_used [enabled or disabled]

Suppresses the exchange of logical ids for circuits to devices that do not support logical ids.

Valid values: Enabled or disabled

Default value: Disabled

net #

Sets the base network number of the interface to the # of the serial line interface to which you want to map this circuit.

Note: The interface must be a V.34 net for dial-out interfaces. You are prompted for this if you add the device.

Example:

```
Circuit Config> set net
Base net for this circuit []? 2
```

priority

The priority field allows an outbound dial-on-demand circuit to preempt another when no channels are available. If a call request is made and all the channels are in use, then the priority of the requesting dial-on-demand circuit is checked against all the active dial-on-demand circuits. If there is an outbound dial-on-demand circuit with lower priority, then that circuit is disconnected and a call is made for the higher priority dial-on-demand circuit. Only the priority on the outbound end of a connection is considered. An inbound dial-on-demand call will not be taken down in favor of a higher priority outbound call. An inbound dial-on-demand call cannot cause a lower priority call to be taken down.

selftest-delay # of milliseconds

Use this parameter to delay the time between when the call is established and the time when the initial packet is sent. Setting a selftest-delay can prevent initial packets from being dropped. The range is 0 to 65535, and the default is 150.

For V.25bis dial circuits, adjust this setting if your modems take extra time to synchronize.

For ISDN dial circuits, you may need to adjust this setting for dial-on-demand links because some ISDN switches start to deliver data before signalling the complete establishment of the circuit at the destination end.

timeslot list of slots

Specifies a slot or list of slots to use for this dial circuit. Your service provider will issue the number of the slots you can use for the circuit. Specify the list as slot numbers separated by blanks.
Configuring Dial Circuits

Note: You can only use this parameter for Channelized T1/E1 circuits.

Valid values:
- For Channelized T1: 1 to 24
- For Channelized E1: 1 to 31

Default value: None

Example: set timeslot 1 4 5 8

Dial Circuit Monitoring Commands

Table 84 describes the dial circuit monitoring commands. Enter the dial circuit monitoring commands at the Circuit Config prompt. You must restart the router for monitoring changes to take effect.

Table 84. Dial Circuit Configuration Commands Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>? (Help)</td>
<td>Displays all the commands available for this command level or lists the options for specific commands (if available). See Getting Help on page 10.</td>
</tr>
<tr>
<td>Callback</td>
<td>Adds, deletes, or lists the information in the authentication cache.</td>
</tr>
<tr>
<td>Exit</td>
<td>Returns you to the previous command level. See Exiting a Lower Level Environment on page 11.</td>
</tr>
</tbody>
</table>

Callback

Use the **callback** command to add, delete or list the information in the authentication cache.

Syntax:

```plaintext
callback
    add
    delete
    list

add  Adds a callback number to the authentication lists.
delete Deletes a callback number from the authentication lists
list  Lists the callback numbers and other information in the authentication list.
```
Important
If you are attempting to configure or monitor your IBM 2210 and your service terminal is unreadable, see “Service Terminal Display Unreadable” in IBM 2210 Nways Multiprotocol Router Service and Maintenance Manual.

Quick Configuration Tips

Making Selections

On the panels that you view when using the Quick Configuration program, the information shown in brackets, [], is the default. For example:

Configure Bridging? (Yes, No, Quit): [Yes]

- To use the default Yes, press Enter.
- To use a value other than the default, such as No or Quit, choose from the values in the parentheses.
- If no value appears in the brackets, there is no default and you must type a value.

Integrated Modems

Integrated modems are automatically configured.

Exiting and Restarting

- To restart the current Quick Configuration section at any time, type r. For example, if you are in the Interface Configuration section, type r and press Enter to return to the beginning of that section.
- To exit Quick Configuration, type q and press Enter. The Config> prompt will appear.
- To restart Quick Configuration from the Config> prompt, type qc and press Enter.

When You’re Done

- Once you have completed your configuration, you must restart the IBM 2210 for the configuration to take effect. At the end of the Quick Configuration program, you are given this option.

Starting the Quick Configuration Program

The following sections describe sample configurations using the Quick Configuration program (qconfig).

To start the quick configuration program, enter qc at the Config> prompt.

The program displays the following panel after starting.
Router Quick Configuration for the following:

- Interfaces
- Multilink PPP (w/o DIALs)
- Dial Circuits (w/o DIALs)
- Dial-in Access to LANs (DIALs)
- Bridging
 - Spanning Tree Bridge (STB)
 - Source Routing Bridge (SRB)
 - Source Routing/Transparent Bridge (SR/TB)
 - Source Routing Transparent Bridge (SRT)
- Protocols
 - IP (including OSPF, RIP, and SNMP)
 - IPX
 - DNA
- Booting

Event Logging will be enabled for all configured subsystems with logging level 'Standard'.

Note: Please be warned that any existing configuration for a particular item will be removed if that item is configured through Quick Configuration.

Event logging records system activity, status changes, data transmission and reception, data and internal errors, and service requests. The logging level is set to standard (the default). For more information about error logging, refer to the Event Logging System Messages Guide.

During Quick Configuration you can:

1. Configure interfaces
2. Configure multilink PPP interfaces
3. Configure Dial circuits
4. Configure Dial-in and Dial-out circuits
5. Configure Dial-in Access to LANs (DIALs) information
6. Configure bridging
7. Configure protocols
8. Configure booting
9. Enable Console Modem-Control
10. Restart the router

Configuring LAN Emulation

If you added an ATM device, you will see the following prompts:

```
**********************************************************
LAN Emulation Configuration
**********************************************************
Type 'Yes' to Configure LAN Emulation
Type 'No' to skip LAN Emulation Configuration
Type 'Quit' to exit Quick Config
Configure LAN Emulation? (Yes, No, Quit): [Yes]
```

You can configure either Token-Ring or Ethernet LAN Emulation clients from this question.
Configuring Interfaces

1. Take one of the following actions:
 - Enter y to display the interface configuration prompts.
 - Enter n to skip interface configuration and continue with quick configuration.
 - Enter q to exit quick configuration. This displays the Config> prompt. To restart quick configuration from this prompt, enter qc.

When interface configuration begins, you can type 'r' any time at this level to restart Interface Configuration.

The only WAN interfaces that you can configure using Quick Config are PPP, Frame Relay, and V34. The only parameters you can configure for PPP and Frame Relay are the cable type and the line speed if the IBM 2210 is providing the clocking. For V34 interfaces the cable type is set to RS-232 DTE with a clock speed of 115200.

Note: Some modems do not support 115200 as the DTE serial speed. If this is the case, you must go into the network configuration for that V34 net and lower the DTE speed.

What quick configuration displays next depends on whether you have an Ethernet or Token-Ring version of the IBM 2210.

Ethernet

For Ethernet versions of the IBM 2210, configuration prompts similar to the following ones appear:

1. The interface verification:

```
Intf 0 is Ethernet
Intf 1 is WAN PPP
Encapsulation for WAN 1 (PPP, Frame Relay, V34): [PPP] PPP
```

2. Enter one of the following values to specify the encapsulation type:

- ppp Point-to-Point Protocol
- fr Frame Relay
- V34 V.34 Modem Handler

The following message is displayed for PPP and Frame Relay:
3. Enter the cable type you have or will connect to this WAN port.

Internal clock speed (decimal) (2400 - 2048000): [0] 1544000

Internal Clock Speed appears only if you enter a DCE cable.

The WAN prompts repeat for WAN Port 2.

Intf 2 is WAN PPP
Encapsulation for WAN 2 (PPP, Frame Relay, V34): [PPP]
This is all configured device information:
Intf 0 is Ethernet, Connector (10BaseT, AUI) autoconfigured
Intf 1 is WAN 1 with PPP Encapsulation, V.35 direct attach cable
 internal clock speed 1544000 bits/second
Intf 2 is WAN 2 with PPP Encapsulation, V.35 modem cable
Save this configuration? (Yes, No): [Yes]

4. Enter y to save the configuration and continue with quick configuration. Enter n to re-display the interface configuration prompts.

Token-Ring

For token-ring versions of the IBM 2210, configuration prompts similar to the following ones appear.

1. The interface verification:

Intf 0 is Token Ring
Speed in Mb/sec (4,16): [16]

2. Enter 4 or 16 to specify the media transfer speed in megabits per second. The media transfer speed must match the speed of the ring.

Connector (STP, UTP): [STP]

3. Enter one of the following values to specify the media you are using:

 STP shielded twisted pair
 UTP unshielded twisted pair

For a description of WAN prompts, see the Ethernet configuration prompts.
Intf 1 is a WAN PPP Encapsulation for WAN 1
(PPP, Frame Relay, V34): [PPP]
Intf 2 is a WAN PPP Encapsulation for WAN 2
(PPP, Frame Relay, V34): [PPP]
Internal clock speed (decimal) (4800 – 2048000): [0]
This is all configured device information:
Intf 0 is Token–Ring, Speed 16 Mb/sec, Connector UTP
Intf 1 is WAN1 with PPP Encapsulation, V.35 modem cable
Intf 2 is WAN2 with PPP Encapsulation, V.35 direct attach cable
 internal clock speed 0 bits/second
Save this configuration? (Yes, No): [Yes]

4. Enter y to save the configuration and continue with quick configuration. Enter n to re-display the interface configuration prompts.

Configuring Multilink PPP (MP) Interfaces

If you have a router with ISDN capabilities, the following configuration questions will be displayed.

Note: The following example assumes a Primary ISDN adapter plugged into a 2210 Model 24x or Model 14x.

**
Multilink PPP Configuration (w/o DIALs)
**
Type 'Yes' to Configure Multilink PPP
Type 'No' to skip Multilink PPP Configuration
Type 'Quit' to exit Quick Config
Configure Multilink PPP? (Yes, No, Quit): [Yes]

1. Take one of the following actions:
 • Enter y to display the Multilink PPP configuration prompts
 • Enter n to skip Multilink PPP configuration and continue quick configuration
 • Enter q to exit quick configuration

The following status message appears when MP configuration begins displaying the current MP configuration. You have the choice of editing an existing MP interface configuration or starting a new MP bundle.

Current Multilink PPP Configuration:
Num Intf# Direction Max Links Link Intf# Base Intf# Destination
1 New Multilink PPP
Choose the Multilink PPP you wish to edit/add: (1 - 1): [1]

2. Select the number of your choice. Enter the last number in the list to start a new MP interface configuration or select the number of an existing MP interface to modify the configuration. (Note: There are no existing MP interfaces in the example above.) If you choose to add a new MP interface, the following questions will be asked. The questions vary slightly for INBOUND and OUTBOUND MP interfaces:
3. Next you are prompted to add/edit the ISDN dial-circuits that can be used by the MP interface. The example below demonstrates adding one dial-circuit but you may add more than one dial-circuit per MP interface. Choose to add a dial-circuit by selecting the last number in the list denoted by “New Circuit” or to edit an existing dial-circuit configuration by typing its corresponding number. (Note: The example below does not display any existing dial-circuit configuration.)

Current Dial Circuit Configuration:

<table>
<thead>
<tr>
<th>Num</th>
<th>Intf#</th>
<th>Intf Type</th>
<th>BaseIntf#</th>
<th>MP Direction</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose a Dial Circuit Link you wish to edit/add: (1 - 1): [1]

Enter interface # of Base Net, ”?” for List,”Q” to quit: (6)

Address assigned name	Network Address	Network Subaddress
default_address | 9999999999 |

Assign Line ID *In* Network Address:

Network Address name ([1-23] chars): LID_IN
Enter Network Address [1-26 digits]: 1234
Enter Network Subaddress [0-21 digits]:

Interface #: 8
Interface Type: PPP Dial Circuit
Base Interface #: 6 (ISDN Base Net)
Multilink PPP Interface #: 7
Call Direction: Inbound only
Destination Name: default_address
Line ID *IN* Name: LID_IN

Is this correct (Yes, No): [Yes] Yes
Add another Dial Circuit Link (Yes, No): [Yes] No

4. Next, the MP interface and all of the dial-circuits for the interface are listed for confirmation. In this case, there is only one dial-circuit for the MP interface.

Multilink PPP Interface #: 7
Call Direction: Inbound only
Idle timer: 0 (fixed circuit)
Maximum Number of links: 3
Dial Circuit Link
- Interface #: 8
 - Interface Type: PPP Dial Circuit
 - BASE Interface #: 6 (ISDN Base Net)
 - Destination Name: default_address
 - Line ID *In* Name: LID_IN

Is this correct (Yes, No): [Yes] Y

5. To add/edit another MP interface type y to the following question. Answering n will exit you from the MP configuration section.

Add another Multilink PPP Interface (Yes, No): [Yes] n

6. After configuring all of the MP interfaces, an MP confirmation question will appear with all of the configured MP interfaces listed. You can type y to save the changes or n to discard the new MP configuration.
Current Multilink PPP Configuration:

<table>
<thead>
<tr>
<th>Num</th>
<th>Intf#</th>
<th>Direction</th>
<th>Max Links</th>
<th>Link Intf#</th>
<th>Base Intf#</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>In</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>default_ad</td>
</tr>
</tbody>
</table>

Save this configuration (Yes, No): [Yes] y

Multilink PPP configuration saved.

Configuring Dial-Circuits

The following configuration questions are displayed for dial-circuit configuration:

**
Dial Circuit Configuration (w/o DIALs)
**
Type 'Yes' to Configure Dial Circuits
Type 'No' to skip Dial Circuits Configuration
Type 'Quit' to exit Quick Config

Configure Dial Circuits? (Yes, No, Quit): [Yes] y

1. Take one of the following actions:
 - Enter y to display the Dial-Circuit configuration prompts
 - Enter n to skip Dial-Circuit configuration and continue quick configuration
 - Enter q to exit quick configuration

The following status message appears upon entering the dial-circuit configuration. Note that in this example there is no existing dial-circuit configuration:

Current Dial Circuit Configuration:

<table>
<thead>
<tr>
<th>Num</th>
<th>Intf#</th>
<th>Intf Type</th>
<th>BaseIntf#</th>
<th>MP</th>
<th>Direction ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New Circuit</td>
<td>PPP</td>
<td>Inbound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose the circuit you wish to edit/add: (1 - 1): [1] 1

2. Choose to add a new dial-circuit by selecting the number at the bottom of the list denoted by "New Circuit". Choose to edit an existing dial-circuit configuration by selecting the number of the dial-circuit which you wish to edit (Note: in the above example, there are no existing dial-circuits). The following is an example of the prompts that will be displayed to add a new, PPP, inbound dial-circuit:

Enter interface # of Base Net, "?" for List,"Q" to quit: (6)
Enter type of dial circuit for this net: (PPP, FRAME-RELAY): [FRAME-RELAY] PPP
Set Call Direction (Inbound, Outbound, Both): [Both] Inbound
Accept ANY INBOUND call (Yes, No): [No] Yes

3. After answering all of the questions, you will be given a confirmation for the dial-circuit as shown below:
Interface #: 13
Interface Type: PPP Dial Circuit
Base Interface #: 6 (ISDN Base Net)
Idle timer: 0 (fixed circuit)
Call Direction: Inbound only
Destination Name: default_address
Line ID +IN+ Name: * ANY *

Is this correct (Yes, No): [Yes] Yes

4. Next, you may choose to add/edit more dial-circuits in the same way as the example above.

Add another Dial Circuit (Yes, No): [Yes] No

5. Finally, you will be asked to confirm the dial-circuit configuration and exit the dial-circuit configuration section. Answering y will save the dial-circuit configuration and answering n will discard changes made during this configuration session.

Current Dial Circuit Configuration:
Num Intf# Intf Type BaseIntf# MP Direction Destination
1 13 PPP Dial Circuit 6/ISDN No In default_address

Save this configuration (Yes, No): [Yes] Yes
Dial circuit configuration saved.

Configuring Dial-in Access to LANs (DIALs) Interfaces and DIALs Server Information

If the router you are configuring contains the DIALs feature, then you will be asked if you want to configure DIALs interfaces and DIALs server information. You will only be asked to configure DIALs interfaces if you have configured V34 on a base WAN interface or if an ISDN interface exists in your router. The following prompts lead you through the DIALs configuration:

**
Dial-in Access to LANs (DIALs) Configuration
**

Type ‘Yes’ to Configure DIALs Configuration
Type ‘No’ to skip DIALs Configuration Configuration
Type ‘Quit’ to exit Quick Config

Configure DIALs Interfaces? (Yes, No, Quit): [Yes]

1. Take one of the following actions:
 • Enter y to display the DIALs Interface prompts
 • Enter n to skip DIALs Interface configuration
 • Enter q to exit quick configuration

 If you answer yes and there ISDN is loaded on this device, the following question will be shown.
Current Multilink PPP Configuration:
Num Intf# Direction MaxLinks DIALs
1 8 In 2 No

Enter the number of Multilink PPP DIALs interfaces: (0-23) 2
Enter maximum number of active links per Multilink PPP interface: 3

Next, the following prompt will be shown.

For Base Interface #1 (V.34 Base Net) no Dial Circuits are configured!
Add a DIALs (Dial-in) Interface for this Base Interface? (Yes, No): [No] y
Add a Dial-out DIALs Interface for this Base Interface? (Yes, No): [No] y

Num Intf# Intf Type BaseIntf# MP Direction Destination
1 3 PPP Dial-in Circuit 1/V34 No In N/A
2 4 Dial-out DIALs Circuit 1/V34 No Out N/A

Save this configuration (Yes, No): [Yes]
Dial circuit configuration saved.

Answering no will take the user out of the DIALs server configuration.

2. For every valid base WAN interface (V34 or ISDN) in the router, you are asked if you want to add a DIALs dial-in interface for this base net.
 • If the base net is ISDN BRI or ISDN PRI, you are asked if you want to add up to 2 or 23 respectively dial-in interfaces for the ISDN base net.
 • If the base net is V34 then you will also be asked if you want to add a DIALs dial-out circuit for this base net (Dial-out is not supported over ISDN).

3. After answering yes or no to these questions, the current dial-circuit configuration for that base net is displayed. You can then save the configuration by answering yes or restart the configuration for that base net by answering no.

4. After configuring all of your DIALs interfaces or by answering no to the DIALs interfaces question, you arrive at the DIALs Server configuration. Here you are asked to enter information about global settings for the DIALs server.

Configure DIALs Server? (Yes, No, Quit): [Yes] yes
Type ‘r’ any time at this level to restart Dial-in Access to LANs Configuration.

5. Take one of the following actions:
 • Enter y to display the DIALs Server prompts
 • Enter n to skip DIALs Server configuration
 • Enter q to exit quick configuration

If you answer yes, the following prompt will be shown. Answering no takes you to the next configuration section.

Default number of minutes a user is allowed before being disconnected, 0 is unlimited: (0)

6. The default number of minutes on-line determines the maximum connection time for dial-in and dial-out users. Enter 0 if you want to this time to be unlimited. The default is zero if you have not configured this information previously.
7. Enter the name of the DIALs server. The default is DIALOUT_SERVER. This is the name of the server that will be displayed when dial-out clients “discover” DIALs Dial-out Servers on the network when they invoke the DIALs client’s CHOOSER application.

8. The previous question determines what level of dial-out support is turned on for the router. DIALs refers to supporting the IBM DIALs dial-out clients. Telnet dial-out refers to the ability to dial-out from a LAN based client using either a telnet application or a telnet serial port application. The default setting is to have both enabled.

9. The previous question pertains to how long a dial-out circuit is active while no data is being transmitted or received. It should be set to the number of minutes that a connection over a dial-out circuit can be active without traffic. The default is 30 minutes.

10. The previous question allows dial-in clients to provide their own IP address to be used for the duration of the connection.

11. The previous question enables the device to provide the IP address in the PPP User Profile to the client to use for the duration of the connection.

12. The previous question enables the device to provide the IP address in the Dial-in interface for the client to use for the duration of the connection.

13. The previous question enables the device to provide an IP address from the IP address pool for the client to use for the duration of the connection. IP address pools enable the device to provide an IP address from the IP address pools to the client to use for the duration of the connection.
14. The previous question enables the device to provide an IP address from a DHCP server to the client for use for the duration of the connection.

DHCP gateway (giaddr) interface: [] 10.0.0.15

15. The DHCP Gateway interface, or giaddr (as defined in RFC1531), is an IP address associated with the subnet you wish the DHCP server to offer addresses within. This is necessary because the DHCP server may be used to lease addresses to more than one subnet. The giaddr allows the DHCP server to distinguish from which subnet to offer addresses as well as provide an address in which to respond to.

Quick Config will now ask you for an IP address to use as the giaddr. If you leave this address as 0.0.0.0, the IP address of the interface used to reach the DHCP server will be used. If you have only one LAN connected to the device and your dial-in users will be given addresses on the same subnet as this LAN, you can use 0.0.0.0 as this address.

Note: You will be permitted to enter an IP address here even if the address does not yet exist on the interface. However, an interface must be configured with this address before DHCP will work properly.

Do you want to use Dynamic DNS (requires hostnames to be configured for dial-in users)? (Yes, No): [Yes]y

16. The response to the previous question determines if the router will instruct the DHCP server to update the Dynamic DNS with the hostname and IP address of a dial-in user.

If you will be using DHCP to administer IP address to your dial-in users, you should answer yes to this question.

This is all the configured Dial-in Access to LANs information:

Default number of minutes allowed per connection: Unlimited
Inactive timer: 30
LAN Protocols enabled for dial-out: TELNET DIALs
DIALs Server name: DIALOUT_SERVER

DIALs client IP address specification:
Client : Enabled
UserID : Enabled
Interface : Enabled
Pool : Enabled
DHCP Proxy : Enabled

Configured DHCP Servers : 10.0.0.1 10.0.0.2
DHCP Gateway address (giaddr): 10.0.0.15
Dynamic DNS: Enabled

Is this information correct? (Yes, No, Quit): [Yes]

17. A summary of the information for DIALs configuration is displayed and you are asked if it is correct. If the information is correct, answer yes. If it is not and you want to reenter the information, answer no. If you want to terminate quick config, answer quit.
Configuring Bridging

Type 'Yes' to Configure Bridging
Type 'No' to skip Bridging Configuration
Type 'Quit' to exit Quick Config

Configure Bridging? (Yes, No, Quit): [Yes]

1. In response to Configure Bridging, take one of the following actions:
 - Enter y to display the bridging configuration prompts. The prompts that appear depend on your network configuration.
 - Enter n to skip the bridging configuration and continue with quick configuration.
 - Enter q to exit quick configuration. This displays the Config> prompt. To reenter quick configuration, enter qc after this prompt.

2. If you have configured for DIALs dial-in circuits the following panel will be displayed:

 Transparent bridging automatically enabled on DIALs ports? (Yes, No, Quit): [Yes]

 Enter y to automatically add transparent bridge ports to the bridge configuration for each of the DIALs interfaces.
 Enter n to automatically disable Bridging on each of the DIALs dial-in interfaces.

3. If you choose to configure bridging, Spanning Tree Bridging (STB) will be enabled on all LAN interfaces. You will see the following panels:

 Type 'r' any time at this level to restart Bridging Configuration
 STB will be enabled on all LAN interfaces

 Enter y to configure SRT bridging. Otherwise, enter n. For each Token-Ring interface in the configuration, you will be prompted to enable Source Routing on the interface.

