THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

designated nationals list is strictly prohibited.

or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. FireWire and the FireWire logo are trademarks of Apple Computer, Inc. used under license. X/Open is a registered trademark of X/Open Company, Ltd. DLT is claimed as a trademark of Quantum Corporation in the United States and other countries.

The OPEN LOOK and Sun TM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACTIQUES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.
Contents

Preface ...21

1 Managing Removable Media (Overview) ..27

What's New in Removable Media? ..27

 vold is Managed by the Service Management Facility (SMF) ..27
 Improvements to Volume Management (vold) ..28

Where to Find Managing Removable Media Tasks ...29

Removable Media Features and Benefits ..29

Comparison of Manual and Automatic Mounting ...30

Accessing Removable Media ..30

2 Managing Removable Media (Tasks) ..33

Managing Removable Media (Task Map) ..33

Formatting Diskettes ...34

 Removable Media Hardware Considerations ..34

▼ How to Load Removable Media ...35

▼ How to Format a Diskette (rmformat) ...37

▼ How to Create a File System on Removable Media ...37

▼ How to Check a File System on Removable Media ...39

▼ How to Repair Bad Blocks on Removable Media ...40

 Applying Read or Write Protection and Password Protection to Removable Media41

▼ How to Enable or Disable Write Protection on Removable Media41

▼ How to Enable or Disable Read or Write Protection and Set a Password on Removable Media ...42
3 Accessing Removable Media (Tasks)

Accessing Removable Media (Task Map) ... 45
Accessing Removable Media ... 46
Using Removable Media Names ... 46
Guidelines for Accessing Removable Media Data ... 47
▼ How to Add a New Removable Media Drive ... 47
▼ How to Disable or Enable Removable Media Services 48
▼ How to Access Information on Removable Media 48
▼ How to Copy Information From Removable Media 49
▼ How to Determine If Removable Media Is Still in Use 50
▼ How to Eject Removable Media ... 51
Accessing Removable Media on a Remote System (Task Map) 51
▼ How to Make Local Media Available to Other Systems 52
▼ How to Access Removable Media on Remote Systems 55

4 Writing CDs and DVDs (Tasks)

Working With Audio CDs and Data CDs and DVDs 57
CD/DVD Media Commonly Used Terms .. 58
Writing CD and DVD Data and Audio CDs ... 59
Restricting User Access to Removable Media With RBAC 60
▼ How to Restrict User Access to Removable Media With RBAC 60
▼ How to Identify a CD or DVD Writer ... 61
▼ How to Check the CD or DVD Media .. 62
Creating a Data CD or DVD .. 62
▼ How to Create an ISO 9660 File System for a Data CD or DVD 63
▼ How to Create a Multi-Session Data CD ... 63
Creating an Audio CD .. 65
▼ How to Create an Audio CD ... 65
▼ How to Extract an Audio Track on a CD ... 66
▼ How to Copy a CD .. 67
▼ How to Erase CD-RW Media ... 68

5 Managing Devices (Overview/Tasks)

What's New in Device Management? ... 71
Support for PCI Express (PCIe) ... 72
USB and 1394 (FireWire) Support Enhancements .. 72
Improved Device In Use Error Checking ... 73
Where to Find Device Management Tasks .. 74
Managing Devices in the Solaris OS ... 74
 Power Management of Devices ... 74
 About Device Drivers .. 76
 Automatic Configuration of Devices ... 76
 Displaying Device Configuration Information ... 77
▼ How to Display System Configuration Information .. 78
Adding a Peripheral Device to a System ... 82
▼ How to Add a Peripheral Device ... 82
▼ How to Add a Device Driver ... 84
Accessing Devices ... 85
 How Device Information Is Created ... 85
 How Devices Are Managed .. 85
 Device Naming Conventions .. 86
 Logical Disk Device Names ... 86
 Logical Tape Device Names ... 89
 Logical Removable Media Device Names ... 89

6 Dynamically Configuring Devices (Tasks) .. 91
Dynamic Reconfiguration and Hot-Plugging ... 91
 Attachment Points .. 93
 Detaching PCI or PCIe Adapter Cards ... 94
 Attaching PCI or PCIe Adapter Cards ... 95
SCSI Hot-Plugging With the cfgadm Command (Task Map) 95
SCSI Hot-Plugging With the cfgadm Command ... 96
▼ How to Display Information About SCSI Devices ... 96
▼ How to Unconfigure a SCSI Controller ... 97
▼ How to Configure a SCSI Controller ... 97
▼ How to Configure a SCSI Device .. 98
▼ How to Disconnect a SCSI Controller ... 99
▼ SPARC: How to Connect a SCSI Controller ... 100
▼ SPARC: How to Add a SCSI Device to a SCSI Bus 100
▼ SPARC: How to Replace an Identical Device on a SCSI Controller 101
Hot-Plugging Multiple USB Audio Devices ... 162
▼ How to Add USB Audio Devices ... 162
▼ How to Identify Your System’s Primary Audio Device .. 163
▼ How to Change the Primary USB Audio Device .. 164
Troubleshooting USB Audio Device Problems .. 164
Hot-Plugging USB Devices With the \texttt{cfgadm} Command (Task Map) 165
Hot-Plugging USB Devices With the \texttt{cfgadm} Command ... 165
▼ How to Display USB Bus Information (\texttt{cfgadm}) ... 166
▼ How to Unconfigure a USB Device ... 166
▼ How to Configure a USB Device ... 168
▼ How to Logically Disconnect a USB Device .. 168
▼ How to Logically Connect a USB Device .. 169
▼ How to Logically Disconnect a USB Device Subtree ... 169
▼ How to Reset a USB Device .. 169
▼ How to Change the Default Configuration of a Multi-Configuration USB Device 170

9 Using InfiniBand Devices (Overview/Tasks) .. 173
Overview of InfiniBand Devices .. 173
Dynamically Reconfiguring IB Devices (Task Map) .. 174
Dynamically Reconfiguring IB Devices (\texttt{cfgadm}) ... 176
▼ How to Display IB Device Information ... 176
▼ How to Unconfigure an IOC Device .. 178
▼ How to Configure an IOC Device .. 179
▼ How to Unconfigure an IB Port, HCA_SVC, or a VPPA Device 179
▼ How to Configure a IB Port, HCA_SVC, or a VPPA Device 180
▼ How to Unconfigure an IB Pseudo Device ... 181
▼ How to Configure an IB Pseudo Device .. 181
▼ How to Display Kernel IB Clients of an HCA ... 181
▼ How to Unconfigure IB Devices Connected to an HCA 182
Configuring an IB HCA .. 183
▼ How to Update the IB p_key Tables .. 183
▼ How to Display IB Communication Services .. 183
▼ How to Add a VPPA Communication Service .. 184
▼ How to Remove an Existing IB Port, HCA_SVC, or a VPPA Communication Service 184
▼ How to Update an IOC Configuration .. 185
Contents

- **How to Label a Disk** ... 217
- **How to Examine a Disk Label** .. 219
- **Recovering a Corrupted Disk Label** ... 221
- **How to Recover a Corrupted Disk Label** 221
- **Adding a Third-Party Disk** .. 223
 - Creating a `format.dat` Entry ... 224
- **Automatically Configuring SCSI Disk Drives** 225
- **Repairing a Defective Sector** ... 227
 - How to Identify a Defective Sector by Using Surface Analysis 227
 - How to Repair a Defective Sector .. 229
- **Tips and Tricks for Managing Disks** .. 229
 - Debugging `format` Sessions ... 229
 - Labeling Multiple Disks by Using the `prtvtoc` and `fmthard` Commands 230

12 SPARC: Adding a Disk (Tasks) .. 233

- **SPARC: Adding a System Disk or a Secondary Disk** (Task Map) ... 233
- **SPARC: Adding a System Disk or a Secondary Disk** ... 234
- **SPARC: How to Connect a System Disk and Boot** ... 234
- **SPARC: How to Connect a Secondary Disk and Boot** ... 235
- **SPARC: How to Create Disk Slices and Label a Disk** ... 236
- **SPARC: How to Create a UFS File System** ... 241
- **SPARC: How to Install a Boot Block on a System Disk** ... 242

13 x86: Adding a Disk (Tasks) .. 243

- **x86: Adding a System Disk or a Secondary Disk** (Task Map) ... 243
- **x86: Adding a System Disk or a Secondary Disk** ... 244
- **x86: How to Connect a System Disk** ... 245
 - Changing the `fdisk` Partition Identifier ... 245
 - How to Change the Solaris `fdisk` Identifier ... 246
- **x86: How to Connect a Secondary Disk and Boot** ... 247
 - Guidelines for Creating an `fdisk` Partition ... 248
- **x86: How to Create a Solaris `fdisk` Partition** ... 249
- **x86: How to Create Disk Slices and Label a Disk** ... 255
Contents

14 Configuring Solaris iSCSI Targets and Initiators (Tasks) ... 259
 The iSCSI Technology (Overview) .. 259
 Solaris iSCSI Software and Hardware Requirements .. 260
 Setting Up Solaris iSCSI Targets and Initiators (Task Map) ... 261
 Configuring Solaris iSCSI Targets and Initiators ... 262
 ▼ How to Prepare for a Solaris iSCSI Configuration ... 263
 Setting Up Your Solaris iSCSI Target Devices .. 264
 ▼ How to Create an iSCSI Target ... 265
 Configuring Authentication in Your iSCSI-Based Storage Network 265
 ▼ How to Configure CHAP Authentication for Your iSCSI Initiator 266
 ▼ How to Configure CHAP Authentication for Your iSCSI Target 267
 Using a Third-Party Radius Server to Simplify CHAP Management in Your iSCSI Configuration ... 268
 ▼ How to Configure RADIUS for Your iSCSI Configuration .. 268
 ▼ How to Configure iSCSI Target Discovery .. 269
 ▼ How to Remove Discovered iSCSI Targets ... 270
 Accessing iSCSI Disks .. 271
 ▼ Monitoring Your iSCSI Configuration .. 272
 Modifying iSCSI Initiator and Target Parameters .. 274
 ▼ How to Modify iSCSI Initiator and Target Parameters ... 275
 ▼ How to Enable Multiple iSCSI Sessions for a Target ... 278
 Troubleshooting iSCSI Configuration Problems ... 280
 No Connections to the iSCSI Target From the Local System .. 280
 ▼ How to Troubleshoot iSCSI Connection Problems .. 280
 iSCSI Device or Disk Is Not Available on the Local System .. 281
 ▼ How to Troubleshoot iSCSI Device or Disk Unavailability .. 281
 Use LUN Masking When Using the iSNS Discovery Method .. 282
 General iSCSI Error Messages ... 282

15 The format Utility (Reference) .. 287
 Recommendations and Requirements for Using the format Utility .. 287
 format Menu and Command Descriptions .. 288
Contents

partition Menu ... 290
x86: fdisk Menu ... 291
analyze Menu ... 292
defect Menu ... 293
format.dat File .. 294
 Contents of the format.dat File .. 295
 Syntax of the format.dat File .. 295
 Keywords in the format.dat File 295
 Partition Tables (format.dat) ... 298
 Specifying an Alternate Data File for the format Utility 299
Rules for Input to format Commands 299
 Specifying Numbers to format Commands 299
 Specifying Block Numbers to format Commands 299
 Specifying format Command Names 300
 Specifying Disk Names to format Commands 301
Getting Help on the format Utility 301

16 Managing File Systems (Overview) 303
What’s New in File Systems? ... 303
 File System Monitoring Tool (fsstat) 303
 ZFS File System .. 304
 Enhancements to UFS File System Utilities (fsck, mkfs, and newfs) ... 305
Where to Find File System Management Tasks 312
Overview of File Systems ... 312
 Types of File Systems .. 312
Commands for File System Administration 318
 How File System Commands Determine the File System Type ... 319
 Manual Pages for Generic and Specific File System Commands ... 320
Default Solaris File Systems .. 320
UFS File System .. 321
 Planning UFS File Systems .. 322
 64-bit: Support of Multiterabyte UFS File Systems 322
 UFS Logging ... 325
 UFS Snapshots .. 326
 UFS Direct Input/Output (I/O) .. 327
Contents

How to Verify a File System is Unmounted ... 360
▼ How to Stop All Processes Accessing a File System .. 360
▼ How to Unmount a File System ... 361

19 Using The CacheFS File System (Tasks) .. 363
High-Level View of Using the CacheFS File System (Task Map) 363
Overview of the CacheFS File System .. 364
 How a CacheFS File System Works .. 364
 CacheFS File System Structure and Behavior ... 365
Creating and Mounting a CacheFS File System (Task Map) 366
 ▼ How to Create the Cache .. 367
 Mounting a File System in the Cache .. 367
 ▼ How to Mount a CacheFS File System (mount) ... 368
 ▼ How to Mount a CacheFS File System (/etc/vfstab) .. 370
 ▼ How to Mount a CacheFS File System (AutoFS) .. 371
Maintaining a CacheFS File System (Task Map) ... 371
Maintaining a CacheFS File System ... 372
 Modifying a CacheFS File System ... 372
 ▼ How to Display Information About a CacheFS File System 373
 Consistency Checking of a CacheFS File System .. 374
 ▼ How to Specify Cache Consistency Checking on Demand 374
 ▼ How to Delete a CacheFS File System ... 374
 ▼ How to Check the Integrity of a CacheFS File System 376
Packing a Cached File System (Task Map) ... 377
Packing a CacheFS File System ... 377
 ▼ How to Pack Files in the Cache .. 378
 ▼ How to Display Packed Files Information ... 378
 Using Packing Lists ... 380
 ▼ How to Create a Packing List .. 380
 ▼ How to Pack Files in the Cache With a Packing List 381
 Unpacking Files or Packing Lists From the Cache .. 381
 ▼ How to Unpack Files or Packing Lists From the Cache 381
 Troubleshooting cachefspack Errors .. 382
Collecting CacheFS Statistics (Task Map) ... 386
Collecting CacheFS Statistics .. 386
22 UFS File System (Reference)

- Structure of Cylinder Groups for UFS File Systems .. 425
 - Boot Block .. 426
 - Superblock ... 426
 - Inodes ... 426
 - Data Blocks ... 427
 - Free Blocks ... 428
- Customizing UFS File System Parameters .. 428
 - Logical Block Size ... 429
 - Fragment Size ... 429
 - Minimum Free Space ... 430
 - Rotational Delay ... 430
 - Optimization Type ... 430
 - Number of Inodes (Files) ... 431
 - Maximum UFS File and File System Size ... 431
 - Maximum Number of UFS Subdirectories ... 431

23 Backing Up and Restoring File Systems (Overview)

- Where to Find Backup and Restore Tasks .. 433
- Introduction to Backing Up and Restoring File Systems .. 434
 - Why You Should Back Up File Systems ... 434
 - Planning Which File Systems to Back Up .. 435
 - Choosing the Type of Backup ... 436
 - Choosing a Tape Device .. 437
 - High-Level View of Backing Up and Restoring File Systems (Task Map) 438
 - Considerations for Scheduling Backups .. 439
Guidelines for Scheduling Backups ... 440
Using Dump Levels to Create Incremental Backups .. 441
Sample Backup Schedules ... 442

24 Backing Up Files and File Systems (Tasks) .. 449
Backing Up Files and File System (Task Map) .. 449
Preparing for File System Backups .. 450
▼ How to Find File System Names .. 450
▼ How to Determine the Number of Tapes Needed for a Full Backup 451
Backing Up a File System .. 452
▼ How to Back Up a File System to Tape .. 452

25 Using UFS Snapshots (Tasks) .. 459
Using UFS Snapshots (Task Map) .. 459
UFS Snapshots Overview .. 460
Why Use UFS Snapshots? ... 460
UFS Snapshots Performance Issues .. 461
Creating and Deleting UFS Snapshots ... 461
Creating a Multiterabyte UFS Snapshot ... 462
▼ How to Create a UFS Snapshot .. 463
▼ How to Display UFS Snapshot Information ... 464
Deleting a UFS Snapshot .. 465
▼ How to Delete a UFS Snapshot ... 465
Backing Up a UFS Snapshot ... 466
▼ How to Create a Full Backup of a UFS Snapshot (ufsdump) 467
▼ How to Create an Incremental Backup of a UFS Snapshot (ufsdump) 467
▼ How to Back Up a UFS Snapshot (tar) .. 468
Restoring Data From a UFS Snapshot Backup .. 468

26 Restoring Files and File Systems (Tasks) ... 469
Restoring Files and File System Backups (Task Map) .. 469
Preparing to Restore Files and File Systems ... 470
Determining the File System Name .. 470
Determining the Type of Tape Device You Need ... 470
Determining the Tape Device Name ... 471
Restoring Files and File Systems ... 471
▼ How to Determine Which Tapes to Use .. 471
▼ How to Restore Files Interactively ... 472
▼ How to Restore Specific Files Noninteractively 475
▼ How to Restore a Complete File System ... 477
▼ How to Restore the root (/) and /usr File Systems 480

27 UFS Backup and Restore Commands (Reference) 485
How the ufsdump Command Works .. 485
 Determining Device Characteristics .. 485
 Detecting the End of Media ... 486
 Copying Data With the ufsdump Command ... 486
 Purpose of the /etc/dumpdates File .. 486
 Specifying Files to Back Up .. 487
 Specifying Tape Characteristics .. 489
 Limitations of the ufsdump Command .. 489
 Specifying ufsdump Command Options and Arguments 490
 Default ufsdump Options ... 490
 The ufsdump Command and Security Issues ... 490
 Specifying ufsrestore Options and Arguments ... 491

28 Copying UFS Files and File Systems (Tasks) .. 493
Commands for Copying File Systems ... 493
Copying File Systems Between Disks ... 496
 Making a Literal File System Copy .. 496
▼ How to Copy a Disk (dd) ... 496
Copying Directories Between File Systems (cpio Command) 500
▼ How to Copy Directories Between File Systems (cpio) 500
Copying Files and File Systems to Tape .. 501
Copying Files to Tape (tar Command) ... 501
▼ How to Copy Files to a Tape (tar) ... 502
▼ How to List the Files on a Tape (tar) ... 503
▼ How to Retrieve Files From a Tape (tar) .. 503
Preface

System Administration Guide: Devices and File Systems is part of a set that includes a significant part of the Solaris™ system administration information. This guide contains information for both SPARC® based and x86 based systems.

This book assumes you have completed the following tasks:
- Installed the SunOS 5.10 Operating System
- Set up all the networking software that you plan to use

The SunOS 5.10 release is part of the Solaris product family, which also includes many features, including the GNOME Desktop Environment. The SunOS 5.10 operating system is compliant with AT&T’s System V, Release 4 operating system.

For the Solaris 10 releases, new features of interest to system administrators are covered in sections called _What’s New in ...?_ in the appropriate chapters.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This document cites any implementation differences between the platform types.

In this document these x86 terms mean the following:
- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” points out specific 64-bit information about AMD64 or EM64T systems.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.
Note – Sun is not responsible for the availability of third-party web sites mentioned in this document. Sun does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Sun will not be responsible or liable for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any such content, goods, or services that are available on or through such sites or resources.

Who Should Use This Book

This book is intended for anyone responsible for administering one or more systems running the Solaris 10 release. To use this book, you should have 1–2 years of UNIX® system administration experience. Attending UNIX system administration training courses might be helpful.

How the System Administration Volumes Are Organized

Here is a list of the topics that are covered by the volumes of the System Administration Guides.
# Book Title	Topics
System Administration Guide: Network Services | Web cache servers, time-related services, network file systems (NFS and AUTOFS), mail, SLP, and PPP
System Administration Guide: Security Services | Auditing, device management, file security, BART, Kerberos services, PAM, Solaris cryptographic framework, privileges, RBAC, SASL, and Solaris Secure Shell
System Administration Guide: Solaris Containers-Resource Management and Solaris Zones | Resource management topics projects and tasks, extended accounting, resource controls, fair share scheduler (FSS), physical memory control using the resource capping daemon (*rcapd*), and resource pools; virtualization using Solaris Zones software partitioning technology
Solaris ZFS Administration Guide | ZFS storage pool and file system creation and management, snapshots, clones, backups, using access control lists (ACLs) to protect ZFS files, using Solaris ZFS on a Solaris system with zones installed, emulated volumes, and troubleshooting and data recovery

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

- [Documentation](http://www.sun.com/documentation/)
- [Support](http://www.sun.com/support/)
- [Training](http://www.sun.com/training/)

What Typographic Conventions Mean

The following table describes the typographic conventions used in this book.

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on screen computer output</td>
<td>Edit your <code>.login</code> file. Use <code>ls -a</code> to list all files. <code>machine_name%</code> you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with on screen computer output</td>
<td><code>machine_name% su</code> Password:</td>
</tr>
</tbody>
</table>
TABLE P–1 Typographic Conventions (Continued)

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>Command-line placeholder: replace with a real name or value</td>
<td>To delete a file, type <code>rm filename</code>.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, or words to be emphasized</td>
<td>Read Chapter 6 in User’s Guide. These are called class options. Do not save changes yet.</td>
</tr>
</tbody>
</table>

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell prompt</td>
<td><code>machine_name%</code></td>
</tr>
<tr>
<td>C shell superuser prompt</td>
<td><code>machine_name#</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell prompt</td>
<td><code>$</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser prompt</td>
<td><code>#</code></td>
</tr>
</tbody>
</table>

General Conventions

Be aware of the following conventions used in this book:

- When following steps or using examples, be sure to type double-quotes (`"`), left single-quotes (`'`), and right single-quotes (`'`) exactly as shown.
- The key referred to as Return is labeled Enter on some keyboards.
- The root path usually includes the `/sbin`, `/usr/sbin`, `/usr/bin`, and `/etc` directories. So, the steps in this book show the commands in these directories without absolute path names. Steps that use commands in other, less common, directories show the absolute paths in the examples.
- The examples in this book are for a basic SunOS software installation without the Binary Compatibility Package installed and without `/usr/ucb` in the path.
Caution – If /usr/ucb is included in a search path, it should always be at the end of the search path. Commands such as ps or df are duplicated in /usr/ucb with different formats and options from the SunOS commands.
CHAPTER 1

Managing Removable Media (Overview)

This chapter provides general guidelines for managing removable media in the Solaris OS.

This is a list of the overview information in this chapter.

- “What’s New in Removable Media?” on page 27
- “Where to Find Managing Removable Media Tasks” on page 29
- “Removable Media Features and Benefits” on page 29
- “Comparison of Manual and Automatic Mounting” on page 30
- “Accessing Removable Media” on page 30

What’s New in Removable Media?

The following section describes new removable media features in the Solaris release.

- “vold is Managed by the Service Management Facility (SMF)” on page 27
- “Improvements to Volume Management (vold)” on page 28

For a complete listing of new Solaris features and a description of Solaris releases, see Solaris 10 What’s New.

vold is Managed by the Service Management Facility (SMF)

Solaris 10 1/06: The volume management daemon, vold, is now managed by the Service Management Facility (SMF). This means you can use the svcadm disable command to disable the following new volfs service, if appropriate:

svcadm disable volfs

You can identify the status of the volfs service by using this command:
What’s New in Removable Media?

$ svcs volfs
STATE STIME FMRI
online Sep 29 svc:/system/filesystem/volfs:default

For more information, see smf(5).

You can use the svccfg command to display and to set additional vold properties. For example, you could temporarily enable vold logging to help troubleshooting a problem. For example:

svccfg
svc::> select system/filesystem/volfs
svc:/system/filesystem/volfs> setprop vold/log_debuglevel=3
svc:/system/filesystem/volfs> exit
svcadm disable volfs
svcadm enable volfs

You can also use the svccfg command to display a listing of settable vold properties.

svccfg
svc::> select volfs
svc:/system/filesystem/volfs> listprop vold/*
vold/config_file astring
vold/log_debuglevel count 3
vold/log_file astring
vold/log_nfs_trace boolean false
vold/log_verbose boolean false
vold/root_dir astring
vold/never_writeback_label boolean false
svc:/system/filesystem/volfs> exit

For a description of these properties, see the vold(1M).

Improvements to Volume Management (vold)

Solaris 10 1/06: Removable media management is improved. Previously, vold did not create device links for removable devices that contain no media. Now, device links are properly created for devices that contain no media, similar to the following:

lrwxrwxrwx 1 root root 28 Jun 13 13:09 /vol/dev/aliases/cdrom0 ->
/vol/dev/rdsk/c2t2d0/nomedia

Now, you can use the cdrw and rmformat commands to list devices that have no media when vold is running.

You can revert back to the previous vold behavior by changing the following support nomedia entry in the /etc/vold.conf file as follows:

support media
Then, restart `vold`. For more information, see `vold.conf(4)`. In addition, `vold` is now hot-plug aware. This improvement means that if you insert removable media, the media is automatically detected and mounted by `vold`. There should be no need to restart `vold` manually to recognize and mount a file system from any removable media device.

If you are using a legacy or non-USB diskette device, then you might need to issue the `volcheck` command before `vold` can recognize the media.

If the media is detected, but for some reason, is unmounted, then you’ll need to run the following commands:

```
# volrmount -i rmdisk0
```

Before you hot-remove a removable media device, eject the media first. For example:

```
# eject rmdisk0
```

Where to Find Managing Removable Media Tasks

Use these references to find step-by-step instructions for managing removable media.

<table>
<thead>
<tr>
<th>Removable Media Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access removable media</td>
<td>Chapter 3, "Accessing Removable Media (Tasks)"</td>
</tr>
<tr>
<td>Format removable media</td>
<td>Chapter 2, "Managing Removable Media (Tasks)"</td>
</tr>
<tr>
<td>Write data CDs and DVDs and music CDs</td>
<td>Chapter 4, "Writing CDs and DVDs (Tasks)"</td>
</tr>
</tbody>
</table>

Removable Media Features and Benefits

The Solaris release gives users and software developers a standard interface for dealing with removable media. Removable media services provide the following benefits:

- Automatically mounts removable media. For a comparison of manual and automatic mounting, see the following section.
- Enables you to access removable media without having to become superuser.
- Allows you to give other systems on the network automatic access to any removable media on your local system. For more information, see Chapter 3, "Accessing Removable Media (Tasks)."
Comparison of Manual and Automatic Mounting

The following table compares the steps involved in manual mounting (without removable media services) and automatic mounting (with removable media management) of removable media.

<table>
<thead>
<tr>
<th>Steps</th>
<th>Manual Mounting</th>
<th>Automatic Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert media.</td>
<td>Insert media.</td>
</tr>
<tr>
<td>2</td>
<td>Become superuser.</td>
<td>For diskettes, use the vol check command.</td>
</tr>
<tr>
<td>3</td>
<td>Determine the location of the media device.</td>
<td>Removable media services automatically perform many of the tasks that are required to manually mount and work with removable media.</td>
</tr>
<tr>
<td>4</td>
<td>Create a mount point.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Make sure you are not in the mount point directory.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mount the device and use the proper mount options.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Exit the superuser account.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Work with files on media.</td>
<td>Work with files on media.</td>
</tr>
<tr>
<td>9</td>
<td>Become superuser.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Unmount the media device.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Eject media.</td>
<td>Eject media.</td>
</tr>
<tr>
<td>12</td>
<td>Exit the superuser account.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1–2 How to Access Data on Removable Media

<table>
<thead>
<tr>
<th>Access</th>
<th>Insert</th>
<th>Find the Files Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files on the first diskette</td>
<td>The diskette and type volcheck on the command line</td>
<td>/floppy</td>
</tr>
<tr>
<td>Files on the removable hard disk</td>
<td>The removable hard disk and type volcheck on the command line</td>
<td>/rmdisk/rmdisk0 or /rmdisk/rmdisk1</td>
</tr>
<tr>
<td>Files on the first CD</td>
<td>The CD and wait for a few seconds</td>
<td>/cdrom/volume-name</td>
</tr>
<tr>
<td>Files on the first DVD</td>
<td>The DVD and wait for a few seconds</td>
<td>/cdrom/volume-name</td>
</tr>
<tr>
<td>Files on the first PCMCIA</td>
<td>The PCMCIA and wait for a few seconds</td>
<td>/pcmem/pcmem0</td>
</tr>
</tbody>
</table>

TABLE 1–3 Where to Access Removable Media

<table>
<thead>
<tr>
<th>Media Device</th>
<th>Access File Systems With This Path</th>
<th>Access Raw Data With This Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>First diskette drive</td>
<td>/floppy/floppy0</td>
<td>/vol/dev/aliases/floppy0</td>
</tr>
<tr>
<td>Second diskette drive</td>
<td>/floppy/floppy1</td>
<td>/vol/dev/aliases/floppy1</td>
</tr>
<tr>
<td>First CD-ROM drive</td>
<td>/cdrom/cdrom0</td>
<td>/vol/dev/aliases/cdrom0</td>
</tr>
<tr>
<td>Second CD-ROM drive</td>
<td>/cdrom/cdrom1</td>
<td>/vol/dev/aliases/cdrom1</td>
</tr>
<tr>
<td>First or second removable hard disk</td>
<td>/rmdisk/rmdisk0 or /rmdisk/rmdisk1</td>
<td>/vol/dev/aliases/rmdisk0 or /vol/dev/aliases/rmdisk1</td>
</tr>
<tr>
<td>First PCMCIA drive</td>
<td>/pcmem/pcmem0</td>
<td>/vol/dev/aliases/pcmem0</td>
</tr>
</tbody>
</table>
Managing Removable Media (Tasks)

This chapter describes how to manage removable media from the command line in the Solaris OS.

For information on the procedures associated with managing removable media, see “Managing Removable Media (Task Map)” on page 33. For background information on removable media, see Chapter 1, “Managing Removable Media (Overview).”

Managing Removable Media (Task Map)

The following task map describes the tasks for managing removable media.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Load media.</td>
<td>Insert the diskette into the drive and type the volcheck command.</td>
<td>“How to Load Removable Media” on page 35</td>
</tr>
<tr>
<td>2. (Optional) Format the diskette.</td>
<td>Format diskette.</td>
<td>“How to Format a Diskette (rmformat)” on page 37</td>
</tr>
<tr>
<td>3. (Optional) Add a UFS or PCFS file system.</td>
<td>Add a UFS or PCFS file system to use the media for transferring files.</td>
<td>“How to Create a File System on Removable Media” on page 37</td>
</tr>
<tr>
<td>4. (Optional) Check the media.</td>
<td>Verify the integrity of the file system on the media.</td>
<td>“How to Check a File System on Removable Media” on page 40</td>
</tr>
<tr>
<td>5. (Optional) Repair bad blocks on the media.</td>
<td>Repair any bad blocks on the media, if necessary.</td>
<td>“How to Repair Bad Blocks on Removable Media” on page 41</td>
</tr>
</tbody>
</table>
6. (Optional) Apply read or write and password protection.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply read or write protection or password protection on the media, if necessary.</td>
<td>"How to Enable or Disable Write Protection on Removable Media" on page 41</td>
<td></td>
</tr>
</tbody>
</table>

Formatting Diskettes

You can use the `rmformat` command to format and protect rewritable diskettes. This utility does not require superuser privilege unless vold is not running. File systems are mounted automatically. So, you might have to unmount media before you can format it, if the media contains an existing file system.

The `rmformat` command has three formatting options:

- **quick** – This option formats diskettes without certification or with limited certification of certain tracks on the media.
- **long** – This option completely formats diskettes. For some devices, the use of this option might include the certification of the whole media by the drive.
- **force** – This option formats completely without user confirmation. For diskettes with a password-protection mechanism, this option clears the password before formatting. This feature is useful when a password is forgotten. On diskettes without password protection, this option forces a long format.

Removable Media Hardware Considerations

Keep the following restrictions in mind when working with diskettes and PCMCIA memory cards:

- **SPARC and x86 UFS formats are different.** SPARC uses little-endian bit coding, x86 uses big-endian. Media formatted for UFS is restricted to the hardware platform on which they were formatted. So, a diskette formatted for UFS on a SPARC based platform cannot be used for UFS on an x86 platform. Likewise, a diskette formatted for UFS on an x86 platform cannot be used on a SPARC platform. The same restriction applies to PCMCIA memory cards.

- **A complete format for SunOS™ file systems consists of the basic “bit” formatting in addition the structure to support a SunOS file system.** A complete format for a DOS file system consists of the basic “bit” formatting in addition the structure to support either an MS-DOS or an NEC-DOS file system. The procedures required to prepare a media for each type of file system are different. Therefore, before you format a diskette or PCMCIA memory card, consider which procedure to follow. For more information, see "Managing Removable Media (Task Map)" on page 33.
Diskette Hardware Considerations

Keep the following in mind when formatting diskettes:

- For information on diskette names, see Table 3–1.
- Diskettes that are not named (that is, they have no "label") are assigned the default name of unnamed_floppy.

A Solaris system can format the following diskette types:

- UFS
- MS-DOS or NEC-DOS (PCFS)
- UDFS

On a Solaris system (either SPARC or x86), you can format diskettes with the following densities.

<table>
<thead>
<tr>
<th>Diskette Size</th>
<th>Diskette Density</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5”</td>
<td>High density (HD)</td>
<td>1.44 Mbytes</td>
</tr>
<tr>
<td>3.5”</td>
<td>Double density (DD)</td>
<td>720 Kbytes</td>
</tr>
</tbody>
</table>

By default, the diskette drive formats a diskette to a like density. This default means that a 1.44 Mbyte drive attempts to format a diskette for 1.44 Mbytes, regardless of whether the diskette is, in fact, a 1.44 Mbyte diskette, unless you instruct it otherwise. In other words, a diskette can be formatted to its capacity or lower, and a drive can format to its capacity or lower.

How to Load Removable Media

For information about removable media hardware considerations, see “Removable Media Hardware Considerations” on page 34.

1. Insert the media.

2. Ensure that the media is formatted.
 If you aren’t sure, insert the media and check the status messages in the system console window, as described in Step 3. If you need to format the media, go to “How to Format a Diskette (rmformat)” on page 37.

3. (Optional) Notify volume management if you are using a legacy, non-USB diskette device.
 $ volcheck -v
 Two status messages are possible:
media was found

Volume management detected the media and will attempt to mount it in the directory described in Table 3–1.

If the media is formatted properly, no error messages appear in the console.

If the media is not formatted, the “media was found” message is still displayed. However, error messages similar to the following appear in the system console window:

```
fd0: unformatted diskette or no diskette in the drive
fd0: read failed (40 1 0)
fd0: bad format
```

You must format the media before volume management can mount it. For more information, see Chapter 2, “Managing Removable Media (Tasks).”

no media was found

Volume management did not detect the media. Ensure that the media is inserted properly, and run volcheck again. If unsuccessful, check the media, which could be damaged. You can also try to mount the media manually.

4 Verify that the media was mounted by listing its contents.

For example, do the following for a diskette:

```
$ ls /floppy
floppy0 myfiles
```

Tip – `floppy0` is a symbolic link to the actual name of the diskette. In this case, `myfiles`. If the diskette has no name but is formatted correctly, the system refers to it as `unnamed_floppy`.

If nothing appears under the `/floppy` directory, the diskette was either not mounted or is not formatted properly. To find out, run the `mount` command and look for the line that begins with `/floppy` (usually at the end of the listing):

```
/floppy/name on /vol/dev/diskette0/name
```

If this line does not appear, the diskette was not mounted. Check the system console window for error messages.
How to Format a Diskette (rmformat)

You can use the rmformat command to format a diskette. By default, this command creates two partitions on the media: partition 0 and partition 2 (the whole media).

1 Verify that removable media service is running. If so, you can use the shorter nickname for the device name.
 $ svcs volfs
 STATE STIME FMRI
 online 10:39:12 svc:/system/filesystem/volfs:default

 For information on restarting removable media services, see “How to Disable or Enable Removable Media Services” on page 48. For information on identifying media device names, see “Using Removable Media Names” on page 46.

2 Format the diskette.
 $ rmformat -F [quick | long | force] device-name

 See “Formatting Diskettes” on page 34 for more information on rmformat formatting options.

 If the rmformat output indicates bad blocks, see “How to Repair Bad Blocks on Removable Media” on page 41.

3 (Optional) Label the diskette with an 8-character label.
 $ rmformat -b label device-name

 For information on creating a DOS label, see mkfs_pcfs(1M).

Example 2–1 Formatting a Diskette

This example shows how to format a diskette.

 $ rmformat -F quick /dev/rdiskette
 Formatting will erase all the data on disk.
 Do you want to continue? (y/n) y
 ...

How to Create a File System on Removable Media

1 (Optional) Format the diskette.
 $ rmformat -F quick device-name
2 (Optional) Create an alternate Solaris partition table.

$ rmformat -s slice-file device-name

A sample slice file appears similar to the following:

slices: 0 = 0, 30MB, "wm", "home" :
 1 = 30MB, 51MB :
 2 = 0, 94MB, "wm", "backup" :
 6 = 81MB, 13MB

3 Become superuser.

4 Determine the appropriate file system type and select one of the following:

- Create a UFS filesystem. For example:

 # newfs /vol/dev/aliases/floppy0

- Create a PCFS filesystem. For example:

 # mkfs -F pcfs /dev/rdsk/c0t4d0s2:c

- Create a UDFS filesystem. For example:

 # mkfs -F udfs /dev/rdsk/c0t1d0s1

Example 2–2 Formatting a Diskette for a UFS File System

The following example shows how to format a diskette and create a UFS file system on the diskette.

$ rmformat -F quick /vol/dev/aliases/floppy0
Formatting will erase all the data on disk.
Do you want to continue? (y/n) y
$ su
/usr/sbin/newfs /vol/dev/aliases/floppy0
newfs: construct a new file system /dev/rdiskette: (y/n)? y
/dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors
 1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
 32, 640, 1184, 1792, 2336,
#

Example 2–3 Formatting a Diskette for a PCFS File System

This example shows how to create a PCFS file system with an alternate fdisk partition. In these examples, vold is not running.
This example shows how to create a PCFS file system without an fdisk partition.

```bash
$ rmformat -F quick /dev/rdsk/c0t4d0s2:c
Formatting will erase all the data on disk.
Do you want to continue? (y/n) y
$ su
# fdisk /dev/rdsk/c0t4d0s2:c
# mkfs -F pcfs /dev/rdsk/c0t4d0s2:c
Construct a new FAT file system on /dev/rdsk/c0t4d0s2:c: (y/n)? y
#
```

How to Create a File System on a DVD-RAM

Currently, `vold` doesn’t support DVD-RAM devices. So, if you disable `vold` to use a DVD-RAM device, you cannot use CD-R, CD-RW, DVD-R, DVD-RW, DVD+R, DVD+RW devices because `vold` is not available during the time that it is disabled.

1. Become superuser.
2. Stop `vold`.
   ```bash
   # svcadm disable volfs
   ```
3. Create a file system on the DVD-RAM device.
 - Create a UFS file system. For example:
     ```bash
     # newfs /dev/rdsk/c0t0d0s2
     ```
 - Create a UDFS file system. For example:
     ```bash
     # mkfs -F udfs /dev/rdsk/c0t0d0s2
     ```
4. Mount the file system.
 - Mount a UFS file system. For example:
     ```bash
     # mount -F ufs /dev/dsk/c0t0d0s2 /mnt
     ```
Mount a UDFS file system. For example:

```
# mount -F udfs /dev/dsk/c0t0d0s2 /mnt
```

5 Verify that you can read or write to the file system.

6 When finished, eject the DVD-RAM.

7 Restart `vold`.

```
# svcadm enable volfs
```

▼ How to Check a File System on Removable Media

1 Become superuser.

2 Identify the file system type and select one of the following:
 - Check a UFS file system.
     ```
     # fsck -F ufs device-name
     ```
 - Check a UDFS file system.
     ```
     # fsck -F udfs device-name
     ```
 - Check a PCFS file system.
     ```
     # fsck -F pcfs device-name
     ```

Example 2–4 Checking a PCFS File System on Removable Media

The following example shows how check the consistency of a PCFS file system on media. In this example, `vold` is not running.

```
# fsck -F pcfs /dev/rdsk/c0t4d0s2
** /dev/rdsk/c0t4d0s2
** Scanning file system meta-data
** Correcting any meta-data discrepancies
1457664 bytes.
0 bytes in bad sectors.
0 bytes in 0 directories.
0 bytes in 0 files.
1457664 bytes free.
512 bytes per allocation unit.
2847 total allocation units.
```
How to Repair Bad Blocks on Removable Media

You can only use the \texttt{rmformat} command to verify, analyze, and repair bad sectors that are found during verification if the drive supports bad block management. Most diskettes, PCMCIA memory cards, and USB memory sticks do not support bad block management.

If the drive supports bad block management, a best effort is made to rectify the bad block. If the bad block cannot be rectified despite the best effort mechanism, a message indicates the failure to repair the media.

1. Repair bad blocks on removable media.
\$ \texttt{rmformat -c block-numbers device-name}

Supply the block number in decimal, octal, or hexadecimal format from a previous \texttt{rmformat} session.

2. Verify the media.
\$ \texttt{rmformat -V read device-name}

Applying Read or Write Protection and Password Protection to Removable Media

You can apply read protection or write protection, and set a password, on removable media that support this feature.

How to Enable or Disable Write Protection on Removable Media

1. Determine whether you want to enable or disable write protection and select one of the following:
 - Enable write protection.
 \$ \texttt{rmformat -w enable device-name}
 - Disable write protection.
How to Enable or Disable Read or Write Protection and Set a Password on Removable Media

You can apply a password with a maximum of 32 characters for removable media that support this feature.

You will receive a warning message if you attempt to apply a password on media that does not support this feature.

1. Determine whether you want to enable or disable read protection or write protection and set a password. Select one of the following:
 - Enable read protection or write protection.
     ```
     $ rmformat -W enable device-name
     Please enter password (32 chars maximum): xxx
     Please reenter password:
     $$
     $ rmformat -R enable device-name
     Please enter password (32 chars maximum): xxx
     Please reenter password:
     ```
 - Disable read protection or write protection and remove the password.
     ```
     $ rmformat -W disable device-name
     Please enter password (32 chars maximum): xxx
     $ rmformat -R disable device-name
     Please enter password (32 chars maximum): xxx
     ```

2. Verify whether the media's read protection or write protection is enabled or disabled.
   ```
   $ rmformat -p device-name
   ```

Example 2–5 Enabling or Disabling Read or Write Protection and Password Protection

This example shows how to enable write protection and set a password on a diskette.
$ rmformat -W enable /vol/dev/aliases/floppy0
Please enter password (32 chars maximum): xxx
Please reenter password: xxx

This example shows to disable read protection and remove the password on a diskette.

$ rmformat -R disable /vol/dev/aliases/floppy0
Please enter password (32 chars maximum): xxx
This chapter describes how to access removable media from the command line in the Solaris OS.

For information on the procedures associated with accessing removable media, see the following:

- “Accessing Removable Media (Task Map)” on page 45
- “Accessing Removable Media on a Remote System (Task Map)” on page 51

For background information on removable media, see Chapter 1, "Managing Removable Media (Overview).”

Accessing Removable Media (Task Map)

The following task map describes the tasks for accessing removable media.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (Optional) Add the removable media drive.</td>
<td>Add the removable media drive to your system, if necessary.</td>
<td>“How to Add a New Removable Media Drive” on page 47</td>
</tr>
<tr>
<td>2. (Optional) Decide whether you want to use removable media with or without volume management (vold).</td>
<td>Volume management (vold) runs by default. Decide whether you want to use removable media with or without volume management.</td>
<td>“How to Disable or Enable Removable Media Services” on page 48</td>
</tr>
<tr>
<td>3. Access removable media.</td>
<td>Access different kinds of removable media with or without volume management running.</td>
<td>“How to Access Information on Removable Media” on page 48</td>
</tr>
</tbody>
</table>
Accessing Removable Media

You can access information on removable media with or without using volume management. For information on accessing information on removable media with GNOME's File Manager, see the GNOME desktop documentation.

Volume management (vo1d) actively manages all removable media devices. So, any attempt to access removable media with device names such as /dev/rdsk/cntn[dn]/ or /dev/dsk/cntn[dn]/ will be unsuccessful.

Using Removable Media Names

You can access all removable media with different names. The following table describes the different media names that can be accessed with or without volume management.

<table>
<thead>
<tr>
<th>Media</th>
<th>Volume Management Device Name</th>
<th>Volume Management Device Alias Name</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>First diskette drive</td>
<td>/floppy</td>
<td>/vol/dev/aliases/floppy0</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>First, second, third CD-ROM or DVD-ROM drives</td>
<td>/cdrom0</td>
<td>/vol/dev/aliases/cdrom0</td>
<td>/vol/dev/rdiskette0/</td>
</tr>
<tr>
<td></td>
<td>/cdrom1</td>
<td>/vol/dev/aliases/cdrom1</td>
<td>volume-name</td>
</tr>
<tr>
<td></td>
<td>/cdrom2</td>
<td>/vol/dev/aliases/cdrom2</td>
<td></td>
</tr>
<tr>
<td>First, second, third PCMCIA drive</td>
<td>/pcmem/pcmem0</td>
<td>/vol/dev/aliases/pcmem0</td>
<td>/vol/dev/rdiskette/cntn[dn]/</td>
</tr>
<tr>
<td></td>
<td>/pcmem/pcmem1</td>
<td>/vol/dev/aliases/pcmem1</td>
<td>volume-name</td>
</tr>
<tr>
<td></td>
<td>/pcmem/pcmem2</td>
<td>/vol/dev/aliases/pcmem2</td>
<td></td>
</tr>
</tbody>
</table>
Guidelines for Accessing Removable Media Data

Most CDs and DVDs are formatted to the ISO 9660 standard, which is portable. So, most CDs and DVDs can be mounted by volume management. However, CDs or DVDs with UFS file systems are not portable between architectures. So, they must be used on the architecture for which they were designed.

For example, a CD or DVD with a UFS file system for a SPARC™ platform cannot be recognized by an x86 platform. Likewise, an x86 UFS CD cannot be mounted by volume management on a SPARC platform. The same limitation generally applies to diskettes. However, some architectures share the same bit structure, so occasionally a UFS format specific to one architecture will be recognized by another architecture. Still, the UFS file system structure was not designed to guarantee this compatibility.

To accommodate the different formats, the CD or DVD is split into slices. Slices are similar in effect to partitions on hard disks. The 9660 portion is portable, but the UFS portion is architecture-specific. If you are having trouble mounting a CD or DVD, particularly if it is an installation CD or DVD, make sure that its UFS file system is appropriate for your system’s architecture. For example, you can check the label on the CD or DVD.

How to Add a New Removable Media Drive

Generally, most modern bus types support hot-plugging. If your system’s bus type supports hot-plugging, you might only need to do step 5 below. If your system’s bus type does not support hot-plugging, you might have to do the following tasks, which are described in steps 1-6 below.

- Create the /reconfigure file.
- Reboot the system so that volume management recognizes the new media drive.

For more information about hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

1 Become superuser.

2 Create the /reconfigure file.

 # touch /reconfigure

TABLE 3–1 Removable Media Names (Continued)

<table>
<thead>
<tr>
<th>Media</th>
<th>Volume Management Device Name</th>
<th>Volume Management Device Alias Name</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB memory stick</td>
<td>/rmdisk/none</td>
<td>/vol/aliases/rmdisk0</td>
<td>/vol/dev/dskcntndn/volume-name:c</td>
</tr>
</tbody>
</table>
Bring the system to run level 0.
 # init 0

Turn off power to the system.

Connect the new media drive.
 See your hardware handbook for specific instructions.

Turn on power to the system.
 The system automatically comes up to multiuser mode.

How to Disable or Enable Removable Media Services

Occasionally, you might want to manage media without using removable media services. This section describes how to disable and enable removable media services.

Disabling these services means that you would have to mount all media manually by using the `mount` command.

1 Ensure that the media is not being used.
 If you are not sure whether you have found all users of the media, use the `fuser` command, see “How to Determine If Removable Media Is Still in Use” on page 50.

2 Become superuser.

3 Select one of the following:
 ■ Disable removable media services.

 # svcadm disable volfs
 ■ Enable removable media services.

 # svcadm enable volfs
 volume management starting.

How to Access Information on Removable Media

1 Insert the media.
 The media is mounted after a few seconds.

2 (Optional) Check for media in the drive if you are using a legacy, non-USB diskette device.
 % volcheck
3 List the contents of the media.

```
% ls /media
```

Use the appropriate device name to access information by using the command-line interface. See Table 3–1 for an explanation of device names.

Example 3–1 Accessing Information on Removable Media

This example shows how to access information on a diskette.

```
$ ls /floppy
myfile
```

This example shows how to access information on a USB memory stick.

```
$ ls /rmdisk
rmdisk0/ rmdisk1/
```

This example shows how to access information on a DVD or CD.

```
$ ls /cdrom
cdrom0 sol_10_305_sparc
```

This example shows how to view the symbolic links on a DVD or CD.

```
$ ls -ll /cdrom/cdrom0
```

This example shows how to access information on a PCMCIA memory card as follows:

```
$ ls /pcmem/pcmem0
pcmem0 myfiles
```

How to Copy Information From Removable Media

You can access files and directories on removable media as with any other file system. The only significant restrictions are related to ownership and permissions.

For instance, if you copy a file from a CD into your file system, you are the owner. However, you won’t have write permissions because the file on the CD never had them. You must change the permissions yourself.
Ensure that the media is mounted.

```
$ ls /media
```

The `ls` command displays the contents of a mounted media. If no contents are displayed, see “How to Access Information on Removable Media” on page 48.

(Optional) Copy the files or directories.

For example, for a DVD, you would do the following:

```
$ cp /cdrom/sol_10_305_sparc/s0/Solaris_10/Tools/add_install_client .
$ ls -l
-rwxr-xr-x 1 pmorph gelfs 66393 Jun 14 16:08 add_install_client
```

For example, for a PCMCIA memory card, you would do the following:

```
$ cp /pcmem/pcmem0/readme2.doc .
$ cp -r /pcmem/pcmem0/morefiles .
```

How to Determine If Removable Media Is Still in Use

1 Become superuser.

2 Identify the processes that are accessing the media.

```
# fuser -u /media
```

The `-u` displays the user of the media.

For more information, see `fuser(1M)`.

3 (Optional) Kill the process accessing the media.

```
# fuser -u -k /media
```

The `-k` kills the processes accessing the media.

Caution – Killing the processes that are accessing the media should only be used in emergency situations.

4 Verify that the process is gone.

```
# pgrep process-ID
```

Determine the Media Is Still in Use

The following example shows that the user pmorph, is accessing the `/cdrom/sol_10_305_sparc/s0/Solaris_10/Tools` directory.
fuser -u /cdrom/sol_10_305_sparc/s0/Solaris_10/Tools
/cdrom/sol_10_305_sparc/s0/Solaris_10/Tools: 13737c(pmorph) 4712c(pmorph)

How to Eject Removable Media

1. **Ensure that the media is not being used.**
 Remember, media is "being used" if a shell or an application is accessing any of its files or directories. If you are not sure whether you have found all users of a CD (for example, a shell hidden behind a desktop tool might be accessing it), use the `fuser` command. See "How to Determine If Removable Media Is Still in Use" on page 50.

2. **Eject the media.**
   ```bash
   # eject media
   
   For example, for a CD, you would do the following:
   ```
   ```bash
   # eject cdrom
   
   For example, for a USB memory stick, you would do the following:
   ```
   ```bash
   # eject rmdisk0
   
   For example, for a PCMCIA memory card, you would do the following:
   ```
   ```bash
   # eject pcmem0
   
**Accessing Removable Media on a Remote System (Task Map)**

The following task map describes the tasks need to access removable media on a remote system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make local media available to remote systems.</td>
<td>configure your system to share its media drives to make any media in those drives available to other systems.</td>
<td>&quot;How to Make Local Media Available to Other Systems&quot; on page 52</td>
</tr>
<tr>
<td>2. Access removable media on remote systems.</td>
<td>Access the remote media on the local system.</td>
<td>&quot;How to Access Information on Removable Media&quot; on page 48</td>
</tr>
</tbody>
</table>
How to Make Local Media Available to Other Systems

You can configure your system to share its media drives to make any media in those drives available to other systems. One exception is musical CDs. Once your media drives are shared, other systems can access the media they contain simply by mounting them. For instructions, see "How to Access Removable Media on Remote Systems" on page 55.

1. Become superuser.

2. Create a dummy directory to share.
   
   ```
 # mkdir /dummy
   ```

   The `dummy` mount point can be any directory name, for example, `/dummy`. This directory will not contain any files. Its only purpose is to “wake up” the NFS daemon so that it notices your shared media drive.

3. Add the following entry to the `/etc/dfs/dfstab` file.

   ```
 share -F nfs -o ro /dummy
   ```

   When you start the NFS server service, it will encounter this entry, “wake up,” and notice the shared media drive.

4. Determine whether the NFS server service is running.

   ```
 # svc *nfs*
   ```

   The following output is returned from the `svc` command if NFS server service is running:

   ```
 online Aug_30 svc:/network/nfs/server:default
   ```

5. Identify the NFS server status, and select one of the following:

   - If the NFS server service is running, go to Step 7.
   - If the NFS server service is not running, go to the next step.

6. Start the NFS server service.

   ```
 # svcadm enable network/nfs/server
   ```

   Verify that the NFS daemons are running.

   For example:

   ```
 # svc -p svc:/network/nfs/server:default
   ```

<table>
<thead>
<tr>
<th>STATE</th>
<th>STIME</th>
<th>FMRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>online</td>
<td>Aug_30</td>
<td>svc:/network/nfs/server:default</td>
</tr>
<tr>
<td></td>
<td>Aug_30</td>
<td>319 mountd</td>
</tr>
<tr>
<td></td>
<td>Aug_30</td>
<td>323 nfsd</td>
</tr>
</tbody>
</table>
7 Eject any media currently in the drive.
   # eject media

8 Assign root write permissions to the /etc/rmmount.conf file.
   # chmod 644 /etc/rmmount.conf

9 Add the following lines to the /etc/rmmount.conf file:
   share media*
   These lines share any media loaded into your system's CD-ROM drive. You can, however, limit
   sharing to a particular CD or series of CDs, as described in share(1M).

10 Remove write permissions from the /etc/rmmount.conf file.
   # chmod 444 /etc/rmmount.conf
   This step returns the file to its default permissions.

11 Load the media.
   The media you now load, and all subsequent media, is available to other systems. Remember to
   wait until the light on the drive stops blinking before you verify this task.

   To access the media, the remote user must mount it by name, according to the instructions in
   "How to Access Removable Media on Remote Systems" on page 55.

12 Verify that the media is indeed available to other systems.
   If the media is available, its share configuration is displayed. The shared dummy directory is also
   displayed.
   # share
   - /dummy ro ""
   - /cdrom/sol_10_305_sparc/s5 ro ""
   - /cdrom/sol_10_305_sparc/s4 ro ""
   - /cdrom/sol_10_305_sparc/s3 ro ""
   - /cdrom/sol_10_305_sparc/s2 ro ""
   - /cdrom/sol_10_305_sparc/s1 ro ""
   - /cdrom/sol_10_305_sparc/s0 ro ""

Example 3–3 Making Local CDs Available to Other Systems

The following example shows how to make any local CD available to other systems on the network.

   # mkdir /dummy
   vi /etc/dfs/dfstab
   (Add the following line:)
   # share -F nfs -o ro /dummy
Example 3–4  Making Local Diskettes Available to Other Systems

The following example shows how to make any local diskette available to other systems on the network.

```
mkdir /dummy
vi /etc/dfs/dfstab
(Add the following line:)
share -F nfs -o ro /dummy
svcadm enable network/nfs/server
svc -p svc:/network/nfs/server:default
eject floppy0
chmod 644 /etc/rmmount.conf
vi /etc/rmmount.conf
(Add the following line:
 share floppy*
chmod 444 /etc/rmmount.conf
(Load a diskette.)
volcheck -v
media was found
share
 /dummy ro ""
 /floppy/myfiles rw ""
```

Example 3–5  Making Local PCMCIA Memory Cards Available to Other Systems

The following example shows how to make any local PCMCIA memory card available to other systems on the network.

```
svcadm enable network/nfs/server
svc -p svc:/network/nfs/server:default
eject cdrom0
chmod 644 /etc/rmmount.conf
vi /etc/rmmount.conf
(Add the following line:)
 share cdrom*
chmod 444 /etc/rmmount.conf
(Add the following line:)
 share cdrom
mount -t nfs -o ro /cdrom/sol_10_305_sparc/s5 ro ""
mount -t nfs -o ro /cdrom/sol_10_305_sparc/s4 ro ""
mount -t nfs -o ro /cdrom/sol_10_305_sparc/s3 ro ""
mount -t nfs -o ro /cdrom/sol_10_305_sparc/s2 ro ""
mount -t nfs -o ro /cdrom/sol_10_305_sparc/s1 ro ""
mount -t nfs -o ro /cdrom/sol_10_305_sparc/s0 ro ""
```

Example 3–4  Making Local Diskettes Available to Other Systems

The following example shows how to make any local diskette available to other systems on the network.

```
mkdir /dummy
vi /etc/dfs/dfstab
(Add the following line:)
share -F nfs -o ro /dummy
svcadm enable network/nfs/server
svc -p svc:/network/nfs/server:default
eject floppy0
chmod 644 /etc/rmmount.conf
vi /etc/rmmount.conf
(Add the following line:)
share floppy*
chmod 444 /etc/rmmount.conf
(Add the following line:)
share floppy
volcheck -v
media was found
share
 /dummy ro ""
 /floppy/myfiles rw ""
```

Example 3–5  Making Local PCMCIA Memory Cards Available to Other Systems

The following example shows how to make any local PCMCIA memory card available to other systems on the network.
You can access media on a remote system by manually mounting the media into your file system. Also, the remote system must have shared its media according to the instructions in "How to Make Local Media Available to Other Systems" on page 52.

1. Select an existing directory to serve as the mount point. Or create a mount point.
   
   ```bash
 $ mkdir /directory
   ```
   
   where `/directory` is the name of the directory that you create to serve as a mount point for the remote system's CD.

2. Find the name of the media you want to mount.
   
   ```bash
 $ showmount -e system-name
   ```

3. As superuser, mount the media.
   
   ```bash
 # mount -F nfs -o ro system-name/media/media-name local-mount-point
   ```
   
   - **system-name:** Is the name of the system whose media you will mount.
   - **media-name:** Is the name of the media you want to mount.
   - **local-mount-point:** Is the local directory onto which you will mount the remote media.

4. Log out as superuser.
Verify that the media has been mounted.

$ ls /media

**Example 3–6 Accessing CDs on Remote Systems**

The following example shows how to automatically access the remote DVD named `sol_10_305_sparc` from the remote system `starbug` using AutoFS.

```
$ showmount -e starbug
export list for starbug:
 /dummy (everyone)
 /cdrom/sol_10_305_sparc/s5 (everyone)
 /cdrom/sol_10_305_sparc/s4 (everyone)
 /cdrom/sol_10_305_sparc/s3 (everyone)
 /cdrom/sol_10_305_sparc/s2 (everyone)
 /cdrom/sol_10_305_sparc/s1 (everyone)
 /cdrom/sol_10_305_sparc/s0 (everyone)

$ ls /net/starbug/cdrom/
sol_10_305_sparc
```

**Example 3–7 Accessing Diskettes on Other Systems**

The following example shows how to automatically access `myfiles` from the remote system `mars` using AutoFS.

```
$ showmount -e mars
$ cd /net/mars
$ ls /floppy
floppy0 myfiles
```

**Example 3–8 Accessing PCMCIA Memory Cards on Remote Systems**

The following example shows how to automatically access the PCMCIA memory card named `myfiles` from the remote system `mars` using AutoFS.

```
$ showmount -e mars
$ cd /net/mars
$ ls /pcmem
pcmem0 myfiles
```
Writing CDs and DVDs (Tasks)

This chapter provides step-by-step instructions for writing and copying data CDs and DVDs and audio CDs with the \texttt{cdrw} command.

- “How to Restrict User Access to Removable Media With RBAC” on page 60
- “How to Identify a CD or DVD Writer” on page 61
- “How to Check the CD or DVD Media” on page 62
- “How to Create an ISO 9660 File System for a Data CD or DVD” on page 63
- “How to Create a Multi-Session Data CD” on page 63
- “How to Create an Audio CD” on page 66
- “How to Extract an Audio Track on a CD” on page 67
- “How to Copy a CD” on page 68
- “How to Erase CD-RW Media” on page 68

Working With Audio CDs and Data CDs and DVDs

You can use the \texttt{cdrw} command to write file systems for CDs and DVDs in ISO 9660 format with Rock Ridge or Joliet extensions on CD-R, CD-RW, DVD-RW, or DVD+RW media devices.

You can use the \texttt{cdrw} command to perform the following tasks:

- Create data CDs and DVDs.
- Create audio CDs.
- Extract audio data from an audio CD.
- Copy CDs and DVDs.
- Erase CD-RW media.

The \texttt{cdrw} command is available starting in the following releases:

- Software Supplement for the Solaris 8 Operating Environment 1/01 CD
- Part of the Solaris\textsuperscript{TM} release starting in the Solaris 9 release
For information on recommended CD-R or CD-RW devices, go to:


**CD/DVD Media Commonly Used Terms**

This section defines commonly used terms related to CD/DVD media.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-R</td>
<td>CD read media that can be written once and after that, can only be read from.</td>
</tr>
<tr>
<td>CD-RW</td>
<td>CD rewritable media that can be written to and erased. CD-RW media can only be read by CD-RW devices.</td>
</tr>
<tr>
<td>DVD-R</td>
<td>Digital video disk (recordable) that can be written once and after that, can only be read from. These devices have much larger capacity than CD-R media.</td>
</tr>
<tr>
<td>DVD+R</td>
<td>Digital video disk (recordable) that can be written once and after that, can only be read from. DVD+R devices have more complete error management system than DVD-R, which allows for more accurate burning to media, independent of the quality of the media.</td>
</tr>
<tr>
<td>DVD-RW</td>
<td>Digital video disk (rewritable) with storage capacity equal to a DVD-R. This media can be re-recorded by first erasing the entire disk.</td>
</tr>
<tr>
<td>DVD+RW</td>
<td>Digital video disk (random-access rewritable) with storage capacity equal to a DVD+R. This medium allows overwriting of individual blocks without erasing the entire disk.</td>
</tr>
<tr>
<td>DVD-RAM</td>
<td>Digital video disk (random access memory, rewritable) with circular rather than spiral tracks and hard sectoring.</td>
</tr>
<tr>
<td>ISO 9660</td>
<td>ISO, an acronym for Industry Standards Organization, is an organization that sets standards for computer storage formats. An ISO 9660 file system is a standard CD or DVD file system that enables you to read the same CD or DVD on any major computer platform. The standard, issued in 1988, was written by an industry group named High Sierra, named after the High Sierra Hotel in Nevada. Almost all computers with CD or DVD drives can read files from an ISO 9660 file system.</td>
</tr>
</tbody>
</table>
**Term** | **Description**
--- | ---
Joliet extensions | Adds Windows file system information.
Rock Ridge extensions | Adds UNIX file system information. (Rock Ridge is named after the town in the movie Blazing Saddles.)

*Note* – These extensions are not exclusive. You can specify both `mkisofs -R` and `-j` options for compatibility with both systems. (See `mkisofs(1M)` for details.)

**MMC-compliant recorder** | Acronym for Multi Media Command, which means these recorders comply with a common command set. Programs that can write to one MMC-compliant recorder should be able to write to all other recorders.

**Red Book CDDA** | Acronym for Compact Disc Digital Audio, which is an industry standard method for storing digital audio on compact discs. Also known by the term “Red Book” format. The official industry specification calls for one or more audio files sampled in 16-bit stereo sound at a sampling rate of 44.1 kilohertz (kHz).

Commonly used terms when writing to CD media are:

**Term**	**Description**
blanking | The process of erasing data from the CD-RW media.
mkisofs | The command to create ISO file system on a CD.
session | A complete track with lead-in and lead-out information.
track | A complete data or audio unit.

### Writing CD and DVD Data and Audio CDs

The process of writing to a CD or DVD cannot be interrupted and needs a constant stream of data. Consider using the `cdrw -S` option to simulate writing to the media to verify that the system can provide data at a sufficient rate for writing to the CD or DVD.

Write errors can be caused by one of the following problems:

- The media cannot handle the drive speed. For example, some media are only certified for 2x or 4x speeds.
- The system is running too many heavy processes that are starving the writing process.
- Network congestion is causing delays in reading the image, and the image is on a remote system.
- The source drive is slower than the destination drive.
If any of these problems occur, you can lower the writing speed of the device by using the `cdrw -p` option.

For example, the following command shows how to simulate writing at 4x speed:

```bash
$ cdrw -iS -p 4 image.iso
```

**Note** – CD-R, CD-RW (not MRW formatted), DVD-R, and DVD-RW media support simulation mode (`-S`), but DVD-RAM, DVD+R, DVD+RW, and any MRW-formatted media and some others do not support simulation mode. The following message is displayed if simulation mode is not supported:

`Media does not support simulated writing`

For more information about media types, see “CD/DVD Media Commonly Used Terms” on page 58.

You can also use the `cdrw -C` option to use the stated media capacity for copying an 80-minute CD. Otherwise, the `cdrw` command uses a default value of 74 minutes for copying an audio CD.

For more information, see `cdrw(1)`.

---

## Restricting User Access to Removable Media With RBAC

By default, all users can access removable media starting in the Solaris 9 release. However, you can restrict user access to removable media by setting up a role through role-based access control (RBAC). Access to removable media is restricted by assigning the role to a limited set of users.

For a discussion of using roles, see “Role-Based Access Control (Overview)” in *System Administration Guide: Security Services*.

### How to Restrict User Access to Removable Media With RBAC

1. Become superuser or assume an equivalent role.

2. Start the Solaris Management Console.
   ```bash
 $ /usr/sadm/bin/smc &
   ```
For more information on starting the console, see “Starting the Solaris Management Console” in System Administration Guide: Basic Administration.

3 Set up a role that includes the Device Management rights.
For more information, see Chapter 9, “Using Role-Based Access Control (Tasks),” in System Administration Guide: Security Services.

4 Add users who need to use the cdrw command to the newly created role.

5 Comment the following line in the /etc/security/policy.conf file:
AUTHS_GRANTED=solaris.device.cdrw
If you do not do this step, all users still have access to the cdrw command, not just the members of the device management role.
After this file is modified, the device management role members are the only users who can use the cdrw command. Everyone else is denied access with the following message:
Authorization failed, Cannot access disks.

▼ How to Identify a CD or DVD Writer

1 Identify the CD or DVD writers on the system.
For example:
$ cdrw -l
Looking for CD devices...
Node | Connected Device | Device type
------------------+--------------------------------+-----------------
 cdrom0 | YAMAHA CRW8824S 1.0d | CD Reader/Writer

2 Identify a specific CD or DVD writer.
For example:
$ cdrw -a filename.wav -d cdrom2

3 Identify whether the media is blank or whether a table of contents exists on the media.
For example:
$ cdrw -M

Device : YAMAHA CRW8824S
Firmware : Rev. 1.00 (26/04/00)
Media is blank
How to Check the CD or DVD Media

The `cdrw` command works with or without removable media services running. For more information about disabling or enabling removable media services, see "How to Disable or Enable Removable Media Services" on page 48.

1 Insert a CD or DVD into the drive.
The CD or DVD can be any CD or DVD that the drive can read.

2 Check that the drive is connected properly by listing the drive.

   `$ cdrw -l`
   
   Looking for CD devices...

   Node Connected Device Device type
   ------------------------+--------------------------+------------------
   cdrom1 | YAMAHA CRW8824S 1.0d | CD Reader/Writer

3 (Optional) If you do not see the drive in the list, select one of the following so that the system recognizes the drive.

   - Perform a reconfiguration boot.

     # touch /reconfigure
     # init 6

   - Add the drive without rebooting the system

     # drvconfig
     # disks

     Then restart removable media services.

     # svcadm disable volfs
     # svcadm enable volfs

Creating a Data CD or DVD

Prepare the data first by using the `mkisofs` command to convert the file and file information into the High Sierra format used on CDs or DVDs.
How to Create an ISO 9660 File System for a Data CD or DVD

1 Insert a blank CD or DVD into the drive.

2 Create the ISO 9660 file system on the new CD or DVD.
   
   $ mkisofs -r /pathname > cd-file-system

   -r Creates Rock Ridge information and resets file ownerships to zero.
   
   /pathname Identifies the path name used to create the ISO 9660 file system.
   
   > cd-file-system Identifies the name of the file system to be put on the CD or DVD.

3 Copy the file system onto the CD or DVD.
   
   $ cdrw -i cd-file-system
   
   The -i cd-file-system specifies the image file for creating a data CD or DVD.

Example 4–1 Creating an ISO 9660 File System for a Data CD or DVD

The following example shows how to create an ISO 9660 file system for a data CD or DVD.

   $ mkisofs -r /home/dubs/ufs_dir > ufs_cd
   
   Total extents actually written = 56
   Total translation table size: 0
   Total rockridge attributes bytes: 329
   Total directory bytes: 0
   Path table size(bytes): 10
   Max brk space used 8000
   56 extents written (0 Mb)

   Then, copy the file system onto the CD or DVD.

   $ cdrw -i ufs_cd
   
   Initializing device...done.
   Writing track 1...done.
   Finalizing (Can take several minutes)...done.

How to Create a Multi-Session Data CD

This procedure describes how to put more than one session on a CD. This procedure includes an example of copying the infoA and infoB directories onto the CD.
1 Create the file system for the first CD session.

```
$ mkisofs -o infoA -r -V my_infoA /data/infoA
```

- `o infoA` Identifies the name of the ISO file system.
- `-r` Creates Rock Ridge information and resets file ownerships to zero.
- `-V my_infoA` Identifies a volume label to be used as the mount point by removable media services.
- `/data/infoA` Identifies the ISO image directory to create.

```
Total translation table size: 0
Total rockridge attributes bytes: 24507
Total directory bytes: 34816
Path table size(bytes): 98
Max brk space used 2e000
8929 extents written (17 Mb)
```

2 Copy the ISO file system for the first session onto the CD.

```
$ cdrw -iO infoA
```

- `-i infoA` Identifies the name of the image file to write to the CD.
- `-O` Keeps the CD open for writing.

```
Initializing device...done.
Writing track 1...done.
done.
Finalizing (Can take several minutes)...done.
```

3 Re-insert the CD after it is ejected.

4 Identify the path name of the CD media to include in the next write session.

```
$ eject -n
.
.
.
cdrom0 -> /vol/dev/rdsk/c2t4d0/my_infoA
```

Note the `/vol/dev/...` path name.

5 Identify the next writeable address on the CD to write the next session.

```
% cdrw -M /cdrom
```

- `Device : YAMAHA CRW8424S`
- `Firmware : Rev. 1.0d (06/10/99)`

```
Track No. |Type |Start address
---------+--------+-------------
1 |Audio |0
```
Last session start address: 75287
Next writable address: 91118

Note the address in the Next writable address output so that you can provide this address when you write the next session.

6  Create the next ISO file system for the next CD session, and write it onto the CD.

$ mkisofs -o infoB -r -C 0,91118 -M /vol/dev/rdsk/c2t4d0/my_infoA /data/infoB

Total translation table size: 0
Total rockridge attributes bytes: 16602
Total directory bytes: 22528
Path table size(bytes): 86
Max brk space used 20000
97196 extents written (189 Mb)

-o infoB  Identifies the name of the ISO file system.
-r        Creates Rock Ridge information and resets file ownerships to zero.
-C 0,91118 Identifies the starting address of the first session and the next writable address.
-M /vol/dev/rdsk/c2t4d0/my_infoA Specifies the path of the existing ISO image to be merged.
/data/infoB Identifies the ISO image directory to create.

Creating an Audio CD

You can use the cdrw command to create audio CDs from individual audio tracks or from .au and .wav files.

The supported audio formats are describes in the following table:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>Sun .au file with data in Red Book CDDA format</td>
</tr>
<tr>
<td>wav</td>
<td>RIFF (.wav) file with data in Red Book CDDA format</td>
</tr>
</tbody>
</table>
If no audio format is specified, the `cdrw` command tries to determine the audio file format based on the file extension. The case of the characters in the extension is ignored.

## How to Create an Audio CD

This procedure describes how to copy audio files onto a CD.

1. Insert a blank CD into the CD-RW drive.
2. Change to the directory that contains the audio files.
   
   ```
 $ cd /myaudiodir
   ```
3. Copy the audio files onto the CD.
   
   ```
 $ cdrw -a track1.wav track2.wav track3.wav
   ```
   
   The `-a` option creates an audio CD.

### Example 4–2 Creating an Audio CD

The following example shows how to create an audio CD.

```
$ cdrw -a bark.wav chirp.au meow.wav
Initializing device...done.
Writing track 1...done.
Writing track 2...done.
Writing track 3...done.
Finalizing (Can take several minutes)...done.
```

The following example shows how to create a multisession audio CD. The CD is ejected after the first session is written. You would need to re-insert the CD before the next writing session.

```
$ cdrw -a0 groucho.wav chico.au harpo.wav
Initializing device...done.
Writing track 1...done.
Writing track 2...done.
```
Writing track 3...done.
done.
Finalizing (Can take several minutes)...done.
<Re-insert CD>
$ cdrw -a zeppo.au
Initializing device...done.
Writing track 1...done.
done.
Finalizing (Can take several minutes)...done.

▼ How to Extract an Audio Track on a CD

Use the following procedure to extract an audio track from a CD and copy the audio track to a new CD.

If you don’t use the cdrw -T option to specify the audio file type, the cdrw command uses the filename extension to determine the audio file type. For example, the cdrw command detects that this file is a .wav file.

$ cdrw -x 1 testme.wav

1 Insert an audio CD into the CD-RW drive.

2 Extract an audio track.

$ cdrw -x -T audio-type 1 audio-file

-× Extracts audio data from an audio CD.
T audio-type Identifies the type of audio file to be extracted. Supported audio types are sun, wav, cda, or aur.
audio-file Identifies the audio track to be extracted.

3 Copy the track to a new CD.

$ cdrw -a audio-file

Example 4–3 Extracting and Creating Audio CDs

The following example shows how to extract the first track from an audio CD and name the file song1.wav.

$ cdrw -x -T wav 1 song1.wav
Extracting audio from track 1...done.

This example shows how to copy a track to an audio CD.
Writing CD and DVD Data and Audio CDs

$ cdrw -a song1.wav
Initializing device...done.
Writing track 1...done.
Finalizing (Can take several minutes)...done.

▼ How to Copy a CD
This procedure describes how to extract all the tracks from an audio CD into a directory and then copy all of them onto a blank CD.

Note – By default, the cdrw command copies the CD into the /tmp directory. The copying might require up to 700 Mbytes of free space. If there is insufficient space in the /tmp directory for copying the CD, use the -m option to specify an alternate directory.

1 Insert an audio CD into a CD-RW drive.

2 Create a directory for the audio files.
   $ mkdir /music_dir

3 Extract the tracks from the audio CD.
   $ cdrw -c -m music_dir
   An Extracting audio... message is display for each track.
The CD is ejected when all the tracks are extracted.

4 Insert a blank CD and press Return.
   After the tracks are extracted, the audio CD is ejected. You are prompted to insert a blank CD.

Example 4–4 Copying a CD
This example shows how to copy one CD to another CD. You must have two CD-RW devices to do this task.

   $ cdrw -c -s cdrom0 -d cdrom1

▼ How to Erase CD-RW Media
You have to erase existing CD-RW data before the CD can be rewritten.

- Erase the entire media or just the last session on the CD by selecting one of the following:
- Erase the last session only.

```sh
$ cdrw -d cdrom0 -b session
```

Erasing just the last session with the `-b session` option is faster than erasing the entire media with the `-b all` option. You can use the `-b session` option even if you used the `cdrw` command to create a data or audio CD in just one session.

- Erase the entire media.

```sh
$ cdrw -d cdrom0 -b all
```
Managing Devices (Overview/Tasks)

This chapter provides overview information and step-by-step instructions for managing peripheral devices, such as disks, CD-ROMs, and tape devices, in the Solaris release.

This is a list of the overview information in this chapter.

- “What’s New in Device Management?” on page 71
- “Where to Find Device Management Tasks” on page 74
- “About Device Drivers” on page 76
- “Automatic Configuration of Devices” on page 76
- “Displaying Device Configuration Information” on page 77
- “Accessing Devices” on page 85

This is a list of the step-by-step instructions in this chapter.

- “How to Display System Configuration Information” on page 78
- “How to Add a Device Driver” on page 84
- “How to Add a Peripheral Device” on page 82

Device management in the Solaris release usually involves adding and removing peripheral devices from systems, possibly adding a third-party device driver to support a device, and displaying system configuration information.

What's New in Device Management?

This section provides information about new device management features in the Solaris release.

- “Support for PCI Express (PCIe)” on page 72
- “USB and 1394 (FireWire) Support Enhancements” on page 72
- “Improved Device In Use Error Checking” on page 73

For a complete listing of new Solaris features and a description of Solaris releases, see Solaris 10 What's New.
Support for PCI Express (PCIe)

Solaris 10 11/06: This Solaris release provides support for the PCI Express (PCIe) interconnect, which is designed to connect peripheral devices to desktop, enterprise, mobile, communication, and embedded applications, on both SPARC and x86 systems.

In the previous Solaris 10 6/06 release, PCIe devices were only available on x86 systems.

The PCIe interconnect is an industry-standard, high-performance, serial I/O bus. For details on PCIe technology, go to the following site:

http://www.pcisig.com

The PCIe software provides the following features in this Solaris release:

- Support for extended PCIe configuration space
- Support for PCIe baseline error handling and MSI interrupts
- Modified IEEE-1275 properties for PCIe devices
- PCIe hotplug support (both native and ACPI-based) by enhancing the `cfgadm_pci` component of the `cfgadm` command
- ATTN Button usage based PCIe peripheral autoconfiguration

The administrative model for hotplugging PCIe peripherals is the same as for PCI peripherals, which uses the `cfgadm` command.

Check your hardware platform guide to ensure that PCIe and PCIe hotplug support is provided on your system. In addition, carefully review the instructions for physically inserting or removing adapters on your system and the semantics of device auto-configuration, if applicable.

For information about using the `cfgadm` command with PCIe peripherals, see “PCI or PCIe Hot-Plugging With the `cfgadm` Command (Task Map)” on page 105.

USB and 1394 (FireWire) Support Enhancements

Solaris 10 6/06: In this Solaris release, both non-removable USB storage devices and 1394 mass storage devices are identified as hotpluggable devices at the driver level. This new behavior means that these devices can be connected or disconnected without rebooting the system and configured or unconfigured automatically without intervention. These changes are made at the kernel level and do not impact the use of these devices. For example, the responsibility of mounting and unmounting these devices is controlled by the removable media management services.
In addition, non-removable USB devices and 1394 mass storage devices can be accessed and labeled by using the `format` utility. However, you can override the new hotpluggable behavior of these devices by setting the `remvalue` to true in the `/kernel/drv/scsa2usb.conf` file. Setting this parameter to true means that the device is treated as a removable media device at the driver level, if that behavior is preferred.

For more information on using these devices, see `scsa1394(7D)` and "Using USB Mass Storage Devices (Task Map)" on page 140.

**Improved Device In Use Error Checking**

**Solaris 10 6/06:** This feature was undocumented previously.

The following utilities have been enhanced to detect when a specified device is in use:

- `dumpadm`
- `format`
- `mkfs` and `newfs`
- `swap`

These enhancements mean that the above utilities might detect some of the following usage scenarios:

- Device is part of a ZFS storage pool
- Device is a dump or swap device
- Mounted file system or an entry for the device exists in the `/etc/vfstab` file
- Device is part of live upgrade configuration
- Device is part of a Solaris Volume Manager configuration or Veritas Volume Manager configuration

For example, if you attempt to use the `format` utility to access an active device, you will see a message similar to the following:

```
format
.
.
.
Specify disk (enter its number): 1
selecting c0t1d0
[disk formatted]
Warning: Current Disk has mounted partitions.
/dev/dsk/c0t1d0s0 is currently mounted on /. Please see umount(1M).
/dev/dsk/c0t1d0s1 is currently used by swap. Please see swap(1M).
```
However, these utilities do not detect all scenarios in the same way. For example, you can use the `newfs` command to create a new file system on a device in a live upgrade configuration. You cannot use the `newfs` command to create a new file system on a device that is part of a live upgrade configuration if it also has a mounted file system.

**Where to Find Device Management Tasks**

The following table describes where to find step-by-step instructions for hot-plugging devices and adding serial devices, such as printers and modems, and peripheral devices, such as a disk, CD-ROM, or tape device.

<table>
<thead>
<tr>
<th>Device Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a disk that is not hot-pluggable.</td>
<td>Chapter 12, “SPARC: Adding a Disk (Tasks)” or Chapter 13, “x86: Adding a Disk (Tasks)”</td>
</tr>
<tr>
<td>Hot-plug a SCSI or PCI device.</td>
<td>“SCSI Hot-Plugging With the <code>cfgadm</code> Command” on page 96 or “PCI or PCIe Hot-Plugging With the <code>cfgadm</code> Command” on page 106</td>
</tr>
<tr>
<td>Hot-plug a USB device.</td>
<td>“Using USB Mass Storage Devices (Task Map)” on page 140</td>
</tr>
<tr>
<td>Add a CD-ROM or tape device.</td>
<td>“How to Add a Peripheral Device” on page 82</td>
</tr>
<tr>
<td>Add a modem.</td>
<td>Chapter 8, “Managing Terminals and Modems (Overview),” in <em>System Administration Guide: Advanced Administration</em></td>
</tr>
<tr>
<td>Add a printer.</td>
<td>Chapter 1, “Administering Printing Services (Overview),” in <em>System Administration Guide: Advanced Administration</em></td>
</tr>
<tr>
<td>Secure a device.</td>
<td>Chapter 4, “Controlling Access to Devices (Tasks),” in <em>System Administration Guide: Security Services</em></td>
</tr>
</tbody>
</table>

**Managing Devices in the Solaris OS**

The following sections provide overview information about features that manage devices in the Solaris OS. For information about accessing devices, see “Accessing Devices” on page 85.

**Power Management of Devices**

The United States Environmental Protection Agency created the Energy Star® guidelines for computer products to encourage the use of energy-efficient computer systems and to reduce air
pollution associated with energy generation. To meet these guidelines, Sun hardware is
designed to use power efficiently. In addition, power management software is provided to
configure the power management settings.

For more information about power managing your system, see your specific hardware
documentation or power.conf(4).

**Power Management of Fibre Channel Devices**

Power management of Sun systems has been provided in many previous Solaris releases. For
example, the internal drives on the following systems are power managed by default:

- SunBlade 1000 or 2000
- SunBlade 100 or 150
- SunBlade 2500 or 1500

The default settings in the `/etc/power.conf` file ensure Energy Star compliance and fully
support power management of these systems.

The following adapters connect external Fibre Channel storage devices:

- Sun StorEdge PCI Dual Fibre Channel Host Adapter
- Sun StorEdge PCI Single Fibre Channel Network Adapter

If a combination of the above adapters and Sun systems are used to attach external Fibre
Channel storage devices, the external storage devices will also be power managed by default.

Under the following conditions, power management should be disabled:

- If the system has Fibre Channel attached disks that are connected to a storage area network
  (SAN)
- If the system has Fibre Channel attached disks that are used in a multi-initiator
  configuration, such as with the SunCluster software
- If the system is using IP over a Fibre Channel interface (see `fcip(7D)`)

Power management should not be enabled when more than one Solaris system might share the
same devices, as in the above conditions.

You can disable power management for the system by changing the `autopm` keyword in the
`/etc/power.conf` file as follows:

```
autopm disable
```

Then, reconfigure power management by running the `pmconfig` command or by rebooting the
system.

For more information, see `power.conf(4)` and `pmconfig(1M)`.
About Device Drivers

A computer typically uses a wide range of peripheral devices and mass-storage devices. Your system, for example, probably has a disk drive, a keyboard and a mouse, and some kind of magnetic backup medium. Other commonly used devices include the following:

- CD-ROM drives
- Printers and plotters
- Light pens
- Touch-sensitive screens
- Digitizers
- Tablet-and-stylus pairs

The Solaris software does not directly communicate with all these devices. Each type of device requires different data formats, protocols, and transmission rates.

A **device driver** is a low-level program that allows the operating system to communicate with a specific piece of hardware. The driver serves as the operating system’s “interpreter” for that piece of hardware.

Automatic Configuration of Devices

The kernel consists of a small generic core with a platform-specific component and a set of modules. The kernel is configured automatically in the Solaris release.

A **kernel module** is a hardware or software component that is used to perform a specific task on the system. An example of a loadable kernel module is a device driver that is loaded when the device is accessed.

The platform-independent kernel is `/kernel/genunix`. The platform-specific component is `/platform/`uname -m`/kernel/unix`.

The kernel modules are described in the following table.

<table>
<thead>
<tr>
<th>Location</th>
<th>Directory Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/platform/</code>uname -m<code>/kernel</code></td>
<td>Platform-specific kernel components</td>
</tr>
<tr>
<td><code>/kernel</code></td>
<td>Kernel components common to all platforms that are needed for booting the system</td>
</tr>
<tr>
<td><code>/usr/kernel</code></td>
<td>Kernel components common to all platforms within a particular instruction set</td>
</tr>
</tbody>
</table>
The system determines what devices are attached to it at boot time. Then, the kernel configures itself dynamically, loading needed modules into memory. At this time, device drivers are loaded when devices, such as disk devices and tape devices, are accessed. This process is called *autoconfiguration* because all kernel modules are loaded automatically when they are needed.

You can customize the way in which kernel modules are loaded by modifying the `/etc/system` file. For instructions on modifying this file, see `system(4)`.

**Features and Benefits of Autoconfiguration**

The benefits of autoconfiguration are as follows:

- Main memory is used more efficiently because modules are loaded when needed.
- There is no need to reconfigure the kernel when new devices are added to the system.
- Drivers can be loaded and tested without having to rebuild the kernel and reboot the system.

Autoconfiguration is used when you add a new device (and driver) to the system. At this time, you might need to perform reconfiguration boot so that the system recognizes the new device unless the device is hot-pluggable. For information about hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

**What You Need for Unsupported Devices**

Device drivers needed to support a wide range of standard devices are included in the Solaris release. These drivers can be found in the `/kernel/drv` and `/platform/` directories.

However, if you have purchased an unsupported device, the manufacturer should provide the software that is needed for the device to be properly installed, maintained, and administered.

At a minimum, this software includes a device driver and its associated configuration (.conf) file. The .conf files reside in the `drv` directories. This software might also include custom maintenance and administrative utilities because the device might be incompatible with Solaris utilities.

For more information about what you need for unsupported devices, contact your device manufacturer.

**Displaying Device Configuration Information**

Three commands are used to display system and device configuration information.
### Command Description Man Page

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prtconf</code></td>
<td>Displays system configuration information, including the total amount of memory and the device configuration as described by the system's device hierarchy. The output displayed by this command depends upon the type of system.</td>
<td><code>prtconf(1M)</code></td>
</tr>
<tr>
<td><code>sysdef</code></td>
<td>Displays device configuration information, including system hardware, pseudo devices, loadable modules, and selected kernel parameters.</td>
<td><code>sysdef(1M)</code></td>
</tr>
<tr>
<td><code>dmesg</code></td>
<td>Displays system diagnostic messages as well as a list of devices attached to the system since the last reboot.</td>
<td><code>dmesg(1M)</code></td>
</tr>
</tbody>
</table>

For information on the device names that are used to identify devices on the system, see "Device Naming Conventions" on page 86.

**driver not attached** **Message**

The following driver-related message might be displayed by the `prtconf` and `sysdef` commands:

```
device, instance #number (driver not attached)
```

This message does not always mean that a driver is unavailable for this device. This message means that no driver is currently attached to the device instance because no device exists at this node or the device is not in use. Drivers are loaded automatically when the device is accessed. They are unloaded when the device is not in use.

▼ **How to Display System Configuration Information**

Use the output of the `prtconf` and `sysdef` commands to identify which disk, tape, and CD-ROM devices are connected to the system. The output of these commands displays the **driver not attached** messages next to the device instances. Because these devices are always being monitored by some system process, the **driver not attached** message is usually a good indication that no device exists at that device instance.

Use the `sysdef` command to display system configuration information that include pseudo devices, loadable modules, and selected kernel parameters.

- **Display system and device configuration information.**
- Display all the devices connected to a system.

For example, the following `prtconf -v` output on a SunBlade 1000 identifies the disk devices connected to the system. The detailed disk information is described in the `Device Minor Nodes` section within the `ssd/fp` driver section.
Displaying System Configuration Information

The following prtconf output is displayed on a SPARC based system.
# prtconf
System Configuration: Sun Microsystems sun4u
Memory size: 512 Megabytes
System Peripherals (Software Nodes):

SUNW,Sun-Blade-1000
  scsi_vhci, instance #0
packages (driver not attached)
  SUNW,builtin-drivers (driver not attached)
deblocker (driver not attached)
disk-label (driver not attached)
terminal-emulator (driver not attached)
  obp-tftp (driver not attached)
drops (driver not attached)
  kbd-translator (driver not attached)
  ufs-file-system (driver not attached)
chosen (driver not attached)
openprom (driver not attached)
  client-services (driver not attached)
options, instance #0
  aliases (driver not attached)
memory (driver not attached)
  virtual-memory (driver not attached)
SUNW,UltraSPARC-III, instance #0
memory-controller, instance #0
SUNW,UltraSPARC-III, instance #1
memory-controller, instance #1
pci, instance #0
  ebus, instance #0
  flashprom (driver not attached)
  bbc (driver not attached)
  ppm, instance #0
i2c, instance #0
  dimm-fru, instance #0
  dimm-fru, instance #1
  dimm-fru, instance #2
  dimm-fru, instance #3
  nvram, instance #4
  idprom (driver not attached)
i2c, instance #1
  cpu-fru, instance #5
  temperature, instance #0
  cpu-fru, instance #6
  temperature, instance #1
  fan-control, instance #0
  motherboard-fru, instance #7
  i2c-bridge (driver not attached)
beep, instance #0
The following sysdef output is displayed from an x86 based system.