 Configure SRT Bridging? (Yes, No): [Yes]
 You are now configuring the Source Routing part of SRT Bridging
 Bridge Number (hex) of this Router (1-F): [A]

4. Enter a bridge number, which is a hexadecimal value from 1 to F that is unique between two parallel segments.

 Interface 0 (Port 1) is of type Token Ring
 Configure Source Routing on this interface (Yes, No): [Yes]

5. Enter y to configure source routing on the interface. The console displays the next two lines.

 Configuring Interface 0 (Port 1)
 Segment Number (hex) of this Interface (1-FFF): [A1]

 Note: The port number increases by one because source routing bridging does not allow a port number of zero.
A unique hexadecimal value from 1 to FFF is assigned to each interface. The interfaces on each ring (segment) have the same segment number, but the segment number is unique to each ring.

These prompts appear for each Token Ring interface.

Interface 1 (Port 2) is of type Token Ring
Configure Source Routing on this interface? (Yes, No): [Yes]
Configuring Interface 1 (Port 2)
Segment Number (hex) of this Interface (1-FFF): [A2]

If more than two interfaces are configured for source routing, enter a unique hexadecimal value from 1 to FFF unique for the internal virtual segment.

Virtual Segment Number (hex) of this Router (1-FFF): [A4]

6. A panel similar to the following is displayed:

This is all configured bridging information:

Interfaces configured for STB:

<table>
<thead>
<tr>
<th>Interface #</th>
<th>Port #</th>
<th>Interface Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Token Ring</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Token Ring</td>
</tr>
</tbody>
</table>

The Source Routing part of SRT Bridging has been enabled

Bridge Number of this Router: A

Interfaces configured for Source Routing:

<table>
<thead>
<tr>
<th>Interface #</th>
<th>Port #</th>
<th>Segment #</th>
<th>Interface Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>A1</td>
<td>Token Ring</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>A2</td>
<td>Token Ring</td>
</tr>
</tbody>
</table>

Virtual Segment Number of this Router: A4

Save this Configuration? (Yes, No): [Yes]

7. Enter y to save the bridging configuration and continue with quick configuration. Enter n to re-display the bridging configuration prompts. If you enter y, the following message appears:

Bridging configuration saved

Configuring Protocols

After you save the bridging configuration, you will see the following panel:

**
Protocol Configuration
**

Type 'Yes' to Configure Protocols
Type 'No' to skip Protocol Configuration
Type 'Quit' to exit Quick Config

Configure Protocols? (Yes, No, Quit): [Yes]

Take one of the following actions:
• Enter y to configure the protocols.
• Enter n to skip protocol configuration and continue with quick configuration.
• Enter q to exit quick configuration.

You will first configure IP, then IPX, and then DECnet.

Configuring IP

When you answer y to the Configure Protocol panel, quick configuration displays the following messages:

Type 'r' any time at this level to restart Protocol configuration
Configure IP? (Yes, No): [Yes]

1. Take one of the following actions:
 • Enter y to configure IP.
 • Enter n to skip IP configuration and continue with quick configuration.

If you have configured for DIALs dial-in interfaces, the following panel will be displayed:

Automatically configure IP on DIALs dial-in interfaces (this will also enable ARP subnet routing)? (Yes, No, Quit): [Yes]

2. Take one of the following actions:
 • Enter y to automatically add unnumbered IP addresses for each DIALs interface. It will also enable ARP Subnet Routing for the router and turn off the sending of RIP packets on DIALs interfaces. All of these options are required for Dial-In Access to LANs interfaces and it is recommended for you to answer yes to this question if you desire IP to be enabled on DIALs interfaces.
 • Enter n to automatically disable IP on each of the DIALs dial-in interfaces.

The following lines appear for each interface.

<table>
<thead>
<tr>
<th>Configuring Per-Interface IP Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Interface 0 (Token Ring)</td>
</tr>
<tr>
<td>Configure IP on this interface? (Yes, No): [Yes]</td>
</tr>
<tr>
<td>IP Address: [] 128.185.141.1</td>
</tr>
<tr>
<td>Address Mask: [255.255.0.0]</td>
</tr>
</tbody>
</table>

3. Enter the IP address in decimal notation for example, 128.185.142.20. The console displays one of the following error messages if you enter an invalid IP address:

 Bad address, please try again.

 This address has already been assigned. Enter a different address

Address mask is a decimal value that reflects the IP network or subnetwork to which this interface is attached.

For more information about IP addressing or address masks, refer to the Protocol Configuration and Monitoring Reference, or consult your network administrator.
Per-Interface IP Configuration complete

Configuring IP Routing Information
Enable Dynamic Routing (Yes, No): [Yes]

4. Enter y if you want the routing protocols (RIP or OSPF) to build the routing tables. Enter n to manually add IP address destinations to the routing tables (static routes).

Enable OSPF? (Yes, No): [Yes]

5. Enter y to enable the OSPF routing protocol as the primary dynamic IP routing protocol. RIP will be enabled only to send advertisements, not to receive them. Enter n if you do not want to use OSPF. RIP will be enabled to send and receive advertisements.

OSPF Enabled with Max routes = 1000 and Max routers = 50

Max routes is the maximum number of autonomous system (AS) external routes imported into the OSPF routing domain. Max routers is the maximum number of OSPF routers in the routing domain.

Routing Configuration Complete

SNMP will be configured with the following parameters:

Community: public
Access: READONLY

If you plan to use the graphical configuration tool to download a configuration, it requires the definition of a community name with read-write_trap access.

Define community with read_write_trap access? (Yes, No): [Yes]

This is the information you have entered:

<table>
<thead>
<tr>
<th>Interface #</th>
<th>IP Address</th>
<th>Address Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>128.185.141.1</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>1</td>
<td>128.185.142.1</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>2</td>
<td>128.185.143.1</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

OSPF is configured, and RIP is configured only for 'sending'

SNMP has been configured with the following parameters:

Community: public
Access: read_trap

Community: dana
Access: read_write_trap

Save this configuration? (Yes, No): [Yes]

6. Enter y to save the IP configuration and continue with quick configuration. Enter n to re-display the protocol configuration prompts.

Configuring IPX

After you save the IP configuration, you will see the following messages:
Configure IPX? (Yes, No): [Yes]

1. Enter y to configure IPX. Enter n to skip IPX configuration and continue with quick configuration.

You will see messages similar to the following:

Type 'r' any time at this level to restart IPX Configuration
IPX Configuration is already present
Configure IPX anyway? (Yes, No): [No] yes

2. Enter y to replace the existing configuration. Enter n to keep the current configuration and continue.

If you have configured for DIALs dial-in interfaces the following panel will be displayed:

Enable IPX on DIALs interfaces? (Yes, No): [Yes]

3. Enter y to automatically enable IPX on each of the DIALs interfaces. A random IPX network number will be generated for the interface and IPXWAN will be disabled for the DIALs interface. It is required that IPXWAN be disabled for DIALs interfaces.

Enter n to automatically disable IPX on each of the DIALs dial-in interfaces.

Configuring Per-Interface IPX Information

Configuring Interface 0 (Token Ring)
Configure IPX on this interface? (Yes, No): [Yes]

4. The next messages and your responses depend on whether you are configuring Token-Ring or Ethernet.

Configuring IPX for Token-Ring:

a. The following prompt is displayed:

Token Ring encapsulation (frame) type? (TOKEN–RING MSB, TOKEN–RING LSB,
TOKEN–RING_SNAP MSB, TOKEN–RING_SNAP LSB): [TOKEN–RING MSB]

b. Enter the encapsulation type used by the IPX protocol on your Token-Ring end stations.

Token–Ring MSB: Most common encapsulation type and the default. The IBM 2210 builds outgoing packets with a 3-byte 802.2 header, (0xE0, 0xE0, 0x03). It sends the source and destination addresses in MSB (most significant bit), or noncanonical, format, which is the native address format for Token-Ring.

Token–Ring LSB: Same as Token–Ring MSB except the IBM 2210 sends the addresses in LSB (least significant bit), or canonical, format.

Token–Ring SNAP MSB: The IBM 2210 builds outgoing packets with an 8-byte 802.2/SNAP header (0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x81, 0x37). It sends the source and destination addresses in most significant bit (MSB), or noncanonical, format.

Token–Ring SNAP LSB: Same as Token–Ring SNAP MSB except the IBM 2210 sends the addresses in LSB, or canonical, format.

Configuring IPX for Ethernet:
a. The following prompts are displayed:

```
Ethernet encapsulation type? (ETHERNET_8022, ETHERNET_8023, ETHERNET_II,
ETHERNET_SNAP): [ETHERNET_8023]
```

b. Enter the encapsulation type used by the IPX protocol on your Ethernet end stations.

- **Ethernet_8022**: Packet includes an 802.2 header.
- **Ethernet_8023**: Uses an IEEE 802.3 packet format without the 802.2 header. This is the default and the default for NetWare versions prior to 4.0. Ethernet 802.3 does not conform to the IEEE 802 standards because it does not include an 802.2 header. It may cause problems with other nodes on the network.
- **Ethernet_II**: Uses Ethernet type 8137 as the packet format. This format is required if you are using NetWare VMS on the Ethernet. This is the default for NetWare Versions 4.0 and higher.
- **Ethernet_SNAP**: Uses the 802.2 format with a SNAP header. This encapsulation type is meant to be compatible with token-ring SNAP encapsulation. However, it violates IEEE standards and is not interoperable across conformal bridges.

5. Assign an IPX network number to the associated directly connected network. Every IPX interface must have a unique network number.

```
Configuring Interface 1 (WAN PPP)
Configure IPX on this interface? (Yes, No): [Yes]
Network Number (hex) (1-FFFFFFFD): [1] 2
Enable IPXWAN? (Yes, No): [No] yes

Configuring Interface 2 (WAN PPP)
Configure IPX on this interface? (Yes, No): [Yes]
Network Number (hex) (1-FFFFFFFD): [1] 3
Enable IPXWAN? (Yes, No): [No] yes
Host Number for Serial Lines: (000000000000) 1

Configure IPXWAN NodeID? (Yes, No): [Yes]
NodeID (hex) (1 - FFFFFFFD): [1] 4
```

If enabled, the IPXWAN protocol negotiates routing parameters to be used on the PPP serial interface before IPX packet forwarding begins. IPXWAN is not required to forward IPX packets on PPP serial interfaces. The IPXWAN Node ID is a unique IPX network number that identifies the router, and is required if IPXWAN is enabled on any network interfaces.

6. Host number is a unique 12-digit hexadecimal value assigned to an IPX router. It is required because serial lines do not have hardware node addresses from which to build a host number.
This is the information you have entered:

Per-Interface Configuration Information

<table>
<thead>
<tr>
<th>Cir</th>
<th>Ifc</th>
<th>IPX Net(hex)</th>
<th>Encapsulation</th>
<th>IPXWAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>ETHERNET_8023</td>
<td>Not Configured</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>300</td>
<td></td>
<td>Not Configured</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>400</td>
<td></td>
<td>Not Configured</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>600</td>
<td></td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Host Number for Serial Lines: 0002210A0000
IPXWAN Node ID = 2210A
IPX Router Name = ipxwan_router-2210A

Save this configuration? (Yes, No): [Yes]

7. Enter **y** to save the IPX configuration and continue with quick configuration.
 Enter **n** to re-display the IPX configuration prompts.
 If you enter **y**, the following message appears:

IPX configuration saved

Configuring DECnet (DNA)

After you save the IPX configuration, you will see the following messages.

IPX Configuration saved
Configure DNA? (Yes, No): [Yes]

1. Enter **y** to configure DNA. Enter **n** to skip DNA configuration and continue with quick configuration.

Type 'r' any time at this level to restart DNA Configuration

Configuring Global DNA information

Highest Node Number (decimal) (1-1023): [32]
Router Level (Level1, Level2, DEC Level1, DEC Level2): [Level2]
Highest Area (decimal) (1-63): [63]
Node Address (area.node): (63.32)

The above configuration fields are configured with the following considerations:

Highest Node Number
Is the highest node address in the router’s area. Setting it excessively high will affect the routers efficiency and require excess storage.

Router Level
Identifies whether the router is a Level 1 or Level 2 router. A Level 1 router keeps track of all nodes in its area and does not care about nodes outside its area. A Level 2 router routes traffic between areas.

Normally you should select Level1 or Level2 with the following exception: select DEC Level1 or DEC Level2 only when this router must communicate over X.25 networks with routers conforming to the DEC X.25 standard.
Highest Area
This number should be at least as high as the highest area number in the overall network.

Node Address
Is the node ID of this router and must be unique in the network.

When you press Enter, the following is displayed:

<table>
<thead>
<tr>
<th>Configuring Per-Interface DNA Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Max Routers on each interface</td>
</tr>
<tr>
<td>Configuring Interface 0 (Ethernet)</td>
</tr>
<tr>
<td>Configure DNA on this interface? (Yes, No) [YES]</td>
</tr>
<tr>
<td>Max Routers (decimal) (1-33): [16]</td>
</tr>
<tr>
<td>Configuring Interface 1 (WAN PPP)</td>
</tr>
<tr>
<td>Configure DNA on this interface? (Yes, No) [Yes]</td>
</tr>
<tr>
<td>Configuring Interface 2 (Token Ring)</td>
</tr>
<tr>
<td>Configure DNA on this interface? (Yes, No) [Yes]</td>
</tr>
<tr>
<td>Max Routers (decimal) (1-33): [16]</td>
</tr>
</tbody>
</table>

2. Enter **y** for every interface that will be connected to the DECnet network. For LANs, Max Routers specifies how many other routers may be on this circuit. For router efficiency and memory requirements set this argument to a few more than the total number of adjacent routers on this circuit.

The following panel is displayed:

<table>
<thead>
<tr>
<th>This is the information you have entered:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Configuration Information</td>
</tr>
<tr>
<td>Highest Node Number: 32</td>
</tr>
<tr>
<td>Router Level: Level2</td>
</tr>
<tr>
<td>Highest Area: 63</td>
</tr>
<tr>
<td>Node Address: 63.32</td>
</tr>
<tr>
<td>Pre-Interface Configuration Information</td>
</tr>
<tr>
<td>Interface Number</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Save this configuration? (Yes, No): [Yes]</td>
</tr>
</tbody>
</table>

3. Enter **y** to save the DECnet configuration and continue with the quick configuration. Enter **n** to re-display the DECnet configuration prompts.

If you enter **y**, the following message appears:
Configuring Booting

1. Enter `y` to display the boot configuration prompts. Enter `n` to skip boot configuration. Enter `q` to exit quick configuration.

Any previous boot information is displayed, as illustrated in the following example:

Type 'r' any time at this level to restart Boot configuration

Previous Boot information

Booting Method:TFTP Boot
Interface Number:0
Interface IP Address:128.185.133.18
Address Mask:255.255.255.0
Host IP Address:128.185.120.120
Gateway IP Address:128.185.133.7
Boot file Name:ibm2210.ldc
Create a boot record using this information? (yes, No): [Yes]

2. Enter `y` to create a boot record with the previous boot information and display the following prompts:

Boot Configuration saved

Enable Console Modem-Control (Yes, No, Quit): [No]

3. Take one of the following actions:
 - Enter `y` if you are connecting a console to the IBM 2210 through a modem and if you want autologout on lost phone connections.
 - Enter `n` to connect a console directly to the IBM 2210.
 - Enter `q` to exit quick configuration.

When you enter `no`, you can then select another boot option from the next prompt.

Select Booting Method (TFTP Boot, BOOTP Boot, IBD Boot): []

4. Enter the booting method you will use to boot the IBM 2210:
 - TFTP
 - BOOTP
 - IBD

The following sections describe the prompts that appear for each method.
TFTP Boot

1. Enter **TFTP** to boot using a TFTP host server and respond to the following prompts:

 - **Interface Number**: The number of the LAN interface over which to boot. For this version of the IBM 2210, you must use the default of 0.
 - **Interface IP Address**: IP address of the interface over which to boot. Enter the IP address in decimal notation.
 - **Address Mask**: Address mask identifies the IP address class type. Class A is 255.0.0.0, Class B is 255.255.0.0, and Class C is 255.255.255.0.
 - **Host IP Address**: IP address of the host that contains the boot file.
 - **Via Gateway**: If the host is not on the same (sub)network as the IBM 2210, enter the IP address of an intermediate router.
 - **Boot File Name**: Name of the file over which to boot. You must use the full path for the boot file, for example: `/usr/2210/bootfile.name`

 TFTP Boot Configuration Complete

 This is the information you have entered:

   ```
   Booting Method: TFTP Boot
   Interface Number: 0
   Interface IP Address: 128.185.141.1
   Address Mask: 255.255.255.0
   Host IP Address: 128.185.120.120
   Gateway IP Address: 128.185.141.7
   Boot File Name: ibm2210.ldc
   ```

 Save this configuration? (Yes, No): [Yes]

2. Enter **y** to create a boot record. Enter **n** to restart the boot configuration prompts.

BOOTP Boot

1. Enter **BOOTP** and the console displays a prompt to enter the interface number over which to boot.

 Then a message similar to the following appears:

 BOOTP Boot Configuration Complete

   ```
   Booting Method: BOOTP Boot
   Interface Number: 1
   ```

 Save this configuration? (Yes, No): [Yes]

2. Enter **y** to create a boot record. Enter **n** to restart the boot configuration prompts.
IBD Boot

Select Booting Method (TFTP Boot, BOOTP Boot, IBD Boot): []

1. Enter IBD and the console displays a list of software loads in the IBD.

 The following # loads(s) exist in the IBD
 load.name load.name load.name load.name

 You may use only these loads to configure an IBD boot record
 IBD Load Name: (load.name) []

2. Enter the name of the load you want the IBM 2210 to load when it boots.

 IBD Boot Configuration Complete
 This is the information you have entered:
 Booting Method: IBD Boot
 IBD Load Name: load.name

 If a load does not exist in the IBD, you receive the following message:
 There are no loads in the IBD. Select another booting method

3. Enter TFTP or BOOTP to use another booting method.

Enabling Console Modem-Control

Enable Console Modem-Control (Yes, No, Quit): [No]

Take one of the following actions:
- Enter y if you are connecting a console to the IBM 2210 through a modem and if you want autologout on lost phone connections.
- Enter n to connect a console directly to the IBM 2210.
- Enter q to exit quick configuration.

Restarting the Router

After configuring, you will receive the following message:

Quick Config Done
Restart the router? (Yes, No): [Yes]

1. Enter y to restart the router with the new configuration and display the following information:
 RESTARTING THE ROUTER........
 Copyright IBM Corp. 1994, 1996
 MOS Operator Control
 *

2. Enter n and the console displays the following message:
3. Enter `restart restart` after the `Config>` prompt to restart the IBM 2210 with the new configuration. To change or view the current configuration, enter `qc`.
Appendix B. X.25 National Personalities

This appendix lists the default settings for GTE-Telenet and DDN.

GTE-Telenet

The following parameters are the default settings for GTE-Telenet:

- Callreq: 20
- Clearreq:
 - Retries: 1
 - Timer: 18
- Disconnect: Passive
- DP-timer: 500 milliseconds
- Frame window size: 7
- Network Type: CCITT
- N2 timeouts: 20
- Packet:
 - Default size: 128
 - Maximum size: 256
 - Window size: 2
- Reset
 - Retries: 1
 - Timer: 18
- Restart
 - Retries: 1
 - Timer: 18
- Standard: 1984
- T1-timer: 4
- T2-timer: 2

DDN

The following parameters are the default settings for DDN:

- Callreq: 20
- Clearreq:
 - Retries: 1
 - Timer: 18
- Disconnect: Passive
- DP-timer: 500 milliseconds
- Frame window size: 7
- Network Type: CCITT
- N2 timeouts: 20
- Packet:
 - Default size: 128
 - Maximum size: 256
- Window size: 2
- Reset
 - Retries: 1
 - Timer: 18
- Restart
 - Retries: 1
 - Timer: 18
- Standard: 1984
- T1-timer: 4
- T2-timer: 2
Appendix C. Making a Router Load File from Multiple Disks

If a software load arrives on multiple disks, use the procedure in the following sections to combine the loads into one load file that the router can use at the time of booting.

The first disk contains the following four files that you need if you want to fragment an existing load for transport on multiple diskettes.

cutup.c

(UNIX C source file that can be compiled using a standard C compiler)

cutup.exe

(DOS)

Use the following files for reassembling the load fragments onto a DOS or UNIX server.

kopy.bat

(DOS)

kopy

(UNIX shell script)

Assembling a Load File Under DOS

To assemble a load from the two diskettes, use the DOS batch file provided on diskette 1 (KOPY.BAT) using the following syntax:

```
kopy <installation_drive><destination_directory>
```

Before assembling the load make sure that you have created a destination directory, and that you have inserted the first diskette in the drive specified by the installation_diskette_drive parameter. The following example illustrates this procedure.

```
B:\> kopy b: c:\source\cutup\tmp
B:\> copy c:\gw0/B c:\source\cutup\tmp\gw.tmp
  1 file(s) copied
.
Please mount the second diskette
Press any key to continue . . .  Copying the second load file fragment
B:\>
B:\> copy c:\source\cutup\tmp\gw.tmp/B + b:\gw1
c:\source\cutup\tmp\gw.tmp  c:\SOURCE\CUTUP\TMP\GW.TMP
B:\>GW1
  1 file(s) copied
B:\> rename c:\source\cutup\tmp\gw.tmp gw.ldc
Load file reassembly was successful
B:\>
```

Assembling a Load File Under UNIX

To assemble a load from two UNIX diskettes, you can use the UNIX Bourne shell script (kopy) provided on diskette 1 using the following syntax:

```
kopy<installation_drive><diskette_directory><destination_directory>
```

Before assembling the load make sure that you have created the mount and destination directories, and that you have inserted the first diskette in the drive specified by the installation_diskette_drive parameter. The following example illustrates this procedure.
Disassembling a Load File Under DOS

To disassemble a load under DOS, use the CUTUP.EXE file as follows:

\texttt{cutup<file_extension><file_name><cut_length>}

The file_extension is attached to the front of each slice needed to cut. The file_name is the DOS file name of the file to be disassembled. The cut_length is the length that CUTUP.EXE makes each fragment as it disassembles the file. The following example illustrates this procedure.

\begin{verbatim}
C: \source\cutup>dir
Volume in drive C has no label
Volume Serial Number is XXXXXXXX
Directory of C: \SOURCE\CUTUP
.
.. .0730934:46p
0730934:46p
GW LDC 10225660728931:22p
CUTUP EXE 105410902939:38a
2 file(s) 1033107 bytes
14811136 bytes free
C: \source\cutup>cutup gw.ldc gw 1000000
...
...................
...
C: \SOURCE\CUTUP>dir
Volume in drive C has no label
Volume Serial Number is XXXXXXXX
Directory of C: \SOURCE\CUTUP
.
.. .0730934:46p
0730934:46p
GW 0 10000000001931:22p
GW LDC 10225660728931:22p
CUTUP EXE 105410902939:38a
GW 1 225660801931:22p
4 file(s) 2055673 bytes
14811136 bytes free
\end{verbatim}
Disassembling a Load File Under UNIX

To disassemble a load under use cutup.c. Begin by compiling the program using your UNIX compiler to make a cutup executable file. Then use the following syntax:

```
cutup<file_extension><file_name><cut_length>
```

The file_extension is attached to the front of each slice needed to cut. The file_name is the DOS file name of the file to be disassembled. The cut_length is the length CUTUP.EXE that is used to disassemble the file. The following example illustrates this procedure.

```
# ls -la
total 658
drwxr-xr-x 2 root 512 Aug 11 4:11 .
drwxr-xr-x 26 root 1024 Aug 11 4:11 ..
drwxr-xr-x 2 root 24576 Aug 11 4:11 cutup
drwxr-xr-x 2 root 1022566 Aug 11 4:11 gw.ldc

# cutup gw.ldc gw 100000

# ls -la
```

```
total 658
drwxr-xr-x 2 root 512 Aug 11 4:11 .
-drwxr-xr-x 2 root 1024 Aug 11 4:11 ..
drwxr-xr-x 2 root 24576 Aug 11 4:11 cutup
drwxr-xr-x 2 root 1022566 Aug 11 4:11 gw.ldc
drwxr-xr-x 2 root 1000000 Aug 11 4:11 gw0
-drwxr-xr-x 2 root 22566 Aug 11 4:11 gw1
```
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARP</td>
<td>AppleTalk Address Resolution Protocol</td>
</tr>
<tr>
<td>ABR</td>
<td>area border router</td>
</tr>
<tr>
<td>ack</td>
<td>acknowledgment</td>
</tr>
<tr>
<td>AIX</td>
<td>Advanced Interactive Executive</td>
</tr>
<tr>
<td>AMA</td>
<td>arbitrary MAC addressing</td>
</tr>
<tr>
<td>AMP</td>
<td>active monitor present</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AP2</td>
<td>AppleTalk Phase 2</td>
</tr>
<tr>
<td>APPN</td>
<td>Advanced Peer-to-Peer Networking</td>
</tr>
<tr>
<td>ARE</td>
<td>all-routes explorer</td>
</tr>
<tr>
<td>ARI</td>
<td>ATM real interface</td>
</tr>
<tr>
<td>ARI/FCI</td>
<td>address recognized indicator/frame copied indicator</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>AS</td>
<td>autonomous system</td>
</tr>
<tr>
<td>ASBR</td>
<td>autonomous system boundary router</td>
</tr>
<tr>
<td>ASCII</td>
<td>American National Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ASN.1</td>
<td>abstract syntax notation 1</td>
</tr>
<tr>
<td>ASRT</td>
<td>adaptive source routing transparent</td>
</tr>
<tr>
<td>ASYNC</td>
<td>asynchronous</td>
</tr>
<tr>
<td>ATCP</td>
<td>AppleTalk Control Protocol</td>
</tr>
<tr>
<td>ATP</td>
<td>AppleTalk Transaction Protocol</td>
</tr>
<tr>
<td>AUI</td>
<td>attachment unit interface</td>
</tr>
<tr>
<td>AVI</td>
<td>ATM virtual interface</td>
</tr>
<tr>
<td>ayt</td>
<td>are you there</td>
</tr>
<tr>
<td>BAN</td>
<td>Boundary Access Node</td>
</tr>
<tr>
<td>BBCM</td>
<td>Bridging Broadcast Manager</td>
</tr>
<tr>
<td>BECN</td>
<td>backward explicit congestion notification</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
</tr>
<tr>
<td>BNC</td>
<td>bayonet Niell-Concelman</td>
</tr>
<tr>
<td>BNCP</td>
<td>Bridging Network Control Protocol</td>
</tr>
<tr>
<td>BOOTP</td>
<td>BOOT protocol</td>
</tr>
<tr>
<td>BPDU</td>
<td>bridge protocol data unit</td>
</tr>
<tr>
<td>bps</td>
<td>bits per second</td>
</tr>
<tr>
<td>BR</td>
<td>bridging/routing</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>BRS</td>
<td>bandwidth reservation</td>
</tr>
<tr>
<td>BSD</td>
<td>Berkeley software distribution</td>
</tr>
<tr>
<td>BTP</td>
<td>BOOTP relay agent</td>
</tr>
<tr>
<td>BTU</td>
<td>basic transmission unit</td>
</tr>
<tr>
<td>CAM</td>
<td>content-addressable memory</td>
</tr>
<tr>
<td>CCITT</td>
<td>Consultative Committee on International Telegraph and Telephone</td>
</tr>
<tr>
<td>CD</td>
<td>collision detection</td>
</tr>
<tr>
<td>CGWCON</td>
<td>Gateway Console</td>
</tr>
<tr>
<td>CIDR</td>
<td>Classless Inter-Domain Routing</td>
</tr>
<tr>
<td>CIP</td>
<td>Classical IP</td>
</tr>
<tr>
<td>CIR</td>
<td>committed information rate</td>
</tr>
<tr>
<td>CLNP</td>
<td>Connectionless-Mode Network Protocol</td>
</tr>
<tr>
<td>CPU</td>
<td>central processing unit</td>
</tr>
<tr>
<td>CRC</td>
<td>cyclic redundancy check</td>
</tr>
<tr>
<td>CRS</td>
<td>configuration report server</td>
</tr>
<tr>
<td>CTS</td>
<td>clear to send</td>
</tr>
<tr>
<td>CUD</td>
<td>call user data</td>
</tr>
<tr>
<td>DAF</td>
<td>destination address filtering</td>
</tr>
<tr>
<td>DB</td>
<td>database</td>
</tr>
<tr>
<td>DBsum</td>
<td>database summary</td>
</tr>
<tr>
<td>DCD</td>
<td>data channel received line signal detector</td>
</tr>
<tr>
<td>DCE</td>
<td>data circuit-terminating equipment</td>
</tr>
<tr>
<td>DCS</td>
<td>Directly connected server</td>
</tr>
<tr>
<td>DDLC</td>
<td>dual data-link controller</td>
</tr>
<tr>
<td>DDN</td>
<td>Defense Data Network</td>
</tr>
<tr>
<td>DDP</td>
<td>Datagram Delivery Protocol</td>
</tr>
<tr>
<td>DDT</td>
<td>Dynamic Debugging Tool</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>dir</td>
<td>directly connected</td>
</tr>
<tr>
<td>DL</td>
<td>data link</td>
</tr>
<tr>
<td>DLC</td>
<td>data link control</td>
</tr>
<tr>
<td>DLCI</td>
<td>data link connection identifier</td>
</tr>
<tr>
<td>DLS</td>
<td>data link switching</td>
</tr>
<tr>
<td>DLSw</td>
<td>data link switching</td>
</tr>
<tr>
<td>DMA</td>
<td>direct memory access</td>
</tr>
<tr>
<td>DNA</td>
<td>Digital Network Architecture</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>DNCP</td>
<td>DECnet Protocol Control Protocol</td>
</tr>
<tr>
<td>DNIC</td>
<td>Data Network Identifier Code</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOS</td>
<td>Disk Operating System</td>
</tr>
<tr>
<td>DR</td>
<td>designated router</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td>DSAP</td>
<td>destination service access point</td>
</tr>
<tr>
<td>DSE</td>
<td>data switching equipment</td>
</tr>
<tr>
<td>DSE</td>
<td>data switching exchange</td>
</tr>
<tr>
<td>DSR</td>
<td>data set ready</td>
</tr>
<tr>
<td>DSU</td>
<td>data service unit</td>
</tr>
<tr>
<td>DTE</td>
<td>data terminal equipment</td>
</tr>
<tr>
<td>DTR</td>
<td>data terminal ready</td>
</tr>
<tr>
<td>Dtype</td>
<td>destination type</td>
</tr>
<tr>
<td>DVMRP</td>
<td>Distance Vector Multicast Routing Protocol</td>
</tr>
<tr>
<td>E1</td>
<td>2.048 Mbps transmission rate</td>
</tr>
<tr>
<td>EDEL</td>
<td>end delimiter</td>
</tr>
<tr>
<td>EDI</td>
<td>error detected indicator</td>
</tr>
<tr>
<td>EGP</td>
<td>Exterior Gateway Protocol</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronics Industries Association</td>
</tr>
<tr>
<td>ELAN</td>
<td>Emulated LAN</td>
</tr>
<tr>
<td>ELAP</td>
<td>EtherTalk Link Access Protocol</td>
</tr>
<tr>
<td>ELS</td>
<td>Event Logging System</td>
</tr>
<tr>
<td>ESI</td>
<td>End system identifier</td>
</tr>
<tr>
<td>EST</td>
<td>Eastern Standard Time</td>
</tr>
<tr>
<td>Eth</td>
<td>Ethernet</td>
</tr>
<tr>
<td>fa-ga</td>
<td>functional address-group address</td>
</tr>
<tr>
<td>FCS</td>
<td>frame check sequence</td>
</tr>
<tr>
<td>FECN</td>
<td>forward explicit congestion notification</td>
</tr>
<tr>
<td>FIFO</td>
<td>first in, first out</td>
</tr>
<tr>
<td>FLT</td>
<td>filter library</td>
</tr>
<tr>
<td>FR</td>
<td>Frame Relay</td>
</tr>
<tr>
<td>FRL</td>
<td>Frame Relay</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GOSIP</td>
<td>Government Open Systems Interconnection Profile</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>GTE</td>
<td>General Telephone Company</td>
</tr>
<tr>
<td>GWCON</td>
<td>Gateway Console</td>
</tr>
<tr>
<td>HDLC</td>
<td>high-level data link control</td>
</tr>
<tr>
<td>HEX</td>
<td>hexadecimal</td>
</tr>
<tr>
<td>HPR</td>
<td>high-performance routing</td>
</tr>
<tr>
<td>HST</td>
<td>TCP/IP host services</td>
</tr>
<tr>
<td>HTF</td>
<td>host table format</td>
</tr>
<tr>
<td>IBD</td>
<td>Integrated Boot Device</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>ICP</td>
<td>Internet Control Protocol</td>
</tr>
<tr>
<td>ID</td>
<td>identification</td>
</tr>
<tr>
<td>IDP</td>
<td>Initial Domain Part</td>
</tr>
<tr>
<td>IDP</td>
<td>Internet Datagram Protocol</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Ifc#</td>
<td>interface number</td>
</tr>
<tr>
<td>IGP</td>
<td>interior gateway protocol</td>
</tr>
<tr>
<td>InARP</td>
<td>Inverse Address Resolution Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPCP</td>
<td>IP Control Protocol</td>
</tr>
<tr>
<td>IPPN</td>
<td>IP Protocol Network</td>
</tr>
<tr>
<td>IPX</td>
<td>Internetwork Packet Exchange</td>
</tr>
<tr>
<td>IPXCP</td>
<td>IPX Control Protocol</td>
</tr>
<tr>
<td>ISDN</td>
<td>integrated services digital network</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>Kbps</td>
<td>kilobits per second</td>
</tr>
<tr>
<td>LAC</td>
<td>L2TP Network Access Concentrator</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>LAPB</td>
<td>link access protocol-balanced</td>
</tr>
<tr>
<td>LAT</td>
<td>local area transport</td>
</tr>
<tr>
<td>LCP</td>
<td>Link Control Protocol</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>LF</td>
<td>largest frame; line feed</td>
</tr>
<tr>
<td>LIS</td>
<td>Logical IP subnet</td>
</tr>
<tr>
<td>LLC</td>
<td>logical link control</td>
</tr>
<tr>
<td>LLC2</td>
<td>logical link control 2</td>
</tr>
<tr>
<td>LMI</td>
<td>local management interface</td>
</tr>
<tr>
<td>LNS</td>
<td>L2TP Network Server</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LRM</td>
<td>LAN reporting mechanism</td>
</tr>
<tr>
<td>LS</td>
<td>link state</td>
</tr>
<tr>
<td>LSA</td>
<td>link state advertisement</td>
</tr>
<tr>
<td>LSB</td>
<td>least significant bit</td>
</tr>
<tr>
<td>LSI</td>
<td>LAN shortcuts interface</td>
</tr>
<tr>
<td>LSreq</td>
<td>link state request</td>
</tr>
<tr>
<td>LSrxl</td>
<td>link state retransmission list</td>
</tr>
<tr>
<td>LU</td>
<td>logical unit</td>
</tr>
<tr>
<td>MAC</td>
<td>medium access control</td>
</tr>
<tr>
<td>Mb</td>
<td>megabit</td>
</tr>
<tr>
<td>MB</td>
<td>megabyte</td>
</tr>
<tr>
<td>Mbps</td>
<td>megabits per second</td>
</tr>
<tr>
<td>MBps</td>
<td>megabytes per second</td>
</tr>
<tr>
<td>MC</td>
<td>multicast</td>
</tr>
<tr>
<td>MCF</td>
<td>MAC filtering</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MIB II</td>
<td>Management Information Base II</td>
</tr>
<tr>
<td>MILNET</td>
<td>military network</td>
</tr>
<tr>
<td>MOS</td>
<td>Micro Operating System</td>
</tr>
<tr>
<td>MOSDBG</td>
<td>Micro Operating System Debugging Tool</td>
</tr>
<tr>
<td>MOSPF</td>
<td>Open Shortest Path First with multicast extensions</td>
</tr>
<tr>
<td>MSB</td>
<td>most significant bit</td>
</tr>
<tr>
<td>MSDU</td>
<td>MAC service data unit</td>
</tr>
<tr>
<td>MRU</td>
<td>maximum receive unit</td>
</tr>
<tr>
<td>MTU</td>
<td>maximum transmission unit</td>
</tr>
<tr>
<td>nak</td>
<td>not acknowledged</td>
</tr>
<tr>
<td>NBMA</td>
<td>Non-Broadcast Multiple Access</td>
</tr>
<tr>
<td>NBP</td>
<td>Name Binding Protocol</td>
</tr>
<tr>
<td>NBR</td>
<td>neighbor</td>
</tr>
<tr>
<td>NCP</td>
<td>Network Control Protocol</td>
</tr>
<tr>
<td>NCP</td>
<td>Network Core Protocol</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>Network Basic Input/Output System</td>
</tr>
<tr>
<td>NHRP</td>
<td>Next Hop Resolution Protocol</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NPDU</td>
<td>Network Protocol Data Unit</td>
</tr>
</tbody>
</table>
NRZ non-return-to-zero
NRZI non-return-to-zero inverted
NSAP Network Service Access Point
NSF National Science Foundation
NSFNET National Science Foundation NETwork
NVCNFG nonvolatile configuration
OPCON Operator Console
OSI open systems interconnection
OSICP OSI Control Protocol
OSPF Open Shortest Path First
OUI organization unique identifier
PC personal computer
PCR peak cell rate
PDN public data network
PING Packet internet groper
PDU protocol data unit
PID process identification
P-P Point-to-Point
PPP Point-to-Point Protocol
PROM programmable read-only memory
PU physical unit
PVC permanent virtual circuit
RAM random access memory
RD route descriptor
REM ring error monitor
REV receive
RFC Request for Comments
RI ring indicator; routing information
RIF routing information field
RII routing information indicator
RIP Routing Information Protocol
RISC reduced instruction-set computer
RNR receive not ready
ROM read-only memory

686 MRS V3.2 Software User’s Guide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROpcon</td>
<td>Remote Operator Console</td>
<td></td>
</tr>
<tr>
<td>RPS</td>
<td>ring parameter server</td>
<td></td>
</tr>
<tr>
<td>RTMP</td>
<td>Routing Table Maintenance Protocol</td>
<td></td>
</tr>
<tr>
<td>RTP</td>
<td>RoutTing update Protocol</td>
<td></td>
</tr>
<tr>
<td>RTS</td>
<td>request to send</td>
<td></td>
</tr>
<tr>
<td>Rtype</td>
<td>route type</td>
<td></td>
</tr>
<tr>
<td>rxmits</td>
<td>retransmissions</td>
<td></td>
</tr>
<tr>
<td>rxmt</td>
<td>retransmit</td>
<td></td>
</tr>
<tr>
<td>SAF</td>
<td>source address filtering</td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>service access point</td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>Service Advertising Protocol</td>
<td></td>
</tr>
<tr>
<td>SCR</td>
<td>Sustained cell rate</td>
<td></td>
</tr>
<tr>
<td>SCSP</td>
<td>Server Cache Synchronization Protocol</td>
<td></td>
</tr>
<tr>
<td>sdel</td>
<td>start delimiter</td>
<td></td>
</tr>
<tr>
<td>SDLC</td>
<td>SDLC relay, synchronous data link control</td>
<td></td>
</tr>
<tr>
<td>seqno</td>
<td>sequence number</td>
<td></td>
</tr>
<tr>
<td>SGID</td>
<td>sever group id</td>
<td></td>
</tr>
<tr>
<td>SGMP</td>
<td>Simple Gateway Monitoring Protocol</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>serial line</td>
<td></td>
</tr>
<tr>
<td>SMP</td>
<td>standby monitor present</td>
<td></td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol</td>
<td></td>
</tr>
<tr>
<td>SNA</td>
<td>Systems Network Architecture</td>
<td></td>
</tr>
<tr>
<td>SNAP</td>
<td>Subnetwork Access Protocol</td>
<td></td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
<td></td>
</tr>
<tr>
<td>SNPA</td>
<td>subnetwork point of attachment</td>
<td></td>
</tr>
<tr>
<td>SPF</td>
<td>OSPF intra-area route</td>
<td></td>
</tr>
<tr>
<td>SPE1</td>
<td>OSPF external route type 1</td>
<td></td>
</tr>
<tr>
<td>SPE2</td>
<td>OSPF external route type 2</td>
<td></td>
</tr>
<tr>
<td>SPIA</td>
<td>OSPF inter-area route type</td>
<td></td>
</tr>
<tr>
<td>SPID</td>
<td>service profile ID</td>
<td></td>
</tr>
<tr>
<td>SPX</td>
<td>Sequenced Packet Exchange</td>
<td></td>
</tr>
<tr>
<td>SQE</td>
<td>signal quality error</td>
<td></td>
</tr>
<tr>
<td>SRAM</td>
<td>static random access memory</td>
<td></td>
</tr>
<tr>
<td>SRB</td>
<td>source routing bridge</td>
<td></td>
</tr>
<tr>
<td>SRF</td>
<td>specifically routed frame</td>
<td></td>
</tr>
<tr>
<td>SRLY</td>
<td>SDLC relay</td>
<td></td>
</tr>
<tr>
<td>SRT</td>
<td>source routing transparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SR-TB source routing-transparent bridge
STA static
STB spanning tree bridge
STE spanning tree explorer
STP shielded twisted pair; spanning tree protocol
SVC switched virtual circuit
TB transparent bridge
TCN topology change notification
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TEI terminal point identifier
TFTP Trivial File Transfer Protocol
TKR token ring
TMO timeout
TOS type of service
TSF transparent spanning frames
TTL time to live
TTY teletypewriter
TX transmit
UA unnumbered acknowledgment
UDP User Datagram Protocol
UI unnumbered information
UTP unshielded twisted pair
VCC Virtual Channel Connection
VINES Virtual NEtworking System
VIR variable information rate
VL virtual link
VNI Virtual Network Interface
VR virtual route
WAN wide area network
WRS WAN restoral/reroute
X.25 packet-switched networks
X.251 X.25 physical layer
X.252 X.25 frame layer
X.253 X.25 packet layer
XID exchange identification
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XNS</td>
<td>Xerox Network Systems</td>
</tr>
<tr>
<td>XSUM</td>
<td>checksum</td>
</tr>
<tr>
<td>ZIP</td>
<td>AppleTalk Zone Information Protocol</td>
</tr>
<tr>
<td>ZIP2</td>
<td>AppleTalk Zone Information Protocol 2</td>
</tr>
<tr>
<td>ZIT</td>
<td>Zone Information Table</td>
</tr>
</tbody>
</table>
This glossary includes terms and definitions from:

- The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies may be purchased from the American National Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions are identified by the symbol (A) after the definition.

- The ANSI/EIA Standard—440-A, Fiber Optic Terminology. Copies may be purchased from the Electronic Industries Association, 2001 Pennsylvania Avenue, N.W., Washington, DC 20006. Definitions are identified by the symbol (E) after the definition.

- The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions of published parts of this vocabulary are identified by the symbol (I) after the definition; definitions taken from draft international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.

- Internet Request for Comments: 1208, Glossary of Networking Terms

- Internet Request for Comments: 1392, Internet Users’ Glossary

The following cross-references are used in this glossary:

Contrast with:
This refers to a term that has an opposed or substantively different meaning.

Synonym for:
This indicates that the term has the same meaning as a preferred term, which is defined in its proper place in the glossary.

Synonymous with:
This is a backward reference from a defined term to all other terms that have the same meaning.

See:
This refers the reader to multiple-word terms that have the same last word.

See also:
This refers the reader to terms that have a related, but not synonymous, meaning.

A

AAL. ATM Adaptation Layer, the layer that adapts user data to/from the ATM network by adding/removing headers and segmenting/reassembling the data into/from cells.

AAL-5. ATM Adaptation Layer 5, one of several standard AALs. AAL-5 was designed for data communications, and is used by LAN Emulation and Classical IP.

abstract syntax. A data specification that includes all distinctions that are needed in data transmissions, but that omits (abstracts) other details such as those that depend on specific computer architectures. See also abstract syntax notation 1 (ASN.1) and basic encoding rules (BER).

abstract syntax notation 1 (ASN.1). The Open Systems Interconnection (OSI) method for abstract syntax specified in the following standards:

See also basic encoding rules (BER).

ACCESS. In the Simple Network Management Protocol (SNMP), the clause in a Management Information Base (MIB) module that defines the minimum level of support that a managed node provides for an object.

acknowledgment. (1) The transmission, by a receiver, of acknowledge characters as an affirmative response to a sender. (T) (2) An indication that an item sent was received.

active. (1) Operational. (2) Pertaining to a node or device that is connected or is available for connection to another node or device.

active monitor. In a token-ring network, a function performed at any one time by one ring station that
initiates the transmission of tokens and provides token error recovery facilities. Any active adapter on the ring has the ability to provide the active monitor function if the current active monitor fails.

address. In data communication, the unique code assigned to each device, workstation, or user connected to a network.

address mapping table (AMT). A table, maintained within the AppleTalk router, that provides a current mapping of node addresses to hardware addresses.

address mask. For internet subnetworking, a 32-bit mask used to identify the subnetwork address bits in the host portion of an IP address. Synonymous with subnet mask and subnetwork mask.

address resolution. (1) A method for mapping network-layer addresses to media-specific addresses. (2) See also Address Resolution Protocol (ARP) and AppleTalk Address Resolution Protocol (AARP).

Address Resolution Protocol (ARP). (1) In the Internet suite of protocols, the protocol that dynamically maps an IP address to an address used by a supporting metropolitan or local area network such as Ethernet or token-ring. (2) See also Reverse Address Resolution Protocol (RARP).

addressing. In data communication, the way in which a station selects the station to which it is to send data.

adjacent nodes. Two nodes connected together by at least one path that connects no other node. (T)

Administrative Domain. A collection of hosts and routers, and the interconnecting networks, managed by a single administrative authority.