```
sysdef
* Hostid

 29f10b4d

 * i86pc Configuration
 *
 *
 * Devices
 *
 *boot (driver not attached)
 memory (driver not attached)
 aliases (driver not attached)
 chosen (driver not attached)
```
Adding a Peripheral Device to a System

Adding a new peripheral device that is not-pluggable usually involves the following:

- Shutting down the system
- Connecting the device to the system
- Rebooting the system

Use “How to Add a Peripheral Device” on page 82 to add the following devices that are not hot-pluggable to a system:

- CD-ROM
- Secondary disk drive
- Tape drive
- SBUS card

In some cases, you might have to add a third-party device driver to support the new device.

For information on hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

▼ How to Add a Peripheral Device

1 Become superuser.
2 (Optional) If you need to add a device driver to support the device, complete the procedure “How to Add a Device Driver” on page 84.

3 Create the /reconfigure file.

```bash
touch /reconfigure
```

The /reconfigure file causes the Solaris software to check for the presence of any newly installed devices the next time you turn on or boot your system.

4 Shut down the system.

```bash
shutdown -i0 -g30 -y
```

- `-i0` Brings the system to the 0 init state, which is the appropriate state for turning the system power off for adding and removing devices.
- `-g30` Shuts the system down in 30 seconds. The default is 60 seconds.
- `-y` Continues the system shutdown without user intervention. Otherwise, you are prompted to continue the shutdown process.

5 Select one of the following to turn off power to the system after it is shut down:

- For SPARC platforms, it is safe to turn off power if the OK prompt is displayed.
- For x86 platforms, it is safe to turn off power if the type any key to continue prompt is displayed.

6 Turn off power to all peripheral devices.

For the location of power switches on any peripheral devices, refer to the hardware installation guides that accompany your peripheral devices.

7 Install the peripheral device, making sure that the device you are adding has a different target number than the other devices on the system.

Often, a small switch is located at the back of the disk for selecting the target number. Refer to the hardware installation guide that accompanies the peripheral device for information on installing and connecting the device.

8 Turn on the power to the system.

The system boots to multiuser mode, and the login prompt is displayed.

9 Verify that the peripheral device has been added by attempting to access the device.

For information on accessing the device, see “Accessing Devices” on page 85.
How to Add a Device Driver

This procedure assumes that the device has already been added to the system. If not, see “What You Need for Unsupported Devices” on page 77.

1 Become superuser.

2 Place the tape, diskette, or CD-ROM into the drive.

3 Install the driver.
   
   # pkgadd [-d] device package-name
   
   -d device Identifies the device path name that contains the package.
   
   package-name Identifies the package name that contains the device driver.

4 Verify that the package has been added correctly.
   
   # pkgchk package-name
   
   The system prompt returns with no response if the package is installed correctly.

Example 5–2 Adding a Device Driver

The following example shows how to install and verify a package called XYZdrv.

# pkgadd XYZdrv
(licensing messages displayed)
.
.
.
Installing XYZ Company driver as <XYZdrv>
.
.
.
Installation of <XYZdrv> was successful.
# pkgchk XYZdrv
#
Accessing Devices

You need to know how to specify device names when using commands to manage disks, file systems, and other devices. In most cases, you can use logical device names to represent devices that are connected to the system. Both logical and physical device names are represented on the system by logical and physical device files.

How Device Information Is Created

When a system is booted for the first time, a device hierarchy is created to represent all the devices connected to the system. The kernel uses the device hierarchy information to associate drivers with their appropriate devices. The kernel also provides a set of pointers to the drivers that perform specific operations.

How Devices Are Managed

The devfs file system manages the /devices directory, which is the name space of all devices on the system. This directory represents the physical devices that consists of actual bus and device addresses.

The dev file system manages the /dev directory, which is the name space of logical device names.

By default, the devfsadm command attempts to load every driver in the system and attach to all possible device instances. Then, devfsadm creates the device files in the /devices directory and the logical links in the /dev directory. The devfsadm command also maintains the path_to_inst instance database.

Updates to the /dev and /devices directories in response to dynamic reconfiguration events or file system accesses are handled by devfsadm, the daemon version of the devfsadm command. This daemon is started by the service management facility when a system is booted.

Because the devfsadm daemon automatically detects device configuration changes generated by any reconfiguration event, there is no need to run this command interactively.

For more information, see the following references:

- devfsadm(1M)
- dev(7FS)
- devfs(7FS)
- path_to_inst(4)
Device Naming Conventions

Devices are referenced in three ways in the Solaris OS.

- **Physical device name** – Represents the full device path name in the device information hierarchy. The physical device name is created by when the device is first added to the system. Physical device files are found in the `/devices` directory.

- **Instance name** – Represents the kernel’s abbreviation name for every possible device on the system. For example, `sd0` and `sd1` represent the instance names of two disk devices. Instance names are mapped in the `/etc/path_to_inst` file.

- **Logical device name** – The logical device name is created by when the device is first added to the system. Logical device names are used with most file system commands to refer to devices. For a list of file commands that use logical device names, see Table 5–3. Logical device files in the `/dev` directory are symbolically linked to physical device files in the `/devices` directory.

The preceding device name information is displayed with the following commands:

- `dmesg`
- `format`
- `sysdef`
- `prtconf`

Logical Disk Device Names

Logical device names are used to access disk devices when you perform the following tasks:

- Add a new disk to the system.
- Move a disk from one system to another system.
- Access or mount a file system residing on a local disk.
- Back up a local file system.

Many administration commands take arguments that refer to a disk slice or file system.

Refer to a disk device by specifying the subdirectory to which it is symbolically linked, either `/dev/dsk` or `/dev/rdsk`, followed by a string identifying the particular controller, disk, and slice.
Specifying the Disk Subdirectory

Disk and file administration commands require the use of either a raw (or character) device interface, or a block device interface. The distinction is made by how data is read from the device.

Raw device interfaces transfer only small amounts of data at a time. Block device interfaces include a buffer from which large blocks of data are read at once.

Different commands require different interfaces:

- When a command requires the raw device interface, specify the /dev/rdsk subdirectory. ('The “r” in rdsk stands for “raw.”')
- When a command requires the block device interface, specify the /dev/dsk subdirectory.
- When you are not sure whether a command requires use of /dev/dsk or /dev/rdsk, check the man page for that command.

The following table shows which interface is required for some commonly used disk and file system commands.

<table>
<thead>
<tr>
<th>Command Reference</th>
<th>Interface Type</th>
<th>Example of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>df(1M)</td>
<td>Block</td>
<td>df /dev/dsk/c0t3d0s6</td>
</tr>
<tr>
<td>fsck(1M)</td>
<td>Raw</td>
<td>fsck -p /dev/rdsk/c0t0d0s0</td>
</tr>
<tr>
<td>mount(1M)</td>
<td>Block</td>
<td>mount /dev/dsk/c1t0d0s7 /export/home</td>
</tr>
<tr>
<td>newfs(1M)</td>
<td>Raw</td>
<td>newfs /dev/rdsk/c0t0d1s1</td>
</tr>
<tr>
<td>prtvtoc(1M)</td>
<td>Raw</td>
<td>prtvtoc /dev/rdsk/c0t0d0s2</td>
</tr>
</tbody>
</table>
Direct and Bus-Oriented Controllers

You might access disk partitions or slices differently depending upon whether the disk device is connected to a direct or bus-oriented controller. Generally, direct controllers do not include a target identifier in the logical device name.

The conventions for both types of controllers are explained in the following subsections.

Note – Controller numbers are assigned automatically during system initialization. The numbers are strictly logical and imply no direct mapping to physical controllers.

x86: Disks With Direct Controllers

To specify a slice on a disk with an IDE controller on an x86 based system, follow the naming convention shown in the following figure.

FIGURE 5–2 x86: Disks With Direct Controllers

To indicate the entire Solaris fdisk partition, specify slice 2 (s2).

If you have only one controller on your system, w is usually 0.

Disks With Bus-Oriented Controllers

To specify a slice on a disk with a bus-oriented controller, SCSI for instance, follow the naming convention shown in the following figure.

FIGURE 5–3 Disks With Bus-Oriented Controllers

On a SPARC based system with directly connected disks such as the IDE disks on an UltraSPARC® system, the naming convention is the same as that for systems with bus-oriented controllers.

If you have only one controller on your system, w is usually 0.
For SCSI controllers, x is the target address set by the switch on the back of the unit, and y is the logical unit number (LUN) of the drive attached to the target. If the disk has an embedded controller, y is usually 0. For more information about SCSI addressing on SPARC based systems, see the SunSolve™ Info Doc 48041 and scsi_address(9S).

To indicate the whole disk, specify slice 2 (s2).

**Logical Tape Device Names**

Logical tape device files are found in the /dev/rmt/* directory as symbolic links from the /devices directory.

```
/dev/rmt/xy
```

- **Optional density**
  - l low
  - m medium
  - h high
  - u ultra
  - c compressed
- **Drive number (0-n)**
- **Raw magnetic tape device directory**
- **Devices directory**

**FIGURE 5–4  Logical Tape Device Names**

The first tape device connected to the system is 0 (/dev/rmt/0). Tape density values (l, m, h, c, and u) are described in Chapter 29, “Managing Tape Drives (Tasks).”

**Logical Removable Media Device Names**

Since removable media is managed by removable media management services, the logical device name is usually not used unless you want to mount the media manually.

The logical device name that represents the removable media devices on a system are described in Chapter 3, “Accessing Removable Media (Tasks).”
This chapter provides instructions for dynamically configuring devices in the Solaris OS. You can add, remove, or replace devices in the Solaris OS while the system is still running, if the system components support hot-plugging. If the system components do not support hot-plugging, you can reboot the system to reconfigure the devices.

For information on the procedures associated with dynamically configuring devices, see the following:

- “SCSI Hot-Plugging With the \texttt{cfgadm} Command (Task Map)” on page 95
- “PCI or PCIe Hot-Plugging With the \texttt{cfgadm} Command (Task Map)” on page 105
- “Application Developer RCM Script (Task Map)” on page 114
- “System Administrator RCM Script (Task Map)” on page 115

For information on hot-plugging USB devices with the \texttt{cfgadm} command, see “Hot-Plugging USB Devices With the \texttt{cfgadm} Command” on page 165.

For information about accessing devices, see “Accessing Devices” on page 85.

**Dynamic Reconfiguration and Hot-Plugging**

*Hot-plugging* is the ability to physically add, remove, or replace system components while the system is running. *Dynamic reconfiguration* refers to the ability to hot-plug system components. This term also refers to the general ability to move system resources (both hardware and software) around in the system or to disable them in some way without physically removing them from the system.

Generally, you can hot-plug the following bus types:

- USB
- Fibre Channel
- 1394
- ATA
SCSI

In addition, you can hot-plug the following devices with the `cfgadm` command:

- USB devices on SPARC and x86 platforms
- SCSI devices on SPARC and x86 platforms
- PCI devices on SPARC and x86 platforms
- PCIe devices on SPARC or x86 platforms

Features of the `cfgadm` command include the following:

- Displaying system component status
- Testing system components
- Changing component configurations
- Displaying configuration help messages

The benefit of using the `cfgadm` command to reconfigure systems components is that you can add, remove, or replace components while the system is running. An added benefit is that the `cfgadm` command guides you through the steps needed to add, remove, or replace system components.

For step-by-step instructions on hot-plugging components, see the following:

- “SCSI Hot-Plugging With the `cfgadm` Command” on page 96
- “PCI or PCIe Hot-Plugging With the `cfgadm` Command” on page 106
- `cfgadm(1M)`

**Note** – Not all SCSI and PCI controllers support hot-plugging with the `cfgadm` command.

As part of Sun's high availability strategy, dynamic reconfiguration is expected to be used in conjunction with additional layered products, such as alternate pathing or failover software. Both products provide fault tolerance in the event of a device failure.

Without any high availability software, you can replace a failed device by manually stopping the appropriate applications, unmounting noncritical file systems, and then proceeding with the add or remove operations.

**Note** – Some systems have slots that hot-pluggable and slots that are not hot-pluggable. For information about hot-plugging devices on your specific hardware configuration, such as on enterprise-level systems, refer to your hardware configuration documentation.
Attachment Points

The `cfgadm` command displays information about *attachment points*, which are locations in the system where dynamic reconfiguration operations can occur.

An attachment point consists of the following:

- An *occupant*, which represents a hardware component that can be configured into the system
- A *receptacle*, which is the location that accepts the occupant

Attachment points are represented by logical and physical attachment point IDs (Ap_Ids). The physical Ap_Id is the physical path name of the attachment point. The logical Ap_Id is a user-friendly alternative for the physical Ap_Id. For more information on Ap_Ids, refer to `cfgadm(1M)`.

The logical Ap_Id for a SCSI Host Bus Adapter (HBA), or SCSI controller, is usually represented by the controller number, such as c0.

In cases where no controller number has been assigned to a SCSI HBA, then an internally generated unique identifier is provided. An example of a unique identifier for a SCSI controller is the following:

`fas1:scsi`

The logical Ap_Id for a SCSI device usually has this format:

`HBA-logical-apid::device-identifier`

In the following example, c0 is the logical Ap_Id for the SCSI HBA:

`c0::dsk/c0t3d0`

The device identifier is typically derived from the logical device name for the device in the `/dev` directory. For example, a tape device with logical device name, `/dev/rmt/1`, has the following logical Ap_Id:

`c0::rmt/1`

If a logical Ap_Id of a SCSI device cannot be derived from the logical name in the `/dev` directory, then an internally generated unique identifier is provided. An example of an identifier for the `/dev/rmt/1` tape device is the following:

`c0::st4`

For more information on SCSI Ap_Ids, refer to `cfgadm_scsi(1M)`.
The `cfgadm` command represents all resources and dynamic reconfiguration operations in terms of a common set of states (such as configured and unconfigured) and operations (such as connect, configure, unconfigure, and so on). For more information on these common states and operations, see `cfgadm(1M)`.

The following table shows the receptacle and occupant states for the SCSI HBA attachment points.

<table>
<thead>
<tr>
<th>Receptacle State</th>
<th>Description</th>
<th>Occupant State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>N/A for SCSI HBA</td>
<td>configured</td>
<td>One or more devices is configured on the bus</td>
</tr>
<tr>
<td>disconnected</td>
<td>Bus quiesced</td>
<td>unconfigured</td>
<td>No devices are configured</td>
</tr>
<tr>
<td>connected</td>
<td>Bus active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table shows the receptacle and occupant states for SCSI device attachment points.

<table>
<thead>
<tr>
<th>Receptacle State</th>
<th>Description</th>
<th>Occupant State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>N/A for SCSI devices</td>
<td>configured</td>
<td>Device is configured</td>
</tr>
<tr>
<td>disconnected</td>
<td>Bus quiesced</td>
<td>unconfigured</td>
<td>Device is not configured</td>
</tr>
<tr>
<td>connected</td>
<td>Bus active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The state of SCSI attachment points is unknown unless special hardware indicates otherwise. For instructions on displaying SCSI component information, see “How to Display Information About SCSI Devices” on page 96.

**Detaching PCI or PCIe Adapter Cards**

A PCI adapter card that is hosting nonvital system resources can be removed if the device driver supports hot-plugging. A PCI adapter card is not detachable if it is a vital system resource. For a PCI adapter card to be detachable, the following conditions must be met:

- The device driver must support hot-plugging.
- Critical resources must be accessible through an alternate pathway.

For example, if a system has only one Ethernet card installed in it, the Ethernet card cannot be detached without losing the network connection. This detachment requires additional layered software support to keep the network connection active.
Attaching PCI or PCIe Adapter Cards

A PCI adapter card can be added to the system as long as the following conditions are met:

- There are slots available.
- The device driver supports hot-plugging for this adapter card.

For step-by-step instructions on adding or removing a PCI adapter card, see “PCI or PCIe Hot-Plugging With the cfdadm Command” on page 106.

SCSI Hot-Plugging With the cfdadm Command (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about SCSI devices.</td>
<td>Display information about SCSI controllers and devices.</td>
<td>“How to Display Information About SCSI Devices” on page 96</td>
</tr>
<tr>
<td>Unconfigure a SCSI controller.</td>
<td>Unconfigure a SCSI controller.</td>
<td>“How to Unconfigure a SCSI Controller” on page 97</td>
</tr>
<tr>
<td>Configure a SCSI controller.</td>
<td>Configure a SCSI controller that was previously unconfigured.</td>
<td>“How to Configure a SCSI Controller” on page 97</td>
</tr>
<tr>
<td>Configure a SCSI device.</td>
<td>Configure a specific SCSI device.</td>
<td>“How to Configure a SCSI Device” on page 98</td>
</tr>
<tr>
<td>Disconnect a SCSI controller.</td>
<td>Disconnect a specific SCSI controller.</td>
<td>“How to Disconnect a SCSI Controller” on page 99</td>
</tr>
<tr>
<td>Connect a SCSI controller.</td>
<td>Connect a specific SCSI controller that was previously disconnected.</td>
<td>“SPARC: How to Connect a SCSI Controller” on page 100</td>
</tr>
<tr>
<td>Add a SCSI device to a SCSI bus.</td>
<td>Add a specific SCSI device to a SCSI bus.</td>
<td>“SPARC: How to Add a SCSI Device to a SCSI Bus” on page 100</td>
</tr>
<tr>
<td>Replace an identical device on a SCSI controller.</td>
<td>Replace a device on the SCSI bus with another device of the same type.</td>
<td>“SPARC: How to Replace an Identical Device on a SCSI Controller” on page 101</td>
</tr>
<tr>
<td>Remove a SCSI device.</td>
<td>Remove a SCSI device from the system.</td>
<td>“SPARC: How to Remove a SCSI Device” on page 103</td>
</tr>
<tr>
<td>Troubleshoot SCSI configuration problems.</td>
<td>Resolve a failed SCSI unconfigure operation.</td>
<td>“How to Resolve a Failed SCSI Unconfigure Operation” on page 105</td>
</tr>
</tbody>
</table>
SCSI Hot-Plugging With the `cfgadm` Command

This section describes various SCSI hot-plugging procedures that you can perform with the `cfgadm` command.

**Note** – The SCSI framework generally supports hot-plugging of SCSI devices. However, you should consult your hardware documentation to confirm whether hot-plugging is supported for your SCSI devices.

These procedures use specific devices as examples to illustrate how to use the `cfgadm` command to hot-plug SCSI components. The device information that you supply, and that the `cfgadm` command displays, depends on your system configuration.

▼ How to Display Information About SCSI Devices

The following procedure uses SCSI controllers `c0` and `c1` and the devices that are attached to them in the examples of the type of device configuration information that you can display with the `cfgadm` command.

**Note** – If the SCSI device is not supported by the `cfgadm` command, the device does not display in the `cfgadm` command output.

1. **Become superuser.**

2. **Display information about attachment points on the system.**

   ```
 # cfgadm -l
 Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
 c1 scsi-bus connected configured unknown
   ```

   In this example, `c0` and `c1` represent two SCSI controllers.

3. **Display information about a system’s SCSI controllers and their attached devices.**

   ```
 # cfgadm -al
 Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
 c0::dsk/c0t0d0 disk connected configured unknown
 c0::rmt/0 tape connected configured unknown
 c1 scsi-bus connected configured unknown
 c1::dsk/c1t3d0 disk connected configured unknown
 c1::dsk/c1t4d0 unavailable connected unconfigured unknown
   ```
Note – The `cfgadm -l` command displays information about SCSI HBAs but not SCSI devices. Use the `cfgadm -al` command to display information about SCSI devices such as disk and tapes.

▼ How to Unconfigure a SCSI Controller

The following procedure uses SCSI controller `c1` in the example of unconfiguring a SCSI controller.

1 Become superuser.

2 Unconfigure a SCSI controller.
   
   # cfgadm -c unconfigure c1

3 Verify that the SCSI controller is unconfigured.
   
   # cfgadm -al

```
Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
 c0::dsk/c0t0d0 disk connected configured unknown
 c0::rmt/0 tape connected configured unknown
 c1 scsi-bus connected unconfigured unknown
```

Notice that the `Occupant` column for `c1` specifies unconfigured, indicating that the SCSI bus has no configured occupants.

If the unconfigure operation fails, see "How to Resolve a Failed SCSI Unconfigure Operation" on page 105.

▼ How to Configure a SCSI Controller

The following procedure uses SCSI controller `c1` in the example of configuring a SCSI controller.

1 Become superuser.

2 Configure a SCSI controller.
   
   # cfgadm -c configure c1

3 Verify that the SCSI controller is configured.
   
   # cfgadm -al

```
Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
```
The previous unconfigure procedure removed all devices on the SCSI bus. Now all the devices are configured back into the system.

### How to Configure a SCSI Device

The following procedure uses SCSI disk `c1t4d0` in the example of configuring a SCSI device.

1. Become superuser.

2. Identify the device to be configured.

   ```
 # cfgadm -al

 Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
 c0::dsk/c0t0d0 disk connected configured unknown
 c0::rmt/0 tape connected configured unknown
 c1 scsi-bus connected configured unknown
 c1::dsk/c1t3d0 disk connected configured unknown
 c1::dsk/c1t4d0 unavailable connected unconfigured unknown

 #
   ```

3. Configure the SCSI device.

   ```
 # cfgadm -c configure c1::dsk/c1t4d0

 #
   ```

4. Verify that the SCSI device is configured.

   ```
 # cfgadm -al

 Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
 c0::dsk/c0t0d0 disk connected configured unknown
 c0::rmt/0 tape connected configured unknown
 c1 scsi-bus connected configured unknown
 c1::dsk/c1t3d0 disk connected configured unknown
 c1::dsk/c1t4d0 disk connected configured unknown
   ```
How to Disconnect a SCSI Controller

Caution – Disconnecting a SCSI device must be done with caution, particularly when you are dealing with controllers for disks that contain critical file systems such as root (/), usr, var, and the swap partition. The dynamic reconfiguration software cannot detect all cases where a system hang might result. Use this procedure with caution.

The following procedure uses SCSI controller c1 in the example of disconnecting a SCSI device.

1 Become superuser.

2 Verify that the device is connected before you disconnect it.

   # cfgadm -al

   Ap_Id      Type     Receptacle   Occupant   Condition
   c0        scsi-bus  connected   configured unknown
   c0::dsk/c0t0d0 disk      connected   configured unknown
   c0::rmt/0  tape      connected   configured unknown
   c1        scsi-bus  connected   configured unknown
   c1::dsk/clt3d0 disk      connected   configured unknown
   c1::dsk/clt4d0 disk      connected   configured unknown

3 Disconnect the SCSI controller.

   # cfgadm -c disconnect c1
   WARNING: Disconnecting critical partitions may cause system hang.
   Continue (yes/no)? y

Caution – This command suspends all I/O activity on the SCSI bus until the cfgadm -c connect command is used. The cfgadm command does some basic checking to prevent critical partitions from being disconnected, but it cannot detect all cases. Inappropriate use of this command can result in a system hang and could require a system reboot.

4 Verify that the SCSI bus is disconnected.

   # cfgadm -al

   Ap_Id      Type     Receptacle   Occupant   Condition
   c0        scsi-bus  connected   configured unknown
   c0::dsk/c0t0d0 disk      connected   configured unknown
   c0::rmt/0  tape      connected   configured unknown
   c1        unavailable disconnected configured unknown
   c1::dsk/clt3d0 unavailable disconnected configured unknown
   c1::dsk/clt4d0 unavailable disconnected configured unknown

   The controller and all the devices that are attached to it are disconnected from the system.
SPARC: How to Connect a SCSI Controller

The following procedure uses SCSI controller c1 in the example of connecting a SCSI controller.

1 Become superuser.

2 Verify that the device is disconnected before you connect it.

   # cfgadm -al
   Ap_Id  Type     Receptacle  Occupant  Condition
   c0    scsi-bus connected  configured  unknown
   c0::dsk/c0t0d0 disk      connected  configured  unknown
   c0::mnt/0  tape       connected  configured  unknown
   c1    unavailable disconnected configured  unknown
   c1::dsk/c1t3d0 unavailable disconnected configured  unknown
   c1::dsk/c1t4d0 unavailable disconnected configured  unknown

3 Connect the SCSI controller.

   # cfgadm -c connect c1

4 Verify that the SCSI controller is connected.

   # cfgadm -al
   Ap_Id  Type     Receptacle  Occupant  Condition
   c0    scsi-bus connected  configured  unknown
   c0::dsk/c0t0d0 disk      connected  configured  unknown
   c0::mnt/0  tape       connected  configured  unknown
   c1    scsi-bus connected  configured  unknown
   c1::dsk/c1t3d0 disk      connected  configured  unknown
   c1::dsk/c1t4d0 disk      connected  configured  unknown

SPARC: How to Add a SCSI Device to a SCSI Bus

SCSI controller c1 is used in the example of how to add a SCSI device to a SCSI bus.

Note – When you add devices, you specify the Ap_Id of the SCSI HBA (controller) to which the device is attached, not the Ap_Id of the device itself.

1 Become superuser.

2 Identify the current SCSI configuration.

   # cfgadm -al
   Ap_Id  Type     Receptacle  Occupant  Condition
   c0    scsi-bus connected  configured  unknown
3 Add the SCSI device to the SCSI bus.

a. **Type the following `cfgadm` command.**
   For example:
   ```
 # cfgadm -x insert_device c1
 Adding device to SCSI HBA: /devices/sbus@1f,0/SUNW,fas@1,8800000
 This operation will suspend activity on SCSI bus: c1
   ```

b. **Type `y` at the Continue (yes/no)? prompt to proceed.**
   Continue (yes/no)? y
   SCSI bus quiesced successfully.
   It is now safe to proceed with hotplug operation.
   I/O activity on the SCSI bus is suspended while the hot-plug operation is in progress.

c. **Connect the device and then power it on.**

d. **Type `y` at the Enter y if operation is complete or n to abort (yes/no)? prompt.**
   Enter y if operation is complete or n to abort (yes/no)? y

4 **Verify that the device has been added.**
   ```
 # cfgadm -al
 Ap_Id Type Receptacle Occupant Condition
 c0: scsi-bus connected configured unknown
 c0:: disk connected configured unknown
 c0::rmt/0 tape connected configured unknown
 c1: scsi-bus connected configured unknown
 c1::dsk/c1t3d0 disk connected configured unknown
 c1::dsk/c1t4d0 disk connected configured unknown
   ```
   A new disk has been added to controller c1.

▼ **SPARC: How to Replace an Identical Device on a SCSI Controller**

The following procedure uses SCSI disk c1t4d0 in the example of replacing an identical device on a SCSI controller.

1 **Become superuser.**
2 Identify the current SCSI configuration.

```
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

3 Replace a device on the SCSI bus with another device of the same type.

a. **Type the following `cfgadm` command.**

For example:

```
cfgadm -x replace_device c1::dsk/c1t4d0
```

Replacing SCSI device: /devices/sbus@1f,0/SUNW,fas@1.88000000/sd@4,0

This operation will suspend activity on SCSI bus: c1

b. **Type `y` at the Continue (yes/no)? prompt to proceed.**

I/O activity on the SCSI bus is suspended while the hot-plug operation is in progress.

Continue (yes/no)? y

SCSI bus quiesced successfully.

It is now safe to proceed with hotplug operation.

c. **Power off the device to be removed and remove it.**

d. **Add the replacement device. Then, power it on.**

The replacement device should be of the same type and at the same address (target and lun) as the device to be removed.

e. **Type `y` at the Enter y if operation is complete or n to abort (yes/no)? prompt.**

Enter y if operation is complete or n to abort (yes/no)? y

4 **Verify that the device has been replaced.**

```
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>
SPARC: How to Remove a SCSI Device

The following procedure uses SCSI disk c1t4d0 in the example of removing a device on a SCSI controller.

1 Become superuser.

2 Identify the current SCSI configuration.

```bash
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

3 Remove the SCSI device from the system.

a. Type the following `cfgadm` command.

   ```bash
 # cfgadm -x remove_device c1::dsk/c1t4d0
 Removing SCSI device: /devices/sbus@1f,0/SUNW,fas@1,8800000/sd@4,0
 This operation will suspend activity on SCSI bus: c1
   ```

b. Type `y` at the `Continue (yes/no)?` prompt to proceed.

   Continue (yes/no)? y
   SCSI bus quiesced successfully.
   It is now safe to proceed with hotplug operation.
   I/O activity on the SCSI bus is suspended while the hot-plug operation is in progress.

c. Power off the device to be removed and remove it.

d. Type `y` at the `Enter y if operation is complete or n to abort (yes/no)?` prompt.

   Enter y if operation is complete or n to abort (yes/no)? y

4 Verify that the device has been removed from the system.

```bash
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Troubleshooting SCSI Configuration Problems

This section provides error messages and possible solutions for troubleshooting SCSI configuration problems. For more information on troubleshooting SCSI configuration problems, see `cfgadm(1M)`.

Error Message

cfgadm: Component system is busy, try again: failed to offline:

```
 device-path Information
 Resource

/dev/dsk/c1t0d0s0 mounted filesystem "/file-system"
```

Cause

You attempted to remove or replace a device with a mounted file system.

Solution

Unmount the file system that is listed in the error message and retry the `cfgadm` operation.

Error Message

cfgadm: Component system is busy, try again: failed to offline:

```
 device-path Information
 Resource

/dev/dsk/device-name swap area
```

Cause

If you use the `cfgadm` command to remove a system resource, such as a swap device or a dedicated dump device, a similar error message is displayed if the system resource is still active.

Solution

Unconfigure the swap areas on the device that is specified and retry the `cfgadm` operation.

Error Message

cfgadm: Component system is busy, try again: failed to offline:

```
 device-path Information
 Resource

/dev/dsk/device-name dump device (swap)
```

Cause

You attempted to remove or replace a dump device that is configured on a swap area.

Solution

Unconfigure the dump device that is configured on the swap area and retry the `cfgadm` operation.
Error Message

```
cfgadm: Component system is busy, try again: failed to offline:
 device-name dump device (dedicated)
```

<table>
<thead>
<tr>
<th>Resource</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/dsk/device-name</td>
<td>dump device (dedicated)</td>
</tr>
</tbody>
</table>

Cause
You attempted to remove or replace a dedicated dump device.

Solution
Unconfigure the dedicate dump device and retry the `cfgadm` operation.

▼ **How to Resolve a Failed SCSI Unconfigure Operation**

Use this procedure if one or more target devices are busy and the SCSI unconfigure operation fails. Otherwise, future dynamic reconfiguration operations on this controller and target devices will fail with a `dr in progress` message.

1. Become superuser.
2. Reconfigure the controller.
   # `cfgadm -c configure device-name`

**PCI or PCIe Hot-Plugging With the `cfgadm` Command (Task Map)**

The following task map describes the tasks for managing PCI or PCIe devices on your system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display PCI slot configuration information.</td>
<td>Display the status of PCI hot-pluggable devices and slots on the system.</td>
<td>“How to Display PCI Slot Configuration Information” on page 106</td>
</tr>
<tr>
<td>Remove a PCI adapter card.</td>
<td>Unconfigure the card, disconnect power from the slot, and remove the card from the system.</td>
<td>“How to Remove a PCI Adapter Card” on page 108</td>
</tr>
<tr>
<td>Add a PCI adapter card.</td>
<td>Insert the adapter card into a hot-pluggable slot, connect power to the slot, and configure the card.</td>
<td>“How to Add a PCI Adapter Card” on page 110</td>
</tr>
</tbody>
</table>
PCI or PCIe Hot-Plugging With the `cfgadm` Command

This section provides step-by-step instructions for hot-plugging PCI or PCIe adapter cards on SPARC and x86 systems.

In addition to the `cfgadm` command, the `prtconf` command is helpful during hot-plug operations. The `prtconf` command displays additional configuration information that pertains to the hardware.

After adding hardware, you can use the `prtconf` command to verify that the hardware is configured correctly. For example, after a `configure` operation, use the `prtconf -D` command to verify that the driver is attached to the newly installed hardware device. If the device driver has not been added to the system prior to hardware configuration, it may be manually added by using the `add_drv` command.

For more information, see `prtconf(1M)` and `add_drv(1M)`.

In the examples, only PCI attachment points are listed, for brevity. The attachment points that are displayed on your system depend on your system configuration.

PCIe Led Indicator Behavior

You might observe the LED indicators on the system to get a visual indication about the status of the slot's hot-plug operation. The LED behavior, in case of PCI Express, matches that defined in the PCI Express specification or the behavior might otherwise be platform dependent.

Please refer to your platform guide for specific details. In case of PCI Express, when the Attention Button is pressed, the power indicator blinks, which indicates the beginning of a state transition. The blinking ends when the state transition has ended.

▼ How to Display PCI Slot Configuration Information

This procedure has been updated to include PCIe configuration information.

The `cfgadm` command displays the status of PCI hot-pluggable devices and slots on a system. For more information, see `cfgadm(1M)`.

1. Become superuser.
2 Display PCI configuration information.

- Display PCI slot configuration information.
  
  For example:

  ```bash
 # cfgadm
 Ap_Id Type Receptacle Occupant Condition
 pcie1:hpc0_slot0 unknown empty unconfigured unknown
 pcie1:hpc0_slot1 unknown empty unconfigured unknown
 pcie1:hpc0_slot2 unknown empty unconfigured unknown
 pcie1:hpc0_slot3 ethernet/hp connected configured ok
 pcie1:hpc0_slot4 unknown empty unconfigured unknown
  ```

- Display specific PCI device information.
  
  For example:

  ```bash
 # cfgadm -s "cols=ap_id:type:info" pci
 Ap_Id Type Information
 pcie1 unknown Slot 7
 pcie2 unknown Slot 8
 pcie3 unknown Slot 9
 pcie4 ethernet/hp Slot 10
 pcie5 unknown Slot 11
  ```

The logical `Ap_Id`, `pcie1:hpc0_slot0`, is the logical `Ap_Id` for hot-pluggable slot, Slot 7. The component `hpc0` indicates the hot-pluggable adapter card for this slot, and `pci1` indicates the PCI bus instance. The `Type` field indicates the type of PCI adapter card that is present in the slot.

- Display PCIe slot configuration information.
  
  For example:

  ```bash
 # cfgadm pci
 Ap_Id Type Receptacle Occupant Condition
 pcie1 unknown empty unconfigured unknown
 pcie2 unknown empty unconfigured unknown
 pcie3 unknown empty unconfigured unknown
 pcie4 etherne/hp connected configured ok
 pcie5 pci-pci/hp connected configured ok
 pcie6 unknown disconnected unconfigured unknown
  ```

- Display specific PCIe device information.
  
  For example:

  ```bash
 # cfgadm -s "cols=ap_id:busy:o_state" pci
 Ap_Id Busy Occupant
 pcie1 n unconfigured
 pcie2 n unconfigured
  ```
PCI or PCIe Hot-Plugging With the `cfgadm` Command

Note – The logical Ap_Id in most cases should match the slot label that is silk-screened on the system chassis. Refer to your platform guide for the `cfgadm` output of the hot-pluggable slots. The Busy field can be displayed to ensure that the Ap_Id is not transitioning to another state before a hot-plug operation is attempted.

▼ How to Remove a PCI Adapter Card

The following procedure has been updated for removing a PCIe adapter card. However, the procedure to remove an adapter card is the same whether you are using PCI or PCIe.

1 Become superuser.

2 Determine which slot the PCI adapter card is in.

For example:

```
cfgadm pci
Ap_Id Type Receptacle Occupant Condition
pcie1 unknown empty unconfigured unknown
pcie2 unknown empty unconfigured unknown
pcie3 unknown empty unconfigured unknown
pcie4 etherne/hp connected configured ok
pcie5 pci-pci/hp connected configured ok
pcie6 unknown disconnected unconfigured unknown
```

3 Stop the application that has the device open.

For example, if the device is an Ethernet card, use the `ifconfig` command to bring down the interface and unplumb the interface.

4 Unconfigure the device manually by using the `cfgadm(1M)` command as shown below. Or, if you have a PCIe adapter card, use the auto-configuration method, such as pressing the slot’s Attention Button as defined by your platform guide.

```
cfgadm -c unconfigure pcie4
```

5 Confirm that the device has been unconfigured.

For example:

```
cfgadm pci
Ap_Id Type Receptacle Occupant Condition
pcie1 unknown empty unconfigured unknown
```
6 Disconnect the power to the slot manually. If the auto-configuration method is used, this step is not necessary. Refer to your platform guide for more information.

# cfgadm -c disconnect pcie4

7 Confirm that the device has been disconnected.

For example:

# cfgadm pci

8 Follow appropriate instructions in your platform guide to remove the PCI adapter card. After the card is removed, the Receptacle state is empty.

For example:

# cfgadm pci

Note – The auto-configuration method can be enabled or disabled at boot, depending on the platform implementation. Set the auto-configuration method as appropriate for your environment.
How to Add a PCI Adapter Card

The following procedure has been updated for adding a PCIe adapter card. However, the procedure to add an adapter card is the same whether you are using PCI or PCIe.

1 Become superuser.

2 Identify the hot-pluggable slot and open latches.
   For example, pcie3.
   
   ```
 # cfgadm pci
 Ap_Id Type Receptacle Occupant Condition
 pcie1 unknown empty unconfigured unknown
 pcie2 unknown empty unconfigured unknown
 pcie3 unknown empty unconfigured unknown
 pcie4 unknown empty unconfigured unknown
 pcie5 pci-pci/hp connected configured ok
 pcie6 unknown disconnected unconfigured unknown
   ```

3 Follow the appropriate instructions in your platform guide to insert a PCI adapter card into the slot.

4 Determine which slot the PCI adapter card is in after it is inserted.
   For example:
   
   ```
 # cfgadm pci
 Ap_Id Type Receptacle Occupant Condition
 pcie1 unknown empty unconfigured unknown
 pcie2 unknown empty unconfigured unknown
 pcie3 unknown disconnected unconfigured unknown
 pcie4 unknown empty unconfigured unknown
 pcie5 pci-pci/hp connected configured ok
 pcie6 unknown disconnected unconfigured unknown
   ```

5 Connect the power to the slot manually using the `cfgadm` command. Or, if you have a PCIe adapter card, use the auto-configuration method, such as pressing the slot's Attention Button as defined by your platform guide.
   For example:
   
   ```
 # cfgadm -c connect pcie3
   ```

6 Confirm that the attachment point is connected.
   For example:
   
   ```
 # cfgadm pci
 Ap_Id Type Receptacle Occupant Condition
 pcie1 unknown empty unconfigured unknown
 pcie2 unknown empty unconfigured unknown
   ```
Configure the PCI adapter card manually by using the `cfgadm` command as shown below. If using the auto-configuration method, this step should not be necessary. Refer to your platform guide for more information.

For example:
```bash
cfgadm -c configure pcie3
```

Verify the configuration of the PCI adapter card in the slot.

For example:
```bash
cfgadm pci
```

Configure any supporting software if this device is a new device.

For example, if this device is an Ethernet card, use the `ifconfig` command to set up the interface.

---

**Note** – The auto-configuration method can be enabled or disabled at boot, depending on the platform implementation. Set the auto-configuration method as appropriate for your environment.

---

**Troubleshooting PCI Configuration Problems**

**Error Message**

`cfgadm: Configuration operation invalid: invalid transition`

**Cause**

An invalid transition was attempted.

**Solution**

Check whether the `cfgadm -c` command was issued appropriately. Use the `cfgadm` command to check the current receptacle and occupant state and to make sure that the `Ap_Id` is correct.
Error Message

cfgadm: Attachment point not found

Cause
The specified attachment point was not found.

Solution
Check whether the attachment point is correct. Use the `cfgadm` command to display a list of available attachment points. Also check the physical path to see if the attachment point is still there.

Reconfiguration Coordination Manager (RCM) Script Overview

The Reconfiguration Coordination Manager (RCM) is the framework that manages the dynamic removal of system components. By using RCM, you can register and release system resources in an orderly manner.

You can use the new RCM script feature to write your own scripts to shut down your applications, or to cleanly release the devices from your applications during dynamic reconfiguration. The RCM framework launches a script automatically in response to a reconfiguration request, if the request impacts the resources that are registered by the script.

You can also release resources from applications manually before you dynamically remove the resource. Or, you can use the `cfgadm` command with the `-f` option to force a reconfiguration operation. However, this option might leave your applications in an unknown state. Also, the manual release of resources from applications commonly causes errors.

The RCM script feature simplifies and better controls the dynamic reconfiguration process. By creating an RCM script, you can do the following:

- Automatically release a device when you dynamically remove a device. This process also closes the device if the device is opened by an application.
- Run site-specific tasks when you dynamically remove a device from the system.

What Is an RCM Script?

- An executable shell script (Perl, sh, csh, or ksh) or binary program that the RCM daemon runs. Perl is the recommended language.
- A script that runs in its own address space by using the user ID of the script file owner.
- A script that is run by the RCM daemon when you use the `cfgadm` command to dynamically reconfigure a system resource.
What Can an RCM Script Do?

You can use an RCM script to release a device from an application when you dynamically remove a device. If the device is currently open, the RCM script also closes the device.

For example, an RCM script for a tape backup application can inform the tape backup application to close the tape drive or shut down the tape backup application.

How Does the RCM Script Process Work?

You can invoke an RCM script as follows:

```
$ script-name command [args ...]
```

An RCM script performs the following basic steps:

1. Takes the RCM command from command-line arguments.
2. Executes the command.
3. Writes the results to stdout as name-value pairs.
4. Exits with the appropriate exit status.

The RCM daemon runs one instance of a script at a time. For example, if a script is running, the RCM daemon does not run the same script until the first script exits.

RCM Script Commands

You must include the following RCM commands in an RCM script:

- `scriptinfo` – Gathers script information
  - `register` – Registers interest in resources
  - `resourceinfo` – Gathers resource information

You might include some or all of the following RCM commands:

- `queryremove` – Queries whether the resource can be released
- `preremove` – Releases the resource
- `postremove` – Provides post-resource removal notification
- `undo remove` – Undoes the actions done in `preremove`

For a complete description of these RCM commands, see `rcmscript(4)`.

RCM Script Processing Environment

When you dynamically remove a device, the RCM daemon runs the following:

- The script’s `register` command to gather the list of resources (device names) that are identified in the script.
The script’s query remove and preremove commands prior to removing the resource if the script’s registered resources are affected by the dynamic remove operation.

The script’s post remove command if the remove operation succeeds. However, if the remove operation fails, the RCM daemon runs the script’s undoremove command.

**RCM Script Tasks**

The following sections describe the RCM script tasks for application developers and system administrators.

**Application Developer RCM Script (Task Map)**

The following task map describes the tasks for an application developer who is creating an RCM script.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the resources your application uses.</td>
<td>Identify the resources (device names) your application uses that you could potentially dynamically remove.</td>
<td>cfgadm(1M)</td>
</tr>
<tr>
<td>2. Identify the commands to release the resource.</td>
<td>Identify the commands for notifying the application to cleanly release the resource from the application.</td>
<td>Application documentation</td>
</tr>
<tr>
<td>3. Identify the commands for post-removal of the resource.</td>
<td>Include the commands for notifying the application of the resource removal.</td>
<td>rcmscript(4)</td>
</tr>
<tr>
<td>4. Identify the commands if the resource removal fails.</td>
<td>Include the commands for notifying the application of the available resource.</td>
<td>rcmscript(4)</td>
</tr>
<tr>
<td>5. Write the RCM script.</td>
<td>Write the RCM script based on the information identified in tasks 1-4.</td>
<td>&quot;Tape Backup RCM Script Example&quot; on page 117</td>
</tr>
<tr>
<td>6. Install the RCM script.</td>
<td>Add the script to the appropriate script directory.</td>
<td>&quot;How to Install an RCM Script&quot; on page 116</td>
</tr>
<tr>
<td>7. Test the RCM script</td>
<td>Test the script by running the script commands manually and by initiating a dynamic reconfiguration operation.</td>
<td>&quot;How to Test an RCM Script&quot; on page 117</td>
</tr>
</tbody>
</table>
System Administrator RCM Script (Task Map)

The following task map describes the tasks for a system administrator who is creating an RCM script to do site customization.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the resources to be dynamically removed.</td>
<td>Identify the resources (device names) to be potentially removed by using the <code>cfgadm -1</code> command.</td>
<td><code>cfgadm(1M)</code></td>
</tr>
<tr>
<td>2. Identify the applications to be stopped.</td>
<td>Identify the commands for stopping the applications cleanly.</td>
<td>Application documentation</td>
</tr>
<tr>
<td>3. Identify the commands for pre-removal and post-removal of the resource.</td>
<td>Identify the actions to be taken before and after the resource is removed.</td>
<td><code>rcmscript(4)</code></td>
</tr>
<tr>
<td>4. Write the RCM script.</td>
<td>Write the RCM script based on the information identified in tasks 1-3.</td>
<td>“Tape Backup RCM Script Example” on page 117</td>
</tr>
<tr>
<td>5. Install the RCM script.</td>
<td>Add the script to the appropriate script directory.</td>
<td>“How to Install an RCM Script” on page 116</td>
</tr>
<tr>
<td>6. Test the RCM script.</td>
<td>Test the script by running the script commands manually and by initiating a dynamic reconfiguration operation.</td>
<td>“How to Test an RCM Script” on page 117</td>
</tr>
</tbody>
</table>

Naming an RCM Script

A script must be named as `vendor.service` where the following applies:

- `vendor` is the stock symbol of the vendor that provides the script, or any distinct name that identifies the vendor.
- `service` is the name of the service that the script represents.

Installing or Removing an RCM Script

You must be superuser (root) to install or remove an RCM script. Use this table to determine where you should install your RCM script.
TABLE 6–1  RCM Script Directories

<table>
<thead>
<tr>
<th>Directory Location</th>
<th>Script Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/rcm/scripts</td>
<td>Scripts for specific systems</td>
</tr>
<tr>
<td>/usr/platform/'uname -i'/lib/rcm/scripts</td>
<td>Scripts for a specific hardware implementation</td>
</tr>
<tr>
<td>/usr/platform/'uname -m'/lib/rcm/scripts</td>
<td>Scripts for a specific hardware class</td>
</tr>
<tr>
<td>/usr/lib/rcm/scripts</td>
<td>Scripts for any hardware</td>
</tr>
</tbody>
</table>

**How to Install an RCM Script**

1. Become superuser.

2. Copy the script to the appropriate directory.
   
   See Table 6–1.
   
   For example:
   
   ```
 # cp SUNW,sample.pl /usr/lib/rcm/scripts
   ```

3. Change the user ID and the group ID of the script to the desired values.
   
   ```
 # chown user:group /usr/lib/rcm/scripts/SUNW,sample.pl
   ```

4. Send SIGHUP to the RCM daemon.
   
   ```
 # pkill -HUP -x -u root rcm_daemon
   ```

**How to Remove an RCM Script**

1. Become superuser.

2. Remove the script from the RCM script directory.
   
   For example:
   
   ```
 # rm /usr/lib/rcm/scripts/SUNW,sample.pl
   ```

3. Send SIGHUP to the RCM daemon.
   
   ```
 # pkill -HUP -x -u root rcm_daemon
   ```
How to Test an RCM Script

1. Set environment variables, such as `RCM_ENV_FORCE`, in the command-line shell before running your script.
   For example, in the Korn shell, use the following:
   ```
 $ export RCM_ENV_FORCE=TRUE
   ```

2. Test the script by running the script commands manually from the command line.
   For example:
   ```
 $ script-name scriptinfo
 $ script-name register
 $ script-name preremove resource-name
 $ script-name postremove resource-name
   ```

3. Make sure that each RCM script command in your script prints appropriate output to `stdout`.

4. Install the script in the appropriate script directory.
   For more information, see "How to Install an RCM Script" on page 116.

5. Test the script by initiating a dynamic remove operation.
   For example, assume your script registers the device, `/dev/dsk/c1t0d0s0`. Try these commands.
   ```
 $ cfgadm -c unconfigure c1::dsk/c1t0d0
 $ cfgadm -f -c unconfigure c1::dsk/c1t0d0
 $ cfgadm -c configure c1::dsk/c1t0d0
   ```

   Caution – Make sure that you are familiar with these commands because they can alter the state of the system and cause system failures.

Tape Backup RCM Script Example

This example illustrates how to use an RCM script for tape backups.

What the Tape Backup RCM Script Does

The tape backup RCM script performs the following steps:

1. Sets up a dispatch table of RCM commands.
2. Calls the dispatch routine that corresponds to the specified RCM command and exits with status 2 for unimplemented RCM commands.
3. Sets up the `scriptinfo` section.
rcm_script_func_info=Tape backup appl script for DR

4. Registers all tape drives in the system by printing all tape drive device names to stdout.

    rcm_resource_name=/dev/rmt/$f

    If an error occurs, the script prints the error information to stdout.

    rcm_failure_reason=$errmsg

5. Sets up the resource information for the tape device.

    rcm_resource_usage_info=Backup Tape Unit Number $unit

6. Sets up the preremove information by checking if the backup application is using the device. If the backup application is not using the device, the dynamic reconfiguration operation continues. If the backup application is using the device, the script checks RCM_ENV_FORCE. If RCM_ENV_FORCE is set to FALSE, the script denies the dynamic reconfiguration operation and prints the following message:

    rcm_failure_reason=tape backup in progress pid=...

    If RCM_ENV_FORCE is set to TRUE, the backup application is stopped, and the reconfiguration operation proceeds.

Outcomes of the Tape Backup Reconfiguration Scenarios

Here are the various outcomes if you use the cfgadm command to remove a tape device without the RCM script.

- If you use the cfgadm command and the backup application is not using the tape device, the operation succeeds.
- If you use the cfgadm command and the backup application is using the tape device, the operation fails.

Here are the various outcomes if you use the cfgadm command to remove a tape device with the RCM script.

- If you use the cfgadm command and the backup application is not using the tape device, the operation succeeds.
- If you use the cfgadm command without the -f option and the backup application is using the tape device, the operation fails with an error message similar to the following:

    tape backup in progress pid=...

- If you use the cfgadm -f command and the backup application is using the tape device, the script stops the backup application and the cfgadm operation succeeds.
Example—Tape Backup RCM Script

#!/usr/bin/perl -w
#
# A sample site customization RCM script.
#
# When RCM_ENV_FORCE is FALSE this script indicates to RCM that it cannot
# release the tape drive when the tape drive is being used for backup.
#
# When RCM_ENV_FORCE is TRUE this script allows DR removing a tape drive
# when the tape drive is being used for backup by killing the tape
# backup application.
#
use strict;

my ($cmd, %dispatch);
$cmd = shift(@ARGV);

# dispatch table for RCM commands
%dispatch = (
    "scriptinfo" => \&do_scriptinfo,
    "register" => \&do_register,
    "resourceinfo" => \&do_resourceinfo,
    "queryremove" => \&do_preremove,
    "preremove" => \&do_preremove
);

if (defined($dispatch{$cmd})) {
    \&{$dispatch{$cmd}};
} else {
    exit (2);
}

sub do_scriptinfo {
    print "rcm_script_version=1\n";
    print "rcm_script_func_info=Tape backup appl script for DR\n";
    exit (0);
}

sub do_register {
    my ($dir, $f, $errmsg);
    $dir = opendir(RMT, "/dev/rmt");
    if (!defined($dir)) {
        $errmsg = "Unable to open /dev/rmt directory: $!";
        print "rcm_failure_reason=$errmsg\n";
    }
}
RCM Script Tasks

exit (1);
}
while ($f = readdir(RMT)) {
# ignore hidden files and multiple names for the same device
if (($f !~ /^\./) && ($f =~ /^[0-9]+$/)) {
print "rcm_resource_name=/dev/rmt/$f\n";
}
}
closedir(RMT);
exit (0);
}
sub do_resourceinfo
{
my ($rsrc, $unit);
$rsrc = shift(@ARGV);
if ($rsrc =~ /^\/dev\/rmt\/([0-9]+)$/) {
$unit = $1;
print "rcm_resource_usage_info=Backup Tape Unit Number $unit\n";
exit (0);
} else {
print "rcm_failure_reason=Unknown tape device!\n";
exit (1);
}
}
sub do_preremove
{
my ($rsrc);
$rsrc = shift(@ARGV);
# check if backup application is using this resource
#if (the backup application is not running on $rsrc) {
# allow the DR to continue
#
exit (0);
#}
#
# If RCM_ENV_FORCE is FALSE deny the operation.
# If RCM_ENV_FORCE is TRUE kill the backup application in order
# to allow the DR operation to proceed
#
if ($ENV{RCM_ENV_FORCE} eq ’TRUE’) {
if ($cmd eq ’preremove’) {
# kill the tape backup application
120

System Administration Guide: Devices and File Systems • June 2007


} else {
  #
  # indicate that the tape drive can not be released
  # since the device is being used for backup by the
  # tape backup application
  #
  print "rcm_failure_reason=tape backup in progress pid=...\n"

  exit (3);
}
}

exit (0);
This chapter provides an overview of Universal Serial Bus (USB) devices in the Solaris OS.

This is a list of the overview information in this chapter.

- “What’s New in USB Devices?” on page 123
- “Overview of USB Devices” on page 127
- “About USB in the Solaris OS” on page 133

For recent information about USB devices, go to the following site:


For general information about USB devices, go to the following site:

http://developers.sun.com/solaris/developer/support/driver/usb.html

For step-by-step instructions on using USB devices in the Solaris OS, see Chapter 8, “Using USB Devices (Tasks).”

For general information about dynamic reconfiguration and hot-plugging, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

For information on configuring USB printers, see “What’s New in Printing?” in System Administration Guide: Advanced Administration.

What's New in USB Devices?

The following section describes new USB features in the Solaris release.

- “EHCI Isochronous Transfer Support” on page 124
- “Support for CDC ACM Devices” on page 124
- “Changed USB Device Hotpluggable Behavior” on page 124
- “USB Power Budgeting” on page 124
What’s New in USB Devices?

- “ZFS Support on USB Devices” on page 125
- “Support for Prolific and Keyspan Serial Adapters” on page 125
- “x86: Support for USB CDs and DVDs in GRUB-Based Booting” on page 125
- “USB Virtual Keyboard and Mouse Support” on page 125
- “vold Provides Awareness of Hot-Plugged USB Devices” on page 126

For a complete listing of new Solaris features and a description of Solaris releases, see Solaris 10 What’s New.

EHCI Isochronous Transfer Support

Solaris 10 8/07: USB EHCI host controller driver provides isochronous transfer support for USB 2.0 or high-speed isochronous devices. For more information, see usb_isoc_request(9S).

Support for CDC ACM Devices

Solaris 10 8/07: Support for CDC ACM devices is provided in this release. For more information, see “USB Driver Enhancements” on page 130.

Changed USB Device Hotpluggable Behavior

Solaris 10 6/06: This feature information has been revised in the Solaris 10 11/06 release.

This Solaris release introduces a new device attribute, hotpluggable, to identify those devices that can be connected or disconnected without rebooting the system and configured or unconfigured automatically without user intervention. All USB and 1394 devices are identified as hotpluggable devices to gain those benefits described in “Using USB Mass Storage Devices” on page 141. In addition, non-removable media USB and 1394 devices are no longer identified as removable-media devices and no longer have a removable-media attribute.

The changes are primarily made at the kernel level to improve support for non-removable media USB and 1394 devices, and improve the performance for those devices. However, these changes do not impact the use of these devices. For example, the responsibility of mounting and unmounting these devices is controlled by vold. From a user’s perspective, the only visible changes are the hotpluggable and removable-media attributes of a device.

For more information, see “USB and 1394 (FireWire) Support Enhancements” on page 72.

USB Power Budgeting

Solaris 10 6/06: The following information is new in the Solaris 10 11/06 release even though this feature was added in the Solaris 10 6/06 release.
This Solaris release includes power budgeting of USB devices to better manage the power that is distributed to USB devices. Power budget control helps prevent over-current conditions from occurring and generally makes using USB devices safer. For more information about Solaris USB power budgeting limitations, see “Bus-Powered Devices” on page 135.

**ZFS Support on USB Devices**

**Solaris 10 6/06:** This information has been revised in the Solaris 10 11/06 release.

You can create and mount ZFS file systems on USB mass storage devices. For information about using USB mass storage devices, see “Using USB Mass Storage Devices” on page 141.

For information about creating and mounting ZFS file systems, see `zfs(1M)` and `zpool(1M)`.

**Support for Prolific and Keyspan Serial Adapters**

**Solaris 10 6/06:** Previously, this feature was incorrectly identified as available in the Solaris 10 1/06 release. This feature is available starting in the Solaris 10 6/06 release.

**x86: Support for USB CDs and DVDs in GRUB-Based Booting**

**Solaris 10 1/06:** You can use the following USB features in the GRUB-based booting environment:

- Installing from USB CD or DVD drives
- Booting from USB storage devices. You must install the Solaris release on the USB drive before you can boot from it.

For more information about GRUB-based booting, see Chapter 8, “Shutting Down and Booting a System (Overview),” in *System Administration Guide: Basic Administration*.

**USB Virtual Keyboard and Mouse Support**

**Solaris 10 1/06:** USB virtual keyboard and mouse support enables you to hook up multiple keyboards and multiple mice, where the set of keyboards or mice behave as one virtual keyboard or mouse. This means that the input of each physical device is coalesced into a single input stream. For example, if you type SHIFT on one keyboard and A on another, the character echoed is an uppercase A.

Also supported is the ability to add a USB keyboard or mouse to a laptop and have these devices work as one device with the laptop’s PS/2 keyboard and pad.
In addition, support for barcode readers is provided by the virtual keyboard and mouse feature. For more information, refer to `virtualkm(7D)`.

**vold Provides Awareness of Hot-Plugged USB Devices**

**Solaris 10 1/06:** The removable media manager (`vold`) is now hotplug aware. There is no need to restart this daemon to mount a USB mass storage device that has been hot-inserted. However, for some devices, it might still be necessary to manually mount the devices as `vold` is not always successful. In the case where `vold` fails to automatically mount a USB device, stop `vold`, like this:

```
/etc/init.d/volmgmt stop
```

For information about manually mounting a USB mass storage device, see “How to Mount or Unmount a USB Mass Storage Device Without `vold` Running” on page 158.

**Solaris Support for USB Devices**

Starting in the Solaris 10 release, all USB 1.1 devices are supported on a USB 2.0 hub, including audio devices. Use the following table to identify Solaris support information for specific USB 1.1 and USB 2.0 devices.

<table>
<thead>
<tr>
<th>USB Device</th>
<th>Solaris 8 HW 5/03 and Later Releases</th>
<th>Solaris 9 Releases</th>
<th>Solaris 10 Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General USB 1.1 device support</strong></td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td><strong>General USB 2.0 device support</strong></td>
<td>SPARC only</td>
<td>SPARC and x86 (Solaris 9 4/04)</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td><strong>Specific USB 1.1 and USB 2.0 device support</strong></td>
<td><strong>USB 1.1 only:</strong> Not supported on a USB 2.0 hub</td>
<td><strong>USB 1.1 only:</strong> Not supported on a USB 2.0 hub</td>
<td><strong>USB 1.1 only:</strong> Supported on a USB 2.0 hub</td>
</tr>
<tr>
<td>audio devices (See notes below.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>generic USB driver (<code>ugen(7D)</code>)</td>
<td>SPARC only</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>hid devices (keyboard and mouse devices, <code>hid(7D)</code>)</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>hubs (<code>hubd(7D)</code>)</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
</tbody>
</table>
Overview of USB Devices

Universal Serial Bus (USB) was developed by the PC industry to provide a low-cost solution for attaching peripheral devices, such as keyboards, mouse devices, and printers, to a system.

USB connectors are designed to fit only one type of cable, in one way. The primary design motivation for USB was to alleviate the need for multiple connector types for different devices. This design reduces the clutter on the back panel of a system.

Devices connect to USB ports on external USB hubs, or on a root hub that is located on the computer itself. Since hubs have several ports, several branches of a device tree can stem from a hub.

For more information, see usba(7D) or go to the following site:

Overview of USB Devices
**Commonly Used USB Acronyms**

The following table describes the USB acronyms that are used in the Solaris OS. For a complete description of USB components and acronyms, go to:

http://www.usb.org

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGEN</td>
<td>USB generic driver</td>
<td>ugen(7D)</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
<td>usb(7D)</td>
</tr>
<tr>
<td>USBA</td>
<td>Universal Serial Bus Architecture (Solaris)</td>
<td>usba(7D)</td>
</tr>
<tr>
<td>USBAI</td>
<td>USBA Client Driver Interface (Solaris)</td>
<td>N/A</td>
</tr>
<tr>
<td>HCD</td>
<td>USB host controller driver</td>
<td>N/A</td>
</tr>
<tr>
<td>EHCI</td>
<td>Enhanced Host Controller Interface</td>
<td>ehci(7D)</td>
</tr>
<tr>
<td>OHCI</td>
<td>Open Host Controller Interface</td>
<td>ohci(7D)</td>
</tr>
<tr>
<td>UHCI</td>
<td>Universal Host Controller Interface</td>
<td>uhci(7D)</td>
</tr>
</tbody>
</table>

**USB Bus Description**

The USB specification is openly available and free of royalties. The specification defines the electrical and mechanical interfaces of the bus and the connectors.

USB employs a topology in which hubs provide attachment points for USB devices. The host controller contains the root hub, which is the origin of all USB ports in the system. For more information about hubs, see “USB Host Controller and Hubs” on page 136.
Figure 7–1 shows a system with three active USB ports. The first USB port connects a USB memory stick. The second USB port connects an external hub, which in turn, connects a cdrw device and a composite keyboard/mouse device. As a composite device, this keyboard contains a USB controller, which operates both the keyboard and an attached mouse. The keyboard and the mouse share a common USB bus address because they are directed by the same USB controller.

Figure 7–1 also shows an example of a hub and a printer as a compound device. The hub is an external hub that is enclosed in the same casing as the printer. The printer is permanently connected to the hub. The hub and printer have separate USB bus addresses.

The device tree path name for some of the devices that are displayed in Figure 7–1 are listed here.

Memory stick /pci@1f,4000/usb@5/storage@1
Keyboard /pci@1f,4000/usb@5/hub@2/device@1/keyboard@0
Mouse /pci@1f,4000/usb@5/hub@2/device@1/mouse@1
cdrw device /pci@1f,4000/usb@5/hub@2/storage@3
Printer /pci@1f,4000/usb@5/hub@3/printer@1
USB Devices and Drivers

USB devices with similar attributes and services are grouped into device classes. Each device class has a corresponding driver. Devices within a class are managed by the same device driver pair. However, the USB specification also allows for vendor-specific devices that are not part of a specific class.

The Human Interface Device (HID) class contains devices that are user-controlled such as the following devices:

- Keyboards
- Mouse devices
- Joysticks

The Communication Device class includes the following devices:

- Modems
- Ethernet adapters

Other device classes include the following classes:

- Audio
- Monitor
- Printer
- Storage Device

Each USB device contains descriptors that reflect the class of the device. A device class specifies how its members should behave in configuration and data transfer. You can obtain additional class information from:

http://www.usb.org

For more information about USB devices supported in the Solaris release, see usb(7D).

USB Driver Enhancements

The following USB driver enhancements are included.

- **USB CDC ACM device support** – The acm driver can work with devices that are compliant with the USB Communication Class Device specification’s Abstract Control Model and some PCMCIA cards that have modem capabilities.
  
  The pppd daemon can access these devices through the /dev/term/[0-9]* entries. For more information, see pppd(1M).
  
  For more information, see usbsacm.7D.

- **Generic USB driver** – USB devices can now be accessed and manipulated by applications using standard UNIX® read(2) and write(2) system calls, and without writing a special kernel driver. Additional features include:
Applications have access to raw device data and device status.

The driver supports control, bulk, and interrupt (in and out) transfers.

Starting in the Solaris 10 6/06 release, the ugen driver no longer needs to bind explicitly to a device. By default, usb_midi binds to devices that lack a class driver and exports a ugen interface that works with libusb. For example, you can plug in a USB camera that is not a mass-storage device and use a libusb application to access it. In addition, both scsai2usb and usbprn drivers export ugen interfaces and libusb applications can be used on these classes of devices directly.

For more information, refer to ugen(7D).

**USB serial driver support**

- Digi Edgeport USB support – The Edgeport USB driver only works with Edgeport devices and not with other USB serial devices.
  - New devices are accessed as /dev/term/[0-9]* and /dev/cua/[0-9]*.
  - USB serial ports are usable as any other serial port would be, except that they cannot serve as a local serial console. The fact that their data is run through a USB port is transparent to the user.

For more information, see usbsr_edge(7D), or go to the following sites:

- [http://www.digi.com](http://www.digi.com)

- Keyspan – The Keyspan USB serial driver only works with Keyspan devices, which currently supports the USA-19HS and USA-49WLC models.
  
  For more information, see usbsksp(7D).

- Prolific – The Prolific USB serial driver only works with devices based on the PL2303 chipset.
  
  For more information, see usbsprl(7D).

For more information about the USB to serial devices support, go to the following site:


**Documentation and binary support for user-written kernel and userland drivers** – For up-to-date information on USB driver development, go to:

- Chapter 20, "USB Drivers,” in Writing Device Drivers
- Appendix C, “Making a Device Driver 64-Bit Ready,” in Writing Device Drivers
- Device Driver Tutorial
The EHCI, OHCI, and UHCI Drivers

Features of the EHCI driver include:

- Complies with enhanced host controller interface that supports USB 2.0.
- Supports high-speed control, bulk, interrupt, and isochronous transfers.
- The USB 2.0 chip has one EHCI controller and one or more OHCI or UHCI controllers.
- A USB 1.1 device is dynamically assigned to the OHCI or UHCI controller when it is plugged in. A USB 2.0 device is dynamically assigned to the EHCI controller when it is plugged in.

Use the `prtconf` command output to identify whether your system supports USB 1.1 or USB 2.0 devices. For example:

```
prtconf -D | grep "ehci|ohci|uhci"
```

If your `prtconf` output identifies an EHCI controller, your system supports USB 2.0 devices.

If your `prtconf` output identifies an OHCI or UHCI controller, your system supports USB 1.1 devices.

Solaris USB Architecture (USBA)

USB devices can be represented as two levels of device tree nodes. A device node represents the entire USB device. One or more child `interface` nodes represent the individual USB interfaces on the device.

Driver binding is achieved by using the compatible name properties. For more information, refer to 3.2.2.1 of the IEEE 1275 USB binding and Writing Device Drivers. A driver can either bind to the entire device and control all the interfaces, or can bind to just one interface. If no vendor or class driver claims the entire device, a generic USB multi-interface driver is bound to the device-level node. This driver attempts to bind drivers to each interface by using compatible names properties, as defined in section 3.3.2.1 of the IEEE 1275 binding specification.

The Solaris USB Architecture (USBA) adheres to the USB 1.1 and USB 2.0 specifications and is part of the Solaris Device Driver Interface (DDI). The USBA model is similar to Sun Common SCSI Architecture (SCSA). As the following figure shows, the USBA is a thin layer that provides a generic USB transport-layer abstraction to client drivers, providing them with services that implement core generic USB functionality.
This section describes information you should know about USB in the Solaris OS.

**USB 2.0 Features**

The following USB 2.0 features are included:

- **Better performance** – Increased data throughput for devices connected to USB 2.0 controllers, up to 40 times faster than USB 1.1 devices. You can take advantage of the high-speed USB protocol when accessing high-speed USB devices, such as DVDs and hard disks.

- **Backward Compatibility** – Compatibility with 1.0 and 1.1 devices and drivers so that you can use the same cables, connectors, and software interfaces.

For a description of USB devices and terminology, see “Overview of USB Devices” on page 127.

**USB 2.0 Device Features and Compatibility Issues**

USB 2.0 devices are defined as high-speed devices that follow the USB 2.0 specification. You can refer to the USB 2.0 specification at [http://www.usb.org](http://www.usb.org).

To identify the speed of your USB device in the Solaris 10 and later releases, check the `/var/adm/messages` file for messages similar to the following:

```
Dec 13 17:05:57 mysystem usba: [ID 912658 kern.info] USB 2.0 device (usb50d,249) operating at hi speed (USB 2.x) on USB 2.0 external hub: storage@4, scsa2usb0 at bus address 4
```

Here are some of the USB devices that are supported in this Solaris release:
Mass storage devices, such as CD-RWs, hard disks, DVDs, digital cameras, diskettes, tape drives, memory sticks, and multi-format card readers
- Keyboards and mouse devices
- Audio devices, such as speakers and microphones

For a full listing of USB devices that have been verified on the Solaris release, go to:


Additional storage devices might work by modifying the scsa2usb.conf file. For more information, see scsa2usb(7D).

Solaris USB 2.0 device support includes the following features:

- Increased USB bus speed from 12 Mbyte/sec to 480 Mbyte/sec. This increase means devices that support the USB 2.0 specification can run significantly faster than their USB 1.1 counterparts, when they are connected to a USB 2.0 port.
  
  A USB 2.0 port might be one of the following possibilities:
  - A port on a USB 2.0 PCI card
  - A port on a USB 2.0 hub that is connected to USB 2.0 port
  - A port on a SPARC or x86 computer motherboard

  A USB 2.0 PCI card might be needed for older SPARC platforms.

- For a list of USB 2.0 PCI cards that have been verified for the Solaris release, go to:

- USB 1.1 devices work as they have in the past, even if you have both USB 1.1 and USB 2.0 devices on the same system.

- While USB 2.0 devices operate on a USB 1.x port, their performance is significantly better when they are connected to a USB 2.0 port.

- A USB 2.0 host controller has one high-speed Enhanced Host Controller Interface (EHCI) and one or more OpenHCI Host Controller Interface (OHCI) or Universal Host Controller Interface (UHCI) embedded controllers. Devices connected to a USB 2.0 port are dynamically assigned to either an EHCI or OHCI controller, depending on whether they support USB 2.0.
**Note** – USB 2.0 storage devices that are connected to a port on a USB 2.0 PCI card, and that were used with a prior Solaris release in the same hardware configuration, can change device names after upgrading to this release. This change occurs because these devices are now seen as USB 2.0 devices and are taken over by the EHCI controller. The controller number, `/dev/rdsk/cwtxdy/`, is changed for these devices.

Also note that the speed of a USB device is limited to what the parent port can support. For example, if a USB 2.0 external hub is followed by a USB 1.x hub and a USB 2.0 device downstream, devices that are connected to the USB 2.0 external hub run at full speed and not high speed.

For more information on USB 2.0 device support, see `ehci(7D)` and `usba(7D)`.

**Bus-Powered Devices**

Bus-powered hubs use power from the USB bus to which they are connected, to power devices connected to them. Special care must be taken to not overload these hubs, because the power these hubs offer to their downstream devices is limited.

Starting in the Solaris 10 6/06 release, power budgeting is implemented for USB devices. This feature has the following limitations:

- Cascading two bus-powered hubs is prohibited.
- Each bus-powered hub is allowed a maximum of 100 mA only for each port.
- Only self-powered or low bus-powered devices are allowed to connect to a bus-powered hub. High bus-powered devices are denied the connection. Some hubs or devices can report a false power source, such that the connection might be unpredictable.

**USB Keyboards and Mouse Devices**

Keep the following issues in mind when using USB keyboards and mouse devices:

- Do not move the keyboard and mouse during a reboot or at the `ok` prompt on a SPARC system. You can move the keyboard and mouse to another hub at any time after a system reboot. After you plug in a keyboard and mouse, they are fully functional again.
- The keys just to the left of the keypad might not function on some third-party USB keyboards.
- **SPARC** – Keep the following issues in mind when using USB keyboards and mouse devices on SPARC systems:
The power key on a USB keyboard behaves differently than the power key on the Sun type 5 keyboard. On a USB keyboard, you can suspend or shut down the system by using the SUSPEND/SHUTDOWN key. However, you cannot use that key to power up the system.

Before the boot process finishes, the OpenBoot PROM (OBP) limits keyboard and mouse devices to the motherboard root hub ports only.

USB keyboard and mouse devices cannot be used simultaneously with Sun Type 3, 4, or 5 keyboards on legacy SPARC systems, such as the Ultra 80.

For information about multiple keyboard and mouse device support, see virtualkm(7D).

**USB Wheel Mouse Support**

Starting in the Solaris 9 9/04 release, the following wheel mouse features are supported:

- Support for more than 3 buttons is available on USB or PS/2 mouse devices.
- Wheel mouse scrolling is available on a USB or PS/2 mouse device. This support means that rolling the wheel on a USB or a PS/2 mouse results in a scroll in the application or window under mouse focus. StarOffice™, Firefox, and GNOME applications support wheel mouse scrolling. However, other applications might not support wheel mouse scrolling.

**USB Host Controller and Hubs**

A USB hub is responsible for the following:

- Monitoring the insertion or removal of a device on its ports
- Power managing individual devices on its ports
- Controlling power to its ports

The USB host controller has an embedded hub called the root hub. The ports that are visible at the system's back panel are the ports of the root hub. The USB host controller is responsible for the following:

- Directing the USB bus. Individual devices cannot arbitrate for the bus.
- Polling the devices by using a polling interval that is determined by the device. The device is assumed to have sufficient buffering to account for the time between the polls.
- Sending data between the USB host controller and its attached devices. Peer-to-peer communication is not supported.
USB Hub Devices

- Do not cascade hubs beyond four levels on either SPARC based systems or x86 based systems. On SPARC systems, the OpenBoot™ PROM cannot reliably probe beyond four levels of devices.
- Do not plug a bus-powered hub into another bus-powered hub in a cascading style. A bus-powered hub does not have its own power supply.
- Do not connect a device that requires a large amount of power to a bus-powered hub. These devices might be denied connection to bus-powered hubs or might drain the hub of power for other devices. An example of such a device is a USB diskette device.

SPARC: USB Power Management

Suspending and resuming USB devices is fully supported on SPARC systems. However, do not suspend a device that is busy and never remove a device when the system is powered off under a suspend shutdown.

The USB framework makes a best effort to power manage all devices on SPARC based systems with power management enabled. Power managing a USB device means that the hub driver suspends the port to which the device is connected. Devices that support remote wake up can notify the system to wake up everything in the device’s path so that the device can be used. The host system could also wake up the device if an application sends an I/O to the device.

All HID devices (keyboard, mouse, hub, and storage devices), hub devices, and storage devices are power managed by default if they support remote wake-up capability. A USB printer is power managed only between two print jobs. Devices that are managed by the generic USB driver (UGEN) are power managed only when they are closed.

When power management is running to reduce power consumption, USB leaf devices are powered down first. After all devices that are connected to a hub’s ports are powered down, the hub is powered down after some delay. To achieve the most efficient power management, do not cascade many hubs.

For information about using the SUSPEND/SHUTDOWN key on SPARC systems, see “USB Keyboards and Mouse Devices” on page 135.

Guidelines for USB Cables

Keep the following guidelines in mind when connecting USB cables:

- Always use USB 2.0 compliant, fully rated (480 Mbit/sec) 20/28 AWG cables for connecting USB 2.0 devices.
- The maximum cable length that is supported is 5 meters.
- Do not use cable extenders. For best results, use a self-powered hub to extend cable length.

For more information, go to:

http://www.usb.org/about/faq/ans5
This chapter provides step-by-step instructions for using USB devices in the Solaris OS.

For information on the procedures associated with using USB devices, see the following:

- “Managing USB Devices in the Solaris OS (Roadmap)” on page 139
- “Using USB Mass Storage Devices (Task Map)” on page 140
- “Using USB Audio Devices (Task Map)” on page 161
- “Hot-Plugging USB Devices With the cfgadm Command (Task Map)” on page 165

For recent information about USB devices, go to the following site:


For overview information about using USB devices, see Chapter 7, “Using USB Devices (Overview).”

### Managing USB Devices in the Solaris OS (Roadmap)

Use this road map to identify all the tasks for managing USB devices in the Solaris OS. Each task points to a series of additional tasks such as using USB devices, hot-plugging USB devices, and adding USB audio devices.

For information about using USB components in the Solaris OS, see “About USB in the Solaris OS” on page 133.
Use USB mass storage devices. A USB mass storage device must contain a file system before you can add data to it. In addition, a USB diskette must be formatted before file systems can be created and mounted on them.

This section also describes how to physically add or remove USB devices from your system.

Add USB audio devices. Use this task map to identify tasks associated with adding USB audio devices.

Add or remove USB devices to and from your system with the `cfgadm` command. You can logically add or remove USB devices to and from your system with the `cfgadm` command.

### Using USB Mass Storage Devices (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use USB mass storage devices.</td>
<td>A USB mass storage device must contain a file system before you can add data to it. In addition, a USB diskette must be formatted before file systems can be created and mounted on them. This section also describes how to physically add or remove USB devices from your system.</td>
<td>&quot;Using USB Mass Storage Devices (Task Map)&quot; on page 140</td>
</tr>
<tr>
<td>Add USB audio devices.</td>
<td>Use this task map to identify tasks associated with adding USB audio devices.</td>
<td>&quot;Using USB Audio Devices (Task Map)&quot; on page 161</td>
</tr>
<tr>
<td>Add or remove USB devices to and from your system with the <code>cfgadm</code> command.</td>
<td>You can logically add or remove USB devices to and from your system with the <code>cfgadm</code> command.</td>
<td>&quot;Hot-Plugging USB Devices With the <code>cfgadm</code> Command (Task Map)&quot; on page 165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add or remove a USB mass storage device.</td>
<td>Select one of the following to add a USB mass storage device:</td>
<td>&quot;How to Add a USB Mass Storage Device Without <code>vold</code> Running&quot; on page 145</td>
</tr>
<tr>
<td></td>
<td>Add a USB mass storage device without <code>vold</code> running.</td>
<td>&quot;How to Add a USB Camera&quot; on page 146</td>
</tr>
<tr>
<td></td>
<td>Add a USB camera to access digital images.</td>
<td>&quot;How to Remove a USB Mass Storage Device Without <code>vold</code> Running&quot; on page 147</td>
</tr>
<tr>
<td></td>
<td>Remove a USB mass storage device without <code>vold</code> running.</td>
<td></td>
</tr>
<tr>
<td>Add a non-compliant USB mass storage device.</td>
<td>Add a non-compliant USB mass storage device by adding an entry to <code>scsa2usb.conf</code>.</td>
<td>&quot;How to Use a Non-Complaint USB Mass Storage Device&quot; on page 143</td>
</tr>
<tr>
<td>Prepare to use a USB mass storage device.</td>
<td>Prepare to use a USB mass storage device with <code>vold</code> running.</td>
<td>&quot;Preparing to Use a USB Mass Storage Device With <code>vold</code> Running&quot; on page 148</td>
</tr>
</tbody>
</table>
Using USB Mass Storage Devices

Starting in the Solaris 9 release, the following USB removable mass storage devices are supported:

- CD-RWs
- Hard disks
- DVDs
- Digital cameras
- Diskette devices
- SmartMedia and CompactFlash devices

For information about using USB mass storage devices with the Solaris ZFS file system, see "What’s New in USB Devices?" on page 123

For a complete list of USB devices that are supported in the Solaris OS, see:
In previous Solaris releases, all USB storage devices were identified as removable media devices, which provides many of the following advantages, including automatic mounting by `vold`. In the Solaris 10 6/06 release, USB mass storage devices are identified as hotpluggable devices but also enjoy the advantages of USB removable devices that are listed below. For more information about the hotpluggable behavior, see "USB and 1394 (FireWire) Support Enhancements" on page 72.

- Starting in the Solaris 10 1/06 release, `vold` automatically mounts a hot-plugged device. For more information, see "vold Provides Awareness of Hot-Plugged USB Devices" on page 126.
- USB storage devices with standard MS-DOS or Windows (FAT) file systems are supported.
- You can use the user-friendly `rmformat` command to create slices. You can also use the `fdisk` command to partition a USB device, but never use the `format` utility or the `rmformat -F` command to physically format a USB drive.
- Use the `rmformat` command to display all USB devices with media inserted. For example, see "How to Display USB Device Information" on page 149.
- Non-root users can now access USB storage devices, since the `mount` command is no longer needed. The device is automatically mounted by `vold` and is available under the `/rmdisk` directory. If a new device is connected while the system is down, do a reconfiguration boot with the `boot -r` command so that `vold` recognizes the device.
- These devices can be managed with or without volume management.
- Disks with FAT file systems can be mounted and accessed. For example:

  ```bash
 mount -F pcfs /dev/dsk/c2t0d0s0:c /mnt
  ```
- All USB storage devices are now power managed, except for those that support LOG SENSE pages. Devices with LOG SENSE pages are usually SCSI drives connected through a USB-to-SCSI bridge device.
- Applications might work differently with USB mass storage devices. Keep the following issues in mind when using applications with USB storage devices:
  - Applications might make incorrect assumptions about the size of the media since only smaller devices like diskettes were removable previously.
  - Requests by applications to eject media on devices where this would be inapplicable, such as a hard drive, will succeed and do nothing.
  - If you prefer the behavior in previous Solaris releases where not all USB mass storage were treated as removable media devices, then you can force the old behavior by updating the `/kernel/drv/scs2usb.conf` file.

For more information on using USB mass storage devices, see `scs2usb(7D)`.
Using USB Diskette Devices

USB diskette devices appear as removable media devices. USB diskette devices are not managed by the fd (floppy) driver. Applications that issue ioctl(2) calls intended for the fd (native floppy) driver will fail. Applications that issue only read(2) and write(2) calls will succeed. Other applications, such as SunPCI and rmformat, also succeed.

Volume management (vold) sees the USB diskette device as a SCSI removable media device. Volume management makes the device available for access under the /rmdisk directory.

For more information on how to use USB diskette devices, see Chapter 1, “Managing Removable Media (Overview).”

Using Non-Compliant USB Mass Storage Devices

Some devices might be supported by the USB mass storage driver even though they do not identify themselves as compliant with the USB mass storage class or identify themselves incorrectly. The scsa2usb.conf file contains an attribute-override list that lists the vendor ID, product ID, and revision for matching mass storage devices, as well as fields for overriding the default device attributes. The entries in this list are commented out by default. These entries can be copied and uncommented to enable support of particular devices.

If you connect a USB mass storage device to a system running this Solaris release and the system is unable to use it, you can check the /kernel/drv/scsa2usb.conf file to see if there is a matching, commented entry for this device. Follow the information given in the scsa2usb.conf file to see if a particular device can be supported by using the override information.

For a listing of recommended USB mass storage devices, go to:
For more information, see scsa2usb(7D).

How to Use a Non-Compliant USB Mass Storage Device

1. Become superuser.

2. Add an entry to the /kernel/drv/scsa2usb.conf file.
The following entry is appropriate for a USB memory stick.
attribute-override-list = "vid=* reduced-cmd-support=true";

3. Either reboot the system or do the following:
   a. Remove the device.
b. Manually update the driver.
   
   ```
 # update_drv -f scsa2usb
   ```

c. Add the device.

**Hot-Plugging USB Mass Storage Devices**

Hot-plugging a device means the device is added or removed without shutting down the operating system or powering off the system. All USB devices are hot-pluggable.

The removable media manager (vold) is now aware of hot-plugged devices. You can just plug in the device and vold attempts to mount it in a few seconds. If nothing happens, check to see if it is mounted.

Make sure that vold is running.

```
svc status volfs
STATE STIME FMRI
online 10:39:12 svc:/system/filesystem/volfs:default
```

The file system can be mounted from the device if it is valid and vold recognizes it.

If it fails to mount, stop vold.

```
svcadm disable volfs
```

Then, try a manual mount.

Before hot-removing the device, find the name of the device in the `eject -n` command’s alias name. Then eject the device's media. If you don’t do this, vold still releases the device and the port is usable again, but the file system on the device might have been damaged.

When you hot-plug a USB device, the device is immediately seen in the system’s device hierarchy, as displayed in the `prtconf` command output. When you remove a USB device, the device is removed from the system’s device hierarchy, unless you are using the device.

If you are using a device when it is unplugged, the device node remains, but the driver controlling this device stops all activity on the device. Any new I/O activity issued to this device returns an error.

In this situation, the system prompts you to plug in the original device. If the device is no longer available, stop the applications. After a few seconds, the port becomes available again.
Note – Data integrity might be impaired if you remove an active or open device. Always close the device before removing, except the attached keyboard and mouse, which can be moved while active.

**Mounting USB Mass Storage Devices Read-Only**

You can mount USB mass storage devices read-only by changing the following line in the `/etc/rmmount.conf` file:

```bash
mount * hsfs udfs ufs -o nosuid
```

to:

```bash
mount * hsfs udfs ufs -o nosuid,ro
```

Then, restart `vold`:

```bash
svcadm disable volfs
svcadm enable volfs
```

All removable devices with these file systems are mounted read-only.

▼ **How to Add a USB Mass Storage Device Without `vold` Running**

1 (Optional) For information on disabling removable media management, see “How to Disable or Enable Removable Media Services” on page 48.

2 **Verify that `vold` is not running.**

   ```bash
 # svcadm volfs
   ```

   ```bash
 STATE STIME FMRI
 disabled 10:39:12 svc:/system/filesystem/volfs:default
   ```

3 **Connect the USB mass storage device.**

4 **Verify that the USB device has been added.**

   Locate the USB disk device links, which might be among device links of non-USB storage devices, as follows:

   ```bash
 $ rmformat
 Looking for devices...
 1. Logical Node: /dev/rdsk/c3t0d0p0
 Physical Node: /pci@0,0/pci108e,4131@2,1/storage@4/disk@0,0
 Connected Device: USB2.0 Flash Disk 2.00
 Device Type: Removable
   ```
How to Add a USB Camera

If the camera’s media uses a PCFS file system, it will be automatically mounted by vold. If the device does not bind to the scsa2usb driver, use libusb applications for transferring the pictures. For more information, refer to /usr/sfw/share/doc/libusb/libusb.txt.

1 Become superuser.

2 Plug in and turn on the USB camera.

   The system creates a logical device for the camera. After the camera is plugged in, output is written to the /var/adm/messages file to acknowledge the device's connection. The system treats the camera as a storage device.

3 Examine the output that is written to the /var/adm/messages file.

   # more /var/adm/messages

Examine this output enables you to determine which logical device was created so that you can then use that device to access your images. The output looks similar to the following:

   Jul 15 09:53:35 buffy usba: [ID 349649 kern.info] OLYMPUS, C-3040ZOOM, 000153719068
   Jul 15 09:53:35 buffy genunix: [ID 936769 kern.info] scsa2usb1 is /pci@0,0/pci925,1234@7,2/storage@2
   Jul 15 09:53:36 buffy scsi: [ID 193665 kern.info] sd3 at scsa2usb1: target 0 lun 0

   Match the device with a mountable /dev/dsk link entry, by doing the following:

   # ls -l /dev/dsk/c*0 | grep /pci@0,0/pci925,1234@7,2/storage@2
   lrwxrwxrwx 1 root root 58 Jun 30 2004 c3t0d0p0 -> ../../devices/pci@0,0/pci925,1234@7,2/storage2/disk@0,0:a

4 Mount the USB camera file system.

   The camera’s file system is most likely a PCFS file system. If file system is PCFS, then it should be automatically mounted by vold.

   To manually mount the file system on an x86 system, you would use syntax similar to the following:

   # mount -F pcfs /dev/dsk/c3t0d0p0:c /mnt

   To manually mount the file system on a SPARC system, you would use syntax similar to the following:

   # mount -F pcfs /dev/dsk/c3t0d0s0:c /mnt

   For information on mounting file systems, see Chapter 18, "Mounting and Unmounting File Systems (Tasks)."
For information on mounting different PCFS file systems, see mount_pcfs(1M).

5 Verify that the image files are available.
   For example:
   
   # ls /mnt/DCIM/100OLYMP/
P7220001.JPG* P7220003.JPG* P7220005.JPG*
P7220002.JPG* P7220004.JPG* P7220006.JPG*

6 View and manipulate the image files created by the USB camera.
   For example:
   
   # /usr/dt/bin/sdtimage P7220001.JPG &

7 Unmount the file system before disconnecting the camera.
   For example:
   
   # umount /mnt

8 (Optional) Turn off and disconnect the camera.

How to Remove a USB Mass Storage Device Without vold Running

1 (Optional) For information on disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 48.

2 Become superuser.

3 Verify that vold is not running.

   # svcs volfs

   STATE STIME FMRI
   disabled Sep_29 svc:/system/filesystem/volfs:default

4 Stop any active applications that are using the device.

5 Unmount the device.

6 Remove the device.
Preparing to Use a USB Mass Storage Device With vold Running

You can access information on removable media with or without using volume management. For information on accessing information on removable media with GNOME's File Manager, see the GNOME desktop documentation.

After the USB device is formatted, it is usually mounted under the /rmdisk/label directory. For more information on configuring removable storage devices, see rmmount.conf(4) or vold.conf(4).

The device nodes are created under the /vol/dev directory. For more information, see scsa2usb(7D).

The following procedures describe how to manage USB mass storage devices without vold running. The device nodes are created under the /dev/rdsk directory for character devices and under the /dev/dsk directory for block devices. Device links are created when the devices are hot-plugged. For more information, see scsa2usb(7D).

▼ How to Prepare to Use USB Mass Storage Devices Without vold Running

You can use USB mass storage devices without volume management (vold) running. Stop vold by issuing the following command:

```
svcadm disable volfs
```

Or, use the following procedure to keep vold running, but do not register the USB mass storage devices with vold.

1 Become superuser.

2 Verify that vold is not running.