Advanced Peer-to-Peer Networking (APPN). An extension to SNA featuring (a) greater distributed network control that avoids critical hierarchical dependencies, thereby isolating the effects of single points of failure; (b) dynamic exchange of network topology information to foster ease of connection, reconfiguration, and adaptive route selection; (c) dynamic definition of network resources; and (d) automated resource registration and directory lookup. APPN extends the LU 6.2 peer orientation for end-user services to network control and supports multiple LU types, including LU 2, LU 3, and LU 6.2.

Advanced Peer-to-Peer Networking (APPN) end node. A node that provides a broad range of end-user services and supports sessions between its local control point (CP) and the CP in an adjacent network node. It uses these sessions to dynamically register its resources with the adjacent CP (its network node server), to send and receive directory search requests, and to obtain management services. An APPN end node can also attach to a subarea network as a peripheral node or to other end nodes.
arbitrary MAC addressing (AMA). In DECnet architecture, an addressing scheme used by DECnet Phase IV-Prime that supports universally administered addresses and locally administered addresses.

area. In Internet and DECnet routing protocols, a subset of a network or gateway grouped together by definition of the network administrator. Each area is self-contained; knowledge of an area’s topology remains hidden from other areas.

asynchronous (ASYNC). Pertaining to two or more processes that do not depend upon the occurrence of specific events such as common timing signals. (T)

ATM. Asynchronous Transfer Mode, a connection-oriented, high-speed networking technology based on cell switching.

ATMARP. ARP in Classical IP.

attachment unit interface (AUI). In a local area network, the interface between the medium attachment unit and the data terminal equipment within a data station. (I) (A)

Attribute Value Pair (AVP). A uniform method of encoding message types and bodies. This method maximizes the extensibility while permitting interoperability of L2TP.

authentication failure. In the Simple Network Management Protocol (SNMP), a trap that may be generated by an authentication entity when a requesting client is not a member of the SNMP community.

autonomous system. In TCP/IP, a group of networks and routers under one administrative authority. These networks and routers cooperate closely to propagate network reachability (and routing) information among themselves using an interior gateway protocol of their choice.

autonomous system number. In TCP/IP, a number assigned to an autonomous system by the same central authority that also assigns IP addresses. The autonomous system number makes it possible for automated routing algorithms to distinguish autonomous systems.

B

backbone. (1) In a local area network multiple-bridge ring configuration, a high-speed link to which the rings are connected by means of bridges or routers. A backbone may be configured as a bus or as a ring. (2) In a wide area network, a high-speed link to which nodes or data switching exchanges (DSEs) are connected.

backbone network. A central network to which smaller networks, normally of lower speed, connect. The backbone network usually has a much higher capacity than the networks it helps interconnect or is a wide-area network (WAN) such as a public packet-switched datagram network.

backbone router. (1) A router used to transmit data between areas. (2) One in a series of routers that is used to interconnect networks into a larger internet.

Bandwidth. The bandwidth of an optical link designates the information-carrying capacity of the link and is related to the maximum bit rate that a fiber link can support.

basic transmission unit (BTU). In SNA, the unit of data and control information passed between path control components. A BTU can consist of one or more path information units (PIUs).

baud. In asynchronous transmission, the unit of modulation rate corresponding to one unit interval per second; that is, if the duration of the unit interval is 20 milliseconds, the modulation rate is 50 baud. (A)

bootstrap. (1) A sequence of instructions whose execution causes additional instructions to be loaded and executed until the complete computer program is in storage. (T) (2) A technique or device designed to bring itself into a desired state by means of its own action, for example, a machine routine whose first few instructions are sufficient to bring the rest of itself into the computer from an input device. (A)

Border Gateway Protocol (BGP). An Internet Protocol (IP) routing protocol used between domains and autonomous systems.

border router. In Internet communications, a router, positioned at the edge of an autonomous system, that communicates with a router that is positioned at the edge of a different autonomous system.

bridge. A functional unit that interconnects multiple LANs (locally or remotely) that use the same logical link control protocol but that can use different medium access control protocols. A bridge forwards a frame to another bridge based on the medium access control (MAC) address.

bridge identifier. An 8-byte field, used in a spanning tree protocol, composed of the MAC address of the port with the lowest port identifier and a user-defined value.

bridging. In LANs, the forwarding of a frame from one LAN segment to another. The destination is specified by the medium access control (MAC) sublayer address encoded in the destination address field of the frame header.

broadcast. (1) Transmission of the same data to all destinations. (T) (2) Simultaneous transmission of data to more than one destination. (3) Contrast with multicast.
broadcast address. In communications, a station address (eight 1's) reserved as an address common to all stations on a link. Synonymous with all-stations address.

C

cache. (1) A special-purpose buffer storage, smaller and faster than main storage, used to hold a copy of instructions and data obtained from main storage and likely to be needed next by the processor. (T) (2) A buffer storage that contains frequently accessed instructions and data; it is used to reduce access time. (3) An optional part of the directory database in network nodes where frequently used directory information may be stored to speed directory searches. (4) To place, hide, or store in a cache.

call request packet. (1) A call supervision packet that a data terminal equipment (DTE) transmits to ask that a connection for a call be established throughout the network. (2) In X.25 communications, a call supervision packet transmitted by a DTE to ask for a call establishment through the network.

canonical address. In LANs, the IEEE 802.1 format for the transmission of medium access control (MAC) addresses for token-ring and Ethernet adapters. In canonical format, the least significant (rightmost) bit of each address byte is transmitted first. Contrast with noncanonical address.

carrier. An electric or electromagnetic wave or pulse train that may be varied by a signal bearing information to be transmitted over a communication system. (T)

carrier detect. Synonym for received line signal detector (RLSD).

carrier sense. In a local area network, an ongoing activity of a data station to detect whether another station is transmitting. (T)

carrier sense multiple access with collision detection (CSMA/CD). A protocol that requires carrier sense and in which a transmitting data station that detects another signal while transmitting, stops sending, sends a jam signal, and then waits for a variable time before trying again. (T) (A)

CCITT. International Telegraph and Telephone Consultative Committee. This was an organization of the International Telecommunication Union (ITU). On 1 March 1993 the ITU was reorganized, and responsibilities for standardization were placed in a subordinate organization named the Telecommunication Standardization Sector of the Telecommunication Union (ITU-TS). "CCITT" continues to be used for recommendations that were approved before the reorganization.

channel. (1) A path along which signals can be sent, for example, data channel, output channel. (A) (2) A functional unit, controlled by the processor, that handles the transfer of data between processor storage and local peripheral equipment.

channel service unit (CSU). A unit that provides the interface to a digital network. The CSU provides line conditioning (or equalization) functions, which keep the signal's performance consistent across the channel bandwidth; signal reshaping, which constitutes the binary pulse stream; and loopback testing, which includes the transmission of test signals between the CSU and the network carrier's office channel unit. See also data service unit (DSU).

checksum. (1) The sum of a group of data associated with the group and used for checking purposes. (T) (2) In error detection, a function of all bits in a block. If the written and calculated sums do not agree, an error is indicated. (3) On a diskette, data written in a sector for error detection purposes; a calculated checksum that does not match the checksum of data written in the sector indicates a bad sector. The data are either numeric or other character strings regarded as numeric for the purpose of calculating the checksum.

circuit switching. (1) A process that, on demand, connects two or more data terminal equipment (DTEs) and permits the exclusive use of a data circuit between them until the connection is released. (I) (A) (2) Synonymous with line switching.

class A network. In Internet communications, a network in which the high-order (most significant) bit of the IP address is set to 0 and the host ID occupies the three low-order octets.

class B network. In Internet communications, a network in which the two high-order (most significant and next-to-most significant) bits of the IP address are set to 1 and 0, respectively, and the host ID occupies the two low-order octets.

class of service (COS). A set of characteristics (such as route security, transmission priority, and bandwidth) used to construct a route between session partners. The class of service is derived from a mode name specified by the initiator of a session.

client. (1) A functional unit that receives shared services from a server. (T) (2) A user.

client/server. In communications, the model of interaction in distributed data processing in which a program at one site sends a request to a program at another site and awaits a response. The requesting program is called a client; the answering program is called a server.

clocking. (1) In binary synchronous communication, the use of clock pulses to control synchronization of
data and control characters. (2) A method of controlling the number of data bits sent on a telecommunication line in a given time.

collision. An unwanted condition that results from concurrent transmissions on a channel. (T)

collision detection. In carrier sense multiple access with collision detection (CSMA/CD), a signal indicating that two or more stations are transmitting simultaneously.

Committed information rate. The maximum amount of data in bits that the network agrees to deliver.

community. In the Simple Network Management Protocol (SNMP), an administrative relationship between entities.

community name. In the Simple Network Management Protocol (SNMP), a string of octets identifying a community.

compression. (1) The process of eliminating gaps, empty fields, redundancies, and unnecessary data to shorten the length of records or blocks. (2) Any encoding to reduce the number of bits used to represent a given message or record.

configuration. (1) The manner in which the hardware and software of an information processing system are organized and interconnected. (T) (2) The devices and programs that make up a system, subsystem, or network.

configuration database (CDB). A database that stores the configuration parameters of one or several devices. It is prepared and updated using the configuration program.

configuration file. A file that specifies the characteristics of a system device or network.

configuration parameter. A variable in a configuration definition, the values of which can characterize the relationship of a product to other products in the same network or can define characteristics of the product itself.

configuration report server (CRS). In the IBM Token-Ring Network Bridge Program, the server that accepts commands from the LAN Network Manager (LNM) to get station information, set station parameters, and remove stations on its ring. This server also collects and forwards configuration reports generated by stations on its ring. The configuration reports include the new active monitor reports and the nearest active upstream neighbor (NAUN) reports.

congestion. See network congestion.

connection. In data communication, an association established between functional units for conveying information. (I) (A)

control point (CP). (1) A component of an APPN or LEN node that manages the resources of that node. In an APPN node, the CP is capable of engaging in CP-CP sessions with other APPN nodes. In an APPN network node, the CP also provides services to adjacent end nodes in the APPN network. (2) A component of a node that manages resources of that node and optionally provides services to other nodes in the network. Examples are a system services control point (SSCP) in a type 5 subarea node, a network node control point (NNCP) in an APPN network node, and an end node control point (ENCP) in an APPN or LEN end node. An SSCP and an NNCP can provide services to other nodes.

control point management services (CPMS). A component of a control point, consisting of management services function sets, that provides facilities to assist in performing problem management, performance and accounting management, change management, and configuration management. Capabilities provided by the CPMS include sending requests to physical unit management services (PUMS) to test system resources, collecting statistical information (for example, error and performance data) from PUMS about the system resources, and analyzing and presenting test results and statistical information collected about the system resources. Analysis and presentation responsibilities for problem determination and performance monitoring can be distributed among multiple CPMSs.

control point management services unit (CP-MSU). The message unit that contains management services data and flows between management services function sets. This message unit is in general data stream (GDS) format. See also management services unit (MSU) and network management vector transport (NMVT).

D

D-bit. Delivery-confirmation bit. In X.25 communications, the bit in a data packet or call-request packet that is set to 1 if end-to-end acknowledgment (delivery confirmation) is required from the recipient.

daemon. A program that runs unattended to perform a standard service. Some daemons are triggered automatically to perform their task; others operate periodically.

data carrier detect (DCD). Synonym for received line signal detector (RLSD).

data circuit. (1) A pair of associated transmit and receive channels that provide a means of two-way data communication. (I) (2) In SNA, synonym for link connection. (3) See also physical circuit and virtual circuit.
Notes:
1. Between data switching exchanges, the data circuit may include data circuit-terminating equipment (DCE), depending on the type of interface used at the data switching exchange.
2. Between a data station and a data switching exchange or data concentrator, the data circuit includes the data circuit-terminating equipment at the data station end, and may include equipment similar to a DCE at the data switching exchange or data concentrator location.

data circuit-terminating equipment (DCE). In a data station, the equipment that provides the signal conversion and coding between the data terminal equipment (DTE) and the line. (I)

Notes:
1. The DCE may be separate equipment or an integral part of the DTE or of the intermediate equipment.
2. A DCE may perform other functions that are usually performed at the network end of the line.

data link connection identifier (DLCI). The numeric identifier of a frame-relay subport or PVC segment in a frame-relay network. Each subport in a single frame-relay port has a unique DLCI. The following table, excerpted from the American National Standards Institute (ANSI) Standard T1.618 and the International Telegraph and Telephone Consultative Committee (ITU-T/CCITT) Standard Q.922, indicates the functions associated with certain DLCI values:

<table>
<thead>
<tr>
<th>DLCI Values</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>in-channel signaling</td>
</tr>
<tr>
<td>1–15</td>
<td>reserved</td>
</tr>
<tr>
<td>16–991</td>
<td>assigned using frame-relay connection procedures</td>
</tr>
<tr>
<td>992–1007</td>
<td>layer 2 management of frame-relay bearer service</td>
</tr>
<tr>
<td>1008–1022</td>
<td>reserved</td>
</tr>
<tr>
<td>1023</td>
<td>in-channel layer management</td>
</tr>
</tbody>
</table>

data link control (DLC). A set of rules used by nodes on a data link (such as an SDLC link or a token ring) to accomplish an orderly exchange of information.

data link control (DLC) layer. In SNA, the layer that consists of the link stations that schedule data transfer over a link between two nodes and perform error control for the link. Examples of data link control are SDLC for serial-by-bit link connection and data link control for the System/370 channel.

Note: The DLC layer is usually independent of the physical transport mechanism and ensures the integrity of data that reaches the higher layers.

data link layer. In the Open Systems Interconnection reference model, the layer that provides services to transfer data between entities in the network layer over a communication link. The data link layer detects and possibly corrects errors that may occur in the physical layer. (T)

data link level. (1) In the hierarchical structure of a data station, the conceptual level of control or processing logic between high level logic and the data link that maintains control of the data link. The data link level performs such functions as inserting transmit bits and deleting receive bits; interpreting address and control fields; generating, transmitting, and interpreting commands and responses; and computing and interpreting frame check sequences. See also packet level and physical level. (2) In X.25 communications, synonym for frame level.

data link switch (DLSw). A method of transporting network protocols that use IEEE 802.2 logical link control (LLC) type 2. SNA and NetBIOS are examples of protocols that use LLC type 2. See also encapsulation and spoofing.

data packet. In X.25 communications, a packet used for the transmission of user data on a virtual circuit at the DTE/DCE interface.

data service unit (DSU). A device that provides a digital data service interface directly to the data terminal equipment. The DSU provides loop equalization, remote and local testing capabilities, and a standard EIA/CCITT interface.

data set ready (DSR). Synonym for DCE ready.

data switching exchange (DSE). The equipment installed at a single location to provide switching functions, such as circuit switching, message switching, and packet switching. (I)

data terminal equipment (DTE). That part of a data station that serves as a data source, data sink, or both. (I) (A)

data terminal ready (DTR). A signal to the modem used with the EIA 232 protocol.

data transfer rate. The average number of bits, characters, or blocks per unit time passing between corresponding equipment in a data transmission system. (I)

Notes:
1. The rate is expressed in bits, characters, or blocks per second, minute, or hour.
2. Corresponding equipment should be indicated; for example, modems, intermediate equipment, or source and sink.

datagram. (1) In packet switching, a self-contained packet, independent of other packets, that carries information sufficient for routing from the originating data terminal equipment (DTE) to the destination DTE without relying on earlier exchanges between the DTEs...
and the network. (1) (2) In TCP/IP, the basic unit of information passed across the Internet environment. A datagram contains a source and destination address along with the data. An Internet Protocol (IP) datagram consists of an IP header followed by the transport layer data. (3) See also packet and segment.

Datagram Delivery Protocol (DDP). In AppleTalk networks, a protocol that provides network connectivity by means of connectionless socket-to-socket delivery service on the internet layer.

DCE ready. In the EIA 232 standard, a signal that indicates to the data terminal equipment (DTE) that the local data circuit-terminating equipment (DCE) is connected to the communication channel and is ready to send data. Synonymous with data set ready (DSR).

DECnet. A network architecture that defines the operation of a family of software modules, databases, and hardware components typically used to tie Digital Equipment Corporation systems together for resource sharing, distributed computation, or remote system configuration. DECnet network implementations follow the Digital Network Architecture (DNA) model.

default. Pertaining to an attribute, condition, value, or option that is assumed when none is explicitly specified. (1)

dependent LU requester (DLUR). An APPN end node or an APPN network node that owns dependent LUs, but requests that a dependent LU server provide the SSCP services for those dependent LUs.

designated router. A router that informs end nodes of the existence and identity of other routers. The selection of the designated router is based upon the router with the highest priority. When several routers share the highest priority, the router with the highest station address is selected.

destination node. The node to which a request or data is sent.

destination port. The 8-port asynchronous adapter that serves as a connection point with a serial service.

destination service access point (DSAP). In SNA and TCP/IP, a logical address that allows a system to route data from a remote device to the appropriate communications support. Contrast with source service access point (SSAP).

device. A mechanical, electrical, or electronic contrivance with a specific purpose.

digital. (1) Pertaining to data that consist of digits. (T) (2) Pertaining to data in the form of digits. (A) (3) Contrast with analog.

Digital Network Architecture (DNA). The model for all DECnet hardware and software implementations.

direct memory access (DMA). The system facility that allows a device on the Micro Channel bus to get direct access to the system or bus memory without the intervention of the system processor.

directory. A table of identifiers and references to the corresponding items of data. (1) (A)

directory service (DS). An application service element that translates the symbolic names used by application processes into the complete network addresses used in an OSI environment. (T)

directory services (DS). A control point component of an APPN node that maintains knowledge of the location of network resources.

disable. To make nonfunctional.

disabled. (1) Pertaining to a state of a processing unit that prevents the occurrence of certain types of interruptions. (2) Pertaining to the state in which a transmission control unit or audio response unit cannot accept incoming calls on a line.

domain. (1) That part of a computer network in which the data processing resources are under common control. (T) (2) In Open Systems Interconnection (OSI), a part of a distributed system or a set of managed objects to which a common policy applies. (3) See Administrative Domain and domain name.

domain name. In the Internet suite of protocols, a name of a host system. A domain name consists of a sequence of subnames separated by a delimiter character. For example, if the fully qualified domain name (FQDN) of a host system is ralvm7.vnet.ibm.com, each of the following is a domain name:

- ralvm7.vnet.ibm.com
- vnet.ibm.com
- ibm.com

domain name server. In the Internet suite of protocols, a server program that supplies name-to-address translation by mapping domain names to IP addresses. Synonymous with name server.

Domain Name System (DNS). In the Internet suite of protocols, the distributed database system used to map domain names to IP addresses.

dotted decimal notation. The syntactical representation for a 32-bit integer that consists of four 8-bit numbers written in base 10 with periods (dots) separating them. It is used to represent IP addresses.

dump. (1) Data that has been dumped. (T) (2) To copy the contents of all or part of virtual storage for the purpose of collecting error information.

dynamic reconfiguration (DR). The process of changing the network configuration (peripheral PUs and
LUs) without regenerating complete configuration tables or deactivating the affected major node.

Dynamic Routing. Routing using learned routes rather than routes statically configured at initialization.

E

echo. In data communication, a reflected signal on a communications channel. For example, on a communications terminal, each signal is displayed twice, once when entered at the local terminal and again when returned over the communications link. This allows the signals to be checked for accuracy.

EIA 232. In data communication, a specification of the Electronic Industries Association (EIA) that defines the interface between data terminal equipment (DTE) and data circuit-terminating equipment (DCE), using serial binary data interchange.

Electronic Industries Association (EIA). An organization of electronics manufacturers that advances the technological growth of the industry, represents the views of its members, and develops industry standards.

EIA unit. A unit of measure, established by the Electronic Industries Association, equal to 44.45 millimeters (1.75 inches).

encapsulation. (1) In communications, a technique used by layered protocols by which a layer adds control information to the protocol data unit (PDU) from the layer it supports. In this respect, the layer encapsulates the data from the supported layer. In the Internet suite of protocols, for example, a packet would contain control information from the physical layer, followed by control information from the network layer, followed by the application protocol data. (2) See also data link switching.

encode. To convert data by the use of a code in such a manner that reconversion to the original form is possible. (T)

end node (EN). (1) See Advanced Peer-to-Peer Networking (APPN) end node and low-entry networking (LEN) end node. (2) In communications, a node that is frequently attached to a single data link and cannot perform intermediate routing functions.

entry point (EP). In SNA, a type 2.0, type 2.1, type 4, or type 5 node that provides distributed network management support. It sends network management data about itself and the resources it controls to a focal point for centralized processing, and it receives and executes focal-point initiated commands to manage and control its resources.

Ethernet. A 10-Mbps baseband local area network that allows multiple stations to access the transmission medium at will without prior coordination, avoids contention by using carrier sense and deference, and resolves contention by using collision detection and delayed retransmission. Ethernet uses carrier sense multiple access with collision detection (CSMA/CD).

exception. An abnormal condition such as an I/O error encountered in processing a data set or a file.

exception response (ER). In SNA, a protocol requested in the form-of-response-requested field of a request header that directs the receiver to return a response only if the request is unacceptable as received or cannot be processed; that is, a negative response, but not a positive response, can be returned. Contrast with definite response and no response.

exchange identification (XID). A specific type of basic link unit that is used to convey node and link characteristics between adjacent nodes. XIDs are exchanged between link stations before and during link activation to establish and negotiate link and node characteristics, and after link activation to communicate changes in these characteristics.

explicit route (ER). In SNA, a series of one or more transmission groups that connect two subarea nodes. An explicit route is identified by an origin subarea address, a destination subarea address, an explicit route number, and a reverse explicit route number. Contrast with virtual route (VR).

explorer frame. See explorer packet.

explorer packet. In LANs, a packet that is generated by the source host and that traverses the entire source routing part of a LAN, gathering information on the possible paths available to the host.

exterior gateway. In Internet communications, a gateway on one autonomous system that communicates with another autonomous system. Contrast with interior gateway.

Exterior Gateway Protocol (EGP). In the Internet suite of protocols, a protocol, used between domains and autonomous systems, that enables network reachability information to be advertised and exchanged. IP network addresses in one autonomous system are advertised to another autonomous system by means of EGP-participating routers. An example of an EGP is the Border Gateway Protocol (BGP). Contrast with Interior Gateway Protocol (IGP).

F

fax. Hardcopy received from a facsimile machine. Synonymous with telecopy.

File Transfer Protocol (FTP). In the Internet suite of protocols, an application layer protocol that uses TCP and Telnet services to transfer bulk-data files between machines or hosts.
flash memory. A data storage device that is programmable, erasable, and does not require continuous power. The chief advantage of flash memory over other programmable and erasable data storage devices is that it can be reprogrammed without being removed from the circuit board.

flow control. (1) In SNA, the process of managing the rate at which data traffic passes between components of the network. The purpose of flow control is to optimize the rate of flow of message units with minimum congestion in the network; that is, to neither overflow the buffers at the receiver or at intermediate routing nodes, nor leave the receiver waiting for more message units. (2) See also pacing.

fragment. See fragmentation.

fragmentation. (1) The process of dividing a datagram into smaller parts, or fragments, to match the capabilities of the physical medium over which it is to be transmitted. (2) See also segmenting.

frame. (1) In Open Systems Interconnection architecture, a data structure pertaining to a particular area of knowledge and consisting of slots that can accept the values of specific attributes and from which inferences can be drawn by appropriate procedural attachments. (T) (2) The unit of transmission in some local area networks, including the IBM Token-Ring Network. It includes delimiters, control characters, information, and checking characters. (3) In SDLC, the vehicle for every command, every response, and all information that is transmitted using SDLC procedures.

frame level. Synonymous with data link level. See link level.

frame relay. (1) An interface standard describing the boundary between a user’s equipment and a fast-packet network. In frame-relay systems, flawed frames are discarded; recovery comes end-to-end rather than hop-by-hop. (2) A technique derived from the integrated services digital network (ISDN) D channel standard. It assumes that connections are reliable and dispenses with the overhead of error detection and control within the network.

front-end processor. A processor such as the IBM 3745 or 3174, that relieves a main frame from the communication control tasks.

G

gateway. (1) A functional unit that interconnects two computer networks with different network architectures. A gateway connects networks or systems of different architectures. A bridge interconnects networks or systems with the same or similar architectures. (T) (2) In the IBM Token-Ring Network, a device and its associated software that connect a local area network to another local area network or a host that uses different logical link protocols. (3) In TCP/IP, synonym for router.

general data stream (GDS). The data stream used for conversations in LU 6.2 sessions.

general data stream (GDS) variable. A type of RU substructure that is preceded by an identifier and a length field and includes either application data, user control data, or SNA-defined control data.

H

header. (1) System-defined control information that precedes user data. (2) The portion of a message that contains control information for the message such as one or more destination fields, name of the originating station, input sequence number, character string indicating the type of message, and priority level for the message.

heap memory. The amount of RAM used to dynamically allocate data structures.

Hello. A protocol used by a group of cooperating, trusting routers to allow them to discover minimal delay routes.

hello message. (1) A message sent periodically to establish and test reachability between routers or between routers and hosts. (2) In the Internet suite of protocols, a message defined by the Hello protocol as an Interior Gateway Protocol (IGP).

heuristic. Pertaining to exploratory methods of problem solving in which solutions are discovered by evaluation of the progress made toward the final result.

high-level data link control (HDLC). In data communication, the use of a specified series of bits to control data links in accordance with the International Standards for HDLC: ISO 3309 Frame Structure and ISO 4335 Elements of Procedures.

high-performance routing (HPR). An addition to the Advanced Peer-to-Peer Networking (APPN) architecture that enhances data routing performance and reliability, especially when using high-speed links.

hop. (1) In APPN, a portion of a route that has no intermediate nodes. It consists of only a single transmission group connecting adjacent nodes. (2) To the routing layer, the logical distance between two nodes in a network.

hop count. (1) A metric or measure of distance between two points. (2) In Internet communications, the number of routers that a datagram passes through on its way to its destination. (3) In SNA, a measure of the number of links to be traversed in a path to a destination.
host. In the Internet suite of protocols, an end system. The end system can be any workstation; it does not have to be a mainframe.

hub (intelligent). A wiring concentrator, such as the IBM 8260, that provides bridging and routing functions for LANs with different cabling and protocols.

hysteresis. The amount the temperature must change past the set alert threshold before the alert condition is cleared.

I-frame. Information frame.

information (I) frame. A frame in I format used for numbered information transfer.

input/output channel. In a data processing system, a functional unit that handles transfer of data between internal and peripheral equipment. (I) (A)

Integrated Digital Network Exchange (IDNX). A processor integrating voice, data, and image applications. It also manages the transmission resources, and connects to multiplexers and network management support systems. It allows integration of equipment from different vendors.

integrated services digital network (ISDN). A digital end-to-end telecommunication network that supports multiple services including, but not limited to, voice and data.

Note: ISDNs are used in public and private network architectures.

interface. (1) A shared boundary between two functional units, defined by functional characteristics, signal characteristics, or other characteristics, as appropriate. The concept includes the specification of the connection of two devices having different functions. (T) (2) Hardware, software, or both, that links systems, programs, or devices.

interior gateway. In Internet communications, a gateway that communicates only with its own autonomous system. Contrast with exterior gateway.

Interior Gateway Protocol (IGP). In the Internet suite of protocols, a protocol used to propagate network reachability and routing information within an autonomous system. Examples of IGPs are Routing Information Protocol (RIP) and Open Shortest Path First (OSPF).

intermediate node. A node that is at the end of more than one branch. (T)

intermediate session routing (ISR). A type of routing function within an APPN network node that provides session-level flow control and outage reporting for all sessions that pass through the node but whose end points are elsewhere.

International Organization for Standardization (ISO). An organization of national standards bodies from various countries established to promote development of standards to facilitate international exchange of goods and services, and develop cooperation in intellectual, scientific, technological, and economic activity.

International Telecommunication Union (ITU). The specialized telecommunication agency of the United Nations, established to provide standardized communication procedures and practices, including frequency allocation and radio regulations worldwide.

internet. A collection of networks interconnected by a set of routers that allow them to function as a single, large network. See also Internet.

Internet. The internet administered by the Internet Architecture Board (IAB), consisting of large national backbone networks and many regional and campus networks all over the world. The Internet uses the Internet suite of protocols.

Internet address. See IP address.

Internet Architecture Board (IAB). The technical body that oversees the development of the Internet suite of protocols that are known as TCP/IP.

Internet Control Message Protocol (ICMP). The protocol used to handle errors and control messages in the Internet Protocol (IP) layer. Reports of problems and incorrect datagram destinations are returned to the original datagram source. ICMP is part of the Internet Protocol.

Internet Control Protocol (ICP). The Virtual NEtworking System (VINES) protocol that provides exception notifications, metric notifications, and PING support. See also Routing update Protocol (RTP).

Internet Engineering Task Force (IETF). The task force of the Internet Architecture Board (IAB) that is responsible for solving the short-term engineering needs of the Internet.

Internetwork Packet Exchange (IPX). (1) The network protocol used to connect Novell’s servers, or any workstation or router that implements IPX, with other workstations. Although similar to the Internet Protocol (IP), IPX uses different packet formats and terminology. (2) See also Xerox Network Systems (XNS).

Internet Protocol (IP). A connectionless protocol that routes data through a network or interconnected networks. IP acts as an intermediary between the higher protocol layers and the physical network. However, this
interoperability. The capability to communicate, execute programs, or transfer data among various functional units in a way that requires the user to have little or no knowledge of the unique characteristics of those units. (T)

intra-area routing. In Internet communications, the routing of data within an area.

Inverse Address Resolution Protocol (InARP). In the Internet suite of protocols, the protocol used for locating a protocol address through the known hardware address. In a frame-relay context, the data link connection identifier (DLCI) is synonymous with the known hardware address.

IP. The interface that other protocols can use to transport data over IP.

IP address. The 32-bit address defined by the Internet Protocol, standard 5, Request for Comments (RFC) 791. It is usually represented in dotted decimal notation.

IP datagram. In the Internet suite of protocols, the fundamental unit of information transmitted through an internet. It contains source and destination addresses, user data, and control information such as the length of the datagram, the header checksum, and flags indicating whether the datagram can be or has been fragmented.

IP router. A device in an IP internet that is responsible for making decisions about the paths over which network traffic will flow. Routing protocols are used to gain information about the network and to determine the best route over which the datagram should be forwarded toward the final destination. The datagrams are routed based on IP destination addresses.

IPX. A Novell protocol that is used to exchange router-to-router information before exchanging standard Internetwork Packet Exchange (IPX) routing information and traffic over wide area networks (WANs).

L2TP. A device attached to one or more public service telephone network (PSTN) or ISDN lines capable of handling both PPP operation and of the L2TP protocol. The LAC implements the media over which L2TP operates. L2TP passes the traffic to one or more L2TP Network Servers (LNS). L2TP can tunnel any protocol carried by the PPP network.

L2TP Network Server (LNS). An LNS operates on any platform capable that can be a PPP end station. The LNS handles the server side of the L2TP protocol. Since L2TP relies only on the single media over which L2TP tunnels arrive, the LNS has only a single LAN or WAN interface, yet is still able to terminate calls arriving from any full range of PPP interfaces supported by a LAC. These include asynchronous ISDN, synchronous ISDN, V.120, and other types of connections.

LAN bridge server (LBS). In the IBM Token-Ring Network Bridge Program, the server that keeps statistical information about frames forwarded between two or more rings (through a bridge). The LBS sends these statistics to the appropriate LAN managers through the LAN reporting mechanism (LRM).

LAN Emulation (LE). An ATM Forum standard that supports legacy LAN applications over ATM networks.

LAN Emulation Client (LEC). A LAN Emulation component that represents users of the Emulated LAN.

LAN Emulation Configuration Server (LECS). A LAN Emulation Service component that centralizes and disseminates configuration data.

LAN Emulation Server (LES). A LAN Emulation Service component that resolves LAN Destinations to ATM Addresses.

LAN Network Manager (LNM). An IBM licensed program that enables a user to manage and monitor LAN resources from a central workstation.

LAN segment. (1) Any portion of a LAN (for example, a bus or ring) that can operate independently, but that is connected to other parts of the network by means of bridges. (2) A ring or bus network without bridges.

layer. (1) In network architecture, a group of services that is complete from a conceptual point of view, that is one out of a set of hierarchically arranged groups, and that extends across all systems that conform to the network architecture. (T) (2) In the Open Systems Interconnection reference model, one of seven conceptually complete, hierarchically arranged groups of services, functions, and protocols, that extend across all open systems. (T) (3) In SNA, a grouping of related functions that are logically separate from the functions in other groups. Implementation of the functions in one layer can be changed without affecting functions in other layers.

LE. LAN Emulation. An ATM Forum standard that supports legacy LAN applications over ATM networks.

LEC. LAN Emulation Client. A LAN Emulation component that represents users of the Emulated LAN.

LECS. LAN Emulation Configuration Server. A LAN Emulation Service component that centralizes and disseminates configuration data.
LES. LAN Emulation Server. A LAN Emulation Service component that resolves LAN Destinations to ATM Addresses.

line switching. Synonym for circuit switching.

link. The combination of the link connection (the transmission medium) and two link stations, one at each end of the link connection. A link connection can be shared among multiple links in a multipoint or token-ring configuration.

link access protocol balanced (LAPB). A protocol used for accessing an X.25 network at the link level. LAPB is a duplex, asynchronous, symmetric protocol, used in point-to-point communication.

link-attached. (1) Pertaining to devices that are connected to a controlling unit by a data link. (2) Contrast with channel-attached. (3) Synonymous with remote.

link connection. (1) The physical equipment providing two-way communication between one link station and one or more other link stations; for example, a telecommunication line and data circuit-terminating equipment (DCE). (2) In SNA, synonymous with data circuit.

link level. (1) A part of Recommendation X.25 that defines the link protocol used to get data into and out of the network across the full-duplex link connecting the subscriber’s machine to the network node. LAP and LAPB are the link access protocols recommended by the CCITT. (2) See data link level.

link-state. In routing protocols, the advertised information about the usable interfaces and reachable neighbors of a router or network. The protocol’s topological database is formed from the collected link-state advertisements.

link station. (1) The hardware and software components within a node representing a connection to an adjacent node over a specific link. For example, if node A is the primary end of a multipoint line that connects to three adjacent nodes, node A will have three link stations representing the connections to the adjacent nodes. (2) See also adjacent link station (ALS).

local. (1) Pertaining to a device accessed directly without use of a telecommunication line. (2) Contrast with remote. (3) Synonym for channel-attached.

local area network (LAN). (1) A computer network located on a user’s premises within a limited geographical area. Communication within a local area network is not subject to external regulations; however, communication across the LAN boundary may be subject to some form of regulation. (2) A network in which a set of devices are connected to one another for communication and that can be connected to a larger network. (3) See also Ethernet and token ring. (4) Contrast with metropolitan area network (MAN) and wide area network (WAN).

local bridging. A function of a bridge program that allows a single bridge to connect multiple LAN segments without using a telecommunication link. Contrast with remote bridging.

local management interface (LMI). See local management interface (LMI) protocol.

local management interface (LMI) protocol. In NCP, a set of frame-relay network management procedures and messages used by adjacent frame-relay nodes to exchange line status information over DLCI X’00’. NCP supports both the American National Standards Institute (ANSI) and International Telegraph and Telephone Consultative Committee (ITU-T/CCITT) versions of LMI protocol. These standards refer to LMI protocol as link integrity verification tests (LIVT).

locally administered address. In a local area network, an adapter address that the user can assign to override the universally administered address. Contrast with universally administered address.

logical channel. In packet mode operation, a sending channel and a receiving channel that together are used to send and receive data over a data link at the same time. Several logical channels can be established on the same data link by interleaving the transmission of packets.

logical link. A pair of link stations, one in each of two adjacent nodes, and their underlying link connection, providing a single link-layer connection between the two nodes. Multiple logical links can be distinguished while they share the use of the same physical media connecting two nodes. Examples are 802.2 logical links used on local area network (LAN) facilities and LAP E logical links on the same point-to-point physical link between two nodes. The term logical link also includes the multiple X.25 logical channels that share the use of the access link from a DTE to an X.25 network.

logical link control (LLC). The data link control (DLC) LAN sublayer that provides two types of DLC operation for the orderly exchange of information. The first type is connectionless service, which allows information to be sent and received without establishing a link. The LLC sublayer does not perform error recovery or flow control for connectionless service. The second type is connection-oriented service, which requires establishing a link prior to the exchange of information. Connection-oriented service provides sequenced information transfer, flow control, and error recovery.

logical link control (LLC) protocol. In a local area network, the protocol that governs the exchange of transmission frames between data stations independently of how the transmission medium is
shared. (T) The LLC protocol was developed by the IEEE 802 committee and is common to all LAN standards.

logical link control (LLC) protocol data unit. A unit of information exchanged between link stations in different nodes. The LLC protocol data unit contains a destination service access point (DSAP), a source service access point (SSAP), a control field, and user data.

logical unit (LU). A type of network accessible unit that enables users to gain access to network resources and communicate with each other.

loopback test. A test in which signals from a tester are looped at a modem or other network element back to the tester for measurements that determine or verify the quality of the communications path.

low-entry networking (LEN). A capability of nodes to attach directly to one another using basic peer-to-peer protocols to support multiple and parallel sessions between logical units.

low-entry networking (LEN) end node. A LEN node receiving network services from an adjacent APPN network node.

low-entry networking (LEN) node. A node that provides a range of end-user services, attaches directly to other nodes using peer protocols, and derives network services implicitly from an adjacent APPN network node, that is, without the direct use of CP-CP sessions.

M

Management Information Base (MIB). (1) A collection of objects that can be accessed by means of a network management protocol. (2) A definition for management information that specifies the information available from a host or gateway and the operations allowed. (3) In OSI, the conceptual repository of management information within an open system.

management station. In Internet communications, the system responsible for managing all, or a portion of, a network. The management station communicates with network management agents that reside in the managed node by means of a network management protocol, such as the Simple Network Management Protocol (SNMP).

mapping. The process of converting data that is transmitted in one format by the sender into the data format that can be accepted by the receiver.

mask. (1) A pattern of characters used to control retention or elimination of portions of another pattern of characters. (I) (A) (2) To use a pattern of characters to control retention or elimination of portions of another pattern of characters. (I) (A)

maximum transmission unit (MTU). In LANs, the largest possible unit of data that can be sent on a given physical medium in a single frame. For example, the MTU for Ethernet is 1500 bytes.

medium access control (MAC). In LANs, the sublayer of the data link control layer that supports medium-dependent functions and uses the services of the physical layer to provide services to the logical link control (LLC) sublayer. The MAC sublayer includes the method of determining when a device has access to the transmission medium.

medium access control (MAC) protocol. In a local area network, the protocol that governs access to the transmission medium, taking into account the topological aspects of the network, in order to enable the exchange of data between data stations. (T)

medium access control (MAC) sublayer. In a local area network, the part of the data link layer that applies a medium access method. The MAC sublayer supports topology-dependent functions and uses the services of the physical layer to provide services to the logical link control sublayer. (T)

metric. In Internet communications, a value, associated with a route, which is used to discriminate between multiple exit or entry points to the same autonomous system. The route with the lowest metric is preferred.

metropolitan area network (MAN). A network formed by the interconnection of two or more networks which may operate at higher speed than those networks, may cross administrative boundaries, and may use multiple access methods. (T) Contrast with local area network (LAN) and wide area network (WAN).

MIB. (1) MIB module. (2) Management Information Base.

MIB object. Synonym for MIB variable.

MIB variable. In the Simple Network Management Protocol (SNMP), a specific instance of data defined in a MIB module. Synonymous with MIB object.

MIB view. In the Simple Network Management Protocol (SNMP), the collection of managed objects, known to the agent, that is visible to a particular community.

MILNET. The military network that was originally part of ARPANET. It was partitioned from ARPANET in 1984. MILNET provides a reliable network service for military installations.

modem (modulator/demodulator). (1) A functional unit that modulates and demodulates signals. One of
the functions of a modem is to enable digital data to be transmitted over analog transmission facilities. (T) (A) (2) A device that converts digital data from a computer to an analog signal that can be transmitted on a telecommunication line, and converts the analog signal received to data for the computer.

modulo. (1) Pertaining to a modulus; for example, 9 is equivalent to 4 modulo 5. (2) See also modulus.

modulus. A number, such as a positive integer, in a relationship that divides the difference between two related numbers without leaving a remainder; for example, 9 and 4 have a modulus of 5 (9 - 4 = 5; 4 - 9 = -5; and 5 divides both 5 and -5 without leaving a remainder).

monitor. (1) A device that observes and records selected activities within a data processing system for analysis. Possible uses are to indicate significant departure from the norm, or to determine levels of utilization of particular functional units. (T) (2) Software or hardware that observes, supervises, controls, or verifies operations of a system. (A) (3) The function required to initiate the transmission of a token on the ring and to provide soft-error recovery in case of lost tokens, circulating frames, or other difficulties. The capability is present in all ring stations.

multicast. (1) Transmission of the same data to a selected group of destinations. (T) (2) A special form of broadcast in which copies of a packet are delivered to only a subset of all possible destinations.

multiple-domain support (MDS). A technique for transporting management services data between management services function sets over LU-LU and CP-CP sessions. See also multiple-domain support message unit (MDS-MU).

multiple-domain support message unit (MDS-MU). The message unit that contains management services data and flows between management services function sets over the LU-LU and CP-CP sessions used by multiple-domain support. This message unit, as well as the actual management services data that it contains, is in general data stream (GDS) format. See also control point management services unit (CP-MSU), management services unit (MSU), and network management vector transport (NMVT).

N

Name Binding Protocol (NBP). In AppleTalk networks, a protocol that provides name translation function from the AppleTalk entity (resource) name (character string) into an AppleTalk IP address (16-bit number) on the transport layer.

ame resolution. In Internet communications, the process of mapping a machine name to the corresponding Internet Protocol (IP) address. See also Domain Name System (DNS).

name server. In the Internet suite of protocols, synonym for domain name server.

nearest active upstream neighbor (NAUN). In the IBM Token-Ring Network, the station sending data directly to a given station on the ring.

neighbor. A router on a common subnetwork that has been designated by a network administrator to receive routing information.

NetBIOS. Network Basic Input/Output System. A standard interface to networks, IBM personal computers (PCs), and compatible PCs, that is used on LANs to provide message, print-server, and file-server functions. Application programs that use NetBIOS do not need to handle the details of LAN data link control (DLC) protocols.

network. (1) A configuration of data processing devices and software connected for information interchange. (2) A group of nodes and the links interconnecting them.

Network Access Server (NAS). A device providing temporary, on-demand network access to users. This access is point-to-point using PSTN or ISDN lines.

network accessible unit (NAU). A logical unit (LU), physical unit (PU), control point (CP), or system services control point (SSCP). It is the origin or the destination of information transmitted by the path control network. Synonymous with network addressable unit.

network address. According to ISO 7498-3, a name, unambiguous within the OSI environment, that identifies a set of network service access points.

network addressable unit (NAU). Synonym for network accessible unit.

network architecture. The logical structure and operating principles of a computer network. (T)

Note: The operating principles of a network include those of services, functions, and protocols.

network congestion. An undesirable overload condition caused by traffic in excess of what a network can handle.

network identifier. (1) In TCP/IP, that part of the IP address that defines a network. The length of the network ID depends on the type of network class (A, B, or C). (2) A 1- to 8-byte customer-selected name or an 8-byte IBM-registered name that uniquely identifies a specific subnetwork.

Network Information Center (NIC). In Internet communications, local, regional, and national groups
throughout the world who provide assistance, documentation, training, and other services to users.

network layer. In Open Systems Interconnection (OSI) architecture, the layer that is responsible for routing, switching, and link-layer access across the OSI environment.

network management. The process of planning, organizing, and controlling a communication-oriented data processing or information system.

network management station. In the Simple Network Management Protocol (SNMP), a station that executes management application programs that monitor and control network elements.

network management vector transport (NMVT). A management services request/response unit (RU) that flows over an active session between physical unit management services and control point management services (SSCP-PU session).

network manager. A program or group of programs that is used to monitor, manage, and diagnose the problems of a network.

network node (NN). See Advanced Peer-to-Peer Networking (APPN) network node.

network user address (NUA). In X.25 communications, the X.121 address containing up to 15 binary code digits.

node. (1) In a network, a point at which one or more functional units connect channels or data circuits. (1) (2) Any device, attached to a network, that transmits and receives data.

noncanonical address. In LANs, a format for the transmission of medium access control (MAC) addresses for token-ring adapters. In noncanonical format, the most significant (leftmost) bit of each address byte is transmitted first. Contrast with canonical address.

Non-Return-to-Zero Changes-on-Ones Recording (NRZ-1). A recording method in which the ones are represented by a change in the condition of magnetization, and zeros are represented by the absence of change. Only the one signals are explicitly recorded. (Previously called non-return-to-zero inverted, NRZI, recording.)

nonseed router. In AppleTalk networks, a router that acquires network number range and zone list information from a seed router attached to the same network.

Open Shortest Path First (OSPF). In the Internet suite of protocols, a function that provides intradomain information transfer. An alternative to the Routing Information Protocol (RIP), OSPF allows the lowest-cost routing and handles routing in large regional or corporate networks.

Open Systems Interconnection (OSI). (1) The interconnection of open systems in accordance with standards of the International Organization for Standardization (ISO) for the exchange of information. (T) (A) (2) The use of standardized procedures to enable the interconnection of data processing systems.

Note: OSI architecture establishes a framework for coordinating the development of current and future standards for the interconnection of computer systems. Network functions are divided into seven layers. Each layer represents a group of related data processing and communication functions that can be carried out in a standard way to support different applications.