```
svc vs volfs
STATE STIME FMRI
disabled 10:28:23 svc:/system/filesystem/volfs:default
```

3 Remove volume management registration of USB mass storage devices by commenting the following line in the /etc/vold.conf file.

```
use rmdisk drive /dev/rdsk/c*s2 dev_rmdisk.so rmdisk%d
```

4 After this line is commented, restart vold.

```
svcadm enable volfs
```
Caution – If you comment out this line and other removable devices, such as SCSI or Peerless, are on the system, vold registration for these devices is disabled as well.

For more information, see vold.conf(4).

How to Display USB Device Information

Display information about USB devices.

For example, use the prtconf command to display USB device information. The prtconf output in this example has been truncated to only display USB device information.

```
$ prtconf
 usb, instance #0
 hub, instance #2
 device, instance #8
 interface (driver not attached)
 printer (driver not attached)
 mouse, instance #14
 device, instance #9
 keyboard, instance #15
 mouse, instance #16
 storage, instance #7
 disk (driver not attached)
 communications, instance #10
 modem (driver not attached)
 data (driver not attached)
 storage, instance #0
 disk (driver not attached)
 storage, instance #1
 disk (driver not attached)
```

For example, use the rmformat command to display USB device information.

```
$ rmformat
Looking for devices...
1. Volmgt Node: /vol/dev/aliases/rmdisk3
 Logical Node: /dev/rdsk/c1t0d3s2
 Physical Node: /pci@1e,600000/usb@a/storage@2/disk@0,3
 Connected Device: SMSC 223 U HS-SD/MMC 1.95
 Device Type: Removable
2. Volmgt Node: /vol/dev/aliases/cdrom0
 Logical Node: /dev/rdsk/c2t2d0s2
 Physical Node: /pci@1e,600000/ide@d/sd@2,0
 Connected Device: JLMS XJ-HD166S D3S4
 Device Type: DVD Reader
3. Volmgt Node: /vol/dev/aliases/rmdisk4
```
How to Create a File System on a USB Mass Storage Without vold Running

Use this procedure to add a file system to a USB mass storage device.

A USB diskette must be formatted before you can add a file system to it. All other USB mass storage devices just need a PCFS or UFS file system before they can be used. Keep the following key points in mind when formatting a USB diskette:

- Do not use the rmformat -F except on a USB diskette.
- If the default slices are not acceptable, use the rmformat -s command to create slices. Use the fdisk utility to partition a USB device, if needed. For step-by-step instructions, see:
  - “How to Modify Partitions and Create a PCFS File System on a USB Mass Storage Device Without vold Running” on page 152
  - “How to Create a Solaris Partition and Modify the Slices on a USB Mass Storage Device Without vold Running” on page 156

Note – Perform steps 5–6 only if you need to format a USB diskette.

1 (Optional) For information on disabling vold, see “How to Prepare to Use USB Mass Storage Devices Without vold Running” on page 148.

2 Verify that vold is not running.

   # svcs volfs
   STATE     STIME      FMRI
   disable   10:39:12 svc:/system/filesystem/volfs:default

3 Add the USB device to your system.

   For information on hot-plugging USB devices, see:
   - “Hot-Plugging USB Mass Storage Devices” on page 144
   - “Hot-Plugging USB Devices With the cfqadm Command (Task Map)” on page 165

4 (Optional) Identify the USB device.

   The following example identifies a USB diskette device.

   # cd /dev/rdsk
   # ls -l c*0 | grep usb
In this example, the diskette device is c2t0d0s0.

5 Insert a diskette into the diskette drive, if necessary.

6 Format the diskette, if necessary.

   % rmformat -Flong raw-device

   For example, on a SPARC system:

   % rmformat -Flong /dev/rdsk/c2t0d0s2

   For example, on an x86 system:

   % rmformat -Flong /dev/rdsk/c3t0d0p0

7 Determine the file system type and select one of the following:

   ■ Create a PCFS file system.

      # mkfs -F pcfs -o nodisk,size=size raw-device

      Specify the -size option in 512-byte blocks.

      The following example shows how to create a PCFS file system on a 1.4-Mbyte diskette on a SPARC system:

      # mkfs -F pcfs -o nodisk,size=2880 /dev/rdsk/c4t0d0s2

      The following example shows how to create a PCFS file system on a 1.4-Mbyte diskette on an x86 system:

      # mkfs -F pcfs -o nodisk,size=2880 /dev/rdsk/c4t0d0p0

      The following example shows how to create a PCFS file system on a 100-Mbyte USB memory stick on a SPARC system:

      # mkfs -F pcfs /dev/rdsk/c5t0d0s2:c

      The following example shows how to create a PCFS file system on a 100-Mbyte USB memory stick on an x86 system:

      # mkfs -F pcfs /dev/rdsk/c5t0d0p0:c

      This command can take several minutes to complete.

      ■ Create a UFS file system.
# newfs raw-device
For example:

# newfs /dev/rdsk/c4t0d0s7

Consider using the `newfs -f` option for large USB hard disks.

---

**Note** – UFS file system overhead consumes a significant portion of space on a diskette, due to a diskette’s limited storage capacity.

See the next two procedures for a detailed example of creating a PCFS file system and modifying slices on a USB mass storage device.

▼ How to Modify Partitions and Create a PCFS File System on a USB Mass Storage Device Without *vold* Running

The following steps describe how to delete an existing partition, create a new partition, and then create a PCFS file system on the USB device. Make sure you backup any data before you perform this task. For information about disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 48.

Make sure you backup any data before you perform this task.

1. **Become superuser.**

2. **Start the `fdisk` utility.**
   - For example:
     
     ```
 # fdisk /dev/rdsk/c3t0d0p0
     ```

3. **Delete the partition by selecting option 3.**
   - For example:
     
     ```
 Total disk size is 29 cylinders
 Cylinder size is 2048 (512 byte) blocks
     ```

     | Partition | Status | Type   | Cylinders | | | |
|---|---|---|---|---|---|---|
     | 1         | Active | Solaris2 | 1 | 28 | 28 | 97 |

     SELECT ONE OF THE FOLLOWING:
     1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 3

4 Choose the partition number to delete.

For example:

Total disk size is 29 cylinders
Cylinder size is 2048 (512 byte) blocks

<table>
<thead>
<tr>
<th>Cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Specify the partition number to delete (or enter 0 to exit): 1

Partition deleted.

5 Create a partition.

For example:

Total disk size is 29 cylinders
Cylinder size is 2048 (512 byte) blocks

<table>
<thead>
<tr>
<th>Cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition</td>
</tr>
<tr>
<td>-----------</td>
</tr>
</tbody>
</table>

WARNING: no partitions are defined!

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 1
6  Select the FAT32 partition type.

   Total disk size is 29 cylinders
   Cylinder size is 2048 (512 byte) blocks

   Partition  Status  Type  Start  End  Length  %
   =============  ======  ======  =======  ======  =======  ===

   WARNING: no partitions are defined!

   SELECT ONE OF THE FOLLOWING:
   1. Create a partition
   2. Specify the active partition
   3. Delete a partition
   4. Change between Solaris and Solaris2 Partition IDs
   5. Exit (update disk configuration and exit)
   6. Cancel (exit without updating disk configuration)

   Select the partition type to create:
   1=SOLARIS2  2=UNIX  3=PCIXOS  4=Other
   5=DOS12  6=DOS16  7=DOS16EXT  8=DOS16BIG
   9=DOS16LBA  A=x86 Boot  B=Diagnostic  C=FAT32
   D=FAT32LBA  E=DOS16LBAEXT  F=EFI  0=Exit?  c

7  Specify the percentage of disk to use for this partition.

   Total disk size is 29 cylinders
   Cylinder size is 2048 (512 byte) blocks

   Partition  Status  Type  Start  End  Length  %
   =============  ======  ======  =======  ======  =======  ===

   WARNING: no partitions are defined!

   SELECT ONE OF THE FOLLOWING:
   1. Create a partition
   2. Specify the active partition
   3. Delete a partition
   4. Change between Solaris and Solaris2 Partition IDs
   5. Exit (update disk configuration and exit)
   6. Cancel (exit without updating disk configuration)

   Select the partition type to create:
   Specify the percentage of disk to use for this partition (or type "c" to
   specify the size in cylinders). 100

8  Select whether the new partition should be the active partition or an inactive partition.

   Total disk size is 29 cylinders
   Cylinder size is 2048 (512 byte) blocks
WARNING: no partitions are defined!

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Select the partition type to create:
Should this become the active partition? If yes, it will be activated each time the computer is reset or turned on.
Please type "y" or "n".

n
Update the disk configuration and exit.
Total disk size is 29 cylinders
Cylinder size is 2048 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>28</td>
<td>28</td>
<td>97</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 5

Create the PCFS file system on this partition.
For example:

# mkfs -F pcfs -o fat=32 /dev/rdsk/c3t0d0p0:c

Construct a new FAT file system on /dev/rdsk/c3t0d0p0:c: (y/n)? y
How to Create a Solaris Partition and Modify the Slices on a USB Mass Storage Device Without `vold` Running

The following steps illustrate how to create a Solaris partition and modify the slices. For information on disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 48.

Make sure you backup any data before you perform this task.

1 Become superuser.

2 Start the `fdisk` utility.
   For example:
   
   ```
 # fdisk /dev/rdsk/c5t0d0s2
 No fdisk table exists. The default partition for the disk is:

 a 100% "SOLARIS System" partition

 Type "y" to accept the default partition, otherwise type "n" to edit the partition table.
 y
   ```

3 Display the current slices.
   For example:
   
   ```
 # prtvtoc /dev/rdsk/c5t0d0s2
 * /dev/rdsk/c5t0d0s2 partition map
 *
 * Dimensions:
 * 512 bytes/sector
 * 63 sectors/track
 * 255 tracks/cylinder
 * 16065 sectors/cylinder
 * 5836 cylinders
 * 5836 accessible cylinders
 *
 * Flags:
 * 1: unmountable
 * 10: read-only
 *
 *
 * Partition Tag Flags First Sector Sector Count Last Sector Mount Directory
 0 0 00 0 93755340 93755339
 2 0 00 0 93755340 93755339
   ```
4 Create a text file with the slice information.
   For example:
   slices: 0 = 0, 5GB, "wm", "home" :
       1 = 8225280000, 6GB :
       2 = 0, 44GB, "wm", "backup" :
       6 = 16450560000, 15GB

   Make sure each slice starts on a cylinder boundary. For example, slice 1 starts at 822280000 bytes, which is the cylinder size in bytes multiplied by 1000.

   For more information, see the -s option description in rmformat(1).

5 Create the slices by including the slice file created above.
   For example:
   # rmformat -s slice_file /dev/rdsk/c5t0d0s2

6 View the new slice information.
   For example:
   # prtvtoc /dev/rdsk/c5t0d0s2
   */dev/rdsk/c5t0d0s2 partition map
   *
   Dimensions:
   *  512 bytes/sector
   *  63 sectors/track
   *  255 tracks/cylinder
   *  16065 sectors/cylinder
   *  5836 cylinders
   *  5836 accessible cylinders
   *
   Flags:
   *  1: unmountable
   * 10: read-only
   *
   Unallocated space:
   *
   First  Sector  Last
   Sector  Count  Sector
   *  10485760  5579240  16064999
   *  28647912  3482088  32129999
   *  63587280  30160060  9375339
   *
   First  Sector  Last
   Partition  Tag  Flags  Sector  Count  Sector  Mount Directory
   0   8   00   0  10485760  10485759
   1   3   01  16065000  12582912  28647911
   2   5   00   0  92274688  92274687
   6   4   00  32130000  31457280  63587279
How to Mount or Unmount a USB Mass Storage Device Without `vold` Running

1. See “How to Prepare to Use USB Mass Storage Devices Without `vold` Running” on page 148 for information on disabling `vold`.

2. Become superuser.

3. Verify that `vold` is not running.

   ```bash
 # svcs volfs
 STATE STIME FMRI
 disabled 10:39:12 svc:/system/filesystem/volfs:default
   ```

4. (Optional) Identify the device.

   For example:
   ```bash
 # cd /dev/rdsk
 # ls -l c*0 | grep usb
 lrwxrwxrwx 1 root root 55 Mar 5 10:35 c2t0d0s0 ->
 ../../devices/pci@1f,0/usb@c,3/storage@3/disk@0,0:a,raw
   ```

   In this example, the diskette device is `c2t0d0s0`.

5. Select one of the following to mount or unmount a USB mass storage device:

   - Mount a USB mass storage device.

     ```bash
 # mount [-F fstype] block-device mount-point
     ```

     This example shows how to mount a device with a UFS file system:

     ```bash
 # mount /dev/dsk/c1t0d0s2 /mnt
     ```

     This example shows how to mount a device with a PCFS file system on a SPARC system:

     ```bash
 # mount -F pcfs /dev/dsk/c3t0d0s2:c /mnt
     ```

     This example shows how to mount a device with a PCFS file system on an x86 system:

     ```bash
 # mount -F pcfs /dev/dsk/c3t0d0p0:c /mnt
     ```

     This example shows how to mount a CD with a read-only HSFS file system:

     ```bash
 # mount -F hsfs -o ro /dev/dsk/c1t0d0s2 /mnt
     ```

   - Unmount a USB mass storage device.

     First, be sure no one is using the file system on the device.
For example:

```
fuser -c -u /mnt
umount /mnt
```

6 Eject the device, which is optional for CD or diskette devices.

```
eject /dev/r[rdsk]/cntndnsn
```

For example:

```
eject /dev/rdsk/c1t0d0s2
```

**Troubleshooting Tips for USB Mass Storage Devices**

Keep the following tips in mind if you have problems adding or removing a USB mass storage device.

Check the `/var/adm/messages` file for failures to enumerate the device. For enumeration failures, possibly, insert the USB hub or remove a hub and connect it directly to a root USB hub.

- If USB devices are added or removed when the system is down, you must perform a reconfiguration boot.

```
ok boot -r
```

If you have problems accessing a device that was connected while the system is running, try the following command:

```
devfsadm
```

- Do not move devices around if the system has been powered down by a suspend operation. For more information, see “SPARC: USB Power Management” on page 137.
- If a device has been hot removed while in use by applications and is no longer available, then stop the applications. Use the `prtconf` command to see whether the device node has been removed.

**Disabling Specific USB Drivers**

You can disable specific types of USB devices by disabling their client driver. For example, USB printers can be disabled by disabling the `usbprn` driver that directs them. Disabling `usbprn` does not affect other kinds of devices, such as USB storage devices.

The following table identifies some USB device types and their corresponding drivers.
<table>
<thead>
<tr>
<th>Device Type</th>
<th>Driver to Disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>usb_ac and usb_as</td>
</tr>
<tr>
<td>HID (usually keyboard and mouse)</td>
<td>hid</td>
</tr>
<tr>
<td>Storage</td>
<td>scsa2usb</td>
</tr>
<tr>
<td>Printer</td>
<td>usbprn</td>
</tr>
<tr>
<td>Serial</td>
<td>usbser_edge</td>
</tr>
</tbody>
</table>

If you disable a driver for a USB device that is still connected to the system, you see a console message similar to the following:

```
usba10: WARNING: usba: no driver found for device name
```

▼ **How to Disable Specific USB Drivers**

1. Become superuser.

2. Exclude the driver alias entry from the `/etc/system` file.
   For example, include the following exclude statement to exclude the `usbprn` driver.
   ```
exlude: usbprn
   ```

3. Reboot the system.
   ```
 # init 6
   ```

▼ **How to Remove Unused USB Device Links**

Use this procedure if a USB device is removed while the system is powered off. Removing the USB device while the system is powered off can leave device links for devices that do not exist.

1. Become superuser.

2. Close all applications that might be accessing the device.

3. Remove the unused links for a specific USB class.
   For example:
   ```
 # devfsadm -C -c audio
   ```
   Or, just remove the dangling links:
   ```
 # devfsadm -C
   ```
Using USB Audio Devices (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add USB audio devices.</td>
<td>Add a USB microphone and speakers.</td>
<td>“How to Add USB Audio Devices” on page 162</td>
</tr>
<tr>
<td>Identify your system’s primary</td>
<td>Identify which audio device is your primary audio device.</td>
<td>“How to Identify Your System’s Primary Audio Device” on page 163</td>
</tr>
<tr>
<td>audio device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change the primary USB audio</td>
<td>You might want to make one audio device the primary audio device if you remove or change your USB audio devices.</td>
<td>“How to Change the Primary USB Audio Device” on page 164</td>
</tr>
<tr>
<td>device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove unused USB device links.</td>
<td>If you remove a USB audio device while the system is powered off, the /dev/audio device might be pointing to a /dev/sound/* device that doesn’t exist.</td>
<td>“How to Remove Unused USB Device Links” on page 160</td>
</tr>
<tr>
<td>Solve USB audio problems.</td>
<td>Use this section if no sound comes from the USB speakers.</td>
<td>“Troubleshooting USB Audio Device Problems” on page 164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using USB Audio Devices

For information about USB audio support in specific Solaris releases, see “Solaris Support for USB Devices” on page 126.

This Solaris release provides USB audio support that is implemented by a pair of cooperating drivers, usb_ac and usb_as. The audio control driver, usb_ac, is a Solaris USB Architecture compliant client driver that provides the controlling interface to user applications. The audio streaming driver, usb_as, processes audio data messages during play and record. It sets sample frequency and precision, and encodes requests from the usb_ac driver. Both drivers comply with the USB audio class 1.0 specification.

Some audio devices can set volume under software control. A STREAMS module, usb_ah, is pushed on top of the HID driver for managing this function.

Solaris supports USB audio devices that are play-only, record-only, or record and play. Hot-plugging of USB audio devices is supported.

- USB audio devices are supported on SPARC Ultra™ and x86 platforms that have USB connectors.
- USB audio devices that are supported in the Solaris 8 10/01, Solaris 8 2/02, or Solaris 9 releases must support a fixed 44100 or 48000 Hz sampling frequency to play or record. The 44100 Hz or 48000 Hz sampling frequency is no longer required in the Solaris 10 release.
For fully supported audio data format information, see usb_ac(7D).

The primary audio device is /dev/audio. You can verify that /dev/audio is pointing to USB audio by using the following command:

```bash
% mixerctl
Device /dev/audioctl:
 Name = USB Audio
 Version = 1.0
 Config = external

Audio mixer for /dev/audioctl is enabled
```

After you connect your USB audio devices, you access them with the audioplay and audiorecord command through the /dev/sound/N device links.

Note that the /dev/audio and /dev/sound/N devices can refer to speakers, microphones, or combination devices. If you refer to the incorrect device type, the command fails. For example, the audioplay command fails if you try to use it with a microphone.

You can select a specific default audio device for most Sun audio applications, such as audioplay and audiorecord, by setting the AUDIODEV shell variable or by specifying the -d option for these commands. However, setting AUDIODEV does not work for third-party applications that have /dev/audio hardcoded as the audio file.

When you plug in a USB audio device, it automatically becomes the primary audio device, /dev/audio, unless /dev/audio is in use. For instructions on changing /dev/audio from on-board audio to USB audio and vice versa, refer to “How to Change the Primary USB Audio Device” on page 164, and usb_ac(7D).

### Hot-Plugging Multiple USB Audio Devices

If a USB audio device is plugged into a system, it becomes the primary audio device, /dev/audio. It remains the primary audio device even after the system is rebooted. If additional USB audio devices are plugged in, the last one becomes the primary audio device.

For additional information on troubleshooting USB audio device problems, see usb_ac(7D).

#### How to Add USB Audio Devices

1. **Plug in the USB speaker.**

   The primary audio device, /dev/audio, points to the USB speaker.

   ```bash
 % ls -l /dev/audio
 lrwxrwxrwx 1 root root 10 Feb 13 08:46 /dev/audio -> usb/audio0
   ```
2 (Optional) Remove the speaker. Then, plug it back in.
If you remove the speaker, the /dev/audio device reverts back to on-board audio.

% ls -l /dev/audio
lrwxrwxrwx 1 root root 7 Feb 13 08:47 /dev/audio -> sound/0

3 Add a USB microphone.

% ls -l /dev/audio
lrwxrwxrwx 1 root root 10 Feb 13 08:54 /dev/audio -> usb/audio0

▼ How to Identify Your System’s Primary Audio Device
This procedure assumes that you have already connected the USB audio devices.

- Examine your system’s new audio links.
  - Display your system’s new audio links with the ls command.
    For example:

    % ls -lt /dev/audio*
    lrwxrwxrwx 1 root root 7 Jul 23 15:46 /dev/audio -> usb/audio0
    lrwxrwxrwx 1 root root 10 Jul 23 15:46 /dev/audioctl ->
    usb/audioctl0/
    % ls -lt /dev/sound/*
    lrwxrwxrwx 1 root root 74 Jul 23 15:46 /dev/sound/1 -> dev/usb/audio0/.
    lrwxrwxrwx 1 root root 77 Jul 23 15:46 /dev/sound/1ctl ->
    usb/audioctl0/.
    lrwxrwxrwx 1 root root 66 Jul 23 14:21 /dev/sound/0 ->
    ../devices/pci@1f,4000/ebus@1/SUNW,CS4231@14,200000:sound,audio
    lrwxrwxrwx 1 root root 69 Jul 23 14:21 /dev/sound/0ctl ->
    ../devices/pci@1f,4000/ebus@1/SUNW,CS4231@14,200000:sound,audioctl

    Notice that the primary audio device, /dev/audio, is pointing to the newly plugged in USB audio device, /dev/usb/audio0.
  - You can also examine your system’s USB audio devices with the prtconf command and look for the USB device information.

    % prtconf
    .
    .
    .
    usb, instance #0
    hub, instance #0
    mouse, instance #0
How to Change the Primary USB Audio Device

Select one of the following to change the primary USB audio device.

- If you want the on-board audio device to become the primary audio device, remove the USB audio devices. The /dev/audio link then points to the /dev/sound/0 entry. If the /dev/sound/0 entry is not the primary audio device, then either shut down the system and use the boot -r command, or run the devfsadm -i command as root.
- If you want the USB audio device to become primary audio device, just plug it in and check the device links.

Troubleshooting USB Audio Device Problems

Sometimes, USB speakers do not produce any sound, even though the driver is attached and the volume is set to high. Hot-plugging the device might not change this behavior.

The workaround is to power cycle the USB speakers.

Key Points of Audio Device Ownership

Keep the following key points of audio device ownership in mind when working with audio devices:

- When you plug in a USB audio device and you are logged in on the console, the console is the owner of the /dev/* entries. This situation means you can use the audio device as long as you are logged in to the console.
- If you are not logged in to the console when you plug in a USB audio device, root becomes the owner of the device. However, if you log in to the console and attempt to access the USB audio device, device ownership changes to the console. For more information, see logindevperm(4).
- When you remotely log in with the rlogin command and attempt to access the USB audio device, the ownership does not change. This means that, for example, unauthorized users cannot listen to conversations over a microphone owned by someone else.
Hot-Plugging USB Devices With the `cfgadm` Command (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display USB bus information.</td>
<td>Display information about USB devices and buses.</td>
<td>“How to Display USB Bus Information (cfgadm)” on page 166</td>
</tr>
<tr>
<td>Unconfigure a USB device.</td>
<td>Logically unconfigure a USB device that is still physically connected to the system.</td>
<td>“How to Unconfigure a USB Device” on page 167</td>
</tr>
<tr>
<td>Configure a USB device.</td>
<td>Configure a USB device that was previously unconfigured.</td>
<td>“How to Configure a USB Device” on page 168</td>
</tr>
<tr>
<td>Logically disconnect a USB device.</td>
<td>You can logically disconnect a USB device if you are not physically near the system.</td>
<td>“How to Logically Disconnect a USB Device” on page 168</td>
</tr>
<tr>
<td>Logically connect a USB device.</td>
<td>Logically connect a USB device that was previously logically disconnected or unconfigured.</td>
<td>“How to Logically Connect a USB Device” on page 169</td>
</tr>
<tr>
<td>Disconnect a USB device subtree.</td>
<td>Disconnect a USB device subtree, which is the hierarchy (or tree) of devices below a hub.</td>
<td>“How to Logically Disconnect a USB Device Subtree” on page 169</td>
</tr>
<tr>
<td>Reset a USB device.</td>
<td>Reset a USB device to logically remove and re-create the device.</td>
<td>“How to Reset a USB Device” on page 169</td>
</tr>
<tr>
<td>Change the default configuration of a multi-configuration USB device.</td>
<td>Change the default configuration of a multi-configuration USB device.</td>
<td>“How to Change the Default Configuration of a Multi-Configuration USB Device” on page 170</td>
</tr>
</tbody>
</table>

Hot-Plugging USB Devices With the `cfgadm` Command

You can add and remove a USB device from a running system without using the `cfgadm` command. However, a USB device can also be logically hot-plugged without physically removing the device. This scenario is convenient when you are working remotely and you need to disable or reset a non-functioning USB device. The `cfgadm` command also provides a way to display the USB device tree, including manufacturer and product information.

The `cfgadm` command displays information about attachment points, which are locations in the system where dynamic reconfiguration operations can occur. An attachment point consists of the following:
An occupant, which represents a hardware resource, such as a USB device, that might be configured into the system

A receptacle, which is the location that accepts the occupant, such as a USB port

Attachment points are represented by logical and physical attachment point IDs (Ap_Ids). The physical Ap_Id is the physical path name of the attachment point. The logical Ap_Id is a user-friendly alternative for the physical Ap_Id. For more information on Ap_Ids, see cfgadm_usb(1M).

The cfgadm command provides the following USB device status information.

<table>
<thead>
<tr>
<th>Receptacle State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty/unconfigured</td>
<td>The device is not physically connected.</td>
</tr>
<tr>
<td>disconnected/unconfigured</td>
<td>The device is logically disconnected and unavailable, even though the device could still be physically connected.</td>
</tr>
<tr>
<td>connected/unconfigured</td>
<td>The device is logically connected, but unavailable. The device is visible in prtconf output.</td>
</tr>
<tr>
<td>connected/configured</td>
<td>The device is connected and available.</td>
</tr>
</tbody>
</table>

The following sections describe how to hot-plug a USB device through the software with the cfgadm command. All of the sample USB device information in these sections has been truncated to focus on relevant information.

**How to Display USB Bus Information (cfgadm)**

For examples of using the prtconf command to display USB configuration information, see “How to Display USB Device Information” on page 149.

1 Display USB bus information.

For example:

```
% cfgadm
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/4.5</td>
<td>usb-hub</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/4.5.1</td>
<td>usb-device</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/4.5.2</td>
<td>usb-printer</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/4.5.3</td>
<td>usb-mouse</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/4.5.4</td>
<td>usb-device</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/4.5.5</td>
<td>usb-storage</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/4.5.6</td>
<td>usb-communi</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/4.5.7</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
</tbody>
</table>
In the preceding example, usb0/4.5.1 identifies a device connected to port 1 of the second-level external hub, which is connected to port 5 of first-level external hub, which is connected to the first USB controller's root hub, port 4.

2 Display specific USB device information.

For example:

```csh
% cfgadm -l -s "cols=ap_id:info"
Ap_Id Information
usb0/4.5.1 Mfg: Inside Out Networks Product: Edgeport/421 NConfigs: 1
Config: 0 ...
usb0/4.5.2 Mfg: <undef> Product: <undef> NConfigs: 1 Config: 0 ...
usb0/4.5.3 Mfg: Mitsumi Product: Apple USB Mouse NConfigs: 1
Config: 0 ...
usb0/4.5.4 Mfg: NMB Product: NMB USB KB/PS2 M NConfigs: 1 Config: 0
usb0/4.5.5 Mfg: Hagiwara Sys-Com Product: SmartMedia R/W NConfigs: 1
Config: 0 ...
usb0/4.5.6 Mfg: 3Com Inc. Product: U.S.Robotics 56000 Voice USB Modem NConfigs: 2 ...
usb0/4.5.7
```

▼ How to Unconfigure a USB Device

You can unconfigure a USB device that is still physically connected to the system. However, a driver will never attach to the device. Note that a USB device remains in the `prtconf` output even after that device is unconfigured.

1 Become superuser.

2 Unconfigure the USB device.

For example:

```
cfgadm -c unconfigure usb0/4.7
Unconfigure the device: /devices/pci@8,700000/usb@5,3/hub@4:4.7
This operation will suspend activity on the USB device
Continue (yes/no)? y
```

3 Verify that the device is unconfigured.

For example:

```
cfgadm
Ap_Id Type Receptacle Occupant Condition
usb0/4.5 usb-hub connected configured ok
usb0/4.5.1 usb-device connected configured ok
usb0/4.5.2 usb-printer connected configured ok
usb0/4.5.3 usb-mouse connected configured ok
usb0/4.5.4 usb-device connected configured ok
```
How to Configure a USB Device

1. Become superuser.

2. Configure a USB device.
   For example:
   
   ```bash
 # cfgadm -c configure usb0/4.7
   ```

3. Verify that the USB device is configured.
   For example:
   
   ```bash
 # cfgadm usb0/4.7
   ```

How to Logically Disconnect a USB Device

If you want to remove a USB device from the system and the `prtconf` output, but you are not physically near the system, just logically disconnect the USB device. The device is still physically connected. However, the device is logically disconnected, unusable, and not visible to the system.

1. Become superuser.

2. Disconnect a USB device.
   For example:
   
   ```bash
 # cfgadm -c disconnect -y usb0/4.7
   ```

3. Verify that the device is disconnected.
   For example:
   
   ```bash
 # cfgadm usb0/4.7
   ```
How to Logically Connect a USB Device

Use this procedure to logically connect a USB device that was previously logically disconnected or unconfigured.

1. Become superuser.

2. Connect a USB device.
   For example:
   ```
 # cfgadm -c configure usb0/4.7
   ```

3. Verify that the device is connected.
   For example:
   ```
 # cfgadm usb0/4.7
 Ap_Id Type Receptacle Occupant Condition
 usb0/4.7 usb-storage connected configured ok
   ```

   The device is now available and visible to the system.

How to Logically Disconnect a USB Device Subtree

Use this procedure to disconnect a USB device subtree, which is the hierarchy (or tree) of devices below a hub.

1. Become superuser.

2. Remove a USB device subtree.
   For example:
   ```
 # cfgadm -c disconnect -y usb0/4
   ```

3. Verify that the USB device subtree is disconnected.
   For example:
   ```
 # cfgadm usb0/4
 Ap_Id Type Receptacle Occupant Condition
 usb0/4 unknown disconnected unconfigured ok
   ```

How to Reset a USB Device

If a USB device behaves erratically, use the `cfgadm` command to reset the device, which logically removes and re-creates the device.

1. Become superuser.
2  Make sure that the device is not in use.

3  Reset the device.
   For example:
   
   ```bash
 # cfgadm -x usb_reset -y usb0/4.7
   ```

4  Verify that the device is connected.
   For example:
   
   ```bash
 # cfgadm usb0/4.7
   ```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/4.7</td>
<td>usb-storage</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>

▼ How to Change the Default Configuration of a Multi-Configuration USB Device

Keep the following in mind when working with multi-configuration USB devices:

- A USB device configuration defines how a device presents itself to the operating system. This method is different from system device configurations discussed in other `cfgadm` sections.

- Some USB devices support multiple configurations, but only one configuration can be active at a time.

- Multi-configuration devices can be identified by examining the `cfgadm -lv` output. `Nconfigs` will be greater than 1.

- The default USB configuration is configuration 1. The current configuration is reflected in `cfgadm -lv` output as `Config`.

- Changes to the default configuration persist across reboots, hot-removes, and the reconfiguration of the device, as long as the device is reconnected to the same port.

1  Make sure that the device is not in use.

2  Change the default USB configuration.
   For example:
   
   ```bash
 # cfgadm -x usb_config -o config=2 usb0/4
 Setting the device: /devices/pci@1f,0/usb@c,3:4
 to USB configuration 2
 This operation will suspend activity on the USB device
 Continue (yes/no)? yes
3 Verify that the device changed.

For example:

```
# cfgadm -lv usb0/4

Ap_Id  Receptacle  Occupant  Condition Information When Type
       Busy     Phys_Id

usb0/4 connected unconfigured ok  Mfg: Sun 2000
Product: USB-B0B0 aka Robotech
With 6 EPPS High Clk Mode NConfigs: 7 Config: 2 : EVAL Board Setup
unavailable

usb-device n /devices/pci@1f,0/usb@c,3:4
```

Note that Config: now shows 2.
Using InfiniBand Devices (Overview/Tasks)

InfiniBand (IB) is a new I/O technology based on switch fabrics introduced in the Solaris 10 release. It provides high bandwidth, low latency interconnect for attaching I/O devices to hosts and for host-to-host communication.

This is a list of the overview information in this chapter.

- “Overview of InfiniBand Devices” on page 173
- “Dynamically Reconfiguring IB Devices (\texttt{cfgadm})” on page 176

For information on the procedures associated with using IB devices, see the following:

- “Dynamically Reconfiguring IB Devices (Task Map)” on page 174
- “Using the uDAPL Application Interface With InfiniBand Devices” on page 186

For general information about dynamic reconfiguration and hot-plugging, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

Overview of InfiniBand Devices

IB devices are managed by the Solaris IB nexus driver. This driver supports 5 types of devices:

- IB Port devices
- IB virtual physical point of attachment (VPPA) devices
- IB HCA service (HCA_SVC) devices
- Pseudo devices
- I/O controller (IOC) devices

The IB nexus driver queries the Solaris IB Device Manager (IBDM) for services, referred in this guide as communication services, to enumerate the IB Port, HCA_SVC, and IB VPPA devices.

The Port devices bind a communication service to a given \texttt{port\#} of a Host Channel Adapter (HCA). The VPPA devices bind a communication service to a \texttt{port\#, p_key\#} combination instead. The HCA_SVC devices bind a communication service to a given HCA. Note that the
Port devices and the HCA_SVC devices always use a p_key (partition key) whose value is zero. The Port, HCA_SVC, and VPPA devices are children of the HCA and are enumerated through the `ib.conf` file. For more information, see `ib(7D)`.

The IOC devices are children of the IB nexus driver and are part of an I/O unit. The pseudo devices are also children of the IB nexus driver and refer to all other devices that provide their own configuration files to enumerate. For more information, see `ib(4)`.

The possible IB device tree path name(s) are listed in the following table.

<table>
<thead>
<tr>
<th>IOC device</th>
<th>/ib/ioc@1730000007F510C,1730000007F50</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB pseudo device</td>
<td>/ib/<driver>@<unit-address></td>
</tr>
<tr>
<td>IB VPPA device</td>
<td>/pci@1f,2000/pci@1/pci15b3,5a44@0/ibport@<port#>,<p_key>,<service></td>
</tr>
<tr>
<td>IB HCA_SVC device</td>
<td>/pci@1f,2000/pci@1/pci15bc,5a44@0/ibport@0,<service></td>
</tr>
<tr>
<td>IB Port device</td>
<td>/pci@1f,2000/pci@1/pci15b3,5a44@0/ibport@<port#>,0,<service></td>
</tr>
<tr>
<td>HCA</td>
<td>/pci@1f,2000/pci@1/pci15b3,5a44@0</td>
</tr>
</tbody>
</table>

Note that the IB HCA_SVC devices have zero as the port# and the p_key.

The IB components in the preceding table are described as follows:

- `<services>` Is a communication service. For example, `ipib` is the communication service used by the `ibd` kernel client driver.
- `<p_key>` Is the partition key value being used.
- `<port>` Is the port number.
- `<unit-address>` Refers to IB kernel client driver’s property by this name specified in its `driver.conf` file. For more information, see `driver.conf(4)`.

Dynamically Reconfiguring IB Devices (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display IB device information.</td>
<td>Display information about the IB devices on your system.</td>
<td>"How to Display IB Device Information" on page 177</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>For Instructions</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| Configure or unconfigure an IOC device. | Select one of the following: | “How to Unconfigure an IOC Device” on page 178
“How to Configure an IOC Device” on page 179 |
| Configure or unconfigure a port or VPPA device. | Select one of the following: | “How to Unconfigure an IB Port, HCA_SVC, or a VPPA Device” on page 179
“How to Configure a IB Port, HCA_SVC, or a VPPA Device” on page 180 |
| Configure or unconfigure an IB pseudo device. | Select one of the following: | “How to Unconfigure an IB Pseudo Device” on page 181
“How to Configure an IB Pseudo Device” on page 181 |
| Display kernel IB clients of an HCA. | You might need to display | “How to Display Kernel IB Clients of an HCA” on page 181 |
| Configure or unconfigure an IB HCA. | Select one of the following: | “How to Unconfigure IB Devices Connected to an HCA” on page 182
“Configuring an IB HCA” on page 183 |
| Update the IB p_key tables. | If the p_key table information of a HCA port changes, IBTF and IBDM need to be notified so that their internal p_key databases are updated. | “How to Update the IB p_key Tables” on page 183 |
Dynamically Reconfiguring IB Devices (cfgadm)

One can configure or unconfigure an IB device from a running system by using the `cfgadm` CLI only. This command also provides a way to display the IB fabric, manage communication services, and update p_key table databases. For more information, see `cfgadm_ib(1M)`.

The `cfgadm` CLI manages dynamic reconfiguration, referred to in this guide as DR, of the entire IB fabric as seen by a host. The `cfgadm` operations are supported on all the IB devices, such as Port, VPPA, HCA_SVC, IOC, and pseudodevices.

The `cfgadm` command displays information about attachment points (Ap_Ids), which are locations in the system where DR operations can occur. For details on the Ap_Ids that `cfgadm` supports, see `cfgadm_ib.1M`. Note that all IB Ap_Ids are shown as connected.

The `cfgadm` command provides the following IB device status information.

<table>
<thead>
<tr>
<th>Receptacle State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connected/configured/ok</td>
<td>The device is connected and available. The devinfo node is present.</td>
</tr>
<tr>
<td>connected/unconfigured/unknown</td>
<td>The device is unavailable and no devinfo node or device driver exists for this device. Or, the device was never configured for use by ib nexus driver. The device might be known to the IB Device Manager.</td>
</tr>
</tbody>
</table>
The following sections describe how to dynamically reconfigure (DR) IB devices with the `cfgadm` command. All of the sample IB device information in these sections has been truncated to focus on relevant information.

How to Display IB Device Information

You can use the `prtconf` command to display general information about IB devices. For example:

```bash
$ prtconf
pci, instance #0
  pci15b3,5a44, instance #0
  ibport, instance #253
  ibport, instance #254
  ibport, instance #255
.
.
ib, instance #0
  ioc, instance #243
  ioc, instance #244
  ioc, instance #245
  ioc, instance #246
  ioc, instance #247
  ioc, instance #248
  ibgen, instance #249
```

In the preceding example, `pci15b3,5a44` refers to an IB HCA.

Use the following steps to display specific IB device information.

1. **Become superuser.**

2. **Display IB fabric information.**

 For example:

   ```bash
   # cfgadm -a
   Ap_Id       Type          Receptacle Occupant  Condition
   ib:17300000008070 IB-Fabric connected configured ok
   hca:1730000007F518 IB-HCA connected configured ok
   ib:1730000007F5198 IB-IOC connected configured ok
   ib:1730000007F5199 IB-IOC connected configured ok
   hca:17300000008070,0,hnfs IB-HCA_SVC connected configured ok
   ib:17300000008071,0,sdp IB-PORT connected configured ok
   ib:17300000008072,0,sdp IB-PORT connected configured ok
   ib:17300000008071,8001,ipib IB-VPPA connected configured ok
   ib:17300000008072,8001,ipib IB-VPPA connected configured ok
   ```
In the preceding example output, the components are described as follows:

Ap_Id ib::1730000008072,0,sdp
Identifies an IB Port device that is connected to port 2 and is bound to the sdp service.

Ap_Id ib::1730000008072,8001,ipib
Identifies an IB VPPA device that is connected to port 2, using a p_key value of 0x8001, and is bound to the ibd service.

Ap_Id ib::1730000008070,0,hnfs
Identifies an IB HCA_SVC device bound to the hnfs service.

Ap_Id ib::1730000007F5198
Identifies an IOC device.

Ap_Id ib::ibgen,0
Identifies a pseudo device.

Display specific IB device information.

For example, for an IB VPPA device:

```
# cfgadm -al -s "cols=ap_id:info" ib::1730000008072,8001,ipib
Ap_Id Information
ib::1730000008072,8001,ipib ipib
```

For example, for an IB HCA device:

```
# cfgadm -al -s "cols=ap_id:info" hca::1730000008070
Ap_Id Information
hca::1730000008070 VID: 0x15b3, PID: 0x5a44, #ports: 0x2, port1 GUID: 0x1730000008071, port2 GUID: 0x1730000008072
```

The preceding output displays the number of ports and their GUIDs.

How to Unconfigure an IOC Device

You can unconfigure an IB device that is still physically connected to the system, but a driver will never attach to it.

1. **Become superuser.**
2 Unconfigure the IB device.
 For example:

 # cfgadm -c unconfigure ib::1730000007F5198
 Unconfigure the device: /devices/ib:fabric::1730000007F5198
 This operation will suspend activity on the IB device
 Continue (yes/no)? y

 #

3 Verify that the device is unconfigured.
 For example:

 # cfgadm -a ib::1730000007F5198
 ib::1730000007F5198 IB-IOC connected unconfigured unknown

 #

▼ How to Configure an IOC Device

1 Become superuser.

2 Configure a IB device.
 For example:

 # cfgadm -yc configure ib::1730000007F5198

3 Verify that the IB device is configured.
 For example:

 # cfgadm -al ib::1730000007F5198
 Ap_Id Type Receptacle Occupant Condition
 ib::1730000007F5198 IB-IOC connected configured ok

▼ How to Unconfigure an IB Port, HCA_SVC, or a VPPA Device

Use the following steps if you want to remove an IB Port, HCA_SVC, or a VPPA device from the system.

The example below illustrates how to unconfigure a VPPA device, but the same procedure applies to Port and HCA_SVC devices as well.

1 Become superuser.
2 **Unconfigure the IB VPPA device.**

 For example:

   ```
   # cfgadm -c unconfigure ib::1730000007F51,8001,ipib
   Unconfigure the device: /devices/ib:fabric::1730000007F51,8001,ipib
   This operation will suspend activity on the IB device
   Continue (yes/no)? Y
   #
   ```

3 **Verify that the device is disconnected.**

 For example:

   ```
   # cfgadm -a ib::1730000007F51,8001,ipib
   Ap_Id    Type  Receptacle  Occupant  Condition
   ib::1730000007F51,8001,ipib  IB-VPPA  connected  unconfigured  unknown
   #
   ```

▼ **How to Configure a IB Port, HCA_SVC, or a VPPA Device**

Use the following steps if you want to configure an IB Port, HCA_SVC, or a VPPA device on the system.

The example below illustrates how to configure a VPPA device, but similar steps can be used to configure Port and HCA_SVC devices as well.

1 **Become superuser.**

2 **Configure the IB VPPA device.**

 For example:

   ```
   # cfgadm -c configure ib::1730000007F51,8001,ipib
   #
   ```

3 **Verify that the device is connected.**

 For example:

   ```
   # cfgadm -a ib::1730000007F51,8001,ipib
   Ap_Id    Type  Receptacle  Occupant  Condition
   ib::1730000007F51,8001,ipib  IB-VPPA  connected  configured  ok
   #
   ```

Note – A `cfgadm` based configure or unconfigure operation of IB Port and HCA_SVC devices is similar to the preceding examples for an IB VPPA device.
How to Unconfigure an IB Pseudo Device

Use the following steps if you want to remove an IB pseudo device from the system.

1. Become superuser.

2. Unconfigure the IB pseudo device.
 For example:
   ```
   # cfgadm -c unconfigure ib::ibgen,0
   Unconfigure the device: /devices/ib:fabric::ibgen,0
   This operation will suspend activity on the IB device
   Continue (yes/no)? Y
   #
   ```

3. Verify that the device is disconnected.
   ```
   # cfgadm -a ib::ibgen,0
   Ap_Id  Type  Receptacle  Occupant  Condition
   ib::ibgen,0  IB-PSEUDO  connected  unconfigured  unknown
   ```

How to Configure an IB Pseudo Device

Use the following steps to configure an IB pseudo device.

1. Become superuser.

2. Configure the IB pseudo device.
 For example:
   ```
   # cfgadm -yc configure ib::ibgen,0
   ```

3. Verify that the device is connected.
 For example:
   ```
   # cfgadm -a ib::ibgen,0
   Ap_Id  Type  Receptacle  Occupant  Condition
   ib::ibgen,0  IB-PSEUDO  connected  configured  ok
   ```

How to Display Kernel IB Clients of an HCA

The following IB `cfgadm` plugin command can be invoked to list kernel IB clients using this HCA. Note that the last column would show a "yes" if a kernel IB client uses another HCA. IB Managers and kernel clients that do not use the HCA are shown with an `Ap_Id` of "-".
Display kernel IB clients of an HCA.

For example:

```
$ cfgadm -x list_clients hca:1730000007F50
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>IB Client</th>
<th>Alternate HCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ib::1730000007F51D0</td>
<td>ibgen</td>
<td>no</td>
</tr>
<tr>
<td>ib::1730000007F51D1</td>
<td>ibgen</td>
<td>no</td>
</tr>
<tr>
<td>ib::1730000007F51,8001,ipib</td>
<td>ibd</td>
<td>no</td>
</tr>
<tr>
<td>ib::ibgen,0</td>
<td>ibgen</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>ibdm</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>ibmf</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>nfs/ib</td>
<td>no</td>
</tr>
</tbody>
</table>

▼ How to Unconfigure IB Devices Connected to an HCA

An actual DR of an HCA is beyond the scope of the IB `cfgadm` plugin. Although DR of an HCA can be achieved by using the plugin of the underlying bus. For example, a PCI based HCA can use the `cfgadm_pci` command. For more information, see `cfgadm_pci(1M)`.

However, the IB `cfgadm` plugin assists in the HCA DR by listing its kernel IB clients as illustrated in steps below.

1. Become superuser.

2. List the kernel IB clients of the HCA.

 For example:

   ```
   # cfgadm -x list_clients hca:1730000007F50
   ```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>IB Client</th>
<th>Alternate HCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ib::1730000007F51D0</td>
<td>ibgen</td>
<td>no</td>
</tr>
<tr>
<td>ib::1730000007F51D1</td>
<td>ibgen</td>
<td>no</td>
</tr>
<tr>
<td>ib::1730000007F51,8001,ipib</td>
<td>ibd</td>
<td>no</td>
</tr>
<tr>
<td>ib::ibgen,0</td>
<td>ibgen</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>ibdm</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>ibmf</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>nfs/ib</td>
<td>no</td>
</tr>
</tbody>
</table>

3. Unconfigure kernel IB clients, such as Port, VPPA, HCA_SVC, or IOC devices, that do not have alternate HCAs present.

 For example:

   ```
   # cfgadm -x unconfig_clients hca:1730000008070
   Unconfigure Clients of HCA /devices/ib:1730000008070
   This operation will unconfigure IB clients of this HCA
   Continue (yes/no)? y
   ```
Verify that the kernel IB clients of the HCA are unconfigured.

```bash
# cfgadm -x list_clients hca:173000007F50
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>IB Client</th>
<th>Alternate HCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>ibdm</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>ibmf</td>
<td>no</td>
</tr>
<tr>
<td>-</td>
<td>nfs/ib</td>
<td>no</td>
</tr>
</tbody>
</table>

Configuring an IB HCA

Invoke the bus-specific `cfgadm` plugin to configure the HCA. The exact details are beyond the scope of this chapter.

How to Update the IB p_key Tables

If the `p_key` table information of an HCA ports changes, for example, additional `p_key` are enabled or disabled, InfiniBand Transport Framework (IBTF) and IBDM need to be notified so that their internal `p_key` databases are updated. The `cfgadm` command helps update the `p_key` databases of IBTF and IBDM. For more information, see `ibtl(7D)` and `ibdm(7D).

1 Become superuser.

2 Update the `p_key` tables.
For example:

```bash
# cfgadm -x update_pkey_tbls -y ib
```

How to Display IB Communication Services

Use the following steps to display the communication services that are currently in use by the IBTF.

1 Become superuser.

2 Display IB communication services.
For example:

```bash
# cfgadm -x list_services ib
Port communication services:
  srp
VPPA communication services:
  ibd
```
How to Add a VPPA Communication Service

Use the following steps to add a new VPPA communication service.

Similar steps can be used to add a new HCA_SVC or a port communication service.

1. Become superuser.

2. Add a new VPPA communication service.
 For example:
   ```bash
   # cfgadm -o comm=vppa,service=new -x add_service ib
   ```

3. Verify that the new service has been added.
 For example:
   ```bash
   # cfgadm -x list_services ib
   Port communication services:
   srp
   VPPA communication services:
   ibd
   new
   HCA_SVC communication services:
   nfs_service
   #
   ```

How to Remove an Existing IB Port, HCA_SVC, or a VPPA Communication Service

Use the following steps to delete an existing IB Port, HCA_SVC, or a VPPA communication service.

1. Become superuser.

2. Remove a VPPA communication service.
 For example:
   ```bash
   # cfgadm -o comm=vppa,service=new -x delete_service ib
   ```
3 **Verify that the communication service has been removed.**
For example:

```
# cfgadm -x list_services ib
Port communication services:
    srp
VPPA communication services:
    ibd
HCA_SVC communication services:
    hrfs
```

▼ **How to Update an IOC Configuration**

Use the following steps to update properties of all the IOC device nodes or for a particular IOC Ap_Id. The properties that can get updated are as follows:

- port-list
- port-entries
- service-id
- service-name

For more information on these properties, see `ib(7D)`.

Note that these properties may not get updated if there is no configuration change. The following example describes how to update a particular IOC's configuration. If you need to update the configuration of all the IOCs, then specify the static `ib Ap_Id` instead of the particular IOC Ap_Id.

1 **Become superuser.**

2 **Update the configuration of an IOC.**
For example:

```
# cfgadm -x update_ioc_conf ib::1730000007F5198
This operation can update properties of IOC devices.
Continue (yes/no)? y
```

3 **Verify that the properties have been updated by running `prtconf -v`.**
Using the uDAPL Application Interface With InfiniBand Devices

User Direct Access Programming Library (uDAPL) is a standard API that promotes data center application data messaging performance, scalability, and reliability over Remote Direct Memory Access (RDMA) capable interconnects such as InfiniBand. The uDAPL interface is defined by the DAT collaborative. For more information about the DAT collaborative, go to the following site:

http://www.datcollaborative.org

The Solaris release provides the following uDAPL features:

- A standard DAT registry library, libdat. For more information, see libdat(3LIB).
- A standard service provider registration file, dat.conf. For more information, see dat.conf(4).
- Support for multiple service providers so that each provider specifies their own uDAPL library path, version number, and so on, in their own service_provider.conf file. For more information, see, service_provider.conf(4).
- An administrative tool, the datadm command, to configure dat.conf. For more information, see datadm(1M).
- A new resource control property, project.max-device-locked-memory, to regulate the amount of locked down physical memory.
- A naming scheme that uses either IPv4 or IPv6 addresses that leverage the IP infrastructure, such as ARP in IPv4 and neighbor discovery in IPv6, for address resolution. The Solaris uDAPL Interface Adapter directly maps to an IPoIB device instance.
- Support for the standard Address Translation Scheme that is used by the DAT collaborative community.
- A uDAPL service provider library to support the Mellanox Tavor Host Channel Adapter with automatic registration to the dat.conf registration file.
- Supports both SPARC platform and x86 platforms.

▼ How to Enable uDAPL

1. Become superuser.
2. Confirm that the following packages are installed. Or, install them, if needed.
 - SUNWib – Sun InfiniBand Framework
 - SUNWtavor – Sun Tavor HCA Driver
Select one of the following to plumb the IPoIB interfaces.

- Manually plumb the interfaces with the `ifconfig` and `datadm` commands.

 For example:

  ```
  # ifconfig ibd1 plumb
  # ifconfig ibd1 192.168.0.1/24 up
  # datadm -a /usr/share/dat/SUNWudaplt.conf
  ```

- Automatically plumb the interfaces by doing the following:

 1. Create the following file with the appropriate IP address.
     ```
     /etc/hostname.ibd1
     ```
 2. Reboot the system.

Updating the DAT Static Registry

You can use the `datadm` command to maintain the DAT static registry, the `dat.conf` file. For more information about this file, see `dat.conf(4)`.

The `datadm` command can also be used to register or unregister a service provider to the `dat.conf` file. For more information, see `datadm(1M)`.

When IPoIB interface adapters are added or removed, run the `datadm` command to update the `dat.conf` file to reflect the current state of the system. A new set of interface adapters for all the service providers that are currently installed will be regenerated.

How to Update the DAT Static Registry

1. Become superuser.

2. Update the DAT static registry after you add or remove IPoIP interface adapters from the system.

   ```
   # datadm -u
   ```

3. Display the updated DAT static registry.
   ```
   # datadm
   ```
How to Register a Service Provider in the DAT Static Registry

1. Become superuser.

2. Update the DAT static registry after you add Sun's service provider for the Mellanox Tavor Host Channel Adapter.

   ```
   # datadm -a /usr/share/dat/SUNWudaplt.conf
   ```

3. Display the updated DAT static registry.

   ```
   # datadm -v
   ```

How to Unregister a Service Provider from the DAT Static Registry

1. Become superuser.

2. Update the DAT static registry after you remove Sun's service provider for the Mellanox Tavor Host Channel Adapter from the system.

   ```
   # datadm -r /usr/share/dat/SUNWudaplt.conf
   ```

3. Display the updated DAT static registry.

   ```
   # datadm -v
   ```
Managing Disks (Overview)

This chapter provides overview information about Solaris disk slices and introduces the format utility.

This is a list of overview information in this chapter.

- “What’s New in Disk Management?” on page 189
- “Where to Find Disk Management Tasks” on page 192
- “Overview of Disk Management” on page 193
- “Disk Terminology” on page 193
- “About Disk Labels” on page 193
- “About Disk Slices” on page 198
- “format Utility” on page 202
- “Partitioning a Disk” on page 205

For instructions on how to add a disk to your system, see Chapter 12, “SPARC: Adding a Disk (Tasks)” or Chapter 13, “x86: Adding a Disk (Tasks).”

What’s New in Disk Management?

This section describes new disk management features in the Solaris release.

- “Solaris iSCSI Target Support” on page 190
- “Solaris iSCSI Initiator Support” on page 190
- “x86: Disk Management in the GRUB Boot Environment” on page 191
- “Support for SCSI Disks That are Larger Than 2 Tbytes” on page 192

For a complete listing of new Solaris features and a description of Solaris releases, see Solaris 10 What’s New.
Solaris iSCSI Target Support

Solaris 10 8/07: This Solaris release provides support for iSCSI target devices, which can be disk or tape devices. Previous Solaris releases provide support for iSCSI initiators. The advantage of setting up Solaris iSCSI targets is you might have existing fibre-channel devices that can be connected to clients without the cost of fibre-channel HBAs. In addition, systems with dedicated arrays can now export replicated storage with ZFS or UFS file systems.

You can use the iscsiadm command to set up and manage your iSCSI target devices. For the disk device that you select as your iSCSI target, you’ll need to provide an equivalently sized ZFS or UFS file system as the backing store for the iSCSI daemon.

After the target device is set up, use the iscsiadm command to identify your iSCSI targets, which will discover and use the iSCSI target device.

For more information, see Chapter 14, “Configuring Solaris iSCSI Targets and Initiators (Tasks),” iscsiadm(1M), and iscsitadm.1M.

Note – A previous version of this guide incorrectly indicated that the Solaris iSCSI target support was available in the Solaris 10 11/06 release. This feature is available starting in the Solaris 10 8/07 release.

Solaris iSCSI Initiator Support

Solaris 10 1/06: iSCSI is an Internet Protocol (IP)-based storage networking standard for linking data storage subsystems. By carrying SCSI commands over IP networks, the iSCSI protocol enables you to mount disk devices, from across the network, onto your local system. On your local system, you can use the devices like block devices.

For more information, see Chapter 14, "Configuring Solaris iSCSI Targets and Initiators (Tasks)."

Solaris iSCSI Initiator Support Enhancements

Solaris 10 6/06: The following enhancements have been added to the Solaris iSCSI initiator support:

- Dynamic target removal support – Provides the ability to remove (or log out) an iSCSI target without rebooting the system. If you try to remove or disable a discovery method or address, and the target is not in use, the target is removed and related resources are released. If the target is in use, the discovery address or method remains enabled, and in use message is displayed.

For more information, see “How to Remove Discovered iSCSI Targets” on page 270.
- Internet Storage Name Service (iSNS) client support – Enables the iSCSI initiator to discover the targets to which it has access using as little configuration as possible. It also provides state change notification functionality to notify the iSCSI initiator when changes in operational state of storage nodes occur. The `iscsiadm` command has been enhanced to support iSNS discovery.

 For more information, see “How to Configure iSCSI Target Discovery” on page 269.

- Multiple session target (MS/T) support – Provides the ability to create more iSCSI sessions or paths to a target on demand. The additional iSCSI paths provide higher bandwidth aggregation and availability in specific configurations, such as iSCSI arrays that support login redirection. The iSCSI MS/T feature should be used in combination with MPxIO or other multipathing software. The `iscsiadm` command has been enhanced to support MS/T.

 For more information about configuring Solaris iSCSI initiators, see Chapter 14, “Configuring Solaris iSCSI Targets and Initiators (Tasks)” and `iscsiadm(1M)`.

x86: Disk Management in the GRUB Boot Environment

Solaris 10 1/06: The GRUB boot menu has replaced the previous method for booting an x86 system. In the area of disk management, you use the GRUB interface when booting from an alternative device to replace a system disk or when installing the bootblocks.

The GRUB boot environment provides the following features:

- **Solaris failsafe boot** – A Solaris failsafe boot option that boots into the miniroot so you can recover from a problem that is preventing the system from booting without having to boot from an alternative device. Use the arrow keys to select the following option from the GRUB boot menu and then press return:

  ```
  Solaris failsafe
  ```

 You’ll need to reboot the system after using the Solaris failsafe boot option.

- **Network boot** – Boot from the network by pressing the F12 key during the BIOS configuration phase.

- **Single-user boot** – Boot to single-user mode by selecting this option from the Solaris failsafe boot menu:

  ```
  kernel /platform/i86pc/multiboot
  ```

 Then, use the e (edit) option to add the -s single-user option. For example:

  ```
  kernel /platform/i86pc/multiboot -s
  ```

 Press return and then press the b key to boot the system. Press control-D to boot the system back to multiuser mode.
In the GRUB environment, you cannot use the `fmthard` command to install the boot blocks automatically when run on an x86 system. You must install the boot blocks separately.

For detailed feature information and instructions on using the new GRUB based booting on x86 systems, see Chapter 11, “GRUB Based Booting (Tasks),” in System Administration Guide: Basic Administration.

For instructions for managing disks in the GRUB boot environment, see the following references:

- “x86: How to Install a Boot Block on a System Disk” on page 257
- “x86: How to Connect a System Disk” on page 245

This feature is not available on SPARC systems.

Support for SCSI Disks That are Larger Than 2 Tbytes

Solaris 10 1/06: The SCSI driver, `ssd` or `sd`, is limited to 2 terabytes in the Solaris 10 release. Starting in the Solaris 10 1/06 release, the SCSI driver, `ssd` or `sd`, supports 2 terabytes and greater.

The `format` utility can be used to label, configure, and partition these larger disks. For information about using the EFI disk label on large disks and restrictions with the `fdisk` utility, see “Restrictions of the EFI Disk Label” on page 195.

Where to Find Disk Management Tasks

Use these references to find step-by-step instructions for managing disks.

<table>
<thead>
<tr>
<th>Disk Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format a disk and examine a disk label.</td>
<td>Chapter 11, “Administering Disks (Tasks)”</td>
</tr>
<tr>
<td>Add a new disk to a SPARC system.</td>
<td>Chapter 12, “SPARC: Adding a Disk (Tasks)”</td>
</tr>
<tr>
<td>Add a new disk to an x86 system.</td>
<td>Chapter 13, “x86: Adding a Disk (Tasks)”</td>
</tr>
<tr>
<td>Hot-plug a SCSI or PCI disk.</td>
<td>Chapter 6, "Dynamically Configuring Devices (Tasks)"</td>
</tr>
</tbody>
</table>
Overview of Disk Management

Managing disks in the Solaris OS usually involves setting up the system and running the Solaris installation program to create the appropriate disk slices and file systems and to install the Solaris OS. Occasionally, you might need to use the `format` utility to add a new disk drive or replace a defective disk drive.

Disk Terminology

Before you can effectively use the information in this section, you should be familiar with basic disk architecture. In particular, you should be familiar with the following terms:

<table>
<thead>
<tr>
<th>Disk Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track</td>
<td>A concentric ring on a disk that passes under a single stationary disk head as the disk rotates.</td>
</tr>
<tr>
<td>Cylinder</td>
<td>The set of tracks with the same nominal distance from the axis about which the disk rotates.</td>
</tr>
<tr>
<td>Sector</td>
<td>Section of each disk platter. A sector holds 512 bytes.</td>
</tr>
<tr>
<td>Block</td>
<td>A data storage area on a disk. A disk block is 512 bytes.</td>
</tr>
<tr>
<td>Disk controller</td>
<td>A chip and its associated circuitry that controls the disk drive.</td>
</tr>
<tr>
<td>Disk label</td>
<td>The first sector of a disk that contains disk geometry and partition information.</td>
</tr>
<tr>
<td>Device driver</td>
<td>A kernel module that controls a hardware or virtual device.</td>
</tr>
</tbody>
</table>

For additional information, see the product information from your disk’s manufacturer.

About Disk Labels

A special area of every disk is set aside for storing information about the disk’s controller, geometry, and slices. This information is called the disk’s label. Another term that is used to described the disk label is the VTOC (Volume Table of Contents) on a disk with a VTOC label. To label a disk means to write slice information onto the disk. You usually label a disk after you change its slices.

The Solaris release supports the following two disk labels:

- SMI – The traditional VTOC label for disks that are less than 1 terabyte in size.
EFI – Provides support for disks that are larger than 1 terabyte on systems that run a 64-bit Solaris kernel. The Extensible Firmware Interface GUID Partition Table (EFI GPT) disk label is also available for disks less than 1 terabyte that are connected to a system that runs a 32-bit Solaris kernel.

If you fail to label a disk after you create slices, the slices will be unavailable because the OS has no way of “knowing” about the slices.

EFI Disk Label

The EFI label provides support for physical disks and virtual disk volumes. This release also includes updated disk utilities for managing disks greater than 1 terabyte. The UFS file system is compatible with the EFI disk label, and you can create a UFS file system greater than 1 terabyte. For information on creating a multiterabyte UFS file system, see "64-bit: Support of Multiterabyte UFS File Systems” on page 322.

The unbundled Sun QFS file system is also available if you need to create file systems greater than 1 terabyte. For information on the Sun QFS file system, see Sun QFS, Sun SAM-FS, and Sun SAM-QFS File System Administrator’s Guide.

The Solaris Volume Manager software can also be used to manage disks greater than 1 terabyte in this Solaris release. For information on using Solaris Volume Manager, see Solaris Volume Manager Administration Guide.

The VTOC label is still available for disks less than 1 terabyte in size. If you are only using disks smaller than 1 terabyte on your systems, managing disks will be the same as in previous Solaris releases. In addition, you can use the `format -e` command to label a disk less than 1 terabyte with an EFI label. For more information, see Example 11–6.

You can use the `format -e` command to apply an EFI label to a disk if the system is running the appropriate Solaris release. However, you should review the important information in “Restrictions of the EFI Disk Label” on page 195 before attempting to apply an EFI label.

Comparison of the EFI Label and the VTOC Label

The EFI disk label differs from the VTOC disk label in the following ways:

- Provides support for disks greater than 1 terabyte in size.
- Provides usable slices 0-6, where slice 2 is just another slice.
- Partitions (or slices) cannot overlap with the primary or backup label, nor with any other partitions. The size of the EFI label is usually 34 sectors, so partitions start at sector 34. This feature means that no partition can start at sector zero (0).
- No cylinder, head, or sector information is stored in the EFI label. Sizes are reported in blocks.
Information that was stored in the alternate cylinders area, the last two cylinders of the disk, is now stored in slice 8.

If you use the format utility to change partition sizes, the unassigned partition tag is assigned to partitions with sizes equal to zero. By default, the format utility assigns the usr partition tag to any partition with a size greater than zero. You can use the partition change menu to reassign partition tags after the partitions are changed. However, you cannot change a partition with a non-zero size to the unassigned partition tag.

Restrictions of the EFI Disk Label

Keep the following restrictions in mind when determining whether using disks greater than 1 terabyte is appropriate for your environment:

- The SCSI driver, ssd or sd, supports only up to 2 terabytes.
- Layered software products intended for systems with VTOC-labeled disks might be incapable of accessing a disk with an EFI disk label.
- A disk with an EFI label is not recognized on systems running previous Solaris releases.
- You cannot boot from a disk with an EFI disk label.
- You cannot use the fdisk command on a disk with an EFI label that is greater than 1 terabyte in size.
- You cannot use the Solaris Management Console’s Disk Manager tool to manage disks with EFI labels. Use the format utility to partition disks with EFI labels. Then, you can use the Solaris Management Console’s Enhanced Storage Tool to manage volumes and disk sets with EFI-labeled disks.
- The EFI specification prohibits overlapping slices. The entire disk is represented by cxydz.
- The EFI disk label provides information about disk or partition sizes in sectors and blocks, but not in cylinders and heads.
- The following format options are either not supported or are not applicable on disks with EFI labels:
 - The save option is not supported because disks with EFI labels do not need an entry in the format.dat file.
 - The backup option is not applicable because the disk driver finds the primary label and writes it back to the disk.

Support for EFI-Labeled Disks on x86 Systems

Solaris support for the EFI disk label is available on x86 systems. Use the following command to add an EFI label on an x86 system:

```
# format -e
> [0] SMI Label
> [1] EFI Label
```
> Specify Label type[0]: 1
> WARNING: converting this device to EFI labels will erase all current
> fdisk partition information. Continue? yes

Previous label information is not converted to the EFI disk label.

You will have to recreate the label's partition information manually with the `format` command. You cannot use the `fdisk` command on a disk with an EFI label that is greater than 1 terabyte in size. The `fdisk` command is not intended for disks that are larger than 1 terabyte. For more information about EFI disk labels, see the preceding section.

Installing a System With an EFI-Labeled Disk

The Solaris installation utilities automatically recognize disks with EFI labels. However, you cannot use the Solaris installation program to repartition these disks. You must use the `format` utility to repartition an EFI-labeled disk before or after installation. The Solaris Upgrade and Live Upgrade utilities also recognize a disk with an EFI label. However, you cannot boot a system from an EFI-labeled disk.

After the Solaris release is installed on a system with an EFI-labeled disk, the partition table appears similar to the following:

Current partition table (original):
Total disk sectors available: 2576924638 + 16384 (reserved sectors)

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>First Sector</th>
<th>Size</th>
<th>Last Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>34</td>
<td>1.20TB</td>
<td>2576924636</td>
</tr>
<tr>
<td>1</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>reserved</td>
<td>wm</td>
<td>2576924638</td>
<td>8.00MB</td>
<td>2576941021</td>
</tr>
</tbody>
</table>

Managing Disks With EFI Disks Labels

Use the following table to locate information on managing disks with EFI disk labels.

<table>
<thead>
<tr>
<th>Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the system is already installed, connect the disk to the system and perform a reconfiguration boot.</td>
<td>“SPARC: Adding a System Disk or a Secondary Disk (Task Map)” on page 233 or “x86: Adding a System Disk or a Secondary Disk (Task Map)” on page 243</td>
</tr>
</tbody>
</table>
Repartition the disk by using the `format` utility, if necessary.

"SPARC: How to Create Disk Slices and Label a Disk" on page 236 or "x86: How to Create Disk Slices and Label a Disk" on page 255

Create disk volumes, and if needed, create soft partitions by using Solaris Volume Manager. Or, set up a ZFS storage pool.

Create UFS file systems for the new disk by using the `newfs` command.

"SPARC: How to Create a UFS FileSystem" on page 241 or "x86: How to Create File Systems" on page 256

Or, create a ZFS file system.*

"How to Create ZFS File Systems" in Solaris ZFS Administration Guide

Clone a disk with an EFI label

Example 28–2

*If a ZFS file system or UFS file system does not meet your needs, consider a QFS file system.

Troubleshooting Problems With EFI Disk Labels

Use the following error messages and solutions to troubleshoot problems with EFI-labeled disks.

Error Message

The capacity of this LUN is too large.
Reconfigure this LUN so that it is < 2TB.

Cause
You attempted to create a partition on a SCSI device that is larger than 2 terabytes.

Solution
Create a partition on a SCSI device that is less than 2 terabytes.

Error Message

Dec 3 09:26:48 holoship scsi: WARNING: /sbus@a,0/SUNW,socal@d,10000/sf0@0/ssa@w50020f23000002a4,0 (ssd1):
Dec 3 09:26:48 holoship disk has 2576941056 blocks, which is too large for a 32-bit kernel

Cause
You attempted to boot a system running a 32-bit SPARC or x86 kernel with a disk greater than 1 terabyte.

Solution
Boot a system running a 64-bit SPARC or x86 kernel with a disk greater than 1 terabyte.
Error Message

Dec 3 09:12:17 holoship scsi: WARNING: /sbus@a,0/SUNW,socal@d,10000/ sf@1,0/ssd@w50020f23000002a4,0 (ssd1):
Dec 3 09:12:17 holoship corrupt label - wrong magic number

Cause
You attempted to add a disk to a system running an older Solaris release.

Solution
Add the disk to a system running the Solaris release that supports the EFI disk label.

About Disk Slices

Files stored on a disk are contained in file systems. Each file system on a disk is assigned to a slice, which is a group of sectors set aside for use by that file system. Each disk slice appears to the Solaris OS (and to the system administrator) as though it were a separate disk drive.

For information about file systems, see Chapter 16, “Managing File Systems (Overview).”

Note – Slices are sometimes referred to as partitions. Certain interfaces, such as the format utility, refer to slices as partitions.

When setting up slices, remember these rules:

- Each disk slice holds only one file system.
- No file system can span multiple slices.

Slices are set up slightly differently on SPARC and x86 platforms. The following table summarizes the differences.

TABLE 10–1 Slice Differences on SPARC and x86 Platforms

<table>
<thead>
<tr>
<th>SPARC Platform</th>
<th>x86 Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>The entire disk is devoted to Solaris OS.</td>
<td>Disk is divided into fdisk partitions, one fdisk partition per operating system.</td>
</tr>
<tr>
<td>VTOC – The disk is divided into 8 slices, numbered 0-7.</td>
<td>VTOC – The Solaris fdisk partition is divided into 10 slices, numbered 0-9.</td>
</tr>
<tr>
<td>EFI – The disk is divided into 7 slices, numbered 0-6.</td>
<td>EFI – The disk is divided into 7 slices, numbered 0-6</td>
</tr>
</tbody>
</table>

Solaris Volume Manager, previously the Solstice DiskSuite™, has a partitioning feature, soft partitions. Soft partitions enable more than eight partitions per disk.
For general information about Solaris Volume Manager, see Chapter 2, "Storage Management Concepts," in Solaris Volume Manager Administration Guide. For information on soft partitions, see Chapter 12, "Soft Partitions (Overview)," in Solaris Volume Manager Administration Guide.

Disk Slices

The following table describes the slices that might be found on a system that runs the Solaris OS.

On x86 systems:

- Disks are divided into fdisk partitions. An fdisk partition is a section of the disk that is reserved for a particular operating system, such as the Solaris OS.
- The Solaris OS places ten slices, numbered 0-9, on a Solaris fdisk partition.

<table>
<thead>
<tr>
<th>Slice</th>
<th>File System</th>
<th>Usually Found on Client or Server Systems?</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root (/)</td>
<td>Both</td>
<td>Holds files and directories that make up the OS. EFI – You cannot boot from a disk with an EFI label.</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>Both</td>
<td>Provides virtual memory, or swap space.</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>Both</td>
<td>VTOC – Refers to the entire disk, by convention. The size of this slice should not be changed. EFI – Optional slice to be defined based on your site’s needs.</td>
</tr>
<tr>
<td>3</td>
<td>/export, for example</td>
<td>Both</td>
<td>Optional slice that can be defined based on your site’s needs. Can be used on a server to hold alternative versions of operating systems that are required by client systems.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Both</td>
<td>Optional slice to be defined based on your site’s needs.</td>
</tr>
<tr>
<td>5</td>
<td>/opt, for example</td>
<td>Both</td>
<td>Optional slice to be defined based on your site’s needs. Can be used to hold application software added to a system. If a slice is not allocated for the /opt file system during installation, the /opt directory is put in slice 0.</td>
</tr>
</tbody>
</table>
Using Raw Data Slices

The disk label is stored in block 0 of each disk. So, third-party database applications that create raw data slices must not start at block 0. Otherwise, the disk label will be overwritten, and the data on the disk will be inaccessible.

Do not use the following areas of the disk for raw data slices, which are sometimes created by third-party database applications:

- Block 0 where the disk label is stored
- Slice 2, which represents the entire disk with a VTOC label

Slice Arrangements on Multiple Disks

Although a single large disk can hold all slices and their corresponding file systems, two or more disks are often used to hold a system's slices and file systems.
Note – A slice cannot be split between two or more disks. However, multiple swap slices on separate disks are allowed.

For instance, a single disk might hold the root (/) file system, a swap area, and the /usr file system, while another disk holds the /export/home file system and other file systems that contain user data.

In a multiple disk arrangement, the disk that contains the OS and swap space (that is, the disk that holds the root (/) and /usr file systems and the slice for swap space) is called the system disk. Other disks are called secondary disks or non-system disks.

When you arrange a system's file systems on multiple disks, you can modify file systems and slices on the secondary disks without having to shut down the system or reload the OS.

When you have more than one disk, you also increase input-output (I/O) volume. By distributing disk load across multiple disks, you can avoid I/O bottlenecks.

Determining Which Slices to Use

When you set up a disk's file systems, you choose not only the size of each slice, but also which slices to use. Your decisions about these matters depend on the configuration of the system to which the disk is attached and the software you want to install on the disk.

System configurations that need disk space are as follows:

- Servers
- Stand-alone systems

Each system configuration can use slices in a different way. The following table lists some examples.

TABLE 10-3 System Configurations and Slices

<table>
<thead>
<tr>
<th>Slice</th>
<th>Servers</th>
<th>Stand-alone Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>root</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>swap</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/export</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/usr</td>
<td>/usr</td>
</tr>
<tr>
<td>7</td>
<td>/export/home</td>
<td>/home</td>
</tr>
</tbody>
</table>

For more information about system configurations, see “Overview of System Types” in *System Administration Guide: Basic Administration*.
Note – The Solaris installation utility provides default slice sizes based on the software you select for installation.

format Utility

Read the following overview of the format utility and its uses before proceeding to the “how-to” or reference sections.

The format utility is a system administration tool that is used to prepare hard disk drives for use on your Solaris system.

The following table shows the features and associated benefits that the format utility provides.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searches your system for all attached disk drives</td>
<td>Reports on the following: ■ Target location ■ Disk geometry ■ Whether the disk is formatted ■ If the disk has mounted partitions</td>
</tr>
<tr>
<td>Retrieves disk labels</td>
<td>Convenient for repair operations</td>
</tr>
<tr>
<td>Repairs defective sectors</td>
<td>Allows administrators to repair disk drives with recoverable errors instead of sending the drive back to the manufacturer</td>
</tr>
<tr>
<td>Formats and analyzes a disk</td>
<td>Creates sectors on the disk and verifies each sector</td>
</tr>
<tr>
<td>Partitions a disk</td>
<td>Divides a disk into slices so that individual file systems can be created on separate slices</td>
</tr>
<tr>
<td>Labels a disk</td>
<td>Writes disk name and configuration information to the disk for future retrieval (usually for repair operations)</td>
</tr>
</tbody>
</table>

The format utility options are described in Chapter 15, “The format Utility (Reference).”

When to Use the format Utility

Disk drives are partitioned and labeled by the Solaris installation utility when you install the Solaris release. You can use the format utility to do the following:

- Display slice information
- Partition a disk
- Add a disk drive to an existing system
- Format a disk drive
- Label a disk
- Repair a disk drive
- Analyze a disk for errors

The main reason a system administrator uses the `format` utility is to partition a disk. These steps are covered in Chapter 12, “SPARC: Adding a Disk (Tasks)” and Chapter 13, “x86: Adding a Disk (Tasks).”

See the following section for guidelines on using the `format` utility.

Guidelines for Using the `format` Utility

TABLE 10–5 format Utility Guidelines

<table>
<thead>
<tr>
<th>Task</th>
<th>Guidelines</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format a disk.</td>
<td>- Any existing data is destroyed when you reformat a disk.</td>
<td>"How to Format a Disk" on page 213</td>
</tr>
<tr>
<td></td>
<td>- The need for formatting a disk drive has decreased as more and more manufacturers ship their disk drives formatted and partitioned. You might not need to use the <code>format</code> utility when you add a disk drive to an existing system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- If a disk has been relocated and is displaying many disk errors, you can attempt to reformat it. Reformatting automatically remaps any bad sectors.</td>
<td></td>
</tr>
<tr>
<td>Replace a system disk.</td>
<td>- Data from the damaged system disk must be restored from a backup medium. Otherwise, the system will have to be reinstalled by using the installation utility.</td>
<td>"SPARC: How to Connect a System Disk and Boot" on page 234, "x86: How to Connect a System Disk" on page 245, or, if the system must be reinstalled, Solaris 10 Installation Guide: Basic Installations</td>
</tr>
<tr>
<td>Divide a disk into slices.</td>
<td>- Any existing data is destroyed when you repartition and relabel a disk with existing slices.</td>
<td>“SPARC: How to Create Disk Slices and Label a Disk” on page 236 or “x86: How to Create Disk Slices and Label a Disk” on page 255</td>
</tr>
</tbody>
</table>
TABLE 10–5 format Utility Guidelines (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Guidelines</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a secondary disk to an existing system.</td>
<td>■ Any existing data must be restored from backup media if the secondary disk is reformatted or repartitioned.</td>
<td>“SPARC: How to Connect a Secondary Disk and Boot” on page 235 or “x86: How to Connect a Secondary Disk and Boot” on page 247</td>
</tr>
</tbody>
</table>
| Repair a disk drive. | ■ Some customer sites prefer to replace rather than repair defective drives. If your site has a repair contract with the disk drive manufacturer, you might not need to use the format utility to repair disk drives.
■ The repair of a disk drive usually means that a bad sector is added to a defect list. New controllers remap bad sectors with no system interruption.
■ If the system has an older controller, you might need to remap a bad sector and restore any lost data. | “Repairing a Defective Sector” on page 227 |

Formatting a Disk

In most cases, disks are formatted by the manufacturer or reseller. So, they do not need to be reformatted when you install the drive. To determine if a disk is formatted, use the format utility. For more information, see “How to Determine if a Disk Is Formatted” on page 212.

If you determine that a disk is not formatted, use the format utility to format the disk.

When you format a disk, you accomplish two steps:

■ The disk media is prepared for use.
■ A list of disk defects based on a surface analysis is compiled.

Caution – Formatting a disk is a destructive process because it overwrites data on the disk. For this reason, disks are usually formatted only by the manufacturer or reseller. If you think disk defects are the cause of recurring problems, you can use the format utility to do a surface analysis. However, be careful to use only the commands that do not destroy data. For details, see “How to Format a Disk” on page 213.

A small percentage of total disk space that is available for data is used to store defect and formatting information. This percentage varies according to disk geometry, and decreases as the disk ages and develops more defects.
Partitioning a Disk

The `format` utility is most often used by system administrators to partitioning a Disk. The steps are as follows:

- Determining which slices are needed
- Determining the size of each slice or partition
- Using the `format` utility to partition the disk
- Labeling the disk with new partition information
- Creating the file system for each partition

The easiest way to partition a disk is to use the `modify` command from the partition menu of the `format` utility. The `modify` command allows you to create partitions by specifying the size of each partition without having to keep track of the starting cylinder boundaries. The `modify` command also keeps tracks of any disk space that remains in the “free hog” slice.

Partition Table Terminology

An important part of the disk label is the `partition table`. The partition table identifies a disk’s slices, the slice boundaries (in cylinders), and the total size of the slices. You can display a disk’s partition table by using the `format` utility. The following describes partition table terminology.

<table>
<thead>
<tr>
<th>Partition Term</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| Number | 0–7 | VTOC – Partitions or slices, numbered 0–7.
 | | EFI – Partitions or slices, numbered 0–6. |
| Tag | 0=UNASSIGNED 1=ROOT 2=ROOT
 | 3=SWAP 4=USR 5=BACKUP
 | 7=VAR 8=HOME 11=RESERVED | A numeric value that usually describes the file system mounted on this partition. | |
| Flags | w | The partition is writable and mountable. |
| | wu rm | The partition is writable and unmountable. This state is the default for partitions that are dedicated for swap areas. (However, the `mount` command does not check the “not mountable” flag.) |
| | rm | The partition is read only and mountable. |

Partition flags and tags are assigned by convention and require no maintenance.
For more information on displaying the partition table, see the following references:

- “Displaying Partition Table Information” on page 206
- “How to Display Disk Slice Information” on page 215
- “How to Examine a Disk Label” on page 219

Displaying Partition Table Information

The following `format` utility output shows an example of a partition table from a 74-Gbyte disk with a VTOC label displayed:

Total disk cylinders available: 38756 + 2 (reserved cylinders)

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>3 - 2083</td>
<td>4.00GB (2081/0/0)</td>
<td>8390592</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>2084 - 3124</td>
<td>2.00GB (1041/0/0)</td>
<td>4197312</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wm</td>
<td>0 - 38755</td>
<td>74.51GB (38756/0/0)</td>
<td>156264192</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>home</td>
<td>wm</td>
<td>3125 - 38755</td>
<td>68.50GB (35631/0/0)</td>
<td>143664192</td>
</tr>
<tr>
<td>8</td>
<td>boot</td>
<td>wu</td>
<td>0 - 0</td>
<td>1.97MB (1/0/0)</td>
<td>4032</td>
</tr>
<tr>
<td>9</td>
<td>alternates</td>
<td>wu</td>
<td>1 - 2</td>
<td>3.94MB (2/0/0)</td>
<td>8064</td>
</tr>
</tbody>
</table>

The partition table displayed by the `format` utility contains the following information.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part</td>
<td>Partition or slice number. See Table 10–6 for a description of this column.</td>
</tr>
<tr>
<td>Tag</td>
<td>Partition tag. See Table 10–6 for a description of this column.</td>
</tr>
<tr>
<td>Flag</td>
<td>Partition flag. See Table 10–6 for a description of this column.</td>
</tr>
<tr>
<td>Cylinders</td>
<td>The starting and ending cylinder number for the slice. Not displayed on EFI-labeled disks.</td>
</tr>
<tr>
<td>Size</td>
<td>The slice size in Mbytes.</td>
</tr>
<tr>
<td>Blocks</td>
<td>The total number of cylinders and the total number of sectors per slice. Not displayed on EFI-labeled disks.</td>
</tr>
<tr>
<td>First Sector</td>
<td>EFI – The starting block number. Not displayed on VTOC-labeled disks.</td>
</tr>
<tr>
<td>Last Sector</td>
<td>EFI – The ending block number. Not displayed on VTOC-labeled disks.</td>
</tr>
</tbody>
</table>
The following is an example of an EFI disk label displayed by using the `prtvtoc` command.

```
# prtvtoc /dev/rdsk/c4t1d0s0
* /dev/rdsk/c4t1d0s0 partition map
* Dimensions:
*   512 bytes/sector
*   2576941056 sectors
*   2576940989 accessible sectors
* Flags:
*   1: unmountable
*   10: read-only
* First Sector  Last Sector
  0   2   00 629145600 629145633
  1   4   00 629145634 629145600
  6   4   00 1258291234 1318633404
  8   11  00 2576924638 16384
```

The output of the `prtvtoc` command provides information in the following three sections:

- Dimensions
- Flags
- Partition Table

<table>
<thead>
<tr>
<th><code>prtvtoc</code> Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition</td>
<td>Partition or slice number. For a description of this column, see Table 10–6.</td>
</tr>
<tr>
<td>Tag</td>
<td>Partition tag. For a description of this column, see Table 10–6.</td>
</tr>
<tr>
<td>Flags</td>
<td>Partition flag. For a description of this column, see Table 10–6.</td>
</tr>
<tr>
<td>First Sector</td>
<td>The first sector of the slice.</td>
</tr>
<tr>
<td>Sector Count</td>
<td>The total number of sectors in the slice.</td>
</tr>
<tr>
<td>Last Sector</td>
<td>The last sector of the slice.</td>
</tr>
<tr>
<td>Mount Directory</td>
<td>The last mount point directory for the file system.</td>
</tr>
</tbody>
</table>

Using the Free Hog Slice

When you use the `format` utility to change the size of one or more disk slices, you designate a temporary slice that will expand and shrink to accommodate the resizing operations.
This temporary slice donates, or "frees," space when you expand a slice, and receives, or "hogs," the discarded space when you shrink a slice. For this reason, the donor slice is sometimes called the free hog.

The free hog slice exists only during installation or when you run the format utility. There is no permanent free hog slice during day-to-day operations.

For information on using the free hog slice, see "SPARC: How to Create Disk Slices and Label a Disk" on page 236 or "x86: How to Create Disk Slices and Label a Disk" on page 255.
This chapter contains disk administration procedures. Many procedures described in this chapter are optional if you are already familiar with how disks are managed on systems running the Solaris™ OS.

For information on the procedures associated with administering disks, see “Administering Disks (Task Map)” on page 209.

For overview information about disk management, see Chapter 10, “Managing Disks (Overview).”

Administering Disks (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify the disks on a system.</td>
<td>If you are not sure of the types of disks on a system, use the format utility to identify the disk types.</td>
<td>“How to Identify the Disks on a System” on page 210</td>
</tr>
<tr>
<td>Format the disk.</td>
<td>Determine whether a disk is already formatted by using the format utility. In most cases, disks are already formatted. Use the format utility if you need to format a disk.</td>
<td>“How to Determine if a Disk Is Formatted” on page 212</td>
</tr>
<tr>
<td>Display slice information.</td>
<td>Display slice information by using the format utility.</td>
<td>“How to Display Disk Slice Information” on page 215</td>
</tr>
<tr>
<td>Label the disk.</td>
<td>Create the disk label by using the format utility.</td>
<td>“How to Label a Disk” on page 217</td>
</tr>
</tbody>
</table>
Identifying Disks on a System

Use the `format` utility to discover the types of disks that are connected to a system. You can also use the `format` utility to verify that a disk is known to the system. For detailed information on using the `format` utility, see Chapter 15, “The format Utility (Reference).”

How to Identify the Disks on a System

1. **Become superuser or assume an equivalent role.**
 Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Identify the disks that are recognized on the system by using the `format` utility.**
   ```
   # format
   ```
 The `format` utility displays a list of disks that it recognizes under AVAILABLE DISK SELECTIONS.

Example 11–1

Identifying the Disks on a System

The following example shows `format` command output is from a system with one disk.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examine the disk label.</td>
<td>Examine the disk label by using the <code>prtvtoc</code> command.</td>
<td>“How to Examine a Disk Label” on page 219</td>
</tr>
<tr>
<td>Recover a corrupted disk label.</td>
<td>You can attempt to recover a disk label that was damaged due to a system or power failure.</td>
<td>“How to Recover a Corrupted Disk Label” on page 221</td>
</tr>
<tr>
<td>Create a <code>format.dat</code> entry.</td>
<td>Create a <code>format.dat</code> entry to support a third-party disk.</td>
<td>“How to Create a <code>format.dat</code> Entry” on page 224</td>
</tr>
<tr>
<td>Automatically configure a SCSI disk.</td>
<td>You can automatically configure a SCSI disk with the SCSI-2 specification for disk device mode sense pages even if the specific drive type is not listed in the <code>/etc/format.dat</code> file.</td>
<td>“How to Automatically Configure a SCSI Drive” on page 225</td>
</tr>
<tr>
<td>Identify a defective disk sector.</td>
<td>Identify a defective disk sector by using the <code>format</code> utility.</td>
<td>“How to Identify a Defective Sector by Using Surface Analysis” on page 227</td>
</tr>
<tr>
<td>If necessary, fix a defective disk sector.</td>
<td>Fix a defective disk sector by using the <code>format</code> utility.</td>
<td>“How to Repair a Defective Sector” on page 229</td>
</tr>
</tbody>
</table>
The output associates a disk's physical and logical device name to the disk's marketing name, which appears in angle brackets <>. See the example below. This method is an easy way to identify which logical device names represent the disks that are connected to your system. For a description of logical and physical device names, see "Device Naming Conventions" on page 86.

The following example uses a wildcard to display the four disks that are connected to a second controller.

```
# format /dev/rdsk/c2*
AVAILABLE DISK SELECTIONS:
  0. /dev/rdsk/c2t1d0 <SUN9.0G cyl 4924 alt 2 hd 27 sec 133>
      /sbus@3,0/SUNW,fas@3,8800000/sd@a,0
  1. /dev/rdsk/c2t1d0 <SUN9.0G cyl 4924 alt 2 hd 27 sec 133>
      /sbus@3,0/SUNW,fas@3,8800000/sd@b,0
  2. /dev/rdsk/c2t1d0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
      /sbus@3,0/SUNW,fas@3,8800000/sd@e,0
  3. /dev/rdsk/c2t1d0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
      /sbus@3,0/SUNW,fas@3,8800000/sd@f,0
```

Specify disk (enter its number):

The following example shows how to identify the disks on a SPARC based system.

```
# format
0. c0t1d0 <FJUTSU MAN3367M SUN36G 1804 43d671f>
   /pci@0f,0/pci@1,1/scsi@2/sd@0,0
```

Specify disk (enter its number):

The output identifies that disk 0 (target 1) is connected to the second SCSI host adapter (scsi@2), which is connected to the second PCI interface (/pci@1f0/pci@1,1...). The output also associates both the physical and logical device name to the disk's marketing name, SUN36G.

The following example shows how to identify the disks on an x86 based system.

```
# format
0. c0d0 <DEFAULT cyl 615 alt 2 hd 64 sec 63>
   /pci@0,0/pci-ide@7,1/ata@0/cmdk@0,0
1. c0d1 <DEFAULT cyl 522 alt 2 hd 32 sec 63>
   /pci@0,0/pci-ide@7,1/ata@0/cmdk@1,0
2. c0d2 <DEFAULT cyl 817 alt 2 hd 256 sec 63>
   /pci@0,0/pci-ide@7,1/ata@1/cmdk@0,0
```

Specify disk (enter its number):
The output shows that disk 0 is connected to the first PCI host adapter (pci-ide@7..), which is connected to the ATA interface (ata...). The format output on an x86 based system does not identify disks by their marketing names.

More Information If the format Utility Does Not Recognize a Disk ...

- Go to Chapter 12, “SPARC: Adding a Disk (Tasks)” or Chapter 13, “x86: Adding a Disk (Tasks).”
- Go to “Creating a format.dat Entry” on page 224.
- Go to “How to Label a Disk” on page 217.
- Connect the disk to the system by using your disk hardware documentation.

Formatting a Disk

Disks are typically formatted by the manufacturer or reseller. They usually do not need to be reformatted when you install the drive.

A disk must be formatted before you can do the following:

- Write data to the disk. However, most disks are already formatted.
- Use the Solaris installation utility to install the system.

Caution – Formatting a disk is a destructive process because it overwrites data on the disk. For this reason, disks are usually formatted only by the manufacturer or reseller. If you think disk defects are the cause of recurring problems, you can use the format utility to do a surface analysis. However, be careful to use only the commands that do not destroy data.

How to Determine if a Disk Is Formatted

1 Become superuser or assume an equivalent role.

2 Invoke the format utility.
 # format
 A numbered list of disks is displayed.

3 Type the number of the disk that you want to check.
 Specify disk (enter its number): 0

4 Verify that the disk you chose is formatted by noting the following message:
 [disk formatted]
Example 11–2 Determining if a Disk Is Formatted

The following example shows that disk c1t0d0 is formatted.

```sh
# format /dev/rdsk/c1*
AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@0,0
1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@1,0
2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@8,0
3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@9,0

Specify disk (enter its number): 0
selecting /dev/rdsk/c1t0d0s0
[disk formatted]
```

▼ How to Format a Disk

1. **Become superuser or assume an equivalent role.**

2. **Invoke the `format` utility.**

   ```sh
   # format
   ```

 A numbered list of disks is displayed.

3. **Type the number of the disk that you want to format.**

   ```sh
   Specify disk (enter its number): 0
   ```

 Caution – Do not select the system disk. If you format your system disk, you delete the OS and any data on this disk.

4. **To begin formatting the disk, type `format` at the `format>` prompt. Confirm the command by typing `y`.**

   ```sh
   format> format
   ```

 Ready to format. Formatting cannot be interrupted and takes 23 minutes (estimated). Continue? yes

5. **Verify that the disk format was successful by noting the following messages:**

   ```
   Beginning format. The current time Tue xx xx:xx:xx xxxx
   Formatting...
done
   ```
Verifying media...
 pass 0 - pattern = 0xc6dec6de
 2035/12/18
 pass 1 - pattern = 0x6db6db6d
 2035/12/18
Total of 0 defective blocks repaired.

6 Exit the format utility.
format> quit

Example 11–3 Formatting a Disk

The following example shows how to format the disk c0t6d0.

format
Searching for disks...done

AVAILABLE DISK SELECTIONS:

0. c0t0d0 <SUNW18G cyl 7506 alt 2 hd 19 sec 248 /pci@1f,0/pci@0,1/scsi@2/sd@0,0
1. c0t1d0 <FUJITSU MAN3367M SUN36G 1804 43d671f> /pci@1f,0/pci@0,1/scsi@2/sd@1,0
2. c0t2d0 <FUJITSU MAN3367M SUN36G 1804 43d671f> /pci@1f,0/pci@0,1/scsi@2/sd@2,0
3. c0t3d0 <FUJITSU MAN3367M SUN36G 1804 43d671f> /pci@1f,0/pci@0,1/scsi@2/sd@3,0
4. c0t4d0 <FUJITSU MAN3367M SUN36G 1804 43d671f> /pci@1f,0/pci@0,1/scsi@2/sd@4,0
5. c0t5d0 <FUJITSU MAN3367M SUN36G 1804 43d671f> /pci@1f,0/pci@0,1/scsi@2/sd@5,0
6. c0t6d0 <FUJITSU MAN3367M SUN36G 1804 43d671f> /pci@1f,0/pci@0,1/scsi@2/sd@6,0

Specify disk (enter its number): 6
selecting c0t6d0
[disk formatted]
format> format
Ready to format. Formatting cannot be interrupted
and takes 332 minutes (estimated). Continue? y
Beginning format. The current time is Wed Jan 7 16:16:05 2004

Formatting...
 99% complete (00:00:21 remaining) done
Verifying media...
 pass 0 - pattern = 0xc6dec6de
 71132922
 pass 1 - pattern = 0x6db6db6d
 71132922

Total of 0 defective blocks repaired.
format> quit

Displaying Disk Slices

You can use the format utility to check whether a disk has the appropriate disk slices. If you determine that a disk does not contain the slices you want to use, use the format utility to re-create them and label the disk. For information on creating disk slices, see "SPARC: How to Create Disk Slices and Label a Disk" on page 236 or "x86: How to Create Disk Slices and Label a Disk" on page 255.

Note – The format utility uses the term partition instead of slice.

▼ How to Display Disk Slice Information

1 Become superuser or assume an equivalent role.

2 Invoke the format utility.
 # format
 A numbered list of disks is displayed.

3 Type the number of the disk for which you want to display slice information.
 Specify disk (enter its number): 1

4 Select the partition menu.
 format> partition

5 Display the slice information for the selected disk.
 partition> print

6 Exit the format utility.
 partition> q
 format> q
 #
7 Verify the displayed slice information by identifying specific slice tags and slices.
If the screen output shows that no slice sizes are assigned, the disk probably does not have slices.

Example 11–4 Displaying Disk Slice Information
The following example displays slice information for a disk with a VTOC label.

format
Searching for disks...done
Specify disk (enter its number): 1
Selecting c0t0d0
format> partition
partition> print
Current partition table (original):
Total disk cylinders available: 8892 + 2 (reserved cylinders)

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>1110 - 4687</td>
<td>1.61GB</td>
<td>(0/3578/0) 3381210</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>0 - 1109</td>
<td>512.00MB</td>
<td>(0/1110/0) 1048950</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wm</td>
<td>0 - 8891</td>
<td>4.01GB</td>
<td>(0/8892/0) 8402940</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>6</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>7</td>
<td>home</td>
<td>wm</td>
<td>4688 - 8891</td>
<td>1.89GB</td>
<td>(0/4204/0) 3972780</td>
</tr>
</tbody>
</table>

partition> q
format> q
#

For a detailed description of the slice information in these examples, see Chapter 10, “Managing Disks (Overview).”

The following example shows the slice information for a disk with an EFI label.

format
Searching for disks...done
Specify disk (enter its number): 9
Selecting c4t1d0
[disk formatted]
format> partition
partition> print
Current partition table (original):
partition> q
format> q
#

Part | Tag | Flag | First Sector | Size | Last Sector |
-----|-----|------|--------------|--------|-------------|
0 | root| wm | 34 | 300.00GB | 629145633 |
1 | usr | wm | 629145634 | 300.00GB | 1258291233 |
Creating and Examining a Disk Label

The labeling of a disk is usually done during system installation or when you are creating new disk slices. You might need to relabel a disk if the disk label becomes corrupted. For example, from a power failure.

The `format` utility attempts to automatically configure any unlabeled SCSI disk. If the `format` utility is able to automatically configure an unlabeled disk, it displays a message similar to the following:

```
c0t0d1: configured with capacity of 4.00GB
```

Tip – For information on labeling multiple disks with the same disk label, see “Labeling Multiple Disks by Using the `prtvtoc` and `fmthard` Commands” on page 230.

▼ How to Label a Disk

You can use the following procedure to do the following:

- Label a disk with a VTOC label or a disk greater than 1 terabyte with an EFI label.
- Label a disk that is greater than 1 terabyte with an EFI label.

If you want to put an EFI label on disk smaller than 1 terabyte, see Example 11–6.

1 Become superuser or assume an equivalent role.

2 **Invoke the `format` utility.**

   ```
   # format
   
   A numbered list of disks is displayed.
   ```

3 **Type the number of the disk that you want to label.**

   ```
   Specify disk (enter its number): 1
   ```

 If the `format` utility recognizes the disk type, the next step is to search for a backup label to label the disk. Labeling the disk with the backup label labels the disk with the correct partitioning information, the disk type, and disk geometry.
4 Select one of the following to label the disk:
 • If the disk is unlabeled and was successfully configured, go to Step 5 to label the disk.
 The format utility will ask if you want to label the disk.
 • If the disk is labeled but you want to change the disk type, or if the format utility was not able to automatically configure the disk, proceed to Step 6 to set the disk type and label the disk.

5 Label the disk by typing \texttt{y} at the Label it now? prompt.
 Disk not labeled. Label it now? \texttt{y}
 The disk is now labeled. Go to step 10 to exit the format utility.

6 Enter \texttt{type} at the format> prompt.
 format> type
 The Available Drive Types menu is displayed.

7 Select a disk type from the list of possible disk types.
 Specify disk type (enter its number)[12]: \texttt{12}
 Or, select \texttt{0} to automatically configure a SCSI-2 disk. For more information, see “How to Automatically Configure a SCSI Drive” on page 225.

8 Label the disk. If the disk is not labeled, the following message is displayed.
 Disk not labeled. Label it now? \texttt{y}
 Otherwise, you are prompted with this message:
 Ready to label disk, continue? \texttt{y}

9 Verify the disk label.
 format> verify

10 Exit the format utility.
 format> q
 #

Example 11–5 Labeling a Disk

The following example shows how to automatically configure and label a 1.05-Gbyte disk.

```
# format
  clt0d0: configured with capacity of 1002.09MB
```
Example 11–6 Labeling a Disk Less Than 1 Terabyte with an EFI Label

The following example shows how to use the `format -e` command to label a disk that is less than 1 terabyte with an EFI label. Remember to verify that your layered software products will continue to work on systems with EFI-labeled disks. For general information on EFI label restrictions, see “Restrictions of the EFI Disk Label” on page 195.

```bash
# format -e
Searching for disks...done

AVAILABLE DISK SELECTIONS:
1. c1t9d0 <SUNW18g cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@9,0

Specify disk (enter its number): 4
selecting c1t9d0
[disk formatted]
format> label
[0] SMI Label
[1] EFI Label
Specify Label type[0]: 1
Ready to label disk, continue? yes
format> quit
```

How to Examine a Disk Label

Examine disk label information by using the `prtvtoc` command. For a detailed description of the disk label and the information that is displayed by the `prtvtoc` command, see Chapter 10, “Managing Disks (Overview).”

1 Become superuser or assume an equivalent role.
2 Display the disk label information.

 \[
 \texttt{# \\ prtvtoc /dev/rdsk/device-name}
 \]

 where \textit{device-name} is the raw disk device you want to examine.

\textbf{Example 11–7} Examining a Disk Label

The following example shows disk label information for a disk with a VTOC label.

\[
\texttt{# \texttt{prtvtoc /dev/rdsk/c0t0d0s0}}
\]
\[
\begin{array}{ll}
* /dev/rdsk/c0t0d0s0 partition map \\
* \\
* Dimensions: \\
* 512 bytes/sector \\
* 63 sectors/track \\
* 15 tracks/cylinder \\
* 945 sectors/cylinder \\
* 8894 cylinders \\
* 8892 accessible cylinders \\
* \\
* Flags: \\
* 1: unmountable \\
* 10: read-only \\
* \\
<table>
<thead>
<tr>
<th>Partition</th>
<th>Tag</th>
<th>Flags</th>
<th>First Sector</th>
<th>Count</th>
<th>Last Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>00</td>
<td>1048950</td>
<td>3381210</td>
<td>4430159</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>01</td>
<td>0</td>
<td>1048950</td>
<td>1048949</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>00</td>
<td>0</td>
<td>8402940</td>
<td>8402939</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>00</td>
<td>4430160</td>
<td>3972780</td>
<td>8402939</td>
</tr>
</tbody>
</table>
\end{array}
\]

The following example shows disk label information for a disk with an EFI label.

\[
\texttt{# \texttt{prtvtoc /dev/rdsk/c3t1d0s0}}
\]
\[
\begin{array}{ll}
* /dev/rdsk/c3t1d0s0 partition map \\
* \\
* Dimensions: \\
* 512 bytes/sector \\
* 2479267840 sectors \\
* 2479267773 accessible sectors \\
* \\
* Flags: \\
* 1: unmountable \\
* 10: read-only \\
* \\
<table>
<thead>
<tr>
<th>Partition</th>
<th>Tag</th>
<th>Flags</th>
<th>First Sector</th>
<th>Count</th>
<th>Last Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>00</td>
<td>34</td>
<td>262144</td>
<td>262177</td>
</tr>
</tbody>
</table>
\end{array}
\]
Recovering a Corrupted Disk Label

Sometimes, a power or system failure causes a disk’s label to become unrecognizable. A corrupted disk label doesn’t always mean that the slice information or the disk’s data must be re-created or restored.

The first step to recovering a corrupted disk label is to label the disk with the correct geometry and disk type information. You can complete this step through the normal disk labeling method, by using either automatic configuration or manual disk type specification.

If the `format` utility recognizes the disk type, the next step is to search for a backup label to label the disk. Labeling the disk with the backup label labels the disk with the correct partitioning information, the disk type, and disk geometry.

▼ How to Recover a Corrupted Disk Label

1 **Boot the system to single-user mode.**

 If necessary, boot the system from a local CD-ROM or the network in single-user mode to access the disk.

 See Chapter 10, “Booting a System (Tasks),” in *System Administration Guide: Basic Administration* or Chapter 11, “GRUB Based Booting (Tasks),” in *System Administration Guide: Basic Administration* for information on booting the system.

2 **Relabel the disk.**

   ```bash
   # format
   ```

 The `format` utility attempts to automatically configure any unlabeled SCSI disk. If the `format` utility is able to configure the unlabeled and corrupted disk, it will display this message:

   ```
   cwtxxy: configured with capacity of abcMB
   ```

 The `format` utility then displays a numbered list of disks on the system.

3 **Type the number of the disk that you need to recover.**

   ```bash
   Specify disk (enter its number): 1
   ```

4 **Select one of the following to determine how to label the disk.**

 - If the disk was configured successfully, follow Steps 5 and 6. Then go to step 12.
If the disk was not configured successfully, follow Steps 7–11. Then go to step 12.

5 Search for the backup label.

format> verify
Warning: Could not read primary label.
Warning: Check the current partitioning and 'label' the disk or use the 'backup' command.
Backup label contents:
Volume name = < >
ascii name = <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>
pcyl = 2038
ncyl = 2036
acyl = 2
nhead = 14
nsect = 72

Part Tag Flag Cylinders Size Blocks
0 root wm 0 - 300 148.15MB (301/0/0) 303408
1 swap wu 301 - 524 110.25MB (224/0/0) 225792
2 backup wm 0 - 2035 1002.09MB (2036/0/0) 2052288
3 unassigned wm 0 0 (0/0/0) 0
4 unassigned wm 0 0 (0/0/0) 0
5 unassigned wm 0 0 (0/0/0) 0
6 usr wm 525 - 2035 743.70MB (1511/0/0) 1523088
7 unassigned wm 0 0 (0/0/0) 0

If the format utility was able to find a backup label and the backup label contents appear satisfactory, use the backup command to label the disk with the backup label.

format> backup
Disk has a primary label, still continue? y

Searching for backup labels...found.
Restoring primary label

The disk label has been recovered. Go to Step 12.

7 If the format utility was not able to automatically configure the disk, specify the disk type by using the type command.

format> type

The Available Drives Type menu is displayed.

8 Select 0 to automatically configure the disk. Or, select a disk type from the list of possible disk types.

Specify disk type (enter its number)[12]: 12
9 If the disk was successfully configured, reply with no when the format utility asks if you want to label the disk.

Disk not labeled. Label it now? no

10 Use the verify command to search for backup labels.

format> verify
Warning: Could not read primary label.
Warning: Check the current partitioning and 'label' the disk or use the 'backup' command.
.
.
.

11 If the format utility was able to find a backup label and the backup label contents appear satisfactory, use the backup command to label the disk with the backup label.

format> backup
Disk has a primary label, still continue? y
Searching for backup labels...found.
Restoring primary label

The disk label has been recovered.

12 Exit the format utility.

format> q

13 Verify the file systems on the recovered disk by using the fsck command.

For information on using the fsck command, see Chapter 21, “Checking UFS File System Consistency (Tasks).”

Adding a Third-Party Disk

The Solaris OS supports many third-party disks. However, for the disk to be recognized, you might need to supply either a device driver, a format.dat entry, or both. Other options for adding disks are as follows:

- If you are adding a SCSI disk, you might try the format utility’s automatic configuration feature. For more information, see “Automatically Configuring SCSI Disk Drives” on page 225.
- You might try hot-plugging a PCI, SCSI, or USB disk. For more information, see Chapter 5, “Managing Devices (Overview/Tasks).”

If the third-party disk is designed to work with standard SunOS compatible device drivers, then the creation of an appropriate format.dat entry should suffice to allow the disk to be recognized by the format utility. In other cases, you need to load a third-party device driver to support the disk.
Note – Sun cannot guarantee that its `format` utility will work properly with all third-party disk drivers. If the disk driver is not compatible with the Solaris `format` utility, the disk drive vendor should supply you with a custom disk formatting program.

This section discusses what to do if some of this software support is missing. Typically, you discover that software support is missing when you invoke the `format` utility and find that the disk type is not recognized.

Supply the missing software as described in this section. Then, refer to the appropriate configuration procedure for adding system disks or secondary disks in Chapter 12, "SPARC: Adding a Disk (Tasks)" or Chapter 13, "x86: Adding a Disk (Tasks)."

Creating a `format.dat` Entry

Unrecognized disks cannot be formatted without precise information about the disk's geometry and operating parameters. This information is supplied in the `/etc/format.dat` file.

Note – SCSI-2 disks do not require a `format.dat` entry. The `format` utility automatically configures the SCSI-2 drivers if the disks are powered on during a reconfiguration boot. For step-by-step instructions on configuring a SCSI disk drive automatically, see "How to Automatically Configure a SCSI Drive" on page 225.

If your disk is unrecognized, use a text editor to create an entry in `format.dat` for the disk. You need to gather all the pertinent technical specifications about the disk and its controller before you start. This information should have been provided with the disk. If not, contact the disk manufacturer or your supplier.

How to Create a `format.dat` Entry

1. **Become superuser or assume an equivalent role.**
2. **Make a copy of the `/etc/format.dat` file.**
   ```bash
   # cp /etc/format.dat /etc/format.dat.gen
   ```
3. **Modify the `/etc/format.dat` file to include an entry for the third-party disk.**
 Use the `format.dat` information that is described in Chapter 15, “The `format` Utility (Reference).”
 Also, use the disk’s hardware product documentation to gather the required information.
Automatically Configuring SCSI Disk Drives

The `format` utility automatically configures SCSI disk drives even if that specific type of drive is not listed in the `/etc/format.dat` file. This feature enables you to format, create slices for, and label any disk driver that is compliant with the SCSI-2 specification for disk device mode sense pages.

Here are other options for adding disks:

- If you are adding a SCSI disk, you might try the `format` utility's automatic configuration feature.
- You might try hot-plugging a PCI, SCSI, or USB disk. For more information, see Chapter 5, “Managing Devices (Overview/Tasks).”

The following steps are involved in configuring a SCSI drive by using automatic configuration:

- Shutting down the system
- Attaching the SCSI disk drive to the system
- Turning on the disk drive
- Performing a reconfiguration boot
- Using the `format` utility to automatically configure the SCSI disk drive

After the reconfiguration boot, invoke the `format` utility. The `format` utility will attempt to configure the disk and, if successful, alert the user that the disk was configured. For step-by-step instructions on automatically configuring a SCSI disk drive, see “How to Automatically Configure a SCSI Drive” on page 225.

Here’s an example of a partition table for a 1.3-Gbyte SCSI disk drive that was displayed by the `format` utility.

```
<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>0 - 96</td>
<td>64.41MB</td>
<td>(97/0/0)</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>97 - 289</td>
<td>128.16MB</td>
<td>(193/0/0)</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wu</td>
<td>0 - 1964</td>
<td>1.27GB</td>
<td>(1965/0/0)</td>
</tr>
<tr>
<td>6</td>
<td>usr</td>
<td>wm</td>
<td>290 - 1964</td>
<td>1.09GB</td>
<td>(1675/0/0)</td>
</tr>
</tbody>
</table>
```

How to Automatically Configure a SCSI Drive

1. Become superuser or equivalent role.
2. Create the `/reconfigure` file that will be read when the system is booted.
   ```
   # touch /reconfigure
   ```
3. Shut down the system.
   ```
   # shutdown -i0 -gn -y
   ```
Brings the system down to init level 0, the power-down state.

`-gm` Notifies logged-in users that they have n seconds before the system begins to shut down.

`-y` Specifies that the command should run without user intervention.

The `ok` prompt is displayed after the system is shut down.

4 Turn off the power to the system and all external peripheral devices.

5 Ensure that the disk you are adding has a different target number than the other devices on the system.
 Typically, a small switch is located at the back of the disk for this purpose.

6 Connect the disk to the system, and check the physical connections.
 Refer to the disk's hardware installation guide for details.

7 Turn on the power to all external peripherals.

8 Turn on the power to the system.
 The system boots and displays the login prompt.

9 Log back in as superuser or assume an equivalent role.

10 Invoke the `format` utility, and select the disk that you want to configure automatically.

```
# format
Searching for disks...done
c1t0d0: configured with capacity of 1002.09MB
AVAILABLE DISK SELECTIONS:
0. c0t1d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>
   /iommu@f,e00000000/sbus@f,e00010000/espdma@f,40000000/esp@f,80000000/sd@1,0
1. c0t3d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>
   /iommu@f,e00000000/sbus@f,e00010000/espdma@f,40000000/esp@f,80000000/sd@3,0
Specify disk (enter its number): 1
```

11 Type `yes` in response to the prompt to label the disk.
 Typing `y` causes the disk label to be generated and written to the disk by using SCSI automatic configuration.
 Disk not labeled. Label it now? `y`

12 Verify the disk label.

```
format> verify
```
Repairing a Defective Sector

If a disk on your system has a defective sector, you can repair the disk by following procedures in this section. You might become aware of defective sectors when you do the following:

- Run surface analysis on a disk

 For more information on the analysis feature of the format utility, see “analyze Menu” on page 292.

 The defective area reported while your system is running might not be accurate. Because the system does disk operations many sectors at a time, it is often hard to pinpoint exactly which sector caused a given error. To find the exact sector or sectors, use “How to Identify a Defective Sector by Using Surface Analysis” on page 227.

- Get multiple error messages from the disk driver concerning a particular portion of the disk while your system is running.

 Console messages that are related to disk errors appear similar to the following:

 WARNING: /io-unit@f,e0200000/sbi@0,0/QLGC,isp@1,10000/sd@3,0 (sd33):
 Error for command ‘read’ Error Level: Retryable
 Requested Block 126, Error Block: 179
 Sense Key: Media Error
 Vendor ‘name’:
 ASC = 0x11 (unrecovered read error), ASCQ = 0x0, FRU = 0x0

 This message indicates that block 179 might be defective. You would relocate the bad block by using the format utility’s repair command. Or, you would use the analyze command with the repair option enabled.

How to Identify a Defective Sector by Using Surface Analysis

1 Become superuser or assume an equivalent role.

2 Unmount the file system in the slice that contains the defective sector.

 # umount /dev/dsk/device-name

 For more information, see mount(1M).
3 Invoke the `format` utility.

 # format

4 Select the affected disk.

 Specify disk (enter its number): 1
 selecting c0t2d0:
 [disk formatted]
 Warning: Current Disk has mounted partitions.

5 Select the analyze menu.

 format> analyze

6 Set up the analysis parameters by typing `setup` at the `analyze>` prompt.

 Use the parameters shown here:

 analyze> setup
 Analyze entire disk [yes]? n
 Enter starting block number [0, 0/0/0]: 12330
 Enter ending block number [2052827, 2035/13/71]: 12360
 Loop continuously [no]? y
 Repair defective blocks [yes]? n
 Stop after first error [no]? n
 Use random bit patterns [no]? n
 Enter number of blocks per transfer [126, 0/1/54]: 1
 Verify media after formatting [yes]? y
 Enable extended messages [no]? n
 Restore defect list [yes]? y
 Create defect label [yes]? y

7 Find the defect by using the `read` command.

 analyze> read
 Ready to analyze (won’t harm SunOS). This takes a long time,
 but is interruptible with Control-C. Continue? y
 pass 0
 2035/12/18 2025/7/24
 pass 1
 Block 12354 (18/4/18), Corrected media error (hard data ecc)
 25/7/24
 ^C
 Total of 1 defective blocks repaired.
How to Repair a Defective Sector

1 Become superuser or assume an equivalent role.

2 Invoke the `format` utility.

   ```
   # format
   ```

3 Select the disk that contains the defective sector.

   ```
   Specify disk (enter its number): 1
   selecting c0t3d0
   [disk formatted]
   ```

4 Select the `repair` command.

   ```
   format> repair
   ```

5 Type the defective block number.

   ```
   Enter absolute block number of defect: 12354
   Ready to repair defect, continue? y
   Repairing block 12354 (18/4/18)...ok.
   ```

If you are unsure of the format that is used to identify the defective sector, see "How to Identify a Defective Sector by Using Surface Analysis" on page 227 for more information.

Tips and Tricks for Managing Disks

Use the following tips to help you manage disks more efficiently.

Debugging format Sessions

Invoke the `format -M` command to enable extended and diagnostic messages for ATA and SCSI devices.

EXAMPLE 11-8 Debugging format Sessions

In this example, the series of numbers under `Inquiry` represent the hexadecimal value of the `inquiry` data that is displayed to the right of the numbers.

```
# format -M
Searching for disks...done
```
EXAMPLE 11–8 Debugging format Sessions (Continued)

AVAILABLE DISK SELECTIONS:
0. c0t1d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>
 /iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/sd@1,0
1. c0t3d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>
 /iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/sd@3,0

Specify disk (enter its number): 0
selecting c0t3d0
[disk formatted]
format> inquiry
Inquiry:
00 00 02 02 8f 00 00 12 53 45 41 47 41 54 45 20NAME....
38 33 35 38 30 30 33 30 32 30 90 00 00 00 00 835800030209....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 43 6f 70 79 72 69 67 68 74 20 28 63 29 20 31 39 39 32 20 53 65 61 67 61 74 65 20 41 6c 6c 20 992 NAME All
72 69 67 68 73 20 72 65 73 65 72 65 64 20 rights reserved
30 30 30 00

Vendor: name
Product: ST11200N SUN1.05
Revision: 8358
format>

Labeling Multiple Disks by Using the *prvtoc* and *fmthard* Commands

Use the *prvtoc* and *fmthard* commands to label multiple disks with the same disk geometry.

Use the following for loop in a script to copy a disk label from one disk and replicate it on multiple disks.

```
# for i in xyz
> do
>   > prvtoc /dev/rdsk/cwtxdysz | fmthard -s - /dev/rdsk/cwt${i}d0s2
> done
```

EXAMPLE 11–9 Labeling Multiple Disks

In this example, the disk label from c2t0d0s0 is copied to four other disks.
EXAMPLE 11–9 Labeling Multiple Disks (Continued)

for i in 1 2 3 5
> do
> prvtoc /dev/rdsk/c2t0d0s0 | fmthard -s - /dev/rdsk/c2t${i}d0s2
> done
fmthard: New volume table of contents now in place.
fmthard: New volume table of contents now in place.
fmthard: New volume table of contents now in place.
fmthard: New volume table of contents now in place.
#
This chapter describes how to add a disk to a SPARC system.

For information on the procedures associated with adding a disk to a SPARC system, see “SPARC: Adding a System Disk or a Secondary Disk (Task Map)” on page 233.

For overview information about disk management, see Chapter 10, “Managing Disks (Overview).” For step-by-step instructions on adding a disk to an x86 based system, see Chapter 13, “x86: Adding a Disk (Tasks).”

SPARC: Adding a System Disk or a Secondary Disk (Task Map)

The following task map identifies the procedures for adding a disk to a SPARC based system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Connect the disk and boot.</td>
<td>System Disk
Connect the new disk and boot from a local or remote Solaris CD or DVD.</td>
<td>“SPARC: How to Connect a System Disk and Boot” on page 234</td>
</tr>
<tr>
<td></td>
<td>Secondary Disk
Connect the new disk and perform a reconfiguration boot so that the system will recognize the disk.</td>
<td>“SPARC: How to Connect a Secondary Disk and Boot” on page 235</td>
</tr>
<tr>
<td>2. Create slices and label the disk.</td>
<td>Create disk slices and label the disk if the disk manufacturer has not already done so.</td>
<td>“SPARC: How to Create Disk Slices and Label a Disk” on page 236</td>
</tr>
</tbody>
</table>
Task Description For Instructions

3. Create file systems. Create UFS file systems on the disk slices by using the `newfs` command. You must create the root (`/`) or `/usr` file system, or both, for a system disk. “SPARC: How to Create a UFS File System” on page 241

4. Restore file systems. Restore the root (`/`) or `/usr` file system, or both, on the system disk. If necessary, restore file systems on the secondary disk. Chapter 26, “Restoring Files and File Systems (Tasks)”

5. Install boot block. System Disk Only. Install the boot block on the root (`/`) file system so that the system can boot. “SPARC: How to Install a Boot Block on a System Disk” on page 242

SPARC: Adding a System Disk or a Secondary Disk

A system disk contains the root (`/`) or `/usr` file systems, or both. If the disk that contains either of these file systems becomes damaged, you have two ways to recover:

- You can reinstall the entire Solaris OS.
- Or, you can replace the system disk and restore your file systems from a backup medium.

A secondary disk does not contain the root (`/`) and `/usr` file systems. A secondary disk usually contains space for user files. You can add a secondary disk to a system for more disk space. Or, you can replace a damaged secondary disk. If you replace a secondary disk on a system, you can restore the old disk’s data on the new disk.

SPARC: How to Connect a System Disk and Boot

This procedure assumes that the system is shut down.

1. **Disconnect the damaged system disk from the system.**

2. **Ensure that the disk you are adding has a different target number than the other devices on the system.**

 Typically, a small switch is located at the back of the disk for this purpose.

3. **Connect the replacement system disk to the system and check the physical connections.**

 Refer to the disk’s hardware installation guide for details.

4. **Follow the instructions in the following table, depending on whether you are booting from a local Solaris CD or DVD or a remote Solaris CD or DVD from the network.**
BootType | Action
--- | ---
From a Solaris CD or DVD in a local drive | 1. Make sure the Solaris Software 1 CD or the Solaris DVD is in the drive.
2. Boot from the media to single-user mode:
 - `ok boot cdrom -s`

From the network | Boot from the network to single-user mode:
 - `ok boot net -s`

After a few minutes, the root prompt (#) is displayed.

More Information

After You Connect a System Disk and Boot ...

After you boot the system, you can create slices and a disk label on the disk. Go to “SPARC: How to Create Disk Slices and Label a Disk” on page 236.

SPARC: How to Connect a Secondary Disk and Boot

If you are adding a disk with an EFI disk label, see “EFI Disk Label” on page 194 for more information.

Generally, most modern bus types support hot-plugging. If your system’s bus type supports hot-plugging, you might not need to do steps 2 or 3 below.

For more information about hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

1. **Become superuser or assume an equivalent role.**

2. **(Optional) If the disk type is unsupported by the Solaris software, add the device driver for the disk by following the instructions included with the hardware.**
 For information on creating a `format.dat` entry for the disk, see “How to Create a `format.dat` Entry” on page 224, if necessary.

3. **(Optional) Create the `/reconfigure` file that will be read when the system is booted.**
   ```
   # touch /reconfigure
   ```
 The `/reconfigure` file causes the SunOS™ software to check for the presence of any newly installed peripheral devices when you power on or boot your system later.

4. **Shut down the system.**
   ```
   # shutdown -i0 -g -y
   ```
 - `-i0` Changes to run level 0, the power-down state.
Notifies logged-in users that they have \(n \) seconds before the system begins to shut down.

\[-y\] Specifies that the command should run without user intervention.

The ok prompt is displayed after the Solaris OS is shut down.

5 **Turn off the power to the system and all external peripheral devices.**

6 **Ensure that the disk you are adding has a different target number than the other devices on the system.**

 Typically, a small switch is located at the back of the disk for this purpose.

7 **Connect the disk to the system and check the physical connections.**

 Refer to the disk’s hardware installation guide for details.

8 **Turn on the power to all external peripheral devices.**

9 **Turn on the power to the system.**

 The system boots and displays the login prompt.

More Information **After You Connect a Secondary Disk and Boot ...**

After you boot the system, you can create slices and a disk label on the disk. Go to “SPARC: How to Create Disk Slices and Label a Disk” on page 236.

SPARC: How to Create Disk Slices and Label a Disk

1 **Become superuser or assume an equivalent role.**

2 **Invoke the `format` utility.**

   ```
   # format
   ```

 A numbered list of available disks is displayed. For more information, see `format(1M)`.

3 **Type the number of the disk that you want to repartition.**

 Specify disk (enter its number): `disk-number`

 `disk-number` is the number of the disk that you want to repartition.

4 **Select the `partition` menu.**

   ```
   format> partition
   ```
5 Display the current partition (slice) table.
 partition> print

6 Start the modification process.
 partition> modify

7 Set the disk to all free hog.
 Choose base (enter number) [0]? 1
 For more information about the free hog slice, see “Using the Free Hog Slice” on page 207.

8 Create a new partition table by answering y when prompted to continue.
 Do you wish to continue creating a new partition table based on above table[yes]? y

9 Identify the free hog partition (slice) and the sizes of the slices when prompted.
 When adding a system disk, you must set up slices for:
 ■ root (slice 0) and swap (slice 1)
 ■ /usr (slice 6)
 After you identify the slices, the new partition table is displayed.
 For an example of creating disk slices, see Example 12–1.

10 Make the displayed partition table the current partition table by answering y when prompted.
 Okay to make this the current partition table[yes]? y
 If you do not want the current partition table and you want to change it, answer no and go to
 Step 6.

11 Name the partition table.
 Enter table name (remember quotes): "partition-name"
 where partition-name is the name for the new partition table.

12 Label the disk with the new partition table after you have finished allocating slices on the new disk.
 Ready to label disk, continue? yes

13 Quit the partition menu.
 partition> q

14 Verify the disk label.
 format> verify
Example 12–1 SPARC: Creating Disk Slices and Labeling a System Disk

The following example shows the format utility being used to divide a 18-G-byte disk into three slices: one slice for the root (/) file system, one slice for the swap area, and one slice for the /usr file system.

```bash
# format
AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@0,0
1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@1,0
2. /dev/rdsk/c1t2d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@2,0
3. /dev/rdsk/c1t3d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus@2,0/QLGC,isp@2,10000/sd@3,0
Specify disk (enter its number): 0
selecting c1t0d0
[disk formatted]
format> partition
partition> print
partition> modify
Select partitioning base:
0. Current partition table (original)
1. All Free Hog
Part Tag Flag Cylinders Size Blocks
0 root wm 0 0 (0/0/0) 0
1 swap wu 0 0 (0/0/0) 0
2 backup wu 0 - 7505 16.86GB (7505/0/0) 35368272
3 unassigned wm 0 0 (0/0/0) 0
4 unassigned wm 0 0 (0/0/0) 0
5 unassigned wm 0 0 (0/0/0) 0
6 usr wm 0 0 (0/0/0) 0
7 unassigned wm 0 0 (0/0/0) 0
Choose base (enter number) [0]? 1
table based on above table[yes]? yes
Free Hog partition[6]? yes
Enter size of partition ‘0’ [0b, 0c, 0.00mb, 0.00gb]: 4gb
Enter size of partition ‘1’ [0b, 0c, 0.00mb, 0.00gb]: 4gb
Enter size of partition ‘3’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘4’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘5’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition '7' [0b, 0c, 0.00mb, 0.00gb]:

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>0 - 1780</td>
<td>4.00GB (1781/0/0)</td>
<td>8392072</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>1781 - 3561</td>
<td>4.00GB (1781/0/0)</td>
<td>8392072</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wu</td>
<td>0 - 7505</td>
<td>16.86GB (7506/0/0)</td>
<td>35368272</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wu</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wu</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wu</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>usr</td>
<td>wm</td>
<td>3562 - 7505</td>
<td>8.86GB (3944/0/0)</td>
<td>18584128</td>
</tr>
<tr>
<td>7</td>
<td>unassigned</td>
<td>wu</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
</tbody>
</table>

Okay to make this the current partition table [yes]? yes

Enter table name (remember quotes): "disk0"

Ready to label disk, continue? yes

```
partition>
format>
verify
format> quit
```

Example 12-2 SPARC: Creating Disk Slices and Labeling a Secondary Disk

The following example shows the format utility being used to divide a 18-Gbyte disk into one slice for the /export/home file system.

```
format /dev/rdsk/c1*

AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@0,0
1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@1,0
2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@8,0
3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@9,0

Specify disk (enter its number): 1

selecting c1t1d0
[disk formatted]
```

```
format> partition
partition> print
partition> modify

Select partitioning base:
0. Current partition table (original)
1. All Free Hog

Choose base (enter number) [0]? 1

Choose base (enter number) [0]? 1
```

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>0</td>
<td>0 (0/0/0)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wu</td>
<td>0 - 7505</td>
<td>16.86GB (7506/0/0)</td>
<td>35368272</td>
</tr>
</tbody>
</table>
Do you wish to continue creating a new partition table based on above table [yes]? y
Free Hog partition [6]? 7
Enter size of partition ‘0’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘1’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘3’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘4’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘5’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘6’ [0b, 0c, 0.00mb, 0.00gb]:

Okay to make this the current partition table [yes]? yes

The following example shows how to use the format utility to divide a 1.15 terabyte disk with an EFI label into three slices.

```
format
.
.
.partition> modify
Select partitioning base:
 0. Current partition table (original)
 1. All Free Hog
Choose base (enter number) [0]? 1
```

```
Part Tag Flag Cylinders Size Blocks
 0 root wm 0 0 0 (0/0/0) 0
 1 swap wu 0 0 0 (0/0/0) 0
 2 backup wu 0 - 7505 16.86GB (7506/0/0) 35368272
 3 unassigned wm 0 0 0 (0/0/0) 0
 4 unassigned wm 0 0 0 (0/0/0) 0
 5 unassigned wm 0 0 0 (0/0/0) 0
 6 usr wm 0 0 0 (0/0/0) 0
 7 unassigned wm 0 - 7505 16.86GB (7506/0/0) 35368272
```
Do you wish to continue creating a new partition table based on above table? [yes] y

Free Hog partition[6]? 4

Enter size of partition 0 [0b, 34e, 0mb, 0gb, 0tb]:
Enter size of partition 1 [0b, 34e, 0mb, 0gb, 0tb]:
Enter size of partition 2 [0b, 34e, 0mb, 0gb, 0tb]: 400gb
Enter size of partition 3 [0b, 838860834e, 0mb, 0gb, 0tb]: 400gb
Enter size of partition 5 [0b, 1677721634e, 0mb, 0gb, 0tb]:
Enter size of partition 6 [0b, 1677721634e, 0mb, 0gb, 0tb]:

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>First Sector</th>
<th>Size</th>
<th>Last Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>usr</td>
<td>wm</td>
<td>34</td>
<td>400.00GB</td>
<td>838860833</td>
</tr>
<tr>
<td>3</td>
<td>usr</td>
<td>wm</td>
<td>838860834</td>
<td>400.00GB</td>
<td>1677721633</td>
</tr>
<tr>
<td>4</td>
<td>usr</td>
<td>wm</td>
<td>1677721634</td>
<td>428.77GB</td>
<td>2576924637</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>reserved</td>
<td>wm</td>
<td>2576924638</td>
<td>8.00MB</td>
<td>2576941021</td>
</tr>
</tbody>
</table>

Ready to label disk, continue? yes

More Information

After You Create Disk Slices and Label a Disk ...

After you create disk slices and label the disk, you can create file systems on the disk. Go to “SPARC: How to Create a UFS File System” on page 241.

SPARC: How to Create a UFS File System

1. Become superuser or assume an equivalent role.

2. Create a file system for each slice.

```bash
newfs /dev/rdsk/cwtxdysz
```

where `/dev/rdsk/cwtxdysz` is the raw device for the file system to be created.

For more information about the `newfs` command, see Chapter 17, “Creating UFS, TMPFS, and LOFS File Systems (Tasks)” or `newfs(1M)`. 
3 Verify the new file system by mounting it.
   
   # mount /dev/dsk/cwtxdzysz /mnt
   
   ls
   lost+found

More Information After Creating a UFS File System ...

- **System Disk** – You need to restore the root (/) and /usr file systems on the disk.
  
  - Go to Chapter 26, “Restoring Files and File Systems (Tasks).”
  
  - After the root (/) and /usr file systems are restored, install the boot block. Go to “SPARC: How to Install a Boot Block on a System Disk” on page 242.

- **Secondary Disk** – You might need to restore file systems on the new disk. Go to Chapter 26, “Restoring Files and File Systems (Tasks).” If you are not restoring file systems on the new disk, you are finished adding a secondary disk.

- For information on making the file systems available to users, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

▼ **SPARC: How to Install a Boot Block on a System Disk**

1 Become superuser or assume an equivalent role.

2 Install a boot block on the system disk.

   # installboot /usr/platform/`uname -i`/lib/fs/ufs/bootblk
   /dev/rdsk/cwtxdzys0

   /usr/platform/`uname -i`/lib/fs /ufs/bootblk
   Is the boot block code.

   /dev/rdsk/cwtxdzys0
   Is the raw device of the root (/) file system.

   For more information, see installboot(1M).

3 Verify that the boot blocks are installed by rebooting the system to run level 3.

   # init 6

**Example 12–3** SPARC: Installing a Boot Block on a System Disk

The following example shows how to install the boot block on an Ultra™ 10 system.

   # installboot /usr/platform/sun4u/lib/fs/ufs/bootblk
   /dev/rdsk/c0t0d0s0
This chapter describes how to add a disk to an x86 based system.

For information on the procedures associated with adding a disk to an x86 based system, see “x86: Adding a System Disk or a Secondary Disk (Task Map)” on page 243.

For overview information about disk management, see Chapter 10, "Managing Disks (Overview)." For step-by-step instructions on adding a disk to a SPARC based system, see Chapter 12, “SPARC: Adding a Disk (Tasks).”

### x86: Adding a System Disk or a Secondary Disk (Task Map)

The following task map identifies the procedures for adding a disk to an x86 based system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
</table>
| 1. Connect the disk and boot. | **System Disk**  
Connect the new disk and boot from a local or remote Solaris CD or DVD.  
**Secondary Disk**  
Connect the new disk and perform a reconfiguration boot so that the system will recognize the disk. | "x86: How to Connect a System Disk" on page 245  
"x86: How to Connect a Secondary Disk and Boot” on page 247 |
2. (Optional) Change the fdisk partition identifier. The Solaris 10 fdisk partition identifier on x86 systems has been changed from 130 (0x82) to 191 (0xbf). You can use a new fdisk menu option to switch back and forth between the new and old identifier. "How to Change the Solaris fdisk Identifier" on page 246

3. Create slices and label the disk. Create disk slices and label the disk if the disk manufacturer has not already done so. "x86: How to Create a Solaris fdisk Partition" on page 249 and "x86: How to Create Disk Slices and Label a Disk" on page 255

4. Create file systems. Create UFS file systems on the disk slices with the newfs command. You must create the root (/) or /usr file system (or both) for a system disk. "x86: How to Create File Systems" on page 256

5. Restore file systems. Restore the root (/) or /usr file system (or both) on the system disk. If necessary, restore file systems on the secondary disk. Chapter 26, "Restoring Files and File Systems (Tasks)"

6. Install boot block. System Disk Only. Install the boot block on the root (/) file system so that the system can boot. "x86: How to Install a Boot Block on a System Disk" on page 257

---

**x86: Adding a System Disk or a Secondary Disk**

A system disk contains the root (/) or /usr file systems, or both. If the disk that contains either of these file systems becomes damaged, you have two ways to recover:

- You can reinstall the entire Solaris OS.
- Or, you can replace the system disk and restore your file systems from a backup medium.

A secondary disk doesn’t contain the root (/) and /usr file systems. A secondary disk usually contains space for user files. You can add a secondary disk to a system for more disk space. Or, you can replace a damaged secondary disk. If you replace a secondary disk on a system, you can restore the old disk’s data on the new disk.
x86: How to Connect a System Disk

This procedure assumes that the operating system is shutdown.

1. **Disconnect the damaged system disk from the system.**

2. **Ensure that the disk you are adding has a different target number than the other devices on the system.**
   Typically, a small switch is located at the back of the disk for this purpose.

3. **Connect the replacement system disk to the system, and check the physical connections.**
   Refer to the disk’s hardware installation guide for details.

4. **Boot the system.**
   This procedure assumes that you are booting from GRUB’s Solaris failsafe boot option.
   
   a. **Press any key to reboot the system if the system displays the** Press any key to reboot prompt. Or, use the reset button to restart the system if the system is shut down.
   The GRUB menu is displayed after a few minutes.

   b. **Use the arrow keys to select the Solaris failsafe boot option.**

   c. **Press return.**

   d. **At the Do you wish to automatically update boot archives? prompt answer no.**
   The root prompt (#) is displayed.

   Note – You must reboot the system when you want to exit Solaris failsafe boot mode. You cannot reboot the system to multiuser mode until the system disk is successfully added, the data is restored, and the bootblocks are installed.

More Information

After You Connect a System Disk …

You can create an fdisk partition if the disk is less than 1 terabyte size. Go to “x86: How to Create a Solaris fdisk Partition” on page 249.

Changing the fdisk Partition Identifier

The Solaris fdisk partition identifier on x86 systems has been changed from 130 (0x82) to 191 (0xbf). All Solaris commands, utilities, and drivers have been updated to work with either fdisk identifier. There is no change in fdisk functionality.
How to Change the Solaris fdisk Identifier

A new fdisk menu option enables you to switch back and forth between the new and old identifier. The fdisk identifier can be changed even when the file system that is contained in the partition is mounted.

Two type values in the fdisk menu reflect the old and new identifiers as follows:

- Solaris identifies 0x82
- Solaris2 identifies 0xbf

1 Become superuser.

2 Display the current fdisk identifier.
   For example:
   
   Total disk size is 39890 cylinders
   Cylinder size is 4032 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86 Boot</td>
<td>Active</td>
<td>7 39889</td>
<td>39883</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Select option 4 from the fdisk menu to change the fdisk partition identifier back to 0x82
   SELECT ONE OF THE FOLLOWING:
   1. Create a partition
   2. Specify the active partition
   3. Delete a partition
   4. Change between Solaris and Solaris2 Partition IDs
   5. Exit (update disk configuration and exit)
   6. Cancel (exit without updating disk configuration)

   Enter Selection: 4

4 Select option 5 to update your disk configuration and exit.

5 If necessary, select option 4 from the fdisk menu to change the fdisk partition identifier back to 0xbf.
   For example:
   
   Total disk size is 39890 cylinders
   Cylinder size is 4032 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86 Boot</td>
<td>Active</td>
<td>1 6 6 0</td>
<td>6 0</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection: 4

6 Select option 5 to update your disk configuration and exit.

▼ x86: How to Connect a Secondary Disk and Boot

If you are adding a disk with an EFI disk label on an x64 system, see “EFI Disk Label” on page 194 for more information.

Generally, most modern bus types support hot-plugging. If your system’s bus type supports hot-plugging, you might not need to do steps 2 or 3 below.

For more information about hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

1 Become superuser or assume an equivalent role.

2 (Optional) If the disk is unsupported by the Solaris software, add the device driver for the disk by following the instructions included with the hardware.

3 (Optional) Create the /reconfigure file that will be read when the system is booted.

   # touch /reconfigure

The /reconfigure file causes the SunOS™ software to check for the presence of any newly installed peripheral devices when you power on or boot your system later.

4 Shut down the system.

   # shutdown -i0 -gn -y

   -i0 Brings the system down to run level 0, the power-down state.
   -gn Notifies logged-in users that they have n seconds before the system begins to shut down.
   -y Specifies that the command should run without user intervention.

The Press any key to reboot prompt is displayed.
5 Turn off the power to the system and all external peripheral devices.

6 Ensure that the disk you are adding has a different target number than the other devices on the system.
   Typically, a small switch is located at the back of the disk for this purpose.

7 Connect the disk to the system and check the physical connections.
   Refer to the disk’s hardware installation guide for details.

8 Turn on the power to all external peripheral devices.

9 Turn on the power to the system.
   The system boots and displays the login prompt.

More Information  After You Connect a Secondary Disk and Boot ...

After the system is booted, you can create an fdisk partition if the disk is less than 1 terabyte in size. Go to “x86: How to Create a Solaris fdisk Partition” on page 249.

x86: Guidelines for Creating an fdisk Partition

Follow these guidelines when you set up one or more fdisk partitions.

- The fdisk command cannot be used on disks with an EFI label that are greater than 1 terabyte in size.
- The disk can be divided into a maximum of four fdisk partitions. One of partitions must be a Solaris partition.
- The Solaris partition must be made the active partition on the disk. The active partition is partition whose operating system will be booted by default at system startup.
- Solaris fdisk partitions must begin on cylinder boundaries.
- Solaris fdisk partitions must begin at cylinder 1, not cylinder 0, on the first disk because additional boot information, including the master boot record, is written in sector 0.
- The Solaris fdisk partition can be the entire disk. Or, you might want to make it smaller to allow room for a DOS partition. You can also make a new fdisk partition on a disk without disturbing existing partitions (if sufficient space is available) to create a new partition.
Solaris slices are also called partitions. Certain interfaces might refer to a slice as a partition.

fdisk partitions are supported only on x86 based systems. To avoid confusion, Solaris documentation tries to distinguish between fdisk partitions and the entities within the Solaris fdisk partition. These entities might be called slices or partitions.

**x86: How to Create a Solaris fdisk Partition**

**Before You Begin**
If you need information about fdisk partitions, see "x86: Guidelines for Creating an fdisk Partition" on page 248.

1. **Become superuser or assume an equivalent role.**

2. **Invoke the format utility.**
   ```bash
 # format
   ```
   A numbered list of disks is displayed.
   For more information, see format(1M).

3. **Type the number of the disk on which to create a Solaris fdisk partition.**
   Specify disk (enter its number): *disk-number*
   where *disk-number* is the number of the disk on which you want to create a Solaris fdisk partition.

4. **Select the fdisk menu.**
   ```bash
 format> fdisk
   ```
   The fdisk menu that is displayed depends upon whether the disk has existing fdisk partitions. Determine the next step by using the following table.

<table>
<thead>
<tr>
<th>Task</th>
<th>Go To</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Solaris fdisk partition to span the entire disk.</td>
<td>Step 5</td>
<td>Example 13–1</td>
</tr>
<tr>
<td>Create a Solaris fdisk partition and preserve one or more existing non Solaris fdisk partitions.</td>
<td>Step 6</td>
<td>Example 13–2</td>
</tr>
</tbody>
</table>
Create and activate a Solaris fdisk partition that spans the entire disk by specifying y at the prompt. Then, go to step 13.

No fdisk table exists. The default partition for the disk is:

- a 100% "SOLARIS System" partition

Type "y" to accept the default partition, otherwise type "n" to edit the partition table.

y

Specify n at the prompt if you do not want the Solaris fdisk partition to span the entire disk.

Type "y" to accept the default partition, otherwise type "n" to edit the partition table.

n

Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

Cylinders

<table>
<thead>
<tr>
<th>Partition Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
</table>

SELECT ONE OF THE FOLLOWING:

1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection:

7 Select option 1, Create a partition, to create an fdisk partition.

Enter Selection: 1

8 Create a Solaris fdisk partition by selecting 1(Solaris2).

Indicate the type of partition you want to create

1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other
5=DOS12 6=DOS16 7=DOSXNT 8=DOSBIG
9=DOS16LBA A=x86 Boot B=Diagnostic C=FAT32
D=FAT32LBA E=DOS16LBA F=EFI 0=Exit? 1
Identify the percentage of the disk to be reserved for the Solaris fdisk partition. Keep in mind the size of any existing fdisk partitions when you calculate this percentage.

Specify the percentage of disk to use for this partition (or type "c" to specify the size in cylinders). nn

Activate the Solaris fdisk partition by typing y at the prompt.
Should this to become the active partition? If yes, it will be activated each time the computer is reset or turned on. Please type "y" or "n". y

The Enter Selection prompt is displayed after the fdisk partition is activated.

Select option 1, Create a partition, to create another fdisk partition.
See steps 8–10 for instructions on creating an fdisk partition.

Update the disk configuration, and exit the fdisk menu from the selection menu.
Selection: 5

Relabel the disk by using the label command.
format> label
Ready to label disk, continue? yes
format>

Quit the format utility.
format> quit

Example 13–1 x86: Creating a Solaris fdisk Partition That Spans the Entire Drive

The following example uses the format utility’s fdisk option to create a Solaris fdisk partition that spans the entire drive.

# format
Searching for disks...done
AVAILABLE DISK SELECTIONS:
  0. c0d0 <DEFAULT cyl 2466 alt 2 hd 16 sec 63>
     /pci@0,0/pci-ide@7,1/ide@0/cmdk@0,0
  1. c0d1 <DEFAULT cyl 522 alt 2 hd 32 sec 63>
     /pci@0,0/pci-ide@7,1/ide@0/cmdk@1,0
  2. c1d0 <DEFAULT cyl 13102 alt 2 hd 16 sec 63>
     /pci@0,0/pci-ide@7,1/ide@1/cmdk@0,0
Specify disk (enter its number): 0
selecting c0d0
Controller working list found
disk formatted
format> fdisk
No fdisk table exists. The default partitioning for your disk is:

a 100% "SOLARIS System" partition.

Type 'y' to accept the default partition, otherwise type "n" to edit the partition table.  y

format> label
Ready to label disk, continue? yes
format> quit

**Example 13–2  x86: Creating a Solaris fdisk Partition While Preserving an Existing fdisk Partition**

The following example shows how to create a Solaris fdisk partition on a disk that has an existing DOS-BIG fdisk partition.

```bash
format> fdisk
Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

<table>
<thead>
<tr>
<th>Cylinders</th>
<th>Partition Status Type Start End Length %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active DOS-BIG 1 699 699 20</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 1

Indicate the type of partition you want to create
1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other
5=DOS12 6=DOS16 7=DOS16LBA 8=DOSBIG
9=DOS16LBA A=x86 Boot B=Diagnostic C=FAT32
D=FAT32LBA E=DOSEXTLBA F=EFI 0=Exit?1

Indicate the percentage of the disk you want this partition to use (or enter "c" to specify in cylinders). 80

Should this become the active partition? If yes, it will be activated each time the computer is or turned on.

Please type "y" or "n". y

Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

<table>
<thead>
<tr>
<th>Cylinders</th>
<th>Partition Status Type Start End Length %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DOS-BIG 1 699 699 20</td>
</tr>
</tbody>
</table>
SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection: 5
Partition 2 is now the active partition
format> label
Ready to label disk, continue? yes
format> q

Example 13-3 x86: Creating a Solaris fdisk Partition and an Additional fdisk Partition

This following example shows how to create a Solaris fdisk partition and a DOSBIG fdisk partition.

format> fdisk
No fdisk table exists. The default partitioning for your disk is:
a 100% "SOLARIS System" partition.
Type "y" to accept the default partition, otherwise type "n" to edit the partition table.
n
Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks
Cylinders

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection: 1
Indicate the type of partition you want to create
1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other
5=DOS12 6=DOS16 7=DOSEXT 8=DOSBIG
9=DOS16LBA A=x86 Boot B=Diagnostic C=FAT32
D=FAT32LBA E=DOSEXTLBA F=EFI 0=Exit? 8
Specify the percentage of disk to use for this partition
(or type "c" to specify the size in cylinders)20
Should this to become the Active partition? If yes, it will be activated each time the computer is reset or turned on.
again. Please type "y" or "n".

Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

Cylinders

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>DOS-BIG</td>
<td>1</td>
<td>699</td>
<td>699</td>
<td>20</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 1

Indicate the type of partition you want to create
1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other
5=DOS12 6=DOS16 7=DOSXT 8=DOSBIG
9=DOS16LBA A=x86 Boot B=Diagnostic C=FAT32
D=FAT32LBA E=DOSXTLBA F=EFI 0=Exit? 1

Indicate the percentage of the disk you want this partition to use (or enter "c" to specify in cylinders). 80

Should this become the active partition? If yes, it will be activated each time the computer is reset or turned on.
Please type "y" or "n". y

Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

Cylinders

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>DOS-BIG</td>
<td>1</td>
<td>699</td>
<td>699</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Active</td>
<td>Solaris2</td>
<td>700</td>
<td>3497</td>
<td>2798</td>
<td>80</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 5

Partition 2 is now the Active partition

format> q

More Information

After You Create a Solaris fdisk Partition ...

After you create a Solaris fdisk partition on the disk, you can create slices on the disk. Go to "x86: How to Create Disk Slices and Label a Disk" on page 255
x86: How to Create Disk Slices and Label a Disk

1. Become superuser or assume an equivalent role.

2. Invoke the `format` utility.
   ```
   # format
   ```
 A numbered list of disks is displayed.

3. Type the number of the disk that you want to repartition.
   ```
   Specify disk (enter its number): disk-number
   ```
 where `disk-number` is the number of the disk that you want to repartition.

4. Select the `partition` menu.
   ```
   format> partition
   ```

5. Display the current partition (slice) table.
   ```
   partition> print
   ```

6. Start the modification process.
   ```
   partition> modify
   ```

7. Set the disk to all free hog.
   ```
   Choose base (enter number) [0]? 1
   ```
 For more information about the free hog slice, see “Using the Free Hog Slice” on page 207.

8. Create a new partition table by answering yes when prompted to continue.
   ```
   Do you wish to continue creating a new partition table based on above table[yes]? yes
   ```

9. Identify the free hog partition (slice) and the sizes of the slices when prompted.
 When adding a system disk, you must set up slices for the following:
 - root (slice 0) and swap (slice 1) and/or
 - /usr (slice 6)
 After you identify the slices, the new partition table is displayed.

10. Make the displayed partition table the current partition table by answering yes when prompted.
    ```
    Okay to make this the current partition table[yes]? yes
    ```
If you don’t want the current partition table and you want to change it, answer no and go to Step 6.

11 Name the partition table.
Enter table name (remember quotes): “partition-name”
where partition-name is the name for the new partition table.

12 Label the disk with the new partition table after you have finished allocating slices on the new disk.
Ready to label disk, continue? yes

13 Quit the partition menu.
partition> quit

14 Verify the new disk label.
format> verify

15 Exit the format utility.
format> quit

More Information After You Create Disk Slices and Label a Disk ...
After you create disk slices and label the disk, you can create file systems on the disk. Go to "x86: How to Create File Systems" on page 256.

▼ x86: How to Create File Systems

1 Become superuser or assume an equivalent role.

2 Create a file system for each slice.
 # newfs /dev/rdsk/cwtxdysz
 where /dev/rdsk/cwtxdysz is the raw device for the file system to be created.
 For more information about the newfs command, see Chapter 17, “Creating UFS, TMPFS, and LOFS File Systems (Tasks)” or newfs(1M).

3 Verify the new file system by mounting.
 # mount /dev/dsk/cwtxdysz /mnt
 # ls /mnt
 lost+found
After You Create File Systems ...

- **System Disk** – You need to restore the root (/) and /usr file systems on the disk.
 - Go to Chapter 26, “Restoring Files and File Systems (Tasks).”
 - After the root (/) and /usr file systems are restored, install the boot block. Go to “x86: How to Install a Boot Block on a System Disk” on page 257.
- **Secondary Disk** – You might need to restore file systems on the new disk. Go to Chapter 26, “Restoring Files and File Systems (Tasks).” If you are not restoring file systems on the new disk, you are finished adding a secondary disk.
- For information on making the file systems available to users, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

x86: How to Install a Boot Block on a System Disk

1. Become superuser or assume an equivalent role.

2. Install the boot blocks on the system disk.
   ```
   # /sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/cwtxdysz
   /boot/grub/stage1  Is the partition boot file.
   /boot/grub/stage2  Is the boot block code.
   /dev/rdsk/cwtxdysz  Is the raw device name that represents the location of the GRUB menu, /boot/grub/menu.lst on the Solaris root slice.
   
   For more information, see `installgrub(1M)`.  
   ```

3. Verify that the boot blocks are installed by rebooting the system to run level 3.
   ```
   # init 6
   ```

Example 13-4 x86: Installing a Boot Block on a System Disk

The following example shows how to install the boot blocks on an x86 system.

```bash
# /sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c1d0s0
stage1 written to partition 0 sector 0 (abs 2016)
stage2 written to to partition 0, 227 sectors starting 50 (abs 2066)
```
This chapter describes how to configure Solaris iSCSI targets, available starting in the Solaris 10 8/07 release, and Solaris iSCSI initiators, available starting in the Solaris 10 1/06 release. For information on the procedures associated with configuring iSCSI targets and initiators, see “Setting Up Solaris iSCSI Targets and Initiators (Task Map)” on page 261.

For information about new Solaris iSCSI initiator features in the Solaris 10 6/06 release, see “What’s New in Disk Management?” on page 189

For troubleshooting Solaris iSCSI configuration problems, see “Troubleshooting iSCSI Configuration Problems” on page 280.

The iSCSI Technology (Overview)

iSCSI is an acronym for Internet SCSI (Small Computer System Interface), an Internet Protocol (IP)-based storage networking standard for linking data storage subsystems. This networking standard was developed by the Internet Engineering Task Force (IETF). For more information about the iSCSI technology, see RFC 3720:

http://www.ietf.org/rfc/rfc3720.txt

By carrying SCSI commands over IP networks, the iSCSI protocol enables you to access block devices from across the network as if they were connected to the local system.

If you want to use storage devices in your existing TCP/IP network, the following solutions are available:

- iSCSI block devices or tape – Translates SCSI commands and data from the block level into IP packets. The advantage of using iSCSI in your network is when you need to have block-level access between one system and the target device, such as a tape device or a database. Access to a block-level device is not locked so that you could not have multiple users or systems accessing a block-level device such as an iSCSI target device.
NFS – Transfers file data over IP. The advantage of using NFS in your network is that you can share file data across many systems. Access to file data is locked appropriately when many users are accessing data that is available in an NFS environment.

Here are the benefits of using Solaris iSCSI targets and initiators:

- The iSCSI protocol runs across existing Ethernet networks.
 - You can use any supported network interface card (NIC), Ethernet hub or switch.
 - One IP port can handle multiple iSCSI target devices.
 - You can use existing infrastructure and management tools for IP networks.
- You might have existing fibre-channel devices that can be connected to clients without the cost of fibre-channel HBAs. In addition, systems with dedicated arrays can now export replicated storage with ZFS or UFS file systems.
- There is no upper limit on the maximum number of configured iSCSI target devices.
- The protocol can be used to connect to Fibre Channel or iSCSI Storage Area Network (SAN) environments with the appropriate hardware.

Here are the current limitations or restrictions of using the Solaris iSCSI initiator software:

- No support for iSCSI devices that use SLP is currently available.
- No boot support for iSCSI devices is currently available.
- Do not configure iSCSI targets as dump devices.
- iSCSI supports multiple connections per session, but the current Solaris implementation only supports a single connection per session.
 For more information, see RFC 3720.
- You should consider the impact of transferring large amounts of data over your existing network.

Solaris iSCSI Software and Hardware Requirements

- Solaris iSCSI software and devices
- The Solaris 10 1/06 or later release for Solaris iSCSI initiator software
- The Solaris 10 8/07 or later release for Solaris iSCSI target software
- The following software packages:
 - SUNWiscsir – Sun iSCSI Device Driver (root)
 - SUNWiscsiu – Sun iSCSI Management Utilities (usr)
 - SUNWiscsitgtr – Sun iSCSI Target Device Driver (root)
 - SUNWiscsitgtu – Sun iSCSI Target Management Utilities (usr)
- Any supported NIC
Setting Up Solaris iSCSI Targets and Initiators (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the iSCSI software and hardware requirements.</td>
<td>Identify the software and hardware requirements for setting up an iSCSI-based storage network.</td>
<td>“Solaris iSCSI Software and Hardware Requirements” on page 260</td>
</tr>
<tr>
<td>2. Set up your iSCSI target devices.</td>
<td>Connect and set up your Solaris iSCSI target devices. In addition, you can set up third-party target devices. See your vendor’s documentation for setup instructions.</td>
<td>“Setting Up Your Solaris iSCSI Target Devices” on page 264</td>
</tr>
<tr>
<td>3. Prepare for your Solaris iSCSI configuration.</td>
<td>Make sure you have the correct software versions and hardware installed.</td>
<td>“How to Prepare for a Solaris iSCSI Configuration” on page 263</td>
</tr>
<tr>
<td>4. (Optional) Set up authentication in your Solaris iSCSI configuration.</td>
<td>Decide whether you want to use authentication in your Solaris iSCSI configuration: Consider using unidirectional CHAP or bidirectional CHAP. Consider using a third-party RADIUS server to simplify CHAP management.</td>
<td>“How to Configure CHAP Authentication for Your iSCSI Initiator” on page 266, “How to Configure CHAP Authentication for Your iSCSI Target” on page 267, “How to Configure RADIUS for Your iSCSI Configuration” on page 268</td>
</tr>
<tr>
<td>5. Configure the iSCSI target discovery method.</td>
<td>Select the iSCSI target discovery method best suited for your environment.</td>
<td>“How to Configure iSCSI Target Discovery” on page 269</td>
</tr>
<tr>
<td>6. (Optional) Remove discovered iSCSI targets.</td>
<td>You might need to remove a discovered iSCSI target.</td>
<td>“How to Remove Discovered iSCSI Targets” on page 270</td>
</tr>
<tr>
<td>7. Monitor your iSCSI configuration.</td>
<td>Monitor your iSCSI configuration with the <code>iscsiadm</code> command.</td>
<td>“Monitoring Your iSCSI Configuration” on page 272</td>
</tr>
<tr>
<td>8. (Optional) Modify your iSCSI configuration.</td>
<td>You might want to change your iSCSI target settings such as the header and data digest parameters.</td>
<td>“How to Modify iSCSI Initiator and Target Parameters” on page 275</td>
</tr>
</tbody>
</table>
Task Description For Instructions

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. (Optional) Enable multiple iSCSI sessions for your target.</td>
<td>Use this procedure to create multiple iSCSI sessions that connect to a single target.</td>
<td>"How to Enable Multiple iSCSI Sessions for a Target" on page 278</td>
</tr>
</tbody>
</table>

Configuring Solaris iSCSI Targets and Initiators

Basically, configuring your Solaris iSCSI targets and initiators involves the following steps:

- Identifying the hardware and software requirements
- Configuring your IP network
- Connecting and setting up your iSCSI target device
- (Optional) Configure iSCSI authentication between the iSCSI initiator and the iSCSI target, if necessary
- Configuring the iSCSI target discovery method
- Creating file systems on your iSCSI disks
- Monitoring your iSCSI configuration

The iSCSI configuration information is stored in the `/etc/iscsi` directory. This information requires no administration.

iSCSI Terminology

Review the following terminology before configuring iSCSI targets and initiators.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator</td>
<td>The driver that initiates SCSI requests to the iSCSI target.</td>
</tr>
<tr>
<td>Target device</td>
<td>Represents the iSCSI storage component.</td>
</tr>
<tr>
<td>Discovery</td>
<td>Discovery is the process that presents the initiator with a list of available targets.</td>
</tr>
<tr>
<td>Discovery method</td>
<td>Describes the way in which the iSCSI targets can be found. Three methods are currently available:</td>
</tr>
<tr>
<td>Internet Storage Name Service (iSNS)</td>
<td>Potential targets are discovered by interacting with one or more iSNS servers.</td>
</tr>
<tr>
<td>SendTargets</td>
<td>Potential targets are discovered by using a <code>discovery-address</code>.</td>
</tr>
<tr>
<td>Static</td>
<td>Static target address is configured.</td>
</tr>
</tbody>
</table>
Configuring Dynamic or Static Target Discovery

Determine whether you want to configure one of the dynamic features or use static iSCSI initiator targets to perform device discovery.

- **Dynamic device discovery** – If an iSCSI node exposes a large number of targets, such as an iSCSI to Fibre-Channel bridge, you can supply the iSCSI node IP address/port combination and allow the iSCSI initiator to use the SendTargets features to perform the device discovery.

 Two dynamic device discovery methods are available: SendTargets and iSNS.

 - **SendTargets** - If an iSCSI node exposes a large number of targets, such as an iSCSI to Fibre-Channel bridge, you can supply the iSCSI node IP address/port combination and allow the iSCSI initiator to use the SendTargets features to perform the device discovery.

 - **iSNS** - iSNS (Internet Storage Name Service) allows the iSCSI initiator to discover the targets to which it has access using as little configuration as possible. It also provides state change notification functionality to notify the iSCSI initiator when changes in operational state of storage nodes occur. To use the iSNS discovery option, you can supply the iSNS server address/port combination and allow the iSCSI initiator to query the iSNS servers that you specified to perform the device discovery. The default port for iSNS server is 3205. For more information about iSNS, see RFC 4171:

- **Static device discovery** – If an iSCSI node has a small number of targets or if you want to restrict the targets that the initiator attempts to access, you can statically configure the target-name by using the following static target address naming convention:

 target,target-address[:port-number]

 You can determine the static target address from the array’s management tool.

Note – Do not configure an iSCSI target to be discovered by both static and dynamic device discovery methods. The consequence of using redundant discovery methods might be slow performance when communicating with the iSCSI target device.

▼ How to Prepare for a Solaris iSCSI Configuration

1. **Become superuser.**

2. **Verify that the iSCSI software packages are installed.**

   ```
   # pkginfo SUNWiscsiu SUNWiscsir
   system   SUNWiscsiu Sun iSCSI Device Driver (root)
   system   SUNWiscsir Sun iSCSI Management Utilities (usr)
   ```

3. **Verify that you are running a Solaris 10 1/06 or later release.**
Confirm that your TCP/IP network is setup.

Connect your iSCSI target devices and confirm that they are configured. For example, determine if the iSCSI target device is reachable by using the telnet command to connect to the iSCSI target device using port 3260. If the connection is refused, see "Troubleshooting iSCSI Configuration Problems" on page 280.

For information about connecting your third-party iSCSI target devices, see your hardware documentation.

Setting Up Your Solaris iSCSI Target Devices

You can use the iscsitadm command to set up and manage your Solaris iSCSI target devices, which can be disk or tape devices. For the device that you select as your iSCSI target, you'll need to provide an equivalently sized ZFS or UFS file system as the backing store for the iSCSI daemon.

For information about setting up a Solaris iSCSI target device with ZFS, see “ZFS and Solaris iSCSI Improvements” in Solaris ZFS Administration Guide.

After the target device is set up, use the iscsiadm command to identify your iSCSI targets, which will discover and use the iSCSI target device.

For more information, see iscsitadm.1m and iscsiadm(1M).

The basic process is as follows:

- Identify the backing store directory – For each target and logical unit created, the iSCSI daemon needs to store some information. By default, the backing store for this device is also located within the base directory. So, if the host system has a large ZFS pool to use, it may be easiest and desirable to allow the daemon to store everything in that location. It the backing store needs to be spread out, it's possible during the creation of each logical unit to specify the backing store location.

- Create the iSCSI target – By default, the CLI assumes the requested device type is an LBA of logical unit 0. If a pass through mode is desired for character devices, the -raw option must be used. After the creation of the first LU, other LUs may be created for the same iSCSI target by specifying -lun number.

The daemon starts a background task that will initialize the LU to zeros. If, during that initialization, the underlying file system becomes 100% full, the daemon will remove the target. During this initialization, the LU is marked as being offline and can’t be used by an initiator. It is possible during this time, however, to have an initiator discover this LU. The Solaris initiator will wait until it receives an Inventory Change notification and then automatically bring the device online.
How to Create an iSCSI Target

1. Become superuser.

2. Identify the backing store directory.
 For example:
   ```
   # iscsitadm modify admin -d /export/sandbox
   ```

3. Create an iSCSI target.
 For example:
   ```
   # iscsitadm create target --size 2g sandbox
   ```

4. Display information about the iSCSI target.
 For example:
   ```
   # iscsitadm list target -v sandbox
   ```

5. Set up your iSCSI initiator to discover and use this target.

Configuring Authentication in Your iSCSI-Based Storage Network

Setting up authentication for your iSCSI devices is optional.

In a secure environment, authentication is not required because only trusted initiators can access the targets.

In a less secure environment, the target cannot determine if a connection request is truly from a given host. In that case, the target can authenticate an initiator by using the Challenge-Handshake Authentication Protocol (CHAP).

CHAP authentication uses the notion of a challenge and response, which means that the target challenges the initiator to prove its identity. For the challenge/response method to work, the target must know the initiator's secret key and the initiator must be set up to respond to a challenge. Refer to the array vendor’s documentation for instructions on setting up the secret key on the array.

iSCSI supports unidirectional and bidirectional authentication:

- **Unidirectional authentication** enables the target to authenticate the identity of the initiator.
- **Bidirectional authentication** adds a second level of security by providing a means for the initiator to authenticate the identity of the target.
How to Configure CHAP Authentication for Your iSCSI Initiator

This procedure assumes that you are logged in to the local system where you want to securely access the configured iSCSI target device.

1 Become superuser.

2 Determine whether you want to configure unidirectional or bidirectional CHAP.
 - Unidirectional authentication enables the target to validate the initiator. This method is the default method. Complete steps 3–5 only.
 - Bidirectional authentication adds a second level of security by providing a means for the initiator to authenticate the target. Complete steps 3–9.

3 Unidirectional CHAP – Set the secret key on the initiator.
 For example, the following command initiates a dialogue to define the CHAP secret key.

 # iscsiadm modify initiator-node --CHAP-secret

 Note – The CHAP secret length must be a minimum of 12 characters and a maximum of 16 characters.

4 (Optional) Unidirectional CHAP – Set the CHAP name on the initiator.
 By default, the initiator’s CHAP name is set to the initiator node name.

 You can use the following command to change the initiator’s CHAP name.

 # iscsiadm modify initiator-node --CHAP-name new-CHAP-name

5 Unidirectional CHAP – Enable CHAP authentication on the initiator after the secret has been set.

 # iscsiadm modify initiator-node --authentication CHAP

 CHAP requires that the initiator node have both a username and password. The username is typically used by the target to lookup the secret for the given username. In the Solaris environment, the CHAP name is always set to the initiator node name by default. The CHAP name can be set to any length text that is less than 512 bytes. The 512-byte length limit is a Solaris limitation. However, if you do not set the CHAP name, it is set to the initiator node name upon initialization.

6 Bidirectional CHAP – Enable bidirectional authentication parameters on the target.

 For example:

 # iscsiadm modify target-param -B enable eui.5000ABCD78945E2B
Bidirectional CHAP – Set authentication method to CHAP on the target.
For example:
```
# iscsiadm modify target-param --authentication CHAP eui.5000ABCD78945E2B
```

Bidirectional CHAP – Set the target device secret key on the target.
For example, the following command initiates a dialogue to define the CHAP secret key.
```
# iscsiadm modify target-param --CHAP-secret eui.5000ABCD78945E2B
```

Bidirectional CHAP - Set the CHAP name on the target.
By default, the target's CHAP name is set to the target name.
You can use the following command to change the target's CHAP name.
```
# iscsiadm modify target-param --CHAP-name target-CHAP-name
```

How to Configure CHAP Authentication for Your iSCSI Target

1. **Become superuser.**
2. **Set up the CHAP secret name for the target.**

 A common convention is to use the host name for the secret name. For example:

   ```
   # iscsitadm modify admin -H stormpike
   ```

3. **Enter the CHAP secret.**

 The CHAP secret must be between 12 and 16 characters. For example:

   ```
   # iscsitadm modify admin -C
   Enter secret: xxxxxxx
   Re-enter secret: xxxxxxx
   ```

4. **Create an initiator object that will be associated with one or more targets.**

 This is done so that you can associate a friendly name (normally the host name, in this case `monster620`) with the IQN value instead of typing it in every time. For example:

   ```
   # iscsitadm create initiator -n iqn.1986-03.com.sun: 01:00e081553307.4399f40e monster620
   ```

5. **Provide the same CHAP name that was used on the initiator.**

 This name can be different from the friendly name that was used for the initiator object. For example:

   ```
   # iscsitadm modify initiator -H monster620 monster620
   ```
Use the same CHAP secret that was used on the initiator.
For example:

```bash
# iscsitadm modify initiator -C monster620
Enter secret: xxxxxx
Re-enter secret: xxxxxx
```

Associate the initiator object with one or more targets.
For example:

```bash
# iscsitadm modify target -l monster620 sandbox
```

Using a Third-Party Radius Server to Simplify CHAP Management in Your iSCSI Configuration

You can use a third-party RADIUS server to simplify CHAP secret management. A RADIUS server is a centralized authentication service. While you must still specify the initiator’s CHAP secret, you are no longer required to specify each target’s CHAP secret on each initiator when using bidirectional authentication with a RADIUS server.

For more information, see:

How to Configure RADIUS for Your iSCSI Configuration

1. Become superuser.

2. Configure the initiator node with the IP address and port (the default port is 1812) of the RADIUS server.
 For example:
   ```bash
   # iscsiadm modify initiator-node --radius-server 10.0.0.72:1812
   ```

3. Configure the initiator node with the shared secret of the RADIUS server.
   ```bash
   # iscsiadm modify initiator-node --radius-shared-secret
   ```

 Note – The Solaris iSCSI implementation requires that the RADIUS server is configured with a shared secret before the Solaris iSCSI software can interact with the RADIUS server.

4. Enable the RADIUS server.
   ```bash
   # iscsiadm modify initiator-node --radius-access enable
   ```
Solaris iSCSI and RADIUS Server Error Messages

This section describes the messages that are related to a Solaris iSCSI and RADIUS server configuration with potential solutions for recovery.

empty RADIUS shared secret

Cause: The RADIUS server is enabled on the initiator but the RADIUS shared secret is not set.

Solution: Configure the initiator with RADIUS shared secret. For more information, see “How to Configure RADIUS for Your iSCSI Configuration” on page 268.

WARNING: RADIUS packet authentication failed

Cause: The initiator failed to authenticate the RADIUS data packet. This error can occur if the shared secret configured on the initiator-node is different from the shared secret on the RADIUS server.

Solution: Reconfigure the initiator with the correct RADIUS shared secret. For more information, see “How to Configure RADIUS for Your iSCSI Configuration” on page 268.

▼ How to Configure iSCSI Target Discovery

This procedure assumes that you are logged in to the local system where you want to configure access to an iSCSI target device.

1. **Become superuser.**

2. **Configure the target device to be discovered dynamically or statically:**
 - Configure the device dynamically discovered (SendTargets).
 For example:

     ```
     # iscsiadm add discovery-address 10.0.0.1:3260
     ```
 The iSCSI connection is not initiated until the discovery method is enabled. See the next step.
 - Configure the device dynamically discovered (iSNS).
 For example:

     ```
     # iscsiadm add iSNS-server 10.0.0.1:3205
     ```
 The iSCSI connection is not initiated until the discovery method is enabled. See the next step.
 - Configure the device statically discovered.
For example:

iscsiadm add static-config eui.5000ABCD78945E2B,10.0.0.1

The iSCSI connection is not initiated until the discovery method is enabled. See the next step.

3 **Enable the iSCSI target discovery method using one of the following:**
 - If you have configured a dynamically discovered (SendTargets) device, enable the SendTargets discovery method.

 # iscsiadm modify discovery --sendtargets enable
 - If you have configured a dynamically discovered (iSNS) device, enable the iSNS discovery method.

 # iscsiadm modify discovery --isns enable
 - If you have configured static targets, enable the static target discovery method.

 # iscsiadm modify discovery --static enable

4 **Create the iSCSI device links for the local system.**

 # devfsadm -i iscsi

▼ **How to Remove Discovered iSCSI Targets**

This optional procedure assumes that you are logged in to the local system where access to an iSCSI target device has already been configured.

After removing a discovery address, iSNS server, static-config, or disabling a discovery method, the associated targets are logged out. If these associated targets are still in use, for example, have mounted file systems, the logout of these devices will fail and they will remain on the active target list.

1 **Become superuser.**

2 **(Optional) Disable an iSCSI target discovery method using one of the following:**
 - If you need to disable the SendTargets method of discovery, use the following command:

 # iscsiadm modify discovery --sendtargets disable
 - If you need to disable the iSNS method of discovery, use the following command:

 # iscsiadm modify discovery --iSNS disable
If you need to disable the static targets, use the following command:

```
# iscsiadm modify discovery --static disable
```

3 Remove an iSCSI device discovery entry:

- Remove an iSCSI Send Targets discovery entry.

 For example:

  ```
  # iscsiadm remove discovery-address 10.0.0.1:3260
  ```

- Remove an iSCSI iSNS discovery entry.

 For example:

  ```
  # iscsiadm remove isns-server 10.0.0.1:3205
  ```

- Remove a static iSCSI initiator entry.

 For example:

  ```
  # iscsiadm remove static-config eui.5000ABCD78945E2B,10.0.0.1
  ```

Note – If you attempt to disable or remove discovery information that has an associated logical unit in use, the disable or remove operation fails with the following message:

logical unit in use

If this occurs, stop all associated I/O on the logical unit, unmount the file systems, and so on. Then, repeat the disable or remove operation.

4 Remove the iSCSI target device.

Remove a target by specifying the logical unit number (LUN). If you did not specify a LUN when the target was created, a value of 0 was used. LUN 0 must be the last one removed if there are multiple LUNs associated with a target.

For example:

```
# iscsitadm delete target --lun 0 sandbox
```

Accessing iSCSI Disks

If you want to make the iSCSI drive available on reboot, create the file system, and add an entry to the `/etc/vfstab` file as you would with a UFS file system on a SCSI device.

After the devices have been discovered by the Solaris iSCSI initiator, the login negotiation occurs automatically. The Solaris iSCSI driver determines the number of LUNs available and creates the device nodes. Then, the iSCSI devices can be treated as any other SCSI device.
You can view the iSCSI disks on the local system with the `format` utility.

In the following `format` output, disks 2 and 3 are iSCSI LUNs that are not under MPxIO control. Disks 21 and 22 are iSCSI LUNs under MPxIO control.

```plaintext
# format
AVAILABLE DISK SELECTIONS:
  0. c0t1d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424> /pci@8,600000/SUNW,qlc@4/fp@0,0/ssd@w500000e010685cf1,0
  1. c0t2d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424> /pci@8,600000/SUNW,qlc@4/fp@0,0/ssd@w500000e0106e3ba1,0
  2. c3t0d0 <ABCSTORAGE-100E-00-2.2 cyl 20813 alt 2 hd 16 sec 63> /iscsi/disk@0000iqn.2001-05.com.abcstorage%3A6-8a0900-477d70401-b0ff044352423a2-hostname-020000,0
  3. c3t1d0 <ABCSTORAGE-100E-00-2.2 cyl 20813 alt 2 hd 16 sec 63> /iscsi/disk@0000iqn.2001-05.com.abcstorage%3A6-8a0000-3fc70401-085ff04434f423a2-hostname-010000,0
  ...
  ...
  21. c4t60A98000686F694B2F59775733426877d0 <ABCSTORAGE-LUN-0.2 cyl 4606 alt 2 hd 16 sec 256> /scsi_vhci/ssd@g60a98000686f694b2f59775733426b77
  22. c4t60A98000686F694B2F59775733434C41d0 <ABCSTORAGE-LUN-0.2 cyl 4606 alt 2 hd 16 sec 256> /scsi_vhci/ssd@g80a98000686f694b2f59775733434c41
```

▼ **Monitoring Your iSCSI Configuration**

You can display information about the iSCSI initiator and target devices by using the `iscsiadm list` command.

1. **Become superuser.**

2. **Display information about the iSCSI initiator.**

 For example:
   ```plaintext
   # iscsiadm list initiator-node
   Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
   Initiator node alias: zzz1200
   Login Parameters (Default/Configured):
     Header Digest: NONE/-
     Data Digest: NONE/-
     Authentication Type: NONE
     RADIUS Server: NONE
     RADIUS access: unknown
     Configured Sessions: 1
   ```
Display information about which discovery methods are in use.

For example:

```
# iscsiadm list discovery
```

Discovery:

- Static: enabled
- Send Targets: enabled
- iSNS: enabled

Example 14-1 Listing iSCSI Target Information

The following example shows how to list the parameter settings for a specific iSCSI target.

```
# iscsiadm list target-param iqn.1992-08.com.abcstorage:sn.33592219
```


The `iscsiadm list target-param -v` command displays the following information:

- The authentication settings for the target
- The default settings for the target login parameters
- The configured value for each login parameter

The `iscsiadm list target-param -v` command displays the default parameter value before the `/` designator and the configured parameter value after the `/` designator. If you have not configured any parameters, the configured parameter value displays as a hyphen (`-`). For more information, see the following examples.

```
# iscsiadm list target-param -v eui.50060e8004275511 Target: eui.50060e8004275511
```

Alias: -

- Bi-directional Authentication: disabled
- Authentication Type: NONE

Login Parameters (Default/Configured):

- Data Sequence In Order: yes/-
- Data PDU In Order: yes/-
- Default Time To Retain: 20/-
- Default Time To Wait: 2/-
- Error Recovery Level: 0/-
- First Burst Length: 65536/-
- Immediate Data: yes/-
- Initial Ready To Transfer (R2T): yes/-
- Max Burst Length: 262144/-
- Max Outstanding R2T: 1/-
- Max Receive Data Segment Length: 65536/-
- Max Connections: 1/-
- Header Digest: NONE/-
- Data Digest: NONE/-

Configured Sessions: 1
The following example `iscsiadm list target-param -v` output displays the parameters that were negotiated between the target and the initiator.