Open Systems Interconnection (OSI) architecture. Network architecture that adheres to that particular set of ISO standards that relates to Open Systems Interconnection. (T)

Open Systems Interconnection (OSI) reference model. A model that describes the general principles of the Open Systems Interconnection, as well as the purpose and the hierarchical arrangement of its seven layers. (T)

origin. An external logical unit (LU) or application program from which a message or other data originates. See also destination.

orphan circuit. A non-configured circuit whose availability is learned dynamically.

pacing. (1) A technique by which a receiving component controls the rate of transmission of a sending component to prevent overrun or congestion. (2) See also flow control, receive pacing, send pacing, session-level pacing, and virtual route (VR) pacing.

packet. In data communication, a sequence of binary digits, including data and control signals, that is transmitted and switched as a composite whole. The data, control signals, and, possibly, error control information are arranged in a specific format. (I)

packet internet groper (PING). (1) In Internet communications, a program used in TCP/IP networks to test the ability to reach destinations by sending the destinations an Internet Control Message Protocol (ICMP) echo request and waiting for a reply. (2) In communications, a test of reachability.
packet loss ratio. The probability that a packet will not reach its destination or not reach it within a specified time.

packet mode operation. Synonym for packet switching.

packet switching. (1) The process of routing and transferring data by means of addressed packets so that a channel is occupied only during transmission of a packet. On completion of the transmission, the channel is made available for transfer of other packets. (1) (2) Synonymous with packet mode operation. See also circuit switching.

parallel bridges. A pair of bridges connected to the same LAN segment, creating redundant paths to the segment.

parallel transmission groups. Multiple transmission groups between adjacent nodes, with each group having a distinct transmission group number.

path. (1) In a network, any route between any two nodes. A path may include more than one branch. (1) (2) The series of transport network components (path control and data link control) that are traversed by the information exchanged between two network accessible units. See also explicit route (ER), route extension, and virtual route (VR).

path control (PC). The function that routes message units between network accessible units in the network and provides the paths between them. It converts the basic information units (BIUs) from transmission control (possibly segmenting them) into path information units (PIUs) and exchanges basic transmission units containing one or more PIUs with data link control. Path control differs by node type: some nodes (APPN nodes, for example) use locally generated session identifiers for routing, and others (subarea nodes) use network addresses for routing.

path cost. In link-state routing protocols, the sum of the link costs along the path between two nodes or networks.

path information unit (PIU). A message unit consisting of a transmission header (TH) alone, or a TH followed by a basic information unit (BIU) or a BIU segment.

pattern-matching character. A special character such as an asterisk (*) or a question mark (?) that can be used to represent one or more characters. Any character or set of characters can replace a pattern-matching character. Synonymous with global character and wildcard character.

permanent virtual circuit (PVC). In X.25 and frame-relay communications, a virtual circuit that has a logical channel permanently assigned to it at each data terminal equipment (DTE). Call-establishment protocols are not required. Contrast with switched virtual circuit (SVC).

physical circuit. A circuit established without multiplexing. See also data circuit. Contrast with virtual circuit.

physical layer. In the Open Systems Interconnection reference model, the layer that provides the mechanical, electrical, functional, and procedural means to establish, maintain, and release physical connections over the transmission medium. (1)

physical unit (PU). (1) The component that manages and monitors the resources (such as attached links and adjacent link stations) associated with a node, as requested by an SSCP via an SSCP-PU session. An SSCP activates a session with the physical unit in order to indirectly manage, through the PU, resources of the node such as attached links. This term applies to type 2.0, type 4, and type 5 nodes only. (2) See also peripheral PU and subarea PU.

ping command. The command that sends an Internet Control Message Protocol (ICMP) echo-request packet to a gateway, router, or host with the expectation of receiving a reply.

Point-to-Point Protocol (PPP). A protocol that provides a method for encapsulating and transmitting packets over serial point-to-point links.

polling. (1) On a multipoint connection or a point-to-point connection, the process whereby data stations are invited, one at a time, to transmit. (1) (2) Interrogation of devices for such purposes as to avoid contention, to determine operational status, or to determine readiness to send or receive data. (1)

port. (1) An access point for data entry or exit. (2) A connector on a device to which cables for other devices such as display stations and printers are attached. (3) The representation of a physical connection to the link hardware. A port is sometimes referred to as an adapter; however, there can be more than one port on an adapter. There may be one or more ports controlled by a single DLC process. (4) In the Internet suite of protocols, a 16-bit number used to communicate between TCP or the User Datagram Protocol (UDP) and a higher-level protocol or application. Some protocols, such as File Transfer Protocol (FTP) and Simple Mail Transfer Protocol (SMTP), use the same well-known port number in all TCP/IP implementations. (5) An abstraction used by transport protocols to distinguish among multiple destinations within a host machine. (6) Synonymous with socket.

port number. In Internet communications, the identification of an application entity to the transport service.
private branch exchange (PBX). A private telephone exchange for transmission of calls to and from the public telephone network.

problem determination. The process of determining the source of a problem; for example, a program component, machine failure, telecommunication facilities, user or contractor-installed programs or equipment, environmental failure such as a power loss, or user error.

program temporary fix (PTF). A temporary solution or bypass of a problem diagnosed by IBM in a current unaltered release of the program.

protocol. (1) A set of semantic and syntactic rules that determine the behavior of functional units in achieving communication. (T) (2) In Open Systems Interconnection architecture, a set of semantic and syntactic rules that determine the behavior of entities in the same layer in performing communication functions. (T) (3) In SNA, the meanings of, and the sequencing rules for, requests and responses used for managing the network, transferring data, and synchronizing the states of network components. Synonymous with line control discipline and line discipline. See bracket protocol and link protocol.

protocol data unit (PDU). A unit of data specified in a protocol of a given layer and consisting of protocol control information of this layer, and possibly user data of this layer. (T)

received line signal detector (RLSD). In the EIA 232 standard, a signal that indicates to the data terminal equipment (DTE) that it is receiving a signal from the remote data circuit-terminating equipment (DCE). Synonymous with carrier detect and data carrier detect (DCD).

Recognized Private Operating Agency (RPOA). Any individual, company, or corporation, other than a government department or service, that operates a telecommunication service and is subject to the obligations undertaken in the Convention of the International Telecommunication Union and in the Regulations; for example, a communication common carrier.

reduced instruction-set computer (RISC). A computer that uses a small, simplified set of frequently used instructions for rapid execution.

remote. (1) Pertaining to a system, program, or device that is accessed through a telecommunication line. (2) Synonym for link-attached. (3) Contrast with local.

remote bridging. The function of a bridge that allows two bridges to connect multiple LANs using a telecommunication link. Contrast with local bridging.

Remote Execution Protocol (REXEC). A protocol that allows the execution of a command or program on any host in the network. The local host receives the results of the command execution.

Request for Comments (RFC). In Internet communications, the document series that describes a part of the Internet suite of protocols and related experiments. All Internet standards are documented as RFCs.

reset. On a virtual circuit, reinitialization of data flow control. At reset, all data in transit are eliminated.

reset request packet. In X.25 communications, a packet transmitted by the data terminal equipment (DTE) to the data circuit-terminating equipment (DCE) to request that a virtual call or a permanent virtual circuit be reset. The reason for the request can also be specified in the packet.

ring. See ring network.

ring network. (1) A network in which every node has exactly two branches connected to it and in which there are exactly two paths between any two nodes. (T) (2) A network configuration in which devices are connected by unidirectional transmission links to form a closed path.

ring segment. A section of a ring that can be isolated (by unplugging connectors) from the rest of the ring. See LAN segment.
rlogin (remote login). A service, offered by Berkeley UNIX-based systems, that allows authorized users of one machine to connect to other UNIX systems across an internet and interact as if their terminals were connected directly. The rlogin software passes information about the user’s environment (for example, terminal type) to the remote machine.

RNR packet. A packet used by a data terminal equipment (DTE) or by a data circuit-terminating equipment (DCE) to indicate a temporary inability to accept additional packets for a virtual call or permanent virtual circuit.

root bridge. The bridge that is the root of a spanning tree formed between other active bridges in the bridging network. The root bridge originates and transmits bridge protocol data units (BPDUs) to other active bridges to maintain the spanning tree topology. It is the bridge with the highest priority in the network.

oute. (1) An ordered sequence of nodes and transmission groups (TGs) that represent a path from an origin node to a destination node traversed by the traffic exchanged between them. (2) The path that network traffic uses to get from source to destination.

route bridge. A function of an IBM bridge program that allows two bridge computers to use a telecommunication link to connect two LANs. Each bridge computer is connected directly to one of the LANs, and the telecommunication link connects the two bridge computers.

route extension (REX). In SNA, the path control network components, including a peripheral link, that make up the portion of a path between a subarea node and a network addressable unit (NAU) in an adjacent peripheral node. See also explicit route (ER), path, and virtual route (VR).

Route Selection control vector (RSCV). A control vector that describes a route within an APPN network. The RSCV consists of an ordered sequence of control vectors that identify the TGs and nodes that make up the path from an origin node to a destination node.

router. (1) A computer that determines the path of network traffic flow. The path selection is made from several paths based on information obtained from specific protocols, algorithms that attempt to identify the shortest or best path, and other criteria such as metrics or protocol-specific destination addresses. (2) An attaching device that connects two LAN segments, which use similar or different architectures, at the reference model network layer. (3) In OSI terminology, a function that determines a path by which an entity can be reached. (4) In TCP/IP, synonymous with gateway. (5) Contrast with bridge.

routing. (1) The assignment of the path by which a message is to reach its destination. (2) In SNA, the forwarding of a message unit along a particular path through a network, as determined by parameters carried in the message unit, such as the destination network address in a transmission header.

routing domain. In Internet communications, a group of intermediate systems that use a routing protocol so that the representation of the overall network is the same within each intermediate system. Routing domains are connected to each other by exterior links.

Routing Information Protocol (RIP). In the Internet suite of protocols, an interior gateway protocol used to exchange intradomain routing information and to determine optimum routes between internet hosts. RIP determines optimum routes on the basis of route metrics, not link transmission speed.

routing loop. A situation that occurs when routers circulate information among themselves until convergence occurs or until the networks involved are considered unreachable.

routing protocol. A technique used by a router to find other routers and to remain up to date about the best way to get to reachable networks.

routing table. A collection of routes used to direct datagram forwarding or to establish a connection. The information is passed among routers to identify network topology and destination feasibility.

Routing Table Maintenance Protocol (RTMP). In AppleTalk networks, a protocol that provides routing information generation and maintenance on the transport layer by means of the AppleTalk routing table. The AppleTalk routing table directs packet transmission through the internet from source socket to destination socket.

Routing update Protocol (RTP). The Virtual NEtworking System (VINES) protocol that maintains the routing database and allows the exchange of routing information between VINES nodes. See also Internet Control Protocol (ICP).

rsh. A variant of the rlogin command that invokes a command interpreter on a remote UNIX machine and passes the command-line arguments to the command interpreter, skipping the login step completely.

S

SAP. See service access point.

seed router. In AppleTalk networks, a router that maintains configuration data (network range numbers and zone lists, for example) for the network. Each network must have at least one seed router. The seed router must be initially set up using the configurator tool. Contrast with nonseed router.
segment. (1) A section of cable between components or devices. A segment may consist of a single patch cable, several patch cables that are connected, or a combination of building cable and patch cables that are connected. (2) In Internet communications, the unit of transfer between TCP functions in different machines. Each segment contains control and data fields; the current byte-stream position and actual data bytes are identified along with a checksum to validate received data.

segmenting. In OSI, a function performed by a layer to map one protocol data unit (PDU) from the layer it supports into multiple PDUs.

sequence number. In communications, a number assigned to a particular frame or packet to control the transmission flow and receipt of data.

Serial Line Internet Protocol (SLIP). A protocol used over a point-to-point connection between two IP hosts over a serial line, for example, a serial cable or an RS232 connection into a modem, over a telephone line.

server. A functional unit that provides shared services to workstations over a network; for example, a file server, a print server, a mail server. (T)

service access point (SAP). (1) In Open Systems Interconnection (OSI) architecture, the point at which the services of a layer are provided by an entity of that layer to an entity of the next higher layer. (T) (2) A logical point made available by an adapter where information can be received and transmitted. A single service access point can have many links terminating in it.

Service Advertising Protocol (SAP). In Internetwork Packet Exchange (IPX), a protocol that provides the following:

• A mechanism that allows IPX servers on an internet to advertise their services by name and type. Servers using this protocol have their name, service type, and address recorded in all file servers running NetWare.
• A mechanism that allows a workstation to broadcast a query to discover the identities of all servers of all types, all servers of a specific type, or the nearest server of a specific type.
• A mechanism that allows a workstation to query any file server running NetWare to discover the names and addresses of all servers of a specific type.

session. (1) In network architecture, for the purpose of data communication between functional units, all the activities which take place during the establishment, maintenance, and release of the connection. (T) (2) A logical connection between two network accessible units (NAUs) that can be activated, tailored to provide various protocols, and deactivated, as requested. Each session is uniquely identified in a transmission header (TH) accompanying any transmissions exchanged during the session. (3) In L2TP, L2TP creates a session when an end-to-end PPP connection is attempted between a dial user and the LNS; regardless of whether the user initiates the session or the LNS initiates an outbound call. The datagrams for the session are sent over the tunnel between the LAC and LNS. The LNS and LAC maintain the state information for each user attached to an LAC.

Simple Network Management Protocol (SNMP). In the Internet suite of protocols, a network management protocol that is used to monitor routers and attached networks. SNMP is an application layer protocol. Information on devices managed is defined and stored in the application’s Management Information Base (MIB).

SNA management services (SNA/MS). The services provided to assist in management of SNA networks.

socket. (1) An endpoint for communication between processes or application programs. (2) The abstraction provided by the University of California’s Berkeley Software Distribution (commonly called Berkeley UNIX or BSD UNIX) that serves as an endpoint for communication between processes or applications.

source route bridging. In LANs, a bridging method that uses the routing information field in the IEEE 802.5 medium access control (MAC) header of a frame to determine which rings or token-ring segments the frame must transit. The routing information field is inserted into the MAC header by the source node. The information in the routing information field is derived from explorer packets generated by the source host.

source routing. In LANs, a method by which the sending station determines the route the frame will follow and includes the routing information with the frame. Bridges then read the routing information to determine whether they should forward the frame.

source service access point (SSAP). In SNA and TCP/IP, a logical address that allows a system to send data to a remote device from the appropriate communications support. Contrast with destination service access point (DSAP).

spanning tree. In LAN contexts, the method by which bridges automatically develop a routing table and update that table in response to changing topology to ensure that there is only one route between any two LANs in the bridged network. This method prevents packet looping, where a packet returns in a circuitous route back to the sending router.

sphere of control (SOC). The set of control point domains served by a single management services focal point.

sphere of control (SOC) node. A node directly in the sphere of control of a focal point. A SOC node has exchanged management services capabilities with its
focal point. An APPN end node can be a SOC node if it supports the function to exchange management services capabilities.

split horizon. A technique for minimizing the time to achieve network convergence. A router records the interface over which it received a particular route and does not propagate its information about the route back over the same interface.

spoofing. For data links, a technique in which a protocol initiated from an end station is acknowledged and processed by an intermediate node on behalf of the final destination. In IBM 6611 data link switching, for example, SNA frames are encapsulated into TCP/IP packets for transport across a non-SNA wide area network, unpacked by another IBM 6611, and passed to the final destination. A benefit of spoofing is the prevention of end-to-end session timeouts.

standard MIB. In the Simple Network Management Protocol (SNMP), a MIB module that is located under the management branch of the Structure of Management Information (SMI) and that is considered a standard by the Internet Engineering Task Force (IETF).

static route. The route between hosts, networks, or both that is manually entered into a routing table.

station. An input or output point of a system that uses telecommunication facilities; for example, one or more systems, computers, terminals, devices, and associated programs at a particular location that can send or receive data over a telecommunication line.

StreetTalk. In the Virtual NETworking System (VINES), a unique network-wide naming and addressing system that allows users to locate and access any resource on the network without knowing the network topology. See also Internet Control Protocol (ICP) and Routing update Protocol (RTP).

Structure of Management Information (SMI). (1) In the Simple Network Management Protocol (SNMP), the rules used to define the objects that can be accessed by means of a network management protocol. (2) In OSI, the set of standards relating to management information. The set includes the Management Information Model and the Guidelines for the Definition of Managed Objects.

subarea. A portion of the SNA network consisting of a subarea node, attached peripheral nodes, and associated resources. Within a subarea node, all network accessible units (NAUs), links, and adjacent link stations (in attached peripheral or subarea nodes) that are addressable within the subarea share a common subarea address and have distinct element addresses.

subnet. (1) In TCP/IP, a part of a network that is identified by a portion of the IP address. (2) Synonym for subnetwork.

subnet address. In Internet communications, an extension to the basic IP addressing scheme where a portion of the host address is interpreted as the local network address.

subnet mask. Synonym for address mask.

subnetwork. (1) Any group of nodes that have a set of common characteristics, such as the same network ID. (2) Synonymous with subnet.

Subnetwork Access Protocol (SNAP). In LANs, a 5-byte protocol discriminator that identifies the non-IEEE standard protocol family to which a packet belongs. The SNAP value is used to differentiate between protocols that use AA as their service access point (SAP) value.

subnet mask. Synonym for address mask.

subsystem. A secondary or subordinate system, usually capable of operating independently of, or asynchronously with, a controlling system. (T)

switched virtual circuit (SVC). An X.25 circuit that is dynamically established when needed. The X.25 equivalent of a switched line. Contrast with permanent virtual circuit (PVC).

synchronous. (1) Pertaining to two or more processes that depend upon the occurrence of specific events such as common timing signals. (T) (2) Occurring with a regular or predictable time relationship.

Synchronous Data Link Control (SDLC). (1) A discipline conforming to subsets of the Advanced Data Communication Control Procedures (ADCCP) of the American National Standards Institute (ANSI) and High-level Data Link Control (HDLC) of the International Organization for Standardization, for managing synchronous, code-transparent, serial-by-bit information transfer over a link connection. Transmission exchanges may be duplex or half-duplex over switched or nonswitched links. The configuration of the link connection may be point-to-point, multipoint, or loop. (I) (2) Contrast with binary synchronous communication (BSC).

SYNTAX. In the Simple Network Management Protocol (SNMP), a clause in the MIB module that defines the abstract data structure that corresponds to a managed object.

system. In data processing, a collection of people, machines, and methods organized to accomplish a set of specific functions. (I) (A)

system configuration. A process that specifies the devices and programs that form a particular data processing system.

system services control point (SSCP). A component within a subarea network for managing the configuration, coordinating network operator and
problem determination requests, and providing directory services and other session services for users of the network. Multiple SSCP s, cooperating as peers with one another, can divide the network into domains of control, with each SSCP having a hierarchical control relationship to the physical units and logical units within its own domain.

Systems Network Architecture (SNA). The description of the logical structure, formats, protocols, and operational sequences for transmitting information units through, and controlling the configuration and operation of, networks. The layered structure of SNA allows the ultimate origins and destinations of information, that is, the users, to be independent of and unaffected by the specific SNA network services and facilities used for information exchange.

TCP/IP. (1) Transmission Control Protocol/Internet Protocol. (2) A UNIX-like/Ethernet-based system-interconnect protocol originally developed by the US Department of Defense. TCP/IP facilitated ARPANET (Advanced Research Projects Agency Network), a packet-switched research network for which layer 4 was TCP and layer 3, IP.

Telnet. In the Internet suite of protocols, a protocol that provides remote terminal connection service. It allows users of one host to log on to a remote host and interact as directly attached terminal users of that host.

threshold. (1) In IBM bridge programs, a value set for the maximum number of frames that are not forwarded across a bridge due to errors, before a “threshold exceeded” occurrence is counted and indicated to network management programs. (2) An initial value from which a counter is decremented to 0, or a value to which a counter is incremented or decremented from an initial value.

throughput class. In packet switching, the speed at which data terminal equipment (DTE) packets travel through the packet switching network.

time to live (TTL). A technique used by best-effort delivery protocols to inhibit endlessly looping packets. The packet is discarded if the TTL counter reaches 0.

timeout. (1) An event that occurs at the end of a predetermined period of time that began at the occurrence of another specified event. (1) (2) A time interval allotted for certain operations to occur; for example, response to polling or addressing before system operation is interrupted and must be restarted.

token. (1) In a local area network, the symbol of authority passed successively from one data station to another to indicate the station temporarily in control of the transmission medium. Each data station has an opportunity to acquire and use the token to control the medium. A token is a particular message or bit pattern that signifies permission to transmit. (T) (2) In LANs, a sequence of bits passed from one device to another along the transmission medium. When the token has data appended to it, it becomes a frame.

token ring. (1) According to IEEE 802.5, network technology that controls media access by passing a token (special packet or frame) between media-attached stations. (2) IEEE 802.5 network with a ring topology that passes tokens from one attaching ring station (node) to another. (3) See also local area network (LAN).

token-ring network. (1) A ring network that allows unidirectional data transmission between data stations, by a token passing procedure, such that the transmitted data return to the transmitting station. (T) (2) A network that uses a ring topology, in which tokens are passed in a circuit from node to node. A node that is ready to send can capture the token and insert data for transmission.

topology. In communications, the physical or logical arrangement of nodes in a network, especially the relationships among nodes and the links between them.

topology database update (TDU). A message about a new or changed link or node that is broadcast among APPN network nodes to maintain the network topology database, which is fully replicated in each network node. A TDU contains information that identifies the following:
- The sending node
- The node and link characteristics of various resources in the network
- The sequence number of the most recent update for each of the resources described.

trace. (1) A record of the execution of a computer program. It exhibits the sequences in which the instructions were executed. (A) (2) For data links, a record of the frames and bytes transmitted or received.

transceiver (transmitter-receiver). In LANs, a physical device that connects a host interface to a local area network, such as Ethernet. Ethernet transceivers contain electronics that apply signals to the cable and that sense collisions.

Transmission Control Protocol (TCP). A communications protocol used in the Internet and in any network that follows the U.S. Department of Defense standards for internetwork protocol. TCP provides a reliable host-to-host protocol between hosts in packet-switched communications networks and in interconnected systems of such networks. It uses the Internet Protocol (IP) as the underlying protocol.

Transmission group (TG). (1) A connection between adjacent nodes that is identified by a transmission group number. (2) In a subarea network, a single link or a group of links between adjacent nodes. When a transmission group consists of a group of links, the links are viewed as a single logical link, and the transmission group is called a multilink transmission group (MLTG). A mixed-media multilink transmission group (MMMLTG) is one that contains links of different medium types (for example, token-ring, switched SDLC, nonswitched SDLC, and frame-relay links). (3) In an APPN network, a single link between adjacent nodes. (4) See also parallel transmission groups.

Transmission header (TH). Control information, optionally followed by a basic information unit (BIU) or a BIU segment, that is created and used by path control to route message units and to control their flow within the network. See also path information unit.

Transparent bridging. In LANs, a method for tying individual local area networks together through the medium access control (MAC) level. A transparent bridge stores the tables that contain MAC addresses so that frames seen by the bridge can be forwarded to another LAN if the tables indicate to do so.

Transport layer. In the Open Systems Interconnection reference model, the layer that provides a reliable end-to-end data transfer service. There may be relay open systems in the path. (T) See also Open Systems Interconnection reference model.

Trap. In the Simple Network Management Protocol (SNMP), a message sent by a managed node (agent function) to a management station to report an exception condition.

Tunnel. A tunnel is defined by an LNS-LAC pair. The tunnel carries PPP datagrams between the LAC and the LNS. A single tunnel can multiplex many sessions. A control connection operating over the same tunnel controls the establishment, release, and maintenance of all sessions and of the tunnel itself.