```bash
# iscsiadm list target -v eui.50060e8004275511
Target: eui.50060e8004275511
  TPGT: 1
  ISID: 4000002a0000
  Connections: 1
  CID: 0
    IP address (Local): 172.90.101.71:32813
    IP address (Peer): 172.90.101.40:3260
    Discovery Method: Static
    Login Parameters (Negotiated):
      Data Sequence In Order: yes
      Data PDU In Order: yes
      Default Time To Retain: 0
      Default Time To Wait: 3
      Error Recovery Level: 0
      First Burst Length: 65536
      Immediate Data: yes
      Initial Ready To Transfer (R2T): yes
      Max Burst Length: 262144
      Max Outstanding R2T: 1
      Max Receive Data Segment Length: 65536
      Max Connections: 1
      Header Digest: NONE
      Data Digest: NONE
```

Modifying iSCSI Initiator and Target Parameters

You can modify parameters on both the iSCSI initiator and the iSCSI target device. However, the only parameters that can be modified on the iSCSI initiator are the following:

- **iSCSI initiator node name** - You can change the initiator node name to a different name. If you change the initiator node name, the targets that were discovered by iSNS might be removed from the initiator's target list, depending on the discovery domain configuration on the iSNS server at the time when the name was changed. For more information, see "How to Modify iSCSI Initiator and Target Parameters" on page 275.

- **Header digest** – The value can be none, the default value, or CRC32.

- **Data digest** – The value can be none, the default value, or CRC32.

- **Authentication and CHAP secret** – For more information about setting up authentication, see “How to Configure CHAP Authentication for Your iSCSI Initiator” on page 266.

- **Configured sessions** – For more information about configuring multiple sessions, see "How to Enable Multiple iSCSI Sessions for a Target" on page 278.
The iSCSI driver provides default values for the iSCSI initiator and iSCSI target device parameters. If you modify the parameters of the iSCSI initiator, the modified parameters are inherited by the iSCSI target device, unless the iSCSI target device is already set to a different value.

Caution – Ensure that the target software supports the parameter to be modified. Otherwise, you might be unable to log in to the iSCSI target device. See your array documentation for a list of supported parameters.

Modifying iSCSI parameters should be done when I/O between the initiator and the target is complete. The iSCSI driver reconnects the session after the changes are made with the `iscsiadm modify` command.

How to Modify iSCSI Initiator and Target Parameters

The first part of this procedure illustrates how modifying parameters of the iSCSI initiator are inherited by the iSCSI target device. The second part of this procedure shows how to actually modify parameters on the iSCSI target device.

1. **Become superuser.**

2. **List the current parameters of the iSCSI initiator and target device.**

 a. **List the current parameters of the iSCSI initiator. For example:**

      ```
      # iscsiadm list initiator-node
      Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
      Initiator node alias: zzr1200
      Login Parameters (Default/Configured):
      Header Digest: NONE/-
      Data Digest: NONE/-
      Authentication Type: NONE
      RADIUS Server: NONE
      RADIUS access: unknown
      Configured Sessions: 1
      ```

 b. **List the current parameters of the iSCSI target device. For example:**

      ```
      # iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
      Alias: -
      Bi-directional Authentication: disabled
      Authentication Type: NONE
      Login Parameters (Default/Configured):
      Data Sequence In Order: yes/-
      Data PDU In Order: yes/-
      ```
Default Time To Retain: 20/-
Default Time To Wait: 2/-
Error Recovery Level: 0/-
First Burst Length: 65536/-
Immediate Data: yes/-
Initial Ready To Transfer (R2T): yes/-
Max Burst Length: 262144/-
Max Outstanding R2T: 1/-
Max Receive Data Segment Length: 65536/-
Max Connections: 1/-
Header Digest: NONE/-
Data Digest: NONE/-

Configured Sessions: 1

Note that both header digest and data digest parameters are currently set to NONE for both the iSCSI initiator and the iSCSI target device.

To review the default parameters of the iSCSI target device, see the `iscsiadm list target-param` output in Example 14–1.

3 Modify the parameter of the iSCSI initiator.

For example, set header digest to CRC32.

```
# iscsiadm modify initiator-node -h CRC32
```

If you change the initiator node name, the targets that were discovered by iSNS might be logged out and removed from the initiator’s target list, if the new name does not belong to the same discovery domain as that of the targets. If, however, the targets are in use and busy, they are not removed. For example, if a file is opened or a file system is mounted on these targets.

You may also see new targets after the name change if these targets and the new initiator node name belong to the same discovery domain.

4 Verify that the parameter was modified.

a. Display the updated parameter information for the iSCSI initiator. For example:

```
# iscsiadm list initiator-node
Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
Initiator node alias: zzr1200
Login Parameters (Default/Configured):
  Header Digest: NONE/CRC32
  Data Digest: NONE/-
  Authentication Type: NONE
  RADIUS Server: NONE
  RADIUS access: unknown
  Configured Sessions: 1
```

Note that the header digest is now set to CRC32.
b. Display the updated parameter information for the iSCSI target device. For example:

```
# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
   Alias: -
   Bi-directional Authentication: disabled
   Authentication Type: NONE
   Login Parameters (Default/Configured):
      Data Sequence In Order: yes/-
      Data PDU In Order: yes/-
      Default Time To Retain: 20/-
      Default Time To Wait: 2/-
      Error Recovery Level: 0/-
      First Burst Length: 65536/-
      Immediate Data: yes/-
      Initial Ready To Transfer (R2T): yes/-
      Max Burst Length: 262144/-
      Max Outstanding R2T: 1/-
      Max Receive Data Segment Length: 65536/-
      Max Connections: 1/-
      Header Digest: CRC32/-
      Data Digest: NONE/-
   Configured Sessions: 1
```

Note that the header digest is now set to CRC32.

5 Verify that the iSCSI initiator has reconnected to the iSCSI target. For example:

```
# iscsiadm list target -v iqn.1992-08.com.abcstorage:sn.84186266
   TPGT: 2
   ISID: 4000002a0000
   Connections: 1
      CID: 0
         IP address (Local): nnn.nn.nn.nnn:64369
         IP address (Peer): nnn.nn.nn.nnn:3260
         Discovery Method: SendTargets
         Login Parameters (Negotiated):
            .
            .
            .
         Header Digest: CRC32
         Data Digest: NONE
```

6 Unset an iSCSI initiator parameter or an iSCSI target device parameter.

You can unset a parameter by setting it back to its default setting with the `iscsiadm modify` command. Or, you can use the `iscsiadm remove` command to reset all target properties to the default settings.
The `iscsiadm modify target-param` command changes only the parameters that are specified on the command line.

The following example shows how to reset the header digest to none:

```
# iscsiadm modify target-param -h none iqn.1992-08.com.abcstorage:sn...
```

For information about using the `iscsiadm remove target-param` command, see `iscsiadm.1m`.

How to Enable Multiple iSCSI Sessions for a Target

This procedure can be used to create multiple iSCSI sessions that connect to a single target. This scenario is useful with iSCSI target devices that support login redirection or have multiple target portals in the same target portal group. iSCSI multiple sessions per target support should be used in combination with Solaris SCSI Multipathing (MPxIO).

1. Become superuser.

2. List the current parameters for the iSCSI initiator and target.

 a. List the current parameters for the iSCSI initiator. For example:

      ```
      # iscsiadm list initiator-node
      Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
      Initiator node alias: zzr1200
      ...
      ...
      Configured Sessions: 1
      ```

 b. List the current parameters of the iSCSI target device. For example:

      ```
      # iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
      Alias: -
      ...
      ...
      Configured Sessions: 1
      ```

 The configured sessions value is the number of configured iSCSI sessions that will be created for each target name in a target portal group.

3. Select one of the following to modify the number of configured sessions at either the initiator node, to apply to all targets, or at a target level, to apply to a specific target.

 The number of sessions for a target must be between 1 and 4.

 - Apply the parameter to the iSCSI initiator node.
For example:

```bash
# iscsiadm modify initiator-node -c 2
```
- Apply the parameter to the iSCSI target.

For example:

```bash
```

Configured sessions can also be bound to a specific local IP address. Using this method, one or more local IP addresses are supplied in a comma-separated list. Each IP address represents an iSCSI session. This method can also be done at the initiator-node or target-param level. For example:

```bash
# iscsiadm modify initiator-node -c 10.0.0.1,10.0.0.2
```

Note – If the specified IP address is not routable, the address is ignored and the default Solaris route and IP address is used for this session.

4 Verify that the parameter was modified.

a. **Display the updated information for the initiator node.** For example:

```bash
# iscsiadm list initiator-node
```

```
Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
Initiator node alias: zzr1200
          .
          .
          .
          Configured Sessions: 2
```

b. **Display the updated information for the target node.** For example:

```bash
# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
```

```
          Alias: -
          .
          .
          .
          Configured Sessions: 2
```
Troubleshooting iSCSI Configuration Problems

The following tools are available to troubleshoot general iSCSI configuration problems:

- **snoop** – This tool has been updated to support iSCSI packets.
- **ethereal** – This freeware product is available from http://www.ethereal.com.

Both tools can filter iSCSI packets on port 3260.

The following sections describe various iSCSI troubleshooting and error message resolution scenarios.

No Connections to the iSCSI Target From the Local System

▼ How to Troubleshoot iSCSI Connection Problems

1. Become superuser.

2. List your iSCSI target information.

 For example:
   ```shell
   # iscsiadm list target
   Target: iqn.2001-05.com.abcstorage:6-8a0900-37ad70401-bcfff02df8a421df-zzr1200-01
   TPGT: default
   ISID: 4000002a0000
   Connections: 0
   ```

3. If no connections are listed in the `iscsiadm list target` output, check the `/var/adm/messages` file for possible reasons why the connection failed.

 You can also verify whether the connection is accessible by using the `ping` command or by connecting to the storage device’s iSCSI port with the `telnet` command to ensure the iSCSI service is available. The default port is 3260.

 In addition, check the storage device’s log file for errors.

4. If your target is not listed in the `iscsiadm list target` output, check the `/var/adm/messages` file for possible causes.

 If you are using SendTargets as the discovery method, try listing the `discovery-address` using the `-v` option to ensure that the expected targets are visible to the host. For example:
   ```shell
   # iscsiadm list discovery-address -v 10.0.0.1
   Discovery Address: 10.0.0.1:3260
   Target name: eui.210000203787dfc0
   ```
If you are using iSNS as the discovery method, try enabling the iSNS discovery mode and listing the isns-server using the -v option to ensure that the expected targets are visible to the host. For example:

```
# iscsiadm list isns-server -v
iSNS Server IP Address: 10.20.56.56:3205
  Target name: iqn.1992-08.com.xyz:sn.1234566
    Target address: 10.20.57.161:3260, 1
    Target address: 10.20.56.206:3260, 1
    Target address: 10.20.56.206:3260, 1
...
```

iSCSI Device or Disk Is Not Available on the Local System

How to Troubleshoot iSCSI Device or Disk Unavailability

1. Become superuser.

2. Identify the LUNs that were discovered on this target during enumeration. For example:

```
# iscsiadm list target -S
Target: iqn.2001-05.com.abcstorage:6-8a0900-37ad70401-bcfff02df8a42df-zzr1200-01
  TPGT: default
  ISID: 4000002a0000
  Connections: 1
  LUN: 0
    Vendor: ABCSTOR
    Product: 0010
    OS Device Name: /dev/rdsk/c3t34d0s2
```

The -S option shows which LUNs where discovered on this target during enumeration. If you think a LUN should be listed but it is not, review the /var/adm/messages file to see if an error was reported. Check the storage device's log files for errors. Also, ensure that any storage device LUN masking is properly configured.
Use LUN Masking When Using the iSNS Discovery Method

Avoid using iSNS discovery domain as the means to control storage authorization to specific initiators. Use LUN masking instead if you want to make sure that only authorized initiators can access a LUN.

If you remove a target from a discovery domain while the target is in use, the iSCSI initiator does not log out from this target. If you do not want this initiator to access this target (and the associated LUNs), you will have to use LUN masking. Simply removing the target from the discovery domain is not sufficient.

General iSCSI Error Messages

This section describes the iSCSI messages that might be found in the /var/adm/messages file and potential solutions for recovery.

The message format is as follows:

iscsi TYPE (OID) STRING (STATUS-CLASS#/STATUS-DETAIL#)

TYPE
Is either connection or session.

OID
Is the object ID of the connection or session. This ID is unique for an OS instance.

STRING
Is a description of the condition.

<STATUS-CLASS#>/<STATUS-DETAIL#>
These values are returned in an iSCSI login response as defined by RFC 3720.

iscsi connection(OID) login failed - Miscellaneous iSCSI initiator errors.
Cause: The device login failed due to some form of initiator error.

iscsi connection(OID) login failed - Initiator could not be successfully authenticated.
Cause: The device could not successfully authenticate the initiator.
Solution: If applicable, verify that the settings for CHAP names, CHAP passwords or RADIUS are correct.

iscsi connection(OID) login failed - Initiator is not allowed access to the given target.
Cause: The device will not allow the initiator access to the iSCSI target device.
Solution: Verify your initiator name and confirm that it is properly masked or provisioned by the storage device.

iscsi connection(OID) login failed - Requested ITN does not exist at this address.
 Cause: The device does not provide access to the iSCSI target name (ITN) that you are requesting.
 Solution: Verify the initiator discovery information is entered properly and that the storage device is configured properly.

iscsi connection(OID) login failed - Requested ITN has been removed and no forwarding address is provided.
 Cause: The device can no longer provide access to the iSCSI target name (ITN) that you are requesting.
 Solution: Verify that the initiator discovery information has been specified properly and the storage device has been configured properly.

iscsi connection(OID) login failed - Requested iSCSI version range is not supported by the target.
 Cause: The initiator's iSCSI version is not supported by the storage device.

iscsi connection(OID) login failed - No more connections can be accepted on this Session ID (SSID).
 Cause: The storage device cannot accept another connection for this initiator node to the iSCSI target device.

iscsi connection(OID) login failed - Missing parameters (e.g., iSCSI initiator and/or target name).
 Cause: The storage device is reporting that the initiator or target name has not been properly specified.
 Solution: Properly specify the iSCSI initiator or target name.

iscsi connection(OID) login failed - Target hardware or software error.
 Cause: The storage device encountered a hardware or software error.
 Solution: Consult the storage documentation or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - iSCSI service or target is not currently operational.
 Cause: The storage device is currently not operational.
Solution: Consult the storage documentation or contact the storage vendor for further assistance.

iscsi connection(*OID*) login failed - Target has insufficient session, connection or other resources.
 Cause: The storage device has insufficient resources.
 Solution: Consult the storage documentation or contact the storage vendor for further assistance.

iscsi connection(*OID*) login failed - unable to initialize authentication
iscsi connection(*OID*) login failed - unable to set authentication
iscsi connection(*OID*) login failed - unable to set username
iscsi connection(*OID*) login failed - unable to set password
iscsi connection(*OID*) login failed - unable to set ipsec
iscsi connection(*OID*) login failed - unable to set remote authentication
 Cause: The initiator was unable to initialize or set authentication properly.
 Solution: Verify that your initiator settings for authentication are properly configured.

iscsi connection(*OID*) login failed - unable to make login pdu
 Cause: The initiator was unable to make a login payload data unit (PDU) based on the initiator or storage device settings.
 Solution: Try resetting any target login parameters or other nondefault settings.

iscsi connection(*OID*) login failed - failed to transfer login
iscsi connection(*OID*) login failed - failed to receive login response
 Cause: The initiator failed to transfer or receive a login payload data unit (PDU) across the network connection.
 Solution: Verify that the network connection is reachable.

iscsi connection(*OID*) login failed - received invalid login response (*OP CODE*)
 Cause: The storage device has responded to a login with an unexpected response.

iscsi connection(*OID*) login failed - login failed to authenticate with target
 Cause: The initiator was unable to authenticate the storage device.
 Solution: Verify that your initiator settings for authentication are properly configured.
iscsi connection(OID) login failed - initiator name is required

Cause: An initiator name must be configured to perform all actions.

Solution: Verify that the initiator name is configured.

iscsi connection(OID) login failed - authentication receive failed

iscsi connection(OID) login failed - authentication transmit failed

Cause: The initiator was unable to transmit or receive authentication information.

Solution: Verify the network connectivity with storage device or the RADIUS server as applicable.

iscsi connection(OID) login failed - login redirection invalid

Cause: The storage device attempted to redirect the initiator to an invalid destination.

Solution: Consult the storage documentation or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - target protocol group tag mismatch, expected <TPGT>, received <TPGT>

Cause: The initiator and target had a TPGT (target portal group tag) mismatch.

Solution: Verify your TPGT discovery settings on the initiator or the storage device.

iscsi connection(OID) login failed - can’t accept PARAMETER in security stage

Cause: The device responded with an unsupported login parameter during the security phase of login.

Solution: The parameter name is noted for reference. Consult the storage documentation or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - HeaderDigest=CRC32 is required, can’t accept VALUE

iscsi connection(OID) login failed - DataDigest=CRC32 is required, can’t accept VALUE

Cause: The initiator is only configured to accept HeaderDigest or DataDigest that is set to CRC32 for this target. The device returned the value of VALUE.

Solution: Verify that the initiator and device digest settings are compatible.
iscsi connection(OID) login failed - HeaderDigest=None is required, can’t accept VALUE

iscsi connection(OID) login failed - DataDigest=None is required, can’t accept VALUE
 Cause: The initiator is only configured to accept HeaderDigest or DataDigest that is set to none for this target. The device returned the value of VALUE.
 Solution: Verify that the initiator and device digest settings are compatible.

iscsi connection(OID) login failed - can’t accept PARAMETER
 Cause: The initiator does not support this parameter.

iscsi connection(OID) login failed - can’t accept MaxOutstandingR2T VALUE
 Cause: The initiator does not accept MaxOutstandingR2T of the noted VALUE.

iscsi connection(OID) login failed - can’t accept MaxConnections VALUE
 Cause: The initiator does not accept the maximum connections of the noted VALUE.

iscsi connection(OID) login failed - can’t accept ErrorRecoveryLevel VALUE
 Cause: The initiator does not accept an error recovery level of the noted VALUE.

iscsi session(OID) NAME offline
 Cause: All connections for this target NAME have been removed or failed.

iscsi connection(OID) failure - unable to schedule enumeration
 Cause: The initiator was unable to enumerate the LUNs on this target.
 Solution: You can force LUN enumeration by running the devfsadm -i iscsi command.
 For more information, see devfsadm(1M).

iscsi connection(OID) unable to connect to target NAME (errno:ERRNO)
 Cause: The initiator failed to establish a network connection.
 Solution: For information about the specific ERRNO on the connection failure, see the /usr/include/sys/errno.h file.
The format Utility (Reference)

This chapter describes the format utility's menus and commands.

This is a list of the reference information in this chapter.

- "Recommendations and Requirements for Using the format Utility" on page 287
- "format Menu and Command Descriptions" on page 288
- "format.dat File" on page 294
- "Rules for Input to format Commands" on page 299
- "Getting Help on the format Utility" on page 301

For a overview of when to use the format utility, see "format Utility" on page 202.

Recommendations and Requirements for Using the format Utility

You must be superuser or have assumed an equivalent role to use the format utility. Otherwise, the following error message is displayed when you try to use the format utility:

```
$ format
Searching for disks...done
No permission (or no disks found)!
```

Keep the following guidelines in mind when you use the format utility and want to preserve the existing data:

- Back up all files on the disk drive.
- Save all your defect lists in files by using the format utility's dump command. The file name should include the drive type, model number, and serial number.
- Save the paper copies of the manufacturer's defect list that was shipped with your drive.
format Menu and Command Descriptions

The format main menu appears similar to the following:

```
FORMAT MENU:
  disk - select a disk
  type - select (define) a disk type
  partition - select (define) a partition table
  current - describe the current disk
  format - format and analyze the disk
  fdisk - run the fdisk program (x86 only)
  repair - repair a defective sector
  label - write label to the disk
  analyze - surface analysis
  defect - defect list management
  backup - search for backup labels
  verify - read and display labels
  save - save new disk/partition definitions
  inquiry - show vendor, product and revision
  volname - set 8-character volume name
  !<cmd> - execute <cmd>, then return
  quit
```

The following table describes the main menu items for the format utility.

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Command or Menu?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>Command</td>
<td>Lists all of the system’s drives. Also lets you choose the disk you want to use in subsequent operations. This disk is referred to as the current disk.</td>
</tr>
<tr>
<td>type</td>
<td>Command</td>
<td>Identifies the manufacturer and model of the current disk. Also displays a list of known drive types. Choose the Auto configure option for all SCSI-2 disk drives.</td>
</tr>
<tr>
<td>partition</td>
<td>Menu</td>
<td>Creates and modifies slices. For more information, see “partition Menu” on page 290.</td>
</tr>
</tbody>
</table>
| current | Command | Displays the following information about the current disk:
 - Device name and device type
 - Number of cylinders, alternate cylinders, heads and sectors
 - Physical device name |
<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Command or Menu?</th>
<th>Description</th>
</tr>
</thead>
</table>
| format | Command | Formats the current disk by using one of these sources of information in this order:
| | | 1. Information that is found in the `format.dat` file
| | | 2. Information from the automatic configuration process
| | | 3. Information that you type at the prompt if no `format.dat` entry exists
| | | This command does not apply to IDE disks. IDE disks are preformatted by the manufacturer. |
| fdisk | Menu | x86 platform only: Runs the `fdisk` program to create a Solaris `fdisk` partition.
| | | The `fdisk` command cannot be used on disks with an EFI label that are greater than 1 terabyte in size. |
| repair | Command | Repairs a specific block on the current disk. |
| label | Command | Writes a new label to the current disk. |
| analyze | Menu | Runs read, write, and compare tests. For more information, see "analyze Menu" on page 292. |
| defect | Menu | Retrieves and displays defect lists. For more information, see "defect Menu" on page 293. This feature does not apply to IDE disks. IDE disks manage defects automatically. |
| backup | Command | VTOC – Searches for backup labels.
| | | EFI – Not supported. |
| verify | Command | Displays the following information about the current disk:
| | | • Device name and device type
| | | • Number of cylinders, alternate cylinders, heads and sectors
| | | • Partition table |
| save | Command | VTOC – Saves new disk and partition information.
| | | EFI – Not applicable. |
| inquiry | Command | `SCSI disks only` – Displays the vendor, product name, and revision level of the current drive. |
| volname | Command | Labels the disk with a new eight-character volume name that you specify. |
| quit | Command | Exits the format menu. |
The partition menu appears similar to the following:

```
format> partition
PARTITION MENU:
  0 - change '0' partition
  1 - change '1' partition
  2 - change '2' partition
  3 - change '3' partition
  4 - change '4' partition
  5 - change '5' partition
  6 - change '6' partition
  7 - change '7' partition
select - select a predefined table
modify - modify a predefined partition table
name - name the current table
print - display the current table
label - write partition map and label to the disk
quit
```

The following table describes the partition menu items.

TABLE 15-2 Descriptions for partition Menu Items

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>change ‘n’ partition</td>
<td>Enables you to specify the following information for the new partition:</td>
</tr>
<tr>
<td></td>
<td>- Identification tag</td>
</tr>
<tr>
<td></td>
<td>- Permission flags</td>
</tr>
<tr>
<td></td>
<td>- Starting cylinder</td>
</tr>
<tr>
<td></td>
<td>- Size</td>
</tr>
<tr>
<td>select</td>
<td>Enables you to choose a predefined partition table.</td>
</tr>
<tr>
<td>modify</td>
<td>Enables you to change all the slices in the partition table. This command</td>
</tr>
<tr>
<td></td>
<td>is preferred over the individual change ‘x’ partition commands.</td>
</tr>
<tr>
<td>name</td>
<td>Enables you to specify a name for the current partition table.</td>
</tr>
<tr>
<td>print</td>
<td>Displays the current partition table.</td>
</tr>
<tr>
<td>label</td>
<td>Writes the partition map and the label to the current disk.</td>
</tr>
<tr>
<td>quit</td>
<td>Exits the partition menu.</td>
</tr>
</tbody>
</table>
x86: fdisk Menu

The fdisk menu appears on x86 based systems only and appears similar to the following.

```
format> fdisk

Total disk size is 14169 cylinders
Cylinder size is 2510 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active</td>
<td>x86 Boot</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Active</td>
<td>Solaris2</td>
<td>10</td>
<td>14159</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
```

Select one of the following:

1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter selection:

The following table describes the fdisk menu items.

TABLE 15–3 x86: Descriptions for fdisk Menu Items

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a partition</td>
<td>Creates an fdisk partition. You must create a separate partition for each OS such as Solaris or DOS. There is a maximum of four partitions per disk. You are prompted for the size of the fdisk partition as a percentage of the disk.</td>
</tr>
<tr>
<td>Specify the active partition</td>
<td>Enables you to specify the partition to be used for booting. This menu item identifies where the first stage boot program looks for the second stage boot program.</td>
</tr>
<tr>
<td>Delete a partition</td>
<td>Deletes a previously created partition. This command destroys all the data in the partition.</td>
</tr>
<tr>
<td>Change between Solaris and Solaris2 Partition IDs</td>
<td>Changes partition IDs from 130 (0x82) to 191 (0xbf) and vice versa.</td>
</tr>
<tr>
<td>Exit (update disk configuration and exit)</td>
<td>Writes a new version of the partition table and exits the fdisk menu.</td>
</tr>
</tbody>
</table>
TABLE 15–3 x86: Descriptions for fdisk Menu Items (Continued)

<table>
<thead>
<tr>
<th>MenuItem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel (exit without updating disk configuration)</td>
<td>Exits the fdisk menu without modifying the partition table.</td>
</tr>
</tbody>
</table>

analyze Menu

The analyze menu appears similar to the following.

```
format> analyze

ANALYZE MENU:
read - read only test (doesn’t harm SunOS)
refresh - read then write (doesn’t harm data)
test - pattern testing (doesn’t harm data)
write - write then read (corrupts data)
compare - write, read, compare (corrupts data)
purge - write, read, write (corrupts data)
verify - write entire disk, then verify (corrupts data)
print - display data buffer
setup - set analysis parameters
config - show analysis parameters
quit
```

analyze>

The following table describes the analyze menu items.

TABLE 15–4 Descriptions for analyze Menu Items

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>Reads each sector on the current disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>refresh</td>
<td>Reads then writes data on the current disk without harming the data. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>test</td>
<td>Writes a set of patterns to the disk without harming the data. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>write</td>
<td>Writes a set of patterns to the disk then reads back the data on the disk. Destroys existing data on the disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>compare</td>
<td>Writes a set of patterns to the disk, reads back the data, and then compares it to the data in the write buffer. Destroys existing data on the disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>Subcommand</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>purge</td>
<td>Removes all data from the disk so that the data cannot be retrieved by any means. Data is removed by writing three distinct patterns over the entire disk (or a section of the disk). If the verification passes, a hex-bit pattern is written over the entire disk (or a section of the disk). Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>verify</td>
<td>In the first pass, writes unique data to each block on the entire disk. In the next pass, reads and verifies the data. Destroys existing data on the disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>print</td>
<td>Displays the data in the read/write buffer.</td>
</tr>
<tr>
<td>setup</td>
<td>Enables you to specify the following analysis parameters: Analyze entire disk? yes Starting block number: depends on drive Ending block number: depends on drive Loop continuously? no Number of passes: 2 Repair defective blocks? yes Stop after first error? no Use random bit patterns? no Number of blocks per transfer: 126 (0/n/n) Verify media after formatting? yes Enable extended messages? no Restore defect list? yes Restore disk label? yes</td>
</tr>
<tr>
<td>config</td>
<td>Displays the current analysis parameters.</td>
</tr>
<tr>
<td>quit</td>
<td>Exits the analyze menu.</td>
</tr>
</tbody>
</table>

defect Menu

The defect menu appears similar to the following:

```
format> defect

DEFECT MENU:
  primary - extract manufacturer's defect list
  grown - extract manufacturer's and repaired defects lists
  both - extract both primary and grown defects lists
  print - display working list
  dump - dump working list to file
  quit

defect>
```
The following table describes the defect menu items.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Reads the manufacturer’s defect list from the disk drive and updates the in-memory defect list.</td>
</tr>
<tr>
<td>grown</td>
<td>Reads the grown defect list and then updates the in-memory defect list. Grown defects are defects that have been detected during analysis.</td>
</tr>
<tr>
<td>both</td>
<td>Reads both the manufacturer’s defect list and the grown defect list. Then, updates the in-memory defect list.</td>
</tr>
<tr>
<td>print</td>
<td>Displays the in-memory defect list.</td>
</tr>
<tr>
<td>dump</td>
<td>Saves the in-memory defect list to a file.</td>
</tr>
<tr>
<td>quit</td>
<td>Exits the defect menu.</td>
</tr>
</tbody>
</table>

format.dat File

The format.dat file that is shipped with the Solaris OS supports many standard disks. If your disk drive is not listed in the format.dat file, you can do the following:

- Add an entry to the format.dat file for the disk.
- Add entries with the format utility by selecting the type command and choosing the other option.

Adding an entry to the format.dat file can save time if the disk drive will be used throughout your site. To use the format.dat file on other systems, copy the file to each system that will use the specific disk drive that you added to the format.dat file.

You might need to modify the /etc/format.dat file for your system if you have one of the following:

- A disk that is not supported by the Solaris OS
- A disk with a partition table that is different from the Solaris OS’s default configuration

Note – Do not alter default entries in the /etc/format.dat file. If you want to alter the default entries, copy the entry, give the entry a different name, and make the appropriate changes to avoid confusion.

The /etc/format.dat is not applicable for disks with EFI labels.
Contents of the format.dat File

The format.dat contains disk drive information that is used by the format utility. Three items are defined in the format.dat file:

- Search paths
- Disk types
- Slice tables

Syntax of the format.dat File

The following syntax rules apply to the /etc/format.dat file:

- The pound sign (#) is the comment character. Any text on a line after a pound sign is not interpreted by the format utility.
- Each definition in the format.dat file appears on a single logical line. If the definition is longer than one line long, all lines but the last line of the definition must end with a backslash (\).
- A definition consists of a series of assignments that have an identifier on the left side and one or more values on the right side. The assignment operator is the equals sign (=). The assignments within a definition must be separated by a colon (:).
- White space is ignored by the format utility. If you want an assigned value to contain white space, enclose the entire value in double quotation marks ("), This syntax causes the white space within the quotes to be preserved as part of the assignment value.
- Some assignments can have multiple values on the right side. Separate values by a comma.

Keywords in the format.dat File

The format.dat file contains disk definitions that are read by the format utility when it is started. Each definition starts with one of the following keywords: disk_type or partition. These keywords are described in the following table.
Keyword Descriptions for the `format.dat` File

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disk_type</code></td>
<td>Defines the controller and disk model. Each <code>disk_type</code> definition contains information that concerns the physical geometry of the disk. The default data file contains definitions for the controllers and disks that the Solaris OS supports. You need to add a new <code>disk_type</code> definition only if you have an unsupported disk. You can add as many <code>disk_type</code> definitions to the data file as you want.</td>
</tr>
<tr>
<td><code>partition</code></td>
<td>Defines a partition table for a specific disk type. The partition table contains the partition information, plus a name that lets you refer to it in the <code>format</code> utility. The default <code>format.dat</code> file contains default partition definitions for several kinds of disk drives. Add a partition definition if you recreated partitions on any of the disks on your system. Add as many partition definitions to the data file as you need.</td>
</tr>
</tbody>
</table>

Disk Type (`format.dat`)

The `disk_type` keyword in the `format.dat` file defines the controller and disk model. Each `disk_type` definition contains information about the physical geometry of the disk. The default `format.dat` file contains definitions for the controllers and disks that the Solaris OS supports. You need to add a new `disk_type` only if you have an unsupported disk. You can add as many `disk_type` definitions to the data file as you want.

The keyword itself is assigned the name of the disk type. This name appears in the disk’s label, and is used to identify the disk type whenever the `format` utility is run. Enclose the name in double quotation marks to preserve any white space in the name. The following table describes the identifiers that must also be assigned values in all `disk_type` definitions.

Required `disk_type` Identifiers (`format.dat`)

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ctlr</code></td>
<td>Identifies the controller type for the disk type. Currently, the supported values are SCSI and ATA.</td>
</tr>
<tr>
<td><code>ncyl</code></td>
<td>Specifies the number of data cylinders in the disk type. This determines how many logical disk cylinders the system will be allowed to access.</td>
</tr>
<tr>
<td><code>acyl</code></td>
<td>Specifies the number of alternate cylinders in the disk type. These cylinders are used by the <code>format</code> utility to store information such as the defect list for the drive. You should always reserve at least two cylinders for alternates.</td>
</tr>
<tr>
<td><code>pcyl</code></td>
<td>Specifies the number of physical cylinders in the disk type. This number is used to calculate the boundaries of the disk media. This number is usually equal to <code>ncyl</code> plus <code>acyl</code>.</td>
</tr>
</tbody>
</table>
TABLE 15-7 Required disk_type Identifiers (format.dat) (Continued)

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nhead</td>
<td>Specifies the number of heads in the disk type. This number is used to calculate the boundaries of the disk media.</td>
</tr>
<tr>
<td>nsect</td>
<td>Specifies the number of data sectors per track in the disk type. This number is used to calculate the boundaries of the disk media. Note that this number includes only the data sectors. Any spares are not reflected in the number of data sections per track.</td>
</tr>
<tr>
<td>rpm</td>
<td>Specifies the rotations per minute of the disk type. This information is put in the label and later used by the file system to calculate the optimal placement of file data.</td>
</tr>
</tbody>
</table>

Other identifiers might be necessary, depending on the controller. The following table describes the identifiers that are required for SCSI controllers.

TABLE 15-8 Required disk_type Identifiers for SCSI Controllers format.dat

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmt_time</td>
<td>Specifies a number that indicates how long it takes to format a given drive. See the controller manual for more information.</td>
</tr>
<tr>
<td>cache</td>
<td>Specifies a number that controls the operation of the on-board cache while the format utility is operating. See the controller manual for more information.</td>
</tr>
<tr>
<td>trks_zone</td>
<td>Specifies a number that identifies how many tracks that exist per defect zone, to be used in alternate sector mapping. See the controller manual for more information.</td>
</tr>
<tr>
<td>asect</td>
<td>Specifies a number that identifies how many sectors are available for alternate mapping within a given defect zone. See the controller manual for more information.</td>
</tr>
</tbody>
</table>

EXAMPLE 15-1 Required disk_type Identifiers for SCSI Controllers (format.dat)

The following are examples of disk_type definitions:

```plaintext
disk_type = "SUN1.3G" \
    : ctlr = SCSI : fmt_time = 4 \
    : trks_zone = 17 : asect = 6 : atrks = 17 \
    : ncyl = 1965 : acyl = 2 : pcyl = 3500 : nhead = 17 : nsect = 80 \ 
    : rpm = 5400 : bpt = 44823

disk_type = "SUN2.1G" \
    : ctlr = SCSI : fmt_time = 4 \
    : ncyl = 2733 : acyl = 2 : pcyl = 3500 : nhead = 19 : nsect = 80 \ 
    : rpm = 5400 : bpt = 44823

disk_type = "SUN2.9G" \
    : ctlr = SCSI : fmt_time = 4 \
    : ncyl = 2734 : acyl = 2 : pcyl = 3500 : nhead = 21 : nsect = 99 \
```

Chapter 15 • The format Utility (Reference) 297
EXAMPLE 15–1 Required disk_type Identifiers for SCSI Controllers (format.dat) (Continued)

: rpm = 5400

Partition Tables (format.dat)

A partition table in the format.dat file defines a slice table for a specific disk type.

The partition keyword in the format.dat file is assigned the name of the partition table. Enclose the name in double quotation marks to preserve any white space in the name. The following table describes the identifiers that must be assigned values in all partition tables.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>The name of the disk_type that this partition table is defined for. This name must appear exactly as it does in the disk_type definition.</td>
</tr>
<tr>
<td>ctlr</td>
<td>The disk controller type that this partition table can be attached to. Currently, the supported values are ATA for ATA controllers and SCSI for SCSI controllers. The controller type that is specified here must also be defined for the disk_type that you specified in the disk_type definition.</td>
</tr>
</tbody>
</table>

The other identifiers in a slice definition describe the actual partition information. The identifiers are the numbers 0 through 7. These identifiers are optional. Any partition that is not explicitly assigned is set to 0 length. The value of each of these identifiers is a pair of numbers separated by a comma. The first number is the starting cylinder for the partition. The second is the number of sectors in the slice.

EXAMPLE 15–2 Required Identifiers for Partition Tables (format.dat)

The following are some examples of slice definitions:

```
partition = "SUN1.3G" \\
: disk = "SUN1.3G" : ctlr = SCSI \\
: 0 = 0, 34000 : 1 = 25, 133280 : 2 = 0, 2672400 : 6 = 123, 2505120
partition = "SUN2.1G" \\
: disk = "SUN2.1G" : ctlr = SCSI \\
: 0 = 0, 62320 : 1 = 41, 197600 : 2 = 0, 4154160 : 6 = 171, 3894240
partition = "SUN2.9G" \\
: disk = "SUN2.9G" : ctlr = SCSI \\
: 0 = 0, 195426 : 1 = 94, 390852 : 2 = 0, 5683986 : 6 = 282, 5097708
```
Specifying an Alternate Data File for the `format` Utility

The `format` utility determines the location of an alternate file by the following methods in this order:

1. If a file name is given with the `format -x` option, that file is always used as the data file.
2. If the `-x` option is not specified, then the `format` utility searches the current directory for a file named `format.dat`. If the file exists, it is used as the data file.
3. If neither of these methods yields a data file, the `format` utility uses the `/etc/format.dat` file as the data file. This file is shipped with the Solaris OS and should always be present.

Rules for Input to `format` Commands

When you use the `format` utility, you need to provide various kinds of information. This section describes the rules for this information. For information on using `format`'s help facility when you specify data, see "Getting Help on the `format` Utility" on page 301.

Specifying Numbers to `format` Commands

Several places in the `format` utility require number as input. You must either specify the appropriate data or select a number from a list of choices. In either case, the help facility causes `format` to display the upper and lower limits of the number expected. Simply enter the appropriate number. The number is assumed to be in decimal `format` unless a base is explicitly specified as part of the number (for example, 0x for hexadecimal).

The following are examples of integer input:

```
Enter number of passes [2]: 34
Enter number of passes [34] 0x
```

Specifying Block Numbers to `format` Commands

Whenever you are required to specify a disk block number, there are two ways to do so:

- Specify the block number as an integer
- Specify the block number in the cylinder/head/sector format

You can specify the information as an integer that represents the logical block number. You can specify the number in any base, but the default is decimal. The maximum operator (a dollar sign, `$`) can also be used here so that `format` utility can select the appropriate value. Logical block format is used by the SunOS disk drivers in error messages.
The other way to specify a block number is by using cylinder/head/sector format. In this method, you must specify explicitly the three logical components of the block number: the cylinder, head, and sector values. These values are still logical. However, they allow you to define regions of the disk that are related to the layout of the media.

If any of the cylinder/head/sector numbers are not specified, the value is assumed to be zero. You can also use the maximum operator in place of any of the numbers. Then, the format utility will select the appropriate value. The following are some examples of cylinder, head, and sector values:

Enter defective block number: 34/2/3
Enter defective block number: 23/1/
Enter defective block number: 457//
Enter defective block number: 12345
Enter defective block number: Oxabcd
Enter defective block number: 334/$/2
Enter defective block number: 892//$

The format utility always displays block numbers in both formats. Also, the help facility shows you the upper and lower limits of the block number expected, in both formats.

Specifying format Command Names

Command names are needed as input whenever the format utility displays a menu prompt. You can abbreviate the command names, as long as what you type is sufficient to uniquely identify the command desired.

For example, use p to access the partition menu from the format menu. Then, type p to display the current slice table.

```
format> p
PARTITION MENU:
  0 - change ‘0’ partition
  1 - change ‘1’ partition
  2 - change ‘2’ partition
  3 - change ‘3’ partition
  4 - change ‘4’ partition
  5 - change ‘5’ partition
  6 - change ‘6’ partition
  7 - change ‘7’ partition
select - select a predefined table
modify - modify a predefined partition table
name - name the current table
print - display the current table
label - write partition map and label to the disk
quit
partition> p
```
Specifying Disk Names to `format` Commands

At certain points in the `format` utility, you must name something. In these cases, you are free to specify any string you want for the name. If the name has white space in it, the entire name must be enclosed in double quotation marks (" "). Otherwise, only the first word of the name is used.

For example, if you want to identify a specific partition table for a disk, you can use the name subcommand that is available from the `partition` menu:

```
partition> name
Enter table name (remember quotes): "new disk3"
```

Getting Help on the `format` Utility

The `format` utility provides a help facility that you can use whenever the `format` utility is expecting input. You can request help about what input is expected by typing a question mark (?). The `format` utility displays a brief description of what type of input is needed.

If you type a ? at a menu prompt, a list of available commands is displayed.

The man pages associated with the `format` utility include the following:

- `format(1M)` – Describes the basic `format` utility capabilities and provides descriptions of all command-line variables.
- `format.dat(4)` – Describes disk drive configuration information for the `format` utility.
Managing File Systems (Overview)

Managing file systems is one of your most important system administration tasks.

This is a list of the overview information in this chapter.

- “What’s New in File Systems?” on page 303
- “Where to Find File System Management Tasks” on page 312
- “Overview of File Systems” on page 312
- “Types of File Systems” on page 312
- “Commands for File System Administration” on page 318
- “Default Solaris File Systems” on page 320
- “Swap Space” on page 318
- “UFS File System” on page 321
- “Mounting and Unmounting File Systems” on page 327
- “Determining a File System’s Type” on page 333

What’s New in File Systems?

This section describes new file system features in the Solaris release.

- “File System Monitoring Tool (fsstat)” on page 303
- “ZFS File System” on page 304
- “Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)” on page 305

For a complete listing of new Solaris features and a description of Solaris releases, see Solaris 10 What’s New.

File System Monitoring Tool (fsstat)

Solaris 10 6/06: A new file system monitoring tool, fsstat, is available to report file system operations. You can use several options to report activity, such as by mount point or by file system type.
For example, the following `fsstat` command displays all ZFS file system operations since the ZFS module was loaded:

```bash
$ fsstat zfs
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes
268K 145K 93.6K 28.0M 71.1K 186M 2.74M 12.9M 56.2G 1.61M 9.46G zfs
```

For example, the following `fsstat` command displays all file system operations since the `/export/ws` file system mounted.

```bash
$ fsstat /export/ws
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes
0 0 0 18.1K 0 12.6M 5 20000 /export/ws
```

The default form is to report statistical information in easy to understand values, such as Gbytes, Kbytes, and Mbytes.

For more information, see `fsstat(1M)`.

ZFS File System

Solaris 10 6/06: ZFS, a revolutionary new file system, provides simple administration, transactional semantics, end-to-end data integrity, and immense scalability. In addition, ZFS provides the following administration features:

- Backup and restore capabilities
- Device management support
- GUI administration tool
- Persistent snapshots and cloning features
- Quotas that can be set for file systems
- RBAC-based access control
- Storage pool space reservations for file systems
- Support for Solaris systems that have zones installed

You can set up both ZFS and UFS file systems on the same Solaris system. However, you cannot use ZFS as a root file system. For information about additional limitations when using ZFS, see “The Solaris ZFS File System” in Solaris 10 What’s New.

For more information about using ZFS, see Solaris ZFS Administration Guide.
Enhancements to UFS File System Utilities (\texttt{fsck}, \texttt{mkfs}, and \texttt{newfs})

\textbf{Solaris 10 6/06:} The file system check utility, \texttt{fsck}, has been enhanced to include features from the FreeBSD 4.9 version of the \texttt{fsck} program, as well as other enhancements.

The \texttt{fsck} utility in this Solaris release includes the following improvements:

- Checks and repairs file systems more thoroughly and provides improved error messages. For example, in some scenarios, \texttt{fsck} determines what structures are missing and replaces them appropriately.
- Automatically searches for backup superblocks.
- Reports when \texttt{fsck} needs to be rerun.
- When clearing directories, \texttt{fsck} now attempts to recover directory contents immediately and therefore, reduces the time spent rerunning this utility.
- If \texttt{fsck} finds duplicate blocks, and not all files that reference the duplicate blocks were cleared, \texttt{fsck} reports the inode numbers at the end of the \texttt{fsck} run. Then, you can use the \texttt{find} command to review the inodes that are damaged.
- Improved error messages regarding the status of extended attributes and other special files, such as device files and ACL entries, are included.
- Includes a \texttt{-v} option to enable more verbose messages.

In addition, the \texttt{newfs} and \texttt{mkfs} commands have been updated to include new options for displaying a file system’s superblock information in text or dumping the superblock information in binary format.

\texttt{newfs} [\texttt{-S} or \texttt{-B}] /dev/rdsk/...
- \texttt{-S} Displays the file system’s superblock in text
- \texttt{-B} Dumps the file system’s superblock in binary

\texttt{mkfs} [\texttt{-o calcsb} or \texttt{-o calcbinsb}] /dev/rdsk/... size
- \texttt{-o calcsb} Displays the file system’s superblock in text
- \texttt{-o calcbinsb} Dumps the file system’s superblock in binary

The \texttt{fsck} utility uses this superblock information to search for backup superblocks.

The following sections describe specific \texttt{fsck} enhancements and their corresponding error messages. For step-by-step instructions on using the \texttt{fsck} utility to repair a damaged superblock, see “How to Restore a Bad Superblock (Solaris 10 6/06 Release)” on page 418.
Automatic Search for Backup Superblocks

The following `fsck` error message examples illustrate the automatic backup superblock discovery feature.

Caution – If a file system has a damaged superblock and it was created with `newfs` or `mkfs` customized parameters, such as `ntrack` or `nsect`, using `fsck`’s automatically discovered superblock for the repair process could damage your file system.

In the case of a file system that was created with customized parameters and it has a bad superblock, `fsck` provides the prompt to cancel the `fsck` session:

CANCEL FILESYSTEM CHECK?

- If the file system was created with the `newfs` command and `fsck` responds that just the primary superblocks are corrupted, then consider letting `fsck` restore the superblock.

```
# fsck /dev/dsk/c1t2d0s0
** /dev/rdsk/c1t2d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED
LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? no

LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? yes
FOUND ALTERNATE SUPERBLOCK 32 WITH NEWFS
USE ALTERNATE SUPERBLOCK? yes
FOUND ALTERNATE SUPERBLOCK AT 32 USING NEWFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.
CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
CORRECT GLOBAL SUMMARY
SALVAGE? y
```
UPDATE STANDARD SUPERBLOCK? y

81 files, 3609 used, 244678 free (6 frags, 30584 blocks, 0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****

- If the file system was created with the mkfs command and fsck responds that just the primary superblocks are corrupted, then consider letting fsck restore the superblock.

```
# fsck /dev/dsk/c1t2d0s0
** /dev/rdsk/c1t2d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? yes

FOUND ALTERNATE SUPERBLOCK 32 WITH MKFS

USE ALTERNATE SUPERBLOCK? yes

FOUND ALTERNATE SUPERBLOCK AT 32 USING MKFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
CORRECT GLOBAL SUMMARY
SALVAGE? y

UPDATE STANDARD SUPERBLOCK? y

81 files, 3609 used, 243605 free (117 frags, 30436 blocks, 0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****
The following example illustrates what would happen if you specified fsck's -y option in a damaged superblock scenario. You are automatically dropped out of the fsck session. A message is displayed to rerun it with the alternate superblock.

```bash
fsck -y /dev/dsk/c1t2d0s0
** /dev/rdsk/c1t2d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? yes

SEARCH FOR ALTERNATE SUPERBLOCKS WITH NEWFS? yes

USE GENERIC SUPERBLOCK FROM MKFS? yes

CALCULATED GENERIC SUPERBLOCK WITH MKFS

If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

CANCEL FILESYSTEM CHECK? yes

Please verify that the indicated block contains a proper superblock for the filesystem (see fsdb(1M)).

FSCK was running in YES mode. If you wish to run in that mode using the alternate superblock, run `fsck -y -o b=453920 /dev/rdsk/c1t2d0s0`.

The following fsck error message scenario illustrates the new prompts for the backup superblock, but the fsck run is not canceled, in this example. Canceling the fsck session would be an appropriate response if this file system was created with customized parameters or if there is some other concern about running fsck on this file system.

The various superblock error conditions are provided in *italics* as follows:

```bash
# fsck /dev/rdsk/c0t1d0s0
** /dev/rdsk/c0t1d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED
BAD SUPERBLOCK AT BLOCK 16: NUMBER OF DATA BLOCKS OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: INODES PER GROUP OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: MAGIC NUMBER WRONG
BAD SUPERBLOCK AT BLOCK 16: BAD VALUES IN SUPER BLOCK
```
BAD SUPERBLOCK AT BLOCK 16: NCG OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: CPG OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: NCYL IS INCONSISTENT WITH NCG*CPG
BAD SUPERBLOCK AT BLOCK 16: SIZE OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: NUMBER OF DIRECTORIES OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: ROTATIONAL POSITION TABLE SIZE OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: SIZE OF CYLINDER GROUP SUMMARY AREA WRONG
BAD SUPERBLOCK AT BLOCK 16: INOPB NONSENSICAL RELATIVE TO BSIZE

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? yes

FOUND ALTERNATE SUPERBLOCK 32 WITH MKFS

USE ALTERNATE SUPERBLOCK? yes

FOUND ALTERNATE SUPERBLOCK AT 32 USING MKFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2a - Check Duplicated Names
** Phase 2b - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups

SALVAGE? yes

UPDATE STANDARD SUPERBLOCK? yes

82 files, 3649 used, 244894 free (6 frags, 30611 blocks, 0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****

fsck Reports When it Needs to be Rerun
Better reporting by fsck about when it needs to be rerun should alleviate the time and necessity of running it multiple times, which can be particularly time consuming on large file systems.
The following new messages prompt you to rerun the fsck utility at the end of an error scenario:

***** PLEASE RERUN FSCK *****

Or:

Please rerun fsck(1M) to correct this.

These new prompts resolve the previous difficulty in determining whether fsck should be rerun or not.

Unless you are prompted to rerun fsck as in the above messages, there is no need to run fsck, even after you see the following message:

***** FILE SYSTEM WAS MODIFIED *****

However, it doesn’t harm the file system to rerun fsck after this message. This message is just informational about fsck’s corrective actions.

New fsck Messages Regarding Extended Attributes

New fsck messages are included that report on and repair files with extended attributes. For example:

BAD ATTRIBUTE REFERENCE TO I=1 FROM I=96

Attribute directory I=97 not attached to file I=96

 I=96 OWNER=root MODE=40755
 SIZE=512 MTIME=Jul 21 16:23 2005
 DIR= <xattr>

 FIX? yes

ZERO LENGTH ATTR DIR I=12 OWNER=root MODE=160755

SIZE=0 MTIME=Jul 21 16:25 2005

CLEAR? yes

File should BE marked as extended attribute

 I=22 OWNER=root MODE=100644
 SIZE=0 MTIME=Jul 21 16:36 2005
 FILE= <xattr>

 FIX? yes
Better Handling of Duplicate Blocks or Fragments

The fsck error messages now report information about blocks, fragments, or a LFNs, which are the logical fragment numbers from the start of the file. For example, you might see output similar to the following:

```
** Phase 1 - Check Blocks and Sizes
FRAGMENT 784 DUP I=38 LFN 0
FRAGMENT 785 DUP I=38 LFN 1
FRAGMENT 786 DUP I=38 LFN 2
```

fsck processes objects as fragments, but in previous Solaris releases, only reported object information as blocks. It now correctly reports as fragments.

If fsck finds error conditions that involve duplicate blocks or fragments, fsck offers to display the uncleared files at end of the fsck output. For example, you might see output similar to the following:

```
LIST REMAINING DUPS? yes
```

Some blocks that were found to be in multiple files are still assigned to file(s). Fragments sorted by inode and logical offsets:

```
Inode 38:
Logical Offset 0x00000000 Physical Fragment 784
Logical Offset 0x00000000 Physical Fragment 786
Logical Offset 0x00001000 Physical Fragment 788
Logical Offset 0x00001800 Physical Fragment 790
```

Then, you can use the `find -i inode-number` command to identify the name of inode 38, in this example.
Where to Find File System Management Tasks

Use these references to find step-by-step instructions for managing file systems.

<table>
<thead>
<tr>
<th>File System Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create new file systems.</td>
<td>Chapter 17, "Creating UFS, TMPFS, and LOFS File Systems (Tasks)" and Chapter 19, "Using The CacheFS File System (Tasks)"</td>
</tr>
<tr>
<td>Make local and remote files available to users.</td>
<td>Chapter 18, "Mounting and Unmounting File Systems (Tasks)"</td>
</tr>
<tr>
<td>Connect and configure new disk devices.</td>
<td>Chapter 10, "Managing Disks (Overview)"</td>
</tr>
<tr>
<td>Design and implement a backup schedule and restore files and file systems, as needed.</td>
<td>Chapter 23, "Backing Up and Restoring File Systems (Overview)"</td>
</tr>
<tr>
<td>Check for and correct file system inconsistencies.</td>
<td>Chapter 21, "Checking UFS File System Consistency (Tasks)"</td>
</tr>
</tbody>
</table>

Overview of File Systems

A file system is a structure of directories that is used to organize and store files. The term file system is used to describe the following:

- A particular type of file system: disk-based, network-based, or virtual
- The entire file tree, beginning with the root (/) directory
- The data structure of a disk slice or other media storage device
- A portion of a file tree structure that is attached to a mount point on the main file tree so that the files are accessible

Usually, you know from the context which meaning is intended.

The Solaris OS uses the virtual file system (VFS) architecture, which provides a standard interface for different file system types. The VFS architecture enables the kernel to handle basic operations, such as reading, writing, and listing files. The VFS architecture also makes it easier to add new file systems.

Types of File Systems

The Solaris OS supports three types of file systems:

- Disk-based
- Network-based
To identify the file system type, see “Determining a File System’s Type” on page 333.

Disk-Based File Systems

Disk-based file systems are stored on physical media such as hard disks, CD-ROMs, and diskettes. Disk-based file systems can be written in different formats. The available formats are described in the following table.

<table>
<thead>
<tr>
<th>Disk-Based File System</th>
<th>Format Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFS</td>
<td>UNIX file system (based on the BSD Fat Fast File system that was provided in the 4.3 Tahoe release). UFS is the default disk-based file system for the Solaris OS. Before you can create a UFS file system on a disk, you must format the disk and divide it into slices. For information on formatting disks and dividing disks into slices, see Chapter 10, “Managing Disks (Overview).”</td>
</tr>
<tr>
<td>ZFS</td>
<td>The ZFS file system is new in the Solaris 10 6/06 release. For more information, see the Solaris ZFS Administration Guide.</td>
</tr>
<tr>
<td>HSFS</td>
<td>High Sierra, Rock Ridge, and ISO 9660 file system. High Sierra is the first CD-ROM file system. ISO 9660 is the official standard version of the High Sierra file system. The HSFS file system is used on CD-ROMs, and is a read-only file system. Solaris HSFS supports Rock Ridge extensions to ISO 9660. When present on a CD-ROM, these extensions provide all UFS file system features and file types, except for writability and hard links.</td>
</tr>
<tr>
<td>PCFS</td>
<td>PC file system, which allows read- and write- access to data and programs on DOS-formatted disks that are written for DOS-based personal computers.</td>
</tr>
<tr>
<td>UDFS</td>
<td>The Universal Disk Format (UDFS) file system, the industry-standard format for storing information on the optical media technology called DVD (Digital Versatile Disc or Digital Video Disc).</td>
</tr>
</tbody>
</table>

Each type of disk-based file system is customarily associated with a particular media device, as follows:

- UFS with hard disk
- HSFS with CD-ROM
- PCFS with diskette
- UDF with DVD

However, these associations are not restrictive. For example, CD-ROMs and diskettes can have UFS file systems created on them.
The Universal Disk Format (UDFS) File System

For information about creating a UDFS file system on removable media, see "How to Create a File System on Removable Media" on page 37.

The UDF file system is the industry-standard format for storing information on DVD (Digital Versatile Disc or Digital Video Disc) optical media.

The UDF file system is provided as dynamically loadable 32-bit and 64-bit modules, with system administration utilities for creating, mounting, and checking the file system on both SPARC and x86 platforms. The Solaris UDF file system works with supported ATAPI and SCSI DVD drives, CD-ROM devices, and disk and diskette drives. In addition, the Solaris UDF file system is fully compliant with the UDF 1.50 specification.

The UDF file system provides the following features:

- Ability to access the industry-standard CD-ROM and DVD-ROM media when they contain a UDF file system
- Flexibility in exchanging information across platforms and operating systems
- A mechanism for implementing new applications rich in broadcast-quality video, high-quality sound, and interactivity using the DVD video specification based on UDF format

The following features are not included in the UDF file system:

- Support for write-once media, (CD-RW), with either the sequential disk-at-once recording and incremental recording
- UFS components such as quotas, ACLs, transaction logging, file system locking, and file system threads, which are not part of the UDF 1.50 specification

The UDF file system requires the following:

- At least the Solaris 7 11/99 release
- Supported SPARC or x86 platform
- Supported CD-ROM or DVD-ROM device

The Solaris UDF file system implementation provides the following:

- Support for industry-standard read/write UDF version 1.50
- Fully internationalized file system utilities

Network-Based File Systems

Network-based file systems can be accessed from the network. Typically, network-based file systems reside on one system, typically a server, and are accessed by other systems across the network.
With NFS, you can administer distributed resources (files or directories) by exporting them from a server and mounting them on individual clients. For more information, see “The NFS Environment” on page 331.

Virtual File Systems

Virtual file systems are memory-based file systems that provide access to special kernel information and facilities. Most virtual file systems do not use file system disk space. However, the CacheFS file system uses a file system on the disk to contain the cache. Also, some virtual file systems, such as the temporary file system (TMPFS), use the swap space on a disk.

CacheFS File System

The CacheFS™ file system can be used to improve the performance of remote file systems or slow devices such as CD-ROM drives. When a file system is cached, the data that is read from the remote file system or CD-ROM is stored in a cache on the local system.

If you want to improve the performance and scalability of an NFS or CD-ROM file system, you should use the CacheFS file system. The CacheFS software is a general purpose caching mechanism for file systems that improves NFS server performance and scalability by reducing server and network load.

Designed as a layered file system, the CacheFS software provides the ability to cache one file system on another. In an NFS environment, CacheFS software increases the client per server ratio, reduces server and network loads, and improves performance for clients on slow links, such as Point-to-Point Protocol (PPP). You can also combine a CacheFS file system with the AutoFS service to help boost performance and scalability.

For detailed information about the CacheFS file system, see Chapter 19, "Using The CacheFS File System (Tasks).”

NFS Version 4 and CacheFS Compatibility Issues

If both the CacheFS client and the CacheFS server are running NFS version 4, files are no longer cached in a front file system. All file access is provided by the back file system. Also, since no files are being cached in the front file system, CacheFS-specific mount options, which are meant to affect the front file system, are ignored. CacheFS-specific mount options do not apply to the back file system.

Note – The first time you configure your system for NFS version 4, a warning appears on the console to indicate that caching is no longer performed.

If you want to implement your CacheFS mounts as in previous Solaris releases, then specify NFS version 3 in your CacheFS mount commands. For example:
mount -F cachefs -o backfstype=nfs,cachedir=/local/mycache,vers=3
starbug:/docs /docs

Temporary File System

The temporary file system (TMPFS) uses local memory for file system reads and writes. Typically, using memory for file system reads and writes is much faster than using a UFS file system. Using TMPFS can improve system performance by saving the cost of reading and writing temporary files to a local disk or across the network. For example, temporary files are created when you compile a program. The OS generates a much disk activity or network activity while manipulating these files. Using TMPFS to hold these temporary files can significantly speed up their creation, manipulation, and deletion.

Files in TMPFS file systems are not permanent. These files are deleted when the file system is unmounted and when the system is shut down or rebooted.

TMPFS is the default file system type for the /tmp directory in the Solaris OS. You can copy or move files into or out of the /tmp directory, just as you would in a UFS file system.

The TMPFS file system uses swap space as a temporary backing store. If a system with a TMPFS file system does not have adequate swap space, two problems can occur:

- The TMPFS file system can run out of space, just as regular file systems do.
- Because TMPFS allocates swap space to save file data (if necessary), some programs might not execute because of insufficient swap space.

For information about creating TMPFS file systems, see Chapter 17, “Creating UFS, TMPFS, and LOFS File Systems (Tasks).” For information about increasing swap space, see Chapter 20, “Configuring Additional Swap Space (Tasks).”

The Loopback File System

The loopback file system (LOFS) lets you create a new virtual file system so that you can access files by using an alternative path name. For example, you can create a loopback mount of the root (/) directory on /tmp/newroot. This loopback mounts make the entire file system hierarchy appear as if it is duplicated under /tmp/newroot, including any file systems mounted from NFS servers. All files will be accessible either with a path name starting from root (/), or with a path name that starts from /tmp/newroot.

For information on how to create LOFS file systems, see Chapter 17, “Creating UFS, TMPFS, and LOFS File Systems (Tasks).”

Process File System

The process file system (PROCFS) resides in memory and contains a list of active processes, by process number, in the /proc directory. Information in the /proc directory is used by commands such as ps. Debuggers and other development tools can also access the address space of the processes by using file system calls.
Caution – Do not delete files in the `/proc` directory. The deletion of processes from the `/proc` directory does not kill them. `/proc` files do not use disk space, so there is no reason to delete files from this directory.

The `/proc` directory does not require administration.

Additional Virtual File Systems

These additional types of virtual file systems are listed for your information. They do not require administration.

<table>
<thead>
<tr>
<th>Virtual File System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTFS</td>
<td>CTFS (the contract file system) is the interface for creating, controlling, and observing contracts. A contract enhances the relationship between a process and the system resources it depends on by providing richer error reporting and (optionally) a means of delaying the removal of a resource. The service management facility (SMF) uses process contracts (a type of contract) to track the processes which compose a service, so that a failure in a part of a multi-process service can be identified as a failure of that service.</td>
</tr>
<tr>
<td>FIFOFS (first-in first-out)</td>
<td>Named pipe files that give processes common access to data</td>
</tr>
<tr>
<td>FDFS (file descriptors)</td>
<td>Provides explicit names for opening files by using file descriptors</td>
</tr>
<tr>
<td>MNTFS</td>
<td>Provides read-only access to the table of mounted file systems for the local system</td>
</tr>
<tr>
<td>NAMEFS</td>
<td>Used mostly by STREAMS for dynamic mounts of file descriptors on top of files</td>
</tr>
<tr>
<td>OBJFS</td>
<td>The OBJFS (object) file system describes the state of all modules currently loaded by the kernel. This file system is used by debuggers to access information about kernel symbols without having to access the kernel directly.</td>
</tr>
<tr>
<td>SPECFS (special)</td>
<td>Provides access to character special devices and block devices</td>
</tr>
<tr>
<td>SWAPFS</td>
<td>Used by the kernel for swapping</td>
</tr>
</tbody>
</table>

libc_hwcap

The mount output on an x86 system might include a loopback mount of a `libc_hwcap` library, a hardware-optimized implementation of `libc`. This `libc` implementation is intended to optimize the performance of 32-bit applications.
This loopback mount requires no administration and consumes no disk space.

Extended File Attributes

The UFS, NFS, and TMPFS file systems have been enhanced to include extended file attributes. Extended file attributes enable application developers to associate specific attributes to a file. For example, a developer of an application used to manage a windowing system might choose to associate a display icon with a file. Extended file attributes are logically represented as files within a hidden directory that is associated with the target file.

You can use the `runat` command to add attributes and execute shell commands in the extended attribute namespace. This namespace is a hidden attribute directory that is associated with the specified file.

To use the `runat` command to add attributes to a file, you first have to create the attributes file.

```bash
$ runat filea cp /tmp/attrdata attr.1
```

Then, use the `runat` command to list the attributes of the file.

```bash
$ runat filea ls -l
```

For more information, see the `runat(1)` man page.

Many Solaris file system commands have been modified to support file system attributes by providing an attribute-aware option. Use this option to query, copy, or find file attributes. For more information, see the specific man page for each file system command.

Swap Space

The Solaris OS uses some disk slices for temporary storage rather than for file systems. These slices are called swap slices, or swap space. Swap space is used for virtual memory storage areas when the system does not have enough physical memory to handle current processes.

Since many applications rely on swap space, you should know how to plan for, monitor, and add more swap space, when needed. For an overview about swap space and instructions for adding swap space, see Chapter 20, “Configuring Additional Swap Space (Tasks).”

Commands for File System Administration

Most commands for file system administration have both a generic component and a file system–specific component. Whenever possible, you should use the generic commands, which call the file system–specific component. The following table lists the generic commands for file system administration. These commands are located in the `/usr/sbin` directory.
TABLE 16-1 Generic Commands for File System Administration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clri</td>
<td>Clears inodes</td>
<td>clri(1M)</td>
</tr>
<tr>
<td>df</td>
<td>Reports the number of free disk blocks and files</td>
<td>df(1M)</td>
</tr>
<tr>
<td>ff</td>
<td>Lists file names and statistics for a file system</td>
<td>ff(1M)</td>
</tr>
<tr>
<td>fsck</td>
<td>Checks the integrity of a file system and repairs any damage found</td>
<td>fsck(1M)</td>
</tr>
<tr>
<td>fsdb</td>
<td>Debugs the file system</td>
<td>fsdb(1M)</td>
</tr>
<tr>
<td>fstyp</td>
<td>Determines the file system type</td>
<td>fstyp(1M)</td>
</tr>
<tr>
<td>labelit</td>
<td>Lists or provides labels for file systems when they are copied to tape (for use only by the volcopy command)</td>
<td>labelit(1M)</td>
</tr>
<tr>
<td>mkfs</td>
<td>Creates a new file system</td>
<td>mkfs(1M)</td>
</tr>
<tr>
<td>mount</td>
<td>Mounts local and remote file systems</td>
<td>mount(1M)</td>
</tr>
<tr>
<td>mountall</td>
<td>Mounts all file systems that are specified in the virtual file system table (/etc/vfstab)</td>
<td>mountall(1M)</td>
</tr>
<tr>
<td>ncheck</td>
<td>Generates a list of path names with their inode numbers</td>
<td>ncheck(1M)</td>
</tr>
<tr>
<td>umount</td>
<td>Unmounts local and remote file systems</td>
<td>umount(1M)</td>
</tr>
<tr>
<td>umountall</td>
<td>Unmounts all file systems that are specified in the virtual file system table (/etc/vfstab)</td>
<td>umountall(1M)</td>
</tr>
<tr>
<td>volcopy</td>
<td>Creates an image copy of a file system</td>
<td>volcopy(1M)</td>
</tr>
</tbody>
</table>

How File System Commands Determine the File System Type

The generic file system commands determine the file system type by following this sequence:

1. From the -F option, if supplied.
2. By matching a special device with an entry in the /etc/vfstab file (if the special device is supplied). For example, fsck first looks for a match against the fsck device field. If no match is found, the command then checks the special device field.
3. By using the default specified in the /etc/default/fs file for local file systems and in the /etc/dfs/fstypes file for remote file systems.
Manual Pages for Generic and Specific File System Commands

Both the generic commands and specific commands have manual pages in the man pages section 1M: System Administration Commands. The manual pages for the generic file system commands provide information about generic command options only. The manual page for a specific file system command has information about options for that file system. To look at a manual page for a specific file system, append an underscore and the abbreviation for the file system type to the generic command name. For example, to see the specific manual page for mounting a UFS file system, type the following:

$ man mount_ufs

Default Solaris File Systems

The Solaris UFS file system is hierarchical, starting with the root directory (/) and continuing downwards through a number of directories. The Solaris installation process enables you to install a default set of directories and uses a set of conventions to group similar types of files together.

For a description of the contents of Solaris file systems and directories, see filesystem(5).

The following table provides a summary of the default Solaris file systems.

<table>
<thead>
<tr>
<th>File System or Directory</th>
<th>File System Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/)</td>
<td>UFS</td>
<td>The top of the hierarchical file tree. The root (/) directory contains the directories and files that are critical for system operation, such as the kernel, the device drivers, and the programs used to boot the system. The root (/) directory also contains the mount point directories where local and remote file systems can be attached to the file tree.</td>
</tr>
<tr>
<td>/usr</td>
<td>UFS</td>
<td>System files and directories that can be shared with other users. Files that run only on certain types of systems are in the /usr file system (for example, SPARC executables). Files that can be used on all types of systems, such as the man pages, are in the /usr/share directory.</td>
</tr>
<tr>
<td>/export/home or /home</td>
<td>NFS, UFS</td>
<td>The mount point for user home directories, which store user work files. By default, the /home directory is an automounted file system. On stand-alone systems, the /home directory might be a UFS file system on a local disk slice.</td>
</tr>
</tbody>
</table>
The Default Solaris File Systems (Continued)

<table>
<thead>
<tr>
<th>File System or Directory</th>
<th>File System Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var</td>
<td>UFS</td>
<td>System files and directories that are likely to change or grow over the life of the local system. These include system logs, <code>v1</code> and <code>ex</code> backup files, and <code>uucp</code> files.</td>
</tr>
<tr>
<td>/opt</td>
<td>NFS, UFS</td>
<td>Optional mount point for third-party software. On some systems, the <code>/opt</code> directory might be a UFS file system on a local disk slice.</td>
</tr>
<tr>
<td>/tmp</td>
<td>TMPFS</td>
<td>Temporary files, which are removed each time the system is booted or the <code>/tmp</code> file system is unmounted.</td>
</tr>
<tr>
<td>/proc</td>
<td>PROCFS</td>
<td>A list of active processes, by process number.</td>
</tr>
<tr>
<td>/etc/mnttab</td>
<td>MNTFS</td>
<td>A virtual file system that provides read-only access to the table of mounted file systems for the local system.</td>
</tr>
<tr>
<td>/var/run</td>
<td>TMPFS</td>
<td>A memory-based file system for storing temporary files that are not needed after the system is booted.</td>
</tr>
<tr>
<td>/system/contract</td>
<td>CTFS</td>
<td>A virtual file system that maintains contract information.</td>
</tr>
<tr>
<td>/system/object</td>
<td>OBJFS</td>
<td>A virtual file system that is used by debuggers to access information about kernel symbols without having to access the kernel directly.</td>
</tr>
</tbody>
</table>

The root (/) and /usr file systems are required to run a system. Some of the most basic commands in the /usr file system (like `mount`) are also included in the root (/) file system. As such, they are available when the system boots or is in single-user mode, and /usr is not mounted. For more detailed information on the default directories for the root (/) and /usr file systems, see Chapter 22, "UFS File System (Reference)."

UFS File System

UFS is the default disk-based file system in Solaris OS. Most often, when you administer a disk-based file system, you are administering UFS file systems. UFS provides the following features.

<table>
<thead>
<tr>
<th>UFS Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended fundamental types (EFT)</td>
<td>Provides 32-bit user ID (UID), group ID (GID), and device numbers.</td>
</tr>
<tr>
<td>Large file systems</td>
<td>Allows files of about 1 terabyte in size in a file system that can be up to 16 terabytes in size. You can create a multiterabyte UFS file system on a disk with an EFI disk label.</td>
</tr>
</tbody>
</table>
UFS Feature | Description
--- | ---
Logging | UFS logging bundles the multiple metadata changes that comprise a complete UFS operation into a transaction. Sets of transactions are recorded in an on-disk log and are applied to the actual UFS file system's metadata.
Multiterabyte file systems | A multiterabyte file system enables creation of a UFS file system up to approximately 16 terabytes of usable space, minus approximately one percent overhead.
State flags | Shows the state of the file system: clean, stable, active, logging, or unknown. These flags eliminate unnecessary file system checks. If the file system is “clean,” “stable,” or “logging,” file system checks are not run.

For detailed information about the UFS file system structure, see Chapter 22, “UFS File System (Reference).”

Planning UFS File Systems

When laying out file systems, you need to consider possible conflicting demands. Here are some suggestions:

- Distribute the workload as evenly as possible among different I/O systems and disk drives. Distribute the `/export/home` file system and swap space evenly across disks.
- Keep pieces of projects or members of groups within the same file system.
- Use as few file systems per disk as possible. On the system (or boot) disk, you should have three file systems: root `/`, `/usr`, and swap space. On other disks, create one or at most two file systems, with one file system preferably being additional swap space. Fewer, roomier file systems cause less file fragmentation than many small, over crowded file systems. Higher-capacity tape drives and the ability of the `ufsdump` command to handle multiple volumes make it easier to back up larger file systems.
- If you have some users who consistently create very small files, consider creating a separate file system with more inodes. However, most sites do not need to keep similar types of user files in the same file system.

For information on default file system parameters as well as procedures for creating new UFS file systems, see Chapter 17, “Creating UFS, TMPFS, and LOFS File Systems (Tasks).”

64-bit: Support of Multiterabyte UFS File Systems

This Solaris release provides support for multiterabyte UFS file systems on systems that run a 64-bit Solaris kernel.
Previously, UFS filesystems were limited to approximately 1 terabyte on both 64-bit and 32-bit systems. All UFS file system commands and utilities have been updated to support multiterabyte UFS file systems.

For example, the `ufsdump` command has been updated with a larger block size for dumping large UFS file systems:

```
# ufsdump 0f /dev/md/rdsk/d97 /dev/md/rdsk/d98
```

```
DUMP: Date of this level 0 dump: Tue Jan 07 14:23:36 2003
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/md/rdsk/d98 to /dev/md/rdsk/d97.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Forcing larger tape block size (2048).
DUMP: Writing 32 Kilobyte records
DUMP: Estimated 4390629500 blocks (2143862.06MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
```

Administering UFS file systems that are less than 1 terabyte remains the same. No administration differences exist between UFS file systems that are less than one terabyte and file systems that are greater than 1 terabyte.

You can initially create a UFS file system that is less than 1 terabyte and specify that it can eventually be expanded into a multiterabyte file system by using the `newfs -T` option. This option sets the inode and fragment density to scale appropriately for a multiterabyte file system.

Using the `newfs -T` option when you create a UFS file system less than 1 terabyte on a system running a 32-bit kernel enables you to eventually expand this file system by using the `growfs` command when you boot this system under a 64-bit kernel. For more information, see `newfs(1M)`.

You can use the `fstyp -v` command to identify whether a UFS file system has multiterabyte support by checking the following value in the magic column:

```
# /usr/sbin/fstyp -v /dev/md/rdsk/d3 | head -5
ufs
magic 11954 format dynamic time Fri May 21 11:10:10 2004
```

A UFS file system with no multiterabyte support has the following `fstyp` output:

```
# /usr/sbin/fstyp -v /dev/md/rdsk/d0 | head -5
ufs
magic decade format dynamic time Fri May 21 11:46:40 2004
```

You can use the `growfs` command to expand a UFS file system to the size of the slice or the volume without loss of service or data. For more information, see `growfs(1M)`.
Two new related features are multiterabyte volume support with the EFI disk label and multiterabyte volume support with Solaris Volume Manager. For more information, see “EFI Disk Label” on page 194 and the Solaris Volume Manager Administration Guide.

Features of Multiterabyte UFS File Systems
Multiterabyte UFS file systems include the following features:

- Provides the ability to create a UFS file system up to 16 terabytes in size.
- Provides the ability to create a file system less than 16 terabytes that can later be increased in size up to 16 terabytes.
- Multiterabyte file systems can be created on physical disks, Solaris Volume Manager’s logical volumes, and Veritas’ VxVM logical volumes.
- Multiterabyte file systems benefit from the performance improvements of having UFS logging enabled. Multiterabyte file systems also benefit from the availability of logging because the fsck command might not have to be run when logging is enabled.
- When you create a partition for your multiterabyte UFS file system, the disk will be labeled automatically with an EFI disk label. For more information on EFI disk labels, see “EFI Disk Label” on page 194.
- Provides the ability to snapshot a multiterabyte file system by creating multiple backing store files when a file system is over 512 Gbytes.

Limitations of Multiterabyte UFS File Systems
Limitations of multiterabyte UFS file systems are as follows:

- This feature is not supported on 32-bit systems.
- You cannot mount a file system greater than 1 terabyte on a system that is running a 32-bit Solaris kernel.
- You cannot boot from a file system greater than 1 terabyte on a system that is running a 64-bit Solaris kernel. This limitation means that you cannot put a root (/) file system on a multiterabyte file system.
- There is no support for individual files greater than 1 terabyte.
- The maximum number of files is 1 million files per terabyte of a UFS file system. For example, a 4-terabyte file system can contain 4 million files. This limit is intended to reduce the time it takes to check the file system with the fsck command.
- The maximum quota that you can set on a multiterabyte UFS file system is 2 terabytes of 1024-byte blocks.
Where to Find Multiterabyte UFS Tasks

Use these references to find step-by-step instructions for working with multiterabyte UFS file systems.

<table>
<thead>
<tr>
<th>Multiterabyte UFS Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create multiterabyte UFS file systems</td>
<td>“How to Create a Multiterabyte UFS File System” on page 338</td>
</tr>
<tr>
<td></td>
<td>“How to Expand a Multiterabyte UFS File System” on page 339</td>
</tr>
<tr>
<td></td>
<td>“How to Expand a UFS File System to a Multiterabyte UFS File System” on page 340</td>
</tr>
<tr>
<td>Create a multiterabyte UFS snapshot</td>
<td>Example 25–2</td>
</tr>
<tr>
<td>Troubleshoot multiterabyte UFS problems</td>
<td>“Troubleshooting Multiterabyte UFS File System Problems” on page 341</td>
</tr>
</tbody>
</table>

UFS Logging

UFS logging bundles the multiple metadata changes that comprise a complete UFS operation into a transaction. Sets of transactions are recorded in an on-disk log. Then, they are applied to the actual UFS file system’s metadata.

At reboot, the system discards incomplete transactions, but applies the transactions for completed operations. The file system remains consistent because only completed transactions are ever applied. This consistency remains even when a system crashes. A system crash might interrupt system calls and introduces inconsistencies into a UFS file system.

UFS logging provides two advantages:

- If the file system is already consistent due to the transaction log, you might not have to run the fsck command after a system crash or an unclean shutdown. For more information on unclean shutdowns, see “What the fsck Command Checks and Tries to Repair” on page 405.
- Starting in the Solaris 9 12/02 release, the performance of UFS logging improves or exceeds the level of performance of non logging file systems. This improvement can occur because a file system with logging enabled converts multiple updates to the same data into single updates. Thus, reduces the number of overhead disk operations required.

Logging is enabled by default for all UFS file systems, except under the following conditions:

- When logging is explicitly disabled.
- If there is insufficient file system space for the log.

In previous Solaris releases, you had to manually enable UFS logging.
Keep the following issues in mind when using UFS logging:

- Ensure that you have enough disk space for your general system needs, such as for users and applications, and for UFS logging.
- If you don't have enough disk space for logging data, a message similar to the following is displayed:

  ```
  # mount /dev/dsk/c0t4d0s0 /mnt
  /mnt: No space left on device
  Could not enable logging for /mnt on /dev/dsk/c0t4d0s0.
  #
  ```

 However, the file system is still mounted. For example:

  ```
  # df -h /mnt
  Filesystem size used avail capacity Mounted on
  /dev/dsk/c0t4d0s0 142M 142M 0K 100% /mnt
  #
  ```

- A UFS file system with logging enabled that is generally empty will have some disk space consumed for the log.
- If you upgrade to this Solaris release from a previous Solaris release, your UFS file systems will have logging enabled, even if the `logging` option was not specified in the `/etc/vfstab` file. To disable logging, add the `nologging` option to the UFS file system entries in the `/etc/vfstab` file.

The UFS transaction log has the following characteristics:

- Is allocated from free blocks on the file system
- Sized at approximately 1 Mbyte per 1 Gbyte of file system, up to a maximum of 64 Mbytes
- Continually flushed as it fills up
- Also flushed when the file system is unmounted or as a result of any `lockfs` command.

If you need to enable UFS logging, specify the `-o logging` option with the `mount` command in the `/etc/vfstab` file or when you manually mount the file system. Logging can be enabled on any UFS file system, including the root (`/`) file system. Also, the `fsdb` command has new debugging commands to support UFS logging.

In some operating systems, a file system with logging enabled is known as a journaling file system.

UFS Snapshots

You can use the `fssnap` command to create a read-only snapshot of a file system. A snapshot is a file system’s temporary image that is intended for backup operations.
UFSDirect Input/Output (I/O)

Direct I/O is intended to boost bulk I/O operations. Bulk I/O operations use large buffer sizes to transfer large files (larger than 256 Kbytes).

Using UFS direct I/O might benefit applications, such as database engines, that do their own internal buffering. Starting with the Solaris 8 1/01 release, UFS direct I/O has been enhanced to allow the same kind of I/O concurrency that occurs when raw devices are accessed. Now you can get the benefit of file system naming and flexibility with very little performance penalty. Check with your database vendor to see if it can enable UFS direct I/O in its product configuration options.

Direct I/O can also be enabled on a file system by using the **forcedirectio** option to the `mount` command. Enabling direct I/O is a performance benefit only when a file system is transferring large amounts of sequential data.

When a file system is mounted with this option, data is transferred directly between a user’s address space and the disk. When forced direct I/O is not enabled for a file system, data transferred between a user’s address space and the disk is first buffered in the kernel address space.

The default behavior is no forced direct I/O on a UFS file system. For more information, see `mount_ufs(1M)`.

Mounting and Unmounting File Systems

Before you can access the files on a file system, you need to mount the file system. When you mount a file system, you attach that file system to a directory (mount point) and make it available to the system. The root (/) file system is always mounted. Any other file system can be connected or disconnected from the root (/) file system.

When you mount a file system, any files or directories in the underlying mount point directory are unavailable as long as the file system is mounted. These files are not permanently affected by the mounting process. They become available again when the file system is unmounted. However, mount directories are typically empty because you usually do not want to obscure existing files.

For example, the following figure shows a local file system, starting with a root (/) file system and the sbin, etc, and opt subdirectories.
To access a local filesystem from the /opt filesystem that contains a set of unbundled products, you must do the following:

- First, you must create a directory to use as a mount point for the filesystem you want to mount, for example, /opt/unbundled.
- Once the mount point is created, you can mount the filesystem by using the mount command. This command makes all of the files and directories in /opt/unbundled available, as shown in the following figure.
For step-by-step instructions on how to mount file systems, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

The Mounted File System Table

Whenever you mount or unmount a file system, the /etc/mnttab (mount table) file is modified with the list of currently mounted file systems. You can display the contents of this file by using the cat or more commands. However, you cannot edit this file. Here is an example of an /etc/mnttab file:

```bash
$ more /etc/mnttab
/dev/dsk/c0t0d0s0    /  ufs  rw,intr,largefiles,logging,xattr,onererror  =panic,dev=2200008 1093882623
/devices    /devices   devfs dev=4340000 1093882603
ctfs      /system/contract ctrfs dev=4380001 1093882603
proc      /proc       proc dev=43c0000 1093882603
mnttab    /etc/mnttab  mntfs dev=4400001 1093882603
```
Mounting and Unmounting File Systems

The Virtual File System Table

Manually mount file systems every time you wanted to access them would be a very
time-consuming and error-prone. To avoid these problems, the virtual file system table (the
/etc/vfstab file) provides a list of file systems and information on how to mount them.

The /etc/vfstab file provides two important features:

- You can specify file systems to automatically mount when the system boots.
- You can mount file systems by using only the mount point name. The /etc/vfstab file
 contains the mapping between the mount point and the actual device slice name.

A default /etc/vfstab file is created when you install a system, depending on the selections
during installation. However, you can edit the /etc/vfstab file on a system whenever you
want. To add an entry, the information you need to specify is as follows:

- The device where the file system resides
- The file system mount point
- File system type
- Whether you want the file system to mount automatically when the system boots (by using
 the mountall command)
- Any mount options

The following is an example of an /etc/vfstab file. Comment lines begin with #. This example
shows an /etc/vfstab file for a system with two disks (c0t0d0 and c0t3d0).

```
$ more /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
fds /dev/fd fd - no -
/proc /proc proc - no -
/dev/dsk/c0t0d0s1 /dev/rdsk/c0t0d0s1 swap - no -
/dev/dsk/c0t0d0s0 /dev/rdsk/c0t0d0s0 / ufs 1 no -
```

System Administration Guide: Devices and File Systems • June 2007
In this example, the UFS file system entry for /export/home on the /dev/dsk/c0t0d0s7 slice will be automatically mounted on the /test mount point when the system boots. Note that, for root (/) and /usr, the mount at boot field value is specified as no. These file system entries are mounted by the kernel as part of the boot sequence before the mountall command is run.

For descriptions of each /etc/vfstab field and information on how to edit and use the file, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

The NFS Environment

NFS is a distributed file system service that can be used to share resources (files or directories) from one system, typically a server, with other systems on the network. For example, you might want to share third-party applications or source files with users on other systems.

NFS makes the actual physical location of the resource irrelevant to the user. Instead of placing copies of commonly used files on every system, NFS allows you to place one copy on one system’s disk and let all other systems access it from the network. Under NFS, remote files are virtually indistinguishable from local files.

For more information, see Chapter 4, “Managing Network File Systems (Overview),” in System Administration Guide: Network Services.

A system becomes an NFS server if it has resources to share on the network. A server keeps a list of currently shared resources and their access restrictions (such as read/write or read-only access).

When you share a resource, you make it available for mounting by remote systems.

You can share a resource in these ways:
- By using the share or shareall command
- By adding an entry to the /etc/dfs/dfstab (distributed file system table) file and rebooting the system

For information on how to share resources, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).” For a complete description of NFS, see Chapter 4, “Managing Network File Systems (Overview),” in System Administration Guide: Network Services.
NFS Version 4

Sun's implementation of the NFS version 4 distributed file access protocol is included in the Solaris release.

NFS version 4 integrates file access, file locking, and mount protocols into a single, unified protocol to ease traversal through a firewall and improve security. The Solaris implementation of NFS version 4 is fully integrated with Kerberos V5, also known as SEAM, thus providing authentication, integrity, and privacy. NFS version 4 also enables the negotiation of security flavors to be used between the client and the server. With NFS version 4, a server can offer different security flavors for different file systems.

For more information about NFS Version 4 features, see “What's New With the NFS Service” in System Administration Guide: Network Services.

Automounting or AutoFS

You can mount NFS file system resources by using a client-side service called automounting (or AutoFS). AutoFS enables a system to automatically mount and unmount NFS resources whenever you access them. The resource remains mounted as long as you remain in the directory and are using a file within that directory. If the resource is not accessed for a certain period of time, it is automatically unmounted.

AutoFS provides the following features:

- NFS resources don't need to be mounted when the system boots, which saves booting time.
- Users don't need to know the root password to mount and unmount NFS resources.
- Network traffic might be reduced because NFS resources are mounted only when they are in use.

The AutoFS service is initialized by the automount utility, which runs automatically when a system is booted. The automountd daemon runs continuously and is responsible for the mounting and unmounting of NFS file systems on an as-needed basis. By default, the /home file system is mounted by the automount daemon.

With AutoFS, you can specify multiple servers to provide the same file system. This way, if one of these servers is down, AutoFS can try to mount the file system from another machine.

For complete information on how to set up and administer AutoFS, see System Administration Guide: IP Services.
Determining a File System's Type

You can determine a file system’s type by using one of the following:

- The FS type field in the virtual file system table (the /etc/vfstab file)
- The /etc/default/fs file for local file systems
- The /etc/dfs/fstypes file for NFS file systems

How to Determine a File System's Type

This procedure works whether or not the file system is mounted.

Determine a file system's type by using the grep command.

```
$ grep mount-point fs-table
```

- `mount-point`: Specifies the mount point name of the file system for which you want to know the file system type. For example, the /var directory.
- `fs-table`: Specifies the absolute path to the file system table in which to search for the file system's type. If the file system is mounted, `fs-table` should be /etc/mnttab. If the file system isn’t mounted, `fs-table` should be /etc/vfstab.

Information for the mount point is displayed.

Note – If you have the raw device name of a disk slice, you can use the `fstyp` command to determine a file system's type (if the disk slice contains a file system). For more information, see `fstyp(1M)`.

EXAMPLE 16-1 Determining a File System's Type

The following example uses the /etc/vfstab file to determine the file system type for the /export file system.

```
$ grep /export /etc/vfstab
/dev/dsk/c0t3d0s6  /dev/rdsk/c0t3d0s6  /export ufs  2  yes  -
```

The following example uses the /etc/mnttab file to determine the file system type of the currently mounted diskette. The diskette was previously mounted by vold.

```
$ grep /floppy /etc/mnttab
/vol/dev/diskette0/*unnamed_floppy  /floppy/*unnamed_floppy  pcfs rw, nohidden,nofoldcase,dev=16c0009  89103376
```

Determining a File System’s Type
Creating UFS, TMPFS, and LOFS File Systems (Tasks)

This chapter describes how to create UFS, temporary (TMPFS), and loopback (LOFS) file systems. For UFS file systems, this chapter shows you how to create a file system by using the `newfs` command. Because TMPFS and LOFS are virtual file systems, you actually “access” them by mounting them.

This is a list of the step-by-step instructions in this chapter.

- “How to Create a UFS File System” on page 336
- “How to Create a Multiterabyte UFS File System” on page 338
- “How to Expand a Multiterabyte UFS File System” on page 339
- “How to Expand a UFS File System to a Multiterabyte UFS File System” on page 340
- “How to Create and Mount a TMPFS File System” on page 343
- “How to Create and Mount an LOFS File System” on page 344

Note – For instructions on how to create UFS and DOS file systems on removable media, see Chapter 1, “Managing Removable Media (Overview).”

Creating a UFS File System

Before you can create a UFS file system on a disk, the disk must be formatted and divided into slices. A *disk slice* is a physical subset of a disk that is composed of a single range of contiguous blocks. A slice can be used either as a raw device that provides, for example, swap space, or to hold a disk-based file system. See Chapter 10, “Managing Disks (Overview)” for complete information on formatting disks and dividing disks into slices.

Disk and storage management products, such as Solaris™ Volume Manager, create more sophisticated volumes. Volumes expand beyond single-slice or single-disk boundaries. For more information about using volumes, see Solaris Volume Manager Administration Guide.
Note – Solaris device names use the term slice (and the letter s in the device name) to refer to the slice number. Slices are also called partitions.

You need to create UFS file systems only occasionally, because the Solaris OS automatically creates them as part of the installation process. You need to create (or re-create) a UFS file system when you want to do the following:

■ Add or replace disks
■ Change the existing partitioning structure of a disk
■ Fully restore of a file system

The newfs command is the standard way to create UFS file systems. The newfs command is a convenient front end to the mkfs command, which actually creates the new file system. The newfs command reads parameter defaults, such as tracks per cylinder and sectors per track, from the label for the disk that will contain the new file system. The options you choose are passed to the mkfs command to build the file system.

For information about the default parameters that are used by the newfs command, see newfs(1M).

▼ How to Create a UFS File System

Before You Begin

Ensure that you have met the following prerequisites:

■ The disk must be formatted and divided into slices.
■ If you are re-creating an existing UFS file system, unmount it.
■ You need to know the device name of the slice that will contain the file system.

For information on finding disks and disk slice numbers, see Chapter 11, “Administering Disks (Tasks).”

For information on formatting disks and dividing disks into slices, see Chapter 10, “Managing Disks (Overview).”

1 You must be superuser or assume an equivalent role.

2 Create the UFS file system.

```
# newfs [-N] [-b size] [-i bytes] /dev/rdsk/device-name
```

- **N** Displays what parameters the newfs command would pass to the mkfs command without actually creating the file system. This option is a good way to test the newfs command.

- **b size** Specifies the block size for the file system, either 4096 or 8192 bytes per block. The default is 8192.
-i bytes Specifies the number of bytes per inode. The default varies depending on the
disk size. For more information, see newfs(1M).

device-name Specifies the disk device name on which to create the new file system.

The system asks for confirmation.

Caution – Be sure you have specified the correct device name for the slice before performing this
step. If you specify the wrong slice, you will erase its contents when the new file system is
created. This error might cause the system to panic.

3 To verify the creation of the UFS file system, check the new file system.

 # fsck /dev/rdsk/device-name

where device-name argument specifies the name of the disk device that contains the new file
system.

The fsck command checks the consistency of the new file system, reports any problems, and
prompts you before it repairs the problems. For more information on the fsck command, see
Chapter 21, "Checking UFS File System Consistency (Tasks)" or fsck(1M).

Example 17-1 Creating a UFS File System

The following example shows how to create a UFS file system on /dev/rdsk/c0t1d0s7.

 # newfs /dev/rdsk/c0t1d0s7

/dev/rdsk/c0t1d0s7: 725760 sectors in 720 cylinders of 14 tracks, 72 sectors
 354.4MB in 45 cyl groups (16 c/g, 7.88MB/g, 3776 i/g)

super-block backups (for fsck -F ufs -o b=#) at:
32, 16240, 3248, 48656, 64864, 81872, 97280, 113488, 129696, 145904, 162112,
178320, 194528, 210736, 226944, 243152, 258080, 274288, 290496, 306704,
322912, 339120, 355328, 371536, 387744, 403952, 420160, 436368, 452576,
468784, 484992, 501200, 516128, 532336, 548544, 564752, 580960, 597168,
613376, 629584, 645792, 662000, 678208, 694416, 710624,

 fsck /dev/rdsk/c0t1d0s7

 #

More Information After You Create a UFS File System ...

To mount the UFS file system and make it available, go to Chapter 18, “Mounting and
Unmounting File Systems (Tasks).”
How to Create a Multiterabyte UFS File System

Support for a multiterabyte UFS file system assumes the availability of multiterabyte LUNs, provided as Solaris Volume Manager or VxVM volumes, or as physical disks greater than 1 terabyte.

Before you can create a multiterabyte UFS file system, verify that you have done either of the following:

- Created a multiterabyte disk partition by using the format utility or the Solaris installation utilities
- Set up a multiterabyte volume with Solaris Volume Manager

For more information about multiterabyte UFS file systems, see "64-bit: Support of Multiterabyte UFS File Systems" on page 322.

1. Become superuser.

2. Create a multiterabyte UFS file system on a logical volume.

For example, this command creates a UFS file system for a 1.8 terabyte volume:

```
# newfs /dev/md/rdsk/d99
newfs: construct a new file system /dev/md/rdsk/d99: (y/n)? y
/dev/md/rdsk/d99: 3859402752 sectors in 628158 cylinders of 48 tracks, 128 sectors
188474.0MB in 4393 cyl groups (143 c/g, 429.0MB/g, 448 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 878752, 1757472, 2636192, 3514912, 4393632, 5272352, 6151072, 702...
Initializing cylinder groups:
```

```
super-block backups for last 10 cylinder groups at:
3850872736, 3851751456, 3852630176, 3853508896, 3854387616, 3855266336, 3856145056, 3857023776, 3857902496, 3858781216,
```

```
#
```

3. Verify the integrity of the newly created file system.

For example:

```
# fsck /dev/md/rdsk/d99
** /dev/md/rdsk/d99
** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
2 files, 2 used, 241173122 free (0 frags, 241173122 blocks, 0.0%
```
fragmentation)
#

4 **Mount and verify the newly created file system.**

For example:

```
# mount /dev/md/dsk/d99 /bigdir
# df -h /bigdir
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>size</th>
<th>used</th>
<th>avail</th>
<th>capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/md/dsk/d99</td>
<td>1.8T</td>
<td>64M</td>
<td>1.8T</td>
<td>1%</td>
<td>/bigdir</td>
</tr>
</tbody>
</table>

▼ **How to Expand a Multiterabyte UFS File System**

After a multiterabyte UFS file system is created, you can use the `growfs` command to expand the file system. For example, using the file system that was created for the volume in the preceding procedure, you can add another disk to this volume. Then, expand the file system.

1 **Become superuser.**

2 **Add another disk to the volume.**

For example:

```
# metattach d99 c4t5d0s4
d99: component is attached
```

```
# metastat
d99: Concat/Stripe
    Size: 5145882624 blocks (2.4 TB)
    Stripe 0:
        Device     Start Block  Dbase  Reloc
        c0t1d0s4   36864       Yes   Yes
    Stripe 1:
        Device     Start Block  Dbase  Reloc
        c3t7d0s4   0            No    Yes
    Stripe 2:
        Device     Start Block  Dbase  Reloc
        c1t1d0s4   0            No    Yes
    Stripe 3:
        Device     Start Block  Dbase  Reloc
        c4t5d0s4   0            No    Yes
```

3 **Expand the file system.**

For example:

```
# growfs -v /dev/md/rdsk/d99
/usr/lib/fs/ufs/mkfs -G /dev/rdsk/d99 5145882624
/dev/md/rdsk/d99: 5145882624 sectors in 837546 cylinders of 48 tracks,
```
Mount and verify the expanded file system.

For example:
mount /dev/md/dsk/d99 /bigdir
df -h /bigdir

Filesystem size used avail capacity Mounted on
/dev/md/dsk/d99 2.4T 64M 2.4T 1% /bigdir

How to Expand a UFS File System to a Multiterabyte UFS File System

Use the following procedure to expand a UFS file system to greater than 1 terabyte in size. This procedure assumes that the newfs -T option was used initially to create the UFS file system.

1. Become superuser.

2. Identify the size of the current disk or volume.

For example, the following volume is 800 gigabytes:
metastat d98
d98: Concat/Stripe
 Size: 1677754368 blocks (800 GB)
 Stripe 0:
 Device Start Block Dbase Reloc
c011d0s4 0 No Yes
 Stripe 1:
 Device Start Block Dbase Reloc
c317d0s4 0 No Yes

3. Increase the volume to greater than 1 terabyte.

For example:
metattach d98 c1t1d0s4
d98: component is attached
metastat d98

d98: Concat/Stripe

Size: 2516631552 blocks (1.2 TB)

Stripe 0:

<table>
<thead>
<tr>
<th>Device</th>
<th>Start Block</th>
<th>Dbase</th>
<th>Reloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0t1d0s4</td>
<td>0</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Stripe 1:

<table>
<thead>
<tr>
<th>Device</th>
<th>Start Block</th>
<th>Dbase</th>
<th>Reloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>c3t7d0s4</td>
<td>0</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Stripe 2:

<table>
<thead>
<tr>
<th>Device</th>
<th>Start Block</th>
<th>Dbase</th>
<th>Reloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1t1d0s4</td>
<td>0</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

4 Expand the UFS file system for the disk or volume to greater than 1 terabyte.

For example:

```
growfs -v /dev/md/rdsk/d98
/usr/lib/fs/ufs/mkfs -G /dev/md/rdsk/d98 2516631552
/dev/md/rdsk/d98: 2516631552 sectors in 68268 cylinders of 144 tracks, 256 sectors
1228824.0MB in 2731 cyl groups (25 c/g, 450.00MB/g, 448 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 921888, 1843744, 2765600, 3687456, 4609312, 5531168, 6453024, 737...
8296736,
Initializing cylinder groups:
......................................................
super-block backups for last 10 cylinder groups at:
2507714848, 2508636704, 2509558560, 2510480416, 2511402272, 2512324128,
2513245984, 2514167840, 2515089696, 2516011552,
```

5 Mount and verify the expanded file system.

For example:

```
# mount /dev/md/dsk/d98 /datadir
# df -h /datadir
```

Filesystem size used avail capacity Mounted on
/dev/md/dsk/d98 1.2T 64M 1.2T 1% /datadir

Troubleshooting Multiterabyte UFS File System Problems

Use the following error messages and solutions to troubleshoot problems with multiterabyte UFS file systems.
Creating a Temporary File System (TMPFS)

Error Message (similar to the following):

```
    mount: /dev/rdsk/c0t0d0s0 is not this ftype.
```

Cause
You attempted to mount a UFS file system that is greater than 1 terabyte on a system running a Solaris release prior to the Solaris 10 release.

Solution
Mount a UFS file system that is greater than 1 terabyte on a system running the Solaris 10 or later release.

Error Message

"File system was not set up with the multi-terabyte format." "Its size cannot be increased to a terabyte or more."

Cause
You attempted to expand a file system that was not created by using the `newfs -T` command.

Solution

1. Back up the data for the file system that you want to expand to greater than 1 terabyte.
2. Re-create the file system by using the `newfs` command to create a multiterabyte file system.
3. Restore the backup data into the newly created file system.

Creating a Temporary File System (TMPFS)

A temporary file system (TMPFS) uses local memory for file system reads and writes, which is typically much faster than reads and writes in a UFS file system. TMPFS file systems can improve system performance by saving the cost of reading and writing temporary files to a local disk or across the network. Files in TMPFS file systems do not survive across reboots or unmounts.

If you create multiple TMPFS file systems, be aware that they all use the same system resources. Files created under one TMPFS file system use up space available for any other TMPFS file system, unless you limit TMPFS sizes by using the `-o size` option of the `mount` command.

For more information, see the `tmpfs(7FS)`.
How to Create and Mount a TMPFS File System

1. Become superuser or assume an equivalent role.

2. Create the directory that you want to mount as the TMPFS file system, if necessary.

   ```bash
   # mkdir /mount-point
   ```

 where `mount-point` is the directory on which the TMPFS file system is mounted.

3. Mount the TMPFS file system.

   ```bash
   # mount -F tmpfs [-o size=number] swap mount-point
   ```

 `-o size=number` Specifies the size limit of the TMPFS file system in Mbytes.
 `mount-point` Specifies the directory on which the TMPFS file system is mounted.

 To set up the system to automatically mount a TMPFS file system at boot time, see Example 17–3.

4. Verify that the TMPFS file system has been created.

   ```bash
   # mount -v
   ```

Example 17–2 Creating and Mounting a TMPFS File System

The following example shows how to create, mount, and limit the size of the TMPFS file system, `/export/reports`, to 50 Mbytes.

```bash
# mkdir /export/reports
# chmod 777 /export/reports
# mount -F tmpfs -o size=50m swap /export/reports
# mount -v
```

Example 17–3 Mounting a TMPFS File System at Boot Time

You can set up the system to automatically mount a TMPFS file system at boot time by adding an `/etc/vfstab` entry. The following example shows an entry in the `/etc/vfstab` file that mounts `/export/test` as a TMPFS file system at boot time. Because the `size=number` option is not specified, the size of the TMPFS file system on `/export/test` is limited only by the available system resources.

```bash
swap /export/test tmpfs - yes -
```

For more information on the `/etc/vfstab` file, see “Field Descriptions for the `/etc/vfstab` File” on page 350.
Creating and Mounting a Loopback File System (LOFS)

An LOFS file system is a virtual file system that provides an alternate path to an existing file system. When other file systems are mounted onto an LOFS file system, the original file system does not change.

For more information, see the `lofs(7FS)`.

Note – Be careful when creating LOFS file systems. Because LOFS file systems are virtual file systems, the potential for confusing both users and applications is enormous.

How to Create and Mount an LOFS File System

1. Become superuser or assume an equivalent role.
2. Create the directory you want to mount as an LOFS file system, if necessary.
   ```
   # mkdir loopback-directory
   ```
3. Grant the appropriate permissions and ownership on the newly created directory.
4. Create the mount point where you want to mount the LOFS file system, if necessary.
   ```
   # mkdir /mount-point
   ```
5. Mount the LOFS file system.
   ```
   # mount -F lofs loopback-directory /mount-point
   loopback-directory Specifies the file system to be mounted on the loopback mount point.
   /mount-point Specifies the directory on which to mount the LOFS file system.
   ```
6. Verify that the LOFS file system has been mounted.
   ```
   # mount -v
   ```

Example 17–4 Creating and Mounting an LOFS File System

The following example shows how to create, mount, and test new software in the /new/dist directory as a loopback file system without actually having to install it.

```
# mkdir /tmp/newroot
# mount -F lofs /new/dist /tmp/newroot
# chroot /tmp/newroot newcommand
```
You can set up the system to automatically mount an LOFS file system at boot time by adding an entry to the end of the /etc/vfstab file. The following example shows an entry in the /etc/vfstab file that mounts an LOFS file system for the root (/) file system on /tmp/newroot.

```
/ - /tmp/newroot lofs - yes -
```

Ensure that the loopback entries are the last entries in the /etc/vfstab file. Otherwise, if the /etc/vfstab entry for a loopback file system precedes the file systems to be included in it, the loopback file system cannot be mounted.

See Also For more information on the /etc/vfstab file, see “Field Descriptions for the /etc/vfstab File” on page 350.
Mounting and Unmounting File Systems (Tasks)

This chapter describes how to mount and unmount file systems in the Solaris OS.

This is a list of the step-by-step instructions in this chapter.

- “How to Determine Which File Systems Are Mounted” on page 352
- “How to Add an Entry to the /etc/vfstab File” on page 353
- “How to Mount a File System (/etc/vfstab File)” on page 354
- “How to Mount a UFS File System (mount Command)” on page 355
- “How to Mount a UFS File System Without Large Files (mount Command)” on page 356
- “How to Mount an NFS File System (mount Command)” on page 357
- “x86: How to Mount a PCFS (DOS) File System From a Hard Disk (mount Command)” on page 358
- “How to Verify a File System is Unmounted” on page 360
- “How to Stop All Processes Accessing a File System” on page 360
- “How to Unmount a File System” on page 361

Overview of Mounting File Systems

After you create a file system, you need to make it available to the system so that you can use it. You make a file system available by mounting it, which attaches the file system to the system directory tree at the specified mount point. The root (/) file system is always mounted.

The following table provides guidelines on mounting file systems based on how you use them.

<table>
<thead>
<tr>
<th>Mount Type Needed</th>
<th>Suggested Mount Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local or remote file systems that need to be mounted infrequently</td>
<td>The <code>mount</code> command that you type manually from the command line.</td>
</tr>
</tbody>
</table>
Overview of Mounting File Systems

<table>
<thead>
<tr>
<th>Mount Type Needed</th>
<th>Suggested Mount Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local file systems that need to be mounted frequently</td>
<td>The /etc/vfstab file, which mounts the file system automatically when the system is booted in multiuser state.</td>
</tr>
</tbody>
</table>
| Remote file systems, such as home directories, that need to be mounted frequently | ■ The /etc/vfstab file, which automatically mounts the file system when the system is booted in multiuser state.
■ AutoFS, which automatically mounts the file system when you access it or unmounts the file system when you change to another directory.
To enhance performance, you can also cache the remote file systems by using the CacheFS file system. |

You can mount removable media that contains a file system by inserting the media into the drive and running the `volcheck` command, if necessary. For more information on mounting removable media, see Chapter 1, “Managing Removable Media (Overview).”

Commands for Mounting and Unmounting File Systems

The following table lists the commands in the `/usr/sbin` directory that you use to mount and unmount file systems.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mount</code></td>
<td>Mounts file systems and remote resources.</td>
<td><code>mount(1M)</code></td>
</tr>
<tr>
<td><code>mountall</code></td>
<td>Mounts all file systems that are specified in the /etc/vfstab file. The <code>mountall</code> command runs automatically when the system enters multiuser mode.</td>
<td><code>mountall(1M)</code></td>
</tr>
<tr>
<td><code>umount</code></td>
<td>Unmounts file systems and remote resources.</td>
<td><code>umount(1M)</code></td>
</tr>
<tr>
<td><code>umountall</code></td>
<td>Unmounts all file systems that are specified in the /etc/vfstab file.</td>
<td><code>umountall(1M)</code></td>
</tr>
</tbody>
</table>

Keep the following key points in mind when using the `mount` and `mountall` commands:

■ The `mount` and `mountall` commands cannot mount a read/write file system that has known inconsistencies. If you receive an error message from the `mount` or `mountall` command, you might need to check the file system. See Chapter 21, “Checking UFS File System Consistency (Tasks)” for information on how to check the file system.
- The `umount` and `umountall` commands do not unmount a file system that is busy. A file system is considered busy if one of the following is true:
 - A user is accessing a file or directory in the file system.
 - A program has a file open in that file system.
 - The file system is shared.
- You can use the `remount` option when remounting from read-only access to read-write access only. You cannot remount from read-write access to read-only access.

Commonly Used Mount Options

The following table describes the commonly used options that you can specify with the `mount -o` option. If you specify multiple options, separate them with commas (no spaces). For example, `-o ro,nosuid`.

For a complete list of mount options for each file system type, refer to the specific mount man page (for example, `mount_ufs(1M)`).

TABLE 18-2 Commonly Used -o Mount Options

<table>
<thead>
<tr>
<th>mount Option</th>
<th>File System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bg</td>
<td>fg</td>
<td>NFS</td>
</tr>
<tr>
<td>hard</td>
<td>soft</td>
<td>NFS</td>
</tr>
<tr>
<td>intr</td>
<td>nointr</td>
<td>NFS</td>
</tr>
<tr>
<td>largefiles</td>
<td>nolargefiles</td>
<td>UFS</td>
</tr>
</tbody>
</table>
Overview of Mounting File Systems

<table>
<thead>
<tr>
<th>mount Option</th>
<th>File System</th>
<th>Description</th>
</tr>
</thead>
</table>
| logging | UFS | Enables or disables logging for the file system. UFS logging is the process of storing transactions (changes that comprise a complete UFS operation) into a log before the transactions are applied to the UFS file system. Logging helps prevent UFS file systems from becoming inconsistent, which means fsck can be bypassed. Bypassing fsck reduces the time to rebootstrap a system if it crashes, or after a system is shut down uncleanly.
 The log is allocated from free blocks on the file system, and is sized at about 1 Mbyte per 1 Gbyte of file system, up to a maximum of 64 Mbytes. The default is logging. |
| atime | UFS | Suppresses access time updates on files, except when they coincide with updates to the time of the last file status change or the time of the last file modification. For more information, see stat(2). This option reduces disk activity on file systems where access times are unimportant (for example, a Usenet news spool). The default is normal access time (atime) recording. |
| remount | All | Changes the mount options associated with an already-mounted file system. This option can generally be used with any option except ro. However, what can be changed with this option depends on the file system type. |
| retry=n | NFS | Retries the mount operation when it fails. n is the number of times to retry. |
| ro | CacheFS, NFS, PCFS, UFS, HSFS | Specifies read/write (rw) or read-only (ro). If you do not specify this option, the default is rw. The default option for HSFS is ro. |
| suid | CacheFS, HSFS, NFS, UFS | Allows or disallows setuid execution. The default is to allow setuid execution. |

Field Descriptions for the /etc/vfstab File

An entry in the /etc/vfstab file has seven fields, which are described in the following table.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device to mount</td>
<td>This field identifies one of the following:</td>
</tr>
<tr>
<td></td>
<td>- The block device name for a local UFS file system (for example, /dev/dsk/c0t0d0s0).</td>
</tr>
<tr>
<td></td>
<td>- The resource name for a remote file system (for example, myserver:/export/home). For more information about NFS, see System Administration Guide: IP Services.</td>
</tr>
<tr>
<td></td>
<td>- The block device name of the slice on which to swap (for example, /dev/dsk/c0t3d0s1).</td>
</tr>
<tr>
<td></td>
<td>- A directory for a virtual file system.</td>
</tr>
<tr>
<td>device to fsck</td>
<td>The raw (character) device name that corresponds to the UFS file system identified by the device to mount field (for example, /dev/dsk/c0t0d0s0). This field determines the raw interface that is used by the fsck command. Use a dash (-) when there is no applicable device, such as for a read-only file system or a remote file system.</td>
</tr>
<tr>
<td>mount point</td>
<td>Identifies where to mount the file system (for example, /usr).</td>
</tr>
<tr>
<td>FS type</td>
<td>Identifies the type of file system.</td>
</tr>
<tr>
<td>fsck pass</td>
<td>The pass number used by the fsck command to decide whether to check a file system. When the field contains a dash (-), the file system is not checked. When the field contains a zero, UFS file systems are not checked. However, non-UFS file systems are checked. When the field contains a value greater than zero, the file system is always checked. All file systems with a value of 1 in this field are checked one at a time in the order they appear in the /etc/vfstab file. When the fsck command is run on multiple UFS file systems that have fsck pass values greater than 1 and the preen option (-o p) is used, the fsck command automatically checks the file systems on different disks in parallel to maximize efficiency. Otherwise, the value of the pass number does not have any effect.</td>
</tr>
<tr>
<td>mount at boot</td>
<td>Set to yes or no for whether the file system should be automatically mounted by the mountall command when the system is booted. Note that this field has nothing to do with AutoFS. The root (/), /usr and /var file systems are not mounted from the /etc/vfstab file initially. This field should always be set to no for these file systems and for virtual file systems such as /proc and /dev/fd.</td>
</tr>
<tr>
<td>mount options</td>
<td>A list of comma-separated options (with no spaces) that are used for mounting the file system. Use a dash (-) to indicate no options. For a list of commonly used mount options, see Table 18–2.</td>
</tr>
</tbody>
</table>
Note – You must have an entry in each field in the /etc/vfstab file. If there is no value for a field, be sure to specify a dash (-). Otherwise, the system might not boot successfully. Similarly, white space should not be used as a field value.

Mounting File Systems

The following sections describe how to mount a file system by adding an entry in the /etc/vfstab file or by using the mount command from the command line.

How to Determine Which File Systems Are Mounted

You can determine which file systems are already mounted by using the mount command.

$ mount [-v]

The -v displays the list of mounted file systems in verbose mode.

EXAMPLE 18–1 Determining Which File Systems Are Mounted

This example shows how to use the mount command to display information about the file systems that are currently mounted.

$ mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/intr/largefiles/xattr/onerror=...
/devices on /devices read/write/setuid/dev=46c0000 on Thu Sep ...
/system/contract on ctrfs read/write/setuid/devices/dev=43c0001 ...
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/largefiles/xattr/...
/proc on /proc read/write/setuid/dev=4700000 on Thu Sep 2 ...
/etc/mnttab on mnttab read/write/setuid/dev=47c0000 on Thu Sep 2 ...
/etc/svc/volatile on swap read/write/setuid/devices/xattr=44800001 ...
/system/object on objfs read/write/setuid/devices/dev=44c0001 ...
/dev/fd on fd read/write/setuid/dev=4800000 on Thu Sep 2 ...
/var/run on swap read/write/xattr=1 on Thu Sep 2 ...
tmp on swap read/write/setuid/xattr=1 on Thu Sep 2 ...
/stuff on /dev/dsk/c0t0d0s5 read/write/setuid/intr/largefiles/xattr...
/export/home on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles/...
/home/rimmer on pluto:/export/home/rimmer remote/read/write/setuid/xattr/...
$
How to Add an Entry to the `/etc/vfstab` File

1. Become superuser or assume an equivalent role.

2. Create a mount point for the file system to be mounted, if necessary.
   ```
   # mkdir /mount-point
   ```
 There must be a mount point on the local system to mount a file system. A **mount point** is a directory to which the mounted file system is attached.

3. Edit the `/etc/vfstab` file and add an entry. Ensure that you do the following:
 a. Separate each field with white space (a space or a tab).
 b. Specify a dash (`-`) if a field has no contents.
 c. Save the changes.

 For detailed information about the `/etc/vfstab` field entries, see Table 18–3.

 Note – Because the root (`/`) file system is mounted read-only by the kernel during the boot process, only the `remount` option (and options that can be used in conjunction with `remount`) affect the root (`/`) entry in the `/etc/vfstab` file.

Example 18–2 Adding an Entry to the `/etc/vfstab` File

The following example shows how to mount the disk slice `/dev/dsk/c0t3d0s7` as a UFS file system to the mount point `/files1`. The raw character device `/dev/rdsk/c0t3d0s7` is specified as the device to `fsck`. The `fsck pass` value of 2 means that the file system will be checked, but not sequentially.

```
#device          device       mount   FS    fsck   mount   mount
#to mount        to fsck      point   type   pass   at boot  options
#
/dev/dsk/c0t3d0s7 /dev/rdsk/c0t3d0s7 /files1 ufs 2 yes -
```

The following example shows how to mount the `/export/man` directory from the system `pluto` as an NFS file system on mount point `/usr/man`. Neither a device to `fsck` nor a `fsck pass` is specified because it's an NFS file system. In this example, mount options are `ro` (read-only) and `soft`.

```
#device          device       mount   FS    fsck   mount   mount
#to mount        to fsck      point   type   pass   at boot  options
pluto:/export/man - /usr/man nfs - yes ro,soft
```
The following example shows how to mount the root (/) file system on a loopback mount point, /tmp/newroot. LOFS file systems must always be mounted after the file systems that are in the LOFS file system.

<table>
<thead>
<tr>
<th>#device</th>
<th>device</th>
<th>mount</th>
<th>FS</th>
<th>fsck</th>
<th>mount</th>
<th>mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>#to mount</td>
<td>to fsck</td>
<td>point</td>
<td>type</td>
<td>pass</td>
<td>at boot</td>
<td>options</td>
</tr>
<tr>
<td>/</td>
<td>-</td>
<td>/tmp/newroot</td>
<td>lofs</td>
<td>-</td>
<td>yes</td>
<td>-</td>
</tr>
</tbody>
</table>

▼ How to Mount a File System (/etc/vfstab File)

1. Become superuser or assume an equivalent role.

2. Mount a file system listed in the /etc/vfstab file.


   ```
   # mount /mount-point
   
   where /mount-point specifies an entry in the mount point or device to mount field in the /etc/vfstab file. It is usually easier to specify the mount point.
   ```

Example 18–3 Mounting a File System (/etc/vfstab File)

The following example shows how to mount the /usr/dist file system that is listed in the /etc/vfstab file.

```sh
# mount /usr/dist
```

Example 18–4 Mounting All File Systems (/etc/vfstab File)

The following example shows the messages that are displayed when you use the mountall command and the file systems are already mounted.

```sh
# mountall
/dev/rdsk/c0t0d0s7 already mounted
mount: /tmp already mounted
mount: /dev/dsk/c0t0d0s7 is already mounted, /export/home is busy,
      or the allowable number of mount points has been exceeded
```

When using the mountall command, all the file systems with a device to fsck entry are checked and fixed, if necessary, before they are mounted.

The following example shows how to mount all the local systems that are listed in the /etc/vfstab file.

```sh
# mountall -l
# mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/intr/largefiles/xattr/onerror=...
```
The following example shows how to mount all the remote file systems that are listed in the /etc/vfstab file.

```
# mountall -r
# mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/dev=46c0000 on Thu Sep ... /devices on /devices read/write/setuid/dev=46c0000 on Thu Sep ...
/system/contract on ctrfs read/write/setuid/devices/dev=43c0001 ...
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/intr/largefiles/xattr/... /proc on /proc read/write/setuid/dev=4700000 on Thu Sep 2 ...
/etc/mnttab on mnttab read/write/setuid/dev=47c0000 on Thu Sep 2 ...
/etc/svc/volatile on swap read/write/setuid/devices/xattr/dev=4480001 ...
/system/object on objfs read/write/setuid/devices/dev=44c0001 ...
/dev/fd on fd read/write/setuid/dev=4800000 on Thu Sep 2 ...
/var/run on swap read/write/setuid/xattr/dev=1 on Thu Sep 2 ...
tmp on swap read/write/setuid/xattr/dev=2 on Thu Sep 2 ...
/stuff on /dev/dsk/c0t0d0s5 read/write/setuid/intr/largefiles/xattr ...
/export/home on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles ...
/etc/mnttab on mnttab read/write/setuid/dev=47c0000 on Thu Sep 2 ...
```

How to Mount a UFS File System (**mount** Command)

1. **Become superuser or assume an equivalent role.**

2. **Create a mount point for the file system to be mounted, if necessary.**
   ```
   # mkdir /mount-point
   ```
 There must be a mount point on the local system to mount a file system. A *mount point* is a directory to which the mounted file system is attached.

3. **Mount the UFS file system.**
   ```
   # mount [-o mount-options] /dev/dsk/device-name /mount-point
   ```
-o mount-options Specifies mount options that you can use to mount a UFS file system. For a list of options, see Table 18–2 or mount_ufs(1M).

/dev/dsk/device-name Specifies the disk device name for the slice that contains the file system (for example, /dev/dsk/c0t3d0s7). To view slice information for a disk, see "How to Display Disk Slice Information" on page 215.

/mount-point Specifies the directory on which to mount the file system.

Example 18–5 Mounting a UFS File System (mount Command)

The following example shows how to mount /dev/dsk/c0t3d0s7 on the /files1 directory.

mount /dev/dsk/c0t3d0s7 /files1

How to Mount a UFS File System Without Large Files (mount Command)

When you mount a file system, the largefiles option is selected by default. This option enables you to create files larger than 2 Gbytes. Once a file system contains large files, you cannot remount the file system with the nolargefiles option or mount it on a system that is running Solaris 2.6 or compatible versions, until you remove any large files and run the fsck command to reset the state to nolargefiles.

This procedure assumes that the file system is in the /etc/vfstab file.

1 Become superuser or assume an equivalent role.

2 Create a mount point for the file system to be mounted, if necessary.
 # mkdir /mount-point

 There must be a mount point on the local system to mount a file system. A mount point is a directory to which the mounted file system is attached.

3 Ensure that no large files exist in the file system.
 # cd /mount-point
 # find . -xdev -size +20000000 -exec ls -l {} \;

 where /mount-point identifies the mount point of the file system you want to check for large files.

4 Remove or move any large files in this file system to another file system, if necessary.
5 Unmount the file system.
 # umount /mount-point

6 Reset the file system state.
 # fsck /mount-point

7 Remount the file system with the `nolargefiles` option.
 # mount -o nolargefiles /mount-point

Example 18–6 Mounting a File System Without Large Files (mount Command)

The following example shows how to check the `/datab` file system and remount it with the nolargefiles option.

```
# cd /datab
# find . -xdev -size +20000000 -exec ls -l {} \;
# umount /datab
# fsck /datab
# mount -o nolargefiles /datab
```

▼ How to Mount an NFS File System (mount Command)

1 Become superuser or assume an equivalent role.

2 Create a mount point for the file system to be mounted, if necessary.
 # mkdir /mount-point

 There must be a mount point on the local system to mount a file system. A mount point is a directory to which the mounted file system is attached.

3 Ensure that the resource (file or directory) is available from a server.

 To mount an NFS file system, the resource must be made available on the server by using the share command. For information on how to share resources, see “About the NFS Service” in System Administration Guide: Network Services.

4 Mount the NFS file system.
 # mount -F nfs [-o mount-options] server:/directory /mount-point

 `-o mount-options` Specifies mount options that you can use to mount an NFS file system. See Table 18–2 for the list of commonly used mount options or mount_nfs(1M) for a complete list of options.
server:/directory Specifies the server’s host name that contains the shared resource, and the path to the file or directory to mount.

/mount-point Specifies the directory on which to mount the file system.

Example 18–7 Mounting an NFS File System (mount Command)
The following example shows how to mount the /export/packages directory on /mnt from the server pluto.

```
# mount -F nfs pluto:/export/packages /mnt
```

▼ x86: How to Mount a PCFS (DOS) File System From a Hard Disk (mount Command)
Use the following procedure to mount a PCFS (DOS) file system from a hard disk.

1 Become superuser or assume an equivalent role.

2 Create a mount point for the file system to be mounted, if necessary.
 # mkdir /mount-point
 There must be a mount point on the local system to mount a file system. A mount point is a directory to which the mounted file system is attached.

3 Mount the PCFS file system.
 # mount -F pcfs [-o rw | ro] /dev/dsk/device-name:logical-drive /mount-point

 -o rw | ro Specifies that you can mount a PCFS file system read/write (rw) or read-only (ro). If you do not specify this option, the default is rw.

 /dev/dsk/device-name Specifies the device name of the whole disk (for example, /dev/dsk/c0t0d0p0).

 logical-drive Specifies either the DOS logical drive letter (c through z) or a drive number (1 through 24). Drive c is equivalent to drive 1 and represents the primary DOS slice on the drive. All other letters or numbers represent DOS logical drives within the extended DOS slice.

 /mount-point Specifies the directory on which to mount the file system.

 Note that the device-name and logical-drive must be separated by a colon.
The following example shows how to mount the logical drive in the primary DOS slice on the /pcfs/c directory.

```
# mount -F pcfs /dev/dsk/c0t0d0p0:c /pcfs/c
```

The following example shows how to mount read-only the first logical drive in the extended DOS slice on the /mnt directory.

```
# mount -F pcfs -o ro /dev/dsk/c0t0d0p0:2 /mnt
```

Unmounting File Systems

The unmounting of a file system removes it from the file system mount point, and deletes the entry from the /etc/mnttab file. Some file system administration tasks cannot be performed on mounted file systems. You should unmount a file system when the following occurs:

- The file system is no longer needed or has been replaced by a file system that contains more current software.
- You need to check and repair the file system by using the fsck command. For more information about the fsck command, see Chapter 21, “Checking UFS File System Consistency (Tasks).”

File systems should be unmounted before doing a complete backup. For more information about doing backups, see Chapter 24, "Backing Up Files and File Systems (Tasks)."

Note – File systems are automatically unmounted as part of the system shutdown procedure.

In an emergency situation, you can use the umount -f option to forcibly unmount a busy file system. This practice is not recommended under normal circumstances because the unmounting of a file system with open files could cause a loss of data. This option is only available for UFS and NFS file systems.

Prerequisites for Unmounting File Systems

The prerequisites for unmounting file systems include the following:

- You must be superuser or assume an equivalent role.
A file system must be available for unmounting. You cannot unmount a file system that is busy. A file system is considered busy if a user is accessing a directory in the file system, if a program has a file open in that file system, or if the file system is being shared. You can make a file system available for unmounting by doing the following:

- Changing to a directory in a different file system.
- Logging out of the system.
- Using the `fuser` command to list all processes that are accessing the file system and to stop them, if necessary. For more details, see "How to Stop All Processes Accessing a File System" on page 360.

Notify users if you need to unmount a file system that they are using.

- Unsharing the file system. For information about unsharing a file system, see `unshare(1M)`.

How to Verify a File System is Unmounted

To verify that you unmounted a file system or a number of file systems, examine the output from the `mount` command.

```
$ mount | grep unmounted-file-system
```

How to Stop All Processes Accessing a File System

1. Become superuser or assume an equivalent role.

2. List all the processes that are accessing the file system so that you know which processes you are going to stop.

   ```
   # fuser -c [ -u ] /mount-point
   
   -c            Reports on files that are mount points for file systems and any files within those mounted file systems.
   
   -u            Displays the user login name for each process ID.
   
   /mount-point  Specifies the name of the file system for which you want to stop processes.
   ```

3. Stop all processes that are accessing the file system.

   ```
   # fuser -c -k /mount-point
   
   A SIGKILL is sent to each process that is using the file system.
   ```
Note – You should not stop a user’s processes without first warning the user.

4 Verify that no processes are accessing the file system.

 # fuser -c /mount-point

Example 18–9 Stopping All Processes Accessing a File System

The following example shows how to stop process 4006c that is using the /export/home file system.

 # fuser -c /export/home
 /export/home: 4006c
 # fuser -c -k /export/home
 /export/home: 4006c
 # fuser -c /export/home
 /export/home:

How to Unmount a File System

Use the following procedure to unmount a file system, except for the root (/), /usr, or /var file systems.

Note – The root (/), /usr, and /var file systems can be unmounted only during a shutdown. The system needs these file systems to function.

1 Ensure that you have met the prerequisites listed in “Prerequisites for Unmounting File Systems” on page 359.

2 Unmount the file system.

 # umount /mount-point

where /mount-point is the name of the file system that you want to unmount. This can be one of the following:

- The directory name where the file system is mounted
- The device name path of the file system
- The resource for an NFS file system
- The loopback directory for an LOFS file system
Example 18-10 Unmounting a File System

The following example shows how to unmount a local home file system.

umount /export/home

The following example shows how to unmount the file system on slice 7.

umount /dev/dsk/c0t0d0s7

The following example shows how to forcibly unmount the /export file system.

umount -f /export

The following example shows how to unmount all file systems in the /etc/vfstab file, except for the root (/), /proc, /var, and /usr file systems.

umountall

All file systems are unmounted, except for those file systems that are busy.
This chapter describes how to set up and maintain CacheFS™ file systems.

This is a list of task maps in this chapter.

- “High-Level View of Using the CacheFS File System (Task Map)” on page 363
- “Creating and Mounting a CacheFS File System (Task Map)” on page 366
- “Maintaining a CacheFS File System (Task Map)” on page 371
- “Packing a Cached File System (Task Map)” on page 377
- “Collecting CacheFS Statistics (Task Map)” on page 386

For information on troubleshooting CacheFS errors, see “Troubleshooting cachefspack Errors” on page 382.

Note – For important information about NFS version 4 and the CacheFS software, see “NFS Version 4 and CacheFS Compatibility Issues” on page 315.

High-Level View of Using the CacheFS File System (Task Map)

Use this task map to identify all the tasks for using CacheFS file systems. Each task points to a series of additional tasks such as creating and mounting CacheFS file systems, and packing and maintaining the cache.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Create and mount a CacheFS file system.</td>
<td>Create the cache and mount the file system in the cache.</td>
<td>“Creating and Mounting a CacheFS File System (Task Map)” on page 366</td>
</tr>
</tbody>
</table>
Overview of the CacheFS File System

The CacheFS file system is a general purpose caching mechanism that improves NFS server performance and scalability by reducing server and network load. Designed as a layered file system, the CacheFS file system provides the ability to cache one file system on another file system. In an NFS environment, the CacheFS file system increases the client per server ratio, reduces server and network loads, and improves performance for clients on slow links, such as Point-to-Point Protocol (PPP).

How a CacheFS File System Works

You create a CacheFS file system on a client system so that file systems you cache can be accessed by the client locally instead of across the network. The following figure shows the relationship of the components that are involved in using CacheFS file systems.
The back filesystem is the filesystem that you specify to be mounted in the cache. A back file system can be either NFS or HSFS (High Sierra File System). When the user attempts to access files that are part of the back file system, those files are placed in the cache. The front file system is the file system that is mounted in the cache and is accessed from the local mount point. The front file system type must be UFS.

To the user, the initial request to access a file in a CacheFS file system might seem slow. However, subsequent uses of the same file are faster.

CacheFS File System Structure and Behavior

Each cache has a set of parameters that determines the cache structure and how it behaves. The parameters are set to the default values listed in the following table. The default values specify that the entire front file system is used for caching, which is the recommended method of caching file systems.

<table>
<thead>
<tr>
<th>CacheFS File System Parameter</th>
<th>Default Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxblocks</td>
<td>90 %</td>
<td>Sets the maximum number of blocks that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
<tr>
<td>minblocks</td>
<td>0 %</td>
<td>Sets the minimum number of blocks that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
</tbody>
</table>
TABLE 19–1 CacheFS FileSystem Parameters and Their Default Values (Continued)

<table>
<thead>
<tr>
<th>CacheFS FileSystem Parameter</th>
<th>Default Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshblocks</td>
<td>85 %</td>
<td>Sets the number of blocks that must be available in the front file system before a CacheFS file system can claim more than the blocks specified by minblocks.</td>
</tr>
<tr>
<td>maxfiles</td>
<td>90 %</td>
<td>Sets the maximum number of available inodes (number of files) that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
<tr>
<td>minfiles</td>
<td>0 %</td>
<td>Sets the minimum number of available inodes that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
<tr>
<td>threshfiles</td>
<td>85 %</td>
<td>Sets the number of inodes that must be available in the front file system before a CacheFS file system can claim more files than is specified in minfiles.</td>
</tr>
</tbody>
</table>

Typically, you should not change any of these parameter values. They are set to default values to achieve optimal cache behavior. However, you might want to modify the maxblocks and maxfiles values if you have some room in the front file system that is not used by the cache, and you want to use it for some other file system. You do so by using the cfsadmin command. For example:

$ cfsadmin -o maxblocks=60

Creating and Mounting a CacheFS File System (Task Map)

Use the procedures in this task map to create and mount a CacheFS file system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Share the file system to be cached.</td>
<td>Verify that the file system you want to cache is shared.</td>
<td>share(1M)</td>
</tr>
<tr>
<td>2. Create the cache.</td>
<td>Use the cfsadmin command to create the cache.</td>
<td>“How to Create the Cache” on page 367</td>
</tr>
<tr>
<td>3. Mount a file system in the cache.</td>
<td>Mount a file system in a cache by using one of the following methods:</td>
<td>“How to Mount a CacheFS File System (mount)” on page 368</td>
</tr>
<tr>
<td></td>
<td>Mount a CacheFS file system by using the mount command.</td>
<td></td>
</tr>
</tbody>
</table>
How to Create the Cache

1. Become superuser on the client system.

2. Create the cache.

   ```
   # cfsadmin -c /cache-directory
   ```

 where `cache-directory` indicates the name of the directory where the cache resides.

 For more information, see `cfsadmin(1M)`.

 Note – After you have created the cache, do not perform any operations within the cache directory itself. Doing so could cause conflicts within the CacheFS software.

Example 19–1 Creating the Cache

The following example shows how to create a cache in the `/local/mycache` directory by using the default cache parameter values.

```
# mkdir /local
# cfsadmin -c /local/mycache
```

Mounting a File System in the Cache

You specify a file system to be mounted in the cache so that users can locally access files in that file system. The files do not actually get placed in the cache until the user accesses the files.

The following table describes three ways to mount a CacheFS file system.

<table>
<thead>
<tr>
<th>Mount Type for CacheFS File System</th>
<th>Frequency of CacheFS Mount Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the <code>mount</code> command</td>
<td>Every time the system reboots in order to access the same file system.</td>
</tr>
</tbody>
</table>
Creating and Mounting a CacheFS File System (Task Map)

<table>
<thead>
<tr>
<th>Mount Type for CacheFS File System</th>
<th>Frequency of CacheFS Mount Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing the /etc/vfstab file</td>
<td>Only once. The /etc/vfstab file remains unchanged after the system reboots.</td>
</tr>
<tr>
<td>Using AutoFS</td>
<td>Only once. AutoFS maps remain unchanged after the system reboots.</td>
</tr>
</tbody>
</table>

Choose the method of mounting file systems that best suits your environment.

You can mount only file systems that are shared. For information on sharing file systems, see share(1M).

Note – The caching of the root (/) and /usr file systems is not supported in a CacheFS file system.

▼ How to Mount a CacheFS File System (*mount*)

1. **Become superuser on the client system.**

2. **Create the mount point, if necessary.**

   ```
   # mkdir /mount-point
   ```

 You can create the mount point from anywhere, but it must be a UFS file system. The CacheFS options used with the `mount` command, as shown in the next step, determine that the mount point you create is cached in the cache directory you specify.

3. **Mount a file system in the cache.**

   ```
   # mount -F cachefs -o backfstype=fstype,cachedir=/cache-directory[ ,options] /back-filesystem /mount-point
   ```

 - **fstype** Indicates the file system type of the back file system, which can be either NFS or HSFS.
 - **/cache-directory** Indicates the name of the UFS directory where the cache resides. This name is the same name you specified when you created the cache in "How to Create the Cache" on page 367.
 - **options** Specifies other mount options that you can include when you mount a file system in a cache. For a list of CacheFS mount options, see `mount_cachefs`(1M).
 - **/back-filesystem** Specifies the mount point of the back file system to cache. If the back file system is an NFS file system, you must specify the host name of the server.
from which you are mounting the file system and the name of the file system to cache, separated by a colon. For example, merlin:/data/abc.

/mount-point Indicates the directory where the file system is mounted.

4 Verify that the cache you created was actually mounted.

cachefsstat /mount-point

The /mount-point is the CacheFS file system that you created.

For example:

cachefsstat /docs

/docs

cache hit rate: 100% (0 hits, 0 misses)
consistency checks: 1 (1 pass, 0 fail)
modifies: 0
garbage collection: 0

If the file system was not mounted in the cache, an error message similar to the following is displayed:

cachefsstat /mount-point

cachefsstat: mount-point: not a cachefs mountpoint

For more information about the cachefsstat command, see “Collecting CacheFS Statistics” on page 386.

Example 19–2 Mounting a CacheFS File System (mount)

The following example shows how to mount the NFS file system merlin:/docs as a CacheFS file system named /docs in the cache named /local/mycache.

mkdir /docs
mount -F cachefs -o backfstype=nfs,cachedir=/local/mycache merlin:/docs /docs

The following example shows how to make a Solaris 9 SPARC™ CD (HSFS file system) available as a CacheFS file system named /cfssrc. Because you cannot write to the CD, the ro argument is specified to make the CacheFS file system read-only. This example assumes that the removable media services are not running.

mount -F hsfs -o ro /dev/dsk/c0t6d0s0 /sol9
mount -F cachefs -o backfstype=hsfs,cachedir=/cfs/cache,ro,noconst,backpath=/sol9 /dev/dsk/c0t6d0s0 /cfssrc
ls /cfssrc

Copyright Solaris_9
The following example shows how to mount a Solaris 9 SPARC CD as a CacheFS file system with vold running.

```
# mount -F cachefs -o backfstype=hsfs,cachedir=/cfs/cache,ro,noconst,
   backpath=/cdrom/sol_9_sparc/s0 /vol/dev/dsk/c0t2d0/sol_9_sparc/s0 /cfssrc
```

The following example shows how to mount a CD as a CacheFS file system with vold running.

```
# mount -F cachefs -o backfstype=hsfs,cachedir=/cfs/cache,ro,noconst,
   backpath=/cdrom/epson /vol/dev/dsk/c0t2d0/epson /drvrs
```

The following example uses the demandconst option to specify consistency checking on demand for the NFS CacheFS file system /docs, whose back file system is merlin:/docs. For more information, see "Consistency Checking of a CacheFS File System" on page 374.

```
# mount -F cachefs -o backfstype=nfs,cachedir=/local/mycache,demandconst merlin:/docs /docs
```

How to Mount a CacheFS File System (/etc/vfstab)

1. **Become superuser on the client system.**

2. **Using an editor, specify the file systems to be mounted in the /etc/vfstab file.**

 See the example that follows.

 For more information on the /etc/vfstab file, see "Field Descriptions for the /etc/vfstab File" on page 350.

3. **Mount the CacheFS file system.**

   ```
   # mount /mount-point
   Or, reboot the system.
   ```

Example 19–3 Mounting a CacheFS File System (/etc/vfstab)

The following example shows the /etc/vfstab entry for the /data/abc directory from the remote system starbug that is mounted in the cached directory, /opt/cache.

```
#device device mount FS fsck mount mount mount
#to mount to fsck point type pass at boot options
#
# starbug:/data/abc /local/abc /opt/cache cachefs 7 yes local-access,bg,
nosuid,demandconst,backfstype=nfs,cachedir=/opt/cache
```
How to Mount a CacheFS File System (AutoFS)

You can mount a file system in a cache with AutoFS by specifying the `-fstype=cachefs` mount option in your automount map. Note that the CacheFS mount options, for example, `backfstype` and `cachedir`, are also specified in the automount map.

For details on automount maps, see “Task Overview for Autofs Administration” in System Administration Guide: Network Services or `automount(1M)`.

1 Become superuser on the client system.

2 Using an editor, add the following line to the `auto_direct` map:
 `/mount-point -fstype=cachefs,cachedir=/directory,backfstype=nfs server:/file-system`

3 Using an editor, add the following line to the `auto_master` map:
 `/-`
 The `/` entry is a pointer to check the `auto_direct` map.

4 Reboot the system.

5 Verify that the entry was made correctly by changing to the file system you mounted in the cache, and then list the contents.
   ```
   # cd /filesystem
   # ls
   ```

Example 19–4 Mounting a CacheFS File System (AutoFS)

The following `auto_direct` entry automatically mounts the CacheFS file system in the `/docs` directory.

```
/docs -fstype=cachefs,cachedir=/local/mycache,backfstype=nfs merlin:/docs
```

Maintaining a CacheFS File System (Task Map)

After a CacheFS file system is set up, it requires little maintenance. Use the optional procedures in this task map if you need to perform maintenance tasks on your CacheFS file systems.
Maintaining a CacheFS File System

This section describes how to maintain a CacheFS file system.

If you are using the `/etc/vfstab` file to mount file systems, you modify the cache by editing the file system options in the `/etc/vfstab` file. If you are using AutoFS, you modify the cache by editing the file system options in the AutoFS maps.

Modifying a CacheFS File System

When you modify a file system in the cache, you need to delete the cache and then re-create it. You might also need to reboot your machine in single-user mode, depending on how your file systems are shared and accessed.

In the following example, the cache is deleted, re-created, and then mounted again by using `demandconst` option specified for the `/docs` file system.

```
# shutdown -g30 -y
  
  Root password for system maintenance (control-d to bypass):
  single-user privilege assigned to /dev/console.

  
  
```

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify a CacheFS file system.</td>
<td>Modify CacheFS file system behavior by unmounting, deleting, or re-creating the cache.</td>
<td>"Modifying a CacheFS File System" on page 372</td>
</tr>
<tr>
<td>Display CacheFS file system</td>
<td>Display information about CacheFS file systems by using the <code>cfsadmin</code> command.</td>
<td>"How to Display Information About a CacheFS File System" on page 373</td>
</tr>
<tr>
<td>information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform consistency checking.</td>
<td>Perform consistency checking on demand by using the <code>cfsadmin</code> command.</td>
<td>"How to Specify Cache Consistency Checking on Demand" on page 374</td>
</tr>
<tr>
<td>Delete a CacheFS file system.</td>
<td>Delete a CacheFS file system by using the <code>umount</code> command and the <code>cfsadmin</code> command.</td>
<td>"How to Delete a CacheFS File System" on page 374</td>
</tr>
<tr>
<td>Check the integrity of a CacheFS</td>
<td>Check the integrity of a CacheFS file system by using the <code>fsck_cachefs</code> command.</td>
<td>"How to Check the Integrity of a CacheFS File System" on page 376</td>
</tr>
<tr>
<td>file system.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Here is where you might be prompted to run fsck on the file system where the cache is located.

```
# fsck /local
# mount /local
# cfsadmin -d all /local/mymcache
# cfsadmin -c /local/mymcache
# init 6
```

console login:
password:
```
# mount -F cachefs -o backfstype=nfs,cachedir=/local/cache1,demandconst merlin:/docs /docs
```

\▼ \section*{How to Display Information About a CacheFS File System}

1. Become superuser on the client system.

2. Display information about all file systems cached under a specified cache.
```
# cfsadmin -l /cache-directory
```
where `/cache-directory` is the name of the directory where the cache resides.

\section*{Example 19–5} Displaying Information About CacheFS File Systems

The following example shows information about the `/local/mymcache` cache directory. In this example, the `/docs` file system is cached in `/local/mymcache`. The last line displays the name of the CacheFS file system.

```
# cfsadmin -l /local/mymcache
```
cfsadmin: list cache FS information
```
  maxblocks   90%
  minblocks   0%
  threshblocks 85%
  maxfiles    90%
  minfiles    0%
  threshfiles 85%
  maxfilesize 3MB
```
Consistency Checking of a CacheFS File System

To ensure that the cached directories and files remain current, the CacheFS software periodically checks the consistency of files stored in the cache. To check consistency, the CacheFS software compares the current modification time to the previous modification time. If the modification times are different, all data and attributes for the directory or file are purged from the cache. Then, new data and attributes are retrieved from the back file system.

Consistency Checking on Demand

Consistency checks can be performed only when you explicitly request checks for file systems that are mounted by using the -o demandconst option. If you mount a file system in a cache with this option, then use the cfsadmin command with the -s option to request a consistency check. By default, consistency checking is performed file by file as the files are accessed. If no files are accessed, no checks are performed. Using the -o demandconst option avoids the situation where the network is flooded with consistency checks.

For more information, see mount_cachefs(1M).

▼ How to Specify Cache Consistency Checking on Demand

1 Become superuser on the client system.

2 Mount the file system in the cache and specify cache consistency checking.
 # mount -F cachefs -o backfstype=nfs,cachedir=/directory,demandconst
 server:/file-system /mount-point

3 Initiate consistency checking on a specific CacheFS file system.
 # cfsadmin -s /mount-point

▼ How to Delete a CacheFS File System

1 Become superuser on the client system.

2 Unmount the CacheFS file system.
 # umount /mount-point
where /mount-point specifies the CacheFS file system that you want to delete.

3 Determine the name of the CacheFS file system (cache ID).

 # cfsadmin -l /cache-directory
 cfsadmin: list cache FS information
 maxblocks 90%
 minblocks 0%
 threshblocks 85%
 maxfiles 90%
 minfiles 0%
 threshfiles 85%
 maxfilesize 3MB

cache-ID
 #

4 Delete the CacheFS file system from the specified cache.

 # cfsadmin -d cache-ID /cache-directory

cache-ID Indicates the name of the CacheFS file system, which is the last line of the cfsadmin -l output. For more information, see “How to Display Information About a CacheFS File System” on page 373. You can delete all the CacheFS file systems in a particular cache by specifying all for cache-ID.

 /cache-directory Specifies the directory where the cache resides.

5 Verify that the CacheFS file system has been deleted.

 The cache ID of the file system you just deleted should be missing from the cfsadmin -l output.

 # cfsadmin -l /cache-directory
 cfsadmin: list cache FS information
 maxblocks 90%
 minblocks 0%
 threshblocks 85%
 maxfiles 90%
 minfiles 0%
 threshfiles 85%
 maxfilesize 3MB

 #

 For more information about the fields that are specified in the command output, refer to cfsadmin(1M).

6 Update the resource counts for the cache.

 # fsck -F cachefs /cache-directory

 For more information, see “How to Check the Integrity of a CacheFS File System” on page 376.
Deleting a CacheFS File System

The following example shows how to delete the file systems from the cache.

```bash
# umount /cfssrc
# cfsadmin -l /cfssrc
# cfsadmin -d _dev_dsk_c0t6d0s0:_cfssrc
# cfsadmin -l
# fsck -F cachefs /cache-directory
```

How to Check the Integrity of a CacheFS File System

Use the `fsck` command to check the integrity of CacheFS file systems. The CacheFS version of the `fsck` command automatically corrects problems without requiring user interaction. You should not need to run the `fsck` command manually for CacheFS file systems because the `fsck` command is run automatically at boot time or when the file system is mounted. If you want to manually check the integrity, you can use the following procedure.

For more information, see `fsck_cachefs(1M)`.

1. Become superuser on the client system.
2. Check the file systems in the specified cache.
   ```bash
   # fsck -F cachefs [-m -o noclean] /cache-directory
   
   -m Causes the `fsck` command to check a CacheFS file system without making any repairs.
   -o noclean Forces a check on the CacheFS file systems only. Does not make any repairs.
   
   /cache-directory Indicates the name of the directory where the cache resides.
   ```

Example 19–7 Checking the Integrity of CacheFS File Systems

The following example shows how to check the file systems cached in the `/local/mycache` cache.

```bash
# fsck -F cachefs /local/mycache
```
Packing a Cached File System (Task Map)

The following task map describes the procedures that are associated with packing a CacheFS file system. All of these procedures are optional.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack files in the cache.</td>
<td>Identify files and directories to be loaded in the cache and pack them.</td>
<td>"How to Pack Files in the Cache" on page 378</td>
</tr>
<tr>
<td></td>
<td>Packing ensures that current copies of these files are available in the cache.</td>
<td></td>
</tr>
<tr>
<td>Create a packing list.</td>
<td>Create a packing list if you do not want to specify each individual file that you want packed in the cache.</td>
<td>"How to Create a Packing List" on page 380</td>
</tr>
<tr>
<td>Pack files in the cache with a packing list.</td>
<td>Specify the name of the packing list of the files to be packed in the cache.</td>
<td>"How to Pack Files in the Cache With a Packing List" on page 381</td>
</tr>
<tr>
<td>Unpack files or packing lists from the cache.</td>
<td>Remove a file from the cache that is no longer needed.</td>
<td>"How to Unpack Files or Packing Lists From the Cache" on page 381</td>
</tr>
<tr>
<td>Display packed files information.</td>
<td>View information about the files that you've packed, including their packing status.</td>
<td>"How to Display Packed Files Information" on page 378</td>
</tr>
</tbody>
</table>

Packing a CacheFS File System

For general use, the CacheFS software operates automatically after it is set up, without requiring any action from the user. Files are cached on a most recently used basis. With the packing feature, you can take a more active role in managing your cache by ensuring that certain files or directories are always updated in the cache.

You can specify files and directories to be loaded in the cache by using the cachefs pack command. This command ensures that current copies of these files are available in the cache.

The packing list contains the names of specific files and directories. The packing list can also contain other packing lists. This feature saves you from having to specify individual files and directories when you have many items to pack in your cache.

You can print out a brief help summary of all the cachefs pack options by using the -h option as follows:
$ cachefspack -h
Must select 1 and only 1 of the following 5 options
 -d Display selected filenames
 -i Display selected filenames packing status
 -p Pack selected filenames
 -u Unpack selected filenames
 -U Unpack all files in directory ‘dir’
 -f Specify input file containing rules
 -h Print usage information
 -r Interpret strings in LIST rules as regular expressions
 -s Strip ‘./’ from the beginning of a pattern name
 -v Verbose option
files - a list of filenames to be packed/unpacked

▼ How to Pack Files in the Cache

● Pack files in the cache.
 $ cachefspack -p filename
 -p Specifies that you want the file or files to be packed. This option is also the default.
 filename Specifies the name of the file or directory you want packed in the cache. When you specify a directory, all of its subdirectories are also packed. For more information, see cachefspack(1M).

Example 19–8 Examples—Packing Files in the Cache

The following example shows the projects file being packed in the cache.

 $ cachefspack -p projects

The following example shows three files being packed in the cache.

 $ cachefspack -p projects updates master_plan

The following example shows a directory being packed in the cache.

 $ cachefspack -p /data/abc/bin

▼ How to Display Packed Files Information

● Display packed files information.
 $ cachefspack -i[v] cached-filename-or-directory
-i Specifies that you want to view information about your packed files.
-\v\ Is the verbose option.
cached-filename-or-directory Specifies the name of the file or directory for which to display information.

Example 19–9 Displaying Packed Files Information

The following example shows that the doc_file file has been successfully packed.

$ cachefspack -i doc_file
 cachefspack: file doc_file marked packed YES, packed YES

In the following example, the /data/abc directory contains the bin subdirectory. The bin subdirectory has three files: big, medium, and small. Although the big and small files are specified to be packed, they are not. The medium file is successfully packed.

$ cd /data/abc
$ cachefspack -i bin
 .
 .
 .
 cachefspack: file /bin/big marked packed YES, packed NO
 cachefspack: file /bin/medium marked packed YES, packed YES
 cachefspack: file /bin/small marked packed YES, packed NO
 .
 .
 .

If you use the -iv options together, you get additional information as to whether the file or directory specified has been flushed from the cache. For example:

$ cd /data/bin
 FSCACHEPACK-4$ cachefspack -iv bin
 .
 .
 .
 cachefspack: file /bin/big marked packed YES, packed NO, nocache YES
 cachefspack: file /bin/medium marked packed YES, packed YES, nocache NO
 cachefspack: file /bin/small marked packed YES, packed NO

Chapter 19 • Using The CacheFS File System (Tasks)
nocache NO
.
.
.
The last line of this example shows that the directory contents have not been flushed from the cache.

Using Packing Lists

One feature of the `cachefs pack` command is the ability to create packing lists.

A packing list contains files or directories to be packed in the cache. If a directory is in the packing list, all of its subdirectories and files will also be packed.

This feature saves the time of having to specify each individual file that you want packed in the cache.

▼ How to Create a Packing List

Create a packing list file by using `vi`.

The packing list file format uses the same format as the `filesync` command. For more information, see `filesync(1)`.

Two packing list features are the following:

- You can identify files in the packing list as regular expressions rather than literal file names so that you don’t have to specify each individual file name.
- You can pack files from a shared directory by ensuring that you pack only those files that you own.

For more information on using these features, see `cachefs pack(1M)`.

Example 19–10 Creating a Packing List

The following example shows the contents of a packing list file.

```
BASE /home/ignatz
LIST plans
LIST docs
IGNORE *.ps
```
The path identified with the BASE statement is the directory where you have items you want to pack.

The two LIST statements identify specific files within that directory to pack.

The IGNORE statement identifies the file type of .ps, which you do not want to pack.

▼ How to Pack Files in the Cache With a Packing List

- Pack files in the packing list.

  ```
  $ cachefspack -f packing-list
  
  -f         Specifies that you want to use a packing list.
  packing-list  Specifies the name of the packing list.
  ```

Example 19–11 Packing Files in the Cache With a Packing List

This example uses the list.pkg file as the packing list for the cachefspack command.

```
$ cachefspack -f list.pkg
```

Unpacking Files or Packing Lists From the Cache

You might need to remove, or unpack, a file from the cache. Perhaps you have some files or directories that have a higher priority than others, so you need to unpack the less critical files. For example, you finished up a project and have archived the files that are associated with that project. You are now working on a new project, and therefore, a new set of files.

▼ How to Unpack Files or Packing Lists From the Cache

- Unpack files or packing lists from the cache.

  ```
  $ cachefspack -u filename | -U cache-directory
  
  -u         Specifies that you want the file or files unpacked. You must specify a file name with this option.
  filename   Specifies the name of the file or packing list that you want unpacked in the cache.
  -U         Specifies that you want to unpack all files in the cache.
  ```

For more information, see cachefspack(1M).
Example 19–12 Unpacking Files or Packing Lists From the Cache

The following example shows the file /data/abc/bin/big being unpacked from the cache.

$ cachefspack -u /data/abc/bin/big

The following example shows three files being unpacked from the cache.

$ cd /data/abc/bin/big
$ cachefspack -u big small medium

The following example shows how to unpack a packing list. A packing list is a file that contains the path to a directory of files:

$ cachefspack -uf list.pkg

The following example uses the -U option to specify that all files in a cache directory being unpacked.

$ cachefspack -U /local/mycache

You cannot unpack a cache that does not have at least one file system mounted. With the -U option, if you specify a cache that does not contain mounted file systems, output similar to the following is displayed:

$ cachefspack -U /local/mycache
 cachefspack: Could not unpack cache /local/mycache, no mounted filesystems in the cache.

Troubleshooting cachefspack Errors

You might see the following error messages when you use the cachefspack command.

cachefspack: pathname - can't open directory: permission denied

Cause
You might not have the correct permissions to access the file or directory.

Action
Set the correct permissions.

cachefspack: pathname - can't open directory: no such file or directory

Cause
You might not have specified the correct file or directory.
Action
 Check for a possible typo.

\textit{cachefspack: pathname} - can't open directory: stale NFS file handle

Cause
 The file or directory might have been moved or deleted from the server at the time you attempted to access it.

Action
 Verify that the file or directory on the server is still accessible.

\textit{cachefspack: pathname} - can't open directory: interrupted system call

Cause
 You might have inadvertently pressed Control-C while issuing the command.

Action
 Reissue the command.

\textit{cachefspack: pathname} - can't open directory: I/O error

Cause
 You might have a hardware problem.

Action
 Check your hardware connections.

\textit{cachefspack: error opening dir}

Cause
 You might not have specified the correct file or directory. The path identified after the \texttt{BASE} command in the file format could be a file and not a directory. The path specified must be a directory.

Action
 Check for a possible typo. Check the path identified after the \texttt{BASE} command in your file format. Ensure that the path identifies a directory, not a file.

\textit{cachefspack: unable to get shared objects}

Cause
 The executable might be corrupt or in a format that is not recognizable.

Action
 Replace the executable.

\textit{cachefspack: filename} - can't pack file: permission denied
Packing a CacheFS File System

Cause
You might not have the correct permissions to access the file or directory.

Action
Set the correct permissions.

cachefspack: filename - can't pack file: no such file or directory

Cause
You might not have specified the correct file or directory.

Action
Check for a possible typo.

cachefspack: filename - can't pack file: stale NFS file handle

Cause
The file or directory might have been moved or deleted from the server at the time you attempted to access it.

Action
Verify that the file or directory on the server is still accessible.

cachefspack: filename - can't pack file: interrupted system call

Cause
You might have inadvertently pressed Control-C while issuing the command.

Action
Reissue the command.

cachefspack: filename - can't pack file: I/O error

Cause
You might have a hardware problem.

Action
Check your hardware connections.

cachefspack: filename - can't pack file: no space left on device.

Cause
The cache is out of disk space.

Action
You need to increase the size of the cache by increasing disk space.

cachefspack: filename - can't unpack file: permission denied

Cause
You might not have the correct permissions to access the file or directory.
Action
 Set the correct permissions.

cachefspack: filename - can't unpack file: no such file or directory

Cause
 You might not have specified the correct file or directory.

Action
 Check for a possible typo.

cachefspack: filename- can't unpack file: stale NFS file handle

Cause
 The file or directory might have been moved or deleted from the server at the time you attempted to access it.

Action
 Verify that the file or directory on the server is still accessible.

cachefspack: filename- can't unpack file: interrupted system call

Cause
 You might have inadvertently pressed Control-C while issuing the command.

Action
 Reissue the command.

cachefspack: filename- can't unpack file I/O error

Cause
 You might have a hardware problem.

Action
 Check your hardware connections.

cachefspack: only one ‘d’, ‘i’, ‘p’, or ‘u’ option allowed

Cause
 You specified more than one of these options in a command session.

Action
 Select one option for the command session.

cachefspack: can't find environment variable.

Cause
 You forgot to set a corresponding environment variable to match the $ in your configuration file.
Collecting CacheFS Statistics (Task Map)

The following task map shows the steps involved in collecting CacheFS statistics. All these procedures are optional.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up logging.</td>
<td>Set up logging on a CacheFS file system by using the cachefslog command.</td>
<td>"How to Set Up CacheFS Logging" on page 387</td>
</tr>
<tr>
<td>Locate the log file.</td>
<td>Locate the log file by using the cachefslog command.</td>
<td>"How to Locate the CacheFS Log File" on page 388</td>
</tr>
<tr>
<td>Stop logging.</td>
<td>Stop logging by using the cachefslog command.</td>
<td>"How to Stop CacheFS Logging" on page 389</td>
</tr>
<tr>
<td>View the cache size.</td>
<td>View the cache size by using the cachefs ssize command.</td>
<td>"How to View the Working Set (Cache) Size" on page 389</td>
</tr>
<tr>
<td>View the cache statistics.</td>
<td>View the statistics by using the cachefsstat command.</td>
<td>"How to View CacheFS Statistics" on page 391</td>
</tr>
</tbody>
</table>

Collecting CacheFS Statistics

Collecting CacheFS statistics enables you to do the following:

- Determine an appropriate cache size.
- Observe the performance of the cache.

These statistics help you determine the trade-off between your cache size and the desired performance of the cache.

The following table describes the CacheFS statistics commands.
Cachefslog

Specifies the location of the log file. This command also displays where the statistics are currently being logged, and enables you to stop logging.

cachefslog

cachefswwsize

Interprets the log file to give a recommended cache size.

cachefswwsize

cachefsstat

Displays statistical information about a specific CacheFS file system or all CacheFS file systems. The information provided in the command output is taken directly from the cache.

cachefsstat

Note – You can issue the CacheFS statistics commands from any directory. You must be superuser to issue the cachefswwsize command.

The CacheFS statistics begin accumulating when you create the log file. When the work session is over, stop the logging by using the cachefslog -h command, as described in “How to Stop CacheFS Logging” on page 389.

Before using the CacheFS statistics commands, you must do the following:

- Set up your cache by using the cfsadmin command.
- Decide on an appropriate length of time to allow statistical information to collect in the log file you create. The length of time should equal a typical work session. For example, a day, a week, or a month.
- Select a location or path for the log file. Ensure that sufficient space to allows for the growth of the log file. The longer you intend to allow statistical information to collect in the log file, the more space you need.

Note – The following procedures are presented in a recommended order. This order is not required.

▼ How to Set Up CacheFS Logging

1 Set up logging.

$ cachefslog -f log-file-path/mount-point

- f Sets up logging.
Collecting CacheFS Statistics

log-file-path Specifies the location of the log file. The log file is a standard file you create with an editor, such as vi.

/mount-point Designates the mount point (CacheFS file system) for which statistics are being collected.

2 Verify that you correctly set up the log file.

$ cachefslog /mount-point

Example 19–13 Setting Up CacheFS Logging

The following example shows how to set up the /var/tmp/samlog log file to collect statistics about the /home/sam directory.

$ cachefslog -f /var/tmp/samlog /home/sam
 /var/tmp/samlog: /home/sam

▼ How to Locate the CacheFS Log File

- Display where CacheFS statistics are being logged.

 $ cachefslog /mount-point

 where /mount-point specifies the CacheFS file system for which you want to view the statistics.

 You can also use the cachefslog command with no options to locate a log file for a particular mount point.

Example 19–14 Locating the CacheFS Log File

The following example shows what you would see if a log file has been set up. The location of the log file is /var/tmp/stufflog.

$ cachefslog /home/stuff
 /var/tmp/stufflog: /home/stuff

The following example shows that no log file has been set up for the specified file system.

$ cachefslog /home/zap
 not logged: /home/zap
How to Stop CacheFS Logging

Use the `cachefslog -h` option to stop logging.

```sh
$ cachefslog -h /mount-point
```

The following example shows how to stop logging on `/home/stuff`.

```sh
$ cachefslog -h /home/stuff
not logged: /home/stuff
```

If you get a system response other than the response specified here, you did not successfully stop logging. Determine if you are using the correct log file name and mount point.

▼ How to View the Working Set (Cache) Size

You might want to check if you need to increase the size of the cache. Or, you might want to determine the ideal cache size based on your activity since you last used the `cachefslog` command for a particular mount point.

1 Become superuser on the client system.

2 View the current cache size and highest logged cache size.

```sh
# cachefswssize log-file-path
```

For more information, see `cachefswssize(1M)`.

Example 19–15 Viewing the Working Set (Cache) Size

In the following example, the end size is the size of the cache at the time you issued the `cachefswssize` command. The high water size is the largest size of the cache during the timeframe in which logging occurred.

```sh
# cachefswssize /var/tmp/samlog

/home/sam
    end size: 10688k
    high water size: 10704k
/
    end size: 1736k
    high water size: 1736k
/opt
```
Viewing CacheFS Statistics

The following table explains the terminology that is displayed in the statistics output for CacheFS file systems.

<table>
<thead>
<tr>
<th>Output Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache hit rate</td>
<td>The rate of cache hits versus cache misses, followed by the actual number of hits and misses. A cache hit occurs when the user wants to perform an operation on a file or files, and the file or files are actually in the cache. A cache miss occurs when the file is not in the cache. The load on the server is the sum of cache misses, consistency checks, and modifications (modifies).</td>
</tr>
<tr>
<td>consistency checks</td>
<td>The number of consistency checks performed, followed by the number that passed, and the number that failed.</td>
</tr>
<tr>
<td>modifies</td>
<td>The number of modify operations. For example, writes or creates.</td>
</tr>
</tbody>
</table>
How to View CacheFS Statistics

View the statistics with the `cachefsstat` command. You can view the statistics at any time. For example, you do not have to set up logging in order to view the statistics.

- **View CacheFS statistics.**

  ```bash
  $ cachefsstat /mount-point
  ```

 where `/mount-point` specifies the CacheFS file system for which you want to view the statistics.

 If you do not specify the mount point, statistics for all mounted CacheFS file systems will be displayed.

Example 19–16 Viewing CacheFS Statistics

This example shows how to view statistics on the cached file system, `/home/sam`.

```bash
$ cachefsstat /home/sam
  cache hit rate: 73% (1234 hits, 450 misses)
  consistency checks: 700 (650 pass, 50 fail)
  modifies: 321
  garbage collection: 0
```
This chapter provides guidelines and step-by-step instructions for configuring additional swap space after the Solaris OS is installed.

This is a list of the step-by-step instructions in this chapter.
- “How to Create a Swap File and Make It Available” on page 400
- “How to Remove Unneeded Swap Space” on page 401

This is a list of the overview information in this chapter.
- “About Swap Space” on page 393
- “How Do I Know If I Need More Swap Space?” on page 395
- “How Swap Space Is Allocated” on page 396
- “Planning for Swap Space” on page 397
- “Monitoring Swap Resources” on page 398
- “Adding More Swap Space” on page 399

About Swap Space

You should understand the features of the SunOS™ swap mechanism to determine the following:
- Swap space requirements
- The relationship between swap space and the TMPFS file system
- How to recover from error messages related to swap space

Swap Space and Virtual Memory

Solaris software uses some disk slices for temporary storage rather than for file systems. These slices are called *swap* slices. Swap slices are used as virtual memory storage areas when the system does not have enough physical memory to handle current processes.
The virtual memory system maps physical copies of files on disk to virtual addresses in memory. Physical memory pages that contain the data for these mappings can be backed by regular files in the file system, or by swap space. If the memory is backed by swap space it is referred to as *anonymous memory* because no identity is assigned to the disk space that is backing the memory.

The Solaris OS uses the concept of *virtual swap space*, a layer between anonymous memory pages and the physical storage (or disk-backed swap space) that actually back these pages. A system’s virtual swap space is equal to the sum of all its physical (disk-backed) swap space plus a portion of the currently available physical memory.

Virtual swap space has these advantages:

- The need for large amounts of physical swap space is reduced because virtual swap space does not necessarily correspond to physical (disk) storage.
- A pseudo file system called SWAPFS provides addresses for anonymous memory pages. Because SWAPFS controls the allocation of memory pages, it has greater flexibility in deciding what happens to a page. For example, SWAPFS might change the page’s requirements for disk-backed swap storage.

Swap Space and the TMPFS File System

The TMPFS file system is activated automatically in the Solaris environment by an entry in the `/etc/vfstab` file. The TMPFS file system stores files and their associated information in memory (in the `/tmp` directory) rather than on disk, which speeds access to those files. This feature results in a major performance enhancement for applications such as compilers and DBMS products that use `/tmp` heavily.

The TMPFS file system allocates space in the `/tmp` directory from the system’s swap resources. This feature means that as you use up space in the `/tmp` directory, you are also using up swap space. So, if your applications use the `/tmp` directory heavily and you do not monitor swap space usage, your system could run out of swap space.

Do use the following if you want to use TMPFS, but your swap resources are limited:

- Mount the TMPFS file system with the size option (`-o size`) to control how much swap resources TMPFS can use.
- Use your compiler’s `TMPDIR` environment variable to point to another larger directory.

Using your compiler’s `TMPDIR` variable only controls whether the compiler is using the `/tmp` directory. This variable has no effect on other programs’ use of the `/tmp` directory.
Swap Space as a Dump Device

A dump device is usually disk space that is reserved to store system crash dump information. By default, a system’s dump device is configured to be a swap slice. If possible, you should configure an alternate disk partition as a dedicated dump device instead to provide increased reliability for crash dumps and faster reboot time after a system failure. You can configure a dedicated dump device by using the dumpadm command. For more information, see Chapter 24, “Managing System Crash Information (Tasks),” in System Administration Guide: Advanced Administration.

If you are using a volume manager to manage your disks, such as Solaris Volume Manager, do not configure your dedicated dump device to be under its control. You can keep your swap areas under Solaris Volume Manager’s control, which is a recommended practice. However, for accessibility and performance reasons, configure another disk as a dedicated dump device outside of Solaris Volume Manager’s control.

Swap Space and Dynamic Reconfiguration

A good practice is to allocate enough swap space to support a failing CPU or system board during dynamic reconfiguration. Otherwise, a CPU or system board failure might result in your host or domain rebooting with less memory.

Without having this additional swap space available, one or more of your applications might fail to start due to insufficient memory. This problem would require manual intervention either to add additional swap space or to reconfigure the memory usage of these applications.

If you have allocated additional swap space to handle a potential loss of memory on reboot, all of your intensive applications might start as usual. This means the system will be available to the users, perhaps possibly slower due to some additional swapping.

For more information, see your hardware dynamic reconfiguration guide.

How Do I Know If I Need More Swap Space?

Use the swap -l command to determine if your system needs more swap space.

For example, the following swap -l output shows that this system’s swap space is almost entirely consumed or at 100% allocation.

% swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 136,1 16 1638608 88

When a system’s swap space is at 100% allocation, an application’s memory pages become temporarily locked. Application errors might not occur, but system performance will likely suffer.
For information on adding more swap space to your system, see "How to Create a Swap File and Make It Available" on page 400.

Swap-Related Error Messages

These messages indicate that an application was trying to get more anonymous memory. However, no swap space was left to back it.

application is out of memory

malloc error 0

```
messages.1:Sep 21 20:52:11 mars genunix: [ID 470503 kern.warning]
WARNING: Sorry, no swap space to grow stack for pid 100295 (myprog)
```

TMPFS-Related Error Messages

The following message is displayed if a page could not be allocated when a file was being written. This problem can occur when TMPFS tries to write more than it is allowed or if currently executed programs are using a lot of memory.

directory: File system full, swap space limit exceeded

The following message means that TMPFS ran out of physical memory while attempting to create a new file or directory:

directory: File system full, memory allocation failed

For information on recovering from the TMPFS-related error messages, see `tmpfs(7FS)`.

How Swap Space Is Allocated

Initially, swap space is allocated as part of the Solaris installation process. If you use the installation program's automatic layout of disk slices and do not manually change the size of the swap slice, the Solaris installation program allocates a default swap area of 512 Mbytes.

Starting in the Solaris 9 release, the installation program allocates swap space starting at the first available disk cylinder (typically cylinder 0). This placement provides maximum space for the root (/) file system during the default disk layout and enables the growth of the root (/) file system during an upgrade.

For general guidelines on allocating swap space, see “Planning for Swap Space” on page 397. You can allocate additional swap space to the system by creating a swap file. For information about creating a swap file, see "Adding More Swap Space" on page 399.
Swap Areas and the /etc/vfstab File

After the system is installed, swap slices and swap files are listed in the /etc/vfstab file. They are activated by the /sbin/swapadd script when the system is booted.

An entry for a swap device in the /etc/vfstab file contains the following:

- The full path name of the swap slice or swap file
- File system type of the swap slice or swap file

The file system that contains a swap file must be mounted before the swap file is activated. So, in the /etc/vfstab file, ensure that the entry that mounts the file system comes before the entry that activates the swap file.

Planning for Swap Space

The most important factors in determining swap space size are the requirements of the system’s software applications. For example, large applications such as computer-aided design simulators, database management products, transaction monitors, and geologic analysis systems can consume as much as 200–1000 Mbytes of swap space.

Consult your application vendors for swap space requirements for their applications.

If you are unable to determine swap space requirements from your application vendors, use the following general guidelines based on your system type to allocate swap space.

<table>
<thead>
<tr>
<th>System Type</th>
<th>Swap Space Size</th>
<th>Dedicated Dump Device Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workstation with about 4 Gbytes of physical memory</td>
<td>1 Gbyte</td>
<td>1 Gbyte</td>
</tr>
<tr>
<td>Mid-range server with about 8 Gbytes of physical memory</td>
<td>2 Gbytes</td>
<td>2 Gbytes</td>
</tr>
<tr>
<td>High-end server with about 16 to 128 Gbytes of physical memory</td>
<td>4 Gbytes</td>
<td>4 Gbytes</td>
</tr>
</tbody>
</table>

In addition to these general guidelines, consider allocating swap space or disk space for the following:

- A dedicated dump device.
- Determine whether large applications (such as compilers) will be using the /tmp directory. Then, allocate additional swap space to be used by TMPFS. For information about TMPFS, see "Swap Space and the TMPFS File System" on page 394.
Monitoring Swap Resources

The `/usr/sbin/swap` command is used to manage swap areas. Two options, `-l` and `-s`, display information about swap resources.

Use the `swap -l` command to identify a system's swap areas. Activated swap devices or files are listed under the swapfile column.

```
# swap -l
swapfile    dev    swaplo blocks   free
/dev/dsk/c0t0d0s1  136,1  16 1638608 1600528
```

Use the `swap -s` command to monitor swap resources.

```
# swap -s
total: 57416k bytes allocated + 10480k reserved = 67896k used,
833128k available
```

The used value plus the available value equals the total swap space on the system, which includes a portion of physical memory and swap devices (or files).

You can use the amount of available and used swap space (in the `swap -s` output) as a way to monitor swap space usage over time. If a system’s performance is good, use `swap -s` to determine how much swap space is available. When the performance of a system slows down, check the amount of available swap space to determine if it has decreased. Then you can identify what changes to the system might have caused swap space usage to increase.

When using this command, keep in mind that the amount of physical memory available for swap usage changes dynamically as the kernel and user processes lock down and release physical memory.

Note – The `swap -l` command displays swap space in 512-byte blocks. The `swap -s` command displays swap space in 1024-byte blocks. If you add up the blocks from `swap -l` and convert them to Kbytes, the result is less than `used + available` (in the `swap -s` output). The reason is that `swap -l` does not include physical memory in its calculation of swap space.

The output from the `swap -s` command is summarized in the following table.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes allocated</td>
<td>The total amount of swap space in 1024-byte blocks that is currently</td>
</tr>
<tr>
<td></td>
<td>allocated as backing store (disk-backed swap space).</td>
</tr>
</tbody>
</table>
Adding More Swap Space

As system configurations change and new software packages are installed, you might need to add more swap space. The easiest way to add more swap space is to use the `mkfile` and `swap` commands to designate a part of an existing UFS or NFS file system as a supplementary swap area. These commands, described in the following sections, enable you to add more swap space without repartitioning a disk.

Alternative ways to add more swap space are to repartition an existing disk or to add another disk. For information on how to repartition a disk, see Chapter 10, “Managing Disks (Overview).”

Creating a Swap File

The following general steps are involved in creating a swap file:

- Creating a swap file by using the `mkfile` command.
- Activating the swap file by using the `swap` command.
- Adding an entry for the swap file in the `/etc/vfstab` file so that the swap file is activated automatically when the system is booted.

mkfile Command

The `mkfile` command creates a file that is suitable for use as either an NFS-mounted swap area or a local swap area. The sticky bit is set, and the file is filled with zeros. You can specify the size of the swap file in bytes (the default) or in Kbytes, blocks, or Mbytes by using the `k`, `b`, or `m` suffixes, respectively.

The following table shows the `mkfile` command options.

TABLE 20–1 Output of the `swap -s` Command (Continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserved</td>
<td>The total amount of swap space in 1024-byte blocks that is not currently allocated, but claimed by memory for possible future use.</td>
</tr>
<tr>
<td>used</td>
<td>The total amount of swap space in 1024-byte blocks that is either allocated or reserved.</td>
</tr>
<tr>
<td>available</td>
<td>The total amount of swap space in 1024-byte blocks that is currently available for future reservation and allocation.</td>
</tr>
</tbody>
</table>
TABLE 20–2 Options to the mkfile Command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>Creates an empty file. The size is noted. However, the disk blocks are not allocated until data is written to them.</td>
</tr>
<tr>
<td>-v</td>
<td>Reports the names and sizes of created files.</td>
</tr>
</tbody>
</table>

Note – Use the -n option only when you create an NFS swap file.

How to Create a Swap File and Make It Available

1 **Become superuser.**

You can create a swap file without root permissions. However, to avoid accidental overwriting, root should be the owner of the swap file.

2 **Create a directory for the swap file, if needed.**

3 **Create the swap file.**

 # mkfile nnn[k|b|m] filename

 The swap file of the size nnn (in Kbytes, bytes, or Mbytes) with the filename you specify is created.

4 **Activate the swap file.**

 # /usr/sbin/swap -a /path/filename

 You must use the absolute path name to specify the swap file. The swap file is added and available until the file system is unmounted, the system is rebooted, or the swap file is removed. Keep in mind that you cannot unmount a file system while some processor program is swapping to the swap file.

5 **Add an entry for the swap file to the /etc/vfstab file that specifies the full path name of the file, and designates swap as the file system type.**

 /path/filename - - swap - no -

6 **Verify that the swap file is added.**

 $ /usr/sbin/swap -l
Removing a Swap File From Use

Note – If a swap file does not get activated, make sure that the following service is running:

```shell
# svcs nfs/client
STATE STIME FMRI
enabled 14:14:34 svc:/network/nfs/client:default
```

Example 20–1 Creating a Swap File and Making It Available

The following examples show how to create a 100-Mbyte swap file called /files/swapfile.

```shell
# mkdir /files
# mkfile 100m /files/swapfile
# swap -a /files/swapfile
# vi /etc/vfstab
(An entry is added for the swap file):
/files/swapfile - - swap - no -
# swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 136,1 16 163806528 1600528
/files/swapfile - 16 204784 204784
```

Removing a Swap File From Use

If you have unneeded swap space, you can remove it.

▼ How to Remove Unneeded Swap Space

1 Become superuser.

2 Remove the swap space.
   ```shell
   # /usr/sbin/swap -d /path/filename
   ```
 The swap file name is removed so that it is no longer available for swapping. The file itself is not deleted.

3 Edit the /etc/vfstab file and delete the entry for the swap file.

4 Recover the disk space so that you can use it for something else.
   ```shell
   # rm /path/filename
   ```
 If the swap space is a file, remove it. Or, if the swap space is on a separate slice and you are sure you will not need it again, make a new file system and mount the file system.
For information on mounting a file system, see Chapter 18, "Mounting and Unmounting File Systems (Tasks)."

5 Verify that the swap file is no longer available.
 # swap -l

Example 20–2 Removing Unneeded Swap Space

The following examples shows how to delete the /files/swapfile swap file.

 # swap -d /files/swapfile
 # (Remove the swap entry from the /etc/vfstab file)
 # rm /files/swapfile
 # swap -l
 swapfile dev swaplo blocks free
 /dev/dsk/c0t0d0s1 136,1 16 1638608 1600528
Checking UFS File System Consistency (Tasks)

This chapter provides overview information and step-by-step instructions about checking UFS file system consistency.

This is a list of step-by-step instructions in this chapter.

- “How to Check the root (/), /usr, or /var File Systems From an Alternate Boot Device” on page 413
- “How to Check Other File Systems (Not root (/), /usr, or /var)” on page 415
- “How to Preen a UFS File System” on page 416
- “How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)” on page 422
- “How to Restore a Bad Superblock (Solaris 10 6/06 Release)” on page 418

This is a list of the overview information in this chapter.

- “File System Consistency” on page 404
- “How the File System State Is Recorded” on page 404
- “What the fsck Command Checks and Tries to Repair” on page 405
- “Interactively Checking and Repairing a UFS File System” on page 412
- “Restoring a Bad Superblock” on page 418
- “Syntax and Options for the fsck Command” on page 423

For new information about fsck in the Solaris 10 6/06 release, see “Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)” on page 305.

For information about fsck error messages, see Chapter 28, “Resolving UFS File System Inconsistencies (Tasks),” in System Administration Guide: Advanced Administration.

For background information on the UFS file system structures referred to in this chapter, see Chapter 22, “UFS File System (Reference).”
File System Consistency

The UFS file system relies on an internal set of tables to keep track of inodes used and available blocks. When these internal tables are not properly synchronized with data on a disk, inconsistencies result and file systems need to be repaired.

File systems can be inconsistent because of abrupt termination of the operating system from the following:

- Power failure
- Accidental unplugging of the system
- Turning off the system without proper shutdown procedure
- A software error in the kernel

File system inconsistencies, while serious, are not common. When a system is booted, a check for file system consistency is automatically performed (with the `fsck` command). Often, this file system check repairs problems it encounters.

The `fsck` command places files and directories that are allocated but unreferenced in the `lost+found` directory. An inode number is assigned as the name of unreferenced file and directory. If the `lost+found` directory does not exist, the `fsck` command creates it. If there is not enough space in the `lost+found` directory, the `fsck` command increases its size.

For a description of inodes, see “Inodes” on page 426.

How the File System State Is Recorded

The `fsck` command uses a state flag, which is stored in the superblock, to record the condition of the file system. This flag is used by the `fsck` command to determine whether a file system needs to be checked for consistency. The flag is used by the `/sbin/rc5` script during booting and by the `fsck -m` command. If you ignore the result from the `fsck -m` command, all file systems can be checked regardless of the setting of the state flag.