Tunneling. To treat a transport network as though it were a single communication link or LAN. See also encapsulation.

T1. In the United States, a 1.544-Mbps public access line. It is available in twenty-four 64-Kbps channels. The European version (E1) transmits 2.048 Mbps.

Universally administered address. In a local area network, the address permanently encoded in an adapter at the time of manufacture. All universally administered addresses are unique. Contrast with locally administered address.

User Datagram Protocol (UDP). In the Internet suite of protocols, a protocol that provides unreliable, connectionless datagram service. It enables an application program on one machine or process to send a datagram to an application program on another machine or process. UDP uses the Internet Protocol (IP) to deliver datagrams.

V

V.24. In data communication, a specification of the CCITT that defines the list of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE).

V.25. In data communication, a specification of the CCITT that defines the automatic answering equipment and parallel automatic calling equipment on the General Switched Telephone Network, including procedures for disabling of echo controlled devices for both manually and automatically established calls.

V.34. An ITU-T Recommendation for modem communication over standard commercially available voice-grade 33.6-Kbps (and slower) channels.

V.35. In data communication, a specification of the CCITT that defines the list of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE) at various data rates.

V.36. In data communication, a specification of the CCITT that defines the list of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE) at rates of 48, 56, 64, or 72 kilobits per second.

Version. A separately licensed program that usually has significant new code or new function.

VINES. Virtual NEtworking System.

Virtual circuit. (1) In packet switching, the facilities provided by a network that give the appearance to the user of an actual connection. (T) See also data circuit. Contrast with physical circuit. (2) A logical connection established between two DTEs.

Virtual connection. In frame relay, the return path of a potential connection.

Virtual link. In Open Shortest Path First (OSPF), a point-to-point interface that connects border routers that are separated by a non-backbone transit area. Because area routers are part of the OSPF backbone, the virtual link connects the backbone. The virtual links ensure that the OSPF backbone does not become discontinuous.
Virtual Networking System (VINES). The network operating system and network software from Banyan Systems, Inc. In a VINES network, virtual linking allows all devices and services to appear to be directly connected to each other, when they may actually be thousands of miles apart. See also StreetTalk.

Virtual route (VR). (1) In SNA, either (a) a logical connection between two subarea nodes that is physically realized as a particular explicit route or (b) a logical connection that is contained wholly within a subarea node for intranode sessions. A virtual route between distinct subarea nodes imposes a transmission priority on the underlying explicit route, provides flow control through virtual route pacing, and provides data integrity through sequence numbering of path information units (PIUs). (2) Contrast with explicit route (ER). See also path and route extension (REX).

Wide area network (WAN). (1) A network that provides communication services to a geographic area larger than that served by a local area network or a metropolitan area network, and that may use or provide public communication facilities. (T) (2) A data communication network designed to serve an area of hundreds or thousands of miles; for example, public and private packet-switching networks, and national telephone networks. (3) Contrast with local area network (LAN) and metropolitan area network (MAN).

Wildcard character. Synonym for pattern-matching character.

X.21. An International Telegraph and Telephone Consultative Committee (CCITT) recommendation for a general-purpose interface between data terminal equipment and data circuit-terminating equipment for synchronous operations on a public data network.

X.25. (1) An International Telegraph and Telephone Consultative Committee (CCITT) recommendation for the interface between data terminal equipment and packet-switched data networks. (2) See also packet switching.

Xerox Network Systems (XNS). The suite of internet protocols developed by the Xerox Corporation. Although similar to TCP/IP protocols, XNS uses different packet formats and terminology. See also Internetwork Packet Exchange (IPX).

Z

Zone. In AppleTalk networks, a subset of nodes within an internet.

Zone Information Protocol (ZIP). In AppleTalk networks, a protocol that provides zone management service by maintaining a mapping of the zone names and network numbers across the internet on the session layer.

Zone Information Table (ZIT). A listing of network numbers and their associated zone name mappings in the internet. This listing is maintained by each internet router in an AppleTalk internet.
Index

Numerics
2210
as boot server 84

A
accessing
protocol
configuration process 19
operating (monitor) process 19
second-level process 13, 15
accessing the mp configuration prompt 515
accessing the mp monitoring commands 519
activate
GWCON command 128
activating spare interfaces 128
add
add 550
ATM configuration command 279
ATM Virtual Interface configuration command 285
Boot CONFIG command 94
BSC Relay configuration command 568
CONFIG command 52
ELS configuration command 168
Frame Relay configuration command 406
SDLC configuration command 540
SDLC monitoring command 550
SDLC Relay configuration command 526
X.25 configuration command 341
XTP configuration command 375
XTP monitoring command 382
add device example
multilink PPP 16
adding 16
dial-in circuit
element 16
dial-out circuit
element 16
multilink PPP circuit
element 16
address entries
changing 96
deleting 99
address registration in LAN emulation 265
address resolution in LAN emulation 265
address wildcards, DTE 363
addresses
ISDN 613
addresses, entering
ATM 273
advanced
ELS configuration command 168
ELS monitoring command 188
AppleTalk Control Protocol
for PPP 461
APPN HPR Control Protocol
for PPP 463
APPN ISR Control Protocol
for PPP 463
ARP configuration
config 296
list 297
remove 297
set 296
ATM
how to enter addresses 273
ATM addresses of LAN emulation components 258
ATM addressing 257
ATM configuration commands
accessing 277
add 279
disable 284
enable 284
interface 278
LE-Client 278
LE-Services 278
list 279
qos 280
remove 280
set 280
summary 278
atm-llc
ATM monitoring commands 287
ATM LLC monitoring command
list 290
ATM monitoring commands
accessing 286
atm-llc 287
interface 287, 290
list 287
summary 286
trace 288
wrap 289
ATM network interface
monitoring 277
using 273
ATM Virtual Interface configuration commands
add 285
list 285
remove 286
summary 285
ATM Virtual Interface monitoring commands
summary 290
authentication
configuring PPP interface 458
remote device
configuring PPP interface to use 458
autobaud, setting 75
backup peer function, XTP 364
Backward Explicit Congestion Avoidance 400
Backward Explicit Congestion Notification (BECN) Frame Relay 393

© Copyright IBM Corp. 1994, 1998
Banyan VINES Control Protocol (BVCP) for PPP 461
basing configuration on existing 12
baud rate, setting console 75
BCM 267
 Support for IP 268
 Support for IPX
 BCM IPX Server Farm 268
 preventing a LEC from being treated as 268
 support for NetBIOS 269
 NetBIOS Namesharing 269
 support for Source Route Bridging 269
BCM IPX Server Farm
 preventing a LEC from being treated as 268
benefits of LAN emulation 255
bilateral closed user groups overview 324
binary synchronous communications relay (BRLY)
 considerations 564
 overview 561
 sample configuration 562
boot
 CONFIG command 59
 GWCON command 128
Boot and dump configuration database
 displaying 102
Boot CONFIG
 process
 entering from CONFIG 59
Boot CONFIG commands
 add 94
 change 96
 copy 98
 delete 99
 describe 100
 disable 100
 enable 101
 erase 101
 list 102
 load 104
 store 105
 summary 93
 tftp 107
 timedload 106
Boot CONFIG process
 commands available from 93
 description 83
 entering 93
Boot directory 89
Boot file
 copying into main memory 104
 description of 83
boot options (continued)
 B (boot) 116
 BC (boot in Config-only Mode) 116
 BM (boot using console queries) 117
 BN (boot, But Do Not Run, Using Console Queries) 119
 BP (boot using BOOTP) 119
 CC (clear Configuration Memory) 124
boot options (continued)
 D (Dump using stored configuration) 120
 description of 111
 DIAG (Execute IBM Extended Diagnostic Program) 120
 DM (Dump using Console Queries) 121
 LC (load Configuration Memory) 123
 prompts 114
 UB (Display TFTP boot Configuration) 121
 UC (Display Hardware Configuration) 122
 UG (go execute at address in RAM) 122
 ZB (ZModem boot) 124
 ZC (ZModem configuration memory load) 124
booting
 accessing options 113
 BOOTP 112
 from TFTP 113
 from the Integrated Boot Device 111
 methods 111
 option prompts 114
 options 113
 Unsuccessful BOOTP 112
booting, configuring 670
BOOTP
 enabling/disabling 85
 forwarding process 84
 router as BOOTP Client 84
 server 85
 unsuccessful BOOTP 120
BOOTP, configuring using quick configuration 671
BOOTP Forwarding
 description 84
 Bootstrap protocol 84
breakpoint
 OPCON command 28
bridging, configuring using quick configuration 662
Bridging Control Protocol (BCP)
 for PPP 461
Broadcast and Unknown Server 256, 265
broadcast manager 267
BSC interface
 configuring 567
BSC interface configuration commands
 add 568
 delete 570
 disable 570
 enable 571
BSC Relay
 accessing monitoring environment 574
 configuration
 combination multipoint 562
 physical multipoint 561, 562
 point-to-point 561
 virtual multipoint 561, 562
 configuring 567
 considerations 564
 overview 561
 sample configuration 562
BSC Relay configuration commands
 add 568
 delete 570
 disable 570
 enable 571

716 MRS V3.2 Software User’s Guide
BSC Relay configuration commands (continued)
 list 572
 summary of 567
BSC Relay monitoring commands
 clear-port-statistics 575
 disable 576
 enable 576
 list 577
 summary of 575
buffer
 GWCON command 129
BUS 255, 256
 connecting to 265
 functions of 266
C
 cable type, clocking and 317
 call verification
 ISDN 614
 callback
 dial circuit monitoring command 650
 Callback Control Protocol (CBCP)
 for PPP 461
 calls
 ISDN monitoring command 636
 V.25bis monitoring commands 588
 V.34 monitoring command 603
 change
 Boot CONFIG command 96
 CONFIG command 59
 Frame Relay configuration command 412
 X.25 configuration command 348
 XTP configuration command 378
channels
 ISDN monitoring command 636
CHAP
 authentication for PPP 457
 configuration 466
 monitoring 483
CIR
 monitoring 399
 orphan permanent virtual circuit CIR 397
 relationship to VIR 399
Circuit congestion 399
 responding with throttle down 399
Circuit contention
 ISDN 613
Circuit Information Rate (CIR) 396
 definition 397
 relationship to maximum frame size 397
components of LAN emulation 256
configure
 bootstrap 90
 booting 90
clear (continued)
 SDLC monitoring commands 550
 clear-counters
 LLC monitoring command 239
 clear-port-statistics
 SDLC Relay monitoring command 533
CLLM
 description of 396
 CLLM support 401
clock, setting and changing 79
clocking and cable type 317
closed user groups
 configuring 325
 cug 0 override 325
 establishing X.25 circuits 324
 extended
 types of 324
 overview 324
 XTP support
 overview 365
closing a telnet session 36
code installation 90
collisions
 Ethernet monitoring command 253
command 11
 command history 21, 30
 commands
 entering 9
 environment
 list 66
 set 67
 subcommands 66
 Committed Burst Size
 definition 397
 relationship to maximum frame size 397
colors

Index 717
Config-Only mode (continued)
manual entry 41
CONFIG process
accessing 14
commands available from 51
description of 39
entering 14, 51
exiting 51
configuration
accessing the mp prompt 515
basing on existing 12
displaying information about 130
first 11
GWCON command 130
network interfaces 17
suggestions 11
updating 12
updating memory 80
configuration commands
GWCON prompt 20
multilink PPP protocol (mp) 515
set prompt-level
add prefix to hostname 78
configuration files
accessing 87
configuration load
validating 88
configuring
booting 670
DECnet 668
encryption 482
Ethernet 653
interfaces 653
IP 664
IPX 665
multilink PPP interface 511
for multi-chassis MP 513
on dial circuits 511
on Layer-2-Tunneling nets 512
on serial links 512
OPCON 27
PPP callback 459
user access 44
virtual connections (VC) 464
XTP 375
configuring Booting 83
configuring spare interfaces 44
activating 128
configuring 44
defining 224
restrictions 45
configuring the 2210 125
Congestion monitoring 400
Congestion notification and avoidance
Backward Explicit Congestion Avoidance 400
Forward Explicit Congestion Avoidance 400
connecting to a process 9
connecting to the BUS 265
connection request timer 365
connector-Type
Ethernet configuration command 252
considerations
multilink PPP protocol (MP) 510
virtual connections (VC) 463
cable baud rate, setting 75
cable modem-control 672
consolidated link layer management (CLLM)
description of 396
copy
Boot CONFIG command 98
copy-config command
from a remote host 98
from a remote router 98
within a router 98
CPU
displaying memory usage of 137
create
ELS net filter configuration commands 182
ELS net filter monitoring commands 208

D
data direct VCCs 267
Data Link Connection Identifier (DLCI)
Frame Relay 388, 392
date, setting and changing 79
DDN
default settings 675
debugging tool
entering 28
DECoNet, configuring 668
DECoNet Control Protocol (DNCP)
for PPP 461
default
ELS configuration command 169
delete
Boot CONFIG command 99
BSC Relay configuration command 570
CONFIG command 63
delete 551
dial circuit configuration command 644
delete 551
dial circuit configuration command 644
ELS configuration command 169
ELS net filter configuration commands 183
ELS net filter monitoring commands 209
ISDN 63
SDLC configuration command 541
SDLC monitoring command 551
SDLC Relay configuration command 527
X.25 configuration command 349
XTP configuration command 378
XTP monitoring command 383
describe
Boot CONFIG command 100
description of OPCON 25
dial circuit configuration commands
delete 644
encapsulator 644
list 645
set 646
summary of 643
dial circuit monitoring commands
callback 650
dial circuits
 adding 580, 596, 622
configuring 581, 597, 623
configuring for MP 511
ISDN 612
dial-in circuit
 add device example 16
dial-in circuits
 virtual connections (VC) 463
 configuring 464
 considerations 463
dial-out circuit
 add device example 16
directories
 boot and dump 89
disable
 ATM configuration command 284
 authentication protocols 466
 Boot CONFIG command 100
 BSC Relay configuration command 570
 BSC Relay monitoring command 576
 CONFIG command 64
 data compression 466
 ELS net filter configuration commands 183
 ELS net filter monitoring commands 209
 Frame Relay configuration command
 cir-monitor 413
 Frame Relay monitoring command 433
 GWCON command 133
 ISDN configuration command 628
 Lower DTR 466
 multilink protocol 466
 performance configuration command 216
 performance monitoring command 218
 SDLC configuration command 541
 SDLC link establishment connection 551
 SDLC Relay configuration command 527
 SDLC Relay monitoring command 533
 X.25 configuration command 332
 XTP configuration command 380
display
 ELS configuration command 169
 ELS monitoring command 189
display hostname 78
display hostname software VPD 78
display hostname with carriage return 78
display hostname with changes 78
display hostname with date 78
display hostname with time 78
divert
 OPCON command 28
DLCI (Data Link Connection Identifier)
 Frame Relay 388
DOS
 assembling a load file 677
 disassembling a load file 678
DTE address wildcards 363
dump
 Token-Ring monitoring command 229
dump file
 description of 89
dumping
 configuring for 89
duplicate policy values 263
dynamic routing
 OSPF 665
 RIP 665

E
EasyStart
 using 40
EasyStart commands
 pause 31
 stop 33
EasyStart mode 40
ELAN name policy 262
ELAN type policy 263
ELS
 capturing output using Telnet 152
 concepts of 148
 description of 147
 entering 67
 how to use 151
 interpreting messages 149
 message buffering
 overview 163
 monitoring 167
 reloading 197
 remote logging
 additional considerations 162
 duplicate logging 163
 messages containing IP addresses 162
 output 159
 recurring sequence numbers 163
 remote-logging 177, 198
 setting up traps 153
 storing 198
 tracing 179, 200
 trapping 200, 204
 troubleshooting example 1 153
 troubleshooting example 2 154
 troubleshooting example 3 154
 using to troubleshoot 153
ELS configuration
 entering and exiting 148
ELS configuration commands
 add 168
 advanced 168
 clear 168
 default 169
 delete 169
 display 169
 filter 170
 list 170
 message buffering 184
 list 184
 log 184
 nolog 185
 set 186
 nodisplay 172
 noremote 172
ELS configuration commands (continued)
notrace 174
notrap 174
remote 175
set 177
summary of 167
trace 203
trap 181
ELS configuration environment
entering and exiting 167
ELS console environment
2210 remote logging
configuration 157
level
defined 155
remote logging 155
remote workstation
configuration 155
syslog facility
defined 155
ELS messages 150
enabling logging to a remote file (Remote) 175, 195
explanation 150
groups 151
logging level 149
managing rotation 152
network information 151
suppressing display of 172
suppressing display of (nodisplay) 192
suppressing remote log (noremote) 172, 193
suppressing tracing 194
suppressing trapping 174, 194
suppressing trapping of (notrap) 194
trace 180
tracing 203
trapping 181, 204
ELS monitoring commands
advanced 188
clear 188
display 189
files 189
filter 190
list 190
message buffering 210
flush 210
list 210
log 210
nolog 211
set 212
tftp 213
view 213
nodisplay 192
noremote 193
notrace 194
notrap 194
remote 195
remove 197
restore 197
retrieve 197
save 198
set 198
ELS monitoring commands (continued)
statistics 201
summary 188
trap 204
view 204
ELS net filter configuration commands
create 182
delete 183
disable 183
enable 183
list 184
overview 181
ELS net filter monitoring commands
create 208
delete 209
disable 209
enable 209
list 209
overview 207
ELS operating environment
entering and exiting 187
enable
ATM configuration command 284
authentication protocols 467
Boot CONFIG command 101
BSC Relay configuration command 571
BSC Relay monitoring command 576
CHAP 467
CONFIG command 64
data compression 467
ELS net filter configuration commands 183
ELS net filter monitoring commands 209
Frame Relay configuration command 415
Frame Relay monitoring command 433
ISDN configuration command 628
Lower DTR 467
multilink protocol 467
PAP 467
performance configuration command 216
performance monitoring command 218
SDLC configuration command 541
SDLC monitoring command 551
SDLC Relay configuration command 528
SDLC Relay monitoring command 533
X.25 configuration command 332
XTP configuration command 380
enable lmi 431
enabling/disabling BOOTP forwarding 85
enabling memory dump 101
encapsulation
dial circuit configuration command 644
encryption
configuring 482
dial circuit configuration command 644
end system identifier 257
environment
commmands 66
list 66
set 67
CONFIG command 66
GWCON command 133
environment, lower level 11
 exiting 11
environment commands
 summary of 66
erase
 Boot CONFIG command 101
error
 GWCON command 134
ESI 257
Ethernet
 configuring using quick configuration 653
 displaying statistics 247
 encapsulation type 666
 encapsulation types for IPX 667
 network interface
 configuring 251
Ethernet configuration commands
 accessing 251
 connector-Type 252
 ip-encapsulation 252, 298
 list 252
 physical-address 252
 summary 251
Ethernet monitoring commands 253
 collisions 253
 summary 253
Ethernet network interface
 using 247
Ethernet operating commands
 accessing 253
event
 CONFIG command 67
 GWCON command 135
event logging
 subsystem 149
event number parameter 149
Events
 Causes 148
Excess Burst Size
 definition 397
 setting for Frame Relay 398
exit command 11
exiting 11
 lower level environments 11
exiting the router 6
F
fault
 GWCON command 135
features 68
 accessing configuration and console processes 19
 bandwidth reservation 135
 CONFIG command 68
 GWCON command 135
 MAC filtering 68, 135
 WAN restoral 135
 WAN restoral/reroute 68
files
 ELS monitoring command 189
filter
 ELS configuration command 170
filter (continued)
 ELS monitoring command 190
first
 configuration 11
Flow control
 packets 130
flush
 OPCON command 29
forum-compliant LEC
 ARP configuration 295
 configuring a specific client 295
Forward Explicit Congestion Avoidance 400
Forward Explicit Congestion Notification (FECN)
 Frame Relay 393
Forwarding process
 example 85
Frame Relay 389
 accessing configuration 402
 Backward Explicit Congestion Notification 393
 Bandwidth Reservation 402
 circuit information rate 396
 command/response 393
 configuring 402, 405
 congestion notification and avoidance 400
 Data Link Connection Identifier (DLCI) 392
 data rates 396
 discard eligibility 393
 DLCI (Data Link Connection Identifier) 388
 enabling PVC management 403
 enabling SVC management 404
 excess burst size 397
 extended address 393
 Forward Explicit Congestion Notification 393
 frame format 392
 frame forwarding described 394
 HDLC flags 392
 interface initialization 389
 introduction 387
 LAPD datalink protocol 387, 392
 line speed 398
 LMI management entities 395
 management status reporting 395
 description 395
 full status report 395
 link integrity verification report 396
 maximum information rate 398
 minimum information rate 398
 multicast emulation 394
 network 388
 network interface 405, 445
 network management 395
 orphan permanent virtual circuits 390
 orphan switched virtual circuits 391
 permanent virtual circuits 389
 protocol address mapping 394
 PVCs and 391
 required groups 391
 static ARP 408
 SVC
 FRF 4 395
 user data 393
Frame Relay (continued)
using 387
variable information rate 399
variable information rate (VIR) 399
virtual circuits 387
Frame Relay configuration commands 413, 415
add 406
 permanent-virtual-circuit 406
 protocol-address 406
add-protocol
 AppleTalk2 protocol 408
 DN protocol 408
 IPX protocol 408
add protocol-address
 IP protocol 408
change 412
disable
 cir-monitor 413
 cllm 413
 compression 413
 congestion 400
 congestion-monitor 413
 dn-length-field 413
 encryption 413
 lmi 413
 lower-dtr 413
 multicast-emulation 413
 no-pvc 413
 notify-fecn-source 413
 orphan-circuits 413
 protocol-broadcast 413
 throttle-transmit-on-fecn 414
enable
 cir-monitor 415
 cllm 415
 compression 415
 congestion 400
 congestion-monitor 415
 dn-length-field 415, 417
 encryption 415
 lmi 415
 lower-dtr 415
 multicast-emulation 415
 no-pvc 416
 notify-fecn-source 416
 orphan-circuits 416
 protocol-broadcast 416
 throttle-transmit-on-fecn 416
list 420
 all 419
 hdlc 419
 lmi 419
 permanent-virtual-circuits 419
 protocol-address 419
llc 425
remove
 permanent-virtual-circuit 426
 protocol-address 426
remove-protocol
 DN protocol 426
Frame Relay configuration commands (continued)
remove protocol-address
 AppleTalk2 protocol 426
 IP protocol 426
 IPX protocol 426
set
 cable 428
 clocking 428
 default cir 428
 frame-size 428
 lmi-type 428
 n1-parameter 428
 n2-parameter 428
 n3-parameter 428
 p1-parameter 428
 t1-parameter 428
 transmit delay parameter 428
summary of 405
Frame Relay Forum Implementation Agreement 4 (FRF 4) 395
Frame Relay monitoring commands
 clear 433
 disable 433
 cllm 433
 notify-fecn-source 433
 throttle-transmit-on-fecn 433
 enable 433
 cllm 433
 notify-fecn-source 433
 throttle-transmit-on-fecn 433
list 434
 all 434
 circuit 434
 lmi 434
 permanent-virtual-circuits 434
 pvc-groups 434
llc 442
notrace 442
set 443
summary of 432
trace 444
Frame Relay permanent virtual circuits (SVC)
 changing 413
Frame Relay switched virtual circuits (SVC) 389
 adding 409
 changing 413
 listing 424, 441
 removing 427
functions of the BUS 266