For a description of the superblock, see “Superblock” on page 426.

The possible state flag values are described in the following table.

<table>
<thead>
<tr>
<th>State Flag Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSACTIVE</td>
<td>Indicates a mounted file system that has modified data in memory. A mounted file system with this state flag indicates that user data or metadata would be lost if power to the system is interrupted.</td>
</tr>
</tbody>
</table>
What the fsck Command Checks and Tries to Repair

This section describes what happens in the normal operation of a file system, what can go wrong, what problems the fsck command (the checking and repair utility) looks for, and how this command corrects the inconsistencies it finds.

Why UFS File System Inconsistencies Might Occur

Every working day, hundreds of files might be created, modified, and removed. Each time a file is modified, the operating system performs a series of file system updates. These updates, when written to the disk reliably, yield a consistent file system.

When a user program does an operation to change the file system, such as a write, the data to be written is first copied into an in-core buffer in the kernel. Normally, the disk update is handled asynchronously. The user process is allowed to proceed even though the data write might not happen until long after the write system call has returned. Thus, at any given time, the file system, as it resides on the disk, lags behind the state of the file system that is represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is required for another use or when the kernel automatically runs the fsflush daemon (at 30-second intervals). If the system is halted without writing out the in-core information, the file system on the disk might be in an inconsistent state.

A file system can develop inconsistencies in several ways. The most common causes are operator error and hardware failures.

Problems might result from an unclean shutdown, if a system is shut down improperly, or when a mounted file system is taken offline improperly. To prevent unclean shutdows, the current state of the file systems must be written to disk (that is, "synchronized") before you shut down the system, physically take a disk pack out of a drive, or take a disk offline.
Inconsistencies can also result from defective hardware or problems with the disk or controller firmware. Blocks can become damaged on a disk drive at any time. Or, a disk controller can stop functioning correctly.

UFS Components That Are Checked for Consistency

This section describes the kinds of consistency checks that the `fsck` command applies to these UFS file system components: superblock, cylinder group blocks, inodes, indirect blocks, and data blocks.

For information about UFS file system structures, see "Structure of Cylinder Groups for UFS File Systems" on page 425.

Superblock Checks

The superblock stores summary information, which is the most commonly corrupted component in a UFS file system. Each change to file system inodes or data blocks also modifies the superblock. If the CPU is halted and the last command is not a `sync` command, the superblock almost certainly becomes corrupted.

The superblock is checked for inconsistencies in the following:

- File system size
- Number of inodes
- Free block count
- Free inode count

File System Size and Inode List Size Checks

The file system size must be larger than the number of blocks used by the superblock and the list of inodes. The number of inodes must be less than the maximum number allowed for the file system. An inode represents all the information about a file. The file system size and layout information are the most critical pieces of information for the `fsck` command. There is no way to actually check these sizes because they are statically determined when the file system is created. However, the `fsck` command can check that the sizes are within reasonable bounds. All other file system checks require that these sizes be correct. If the `fsck` command detects corruption in the static parameters of the primary superblock, it requests the operator to specify the location of an alternate superblock.

For more information about the structure of the UFS file system, see "Structure of Cylinder Groups for UFS File Systems" on page 425.
Free Block Checks

Free blocks are stored in the cylinder group block maps. The `fsck` command checks that all the blocks marked as free are not claimed by any files. When all the blocks have been accounted for, the `fsck` command checks if the number of free blocks plus the number of blocks that are claimed by the inodes equal the total number of blocks in the file system. If anything is wrong with the block maps, the `fsck` command rebuilds them, leaving out blocks already allocated.

The summary information in the superblock includes a count of the total number of free blocks within the file system. The `fsck` command compares this count to the number of free blocks it finds within the file system. If the counts do not agree, the `fsck` command replaces the count in the superblock with the actual free block count.

Free Inode Checks

Summary information in the superblock contains a count of the free inodes within the file system. The `fsck` command compares this count to the number of free inodes it finds within the file system. If the counts do not agree, `fsck` replaces the count in the superblock with the actual free inode count.

Inodes

The list of inodes is checked sequentially starting with inode 2. (Inode 0 and inode 1 are reserved). Each inode is checked for inconsistencies in the following:

- Format and type
- Link count
- Duplicate block
- Bad block numbers
- Inode size

Format and Type of Inodes

Each inode contains a *mode word*, which describes the type and state of the inode. Inodes might be one of nine types:

- Regular
- Directory
- Block special
- Character special
- FIFO (named pipe)
- Symbolic link
- Shadow (used for ACLs)
- Attribute directory
- Socket

Inodes might be in one of three states:
When the file system is created, a fixed number of inodes are set aside. However, these inodes are not allocated until they are needed. An *allocated inode* is one that points to a file. An *unallocated inode* does not point to a file and, therefore, should be empty. The *partially allocated* state means that the inode is incorrectly formatted. An inode can get into this state if, for example, bad data is written into the inode list because of a hardware failure. The only corrective action the *fsck* command can take is to clear the inode.

Link Count Checks

Each inode contains a count of the number of directory entries linked to it. The *fsck* command verifies the link count of each inode by examining the entire directory structure, starting from the root (/) directory, and calculating an actual link count for each inode.

Discrepancies between the link count stored in the inode and the actual link count as determined by the *fsck* command might be one of three types:

- The stored count is *not* 0, and the actual count is 0.

 This condition can occur if no directory entry exists for the inode. In this case, the *fsck* command puts the disconnected file in the lost+found directory.

- The stored count is *not* 0 and the actual count is *not* 0. However, the counts are *unequal*.

 This condition can occur if a directory entry has been added or removed, but the inode has not been updated. In this case, the *fsck* command replaces the stored link count with the actual link count.

- The stored count is 0, and the actual count is not 0.

 In this case, the *fsck* command changes the link count of the inode to the actual count.

Duplicate Block Checks

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed by the inode. Because indirect blocks are owned by an inode, inconsistencies in indirect blocks directly affect the inode that owns the indirect block.

The *fsck* command compares each block number claimed by an inode to a list of allocated blocks. If another inode already claims a block number, the block number is put on a list of duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block number.

If duplicate blocks are found, the *fsck* command makes a second pass of the inode list to find the other inode that claims each duplicate block. The *fsck* command cannot determine with certainty which inode is in error. So, the *fsck* command prompts you to choose which inode should be kept and which inode should be cleared. Note that a large number of duplicate blocks in an inode might be caused by an indirect block not being written to the file system.
Bad Block Number Checks

The fsck command checks each block number claimed by an inode to determine whether its value is higher than the value of the first data block and lower than that of the last data block in the file system. If the block number is outside this range, it is considered a bad block number.

Bad block numbers in an inode might be caused by an indirect block not being written to the file system. The fsck command prompts you to clear the inode.

Inode Size Checks

Each inode contains a count of the number of data blocks that it references. The number of actual data blocks is the sum of the allocated data blocks and the indirect blocks. The fsck command computes the number of data blocks and compares that block count against the number of blocks that the inode claims. If an inode contains an incorrect count, the fsck command prompts you to fix it.

Each inode contains a 64-bit size field. This field shows the number of characters (data bytes) in the file associated with the inode. A rough check of the consistency of the size field of an inode uses the number of characters shown in the size field to calculate how many blocks should be associated with the inode, and then compares that number to the actual number of blocks claimed by the inode.

Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsistencies in an indirect block affect the inode that owns it. Inconsistencies that can be checked are the following:

- Blocks already claimed by another inode
- Block numbers outside the range of the file system

These consistency checks listed are also performed for direct blocks.

Data Blocks

An inode can directly or indirectly reference three kinds of data blocks. All referenced blocks must be of the same kind. The three types of data blocks are the following:

- Plain data blocks
- Symbolic-link data blocks
- Directory data blocks

Plain data blocks contain the information stored in a file. Symbolic-link data blocks contain the path name stored in a symbolic link. Directory data blocks contain directory entries. The fsck command can check only the validity of directory data blocks.

Directories are distinguished from regular files by an entry in the mode field of the inode. Data blocks associated with a directory contain the directory entries. Directory data blocks are checked for inconsistencies involving the following:
What the \texttt{fsck} Command Checks and TRIes to Repair

- Directory inode numbers that point to unallocated inodes
- Directory inode numbers that are greater than the number of inodes in the file system
- Incorrect directory inode numbers for "." and ".." directories
- Directories that are disconnected from the file system

\textbf{Directory Unallocated Checks}

If the inode number in a directory data block points to an unallocated inode, the \texttt{fsck} command removes the directory entry. This condition can occur if the data blocks that contain a new directory entry are modified and written out, but the inode does not get written out. This condition can occur if the CPU is shut down abruptly.

\textbf{Bad Inode Number Checks}

If a directory entry inode number points beyond the end of the inode list, the \texttt{fsck} command removes the directory entry. This condition can occur when bad data is written into a directory data block.

\textbf{Incorrect "." and "." Entry Checks}

The directory inode number entry for "." must be the first entry in the directory data block. The directory inode number must reference itself. That is, its value must be equal to the inode number for the directory data block.

The directory inode number entry for "." must be the second entry in the directory data block. The directory inode number value must be equal to the inode number of the parent directory or the inode number of itself if the directory is the root (/) directory.

If the directory inode numbers for "." and "." are incorrect, the \texttt{fsck} command replaces them with the correct values. If there are multiple hard links to a directory, the first hard link found is considered the real parent to which "." should point. In this case, the \texttt{fsck} command recommends that you have it delete the other names.

\textbf{Disconnected Directories}

The \texttt{fsck} command checks the general connectivity of the file system. If a directory that is not linked to the file system is found, the \texttt{fsck} command links the directory to the \texttt{lost+found} directory of the file system. This condition can occur when inodes are written to the file system. However, the corresponding directory data blocks are not.

\textbf{Regular Data Blocks}

Data blocks associated with a regular file hold the contents of the file. The \texttt{fsck} command does not attempt to check the validity of the contents of a regular file's data blocks.
fsck Summary Message

When you run the `fsck` command interactively and it completes successfully, a message similar to the following is displayed:

```
# fsck /dev/rdsk/c0t0d0s7
** /dev/rdsk/c0t0d0s7
** Last Mounted on /export/home
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
2 files, 9 used, 2833540 free (20 frags, 354190 blocks, 0.0% fragmentation)
#
```

```
# fsck /dev/rdsk/c0t0d0s7
** /dev/rdsk/c0t0d0s7
** Last Mounted on /export/home
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 3a - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
2 files, 9 used, 2833540 free (20 frags, 354190 blocks, 0.0% fragmentation)
#
```

The last line of `fsck` output describes the following information about the file system:

- **files**: Number of inodes in use
- **used**: Number of fragments in use
- **free**: Number of unused fragments
- **frags**: Number of unused non-block fragments
- **blocks**: Number of unused full blocks
- **% fragmentation**: Percentage of fragmentation, where: free fragments x 100 / total fragments in the file system

For information about fragments, see "Fragment Size" on page 429.
Interactively Checking and Repairing a UFS File System

You might need to interactively check file systems in the following instances:

- When they cannot be mounted
- When they develop inconsistencies while in use

When an in-use file system develops inconsistencies, error messages might be displayed in the console window or the system messages file. Or, the system might crash. For example, the system messages file, `/var/adm/messages`, might include messages similar to the following:

```plaintext
Sep 5 13:42:40 hostname ufs: [ID 879645 kern.notice] NOTICE: /: unexpected free inode 630916, run fsck(1M)
```

`hostname` is the system reporting the error.

Before using the `fsck` command, you might want to refer to these references for information on resolving `fsck` error messages:

- “Syntax and Options for the `fsck` Command” on page 423

Keep the following points in mind when running the `fsck` command to check UFS file systems:

- A file system should be inactive when you use `fsck` to check a file system. File system changes waiting to be flushed to disk or file system changes that occur during the `fsck` checking process can be interpreted as file system corruption. These issues may not be a reliable indication of a problem.

- A file system must be inactive when you use `fsck` to repair that file system. File system changes waiting to be flushed to disk or file system changes that occur during the `fsck` repairing process might cause the file system to become corrupted. Or, they might cause the system to crash.

- Unmount a file system before you use `fsck` on that file system. Doing so ensures that the file system data structures are consistent as possible. The only exceptions are for the active root (`/`), `/usr`, and `/var` file systems because they must be mounted to run `fsck`.

- If you need to repair the root (`/`), `/usr`, and `/var` file systems, boot the system from an alternate device, if possible, so that these file systems are unmounted and inactive.

For step-by-step instructions on running `fsck` on the root (`/`), `/usr`, or `/var` file systems, see “How to Check the root (`/`), `/usr`, or `/var` File Systems From an Alternate Boot Device” on page 413.
How to Check the root (/), /usr, or /var File Systems From an Alternate Boot Device

For new information about fsck in the Solaris 10 6/06 release, see "Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)" on page 305. There is no need to rerun fsck if you see the following message:

***** FILE SYSTEM WAS MODIFIED *****

However, it doesn’t harm the file system to rerun fsck after this message. This message is just informational about fsck’s corrective actions.

This procedure assumes that a local CD or network boot server is available so that you can boot the system from an alternate device.

For information on restoring a bad superblock, see “How to Restore a Bad Superblock (Solaris 10 6/06 Release)” on page 418 or "How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)” on page 422.

1 Become superuser or assume an equivalent role.

2 For systems with mirrored root (/) file systems only: Detach the root (/) mirror before booting from the alternate device, or you risk corrupting the file system.

 For information on detaching the root (/) mirror, see “Working With Submirrors” in Solaris Volume Manager Administration Guide.

3 Identify the device, such as /dev/dsk/c0t0d0s0, of the root (/), /usr, or /var file system that needs to be checked.

 You’ll need to supply this device name when booted from an alternate device. Identifying this device when you are already booted from the alternate device is more difficult.

4 Boot the system with the root (/), /usr, or /var file system that needs to be checked from an alternate device, such as a local CD or the network, in single-user mode.

 Doing so ensures that there is no activity on these file systems.

 For example:

   ```
   # init 0
   ok boot net -s
   .
   .
   .
   #
   ```
5 Check the device that contains the root (/), /usr, or /var file system as identified in Step 3. If the hardware for the file system to be checked or repaired has changed, the device names might have changed. Check that the `fsck -n message Last Mounted on ...` indicates the expected device for the file system.

In this example, the root (/) file system to be checked is /dev/dsk/c0t0d0s0.

```bash
# fsck -n /dev/rdsk/c0t0d0s0
** /dev/rdsk/c0t0d0s0 (NO WRITE)
** Last Mounted on /
.
.
.
fsck /dev/rdsk/c0t0d0s0
** /dev/rdsk/c0t0d0s0
** Last Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
.
.
.
```

6 Correct any reported `fsck` errors.

For information on how to respond to the error message prompts while you interactively check one or more UFS file systems, see Chapter 28, "Resolving UFS File System Inconsistencies (Tasks)," in *System Administration Guide: Advanced Administration*.

7 If `fsck` cannot repair all of the problems after running it, see “Fixing a UFS File System That the `fsck` Command Cannot Repair” on page 417.

8 Mount the repaired file system to determine if any files exist in the `lost+found` directory.

Individual files put in the `lost+found` directory by the `fsck` command are renamed with their inode numbers. If possible, rename the files and move them where they belong. Try to use the `grep` command to match phrases within individual files and the `file` command to identify file types.

Eventually, remove unidentifiable files or directories left in the `lost+found` directory so that it doesn’t fill up unnecessarily.

9 Bring the system back to multiuser mode.

```bash
# init 6
```

10 For systems with mirrored root (/) file systems only: Reattach the root (/) mirror.
How to Check Other File Systems (Not root (/), /usr, or /var)

For new information about fsck in the Solaris 10 6/06 release, see "Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)" on page 305. There is no need to rerun fsck if you see the following message:

***** FILE SYSTEM WAS MODIFIED *****

However, it doesn’t harm the file system to rerun fsck after this message. This message is just informational about fsck’s corrective actions.

This procedure assumes that the file system to be checked is unmounted.

For information on restoring a bad superblock, see “How to Restore a Bad Superblock (Solaris 10 6/06 Release)” on page 418 or “How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)” on page 422.

1 Become superuser or assume an equivalent role.

2 Unmount the local file system to ensure that there is no activity on the file system.

Specify the mount point directory or /dev/dsk/device-name as arguments to the fsck command. Any inconsistency messages are displayed.

For example:

```
# umount /export/home
# fsck /dev/dsk/c0t0d0s7
** /dev/dsk/c0t0d0s7
** Last Mounted on /export/home
```

3 Correct any reported fsck errors.

For information on how to respond to the error message prompts while you interactively check one or more UFS file systems, see Chapter 28, “Resolving UFS File System Inconsistencies (Tasks),” in System Administration Guide: Advanced Administration.

4 If fsck cannot repair all of the problems after running it, see “Fixing a UFS File System That the fsck Command Cannot Repair” on page 417.

5 Mount the repaired file system to determine if there are any files in the lost+found directory.

Individual files put in the lost+found directory by the fsck command are renamed with their inode numbers.
6 Rename and move any files put in the lost+found directory. If possible, rename the files and move them where they belong. Try to use the grep command to match phrases within individual files and the file command to identify file types. Eventually, remove unidentifiable files or directories left in the lost+found directory so that it doesn’t fill up unnecessarily.

Example 21–1 Interactively Checking Non-root (/) or Non-/usr File Systems

The following example shows how to check the /dev/rdsk/c0t0d0s6 file system and correct the incorrect block count. This example assumes that the file system is unmounted.

```bash
# fsck /dev/rdsk/c0t0d0s6
** Phase 1 - Check Block and Sizes
INCORRECT BLOCK COUNT I=2529 (6 should be 2)
CORRECT? y

** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Cylinder Groups
929 files, 8928 used, 2851 free (75 frags, 347 blocks, 0.6% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****
#
```

Preening UFS File Systems

The fsck -o p command (p is for preen) checks UFS file systems and automatically fixes the problems that normally result from an unexpected system shutdown. This command exits immediately if it encounters a problem that requires operator intervention. This command also permits parallel checking of file systems.

You can run the fsck -o p command to preen the file systems after an unclean shutdown. In this mode, the fsck command does not look at the clean flag and does a full check. These actions are a subset of the actions that the fsck command takes when it runs interactively.

▼ How to Preen a UFS File System

This procedure assumes that the file system is unmounted or inactive.

1 Become superuser or assume an equivalent role.
2. Unmount the UFS file system.

 # umount /mount-point

3. Check the UFS file system with the preen option.

 # fsck -o p /dev/rdsk/device-name

 You can preen individual file systems by using /mount-point or /dev/rdsk/device-name as arguments to the fsck command.

 Example 21–2 Preening a UFS File System

 The following example shows how to preen the /export/home file system.

 # fsck -o p /export/home

Fixing a UFS File System That the fsck Command Cannot Repair

The fsck command operates in several passes, and a problem corrected in a later pass can expose other problems that are only detected by earlier passes. Therefore, it is sometimes necessary to run fsck until it no longer reports any problems. Doing so ensures that all errors have been found and repaired.

Pay attention to the information displayed by the fsck command. This information might help you fix the problem. For example, the messages might point to a damaged directory. If you delete the directory, you might find that the fsck command runs cleanly.

If the fsck command still cannot repair the file system, try to use the ff, clri, and ncheck commands to figure out and fix what is wrong. For information about how to use these commands, see the following references:

- fsdb(1M)
- ff(1M)
- clri(1M)
- ncheck(1M)

Ultimately, you might need to re-create the file system and restore its contents from backup media.

For information about restoring complete file systems, see Chapter 26, “Restoring Files and File Systems (Tasks).”

If you cannot fully repair a file system but you can mount it read-only, try using the cp, tar, or cpio commands to retrieve all or part of the data from the file system.
If hardware disk errors are causing the problem, you might need to reformat and repartition the disk again before re-creating and restoring file systems. Check that the device cables and connectors are functional before replacing the disk device. Hardware errors usually display the same error again and again across different commands. The `format` command tries to work around bad blocks on the disk. However, if the disk is too severely damaged, the problems might persist, even after reformattting. For information about using the `format` command, see `format(1M)`. For information about installing a new disk, see Chapter 12, "SPARC: Adding a Disk (Tasks)" or Chapter 13, "x86: Adding a Disk (Tasks)."

Restoring a Bad Superblock

When the superblock of a file system becomes damaged, you must restore it. The `fsck` command tells you when a superblock is bad. Fortunately, copies of the superblock are stored within a file system.

You can use the `fsck -o b` command to replace the superblock with one of these copies or use `fsck`'s automatic search for backup superblocks feature, which is new in the Solaris 10 6/06 release. For more information about this feature, see "Automatic Search for Backup Superblocks" on page 306.

For more information about the superblock, see "Superblock" on page 426.

If the superblock in the root (`/`) file system becomes damaged and you cannot restore it, you have two choices:

- Reinstall the system.
- Boot from the network or local CD, and attempt the following steps. If these steps fail, recreate the root (`/`) file system by using the `newfs` command and restore it from a backup copy.

How to Restore a Bad Superblock (Solaris 10 6/06 Release)

This procedure is new in the Solaris 10 6/06 release. If your file system has a bad superblock, `fsck` automatically calculates an alternative superblock as seen in the following messages:

BAD SUPERBLOCK AT ...

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS?
LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS?
Caution – If a file system with a damaged superblock was created with newfs or mkfs customized parameters, such as ntrack or nsect, using fsck’s automatically calculated superblock for the repair process could irreparably damage your file system.

In the case of a file system that was created with customized parameters and it has a bad superblock, fsck provides the following prompt to cancel the fsck session:

CANCEL FILESYSTEM CHECK?

Canceling the fsck session would be an appropriate response if this file system was created with customized parameters or if there is some other concern about running fsck on this file system.

1 Become superuser or assume an equivalent role.

2 Check the file system with the suspected bad superblock.

 # fsck /dev/rdsk/c0t1d0s0

 ** /dev/rdsk/c0t1d0s0

 BAD SUPERBLOCK at ...

3 Determine how the file system was created and select one of the following:
 - The file system was created with the newfs command.
 - fsck responds that all superblocks are corrupt and it must use a generic superblock. Answer the fsck prompts as described in the example below.

Caution – Do not use this option if the file system was created with customized parameters. This option should only be used as a last resort. Be prepared to restore the file system from a backup copy.

 # fsck /dev/dsk/c1t2d0s0

 ** /dev/dsk/c1t2d0s0

 BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

 LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? no

 LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? yes

 SEARCH FOR ALTERNATE SUPERBLOCKS FAILED.

 USE GENERIC SUPERBLOCK FROM MKFS? no
USE GENERIC SUPERBLOCK FROM NEWFS? yes

CALCULATED GENERIC SUPERBLOCK WITH NEWFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
CORRECT GLOBAL SUMMARY
SALVAGE? y

UPDATE STANDARD SUPERBLOCK? y

81 files, 3609 used, 244678 free (6 frags, 30584 blocks, 0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****
- fsck responds that it found an alternate superblock with a message similar to the following:

FOUND ALTERNATE SUPERBLOCK 32 WITH NEWFS

With this fsck scenario, follow the prompts as shown in “Automatic Search for Backup Superblocks” on page 306.

- The file system was created with the mkfs command.
- fsck responds that all superblocks are corrupt and must use a generic superblock. Answer the fsck prompts as described in the example below.

** Caution** – Do not use this option if the file system was created with customized parameters. This option should only be used as a last resort. Be prepared to restore the file system from a backup copy.

fsck /dev/dsk/c1t2d0s0
** /dev/rdsk/c1t2d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? yes

LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? no

SEARCH FOR ALTERNATE SUPERBLOCKS FAILED.

USE GENERIC SUPERBLOCK FROM MKFS? yes

CALCULATED GENERIC SUPERBLOCK WITH MKFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
CORRECT GLOBAL SUMMARY
SALVAGE? y

UPDATE STANDARD SUPERBLOCK? y

81 files, 3609 used, 243605 free (117 frags, 30436 blocks, 0.0% fragmentation)

fsck responds that it found an alternate superblock with a message similar to the following:

FOUND ALTERNATE SUPERBLOCK 32 WITH MKFS

With this fsck scenario, follow the prompts as shown in "Automatic Search for Backup Superblocks" on page 306.

4 Answer the prompts to salvage and restore the superblock.
There is no need to rerun fsck when you see the following message:

***** FILE SYSTEM WAS MODIFIED *****

However, it doesn’t harm the file system to rerun fsck after this message. This message is just informational about fsck’s corrective actions.
How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)

1. Become superuser or assume an equivalent role.

2. Determine whether the bad superblock is in the root (/), /usr, or /var file system and select one of the following:
 - If the bad superblock is in either the root (/), /usr, or /var file system, then boot from the network or a locally connected CD.
 From a locally-connected CD, use the following command:

 `ok boot cdrom -s`

 From the network where a boot or install server is already setup, use the following command:

 `ok boot net -s`

 If you need help stopping the system, see Chapter 10, “Booting a System (Tasks),” in System Administration Guide: Basic Administration or Chapter 11, “GRUB Based Booting (Tasks),” in System Administration Guide: Basic Administration.
 - If the bad superblock is not in either the root (/), /usr, /var file system, change to a directory outside the damaged file system and unmount the file system.

 `# umount /mount-point`

 Caution – Be sure to use the `newfs -N` in the next step. If you omit the `-N` option, you will destroy all of the data in the file system and replace it with an empty file system.

3. Display the superblock values by using the `newfs -N` command.

 `# newfs -N /dev/rdsk/device-name`

 The command output displays the block numbers that were used for the superblock copies when the `newfs` command created the file system, unless the file system was created with special parameters. For information on creating a customized file system, see “Customizing UFS File System Parameters” on page 428.

4. Provide an alternate superblock by using the `fsck` command.

 `# fsck -F ufs -o b=block-number /dev/rdsk/device-name`
The `fsck` command uses the alternate superblock you specify to restore the primary superblock. You can always try 32 as an alternate block. Or, use any of the alternate blocks shown by the `newfs -N` command.

Example 21-3 Restoring a Bad Superblock (Solaris 8, 9, and 10 Releases)

The following example shows how to restore the superblock copy 5264.

```bash
# newfs -N /dev/rdsk/c0t3d0s7
/dev/rdsk/c0t3d0s7: 163944 sectors in 506 cylinders of 9 tracks, 36 sectors
83.9MB in 32 cyl groups (16 c/g, 2.65MB/g, 1216 i/g)
super-block backups (for fsck -b #) at:
    32, 5264, 10496, 15728, 20960, 26192, 31424, 36656, 41888,
    47120, 52352, 57584, 62816, 68048, 73280, 78512, 83744, 88976, 94208,
    99440, 104672, 109904, 115136, 120368, 125600, 130832, 136064, 141296,
    146528, 151760, 156992, 162224, 167456,
# fsck -F ufs -o b=5264 /dev/rdsk/c0t3d0s7
Alternate superblock location: 5264.
** /dev/rdsk/c0t3d0s7
** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
36 files, 867 used, 75712 free (16 frags, 9462 blocks, 0.0% fragmentation)
***** FILE SYSTEM WAS MODIFIED *****
#
```

Syntax and Options for the `fsck` Command

The `fsck` command checks and repairs inconsistencies in file systems. If you run the `fsck` command without any options, it interactively asks for confirmation before making repairs. This command has four options.

<table>
<thead>
<tr>
<th>Command and Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fsck -m</code></td>
<td>Checks whether a file system can be mounted</td>
</tr>
<tr>
<td><code>fsck -y</code></td>
<td>Assumes a yes response for all repairs</td>
</tr>
<tr>
<td><code>fsck -n</code></td>
<td>Assumes a no response for all repairs</td>
</tr>
</tbody>
</table>

Chapter 21 • Checking UFS File System Consistency (Tasks) 423
Syntax and Options for the `fsck` Command

<table>
<thead>
<tr>
<th>Command and Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fsck -o p</code></td>
<td>Noninteractively preens the file system, fixing all expected (innocuous) inconsistencies, but exits when a serious problem is encountered</td>
</tr>
</tbody>
</table>
UFS File System (Reference)

This is a list of the reference information in this chapter.

- “Structure of Cylinder Groups for UFS File Systems” on page 425
- “Customizing UFS File System Parameters” on page 428

Structure of Cylinder Groups for UFS File Systems

When you create a UFS file system, the disk slice is divided into cylinder groups. A cylinder group is comprised of one or more consecutive disk cylinders. Cylinder groups are then further divided into addressable blocks to control and organize the structure of the files within the cylinder group. Each type of block has a specific function in the file system. A UFS file system has these four types of blocks.

<table>
<thead>
<tr>
<th>Block Type</th>
<th>Type of Information Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot block</td>
<td>Information used when the system is booted</td>
</tr>
<tr>
<td>Superblock</td>
<td>Detailed information about the file system</td>
</tr>
<tr>
<td>Inode</td>
<td>All information about a file</td>
</tr>
<tr>
<td>Storage or data block</td>
<td>Data for each file</td>
</tr>
</tbody>
</table>

The following sections provide additional information about the organization and function of these blocks.
Boot Block

The boot block stores objects that are used in booting the system. If a file system is not to be used for booting, the boot block is left blank. The boot block appears only in the first cylinder group (cylinder group 0) and is the first 8 Kbytes in a slice.

Superblock

The superblock stores much of the information about the file system, which includes the following:

- Size and status of the file system
- Label, which includes the file system name and volume name
- Size of the file system logical block
- Date and time of the last update
- Cylinder group size
- Number of data blocks in a cylinder group
- Summary data block
- File system state
- Path name of the last mount point

Because the superblock contains critical data, multiple superblocks are made when the file system is created.

A summary information block is kept within the superblock. The summary information block is not replicated, but is grouped with the primary superblock, usually in cylinder group 0. The summary block records changes that take place as the file system is used. In addition, the summary block lists the number of inodes, directories, fragments, and storage blocks within the file system.

Inodes

An inode contains all the information about a file except its name, which is kept in a directory. An inode is 128 bytes. The inode information is kept in the cylinder information block, and contains the following:

- The type of the file: Regular, Directory, Block special, Character special, FIFO, also known as named pipe, Symbolic link
■ Socket
■ Other inodes – Attribute directory and shadow (used for ACLs)
■ The mode of the file (the set of read-write-execute permissions)
■ The number of hard links to the file
■ The user ID of the owner of the file
■ The group ID to which the file belongs
■ The number of bytes in the file
■ An array of 15 disk-block addresses
■ The date and time the file was last accessed
■ The date and time the file was last modified
■ The date and time the inode was changed

The array of 15 disk-block addresses (0 to 14) points to the data blocks that store the contents of the file. The first 12 are direct addresses. That is, they point directly to the first 12 logical storage blocks of the file contents. If the file is larger than 12 logical blocks, the 13th address points to an indirect block, which contains direct-block addresses instead of file contents. The 14th address points to a double indirect block, which contains addresses of indirect blocks. The 15th address is for triple indirect addresses. The following figure shows this chaining of address blocks starting from the inode.

![Address Chain for a UFS File System](image)

Data Blocks

Data blocks, also called *storage blocks*, contain the rest of the space that is allocated to the file system. The size of these data blocks is determined when a file system is created. By default, data blocks are allocated in two sizes: an 8-Kbyte logical block size, and a 1-Kbyte fragment size.
For a regular file, the data blocks contain the contents of the file. For a directory, the data blocks contain entries that give the inode number and the file name of the files in the directory.

Free Blocks

Blocks that are not currently being used as inodes, as indirect address blocks, or as storage blocks are marked as free in the cylinder group map. This map also keeps track of fragments to prevent fragmentation from degrading disk performance.

To give you an idea of the structure of a typical UFS file system, the following figure shows a series of cylinder groups in a generic UFS file system.

Customizing UFS File System Parameters

Before you alter the default file system parameters that are assigned by the `newfs` command, you need to understand them. This section describes these parameters:

- “Logical Block Size” on page 429
- “Fragment Size” on page 429
- “Minimum Free Space” on page 430
- “Rotational Delay” on page 430 (Obsolete)
- “Optimization Type” on page 430
- “Number of Inodes (Files)” on page 431

For a description of the command options that customize these parameters, see `newfs(1M)` and `mkfs_ufs(1M)`.
Logical Block Size

The logical block size is the size of the blocks that the UNIX® kernel uses to read or write files. The logical block size is usually different from the physical block size. The physical block size is usually 512 bytes, which is the size of the smallest block that the disk controller can read or write.

Logical block size is set to the page size of the system by default. The default logical block size is 8192 bytes (8 Kbytes) for UFS file systems. The UFS file system supports block sizes of 4096 or 8192 bytes (4 or 8 Kbytes). The recommended logical block size is 8 Kbytes.

SPARC only – You can specify only the 8192-byte block size on the sun-4u™ platform.

To choose the best logical block size for your system, consider both the performance you want and the available space. For most UFS systems, an 8- Kbyte file system provides the best performance, offering a good balance between disk performance and the use of space in primary memory and on disk.

As a general rule, to increase efficiency, use a larger logical block size for file systems when most of the files are very large. Use a smaller logical block size for file systems when most of the files are very small. You can use the `quot -c filesystem` command on a file system to display a complete report on the distribution of files by block size.

However, the page size set when the file system is created is probably the best size in most cases.

Fragment Size

As files are created or expanded, they are allocated disk space in either full logical blocks or portions of logical blocks called fragments. When disk space is needed for a file, full blocks are allocated first, and then one or more fragments of a block are allocated for the remainder. For small files, allocation begins with fragments.

The ability to allocate fragments of blocks to files, rather than just whole blocks, saves space by reducing fragmentation of disk space that results from unused holes in blocks.

You define the fragment size when you create a UFS file system. The default fragment size is 1 Kbyte. Each block can be divided into 1, 2, 4, or 8 fragments, which results in fragment sizes from 8192 bytes to 512 bytes (for 4-Kbyte file systems only). The lower bound is actually tied to the disk sector size, typically 512 bytes.

For multiterabyte file systems, the fragment size must be equal to the file system block size.
Note – The upper bound for the fragment is the logical block size, in which case the fragment is not a fragment at all. This configuration might be optimal for file systems with very large files when you are more concerned with speed than with space.

When choosing a fragment size, consider the trade-off between time and space: A small fragment size saves space, but requires more time to allocate. As a general rule, to increase storage efficiency, use a larger fragment size for file systems when most of the files are large. Use a smaller fragment size for file systems when most of the files are small.

Minimum Free Space

The minimum free space is the percentage of the total disk space that is held in reserve when you create the file system. The default reserve is \((64 \text{ Mbytes/partition size} \times 100)\), rounded down to the nearest integer and limited between 1 percent and 10 percent, inclusively.

Free space is important because file access becomes less and less efficient as a file system gets full. As long as an adequate amount of free space exists, UFS file systems operate efficiently. When a file system becomes full, using up the available user space, only root can access the reserved free space.

Commands such as `df` report the percentage of space that is available to users, excluding the percentage allocated as the minimum free space. When the command reports that more than 100 percent of the disk space in the file system is in use, some of the reserve has been used by root.

If you impose quotas on users, the amount of space available to them does not include the reserved free space. You can change the value of the minimum free space for an existing file system by using the `tunefs` command.

Rotational Delay

This parameter is obsolete. The value is always set to 0, regardless of the value you specify.

Optimization Type

The optimization type parameter is set to either `space` or `time`.

- **Space** – When you select space optimization, disk blocks are allocated to minimize fragmentation and disk use is optimized.
- **Time** – When you select time optimization, disk blocks are allocated as quickly as possible, with less emphasis on their placement. When sufficient free space exists, allocating disk blocks is relatively easy, without resulting in too much fragmentation. The default is `time`.
You can change the value of the optimization type parameter for an existing file system by using the `tunefs` command.

For more information, see `tunefs(1M)`.

Number of Inodes (Files)

The number of bytes per inode specifies the density of inodes in the file system. The number is divided into the total size of the file system to determine the number of inodes to create. Once the inodes are allocated, you cannot change the number without re-creating the file system.

The default number of bytes per inode is 2048 bytes (2 Kbytes) if the file system is less than 1 Gbyte. If the file system is larger than 1 Gbyte, the following formula is used:

\[
\text{Number of Bytes Per Inode} = \frac{\text{FileSystem Size}}{\text{Number of Bytes Per Inode}}
\]

<table>
<thead>
<tr>
<th>File System Size</th>
<th>Number of Bytes Per Inode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 1 Gbyte</td>
<td>2048</td>
</tr>
<tr>
<td>Less than 2 Gbytes</td>
<td>4096</td>
</tr>
<tr>
<td>Less than 3 Gbytes</td>
<td>6144</td>
</tr>
<tr>
<td>3 Gbytes up to 1 Tbyte</td>
<td>8192</td>
</tr>
<tr>
<td>Greater than 1 Tbyte or created with -T option</td>
<td>1048576</td>
</tr>
</tbody>
</table>

If you have a file system with many symbolic links, they can lower the average file size. If your file system is going to have many small files, you can give this parameter a lower value. Note, however, that having too many inodes is much better than running out of inodes. If you have too few inodes, you could reach the maximum number of files on a disk slice that is practically empty.

Maximum UFS File and File System Size

The maximum size of a UFS file system is about 16 Tbytes of usable space, minus about one percent overhead. A *sparse* file can have a logical size of one terabyte. However, the actual amount of data that can be stored in a file is approximately one percent less than 1 Tbyte because of the file system overhead.

Maximum Number of UFS Subdirectories

The maximum number of subdirectories per directory in a UFS file system is 32,767. This limit is predefined and cannot be changed.
Chapter 23

Backing Up and Restoring File Systems
(Overview)

This chapter provides guidelines and planning information for backing up and restoring file systems by using the `ufsdump` and `ufsrestore` commands.

This is a list of the overview information in this chapter.

- “Where to Find Backup and Restore Tasks” on page 433
- “Introduction to Backing Up and Restoring File Systems” on page 434
- “Why You Should Back Up File Systems” on page 434
- “Planning Which File Systems to Back Up” on page 435
- “Choosing the Type of Backup” on page 436
- “Choosing a Tape Device” on page 437
- “High-Level View of Backing Up and Restoring File Systems (Task Map)” on page 438
- “Considerations for Scheduling Backups” on page 439
- “Sample Backup Schedules” on page 442

Where to Find Backup and Restore Tasks

<table>
<thead>
<tr>
<th>Backup or Restore Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up file systems by using the <code>ufsdump</code> command.</td>
<td>Chapter 24, “Backing Up Files and File Systems (Tasks)”</td>
</tr>
<tr>
<td>Create UFS snapshots by using the <code>fssnap</code> command.</td>
<td>Chapter 25, “Using UFS Snapshots (Tasks)”</td>
</tr>
<tr>
<td>Restore file systems by using the <code>ufsrestore</code> command.</td>
<td>Chapter 26, “Restoring Files and File Systems (Tasks)”</td>
</tr>
<tr>
<td>Copy files and directories by using the <code>cpio</code>, <code>dd</code>, <code>pax</code>,</td>
<td>Chapter 28, “Copying UFS Files and File Systems (Tasks)”</td>
</tr>
<tr>
<td>and <code>cpio</code> commands.</td>
<td></td>
</tr>
</tbody>
</table>
Introduction to Backing Up and Restoring File Systems

Backing up file systems means copying file systems to removable media, such as tape, to safeguard against loss, damage, or corruption. *Restoring* file systems means copying reasonably current backup files from removable media to a working directory.

This chapter describes the `ufsdump` and `ufsrestore` commands for backing up and restoring UFS file systems. Other commands are available for copying files and file systems for the purpose of sharing or transporting files. The following table provides pointers to all commands that copy individual files and file systems to other media.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up one or more file systems to a local tape device or a remote tape device.</td>
<td><code>ufsdump</code></td>
<td>Chapter 24, “Backing Up Files and File Systems (Tasks)” or Chapter 27, “UFS Backup and Restore Commands (Reference)”</td>
</tr>
<tr>
<td>Create read-only copies of file systems.</td>
<td><code>fssnap</code></td>
<td>Chapter 25, “Using UFS Snapshots (Tasks)”</td>
</tr>
<tr>
<td>Back up all file systems for systems on a network from a backup server.</td>
<td>Solstice Backup software</td>
<td>Solstice Backup 6.1 Administration Guide</td>
</tr>
<tr>
<td>Back up and restore an NIS+ master server.</td>
<td><code>nisbackup</code> and <code>nisrestore</code></td>
<td>System Administration Guide: Naming and Directory Services (NIS+)</td>
</tr>
<tr>
<td>Copy, list, and retrieve files on a tape or diskette.</td>
<td><code>tar</code>, <code>cpio</code>, or <code>pax</code></td>
<td>Chapter 28, “Copying UFS Files and File Systems (Tasks)”</td>
</tr>
<tr>
<td>Copy the master disk to a clone disk.</td>
<td><code>dd</code></td>
<td>Chapter 28, “Copying UFS Files and File Systems (Tasks)”</td>
</tr>
<tr>
<td>Restore complete file systems or individual files from removable media to a working directory.</td>
<td><code>ufsrestore</code></td>
<td>Chapter 26, “Restoring Files and File Systems (Tasks)”</td>
</tr>
</tbody>
</table>

Why You Should Back Up File Systems

Backing up files is one of the most crucial system administration functions. You should perform regularly scheduled backups to prevent loss of data due to the following types of problems:

- System crashes
- Accidental deletion of files
- Hardware failures
Natural disasters such as fire, hurricanes, or earthquakes
- Problems when you reinstall or upgrade a system

Planning Which File Systems to Back Up

You should back up all file systems that are critical to users, including file systems that change frequently. The following tables provide general guidelines on the file systems to back up for stand-alone systems and servers.

<table>
<thead>
<tr>
<th>File System to Back Up</th>
<th>Description</th>
<th>Back Up Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/) – slice 0</td>
<td>This file system contains the kernel and possibly the /var directory. The /var directory contains temporary files, logging files, or status files, and possibly contains frequently updated system accounting and mail files.</td>
<td>At regular intervals such as weekly or daily</td>
</tr>
<tr>
<td>/usr – slice 6, /opt</td>
<td>The /usr and /opt file systems contain software and executables. The /opt directory is either part of root (/) or is its own file system.</td>
<td>Occasionally</td>
</tr>
<tr>
<td>/export/home – slice 7</td>
<td>This file system can contain the directories and subdirectories of all users on the stand-alone system.</td>
<td>More often than root (/) or /usr, perhaps as often as once a day, depending on your site’s needs</td>
</tr>
<tr>
<td>/export, /var, or other file systems</td>
<td>The /export file system can contain the kernel and executables for diskless clients. The /var directory contains temporary files, logging files, or status files.</td>
<td>As your site requires</td>
</tr>
</tbody>
</table>
TABLE 23-3 File Systems to Back Up for Servers

<table>
<thead>
<tr>
<th>File System to Back Up</th>
<th>Description</th>
<th>Back Up Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/) – slice 0</td>
<td>This file system contains the kernel and executables.</td>
<td>Once a day to once a month depending on your site’s needs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you frequently add and remove users and systems on the network, you have to change configuration files in this file system. In this case, you should do a full backup of the root (/) file system at intervals between once a week and once a month.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If your site keeps user mail in the /var/mail directory on a mail server, which client systems then mount, you might want to back up root (/) daily. Or, backup the /var directory, if it is a separate file system.</td>
</tr>
<tr>
<td>/export – slice 3</td>
<td>This file system can contain the kernel and executables for diskless clients.</td>
<td>Once a day to once a month, depending on your site’s needs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Because the information in this file system is similar to the server’s root directory in slice 0, the file system does not change frequently. You need to back up this file system only occasionally, unless your site delivers mail to client systems. Then, you should back up /export more frequently.</td>
</tr>
<tr>
<td>/usr – slice 6, /opt</td>
<td>The /usr and /opt file systems contain software and executables. The /opt directory is either part of root (/) or is its own file system.</td>
<td>Once a day to once a month, depending on your site’s needs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These file systems are fairly static unless software is added or removed frequently.</td>
</tr>
<tr>
<td>/export/home – slice 7</td>
<td>This file system can contain the home directories of all the users on the system. The files in this file system are volatile.</td>
<td>Once a day to once a week.</td>
</tr>
</tbody>
</table>

Choosing the Type of Backup

You can perform full or incremental backups by using the `ufsdump` command. You can create a temporary image of a file system by using the `fsfsnap` command. The following table lists the differences between these types of backup procedures.
TABLE 23–4 Differences Between Types of Backups

<table>
<thead>
<tr>
<th>Backup Type</th>
<th>Result</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>Copies a complete file system or directory</td>
<td>All data is in one place</td>
<td>Requires large numbers of backup tapes that take a long time to write. Takes longer to retrieve individual files because the drive has to move sequentially to the point on the tape where the file is located. You might have to search multiple tapes.</td>
</tr>
<tr>
<td>Snapshot</td>
<td>Creates a temporary image of a file system</td>
<td>System can be in multiuser mode</td>
<td>System performance might degrade while the snapshot is created.</td>
</tr>
<tr>
<td>Incremental</td>
<td>Copies only those files in the specified file system that have changed since a previous backup</td>
<td>Easier to retrieve small changes in file systems</td>
<td>Finding which incremental tape contains a file can take time. You might have to go back to the last full backup.</td>
</tr>
</tbody>
</table>

Choosing a Tape Device

The following table shows typical tape devices that are used for storing file systems during the backup process. The storage capacity depends on the type of drive and the data being written to the tape. For more information on tape devices, see Chapter 29, “Managing Tape Drives (Tasks).”

TABLE 23–5 Typical Media for Backing Up File Systems

<table>
<thead>
<tr>
<th>Backup Media</th>
<th>Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-inch reel tape</td>
<td>140 Mbytes (6250 bpi)</td>
</tr>
<tr>
<td>2.5-Gbyte 1/4-inch cartridge (QIC) tape</td>
<td>2.5 Gbytes</td>
</tr>
<tr>
<td>DDS3 4-mm cartridge tape (DAT)</td>
<td>12–24 Gbytes</td>
</tr>
<tr>
<td>14-Gbyte 8-mm cartridge tape</td>
<td>14 Gbytes</td>
</tr>
<tr>
<td>DLT 7000 1/2-inch cartridge tape</td>
<td>35–70 Gbytes</td>
</tr>
</tbody>
</table>
High-Level View of Backing Up and Restoring File Systems
(Task Map)

Use this task map to identify all the tasks for backing up and restoring file systems. Each task points to a series of additional tasks, such as determining the type of backup to perform.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the file systems to backup.</td>
<td>Identify which file systems need to be backed up on a daily, weekly, or monthly basis.</td>
<td>"Planning Which File Systems to Back Up" on page 435</td>
</tr>
<tr>
<td>2. Determine the type of backup.</td>
<td>Determine the type of backup you need for the file systems at your site.</td>
<td>"Choosing the Type of Backup" on page 436</td>
</tr>
<tr>
<td>3. Create the backup.</td>
<td>Use one of the following methods:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you want to have full and incremental backups of your file systems, use the \texttt{ufsdump} command.</td>
<td>Chapter 24, "Backing Up Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td></td>
<td>If you want to create a snapshot of a file system while it is active and mounted, consider using the \texttt{fssnap} command.</td>
<td>Chapter 25, "Using UFS Snapshots (Tasks)"</td>
</tr>
<tr>
<td></td>
<td>If you just want to have full backups of your personal home directory or smaller, less-important file systems, use the \texttt{tar}, \texttt{cpio}, or \texttt{pax} commands.</td>
<td>Chapter 28, "Copying UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td>4. (Optional) Restore a file system.</td>
<td>Select the restoration method that is based on the command used to back up the files or file system:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restore a file system backup that was created with the \texttt{ufsdump} command.</td>
<td>Chapter 26, "Restoring Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td></td>
<td>Restore a file system that was created with the \texttt{tar}, \texttt{cpio}, or \texttt{pax} command.</td>
<td>Chapter 28, "Copying UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td>5. (Optional) Restore the root (/) or /usr file system.</td>
<td>Restoring the root (/) or /usr file system is more complicated than restoring a noncritical file system. You need to boot from a local CD or from the network while these file systems are being restored.</td>
<td>"How to Restore the root (/) and /usr File Systems" on page 480</td>
</tr>
</tbody>
</table>
Considerations for Scheduling Backups

A backup schedule is the schedule that you establish to run the `ufsdump` command. This section identifies considerations to think about when you create a backup schedule. This section also includes sample backup schedules.

The backup schedule that you create depends on the following:

- Your need to minimize the number of tapes that are used for backups
- The time available for doing backups
- The time available for doing a full restore of a damaged file system
- The time available for retrieving individual files that are accidentally deleted

How Often Should You Do Backups?

If you do not need to minimize time requirements and the number of media that is used for backups, you can do full backups every day. However, this backup method is not realistic for most sites, so incremental backups are used most often. In this case, you should back up your site enough to so that you can restore files from the last four weeks. This schedule requires at least four sets of tapes, one set for each week. You would then reuse the tapes each month. In addition, you should archive the monthly backups for at least a year. Then, keep yearly backups for a number of years.

Backup Interval Terms and Definitions

The following table describes backup interval terms and definitions.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot</td>
<td>Creates a temporary image of a file system.</td>
</tr>
<tr>
<td>Full backup</td>
<td>Copies a complete file system or directory.</td>
</tr>
</tbody>
</table>
Incremental backup

Copies only those files in the specified file system that have changed since a previous backup. Incremental backup types include the following:

- Daily, cumulative – Copies a day’s worth of file changes on Monday. Then, overwrites Monday’s backup with file changes from Tuesday, Wednesday, and so on.
- Daily, incremental – Copies a day’s worth of file changes so that you have distinct tapes of Monday’s changes, Tuesday’s changes, and so on.
- Weekly cumulative – Copies the files that have changed during the week and includes the previous week’s file changes.
- Weekly incremental – Copies the files that have changed during the week since the previous weekly backup.

Guidelines for Scheduling Backups

The following table provides guidelines for scheduling backups. For additional backup schedule considerations, see "Considerations for Scheduling Backups" on page 439.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental backup</td>
<td>Copies only those files in the specified file system that have changed since a previous backup. Incremental backup types include the following:</td>
</tr>
<tr>
<td></td>
<td>- Daily, cumulative – Copies a day’s worth of file changes on Monday. Then, overwrites Monday’s backup with file changes from Tuesday, Wednesday, and so on.</td>
</tr>
<tr>
<td></td>
<td>- Daily, incremental – Copies a day’s worth of file changes so that you have distinct tapes of Monday’s changes, Tuesday’s changes, and so on.</td>
</tr>
<tr>
<td></td>
<td>- Weekly cumulative – Copies the files that have changed during the week and includes the previous week’s file changes.</td>
</tr>
<tr>
<td></td>
<td>- Weekly incremental – Copies the files that have changed during the week since the previous weekly backup.</td>
</tr>
</tbody>
</table>

Guidelines for Backup Schedules

TABLE 23–6 Guidelines for Backup Schedules

<table>
<thead>
<tr>
<th>File Restoration Need</th>
<th>Backup Interval</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>To restore different</td>
<td>Do daily incremental backups every</td>
<td>This schedule saves all files modified that day, as well as those files still on disk that were modified since the last backup of a</td>
</tr>
<tr>
<td>versions of files</td>
<td>working day.</td>
<td>lower level. However, with this schedule, you should use a different tape each day because you might otherwise be unable to</td>
</tr>
<tr>
<td>(for example, file</td>
<td>Do not reuse the same tape for daily</td>
<td>restore the needed version of the file.</td>
</tr>
<tr>
<td>systems that are</td>
<td>incremental backups</td>
<td>For example, a file that changed on Tuesday, and again on Thursday, goes onto Friday’s lower-level backup appearing as it did</td>
</tr>
<tr>
<td>used for word</td>
<td></td>
<td>Thursday night, not Tuesday night. If a user needs the Tuesday version, you cannot restore it unless you have a Tuesday backup</td>
</tr>
<tr>
<td>processing)</td>
<td></td>
<td>tape (or a Wednesday backup tape). Similarly, a file that is present on Tuesday and Wednesday, but removed on Thursday, does</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not appear on the Friday lower-level backup.</td>
</tr>
</tbody>
</table>
TABLE 23–6 Guidelines for Backup Schedules (Continued)

<table>
<thead>
<tr>
<th>File Restoration Need</th>
<th>Backup Interval</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>To quickly restore a complete file system</td>
<td>Do lower-level backups more frequently.</td>
<td>—</td>
</tr>
<tr>
<td>To back up a number of file systems on the same server</td>
<td>Consider staggering the schedule for different file systems.</td>
<td>This way you’re not doing all level 0 backups on the same day.</td>
</tr>
<tr>
<td>To minimize the number of tapes used</td>
<td>Increase the level of incremental backups that are done across the week.</td>
<td>Only changes from day to day are saved on each daily tape.</td>
</tr>
<tr>
<td></td>
<td>Increase the level of backups that are done at the end of the week. Put each day’s and week’s incremental backups onto the same tape.</td>
<td>Only changes from week to week (rather than the entire month) are saved on the weekly tapes.</td>
</tr>
<tr>
<td></td>
<td>Put each day’s and week’s incremental backups onto the same tape.</td>
<td>To do so, use the no rewind option of the <code>ufsdump</code> command, such as specifying <code>/dev/rmt/0n</code>.</td>
</tr>
</tbody>
</table>

Using Dump Levels to Create Incremental Backups

The dump level you specify in the `ufsdump` command (0–9) determines which files are backed up. Dump level 0 creates a full backup. Levels 1–9 are used to schedule incremental backups, but have no defined meanings. Levels 1–9 are just a range of numbers that are used to schedule cumulative or discrete backups. The only meaning levels 1–9 have is in relationship to each other, as a higher or lower number. A lower dump number always restarts a full or a cumulative backup. The following examples show the flexibility of the incremental dump procedure using levels 1–9.

Example—Dump Levels for Daily, Cumulative Backups

Doing daily, cumulative incremental backups is the most commonly used backup schedule and is recommended for most situations. The following example shows a schedule that uses a level 9 dump Monday through Thursday, and a level 5 dump on Friday restarts process.
In the preceding example, you could have used other numbers in the 1–9 range to produce the same results. The key is using the same number Monday through Thursday, with any lower number on Friday. For example, you could have specified levels 4, 4, 4, 4, 2 or 7, 7, 7, 7, 5.

Example—Dump Levels for Daily, Incremental Backups

The following example shows a schedule where you capture only a day’s work on different tapes. This type of backup is referred to as a daily, incremental backup. In this case, sequential dump level numbers are used during the week (3, 4, 5, 6) with a lower number (2) on Friday. The lower number on Friday restarts the processing.

In the preceding example, you could have used the sequence 6, 7, 8, 9 followed by 2, or 5, 6, 7, 8 followed by 3. Remember, the numbers themselves have no defined meaning. You attribute meaning by ordering them in a specified sequence, as described in the examples.

Sample Backup Schedules

This section provides sample backup schedules. All schedules assume that you begin with a full backup (dump level 0), and that you use the `-u` option to record each backup in the `/etc/dumpdates` file.
Example—Daily Cumulative, Weekly Cumulative Backup Schedule

Table 23–7 shows the most commonly used incremental backup schedule. This schedule is recommended for most situations. With this schedule, the following occurs:

- Each day, all files that have changed since the lower-level backup at the end of the previous week are saved.
- For each weekday level 9 backup, the previous level 0 or level 5 backup is the closest backup at a lower level. Therefore, each weekday tape contains all the files that changed since the end of the previous week or the initial level 0 backup for the first week.
- For each Friday level 5 backup, the closest lower-level backup is the level 0 backup done at the beginning of the month. Therefore, each Friday’s tape contains all the files changed during the month up to that point.

| TABLE 23–7 Daily Cumulative/Weekly Cumulative Backup Schedule |
|-----------------|-----------|-----------|-----------|-----------|-----------|
| Floating | Mon | Tues | Wed | Thurs | Fri |
| 1st of Month | 0 | | | | |
| Week 1 | 9 | 9 | 9 | 9 | 5 |
| Week 2 | 9 | 9 | 9 | 9 | 5 |
| Week 3 | 9 | 9 | 9 | 9 | 5 |
| Week 4 | 9 | 9 | 9 | 9 | 5 |

The following table shows how the contents of the tapes can change across two weeks with the daily cumulative, weekly cumulative schedule. Each letter represents a different file.

| TABLE 23–8 Contents of Tapes for Daily Cumulative/Weekly Cumulative Backup Schedule |
|-----------------|-----------|-----------|-----------|-----------|
| | Mon | Tues | Wed | Thurs | Fri |
| Week 1 | a b | a b c | a b c d | a b c d e | a b c d e f |
| Week 2 | g | g h | g h i | g h i j | a b c d e f g h i j k |

Tape Requirements for the Daily Cumulative, Weekly Cumulative Schedule

With this schedule, you need six tapes if you want to reuse daily tapes. However, you need nine tapes if you want to use four different daily tapes:

- One tape for the level 0 backup
- Four tapes for Fridays
- One or four daily tapes

If you need to restore a complete file system, you need the following tapes:
- The level 0 tape
- The most recent Friday tape
- The most recent daily tape since the last Friday tape, if any

Example—Daily Cumulative, Weekly Incremental Backup Schedule

The following table shows a schedule where each weekday tape accumulates all files that changed since the beginning of the week, or the initial level 0 backup for the first week. In addition, each Friday’s tape contains all the files that changed that week.

TABLE 23–9 Daily Cumulative, Weekly Incremental Backup Schedule

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st of Month</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Week 2</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Week 3</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Week 4</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

The following table shows how the contents of the tapes can change across two weeks with the daily cumulative, weekly incremental backup schedule. Each letter represents a different file.

TABLE 23–10 Contents of Tapes for Daily Cumulative, Weekly Incremental Backup Schedule

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Week 2</td>
<td>g</td>
<td>h</td>
<td>g</td>
<td>h</td>
<td>i</td>
</tr>
</tbody>
</table>

Tape Requirements for the Daily Cumulative, Weekly Incremental Backup Schedule

With this schedule, you need six tapes if you want to reuse daily tapes. However, you need nine tapes if you want to use four different daily tapes:

- One tape for the level 0 backup
- Four tapes for Fridays
- One or four daily tapes

If you need to restore a complete file system, you need the following tapes:

- The level 0 tape
- All the Friday tapes
The most recent daily tape since the last Friday tape, if any

Example—Daily Incremental, Weekly Cumulative Backup Schedule

The following table shows a schedule where each weekday tape contains only the files that changed since the previous day. In addition, each Friday’s tape contains all files changed since the initial level 0 backup at the beginning of the month.

Table 23–11 Daily Incremental, Weekly Cumulative Backup Schedule

<table>
<thead>
<tr>
<th>Floating</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st of Month</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Week 2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Week 3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Week 4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

The following table shows how the contents of the tapes can change across two weeks with the daily incremental, weekly cumulative schedule. Each letter represents a different file.

Table 23–12 Contents of Tapes for Daily Incremental, Weekly Cumulative Backup Schedule

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>a b</td>
<td>c d</td>
<td>e f g</td>
<td>h i abc def g h i</td>
</tr>
<tr>
<td>Week 2</td>
<td>j k l</td>
<td>m</td>
<td>n o</td>
<td>p q abc def g h i j k l m no p q r s</td>
</tr>
</tbody>
</table>

Tape Requirements for Daily Incremental, Weekly Cumulative Schedule

With this schedule, you need at least 9 tapes if you want to reuse daily tapes, which is not recommended. Preferably, you need 21 tapes if you save weekly tapes for a month: one tape for the level 0, 4 tapes for the Fridays, and 4 or 16 daily tapes.

- 1 tape for the level 0 backup
- 4 tapes for all the Friday backups
- 4 or 16 daily tapes

If you need to restore the complete file system, you need the following tapes:

- The level 0 tape
- The most recent Friday tape
- All the daily tapes since the last Friday tape, if any
Example—Monthly Backup Schedule for a Server

The following table shows an example backup strategy for a heavily used file server on a small network where users are doing file-intensive work, such as program development or document production. This example assumes that the backup period begins on a Sunday and consists of four seven-day weeks.

TABLE 23–13 Example of Monthly Backup Schedule for a Server

<table>
<thead>
<tr>
<th>Directory</th>
<th>Date</th>
<th>Dump Level</th>
<th>Tape Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/)</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export/home</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>1st Monday</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1st Tuesday</td>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>1st Wednesday</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>1st Thursday</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>1st Friday</td>
<td>9</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>1st Saturday</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>root (/)</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export/home</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>2nd Monday</td>
<td>9</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>2nd Tuesday</td>
<td>9</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>2nd Wednesday</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2nd Thursday</td>
<td>9</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>2nd Friday</td>
<td>9</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>2nd Saturday</td>
<td>5</td>
<td>L</td>
</tr>
<tr>
<td>root (/)</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>Directory</td>
<td>Date</td>
<td>Dump Level</td>
<td>Tape Name</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>/export/home</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>3rd Monday</td>
<td>9</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>3rd Tuesday</td>
<td>9</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>3rd Wednesday</td>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>3rd Thursday</td>
<td>9</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>3rd Friday</td>
<td>9</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>3rd Saturday</td>
<td>5</td>
<td>R</td>
</tr>
<tr>
<td>root (/)</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export/home</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>4th Monday</td>
<td>9</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>4th Tuesday</td>
<td>9</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>4th Wednesday</td>
<td>5</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>4th Thursday</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>4th Friday</td>
<td>9</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>4th Saturday</td>
<td>5</td>
<td>X</td>
</tr>
</tbody>
</table>

With this schedule, you use \(4n\) tapes, the number of tapes needed for 4 full backups of the root (/), /usr, /export, and /export/home file systems. Also, you need 24 additional tapes for the incremental backups of the /export/home file systems. This schedule assumes that each incremental backup uses one tape and that you save the tapes for a month.

Here’s how this schedule works:

1. On each Sunday, do a full backup (level 0) of the root (/), /usr, /export, and /export/home file systems. Save the level 0 tapes for at least three months.

2. On the first Monday of the month, use tape A to do a level 9 backup of the /export/home file system. The `ufsdump` command copies all files changed since the previous lower-level backup. In this case, the previous lower-level backup is the level 0 backup that you did on Sunday.

3. On the first Tuesday of the month, use tape B to do a level 9 backup of the /export/home file system. Again, the `ufsdump` command copies all files changed since the last lower-level backup, which is Sunday’s level 0 backup.
4. On the first Wednesday of the month, use tape C to do a level 5 backup of the /export/home file system. The ufsdump command copies all files that changed since Sunday.

5. Do the Thursday and Friday level 9 backups of the /export/home file system on tapes D and E. The ufsdump command copies all files that changed since the last lower-level backup, which is Wednesday’s level 5 backup.

6. On the first Saturday of the month, use tape F to do a level 5 backup of /export/home. The ufsdump command copies all files changed since the previous lower-level backup (in this case, the level 0 backup you did on Sunday). Store tapes A–F until the first Monday of the next four-week period, when you use them again.

7. Repeat steps 1–6 for the next three weeks, using tapes G–L and 4 n tapes for the level 0 backup on Sunday, and so on.

8. For each four-week period, repeat steps 1–7, using a new set of tapes for the level 0 backups and reusing tapes A–X for the incremental backups. The level 0 tapes could be reused after three months.

This schedule lets you save files in their various states for a month. This plan requires many tapes, but ensures that you have a library of tapes to draw upon. To reduce the number of tapes, you could reuse Tapes A–F each week.
This chapter describes the procedures for backing up file systems by using the `ufsdump` command.

For information on these procedures, see “Backing Up Files and File System (Task Map)” on page 449.

For overview information about performing backups, see Chapter 23, “Backing Up and Restoring File Systems (Overview).”

For information about backing up individual files to diskettes, see Chapter 28, “Copying UFS Files and File Systems (Tasks).”

For additional information on the `ufsdump` command, see Chapter 27, “UFS Backup and Restore Commands (Reference).”

Backing Up Files and File System (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prepare for file system backups.</td>
<td>Identify the file systems, the type of backup, and the tape device to be used for the backups.</td>
<td>“Preparing for File System Backups” on page 450</td>
</tr>
<tr>
<td>2. Determine the number of tapes needed to back up a file system.</td>
<td>Determine the number of tapes that are needed for a full backup of a file system.</td>
<td>“How to Determine the Number of Tapes Needed for a Full Backup” on page 451</td>
</tr>
</tbody>
</table>
Preparing for File System Backups

The preparation for backing up file systems begins with planning, which is described in Chapter 23, "Backing Up and Restoring File Systems (Overview)" and includes choosing the following:

- The file systems to back up
- The type of backup (full or incremental) to perform
- A backup schedule
- A tape drive

For more information, see Chapter 23, "Backing Up and Restoring File Systems (Overview)."

This section describes two other tasks you might need to perform before you back up file systems:

- Finding the names of file systems to back up
- Determining the number of tapes that are needed for a full backup

▼ How to Find File System Names

1. Display the contents of the /etc/vfstab file.
   ```
   $ more /etc/vfstab
   ```

2. Look in the mount point column for the name of the file system.

3. Use the directory name listed in the mount point column when you back up the file system.

Example 24–1 Finding File System Names

In this example, the file systems to be backed up are root (/), /usr, /datab, and /export/home.

```bash
$ more /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
```
How to Determine the Number of Tapes Needed for a Full Backup

1. **Become superuser or assume an equivalent role.**

2. **Estimate the size of the backup in bytes.**

   ```
   # ufsdump 10S file-system
   ```

 Use the S option to display the estimated number of bytes that are needed to do the backup if this is the first backup of the file system.

 Use the 0S option to display the estimated number of bytes that are needed to do the backup if this is not the first backup of the file system.

3. **Divide the estimated size by the capacity of the tape to determine how many tapes you need.**

 For a list of tape capacities, see Table 23–5.

Example 24–2

Determining the Number of Tapes

In this example, the file system of 489,472 bytes easily fits on a 150-Mbyte tape.

```bash
# ufsdump S /export/home
489472
```
Backing Up a File System

The following are general guidelines for performing backups:

- Use single-user mode or unmount the file system, unless you are creating a snapshot of a file system. For information about UFS snapshots, see Chapter 25, “Using UFS Snapshots (Tasks).”
- Be aware that backing up file systems when directory-level operations (such as creating, removing, and renaming files) and file-level activity are occurring simultaneously means that some data will not be included in the backup.
- You can run the `ufsdump` command from a single system and remotely back up groups of systems across the network through remote shell or remote login. In addition, you can direct the output to the system on which the tape device is located. Typically, the tape device is located on the system from which you run the `ufsdump` command, but it does not have to be.

Another way to back up files to a remote device is to pipe the output from the `ufsdump` command to the `dd` command. For information about using the `dd` command, see Chapter 28, “Copying UFS Files and File Systems (Tasks).”
- If you are doing remote backups across the network, the system with the tape device must have entries in its `.rhosts` file for each client that will be using the device. Also, the system that initiates the backup must be included in the `.rhosts` file on each system that it will back up.

▼ How to Back Up a File System to Tape

The following are general steps for backing up file systems by using the `ufsdump` command. The examples show specific uses of options and arguments.

1. **Become superuser or assume an equivalent role.**

2. **Bring the system to run level S (single-user mode).**
 For example:
   ```bash
   # shutdown -g30 -y
   ```

3. **(Optional) Check the file system for consistency.**
 For example:
   ```bash
   # fsck -m /dev/rdsk/c0t0d0s7
   ```
 The `fsck -m` command checks for the consistency of file systems. For example, power failures can leave files in an inconsistent state. For more information on the `fsck` command, see Chapter 21, “Checking UFS File System Consistency (Tasks).”
If you need to back up file systems to a remote tape drive, follow these steps:

a. On the system to which the tape drive is attached (the tape server), add the following entry to its /.rhosts file:

```
host root
```

The host entry specifies the name of the system on which you will run the ufsdump command to perform the backup.

b. On the tape server, verify that the host added to the / .rhosts file is accessible through the name service.

5 Identify the device name of the tape drive.

The default tape drive is the /dev/rmt/0 device.

6 Insert a tape that is write-enabled into the tape drive.

7 Back up file systems.

```
# ufsdump options arguments filenames
```

You can back up file systems or directories, or files within file systems. For information on backing up individual files, see tar(1) or cpio(1).

The following examples show how to use the most common ufsdump options and arguments:

- Example 24–3
- Example 24–4
- Example 24–5
- Example 24–6

For other ufsdump options and arguments, see Chapter 27, "UFS Backup and Restore Commands (Reference)."

8 If prompted, remove the tape and insert the next tape volume.

9 Label each tape with the volume number, dump level, date, system name, disk slice, and file system.

10 Bring the system back to run level 3 by pressing Control-D.

11 Verify that the backup was successful.

```
# ufsrestore tf device-name
```
Performing a Full Backup of root (/)

The following example shows how to do a full backup of the root (/) file system. The system in this example is brought to single-user mode before the backup. The following ufsdump options are included:

- 0 specifies a 0 level dump (or a full backup).
- u specifies that the /etc/dumpdates file is updated with the date of this backup.
- c identifies a cartridge tape device.
- f /dev/rmt/0 identifies the tape device.
- / is the file system being backed up.

For example:

```
# init 0
ok boot -s
# ufsdump 0ucf /dev/rmt/0 /
DUMP: Date of this level 0 dump: Wed Jul 28 16:13:52 2004
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t0d0s0 (starbug:/) to /dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 363468 blocks (177.47MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: Tape rewinding
DUMP: 369934 blocks (180.63MB) on 1 volume at 432 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 0 dump on Wed Jul 28 16:13:52 2004
```

```
# ufsrestore tf /dev/rmt/0
 2 .
 3 ./lost+found
 4 ./usr
 5 ./export
 6 ./export/home
 7 ./var
 8 ./var/sadm
 9 ./var/sadm/install
10 ./var/sadm/install/admin
823 ./var/sadm/install/admin/default
11 ./var/sadm/install/logs
697 ./var/sadm/install/logs/SUNWmpatchmgr
905 ./var/sadm/install/logs/Additional_Software_install...
906 ./var/sadm/install/logs/Additional_Software_install...
13 ./var/sadm/install/.lockfile
14 ./var/sadm/install/install.db
```
Example 24–4 Performing an Incremental Backup of root (/)

The following example shows how to do an incremental backup of the root (/) file system in single-user mode. The following ufsdump options are included:

- 9 specifies a 9 level dump (or an incremental backup).
- u specifies that the /etc/dumpdates file is updated with the date of this backup.
- c identifies a cartridge tape device.
- f /dev/rmt/0 identifies the tape device.
- / is the file system being backed up.

init 0
ok boot -s
ufsdump 9ucf /dev/rmt/0 /
DUMP: Date of this level 9 dump: Wed Jul 28 14:26:50 2004
DUMP: Date of last level 0 dump: Wed Jul 28 11:15:41 2004
DUMP: Dumping /dev/rdsk/c0t0d0s0 (starbug:/) to /dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 335844 blocks (163.99MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 335410 blocks (163.77MB) on 1 volume at 893 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 9 dump on Wed Jul 28 14:30:50 2004
ufsrestore tf /dev/rmt/0
 2 .
 3 ./lost+found
 5696 ./usr
11392 ./var
17088 ./export
22784 ./export/home
28480 ./opt
5697 ./etc
11393 ./etc/default
11394 ./etc/default/sys-suspend
11429 ./etc/default/cron
11430 ./etc/default/devfsadm
Example 24–5 Performing a Full Backup of a Home Directory

The following example shows how to do a full backup of the /export/home/kryten home directory. The following ufsdump options are included:

- 0 specifies that this is a 0 level dump (or a full backup).
- u specifies that the /etc/dumpdates file is updated with the date of this backup.
- c identifies a cartridge tape device.
- f /dev/rmt/0 identifies the tape device.
- /export/home/kryten is the directory being backed up.

```
# ufsdump 0ucf /dev/rmt/0 /export/home/kryten
DUMP: Date of this level 0 dump: Wed Jul 28 15:02:48 2004
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t0d0s7 (starbug:/export/home) to /dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 2412 blocks (1.18MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 2392 blocks (1.17MB) on 1 volume at 4241 KB/sec
DUMP: DUMP IS DONE
```

```
# ufsrestore tf /dev/rmt/0
  232 ./kryten
  233 ./kryten/filea
  234 ./kryten/fileb
  235 ./kryten/filec
  236 ./kryten/letters
  237 ./kryten/letters/letter1
  238 ./kryten/letters/letter2
  239 ./kryten/letters/letter3
  240 ./kryten/reports
  241 ./kryten/reports/reportA
  242 ./kryten/reports/reportB
```
Performing a Full Backup to a Remote System (Solaris 10 Data to Solaris 10 System)

The following example shows how to do a full backup of a local `/export/home` file system on a Solaris 10 system (mars) to a tape device on a remote Solaris 10 system (earth) in single-user mode. The following `ufsdump` options are included:

- `0` specifies a 0 level dump (or a full backup).
- `u` specifies that the `/etc/dumpdates` file is updated with the date of this backup.
- `c` identifies a cartridge tape device.
- `/export/home` identifies the remote system name and tape device.
- `earth:/dev/rmt/0` identifies the remote system name and tape device.
- `/export/home` is the file system being backed up.

```bash
# ufsdump 0ucf earth:/dev/rmt/0 /export/home
DUMP: Date of this level 0 dump: Wed Jul 28 15:52:59 2004
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t0d0s7 (mars:/export/home) to earth:/dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 8282 blocks (4.04MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: Tape rewinding
DUMP: 8188 blocks (4.00MB) on 1 volume at 67 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 0 dump on Wed Jul 28 15:52:59 2004

# ufsrestore tf earth:/dev/rmt/0
```

Example 24–6 • Backing Up a File System

Chapter 24 • Backing Up Files and File Systems (Tasks) 457
This chapter describes how to create and back up UFS snapshots.

For information on the procedures associated with creating UFS snapshots, see “Using UFS Snapshots (Task Map)” on page 459.

For overview information about performing backups, see Chapter 23, “Backing Up and Restoring File Systems (Overview).”

Using UFS Snapshots (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Create a UFS snapshot.</td>
<td>Create a read-only copy of a file system by using the fssnap command.</td>
<td>“How to Create a UFS Snapshot” on page 463</td>
</tr>
<tr>
<td>2. Display UFS snapshot information.</td>
<td>Identify UFS snapshot information such as the raw snapshot device.</td>
<td>“How to Display UFS Snapshot Information” on page 464</td>
</tr>
<tr>
<td>3. (Optional) Delete a UFS snapshot.</td>
<td>Delete a snapshot that is already backed up or no longer needed.</td>
<td>“How to Delete a UFS Snapshot” on page 465</td>
</tr>
<tr>
<td>4. (Optional) Back up a UFS snapshot.</td>
<td>Choose one of the following backup methods:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create a full backup of a UFS snapshot by using the ufsdump command.</td>
<td>“How to Create a Full Backup of a UFS Snapshot (ufsdump)” on page 467</td>
</tr>
<tr>
<td></td>
<td>Create an incremental backup of a UFS snapshot by using the ufsdump command.</td>
<td>“How to Create an Incremental Backup of a UFS Snapshot (ufsdump)” on page 467</td>
</tr>
</tbody>
</table>
Back up a UFS snapshot by using the `tar` command. "How to Back Up a UFS Snapshot (tar)" on page 468

5. (Optional) Restore data from a UFS snapshot. Restore the UFS snapshot the same way as you would restore data by using the `ufsrestore` command. "How to Restore a Complete File System" on page 477

UFS Snapshots Overview

You can use the `fssnap` command to back up file systems while the file system is mounted. This command to creates a read-only snapshot of a file system. A *snapshot* is a file system’s temporary image that is intended for backup operations.

When the `fssnap` command is run, it creates a virtual device and a backing-store file. You can back up the *virtual device*, which looks and acts like a real device, with any of the existing Solaris backup commands. The *backing-store file* is a bitmap file that contains copies of pre-snapshot data that has been modified since the snapshot was taken.

Keep the following key points in mind when specifying backing-store files:

- The destination path of the backing store files must have enough free space to hold the file system data. The size of the backing store files vary with the amount of activity on the file system.
- The backing store file location must be different from the file system that is being captured in a snapshot.
- The backing-store files can reside on any type of file system, including another UFS file system or an NFS file system.
- Multiple backing-store files are created when you create a snapshot of a UFS file system that is larger than 512 Gbytes.
- Backing-store files are sparse files. The logical size of a sparse file, as reported by the `ls` command, is not the same as the amount of space that has been allocated to the sparse file, as reported by the `du` command.

For more information about creating snapshots for a UFS file system larger than 512 Gbytes, see “Creating a Multiterabyte UFS Snapshot” on page 462.

Why Use UFS Snapshots?

The UFS snapshots feature provides additional availability and convenience for backing up a file system because the file system remains mounted and the system remains in multiuser mode during backups. Then, you can use the `tar` or `cpio` commands to back up a UFS snapshot to
tape for more permanent storage. If you use the `ufs_dump` command to perform backups, the system should be in single-user mode to keep the file system inactive when you perform backups.

The `fs_snap` command gives administrators of non enterprise-level systems the power of enterprise-level tools, such as Sun StorEdge™ Instant Image, without the largest storage demands.

The UFS snapshots feature is similar to the Instant Image product. Although UFS snapshots can make copies of large file systems, Instant Image is better suited for enterprise-level systems. UFS snapshots is better suited for smaller systems. Instant Image allocates space equal to the size of the entire file system that is being captured. However, the backing-store file that is created by UFS snapshots occupies only as much disk space as needed.

This table describes specific differences between UFS snapshots and Instant Image.

<table>
<thead>
<tr>
<th>UFS Snapshots</th>
<th>Sun StorEdge Instant Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of the backing-store file depends on how much data has</td>
<td>Size of the backing-store file equals the size of the entire file system being copied</td>
</tr>
<tr>
<td>changed since the snapshot was taken</td>
<td></td>
</tr>
<tr>
<td>Does not persist across system reboots</td>
<td>Persists across system reboots</td>
</tr>
<tr>
<td>Works on UFS file systems</td>
<td>Cannot be used with root (/) or /usr file systems</td>
</tr>
<tr>
<td>Available starting with the Solaris 8 1/01 release</td>
<td>Part of Sun StorEdge products</td>
</tr>
</tbody>
</table>

UFS Snapshots Performance Issues

When the UFS snapshot is first created, users of the file system might notice a slight pause. The length of the pause increases with the size of the file system to be captured. While the snapshot is active, users of the file system might notice a slight performance impact when the file system is written to. However, they see no impact when the file system is read.

Creating and Deleting UFS Snapshots

When you use the `fs_snap` command to create a UFS snapshot, observe how much disk space the backing-store file consumes. The backing-store file initially uses no space, and then it grows quickly, especially on heavily used systems. Make sure that the backing-store file has enough space to expand. Or, limit its size with the `maxsize=n [k,m,g]` option, where `n [k,m,g]` is the maximum size of the backing-store file.
Caution – If the backing-store file runs out of space, the snapshot might delete itself, which causes the backup to fail. Check the /var/adm/messages file for possible snapshot errors.

You can also specify a directory for the backing-store path, which means a backing store file is created in the directory specified. For example, if /var/tmp is specified for the backing-store path, the following backing-store file is created.

/var/tmp/snapshot0

If you created one large root (/) file system instead of creating separate file systems for /export/home, /usr, and so on, you will be unable to create a snapshot of those separate file systems. For example, this system does not have a separate file system for /usr as indicated under the Mounted on column:

```
# df -k /usr
Filesystem  kbytes used  avail capacity Mounted on
/dev/dsk/c0t0d0s0  3618177 2190002 1391994  62%  /
```

If you attempt to create a snapshot for the /usr file system, you will see a message similar to the following:

```
# fssnap -F ufs -o bs=/snaps/usr.back.file /usr
snapshot error: Invalid backing file path
```

This message indicates that you cannot have the backing store file on the same file system as the file system being snapped, which is the case for the /usr file system, in this example.

For more information, see the fssnap_ufs(1M) man page.

Creating a Multiterabyte UFS Snapshot

Creating a multiterabyte UFS snapshot is identical to creating a snapshot for a smaller UFS file system. The only difference is that multiple backing store files are created for each 512 Gbytes of file system space.

Keep the following key points in mind when creating a snapshot for a file system that is larger than 512 Gbytes:

- Multiple backing store files are created.
- If you specify a backing store file name when the snapshot is created, then the subsequent backing store file names will be iterated based on the file name that you specify. The subsequent backing-store files will have the same name, but with the suffixes .2, .3, and so on.
If you only specify a backing store file destination (or directory) and not a backing store file name, then multiple backing store file names will be created and iterated with the suffixes .2, .3, and so on.

The fssnap -i command only reports the first backing store file name even if multiple backing store files have been created. However, the reported backing-store length is the combined sizes of all the backing store files for the snapshot.

Note – Backing-store files are sparse files. The logical size of a sparse file, as reported by the ls command, is not the same as the amount of space that has been allocated to the sparse file, as reported by the du command.

After you have backed up the snapshot or you would just like to remove the snapshot, you will have to remove the backing store files manually if you did not use the unlink option when the snapshot was created.

For an example of creating a snapshot for a filesystem that is larger than 512 Gbytes, see Example 25–2.

For more information, see fssnap_ufs(1M).

How to Create a UFS Snapshot

1 Become superuser or assume an equivalent role.

2 Make sure that the file system has enough disk space for the backing-store file.
 # df -k

3 Make sure that a backing-store file of the same name and location does not already exist.
 # ls /backing-store-file

4 Create the UFS snapshot.
 # fssnap -F ufs -o bs=/backing-store-file /file-system

 Note – The backing-store file must reside on a different file system than the file system that is being captured using UFS snapshots.

5 Verify that the snapshot has been created.
 # /usr/lib/fs/ufs/fssnap -i /file-system
Creating a UFS Snapshot

The following example shows how to create a snapshot of the `/usr` file system. The backing-store file is `/scratch/usr.back.file`. The virtual device is `/dev/fssnap/1`.

```
# fssnap -F ufs -o bs=/scratch/usr.back.file /usr
```

The following example shows how to limit the backing-store file to 500 Mbytes.

```
# fssnap -F ufs -o maxsize=500m,bs=/scratch/usr.back.file /usr
```

Creating a Multiterabyte UFS Snapshot

The following example shows how to create a snapshot of a 1.6 Tbyte UFS file system.

```
# fssnap -F ufs -o bs=/var/tmp /data2
```

```
# /usr/lib/fs/ufs/fssnap -i
```

```
Snapshot number : 0
Block Device     : /dev/fssnap/0
Raw Device       : /dev/rfssnap/0
Mount point      : /data2
Device state     : idle
Backing store path : /var/tmp/snapshot0
Backing store size : 0 KB
Maximum backing store size : Unlimited
Snapshot create time : Fri Sep 10 13:13:02 2004
Copy-on-write granularity : 32 KB
```

```
# ls /var/tmp
snapshot0   snapshot0.2   snapshot0.3   snapshot0.4
```

How to Display UFS Snapshot Information

You can display the current snapshots on the system by using the `fssnap -i` option. If you specify a file system, you see detailed information about that file system snapshot. If you don’t specify a file system, you see information about all of the current UFS snapshots and their corresponding virtual devices.

Note – Use the UFS file system-specific `fssnap` command to view the extended snapshot information as shown in the following examples.

1. Become superuser or assume an equivalent role.
2 List all current snapshots.
For example:

```
# /usr/lib/fs/ufs/fssnap -i
```

```
Snapshot number : 0
Block Device     : /dev/fssnap/0
Raw Device       : /dev/rfssnap/0
Mount point      : /export/home
Device state     : idle
Backing store path: /var/tmp/home.snap0
Backing store size: 0 KB
Maximum backing store size: Unlimited
Snapshot create time: Thu Jul 01 14:50:38 2004
Copy-on-write granularity: 32 KB
```

3 Display detailed information about a specific snapshot.
For example:

```
# /usr/lib/fs/ufs/fssnap -i /export
```

```
Snapshot number : 1
Block Device     : /dev/fssnap/1
Raw Device       : /dev/rfssnap/1
Mount point      : /export
Device state     : idle
Backing store path: /var/tmp/export.snap0
Backing store size: 0 KB
Maximum backing store size: Unlimited
Snapshot create time: Thu Jul 01 15:03:22 2004
Copy-on-write granularity: 32 KB
```

Deleting a UFS Snapshot

When you create a UFS snapshot, you can specify that the backing-store file is unlinked. An unlinked backing-store file is removed after the snapshot is deleted. If you don’t specify the -o unlink option when you create a UFS snapshot, you must manually delete the backing-store file.

The backing-store file occupies disk space until the snapshot is deleted, whether you use the -o unlink option to remove the backing-store file or you manually delete the file.

How to Delete a UFS Snapshot

You can delete a snapshot either by rebooting the system or by using the fssnap -d command. When you use this command, you must specify the path of the file system that contains the UFS snapshot.
Back Up a UFS Snapshot

1. Become superuser or assume an equivalent role.

2. Identify the snapshot to be deleted.

 # /usr/lib/fs/ufs/fssnap -i

3. Delete the snapshot.

 # fssnap -d /file-system
 Deleted snapshot 1.

4. If you did not use the `-o unlink` option when you created the snapshot, manually delete the backing-store file.

 # rm /file-system/backing-store-file

Example 25–3 Deleting a UFS Snapshot

The following example shows how to delete a snapshot and assumes that the `-o unlink` option was not used.

 # fssnap -i
 0 /export/home
 1 /export
 # fssnap -d /usr
 Deleted snapshot 1.
 # rm /var/tmp/export.snap0

Back Up a UFS Snapshot

You can create a full backup or an incremental backup of a UFS snapshot. You can use the standard Solaris backup commands to back up a UFS snapshot.

The virtual device that contains the UFS snapshot acts as a standard read-only device. So, you can back up the virtual device as if you were backing up a file system device.

If you are using the `ufsdump` command to back up a UFS snapshot, you can specify the snapshot name during the backup. See the following procedure for more information.
How to Create a Full Backup of a UFS Snapshot
(ufsdump)

1. Become superuser or assume an equivalent role.
2. Identify the UFS snapshot to be backed up.

   ```
   # /usr/lib/fs/ufs/fssnap -i /file-system
   ```

 For example:

   ```
   # /usr/lib/fs/ufs/fssnap -i /usr
   Snapshot number : 1
   Block Device : /dev/fssnap/1
   Raw Device : /dev/rfssnap/1
   Mount point : /usr
   Device state : idle
   Backing store path : /var/tmp/usr.snap0
   Backing store size : 0 KB
   Maximum backing store size : Unlimited
   Snapshot create time : Thu Jul 01 15:17:33 2004
   Copy-on-write granularity : 32 KB
   ```

3. Back up the UFS snapshot.

   ```
   # ufsdump 0ucf /dev/rmt/0 /snapshot-name
   ```

 For example:

   ```
   # ufsdump 0ucf /dev/rmt/0 /dev/rfssnap/1
   ```

4. Verify that the snapshot has been backed up.

 For example:

   ```
   # ufsrestore tf /dev/rmt/0
   ```

How to Create an Incremental Backup of a UFS Snapshot (ufsdump)

Backing up a UFS snapshot incrementally means that only the files that have been modified since the last snapshot are backed up. Use the ufsdump command with the N option. This option specifies the file system device name to be inserted into the /etc/dumpdates file for tracking incremental dumps.

The following ufsdump command specifies an embedded fssnap command to create an incremental backup of a file system.
1 Become superuser or assume an equivalent role.

2 Create an incremental backup of a UFS snapshot.
 For example:
   ```
   # ufsdump lufN /dev/rmt/0 /dev/rdsn/c0t1d0s0 'fssnap -F ufs -o raw,bs=/export/scratch,unlink /dev/rdsn/c0t1d0s0'
   ```
 In this example, the `-o raw` option is used to display the name of the raw device instead of the block device. By using this option, you make it easier to embed the `fssnap` command in commands (such as the `ufsdump` command) that require the raw device instead.

3 Verify that the snapshot has been backed up.
   ```
   # ufsrestore ta /dev/rmt/0
   ```

How to Back Up a UFS Snapshot (tar)

If you are using the `tar` command to back up the snapshot, mount the snapshot before backing it up.

1 Become superuser or assume an equivalent role.

2 Create a mount point for the snapshot.
 For example:
   ```
   # mkdir /backups/home.bkup
   ```

3 Mount the snapshot.
   ```
   # mount -F ufs -o ro /dev/fssnap/1 /backups/home.bkup
   ```

4 Change to the mounted snapshot directory.
   ```
   # cd /backups/home.bkup
   ```

5 Back up the snapshot with the `tar` command.
   ```
   # tar cvf /dev/rmt/0 .
   ```

Restoring Data From a UFS Snapshot Backup

The backup created from the virtual device is essentially just a backup of what the original file system looked like when the snapshot was taken. When you restore a file system from the backup, restore as if you had taken the backup directly from the original file system. Such a restore uses the `ufsrestore` command. For information on using the `ufsrestore` command to restore a file or file system, see Chapter 26, “Restoring Files and File Systems (Tasks).”
This chapter describes how to use the `ufsrestore` command to restore files and file systems that were backed up by using the `ufsdump` command.

For information on the procedures associated with restoring files and file systems, see "Restoring Files and File System Backups (Task Map)" on page 469.

For information about other commands you can use to archive, restore, copy, or move files and file systems, see Chapter 28, “Copying UFS Files and File Systems (Tasks).”

For information about backing up and restoring file systems, see Chapter 23, “Back Up and Restoring File Systems (Overview).”

Restoring Files and File System Backups (Task Map)

The following task map describes the procedures associated with restoring files and file systems.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare to restore files and</td>
<td>Identify the file systems or files to be restored, the tape device, and how</td>
<td>“Preparing to Restore Files and File Systems” on page 470</td>
</tr>
<tr>
<td>file systems.</td>
<td>you will restore them.</td>
<td></td>
</tr>
<tr>
<td>Determine which tapes to use.</td>
<td>Refer to your backup tapes to find the date of the last backup that contains</td>
<td>“How to Determine Which Tapes to Use” on page 471</td>
</tr>
<tr>
<td></td>
<td>the file or file system that you need to restore.</td>
<td></td>
</tr>
<tr>
<td>Restore files.</td>
<td>Choose one of the following restore methods:</td>
<td></td>
</tr>
</tbody>
</table>
Preparing to Restore Files and File Systems

The `ufsrestore` command copies files to disk, relative to the current working directory, from backups that were created by using the `ufs_dump` command. You can use the `ufsrestore` command to reload an entire file system hierarchy from a level 0 dump and incremental dumps that follow it. You can also use this command to restore one or more single files from any backup tape. If you run the `ufsrestore` command as superuser, files are restored with their original owner, last modification time, and mode (permissions).

Before you start to restore files or file systems, you need to know the following:

- The tapes (or diskettes) you need to restore from
- The raw device name on which you want to restore the file system
- The type of tape device you will use
- The device name (local or remote) for the tape device

Determining the File System Name

If you have properly labeled your backup tapes, you should be able to use the file system name `/dev/rdsk/device-name` from the tape label. For more information, see “How to Find File System Names” on page 450.

Determining the Type of Tape Device You Need

You must use a tape device that is compatible with the backup media to restore the files. The format of the backup media determines which drive you must use to restore files. For example, if your backup media is 8-mm tape, you must use an 8-mm tape device to restore the files.
Determining the Tape Device Name

You might have specified the tape device name (/dev/rmt/n) as part of the backup tape label information. If you are using the same drive to restore a backup tape, you can use the device name from the label. For more information on media devices and device names, see Chapter 29, “Managing Tape Drives (Tasks).”

Restoring Files and File Systems

When you back up files and directories, you save them relative to the file system in which they belong. When you restore files and directories, the *ufsrestore* command re-creates the file hierarchy in the current working directory.

For example, files backed up from the /export/doc/books directory (where /export is the file system) are saved relative to /export. In other words, the book1 file in the books directory is saved as ./doc/books/book1 on the tape. Later on, if you restored the ./doc/books/book1 file to the /var/tmp directory, the file would be restored to /var/tmp/doc/books/book1.

When you restore individual files and directories, you should restore them to a temporary location, such as the /var/tmp directory. After you verify the files, you can move them to their proper locations. However, you can restore individual files and directories to their original locations. If you do so, be sure you are not overwriting newer files with older versions from the backup tape.

To avoid conflicts with other users, you might want to create and change to a subdirectory, such as the /var/tmp/restore file, in which to restore the files.

If you are restoring a hierarchy, you should restore the files to a temporary directory on the same file system where the files will reside. Then, you can use the *mv* command to move the entire hierarchy where it belongs after it is restored.

Note – Do not restore files in the /tmp directory even temporarily. The /tmp directory is usually mounted as a TMPFS file system. TMPFS does not support UFS file system attributes such as ACLs.

How to Determine Which Tapes to Use

1. **Ask the user for the approximate date the files to be restored were last modified.**
2. **Refer to your backup plan to find the date of the last backup that contains the file or file system.**

 To retrieve the most recent version of a file, work backward through the incremental backups from highest to lowest dump level and from most recent to least recent date, unless the user requests otherwise.
If you have online archive files, identify the correct media.

```bash
# ufsrestore ta archive-name ./path/filename ./path/filename
```

- **t**: Lists each file on the tape.
- **a**: Reads the table of contents from the online archive file instead of from the tape.

`archive-name` Identifies the online archive file name.

`./path/filename` Identifies the file name or file names you are looking for on the online archive. If successful, the `ufsrestore` command prints out the inode number and file name. If unsuccessful, `ufsrestore` prints an error message.

For more information, see the `ufsrestore(1M)` man page.

Insert the media that contains the files to be restored in the drive and verify the correct media.

```bash
# ufsrestore tf /dev/rmt/ n./path/filename ./path/filename
```

Be sure to use the complete path for each `filename`. If a file is in the backup, its name and inode number are listed. Otherwise, a message states that the file is not on the volume.

If you have multiple backup files on the same tape, position the tape at the backup file you want to use.

```bash
# ufsrestore xfs /dev/rmt/n tape-number
```

Example 26–1 Determining Which Tapes to Use

The following example shows how to check if the `/etc/passwd` file is in the online archive.

```bash
# ufsrestore ta /var/tmp/root.archive ./etc/passwd
```

The following example shows how to verify that the `/etc/passwd` file is on the backup tape.

```bash
# ufsrestore tf /dev/rmt/0 ./etc/passwd
```

How to Restore Files Interactively

1. Become superuser or assume an equivalent role.

2. (Optional) Write-protect the tapes for safety.

3. Insert the volume 1 tape into the tape drive.
4 Change to a directory that will be used to restore the files to temporarily.
 # cd /var/tmp

5 Start the interactive restoration.
 # ufsrestore if /dev/rmt/n
 Some informational messages and the ufsrestore> prompt are displayed.

6 Create a list of files to be restored.
 a. List the contents of a directory.
 ufsrestore> ls [directory-name]
 b. Change to a directory.
 ufsrestore> cd directory-name
 c. Create a list of files and directories that you want to restore.
 ufsrestore> add filenames
 d. (Optional) Remove any directory or file from the list of files to be restored, if necessary.
 ufsrestore> delete filename

7 (Optional) Display the file names as they are being restored.
 ufsrestore> verbose

8 Restore the files.
 ufsrestore> extract
 The ufsrestore command asks you which volume number to use.

9 Type the volume number and press Return. If you have only one volume, type 1 and press
 Return.
 Specify next volume #: 1
 The files and directories in the list are extracted and restored to the current working directory.

10 To maintain the mode of the current directory, enter n at the set owner/mode prompt.
 set owner/mode for ‘.’? [yn] n
 You must wait while the ufsrestore command performs its final cleanup.

11 Quit the ufsrestore program.
 ufsrestore> quit
You then see the shell prompt.

12 Verify the restored files.

 a. List the restored files and directories.

 # ls -l

 A list of files and directories is displayed.

 b. Check the list to be sure that all the files and directories you specified in the list have been restored.

13 Move the files to the proper directories.

Example 26–2 Restoring Files Interactively

The following example shows how to extract the `/etc/passwd` and `/etc/shadow` files from the backup tape.

```
# cd /var/tmp
# ufsrestore if /dev/rmt/0
ufsrestore> ls
.
.:  .sunw/ export/ net/ sbin/ usr/
Sources/ etools/ opt/ scde/ var/
b/ home/ ptools/ set/ vol/
bin kernel/ pkg/ share/
dev/ lib/ platform/ shared/
devices/ lost+found/ proc/ src/
etc/ mnt/ rtools/ tmp/
ufsrestore> cd etc
ufsrestore> add passwd shadow
ufsrestore> verbose
verbose mode on
ufsrestore> extract
Extract requested files
You have not read any volumes yet.
Unless you know which volume your file(s) are on you should start with the last volume and work towards the first.
Specify next volume #: 1
extract file ./etc/shadow
extract file ./etc/passwd
Add links
Set directory mode, owner, and times.
set owner/mode for `.`? [yn] n
```
ufsrestore> quit
cd etc
mv passwd /etc
mv shadow /etc
ls -l /etc

▼ How to Restore Specific Files Noninteractively

1 Become superuser or assume an equivalent role.

2 (Optional) Write-protect the tape for safety.

3 Insert the volume 1 tape into the tape drive.

4 Change to a directory that will be used to restore files to temporarily.
 # cd /var/tmp

5 Restore the file or files.
 # ufsrestore xvf /dev/rmt/n filename
 x Tells ufsrestore to copy specific files or directories in the filename argument.
 v Displays the file names as they are restored.
 f /dev/rmt/n Identifies the tape device name.
 filename Specifies one or more file names or directory names, separated by spaces. For example: ./export/home/user1/mail ./export/home/user2/mail.

6 Type the volume number where files are located. Press Return.
 Specify next volume #: 1
 The file or files are restored to the current working directory.

7 To maintain the mode of the current directory, type n and press Return at the set owner/mode prompt.
 set owner/mode for '.'? [yn] n

8 Verify the restored files.
 a. List the restored files and directories.
 # ls -l
A list of files and directories is displayed.

b. Check the list to be sure that all the files and directories you specified in the list have been restored.

9 Move the files to the proper directories.

Example 26–3 Restoring Specific Files Noninteractively

The following example shows how to noninteractively restore the `passwd` and `shadow` files to the `/var/tmp` directory.

```bash
# cd /var/tmp
# ufsrestore xvf /dev/rmt/0 ./etc/passwd ./etc/shadow
```

Verify volume and initialize maps
Media block size is 126
Dumped from: the epoch
Level 0 dump of / on starbug:/dev/dsk/c0t0d0s0
Label: none
Extract directories from tape
Initialize symbol table.
Extract requested files
You have not read any volumes yet.
Unless you know which volume your file(s) are on you should start with the last volume and work towards the first.
Specify next volume #: 1
extract file ./etc/passwd
extract file ./etc/shadow
Add links
Set directory mode, owner, and times.
Specify next volume #:1
extract file ./etc/passwd
extract file ./etc/shadow
Add links
Set directory mode, owner, and times.
set owner/mode for ‘.’? [yn] n
cd etc
mv passwd /etc
mv shadow /etc
ls -l /etc
```

**Example 26–4** Restoring Files From a Remote Tape Device

You can restore files from a remote tape drive by adding `remote-host:` to the front of the tape device name, when using the `ufsrestore` command.
The following example shows how to restore files by using a remote tape drive /dev/rmt/0 on the system venus.

```bash
ufsrestore xf venus:/dev/rmt/0 ./etc/hosts
```

## How to Restore a Complete File System

Occasionally, a file system becomes so damaged that you must completely restore it. Typically, you need to restore a complete file system after a disk failure. You might need to replace the hardware before you can restore the software. For information on how to replace a disk, see “SPARC: Adding a System Disk or a Secondary Disk (Task Map)” on page 233 or “x86: Adding a System Disk or a Secondary Disk (Task Map)” on page 243.

Full restoration of a file system such as /export/home can take a lot of time. If you have consistently backed up file systems, you can restore them to their state from the time of the last incremental backup.

Note – You cannot use this procedure to restore the root (/) or /usr file systems. For instructions on restoring these file systems, see “How to Restore the root (/) and /usr File Systems” on page 480.

1. Become superuser or assume an equivalent role.

2. If necessary, unmount the file system.
   ```bash
 # umount /dev/rdsk/device-name

 Or:

 # umount /file-system
   ```

3. Create the new file system.
   ```bash
 # newfs /dev/rdsk/device-name

 You are asked if you want to construct a new file system on the raw device. Verify that the `device-name` is correct so that you don't destroy the wrong file system.

 For more information, see the `newfs(1M)` man page.
   ```

4. Confirm that the new file system should be created.
   ```bash
 newfs: construct a new file system /dev/rdsk/cwtxdysz:(y/n)? y

 The new file system is created.
   ```
5  Mount the new file system on a temporary mount point.
   # mount /dev/dsk/device-name /mnt

6  Change to the mount point directory.
   # cd /mnt

7  (Optional) Write-protect the tapes for safety.

8  Insert the first volume of the level 0 tape into the tape drive.

9  Restore the files.
   # ufsrestore rvf /dev/rmt/n
   The dump level 0 backup is restored. If the backup required multiple tapes, you are prompted to load each tape in numeric order.

10 Remove the tape and load the next level tape in the drive.
    Always restore tapes starting with dump level 0 and continuing until you reach the highest dump level.

11 Repeat Step 8 through Step 10 for each dump level, from the lowest to the highest level.

12 Verify that the file system has been restored.
   # ls

13 Remove the restoresymtable file.
   # rm restoresymtable
   The restoresymtable file that is created and used by the ufsrestore command to check-point the restore is removed.

14 Change to another directory.
   # cd /

15 Unmount the newly restored file system.
   # umount /mnt

16 Remove the last tape and insert a new tape that is not write-protected in the tape drive.

17 Make a level 0 backup of the newly restored file system.
   # ufsdump 0ucf /dev/rmt/n /dev/rdsk/device-name
A level 0 backup is performed. Always immediately do a full backup of a newly created file system because the `ufsrestore` command repositions the files and changes the inode allocation.

18 **Mount the restored file system.**

```bash
mount /dev/dsk/device-name mount-point
```

The restored file system is mounted and available for use.

19 **Verify that the restored and mounted file system is available.**

```bash
ls mount-point
```

### Example 26–5 Restoring a Complete File System

The following example shows how to restore the `/export/home` file system.

```bash
newfs /dev/rdsk/c0t0d0s7
newfs: /dev/rdsk/c0t0d0s7 last mounted as /export/home
newfs: construct a new file system /dev/rdsk/c0t0d0s7: (y/n)? y
819314 sectors in 867 cylinders of 15 tracks, 63 sectors
400.1MB in 55 cyl groups (16 c/g, 7.38MB/g, 3584 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 15216, 30432, 45584, 60768, 75952, 91136, 106320, 121504, 136688,
151864, 167056, 182248, 217728, 233040, 258512, 273888, 289264, 304640,
319616, 334992, 350368, 365744, 381120, 396496, 411872, 427248, 442624,
458000, 473376, 488752, 504128, 519504, 534880, 550256, 565632, 581008,
596384, 611760, 627136, 642512, 657888, 673264, 688640, 704016, 719392,
734768, 750144, 765520, 780896, 796272, 811648, 827024, 842400, 857776,
873152, 888528, 903904, 919280, 934656, 950032, 965408, 980784, 996160,
1011536, 1026912, 1042288, 1057664, 1073040, 1088416, 1103792, 1119168,
1134544, 1149920, 1165296, 1180672, 1196048, 1211424, 1226800, 1242176,
1257552, 1272928, 1288304, 1303680, 1319056, 1334432, 1349808, 1365184,
1380560, 1395936, 1411312, 1426688, 1442064, 1457440, 1472816, 1488192,
1503568, 1518944, 1534320, 1549704, 1565080, 1580456, 1595832, 1611208,
1626584, 1641960, 1657336, 1672712, 1688088, 1703464, 1718840, 1734216,
1749592, 1764968, 1780344, 1795720, 1811096, 1826472, 1841848, 1857224,
1872600, 1888076, 1903452, 1918828, 1934204, 1949580, 1964956, 1980332,
1995708, 2011084, 2026460, 2041836, 2057212, 2072588, 2087964, 2010340,
2010340, 2010340, 2010340, 2010340, 2010340, 2010340, 2010340, 2010340,
```

```bash
mount /dev/dsk/c0t0d0s7/mnt
cd /mnt
ufsrestore rvf /dev/rmt/0
Verify volume and initialize maps
Media block size is 126
Dump date: Thu Jul 29 10:14:00 2004
Dumped from: the epoch
Level 0 dump of /export/home on starbug:/dev/dsk/c0t0d0s7
Label: none
Begin level 0 restore
Initialize symbol table.
Extract directories from tape
Calculate extraction list.
Warning: ./lost+found: File exists
Make node ./rimmer
Make node ./rimmer/wdir
Make node ./lister
Make node ./pmorph
Make node ./inquisitor
Make node ./kryten
Make node ./kryten/letters
```

Chapter 26 • Restoring Files and File Systems (Tasks) 479
Make node ./kryten/reports
Extract new leaves.
Check pointing the restore
extract file ./rimmer/words
extract file ./rimmer/words1
extract file ./rimmer/words2
extract file ./rimmer/words3
extract file ./rimmer/wdir/words
extract file ./rimmer/wdir/words1
extract file ./rimmer/wdir/words2
extract file ./rimmer/wdir/words3
.
.
.
Add links
Set directory mode, owner, and times.
Check the symbol table.
Check pointing the restore
# rm restoresymtable
# cd /
# umount /mnt
# ufsdump 0ucf /dev/rmt/0 /export/home
.
.
.
# mount /dev/dsk/c0t0d0s7 /export/home
# ls /export/home

▼ How to Restore the root (/) and /usr File Systems

1 Become superuser or assume an equivalent role.

2 Add a new system disk to the system where the root (/) and /usr file systems will be restored.
   For a detailed description about adding a system disk, refer to “SPARC: How to Connect a System Disk and Boot” on page 234 or “x86: How to Connect a System Disk” on page 245.

3 Mount the new file system on a temporary mount point.
   # mount /dev/dsk/device-name /mnt

4 Change to the /mnt directory.
   # cd /mnt

5 (Optional) Write-protect the tapes for safety.
6 Create the links for the tape device.
   # tapes

7 Restore the root (/) file system.
   # ufsrestore rvf /dev/rmt/n
   The dump level 0 tape is restored.

8 Remove the tape and load the next level tape in the drive.
   Always restore tapes starting with dump level 0 and continuing from the lowest to highest
dump level.

9 Continue restoring as needed.
   # ufsrestore rvf /dev/rmt/n
   The next level tape is restored.

10 Repeat Step 8 and Step 9 for each additional tape.

11 Verify that the file system has been restored.
   # ls

12 Remove the restoresymtable file.
   # rm restoresymtable
   The restoresymtable file that is created and used by the ufsrestore command to check-point
the restore is removed.

13 Change to the root (/) directory.
   # cd /

14 Unmount the newly created file system.
   # umount /mnt

15 Check the new file system.
   # fsck /dev/rdsk/device-name
   The restored file system is checked for consistency.

16 Create the boot blocks on the root partition.
   On a SPARC system:
   # installboot /usr/platform/`uname -i`/lib/fs/ufs/bootblk
   /dev/rdsk/device-name
For more information, see the `installboot(1M)` man page.

For an example of using the `installboot` command on a SPARC based system, see Example 26–6.

On an x86 system:

```
/sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/cwtxdysz
```

For more information, see `installgrub(1M)`.

For an example of using the `installgrub` command on an x86 based system, see Example 26–7.

---

17 **Insert a new tape in the tape drive.**

18 **Back up the new file system.**

```
ufsdump 0uf /dev/rmt/0 /dev/rdsk/device-name
```

A dump level 0 backup is performed. Always immediately do a full backup of a newly created file system because the `ufsrestore` command repositions the files and changes the inode allocation.

19 **Repeat steps 5 through 16 for the /usr file system, if necessary.**

20 **Reboot the system.**

```
init 6
```

The system is rebooted.

---

**Example 26–6**  **SPARC: Restoring the root (/) File System**

This example shows how to restore the root (/) file system on a SPARC system. This example assumes that the system is booted from a local CD or from the network.

```
mount /dev/dsk/c0t3d0s0 /mnt
cd /mnt
tapes
ufsrestore rvf /dev/rmt/0
ls
rm restoresymtable
cd /
umount /mnt
fsck /dev/rdsk/c0t3d0s0
installboot /usr/platform/sun4u/lib/fs/ufs/bootblk /dev/rdsk/c0t3d0s0
ufsdump 0uf /dev/rmt/0 /dev/rdsk/c0t3d0s0
init 6
```
Example 26-7  

x86: Restoring the root (/) File System

This example shows how to restore the root (/) file system on an x86 system. This example assumes that the system is booted from a GRUB failsafe boot session, local CD, or from the network.

```
mount /dev/dsk/c0t3d0s0 /mnt
cd /mnt
tapes
ufsrestore rvf /dev/rmt/0
ls
rm restoresymtable
cd /
umount /mnt
fsck /dev/rdsk/c0t3d0s0
#/sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c0t3d0s0
stage1 written to partition 0 sector 0 (abs 2016)
stage2 written to to partition 0, 227 sectors starting 50 (abs 2066)
ufsdump 0uf /dev/rmt/0 /dev/rdsk/c0t3d0s0
init 6
```
This chapter contains reference information on the `ufsdump` and `ufsrestore` commands.

This is a list of the information in this chapter.

- “How the `ufsdump` Command Works” on page 485
- “Specifying `ufsdump` Command Options and Arguments” on page 490
- “The `ufsdump` Command and Security Issues” on page 490
- “Specifying `ufsrestore` Options and Arguments” on page 491

For overview information about performing backups, see Chapter 23, “Backing Up and Restoring File Systems (Overview).”

For information about backup tasks, see Chapter 24, “Backing Up Files and File Systems (Tasks).”

**How the `ufsdump` Command Works**

The `ufsdump` command makes two passes when it backs up a file system. On the first pass, this command scans the raw device file for the file system and builds a table of directories and files in memory. Then, this command writes the table to the backup media. In the second pass, the `ufsdump` command goes through the inodes in numerical order, reading the file contents and writing the data to the backup media.

**Determining Device Characteristics**

The `ufsdump` command needs to know only an appropriate tape block size and how to detect the end of media.
**Detecting the End of Media**

The `ufsdump` command writes a sequence of fixed-size records. When the `ufsdump` command receives notification that a record was only partially written, it assumes that it has reached the physical end of the media. This method works for most devices. If a device is not able to notify the `ufsdump` command that only a partial record has been written, a media error occurs as the `ufsdump` command tries to write another record.

---

**Note** – DAT devices and 8-mm tape devices detect end-of-media. Cartridge tape devices and 1/2-inch tape devices do not detect end-of-media.

The `ufsdump` command automatically detects the end-of-media for most devices. Therefore, you do not usually need to use the `-c`, `-d`, `-s`, and `-t` options to perform multivolume backups.

You need to use the end-of-media options when the `ufsdump` command does not understand the way the device detects the end-of-media.

To ensure compatibility with the `restore` command, the size option can still force the `ufsdump` command to go to the next tape or diskette before reaching the end of the current tape or diskette.

---

**Copying Data With the `ufsdump` Command**

The `ufsdump` command copies data only from the raw disk slice. If the file system is still active, any data in memory buffers is probably not copied. The backup done by the `ufsdump` command does not copy free blocks, nor does it make an image of the disk slice. If symbolic links point to files on other slices, the link itself is copied.

---

**Purpose of the `/etc/dumpdates` File**

The `ufsdump` command, when used with the `-u` option, maintains and updates the `/etc/dumpdates` file. Each line in the `/etc/dumpdates` file shows the following information:

- The file system backed up
- The dump level of the last backup
- The day, date, and time of the backup

For example:

```
cat /etc/dumpdates
/dev/rdsk/c0t0d0s0 0 Wed Jul 28 16:13:52 2004
/dev/rdsk/c0t0d0s7 0 Thu Jul 29 10:36:13 2004
/dev/rdsk/c0t0d0s7 9 Thu Jul 29 10:37:12 2004
```
When you do an incremental backup, the `ufsdump` command checks the `/etc/dumpdates` file to find the date of the most recent backup of the next lower dump level. Then, this command copies to the media all files that were modified since the date of that lower-level backup. After the backup is complete, a new information line, which describes the backup you just completed, replaces the information line for the previous backup at that level.

Use the `/etc/dumpdates` file to verify that backups are being done. This verification is particularly important if you are having equipment problems. If a backup cannot be completed because of equipment failure, the backup is not recorded in the `/etc/dumpdates` file.

If you need to restore an entire disk, check the `/etc/dumpdates` file for a list of the most recent dates and levels of backups so that you can determine which tapes you need to restore the entire file system.

**Note** – The `/etc/dumpdates` file is a text file that can be edited. However, edit it only at your own risk. If you make changes to the file that do not match your archive tapes, you might be unable to find the tapes (or files) you need.

## Backup Device (`dump-file`) Argument

The `dump-file` argument (to the `-f` option) specifies the destination of the backup. The destination can be one of the following:

- Local tape drive
- Local diskette drive
- Remote tape drive
- Remote diskette drive
- Standard output

Use this argument when the destination is not the default local tape drive `/dev/rmt/0`. If you use the `-f` option, then you must specify a value for the `dump-file` argument.

**Note** – The `dump-file` argument can also point to a file on a local disk or on a remote disk. If done by mistake, this usage can fill up a file system.

## Local Tape or Diskette Drive

Typically, the `dump-file` argument specifies a raw device file for a tape device or diskette. When the `ufsdump` command writes to an output device, it creates a single backup file that might span multiple tapes or diskettes.

You specify a tape device or a diskette on your system by using a device abbreviation. The first device is always 0. For example, if you have a SCSI tape controller and one QIC-24 tape drive that uses medium-density formatting, use this device name:
When you specify a tape device name, you can also type the letter “n” at the end of the name to indicate that the tape drive should not rewind after the backup is completed. For example:

/dev/rmt/0mn

Use the “no-rewind” option if you want to put more than one file onto the tape. If you run out of space during a backup, the tape does not rewind before the ufsdump command asks for a new tape. For a complete description of device-naming conventions, see “Backup Device Names” on page 516.

Remote Tape or Diskette Drive

You specify a remote tape device or a remote diskette by using the syntax host:device. The ufsdump command writes to the remote device when superuser on the local system has access to the remote system. If you usually run the ufsdump command as superuser, the name of the local system must be included in the /.rhosts file on the remote system. If you specify the device as user@host:device, the ufsdump command tries to access the device on the remote system as the specified user. In this case, the specified user must be included in the /.rhosts file on the remote system.

Use the naming convention for the device that matches the operating system for the system on which the device resides, not the system from which you run the ufsdump command. If the drive is on a system that is running a previous SunOS release (for example, 4.1.1), use the SunOS 4.1 device name (for example, /dev/rst0). If the system is running Solaris software, use the SunOS 5.9 convention (for example, /dev/rmt/0).

Using Standard Output With the ufsdump Command

When you specify a dash (-) as the dump-file argument, the ufsdump command writes to standard output.

Note – The -v option (verify) does not work when the dump-file argument is standard output.

You can use the ufsdump and ufsrestore commands in a pipeline to copy a file system by writing to standard output with the ufsdump command and reading from standard input with the ufsrestore command. For example:

# ufsdump 0f - /dev/rdsk/c0t0d0s7 | (cd /home; ufsrestore xf -)
Specifying Files to Back Up

You must always include *filenames* as the last argument on the command line. This argument specifies the source or contents of the backup.

For a file system, specify the raw device file as follows:

```
/dev/rdsk/c0t0d0s7
```

You can specify the file system by its mount point directory (for example, `/export/home`), as long as an entry for it exists in the `/etc/vfstab` file.

For a complete description of device-naming conventions, see “Backup Device Names” on page 516.

For individual files or directories, type one or more names separated by spaces.

---

**Note** – When you use the `ufsdump` command to back up one or more directories or files (rather than a complete file system), a level 0 backup is done. Incremental backups do not apply.

Specifying Tape Characteristics

If you do not specify any tape characteristics, the `ufsdump` command uses a set of defaults. You can specify the tape cartridge (c), density (d), size (s), and number of tracks (t). Note that you can specify the options in any order, as long as the arguments that follow match the order of the options.

Limitations of the `ufsdump` Command

The `ufsdump` command cannot do the following:

- Automatically calculate the number of tapes or diskettes that are needed for backing up file systems. You can use the dry run mode (`S` option) to determine how much space is needed before actually backing up file systems.
- Provide built-in error checking to minimize problems when it backs up an active file system.
- Back up files that are remotely mounted from a server. Files on the server must be backed up on the server itself. Users are denied permission to run the `ufsdump` command on files they own that are located on a server.
Specifying ufsdump Command Options and Arguments

This section describes how to specify options and arguments for the ufsdump command. The syntax for the ufsdump command is as follows:

```
/usr/sbin/ufsdump options arguments filenames
```

- **options** is a single string of one-letter option names.
- **arguments** identifies option arguments and might consist of multiple strings. The option letters and their associated arguments must be in the same order.
- **filenames** identifies the files to back up. These arguments must always come last, each separated by a space.

Default ufsdump Options

If you run the ufsdump command without any options, use this syntax:

```
ufsdump filenames
```

The ufsdump command uses these options and arguments, by default:

```
ufsdump 9uf /dev/rmt/0 filenames
```

These options do a level 9 incremental backup to the default tape drive at its preferred density.

For a description of the ufsdump options, see ufsdump(1M).

The ufsdump Command and Security Issues

If you are concerned about security, you should do the following:

- Require superuser access for the ufsdump command.
- Ensure superuser access entries are removed from .rhosts files on clients and servers if you are doing centralized backups.

For general information on security, see System Administration Guide: Security Services.
Specifying `ufsrestore` Options and Arguments

The syntax of the `ufsrestore` command is as follows:

```
/usr/sbin/ufsrestore options arguments filenames
```

**options**  
Is a single string of one-letter option names. You must choose one and only one of these options: `i`, `r`, `R`, `t`, or `x`. For a description of the `ufsrestore` options, see `ufsrestore(1M)`.

**arguments**  
Follows the option string with the arguments that match the options. The option letters and their associated arguments must be in the same order.

**filenames**  
Specifies the file or files to be restored as arguments to the `x` or `t` options. These arguments must always come last, separated by spaces.
This chapter describes how to copy UFS files and file systems to disk, tape, and diskettes by using various backup commands.

This is a list of the step-by-step instructions in this chapter.

- “How to Copy a Disk (dd)” on page 496
- “How to Copy Directories Between File Systems (cpio)” on page 500
- “How to Copy Files to a Tape (tar)” on page 502
- “How to List the Files on a Tape (tar)” on page 503
- “How to Retrieve Files From a Tape (tar)” on page 503
- “Copying Files to a Tape With the pax Command” on page 504
- “How to Copy All Files in a Directory to a Tape (cpio)” on page 505
- “How to List the Files on a Tape (cpio)” on page 506
- “How to Retrieve All Files From a Tape (cpio)” on page 507
- “How to Retrieve Specific Files From a Tape (cpio)” on page 508
- “How to Copy Files to a Remote Tape Device (tar and dd)” on page 509
- “How to Extract Files From a Remote Tape Device” on page 510
- “How to Copy Files to a Single Formatted Diskette (tar)” on page 511
- “How to List the Files on a Diskette (tar)” on page 512
- “How to Retrieve Files From a Diskette (tar)” on page 513

**Commands for Copying File Systems**

When you need to back up and restore complete file systems, use the ufsdump and ufsrestore commands described in Chapter 27, “UFS Backup and Restore Commands (Reference).” When you want to copy or move individual files, portions of file systems, or complete file systems, you can use the procedures described in this chapter instead of the ufsdump and ufsrestore commands.

The following table describes when to use the various backup commands.
TABLE 28–1 When to Use Various Backup Commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up file systems to tape.</td>
<td>ufsdump</td>
<td>“How to Back Up a File System to Tape” on page 452</td>
</tr>
<tr>
<td>Create a file system snapshot.</td>
<td>fssnap</td>
<td>Chapter 25, “Using UFS Snapshots (Tasks)”</td>
</tr>
<tr>
<td>Restore file systems from tape.</td>
<td>ufsrestore</td>
<td>“How to Restore a Complete File System” on page 477</td>
</tr>
<tr>
<td>Transport files to other systems.</td>
<td>pax, tar, or cpio</td>
<td>“Copying Files and File Systems to Tape” on page 501</td>
</tr>
<tr>
<td>Copy files or file systems between disks.</td>
<td>dd</td>
<td>“How to Copy a Disk (dd)” on page 496</td>
</tr>
<tr>
<td>Copy files to diskette.</td>
<td>tar</td>
<td>“How to Copy Files to a Single Formatted Diskette (tar)” on page 511</td>
</tr>
</tbody>
</table>

The following table describes various backup and restore commands.

TABLE 28–2 Summary of Various Backup Commands

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Aware of FileSystem Boundaries?</th>
<th>Supports Multiple Volume Backups?</th>
<th>Physical or Logical Copy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>volcopy</td>
<td>Yes</td>
<td>Yes</td>
<td>Physical</td>
</tr>
<tr>
<td>tar</td>
<td>No</td>
<td>No</td>
<td>Logical</td>
</tr>
<tr>
<td>cpio</td>
<td>No</td>
<td>Yes</td>
<td>Logical</td>
</tr>
<tr>
<td>pax</td>
<td>Yes</td>
<td>Yes</td>
<td>Logical</td>
</tr>
<tr>
<td>dd</td>
<td>Yes</td>
<td>No</td>
<td>Physical</td>
</tr>
<tr>
<td>ufsdump/ufsrestore</td>
<td>Yes</td>
<td>Yes</td>
<td>Logical</td>
</tr>
<tr>
<td>fssnap</td>
<td>N/A</td>
<td>N/A</td>
<td>Logical</td>
</tr>
</tbody>
</table>

The following table describes the advantages and disadvantages of some of these commands.
### TABLE 28-3 Advantages and Disadvantages of `tar`, `pax`, and `cpio` Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tar</code></td>
<td>Use to copy files and directory subtrees to a single tape.</td>
<td>- Available on most UNIX operating systems</td>
<td>- Is not aware of file system boundaries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Public domain versions are readily available</td>
<td>- Length of full path name cannot exceed 255 characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Cannot be used to create multiple tape volumes</td>
</tr>
<tr>
<td><code>pax</code></td>
<td>Use to copy files, special files, or file systems that require multiple tape volumes. Or, use when you want to copy files to and from POSIX-compliant systems.</td>
<td>- Better portability than the <code>tar</code> or <code>cpio</code> commands for POSIX-compliant systems</td>
<td>Same disadvantages as the <code>tar</code> command, except that the <code>pax</code> command can create multiple tape volumes.</td>
</tr>
<tr>
<td><code>cpio</code></td>
<td>Use to copy files, special files, or file systems that require multiple tape volumes. Or, use when you want to copy files from systems running current Solaris releases systems to systems running SunOS 4.0/4.1 releases.</td>
<td>- Packs data onto tape more efficiently than the <code>tar</code> command</td>
<td>The command syntax is more difficult than the <code>tar</code> or <code>pax</code> commands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Skips over any bad spots in a tape when restoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Provides options for writing files with different header formats, such as ( <code>tar</code>, <code>ustar</code>, <code>crc</code>, <code>odc</code>, <code>bar</code>), for portability between different system types</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Creates multiple tape volumes</td>
<td></td>
</tr>
</tbody>
</table>

The following sections describes step-by-step instructions and examples of how to use these commands.
Copying File Systems Between Disks

Two commands are used to copy file systems between disks:

- `volcopy`
- `dd`

For more information about `volcopy`, see `volcopy(1M)`.

The next section describes how to use the `dd` command to copy file systems between disks.

Making a Literal File System Copy

The `dd` command makes a literal (block-level) copy of a complete UFS file system to another file system or to a tape. By default, the `dd` command copies standard input to standard output.

**Note** – Do not use the `dd` command with variable-length tape drives without first specifying an appropriate block size.

You can specify a device name in place of standard input or standard output, or both. In this example, the contents of the diskette are copied to a file in the `/tmp` directory:

```
$ dd < /floppy/floppy0 > /tmp/output.file
2400+0 records in
2400+0 records out
```

The `dd` command reports on the number of blocks it reads and writes. The number after the + is a count of the partial blocks that were copied. The default block size is 512 bytes.

The `dd` command syntax is different from most other commands. Options are specified as `keyword=value` pairs, where `keyword` is the option you want to set and `value` is the argument for that option. For example, you can replace standard input and standard output with this syntax:

```
$ dd if=input-file of=output-file
```

To use the `keyword=value` pairs instead of the redirect symbols, you would type the following:

```
$ dd if=/floppy/floppy0 of=/tmp/output.file
```

How to Copy a Disk (`dd`)

Keep the following key points in mind when you consider copying a disk:

- Do not use this procedure to copy a disk that is under the control of a volume manager.
The primary methods for copying UFS file system data from one disk or system to another disk or system is by using the `ufsdump` and `ufsrestore` commands. For more information on using these commands, see Chapter 23, "Backing Up and Restoring File Systems (Overview)."

You can clone systems by creating a flash archive and copying it to destination systems. For more information about creating a flash archive, see Solaris 10 Installation Guide: Solaris Flash Archives (Creation and Installation).

If you are copying a disk with an EFI disk label, see Example 28–2.

If you are still considering copying a disk with the `dd` command keep the following cautions in mind:

- Make sure that the source disk and destination disk have the same disk geometry.
- Check the UFS file systems on the disk to be copied with the `fsck` utility.
- Make sure the system is in single-user mode when copying a disk with the `dd` command.

1. Become superuser or assume an equivalent role.

2. (Optional) Create the `/reconfigure` file so that the system will recognize the destination disk to be added when it reboots, if necessary.
   
   ```
 # touch /reconfigure
   ```

3. Shut down the system.
   
   ```
 # init 0
   ```

4. Attach the destination disk to the system.

5. Boot the system.
   
   ```
 ok boot -s
   ```

6. Copy the source disk to the destination disk.
   
   ```
 # dd if=/dev/rdsk/device-name of=/dev/rdsk/device-name bs=block-size
   ```

   - `if=/dev/rdsk/device-name` Represents the overlap slice of the master disk device, usually slice 2.
   - `of=/dev/rdsk/device-name` Represents the overlap slice of the destination disk device, usually slice 2.
   - `bs=blocksize` Identifies the block size, such as 128 Kbytes or 256 Kbytes. A large block size decreases the time it takes to copy the disk.

   For more information, see `dd(1M)`.
7 Check the new file system.
   # fsck /dev/rdsk/device-name

8 Mount the destination disk’s root (/) file system.
   # mount /dev/dsk/device-name /mnt

9 Change to the directory where the /etc/vfstab file is located.
   # cd /mnt/etc

10 Using a text editor, edit the destination disk’s /etc/vfstab file to reference the correct device names.
    For example, change all instances of c0t3d0 to c0t1d0.

11 Change to the destination disk’s root (/) directory.
   # cd /

12 Unmount the destination disk’s root (/) file system.
   # umount /mnt

13 Shut down the system.
   # init 0

14 Boot from the destination disk to single-user mode.
   # boot diskn -s

   Note – The installboot command is not needed for the destination disk because the boot blocks are copied as part of the overlap slice.

15 Unconfigure the destination disk.
   # sys-unconfig
   The system is shut down after it is unconfigured.

16 Boot from the destination disk again and provide its system information, such as host name, time zone, and so forth.
   # boot diskn

17 After the system is booted, log in as superuser to verify the system information.
   hostname console login:
Copying a Disk With a VTOC Label (dd)

This example shows how to copy the master disk (with a VTOC label) /dev/rdsk/c0t0d0s2 to the destination disk /dev/rdsk/c0t2d0s2.

```
touch /reconfigure
init 0
ok boot
dd if=/dev/rdsk/c0t0d0s2 of=/dev/rdsk/c0t2d0s2 bs=128k
fsck /dev/rdsk/c0t2d0s2
mount /dev/dsk/c0t2d0s2 /mnt
cd /mnt/etc
vi vfstab
(Modify entries for the new disk)
cd /
umount /mnt
init 0
boot disk2 -s
sys-unconfig
boot disk2
```

Copying a Disk with an EFI Label (dd)

In previous Solaris releases, slice 2 (s2) was used to represent the entire disk. On a disk with an EFI label, you must use a slightly different procedure to clone or copy disks larger than 1 terabyte so that the UUID of cloned disks is unique. If you do not create a new label for the cloned disk, other software products might corrupt data on EFI-labeled disks if they encounter duplicate UUIDs.

For example:

1. Clone the disk with an EFI label. For example:

   ```
 # dd if=/dev/rdsk/c0t0d0 of=/dev/rdsk/c0t2d0 bs=128k
   ```

2. Pipe the prtvtoc output of the disk to be copied to the fmthard command to create a new label for the cloned disk. For example:

   ```
 # prtvtoc /dev/rdsk/c0t0d0 | fmthard -s - /dev/rdsk/c0t2d0
   ```

For more information about EFI disk labels, see “EFI Disk Label” on page 194.
Copying Directories Between File Systems (cpio Command)

You can use the cpio (copy in and out) command to copy individual files, groups of files, or complete file systems. This section describes how to use the cpio command to copy complete file systems.

The cpio command is an archiving program that copies a list of files into a single, large output file. This command inserts headers between the individual files to facilitate recovery. You can use the cpio command to copy complete file systems to another slice, another system, or to a media device, such as a tape or diskette.

Because the cpio command recognizes end-of-media and prompts you to insert another volume, it is the most effective command, other than ufsdump, to use to create archives that require multiple tapes or diskettes.

With the cpio command, you frequently use the ls and find commands to list and select the files you want to copy, and then to pipe the output to the cpio command.

▼ How to Copy Directories Between File Systems (cpio)

1 Become superuser or assume an equivalent role.

2 Change to the appropriate directory.

   # cd filesystem1

3 Copy the directory tree from filesystem1 to filesystem2 by using a combination of the find and cpio commands.

   # find . -print -depth | cpio -pdm filesystem2

   . Starts in the current working directory.
   -print Prints the file names.
   -depth Descends the directory hierarchy and prints file names from the bottom up.
   -p Creates a list of files.
   -d Creates directories as needed.
   -m Sets the correct modification times on directories.

   For more information, see cpio(1).

   The files from the directory name you specify are copied. The symbolic links are preserved.
You might also specify the `-u` option. This option forces an unconditional copy. Otherwise, older files do not replace newer files. This option might be useful if you want an exact copy of a directory, and some of the files being copied might already exist in the target directory.

4 Verify that the copy was successful by displaying the contents of the destination directory.

    # cd filesystem2
    # ls

5 If appropriate, remove the source directory.

    # rm -rf filesystem1

Example 28-3  Copying Directories Between File Systems (`cpio`)

    # cd /data1
    # find . -print -depth | cpio -pdm /data2
    19013 blocks
    # cd /data2
    # ls
    # rm -rf /data1

Copying Files and File Systems to Tape

You can use the `tar`, `pax`, and `cpio` commands to copy files and file systems to tape. The command that you choose depends on how much flexibility and precision you require for the copy. Because all three commands use the raw device, you do not need to format or make a file system on tapes before you use them.

The tape drive and device name that you use depend on the hardware configuration for each system. For more information about tape device names, see “Choosing Which Media to Use” on page 515.

Copying Files to Tape (`tar` Command)

Here is information that you should know before you copy files to tape with the `tar` command:

- Copying files to a tape with the `-c` option to the `tar` command destroys any files already on the tape at or beyond the current tape position.
- You can use file name substitution wildcards (`?` and `*`) as part of the file names that you specify when copying files. For example, to copy all documents with a `.doc` suffix, type `* .doc` as the file name argument.
- You cannot use file name substitution wildcards when you extract files from a `tar` archive.
How to Copy Files to a Tape (\texttt{tar})

1. Change to the directory that contains the files you want to copy.

2. Insert a write-enabled tape into the tape drive.

3. Copy the files to tape.
   
   \[
   \texttt{\$ tar cvf /dev/rmt/0 filenames}
   \]

   - \texttt{c} Indicates that you want to create an archive.
   - \texttt{v} Displays the name of each file as it is archived.
   - \texttt{f /dev/rmt/0} Indicates that the archive should be written to the specified device or file.
   - \texttt{filenames} Indicates the files and directories that you want to copy. Separate multiple files with spaces.

   The file names that you specify are copied to the tape, overwriting any existing files on the tape.

4. Remove the tape from the drive. Write the names of the files on the tape label.

5. Verify that the files you copied are on the tape.
   
   \[
   \texttt{\$ tar tvf /dev/rmt/0}
   \]

   For more information on listing files on a \texttt{tar} tape, see “How to List the Files on a Tape (\texttt{tar})” on page 503.

Example 28–4  Copying Files to a Tape (\texttt{tar})

The following example shows how to copy three files to the tape in tape drive 0.

\[
\texttt{\$ cd /export/home/kryten}
\texttt{\$ ls reports}
\texttt{reportA reportB reportC}
\texttt{\$ tar cvf /dev/rmt/0 reports}
\texttt{a reports/ 0 tape blocks}
\texttt{a reports/reportA 59 tape blocks}
\texttt{a reports/reportB 61 tape blocks}
\texttt{a reports/reportC 63 tape blocks}
\texttt{\$ tar tvf /dev/rmt/0}
\]
How to List the Files on a Tape (tar)

1. Insert a tape into the tape drive.

2. Display the tape contents.
   
   ```
 $ tar tvf /dev/rmt/

 t Lists the table of contents for the files on the tape.
 v Used with the t option, and provides detailed information about the files on the tape.
 f /dev/rmt/n Indicates the tape device.
   ```

Example 28–5  Listing the Files on a Tape (tar)

The following example shows a listing of files on the tape in drive 0.

```
$ tar tvf /dev/rmt/0

drwxr-xr-x 0/1 0 Jul 28 15:00 2004 reports/
-r--r--r-- 0/1 206663 Jul 28 15:00 2004 reports/reportA
-r--r--r-- 0/1 206663 Jul 28 15:00 2004 reports/reportB
-r--r--r-- 0/1 206663 Jul 28 15:00 2004 reports/reportC
```

How to Retrieve Files From a Tape (tar)

1. Change to the directory where you want to put the files.

2. Insert the tape into the tape drive.

3. Retrieve the files from the tape.
   
   ```
 $ tar xvf /dev/rmt/n [filenames]

 x Indicates that the files should be extracted from the specified archive file. All files on the tape in the specified drive are copied to the current directory.
 v Displays the name of each file as it is retrieved.
 f /dev/rmt/n Indicates the tape device that contains the archive.
 filenames Specifies a file to retrieve. Separate multiple files with spaces.
   ```

For more information, see the tar(1) man page.
Verify that the files have been copied.

```
$ ls -l
```

**Example 28–6** Retrieving Files on a Tape (tar)

The following example shows how to retrieve all the files from the tape in drive 0.

```
$ cd /var/tmp
$ tar xvf /dev/rmt/0
 x reports/, 0 bytes, 0 tape blocks
 x reports/reportA, 0 bytes, 0 tape blocks
 x reports/reportB, 0 bytes, 0 tape blocks
 x reports/reportC, 0 bytes, 0 tape blocks
 x reports/reportD, 0 bytes, 0 tape blocks
$ ls -l
```

Troubleshooting The names of the files extracted from the tape must exactly match the names of the files that are stored on the archive. If you have any doubts about the names or paths of the files, first list the files on the tape. For instructions on listing the files on the tape, see “How to List the Files on a Tape (tar)” on page 503.

### Copying Files to a Tape With the pax Command

1. Change to the directory that contains the files you want to copy.
2. Insert a write-enabled tape into the tape drive.
3. Copy the files to tape.

```
$ pax -w -f /dev/rmt/n filenames
-w Enables the write mode.
-f /dev/rmt/n Identifies the tape drive.
filenames Indicates the files and directories that you want to copy. Separate multiple files with spaces.
```

For more information, see the pax(1) man page.
4 Verify that the files have been copied to tape.
   $ pax -f /dev/rmt/\n
5 Remove the tape from the drive. Write the names of the files on the tape label.

Example 28–7 Copying Files to a Tape (pax)

The following example shows how to use the pax command to copy all the files in the current directory.

   $ pax -w -f /dev/rmt/0 .
   $ pax -f /dev/rmt/0
   filea fileb filec

Copying Files to Tape With the cpio Command

How to Copy All Files in a Directory to a Tape (cpio)

1 Change to the directory that contains the files you want to copy.

2 Insert a write-enabled tape into the tape drive.

3 Copy the files to tape.
   $ ls | cpio -oC > /dev/rmt/\n
   ls Provides the cpio command with a list of file names.
   cpio -oC Specifies that the cpio command should operate in copy-out mode (-o) and write header information in ASCII character format (-c). These options ensure portability to other vendors’ systems.
   > /dev/rmt/\n    Specifies the output file.

All files in the directory are copied to the tape in the drive you specify, overwriting any existing files on the tape. The total number of blocks that are copied is shown.

4 Verify that the files have been copied to tape.
   $ cpio -cv\n    -c Specifies that the cpio command should read files in ASCII character format.
Copying Files to Tape With the cpio Command

- **-i** Specifies that the cpio command should operate in copy-in mode, even though the command is only listing files at this point.
- **-v** Displays the output in a format that is similar to the output from the `ls -l` command.
- **-t** Lists the table of contents for the files on the tape in the tape drive that you specify.

< /dev/rmt/\[n\] Specifies the input file of an existing cpio archive.

5 Remove the tape from the drive. Write the names of the files on the tape label.

**Example 28–8  Copying All Files in a Directory to a Tape (cpio)**

The following example shows how to copy all of the files in the `/export/home/kryten` directory to the tape in tape drive 0.

```
$ cd /export/home/kryten
$ ls | cpio -oc > /dev/rmt/0
16 blocks
$ cpio -civt < /dev/rmt/0
-rw-r--r-- 1 root other 0 Jul 28 14:59 2004, filea
-rw-r--r-- 1 root other 0 Jul 28 14:59 2004, fileb
-rw-r--r-- 1 root other 0 Jul 28 14:59 2004, filec
drwxr-xr-x 2 root other 0 Jul 28 14:59 2004, letters
drwxr-xr-x 2 root other 0 Jul 28 15:00 2004, reports
16 blocks
$```

Example 28–9 Listing the Files on a Tape (cpio)

The following example shows how to list the files on the tape in drive 0.

```
\[\text{Note} – Listing the table of contents on a tape takes a long time because the cpio command must process the entire archive.}\]
1 Insert an archive tape into the tape drive.

2 List the files on the tape.

\[\text{Example 28–9  Listing the Files on a Tape (cpio)}\]

\[\text{The following example shows how to list the files on the tape in drive 0.}\]
How to Retrieve All Files From a Tape (`cpio`)

If the archive was created using relative path names, the input files are built as a directory within the current directory when you retrieve the files. If, however, the archive was created with absolute path names, the same absolute paths are used to re-create the file on your system.

**Caution** – The use of absolute path names can be dangerous because you might overwrite existing files on your system.

1. Change to the directory where you want to put the files.
2. Insert the tape into the tape drive.
3. Extract all files from the tape.
   
   ```bash
 $ cpio -icvd < /dev/rmt/0

 -i Extracts files from standard input.
 -c Specifies that the `cpio` command should read files in ASCII character format.
 -v Displays the files as they are retrieved in a format that is similar to the output from the `ls` command.
 -d Creates directories as needed.
 < /dev/rmt/0 Specifies the output file.

 Verify that the files were copied.

   ```bash
   $ ls -l
   ```

 Example 28–10 Retrieving All Files From a Tape (`cpio`)

 The following example shows how to retrieve all files from the tape in drive 0.
Copying Files to Tape With the cpio Command

$ cd /var/tmp
$ cpio -icvd < /dev/rmt/0
 answers
 sc.directives
 tests
 8 blocks
$ ls -l

▼ How to Retrieve Specific Files From a Tape (cpio)

1 Change to the directory where you want to put the files.

2 Insert the tape into the tape drive.

3 Retrieve a subset of files from the tape.
 $ cpio -icv "*file" < /dev/rmt/0
 -i Extracts files from standard input.
 -c Specifies that the cpio command should read headers in ASCII character format.
 -v Displays the files as they are retrieved in a format that is similar to the output from the ls command.
 "*file" Specifies that all files that match the pattern are copied to the current directory. You can specify multiple patterns, but each pattern must be enclosed in double quotation marks.
 < /dev/rmt/0 Specifies the input file.
 For more information, see the cpio(1) man page.

4 Verify that the files were copied.
 $ ls -l

Example 28–11 Retrieving Specific Files From a Tape (cpio)

The following example shows how to retrieve all files with the chapter suffix from the tape in drive 0.

$ cd /home/smith/Book
$ cpio -icv "*chapter" < /dev/rmt/0
 Boot.chapter
 Directory.chapter

508 System Administration Guide: Devices and File Systems • June 2007
Copying Files to a Remote Tape Device

▼ How to Copy Files to a Remote Tape Device *(tar and dd)*

1 The following prerequisites must be met to use a remote tape drive:

 a. The local host name and optionally, the user name of the user doing the copy, must appear in the remote system's `/etc/hosts.equiv` file. Or, the user doing the copy must have his or her home directory accessible on the remote machine, and have the local machine name in `$HOME/.rhosts`.
 For more information, see the `hosts.equiv(4)` man page.

 b. An entry for the remote system must be in the local system's `/etc/inet/hosts` file or in the name service `hosts` file.

2 To test whether you have the appropriate permission to execute a remote command, try the following:

   ```
   $ rsh remote-host echo test
   ```

 If `test` is echoed back to you, you have permission to execute remote commands. If `Permission denied` is echoed back to you, check your setup as described in Step 1.

3 Change to the directory where you want to put the files.

4 Insert the tape into the tape drive.

5 Copy the files to a remote tape drive.

   ```
   $ tar cvf - filenames | rsh remote-host dd of=/dev/rmt/n obs=block-size
   ```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tar cf</code></td>
<td>Creates a tape archive, lists the files as they are archived, and specifies the tape device.</td>
</tr>
<tr>
<td><code>v</code></td>
<td>Provides additional information about the tar file entries.</td>
</tr>
<tr>
<td><code>-</code> (Hyphen)</td>
<td>Represents a placeholder for the tape device.</td>
</tr>
</tbody>
</table>
Copying Files to a Remote Tape Drive

filenames Identifies the files to be copied. Separate multiple files with spaces.

rsh | remote-host Pipes the tar command’s output to a remote shell.

dd of=/dev/rmt/n Represents the output device.

obs=block-size Represents the blocking factor.

6 Remove the tape from the drive. Write the names of the files on the tape label.

Example 28–12 Copying Files to a Remote Tape Drive (tar and dd)

```bash
# tar cvf - * | rsh mercury dd of=/dev/rmt/0 obs=126b
a answers/ 0 tape blocks
a answers/test129 1 tape blocks
a sc.directives/ 0 tape blocks
a sc.directives/sc.190089 1 tape blocks
a tests/ 0 tape blocks
a tests/test131 1 tape blocks
6+9 records in
0+1 records out
```

How to Extract Files From a Remote Tape Device

1 Insert the tape into the tape drive.

2 Change to a temporary directory.
 $ cd /var/tmp

3 Extract the files from a remote tape device.
 $ rsh remote-host dd if=/dev/rmt/n | tar xvBpf -
 rsh remote-host Indicates a remote shell that is started to extract the files from the tape
device by using the dd command.
 dd if=/dev/rmt/n Indicates the input device.
 | tar xvBpf - Pipes the output of the dd command to the tar command, which is used
to restore the files.

4 Verify that the files have been extracted.
 $ ls -l
Example 28–13 Extracting Files From a Remote Tape Drive

$ cd /var/tmp
$ rsh mercury dd if=/dev/rmt/0 | tar xvBpf -
 x answers/, 0 bytes, 0 tape blocks
 x answers/test129, 48 bytes, 1 tape blocks
 0+0 records in
 0+0 records out
 x sc.directives/, 0 bytes, 0 tape blocks
 x sc.directives/sc.190089, 77 bytes, 1 tape blocks
 x tests/, 0 bytes, 0 tape blocks
 x tests/test131, 84 bytes, 1 tape blocks
$ ls -l

Copying Files and File Systems to Diskette

Before you can copy files or file systems to diskette, you must format the diskette. For information on how to format a diskette, see Chapter 2, "Managing Removable Media (Tasks)."

Use the `tar` command to copy UFS files to a single formatted diskette.

Use the `cpio` command if you need to copy UFS files to multiple formatted diskettes. The `cpio` command recognizes end-of-media and prompts you to insert the next diskette.

What You Should Know When Copying Files to Diskettes

- Copying files to a formatted diskette by using the `tar -c` command destroys any files that are already on the diskette.
- A diskette that contains a `tar` image is not mountable.
- If you need a multiple-volume interchange utility, use the `cpio` command. The `tar` command is only a single-volume utility.

For more information, see `tar(1)`.

▼ How to Copy Files to a Single Formatted Diskette (`tar`)

1 Change to the directory that contains the files you want to copy.
2 Insert a formatted diskette that is not write-protected into the drive.
Make the diskette available.

$ volcheck

Reformat the diskette, if necessary.

$ rmformat -U /dev/rdiskette
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y

Copy the files to diskette.

$ tar cvf /vol/dev/aliases/floppy0 filenames
The file names that you specify are copied to the diskette, overwriting any existing files on the diskette.

Verify that the files were copied.

$ tar tvf /vol/dev/aliases/floppy0
For more information on listing files, see “How to List the Files on a Diskette (tar)” on page 512.

Remove the diskette from the drive.

Write the names of the files on the diskette label.

Copying Files to a Single Formatted Diskette (tar)

The following example shows how to copy files named evaluation* to a diskette.

$ cd /home/smith
$ volcheck
$ ls evaluation*
evaluation.doc evaluation.doc.backup
$ tar cvf /vol/dev/aliases/floppy0 evaluation*
a evaluation.doc 86 blocks
a evaluation.doc.backup 84 blocks
$ tar tvf /vol/dev/aliases/floppy0

How to List the Files on a Diskette (tar)

Insert a diskette into the drive.

Make the diskette available.

$ volcheck
List the files on a diskette.

```bash
$ tar tvf /vol/dev/aliases/floppy0
```

Example 28–15 Listing the Files on a Diskette (tar)

The following example shows how to list the files on a diskette.

```bash
$ volcheck
$ tar tvf /vol/dev/aliases/floppy0
  rw-rw-rw-6693/10  44032 Jun  9 15:45 evaluation.doc
  rw-rw-rw-6693/10  43008 Jun  9 15:55 evaluation.doc.backup
$
```

How to Retrieve Files From a Diskette (tar)

1. Change to the directory where you want to put the files.
2. Insert the diskette into the drive.
3. Make the diskette available.
   ```bash
   $ volcheck
   ```
4. Retrieve files from the diskette.
   ```bash
   $ tar xvf /vol/dev/aliases/floppy0
   All files on the diskette are copied to the current directory.
   ```
5. Verify that the files have been retrieved.
   ```bash
   $ ls -l
   ```
6. Remove the diskette from the drive.

Example 28–16 Retrieving Files From a Diskette (tar)

The following example shows how to retrieve all the files from a diskette.

```bash
$ cd /home/smith/Evaluations
$ volcheck
$ tar xvf /vol/dev/aliases/floppy0
  x evaluation.doc, 44032 bytes, 86 tape blocks
  x evaluation.doc.backup, 43008 bytes, 84 tape blocks
$ ls -l
```
The following example shows how to retrieve an individual file from a diskette. The file is extracted from the diskette and placed in the current working directory.

```
$ volcheck
$ tar xvf /vol/dev/aliases/floppy0 evaluation.doc
x evaluation.doc, 44032 bytes, 86 tape blocks
$ ls -l
```

Archiving Files to Multiple Diskettes

If you are copying large files onto diskettes, you want to be prompted to replace a full diskette with another formatted diskette. The `cpio` command provides this capability. The `cpio` commands you use are the same that you would use to copy files to tape, except you would specify `/vol/dev/aliases/floppy0` as the device instead of the tape device name.

For information on how to use the `cpio` command, see “How to Copy All Files in a Directory to a Tape (`cpio`)” on page 505.
Managing Tape Drives (Tasks)

This chapter describes how to manage tape drives in the Solaris™ Operating System (Solaris OS).

This is a list of the step-by-step instructions in this chapter.
- “How to Display Tape Drive Status” on page 518
- “Retensioning a Magnetic Tape Cartridge” on page 519
- “Rewinding a Magnetic Tape Cartridge” on page 520

This is a list of overview information in this chapter.
- “Choosing Which Media to Use” on page 515
- “Backup Device Names” on page 516
- “Displaying Tape Drive Status” on page 518
- “Guidelines for Drive Maintenance and Media Handling” on page 520

Choosing Which Media to Use

You typically back up Solaris systems by using the following tape media:
- 1/2-inch reel tape
- 1/4-inch streaming cartridge tape
- 8-mm cartridge tape
- 4-mm cartridge tape (DAT)

You can perform backups with diskettes, but doing so is time-consuming and cumbersome.

The media that you choose depends on the availability of the equipment that supports it and of the media (usually tape) that you use to store the files. Although you must do the backup from a local system, you can write the files to a remote device.
The following table shows typical tape devices that are used for backing up file systems. The storage capacity for each device depends on the type of drive and the data being written to the tape.

TABLE 29–1 Media Storage Capacities

<table>
<thead>
<tr>
<th>Backup Media</th>
<th>Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-inch reel tape</td>
<td>140 Mbytes (6250 bpi)</td>
</tr>
<tr>
<td>2.5-Gbyte 1/4-inch cartridge (QIC) tape</td>
<td>2.5 Gbytes</td>
</tr>
<tr>
<td>DDS3 4-mm cartridge tape (DAT)</td>
<td>12–24 Gbytes</td>
</tr>
<tr>
<td>14-Gbyte 8-mm cartridge tape</td>
<td>14 Gbytes</td>
</tr>
<tr>
<td>DLT 7000 1/2-inch cartridge tape</td>
<td>35–70 Gbytes</td>
</tr>
</tbody>
</table>

Backup Device Names

You specify a tape or diskette to use for backup by supplying a logical device name. This name points to the subdirectory that contains the “raw” device file and includes the logical unit number of the drive. Tape drive naming conventions use a logical, not a physical, device name. The following table shows this naming convention.

TABLE 29–2 Basic Device Names for Backup Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape</td>
<td>/dev/rmt/n</td>
</tr>
<tr>
<td>Diskette</td>
<td>/vol/dev/rdiskette0/unlabeled</td>
</tr>
</tbody>
</table>

In general, you specify a tape device as shown in the following figure.
If you don’t specify the density, a tape drive typically writes at its “preferred” density. The preferred density usually means the highest density the tape drive supports. Most SCSI drives can automatically detect the density or format on the tape and read it accordingly. To determine the different densities that are supported for a drive, look at the /dev/rmt subdirectory. This subdirectory includes the set of tape device files that support different output densities for each tape.

Also, a SCSI controller can have a maximum of seven SCSI tape drives.

Specifying the Rewind Option for a Tape Drive

Normally, you specify a tape drive by its logical unit number, which can run from 0 to n. The following table describes how to specify tape device names with a rewind or a no-rewind option.

<table>
<thead>
<tr>
<th>Drive and Rewind Value</th>
<th>Use This Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>First drive, rewind</td>
<td>/dev/rmt/0</td>
</tr>
<tr>
<td>First drive, no rewind</td>
<td>/dev/rmt/0n</td>
</tr>
<tr>
<td>Second drive, rewind</td>
<td>/dev/rmt/1</td>
</tr>
<tr>
<td>Second drive, no rewind</td>
<td>/dev/rmt/1n</td>
</tr>
</tbody>
</table>
Specifying Different Densities for a Tape Drive

By default, the drive writes at its “preferred” density, which is usually the highest density the tape drive supports. If you do not specify a tape device, the command writes to drive number 0 at the default density the device supports.

To transport a tape to a system whose tape drive supports only a certain density, specify a device name that writes at the desired density. The following table describes how to specify different densities for a tape drive.

<table>
<thead>
<tr>
<th>Drive, Density, and Rewind Value</th>
<th>Use This Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>First drive, low density, rewind</td>
<td>/dev/rmt/0l</td>
</tr>
<tr>
<td>First drive, low density, no rewind</td>
<td>/dev/rmt/0ln</td>
</tr>
<tr>
<td>Second drive, medium density, rewind</td>
<td>/dev/rmt/1m</td>
</tr>
<tr>
<td>Second drive, medium density, no rewind</td>
<td>/dev/rmt/1mn</td>
</tr>
</tbody>
</table>

The additional density values are shown in “Backup Device Names” on page 516.

Displaying Tape Drive Status

You can use the status option with the `mt` command to get status information about tape drives. The `mt` command reports information about any tape drives that are described in the `/kernel/drv/st.conf` file.

How to Display Tape Drive Status

1. Load a tape into the drive you want information about.
2. Display the tape drive status.

   ```
   # mt -f /dev/rmt/n status
   ```
3. Repeat steps 1–2, substituting tape drive numbers 0, 1, 2, 3, and so on to display information about all available tape drives.

Example 29–1 Displaying Tape Drive Status

The following example shows the status for a QIC-150 tape drive (/dev/rmt/0):
Handling Magnetic Tape Cartridges

If errors occur when a tape is being read, you can retension the tape, clean the tape drive, and then try again.

Retensioning a Magnetic Tape Cartridge

Retension a magnetic tape cartridge with the *mt* command.

For example:

```
$ mt -f /dev/rmt/1 retension
```
Note – Do not retension non-QIC tape drives.

Rewinding a Magnetic Tape Cartridge

To rewind a magnetic tape cartridge, use the `mt` command.

For example:

```
$ mt -f /dev/rmt/1 rewind
```

Guidelines for Drive Maintenance and Media Handling

A backup tape that cannot be read is useless. So, periodically clean and check your tape drives to ensure correct operation. See your hardware manuals for instructions on procedures for cleaning a tape drive. You can check your tape hardware by doing either of the following:

- Copying some files to the tape, reading the files back, and then comparing the original files with the copied files.
- Using the `-v` option of the `ufsdump` command to verify the contents of the media with the source file system. The file system must be unmounted or completely idle for the `-v` option to be effective.

Be aware that hardware can fail in ways that the system does not report.

Always label your tapes after a backup. If you are using a backup strategy similar to the strategies suggested in Chapter 23, “Backing Up and Restoring File Systems (Overview),” you should indicate on the label “Tape A,” “Tape B,” and so forth. This label should never change. Every time you do a backup, make another tape label that contains the following information:

- The backup date
- The name of the machine and file system that is backed up
- The backup level
- The tape number (1 of `n`, if the backup spans multiple volumes)
- Any information specific to your site

Store your tapes in a dust-free safe location, away from magnetic equipment. Some sites store archived tapes in fireproof cabinets at remote locations.

You should create and maintain a log that tracks which media (tape volume) stores each job (backup) and the location of each backed-up file.
Index

Numbers and Symbols
/export/home directory, 320
4.3 Tahoe file system, 313
9660 CD format, 47

A
accessing
 disk devices, 86
 iSCSI disks (how to), 271
 removable media (how to), 48
 tape devices, 89
adding
 a disk (overview)
 SPARC, 234
 x86, 244-257
 a SCSI device to a SCSI bus (how to), 100
 a USB camera (how to), 146
 a USB mass storage device without vold running (how to), 145
 entry to /etc/vfstab file (how to), 353
 PCI adapter card (how to), 110
 swap to vfstab, 397
 USB audio devices (how to), 162
 VPPA communication service (how to), 184
allocated inodes, 407
archiving, files to multiple diskettes with cpio command (how to), 514
autoconfiguration process, 77
autofs, 332
automounting, and /home, 332

B
backing up
 and restoring file systems
 commands for, 434
 definition, 434
 choosing file systems to, 435
 full and incremental, definition, 436
 preparing for (overview), 450-451
 reasons for, 434
 types of, 436
backup
 device names, 516-518
 record of incremental, 487
backup schedules
 daily cumulative, weekly cumulative backups, 443
 daily cumulative, weekly incremental backups, 444
 daily incremental, weekly cumulative backups, 445
 examples, 442-448
 for a server, 446-448
 guidelines, 440
 guidelines for, 439
 using dump levels for, 441
bad block numbers, 409
bad inode number, 410
bad superblock, 418
block disk device interface
 definition, 87
 when to use, 87
blocks
 bad, 409
 boot, 426
 data, 427-428
blocks (Continued)
 directory data, 409
 duplicate, 408
 free, 428
 indirect, 409
 logical size, 429
 regular data, 410
 special inodes, 407
boot block, 426
BSD Fat Fast File system, 313
bus-oriented disk controllers, 88
bytes (number per inode), 431

C
CacheFS file systems
 (overview), 365
 checking with fsck command (example of), 376
 collecting CacheFS statistics (overview), 386
 creating (how to), 367
 creating a packing list (how to), 380
 deleting (how to), 375
 displaying information about (how to), 373
 displaying packed files (example of), 379
 displaying packed files (how to), 378
 locating CacheFS log file, 388
 mounting (how to), 368
 packing with cachefspack command (how to), 378
 packing with cachefspack command
 (overview), 377
 parameters, 365
 setting up CacheFS logging (how to), 387
 stopping CacheFS logging, 389
 troubleshooting cachefspack errors, 382
 viewing CacheFS statistics, 391

cachefspack command
 how to use, 378
 overview, 377

causes of file system damage, 404

cdrw command
 description, 57
 restricting access to (how to), 60
 writing data CDs and DVDs and audio CDs
 (overview), 59

cds
 ISO 9660 format, 47
 names, 46
 UFS CDs
 SPARC vs. x86 format, 47
cfgadm
 PCI hot-plugging (overview), 92
 SCSI hot-plugging (overview), 92
cfsadmin command, 367, 375
changing, primary USB audio device (how to), 164
character special inodes, 407
checking
 and repairing file systems, 412
 CacheFS file systems (example of), 376
 file system size, 406
 format and type of inodes, 407
 free blocks, 407
 free inodes, 407
 inode list for consistency, 406
crni command, 319
collecting, CacheFS statistics (overview), 386
configuring
 a SCSI controller (how to), 97
 a SCSI device (how to), 98
 a USB device (how to), 168
 IB Port, HCA_SVC, or a VPPA device (how to), 180
 IB pseudo device (how to), 181
 IOC device (how to), 179
 iSCSI target discovery (how to), 269
 unidirectional or bidirectional CHAP authentication
 for iSCSI (how to), 266
connecting
 a SCSI controller (how to), 100
 a USB device, logically (how to), 169
copying
 complete file systems (dd), 496
 directories between file systems with cpio command
 (overview), 500
 files to diskette (overview), 511
 groups of files with cpio command (overview), 500
 individual files with cpio command (overview), 500
cpio command
 (overview), 500
cpiο command (Continued)
copying directories between file systems (how to), 500
extract all files from tape (how to), 507
listing files on tape (how to), 506
creating
a data CD or DVD file system (how to), 63
a full backup of UFS snapshot information (how to), 467
a packing list (how to), 380
a UFS snapshot
(example of), 464
a UFS snapshot (how to), 463
file systems (overview), 336
loopback file system (overview), 344
swap file, 399
CTFS file system, 317
custom parameters for file systems, 428-431
cylinder group, 425-428
determining (Continued)
type of tape drive, 470
/dev/dsk directory, 86
/dev/rdsk directory, 86
devfsadm command, 85
device driver
adding, 84
definition, 76
device names
backup, 516-518
finding a file system name, 470
finding tape, 471
devices, accessing, 85
df command, 87 319
dfstable file, configuring for shared local removable
media (how to), 52
direct I/O, 327
directories
copying between file systems with cpiο command
(overview), 500
inodes, 407
/proc, 316
/tmp, 316
unallocated blocks, 410
disconnect, a USB device, logically (how to), 168
disconnecting
a SCSI controller (how to), 99
a USB device subtree, logically (how to), 169
disk
adding to a (overview)
x86, 244-257
automatic configuration of SCSI drives, 225
formatting a (overview), 204
repairing defective sectors, 227 229
when to format (overview), 212
disk-based file systems, 313
disk controllers, 88
disk label
creating (overview), 217
description, 193
disk slices
definition, 198
determining which slices to use, 201
displaying information about (overview), 215-217
disk slices (Continued)
disks
 adding to a (overview)
 SPARC, 234
 connecting a secondary disk (example of)
 SPARC, 239
 creating disk slices and labeling a disk (example of)
 SPARC, 238
 creating disk slices and labeling a disk (how to)
 SPARC, 236
 determining if formatted (how to), 212
 recovering a corrupted disk label (how to), 221
 recovering a corrupted disk label (overview), 221
 displaying
 disk slice information (overview), 215
 IBM communication services (how to), 183
 InfiniBand device information (how to), 177
 information about SCSI devices, 96
 kernel IB clients of an HCA (how to), 182
 packed files (example of), 379
 packed files (how to), 378
 PCI slot configuration information (how to), 107
 removable media user (how to), 50
 swap space, 398-399
 system configuration information, 77, 81
 USB bus information (how to), 166
 USB device information (how to), 149
 DOS, file system, 313
 driver not attached message, 78
dump levels
 daily, incremental backups, 442
 definition, 441
duplicate blocks, 408
 DVD-ROM, 314
dynamic reconfiguration, InfiniBand devices, 176
dynamic reconfiguration (overview), 92

E
 EFI label
 (overview), 194
 comparison with VTOC label, 194
 installing a system with, 196
 restrictions of, 195
 troubleshooting problems, 197
 eject command, removable media (how to), 51
 ejecting, removable media (how to), 51
 enabling, uDAPL, 186
 end-of-media detection
 cpio command, 500
 ufsdump command, 486
 error messages, iSCSI, 282
 /etc/dfs/dfstab file, configuring for shared removable media (how to), 52
 /etc/dumpdates file, 486-487
 /etc/rmmount.conf file, sharing removable media drives (how to), 53
 extended fundamental types (UFS file system), 321

F
 FDFS file system, 317
 ff command, 319
 FIFO inodes, 407
 FIFOFS file system, 317
 file system name, 470
 file system table, virtual, 330
 file systems
 /, 320
 4.3 Tahoe, 313
 BSD Fat Fast, 313
 cached (overview), 365
 checking and repairing, 412
 checking size, 406
 copying complete (dd), 496
 creating (overview)
 loopback (LOFS), 344
 CTFS, 317
 custom parameters, 428-431
 cylinder group struct, 425-428
 damage to, 404
default SunOS, 320
files (Continued)
 /etc/dfs/fstypes, 333
in the /proc directory, 317
retrieving from tape with tar command (how to), 503
sharing, 331-332
finding
 file system name, 470
tape device name, 471
type of file system, 333
fixing inconsistent file systems, 417
format .dat file
 creating an entry (how to), 224
creating an entry (overview), 224
keywords, 295-298
syntax rules, 295
format of inodes, 407
format utility
 (overview), 202
analyze menu, 292
automatic configuration of SCSI disk drives (how to), 227
automatic configuration of SCSI disk drives (overview), 225
creating a Solaris fdisk partition (how to), 249
creating disk slices and labeling disk (how to)
 SPARC, 236
 x86, 255
defect menu, 293-294
determining if a disk is formatted (how to), 212
displaying disk slice information (example of), 216
entering command names (how to), 300
fdisk menu, 291
features and benefits, 202
formatting a disk (example of), 214
guidelines for using, 203-204
identifying disks on a system (examples of), 212
identifying disks on a system (how to), 210
input to, 299-301
labeling a disk
 example of, 218
main menu, 288
partition menu, 290
recovering corrupted disk label (how to), 221

files (Continued)
 archiving to multiple diskettes with cpio command (how to), 514
commands for copying to media (overview), 493
/etc/default/fs, 333

file systems (Continued)
 description of administration commands, 318
disk-based, 313
DOS, 313
/export/home, 320
FDFS, 317
FIFOFS, 317
finding types, 333
fixing, 417
High Sierra, 313
ISO 9660, 313
large, 349
making available (overview), 347-352
manual pages for, 320
MNTFS, 321
mount table, 329
NAMEFS, 317
network-based, 314
OBJFS, 317
/opt, 321
PCFS, 313
preening, 416
/proc, 321
process, (overview), 316-317
PROCFS, (overview), 316-317
pseudo, (overview), 315
reasons for inconsistencies, 405
sharing, 331-332
SPECFS, 317
stopping all processes accessing (how to), 360
SWAPFS, 317
TMPFS, 316
types of, 312
UFS, 313
UNIX, 313
/usr, 320
/var, 321
which to back up, 435
why you back up, 434

files
 archiving to multiple diskettes with cpio command (how to), 514
commands for copying to media (overview), 493
/etc/default/fs, 333

Index
525
format utility (Continued)
 specifying block numbers (how to), 299
 using help facility, 301
 when to use, 202
formatting, a USB mass storage device without void running (how to), 150
formatting a disk, (overview), 204
fragment size, 429-430
free blocks, 407 428
free hog slice, See donor slice
free inodes, 407
free space (minimum), 430
fsck command, 87, 319
 checking
 free blocks, 407
 free inodes, 407
 inode list size, 406
 superblock, 406
 conditions to repair, 405
 FSACTIVE state flag, 404
 FSBAD state flag, 404
 FSCLEAN state flag, 404
 FSSTABLE state flag, 404
 preening, 416
 state flags, 404
 syntax and options, 423
 using interactively, 412
fsdb command, 319
fssnap command, creating a UFS snapshot (how to), 463
fstyp command, 319
fstypes file, 333
full backup
 (example of), 454 456
 definition, 437
fuser command
 finding if removable media is in use (how to), 50
 killing processes accessing removable media (how to), 50

G

grep command, 333

GRUB
 managing disks with GRUB
 x86, 191
 Solaris failsafe boot
 x86, 191

H

High Sierra file system, 313
/home (automounted), 332
hot-plugging
 (overview), 92
 adding a SCSI device to a SCSI bus (how to), 100
 adding PCI adapter card (how to), 110
 configuring a SCSI controller (how to), 97
 configuring a SCSI device (how to), 98
 configuring a USB device (how to), 168
 connecting a SCSI controller (how to), 100
 disconnecting a SCSI controller with cfgadm command (how to), 99
 logically connecting a USB device (how to), 169
 logically disconnecting a USB device (how to), 168
 logically disconnecting a USB device subtree (how to), 169
 PCI devices (overview), 106
 removing a SCSI device (how to), 103
 removing PCI adapter card (how to), 108
 replacing an identical SCSI device on a SCSI controller (how to), 102
 unconfiguring a SCSI device (how to), 97
 unconfiguring a USB device (how to), 167
HSFS, See High Sierra file system

I

I/O, direct, 327
identifying
 devices, 78
 disks on a system (how to), 210
 primary USB audio device (how to), 163
 inconsistencies in file systems, 405
 incorrect . and . entries, 410
 incremental backup, 437 487
incremental backup (Continued)
(example of), 455
indirect blocks, 409
InfiniBand devices
 adding a VPPA communication service (how to), 184
 configuring an IB Port, HCA_SVC, or a VPPA device (how to), 180
 configuring an IB pseudo device (how to), 181
 configuring an IOC device (how to), 179
 displaying (how to), 177
 displaying IB communication services (how to), 183
 displaying kernel IB clients of an HCA (how to), 182
 dynamic reconfiguration (overview), 176
 overview, 173
 removing an existing IB port, HCA_SVC, or a VPPA communication service (how to), 184
 unconfiguring an IB Port, HCA_SVC, or a VPPA (how to), 180
 unconfiguring an IB pseudo device (how to), 181
 unconfiguring an IOC device (how to), 179
 unconfiguring IB devices connected an HCA (how to), 182
 updating an IOC configuration (how to), 185
 updating the IP p_key tables (how to), 183
inode list size, 406
inode states, 407
inodes, 426-427
 bad number, 410
 block special, 407
 character special, 407
 checking format and type, 407
directory, 407
 FIFO, 407
 link count, 408
 number of bytes per, 431
 regular, 407
 size, 409
 symbolic link, 407
installboot command, 242
installgrub command, 257
installing a boot block (how to), SPARC, 242
iSCSI
(overview), 259
 accessing iSCSI disks (how to), 271
 configuring iSCSI target discovery (how to), 269
 configuring unidirectional or bidirectional CHAP authentication for (how to), 266
general iSCSI error messages, 282
 modifying iSCSI initiator and target parameters (how to), 275
monitoring your iSCSI configuration (how to), 272
preparing for a Solaris iSCSI configuration (how to), 263
removing discovered iSCSI targets (how to), 270
software and hardware requirements, 260
static and dynamic target discovery, 263
troubleshooting iSCSI configuration problems (how to), 280
iscsiadm add command, adding static or dynamic targets (example of), 269
iscsiadm list, displaying ISCSI configuration information (example of), 273
iscsiadm modify command
 enabling CHAP (example of), 266
 enabling or disabling static or dynamic targets (example of), 271
iscsiadm remove command, removing static or dynamic targets (example of), 271
ISO 9660 file system, 313
ISO standards, 9660 CD format, 47

K
/kernel/drv directory, 77
killing
 all processes accessing a file system (how to), 360
 processes accessing removable media (how to), 50

L
labelit command, 319
large files option, 349
level 0 backup, 441
link count of inodes, 408
loading, diskettes with volume management (how to), 35
locating, CacheFS log file, 388
log (record of dumps), 486–487
logical block size, 429
logical device name
 definition, 86
disk, 86	
tape, 89
logical device names, removable media, 89
loopback file system (LOFS)
 creating (overview), 344
 mounting, 354
lost+found directory, 404

M
maintaining tape drives, 520
managing
disks with GRUB
 x86, 191
manual pages, for file systems, 320
media was found message, 35
memory storage (virtual), definition, 393
minimum free space, 430
mkfile command, 399, 400
mkfs command, 319, 336
mkisofs command, create a data CD or DVD file system (how to), 63
MNTFS file system, 321
mnttab file, 329
modifying, iSCSI initiator and target parameters (how to), 275
monitoring, your iSCSI configuration (how to), 272
mount command, 87
mount point, definition, 327
mount table, 329
mountall command, 319
mounting (Continued)
 loopback file systems (LOFS), 354
 NFS file systems, 353
 PCMCIA memory cards on other systems (example of), 56
 remote removable media manually (example of), 56
 removable media
 automatic mounting compared to, 30
 UFS file systems, 353
 UFS file systems (how to)
 without large files, 356
 mt command, 519

N
NAMEFS file system, 317
nccheck command, 319
network-based file systems, 314
cnewfs command, 87, 336
NFS
 description, 331
 server description, 331
 vfstab entry for, 353
nfsd daemon
 starting, 52
 verifying if running, 52
no media was found message, 36

O
OBJFS file system, 317
/opt directory, 321
options, for ufsdump command, 490

P
parameters (file system), 428–431
partition (swap), definition, 393
passwd file, restoring from tape (example of), 476
PCFS file system, 313
PCI devices
 adding PCI adapter card (how to), 110
PCI devices (Continued)
 displaying PCI slot configuration information (how to), 107
 removing PCI adapter card (how to), 108
 troubleshooting PCI configuration problems, 112
PCMCIA memory cards
 accessing on other systems (example of), 56
 mounting remotely (example of), 56
physical device name
 definition, 86
preening file systems, 416
preparing
 for backing up (overview), 450-451
 to restore files (overview), 470-471
 to use a USB mass storage device without vold running (how to), 148
preparing for, Solaris iSCSI configuration (how to), 263
/proc directory, 316, 321
process file system (PROCFS), 316-317
PROCFS file system, (overview), 316-317
prtvtoc command, 87
 (example of), 220
pseudo file systems, (overview), 315
removable media (Continued)
 ejecting (how to), 51
 finding out if media is in use (how to), 50
 killing processes accessing (how to), 50
 mounting
 manual compared to automatic, 30
 mounting remote media (example of), 56
 names, 46
removing
 a SCSI device (how to), 103
 a swap file from use, 401
 a USB mass storage device without vold running (how to), 147
 discovered iSCSI targets (how to), 270
 existing IB port, HCA_SVC, or a VPPA communication service (how to), 184
 PCI adapter card (how to), 108
replacing, an identical SCSI device on a SCSI controller (how to), 102
resetting, a USB device (how to), 170
resolving, a failed SCSI unconfigure operation (how to), 105
restoring bad superblock, 418
restoring file systems
 complete (example of), 479
 complete (how to), 477
 determining which tapes to use (how to), 471
 preparing to (overview), 470-471
 root and /usr (SPARC) (example of), 482
 root or /usr (x86) (example of), 483
 type of tape drive, 470
restoring files
 interactive restore (example of), 474
 non-interactive restore (example of), 476
restricting, removable media access (how to), 60
retrieving, files from tape with tar command (how to), 503
rmmount .conf file, sharing removable media drives (how to), 53
Rock Ridge extension (HSFS file system), 313
root (/) file system, 320
S
scheduling backups, 439
SCSI devices
 adding a SCSI device to a SCSI bus (how to), 100
 configuring a SCSI controller (how to), 97
 configuring a SCSI device (how to), 98
 connecting a SCSI device (how to), 100
 disconnecting with cfqadm command (how to), 99
 displaying information about (how to), 96
 removing a SCSI device (how to), 103
 replacing an identical SCSI device on a SCSI controller (how to), 102
 resolving a failed SCSI unconfigure operation (how to), 105
 troubleshooting SCSI configuration problem, 104
 unconfiguring a SCSI controller (how to), 97
SCSI disk drives, 225
SCSI tape drives, 517
secondary disk
 connecting to the system (how to)
 SPARC, 236
 x86, 248
description, 201
setting up, CacheFS logging, 387
share command, 331
 making removable media available to other systems (how to), 52
shareall command, 331
sharing, files, 331-332
size
 checking file system, 406
 fragment, 429-430
 inode, 409
slice (definition), 198
Solaris failsafe boot
 (how to)
 x86, 245
 x86, 191
Solaris fdisk partition, guidelines, 248-249
space optimization type, 430-431
SPARC based systems, UFS format, 47
SPECFS file system, 317
specifying a disk slice, 88
starting
 nfsd daemon, 52
 volume management (how to), 48
state flag
 fsck, 404
 UFS file systems, 322
stopping
 all processes for a file system (how to), 360
 CacheFS logging, 389
 killing processes accessing removable media (how to), 50
 volume management (how to), 48
storage (virtual memory), definition, 393
storage capacities (media), 437, 516
structure of cylinder groups, 425-428
SunOS default file system, 320
superblock, 406, 418, 426
swap command, 399
swap file
 adding to vfstab, 397
 creating, 399
 displaying, 398-399
 removing from use, 401
swap partition, definition, 393
swapadd command, 397
SWAPFS file system, 317
symbolic links, 407
syntax, fsck command, 423
sysdef command, 78
system disk
 connecting (how to)
 x86, 245
description, 201
T
tape
 capacity, 489
 characteristics, 489
 retrieving files from with tar command (how to), 503
 sizes, 437, 516
 storage capacities, 437, 516
tape devices (naming), 89
tape drive
 determining type for restore, 470
 maintaining, 520
 maximum SCSI, 517
 rewind, 517-518
tar command
 (overview), 501
 copying files to remote tape with dd command (how to), 509
 listing files on diskette (how to), 513
 listing files on tape (how to), 503
 retrieving files from diskette (how to), 513
 retrieving files from remote tape with dd command (how to), 510
 retrieving files from tape (how to), 503
temporary file system (TMPFS), overview, 316
time (optimization type), 430-431
/tmp directory, 316, 321
TMPFS file system, overview, 316
troubleshooting
 a failed SCSI unconfigure operation, 105
 cachefspack errors, 382
 EFI disk labels, 197
 iSCSI configuration problems (how to), 280
 PCI configuration problems, 112
 SCSI configuration problems, 104
 USB audio device problems, 164
 USB mass storage devices, 159
type of file systems, 312
type of inodes, 407

U
uDAPL
 (overview), 186
 enabling (how to), 186
 registering a service provider in the DAT static registry (how to), 188
 unregistering a service provider in the DAT static registry (how to), 188
 updating the DAT static registry (how to), 187
UDF file system, 314
UFS CDs, SPARC compared to x86 formats, 47
UFS file system, 313 321

UFS file system (Continued)
 extended fundamental types, 321
 large file systems, 321
 logging, 322
 mounting, 353
 mounting with /etc/vfstab, 354
 mounting without large files (how to), 356
 multiterabyte file systems, 322
 state flags, 322
UFS logging, overview, 325
UFS snapshot
 creating (how to), 463
 creating a full backup of (how to), 467
description, 461
ufsdump command
 end-of-media detection, 486
 full backup (example of), 454, 456
 how data is copied with, 486
 how it works, 485-489
 incremental backup (example of), 455
 limitations, 489
 options and arguments, 490
ufsdump command (overview), 452
ufsrestore command, 491
 determining which tapes to use (how to), 471
 preparing to use (overview), 470
umount command, 319
umountall command, 319
unallocated directory blocks, 410
unallocated inodes, 407
unconfiguring
 a SCSI controller (how to), 97
 a USB device (how to), 167
 IB devices connected an HCA (how to), 182
 IB Port, HCA_SVC, or a VPPA Device (how to), 180
 IB pseudo device (how to), 181
 IOC device (how to), 179
UNIX file system, 313
unmounting, a USB mass storage device without vold running (how to), 158
unregistering, service provider in the DAT static registry (how to), 188
unsupported devices, 77
USB devices (Continued)

- preparing to use a mass storage device without vold running (how to), 148
- removable mass storage (overview), 141
- removing a mass storage device without vold running (how to), 147
- resetting a USB device (how to), 170
- Solaris USB Architecture (USBA), 132
- troubleshooting audio device problems, 164
- troubleshooting tips for mass storage devices, 159
- unconfiguring a device (how to), 167
- unmounting mass storage without vold running (how to), 158
- using non-compliant mass storage devices (overview), 143
- wheel mouse support, 136

/usb file system, 320

V

/var directory, 321
- verifying, nfsd daemon is running, 52

vfstab file, 333 397
- adding entries to (how to), 353
- adding swap to, 397
- default, 330
- entry for LOFS, 345
- mounting all files, 354
- viewing, CacheFS statistics, 391
- virtual file system table, 330
- virtual memory storage, definition, 393
- volcopy command, 319
- volmg start command, 48

volume management
- benefits, 29
- loading diskettes (how to), 35
- manual compared to automatic mounting, 30
- restarting (how to), 48
- stopping (how to), 48
Index

W
writing, data CDs and DVDs and audio CDs
(overview), 59

X
x86 based systems, UFS format, 47