G
getting help 10
 group 169
 group name parameter 151
GTE-Telenet
 default settings 675
GWCON
commendcs
 SDLC interface 557
 X.25 interface 356
GWCON (continued)
process
entering 15
GWCON commands
activate 128
boot 128
buffer 129
clear 130
configuration 130
disable 133
environment 133
error 134
event 135
fault 135
features 135
interface 136, 223
log 136
memory 137
network 138
protocol 139
queue 140
reset 141
statistics 141
summary of 127
test 142
uptime 142
GWCON process
description of 127
entering and exiting 127

H
halt
OPCON command 29
HDLC flags
in Frame Relay frame 392
help 10
console command 10
how to list the protocols 74

I
I.430 switch variant 625
I.431 switch variant 625
IBD
file transfer considerations 88
filename definitions 87
IBD boot
configuring using quick configuration 672
IBM 2210
Config-Only mode 41
identifying prompts 10
ILMI functions in LAN emulation 259
image
loading at specific time 89
installing software/code 90
intercept
OPCON command 30
intercept character 11
changing 30
interface
ATM configuration command 278
interface (continued)
ATM monitoring commands 287, 290
GWCON command 136
list of processes 7
user 7
interface device
adding 52
changing 59
interfaces
configuring spare 44
spare 224
interfaces, configuring 653
interfaces, restrictions 45
Interim Local Management Interface 259
IP
TFTP 86
IP, configuring 664
IP (Internet Protocol), configuring using quick configuration 664
IP Control Protocol (IPCP)
for PPP 462
ip-encapsulation
Ethernet configuration command 252, 298
IPv6 Control Protocol (IPv6CP)
for PPP 462
IPX, configuring 665
IPX (Internetwork Packet Exchange)
configuring using quick configuration 666
Ethernet encapsulation types 667
token ring encapsulation types 666
IPX Control Protocol (IPXCP)
for PPP 463
ISDN
accessing monitoring process 635
addresses 613
call verification 614
configuring 619, 627
cost control over demand circuits 614
delete address 63
dial circuit contention 613
dial circuits 612
GWCON commands 641
interface restrictions 619
overview 611
PPP configuration 619
requirements and restrictions 618
sample configurations 616
switches supported 618
ISDN configuration commands
disable 628
enable 628
list 628
remove 629
set 629
set switch variant 632
summary of 627
ISDN interface
using 611
ISDN monitoring commands
calls 636
channels 636
ISDN monitoring commands (continued)
- circuits 637
- L2_Counters 638
- L3_Counters 638
- parameters 638
- statistics 639
- summary of 635
- TEI 638

K
- keepalive timer, setting for XTP 380
- key parameters for LAN emulation 272

L
- L2_Counters
 - ISDN monitoring command 638
- L3_Counters
 - ISDN monitoring command 638
- LAN destination policy (MAC address policy) 262

LAN emulation (continued)
- security 271
- server 256
- signaling version 259
- LAN Emulation Client (LEC) 291
- configuring 291, 293
- LAN Emulation Configuration Server 260
- LAN Emulation Server 264
- layer 2 tunneling
 - relationship with multi-link PPP (MP) 511
- Layer 2 Tunneled nets
 - configuring for MP 512
- LE client 256
- LE-Client
 - ATM configuration command 278
- LE-Services
 - ATM configuration command 278
- LEC monitoring commands
 - accessing 308
 - list 309
 - mib 313
 - summary of 309
- LECS 255
 - and LAN emulation 256
 - and LAN extensions 260
 - component of LAN emulation 260
 - duplicate policy values 263
 - ELAN name policy 262
 - ELAN type policy 263
 - LAN destination policy (MAC address policy) 262
 - max frame size policy 263
 - sample assignment policies 262
 - TLVs 263
- LES 255, 256
 - address registration 265
 - address resolution 265
 - connecting to 264
- Line Speed 398
- Link Control Protocol (LCP)
 - packets 453
 - relationship to PPP 451
- list 20
 - ATM configuration command 279
 - ATM LLC monitoring command 290
 - ATM monitoring commands 287
 - ATM Virtual Interface configuration command 285
 - Boot CONFIG command 102
 - BSC interface configuration command 571
 - BSC Relay configuration command 572
 - BSC Relay monitoring command 577
 - CONFIG command 68
 - dial circuit configuration command 645
 - ELS configuration command 170
 - ELS monitoring command 190
 - ELS net filter configuration commands 184
 - ELS net filter monitoring commands 209
 - Ethernet configuration command 252
 - Frame Relay configuration command 419
 - Frame Relay monitoring command 434
- ISDN configuration command 628
- LEC monitoring command 309
list (continued)
 list 551
 LLC monitoring command 239
 performance configuration command 216
 performance monitoring command 218
 Point-to-Point configuration command 470
 PPP monitoring command 484
 SDLC configuration command 542
 SDLC monitoring command 551
 SDLC Relay configuration command 528, 529
 SDLC Relay monitoring command 534
 Token-Ring configuration command 225
 V.25bis configuration command 584
 V.34 configuration command 600
 X.25 configuration command 350
 X.25 monitoring command 354
 XTP configuration command 380
 XTP monitoring command 383
list devices 277
list devices command 16, 251, 465, 583, 599
listing the configuration 74
llc
 Frame Relay configuration commands 425
 Frame Relay monitoring commands 442
 Point-to-Point configuration command 474
 PPP configuration commands 474
 PPP monitoring commands 506
 Token-Ring configuration command 226
 Token-Ring configuration commands 226, 230
 Token-Ring monitoring command 230
LLC configuration commands
 accessing 235
 list 236
 set 237
 summary 235
LLC monitoring commands
 accessing 238
 clear-counters 239
 list 239
 set 244
 summary 239
LLC network interfaces
 configuring 235
LMI management entities 395
load
 Boot CONFIG command 104
load file, router
 assembling under DOS 677
 assembling under UNIX 677
 creating from multiple disks 677
 disassembling under DOS 678
 disassembling under UNIX 679
loading
 at specific time 89
loading software/code onto the 2210 90
local consoles 4
local terminals 4
local XTP
 description 365
 locating the LECS using ILMI 259
log
 GWCON command 136
logging in
 from local console 5
 from remote console 5
 remote login name 5
logging level
 changing 136
 viewing 136
login
 disabling 64
 enabling 64
logout
 OPCON command 30

M
MAC address policy (LAN destination policy) 262
magic numbers 88
max frame size policy 261, 263
maximum information rate
 for frame relay 398
memory
 displaying information about 137
 erasing information 197
 GWCON command 137
 obtaining information about 30
 OPCON command 30
memory dump
 disabling 100
 enabling 101
message buffering
 ELS configuration commands 184
 list 184
 log 184
 nolog 185
 set 186
 ELS monitoring commands 210
 flush 210
 list 210
 log 210
 nolog 211
 set 212
 tftp 213
 view 213
 overview 163
messages
 explanation 150
 interpreting 149
 receiving 145
messaging process
 commands affecting 145
 description of 145
 entering and exiting 145
 OPCON commands 145
 receiving messages 145
mib
 LEC monitoring command 313
minimum information rate
 for frame relay 398
Modem
 disabling 64
 enabling 64
monitoring
 accessing the mp commands 519
 ATM 277
 network interfaces 19
 performance monitoring commands 217
monitoring commands
 LAN Emulation Client (LEC) 293
 multilink ppp protocol (mp) 519
MONITR process
 commands affecting 145
 description of 145
 entering and exiting 145
 OPCON commands 145
 receiving messages 145
MOS system debugging tool
 entering 28
MPPE options
 listing 470
MS-CHAP
 authentication for PPP 457
multi-chassis MP 511
 configuring 513
multilink PPP protocol (MP)
 configuration commands 515
 configuring
 dial circuits 511
 Layer 2 Tunneling nets 512
 multi-chassis MP 513
 serial links 512
 considerations 510
 monitoring commands 519
 multi-chassis 511
 overview 509
 relationship with layer 2 tunneling 511
 multilink PPP protocol (mp) monitoring commands
 accessing 519
 multilink protocol (mp) configuration prompt
 accessing 515

N
 national disable
 X.25 configuration command 335
 national enable
 X.25 configuration command 333
 national personality, setting 369
 national restore
 X.25 configuration command 340
 national set
 X.25 configuration command 336
 network
 CONFIG command 72
 environment 72, 138
 GWCON command 138
 network command 16, 251, 277, 308, 465, 583, 599
Network Control Protocols (NCP) (continued)
 for PPP interfaces (continued)
 APPN HPR Control Protocol 463
 APPN ISR Control Protocol 463
 Banyan VINES Control Protocol (BVCP) 461
 Bridging Control Protocol (BCP) 461
 Callback Control Protocol (CBCP) 461
 DECnet Control Protocol (DNCP) 461
 IP Control Protocol (IPCP) 462
 IPv6 Control Protocol (IPv6CP) 462
 IPX Control Protocol (IPXCP) 463
 OSI Control Protocol (OSICP) 463
 network interface
 accessing configuration process 15
 accessing console process 18
 configuring 15, 223
 console process 15, 223
 deleting 63
 disabling 133
 displaying information about 68, 130, 136
 displaying the configuration 17
 enabling 142
 GWCON interface command 223
 monitoring 19, 223
 SDLTC 557
 supported interfaces 17
 verifying 142
 X.25 356
 network software
 displaying statistical information about 141
 nodisplay
 ELS configuration command 172
 ELS monitoring command 192
 nonvolatile configuration memory
 replacing 59
 noremote
 ELS configuration command 172
 ELS monitoring command 193
 notrace
 ELS configuration command 174
 ELS monitoring command 194
 Frame Relay monitoring commands 442
 notrap
 ELS configuration command 174
 ELS monitoring command 194

O
 obtaining status of telnet session 36
 off
 packet trace monitoring command 205
 on
 packet trace monitoring command 205
 OPCON commands
 breakpoint 28
 divert 28
 flush 29
 halt 29
 intercept 30
 logout 30
 memory 30
OPCON commands (continued)
- reload 32
- restart 32
- status 32
- summary of 27
- talk 34
- telnet 34
OPCON interface
- configuring 27
OPCON process
- accessing 27
- commands available from 27
- description 25
- getting back to 11
- summary 7
orphan permanent virtual circuits
- Frame Relay 390
orphan switched virtual circuits
- Frame Relay 391
OSI Control Protocol (OSICP)
- for PPP 463
OSPF 665
output
- discarding 29
- sending to other consoles 28
- suspending 29
overview
- binary synchronous communications relay (BRLY) 561
- ELS net filter configuration commands 181
- ELS net filter monitoring commands 207
- of software 7
- virtual connections (VC) 463
overview of LAN emulation 255

P
- packet completion codes 150
- packet forwarder
 - entering CONFIG environment for 74
- packet-size
 - Token-Ring configuration command 226
- packet trace
 - packet trace monitoring command 195
- packet trace messages
 - tracing packets 195
- packet trace monitoring commands
 - off 205
 - on 205
 - packet Trace 195
 - reset 206
 - set 206
 - subsystems 206
 - trace-status 207
 - view 207
- PAP authentication for PPP 456
- parameter defaults
 - X.25 320
- parameters
 - configuring 75
 - event number 149
 - for LAN emulation 272
- parameters (continued)
 - ISDN monitoring command 638
 - key LAN emulation 255
 - V.25bis monitoring commands 589
 - V.34 monitoring commands 605
 - X.25 monitoring command 354
- password, setting for user 57
- passwords 5
- patch
 - CONFIG command 72
- pause
 - EasyStart command 31
 - perf command 216
- performance
 - configuring 215
 - performance configuration commands
 - disable 216
 - enable 216
 - list 216
 - set 217
 - summary 216
- performance monitoring commands
 - accessing 217
 - disable 218
 - enable 218
 - list 218
 - report 218
 - set 218
 - summary of 217
- physical-address
 - Ethernet configuration command 252
- pin parameter
 - setting 177
- Point-to-Point configuration commands
 - accessing 466
 - list 470
 - LLC 474
 - summary of 466
- Point-to-Point interfaces
 - configuring 465
- Point-to-Point network interface
 - using 449
- Point-to-Point Protocol (PPP) 462
 - accessing the configuration process 465
 - address fields 451
 - AppleTalk Control Protocol 461
 - APPN HPR Control Protocol 463
 - APPN ISR Control Protocol 463
 - authentication 455
 - Banyan Vines Control Protocol (BVCP) 461
 - Bridging Control Protocol (BCP) 461
 - Callback Control Protocol (CBCP) 461
 - control field 451
 - DECnet Control Protocol (DNCP) 461
 - flag fields 451
 - frame check sequence field 451
 - frame structure 450
 - information field 451
 - IPv6 Control Protocol (IPv6CP) 462
 - IPX Control Protocol (IPXCP) 463
 - LCP packets 453
Point-to-Point Protocol (PPP) (continued)
Link Control Protocol (LCP) 451
link establishment packets 454
link maintenance packets 455
link termination packets 455
Network Control Protocols (NCP) 460
OSI Control Protocol (OSICP) 463
overview 449
protocol field 451
policies 255
agreement of 261
policies and policy values 261
PPP
IP Control Protocol (IPCP) 462
PPP callback
configuring 459
PPP configuration commands
list
ccp 470
ecp 471
set 474
setting IPCP parameters 474
setting LCP parameters 474
PPP interface monitoring process
accessing 483
PPP monitoring commands
clear 483
list 484
dn 504
dncp 504
osi 505
osicp 505
listing IPCP parameters 484
listing LCP parameters 484
llc 506
summary of 483
process
second-level
accessing 13, 15
processes
communicating with 7
list of 7
prompt-level
additional functions of
display hostname with carriage return 78
display hostname with changes 78
display hostname with date 78
display hostname with time 78
display hostname with VPD 78
configuration command
add prefix to hostname 78
display hostname 78
prompts
boot options 114
CONFIG 10
GWCON 10
identifying 10
OPCON 10
router processes 10
protocol
CONFIG command 74

protocol (continued)
configuration process 223, 224
console process 223, 224
entering configuration process 19
GWCON command 139
protocol command 20
protocol console process
entering 20
protocols
configuration and console processes
accessing 19
configuring using quick configuration 663
console process 15
displaying information about 130
entering configuration environment for 74
entering console process 20
generating a list of 74

Q
qconfig
CONFIG command 75
QoS
ATM configuration command 280
queue
GWCON command 140
Quick Config mode 43
automatic entry 43
manual entry 43
quick configuration 8, 14
boot configuration
BOOTP user interface 671
IBD user interface 672
procedure 670
TFTP user interface 671
bridging configuration 662
description 42
device configuration 653
protocol configuration
IP user interface 664
IPX user interface 666
procedure 663
Quick Configuration Reference 651

R
redundancy of LAN emulation servers 270
reliability of LAN emulation 270
reload
OPCON command 32
remote
ELS configuration command 175
ELS monitoring command 195
remote consoles 5
remote device authentication
configuring PPP interface for 458
configuring PPP interface to use 458
remote DTE, searching for 364
remote logging
additional considerations 162
duplicate logging 163
remote logging (continued)
additional considerations (continued)
messages containing IP addresses 162
recurring sequence numbers 163
output examples 159
remote login 5
remote terminals 5
remove
ATM configuration command 280
ATM Virtual Interface configuration command 286
ELS monitoring command 197
Frame Relay configuration command 426
ISDN configuration command 629
report
performance monitoring command 218
reset
GWCON command 141
packet trace monitoring command 206
restart
OPCON command 6
Restart
OPCON command 14
restart
OPCON command 32
restarting the router 6, 14, 672
restore
ELS monitoring command 197
retrieve
ELS monitoring command 197
RIP 665
route descriptor policy 261
router
deleting configuration information 61
displaying information about 68
displaying time statistics about 142
exiting 6
OPCON command 32
rebooting 32
restart 14
restarting 6
router, restarting 672
router consoles
local 4
remote 5
using 3
router extensions for LAN emulation 267
router load file
assembling under DOS 677
assembling under UNIX 677
creating from multiple disks 677
disassembling under DOS 678
disassembling under UNIX 679
router processes
attaching to 34
connecting to 9
displaying information about 32
router software
communicating with 139
reloading 32
user interface 3
router software installation 90
S
sample, quick configuration 651
save
ELS monitoring commands 198
SDLC
accessing configuration 539
configuration procedure 537
configuration requirements 538
configuring 537, 539
network interface 557
switched call-in interface
configuring 537
SDLC configuration commands
add 540
delete 541
disable 541
enable 541, 551
list 542
set 544
summary of 540
SDLC connections
support for 540
SDLC monitoring commands
accessing 549
clear 550
link counters 552
list 551
summary of 550
SDLC Relay
accessing configuration 525
accessing monitoring environment 532
configuring 525
SDLC Relay configuration commands
add 526
delete 527
disable 527
enable 528
list 528, 529
set 530
summary of 526
SDLC Relay monitoring commands
clear-port-statistics 533
disable 533
enable 533
list 534
summary of 532
second-level
process
accessing 13, 15
security of LAN emulation 271
selector 257
serial line interface
accessing the configuration process 317
serial line interfaces
configuring 317
serial PPP links
configuring for MP 512
session
terminating 30
set
ATM configuration command 280
set (continued)
 BSC interface configuration command 573
 CONFIG command 75
 dial circuit configuration command 646
 ELS configuration command 177
 ELS monitoring command 198
 Frame Relay configuration command 427
 Frame Relay monitoring command 443
 ISDN configuration commands 629
 LLC monitoring command 244
 packet trace monitoring command 206
 performance configuration command 217
 performance monitoring command 218
 PPP configuration command 474
 SDLC configuration command 544
 SDLC monitoring command 554
 SDLC Relay configuration command 530
 Token-Ring configuration command 227
 V.25bis configuration command 585
 V.34 configuration command 601
 X.25 configuration command 328
 XTP configuration command 380
setting and changing time, date, and clock 79
setting autobaud 75
setting console baud rate 75
signaling version configuration in LAN emulation 259
software
 installing 90
 overview 7
 user interface 7
software installation 90
source-routing
 Token-Ring configuration command 227
speed
 Token-Ring configuration command 228
SRAM device records
 recreating 52
statistics
 clearing 130
 ELS monitoring command 201
 GWCON command 141
 ISDN monitoring command 639
 V.25bis monitoring commands 590
 V.34 monitoring commands 606
 X.25 monitoring command 355
status
 OPCON command 32, 465
stop
 EasyStart command 33
store
 Boot CONFIG command 105
subsystems
 packet trace monitoring command 206
suggestions
 configuration 11
switch variant 625
 setting for ISDN 632
switched SDLC call-in interface
 configuring 537

T
 talk
 OPCON command 15, 34, 215, 217
 TCP/IP, transporting X.25 traffic over 361
 TDM (time division multiplexing) 387
 technical support access 44
 TEI
 ISDN monitoring command 638
telnet
 closing a connection 36
 obtaining status of Telnet session 36
 OPCON command 34
 quitting a session 36
telnet command 35
telnet connections 5
 closing 36
 obtaining status of 36
temperature thresholds 66
 Temperature thresholds 133
test
 GWCON command 142
 SDLC monitoring commands 557
test 557
tftp
 Boot CONFIG command 107
TFTP
 booting from 113
 description of 86
 IBD considerations 88
 to and from IBD 87
TFTP boot, configuring using quick configuration 671
time
 activated load of image 89
 CONFIG command 79
 setting and changing 79
timedload
 Boot CONFIG command 106
Tinygram compression 475
TLVs
 defined on an ELAN basis 263
Token Ring
 configuring using quick configuration 654
token ring
 encapsulation types for IPX 666
Token-Ring configuration commands
 accessing 225
 enabling for LLC 228
 list 225
 LLC 226
 llc 230
 packet-size 226
 set 227
 source-routing 227
 speed 228
 summary of 225
Token-Ring Interface
 statistics displayed for 230
Token-Ring monitoring commands
 accessing 228
dump 229
 summary of 229
Token-Ring network interfaces
configuring 225
trace
ATM monitoring commands 288
ELS configuration commands 203
Frame Relay monitoring commands 444
trace-status
packet trace monitoring command 207
trap
ELS configuration commands 181
ELS monitoring command 204
type length values 263
U
UNIX
assembling a load file 677
disassembling a load file 679
unpatch
CONFIG command 80
unsuccessfulBOOTP 112
update
CONFIG command 80
updating
configuration 12
uptime
GWCON command 142
user access
adding user 57
changing password 59
changing user 60
configuring 44
deleting user 64
listing user information 71
setting password 57
user interface
processes 7
software 7
V
V.25bis
accessing configuration 583
accessing monitoring process 587
adding addresses 579
configuring 579, 583
GWCON commands 592
V.25bis configuration commands
list 584
set 585
summary of 583
V.25bis monitoring commands
calls 588
circuits 589
parameters 589
statistics 590
summary of 587
V.34
accessing configuration 599
accessing monitoring process 602
adding addresses 595
configuring 595, 599
V.34 (continued)
GWCON commands 607
V.34 configuration commands
list 600
set 601
summary of 599
V.34 monitoring commands
calls 603
circuits 604
parameters 605
statistics 606
summary of 603
V25bis address 71
V34 address 71
variable information rate
for frame relay 399
VCs
Frame Relay 387
view
ELS monitoring command 204
packet trace monitoring command 207
virtual connections (VC)
configuring 464
considerations 463
overview 463
W
WANs, configuring using quick configuration 653
wildcards, DTE address 363
wrap
ATM monitoring commands 289
X
X.25
parameter defaults 320
X.25 configuration commands
add 341
change 348
delete 349
disable 332
enable 332
list 350
national disable 335
national enable 333
national restore 340
national set 336
set 328
summary of 327
X.25 interfaces
bilateral closed user groups
overview 324
closed user groups
configuring 325
establishing circuits 324
extended types 324
overriding processing for cug 0 325
overview 324
X.25 monitoring commands
list 354
X.25 monitoring commands (continued)
parameters 354
statistics 355
summary of 353
X.25 network interface
 accessing the monitoring process 353
 configuring 327
 national personality 320, 675
 statistics 356
 using 319
X.25 Transport Protocol (XTP) 361
XTP
 backup peer function 364
 closed user groups
 overview 365
 configuration commands
 Add 375
 Change 378
 Delete 378
 Disable 380
 Enable 380
 List 380
 Set 380
 configuration procedures 366
 configuring 375
 configuring commands 375
local XTP
 description 365
monitoring commands
 Add 382
 Delete 383
 List 383
 setting keepalive timer 380
 setting national personality 369
 using 361
Readers’ Comments — We’d Like to Hear from You

Nways Multiprotocol Routing Services
Software User’s Guide
Version 3.2
Publication No. SC30-3681-08

Overall, how satisfied are you with the information in this book?

<table>
<thead>
<tr>
<th>Overall satisfaction</th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How satisfied are you that the information in this book is:

<table>
<thead>
<tr>
<th></th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to find</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to understand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well organized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable to your tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please tell us how we can improve this book:

Thank you for your responses. May we contact you?
☑ Yes ☐ No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.
Spine information: